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ABSTRACT 

 

 

STOCHASTIC DYNAMIC PROGRAMMING BASED RESOURCE 

ALLOCATION FOR MULTI TARGET TRACKING FOR 

ELECTRONICALLY STEERED ANTENNA RADAR 

 

 

 

Uzun, Çağlar 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mübeccel Demirekler 

 

January 2015, 108 pages 

 

In this work, the concept of sensor management is introduced and stochastic dynamic 

programming based resource allocation approach is proposed to track multiple 

targets. The core of this approach is to use Lagrange relaxation for decreasing the 

state space dimension. By this approximation, the overall problem is separated into 

components instead of using joint Markov model to optimize large scale stochastic 

control problem. The aim of this study is to adaptively allocate radar resources in an 

optimal way in order to maintain track qualities for multi-target case. The radar is 

electronically steered antenna radar. Resource allocation is done only for tracking 

excluding the search beams. Adaptive target tracking is performed by Kalman filter. 

Problem is modeled as a set of controlled Markov chains each dedicated to one track. 

Time scale is divided into two levels that are called as micro management and macro 

management. During the thesis, we deal with macro management part that aims to 

construct a policy which is optimal for a given objective function under the resource 

constraints. Stochastic dynamic programming with constraints in the sense of [32] is 

the method used. In this thesis, five different scenarios are constructed and 

corresponding algorithms are confirmed by simulation results. The performances of 
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the algorithms are also compared. Their performances are analyzed on the average 

number of update decision and average number of target drops in time horizon.  

 

Keywords: Sensor Management, Optimization-based Scheduling, Beam Scheduling, 

Dynamic Programming, Lagrange Relaxation Method, Markov Decision Process, 

Resource Allocation For Electronically Steered Antenna Radar 
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ÖZ 

 

 

ELEKTRONİK TARAMALI RADARLARDA ÇOKLU HEDEF TAKİBİ İÇİN 

STOKASTİK DİNAMİK PROGRAMLAMA TABANLI KAYNAK 

PAYLAŞIMI 

 

 

 

Uzun, Çağlar 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler 

 

Ocak 2015, 108 sayfa 

 

Bu çalışmada, sensör yönetim kavramı tanıtılmış ve çoklu hedef takip etmek için 

stokastik dinamik programlama tabanlı kaynak paylaşım yaklaşımı önerilmiştir. Bu 

yaklaşımın temeli, durum uzay boyutunu azaltmak için Lagrange rahatlatması 

kullanılmasıdır. Bu yaklaşım ile geniş ölçekli stokastik kontrol problemini en iyi 

şekilde çözmek için birleşik Markov modeli kullanmak yerine, bütün problem 

parçalarına ayrılmıştır. Bu çalışmanın amacı çoklu hedef durumunda iz kalitelerini 

sürdürmek için radar kaynaklarını en iyi şekilde uyarlayarak ayırmaktır. Çalışma 

elektronik taramalı radarlar içindir. Kaynak paylaşımı arama huzmeleri dışarıda 

tutularak sadece hedef takibi için yapılmıştır. Uyarlamalı hedef takibi Kalman filtresi 

ile gerçekleştirilmiştir. Problem her biri bir ize atanmış, kontrol edilen Markov 

zincirleri ile modellenmiştir.  Zaman ölçüsü mikro yönetim ve makro yönetim adında 

iki seviyeye bölünmüştür. Tez boyunca makro yönetimi ile ilgilenilmiştir. Makro 

yönetim kısmı, verilen hedef fonksiyonu ve kaynak kısıtları altında en uygun strateji 

oluşturmayı hedeflemektedir. Kullanılan metot [32] deki gibi kısıtlı stokastik 

dinamik programlamadır. Bu tezde, beş farklı senaryo oluşturulmuş ve ilgili 

algoritmalar simülasyon sonuçları ile doğrulanmıştır. Algoritmaların performansları 
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da karşılaştırılmıştır. Algoritmaların performansları ortalama güncelleme kararı ve 

ortalama hedef düşme sayıları ile analiz edilmiştir. 

 

Anahtar Kelimeler: Sensör Yönetimi, Optimizasyon tabanlı Planlama, Huzme 

Planlaması, Dinamik Programlama, Lagrange Rahatlatma Metodu, Markov Karar 

İşleyişi, Elektronik Taramalı Radarlar için Kaynak Paylaşımı 
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      CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

Radar is an acronym of “Radio Detection and Ranging” and it is an object detection 

system that uses radio waves or microwaves to determine the range, direction, 

altitude or speed of both moving and stationary objects. It was first developed as an 

object detection system to warn of coming hostile aircraft. In recent years, radar is 

the most common sensor used in tracking applications. It gives highly accurate 

information about the range and the velocity of a target [1].  

Perhaps the most important improvement in radar technology is the introduction of 

multifunction radar in recent years. Multifunction radar systems can perform a 

variety of applications that differ from old generation radar systems that perform an 

individual function. By the development in solid-state technology, multifunction 

radar that performs several applications within the same radar system is developed 

[2]. 

Active electronically steered antenna radar is a type of multifunction radar whose 

transmitter and receiver functions are composed of a great number of small solid-

state transmit/receive modules (TRMs). Mechanical steering is a big problem for 

some radar applications especially in target tracking. To improve radar abilities an 

agile beam should be constructed. Electronically steering antenna produces agile 

beams without any mechanical constraint. This type of radar uses a group of 
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antennas that radiates effective pattern in a desired direction and suppresses in 

undesired directions. Array of antennas are employed by using a shift in the signal 

phase in order to separate desired/undesired directions. Some explanation about ESA 

radars and their advantages are described in Section 2.1.3. 

Electronically scanned antenna (ESA) radars have the advantage of using an agile 

beam. Optimal or near optimal use of this flexibility is a challenge so there is an 

increasing motivation in designing optimal radar resource allocation algorithms that 

take advantage of agile beam used by ESA radars.   

Sensor management deals with how to manage, coordinate and organize the usage of 

scarce sensor resources in a manner of improving and optimizing the quality of 

services.  If there are insufficient radar resources to perform all desired tasks, the 

sensor manager allocates the available resources optimally according to the some 

properties such as task priority and/or maximum reward. In order to handle global 

optimization problem which is highly complex to solve, usually the overall problem 

is divided into many smaller sub-problems that can be considered separately. 

Resource allocation is essentially a decision-making process about what information 

needs to be collected from the environment and what actions need to be taken to 

obtain the most desirable outcome. For target tracking, ‘update track i’ or ‘search 

sector j ’ decisions are necessary to operate any tracking system. The resource 

allocation can be modeled as an optimization problem for which the objective is a 

function of sensor capability, number of tracked targets and also priorities of the 

targets. Uncertainty management is also an important issue in tracking: The 

uncertainty of the target increases when a sensor does not update a track. Therefore, 

the track must be updated adaptively at acceptable time intervals to avoid track 

drops. A utility function is defined to compare the benefits obtained from the 

different actions. As a result of this comparison the best solution is aimed to be 

chosen. 

Sensor scheduling is to construct a policy which is optimal for a given objective 

function under the resource constraints. More detailed information about sensor 

management can be found in Section 2.4, see also [3] and [4]. 
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In this thesis we present the concept of radar beam scheduling. Beam scheduling 

itself is again a very complex problem. In the literature the problem is usually treated 

as a two stage problem: micro level scheduling and macro level scheduling [27], 

[32]. The two levels are called as slow time scale and large time scale. Slow time 

scale is usually taken on the order of few seconds and with usually fixed intervals of 

one second. Fast time scale aims to schedule for each interval of slow time scale so 

its time intervals are in the order of milliseconds. The purposes of the two time scale 

schedulers so the methods that they use are different from each other. Usually slow 

time scale scheduler, called the macro scheduler, lists the jobs that should be done in 

the next (slow time scale) interval and fast time scheduler, called the micro 

scheduler, determines the exact times that the jobs should be done. This study aims 

macro scheduling.   

In this thesis the resource allocation problem is modeled as a constrained Markov 

decision process. Macro management algorithm developed for multi target tracking 

is based on stochastic dynamic programming. The method is very similar to the 

method given in [32], which is based on constrained stochastic dynamic 

programming.  

The outline of the thesis is as follows:  

The background information, radar theory, motion model, target tracking, Kalman 

filtering, Markov chains, dynamic programming and sensor management are 

introduced in Chapter 2.  

In Chapter 3, the scheduling problem is stated. Its implementation is presented. The 

model and algorithms that we used in this thesis are detailed. 

Chapter 4 concentrates on several scenarios for stochastic dynamic programming 

based resource allocation applications. Simulations are performed by proposed 

algorithms and the corresponding results are compared to each other.  

In Chapter 5, this thesis is concluded and some future works are suggested.  
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      CHAPTER 2 

 

 

2 THEORETICAL BACKGROUND 

 

 

 

In this section we give brief information about the radar, target tracking and 

controlled Markov chains.  

2.1 Introduction to Radar Theory 

Radars work on the ground, on the sea, in the air and in space. Modern radar systems 

are used for early detection of surface or air objects and provide extremely accurate 

information on distance, direction, height, and speed of the objects. Ground-based 

radars are used to detect, locate and track the aircrafts and space targets. Shipboard 

radars are used to navigate and locate buoys, shore lines and other ships, prevent 

collisions on the sea, find direction at the same time observe the aircrafts. Airborne 

radars are used to detect other aircrafts, ships and grounded objects. Meteorologists 

use radar for monitoring weather or forecasting weather conditions.  Radars are also 

used in space to guide the space crafts. As you see, the modern uses of radars are 

different in several areas [5]. Some detailed applications are given below. 

Radars are the basic sensors in military applications. Radar types according to their 

functions can be classified as: Search radars, ballistic missile defense radars, radar 

seekers and fire control radars, missile support radars etc. For the civil applications, 
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they are used as process control radars, airport surveillance radars, weather radars, 

marine navigation radars, satellite mapping radars, police speed measuring radars, 

automotive collision avoidance radars etc. 

2.1.1 Fundamentals of Radar 

Radar consists of a transmitter, duplexer and receiver in a very simple case. Only one 

antenna is usually enough for both transmitting and receiving. The radar signal is 

generated by a powerful transmitter and received by a highly sensitive receiver. 

Therefore the receiver must be protected from the high power of the transmitter. 

Duplexer is used for this objective. Transmitters emit radio waves called radar 

signals in a particular type of waveform such as pulse modulated sine wave to the 

predetermined directions. When these signals come into contact with an object they 

are usually reflected in many directions. The radar signals that are reflected back 

towards the transmitter are the desirable signals that make radar works. Radar 

receivers are usually in the same location as the transmitter. The reflected radar 

signals captured by the receiving antenna are usually very weak depending on their 

travelling path and are strengthened by amplifiers [1]. A block diagram that shows 

the operation of typical pulse radar is given in the Figure 2.1.  

 

 

 

Figure 2.1 Block Diagram of a Pulse Radar 
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The most common radar waveform is a train of pulses modulating a sine wave carrier 

[1]. A typical radar time line is shown in the Figure 2.2. Radar transmits a powerful 

signal and waits for weak attenuated echo signal. By the time between these 

operations radar can calculate the range of the target by using; 

 

 
𝑅 =

𝑐 × 𝑇𝑟

2
 (2.1) 

 

where c is the speed of light, 𝑇𝑟  is the time between transmitted radar signal and 

observed echo signal. 

 

Figure 2.2 A Typical Radar Timeline 

 

2.1.2 Types of Radar Based on Scan Pattern 

Radars can be classified by the type of their scan patterns. Scanning can be defined 

as the motion of the beam in a specific pattern while tracking a target or searching a 

sector. In some cases, there are different scan patterns to achieve some particular 

system functions such as searching or tracking.  
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Conical Scan: Conical scanning is the simplest type of scanning. In this type, a radar 

beam is produced by the mechanically steered antenna. Antenna rotates 360° to cover 

the azimuth plane and beam is produced in the direction of antenna’s main lobe. If 

there is a target on the bore sight line, maximum reflection will occur. When the 

target is away from the main lobe of the beam, reflected radar signal will decrease 

due to the distance from the bore sight. Target location can be found by the received 

maximum reflected signal. The disadvantages of conical scan type radars are the 

mechanical constraints and large side lobes which lead to signal losses and reduce 

the sensitivity of the variation in the received signal. It means that the target position 

is determined only by the power of the received signal and variations will cause 

misleading results.  A typical conical scanning is shown in the Figure 2.3. 

 

 

Figure 2.3 Conical Scanning 

 

Track-While-Scan (TWS) Radars: TWS Radars allocate part of its resources to 

tracking targets while remaining part of its resource is used for searching for new 

targets. The disadvantage of TWS radars is to be highly vulnerable to jamming 

because of wide area scanning.  

Monopulse Scan Radars: This type of radar is similar to conical scan type radars. 

The difference is to split the beam into sectors that are called lobes and send radar 
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signals in slightly different directions. Received signals are compared to each other. 

A typical monopulse scanning is shown in the Figure 2.4. 

 

 

Figure 2.4 Monopulse Scanning 

 

Electronically Scanning Radars: As we mentioned before, mechanical constraints is 

a big problem for some radar application such as maneuvering high speed targets will 

not be able to position the radar beam optimally due to the mechanical constraints. 

Electronically steering antenna produces agile beams without any mechanical 

constraint. Agile beams are produced by a group of antennas that radiates effective 

pattern in the desired directions and suppresses it in the undesired directions. 

Electronic steering and shaping of a beam provides extremely useful beam agility. It 

means beam shape and direction can be changed instantaneously and also controlled 

digitally. It is possible to use one phase array radar as multiple radars and each radar 

has a different beam shape and scan pattern. This is referred to as interleaving radar 

modes. In other words, the same radar can be used for tracking airborne threats by 

using one beam shape and scan pattern and searching for ground targets by using 

another type of beam shape and scan pattern. A typical electronically scanning radar 

is shown in the Figure 2.5 [6], [38]. 
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Figure 2.5 Electronically Scanning 

 

2.1.3 Electronically Steered Antenna Radars 

Electronically steered antenna (ESA) radars have the advantage of having an agile 

beam that means transmitted energy can be allocated adaptively in space and time. 

Radars that are equipped with an electronically steered antenna have the capability of 

directing the radar beam without mechanically adjusting the antenna. Furthermore, 

the beam can be redirected instantaneously towards any location in space. Hence, the 

mechanical constraint of a traditional antenna is relaxed. It is a significant 

improvement that targets can be observed in any order in multiple target tracking 

applications. 

ESA radar has several advantages compared to ordinary radar systems.  

 The direction of the radar beam is not fixed to the antenna,  

 ESA radars have the ability to adaptively allocate radar energy in time and 

space where the demand is highest.  

SAR 

& 

GMTI 
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SUPPORT 
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 ESA radars have the ability to send beams in different directions and in an 

arbitrary order, so the high priority targets can be observed more frequently. 

 ESA radars permit spending more time on one particular measurement. On 

the other hand, less time will then be available for other tasks. 

The earliest phased array antenna system called as passive electronically scanned 

array (PESA) has one large central power amplifier tube to send the energy into 

phase shift modules for adjusting signal phases in a desired direction by using 

various emitting elements in the front of the antenna. On the other hand, an active 

electronically scanned array (AESA) device, also known as active phased array radar 

(APAR), has individual source in each emitting elements. Transmitter and receiver 

functions are merged in small solid-state transmit/receive modules (TRMs). 

Therefore, PESA radar is simpler and cheaper to construct than an AESA. But, the 

AESA architecture has significant advantages such as controlling the amplitude and 

phase of each element, adaptively. 

Thus, the allocation of time and energy to various tasks is important for the overall 

performance of the radar system. The problem of resource allocation can be defined 

as “how to adaptively allocate the constrained radar resource in time and space to 

handle all tasks in the optimal way”. This can be solved by designing a measurement 

policy that optimally utilizes the radar resources. Sensor management is used to 

achieve this purpose. The concepts of sensor management and radar resource 

management will be explained in Section 2.4. 

