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ABSTRACT

AN EXTENSION TO GOPRED TO ANNOTATE SWISS-PROT AND TREMBL
SEQUENCES FOR ALL GENE ONTOLOGY CATEGORIES AND EC

NUMBERS

RİFAİOĞLU, Ahmet Süreyya

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Mehmet Volkan Atalay

Co-Supervisor : Assoc. Prof. Dr. Rengül Çetin-Atalay

February 2015, 59 pages

Traditional methods cannot keep up with annotating proteins as the number of pro-
teins whose sequences known is increasing exponentially. For this reason, automated
protein annotation became an important research area in bioinformatics. In this the-
sis, GOPred method is extended to annotate Swiss-Prot and TrEMBL sequences for
all Gene Ontology (GO) categories and EC Numbers. GOPred consists of SPMap,
Blast-kNN and Pepstats methods which are subsequence, similarity and feature based
methods, respectively. Previous version of GOPred method for functional classifica-
tion of proteins was used for 300 molecular function Gene Ontology (GO) terms. In
this study, improved system is trained for 514 molecular function GO terms, 2909
biological process GO terms and 438 cellular component GO terms. The system is
also applied on functional prediction of enzymes for 851 Enzyme Commission (EC)
Numbers. Each term is trained as a separate classifier with its own training data. All
Swiss-Prot annotations that have experimental evidences are used in data preparation
of terms. GOPred gives three scores for each classification method, when a sequence
is given as input. Subsequently, obtained scores are combined and a weighted mean
score is calculated. Since performances of terms are different, we used a new method
to calculate optimal decision threshold for each term and only the predictions whose
weighted mean scores are over the determined thresholds are presented. Performance
of each term is measured separately and their average is calculated for each GO cat-
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egory and EC. F-Score values are calculated as 0.86, 0.75 and 0.80 for molecular
function, biological process and cellular component categories of GO, respectively.
F-Score value is 0.96 for EC. To the best of our knowledge, this is the best perfor-
mance achieved for EC number prediction in the literature. GO term prediction results
show that the performance of our system is better for prediction of multi-functional
proteins. We also showed that combination of different classification methods en-
hances the prediction results. Finally, improved system is tested on about 58 million
TrEMBL proteins. Predictions that are given by the improved system are compared
with the annotations of TrEMBL reference systems which are EMBL, HAMAP, PDB,
PIR, PIRNR and RuleBase. Results are consistent with the annotations of TrEMBL
reference systems.

Keywords: Protein Function Prediction, Gene Ontology Term, Enzyme Commission
Numbers, Decision Threshold
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ÖZ

TÜM GEN ONTOLOJİSİ VE EC NUMARALARI İÇİN SWISS-PROT VE
TREMBL DİZİLERİNİ ANLAMLANDIRMAK AMACIYLA GOPRED

YÖNTEMİNİN GENİŞLETİLMESİ

RİFAİOĞLU, Ahmet Süreyya

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mehmet Volkan Atalay

Ortak Tez Yöneticisi : Doç. Dr. Rengül Çetin-Atalay

Şubat 2015 , 59 sayfa

Dizisi bilinen proteinlerin sayısı üstel olarak arttığı için geleneksel yöntemler, dizisi
bilinen proteinlerin anlamlandırılmasında yetersiz kalmıştır. Bu yüzden, proteinlerin
otomatik olarak anlamlandırılması biyoenformatik alanında önemli bir araştırma ko-
nusu olmuştur. Bu tezde, tüm Gen Ontolojisi (GO) kategorileri ve EC numaraları için
Swiss-Prot ve TrEMBL dizilerini anlamlandırmak amacıyla GOPred yöntemi geniş-
letilmiştir. GOPred yöntemi sırasıyla altdizi, benzerlik ve özellik tabanlı olan SPMap,
Blast-kNN ve Pepstats yöntemlerinden oluşmaktadır. GOPred yöntemini önceki ver-
siyonunda 300 moleküler işlev GO terimleri için protein işlev sınıflandırılması yapıl-
mıştır. Bu çalışmada, geliştirilen sistem 514 moleküler işlev, 2909 biyolojik süreç ve
438 hücresel bileşen GO terimleri için eğitilmiştir. Sistem ayrıca, 851 Enzim Komis-
yonu (EC) numarası için enzimlerin işlev tahminine uygulanmıştır. Her terim kendi
eğitim verileri kullanılarak ayrı sınıflandırıcılar olarak eğitilmiştir. Terimlerin eği-
tim verilerinin hazırlanması, Swiss-Prot veritabanındaki deneysel kanıtlara dayanan
protein anlamlandırmaları kullanılarak hazırlanmıştır. GOPred’de kullanılan sınıfla-
dırma yöntemleri girdi olarak verilen her diziye üç sonuç vermektedir. Daha sonra
elde edilen sonuçlar birleştirilerek tek bir ağırlıklı sonuç hesaplanmaktadır. Terimle-
rin başarım değerleri farklı olduğu için, eğitilen her terim için en uygun karar eşik
değeri, yeni bir yöntem kullanılarak hesaplanmıştır. Sadece ağırlıklı sonuç değerleri
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belirlenen eşik değerlerinin üzerinde olan tahminler sunulmuştur. Terimlerin başarım
değerleri ayrı olarak ölçülmüş ve her GO grubu ve EC için ortalama başarım değer-
leri hesaplanmıştır. F-ölçütü değerleri moleküler işlev GO terimleri, biyolojik süreç
GO terimleri ve hücresel bileşen GO terimleri için sırasıyla 0.86, 0.85 ve 0.80 olarak
hesaplanmıştır. EC için F-ölçütü değeri 0.96 olarak hesaplanmıştır. Bildiğimiz kada-
rıyla, bu sonuç EC numaraları tahmini konusunda kaynaklar içerisinde elde edilmiş
en iyi sonuçtur. GO terimleri tahmin sonuçları, sistemin başarımının çok işlevli pro-
teinlerde daha iyi olduğunu gösteriyor. Ayrıca farklı sınıflandırma yöntemlerinin bir-
leştirilmesinin tahmin sonuçlarını iyileştirdiği gösterilmiştir. Son olarak, geliştirilen
sistem yaklaşık 58 milyon TrEMBL proteinleri için denenmiştir. Geliştirilen siste-
min verdiği tahminler, TrEMBL için protein anlamlandırması yapan yapan EMBL,
HAMAP, PDB, PIR, PIRNR ve RuleBase referans sistemleriyle karşılaştırılmıştır.
Sonuçlar, TrEMBL referans sistemlerinin sonuçlarıyla örtüşmüştür.

