
SOFTWARE IMPLEMENTATIONS OF QOS SCHEDULING ALGORITHMS
FOR HIGH SPEED NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

AYDIN PEHLIVANLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2015

Approval of the thesis:

SOFTWARE IMPLEMENTATIONS OF QOS SCHEDULING ALGORITHMS
FOR HIGH SPEED NETWORKS

submitted by AYDIN PEHLIVANLI in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Ece Güran Schmidt
Supervisor, Electrical Electronics Engineering Department,
METU

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical Electronics Engineering Department, METU

Assoc. Prof. Dr. Ece Güran Schmidt
Electrical Electronics Engineering Department, METU

Assoc. Prof. Dr. Ilkay Ulusoy
Electrical Electronics Engineering Department, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Ömer Lütfi Nuzumlalı
Aselsan INC.

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: AYDIN PEHLIVANLI

Signature :

iv

ABSTRACT

SOFTWARE IMPLEMENTATIONS OF QOS SCHEDULING ALGORITHMS
FOR HIGH SPEED NETWORKS

Pehlivanlı, Aydın

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ece Güran Schmidt

January 2015, 91 pages

The end to end Quality of Service (QoS) support for the dominating multimedia traf-

fic in the contemporary computer networks is achieved by implementing schedulers

in the routers and deploying traffic shapers. To this end, realistic modeling and simu-

lation of these components is essential for network performance evaluation.

The first contribution of this thesis is the design and implementation of a C++ simu-

lator QueST (Quality of Service simulaTor) for this task. QueST is a modular cycle

accurate simulator with a detailed modeling of the traffic flows, shapers and sched-

ulers. The traffic generators and the schedulers of QueST are verified by comparison

to the respective analytical models.

The QoS schedulers are data plane components in routers which have to operate at 10s

of Gbps rates. Hence, the increasing scheduling complexity with the number of flows

is an important problem. This problem can be alleviated by reducing the number of

flows by traffic aggregation.

v

The second contribution of this thesis is the evaluation of previously developed Win-

dow Based Fair Aggregator (WBFA) in QueST under a large number of case studies

to investigate its features and benefits as well as optimal parameter selection.

Keywords: Quality of Service Schedulers, High speed networks, Flow aggregation,

Software simulator

vi

ÖZ

YÜKSEK HIZLI AĞLAR İÇİN AĞ İLETİŞİMİ HİZMET KALİTESİ
ÇİZELGELEYİCİ ALGORİTMALARININ YAZILIMSAL GERÇEKLENMESİ

Pehlivanlı, Aydın

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ece Güran Schmidt

Ocak 2015 , 91 sayfa

Modern bilgisayar ağlarına hakim multimedya trafikler için uçtan uca servis kalitesi

(QoS) desteği, ağ yönlendiricilerinde çizelgeleyicilerin gerçeklenmesi ve trafik şekil-

lendiricilerin uygulanmasıyla sağlanır. Bu amaçla, ağ bileşenlerinin gerçek şekilde

modellenmesi ve simule edilmesi ağ performanslarının değerlendirilmesi için gerek-

lidir.

Bu tezin ilk katkısı QueST C++ simulatörünün tasarımı ve gerçeklenmesidir. QueST

trafik akışlarını, şekillendiricilerini ve çizelgeleyicilerini detaylı modelleyen modüler

kesin bir simulatördür. QueST simulatöründeki trafik üreticileri ve çizelgeleyicileri

ilgili analitik modellerle kıyaslanarak doğrulanmıştır.

Yönlendiricilerde bulunan servis kalitesi çizelgeleyicileri onlarca Gbps hızında işlem

yapması gereken veri düzlemi bileşenleridir. Bu yüzden, akış sayısı ile birlikte ar-

tan çizelgeleyici karmaşıklığı önemli bir problemdir. Bu problem trafik birleştirme

vii

yöntemi ile akış sayısını azaltarak bastırılabilir.

Bu tezin ikinci katkısı daha önceden geliştirilen pencere tabanlı adil birleşticinin

(WBFA) özellikleri ve faydalarının yanısıra optimum parametre seçimlerini araştır-

mak için büyük sayıda durum çalışmaları altında QueST simülatöründe değerlendi-

rilmesidir.

Anahtar Kelimeler: Servis kalitesi çizelgeleyici, Yüksek hızlı ağ, Akış birleştirme,

Benzetim yazılımı

viii

To my wife and my family

ix

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis advisor Assoc.Prof. Dr. Ece

Güran Schmidt for her guidance, advice, support, understanding and encouragement

throughout the completion of this thesis study.

I am grateful to Aselsan for the time and resources that I use for this thesis.

I am grateful to my manager Mustafa Özgür Ateşoğlu for his tolerance during this

study.

I would like to thank Mustafa Sanlı for his advice and help on completing this thesis.

My special thanks go to Murat Yılmaz, Kerem Furkan Çiçek, Halit Gölcük and Murat

Vural for reviewing this thesis.

I would like to thank my friend Mehmet Sami Büyüksarıkulak for his help on writing

this thesis.

I would like to thank my colleagues Serkan Avgören, Ömer Lütfi Nuzumlalı and

Mustafa Karakurt for their encouragement and friendship.

I owe my wife Ebru Pehlivanlı a debt of gratitude for her love, support and under-

standing throughout this study.

Finally, I would like to thank my parents Adem and Zeliha Pehlivanlı and my brother

Ayhan Pehlivanlı for their continuous support throughout my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

2 RELATED WORK: QUALITY OF SERVICE SUPPORT IN HIGH
SPEED NETWORKS . 5

2.1 High Speed Network Routers 5

2.1.1 Network Router Functionalities 6

2.2 Quality of Service . 7

2.2.1 Traffic Profiles and Traffic Shaping 8

2.2.2 Packet Scheduling 11

2.2.3 Flow Aggregation 14

xi

2.3 Network Simulators . 16

2.3.1 Open Source Network Simulators 16

2.3.1.1 ns-2 16

2.3.1.2 ns-3 18

2.3.1.3 OMNeT++ 19

3 QUEST: QOS SIMULATOR . 21

3.1 Modules . 22

3.1.1 Traffic Generator 25

3.1.1.1 QueST Poisson Traffic Generator . . . 26

Conceptual Design: 26

Software Design: 26

3.1.1.2 QueST Bursty Traffic Generator . . . 28

Conceptual Design: 28

Software Design: 29

3.1.1.3 QueST Pareto Traffic Generator 31

Conceptual Design: 31

Software Design: 32

3.1.2 Traffic Shaper . 34

3.1.2.1 QueST Token Bucket Shaper 35

Conceptual Design: 35

Software Design: 36

xii

3.1.3 Packet Scheduler 38

3.1.3.1 QueST Worst-case Weighted Fair Queu-
ing Plus Scheduler 39

Conceptual Design: 39

Software Design: 40

3.2 Scalability and Complexity 45

3.3 Verification Tests . 47

3.3.1 Verification of Poisson Traffic Generator in QueST 47

3.3.2 Verification of Bursty Traffic Generator in QueST . 50

3.3.3 Verification of Pareto Traffic Generator in QueST . 50

3.3.4 Verification of Token Bucket Shaper in QueST . . 53

3.3.5 Verification of WF2Q+ Scheduler in QueST 54

3.3.5.1 Experiment 1: Verification of WF2Q+

Scheduler with one WF2Q+ module . 54

3.3.5.2 Experiment 2: Verification of WF2Q+

Scheduler with cascaded 4 WF2Q+

modules 56

4 WINDOW BASED FAIR AGGREGATOR (WBFA) EVALUATION
WITH QUEST . 59

4.1 Window Based Fair Aggregator (WBFA) 59

4.1.1 WBFA Operation 60

4.1.1.1 Preliminaries 60

4.1.1.2 Operations 62

Calculation of w(t): 62

xiii

Packet Transmission: 63

4.1.2 WBFA Performance 64

4.2 Integration of WBFA to QueST 64

4.3 Experiments and Results . 69

4.3.1 Experiment 1: Verification of WBFA under Pois-
son Traffic Generator 69

4.3.2 Experiment 2: Verification of WBFA under Bursty
Traffic Generator 71

4.3.3 Experiment 3: Run time analysis for WBFA 72

4.3.4 Experiment 4: Optimal Maximum Window Size . . 74

4.3.5 Experiment 5: Fairness Analysis for WBFA 77

4.3.6 Experiment 6: Effect of WBFA on WF2Q+ Sched-
uler . 78

4.3.6.1 Experiment 6-1: Effect of WBFA on
WF2Q+ Scheduler under Fixed Size
Packets 79

4.3.6.2 Experiment 6-2: Effect of WBFA on
WF2Q+ Scheduler under Different Sized
Packets 81

4.3.7 Experiment 7: Analyzing effects of WBFA on WF2Q+

scheduler under the conditions with more than 1000
Traffic Flows . 82

5 CONCLUSION AND FUTURE WORK 85

REFERENCES . 87

xiv

LIST OF TABLES

TABLES

Table 3.1 Poisson traffic experiment loads . 48

Table 3.2 Bursty Traffic Generator Test Results 50

Table 3.3 Shape and location values of pareto traffic experiments 51

Table 3.4 Token Bucket Shaper Experiment Values 53

Table 3.5 Token Bucket Shaper Experiment Results 53

Table 3.6 Experiment-1 WF2Q+ scheduler test values for each scenarios . . . 55

Table 3.7 Experiment-1 WF2Q+ scheduler test results for each scenarios . . . 55

Table 3.8 Experiment-2 WF2Q+ scheduler test results for each scenarios . . . 57

Table 4.1 (a) Experimental Results Under Poisson Traffic Generator, %75

Load in [60] (b) Experimental Results Under Poisson Traffic Generator,

%75 Load in QueST . 71

Table 4.2 (a) Experiment Result Under Bursty Traffic Generator, %85 Load

in [60] (b) Experiment Result Under Bursty Traffic Generator, %85 Load

in QueST . 72

Table 4.3 (a) Experiment Values for Case-1 (b) Experiment Values for Case-2 74

Table 4.4 Experiment Values for both Case-1 and Case-2 77

Table 4.5 (a) Number of served packets for Case-1 (b) Number of served pack-

ets for Case-2 . 78

xv

Table 4.6 Experiment Results for Poisson Traffic Generator with Fixed Size

Packets . 80

Table 4.7 Experiment Results for Bursty Traffic Generator with Fixed Size

Packets . 81

Table 4.8 Experiment Results for Poisson Traffic Generator with Exponen-

tially Distributed Sized Packets . 82

Table 4.9 Experiment results under 1120 Poisson traffic flows with different

sized packets . 84

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 Generic Router Architecture . 7

Figure 2.2 Packet Scheduler . 12

Figure 2.3 Basic ns-2 Architecture . 17

Figure 3.1 Software Modules of QueST . 22

Figure 3.2 UML Model of QueST . 24

Figure 3.3 Class Diagram of Traffic Generator Module 25

Figure 3.4 Flow Chart of CreatePacket Function in Poisson Traffic Generator

Module . 28

Figure 3.5 The state transition of Bursty traffic generator with probabilities . . 28

Figure 3.6 Flow Chart of CreatePacket Function in Bursty Traffic Generator

Module . 31

Figure 3.7 Flow Chart of CreatePacket Function in Pareto Traffic Generator

Module . 33

Figure 3.8 Class Diagram of Traffic Shaper Module 34

Figure 3.9 Operation of Token Bucket Shaper in QueST 35

Figure 3.10 Flow Chart of applyShaper Function in Token Bucket Shaper Module 37

Figure 3.11 Class Diagram of Packet Scheduler Module 38

xvii

Figure 3.12 Flow Chart of schedule Function in WF2Q Scheduler Module . . . 42

Figure 3.13 Flow Chart of serve Function in WF2Q Scheduler Module 43

Figure 3.14 Flow Chart of update Function in WF2Q Scheduler Module 44

Figure 3.15 Run times of QueST under different traffic generator modules . . . 45

Figure 3.16 Run times of QueST under different number of traffic flows 46

Figure 3.17 Run times of QueST under different number of WF2Q+ scheduler

modules . 47

Figure 3.18 Experiment results for the comparison of poisson traffic distribu-

tion and the theoretical expectation . 49

Figure 3.19 Experiment results for the comparison of pareto traffic distribution

and the theoretical expectation . 52

Figure 3.20 Flow diagram of experiment -2 56

Figure 4.1 An aggregator and a scheduler . 61

Figure 4.2 The aggregators m,n and a scheduler s 64

Figure 4.3 The Class Diagram of WBFA and Scheduler Module 65

Figure 4.4 Flow Chart of schedule Function in WBFA Scheduler Module . . . 67

Figure 4.5 Flow Chart of serve Function in WBFA Scheduler Module 68

Figure 4.6 Flow Chart of update Function in WBFA Scheduler Module 69

Figure 4.7 Experiment setup for verification of WBFA (a) Reference case:

4 flows scheduled with a WF2Q+ scheduler s without aggregation. (b)

WF2Q+ scheduler s follows aggregator n. 70

Figure 4.8 Experiment setup for complexity analysis of WBFA 73

Figure 4.9 Run times of QueST under different number of WBFA modules . . 73

xviii

Figure 4.10 Experiment Results under same reserved rates and different traffic

loads . 75

Figure 4.11 Experiment Results under same traffic loads and different reserved

rates . 75

Figure 4.12 Experiment setup for the effect of WBFA on WF2Q+ a) shows

reference case without WBFA b)shows WBFA case 79

Figure 4.13 Experiment setup for the effect of WBFA on WF2Q+ under 1120

Traffic flows a) shows reference case without WBFA b)shows WBFA case 83

xix

LIST OF ABBREVIATIONS

QoS Quality of Service

WBFA Window Based Fair Aggregator

IS P Internet Service Provider

VOIP Voice over IP

NGN Next Generation Network

AT M Asynchronous Transfer Mode

IntS erv Internet Integrated Service

Di f f S erv Internet Differentiated Service

GPS Generalized Processor Sharing

PFQ Packet Fair Queuing

WFQ Weighted Fair Queuing

WF2Q Worst-case Weighted Fair Queuing

WF2Q+ Worst-case Weighted Fair Queuing Plus

FAbS Flow Aggregate Based Services

IP Internet Protocol

WBFA Window Based Fair Aggregator

IC Integrated Circuit

RIP Routing Information Protocol

OS PF Open Shortest Path First

TT L Time to Live

TCP Transmission Control Protocol

UDP User Datagram Protocol

TG Traffic Generator

MGEN Multi-Generator

NRL Naval Research Laboratory

RUDE Real-Time UDP Data Emitter

CRUDE Collector for RUDE

ABR Available Bit Rate

xx

AT M Asynchronous Transfer Mode

FT P File Transfer Protocol

ns Network simulator

OTcl Object-oriented Tool Command Language

NED Network Description

QueS T Qos SimulaTor

WFI Worst case Fairness Index

OOP Object Oriented Programming

CDF Cumulative Distribution Function

GUI Graphical User Interface

xxi

xxii

CHAPTER 1

INTRODUCTION

The fraction of multimedia traffic carried over Internet Protocol (IP) networks in-

creases rapidly with the popularity of video and Voice over IP (VOIP) applications.

These applications require end to end Quality of Service (QoS) support at the network

level such as bounded delay, guaranteed bandwidth and high throughput. Therefore,

network routers and switches store the incoming packets in the per flow queues and

apply QoS scheduling to decide the service order among these queues. Resulting

differential service allocates the available bandwidth to these per flow queues with

respect to their reserved service rate.

The desired properties of a scheduling algorithm is achieving low delay bounds and

high throughput. Furthermore the flows should get fair service that is proportional to

their reserved rates.

The QoS schedulers are data plane components in the routers which process each

packet that goes through. Running such process under the ever increasing data rates

of the Internet requires low complexity scheduling algorithm implementations. Fur-

thermore, the complexity increases with the number of flows that are scheduled. The

ubiquitous connectivity with computers, smart phones or any other devices as ex-

pected for Internet of Things increases the number of flows in the network at a high

rate. One solution to alleviate this problem is aggregating the flows without degrading

the service quality received by each individual flow.

The focus of this thesis is the modeling and performance evaluation of the network

layer QoS support by traffic shapers and schedulers. To this end, the first contribution

1

of the thesis is a custom software simulator QueST (Quality of Service simulaTor)

implemented in C++ that modularly implements traffic generators, shapers, per flow

queues and QoS schedulers. QueST is a cycle accurate simulator which enables the

user to investigate the packet by packet, cycle by cycle behavior of these network

components. The widely used open source network simulators such as ns-2 and OM-

NeT++ do not provide such detailed implementation for the QoS schedulers. QueST

enables users to modify and extend the simulator easily due to its well defined module

interfaces.

The current traffic generator module in QueST implements the most common Pois-

son, Bursty and Pareto models. The current traffic shaper in QueST implements the

well-known Token Bucket Shaper algorithm. The selected QoS Scheduler for imple-

mentation is Weighted Fair Queuing Plus (WF2Q+) [11] algorithm which provides

the best delay bound and fairness with a low complexity. The correctness of the im-

plemented modules is verified by comparison to their analytical models.

The second contribution of this thesis is the detailed performance evaluation of the

previously proposed Window Based Fair Aggregator (WBFA) [60]. The aggrega-

tor preserves the delay bounds of the constituent flows if the aggregate flows are

scheduled by a scheduler with certain properties. WF2Q+ algorithm satisfies these

properties.

Extensive performance evaluations are carried out for WBFA-WF2Q+ in QueST to

demonstrate their features and benefits. Furthermore, the optimal value for the im-

portant window size parameter of WBFA is investigated experimentally using QueST.