2.2 Target Tracking 

The aim of this thesis is to track multiple targets by ESA radar efficiently. In this 

section we will give brief information about the tracking problem and briefly define 

what tracking is and one of the motion models that is mostly used: constant velocity 

model. 
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A target is anything whose state interests us. On the other hand, a track is a state 

trajectory estimated from a sequence of measurements that has been associated with 

a single source. Measurements are noisy observations related to the (partial) state of 

a target. Generally each arriving measurement starts or updates a track. Tracking is 

the processing of measurements obtained from a target in order to maintain an 

estimate of target’s current state  [7]. Detection is to know the presence of an object, 

meanwhile tracking is to maintain a state of an object over time. It maintains the 

object‘s state and identity despite detection errors (false negatives, false alarms), 

occlusions, and in the presence of other objects. An example that explains the 

tracking process is given below in Figure 2.6 [8]. 

 

 

Figure 2.6 An Example of a Track 

 

According to their different life stages, tracks can be classified into three cases [9]. 
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Tentative (initiator): A track that is in the track initiation process. We are not sure 

that there is sufficient evidence that it is actually a target or not. 

Confirmed: A track that is decided to belong to a valid target.  

Deleted: A track that is decided to come from false alarms. 

Tracker uses the measurements obtained from the neighborhood of the predicted 

position of a target to maintain the track. The predicted position is delivered by the 

motion model. Several problems are involved in this procedure. One problem is the 

computation of the predicted position. This is done by using the motion model of the 

target. However since motion of a target is not static usual practice is to use several 

models. Another problem is how to use the new measurement for track maintenance. 

For simple linear motion models Kalman filter seems to be the best tool for this 

purpose. For more complicated realistic cases some algorithms derived from the 

Kalman filter are used. Measurement-track association is another important issue. 

There are several ways of solving the association problem starting from the rule 

‘associate the nearest measurement’ towards very complicated algorithms like 

‘multiple hypothesis tracking’.  

In the remaining part of this sub section we will explain the simplest model that can 

be used for tracking so called constant velocity model. Then we explain the Kalman 

filter very briefly.  

2.2.1 Motion Model: The Constant Velocity Model 

The motion model is a state space model of the track motion, usually linear and the 

measurements are the position of the target in the 3D or 2D space. Kalman filtering 

and its variations are the mostly used tools in tracking problems.  

The simplest model that is used for a tracking system is the ‘constant velocity’ 

model. It is used to represent the non-maneuvering targets motion. As its name 
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implies model assumes that the target is moving on a straight line with constant 

velocity. Here we explain the constant velocity model. 

Let 𝑝(𝑡) denote the target position, so the velocity is the first order derivative of the 

position, 𝑣(𝑡) = �̇�(𝑡)  and the acceleration is the second order derivative of the 

position  𝑎(𝑡) = �̈�(𝑡) . Since we will use constant velocity model, acceleration is 

assumed to be almost zero so is modeled as a zero mean white Gaussian noise. 

 

 �̈�(𝑡) = 𝑤(𝑡) (2.2) 

 

The state equations in one dimension are: 

 

 𝑥 =  [ 
𝑝 
 𝑝 ̇ ] ;   �̇�(𝑡)  =  [

0 1
0 0

]  𝑥(𝑡)  +  [
 0 
 1 

]  𝑤(𝑡) (2.3) 

 

The model is usually used in discrete time since the measurements are obtained at 

discrete times. The discrete time equivalent of the above continuous time model is as 

follows. 

Let 𝑝𝑘 𝑎𝑛𝑑 𝑣𝑘  denote the target position and velocity at time 𝑡𝑘. 

 

 𝑥𝑘  =  [ 
𝑝𝑘 
𝑣𝑘

] and 𝑇 =  𝑡𝑘+1 − 𝑡𝑘 (2.4) 

 

For real world, the perfect constant velocity assumption is unrealistic. Therefore 

some variation of velocity that is described by piecewise constant white acceleration 

is applied. The relaxed state equations then become: 
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𝑝𝑘+1 = 𝑝𝑘 + 𝑣𝑘𝑇 +

1

2
𝑤𝑘𝑇

2  (2.5) 

 

 𝑣𝑘+1 = 𝑣𝑘 + 𝑤𝑘𝑇 (2.6) 

 

where 𝑤𝑘  is called as process noise and it is a zero-mean Gaussian white noise: 

𝑤𝑘~𝑁(0, 𝜎𝑤
2(𝑘)) 

 

 
𝑥𝑘+1 = [

 𝑝𝑘+1 
 𝑣𝑘+1 

] =  [
1 𝑇
0 1

] . 𝑥𝑘 + [ 
1

2
𝑇2 

 𝑇 

] . 𝑤𝑘 

[ 
1

2
𝑇2 

 𝑇 

] . 𝑤𝑘~𝑁(0, 𝑄(𝑘)) 

(2.7) 

 

For n-Dimensional Cartesian coordinate system, state equations are similarly; 

 

 

𝑥𝑘+1 = [
𝐼𝑛𝑥𝑛 𝑇. 𝐼𝑛𝑥𝑛

0𝑛𝑥𝑛 𝐼𝑛𝑥𝑛
] . 𝑥𝑘 + [ 

1

2
. 𝑇2 . 𝐼𝑛𝑥𝑛

 𝑇 . 𝐼𝑛𝑥𝑛

] . 𝑤𝑘 

[ 
1

2
. 𝑇2 . 𝐼𝑛𝑥𝑛

 𝑇 . 𝐼𝑛𝑥𝑛

] . 𝑤𝑘~𝑁(0, 𝑄(𝑘)) 

(2.8) 

 

where 𝑄(𝑘) = [

1

4
𝑇4𝐼𝑛𝑥𝑛

1

2
𝑇3𝐼𝑛𝑥𝑛

1

2
𝑇3𝐼𝑛𝑥𝑛 𝑇2𝐼𝑛𝑥𝑛

] 𝜎𝑤
2(𝑘)  characterize the modeling uncertainty 

and 𝜎𝑤
2(𝑘) should be related to the acceleration magnitude.  
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We assume only the positions can be measured. The measurement model can be 

given by 

 

 𝑦𝑘 = [𝐼 0] 𝑥𝑘 + 𝑣(𝑘), 𝑣(𝑘)~𝑁(0, 𝑅(𝑘))   (2.9) 

 

where the measurement uncertainty is specified by 𝑅(𝑘). 

In this thesis, 2-D Cartesian coordinate system is used. 𝑝𝑥𝑘
 and 𝑝𝑦𝑘

are the 

positions,  𝑣𝑥𝑘
and 𝑣𝑦𝑘

are the velocities in x and y-axis, respectively. The state 

equations are given below. 

 

 

𝑥𝑘  =  [ 

𝑝𝑥𝑘

𝑝𝑦𝑘

𝑣𝑥𝑘

𝑣𝑦𝑘

] (2.10) 

 

 

𝑥𝑘+1 = [

1 0
0 1

𝑇 0
0 𝑇

0 0
0 0

1 0
0 1

] . 𝑥𝑘 + 

[
 
 
 
 
 
 

 

𝑇2

2⁄ 0

0 𝑇2

2⁄

𝑇 0
0 𝑇 ]

 
 
 
 
 
 

. 𝑤𝑘, 

𝑤𝑘~𝑁(0, 𝑄(𝑘)) 

(2.11) 

 

 𝑦𝑘 = [
1 0 0 0
0 1 0 0

]  𝑥𝑘 + 𝑣(𝑘), 

 𝑣(𝑘)~𝑁(0, 𝑅(𝑘)) 

(2.12) 
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where 𝑄(𝑘)  and 𝑅(𝑘) characterize the modeling uncertainty and measurement 

uncertainty. An accurate estimate of the state 𝑥𝑘 is needed to control the system. This 

is achieved by the Kalman filter. 

The constant velocity model is too simplistic for many applications. This is mainly 

due to the unknown nature of the motion of the target: targets usually maneuver in 

some time intervals that the constant velocity model is insufficient. To overcome the 

motion uncertainties, more than one model is used in most applications  [7], [10]. 

Interactive Multiple Model (IMM) is a famous modeling technique used for this 

purpose  [7]. 

2.2.2 The Kalman Filter 

Target tracking is a state estimation problem. A state space model is constructed in 

the previous section. 2-D motion state includes the target position and velocity in 

each axis at every time instant and observation model models the relationship with 

the current target state and the current observations. Over the past half century many 

techniques have been developed for target tracking. All of the techniques are related 

with the classical Kalman filtering, so here we explain the Kalman filter briefly. If 

the state model is linear and process and measurement noise are modeled as zero-

mean Gaussian white, the Kalman filter is the optimal estimator in the minimum 

mean square error (MMSE) sense [11].  

The Kalman filter is a recursive data processing algorithm that generates optimal 

estimate of the states given the set of measurements. For the linear Gaussian system 

the posterior density at every time step becomes Gaussian and so is characterized by 

its mean and covariance matrix. The state space equations that are used in Kalman 

filtering are as follows. 
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 𝑥𝑘 =  𝐴 . 𝑥𝑘−1 + 𝑤𝑘−1,  𝑤𝑘−1~𝑁(0, 𝑄)  (2.13) 

 

 𝑦𝑘 = 𝐻 𝑥𝑘 + 𝑣𝑘,   𝑣𝑘~𝑁(0, 𝑅)  (2.14) 

 

where  𝐴 and 𝐻 are known system and measurement matrices that define the linear 

function. Random variables 𝑤𝑘 and 𝑣𝑘  are mutually independent zero-mean white 

Gaussian with covariances 𝑄𝑘 and 𝑅𝑘 respectively. 

Kalman filtering can be divided into two parts as prediction and correction [12]. 

 

Prediction Step: 

 �̂�𝑘|𝑘−1 = 𝐴 �̂�𝑘−1|𝑘−1 (2.15) 

 𝑃𝑘|𝑘−1 = 𝐴 𝑃𝑘−1|𝑘−1𝐴
𝑇 + 𝑄𝑘−1  (2.16) 

Correction Step: 

 �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘 (𝑦𝑘 − 𝐻 �̂�𝑘|𝑘−1) (2.17) 

 𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘 𝑆𝑘 𝐾𝑘
𝑇 (2.18) 

 

where 

�̂�: Estimated state 

𝐴: State transition matrix 

𝑃: State variance matrix 

𝑄: Process variance matrix 

𝑅: Measurement variance matrix 
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𝑦𝑘: Measurement 

𝐻: Measurement matrix 

𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘  is the covariance of the innovation term (𝑦𝑘 − 𝐻 �̂�𝑘|𝑘−1) 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1
 is the Kalman gain. Note that, covariance update can be 

rewritten as;  

 

  𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃𝑘|𝑘−1 (2.19) 

 

where 𝐼 is the identity matrix of dimension 𝑛𝑥𝑛. 

After each prediction and correction step, the Kalman filter proceeds with previous a 

posteriori estimates used to predict the current prior estimates. The Kalman filter 

computes the mean and the covariance matrix recursively. The recursive process of 

Kalman filter is given below in Figure 2.7. 

 

 

Figure 2.7 The Recursive Progress of Kalman Filter 
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2.2.3 Adaptive Target Tracking 

Track update rates need not be the same for all targets. An extreme example is that a 

ship and a missile clearly shouldn’t be updated at the same rate due to the slow 

motion of the first one compared to the agility of the second. The update rate 

depends on the uncertainty of the state of the target compared to the beam width. If 

target uncertainty is low enough, radar resource can be used for other targets. By this 

way, more targets can be tracked in an acceptable uncertainty level. In Kalman 

filtering uncertainty parameter of the target (state covariance matrix) reaches the 

steady state value exponentially in case of regular updates. Therefore, after a few 

updates, uncertainty reaches its steady state value. However if the target is not 

updated, the error covariance matrix will continue to increase exponentially. When 

this value is under a certain threshold value, track does not need to be updated. An 

illustration is shown in Figure 2.8 below. 

 

 

Figure 2.8 An Example of an Adaptive Update Strategy 
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Adaptive update strategy is useful when limited radar resource is not enough to track 

desired number of targets. To find a reasonable update strategy for each target is the 

tracking scheduling problem. In Section 4.1 and Section 4.2, an optimal update 

strategy is constructed by using dynamic programming for one sensor and one target. 

2.3 Markov Chains 

The model used for solving the scheduling problem is a controlled Markov chain. So 

in this section we briefly explain what a Markov chain and a Markov Decision 

Process (MDP) are. 

Markov process is a stochastic process that the conditional distribution at any time 

given the value at the previous times is same as the case that only the last value is 

given. For the discrete time and finite state case Markov process is named as ‘finite 

state Markov chain’. When we have a control on the system, usually Markov chain is 

named as controlled Markov chain. In some systems it may not be possible to exactly 

know the state of the chain but only an observation is given related statistically with 

the state. The name used for the two cases is either Hidden Markov Model (HMM) if 

chain is not controlled or Partially Observable Markov Decision Process (POMDP) if 

control exists. The summary of this classification is given in Table 2.1.  

 

Table 2.1 The Markov Models 

 System state is fully 

observable 

System state is partially 

observable 

System is autonomous Markov Chain Hidden Markov Model 

System is controlled Markov Decision Process 
Partially Observable 

Markov Decision Process 

 

The formal definition of a Markov chain and some of its properties are given below. 
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2.3.1 Markov Property 

This subsection gives a more formal approach to Markov chains. 

Let  Ω = {𝑎1 , 𝑎2 … 𝑎𝑁} be the set of states 𝑥𝑡  of a system. A Markov chain is a 

triple  (Ω, P, 𝑃0)  where Ω  is the finite set of states, P  is the transition probability 

matrix and 𝑃0 = 𝑃𝑟(𝑥0)  is the initial probability vector. This triple satisfies the 

following axioms:  

 

1) The probability 𝑃𝑟 for each state of the system satisfies the Markov property 

i.e.,  

 

 𝑃𝑟( 𝑥𝑡|𝑥0, 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑡−1) =  𝑃𝑟(𝑥𝑡|𝑥𝑡−1) (2.20) 

 

2) A transition matrix of a Markov chain is called stochastic matrix which is a 

square matrix that has non-negative elements and each row sum is equal to 1. 

For a system that has the N × N state transition matrix is defined by:  

 

 𝑃 = (𝑝𝑖𝑗)     1 ≤ 𝑖, 𝑗 ≤ 𝑁 (2.21) 

  

where  𝑝𝑖𝑗 = 𝑃𝑟(𝑥𝑡+1 = 𝑎𝑗|𝑥𝑡 = 𝑎𝑖) ≥ 0 and ∑ 𝑝𝑖𝑗
𝑁
𝑗=1 = 1 𝑓𝑜𝑟 𝑖 = 1, 2…𝑁  

 

3) 𝑃0 = 𝑃𝑟(𝑥0) is the initial probability vector. 
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Let us consider n-step transition probabilities pij
n  in terms of P. The probability, 

starting in state i, of going to state j in two steps is the sum over k of the probability 

of going first to k and then to j. Using the Markov property in (2.20): 

 

 

𝑝𝑖𝑗
2 = ∑ 𝑝𝑖𝑘

𝑁

𝑘=1

𝑝𝑘𝑗 (2.22) 

 

It can be seen that this is just the 𝑖𝑗 term of the product of the matrix 𝑃 with itself, 

i.e., that pij
2 is the 𝑖, 𝑗 element of the matrix 𝑃2. Similarly, 

pij
n is the 𝑖𝑗 element of the nth power of the matrix 𝑃. Since 𝑃𝑚+𝑛 = 𝑃𝑚 𝑃𝑛 

 

 

pij
m+n = ∑ 𝑝𝑖𝑘

𝑚

𝑁

𝑘=1

𝑝𝑘𝑗
𝑛 (2.23) 

 

This is known as the Chapman–Kolmogorov equation.  