Anahtar Kelimeler: Protein İşlev Tahmini, Gen Ontolojisi Terimleri, Enzim Komis-
yon Numaraları, Karar Eşik Değeri
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CHAPTER 1

INTRODUCTION

Proteins are building blocks that play important role in every process in living cells.

Proteins are made of a chain of amino acids which are organic compounds that con-

stitute the basic structures of various biological components. Each amino acid has its

own chemical properties. There are 20 different amino acids. Information regarding

to amino acids is given in Appendix A.1.

Amino acids form peptide bonds, which are chemical bonds that occur by forma-

tion of two amino acids. Polypeptide bonds are constructed by the combination of

peptide bonds. Proteins consist of one more polypeptide bonds. Therefore, proteins

are polymers whereas amino acids are monomers. Each protein has its own order of

amino acids, which is called the “sequence” of that protein. Sequence of a protein

can be considered as a string consisting of 20 letters. The order of amino acids in

the sequence determines the three dimensional (3-D) structure and functions of cor-

responding protein. There are various types of proteins such as enzymes, antibodies,

storage proteins, transport proteins, hormonal proteins etc. Proteins play critical roles

such as DNA replication, identification of the molecules going in/out and forming

other macromolecules. Therefore, they are basically involved in all of the functions

occur within cells.

There are four levels of proteins structure that are primary, secondary, tertiary and

quaternary structure. Primary structure of a protein is a chain of amino acids. Sec-

ondary structure of proteins occurs by the formation of hydrogen bonds between

amino acids. Tertiary structure is formed when all secondary structure items are

folded together to construct 3-D structure of proteins. Quaternary structure occurs
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when a protein has more than one amino acid chain. Quaternary structure of a protein

determines its function. Structure of protein 1TUI is represented in Figure 1.1.

Figure 1.1: Protein structure of 1TUI

Enzymes are catalysts for almost all of the biological reactions. They accelerate bio-

logical reactions providing a different pathway by lowering activation energy. Each

enzyme has a part named active site, which has special formation and functional

groups. Substrates are specific types of molecules that are bound to active sites of

an enzyme to start enzymatic reactions. Products and enzyme itself are the outputs

of enzymatic reactions. The structure of enzymes does not change after reactions.

Therefore, it can be used for other enzymatic reactions later on. An illustration of an

enzymatic reaction is given in Figure 1.2. Enzymes are also proteins. The function of

an enzyme is highly dependent on the order of amino acid sequence of corresponding

enzyme.
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Figure 1.2: An enzyme catalyzes a reaction and two products are created.

1.1 Problem Definition

Proteins generally have more than one function. Literature is abundant in terms of

experiments and studies to determine the functions of proteins. In addition, there

are many biocurators who examine the published material to find out functions of

proteins. In recent years, protein sequences of many organisms have been extracted.

However, the functions of the proteins cannot be determined at the same time the

sequences are found. Functions of only a small proportion of the proteins have been

determined by experiments. Since there is massive data and it is exponentially grow-

ing, it is almost impossible to annotate protein functions by traditional ways such as

experiments and literature search.

Recently, protein function prediction is emerged as an important research area whose

aim is to determine functions of proteins by computational methods using the distinc-

tive features of the proteins such as motifs, domains, sequence similarities, physical

and chemical structures, protein-protein interactions etc. Most of the protein func-

tion prediction methods are based on ontologies such as Gene Ontology and Enzyme

Commission Numbers.

Protein function prediction is a challenging and important problem for many reasons.

First, all functionalities of a protein cannot be determined by a single experiment and

a protein may have more than one function. Besides, biocurators may misinterpret the

literature information and erroneously annotate protein functions. Some functions of

proteins may not be observable, when the experiments are performed. Therefore,
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protein function prediction methods can be used as a guide to conduct expensive and

sensitive experiments.

1.2 Extensions

In this study, previously developed protein function prediction method GOPred [1] is

extended to all GO categories with modifications. Method is also applied on classifi-

cation of Enzyme Commission (EC) Numbers. In addition, hierarchical evaluation of

predictions is proposed for EC numbers. Extensions can be summarized as follows:

• A restriction rule, based on number of protein’s annotations is added for neg-

ative data preparation of GO term prediction in order to improve the perfor-

mance.

• Number of MF GO terms is extended from 300 to 514 GO terms. Biological

Process and Cellular Component aspect of GO terms are added.

• A balancing method is applied to calculate optimal decision thresholds for GO

terms instead of giving a single global threshold.

• EC number prediction is performed using the same classification methods with

data preparation method proposed in [2].

• Fourth-level EC classification is also included for training.

• A hierarchical evaluation method is proposed to present predictions for EC clas-

sification.

• The system is trained with new extensions.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 UniProt and UniProtKB

UniProt is the comprehensive protein sequence and annotation database. The main

objective of UniProt is to create reliable, comprehensive and qualified protein databases

using well-defined curation methods that is followed by experienced biocurator teams.

The correctness of each entry is verified manually and literature is searched continu-

ously to check if there are erroneous or conflicting information. In addition, databases

are updated periodically to reflect recent changes. UniProt GO annotation (UniProt-

GOA) is a program that provides high-quality electronic and manual annotations for

proteins in UniProt Knowledgebase (UniProtKB) [3].

Figure 2.1: Overview of UniProtKB

There are two databases under UniProtKB. Proteins in SwissProt database are man-
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ually curated and annotated while TrEMBL database consists of proteins that are

annotated by automated annotation tools. Therefore, proteins that are in TrEMBL

database have not been reviewed by curators. There are currently 546,790 proteins in

SwissProt whereas there are 86,536,393 proteins in TrEMBL database (UniProtKB

Release 2014/10). TrEMBL proteins become SwissProt proteins if they satisfy the

manual annotation rules that are carried out by expert curators. General overview of

the UniProtKB is illustrated in Figure 2.1. Since, proteins and annotations in Swis-

sProt database are manually inspected, growth rate of SwissProt database is slow

whereas growth rate of TrEMBL database are exponential. The growth rate of Swis-

sProt and TrEMBL databases is given in Figure 2.2.

Figure 2.2: Growth rate of a) SwissProt and b) TrEMBL over years ([4],[5].
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2.2 Gene Ontology Project and Structure of GO Terms

The Gene Ontology (GO) project, created by the GO Consortium, is the most popular

and versatile collaborative initiative whose goal is to create a standard, dynamically

controlled vocabulary to represent genes and gene product properties by using GO

terms [6]. There are three main categories of GO that are biological process (BP),

molecular function (MF) and cellular component (CC). Biological process GO terms

represent activities that occur by formation of one or more molecular functions. Ac-

tivities that are performed by gene products in a molecular level are represented by

molecular function GO terms. Finally, cellular component GO terms represent parts

in cell where the protein mainly carries out its function such as “ribosome”.