The results show that WBFA can achieve the performance as analytically derived in

[60]. Furthermore the decreased simulation times under flow aggregation quantita-

tively demonstrate the reduced complexity of the flow aggregation.

The remainder of the thesis is organized as follows:

Chapter 2 presents the literature survey on QoS components as well as network sim-

ulator.

In Chapter 3, software modules and submodules of the QueST which is implemented

by use of C++ language are introduced in detail with UML models. Assumptions

2

made during development process of QueST are given. Run time analysis is pre-

sented for each module. Verification experiments for each module and submodule are

explained and presented in detail.

In Chapter 4, WBFA is explained and the Integration of WBFA to QueST is given

detail. Verification experiment for WBFA module in QueST is performed. Opti-

mum window size for WBFA is given. Run time analysis is presented for WBFA

module. Effect of WBFA on WF2Q+ scheduler module is analyzed by performing

experiments.

In Chapter 5, the conclusion of the thesis work is discussed with obtained results.

3

4

CHAPTER 2

RELATED WORK: QUALITY OF SERVICE SUPPORT IN

HIGH SPEED NETWORKS

The popularity of the Internet has been growing each year for the last decades. There-

fore, the Internet traffic has become more crowded. New applications such as Voice

Over IP (VOIP) and high definition video communication have created a need for an

increase in the network bandwidth. In order to provide these services, end to end

Quality of Service (QoS) support is needed at network layer. In this chapter, related

works in the literature are presented about network routers, QoS requirements and

schedulers, traffic profiles, traffic shapers, flow aggregations and network simulators.

2.1 High Speed Network Routers

The number of Internet Protocol (IP) network users increases day by day [3]. The

growth of video traffic and multimedia streaming have also interesting statistic. %30

of European IP traffic is multimedia traffic [1]. Furthermore, real-time network ap-

plications such as IP telephony and video conference become important for network

area. All of these services are formed by customer requirements and require QoS sup-

port [57]. The routers of the Internet Service Providers (ISP)’s have a quite important

role in providing these services. This rapid increase in network traffic creates new

challenges for router design.

[7] states that routers have been implemented in software conventionally. Therefore,

performance of network routers depends on the quality of software processor and its

code. However, rapid growth in the requirement of high speed routers has created the

5

need for wire speed routing which demands high performance processors and large

memory units. This situation increases the cost and complexity of architectural de-

sign. Recent developments in technology have changed the viewpoint for implement-

ing high speed network routers. Designing a single integrated circuit (IC) with silicon

capability, embedded memories and microprocessors can be shown as an example for

these technologies. These technologies make building of cost effective, single-chip

routing solutions possible. Technological improvements in routing architecture which

includes specialized hardware, switch fabrics, efficient routing algorithms have cre-

ated a new family of routers which enable to send packets at multigigabit rates [43].

2.1.1 Network Router Functionalities

Network routers consist of network interface cards, processing modules, buffering

modules and switch fabrics and send packets among the end users by using these

modules [14]. Typically, packets are received by inbound interface cards, processed

by processing module and queued in the buffering module. Then, they are sent to

next hop by the help of outbound interface modules. In other words, the main task of

network routers is to sent packets from source node to destination node [43].

Figure 2.1 shows the generic router architecture which is composed of input and out-

put line cards, router processor or Central Processing Unit (CPU) and switch fabric.

Responsibilities of these components are as follows [2]:

• Line cards are entry and exit points of routers. They enable the routers to

connect external network. A variety of datalink technologies such as synchro-

nization and frame processing are employed in the line cards.

• Switch fabric is used as the interconnection between input line cards, CPU and

output line cards. In other words, it performs task switching. After that the

packets that are queued at the buffers of output line cards. Then, the packets

selected by QoS scheduler are transmitted.

• CPU is used to run routing protocols, update and maintain routing table. CPU

provides basic management operations such as creation of routing table for the

output line cards and link management.

6

Lookup
Ip Address

Update
Header

Address
Table

Header Processing

Update
Header

Header Processing
Lookup

Ip Address

Address
Table

Update
Header

Header Processing
Lookup

Ip Address

Address
Table

Input Line Cards

CPU

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Output Line Cards

DATA

DATA

DATA

Switch
Fabric

Figure 2.1: Generic Router Architecture

2.2 Quality of Service

The volume of IP network traffic increases per year [3], and this growth is expected

to go on for many years. IP-TV and multimedia traffic which become 30 percent of

European IP traffic have main effect on this growth [1]. According to [59], services

for real-time applications such as IP telephony and video, virtual environments and

global or local information centers are the motivation behind the Next Generation

Network (NGN) paradigm.

The above-mentioned services need the end to end QoS support [17]. QoS can be de-

fined by parameters such as obtained bandwidth, delay, and throughput [73]. Sorting

the incoming packets into related flows on node, storing them in per flow queues and

7

applying a QoS scheduler to assign the available bandwidth resources to these flow

queues with respect to their allocated rates are necessary to obtain end to end QoS

support.

[17] states that some parameters such as number of network users, required band-

width, types of QoS requirements and IP multicasting applications have negative ef-

fect on QoS guarantees. Dynamic routing protocols such as open shortest path for-

warding (OSPF) [47] and congestion control are inefficient to provide QoS support.

Network applications have different priorities for their transmission processes. While

some of them require error-free data transmission, the others may require real time

data transmission by tolerating data loss. Therefore, IP network elements are needed

to be managed in a way that these requirements are provided. Networks which can

dynamically adopt the QoS can provide custom support for different network users

[73]. In order to measure QoS support, the following parameters are used [61, 46]:

• Delay : Time spent for a packet to travel from source to destination.

• Jitter : Variation in the latency of a packet.

• Bandwidth : Maximum data transfer rate or used capacity of the network link.

• Throughput : Ratio of total number of packets successfully transferred to total

number of packets.

In order to provide good QoS support and maximize the network resource utiliza-

tion, traffic management which is used to prioritize traffic flows according to their

data contents should be provided [17]. In order to apply traffic management, each

element in IP network must contain new logical QoS supporting facilities and func-

tionalities [28]. There fundamental functionalities are traffic policing/shaping, packet

scheduling and buffer management [66].

2.2.1 Traffic Profiles and Traffic Shaping

Over the last years, both academic and industrial research have been done to under-

stand and characterize the behavior of computer network due to increasing bandwidth

8

and the number of new Internet applications. Network elements such as routers and

switches are obliged to develop to meet new requirements. Therefore, these network

elements need to be tested and evaluated during development process. The complex-

ity of network topologies and their traffic characteristics make simulation technique a

promising tool [6].

Traffic generation which is one of the challenges in network simulator design is re-

quired to test and evaluate network performance, new components and algorithms

under specified load conditions [58]. Traffic generator generates packet with respect

to a traffic pattern. A traffic generator must be controllable, scalable and realistic to

have satisfied evaluation of network performance [6].

Increasing network bandwidth requirements results in new academic and industrial

studies on the design and development of router architecture, QoS algorithms and

queue management techniques. Queue management and scheduling of the queue

have a great impact on performance metrics such as delay and throughput. In order

to evaluate these metrics, different traffic arrivals such as Poisson, Pareto, and Bursty

are needed. Therefore, traffic generators which generate packets with respect to these

arrivals can simply present network performance evaluation results when they are

implemented in software.

There is no one single model that can be used effectively for modeling traffic in all

kinds of networks. In the literature, there are many number of traffic profiles pro-

posed for analyzing the traffic characteristics of networks [45]. However, Poisson

and Markov-Modulated On/Off traffic profiles are the mostly used traffic patterns in

software-based traffic generators [30, 44, 56, 24] and Pareto traffic is the most suitable

traffic profile to model high speed networks and IP networks [4, 35]. Therefore, in the

simulator developed in this thesis, packets are generated with respect to these three

traffic profiles which are Poisson traffic, Markov-Modulated On/Off traffic and Pareto

traffic.

Poisson distribution is one of the most widely used and oldest traffic model [45].

[71] states that in many simulation scenarios the application of Poisson traffic is very

reasonable because of its well defined conditions for simulations. Poisson traffic is

suggested for traffic modelling in available bit rate (ABR) services in asynchronous

9

transfer mode (ATM) Networks [36].

Although the Poisson model is no longer suitable to accurately describe the bursty

behavior of real traffic, poisson traffic is still used to model Internet traffic [71]. Ac-

cording to [39], backbone network traffics appears to be well described by the Poisson

packet arrivals. In [53], it is shown that under some mild conditions,the feedback flow

of customers returning to the back of the queue converges to a Poisson process as the

feedback delay distribution is scaled up.

Markov-modulated on–off traffic model is one of the most widely used traffic models

like Poisson Model. [75] states that, markov-modulated on–off traffic model emits

packet when the source is ON state and in the OFF state no packet is emitted. In [75],

Markov-modulated on-off model is suggested to simulate the aggregate traffic with

great accuracy. Markov-modulated on-off model is also suggested for persistent TCP

connection in [33]. Furthermore, the traffic in data centers exhibits on–off behavior

[12].

The Pareto distribution model is used to produce independent and identically dis-

tributed inter-arrival times [4]. According to [74], when network packets are trans-

mitted to the destination node, Pareto distribution can be used to estimate inter-arrival

times of the generated packets. In [9], pareto distribution is suggested to model

“heavy-tailed” traffic trains. Pareto distribution is also suggested in case of high speed

networks with unexpected demand on packet transfers due to its correctness on the

packet arrival times [4]. [35] says that if current IP traffic is needed to model, Pareto

distribution model can be applied instead of exponential distribution. Pareto distri-

bution which is used to perform the severity distribution in a context of catastrophe

reinsurance can be used to model of an individual as stated in [29].

Smoothing traffic at the input of network edge is applied to increase the schedulable

region of the network and reduce the traffic stream’s peak rate and rate variance [64].

In order to smoothen traffic, shaping is used. Traffic shaping is applied to check traffic

to ensure QoS, low latency, and increase bandwidth [8]. Traffic shaping controls burst

data and rate to ensure conformance to a traffic contract. If a traffic stream does not

obey the traffic contract, shaping algorithm delays that traffic until they conform to

the profile [17]. Queues are used to delay traffic streams by buffering traffic packets

10

[8]. However, since the traffic shaper has finite size queues, some packets may be

discarded when the queue does not have enough size to buffer delayed packets [17].

Traffic shaping is applied at the source prior to ingress of network or within the net-

work. While traffic shaping which is done at the source applies self regulation to

conform traffic contract, traffic shaping within the network does not need traffic con-

tract [13]. According to [55], shaped traffic will be exposed to less queueing delay

and jitter since it yields small size queues. In order to delay traffic streams to conform

contract, traffic shaping uses buffering technique. Therefore, some queueing delay is

observed by the traffic streams. However, since shaped traffic goes quickly along the

remaining path, network performance will be improved [26].

2.2.2 Packet Scheduling

Network users are allowed to share network resources such as bandwidth and packet

queues. However, since the number of network users is increasing, sharing these re-

sources among network users will become more problematic inevitably [17]. There-

fore, a packet scheduling discipline is necessary to determine which packet goes next

when a number of network users share the same link. In other words, packet sched-

ulers are needed to prioritize network users to provide QoS support by making use of

network resources [16].

Packet scheduling determines the order of queued packet transmission and addresses

different requirements of queued packets which are contending for the same outgoing

interface [16]. Since many packets in a network node may be transmitted from the

same outgoing link, packet scheduling also defines a set of rules in bandwidth usage.

While defining a set of rules for network users, packet scheduling should consider the

QoS requirements of each flow [13]. For example, while data traffic is loss sensitive

and has low priority, real-time video traffic is delay sensitive and has the highest

priority. Therefore, the privileged video traffic is transmitted first while data traffic is

delayed. Figure 2.2 shows a packet scheduler which can be located at the processor

of a router.

In today’s routers, since both number of network users and QoS requirements in-

11

crease, packet scheduling has become more significant [59]. Therefore, performance

metrics of packet scheduling is used to evaluate scheduler. In general, the following

metrics can be listed for packet scheduler [54]:

• Fairness : The packet scheduler must isolate flows competing for the same link

between each other. In other words, each flow should get its resource share and

this share should not be penalizes by the misbehaviour of other flows.

• Delay Bound : Interactive applications such as VoIP, video conferencing and

IP telephony require bounded delay. Since the packet scheduler determines the

order in which packets are transmitted on outgoing link, the end to end delay is

affected by packet scheduler.

• Complexity : Since the number of network users and supported line rates have

been increasing day by day, the complexity which is related with computational

resources required for the applying scheduling algorithm is also increasing. The

packet scheduler must have low level of complexity.

Packet in Packet out

Address Write/Read

Packet Scheduler

CPU
Packet Search

Engine

PacketsPackets

P
ac

ke
ts

 h
ea

de
r

Data Memory

Figure 2.2: Packet Scheduler

In the literature, there is a lot of previous works on scheduling algorithms. Gener-

alized Processor Sharing (GPS) [52] which is called the ideal scheduling algorithm

provides perfect fairness and protection among network users [25]. However, GPS

scheduling discipline which based on fluid flow model is not implementable due to

its packet transmission procedure [54]. In GPS scheduling algorithm, network traffic

flows are divided and many flows can take services proportional with their weight

simultaneously. According to [23, 31], GPS scheduling discipline provides network

12

delay bound for leaky bucket constrained traffic. However, GPS can not be imple-

mented in real world. Nevertheless, GPS acts as a benchmark for other scheduling

algorithms due to its fairness and low delay.

In order to emulate GPS behaviour and get as close as possible to GPS, a number

of packet fair queuing (PFQ) algorithms are proposed [32, 70, 67, 10]. In all PFQ

algorithms, behaviour of GPS scheduling process is tracked by a function which is

called virtual time. After calculating virtual time, finish time which gives the time

that the packet is transmitted under GPS scheduler is calculated for each head of line

(HOL) packets. Then HOL packets are served with the increasing order of finish

times [59].

Weighted Fair Queuing (WFQ) [25] uses above method in order to compute the fin-

ish time of a HOL packet. [10] proves that, the delay bound provided by WFQ is

within one packet transmission time and WFQ can be ahead of GPS. Although WFQ

discipline provides advance delay bound and fairness, implementation of WFQ is dif-

ficult. The complexity of WFQ is O(N) where N is the number of competing flows

[54]. The complexity comes from computing the virtual time and finish time, and

searching minimum finish time among HOL packets. Therefore, realization of WFQ

discipline in network is difficult due to its high complexity [52].

Although WFQ provides low delay bound, it shows short term unfairness which is

addressed by the Worst-case Weighted Fair Queuing (WF2Q) [10] algorithm. WF2Q

algorithm develops WFQ by performing on eligibility test in order to select the trans-

mitted packet. Therefore, WF2Q scheduling discipline achieves worst-case fairness

[10]. WF2Q emulates GPS better than WFQ and the maximum service difference

is one packet transmission time. Similar to WFQ, although (WF2Q) has good delay

bound and fairness, emulation of GPS results in high complexity. The complexity

of WF2Q is also O(N) where N is the number of competing flows [54]. Worst-case

Weighted Fair Queuing Plus (WF2Q+) [11] is an advanced version of WF2Q algo-

rithm. WF2Q+ computes virtual time function without emulating GPS and achieves

worst-case fairness by using simpler calculation methods. Therefore, it has lower

complexity than other PFQ algorithms.

Self-Clocked Fair Queuing [32] and Virtual Clock [76] are another PFQ schedulers.

13

They compute virtual times more efficiently in order to simplify the emulation of GPS

server and sort the packets in increasing order of their finish times. Therefore, their

time complexity is still O(logN). However, their delay bounds are very bad.

Implementation of all PFQ algorithms is difficult due to their complexity which is

related with the number of network users. Calculation of virtual time and searching

minimum finish time become more difficult with the increasing number of network

users. As a result, the scheduling algorithms could not realize their proper operations

with increasing number of network users. In order to support high number of network

users and decrease time complexity, flow aggregation method is proposed [18, 60].

2.2.3 Flow Aggregation

The complexity of PFQ algorithms increases with the QoS requirements which are

delay bound and fairness. Since the schedulers have to run at wire speed, number of

network users have significant effect on QoS support. When the number of network

users exceeds a certain limit, calculation of virtual time and foundation of minimum

finish time among flows will be more difficult. Therefore, scheduling algorithms

could not realize their proper operations with the increasing number of network users.

Flow aggregation is proposed as a solution to decrease complexity by supporting

high number of network users within network. Maintaining QoS guarantee of the

input flows in the aggregator is a challenging issue for the flow aggregation method,

because some greedy flows induce decreased delay and fairness for other constituent

flows. [18] proposed a model which consists of aggregators and schedulers to over-

come this problem. According to [18], if the flow aggregation method is fair and

packet scheduler is a start time scheduler, then the end to end delay guarantee is

protected with respect to case that flow aggregation is not performed. In this work,

two different design approach for fair aggregators which are basic fair aggregator and

greedy fair aggregator are proposed. While service rate is the sum of reserved rates

of aggregated flows in basic fair aggregator, service rate is relaxed only if all flows

have greater load than their reserved rate in greedy fair aggregator.

In [69], the end to end delay performance of the guaranteed rate schedulers is ob-

14

served. According to this work, it is stated that end to end delay bounds in rate

schedulers is still preserved in the case of flow aggregation. In addition, it is pointed

that delay bound obtained with flow aggregation is more successful.

[38] explored the effect of flow aggregation method on QoS support and stated that

the average delay does not increase under flow aggregation. In this work, a new

QoS architecture which is called Flow Aggregate Based Services (FAbS) is proposed.

FAbS tries to avoid congestion by using flow aggregation method.

In [41, 40], effect of flow aggregation on fairness among TCP flows is examined in

DiffServ network. According to these works, the performance obtained by network

end users varies significantly when flow aggregation is used. Although flow aggre-

gation with more flows has better throughput than flow aggregation with fewer flow,

fairness is still a problem for flow aggregation with more flows.