Let 𝑃𝑡 denote the vector of the probabilities of each state at time 𝑡: 

 

 

𝑃𝑡 = 𝑃𝑟(𝑥𝑡) = (

𝑃𝑟(𝑥𝑡 = 𝑎1)

𝑃𝑟(𝑥𝑡 = 𝑎2)
⋮

𝑃𝑟(𝑥𝑡 = 𝑎𝑁)

)

𝑇

 (2.24) 

Note that 𝑃𝑡  satisfies following relation: 

 𝑃𝑡 = 𝑃𝑡−1𝑃 = 𝑃0𝑃
𝑡 (2.25) 
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2.3.2 Regular (Ergodic) Markov Chain 

N-state Markov chain is regular (ergodic) if 𝑃𝑖𝑗
(𝑘) > 0 for all 𝑖, 𝑗, and all 𝑘 ≥ (𝑁 −

1)2 + 1 [13]. This means that it is possible to go from any state 𝑆𝑖 to any state 𝑆𝑗 in 𝑘 

steps with nonzero probability. A property of regular Markov chains is that the 

powers of 𝑃 converge, or lim𝑛→∞(𝑃)𝑛 =  Π where the rows of  Π are identical. It is 

known that for the regular Markov chains one eigenvalue of 𝑃 is equal to 1 and all 

others are less than 1 in magnitude. Let 𝜔 = [𝜔1 𝜔2 … 𝜔𝑛] be the unique normalized 

left eigenvector of 𝑃 corresponding to the eigenvalue one. For the regular chains 

𝜔𝑖 > 0 for all 𝑖 and ∑ 𝜔𝑖
𝑁
𝑖=1 = 1. That is 𝜔𝑃 = 𝜔 . Furthermore each row of  Π is 

equal to 𝜔  and 𝑃𝑛 → 𝑃0Π = 𝜔. That means at the steady state the probability of 

being in state 𝑆𝑖 is 𝜔𝑖, 1 ≤ 𝑖 ≤ 𝑁 independent of the initial condition 𝑃0. 

2.3.3 Absorbing Markov Chain 

A state 𝑆𝑖 is absorbing if 𝑝𝑖𝑖 = 1, so 𝑝𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. That means once you are in 

the state 𝑆𝑖, you can never leave it. Suppose there are 𝑘 absorbing states, 1 ≤ 𝑘 ≤ 𝑁, 

and then we may rename the states (if needed) so that the transition matrix 𝑃 can be 

written as 

 

 
𝑃 = (

𝐼 𝑂
𝑅 𝑄

) (2.26) 

 

where 𝐼 is the 𝑘 𝑥 𝑘 identity, 𝑂 is the 𝑘 𝑥 (𝑁 − 𝑘) zero matrix. 𝑅 is (𝑁 − 𝑘) 𝑥 𝑘 and 

𝑄 is (𝑁 − 𝑘) 𝑥 (𝑁 − 𝑘). The Markov chain is called an absorbing Markov chain if it 

has at least one absorbing state. The expected time of reaching an absorbing state 

from a non-absorbing state is finite. Note that for the absorbing chains we have 
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𝑃𝑛 = (

𝐼 𝑂
𝑆𝑅 𝑄𝑛) (2.27) 

 

where  𝑆 = 𝐼 + 𝑄 + ⋯+ 𝑄𝑛−1.  

Then, lim𝑛→∞(𝑃)𝑛 =  Π where  

 

 Π = (
𝐼 𝑂
𝑅∗ 𝑂

) (2.28) 

 

for 𝑅∗ = (𝐼 − 𝑄)−1𝑅. Notice the zero columns in  Π which imply that the probability 

that the process will eventually enter an absorbing state is one. The process 

eventually ends up with an absorbing state. 

2.3.4 Markov Chain with Rewards 

In some applications like the scheduling problem, a reward 𝑅𝑖 is associated to each 

state  𝑆𝑖 of the Markov chain. When Markov chain evolves, total reward is collected 

and it depends on the states that are visited by the chain. So the aggregated reward is 

related to the state transition matrix 𝑃. In this thesis, the reward of each state is 

related with the parameterized error covariance matrix. To increase the aggregated 

reward a parameter called the control variable would be necessary. Possibility of 

selecting the control parameter for each time instant makes the system a Markov 

Decision Process. In Section 2.3.5 and Section 2.5 we explain Markov Decision 

Processes and the corresponding optimal control methodology: dynamic 

programming.  
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2.3.5 Markov Decision Process 

MDP explained here is based on [13]. Markov decision process (MDP) is a 

mathematical model for decision making in situations where outcomes are partly 

under the control of a decision maker and partly random. 

A Markov decision process is a 5-tuple  (Ω, U, 𝑃.(.. ,  .. ), 𝑅.(.. ,  .. ), 𝛾) where; 

 Ω is a finite set of states, 

 U  is a finite set of actions, (alternatively, 𝑈𝑠  is the finite set of actions 

available from state s), 

 𝑃𝑈( 𝑆𝑖,  𝑆𝑗) = Pr (𝑆𝑡+1 = 𝑆𝑗|𝑆𝑡 = 𝑆𝑖, 𝑈𝑡 = 𝑈) is the probability that action 𝑈 

in state 𝑆𝑖 at time 𝑡 will lead to state 𝑆𝑗 at time 𝑡 + 1. 

 𝑅𝑈( 𝑆𝑖,  𝑆𝑗)   is the immediate reward (or expected immediate reward) 

received after transition to state 𝑆𝑗 from state 𝑆𝑖, 

 𝛾 ∈ [0, 1]  is the discount factor, which represents the difference in 

importance between future rewards and present rewards. 

The total reward that must be maximized is the expected total reward that can be 

written as  

 

𝐸 {∑𝛾𝑡𝑅𝑈(𝑡)( 𝑆𝑖(𝑡),  𝑆𝑗(𝑡))

𝑇

𝑡=1

} (2.29) 

With this objective function the optimization problem can be written as 

 

 

max
𝑈(𝑡)

𝐸 {∑𝛾𝑡𝑅𝑈(𝑡) ( 𝑆𝑖(𝑡),  𝑆𝑗(𝑡))

𝑇

𝑡=1

} (2.30) 
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The problem is: At each time instant 𝑘, the Markov process is in some state 𝑆𝑖 and 

the decision maker may choose any action 𝑈 that is available in state 𝑆𝑖. The process 

moves randomly into a new state at the next time instant 𝑘 + 1 according to the 

given controlled Markov chain and this movement between states has a 

corresponding reward  𝑅𝑈( 𝑆𝑖,  𝑆𝑗) . The chosen action affects the probability of 

moving to a new state   𝑆𝑗 . State transition matrix that depends on the decision 

action 𝑈, gives the probability of moving to a new state  𝑆𝑗. Therefore, the state   𝑆𝑗 in 

next time instant 𝑘 + 1 depends on the current state and the decision action 𝑈  that 

we made. On the other hand, it is conditionally independent of all previous states and 

actions given that  𝑆𝑖 and 𝑈. The difference between Markov chain and MDP is the 

addition of actions ( 𝑈𝑖′𝑠) and rewards (𝑅𝑈( 𝑆𝑖,  𝑆𝑗)). Conversely, if only one action 

exists for each state and all rewards are the same a Markov decision process reduces 

to a Markov chain. 

Decision maker uses a set of rules that is called as ‘policy’ in selecting alternative at 

each time. The aim of MDPs is to find a decision policy that can be represented as a 

matrix that relates the states to the decisions. We want to consider the expected 

aggregate reward over a long time interval such as n steps of the ‘Markov chain’ as a 

function of the policy used by the decision maker. There are two types of policies 

that can be used by the decision maker. If the fixed decision is made for all states 

independent of time, past decisions and past transitions, it is called as stationary 

policy. On the other hand, optimal policy is used to maximize the expected aggregate 

reward over a long time interval. Optimal policy changes depend on the selected 

length of the long time interval. A final reward should be determined appropriately. 

Optimal dynamic policy for that final reward is an optimized strategy and is a 

function of the length of the long time interval and the determined final reward. The 

objective is to generate an optimal policy that will maximize the random aggregated 

reward in a finite time horizon. This policy can be found by using the dynamic 

programming algorithm which is defined in Section 2.5. 
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2.4 Resource Management 

The aim of the resource management is to optimize the overall performance and 

effectively perform tasks of detecting new targets and track the existing ones in a 

tracking system by allocating the available resources. The main resource of the 

problem mentioned here is the time. The parameters that determine the effectiveness 

of the use of this resource are usually track loss, tracks that are not initiated, track 

uncertainty or quality and track priority. 

The state error covariance matrix gives the information about the current state quality 

of the tracking system. The part of the state error covariance matrix that corresponds 

to the target position is usually used in the scheduling problems. State error 

covariance matrix is obtained from the filter output which is a variant of Kalman 

filtering for most of the time [14], [15], [16].  For example in [16] multi sensor 

scheduling method by using IMM filtering is presented. 

Sensor manager tries to optimize the overall system performance usually by using 

the track quality derived from the covariance matrix and the related reward function. 

 

 

 

Figure 2.9 Operator as Feedback Controller 
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Figure 2.10 Sensor Manager as Feedback Controller 

 

The role of automatic sensor management, compared to human operator, is to control 

the future sensor behavior while the operator still makes higher order tactical 

decisions. Note that in a system without sensor management, the operator makes all 

decisions related to the sensor for the next measurement time. On the other hand in a 

system with sensor management, primary feedback is provided by the sensor 

manager, under the possible guiding input from the operator. Figure 2.9 and Figure 

2.10 illustrate the situations above. 

Major advantages of sensor management can be summarized as follows. 

Reduced pilot workload:  

 Past information is used to determine the future behavior of the sensor 

by the sensor management. 

 The operator is responsible to give only higher level decisions (tracks 

priority, degree of active radiation) 
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Sensor tasking based on finer detail: 

 Only limited amount of detail is displayed on screen, not the all 

information  

 Therefore, operator focuses the tactical decision more deeply. 

Faster adaptation:  

 Since sensor management system is automated, it has faster 

adaptation to changing environment. 

Other necessities of the sensor management: 

 Effective use of limited radar resources 

 Track maintenance 

 Sensor fusion and synergism 

 Support of specific goals 

2.4.1 Radar Resource Management 

This section gives general information about radar resource management which is 

more general then only scheduling. Radar resource management algorithms aim to 

enhance the overall radar system performance. The resource allocation problem of 

efficiently conducting several parallel tracking and searching tasks using the radar’s 

antenna is an important part of the scheduling problem that needs to be considered. 

Due to the stochastic nature of radar detection and target dynamics, scheduling of 

radar measurements is a stochastic control problem [39]. 

The selection of all parameters that define the operation of the sensor determines the 

allocation of the limited resources. Parameters can be general tactical decisions, field 

of view, scanning types, measurement scheduling, waveform selection and 

processing directives. Each of these parameters is specified by a number of degrees 

of freedom. For example, waveform selection entails frequency, pulse repetition 
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frequency (PRF), length of coherent integration and total time on target. The overall 

system performance depends on all these parameters. The overall system 

performance can be divided into two views to be managed. The parameter view of 

sensors and the mode view of sensors. The parameter view of managing sensors 

requires the sensor manager to directly control each parameter and the mode view is 

the upper level manager that simplifies the sensor management decision making. 

This is called as two-level two-timescale scheduling. Mode and parameter view of 

sensors refer as macro and micro management, respectively [17].  

Two-Level Two-Timescale Scheduling 

Scheduling of radar measurements naturally decomposes into two different scales. 

Macro level includes all high level tasking best summarized by the expression which 

task should the sensor perform. On the other hand micro level includes low level 

tasking such as how a particular Macro-task can be accomplished best.  A few macro 

and micro manager tasks are given in Table 2.2, as examples [18], [19].  

 

Table 2.2 Examples of Micro & Macro Level Tasks 

Micro Level Tasks 

(Parameter Design) 

Macro Level Tasks 

(Mode Selection) 
Pulse Reputation Frequency (PRF) Long Range Search 

Pulse Width Self-Protect Search 

Coherent Integration Fire Control Search 

Time on Target Alert Acquisition 

Detection Threshold Track Update 

Peak Transmitted Power Track Confirm 

Average Transmitted Power Track ID Update 

Target Revisit Time ECM Assessment 

Aperture Beamwidth ECCM Support 

 

As stated before in this study we are only interested in the scheduling problem so in 

the remaining part we will concentrate on this subject. An example of sensor 

management architecture for multi sensor system is shown in the Figure 2.11. [20] 
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This architecture has one central macro manager and several individually located 

micro managers. Macro level seems to be a decision maker. Micro manager performs 

detailed sensor behaviors and tasks that are determined and prioritized by macro 

manager. 

 

 

Figure 2.11 Partitioning Sensor Management into Macro/Micro Elements 

 

Macro manager has slow time scale nearly 1 sec and determines high level tasks such 

as update a track (Tx), search a sector (Sx) or update a missile track (Mx), etc. in 

each period. The Macro level tasks may have some specific characteristics [21]. The 

tasks 

 may have different priorities. 

 may have different execution time durations. 

 may suddenly become necessary or unnecessary. 

 may be of uncertain duration. 

 may not be interruptible. 
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On the other hand, micro manager operates at fast time scale nearly 0.1 sec. It 

decides the order of these tasks and constructs a schedule to perform all tasks in the 

best way. Macro level sends tasks unorderly such as S1-S2-T1-T6-T9-M1 to the 

micro manager and scheduling is performed at the micro level. An example of sensor 

manager output is illustrated in Figure 2.12.  

 

 

 

Figure 2.12 An Example of Macro and Micro Manager Outputs 

 

In the literature, two general approaches are used to perform micro scheduling 

namely, myopic or best first and local optimum or brick packing approaches. Since 

we deal with macro management part of the sensor management, micro-management 

scheduling techniques are out of scope of this thesis. Detailed information about 

micro scheduling techniques is described in [22], [23], [24], [25], [26].  

There are the two broad methodologies for macro scheduling: Heuristic Scheduling 

which is based on Rule-Based Design and Optimization-Based Scheduling. Brief 

information about these techniques is given in Section 2.4.2 and Section 2.4.3 

respectively. 
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2.4.2 Rule-Based Heuristic Scheduling  

Rule based heuristic scheduling uses descriptive (if-then) rules. In these systems, 

macro level management is performed by fuzzy logic and/or neural network 

approaches where the inputs are the decisions of the operator and the outputs are the 

priority orders of targets and searching sectors. Since heuristic schedulers are not 

based on optimizing a cost function, their performance is difficult to predict. 

Examples that are related to the rule-based heuristic scheduling are given in [27], 

[28], [29].  

In rule based scheduling the policy performance standard provides the control 

mechanism which determines when tasks are sent to the sensor. The rules can be 

implemented with the fuzzy logic technology.  Priority order between the objects is 

developed by fuzzy set memberships. The rules have the form: 

Maintain <value> (performance metric) for sensor management object. 

The adaption procedure determines the system adaptation in changing loads. Rules 

specify a fuzzy change to a set point or macro command parameter. The adaptation 

rule has the form: 

IF: (sensor loading) is <value> 

 IF: premise 

 THEN: adjust (set point or macro parameter) <amount> 

A simple example given in Figure 2.13 for Macro-level rule-based decisions, taken 

from [30], is shown below. The example first describes the performance standard 

then gives certain rules to satisfy this standard. 
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Figure 2.13 An Example of a Rule Based System Taken From [30] 

Performance Standard 

 P1: Maintain <good> Fire Control Track Quality on any track the 

operator has designated as <Operator Priority One> 

 P2: Maintain <good> Fire Control Track Quality on any track which 

Situation Assessment System assessed to be <Engageable> 

 P3: Maintain <good> Keep Track Quality on any track that has been 

detected 

 P4: Maintain <good> Pop-Up Performance in self-protect volume 

 P5: Maintain <excellent> Self-Protect on nose targets 

 P6: Maintain < excellent> Fire Control on nose targets 

 … 

Adaptation Procedure 

 IF radar loading is excessive: 

 RULE1 

IF IR Self-Protect average performance is <good> 

THEN raise IR Threshold <slightly>  

 RULE2 

IF IR Self-Protect average performance is <excellent> 

THEN raise IR Threshold <moderately> 

 RULE3 

IF Pop-up average performance is <good> or better 

THEN lower radar Self-Protect set point <slightly>  

 …  
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2.4.3 Optimization-Based Scheduling 

Optimization based scheduling assumes a (multi-stage) cost function to be 

minimized or a reward function to be maximized over a finite or infinite horizon. 