2.3 Structure of Gene Ontology Terms

Each GO term has a unique identifier in the form of “GO:xxxxxxx” where x repre-

sents a digit between 0 and 9. As it is mentioned in previous section, there are three

main ontologies in GO. Each category has its own root and they are formed as di-

rected acyclic graphs. Nodes in the graphs represent GO terms. An example part of

GO graph is given in Figure 2.3. GO terms are connected to each other with four type

of relationships which are is-a, part of, has part and regulates.

• If there is an is-a relationship between GOA and GOB, then GOB is a more

specific term than GOA. Namely, GOA is a parent of GOB. For example, there

is an is-a relationship between GO:0005515 (protein binding) and GO:0005488

(binding). So, if a protein is annotated by GO:0005515, then it is inherently

annotated by GO:0005488.

• If there is a part of relationship between GOA and GOB, then GOB has to be a

part of GOA. For example, cytoplasm is part of cell.

• has part relationship is specifically used when GOB always has part of GOA.

Namely, if GOA exists, then GOB always exists.

• Finally, regulates relationship occurs if a GO term activity directly impacts the

7



expression or behaviour of another GO term.

Figure 2.3: Structure of GO terms ([7])

2.4 Enzyme Commission (EC) Number

Enzyme Commission numbers are recommended by the Nomenclature Committee of

the International Union of Biochemistry and Molecular Biology (IUBMB). EC num-

bers are used for functional classification of enzymes based on a hierarchy [8]. EC

numbers show the biological or chemical reactions of enzymes and they are repre-

sented as four numbers/dashes separated by periods. The first three digits show type

of the reactions. Last digit of each EC number shows the substrate information [9].

Structure of EC numbers is represented as a tree in Figure 2.4. There is also is-a re-

lationship between EC numbers as GO terms. Therefore, an EC number should have

functions of its parents.

Figure 2.4: Structure of EC numbers
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2.5 Domains and Motifs

Domains are discriminative functional or structural blocks that are related to various

important activities of proteins such as interactions, functions etc. Proteins may have

single or multi-domains and functions of proteins are highly dependent of the do-

mains that they contain. In most of the cases, single domains determine function of

a protein. However, multiple domains can collaborate to determine a single function,

too [10]. Motifs are conserved regions in proteins, which are short compared to do-

mains. Motifs can be used characterization of proteins that belong to the same groups.

Motifs and domains are related because a domain may have common motifs and func-

tions of a protein can be determined by identifying motifs that exist in corresponding

domain. Therefore, both domains and motifs can be used to determine functions of

proteins. An example of representation of a domain and motif of a protein over 3-D

structure of corresponding protein is given in Figure 2.5.

Figure 2.5: Demonstration of domain and motif over 3-D structure of a protein

InterPro is a database where domains, sites and protein family membership infor-

mation of proteins are stored. Several sources generate protein family and domain

information of proteins, called signatures, based on different methods for InterPro

database [11]. Most of the protein function prediction methods that give annotations

for UniProtKB generate predictions based on InterPro signatures.
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CHAPTER 3

RELATED WORK

Several studies are proposed in the literature for functional predictions of enzymatic

and non-enzymatic proteins ([12], [13]). There are various data sources that provide

many types of biological information which can be used for functional classification

of proteins such as sequence, protein structure, physicochemical, protein-protein in-

teractions, gene expression information ([3],[14],[15],[16]). Some of the methods use

only one type of biological data whereas others use combination of different types of

biological information to predict functions of proteins. Automated protein function

prediction methods that are based on protein sequences can be divided into three

groups [13] :

• Homology-based approaches

• Subsequence-based approaches

• Feature-based approaches

Homology-based approaches determine function of a protein by aligning target se-

quence with sequences whose functions are known and transferring functions based

on degree of similarity. Subsequence-based approaches use important regions of se-

quences such as domains and motifs that are highly related to functions of corre-

sponding proteins. Feature-based methods converts sequence of proteins into biolog-

ical features such as molecular weight, polarity etc. Computational methods that are

used for determining functions of proteins can be considered in two groups which

are transfer approaches and classification approaches. Transfer approaches determine

functions of proteins based on homology and biological relations between proteins.
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Automated function prediction techniques that use biological data with data mining

and machine learning methods are called classification approaches. In classification

approaches, functions of proteins are considered as classes and training data is pre-

pared for each functional class separately. Classification approaches became more

popular, since they give more accurate predictions than transfer approaches. There

are several methods that use transfer approach and classification approaches. Some

methods give predictions by combining the results of other prediction systems. When

a protein sequence is queried, the predictions that are agreed by majority or all of the

prediction systems are given as output. In recent years, many computational methods

are proposed for protein function annotation using GO terms and EC numbers.

ConFunc uses conserved residues of sequences and generates position specific scor-

ing matrices for GO terms by considering hierarchical structure of GO terms to make

protein function predictions [17]. ConFunc groups sequences that have the same GO

terms and conserved subsequences are found within the same groups. Then, using

GO terms and conserved subsequences position specific scoring matrices are con-

structed to be able to give predictions. ConFunc is applied on MF GO terms for 7150

sequences. Precision and recall values are obtained as 0.77 and 0.41, respectively.

CombFunc is another tool that gives predictions based on GO terms which uses gene

expression, protein sequence and protein-protein interactions by incorporating Con-

Func [18]. Protein-protein interaction data is used by applying neighbor counting

algorithm including indirect neighbors. Co-expressed genes are extracted from gene

expression data and frequencies of GO terms in the co-expressed gene set are calcu-

lated. Then, support vector machines are used for classifications. CombFunc is tested

on 1686 protein set and algorithm is applied for BP and MF GO terms. Precision and

recall values for BP GO terms are 0.74 and 0.41, respectively. For MF GO terms,

precision and recall values are calculated as 0.71 and 0.64, respectively.

PFP assigns a score for each predicted GO term after running PSI-BLAST to get

similar sequences to the target sequence using e-values. Then, predictions are given

using data mining methods by considering GO hierarchy [19].

GOtcha predicts GO terms for a given protein or DNA sequence by calculating term-

specific probabilities and gives scored matches as output [20]. Term-specific prob-
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abilities are calculated according to frequencies of GO terms taken from result of

BLAST search of target protein.

JAFA is a meta-server created for protein function annotation problem that uses five

function prediction methods and gives scores according to agreement of predicted

functions for queried sequences. It also gives the level of the predicted GO term on

the GO hierarchy. As the number of level increases, the given prediction becomes

more specific and the scores of predictions are calculated by taking into account the

GO hierarchy [21].