When fair flow aggregator concept is introduced in [18], lots of works are performed

to develop behaviour of fair aggregators. These work studied on the independence of

delay on flow rates and the utilization of bandwidth properties. According to these

studies, a flow aggregator must provide independent rate delay and work conserva-

tion. Although the fair aggregator proposed in [18] provides rate independent delay,

it is not work conservative aggregator. In contrast, the fair aggregators presented in

[68, 21, 22] are work conservative but they do not provide rate independent delay.

However, the fair aggregator proposed in [19] provides both rate independent delay

and work conservation at the expense of restriction on packet size and data rate.

[20] also proposes a new work conserving fair aggregation technique which supports

rate independent delay. In this technique, a time tag which represents virtual finish

time of the packet in the aggregator is inserted to input packet. The aggregated packets

are transmitted with respect to these tag values. However, clock synchronization is the

main disadvantage of this technique. Also in this technique, all packets are assumed

as they have a fixed size.

15

2.3 Network Simulators

In network research area, network simulation is used to model the behaviour of net-

work by calculating the relation between network nodes and presenting the observa-

tions. Therefore, the behaviour of network elements can be observed in a test lab

environment.

Network simulators are software tools that represent behaviour of network elements

[62]. Network devices, link and applications are used to model computer network

and analyse the performance in simulators. Simulators enable users to customize the

simulator to perform the specific analysis.

There are many open source and proprietary network simulators in the literature.

However, a few of them are mostly used in the research paper. Network simulator

(ns), OPNET and OMNET++ can be shown as an example of these simulators. OP-

NET is a high level event based network simulator which is constructed from C/C++

source code blocks. OPNET can be used as a research or network design tool which

consists of high level user interface [50]. OMNeT++ is a modular and extensible

network simulator which is constructed from C++ libraries. OMNeT++ offers an

Eclipse-based IDE, a graphical runtime environment, and a host of other tools [49].

ns is an open source simulator. ns is a name for series of discrete event network simu-

lators, specifically ns-1, ns-2 and ns-3 which are all discrete event network simulators

[48].

2.3.1 Open Source Network Simulators

In this section, brief information is given about open source network simulators. The

most widely used open source network simulators are OMNeT++, ns-2 and ns-3.

2.3.1.1 ns-2

ns-2 is Lawrence Berkeley National Laboratory’s network simulator [42]. This simu-

lator is an object oriented simulator which is written in C++ language. It uses Object-

16

oriented Tool Command Language (OTcl) as a configuration and command interface.

The simulator supports class hierarchies in C++ and OTcl interpreter. There is one-

to-one correspondence between these hierarchies from the user’s perspective and the

root of these hierarchies is the class TclObject [27].

Figure 2.3 shows the basic ns-2 structure. There are two key programming languages

in ns-2 which are C++ and OTcl. While C++ language is used to create detailed

network protocol implementations, OTcl is used to set up simulation configuration by

assembling and configuring objects as well as scheduling discrete events. TclClass is

used to link C++ and OTcl languages together [27]. After the simulation is finished,

the processed data can be graphed using tools like XGRAPH.

Simulation
Objects

Simulation
Objects

C++ OTcl

TclCL

ns-2 Shell Executable Command (ns)

TCL
Simulation

Script

Simulation
Trace
File

NAM
(Animation)

XGraph
(Plotting)

Figure 2.3: Basic ns-2 Architecture

Queue Management part of ns-2 includes First In First Out (FIFO), Round-Robin

(RR), Deficit Round Robin (DRR), Fair Queueing (FQ) and Stochastic Fair Queue-

ing (SFQ) scheduling algorithms [27]. Although,in our simulator, we implemented

WF2Q+ scheduling algorithm, ns-2 does not support WF2Q+ scheduling algorithm.

However, [5] proposes a patch for WF2Q+ scheduling algorithm.

Traffic generator part of ns-2 consists of four traffic types which are exponential on/off

traffic, pareto traffic, constant bit rate (CBR) traffic and trace traffic [27]. In our simu-

lator, we implemented exponential on/off traffic, pareto traffic and poisson traffic. Al-

though poisson traffic is not implemented in ns-2 simulator, exponential on/off traffic

can replace Poisson process by setting parameters.

In order to implement our WF2Q+ scheduling algorithm and WBFA algorithm to

17

ns-2, we have to prepare C++ code of WBFA and WF2Q+ algorithms as a subclass

of "Queue" class in ns-2. The "Queue" class is derived from a "Connector" base

class and provides base class used by particular types of queue classes. This base

class has virtaul functions called "deque" and "enque". Particular queues which are

derived from "Queue" have to implement these two functions. Therefore, WBFA and

WF2Q+ algorithms have to be implemented within these functions. Furthermore,

the linkage between the C++ code and OTcl code has to be defined in C++ code.

According to [37], created C++ source file is put inside the Queue folder in ns-2

directory and folder information is added to "Makefile.in" folder. After editing the

file entry, these procedures are followed:

• Go to the ns-2 location

• Type "./configure" in terminal in order to replace Makefile with modified one

• Type "make" in order to make all objects which are missing

If the created code has no error, then the compilation will success. After successful

compilation, OTcl script is written with respect to different test scenarios.

2.3.1.2 ns-3

ns-3 simulator is a discrete event-based network simulator which is intended for re-

search and educational use for network area [34]. The ns-3 is an open source project

which is started in 2006. ns-3 which is licensed under the GNU GPLv2 license will

bank on progressing contributions of the society to advance new model, maintains ex-

isting models [63, 65, 72]. ns-3 is not a extended version of ns-2. The main difference

between ns-3 and ns-2 can be listed as [51]:

• Separete software kernel : While the kernel of ns-3 is written with Python

scripting language, the kernel of ns-2 is written with OTcl language.

• Attention to realism : Protocols used in ns-3 is more close to real computers.

• Software integration : ns-3 supports the incorporation of the open source net-

working software and reduces the need to rewrite the simulation.

18

• Support for Virtualization : ns-3 uses lightweight virtual machines.

• Tracing architecture : ns-3 is developing a tracing and statistics gathering

framework trying to enable customization of the output without rebuilding the

simulation core.

2.3.1.3 OMNeT++

Similar to ns-2 and ns-3, OMNeT++ is an open source network simulator. OM-

NeT++ is a component-based network simulator with GUI support. Communication

network is the main application area of OMNET++. Since OMNET++ has generic

and flexible architecture, other areas such as IT systems, queuing networks and hard-

ware architectures can be successfully simulated in OMNET++. INET package of

OMNET++ enables OMNET++ to provide comprehensive collection of Internet pro-

tocol models. In OMNET++, modules are coded in C++ and assembled into larger

models by using network description (NED) language [63, 65, 72].

Currently, OMNET++ is the mostly used in academic area for its extensibility and

open source documentation. Moreover, OMNET++ is also used in industrial applica-

tions. OMNET++ is licensed under its own licence which is called Academic Public

License.

19

20

CHAPTER 3

QUEST: QOS SIMULATOR

Over the last years, both academic and industrial researches have been made to under-

stand and characterize the behavior of computer network due to increasing bandwidth

requirements. Network routers have to be developed to respond to these requirements.

In order to achieve good development, these network elements have to be tested and

evaluated during development process. Therefore, simulation modelling of these el-

ements is required to evaluate performance of network elements. Simulation enables

developers to analyze network elements under different conditions.

In this thesis, we designed and implemented a QoS simulator which is called QueST

to evaluate QoS performance of network routers. QueST is implemented by use of

C++ language. The main reason of selecting C++ is to conduct large number of tests

with different parameters. C++ software also enables us to collect any parameter

which we want to analyze. The network packets used in QueST are analyzed with

respect to delay which is a QoS metric. Delay of network packets is computed with

clock cycle. Therefore, QueST is cycle based simulator. Also QueST is able to

generate network packets with fixed or exponentially distributed packet size.

In design process of QueST, we have made some assumptions. Firstly, the transition

time between QueST modules such as traffic generator, traffic shaper, scheduler is as-

sumed zero. Secondly, searching all flow queues inside scheduler module is assumed

to consume no time. Thirdly, the size of flow queues inside scheduler is assumed

to has infinite size. Finally, the size of packet buffers in each module is assumed as

infinite length.

21

Figure 3.1 shows software module diagram of QueST. As can be seen in Figure 3.1,

QueST is made up of three software modules which are traffic generator module,

traffic shaper module and packet scheduler module.

TRAFIC GENERATOR
MODULE

PACKET
SCHEDULER

MODULE

TRAFFIC
SHAPER
MODULE

FLOWS FLOWS FLOWS

Figure 3.1: Software Modules of QueST

3.1 Modules

QueST is software simulator which is used to evaluate performance of packet schedul-

ing in network routers. QueST gives chance to developers to modify and extend the

simulator easily. When one module of QueST changes, the entire structure does not

need to change. In addition, adding new modules to QueST does not affect the struc-

ture of QueST. Figure 3.2 shows Unified Modelling Language (UML) diagram of

QueST. As can be seen in Figure 3.2, QueST consists of three modules which are

traffic generator module, traffic shaper module and packet scheduler module.

Traffic generator module is used to generate traffic flows. The traffic generator module

is able to generate variable and fixed size packets with Poisson, Bursty and Pareto

arrivals. Characteristics of each traffic flow such as load, burst and traffic type are

specified in this module. This module also designates the first destination address

of generated flows. After generation of each flow, the traffic flows are sent to traffic

shaper module.

After traffic generation module, each generated packets enter to traffic shaper module.

Traffic shaper modules delays network flows which do not obey the traffic contract.

Traffic shaper modules delay traffic flows by storing each flow in a buffer. After shap-

ing each flow, the traffic flows are sent to packet scheduler module or fair aggregator

module with respect to their destination address.

22

Packet scheduler module stores incoming packets in per flow queues when traffic

flows are received from input links. Then this module determines the order of queued

packet transmission with respect to used scheduling algorithm. After determination

of transmission order, this module designates destination address of each flow and

transmits these flows from outgoing link.

In QueST, packet scheduler modules can be cascaded to each other. In order to cas-

cade these modules, destination addresses of a module’s output flow queues must

address to the input flow queues of other modules. By applying this procedure, many

number of scheduler and aggregator modules can be cascaded to each other.

23

Figure 3.2: UML Model of QueST
24

3.1.1 Traffic Generator

Traffic generator module in QueST is used to generate traffic flows with respect to

specified traffic patterns. Figure 3.3 shows class diagram of traffic generator module

of QueST. As seen in Figure 3.3, this module can produce Poisson traffic, Markov

modulated on/off (Bursty) traffic and Pareto traffic. The generated packets have fixed

sizes or exponentially distributed sizes.

Traffic
#RandomNumber : double
#avgPacketSize : int
-flowId : int
+Traffic ()
+CreatePacket(cycle : int) : bool

PoissonTraffic
-interarrivaltime : int
-nextarrivaltime : int

+CreatePacket(cycle : int) : bool

-OfferedLoad : double
+shaper : Shaper

+PoissonTraffic()

+setPoissonParameters(id : int, meanrate...

BurstyTraffic
-burstSize : double
-burstyTrafficState : boolean

+CreatePacket(cycle : int) : bool

-OfferedLoad : double
+shaper : Shaper

+BurstyTraffic()

+setBurstyParameters(id : int, meanrate...

ParetoTraffic

-interarrivaltime : int
-nextarrivaltime : int

+CreatePacket(cycle : int) : bool

-Shape : double

+shaper : Shaper

+ParetoTraffic()

+setParetoParameters(id : int, shape...

-Location : double

Figure 3.3: Class Diagram of Traffic Generator Module

In QueST, traffic generator module uses inheritance property of object oriented pro-

gramming (OOP) language to produce traffics. The diagrams in Figure 3.3 use ital-

icized text for Traffic class and CreatePacket operation. This indicates that the

Traffic class is an abstract class and the CreatePacket operation is an abstract

operation. In other words, the Traffic class provides the abstract operation sig-

nature of CreatePacket and the three child classes which are PoissonTraffic,

ParetoTraffic and BurstyTraffic each implement their own version of that op-

eration.

25

3.1.1.1 QueST Poisson Traffic Generator

Conceptual Design: Poisson model is one of the most widely used and oldest net-

work traffic model. Poisson process is applied in many simulation scenarios because

of its nice and well defined analytical properties.

In a Poisson model, the packet inter-arrival times are exponentially distributed with a

rate parameter λ where P{An ≤ t} = 1 − exp(-λt). Therefore, the Poisson model has a

mean and variance equal to the parameter λ.

The poisson model can be seen as a limiting form of a widely used binomial process.

According to Burke’s Theorem [15], aggregation of independent Poisson process re-

sults in a new Poisson process whose rate is sum of independent Poisson arrival rates.

In order to calculate inter-arrival times for Poisson process, the probability distribu-

tion function of Poisson process was used in our study. The probability distribution

function and density function of Poisson process as follows:

Distribution Function : F(t) = 1 − e−λt (3.1)

Density Function : f (t) = λe−λt (3.2)

Software Design: Poisson traffic generator module is implemented under PoissonTraffic

class which is inherited from Traffic class. As seen in Figure 3.3, the PoissonTraffic

class has two operations, four attributes and one constructor.

In OOP, the constructor method is a special function which is used to create an object

of the class. The constructor is an instance method that usually has the same name as

the class and can be used to set class attributes. In PoissonTraffic constructor, the

attributes are initialized.

The setPoissonParameters(id : int, meanrate : double) operation sets

load of traffic and flow id whose attributes names are OfferedLoad and flowId re-

spectively. This operation takes two inputs. The first input is used to set the flowId.

The second input is used to calculate the OfferedLoad which is calculated as :

OfferedLoad = meanrate/avgPacketSize. This function is called at the initial-

ization part of the QueST under main class.

26

The CreatePacket(cycle : int) operation creates packets and transmits those

packets to the traffic shaper module. This operation takes one input, cycle, which is

the cycle number of the scheduler. This operation is called each cycle and if the the

packet is generated, the operation returns true. Otherwise, the operation returns false.

As seen in Figure 3.4, flow diagram of the operation is as follows:

1. A packet is created by using Packet class.

2. Flow id of created packet is set to flowId. Packet size is calculated and satu-

rated between 0 and 100 bytes. Generation time of the packet is set to cycle.

3. A random number between 0 and 1 is calculated and RandomNumber is set to

obtained random number.

4. From Equation 3.1, the inter-arrival time is calculated as follows:

Interarrival T ime = −
1
λ

ln(1 − F(t)), (3.3)

where F(t) is a random number and λ is load of traffic. Therefore, from Equa-

tion 3.3;

interarrivaltime = (−1/O f f eredLoad) ∗ ln(1 − RandomNumber). (3.4)

5. nextarrivaltime is updated by adding obtained interarrivaltime.

6. The created packet is sent to the traffic shaper module.

27

START
START

cycle==nextarrivaltime

Create Packet

Set Packet Flow Id
Size and Gen Time

Calculate
interarrivaltime

Update
nextarrivaltime

Send packet to
Shaper Module

Return False

Return True

NOYES

bool CreatePacket(int cycle)

Figure 3.4: Flow Chart of CreatePacket Function in Poisson Traffic Generator Module

3.1.1.2 QueST Bursty Traffic Generator

Conceptual Design: Bursty traffic model is another widely used traffic model. In

order to get the scaling behaviour of network traffic, the Bursty traffic model is fre-

quently used. For example, evaluation of IP traffic is mostly accomplished by using

Bursty traffic model.

A I

p

q

1-q
1-p

Figure 3.5: The state transition of Bursty traffic generator with probabilities

28

In QueST, Bursty model has two states which are active and idle states and changes its

state between active and idle states periodically. In active state, Bursty traffic model

generates packet continuously. On the contrary, the Bursty model does not generate

any packet in idle state. The time spent in these states changes geometrically. Figure

3.5 shows state transition diagram of Bursty traffic generator with probabilities. As

seen in Figure 3.5, the probability of changing state to the other state is constant. p is

the probability of leaving active state and q is the probability of leaving idle state.

The probability of being active state in i packet times is:

Pr{Active period = i packet times} = p(1 − p)i−1 (3.5)

The probability of being idle state in j packet times is:

Pr{Idle period = j packet times} = q(1 − q) j−1 (3.6)

From equation 3.5, mean burst length is :

β =

∞∑
i=1

p(1 − p)i−1i =
1
p

(3.7)

From equation 3.6, mean idle period is :

mean idle period =

∞∑
j=1

q(1 − q) j−1 j =
1
q

(3.8)

Offered load is the ratio of mean burst length to total time. Let ρ be the offered load

of Bursty traffic generator. From equation 3.7 and equation 3.8 :

Offered load = mean burst length / (mean burst length + mean idle period)

ρ =

1
p

1
p + 1

q

(3.9)

From given mean burst length β and offered load ρ, the probabilities of state transi-

tions can be calculated as follows :

p =
1
β

and q =
ρ

β(1 − ρ)
(3.10)

Software Design: BurstyTraffic class which is child class of Traffic class

creates Bursty traffic generator module. As seen in Figure 3.3, the BurstyTraffic

29

class has two operations, four attributes and one constructor. The constructor of

BurstyTraffic class which is also called BurstyTraffic creates an object of the

class. In the constructor, the attributes of the class are initialized. Initially, the bursty

traffic state, burstyTrafficState, is set to active.

The setBurstyParameters(id : int, meanrate : double, burstsize :

double) operation sets load of traffic, flow id and burst size whose attributes names

are OfferedLoad, flowId and burstSize respectively. This operation takes three

inputs. The first input is used to set flowId. The second input is used to calculate

OfferedLoadwhich is calculated as : OfferedLoad = meanrate/avgPacketSize.