Stochastic optimization methods such as stochastic dynamic programming (SDP) can 

be used to determine the optimal radar resource management policy. Unfortunately, 

when a large number of states and targets are used, the complexity and the 

dimensionality of the DP problem will be huge. In the literature the use of these 

techniques are relatively new due to their high computational power requirement 

[31], [32] and [33]. 

In resource management, we desire to optimize a non-instantaneous reward criterion. 

A non-instantaneous reward means that future consequences over a finite or infinite 

time-horizon are considered when making a decision. Within the time horizon, new 

decisions will be made, and this is handled in the modeling by formulating a multi-

stage decision problem. 

Unfortunately, in all of the models used for this purpose the size of the state space 

explodes exponentially with the number of targets in the scenario, and an optimal 

approach is infeasible even for a small number of targets. Therefore, approximate 

solutions are needed. In [32] it is suggested to separate the problem into components, 

so that each component can be optimized locally (Separation into Subtasks). 

In this thesis, we will present hierarchical resource management algorithm for ESA 

radars. The resource management problem will be formulated as a constrained 

Markov decision process that is detailed in Section 3.2 and macro level of a two-

level (two-timescale) resource management algorithm is presented in Section 3.5. 
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2.5 Dynamic Programming 

Dynamic programming is an efficient method to solve recursive optimization 

problems. For the MDP described in Section 2.3.5, backward dynamic programming 

is applied. The basic idea is to start from the last time of the problem horizon [1 𝑇] 

and to find the value of the objective function assuming that the state is  ‘𝑖’ at this 

time for each  ‘𝑖’ . At time 𝑇 − 1 it is again assumed that the state is  ‘𝑖’, and the 

incremental reward and the expected value of the reward of going from time 𝑇 − 1 to 

time 𝑇 is maximized with respect to the input. Detailed explanation of the algorithm 

is given below [34], [13]. 

Let 𝑛 be the time horizon that we try to maximize the expected aggregate reward. 

Time interval starts from “𝑚” to “𝑚 + 𝑛 − 1”, [𝑚,𝑚 + 𝑛 − 1], with a final reward 

at time 𝑚 + 𝑛. Suppose 𝑛 = 1, decision k is made with instantaneous reward 𝑟𝑖
(𝑘), 

given 𝑋𝑚 = 𝑖. The next state 𝑋𝑚+1 = 𝑗 with probability 𝑃𝑖𝑗
(𝑘) and the final reward is 

𝑢𝑗 . The expected aggregate reward over times “𝑚” and “𝑚 + 1”, maximized over the 

decision 𝑘, is then 

 

 

𝑣𝑖
∗(1, 𝑢) = max

𝑘
{𝑟𝑖

(𝑘) + ∑𝑃𝑖𝑗
(𝑘)𝑢𝑗

𝑗

} (2.31) 

 

Note that, only one decision is made at time 𝑚, but there are 2 rewards. One is at 

time 𝑚 and the other is the final reward at 𝑚 + 1. 

The notation 𝑣𝑖
∗(𝑛, 𝑢) is used to represent the maximum expected aggregate reward 

from time 𝑚 to 𝑚 + 𝑛 starting at 𝑋𝑚 = 𝑖.  
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With these notation (2.31) become   

 

 𝑣∗(1, 𝑢) = max
𝑘

{𝑟𝑘 + [𝑃𝑘]𝑢} (2.32) 

 

where 𝑘 = (𝑘1, 𝑘2, … , 𝑘𝑀)𝑇, 𝑟𝑘 = (𝑟1
𝑘1 , 𝑟2

𝑘2 , … , 𝑟𝑀
𝑘𝑀)𝑇, 

Now, consider 𝑣𝑖
∗(2, 𝑢) which is the maximum expected aggregate reward starting 

from  𝑋𝑚 = 𝑖  with decisions made at times 𝑚  and 𝑚 + 1  and a final reward at 

time 𝑚 + 2. An optimal decision at time 𝑚 +  1 can be selected based only on the 

state 𝑗 at time𝑚 +  1 . The decision at time 𝑚 + 1  (given𝑋𝑚+1 = 𝑗 ) is optimal 

independent of the decision at time 𝑚. 

Note that using optimized decision at time m + 1, given  𝑋𝑚 = 𝑖 and decision 𝑘 is 

made at time  𝑚 , then the sum of expected rewards at times 𝑚 +  1 and 𝑚 +  2 

is ∑ 𝑃𝑖𝑗
(𝑘)𝑣𝑗

∗(1, 𝑢)𝑗 . Adding the expected reward at time 𝑚 and maximizing over 

decisions at time 𝑚, 

 

 

𝑣𝑖
∗(2, 𝑢) = max

𝑘
{𝑟𝑖

(𝑘) + ∑𝑃𝑖𝑗
(𝑘)𝑣𝑗

∗(1, 𝑢)

𝑗

} (2.33) 

 

This same argument can be used for all larger numbers of trials. To find the 

maximum expected aggregate reward from time 𝑚  to  𝑚 + 𝑛 , we first find the 

maximum expected aggregate reward from 𝑚 +  1  to 𝑚 +  𝑛 , conditional 

on 𝑋𝑚+1 = 𝑗 for each state 𝑗. This is the same as the maximum expected aggregate 

reward from time 𝑚  to  𝑚 +  𝑛 −  1 , which is  𝑣𝑗
∗(𝑛 − 1, 𝑢) . This gives us the 

general expression for 𝑛 ≥  2: 
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𝑣𝑖
∗(𝑛, 𝑢) = max

𝑘
{𝑟𝑖

(𝑘) + ∑𝑃𝑖𝑗
(𝑘)𝑣𝑗

∗(𝑛 − 1, 𝑢)

𝑗

} (2.34) 

 

We can also write this in vector form as; 

 

 𝑣∗(𝑛, 𝑢) = max
𝑘

{𝑟𝑘 + [𝑃𝑘] 𝑣∗(𝑛, 𝑢)} (2.35) 

 

where k is a set of decisions 𝑘 = (𝑘1, 𝑘2, … , 𝑘𝑀)𝑇  each 𝑘𝑖  is the decision for the 

state 𝑖. [𝑃𝑘] is the state transition matrix whose 𝑖𝑗𝑡ℎ element is 𝑃𝑖𝑗
(𝑘𝑖) and 𝑟𝑘 denotes 

a vector whose 𝑖𝑡ℎ element is 𝑟𝑖
(𝑘𝑖). The maximization over 𝑘 in (2.35) is really M 

separate and independent maximizations; one for each state, i.e., (2.35) is simply a 

vector form of (2.34). 

The dynamic programming algorithm performs the calculation of (2.34) or (2.35) 

iteratively/recursively for n = 1, 2, 3, … . This algorithm is developed by Bellman 

[35]. Note that the algorithm is independent of the starting time 𝑚; the parameter 𝑛 is 

the number of decisions over the long time horizon that the expected aggregate gain 

is optimized. This algorithm provides the optimal dynamic policy for a given final 

reward vector 𝑢 and any given time horizon 𝑛.  
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      CHAPTER 3 

 

 

3 IMPLEMENTATION 

 

 

 

3.1 Problem Statement 

Radar sensor scheduling for multi target tracking for ESA radar is realized by a 

stochastic dynamic programming based resource allocation algorithm. Sensor 

performance is measured by summing target wise utilities over a long time horizon. 

Our aim is to solve the macro scheduling problem by using optimization based 

methods. The problem is simplified and reduced to efficient tracking of isolated 

tracks that are not in the same beam. Searching is not included. The reduced problem 

is: for each time period decide on which tracks should be measured. Although the 

aim is to solve the simplified problem it is still too complex to solve by using 

dynamic programming. So we made several simplifications.  

 

 Target is assumed to be tracked by a Kalman filter using constant velocity 

model. 

 Target’s probabilities of detections are constant on the given time horizon and 

known. 

 Targets are already tracked at the beginning of the interval. 
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 There is no search function. We deal only with the tracking task. 

 There is no track initiation process. If a target drops, it will never be re-

initiated. 

 There is no false alarm. 

 The multidimensional kinematic state of each target is quantized to a single 

Markov chain. 

 

Under these conditions the scheduling problem is formulated as a Markov decision 

process. Since the size of the Markov chain increases exponentially with the number 

of targets, Lagrange relaxation is applied to dynamic programming to simplify the 

state space dimension. The interval of the slow time scale is in the order of seconds. 

Macro manager decides which targets will be tracked at each macro time interval 

over the time horizon under certain constraints. The sensor performance is 

characterized by a target-wise utility function which is called ‘reward function’ of 

the target. The macro manager decides to allocate more radar resources to where the 

demand is high such as the high priority targets, adaptively.  

We present in Section 3.1 the general scenario, target dynamic model that is used and 

the objective function that determines the performance. These lead to the 

construction of the related Markov chains given in Section 3.1.4. Resource allocation 

formulation on the slow timescale as a stochastic optimization problem is given in 

Section 3.2 and the resource constraints are defined in Section 3.3. By using 

Lagrange relaxation, overall problem can be divided into subtasks. The way we 

perform sub task separation is given in Section 3.4 and corresponding algorithm that 

is used for implementation is given in Section 3.5.  
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3.1.1 Target and Tracking Performance Model 

In this thesis, we optimize a Markov decision process by using dynamic 

programming to obtain the optimal policy that maximizes the cumulative expected 

reward. We assume that there are 𝑛 targets that are moving with constant velocity. 

They are indexed by 𝑖 ∈ {1, 2, … , 𝑛}. An illustration is shown in Figure 3.1. 

 

 

 

Figure 3.1 Target Motions and Priorities 

 

 

 

 



 

 

44 

The target 2-D kinematic states are defined as: 

 

 𝜉𝑖(𝑡) = [𝑟𝑥,𝑖(𝑡), 𝑟𝑦,𝑖(𝑡), 𝑣𝑥,𝑖(𝑡), 𝑣𝑦,𝑖(𝑡)]
𝑇 (3.1) 

 

where  𝑟𝑥,𝑖(𝑡), 𝑟𝑦,𝑖(𝑡) are the position parameters of the target and 𝑣𝑥,𝑖(𝑡), 𝑣𝑦,𝑖(𝑡) are 

the velocity parameters. The linear state space model is defined as: 

 

 𝜉𝑖(𝑡 + 𝑇) = 𝐹(𝑇)𝜉𝑖(𝑡) + 𝑤𝑖(𝑇) (3.2) 

 

where 𝐹(𝑇) is the state transition matrix of the target state model and 𝑤𝑖(𝑇) is the 

white Gaussian process noise 𝑤𝑖(𝑇)~𝑁(0, 𝑄𝑖(𝑇)). 

Measurement model is expressed as: 

 

 𝑦𝑖(𝑡) = 𝐶𝜉𝑖(𝑡) + 𝑣𝑖(𝑡) (3.3) 

 

where 𝐶 is the observation matrix of the target state model and 𝑣𝑖(𝑡) is the white 

Gaussian measurement noise 𝑣𝑖(𝑡)~𝑁(0, 𝑅𝑖). 

For simplicity, Kalman filter is used to evaluate state estimate 𝜉𝑖,𝑡|𝑠(𝑡) of the track of 

the target 𝑖 at time 𝑡 given the measurement at time 𝑠. The conditional covariance is 

 

 𝑃𝑖,𝑡|𝑠 = 𝐸{𝜉𝑖,𝑡|𝑠 𝜉𝑖,𝑡|𝑠
𝑇
}  (3.4) 
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 where 𝜉𝑖,𝑡|𝑠 = 𝜉𝑖(𝑡) − 𝜉𝑖,𝑡|𝑠(𝑡) . 

In general, 𝑃𝑖,𝑡|𝑠 is the most important input of the resource allocation process. For 

high priority targets, conditional covariance matrix is tried to be minimized. There is 

a direct dependence between covariance matrix and how often measurements are 

taken from the corresponding target. 𝑄𝑎𝑐𝑐,𝑖(𝑃𝑖,𝑡|𝑠) is derived from covariance matrix 

and it is a measure of the accuracy of the corresponding target.  

A discrete parameterization of 𝑃𝑖,𝑡|𝑠 that represents the current state accuracy is given 

by the Kalman filter when the target is tracked.  

3.1.2 Discrete Parameterization of State Rewards 

The discrete parameterization of the Kalman filter covariance is presented in this 

section. This is needed to specify the state quality at a finite number of discrete 

values. Later, reward of a track is related to the discrete parameterization of 

covariance matrix. 

Note that Kalman filter predicted and corrected covariance equations (2.16) and 

(2.18) are given in Section 2.2.2. When no beam is transmitted to the target 

according to the policy used, Kalman filter prediction step is applied. On the contrary 

if a measurement is taken, the both prediction and correction steps are applied. Two 

Markov chains are constructed for update / do not update decisions. The constructed 

Markov chains give the quantized accuracy 𝑄𝑎𝑐𝑐,𝑖(𝑃𝑖,𝑡|𝑠) of the next state. To be 

more precise let 𝑘𝑛 be the discrete time instance when the observation 𝑛 occurs. Let 

𝑇𝑛 = 𝑘𝑛 − 𝑘𝑛−1 be the time between two update decisions. Actually, 𝑇𝑛 refers to the 

number of prediction steps. The Kalman filter covariance prediction and correction 

steps are progressed according to Riccati equation: 
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Prediction Step: 

 

 𝑃𝑖,𝑘𝑛|𝑘𝑛−1
= 𝐹(𝑇𝑛)𝑃𝑖,𝑘𝑛−1|𝑘𝑛−1

𝐹(𝑇𝑛)𝑇 + 𝑄𝑖(𝑇𝑛) (3.5) 

 

Correction Step:    

 

 𝑃𝑖,𝑘𝑛|𝑘𝑛
= (𝐼 − 𝐾𝑖,𝑛𝐻)𝑃𝑖,𝑘𝑛|𝑘𝑛−1

(𝐼 − 𝐾𝑖,𝑛𝐻)𝑇

+ 𝐾𝑖,𝑛𝑅𝑖,𝑛𝐾𝑖,𝑛
𝑇 

(3.6) 

 

where 𝑄𝑖(𝑇𝑛) is the covariance of the process noise in the constant velocity motion 

model, 𝑅𝑖,𝑛 is the covariance of the measurement noise, 𝐾𝑖,𝑛 is the Kalman gain and 

𝐻 is the observation matrix. 

The trace of covariance matrix is accepted as the state quality. The Markov chain 

states correspond to quantized state quality  𝑄𝑎𝑐𝑐,𝑖(𝑃𝑖,𝑡|𝑠) . In our applications the 

number of states is 26 meaning that quality is quantized into 25 values and the last 

state denotes the track drop. An algorithm is generated for the quantization of the 

quality. The algorithm is based on a fixed topology of the Markov chain. A simple 

example of a 10-state topology is given in Figure 3.2. The algorithm given in Table 

3.1 determines the values of the covariance matrices for each state or equivalently 

quality of it according to the fixed topology. The approach of the algorithm is to find 

possible covariance matrices for different update/do not update events and then 

quantize the corresponding quality. Note that although the decision is for the Markov 

chain corresponding to the input ‘update’, due to miss detections, the update event 

may not occur.  The examples in the pseudo code are for the 10-state example given 

in Figure 3.2.    
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 Figure 3.2 is constructed so that the quality decreases both as states moves to right 

and also down. The best state is State 1 and the smallest possible value of its 

covariance matrix is obtained when an update is applied at each time instant. The 

steady state covariance matrix gives an upper bound for the quality of this state. A 

lower bound is found by considering returns to this state from a state which has 

smallest quality. For the Markov chain of Figure 3.2, for initial state 1, this path is 4-

7-3-6-9-3-6-9-3-1 and is obtained as a result of updating event of 0010010011 where 

1 corresponds to a measurement update while 0 is only time update. The upper and 

lower bounds obtained in this way are used as bounds of quantization levels. 