Roy et al. proposed a novel approach to protein function prediction, COFACTOR,

which takes 3-D structure of the proteins as input and gives predictions based on

EC numbers, GO terms and protein-ligand binding sites as output. Predictions are

given by applying two phases. The former one is global structural alignment of the

queried protein. Global structural alignment is done by applying a heuristic algo-

rithm followed by a variation of Needleman-Wunsch algorithm. The second phase

is to identify local functional sites of queried protein by applying another heuristic

algorithm to find best functional sites between query and training proteins [22].

Vinayagam et al. proposed GOPET for automated protein function annotation prob-

lem based on Gene Ontology terms. Protein/nucleotide sequences are blasted against

16 well-known GO annotation databases and proteins are separated into two classes

according to similarity search and their functions. Then, support vector machines are

used to make predictions. GOPET gives a confidence value for each prediction [23].

HAMAP (High-quality Automated and Manual Annotation of Proteins) is proposed

by Gattiker et al. which is originally created for automated protein function anno-

tation of microbial proteins by generating rules. HAMAP is created as a supporting

tool for manual annotations for UniProtKB/SwissProt. The system is integrated into

UniProt annotation pipeline. HAMAP procedure includes similarity searches against

SwissProt/TrEMBL, InterPro searches, profile searches and the system is extended to

eukaryotic proteins [24].

Kretschmann et al. proposed SpearMint system which is an automated rule gen-

eration system for protein function annotation. Rules are generated by considering
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length of the sequences, InterPro signatures and taxonomic information using entries

in UniProtKB/SwissProt [25]. SpearMint system is improved and the name of the

system is changed as Statistical Automatic Annotation System (SAAS). The system

is integrated into UniProt pipeline and continuously updated. SAAS system gives

prediction for many properties of proteins including GO terms and EC numbers [26].

The Unified Rule (UniRule) system is another system that is currently used at EBI to

create, store, and apply manual rules by accompanying other systems that are used.

UniRule system gives annotations for several properties of proteins including func-

tional annotations such as GO terms and EC numbers. Since, the created rules are

constructed and tested by expert curators the annotations that are given by this sys-

tem is highly reliable [26].

EnzML is an automated method that is proposed for multi-label prediction of EC

numbers using InterPro signatures. A modified version of k-Nearest Neighbor (kNN)

using binary relevance algorithm is used as classification algorithm. Training dataset

is converted into fixed dimensional dataset using Binary Relevance algorithm where

number of dimensions are the number of EC numbers to be predicted [27].

Silveria et al. proposed ENZYMatic Annotation Predictor (ENZYMAP) for charac-

terizing and predicting EC numbers. The aim of the system is to annotate enzymes

based on the annotation changes between different releases of UniProtKB/SwissProt

EC number annotations. Organism Classification (OC), Reference Position (RP) and

Keyword (KW) properties of annotations are used to characterize the changes EC

number annotations between releases. Three classification techniques are applied

which are Naïve Bayes, k-Nearest Neighbor ( kNN) and C4.5 decision tree algorithm

to classify EC numbers and their comparisons are performed [28].

Several approaches and computational methods are proposed for functional classifi-

cation of proteins. When we investigate automated function prediction methods that

use protein sequences, we see that homology-based approaches are the most exten-

sively used methods in protein function prediction, since they are fast and easy-to-

implement. There are various methods that use transfer approach based on similar-

ities and guilt-by-association methods. However, when we investigate the results of

employed methods, we see that computational methods that use machine learning
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and data mining techniques give more accurate predictions than transfer approaches.

In addition, combination of different approaches that use different types of biologi-

cal data enhance the prediction results. However, most of the available methods are

trained and tested on small datasets due to lack of data and computational resources.

Therefore, comprehensive studies that use large datasets are insufficient in the litera-

ture.
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CHAPTER 4

MATERIALS AND METHODS

4.1 Materials

4.1.1 Data Preparation For GO Terms

In this study, GO term annotations from UniProtKB/SwissProt Release 2014_10 are

used for training. There are 14 columns that represent different properties of anno-

tations in Swiss-Prot database. We used Gene Product ID, GO Identifier, GO Term

Name, Aspect and Evidence Code columns in our study. Evidence Code column

shows how annotations are done and which methods are followed. There are 21 types

of evidence codes and only Inferred from Electronic Annotation (IEA) evidence codes

are not based on manual curation. The remaining evidence codes are manual evidence

codes. There are four categories of manual evidence codes:

• Experimental evidence codes

• Computational Analysis evidence codes

• Author Statement evidence codes

• Curational Statement evidence codes.

Protein functions that are assigned by experimental evidence codes are based on ex-

perimental data and they are considered as highly reliable annotations. Annotations

that are done by evidence codes that are in the other categories are less reliable al-

though they are annotated by experienced curators. The explanations experimental

evidence codes is given in Table 4.1.
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Table 4.1: Experimental evidence codes

Evidence Name Evidence Code
Inferred from Experiment EXP

Inferred from Direct Assay IDA
Inferred from Physical Interaction IPI
Inferred from Mutant Phenotype IMP
Inferred from Genetic Interaction IGI
Inferred from Expression Pattern IEP

In previous version of GOPred, annotations based on EXP, IDA, IPI, IMP, IGI and

IEP and TAS (Tracable Author Statement) evidence codes were included in positive

training dataset. In this study, we removed TAS evidence code and used annotations

that have only experimental evidence codes which are EXP, IDA, IPI, IMP, IGI and

IEP. The remaining 15 evidence codes are not used since annotations based on other

evidence codes have much more noisy data. All of the evidence codes are available

in Appendix B.1.

Positive and negative data preparation is very important in classification problems.

In protein function prediction problem, positive data preparation is simple. But, a

reasonable method should be applied to prepare negative training data. Data prepro-

cessing and positive data preparation can be summarized as follows:

After we downloaded all protein annotations from Swiss-Prot database, annotations

whose evidence codes are different from experimental evidence codes are removed.

Subsequently, all annotations are propagated to the parents of annotated GO terms

according to the "true path rule", which defines inheritance relationships between GO

terms [6]. In other words, if a protein is annotated by a GO term, it is considered as it

is also annotated by the parents of corresponding GO term. Subsequently, duplicate

annotations are removed and number of GO terms to be trained are determined by

counting number of proteins that are associated with GO terms. GO terms that have

50 or more unique protein associations with experimental evidence codes are selected

for training. We added a new rule to negative data preparation method that is proposed

by Sarac et al. and applied to our problem [1]. A protein annotation should fulfill the

following properties to be included in the negative set of a GO term:
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• Protein should have at least 5 unique annotations by any evidence codes

• GO term annotations of the protein should not contain target GO term or any of

its children.

• If protein is annotated by parent/s of the target GO term, it should be annotated

by a sibling of the target GO term.