The third input is used to calculate burstSize which is calculated as : burstSize

= burstsize/avgPacketSize. This function is called at the initialization part of

the QueST under main class.

Since the CreatePacket(cycle : int) operation is abstract operation, each traf-

fic generator modules implement this operation with respect to their own algorithms.

Therefore, in all traffic generator modules, although main idea of this operation is

same, algorithms of this operation changes for each module. Figure 3.6 shows flow

chart of this operation in BurstyTraffic class. Flow diagram of the operation in

BurstyTraffic is as follows:

1. Probability of transition from active to idle state, p, is calculated by using Equa-

tion 3.10.

2. Probability of transition from idle to active state, q, is calculated by using Equa-

tion 3.10.

3. If state of the class is active, then:

(a) A packet is created.

(b) Flow id of created packet is set to flowId. Packet size is calculated and

saturated between 0 and 100 bytes. Generation time of the packet is set to

cycle.

(c) The created packet is sent to the traffic shaper module.

(d) If the probability of staying active state is higher than RandomNumber,

30

state of the class becomes active. Otherwise, state of the class becomes

idle.

4. If state of the class is idle, then the probability of staying idle state is compared

with RandomNumber. If the probability is higher than RandomNumber, state of

the class becomes idle. Otherwise, state of the class becomes active.

Start

Calculate
“p”

Calculate
“q”

(1-q)>Random

State = Active State = Idle

State

Generate
Packet

Set Flow Id, Size
And Gen Time

Send Packet to
Shaper Mudule

(1-p)>Random

State = Active State = Idle

Return True

Idle

Return False

Bool CreatePacket(int cycle)

Active

Yes

Yes No

No

Figure 3.6: Flow Chart of CreatePacket Function in Bursty Traffic Generator Module

3.1.1.3 QueST Pareto Traffic Generator

Conceptual Design: Pareto traffic model which is suggested to model “heavy-

tailed” traffic trains is used to produce independent and identically distributed inter-

arrival times. The Pareto traffic model can also be used to model current IP traffic

instead of Bursty traffic. It is also referred as power law distribution.

31

In general, if X is a random variable with a Pareto distribution, the probability that X

is greater than any number x is:

P(X > x) = (x/xm)−k f or all x >= xm (3.11)

where k is a positive number and xm is the minimum possible value of Xi. In QueST,

the inter-arrival times of generated packets for Pareto model is calculated by using the

probability distribution function of Pareto distribution. The probability distribution

function and density function of Pareto process as follows :

Distribution Function : F(t) = 1 − (α/t)β (3.12)

Density Function : f (t) = βαβt−β−1 (3.13)

The parameters α and β which are used in Equation 3.12 are location and shape pa-

rameters respectively. When β > 2, the Pareto model has infinite variance and when

β < 1, the Pareto model has infinite mean.

Software Design: ParetoTraffic class which is inherited by Traffic class cre-

ates Pareto traffic generator module. As seen in Figure 3.3, the ParetoTraffic

class has two operations, five attributes and one constructor. The constructor of

ParetoTraffic class creates an object of the that class. In the constructor, the at-

tributes of the class are initialized.

The setParetoParameters(id : int, shape : double, location : double)

operation takes three inputs. These inputs are used to set flow id, shape and location

parameters whose attributes names are flowId, _shape and _location respectively.

The first input is used to set flowId. The second input is used to set _shape. The

third input is used to set _location. This function is called at the initialization part

of the QueST under main class.

Similar to the other child classes of Traffic class, the CreatePacket(cycle :

int) operation in ParetoTraffic class is used to create network packets by ap-

plying Pareto traffic algorithm. If the operation can not create packet, it returns

false. Otherwise, it returns true. Figure 3.7 shows flow chart of this operation in

ParetoTraffic class. Flow diagram of the operation in ParetoTraffic is as fol-

lows:

32

1. A packet is created by using Packet class.

2. Flow id of created packet is set to flowId. Packet size is calculated and satu-

rated between 0 and 100 bytes. Generation time of the packet is set to cycle.

3. A random number between 0 and 1 is calculated and RandomNumber is set to

obtained random number.

4. From Equation 3.12, the inter-arrival time is calculated as follows:

Interarrival T ime =
α

(1 − F(t))
1
β

, (3.14)

where F(t) is a random number, α is location and β is shape. Therefore, from

Equation 3.14;

interarrivaltime = _location/(1 − RandomNumber)(1/_shape) (3.15)

5. nextarrivaltime is updated by adding obtained interarrivaltime.

6. The created packet is sent to the traffic shaper module.

START
START

cycle==nextarrivaltime

Create Packet

Set Packet Flow Id
Size and Gen Time

Calculate
interarrivaltime

Update
nextarrivaltime

Send packet to
Shaper Module

Return False

Return True

NOYES

bool CreatePacket(int cycle)

Figure 3.7: Flow Chart of CreatePacket Function in Pareto Traffic Generator Module

33

3.1.2 Traffic Shaper

Traffic shaping is performed in IP networks. Traffic shaping module controls rates and

bursts of traffic flows generated by traffic generator module to ensure conformance to

a traffic contract. If a traffic flow does not obey the traffic contract, then the traffic

shaper module delays traffic flows by storing them in buffers until traffic flows obey

the contract. If a shaper has a finite size buffer, some packets may be discarded.

However, in QueST, the traffic shaper module has infinite size buffer so the packets

are only delayed.

Shaper
#shaperActive : boolean
#shaperQueue : queue<Packet>

+Shaper ()
+applyShaper(cycle : int, pq : queue <Packet> *)

TokenBucketShaper
-bucketSize : int
-bucket : int

+applyShaper(cycle : int, pq : queue <Packet> *)

-creditRate : double

+TockenBucketShaper ()

+setTokenShaper(bsize : int, bckt : int, crate : double)

Figure 3.8: Class Diagram of Traffic Shaper Module

Traffic shaper module in QueST is software-based traffic shaper which is imple-

mented in C++. Figure 3.8 shows class diagram of traffic shaper module. As seen

in Figure 3.8, this module implements Token Bucket Shaper. In QueST, the shaper

module is applied when the user enables shaper module. The shaped packets are sent

to packet scheduling module.

In QueST, traffic shaper module also uses inheritance property of OOP language

to implement shapers. As seen in Figure 3.8, the Shaper class is abstract class

and the applyShaper operation is abstract operation. Therefore, the child class

TockenBucketShaper implements its own shaper algorithm to the applyShaper

operation.

34

3.1.2.1 QueST Token Bucket Shaper

Conceptual Design: Token bucket shaper is used in IP networks to control average

flow rate. In the token bucket shaper, tokens are inserted to the bucket at a certain rate.

If the bucket is full of tokens, newly incoming tokens are discarded. If the bucket does

not have enough tokens to send a packet, the packets are waited until the bucket has

enough tokens. In order to transmit a packet, the token bucket shaper removes tokens

whose number is equal to the packet size from the bucket.

Shaper

Buffered Packets

Served Packets

Remove tokens from Bucket

Bucket size b

Bucket Level x

Incoming Packets

Token rate r (byte/cycle)

Figure 3.9: Operation of Token Bucket Shaper in QueST

Figure 3.9 shows token bucket shaper operation in QueST. As can be seen in Figure

3.9, the token bucket shaper has three components:

• Token Rate r : It is measured in bytes per cycle on average permitted by the

token bucket.

• Bucket Size b : It shows total bucket size in bytes

35

• Bucket Level x : It shows the current bucket size in bytes.

The token bucket shaper module adds tokens to bucket at a r byte/cycle rate. If

incoming packet size L is equal or lower than bucket level x, L ≤ x, then the packet

is transmitted and L bytes from bucket level x is removed. Otherwise, the packet

does not conform the contract and it is buffered. Therefore, the bucket level does not

change. The amount of data transmitted over time interval t, D(t), is described as

follows:

D(t) ≤ rt + b (3.16)

From Equation 3.16, the actual average rate, A(t), can be described as A(t) = D(t)/t =

r + b/t. Therefore, as t ⇒ ∞, the actual rate A(t) goes token rate r.

Software Design: TokenBucketShaper class which is inherited by Shaper class

shapes incoming packets by using token bucket shaper algorithm. Figure 3.8 shows

that the TokenBucketShaper class has two operations, three attributes and one con-

structor. In the constructor, the attributes of the class are initialized and the state of

shaper is set to passive state.

The setTokenShaper(bsize : double, bckt : double, crate : double)

takes three inputs. The first input is used to set bucket size, bucketSize. The second

input is used to set current bucket level, bucket. The third input is used to set token

rate, creditRate. This function is called at the initialization part of the QueST under

main class. If this operation is called, shaper becomes active and packets are shaped.

Otherwise, shaper becomes passive and shaping algorithm is not applied.

The applyShaper(cycle : int, pq : queue<Packet>*) operation shapes

incoming packets and sends those packets to the next module. Since this opera-

tion is an abstract operation, token bucket shaper module implements the opera-

tion with respect to its own algorithm. The operation takes two inputs which are

cycle and pq. The first input is the cycle number of scheduler and the second in-

put is the buffer of shaper module. Figure 3.10 shows flow chart of this operation in

TokenBucketShaper class.

36

START

Input Queue Size > 0

Shaper State

Bucket > Size
&&

Input Queue Size > 0

 Update Bucket Level

Remove packet from
Input Queue

Send packet to Next
Module

Remove packet from
Input Queue

Send packet to Next
Module

Update bucket level
with token rate

YESNO

Active Passive

YES

NO

void applyShaper(int cycle, Queue pq)

END

Figure 3.10: Flow Chart of applyShaper Function in Token Bucket Shaper Module

Flow diagram of the operation in TokenBucketShaper is as follows:

1. If there is not any packet in the input buffer of shaper, bucket level, bckt, is

updated with token rate, creditRate, and the operation ends.

2. If the input buffer of shaper has some packets and shaper is not active, the

packets are removed from input buffer of shaper and sent directly to the next

module.

3. If the input buffer of shaper has some packets and shaper is active, the following

37

processes are performed:

(a) While the current bucket level is greater than the size of HOL packet in the

input buffer, HOL packet is removed from buffer and sent to next module.

(b) Bucket level is updated by subtracting the size of HOL packet from bucket

level.

(c) Leaving time from shaper of the removed packet is set to cycle.

4. Bucket level is updated by adding token rate.

3.1.3 Packet Scheduler

The packet scheduling algorithms which are implemented in the packet schedulers of

the routers have significant effect on providing QoS support to the IP networks. Packet

scheduler is used to determine the order of queued packets transmission. Since these

packets are transmitted from same outgoing link, the packet scheduler defines a set

of rules for these packets by considering their QoS requirements. In other words, so-

phisticated scheduling algorithms are required to prioritize network users by meeting

QoS requirement for each network users.

Scheduler
-remainByteCount : int

+Scheduler ()
+idle(FQ : FlowQueue *) : boolean

WF2Q
-VirtualTime: int
-Tau : int
-srvdPacketFinishTime : int

+InitScheduler(level : int, FQ : FlowQueue *)
+getNodeLevel() : int
+schedule(cycle : int, FQ : FlowQueue *)
+serve(cycle : int, FQ : FlowQueue *)
+update(FQ : FlowQueue *)

-srvdPacketStartTime : int

+WF2Q ()
+schedule(cycle : int, FQ : FlowQueue *)
+serve(cycle : int, FQ : FlowQueue *)
+update(FQ : FlowQueue *)

Figure 3.11: Class Diagram of Packet Scheduler Module

38

Packet scheduler module in QueST is implemented in C++. Figure 3.11 shows class

diagram of the packet scheduler module. As seen in Figure 3.11, the packet scheduler

module implements WF2Q+ scheduling algorithm. QueST enables users to cascade

many number of packet scheduler modules to each other. If the packets served by

packet scheduler module is not addressed another packet scheduler module, these

packets are stored in a file to analyze simulation results.

Inheritance property of OOP language is also used in Packet scheduler module. As

seen in Figure 3.11, the Scheduler class is abstract class. The Scheduler class has

three common operations and three virtual operations. The common operations which

are idle, getNodeLevel and InitScheduler are common for all child classes of

Scheduler class. The first common function idle determines whether a scheduler is

idle or not. If a scheduler has no packet in the server and all flow queues of scheduler

are empty, then the scheduler is idle. The second common function getNodeLevel

is used to obtain id of scheduler. The third common function InitScheduler ini-

tializes the scheduler and sets id of scheduler. Each child classes of Scheduler class

implement the virtual (abstract) functions which are scheduler, serve and update

with respect to their own algorithms.

3.1.3.1 QueST Worst-case Weighted Fair Queuing Plus Scheduler

Conceptual Design: WF2Q+ scheduling algorithm is one of the common PFQ al-

gorithms. The WF2Q+ scheduler provides the tightest delay bound and has the small-

est worst case fairness index (WFI) value among all PFQ schedulers. It should be

noted that although both WF2Q+ and WF2Q algorithms have same WFI and end to

end delay bound, the complexity of WF2Q+ algorithm is lower than the complex-

ity of WF2Q algorithm. Therefore, in QueST, we implemented WF2Q+ scheduler.

Virtual time function, V(t), of the WF2Q+ scheduler is calculated as:

V(t + τ) = max{ V(t) + τ, mini∈B(t){S i(t)} }, (3.17)

where B(t) is the set of flow queues which are backlogged at time t, and S i(t) is the

virtual start time of HOL packet of backlogged flow queue i. The complexity of V(t)

comes from searching for the minimum start time value among all backlogged flow

queues.

39

In order to emulate the GPS behaviour, WF2Q+ scheduler has system virtual time

V(t), a virtual start time S i(t) and a virtual finish time Fi(t) for each flow queue i.

Start time S i(t) and finish time Fi(t) are calculated when a new packet becomes HOL

packet for related flow queue. A packet becomes HOL packet in either two cases:

1. When a packet comes to an empty flow queue, it becomes HOL packet.

2. When a packet depart from a flow queue, the previous packet in that queue

becomes HOL packet.

In case 2, departure of packet and arrival of new packet happens at the same time.

Therefore;

S i(t) =


max{V(t), Fi(t−)}, For case 1

Fi(t−), For case 2
(3.18)

Fi(t) = S i(t) +
LHOL

i

ri
, (3.19)

where, Fi(t−) is the finish time of flow queue i before the departure, and LHOL
i is

the size of HOL packet for the flow queue i. In WF2Q+ scheduler, a flow queue i

is eligible if only start time S i(t) is lower and equal than V(t). When the WF2Q+

scheduler is in idle position in which no packet is transmitted and all the flow queues

are not empty at that time, the scheduler selects eligible flow queue with minimum

Fi(t) and transmits HOL packet of that queue.

Software Design: WF2Q class which is inherited by Scheduler class selects eligi-

ble packet among HOL packet of per flow queues and serves selected packet to the

destination address. In order to select eligible packet, the WF2Q class uses WF2Q+

scheduling algorithm. As shown in 3.11, the WF2Q class has three operations, four

attributes and one constructor. In the constructor, the attributes of the class are initial-

ized.

The schedule(cycle : int, FQ : FlowQueue*) operation selects eligible packet

among flow queues and sends selected packet to the server of scheduler. Since this

function is a abstract function, the WF2Q class implements this function with respect

40

to WF2Q+ scheduling algorithm. The operation takes two inputs which are cycle

and FQ. The first input is the cycle number of scheduler and the second input is the

per flow queues of scheduler module. Figure 3.12 shows flow chart of this operation.

Flow diagram of the operation in WF2Q is as follows:

1. If there is a newly arriving HOL packet in the flow queues, virtual start and

finish time of the HOL packet is computed. From Equation 3.18 case 1, virtual

start time is calculated as:

FQ[i].startT ime = MAX(FQ[i].prevFinishT ime,VirtualT ime), (3.20)

From Equation 3.19, virtual finish time is calculated as:

FQ[j]. f inishT ime = FQ[j].startT ime +
FQ[j].HOLPacketS ize

FQ[j].AllocRate
(3.21)

2. If the scheduler is idle state, the operation ends.

3. The function tries to find flow queue with minimum finish time.

4. The start and finish time of the HOL packet in the selected flow queue is saved.

5. The HOL packet in the selected flow queue is sent to the server.

6. If selected flow queue still has a HOL packet, then virtual start and finish time

of the HOL packet is computed. From Equation 3.18 case 2, virtual start time

is calculated as:

FQ[i].startT ime = FQ[i].prevFinishT ime, (3.22)

Virtual finish time is calculated in the same way with Equation 3.21.

41

START

YES

void schedule(int cycle, Flow Queue FQ)

HOL Packet Arrived ?

Calculate start and finish
time of HOL packet

Is there a packet in
the server

Find FQ with min
 finish time

Is there FQ with
min finish time

Store finish & start time
of FQ HOL packet

Remove packet from
FQ and send it server

 FQ has a packet ?

Calculate start and finish
time of HOL packet

END

NO

YES

NO

YESNO

YES
NO

Figure 3.12: Flow Chart of schedule Function in WF2Q Scheduler Module

The serve(cycle : int, FQ : FlowQueue*) transmits one byte in each cycle.

The operation sends transmitted packet to the destination address. Therefore, cas-

cading different scheduler modules can be applied in this function. If the transmitted

packet does not have any destination address, it is stored in a file to analyze. The op-

eration takes two inputs which are cycle and FQ. The first input is the cycle number

of scheduler and the second input is the per flow queues of scheduler modules. As

seen in Figure 3.13, flow diagram of the operation in WF2Q is as follows:

42

1. If there is not any packet in the server, the function ends. Otherwise, function

goes on with following processes.