 

 

 

Figure 3.2 A Simple Example of a 10-State Topology 
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A pseudo code for discrete parameterization of state rewards is given in Table 3.1. 

Table 3.1 A Pseudo Code for Discrete Parameterization of State Rewards 

Apply the following procedure to each state 𝑖. 

Assume an initial covariance matrix for state 𝑖. 

1) Initialize the Kalman filter 

2) Update covariance matrix by processing Kalman filter a few iterations to 

reach steady state value of covariance matrix. 

3) Find the shortest path that is determined by given update/do not update 

decision to reach the same state. (Best case) 

As an example, 

[1 1 1 1 1 1 1 1 1 1] is the best case decision sequence for state 1. 

4) Find the longest path that is determined by given update/do not update 

decision to reach the same state. (Worst case) 

As an example,  

[0 0 1 0 0 1 0 0 1 1] is the worst case decision sequence for state 1. 

5) Progress the Kalman filter according to decision sequence 

a. ‘0’ means do not update decision and apply only prediction step 

b. ‘1’ means update decision and apply both prediction and correction 

steps 

6) Calculate the trace of Kalman filter covariance matrix for best and worst 

case. 

7) Best case and worst case are the bounds for quantization of state 

uncertainty.  

8) Average value of bounds is assumed for the discretized state uncertainty 

for the corresponding state.  

9) Repeat this procedure for all states. 

10)  After uncertainties of all states are calculated, normalize them inversely to 

obtain state rewards. It means smaller uncertainty gets higher reward. 

0 ≤ 𝑄𝑎𝑐𝑐,𝑖(𝑃𝑖,𝑡|𝑠) ≤ 1 
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3.1.3 Tracking Performance Characterization 

A finite valued discrete time state 𝑥𝑖,𝑘  is defined for each target ‘𝑖’ . The tracking 

performance is determined by these states. ‘𝑘’ is the slow timescale and the macro 

manager makes decisions on this slow timescale. At each time instant 𝑘, the state 𝑥𝑖,𝑘 

is an aggregate of state variables that are: 

 𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑡) ∈ {0, 1} refers as if a target is tracked or not in the time interval 

𝑘. 

 Current accuracy 𝑄𝑎𝑐𝑐,𝑖(𝑃𝑖,𝑘|𝑘𝑠
). 

These variables are needed to express the instantaneous utility 𝑈𝑖(𝑥𝑖,𝑘) is defined as: 

 

 𝑈𝑖(𝑥𝑖,𝑘) = 𝑈𝑛𝑜𝑚,𝑖𝑄𝑎𝑐𝑐,𝑖(𝑃𝑖,𝑘|𝑘𝑠
)𝑥𝑡𝑟𝑎𝑐𝑘𝑒𝑑,𝑖,𝑘(𝑡) (3.7) 

 

In this expression 𝑈𝑛𝑜𝑚,𝑖 is the nominal utility function of the 𝑖𝑡ℎ track, which must 

be determined by an external authority such as the operator. That value indicates the 

priority level of each target 𝑖. It is assumed that 𝑈𝑛𝑜𝑚,𝑖 is constant during the long 

time horizon. 

The overall instantaneous utility of the radar system at time 𝑘  is the sum of the 

individually defined utility functions that is specified for each target. It is defined as: 

 

 

𝑈(𝑥𝑘) = ∑𝑈𝑖(𝑥𝑖,𝑘)

𝑀

𝑖=1

 (3.8) 

 

 𝑥𝑘 = {𝑥𝑖,𝑘}𝑖=1

𝑀
 (3.9) 
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where 𝑖 is the index of the target, 𝑘 is the current time instance.  

3.1.4 Markov Model Used in the Thesis 

In this section, Markov models that are used in this thesis on the slow timescale are 

discussed. A controlled Markov chain is constructed for each target and state 

transitions are determined by the control action: “update/do not update track”. All 

targets have the same controlled Markov chain structure. They differ by state 

transition probabilities that depend on detection probability of each target. We 

assume that detection probabilities depend on range of the target but do not change in 

the optimization interval. States of the Markov chain refer tracking quality that is 

determined by kinematic equations of target and derived from target error covariance 

matrix by quantizing the trace of the error covariance matrix given by the tracker. 

Consider  𝑝𝑥𝑖,𝑘
 as the state probability vector of 𝑥𝑖,𝑘. We assume that transitions in 

Markov chain depend on the current kinematic state and the measurement decision 

(update/do not update). Then, the target-wise dynamic model has the following form, 

 

 𝑝𝑥𝑖,𝑘+1
= 𝑃𝑡𝑟,𝑖(𝑑𝑘, 𝜉𝑖(𝑡))𝑝𝑥𝑖,𝑘

  (3.10) 

 

where 𝑃𝑡𝑟,𝑖 is the transition matrix of the Markov chain. 

In our constructed Markov model, each target is represented by a twenty six state 

Markov chain. Markov chain states are numbered by considering their quantized 

track quality. First state (1) is the best state that has the least trace of the error 

covariance matrix. Last state (25) corresponds to the highest uncertainty and state 26 

is the drop state that the tracker lost the target. The uncertainty depends on the state 

that the last update has occurred and the duration between two consecutive update 

instances.  If a target is updated, the Markov chain jumps to one of the leftmost states 
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depending on the time 𝑇𝑛 = 𝑘𝑛 − 𝑘𝑛−1  that is the time between the two update 

decisions. This means, if two consecutive update decisions are made, Markov chain 

jumps first state because of the time between two update decisions is 1. After an 

update decision, if two do not update decisions are made and then an update decision 

is made, Markov chain jumps two state to the right and jumps to the second state 

because of the time between two update decisions is 2. 

The constructed update and do not update decisions dependent Markov chains are 

shown in Figure 3.3 and Figure 3.4, respectively. 
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Figure 3.3 Target-Wise Markov Chain for Update Decision 
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Figure 3.4 Target-Wise Markov Chain for Do Not Update Decision 
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After we construct the Markov chains, the maximum numbers of looks that are used 

for improved detection probability are designed. This is needed because of the 

observation that if no such arrangements are done the target drops are excessive. 

Different numbers of update attempts are determined by the rule given below. 

Main idea: Use less number of looks for better states. Each ‘update’ input triggers a 

possible sequence of look oriented to the target. For the case of unavailability of the 

observation the procedure is repeated. The number of possible repetitions in this 

application is given below for the 26 state Markov chain given in Figure 3.3. 

 At most 1 look for states from 1 to 5 (the best quality states) 

 At most 2 looks for states from 6 to 10 

 At most 3 looks for states from 11 to 15 

 At most 4 looks for states from 16 to 20 

 At most 5 looks for states from 21 to 25 (the worst quality states) 

State transition probabilities are different because of the number of looks used for 

repeated update attempts are different. According to the probability of detection a 

target may or may not be observed in a single look. At most ‘n’ (n is selected by the 

rule given above) looks are reserved for this purpose. The probability of detection of 

the target in: 

 1 look is: 1 − (1 − 𝑃𝑑)  

 2 looks is: 1 − (1 − 𝑃𝑑)2 

 3 looks is: 1 − (1 − 𝑃𝑑)3 

 4 looks is: 1 − (1 − 𝑃𝑑)4 

 5 looks is: 1 − (1 − 𝑃𝑑)5 
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We assume that 𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘 is a fixed parameter refers as the time spent for one look. 

As a result the expected time spent to detect a target is calculated by the rule below; 

 For states from 1 to 5: 

o 𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘(1. 𝑃𝑑 + (1 − 𝑃𝑑)) if at most one look is allowed. 

 For states from 6 to 10: 

o 𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘(1. 𝑃𝑑 + 2𝑃𝑑(1 − 𝑃𝑑) + 2(1 − 𝑃𝑑)2) if 2 looks are used. 

 For states from 11 to 15: 

o 𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘(1. 𝑃𝑑 + 2𝑃𝑑(1 − 𝑃𝑑) + 3𝑃𝑑(1 − 𝑃𝑑)2) + 3(1 − 𝑃𝑑)3  if 3 

looks are used. 

 For states from 16 to 20: 

o 𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘(1. 𝑃𝑑 + 2𝑃𝑑(1 − 𝑃𝑑) + 3𝑃𝑑(1 − 𝑃𝑑)2 + 4𝑃𝑑(1 − 𝑃𝑑)3 +

4(1 − 𝑃𝑑)4) if 4 looks are used.  

 For states from 21 to 25: 

o 𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘(1. 𝑃𝑑 + 2𝑃𝑑(1 − 𝑃𝑑) + 3𝑃𝑑(1 − 𝑃𝑑)2) + 4𝑃𝑑(1 − 𝑃𝑑)3 +

5𝑃𝑑(1 − 𝑃𝑑)4 + 5(1 − 𝑃𝑑)5 if 5 looks are used. 

 

As an example for 𝑃𝑑 = 0.8 the average time spent on the target is 1.24𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘, for 

states from 11 to 15 and the probability of detection is 0.992 if 3 looks used case. 
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3.2 Resource Allocation Formulation 

The tracking performance model and motion model are described in the previous 

sections. The objective function and the constraints of the resource allocation 

problem are explained here. 

The objective function that is used in this thesis, similar to [32], is a utility measure 

over a finite or infinite time horizon as desired. So we formulate the problem as a 

long horizon planning problem. Long time planning, compared to a myopic policy, is 

more advantageous. Long time planning not only includes present utility measure but 

also deals with expected future utilities. To achieve that purpose, a non-instantaneous 

track utility is defined by integrating the instantaneous utility over a time interval. 

 

 
𝑈𝑖(𝑡0, 𝑡1) = ∫ 𝑈𝑛𝑜𝑚,𝑖𝑄𝑎𝑐𝑐,𝑖(𝑥𝑖(𝑡))𝑥𝑡𝑟𝑎𝑐𝑘𝑒𝑑,𝑖,𝑘(𝑡)

𝑡1

𝑡0

𝑑𝑡 (3.11) 

 

The current time instant corresponds to 𝑡0  and the time horizon of the decision-

making is [𝑡0, 𝑡1]. In stochastic dynamic programming based problems, the expected 

utility refers to an objective function that should be maximized.  

 

 𝐸{𝑈𝑖(𝑡0, 𝑡1)|𝑥𝑖(𝑡0)} (3.12) 

 

Now, our aim is to maximize the objective function by making decisions over the 

long time horizon. So the objective function is: 

 

𝐽0(𝑥0) = 𝐸 { ∑ 𝑈(𝑥𝑘) | 𝑥0 

𝑁−1

𝑘=0

} (3.13) 
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Here, 𝑁  denotes the decision interval. The expectation includes the future radar 

measurements. The DP solution reduces the optimization problem to a nested set of 

smaller problems given in the recursive form. At time 𝑡0 the optimization problem 

can be written as: 

 

 max
 𝑑0

𝑈(𝑥0) +𝐸 𝑥1| 𝑥0, 𝑑0
{ 𝐽1

∗(𝑥1)} (3.14) 

 

where  𝐽1
∗(𝑥1) represents the future utility as a consequence of decisions 𝑑0 made at 

𝑘 = 0, and given a sequence of optimal future decision, i.e., 

 

 𝐽𝑘
∗(𝑥𝑘) = max

 𝑑𝑘

𝑈(𝑥𝑘) +𝐸 𝑥𝑘+1| 𝑥𝑘, 𝑑𝑘
{ 𝐽𝑘+1

∗(𝑥𝑘+1)} (3.15) 

 

The decisions are assumed to fulfill the resource constraints on available 

measurement time. Note that in the above equation, the modeling of the objective 

function has a recursive form of nested maximizations and expectations. 

3.3 Resource Constraints 

The randomness of the actual execution time of tracking a target task constraint the 

radar resources to allocate them in an efficient way. It is assumed that 𝑇𝑜𝑛𝑒𝑙𝑜𝑜𝑘 is 

defined as the time spent for one look. To track a target, the number of looks used is 

also random that depends on each targets current state in Markov chain as described 

in Section 3.1.4. All states are parameterized due to expected consuming resources 

according to the quality of each state.  States in Markov chain are grouped into 

corresponding columns and each column has a different expected number of looks to 

track a target. Looks that are planned to track a target are expectedly allocated in a 
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rule based fashion described in Section 3.1.4. According to this rule, expected loads 

of each state can be calculated. This load is called as state dependent load and it is 

used in dynamic programming. After the optimal strategy is obtained, we check the 

time dependent load. The sum of time dependent load should be equal or less than 1 

which describes the percentage load of each slow time interval. 

 

 𝑙𝑘(𝑥𝑘, 𝑑𝑘) = 𝐸{𝑙𝑘(𝑥𝑘, 𝑑𝑘)|𝑥𝑘, 𝑑𝑘} ≤ 1 (3.16) 

3.4 Separation into Subtasks 

The problem and the corresponding stochastic dynamic programming solution given 

in (3.17) is a Markov decision process with a very large number of states even for 

few targets. Unfortunately, stochastic dynamic programming becomes harder while 

the number of states in state spaces is increasing as it is shown in Section 4.3 and 

Section 4.4. To solve the problem the Lagrange relaxation method, given in [32] is 

applied to the problem. The formulation here is taken from [32]. This formulation 

uses some approximations on the formulation. Approximate relaxation of resource 

constraints are investigated by Lagrange multipliers. Lagrange relaxation provides us 

to separate the problem into components that is described in this section.   

Instead of optimizing the global complex stochastic control problem, the problem is 

separated into components and optimized locally. Then optimized components are 

collected together by the resource constraints given in (3.16). In this thesis, each 

tracking task is recognized as a sub problem. The overall system performance at time 

𝑘 is the sum of each subtask’s utility. 

 

 𝑈(𝑥𝑘) = ∑ 𝑈𝑠(𝑥𝑠,𝑘)
𝑠

 (3.17) 
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The resource constraints (total load) in the interval 𝑘 is also described by the sum of 

the expected load of all subtasks,  

 

 𝑙𝑘(𝑥𝑘, 𝑑𝑘) = ∑ 𝑙𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘)
𝑠

= ∑ 𝐸{𝑙𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘)|𝑥𝑠,𝑘, 𝑑𝑠,𝑘}
𝑠

≤ 1 

(3.18) 

 

By Lagrange relaxation, the constraints are added to the objective function in the 

optimization problem. 

 

 𝐿𝑘(𝑥𝑘, 𝑑𝑘, 𝜆𝑘)

= 𝑈(𝑥𝑘) + 𝜆𝑘 (1 − 𝑙𝑘(𝑥𝑘 , 𝑑𝑘))

+ 𝐸𝑥𝑘+1|𝑥𝑘,𝑑𝑘
{max
𝑑𝑘+1

𝐿𝑘+1(𝑥𝑘+1, 𝑑𝑘+1, 𝜆
∗
𝑘+1(𝑥𝑘+1))} 

(3.19) 

 

where 𝜆𝑘 corresponds the Lagrange multiplier at time 𝑘 and 𝜆𝑘
∗(𝑥𝑘) is the Lagrange 

multiplier that the resource constraint is fulfilled with equality at optimum decisions 

at time 𝑘. The optimal Lagrangian at time 𝑘, 𝐿𝑘(𝑥𝑘, 𝑑𝑘
∗(𝑥𝑘), 𝜆𝑘

∗(𝑥𝑘)) is equal to the 

optimal value-to-go function 𝐽𝑘
∗(𝑥𝑘). At the end of long time interval 𝑁, Lagrangian 

is equal to utility. 