The first rule is added and it is applied as a precondition to the existing rules. Its aim

is to increase the probability of a protein being in negative training dataset of a GO

term so that it would never have the function of corresponding GO term. Negative

dataset preparation for each GO term is presented in the Figure 4.1. Each node rep-

resents a GO term and the nodes marked with “X” shows the target GO term. Nodes

that are marked with “A” shows annotations that are done for the candidate protein.

In the upper graph, since protein is not annotated by target GO term or any of its

descendants, it is included in negative training dataset of target protein. In the other

graph, protein is not annotated by target GO term or any of its descendants. However,

it is annotated by an ancestor of target term. So, we have to check if it is annotated by

a sibling of target term or not. Since it is annotated by the sibling of the target term,

it is included in the negative training dataset as well.

Figure 4.1: In a) protein is not annotated by a parent of X. So, only first and second

rules are checked. In b) since protein is annotated by a parent of the target term,

annotations should obey all rules. Further information can be found in text.
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4.1.2 Data Preparation For EC Numbers

We used EC number annotations from Swiss-Prot database. There are 547,085 pro-

teins available in in UniProtKB/SwissProt Release 2014_11 and 256,692 of them are

classified as enzymes. EC number annotations have no evidence code attribute. So,

we used all the enzyme annotations available in Swiss-Prot. Only most specific an-

notations are given in the database in order to reduce redundancy. Therefore, we

propagated annotations to their parents. EC numbers that have more than 50 enzyme

associations are determined and selected for training. We prepared training data for a

classifier based on its level which is proposed in [2]. Positive and negative dataset for

classifiers are prepared according to the rules below:

• Positive training data for EC number X:

– Proteins that are associated with X and proteins associated with descen-

dants of X

• Negative training data for EC number X:

– Proteins that are associated with siblings of X and proteins associated with

descendants of siblings of X

Positive and negative training data preparation method for EC numbers is illustrated

in Figure 4.2. Since, there are four levels in EC hierarchy, positive and negative

training data preparation is employed for each level, separately. The aim of this data

preparation method is to discriminate the function of an EC number against its sib-

lings without considering other EC numbers. In the figure, dark green EC numbers

represent target EC numbers. Proteins that are associated with green EC numbers are

included in positive training dataset of target EC number. Proteins that are annotated

by red EC numbers are included in negative training dataset of target EC number.

Proteins that are associated with grey EC numbers are not considered in training data

preparation.
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4.2 Methods

After training data is prepared with the new modification, twenty percent of sam-

ples are separated as validation dataset. GOPred consists of methods from different

approaches which are Blast-kNN, SPMap and Pepstats-SVM [1]. In this part, these

methods are explained briefly. GOPred is applied on classification of GO terms for

all GO aspects. It is also employed functional classification of enzymes using EC

numbers. In previous version of GOPred, only probabilities were given for each pre-

dicted term. In this study, we employed two methods to determine the predictions to

be given instead of probabilities. First, a single global threshold is determined. Sub-

sequently, different decision thresholds are determined, since terms are trained with

different training data. The results of two methods are compared. We proposed a hi-

erarchical evaluation method for EC numbers whose aim is to give predictions based

data preparation method. Finally, overview of the system is explained.

4.2.1 Blast-kNN

k-Nearest Neighbor algorithm [29] is used with Blast [30] as the first method. Simi-

larity search is done among training dataset of each functional term and k Blast scores

are taken. The score for an input protein is calculated by Equation 4.1.

OB =
Sp − Sn

Sp + Sn
(4.1)

Sp is sum of k-nearest positive Blast scores and Sn is sum of k-nearest negative Blast

scores of target functional term. This equation gives a score between -1 and 1. Neg-

ative scores mean that target protein is more similar to proteins that are in negative

set. If the calculated OB score is positive, target protein is more similar to proteins in

positive training dataset.

4.2.2 SPMap

Sarac et al. proposed a subsequence-based method for functional prediction of pro-

teins [31]. SPMap consists of three main modules:
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• Subsequence Extraction Module: Fixed-length subsequences of protein se-

quences in positive training set are extracted. Extraction is done by selecting

fixed-length subsequence starting from the first amino acid and shifting one by

one.

• Clustering Module: Extracted subsequences are clustered based on their simi-

larities. Similarities of subsequences are calculated using BLOSUM62 matrix.

If similarity of a subsequence is over a certain threshold, it is included in the

most similar cluster. Otherwise, a new cluster is created.

• Probabilistic Profile Construction: Probabilistic profiles are constructed for

each obtained cluster based on the amino acid positions of subsequences within

corresponding cluster. Number of probabilistic profiles are the same as number

of clusters.

After construction of probabilistic profiles, proteins are represented as fixed-dimensional

feature vectors using probabilistic profiles where number of dimensions is equal to

number of probabilistic profiles. Finally, proteins that are converted into feature vec-

tors are given as input to SVM classifier. SVM-light software is used as SVM classi-

fier [32].

4.2.3 Pepstats-SVM

Pepstats is a tool available in The European Molecular Biology Open Software (EM-

BOSS) that calculates statistics for proteins such as molecular weight, number of

residues, charge etc [33]. Proteins are represented as 37-dimensional vectors using

Pepstats and obtained dataset is given as input to SVM classifier.

4.2.4 Calculation of Combined Prediction Scores

Prediction results of Blast-kNN, SPMap and Pepstats-SVM are converted to proba-

bilities using threshold relaxation method [31]. Threshold relaxation method is also

used to overcome imbalanced positive and negative training dataset problem. After

prediction scores are converted into probabilities, the results of three methods are
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combined and a single score called Weighted Mean (WMean) is calculated. WMean

assigns a weight for each method and it represents a probability value. WMean favors

best performed method for the input sequence.

4.2.5 Defining A Global Decision Threshold

When a protein sequence is given as input, we assign a probability value (WMean)

for each trained term and generate a prediction file as output for the query protein.

The output file contains four columns where columns are GO ID, WMean, SPMap,

Blast-kNN and Pepstats-SVM scores, respectively. Each row represents a term that

are sorted in descending order by WMean value.