2. If there is packet in the server, packet is served one byte at a cycle.

3. After one byte of data transfer, If packet is not completely transferred, the func-

tion ends. Otherwise, function goes on with following processes.

4. Serving time of the packet is set to cycle.

5. If served packet has a destination address, then the packet is sent to flow queues

of destination module. Otherwise, the packet is stored in a file to analyze.

START

YES

void serve(int cycle, Flow Queue FQ)

Serve 1 byte

Serving Packet is
completed?

Store packet in a
file

NO

YES

NO

Is there a packet in
the server?

Set serving time
of Packet

Packet goes
another scheduler

Send packet to FQ of
other scheduler

YES

END

NO

Figure 3.13: Flow Chart of serve Function in WF2Q Scheduler Module

In order to emulate GPS, WF2Q+ scheduling algorithm uses virtual time function.

The update(FQ : FlowQueue*) updates virtual time in each cycle with respect to

43

WF2Q+ scheduling algorithm. If the scheduler module is in idle position, virtual

time is set to zero. The function takes one input which is FQ. The input is the per flow

queues of scheduler modules. Figure 3.14 shows flow chart of this operation. Flow

diagram of the operation in WF2Q is as follows:

1. If the scheduler is in idle state, the virtual time, VirtualTime, finish time

of previously served packet, prevFinishTime, and start time of previously

served packet, srvdPacketStartTime, are set to zero. Otherwise, the func-

tion goes with following processes.

2. The function finds minimum start time in the scheduler by comparing start

times of each packets in the scheduler.

3. After finding minimum start time, the function updates virtual time by using

Equation 3.17:

VirtualT ime = MAX(VirtualT ime + Tau,minS tartT ime); (3.23)

START

YES

void update(Flow Queue FQ)

Is scheduler Idle?

Find min start time
in scheduler

END

NO

YES

Set virtual
time to zero

Set prevFinishTime &
prevStartTime to zero

Virtual Time is
(min Start Time)

min start Time <
VirtualTime + Tau

Virtual Time is
(VirtualTime + Tau)

NO

Figure 3.14: Flow Chart of update Function in WF2Q Scheduler Module

44

3.2 Scalability and Complexity

In this section, we discuss time complexity of QueST and modules of QueST. The

time complexity of a software implies the amount of time under different input con-

ditions. The time complexity is expressed by using big O notation. We analyze the

time complexity of each QueST module by performing different experiments.

Firstly, we analyze how run time of QueST changes with generated traffic types. In

QueST, we have three software traffic generator modules which are Poisson traffic

generator module, Pareto traffic generator module and Bursty traffic generator mod-

ule. Therefore, we perform three experiments to compare run times of each traffic

generator module by collecting a set of data under different traffic loads. We execute

our experiments by generating 40 flows which are equally allocated. In these experi-

ments, traffic shaper module is not used. For each experiments one WF2Q+ scheduler

module is used and 25K packets are collected. In Figure 3.15, the experiment results

are presented.

0 20 40 60 80 100
0

50

100

150

200

Load [percent]

R
un

 T
im

e
[s

ec
]

Poisson Traffic
Bursty Traffic
Pareto Traffic

Figure 3.15: Run times of QueST under different traffic generator modules

As can be seen in Figure 3.15, run times are very close to each other under same load

for each traffic generator module. This is because all the traffic generator modules

behave similarly. They all generate packet and compute next generation time in each

45

cycle. Therefore, all the traffic generator modules in QueST have the same run times.

Secondly, we analyze how run time of QueST changes with the number of traffic

flows. For this experiment, poisson traffic generator module is used to generate traffic

flows without traffic shaper module. We collect run time of QueST under a set of

traffic loads. For each experiment, WF2Q+ scheduler module is used and 25K packets

are collected. In Figure 3.16, the experiment result is presented.

0 20 40 60 80 100
0

50

100

150

200

250

300

Load [percent]

R
u

n
 T

im
e

 [
se

c]

4 Flows

16 Flows

32 Flows

64 Flows

Figure 3.16: Run times of QueST under different number of traffic flows

As seen in Figure 3.16, run times of the experiments increase proportionally with

the number of traffic flows under same load. This is because that when the number

of traffic flows increases, the number of per flow queues in packet scheduler module

also increases. Therefore, packet scheduler module spends more time to find eligible

packet among per flow queues.

Finally, we analyze how run time of QueST changes with the number of cascaded

packet scheduler module. Poisson traffic generator module is used to generate 32

traffic flows which are equally allocated. This experiment is composed of four step.

At each step, we increase the number of WF2Q+ scheduler module in QueST from

one to four under different traffic loads and collect 25K packets. Figure 3.17 shows

the experiment result.

46

0 20 40 60 80 100
0

50

100

150

200

250

300

Load [percent]

R
un

 T
im

e
[s

ec
]

1 WF2Q+
2 WF2Q+
3 WF2Q+
4 WF2Q+

Figure 3.17: Run times of QueST under different number of WF2Q+ scheduler mod-
ules

According to Figure 3.17, run times of the experiments increase with the number

of cascaded WF2Q+ scheduler module under same load. This increase comes from

searching minimum start time among all n WF2Q+ scheduler module.

3.3 Verification Tests

In this section, we perform verification tests for each module of QueST. We run

QueST for each test and collect simulation parameters. MATLAB environment was

used to evaluate collected simulation parameters.

3.3.1 Verification of Poisson Traffic Generator in QueST

The inter-arrival time between two consecutive packets for Poisson traffic generator

module with load λ is exponentially distributed with a mean of 1/λ. Therefore, we

want to show that the inter-arrival time between two consecutive packets which are

generated by poisson traffic generator module in QueST is meaningful with the de-

sired inter-arrival times. To this end, we run 6 experiments with different load values.

In our experiments, the packet sizes are exponentially distributed between 0 and 100

47

bytes. The average packet size is set to 10 bytes. In these experiments, we collect

more than 25000 packets with their generation times. The load values are presented

in Table 3.1

Table3.1: Poisson traffic experiment loads

Experiment i Load (λi)
1 0.07
2 0.15
3 0.3
4 0.6
5 0.8
6 1.0

In this verification test, we demonstrate the cumulative distribution function (CDF)

of the collected inter-arrival times in comparison to computed CDF value of Pois-

son process. The empirical CDF of poisson traffic is the ratio of inter-packet time

measurements that is less than or equal to cycle to all measurements in experiment i.

The computed CDF value is defined as follows:

Fi(ti, j) = 1 − eλiti, j , (3.24)

where ti, j is the sample inter-arrival time. In Figure 3.18, all of the experiment results

can be seen.

As can be seen in Figure 3.18, the CDF is used to analyze the poisson traffic generator

module. This is because CDF is the most used and meaningful statistical tool for a

set of data. Therefore, when we compare empirical CDF and calculated CDF, we can

see that the poisson traffic generator module in QueST can generate Poisson traffic

which is very closely to the actual Poisson process.

48

0 50 100 150
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Emprical CDF
Computed CDF

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Emprical CDF
Computed CDF

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Emprical CDF
Computed CDF

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Emprical CDF
Computed CDF

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Emprical CDF
Computed CDF

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Emprical CDF
Computed CDF

Experiment−5 Experiment−6

Experiment−2Experiment−1

Experiment−3 Experiment−4

Figure 3.18: Experiment results for the comparison of poisson traffic distribution and
the theoretical expectation

49

3.3.2 Verification of Bursty Traffic Generator in QueST

In this section, we want to show that our Bursty traffic generator module in QueST

can generate Bursty traffic which is very close to Bursty process. To this end, we

run 4 experiments. In each experiment, we collected more than 25000 packets. In

the experiments, the packet sizes are set to 10 bytes and the burst sizes (β) are set to

10 packets. The load values are changed for each experiment. In table 3.2, the load

values of experiments and the result of the experiment can be seen.

Table3.2: Bursty Traffic Generator Test Results

Experiments Desired Values Test Results
Burst Size βi Load ρi Burst Size βi Load ρi

1 10 0.33 10.12 0.326
2 10 0.50 9.99 0.494
3 10 0.66 10.15 0.667
4 10 0.82 10.22 0.824

As can be seen in table 3.2, the Bursty traffic generator module in QueST can generate

burst traffic which is very closely to the actual Markov modulated on/off process.

3.3.3 Verification of Pareto Traffic Generator in QueST

In this section, we want to show that the inter-arrival time between two consecutive

packets which are generated by Pareto traffic generator module in QueST is mean-

ingful with the desired inter-arrival times. To this end, we run 6 experiments. In each

experiment, the location parameters of Pareto traffic is set to 1. The shape parameters

are changed for each experiment. In these experiments, we collect more than 25000

packets with their generation times. The shape and location values are presented in

Table 3.3.

50

Table3.3: Shape and location values of pareto traffic experiments

Experiment i Shape (βi) Location (αi)
1 0.6 1
2 1.0 1
3 1.2 1
4 1.5 1
5 1.8 1
6 2.0 1

In this verification test, we demonstrate the cumulative distribution function (CDF)

of the collected inter-arrival times in comparison to computed CDF value of Pareto

process. The empirical CDF of poisson traffic is the ratio of inter-packet time mea-

surements that is less than or equal to cycle to all measurements in experiment i. The

computed CDF value for Pareto traffic is defined as follows:

Fi(ti, j) = 1 − (
α

ti, j
)β, (3.25)

where ti, j is the sample inter-arrival time. In Figure 3.19, all of the experiment results

can be seen.

As can be seen in Figure 3.19, when we compare calculated CDF and emprical CDF

of Pareto traffic generator module in QueST, we can say that the Pareto traffic gener-

ator module in QueST can generate Pareto traffic which is very closely to the actual

Pareto process.

51

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

inter−packet times (cycle)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Computed CDF
Empirical CDF

Computed CDF
Empirical CDF

Computed CDF
Empirical CDF

Computed CDF
Empirical CDF

Computed CDF
Empirical CDF

Computed CDF
Emprical CDF

Experiment−5

Experiment−3

Experiment−6

Experiment−4

Experiment−1 Experiment−2

Figure 3.19: Experiment results for the comparison of pareto traffic distribution and
the theoretical expectation

52

3.3.4 Verification of Token Bucket Shaper in QueST

In this section, we want to show that the shaper module in QueST shapes incoming

packets with respect to token bucket shaper algorithm. To this end, we perform 4

experiments. In each experiment, the poisson traffic generator module with mean

load 0.9 is used to generate packets. In the first two experiments, bucket sizes are

assigned to 250 bytes. In the last two experiments, the bucket sizes are assigned to

300 bytes. Table 3.4 shows the used bucket sizes and token rates for each experiment.

Table3.4: Token Bucket Shaper Experiment Values

Experiment i Token Rate i (byte/cycle) Burst Size (byte)
1 5 250
2 10 250
3 15 300
4 20 300

In these experiments, firstly theoretical value of the amount of data which is sent in

a specified time interval (300-3000 cycles) comparison to the calculated number of

data is demonstrated. The theoretical value of the amount of data which is sent in a

specified time interval can be calculated by using Equation 3.16. Furthermore, the

actual rates of shaper comparison to token rates is demonstrated. In table 3.5, the

result of the experiments can be seen.

Table3.5: Token Bucket Shaper Experiment Results

Experiments Desired Values Test Results
Allowed Length Token Rate Calculated Length Actual Rate

1 13750 bytes 5 byte/cycle 13492 bytes 5.000 byte/cycle
2 27250 bytes 10 byte/cycle 26950 bytes 10.001 byte/cycle
3 40800 bytes 15 byte/cycle 40535 bytes 15.001 byte/cycle
4 54300 bytes 20 byte/cycle 54070 bytes 20.001 byte/cycle

As can be seen in table 3.5, the token bucket shaper module in QueST can shapes

incoming packets which is very closely to token bucket shaper algorithm.

53

3.3.5 Verification of WF2Q+ Scheduler in QueST

In this section, implementation of WF2Q+ scheduling algorithm in QueST is tested

under Poisson and Bursty traffic with exponentially distributed packet sizes whose

average packet size is 10 bytes. In order to evaluate WF2Q+ scheduler in QueST, two

experiments are performed. In the first experiment, we used one WF2Q+ scheduler

module. In the second experiment, we used cascaded WF2Q+ scheduler modules.

3.3.5.1 Experiment 1: Verification of WF2Q+ Scheduler with one WF2Q+

module

In this experiment, average and maximum packet delay in the WF2Q+ scheduler

module are measured and then measured values are compared with the analytical

delay bound that is defined below for flow f j.

Dmax =
σ j + Lmax

r j
+

Lmax

C
, (3.26)

where σ j is the maximum burst size for flow f j. r j is the allocated rate for f j. C and

Lmax represent the server rate and maximum packet size respectively.

This experiment is performed under eight different scenarios. In the first four scenar-

ios, the poisson traffic generator module is used to generate packets whose sizes are

exponentially distributed between 0 and 100 bytes. The average packet size is 10 byte

for each test. The total load of poisson traffic flows are %40, %60, %80 and %96.

The mean per flow traffic generation rate is equal among all flows. The server rate

of scheduler is 1 byte/cycle. In the second four scenarios, the Bursty traffic genera-

tor module is used to generate packets whose sizes are 10 bytes. The average burst

sizes of all Bursty flows are assigned to 20 bytes. Total traffic load of these flows and

allocation rates of flow queues are same as with the first four scenarios. The packets

generated by the Bursty traffic generator module first enter shaper which constraints

maximum burst size to 400 bytes and the average rate per flow to 0.1875 byte/cycle.

Table 3.6 gives the experimental values for each scenarios.

54

Table3.6: Experiment-1 WF2Q+ scheduler test values for each scenarios

Scenarios i Traffic Type Each Flow Load Burst Size Total Load Server Rate
1 Poisson 0.10 byte/cycle - %40 1 byte/cycle
2 Poisson 0.15 byte/cycle - %60 1 byte/cycle
3 Poisson 0.20 byte/cycle - %80 1 byte/cycle
4 Poisson 0.24 byte/cycle - %96 1 byte/cycle
5 Bursty 0.10 byte/cycle 20 byte %40 1 byte/cycle
6 Bursty 0.15 byte/cycle 20 byte %60 1 byte/cycle
7 Bursty 0.20 byte/cycle 20 byte %80 1 byte/cycle
8 Bursty 0.24 byte/cycle 20 byte %96 1 byte/cycle

The experiment results are presented in Table 3.7.

Table3.7: Experiment-1 WF2Q+ scheduler test results for each scenarios

Scenarios i Total Load Avg Queue Delay Max Queue Delay Delay Bound
1 %40 3.65 cycle 92 cycle 837 cycle
2 %60 6.08 cycle 110 cycle 900 cycle
3 %80 9.32 cycle 110 cycle 882 cycle
4 %96 18.75 cycle 158 cycle 900 cycle
5 %40 7.67 cycle 138 cycle 1004 cycle
6 %60 17.63 cycle 308 cycle 1114 cycle
7 %80 18.01 cycle 444 cycle 1017 cycle
8 %96 20.64 cycle 580 cycle 928 cycle

The maximum packet transmission delay for scenarios with poisson traffic is 100

cycles. This is because the maximum packet size is 100 bytes and server rate is 1

byte/cycle. If we add this maximum transmission delay to maximum queuing delay

that is obtained in Table 3.7, we get a total maximum delay of 258 cycle. In this

experiment, since we use equally allocated flows, allocated rate ri is 0.25 byte/cycle

for each flow. When we assume that the maximum burst size is 0 byte then from

Equation 3.26, the maximum delay bound is 500 cycles which is much higher than

measured end to end delay.

The maximum packet transmission delay for scenarios with Bursty traffic is 100 cy-

cles. If we add this maximum transmission delay to maximum queuing delay that is

55

obtained in Table 3.7, we get a total maximum delay of 680 cycle. When we assume

that the maximum burst size is 400 bytes which comes from maximum burst size of

used shaper then from Equation 3.26, the maximum delay bound is 2100 cycles and

much higher than measured queueing delay.

3.3.5.2 Experiment 2: Verification of WF2Q+ Scheduler with cascaded 4 WF2Q+

modules

In this experiment, average and maximum packet delay in the cascaded four WF2Q+

scheduler modules are measured and then measured values are compared with the

analytical delay bound that is defined below for flow f j.

Dmax =
σ j

r j
+ n ∗

Lmax

r j
+

n∑
i=1

Lmax

C
(3.27)

where n is the number of cascaded WF2Q+ scheduler modules. σ j is the maximum

burst size of traffic flows. r j is the allocated rates of traffic flows. C and Lmax represent

the server rate and maximum packet size respectively.

WF2Q+
SCHEDULER
MODULE 1

WF2Q+
SCHEDULER
MODULE 2

WF2Q+
SCHEDULER
MODULE 3

WF2Q+
SCHEDULER
MODULE 3

Flow 1-10 Flow 1-10 Flow 1-10 Flow 1-10

Flow 11-90 Flow 91-170 Flow 171-250 Flow 251-330

Flow 1-10

Figure 3.20: Flow diagram of experiment -2

In this experiment, we used 330 traffic flows which are generated by Bursty traf-

fic generator module. The sizes of generated packets are exponentially distributed

between 0 and 100 bytes. The average packet size is assigned to 10 bytes. We per-

formed the experiment by using four WF2Q+ scheduler modules. Each of WF2Q+

scheduler modules has 90 flow queues which are allocated with equally. As seen in

56

figure 3.20, while flows from number 1 to 10 are transmitted through the four WF2Q+

scheduler modules, the others are transmitted only one WF2Q+ scheduler module. At

the end of the experiment, we collected statistical values of flow from number 1 to 10.

The experiment consists of four different test scenarios. The total load of all flows

for each test scenarios are %40, %60 ,%80 and %90 respectively. The mean per flow

traffic generation rate is equal among all flows.