 

 𝐿𝑁(𝑥𝑁) = 𝑈(𝑥𝑁) (3.20) 
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At time 𝑘  the Lagrangian expression can be written as 

 

 𝐿𝑘(𝑥𝑘, 𝑑𝑘, 𝜆𝑘)

= ∑ 𝑈𝑠(𝑥𝑠,𝑘)
𝑠

+ 𝜆𝑘 (1 − ∑ 𝑙𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘)
𝑠

)

+ 𝐸𝑥𝑘+1|𝑥𝑘,𝑑𝑘
{max

𝑑𝑘+1

∑ 𝑈𝑠(𝑥𝑠,𝑘+1)
𝑠

+ 𝜆𝑘+1
∗(𝑥𝑘+1) (1 − ∑ 𝑙𝑠,𝑘+1(𝑥𝑠,𝑘+1, 𝑑𝑠,𝑘+1)

𝑠
)

+𝐸𝑥𝑘+2|𝑥𝑘+1,𝑑𝑘+1
{max
𝑑𝑘+2

𝐿𝑘+2(𝑥𝑘+2, 𝑑𝑘+2, 𝜆
∗
𝑘+2(𝑥𝑘+2))}} 

(3.21) 

 

Rearranging the terms gives 

 

 𝐿𝑘(𝑥𝑘, 𝑑𝑘 , 𝜆𝑘)

= ∑ 𝑈𝑠(𝑥𝑠,𝑘)
𝑠

− 𝜆𝑘𝑙𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘) + 𝜆𝑘

+ 𝐸𝑥𝑘+1|𝑥𝑘,𝑑𝑘
{max
𝑑𝑘+1

∑ 𝑈𝑠(𝑥𝑠,𝑘+1)
𝑠

− 𝜆𝑘+1
∗(𝑥𝑘+1)𝑙𝑠,𝑘+1(𝑥𝑠,𝑘+1, 𝑑𝑠,𝑘+1)

+𝐸𝑥𝑘+2|𝑥𝑘+1,𝑑𝑘+1
{max
𝑑𝑘+2

𝐿𝑘+2(𝑥𝑘+2, 𝑑𝑘+2, 𝜆
∗
𝑘+2(𝑥𝑘+2))}

+ 𝜆𝑘+1
∗(𝑥𝑘+1)} 

(3.22) 

 

A separation of (3.22) in terms of subtasks requires that the inner sums to be moved 

to the outside of both the maximizations and the expectations. In these expressions, 

𝜆𝑘
∗(𝑥𝑘) is a function of the global state, and this prevents the separation. However, it 

is assumed that the variation of  𝜆𝑘
∗(𝑥𝑘)  is moderate compared with the 
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average 𝐸𝑥𝑘|𝑥0
{𝜆𝑘

∗(𝑥𝑘) }. It is then reasonable to replace 𝜆𝑘
∗(𝑥𝑘) for 𝑘 > 0 with its 

estimates. These estimates are denoted �̂�𝑘
∗
, and are chosen such that 

 

 𝐸𝑥𝑘|𝑥0 {𝑙𝑘(𝑥𝑘, 𝑑𝑘
∗(𝑥𝑘))} = 1, 𝑘 > 0. (3.23) 

 

It will be a part of a global optimization algorithm to search for �̂�𝑘
∗
. It is said that the 

long term variation of the Lagrange multipliers typically depends on the number of 

tracked targets [32]. 

For notational convenience, define the vector of Lagrange multiplier estimates as 

�̃� = [�̃�0, �̂�1
∗
, �̂�2

∗
, … , �̂�𝑁−1

∗
] and denote the element corresponding to time 𝑘 as �̃�𝑘. 

Assume that the Lagrangian at time 𝑘 + 1 can be rewritten as a sum of Lagrange 

components for each subtask, plus a term depending on the multipliers only, 

 

 

𝐿𝑘(𝑥𝑘 , 𝑑𝑘, �̃�) = ∑ 𝐿𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘, �̃�)
𝑠

+ ∑ �̃�𝑛 

𝑁−1

𝑛=𝑘

 (3.24) 

 

The Lagrangian at time 𝑘 is also expressed as 

 

 𝐿𝑘(𝑥𝑘, 𝑑𝑘, �̃�)

= ∑ 𝑈𝑠(𝑥𝑠,𝑘)
𝑠

− �̃�𝑘𝑙𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘) + �̃�𝑘

+ 𝐸𝑥𝑘+1|𝑥𝑘,𝑑𝑘
{max
𝑑𝑘+1

∑ 𝐿𝑠,𝑘+1(𝑥𝑠,𝑘+1, 𝑑𝑠,𝑘+1, �̃�)
𝑠

}

+ ∑ �̃�𝑛 

𝑁−1

𝑛=𝑘

 

(3.25) 
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The maximum operation is separable in the subtasks due to the local influence of 

decision parameters in subtasks, e.g., if 𝑓𝑠( 𝑑𝑠) is a set of functions representing local 

consequences of the decision 𝑑𝑠 regarding measurements of subtask 𝑠, we have that 

 

 max
𝑑

∑ 𝑓𝑠( 𝑑𝑠)
𝑠

= ∑ max
𝑑𝑠𝑠

 𝑓𝑠( 𝑑𝑠) (3.26) 

 

Thus, the sum can be moved outside the maximization. Furthermore, the expectation 

is carried out per subtask due to the independence assumptions regarding target-wise 

performance. Consequently, given the assumption in (3.24), the Lagrangian at stage 

𝑘 is also separable in the subtasks: 

 

 𝐿𝑘(𝑥𝑘 , 𝑑𝑘, �̃�)

= ∑ 𝑈𝑠(𝑥𝑠,𝑘)
𝑠

− �̃�𝑘𝑙𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘)

+ 𝐸𝑥𝑘+1|𝑥𝑘,𝑑𝑘
{max
𝑑𝑘+1

∑ 𝐿𝑠,𝑘+1(𝑥𝑠,𝑘+1, 𝑑𝑠,𝑘+1, �̃�)
𝑠

}

+ ∑ �̃�𝑛 

𝑁−1

𝑛=𝑘

≜ ∑ 𝐿𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘, �̃�)
𝑠

+ ∑ �̃�𝑛 

𝑁−1

𝑛=𝑘

 

(3.27) 

 

At the end of long time horizon, we have 𝐿𝑁(𝑥𝑁) = ∑ 𝑈𝑠(𝑥𝑠,𝑘)𝑠 ≜ 𝐿𝑠,𝑁(𝑥𝑠,𝑁). We 

apply dynamic programming in backward and perform a recursive process from time 

𝑁. By the way, the Lagrangian at the decision time instant k = 0 separates in the 

subtasks. In [36] a similar approximate DP approach is given as an example of 

optimizing target classifications. 
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The overall optimization problem is divided into several sub problems that are 

optimized locally by using Lagrange multipliers. Each Lagrange multiplier can be 

found iteratively to fulfill the resource constrains. But we have to give an initial 

value for each Lagrange multiplier to find the optimal value of Lagrangian. Initial 

value of each Lagrange multiplier is selected as very large so that the constraint is 

not satisfied. Then we begin to decrease Lagrange multipliers until the constraint is 

satisfied partially. After that, optimal Lagrange multipliers are calculated in two 

different ways. 

First method: We have used the ‘fminsearch’ function of MATLAB, 

Second method: Iterative solution of new search function that is described below. 

 

 �̃�𝑗+1 = �̃�𝑗 + ∆�̃�𝑗 (3.28) 

 

 
𝐸{𝑙𝑗} +

𝜕𝐸{𝑙𝑗}

𝜕�̃�
∆�̃�𝑗 = 1 (3.29) 

 

The expected load coming from the subtask is computed based on optimal update/do 

not update decisions and  𝐸{𝑙𝑗}  is calculated by summing over all subtasks. 

Furthermore, 
𝜕𝐸{𝑙𝑗}

𝜕�̃�
 is summed from the partial derivatives of each subtask. The 

corresponding partial derivative of each term is computed numerically. The 

numerical procedure computes the objective function for �̃�  and �̃� + ∆�̃�𝑗  and 

computes the derivative by using the difference in the values. Then, above equations 

(3.28) and (3.29) are used to generate the new �̃�. 

A pseudo code for searching optimal Lagrange multipliers is formulated in Table 3.2. 
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Table 3.2 Pseudo Code for Searching Optimal Lagrange Multipliers 

1) Initiate all Lagrange multipliers from a large value and decrease until the 

resource constraint is satisfied. 

2) Solve dynamic programming via these Lagrange multipliers 

3) Select the Lagrange multiplier that exceeds the resource constraint by a 

higher value than others.  

4) Decrease the selected Lagrange multiplier by a small value ∆�̃� and solve 

dynamic programming again. 

5) Subtract new output (state independent load) from the old one and find each 

change in state independent load with respect to ∆�̃�. 

6) Divide ∆�̃�  to each change in state independent load and find new change 

value that we will apply to the dynamic programing. 

7) Repeat this until all outputs converges to one and never exceed. 

 

The optimal strategy specifies the update or do not update decisions for each target in 

each interval and it is dependent on the current states of targets. An update command 

triggers one or more update attempts due to the quality of the target’s current state. 

This rule is defined in Section 3.1.4. Update attempts may result with success or fail 

depend on probability of detection.  

3.5 Algorithm 

The aim of Markov decision process is to find a decision policy that can be 

represented as a matrix that relates the states to the decisions. 

“decision_depends_on_states” matrix specifies the action that the decision maker 

chooses depending on the current state. The objective is to generate an optimal 

policy that will maximize the random reward in a finite time horizon. 
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Now, we define the calculation of the Lagrangian for adaptive target tracking task. 

All subtasks have the same form since we deal with only track updates. Equation 

(3.27) forms a base for dynamic programming. Resource constraints are included by 

the Lagrange multipliers. The Markov decision process is also defined in this section. 

Let tracking a target 𝑇𝑖 be a sub task and 𝐽𝑖,𝑘(𝑥𝑖,𝑘) be the value-to-go function for 𝑇𝑖 

at time 𝑘. 𝐽𝑖,𝑘(𝑥𝑖,𝑘) can be defined as the local Lagrangian of the sub task given the 

Lagrange multiplier vector �̃�. 

 

 𝐽𝑖,𝑘(𝑥𝑖,𝑘) = 𝐿𝑇𝑖,𝑘
(𝑥𝑖,𝑘, 𝑑𝑖,𝑘, �̃�) (3.30) 

 

Given �̃�, the local decision problem is characterized as a Markov decision process. 

The solution of the optimization is achieved by dynamic programming backward 

recursions. 

 

 𝐽𝑖,𝑘
∗(𝑥𝑖,𝑘)

= max
𝑑𝑖,𝑘

(𝑈𝑖(𝑥𝑖,𝑘) − �̃�𝑘𝑙𝑖,𝑘(𝑥𝑖,𝑘, 𝑑𝑖,𝑘)

+ ∑ 𝐽𝑖,𝑘+1
∗(𝑥𝑖,𝑘+1)𝑃(𝑥𝑖,𝑘+1|𝑥𝑖,𝑘, 𝑑𝑖,𝑘, 𝜉𝑖,𝑘)

𝑥𝑖,𝑘+1

) 

(3.31) 

 

Here, 𝐽𝑖,𝑁 = 𝑈𝑖(𝑥𝑖,𝑁) and 𝑙𝑖,𝑘(𝑥𝑖,𝑘, 𝑑𝑖,𝑘) is the expected load given a scheduled track 

update, and given the filter covariance predicted by the state in time interval 𝑘. Since 

the decision can be update or do not update, 𝑙𝑖,𝑘(𝑥𝑖,𝑘, 𝑑𝑖,𝑘) is zero when the decision 

is do not update. At each time and state a comparison is done and the maximum of 

result that is between update or do not update decisions is chosen. 
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 ∑ 𝐽𝑖,𝑘+1
∗(𝑥𝑖,𝑘+1)𝑃(𝑥𝑖,𝑘+1|𝑥𝑖,𝑘, 𝑑𝑢𝑝𝑑𝑎𝑡𝑒 , 𝜉𝑖,𝑘)

𝑥𝑖,𝑘+1

− ∑ 𝐽𝑖,𝑘+1
∗(𝑥𝑖,𝑘+1)𝑃(𝑥𝑖,𝑘+1|𝑥𝑖,𝑘, 𝑑𝑑𝑜_𝑛𝑜𝑡_𝑢𝑝𝑑𝑎𝑡𝑒 , 𝜉𝑖,𝑘)

𝑥𝑖,𝑘+1

 

(3.32) 

 

This value compared with the cost of update decision �̃�𝑘𝑙𝑖,𝑘(𝑥𝑖,𝑘, 𝑑𝑢𝑝𝑑𝑎𝑡𝑒). Update 

decision is given when the reward is larger than the cost. 

A pseudo code for separated solution to resource allocation is formulated in Table 

3.3. 
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Table 3.3 Pseudo Code for the Separated Solution to Resource Allocation 

Assume that an initial estimate of �̃� exists and then an algorithm for generating a 

measurement batch is now the following. 

1) Form subtasks: Each tracked target forms a subtask. 

2) Construct the Markov Model 

3) Calculate the expected time spent for each state 

4) Initialize all parameters that are input from the operator. 

a. Probability of Detection for each target (𝑃𝑑) 

b. Nominal utility (𝑈𝑛𝑜𝑚) =100 

c. Time horizon (𝑁) =10 sec 

d. Initial estimate of �̃� 

e. Number of Monte Carlo simulation = 1000 

5) Calculate the utilities of each state for each target 

6) Calculate the state dependent expected load for each target 

7) Apply backwards recursive DP to obtain the optimal strategy for each 

tracked target 

8) Form the initial state probability vector at time 𝑘 = 0 to initialize the state 

9) Calculate 𝐸 {𝑙𝑠
𝑗
} and 

𝜕𝐸{𝑙𝑠
𝑗
}

𝜕�̃�
 for each subtask 

10) Sum 𝐸 {𝑙𝑠
𝑗
} and 

𝜕𝐸{𝑙𝑠
𝑗
}

𝜕�̃�
 over the subtasks to calculate 𝐸{𝑙𝑗} and 

𝜕𝐸{𝑙𝑗}

𝜕�̃�
 

11) Update the Lagrange multiplier vector �̃�, according to (3.28) and (3.29) 

12) If total state independent load is sufficiently close to one for all time 

intervals, proceed to 13, otherwise continue with 7. 

13)  Run Monte Carlo simulations to observe the number of updates and the 

average number of drops for each target and also number of coincidence for 

overloads. 
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      CHAPTER 4 

 

 

4 SIMULATIONS AND RESULTS 

 

 

 

In this section, we give several scenarios and their corresponding experimental 

results. The problems attempted in this study are a set of problems that start from the 

simplest one. We call them the ‘scenarios’. The first scenario is a single target. DP 

based solution is feasible for a single target. The Markov model of this scenario was 

a simplified model. The performance of the algorithm is tested on this simple model 

as described in Section 4.1. 1000 Monte Carlo runs are done on this simple model to 

observe the number of updates and the average number of drops. Results show that 

the number of target drops is high. Therefore, the model is modified to include some 

rules which describe the expected number of looks used in each macro level decision 

interval depending on the target’s current state. By this way, the number of drops is 

decreased as shown in Section 4.2. The extension of the method to even two targets 

needs a very large state space. DP based solution for more than one target is almost 

infeasible because of this very large state space. A simple two target example, given 

in Section 4.3 is solved by the joint Markov model that gives the optimal solution. 

This solution is used as reference to evaluate the results obtained with some 

approximations. Section 4.4, the same problem is solved by using Lagrangian 

method. Then, in Section 4.5, following approach of [32], the problem is solved by 

using a single Markov chain for each target and writing the time budget as a 

constraint for eight targets. The constraint optimization problem is solved by using 
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Lagrange relaxation. Lagrange relaxation is the key point of separating the problem 

into sub problems. As a result, the exponential explosion of the state space can be 

handled.   