In this part of the study, the aim is to find a general threshold value for predictions ac-

cording to WMean. As it is mentioned in section 4.1.1 and section 4.1.2, hierarchical

structures of GO and EC are considered while preparing training datasets. Therefore,

we determined optimal decision thresholds based on GO and EC hierarchy. Our aim is

to determine the terms that are associated with corresponding protein by considering

predictions over the specified threshold. The pseudocode of the algorithm that is used

to determine optimal threshold is given in Algorithm 1 which can be summarized as

follows:

First, we run extended system for protein sequences in the validation set and get the

prediction scores. Swiss-Prot annotations are also determined for corresponding pro-

teins. Optimal threshold and F-Score value of the optimal threshold are assigned to 0

at the beginning. Subsequently, true positive, false positive, false negative predictions

are determined for each threshold value as follows: Predicted terms whose scores

are greater than the specified threshold value are marked as true positives for each

protein, if the protein is annotated by corresponding term or one of its parents. Oth-

erwise, it is marked as false positive. If prediction score is less than the threshold and

protein is annotated by predicted term in Swiss-Prot database, prediction is marked

as false negative. Optimal threshold and corresponding F-Score values are updated, if

calculated F-Score for selected threshold is greater. Finally, best F-score and decision

threshold is found and it is used as general optimal threshold.
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Algorithm 1 Pseudocode of Global Decision Threshold Algorithm
Require: protein_predictions: is a map where keys are protein ids and values are

list of lists. Each sub-list holds a predicted term and corresponding prediction

score, protein_annotations: is a map where keys are protein ids and values are

list of terms and their parents that are associated with corresponding protein

optimal_threshold← 0.00

fscore← 0.00 // fscore holds calculated fscore value for optimal threshold

threshold← 1.00

while threshold ≥ 0.00 do

for all P ∈ validation_dataset do

for all Prediction ∈ protein_prediction[P ].keys() do

term holds predicted term and SCORE holds prediction score

if SCORE ≥ threshold then

if term ∈ protein_annotations[P ] then

TP ← TP + 1

else

FP ← FP + 1

end if

else if term ∈ protein_annotations[P ] then

FN ← FN + 1

end if

end for

end for

temp_fscore← F − Scoreforthreshold
if temp_fscore > threshold then

fscore← temp_fscore

optimal_threshold← threshold

end if

threshold← threshold− 0.01

end while

return (optimal_threshold,fscore)
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4.2.6 Determining Optimal Thresholds For Terms

Determining optimal threshold values for probabilistic classifiers is an important and

difficult problem, especially when training data is unbalanced and classes of some ex-

amples are undefined. Datasets can be unbalanced when number of samples belong-

ing a class significantly more than the samples of other classes. In some cases, data

is unlabeled and classes for corresponding data are created using heuristics. There-

fore, labeled samples by heuristics may not be relevant to assigned classes. In addi-

tion, evaluation metrics vary among different problems. There are various evaluation

metrics such as accuracy, sensitivity (recall), specificity, precision. Accuracy shows

correctly classified samples over all of the samples. Sensitivity represents correctly

classified samples in positive dataset over all samples in positive dataset whereas

specificity shows correctly classified samples in negative dataset over all samples neg-

ative dataset. Finally, precision shows correctly classified samples in positive dataset

over all samples that are classified as positive. In some cases, accuracy value is cal-

culated for different thresholds and threshold with highest accuracy value is chosen

as optimal threshold. In some other problems, the goal is to achieve high sensitivity

while in others the goal is high specificity. In most of the biological applications,

majority of the data is negative such as protein function prediction problem. In addi-

tion, even proteins in negative training datasets created using logical methods, we are

not sure whether they are negative. Therefore, performance measure should be done

considering these issues.

In protein function prediction problem based on GO terms and EC numbers, obtaining

positive data is trivial. However, even negative training data is chosen artificially by

considering hierarchical structure of terms, it is not guaranteed that every single pro-

tein in negative set is actually negative. Therefore, a good balancing method should

be applied in order to avoid bias. Namely, system should be penalized more for false

negative predictions where it should be penalized less for false positive predictions.

Chen et al. proposed a method for decision threshold adjustments in classification

problems and conducted experiments on different datasets for different classification

methods [34]. The method is also used to determine optimal decision threshold for

Receiver Operating Characteristic (ROC) analysis [35]. ROC curves are created by
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plotting false positive rate against true positive rates for different thresholds. It is

extensively used evaluation of performances of classifiers and finding optimal deci-

sion thresholds. In the study, the following equation is derived to determine optimal

threshold for probabilistic classifiers where optimal threshold is set to the threshold

with minimum error:

PERR(τ) = 1− (SN(τ)× π1 + SP (τ)× π0) (4.2)

In the equation, τ , SN , SP , π1, π0 stands for threshold, sensitivity, specificity, prior

probabilities of positive and negative samples, respectively. PERR represents error

value regarding performance of classifier for selected threshold τ . In our study, we

modified the equation and add a new coefficient Θ as a balancing factor between false

negative and false positive predictions. The modified equation can be seen below:

PERR(τ) = 1− (SN(τ)× π1 ×Θ + SP (τ)× π0) (4.3)

Our aim is to minimize the obtained error value using Equation 4.3. The added coef-

ficient is used to relax threshold to increase the number of true positive predictions.

When we relax the threshold, number of false positive predictions increases as well

as number of true positive predictions. However, small number of increase in false

positive predictions is negligible, when we consider ambiguity of proteins’ class in

negative datasets. The value of Θ is determined by selecting highest F-Score with

minimum error. F-Score is a statistical measure which is a harmonic mean of preci-

sion and recall values.

In this section, the aim is to find a threshold value for each term individually. Each

term is considered as a separate classifier and therefore, performance measure is done

separately. The procedure that is followed to find true positive, false positive, true

negative and false negative predictions for each term is given in Algorithm 2. The

pseudocode of the algorithm can be explained as follows :

First, proteins in validation set are separated as positive and negative sets for each

term. Positive and negative sets are prepared according to data preparation meth-

ods presented in section 4.1.1 and section 4.1.2. However, when we separate sets,

negative validation sets become too large than positive validation sets. To eliminate

bias, number of proteins in negative validation sets is set to be same as the number of
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proteins in positive validation sets by randomly selecting equal number of proteins.

Each protein that is in positive validation set of a term is marked as true positive, if

its prediction score is above the threshold. Otherwise, it is marked as false negative.

Subsequently, each protein that is in negative validation set of a term is marked as

false positive, if its prediction score is above the threshold. Otherwise, it is marked

as true negative. After true positive, false positive, true negative and false negative

predictions are found, F-Score and error values are calculated for selected threshold.

Finally, threshold with minimum error and maximum F-Score value is selected as

optimal threshold. This algorithm is run five times and average of the values are con-

sidered.