When we assume that the maximum burst size is 0 byte then from equation 3.27, the

maximum delay bound for four WF2Q+ scheduler modules is 36763 cycle. As can be

seen in table 3.8, although we assume the maximum burst size is 0 byte, the calculated

maximum delay bound is much higher than maximum measured end to end delay.

The experiment results are presented in Table 3.8.

Table3.8: Experiment-2 WF2Q+ scheduler test results for each scenarios

Scenarios i Total Load Avg E2E Delay Max E2E Delay Delay Bound
1 %40 100.80 cycle 2485 cycle 39228 cycle
2 %60 119.9 cycle 3165 cycle 40512 cycle
3 %80 283.82 cycle 6768 cycle 44230 cycle
4 %96 702.25 cycle 10868 cycle 44582 cycle

57

58

CHAPTER 4

WINDOW BASED FAIR AGGREGATOR (WBFA)

EVALUATION WITH QUEST

The QueST is a modular simulator so that adding new modules and creating new

classes for QueST do not affect the existing structure and classes of QueST. Therefore,

QueST has suitable structure for modifying and expanding. In other words, when a

new class or module is added to QueST, the use of newly added module or class is

achieved by creating its object in the main class of QueST without changing overall

structure.

In this chapter, we integrated Window Based Fair Aggregator (WBFA) [60] to QueST.

Since QueST enables users to cascade many number of modules, we cascaded WBFA

module to the Packet scheduler module. We analyzed the performance of packet

scheduler module by integrating WBFA module under different test scenarios. Fur-

thermore, we proposed optimal maximum window size value for the WBFA.

4.1 Window Based Fair Aggregator (WBFA)

Increasing number of network users has negative affect on the provided QoS support

for each user. Therefore, the complexity of the packet scheduling algorithms has been

increasing with the number of traffic flows. This is an observed result in the exper-

iment for run time evaluation of QueST under different number of flows in Figure

3.16. In the literature, many solutions are proposed to decrease negative effect of in-

creasing number of flows on packet scheduling algorithms. Flow aggregation is one

of these solutions. Supporting QoS to each constituent flows in the aggregator is the

59

most significant problem for the flow aggregation. If one of the constituent flows has

greedy behaviour, the other flows may have low QoS support.

In order to provide QoS guarantee for each constituent flow, fair flow aggregation

must be performed. [18] proposes a framework that a fair aggregator preserves end to

end delay bounds of the constituent flows with respect to the case no flow aggregator

is used. These delay bounds are not dependent to allocated rates of constituent flows.

In other words, if a flow aggregator limits service rate of constituent flows, it achieves

fairness among constituent flows. Therefore, service link is not fully used by greedy

flow and average delays of constituent flows increase.

[60] proposes a fair aggregator which is called Window Based Fair Aggregator (WBFA).

The delay bound for constituent flows of WBFA are preserved and independent of al-

located rates of constituent flows. In WBFA, constituent flows use the full capacity

of the output link until the difference between received services among flows reaches

a limit which is called window function in WBFA. Therefore, the constituent flows

use output link more efficiently than the aggregators proposed in [18] and have lower

end to end delay.

4.1.1 WBFA Operation

In this section, we will mention about WBFA operation with respect to [18, 60]. We

give preliminaries before we present WBFA operation.

4.1.1.1 Preliminaries

A computer network consists of cascaded packet schedulers and aggregators. In this

part of the chapter, we will use following notations for each flow f and scheduler s.

• R. f : forwarding rate of flow f

• p. f .i : ith packet of flow f

• S .s. f .i : start time of packet i in flow f

60

• E.s. f .i : exit time of packet i in flow f

• C.s : output link capacity of scheduler s

The start time of a packet is the time at which packet is forwarded to channel. If flow

f is only input flow, then a scheduler is start time scheduler if and only if;

E.s. f .i = S .s. f .i + δ.s. f .i (4.1)

where δ.s. f .i is a constant.

If flow f enters two cascaded schedulers which are t and s then

S .t. f .i = S .s. f .i + ∆.s. f .i (4.2)

where ∆.s. f .i is the maximum value of δ.s. f .x where 1 ≤ x ≤ i.

If flow f traverses a sequence of schedulers from t1,, tk, then from Equation 4.1

and Equation 4.2, the end to end delay bound can be given as:

S .tk. f .i ≤ S .t1. f .i +

k−1∑
x=1

∆.tx. f .i (4.3)

E.tk. f .i ≤ S .tk. f .i + δ.tk. f .i (4.4)

An aggregator is a scheduler. It receives a number of input flows and produces a single

output by aggregating input flows. Figure 4.1 shows an aggregator A and a scheduler

S . Aggregator A consists of two constituent flows which are f and h. Output of the

aggregator A is a single flow g which enters scheduler S .

A
f

h
S

Figure 4.1: An aggregator and a scheduler

The aggregator A is defined as fair aggregator if and only if;

S .S .g. j ≤ S .A. f .i + λ.A. f .i (4.5)

61

where λ.A. f .i is a constant and p.g. j = p. f .i.

According to [18], if the network is composed of fair aggregators and start time sched-

ulers, the end to end delay bound is preserved. In [18], two aggregator methods are

introduced which are basic fair aggregator and greedy fair aggregator. While the ba-

sic fair aggregator limits the output rate of aggregator to the sum of constituent flows

(R.g = R. f + R.h), the greedy fair aggregator relaxes this limit as long as the arrival

rate of constituent flows are greater than their reserved rates. Therefore, from Equa-

tion 4.3, there is a problem about link utilization in two aggregator method. However,

in WBFA, the constituent flows use full capacity of the output link as long as the

difference between received services does not exceed a limit.

4.1.1.2 Operations

Window Based Fair Aggregator (WBFA), [60], aggregates two inputs and produces

one output which is composed of two input flows. Although WBFA is designed to

aggregate two input flows, aggregation of many number of flows can be succeeded by

cascading WBFAs to each other.

WBFA uses a window based counting algorithm to provide fairness among the con-

stituent flows. In this algorithm, a window function w(t) is designed to keep track of

received services for each constituent flows. If w(t) is within the predefined range,

the input flows of aggregator use full capacity of the output link. Therefore, WBFA

provides lower end to end delay than aggregators proposed in [18]. Furthermore,

defining a range for w(t) helps to preserve fairness.

Calculation of w(t): Initially w(t) is taken as zero. Let the two inputs of WBFA

be flow f and flow h. When flow f and h receive services, the w(t) is increased and

decreased respectively. The w(t) is limited between −wmax and wmax to preserve

fairness.

If flow f receives service, w(t) is updated as :

w(t) = w(t−) +
S f (t, t−)

R. f
(4.6)

62

where S f (t, t−) gives the amount of service received by f between t− and t.

If flow h receives service, w(t) is updated as :

w(t) = w(t−) −
S h(t, t−)

R.h
, (4.7)

where S h(t, t−) gives the amount of service received by h between t− and t.

As long as w(t) is different than 0, w(t) approaches 0 at a rate of R. f + R.h.

w(t2) =


w(t1) − (t2 − t1)(R. f + R.h), when w(t) > 0

w(t1) + (t2 − t1)(R. f + R.h), when w(t) < 0
(4.8)

where ∀ t, t2>t>t1.

Packet Transmission: The window function w(t) keeps track of difference be-

tween received services for each constituent flows. w(t) is limited between wmax and

−wmax. The packets received from input flows are stored in separate flow queues. If

flow f has a HOL packet, the amount of service that is required to send HOL packet

of f is compared with w(t). If;

w(t) +
PHOL

f (t)

R. f
≤ wmax, (4.9)

where PHOL
f is the size of HOL packet of flow f , then f is eligible to send packet. If

flow h has a HOL packet, the amount of service that is required to send HOL packet

of h is compared with w(t). If;

w(t) −
PHOL

h (t)
R.h

≥ −wmax, (4.10)

where PHOL
h is the size of HOL packet of flow h, then h is eligible to send packet.

When the both HOL packets of input flows f and h are eligible to transmitted, one

of them is arbitrarily selected. It must be noted that, when a packet becomes HOL

packet for each flow, it is immediately transmitted as long as the w(t) is within defined

range.

63

4.1.2 WBFA Performance

Figure 4.2 shows the aggregators m and n which are cascaded with scheduler s. Here

n is a WBFA aggregator and m is GPS based aggregator. Output capacity of m,C.m,

is R. f + R.h and output capacity of n is, Cn, greater than R. f + R.h. [60] calculates

and presents following expression:

S .s.g.k ≤ S .n. f .i + β.m. f .i + λ.m. f .i, (4.11)

where p. f .i = p.g.k and, β.m. f .i and λ.m. f .i are constants.

Equation 4.11 shows that, n is a fair aggregator and preserves delay bound for each

constituent flows with respect to Equation 4.5.

m s
f
h

d

g
n s

f
h

Figure 4.2: The aggregators m,n and a scheduler s

In order calculate end to end delay bound for WBFA, λ.A. f .i from Equation 4.5 has

to be calculated. [60] defines λ.A. f .i which is defined as delay bound as follows:

Delay Bound = λ.A. f .i =
Lmax. f

R. f
+

(wmaxn)(R. f) + Lmax. f
R. f + R.h

. (4.12)

4.2 Integration of WBFA to QueST

The WBFA can be defined as a scheduler which receives two input traffic flows and

serves these input flows in a single output flow by aggregating packets of each flow.

The output capacity of WBFA is modeled to be infinite. Therefore, packet transmis-

sion from WBFA does not spend any time. Figure 4.3 shows class diagram of WBFA

64

and the Packet Scheduler Module. As seen in Figure 4.3, since WBFA behaves like

a scheduler, WBFA class is inherited from the Scheduler class. WBFA class can be

cascaded with each other and WF2Q class. Therefore, many number of flows can be

aggregated by cascading WBFA classes to each other.

As seen in Figure 4.3, the WBFA class has three operations, three attributes and one

constructor. In the constructor, the attributes of the class are initialized. The first

attribute of WBFA class is window which represents window function w(t) of WBFA.

The second attribute of WBFA class is Wmax which represents limit value wmax for

window function. The last attribute of WBFA class is tieFlowNum which gives the id

of flow in a line.

Scheduler
-remainByteCount : int

+Scheduler ()
+idle(FQ : FlowQueue *) : boolean

WBFA
-Window : double
-Wmax : int
-tieFlowNum : int

+InitScheduler(level : int, FQ : FlowQueue *)
+getNodeLevel() : int
+schedule(cycle : int, FQ : FlowQueue *)
+serve(cycle : int, FQ : FlowQueue *)
+update(FQ : FlowQueue *)

+WBFA ()
+schedule(cycle : int, FQ : FlowQueue *)
+serve(cycle : int, FQ : FlowQueue *)
+update(FQ : FlowQueue *)

Figure 4.3: The Class Diagram of WBFA and Scheduler Module

The schedule(cycle : int, FQ : FlowQueue*) operation selects eligible packet

among flow queues and sends selected packet to the output channel of WBFA. Since

this function is an abstract function, the WBFA class implements the function with re-

spect to WBFA algorithm. The operation takes two inputs which are cycle and FQ.

The first input is the cycle number of scheduler and the second input is the per flow

queues of scheduler module. Figure 4.4 shows flow chart of this operation. Flow

diagram of the operation in WBFA is as follows:

65

1. If there is a packet in the line, window function is updated and the packet is

sent to output channel of WBFA and the operation ends. Otherwise, function

goes on with following processes.

2. HOL packets are searched in all flow queues. If there is not any HOL packet,

the function ends. Otherwise, function goes on with following processes.

3. If HOL packet belongs to first flow, then;

(a) Window value is computed by using Equation 4.6.

(b) If window value is lower than Wmax, HOL packet is marked as eligible.

(c) If window value is greater than Wmax, HOL packet is marked as not eligi-

ble.

4. If HOL packet belongs to second flow, then;

(a) Window value is computed by using Equation 4.7.

(b) If window value is greater than -Wmax, HOL packet is marked as eligible.

(c) If window value is lower than -Wmax, HOL packet is marked as not eligi-

ble.

5. If both flows are eligible to send HOL packet, one of them is arbitrarily selected

and the other is sent to line.

6. Window function is updated with selected flow window value.

7. Selected HOL packet is sent to output channel of WBFA and the operation

ends.

66

START

Is there a packet
wait in a line

Calculate
FlowWindow

i < FQ.size

Packet of
Flow f?

Calculate w(tf) adding
required service

Update w(th) by
decreasing required

service

FQ Has Packet?

Both Flow Eligible

Select one of them,
the other is line

Update w(t) with
selected flow window

Send HOL packet of flow
to server

i = i+1

i = i+1

w(tf)<Wmax w(th)>-Wmax

Flow f
Eligible

Flow f not
Eligible

Flow h
Eligible

Flow h not
Eligible

YES NO

YES

NO

NO

YES

YES NO

YES
YES

NO
NO

YES

NO

END

void schedule(int cycle , FlowQueue FQ)

Any Flow
Eligible

NO

YES

Figure 4.4: Flow Chart of schedule Function in WBFA Scheduler Module

The serve(cycle : int, FQ : FlowQueue*) operation transmits all packets in

one cycle. The operation sends transmitted packets to the destination address. If

the transmitted packet does not have any destination address, it is stored in a file to

67

analyze. The operation takes two inputs which are cycle and FQ. The first input is

the cycle number of scheduler and the second input is the per flow queues of WBFA

modules. As seen in Figure 4.5, flow diagram of the operation in WBFA is as follows:

1. If there is not any packet in the server, the function ends. Otherwise, function

goes on with following processes.

2. If there is packet in the server, packet is totally served.

3. Serving time of the packet is set to cycle.

4. If served packet has a destination address, then the packet is sent to flow queues

of destination module. Otherwise, the packet is stored in a file to analyze.

START

YES

void serve(int cycle, Flow Queue FQ)

Serve packet

Store packet in a
file

NO

NO

Is there a packet in
the server?

Set serving time
of Packet

Packet goes
another scheduler

Send packet to FQ of
other scheduler

YES

END

Figure 4.5: Flow Chart of serve Function in WBFA Scheduler Module

The update(FQ : FlowQueue*) operation approaches window function w(t) to

zero at each cycle. The function takes one input ,FQ, which is the per flow queues

68

of each flow. Figure 4.6 shows flow chart of the function. As seen in Figure 4.6, the

window function w(t) is updated by using Equation 4.8 at each cycle.

START

YES

void update(FlowQueue FQ)

window w(t) > 0

Decrease window
with rate sum

Decrease window
with rate sum

END

NO

Figure 4.6: Flow Chart of update Function in WBFA Scheduler Module

4.3 Experiments and Results

In this section, the effect of WBFA on packet scheduler module and delay bound is

analyzed by performing different experiments. In our experiments, Poisson traffic

generator module and Bursty traffic generator module are used to generate traffic

flows at adjustable loads.

Firstly, we perform verification test for WBFA by comparing our experiment results

in [60]. Secondly, the run time analysis for WBFA module is presented by perform-

ing experiments with cascaded WBFA modules. Thirdly, the optimal maximum win-

dow size value,wmax, is calculated. Finally, performance and delay bound of packet

scheduler module with WBFA is analyzed by performing different experiments.

4.3.1 Experiment 1: Verification of WBFA under Poisson Traffic Generator

In this experiment, the WBFA module in QueST is verified with the WBFA in [60]

by comparing experiment results under Poisson traffic generator. Total traffic load

is %75 of output scheduler rate. The size of each generated packet is exponentially

69

distributed between 0 and 100 bytes and the average packet size is 10 bytes. As seen

in Figure 4.7, the experiment runs with 4 traffic flows which are F1, F2, F3 and F4

in two cases. In the reference case, WBFA module is not used and traffic flows enter

directly to WF2Q+ scheduler module without aggregation. Output rate of WF2Q+

scheduler is C.s which is equal to 1 byte/cycle. The reserved rates for all traffic flows

are the same and equal to %25 of C.s. In the second case, F1 and F2 are aggregated

by WBFA. The output of WBFA, F12, is scheduled together with F3 and F4. While

%50 of WF2Q+ scheduler output rate is reserved for F12, %25 of WF2Q+ scheduler

output rate is reserved for F3 and F4. wmax is set to 4000 which enables the flow

with smallest reserved rate transmit 10 maximum sized packets.

s

F1
F2
F3
F4

F1
F2

F3

F4

F12

s C.s

C.s

n

TE2E

Tagg

Figure 4.7: Experiment setup for verification of WBFA (a) Reference case: 4 flows
scheduled with a WF2Q+ scheduler s without aggregation. (b) WF2Q+ scheduler s
follows aggregator n.

The average end to end delay, TE2E, and the average aggregation delay, Tagg is mea-

sured as indicated in Figure 4.7. The end to end delay for a packet is calculated by

subtracting packet generation time from packet serving time. The aggregation de-

lay for a packet is calculated by subtracting packet generation time from the time

when packet leaves aggregator. If many number of WBFA modules are cascaded to

each other, then the aggregation delay for a packet is calculated by subtracting packet

generation time from the time when packet leaves the last level aggregator. In other

words, the total aggregation delay for a packet in a system with cascaded WBFA mod-

70

ules is the sum of all aggregation delays of WBFA modules that the packet passes

through. Since the WBFA has infinite output capacity, the packet transmission be-

tween WBFA and WF2Q+ takes 1 clock cycle for any sized packet. We collect 25K

packets for two cases. The unit of measurement is P/C.s where P is the average

packet size which is equal to 10 bytes. The end to end delay for the reference case

without aggregation is denoted as TRe f .

Table 4.1 gives the experiment results conducted in [60] and QueST. When we com-

pare experiment results in QueST with the results in [60], we can see that the result

values are very close to each other for both experiments. Trend of each experiment is

similar after aggregation is applied. In both experiments, after the aggregation while

F1 and F2 have lower delay than reference case, F3 and F4 have higher delay than

reference case.