4.1 DP-Based Optimal Resource Allocation for One Target 

In this part, there are some simulations that we have made to observe the usage of 

optimal radar resource instead of consuming all resource to one target by using 

dynamic programming algorithm. By this way, we can show how to use radar 

resources in an efficient way. The Markov chain is the same as the model defined in 

Section 3.1.4 except the state transition probabilities. For this scenario, we assume 

that each state consumes only one look in Markov decision process instead of the 

rule defined in Section 3.1.4. Therefore, state transitions are the same for all states 

and it is a constant value that is given by the operator. A cost for update decision is 

added to the dynamic programming to avoid the update decisions at all time 

intervals. The cost can be selected by the operator. We assume that the utility of do 

not update decision is 5 times greater than the utility of update decision. Inputs that 

are selected by the operator are given below: 

 Probability of detection (𝑃𝑑) = 0.8 and 0.4 

 Nominal utility (𝑈𝑛𝑜𝑚) =100 

 Time horizon (𝑁) =10 sec 

 Number of Monte Carlo simulation = 1000 

 The trace of covariance matrix of each state is calculated by Kalman filter 

and ‘state_cov_value’ vector that has the trace of covariance matrix of each 

state is constructed. This vector and corresponding normalized vector are 

defined below.  
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Quantized values of the state quality defined in Chapter 3.1.2 are given in Table 4.1. 

 

Table 4.1 Quantized Values of the State Quality 

State no: 1 2 3 4 5 6 7 8 9 10 11 12 13 Unit 

State 

Quality 
15 18 21 23 25 30 33 36 37 40 58 62 64 m

2 

State no: 14 15 16 17 18 19 20 21 22 23 24 25 26 Unit 

State 

Quality 
65 69 101 105 109 112 116 165 173 175 178 181 0 m

2
 

  

These values are converted to a reward by the assumption that the reward of the first 

state (1) is 1 and the last state (26) is 0. Normalized state rewards are shown in Table 

4.2. 

Table 4.2 Normalized State Rewards 

State no: 1 2 3 4 5 6 7 8 9 

State 

Rewards 
1.000 .8333 .7143 .6522 .6000 .5000 .4545 .4167 .4054 

State no: 10 11 12 13 14 15 16 17 18 

State 

Rewards 
.3750 .2586 .2419 .2344 .2308 .2174 .1485 .1429 .1376 

State no: 19 20 21 22 23 24 25 26  

State 

Rewards 
.1339 .1293 .0909 .0867 .0857 .0843 .0829 0.000  

 

The optimum solution provided by the dynamic programming algorithm is given in 

Table 4.3. In the table ‘0’ and ‘1’ indicates ‘Do not Update’ and ‘Update’ decision, 

respectively. 
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Table 4.3 The Strategy of First Scenario 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 0 1 1 0 

6 1 1 1 1 1 1 1 1 1 0 

7 1 1 1 1 1 1 1 1 1 0 

8 1 1 1 1 1 1 1 1 1 0 

9 1 1 1 1 1 1 1 1 1 0 

10 1 1 1 1 1 1 1 1 1 0 

11 1 1 1 1 1 1 1 1 1 0 

12 1 1 1 1 1 1 1 1 1 0 

13 1 1 1 1 1 1 1 1 1 0 

14 1 1 1 1 1 1 1 1 1 0 

15 1 1 1 1 1 1 1 1 1 0 

16 1 1 1 1 1 1 1 1 1 0 

17 1 1 1 1 1 1 1 1 1 0 

18 1 1 1 1 1 1 1 1 1 0 

19 1 1 1 1 1 1 1 1 1 0 

20 1 1 1 1 1 1 1 1 1 0 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 

 

After the optimum strategy is obtained, 1000 Monte Carlo simulations are done to 

observe the number of updates and the average number of drops. Two different 

probability of detection values are used to show relation between 𝑃𝑑  value and 

simulation results.  Simulation results are given in Table 4.4.  
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Table 4.4 Simulation Results of DP-Based Optimal Resource Allocation for One 

Target 

 𝑷𝒅 = 0.8 𝑷𝒅 = 0.4 

Initial 

State 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

1 4.6720 4 3.7030 395 

2 4.6120 3 4.6580 370 

3 4.6400 10 4.6610 367 

4 4.6420 5 4.7050 370 

5 4.6550 8 4.6490 366 

6 5.2950 7 4.4150 428 

7 5.2950 6 5.3230 381 

8 5.3140 9 5.2870 376 

9 5.2760 6 5.3160 385 

10 5.2840 5 5.2790 399 

11 5.2600 13 4.8910 429 

12 5.2490 10 4.9820 443 

13 5.2680 15 4.8700 455 

14 5.2530 11 4.9660 451 

15 5.2700 12 4.8490 454 

16 5.1170 46 4.0710 544 

17 5.1470 37 4.0620 558 

18 5.1110 44 4.0250 571 

19 5.1250 41 4.0870 579 

20 5.1210 43 4.0360 570 

21 4.4050 192 2.5340 743 

22 4.3540 200 2.6560 724 

23 4.3280 207 2.6510 735 
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Table 4.4 (cont'd) 

24 4.2660 220 2.6780 744 

25 4.2580 226 2.5910 733 

AVERAGE 4.9287 55.2 4.2378 502.8 

  

These results are obtained by an algorithm that is described by the pseudo code given 

in Table 4.5. 

 

Table 4.5 Pseudo Code for DP-Based Optimal Resource Allocation for One 

Target 

To obtain optimum strategy: 

Determine the state transition matrices for update and do not update decisions 

Determine the rewards for update and do not update decisions 

Apply dynamic programming algorithm 

 

 Calculate the corresponding reward for update decision and calculate each 

state transition  at time N 

 Calculate the corresponding reward for do not update decision and calculate 

each state transition  at time N 

 Compare rewards and select the highest value for each state 

 Store the highest reward values and corresponding state 

 Do this procedure for time N-1 to time 0. 

 

To obtain number of updates and drops: 

Define an initial state. 

Check the optimal decision(update/do not update) from the constructed strategy 

If the decision is do not update, change state due to the do not update state 

transition matrix 
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Table 4.5 (cont'd) 

If the decision is update; 

 Generate a random variable between zero and one. 

 If this random variable is less than probability of detection value, change 

state due to the do not update state transition matrix 

 If this random variable is equal or greater than probability of detection 

value, change state due to the update state transition matrix 

Calculate the number of update decisions and dropped targets that are at the state 

26. 

 

The macro manager decision period is 1 sec as the same as Markov decision period. 

The simulation time is 10 sec and only one look is used for tracking the target at each 

time instant and at each state. In 10 sec, target is tracked nearly five times in the 

average. So, simulation results show that we can track one target in an acceptable 

uncertainty level by consuming only %50 of the resources nearly. By this 

optimization, remaining resource can be used for other tasks such as tracking another 

target or may be searching a sector for new targets. The update and drop numbers 

depend on the initial state.  

4.2 Modified DP-Based Optimal Resource Allocation for One Target with a 

Rule 

In the previous section, we observed that the number of target drops is quite high. 

Therefore, we decide to define a rule for each state. This rule characterizes the 

expected usage of looks related to the state quality as described in Section 3.1.4. The 

same strategy and inputs are used for this scenario to compare fairly. Simulation 

results are given in Table 4.6. 
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Table 4.6 Simulation Results of Modified DP-Based Optimal Resource 

Allocation for One Target with a Rule 

 𝑷𝒅=0.8 𝑷𝒅=0.4 

Initial 

State 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

1 4.9890 0 6.4140 2 

2 4.9740 0 6.8990 5 

3 4.9980 0 7.0560 6 

4 5.0170 0 7.0830 6 

5 5.0080 0 7.2230 7 

6 6.0210 0 7.2500 13 

7 6.0360 0 8.2060 8 

8 6.0290 0 8.2290 10 

9 6.0120 0 8.1210 9 

10 6.0040 0 8.1400 12 

11 6.0840 0 8.4010 9 

12 6.0300 0 8.3450 11 

13 6.0760 0 8.3980 13 

14 6.0500 0 8.4270 7 

15 6.0770 0 8.4510 13 

16 6.0710 0 8.3500 14 

17 6.0880 0 8.5620 16 

18 6.0740 0 8.4430 17 

19 6.0810 0 8.3270 17 

20 6.0690 0 8.2810 15 

21 6.1010 0 8.0970 62 

22 6.0990 0 8.0980 72 

23 6.1170 0 7.9950 74 
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Table 4.6 (cont'd) 

24 6.0640 1 7.9790 84 

25 6.1030 1 8.0930 81 

AVERAGE 5.8509 0.08 7.9547 23.32 

 

By this rule, we reduce the number of target drops significantly. The reason of zero 

drops at states from 1 to 23 is the high probability of detection value. It is chosen as 

0.8 same as the previous scenario. If we decrease this value, we will observe track 

drops as expected. At the same time, obviously the expected value of the update time 

is larger than the previous one. To show the relation between probability of detection 

value and the number of target drops, additional columns are added to the Table 4.4 

and Table 4.6. Actually, added rule changes the optimal strategy. But this affect is 

not significant. So, for fair comparison, we use the same optimal strategy. 

4.3 Optimization-Based Resource Allocation for Two Targets 

DP based solution for more than one target is almost infeasible because of its very 

large state space. However to assess the approximation done for more realistic 

problems at this section we generate a new scenario of two targets with a simpler 

Markov model. Because of the size of the state space increases exponentially with 

the number of targets and the number of states used in the scenario, we consider a 

very simple example to obtain the optimal solution. The Markov chain structure of 

this scenario is given in Figure 4.1.  
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Figure 4.1 A Simple Markov Model of Each Target 

 

Aim is to obtain the optimal strategy by using the joint Markov model. We have only 

one look at each time instant and determine a policy that maximizes the overall 

system performance. To achieve this purpose, we need to construct another Markov 

model that represents joint situations of the targets. The joint Markov model consists 

of 16 states that are the combination the individual Markov model of two targets. 

Figure 4.2 shows joint transitions with respect to update decisions of target 1, Figure 

4.3 shows joint transitions with respect to update decisions of target 2 and Figure 4.4 

shows joint transitions with respect to do not update decision of both targets. Inputs 

that are selected are given below: 

 Probability of detection for target 1(𝑃𝑑1) = 0.8  

 Probability of detection for target 2 (𝑃𝑑2) = 0.7 

 Nominal utility for target 1 (𝑈𝑛𝑜𝑚1) = 100 

 Nominal utility for target 2 (𝑈𝑛𝑜𝑚2) = 100 

 Time horizon (𝑁) = 10 sec 

 Number of Monte Carlo simulation = 1000 
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Figure 4.2 Joint Markov Model with Respect to Update Decisions of Target 1 

 

Figure 4.3 Joint Markov Model with Respect to Update Decisions of Target 2 
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Figure 4.4 Joint Markov Model with Respect to do not Update Decision of Both 

Targets 

 

Each joint state is defined in Table 4.7. It means,  

 If target 1 is in state 1 and target 2 is in state 1, the joint state will be in state 

1, or 

 If target 1 is in state 2 and target 2 is in state 3, the joint state will be in state 

7, and so on.  
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Table 4.7 Joint State Space Representation for Two Targets with Four 

Individual State Markov Model 

First 

Target's  

State 

Second 

Target's  

State 

Joint State 

Normalized 

State Quality 

Value 

1 1 1 100 

1 2 2 90 

1 3 3 70 

1 4 4 15 

2 1 5 90 

2 2 6 80 

2 3 7 50 

2 4 8 10 

3 1 9 70 

3 2 10 50 

3 3 11 30 

3 4 12 5 

4 1 13 15 

4 2 14 10 

4 3 15 5 

4 4 16 0 

 

After the dynamic programming algorithm is applied, optimum decisions are 

obtained as the output of DP. 𝑡𝑖 is the time instances of decision horizon. State no 

column describes the joint state number. Table 4.8 shows the optimal decisions at 

each time instance 𝑡𝑖. “0” means do not update any target, “1” means update target 1 

and “2” means update target 2. 
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Table 4.8 An Example of Optimized Policy for Joint Markov Model 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 1 1 1 1 1 1 1 1 2 1 

2 2 2 2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 2 2 2 2 

4 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 1 1 1 

7 2 2 2 2 2 2 2 2 2 2 

8 1 1 1 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 1 1 

13 2 2 2 2 2 2 2 2 2 2 

14 2 2 2 2 2 2 2 2 2 2 

15 2 2 2 2 2 2 2 2 2 2 

16 0 0 0 0 0 0 0 0 0 0 

 

After the optimum strategy is obtained, 1000 Monte Carlo simulations are run to 

observe the number of update decisions and the average number of drops for each 

target. Simulation results are given in Table 4.9. 
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Table 4.9 Simulation Results of Optimal Resource Allocation for Joint Markov 

Model 

 

Target1 

𝑷𝒅𝟏 =0.8 

Target2 

𝑷𝒅𝟐 =0.7 

Initial 

State 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

1 5.4820 180 4.2050 365 

2 4.6740 216 4.9490 365 

3 5.9270 140 3.8390 508 

4 9.8450 39 0.0000 1000 

5 5.2660 239 4.3610 387 

6 6.6830 171 2.8190 600 

7 4.8680 323 4.4560 473 

8 9.4550 93 0.0000 1000 

9 4.2940 377 5.2250 308 

10 5.2700 311 4.0300 477 

11 8.0290 242 0.0000 1000 

12 8.2770 209 0.0000 1000 

13 0.0000 1000 9.4750 128 

14 0.0000 1000 8.9330 192 

15 0.0000 1000 7.1280 367 

AVERAGE 5.2047 369.3 3.9613 544.6 

 

Number of states of the joint Markov chain is increasing exponentially with the 

number of targets. If the joint Markov model is used to find optimal strategy, we will 

need to construct very large state space. Actually, four states are not realistic and not 

enough to represent the quality of a tracked target. In the original scenario, we have 

eight targets and each target is represented as twenty six states. It means that we need 
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to have 268 𝑥 268 ≅ 4,36 𝑥 1022  states in state space. This is computationally 

infeasible. Therefore we need to assume some approximations that are described in 

Section 3.  

4.4 Optimization-Based Resource Allocation for Two Targets with 

Approximate DP 

In this section, we compare the results that are obtained by joint Markov model and 

Lagrange approximation. A scenario is constructed similar to Section 4.3. But this 

time, Lagrange relaxation method is applied to the objective function. All parameters 

are same as previous section: 

 Probability of detection for target 1 (𝑃𝑑1) = 0.8  

 Probability of detection for target 2 (𝑃𝑑2) = 0.7 

 Nominal utility for target 1 (𝑈𝑛𝑜𝑚1) = 100 

 Nominal utility for target 2 (𝑈𝑛𝑜𝑚2) = 100 

 Time horizon (𝑁) = 10 sec 

 Number of Monte Carlo simulation = 1000 

Markov model that is defined in Figure 4.1 is used for both targets. State rewards are 

assumed as follows: normalized_state_cov_degeri = [100 70  30  0] 

Optimum strategy is obtained for each target. They are defined in Table 4.10 and 

Table 4.11, respectively. 

 

Table 4.10 An Example of Optimized Policy for Target 1 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 1 

2 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

4 0 0 0 0 0 0 0 0 0 0 
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Table 4.11 An Example of Optimized Policy for Target 2 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 1 1 0 1 1 1 0 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

4 0 0 0 0 0 0 0 0 0 0 

 

We make the following observations by comparing Tables 4.10 and 4.11 with Table 

4.8. 

 Table 4.10 says that ‘apply an update operation to target 1 whenever its state 

is 2 or 3’.  These states correspond to the states 5-12 in Table 4.8 which 

gives the same result except state 7.  

 Table 4.11 says that ‘apply update operation if it is at state 3 at all times’. 

The corresponding states of Table 4.8 are states 3, 7, 11, 15 and the same 

result is obtained in the optimal operation at all times except at state 11.  

The differences among these solutions and the optimal one are at the points where 

both targets request an update.  So the results seem to show the partial optimality of 

the approximate method.     