4.2.7 Hierarchical Evaluation of Predictions

In this section, a hierarchical evaluation method is proposed to give predictions for EC

numbers. Proposed method is used to determine predictions by applying an algorithm

consistent with the data preparation method. The pseudocode of the algorithm is

given in Algorithm 3. The algorithm is run for all predictions of input sequences

separately. The steps that is followed to apply hierarchical evaluation of EC number

can be summarized as follows:

After training, optimal decision thresholds are calculated for each EC number ac-

cording to the method explained in Section 4.2.6. First, predicted EC numbers and

parents of corresponding EC numbers are extracted for each protein. Scores of each

predicted EC number and its parents are compared with optimal thresholds of cor-

responding EC numbers starting from first-level parents up to the level of predicted

EC number. If prediction scores of predicted EC and all of its parents are greater

than the optimal thresholds of corresponding EC number, predicted term is selected

as output for corresponding protein. The hierarchical evaluation method that is used

is illustrated in Figure 4.3.
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Algorithm 2 Pseudocode of Determining Optimal Thresholds For Terms
Require: positive_proteins: is a map where keys are terms, values are proteins

that are associated with corresponding terms, negative_proteins: is a map where

keys are terms and values are proteins that are negative according to negative data

preparation rules,term_list: list of trained terms

for all term ∈ term_list do

optimal_threshold← 0.00

threshold← 1.00

while threshold ≥ 0.00 do

for all pos_P ∈ positive_proteins[term] do

SCORE holds prediction score of term for pos_P

if SCORE ≥ threshold then

TP ← TP + 1

else

FN ← FN + 1

end if

end for

for all neg_P ∈ negative_proteins[term] do

SCORE holds prediction score of term for neg_P

if SCORE ≥ threshold then

FP ← FP + 1

else

TN ← TN + 1

end if

end for

Calculate error according to the equation 4.3

if error < err then

err ← error

end if

threshold← threshold− 0.01

end while

end for
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Algorithm 3 Pseudocode of Hiearchical Evaluation of EC Numbers
Require: list_of_ec: is a list where items are trained EC numbers,

optimal_thresholds: is a map where keys are trained EC numbers and val-

ues are optimal thresholds of corresponding EC numbers, prediction_scores: is

a map where keys are trained EC numbers and values are prediction scores of

corresponding EC numbers, parents_ec: is a map where keys are trained EC

numbers and values are parents of corresponding EC number

real_predictions:= {} // real_predictions holds final predictions given for

protein

is_all_predicted← True // a flag that indicates whether prediction scores of all

of the parents of ec are over optimal thresholds

for all ec ∈ list_of_ec do

score← prediction_scores[ec] // score holds prediction score of ec

if score > optimal_thresholds[ec] then

for all parent ∈ parents_ec[ec] do

if prediction_scores[parent] < optimal_thresholds[parent] then

is_all_predicted← False

end if

end for

end if

if is_all_predicted = True then

real_predictions.add(ec)

end if

end for

return real_predictions
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4.2.8 General Overview of The System

General overview of the system is given in Figure 4.4. Structure of the system can be

summarized as follows:

First, training and validation datasets are created using Swiss-Prot database. Datasets

are created for each term separately according to methods explained in Section 4.1.1

and 4.1.2. After training datasets are created, each term is trained and prediction

models are generated for each term. Subsequently, validation data is given as input

to created models and predictions are obtained for validation data. Finally, system is

evaluated and optimal thresholds are determined for each term based on prediction

results. When a sequence is given as input, predictions whose scores are over prede-

fined thresholds are given as output for GO terms. If the input sequence is queried for

EC numbers, hierarchical evaluation method described in previous section is applied

to give predictions.

Figure 4.4: General overview of the system
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4.2.9 Training and Testing

Our system is trained and tested under European Bioinformatics Institute (EBI) clus-

ter system. EBI is a part of European Molecular Biology Laboratory that is a worldly-

known research institute. EBI provides various types of biological and molecular

databases, including UniProt [36]. EBI cluster is a computer farm that have hundreds

of computational nodes. There are several terabytes of RAM and storage. EBI cluster

system has the following properties:

• 760 nodes consisting of 21,000 hyper-threaded CPU cores.

• 1 node with 1 TeraByte of RAM and 64 CPUs.

• 6 nodes with 2 TeraByte of RAM and 64/128 CPUs.

• 550 nodes with 128 Gigabyte of RAM.

We parallelized GOPred system for training and testing on EBI cluster. Each term is

trained on a different core and the system is distributed over 500 cores for training

and testing.
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CHAPTER 5

RESULTS

In this study, we used ontology terms as our classifiers for GO and EC. We trained

514 molecular function GO terms, 2909 biological process GO terms and 438 cel-

lular component GO terms. In EC category, 851 EC numbers are also trained using

hierarchical data preparation and evaluation method. Optimal decision thresholds are

determined using the Equation 4.3 which shows an error value according to perfor-

mance of classifiers based on different thresholds. Statistical significance of results

are shown using F-Score which is combination of precision and recall. In the formu-

las, TP, FP, TN and FN represent true positive, false positive, true negative and false

negative, respectively.

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

Specificity =
TN

FP + TN
(5.3)

F − Score =
2× Precision×Recall
Precision+Recall

(5.4)

5.1 General Optimal Thresholds and Terms as Classifiers

General optimal thresholds are calculated for MF, BP and CC GO terms according

to the algorithm that is given in Section 4.2.5. F-Score values are calculated as 0.80,

0.69 and 0.72 for for MF, BP and CC categories of GO, when general optimal thresh-

olds are used. F-Score value for EC numbers is calculated as 0.85 for the determined
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general optimal threshold. Since, terms are trained separately with their own train-

ing data, we determined optimal thresholds for each term according to the algorithm

given in Section 4.2.6. ROC curves and determined cut-off points for GO:0019899,

GO:0017076, GO:0015276 and GO:0043167 are given in Figure 5.1. Cut-off points

that are calculated for GO terms are marked with red crosses over the curves. F-Score

values for determined cut-off points are 0.68, 0.92, 0.89 and 0,79 for GO:0019899,

GO:0017076, GO:0015276 and GO:0043167, respectively. When we examine the

positions of decision thresholds, we see that they are put on plausible places.

Figure 5.1: ROC curves for GO:0019899, GO:0017076, GO:0015276 and

GO:0043167. Red crosses over blue lines show the decision threshold points for

corresponding classifiers

5.2 GO Term Prediction Results

Positive and negative data preparation is applied for three different aspects of GO

terms separately. Number of GO terms to be trained is determined as 514, 2909 and

438 for MF, BP and CC aspects of GO terms, respectively. Total number of proteins

used in positive sets of each GO category and numbers of annotations that are used

for corresponding categories are summarized in Table 5.1.
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Table 5.1: Summary of training data statistics

GO Aspect # of GO Terms # of Proteins # of Annotations
MF 514 32192 197,665
BP 2909 41994 1,357,805
CC 438 39455 399,952

Twenty percent of positive and negative training data is not included training set and

used as validation set. After training, we gave validation set as input to our system

and calculated F-Score values for each GO term. F-Score values are determined by

changing WMean value and calculating F-Score for corresponding WMean value.