Table4.1: (a) Experimental Results Under Poisson Traffic Generator, %75 Load in
[60] (b) Experimental Results Under Poisson Traffic Generator, %75 Load in QueST

(a)

WBFA
F1 F2 F3 F4

TE2E 3.20 3.22 3.64 3.62
Tagg 0.04 0.04 — —
TRe f 3.45 3.30 3.35 3.45

(b)

WBFA
F1 F2 F3 F4

TE2E 3.65 3.66 4.00 3.85
Tagg 0.001 0.001 — —
TRe f 3.73 3.76 3.78 3.64

4.3.2 Experiment 2: Verification of WBFA under Bursty Traffic Generator

Our second experiment aims to verify WBFA module in QueST with the WBFA in

[60] by comparing experiment results under Bursty traffic generator. In this experi-

ment, total traffic load is %85 of the output scheduler rate and size of each generated

packet is set to 10 bytes. As seen in Figure 4.7, the experiment runs with 4 traffic

flows which are F1, F2, F3 and F4 in two cases. In the reference case, WBFA module

is not used and the traffic flows directly enter to WF2Q+ scheduler module. In the

second case, F1 and F2 are aggregated by WBFA and the output of aggregation is

scheduled together with F3 and F4 by WF2Q+ scheduler module. While burst size of

F1 is set to 200 bytes, burst sizes of the others are set to 20 bytes.

71

TE2E, Tagg and TRe f denote mean end to end delay with WBFA, aggregation delay and

mean end to end delay without WBFA respectively as indicated in Figure 4.7. The

unit of measurement is P/C.s where P is the average packet size which is equal to

10 bytes, C.s is the output rate of scheduler which is equal to 1 byte/cycle. Table 4.2

shows the experiment results.

Table4.2: (a) Experiment Result Under Bursty Traffic Generator, %85 Load in [60]
(b) Experiment Result Under Bursty Traffic Generator, %85 Load in QueST

(a)

WBFA
F1 F2 F3 F4

TE2E 33.7 18.5 7.4 8.2
Tagg 3.1 0 — —
TRe f 47.1 4.8 5.0 5.6

(b)

WBFA
F1 F2 F3 F4

TE2E 38.4 23.8 8.03 8.09
Tagg 1.1 0.001 — —
TRe f 61.4 6.27 6.36 6.46

As seen in Table 4.2, the result values are similar to each other. In both experiments,

while F1 encounters lower delay with aggregation than reference case, the others

encounter higher delay with aggregation than reference case. This is because F1 uses

full capacity of WBFA as long as w(t) permits. Therefore, F1 gains service advantages

of WBFA and delay of the other flows increase.

4.3.3 Experiment 3: Run time analysis for WBFA

In this section, we analyze how run time of QueST changes with the number of cas-

caded WBFA modules to aggregate more flows. In this experiment, Poisson traffic

generator module is used to generate 16 traffic flows which are equally allocated.

This experiment is composed of four cases. At each case, we collect 25K packets

under different traffic loads and increase the number of WBFA modules. Figure 4.8

shows the experiment setup.

One level WBFA which reduces the number of flows to half is applied to traffic flows

in the first case. In the other cases, level of WBFA is increased one by one up to four.

Therefore, at last case, we obtain one traffic flow as a result of aggregation.

72

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

WBFA

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

Aggregation Delay (Tagg)

Figure 4.8: Experiment setup for complexity analysis of WBFA

According to Figure 4.9, run times of the experiments increase with the number of

cascaded WBFA modules under same load. This increase comes from searching flow

queues to find eligible flow.

0 20 40 60 80 100
0

20

40

60

80

100

Load [percent]

R
u

n
 T

im
e

 [
se

c]

8 WBFA

12 WBFA

14 WBFA

15 WBFA

Figure 4.9: Run times of QueST under different number of WBFA modules

73

4.3.4 Experiment 4: Optimal Maximum Window Size

Although WBFA has infinite output capacity and the packets are transmitted without

waiting by WBFA, packets may be delayed at some cases. For example, if one of the

two constituent flows is greedy flow, at some point service received by greedy flow

will reach maximum window value. Therefore, the greedy flow will be buffered and

encounter aggregation delay until the window function stays in limit.

In this section, we investigate optimal maximum window size value for WBFA where

the aggregation delay is minimum. In order to find optimal maximum window value,

we perform experiment with two cases. In first case, while allocated rates of input

flows are kept constant, load of input flows are changed. In second case, while load

of input flows are kept constant, allocated rates of input flows are changed. In this

experiment, Poisson traffic generator module is used to generate 2 traffic flows which

directly enter WBFA module.

Table4.3: (a) Experiment Values for Case-1 (b) Experiment Values for Case-2

(a)

Exp i ρ f ρh R f Rh

1 0.45 0.45 0.5 0.5
2 0.3 0.3 0.5 0.5
3 0.2 0.2 0.5 0.5

(b)

Exp i ρ f ρh R f Rh

1 0.45 0.45 0.5 0.5
2 0.45 0.45 0.4 0.4
3 0.45 0.45 0.3 0.3

Table 4.3 gives the experiment values for each case where ρ f and ρh show loads

of input flows and R f and Rh show allocated rates of input flows. The minimum

aggregation delay indicates optimal maximum window size.

74

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

Window

A
gg

re
ga

tio
n

D
el

ay

fLoad=hLoad=0.45
fLoad=hLoad=0.3
fLoad=hLoad=0.2

Figure 4.10: Experiment Results under same reserved rates and different traffic loads

200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

Window

A
gg

re
ga

tio
n

D
el

ay

Rf=Rh=0.5
Rf=Rh=0.4
Rf=Rh=0.2

Figure 4.11: Experiment Results under same traffic loads and different reserved rates

As can be seen in Figure 4.10 and Figure 4.11, the optimal maximum window value

does not change with respect to traffic loads. However, when the allocated rates of

input flows is changed, the optimal maximum window value changes. For each max-

imum window value, we collect 10 samples and take average of aggregation delays

for each sample. The reported averages are within the %0 and %1 confidence interval

of the true mean with %99 probability. When we analyze the relationship between

optimal maximum window value and allocated rates of input flows, the following

expression for optimal maximum window value is found:

75

Optimal maximum Window Value =
Lmax

R f ∗ Rh
, (4.13)

where Lmax is the maximum packet size which is equal to 100 byte for this experi-

ment. If the maximum window value is selected larger than optimal maximum win-

dow value, the aggregation delay does not change significantly and stays constant.

However, selecting very large maximum window value affects fairness property of

WBFA among constituent flows negatively. If the maximum window value is selected

lower than optimal maximum window value, the input flows of WBFA encounter sig-

nificant delay. Furthermore, if the selected maximum window value is too small,

then any packet from input flows can not be served by WBFA. Therefore, theoreti-

cal maximum window value, wmax, must be larger than following equation which is

calculated as by using Equation 4.6, Equation 4.7, Equation 4.9 and Equation 4.10:

2 ∗ wmax ≥
S h(t, t−) ∗ R. f + PHOL

h (t) ∗ R. f + S f (t, t−) ∗ R.h + PHOL
f (t) ∗ R.h

R. f ∗ R.h
, (4.14)

where t− is the transmission time of last packet. Since Poisson traffic generator mod-

ule in QueST generates network packets which have packet sizes between 0 and Lmax,

S h(t, t−), S f (t, t−), PHOL
f (t) and PHOL

h (t) can not be larger than Lmax. Therefore, from

Equation 4.14:

wmax ≥
Lmax(R. f + R.h)

R. f ∗ R.h
, (4.15)

where R. f and R.h are normalized reserved rates between 0 and 1. In QueST, sum

of normalized reserved rates of all input flows can not be larger than 1. Therefore, in

Equation 4.15, R. f + R.h can be maximum 1 and if we replace R. f + R.h with 1, we

get following expression:

wmax ≥
Lmax

R. f ∗ R.h
. (4.16)

76

We can see that the experimental result for the optimal maximum window value has

the same expression with the Equation 4.16. Therefore, the optimal maximum win-

dow value found in this experiment is verified with theoretical expression in Equation

4.16.

4.3.5 Experiment 5: Fairness Analysis for WBFA

In this section, we consider fairness of WBFA module in QueST and analyze how

number of served packets for each flow changes with the allocated rates. In this ex-

periment, Poisson traffic generator module is used to generate 3 traffic flows whose

packets have different lengths. Each flow has the same load. This experiment is com-

posed of two cases. In first case, WBFA module is not used and traffic flows directly

enter WF2Q+ scheduler module. In second case, while F1 and F2 enter WBFA mod-

ule, F3 directly enters WF2Q+ scheduler module. Output of WBFA module, F12,

is connected to WF2Q+ scheduler module. The maximum window size value for

WBFA is selected as optimal maximum window size value which is calculated from

Equation 4.13. 25K packets are collected for each case.

Table4.4: Experiment Values for both Case-1 and Case-2

Exp i Each Flow Load R f 1 R f 2 R f 3

1 1.0 0.4 0.3 0.3
2 1.0 0.6 0.2 0.2
3 1.0 0.8 0.1 0.1

As can be seen in Table 4.4, mean loads of generated flows are the same for two

cases. The allocated rates for input flows are changed for each experiment. After

25K packets are collected at the output of WF2Q+ scheduler module, the number of

served packets for each flow is obtained. Table 4.5 shows the experiment results for

each case.

As can be seen in Table 4.5, the served packet number for each flow is proportional

with the allocated rate of that flow in both cases. Therefore, both WBFA and WF2Q+

modules in QueST are fair schedulers.

77

Table4.5: (a) Number of served packets for Case-1 (b) Number of served packets for
Case-2

(a)

Exp i Served F1 Served F2 Served F3

1 10101 7467 7432
2 14965 4957 5078
3 20016 2562 2422

(b)

Exp i Served F1 Served F2 Served F3

1 9709 7794 7497
2 14601 5461 4938
3 19624 2893 2483

4.3.6 Experiment 6: Effect of WBFA on WF2Q+ Scheduler

In this section, we consider the effect of WBFA on WF2Q+ scheduler. According to

[60], WBFA is fair aggregator and it preserves end to end delay bounds. [60] also

states that WBFA decreases complexity of the scheduler. To this end, we perform

experiments to analyze effect of WBFA on WF2Q+ scheduler with respect to end to

end delay bound and complexity under different traffic scenarios. Figure 4.12 shows

experiments setup. As can be seen in Figure 4.12, each experiment is composed of

two cases. In the reference case, WBFA is not used and three level WF2Q+ schedulers

are used. In the other case, different level WBFA modules are used before flows enter

WF2Q+ schedulers.

We perform two experiments to analyze how effect of WBFA on WF2Q+ scheduler

changes with respect to generated packet size. Therefore, in first experiment, network

packets are generated with fixed sizes by Poisson and Bursty flows. In second exper-

iment, network packets are generated with exponentially distributed sizes by Poisson

flows. 320 traffic flows are generated and 25K packets are collected under different

traffic loads at the output of last WF2Q+ scheduler. Analytical delay bounds for all

experiment, DB, are calculated by using Equation 3.27. The unit of measurements

for all experiments is the required time to serve a packet with size P on the WF2Q+

scheduler which is P/C.s. The maximum window size value for WBFA is selected as

78

optimal maximum window size value which is calculated from Equation 4.13.

In each experiment, TE2E Mean, TE2E Max and TRun for both cases are measured where,

• TE2E Mean is the average end to end delay which is obtained by subtracting flow

generation time from flow serving time.

• TE2E Max is the maximum end to end delay which is obtained by subtracting

flow generation time from flow serving time.

• TRun is the run time of scheduler and unit of run time is second,sec.

128 Flows WF2Q+ 192 Flows WF2Q+ 256 Flows WF2Q+ 320 Flows

a)

3-LEVEL
WBFA

WF2Q+
3-LEVEL

WBFA
WF2Q+

1-LEVEL
WBFA

WF2Q+128 Flows 16 Flows

64 F
low

s

80 Flows 10 Flows 74 Flows 37 Flows 101 Flows

b)

64 F
low

s

64 F
low

s

64 F
low

s

64 F
low

s

64 F
low

s

Figure 4.12: Experiment setup for the effect of WBFA on WF2Q+ a) shows reference
case without WBFA b)shows WBFA case

4.3.6.1 Experiment 6-1: Effect of WBFA on WF2Q+ Scheduler under Fixed

Size Packets

This experiment is composed of two traffic scenarios. In the first scenario Poisson

traffic generator module is used to generate fixed size packets. The packet sizes are

79

set to P. The traffic flows are generated under three different traffic loads which are

%30, %50 and %80. Each flow has same load. Table 4.6 shows the experiment result.

Table4.6: Experiment Results for Poisson Traffic Generator with Fixed Size Packets

Load TRun TE2E Mean TE2E Max
Ref WBFA Ref WBFA Ref WBFA

%30 651 614 2.52 2.2 8 11
%50 399 370 2.81 2.5 25 18
%80 264 235 4.39 4.01 82 120

In the reference case, we performed the experiment by using three WF2Q+ scheduler

modules. We assume that the maximum burst size is equal to 0 byte. Maximum

packet size is equal to average packet size which is equal to P. From Equation 3.27,

the total analytical delay bound for reference case is 963 P/C.s. The maximum packet

transmission delay is 1 P/C.s. As can be seen in Table 4.6, the maximum end to

end delay is 120 P/C.s. If we add this maximum end to end delay to maximum

transmission delay, we get a total maximum delay of 121 P/C.s. As a result, the delay

bound is much higher than total maximum delay. In other words, WBFA preserves

delay bound.

When we look at the run times for both cases, we see that run time of scheduler with

WBFA is lower than run time of scheduler without WBFA. This is because that while

WBFA preserves delay bounds, it also decreases complexity of the scheduler.

When we compare the mean end to end delays in both cases, we see that the WF2Q+

scheduler with WBFA encounters lower delay than the case where WBFA is not added

to WF2Q+ scheduler.

In the second scenario Bursty traffic generator module is used to generate fixed size

packets. The packet sizes are set to P. The burst size for Bursty traffic is set to P. The

traffic flows are generated under three different traffic loads which are %30, %50 and

%80. Each flow has same load. Table 4.7 shows the experiment result.

80

Table4.7: Experiment Results for Bursty Traffic Generator with Fixed Size Packets

Load TRun TE2E Mean TE2E Max
Ref WBFA Ref WBFA Ref WBFA

%30 659 625 5.43 5.04 401 400
%50 399 376 6.84 6.6 511 520
%80 257 235 12.94 12.91 777 871

In Bursty traffic, the maximum burst size is set to P. Maximum packet size is equal

to average packet size which is equal to P. From Equation 3.27, the total analytical

delay bound for reference case is 1283 P/C.s. The maximum packet transmission

delay is 1 P/C.s. As can be seen in Table 4.7, the maximum end to end delay is 871

P/C.s. If we add this maximum end to end delay to maximum transmission delay, we

get a total maximum delay of 872 P/C.s. As can be seen, the delay bound is much

higher than total maximum delay and so WBFA preserves delay bound. When we

look at the run times for both cases, we see that run time of scheduler with WBFA

is lower than run time of scheduler without WBFA due to fact that WBFA decreases

complexity. When we compare the mean end to end delays in both cases, we see

that the WF2Q+ scheduler with WBFA encounters lower delay than the case where

WBFA is not added to WF2Q+ scheduler.

4.3.6.2 Experiment 6-2: Effect of WBFA on WF2Q+ Scheduler under Different

Sized Packets

In this experiment Poisson traffic generator module is used to generate packets. The

generated packet sizes are exponentially distributed between 0 and 10P. The average

packet size is P. The traffic flows are generated under three different traffic loads

which are %30, %50 and %80. Each flow has same load. Table 4.8 shows the exper-

iment result.

In this experiment, we assume that the maximum burst size is 0. Maximum packet

size is equal to 10P. From Equation 3.27, the total analytical delay bound for ref-

erence case is 9630 P/C.s. When we add the maximum packet transmission delay

which is equal to 10P/C.s to maximum queueing delay which is obtained in Table

81

4.8, we get a total maximum delay of 172 P/C.s. As can be seen, WBFA preserves

delay bound. If we compare run times of two cases, we see that the run time of sched-

uler with WBFA is lower than the case without WBFA due to decrease in complexity.

Table4.8: Experiment Results for Poisson Traffic Generator with Exponentially Dis-
tributed Sized Packets

Load TRun TE2E Mean TE2E Max
Ref WBFA Ref WBFA Ref WBFA

%30 642 613 3.21 2.99 34 33
%50 396 373 3.91 3.90 50 37
%80 253 234 5.72 7.23 160 162

When we compare the mean end to end delays in both cases, we see that in low

loads the WF2Q+ scheduler with WBFA encounters lower delay than the case where

WBFA is not added to WF2Q+ scheduler. However, in high loads the WF2Q+ sched-

uler with WBFA encounters higher delay. This can be because of the fact that the

inter-arrival times between two consecutive packets is very low in high loads due to

aggregation of traffic flows. However, in low loads inter-arrival times are bigger than

the high load case. Therefore, a packet in the scheduler flow queues has to wait trans-

mission of many predecessor packets in high load case. Furthermore, Poisson traffic

is a very smooth traffic pattern and flows generated by Poisson traffic generator en-

counter lower delay in packet scheduler. However, if we aggregate two Poisson flows

by using WBFA, the output flow is not a Poisson flow anymore. Therefore, obtained

flow from aggregation may encounter higher delay than Poisson flow.