To further investigate the optimality of the approximation the strategy obtained is run 

for 1000 Monte Carlo simulations. Simulation results are given in Table 4.12. 
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Table 4.12 Simulation Results of Optimization-Based Resource Allocation with 

Approximate DP 

 

Target1 

𝑷𝒅𝟏=0.8 

Target2 

𝑷𝒅𝟐=0.7 

Initial 

State 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

Number of 

Update in 

10 sec. 

Number of 

average drop in 

1000 simulations 

1 5.2560 153 4.7070 349 

2 5.2290 142 4.4380 438 

3 5.2650 141 3.4430 557 

4 5.2440 155 0.0000 1000 

5 5.7910 180 4.6650 367 

6 5.7140 187 4.3920 444 

7 5.7730 195 3.4260 561 

8 5.7760 186 0.0000 1000 

9 4.8430 377 4.6510 361 

10 4.8740 325 4.4220 436 

11 4.8250 324 3.3360 593 

12 4.9150 299 0.0000 1000 

13 0.0000 1000 4.6460 344 

14 0.0000 1000 4.4710 437 

15 0.0000 1000 3.4470 568 

AVERAGE 5.2921 377.6 4.1703 563.6 

 

If we compare the results of Section 4.3 and 4.4, we will see that the numbers of 

update decisions and the numbers of average drops are close each other. This means 

our approximation is good enough. 
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4.5 Optimization-Based Resource Allocation for Eight Targets with 

Approximate DP 

The first scenario that we have studied is a single target that we applied the DP based 

solution. On this scenario we observed that we do not need to update this target at 

every time instant to consume radar resources efficiently. Then, a simple scenario 

with two targets is constructed to and the optimal strategy is obtained on a simple 

model. The same problem is solved via Lagrange relaxation and results were 

compared. Results are close to each other. Now, we expand the scenario that is 

described in Section 3 is chosen to observe the overall system performance.  

In the new scenario we have eight targets and each of them has 26-state Markov 

model that is described in Figure 3.3. 

Inputs that are selected by the operator are given below: 

 Probability of detection for target 1 (𝑃𝑑1) = 0.8  

 Probability of detection for target 2 (𝑃𝑑2) = 0.7  

 Probability of detection for target 3 (𝑃𝑑3) = 0.6  

 Probability of detection for target 4 (𝑃𝑑4) = 0.6  

 Probability of detection for target 5 (𝑃𝑑5) = 0.7  

 Probability of detection for target 6 (𝑃𝑑6) = 0.7 

 Probability of detection for target 7 (𝑃𝑑7) = 0.8  

 Probability of detection for target 8 (𝑃𝑑8) = 0.6  

 Nominal utility for target 1 (𝑈𝑛𝑜𝑚1) = 100 

 Nominal utility for target 2 (𝑈𝑛𝑜𝑚2) = 100 

 Nominal utility for target 3 (𝑈𝑛𝑜𝑚3) = 100 

 Nominal utility for target 4 (𝑈𝑛𝑜𝑚4) = 100 

 Nominal utility for target 5 (𝑈𝑛𝑜𝑚5) = 100 

 Nominal utility for target 6 (𝑈𝑛𝑜𝑚6) = 100 

 Nominal utility for target 7 (𝑈𝑛𝑜𝑚7) = 100 

 Nominal utility for target 8 (𝑈𝑛𝑜𝑚8) = 100 
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 Time horizon (𝑁) = 10 sec 

 Number of Monte Carlo simulation = 1000 

 Discrete parameterization of state rewards is the same as Section 4.1 

We assume that the radar can send beams at every 200 milliseconds. It means that 

one look for tracking task is nearly 200 milliseconds. In best case, five targets can be 

tracked or in worst case, one target consumes all resources in macro management 

interval because macro manager makes decisions at every second. This is obviously 

not a realistic; however the aim here is to demonstrate the effectiveness of the 

algorithm.  Since we define a rule in Section 3.1.4 that determines the state transition 

probabilities depending on the current state, we calculate the expected state 

dependent load for each target. Then, utilities are computed by nominal utilities and 

normalized state rewards that are described in Section 3.1.2 and Section 3.1.3. Our 

aim is to obtain an (near) optimal strategy that decides on which tracks should be 

updated. This decision requires the maximization of the utility function but we are 

also interested with number of drops. This is achieved by allocating the scarce radar 

resource in an optimal way during the time horizon. 𝜆’s are adjusted by two ways as 

we mentioned in Section 3.4 and the Table 4.21 shows the performance similarities 

between these two methods. Therefore, optimal strategies for each target are obtained 

by using ‘fminsearch’ function of MATLAB and they are given in Table 4.13 to 

Table 4.20. These are obtained by dynamic programming solution and Lagrange 

relaxation that are described in Section 3. 

 

 

 

 

 

 



 

 

89 

 

 

 

Table 4.13 The Optimal Strategy of First Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 1 0 1 1 

3 0 0 0 0 1 1 1 0 1 1 

4 0 0 1 1 1 1 1 1 1 1 

5 0 1 1 1 1 1 1 1 1 1 

6 0 1 1 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 1 1 

13 1 1 1 1 1 1 1 1 1 1 

14 1 1 1 1 1 1 1 1 1 1 

15 1 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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Table 4.14 The Optimal Strategy of Second Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 1 

3 0 0 0 0 0 0 0 0 1 1 

4 0 0 0 0 0 0 0 0 1 1 

5 0 0 0 0 0 0 0 0 1 1 

6 0 0 0 0 0 0 0 1 1 1 

7 0 0 0 0 1 1 1 1 1 1 

8 0 0 1 1 1 1 1 1 1 1 

9 0 0 1 1 1 1 1 1 1 1 

10 0 1 1 1 1 1 1 1 1 1 

11 0 0 1 1 1 1 1 1 1 1 

12 0 1 1 1 1 1 1 1 1 1 

13 0 1 1 1 1 1 1 1 1 1 

14 0 1 1 1 1 1 1 1 1 1 

15 0 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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Table 4.15 The Optimal Strategy of Third Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 1 0 0 

14 0 0 0 0 0 0 0 1 0 0 

15 0 0 0 0 0 0 0 1 0 0 

16 0 1 0 1 1 1 1 1 1 0 

17 0 1 0 1 1 1 1 1 1 0 

18 0 1 0 1 1 1 1 1 1 0 

19 0 1 0 1 1 1 1 1 1 0 

20 0 1 0 1 1 1 1 1 1 0 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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Table 4.16 The Optimal Strategy of Fourth Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 1 0 0 

14 0 0 0 0 0 0 0 1 0 0 

15 0 0 0 0 0 0 0 1 0 0 

16 0 1 0 1 1 1 1 1 1 0 

17 0 1 0 1 1 1 1 1 1 0 

18 0 1 0 1 1 1 1 1 1 0 

19 0 1 0 1 1 1 1 1 1 0 

20 0 1 0 1 1 1 1 1 1 0 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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Table 4.17 The Optimal Strategy of Fifth Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 1 

3 0 0 0 0 0 0 0 0 1 1 

4 0 0 0 0 0 0 0 0 1 1 

5 0 0 0 0 0 0 0 0 1 1 

6 0 0 0 0 0 0 0 1 1 1 

7 0 0 0 0 1 1 1 1 1 1 

8 0 0 1 1 1 1 1 1 1 1 

9 0 0 1 1 1 1 1 1 1 1 

10 0 1 1 1 1 1 1 1 1 1 

11 0 0 1 1 1 1 1 1 1 1 

12 0 1 1 1 1 1 1 1 1 1 

13 0 1 1 1 1 1 1 1 1 1 

14 0 1 1 1 1 1 1 1 1 1 

15 0 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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Table 4.18 The Optimal Strategy of Sixth Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 1 

3 0 0 0 0 0 0 0 0 1 1 

4 0 0 0 0 0 0 0 0 1 1 

5 0 0 0 0 0 0 0 0 1 1 

6 0 0 0 0 0 0 0 1 1 1 

7 0 0 0 0 1 1 1 1 1 1 

8 0 0 1 1 1 1 1 1 1 1 

9 0 0 1 1 1 1 1 1 1 1 

10 0 1 1 1 1 1 1 1 1 1 

11 0 0 1 1 1 1 1 1 1 1 

12 0 1 1 1 1 1 1 1 1 1 

13 0 1 1 1 1 1 1 1 1 1 

14 0 1 1 1 1 1 1 1 1 1 

15 0 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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Table 4.19 The Optimal Strategy of Seventh Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 1 0 1 1 

3 0 0 0 0 1 1 1 0 1 1 

4 0 0 1 1 1 1 1 1 1 1 

5 0 1 1 1 1 1 1 1 1 1 

6 0 1 1 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 1 1 

13 1 1 1 1 1 1 1 1 1 1 

14 1 1 1 1 1 1 1 1 1 1 

15 1 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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Table 4.20 The Optimal Strategy of Eighth Target 

State no: 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 1 0 0 

14 0 0 0 0 0 0 0 1 0 0 

15 0 0 0 0 0 0 0 1 0 0 

16 0 1 0 1 1 1 1 1 1 0 

17 0 1 0 1 1 1 1 1 1 0 

18 0 1 0 1 1 1 1 1 1 0 

19 0 1 0 1 1 1 1 1 1 0 

20 0 1 0 1 1 1 1 1 1 0 

21 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 

24 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 

26 0 0 0 0 0 0 0 0 0 0 
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After optimum strategies are obtained, state independent loads of each target are 

calculated under the assumption that target can be in any state at initial time instant 

𝑘 = 0  with equal probability. Then total state independent load is computed by 

summing all individual state independent loads. Total state independent load is the 

comparison variable to check that the constraints are satisfied. It is adjusted by 

Lagrange multipliers. Optimal Lagrange multipliers and corresponding state 

independent loads are calculated by ‘fminsearch’ function and new search function 

that are described in Section for each time instances and shown in Table 4.21. 

 

Table 4.21 Optimal Lagrange Multipliers for Each Time Instances 

 By New Search Function By ‘fminsearch’ Function 

Time 𝝀 State Independent 

Load 

𝝀 State Independent 

Load 

𝒕𝟏 251.7537 0.9132 254.5421 0.9148 

𝒕𝟐 243.6306 0.8873 244.1334 0.9288 

𝒕𝟑 240.1710 0.8587 239.5007 0.8799 

𝒕𝟒 234.7200 0.8718 237.1603 0.9073 

𝒕𝟓 229.1232 0.9831 231.7598 0.9926 

𝒕𝟔 227.6864 0.9214 227.4633 0.9191 

𝒕𝟕 222.0630 0.9694 222.1429 0.9409 

𝒕𝟖 212.0499 0.9515 210.2093 0.9664 

𝒕𝟗 185.3023 0.9662 185.2750 0.9944 

𝒕𝟏𝟎 128.8356 0.9665 128.6952 0.9689 

 

As it is seen both 𝜆 search functions give similar results. Therefore we use only one 

of them while obtaining results. After the constraints are satisfied and optimal 

strategies are obtained, 1000 Monte Carlo simulations are done to observe the 

number of updates and the average number of drops for each target and also number 

of coincidence for overloads. Since we have actually 268 states to represent all state 

combination of all targets, it is not possible to show all results. Therefore, we chose 

some random initial states that are generated by ‘rand’ function of MATLAB and 

related results are given in Table 4.23. Initial states columns show initial states of 

targets orderly. For example, 2-7-15-3-21-12-8-6 refers to first targets is in state 2, 
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second target is in state 7, third target is in state 15 initially and so on. Selected initial 

states of targets that are outputs of MATLAB code are given in Table 4.22. Tx’s are 

target numbers. 

 

Table 4.22 Selected Initial States of Targets 

Initial State 

Combination 
T1 T2 T3 T4 T5 T6 T7 T8 

1 10 20 13 11 17 4 3 19 

2 18 16 13 2 3 4 21 14 

3 8 18 7 18 8 18 23 10 

4 20 20 13 24 12 21 4 24 

5 5 21 12 14 19 15 7 10 

6 24 11 18 8 15 22 14 16 

7 12 11 23 4 15 7 23 9 

8 2 7 5 11 9 19 23 13 

9 8 18 4 2 4 5 11 7 

10 17 9 19 14 10 3 2 1 

 

 

In Table 4.23 and Table 4.24, below notations are used. 

U = Average number of update decision 

D = Average number of target drops 

C = Average number of conflicts in 10 seconds 
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Table 4.23 Simulation Results of Optimization-Based Resource Allocation with 

Approximate DP 
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Results show that there is a strong relation between probability of detection value 

and the average number of update decision and average number of target drops. 

While average number of update decision increases with the probability of detection 

value, average number of target drops decreases, because of the reward of better 

quality state is higher than the less quality state. Therefore, algorithm tries to 

maximize overall gain.  

The same simulation is done for different nominal utilities (𝑈𝑛𝑜𝑚). As expected, 

targets that have higher nominal utility consume more radar resources. Therefore, the 

average number of update decision increases with nominal utilities. On the other 

hand, nominal utilities affect the overall system performance, significantly. But if it 

is selected as too high compared to state reward, then objective function can be 

dominated by utility function and update decisions will be meaningless. Therefore it 

should be selected appropriate as possible. 

Table 4.23 shows that there are some conflicts in time horizon. Conflict means the 

radar resources are not enough to perform macro manager demand. This is because 

the optimal policy is obtained by using expected loads. Therefore, we define 

additional decision maker in simulation. This additional rule makes a decision at 

each time instant. It sorts the current state of targets and starts to allocate the resource 

from lower quality target to higher quality target. This procedure checks the available 

remaining resources after an update decision of a target. When there is no available 

resource, even if macro manager makes an update decision, internal procedure 

changes this update decision to don’t update decision due to lack of available 

resources. By this way, the number of conflicts is reduced to zero. Same initial 

conditions are used for scenario that has internal procedure to show that the average 

number of conflicts is zero. Results are given in Table 4.24. 
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Table 4.24 Simulation Results of Optimization-Based Resource Allocation with 

Approximate DP and Internal Procedure 
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      CHAPTER 5 

 

 

5 CONCLUSIONS 

 

 

 

In this section, conclusion and future work parts are represented. 

5.1 Conclusion 

In this thesis, the focus is the sensor management for multifunction radar systems. 

We formulated the radar resource management problem for electronically steered 

antenna radars as a stochastic optimal control problem. We modeled performance of 

radar tracking as a constrained Markov decision processes. Since stochastic dynamic 

programming approach is computationally intractable, the overall problem was 

separated into components instead of using joint Markov model to optimize large 

scale stochastic control problem by hierarchical time decomposition and Lagrange 

relaxation. Lagrange relaxation is used to decrease the state space dimension. 

Hierarchical time decomposition divided time scale into two levels that are called as 

micro management and macro management. We deal with macro management part 

in our studies. Macro manager constructed the policy which is optimal for a given 

objective function under the resource constraints. 
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Lagrange relaxation algorithm which is a version of the one given in [32] is 

generated and tested for eight target scenario. The approximation done in the 

Lagrange relaxation algorithm is justified on a simple scenario. 

The contributions of this thesis can be summarized as follows. 

 In order to handle global optimization problem which is highly complex to 

solve, usually the overall problem is divided into many smaller sub-problems 

that can be considered separately. 

 High priority targets can be observed more frequently by sending agile beams 

in different direction and an arbitrary order. 

 More targets can be tracked in an acceptable uncertainty level by using 

adaptive tracking 

 A new rule reduces the number of dropped targets. 

5.2 Future Works 

Some suggested topics for future studies are given as follows. 

 An improvement can be done for the extended representation of state space. 

 Tracking performance model that is constructed by Markov chains can be 

developed further. 

 Motion model can be developed for maneuvering targets. 

 Target’s probabilities of detections can be adjusted by internally. 

 Search function can be added to the algorithms. 

 Track initiation and track mix processes can be added to the algorithms. 

 Different scenarios can be added with two or more ESA radars. 

 Multiple radars can be allocated to multiple targets – see [37] for a similar 

problem.  
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