4.3.7 Experiment 7: Analyzing effects of WBFA on WF2Q+ scheduler under

the conditions with more than 1000 Traffic Flows

In this section, we consider the effect of WBFA on WF2Q+ scheduler by generat-

ing more than 1000 traffic flows. To this end, we perform one experiment by using

Poisson traffic generator module to generate 1120 traffic flows. Figure 4.13 shows ex-

periments setup. As can be seen in Figure 4.13, each experiment is composed of two

82

cases. In the reference case, WBFA is not used and three level WF2Q+ schedulers

are used. In the other case, different level WBFA modules are used before flows enter

WF2Q+ schedulers.

640 Flows WF2Q+ 800 Flows WF2Q+ 960 Flows WF2Q+ 1120 Flows

a)

3-
LEVEL
WBFA

WF2Q+
3-

LEVEL
WBFA

WF2Q+
1-

LEVEL
WBFA

WF2Q+640 Flows 80 Flows
160 F

low
s

240 Flows 30 Flows 190 Flows 95 Flows 255 Flows

b)

160 F
low

s

160 F
low

s

160 F
low

s

160 F
low

s

160 F
low

s

Figure 4.13: Experiment setup for the effect of WBFA on WF2Q+ under 1120 Traffic
flows a) shows reference case without WBFA b)shows WBFA case

In the experiment, network packets have exponentially distributed packet sizes be-

tween 0 and 10P, and average packet size is P. The traffic flows are generated under

three different traffic loads which are %30, %50 and %80. Each flow has same load.

25K packets are collected at the output of last WF2Q+ scheduler. The maximum

window size value for WBFA is selected as optimal maximum window size value

which is calculated from Equation 4.13. In the experiment, average end to end delay,

TE2E Mean, maximum end to end delay, TE2E Max, and run time of the scheduler, TRun,

are measured and compared. The unit of measurement for TE2E Mean and TE2E Max

is the required time to serve a packet with size P on the WF2Q+ scheduler which

is P/C.s and the unit of measurement for TRun is second, sec. Table 4.9 shows the

experiment results.

83

Table4.9: Experiment results under 1120 Poisson traffic flows with different sized
packets

Load TRun TE2E Mean TE2E Max
Ref WBFA Ref WBFA Ref WBFA

%30 2334 2075 3.64 3.84 43 44
%50 1430 1246 4.51 4.94 77 46
%80 920 779 6.94 10.31 193 360

In this experiment, we assume that the maximum burst size is 0 and maximum packet

size is equal to 10P. From Equation 3.27, the total analytical delay bound for ref-

erence case is 33630 P/C.s. When we add the maximum packet transmission delay

which is equal to 10P/C.s to maximum queueing delay which is obtained in Table

4.9, we get a total maximum delay of 370 P/C.s. As can be seen, WBFA preserves

delay bound. If we compare run times of two cases, we see that the run time of sched-

uler with WBFA is lower than the case without WBFA due to decrease in complexity.

When we compare the mean end to end delays in both cases, we see that the WF2Q+

scheduler with WBFA encounters higher delay. Therefore we can say that although

WBFA preserves delay bound and decreases complexity, it increases end to end delay

for the traffic flows.

84

CHAPTER 5

CONCLUSION AND FUTURE WORK

The focus of this thesis is the implementation and evaluation of QoS modules at the

network layer by extensive simulation experiments. To this end, a new cycle and

packet accurate software network simulator QueST is developed and implemented in

C++. QueST has a modular, extendable structure and currently implements Poisson,

Markov modulated on/off Bursty and Pareto traffic generators, Token Bucket Shaper

and WF2Q+ scheduler.

The correctness of the modules is verified by comparison to their respective analytical

models. The runtime complexity of QueST is investigated as a function of the number

of flows and scheduler modules. It is found that runtime of QueST is proportional

to the number of flows. The runtime of the WF2Q+ scheduler module is found to

increase proportional to the logarithm of the number of flows which confirms with

the analytical results where N is the number of the WF2Q+ scheduler modules.

Windows Based Fair Aggregator (WBFA) proposed by [60] is implemented and inte-

grated to packet scheduler module of QueST to experimentally investigate the benefits

of flow aggregation in detail. WBFA module in QueST is verified by comparing its

results with the results in [60] under Poisson and Bursty traffic generators. WBFA

provides fairness with the help of window function. In this work, optimal maxi-

mum window value is found for WBFA module and the fairness of WBFA module is

demonstrated by applying different experiments.

We present a number of experiment results that are performed by QueST for the ef-

fect of WBFA on WF2Q+ scheduler module with respect to delay and complexity.

85

In these experiments, we see that the complexity of the scheduler decreases and ex-

periments spend less time when WBFA is used. In the experiments with WBFA, it is

shown that the end to end delay bounds are preserved. The experiments where WBFA

is used show that the mean end to end delay performance of the scheduler is improved

when generated traffic packets have fixed size. However, the mean end to end delay

performance of the scheduler becomes worse when generated traffic packets have

different sizes.

As a future work; how delay performance of the scheduler changes with respect to

packet size when WBFA is used can be analyzed. Implementing other well-known

packet scheduling algorithms can increase contribution of the QueST. Furthermore,

QueST can be improved by designing a graphical user interface (GUI) for experiment

setups.

86

REFERENCES

[1] Internet observatory. <http://www.internetobservatory.net/>.

[2] Internetworking elements, available at:. http://www.highteck.net/EN/Basic/Internetworking.html/.

[3] Minnesota internet traffic studies (mintss).
<http://www.dtc.umn.edu/mints/home.php/>.

[4] A. Adas. Traffic models in broadband networks. IEEE Communications Maga-
zine, 1997.

[5] S. Ali. Implementation of worst-case weighted fair queueing (wf2q+).
http://www.cs.cmu.edu/ cheeko/wf2q+/.

[6] S. Avallone, D. Emma, A. Pescape, and G. Ventre. High performance internet
traffic generators. The Journal of Supercomputing, 2006.

[7] J. Aweya. Ip router architectures: An overview. Nortel Networks.

[8] A. Azim and Z. I. Awan. Network emulation, pattern based traffic shaping and
kaunet evaluation. Masters of Science Thesis, 2008.

[9] X. Bai and A. Shami. Modeling self-similar traffic for network simulation.
2005.

[10] J. C. R. Bennett and H. Zhang. Wf2q: Worst-case fair weighted fair queueing.
in Proc. IEEE INFOCOM, 1996.

[11] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms.
IEEE/ACM Trans. Networking, 1997.

[12] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center
traffic characteristics. ACM SIGCOMM, 40(1), 2010.

[13] H. Bidgoli. The handbook of computer networks. Wiley, 3, 2007.

[14] M. Bornhager. Router and routing basics. Networking Academy, 2011.

[15] P. J. Burke. The output of a queuing system. Operations Research, page
699–704, 1956.

[16] H. J. Chao and X. Guo. Quality of service control in high-speed networks.
Wiley, 2002.

87

[17] H. J. Chao and B. Liu. High performance switch and routers.

[18] J. A. Cobb. Preserving quality of service guarantees in spite of flow aggregation.
IEEE/ACM Transactions on Networking, 10(1), 2002.

[19] J. A. Cobb. Work conserving fair-aggregation with rate-independent delay. in
Proc. IEEE ICCCN, 2008.

[20] J. A. Cobb. Rate-independent delay across state-reduced networks. in Proc.
Local Computer Networks, 2009.

[21] J. A. Cobb and X. Zhe. Maintaining flow isolation in work-conserving flow
aggregation. in Proc. GLOBECOM, 2005.

[22] J. A. Cobb and X. Zhe. Guaranteed throughput in work-conserving flow aggre-
gation through deadline reuse. in Proc. IEEE ICCCN, 2006.

[23] R. L. Cruz. A calculus for network delay, part i: Network elements in isolation.
IEEE Trans. Inform. Theory, 3, 1991.

[24] D-ITG. Available online at:. http://www.grid.unina.it/software/ITG/.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queue-
ing algorithm. in Proc. ACM SIGCOMM, 1989.

[26] A. Elwalid and D. Mitra. Traffic shaping at a network node: theory, optimum
design, admission control. In proc. of IEEE INFOCOM, 1997.

[27] K. Fall and K. Varadhan. The ns manual. 2011.

[28] E.-B. Fgee, J. D. Kenney, W. J. Phillips, W. Robertson, and S. Sivakumar. Com-
parison of qos performance between ipv6 qos management model and intserv
and diffserv qos models. IEEE Magazine, 2005.

[29] K. A. Froot, G. O’Connell, and G. Paul. On the pricing of intermediated risks:
Theory and application to catastrophe reinsurance. Journal of Banking, 2008.

[30] T. Generator. Available online at:. http://www.postel.org/tg/tg.htm/.

[31] L. Georgiadis, R. Guerin, V. Peris, and R. Rajan. Efficient support of delay and
rate guarantees in an internet. in Proc. ACM SIGCOMM, 1996.

[32] S. J. Golestani. A self-clocked fair queueing scheme for broadband applications.
in Proc. IEEE INFOCOM, 1994.

[33] A. Gupta and V. Sharna. A unified approach for analyzing persistent, non-
persistent and on-off tcp sessions in the internet. Performance Evaluation,
63(2), 2006.

88

[34] S. G. Gupta, M. M. Ghonge, P. D. Thakare, and D. P. M. Jawandhiya. Open-
source network simulation tools: An overview. International Journal of Ad-
vanced Research in Computer Engineering Technology (IJARCET), 2, 2013.

[35] A. Harrison, O. Florence, B. Benjamin, O. Cletus, and O. Folasade. The desir-
ability of pareto distribution for modeling modern internet traffic characteristics.
IJNREAS, 1(1), 2014.

[36] M. Hosamo. A study of the source traffic generator using poisson distribution
for abr service. 2012.

[37] T. Issariyakul. Including your modules into ns 2. 2010.

[38] J. Joung, J. Song, and S. L. Soon. Flow-based qos management architectures
for the next generation network. ETRI Journal, 30(2), 2008.

[39] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. A nonstationary pois-
son view of internet traffic. in Proc. INFOCOM, 2004.

[40] V. Laatu, J. Harju, and P. Loula. Fairness comparisons of per-flow and aggre-
gate marking schemes in diffserv networks. in Proc. The 9th Open European
Summer School and IFIP Workshop on Next Generation Networks, 2003.

[41] V. Laatu, J. Harju, and P. Loula. The impacts of aggregation on the performance
of tcp flows in ds networks. in Proc. International Conference on Networking,
2004.

[42] S. McCanne and S. Floyd. ns—network simulator. http://www-
mash.cs.berkeley.edu/ns/.

[43] C. Metz. Ip routers: New tool for gigabit networking. Cisco Systems.

[44] M.-G. MGEN. Available online at:. http://cs.itd.nrl.navy.mil/work/mgen/index.php/.

[45] A. M. Mohammed and A. F. Agamy. A survey on the common network traffic
sources models. International Journal of Computer Networks(IJCN), 3, 2011.

[46] M. Moshin, W. Wong, and Y. Bhatt. Support for real-time traffic in the internet,
and qos issues. 2002.

[47] J. T. Moy. Ospf: Anatomy of an internet routing protocol. 1998.

[48] NS-2. Available online at:. http://www.isi.edu/nsnam/ns/.

[49] OMNET++. Available online at:. http://http://www.omnetpp.org/.

[50] OPNET. Available online at:. http://www.riverbed.com/products/performance-
management-control/opnet.html/.

[51] J. Pan. A survey of network simulation tools: Current status and future devel-
opments. report.

89

[52] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: The single node case. IEEE/ACM
Trans. Networking, 1, 1993.

[53] E. A. Pekoz and N. Joglekar. Poisson traffic flow in a general feedback queue.
2002.

[54] S. Ramabhadran, A. Bose, and J. Pasquale. Stratified round robin: A low
complexity packet scheduler with bandwidth fairness and bounded delay. SIG-
COMM, 2003.

[55] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. Scalable architectures for
integrated traffic shaping and link scheduling in high speed atm switches. IEEE
J. on Slc. Areas in Comm., 15(5), 1997.

[56] RUDE and CRUDE. Available online at:. http://rude.sourceforge.net/.

[57] J. L. Salina and P. Salina. Next generation networks: Perspectives and poten-
tials. Wiley, 2008.

[58] M. Sanlı, E. G. Schmidt, and H. C. Güran. Fpgen: A fast, scalable and pro-
grammable traffic generator for the performance evaluation of high-speed com-
puter networks. Elsevier, 2011.

[59] M. Sanlı, E. G. Schmidt, and H. C. Güran. Hardware design and implementation
of packet fair queuing algorithms for the quality of service support in the high-
speed internet. Elsevier, 2012.

[60] M. Sanlı, E. G. Schmidt, and H. C. Güran. A flow aggregation method for the
scalable and efficient quality of service support in next generation networks.
Globecom, 2013.

[61] F. A. Sekib, S. McClellan, M. Singh, and S. Chakravarthy. End-to-end testing
of ip qos mechanisms. IEEE Magazine, 2002.

[62] N. Simulation. Available online at:. http://en.wikipedia.org/wiki/Network-
simulation/.

[63] S. Siraj, A. K. Gupta, and Rinku-Badgujar. Network simulation tools survey.
International Journal of Advanced Research in Computer and Communication
Engineering, 1, 2012.

[64] V. Sivaraman, F. M. Chiussi, and M. Gerla. Traffic shaping for end-to-end delay
guarantees with edf scheduling. 2000.

[65] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li, H. Lim, H.-Y. Tyan,
and H. Zhang. J-sim: A simulation environment forwireless sensor networks.
Proceedings of the 38th Annual Simulation Symposium (ANSS’05), 2005.

90

[66] R. Stader. Qos provisioning for ip telephony networks by advanced bandwidth
management. Masters of Science Thesis, 2001.

[67] D. Stiliadis and A. Varma. Design and analysis of frame-based fair queueing: A
new traffic scheduling algorithm for packet-switched networks. in Proc. ACM
SIGMETRICS, 1996.

[68] W. Sun and K. G. Shin. Coordinated aggregate scheduling for improving end-
toend delay performance. in Proc. IEEE IWQoS, 2004.

[69] W. Sun and K. G. Shin. End-to-end delay bounds for traffic aggregates under
guaranteed-rate scheduling algorithms. IEEE/ACM Transactions on Network-
ing, 13(5), 2005.

[70] S. Suri, G. Varghese, and G. Chandranmenon. Leap forward virtual clock: A
new fair queueing scheme with guaranteed delays and throughput fairness. in
Proc. IEEE INFOCOM, 1997.

[71] G. Terdik and T. Gyires. Lévy flights and fractal modeling of internet traffic.
IEEE/ACM Transactions on Networking, 17(1), 2009.

[72] E. Weingartner, H. vom Lehn, and K. Wehrle. A performance comparison of
recent network simulators. IEEE Communications, 2009.

[73] J. Wroclavski and S. Shenker. Network element service specification template.
RFC 2216, 1997.

[74] X. Yang and A. Petropulu. The extended alternating fractal renewal process
for modeling traffic in high-speed communication networks. IEEE Trans. Sig.
Proc., 49(7), 2001.

[75] D. Zaragoza and C. Belo. Experimental validation of the on–off packet-level
model for ip traffic. Elsevier, 2006.

[76] L. Zhang. Virtual clock: A new traffic control scheme for packet switching
networks. In ACM SIGCOMM, 1990.

91

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Related Work: Quality of Service Support in High Speed Networks
	High Speed Network Routers
	Network Router Functionalities

	Quality of Service
	Traffic Profiles and Traffic Shaping
	Packet Scheduling
	Flow Aggregation

	Network Simulators
	Open Source Network Simulators
	ns-2
	ns-3
	OMNeT++

	QueST: Qos SimulaTor
	Modules
	Traffic Generator
	QueST Poisson Traffic Generator
	Conceptual Design:
	Software Design:

	QueST Bursty Traffic Generator
	Conceptual Design:
	Software Design:

	QueST Pareto Traffic Generator
	Conceptual Design:
	Software Design:

	Traffic Shaper
	QueST Token Bucket Shaper
	Conceptual Design:
	Software Design:

	Packet Scheduler
	QueST Worst-case Weighted Fair Queuing Plus Scheduler
	Conceptual Design:
	Software Design:

	Scalability and Complexity
	Verification Tests
	Verification of Poisson Traffic Generator in QueST
	Verification of Bursty Traffic Generator in QueST
	Verification of Pareto Traffic Generator in QueST
	Verification of Token Bucket Shaper in QueST
	Verification of WF2Q+ Scheduler in QueST
	Experiment 1: Verification of WF2Q+ Scheduler with one WF2Q+ module
	Experiment 2: Verification of WF2Q+ Scheduler with cascaded 4 WF2Q+ modules

	Window Based Fair Aggregator (WBFA) Evaluation with QueST
	Window Based Fair Aggregator (WBFA)
	WBFA Operation
	Preliminaries
	Operations
	Calculation of w(t):
	Packet Transmission:

	WBFA Performance

	Integration of WBFA to QueST
	Experiments and Results
	Experiment 1: Verification of WBFA under Poisson Traffic Generator
	Experiment 2: Verification of WBFA under Bursty Traffic Generator
	Experiment 3: Run time analysis for WBFA
	Experiment 4: Optimal Maximum Window Size
	Experiment 5: Fairness Analysis for WBFA
	Experiment 6: Effect of WBFA on WF2Q+ Scheduler
	Experiment 6-1: Effect of WBFA on WF2Q+ Scheduler under Fixed Size Packets
	Experiment 6-2: Effect of WBFA on WF2Q+ Scheduler under Different Sized Packets

	Experiment 7: Analyzing effects of WBFA on WF2Q+ scheduler under the conditions with more than 1000 Traffic Flows

	Conclusion and Future Work
	REFERENCES