Subsequently, maximum F-Score value is selected for GO terms. GO term vs. F-

Score plots for MF, BP and CC GO terms can be seen in Figure 5.2, Figure 5.3 and

Figure 5.4, respectively. GO terms are ordered in descending order according to F-

Score values and they are separated into groups based on their F-Score values. GO

terms whose F-Score values are between 1.0 and 0.9 are coloured as red. GO terms

whose F-Score values between 0.9 and 0.8 are coloured as blue and so on. F-Score

intervals and corresponding colours is given in corresponding figures. Average F-

Score values are calculated as 0.86, 0.75 and 0.80 for molecular function, biological

process and cellular component aspects of GO respectively. Results show that our

method can predict molecular function GO terms with a higher performance. In ad-

dition, performance results for biological process and cellular component GO terms

are satisfactory.

Figure 5.2: Plot of MF GO terms versus their F-score values.
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Figure 5.3: Plot of BP GO terms versus their F-score values.

Figure 5.4: Plot of CC GO terms versus their F-score values.
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5.3 EC Number Prediction Results

851 EC numbers are trained using our method. There were 901 EC numbers that have

50 or more protein associations. However, there were not enough negative training

data for 50 of them. So, they are excluded from trained EC numbers. Number of EC

numbers that are trained in each level is given in Table 5.2. We prepared 6 training

dataset for first-level classifiers, 50 training dataset for second-level classifiers, 114

training dataset for third level classifiers and 681 training dataset for fourth level

classifiers.

Table 5.2: Number of EC numbers trained in each level

Level Number of Classifiers
First 6

Second 50
Third 114
Fourth 681

After training, F-Score values are calculated and average F-Score value is calculated

as 0.96 which is higher than the average F-Score values of different aspects of GO

terms. Therefore, we can conclude that enzymes carry very distinctive signals on their

sequences about their functions and out method identifies these signals successfully

Figure 5.5: Plot of MF GO terms versus their F-score values.

39



5.4 Testing GOPred On TrEMBL Proteins

System is tested on about 56 million TrEMBL proteins for MF GO terms. After

the predictions are obtained for input TrEMBL proteins, optimal thresholds that are

calculated in training phase are used to determine the predictions to be given. Predic-

tions whose scores are over the calculated optimal decision thresholds are determined

and presented. Our system gave predictions for 17,657,998 proteins within about 56

million proteins. 76,836,472 predictions are given in total for MF GO terms.

In addition, EC number prediction is performed for about 1.7 million enzymes that

are selected from TrEMBL database. After the predictions are obtained, hierarchical

evaluation method is applied to present predictions for EC numbers. Our system gave

predictions for 1,461,145 enzymes. 1,644,656 predictions are given for predicted

proteins.

Subsequently, Comparator tool is used to compare our predictions with the predic-

tions of TrEMBL reference systems. Comparator compares predictions that are given

by target system with the annotations that are done by TrEMBL reference systems and

it gives statistical information about the predictions that are given by the target system

by considering hierarchical structure of GO terms and EC numbers.

5.4.1 Comparison of Predictions

In this section, our aim is to compare the predictions given by our system with the an-

notations in TrEMBL database. We used Comparator system which is a software tool

developed by members of UniProt [37]. Comparator tool compares predictions that

are given by different prediction systems with the predictions given by the automated

and semi-automated TrEMBL reference systems. Hierarchical structure of functional

terms is also considered, when predictions are evaluated. Therefore, it gives similar-

ity information for predictions. Comparator gives two types of output. The former

one is protein-based output which consists of three types of information :

• Number of Predicted Entries shows number of proteins that are predicted by a

prediction system.
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• Entries with NEW predictions shows number of proteins that does not have any

annotations in TrEMBL whereas prediction method gives at least a prediction

for corresponding proteins.

• Others represents proteins that have at least one annotation in TrEMBL database.

The result of comparisons based on prediction proteins can be seen Figure 5.6.

Figure 5.6: Comparator results based on predicted proteins

The second output of Comparator shows prediction-based results. It evaluates pre-

dictions based on hierarchy and gives five type of information according to the simi-

larities of predictions that the new system gives. The explanation of the five output is

as follows:

• Number of Predictions Compared represents number of predictions given for

input sequences.

• Predictions with New shows the number of predictions that are given for pro-

teins that do not have any annotation in TrEMBL database

• Predictions with IDENTITY represents the predictions where the same annota-

tions are available in TrEMBL.

• Predictions with SIMILARITY shows predictions that are given by our system

where the same protein is annotated by descendant or ancestor of predicted GO

term.
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• Predictions with MISMATCH shows predictions that are neither identical nor

similar to available predictions. The result of comparisons based on predictions

can be seen 5.7

Figure 5.7: Comparator results based on predictions

Number of predictions given by each GO term is calculated to be able to see the dis-

tribution. GO terms are separated into four groups according to number of predictions

that they gave. Subsequently, predictions that are given by each group is calculated

and percentages of predictions that are given by each group is calculated. Percentages

of predictions given by each group is given in Figure 5.8. When we look at the results,

we see that 33% of the predictions are coming from the GO terms that gave predic-

tions between 1,000,000 and 10,000,000. 52% percent of the predictions are coming

from the GO terms that gave predictions between 100,000 and 1,000,000. 14% of the

predictions are coming from the GO terms that gave predictions between 10,000 and

100,000. Finally, %1 of predictions is coming from GO terms that gave predictions

between 1,000 and 10,000.
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Table 5.3: Summary of training data statistics (K = 1,000 M = 1,000,000)

Group Name Interval # of GO Terms
Group 1 1 M <# of Predictions<=10 M 16
Group 2 100 K <# of Predictions<= 1 M 135
Group 3 10 K <# of Predictions<=100 K 259
Group 4 1 K <# of Predictions<=10 K 104

Figure 5.8: Percentages of predictions given by each group

As it is seen in Table 5.3, 33% percent of the predictions are given by only 16 GO

terms. When these GO terms are investigated, we see that GO terms that gave pre-

dictions between 1,000,000 and 10,000,000 are too general GO terms. For example,

GO:0003824 (Catalytic Activity) GO term gives the most predictions among all of

the GO terms. When we plot GO:0003824 on GO hierarchy, we see that it is direct

descendant of Molecular Function (GO:0003674) GO term which is the most general

MF GO term. Some of the examples of GO terms in Group 1 and their prediction

numbers can be seen in Figure 5.9.
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Figure 5.9: Examples of GO terms that gave more predictions

About 1.7 million enzymes from TrEMBL database are selected to be run on Com-

parator. Nearly half of the enzymes have EC number annotations in TrEMBL and the

other half does not have any annotations in TrEMBL. So, any predictions that will be

done for enzymes that are in the second half will be considered as a new prediction.

Comparator results for EC number predictions can be seen in Figure 5.10 ve Figure

5.11. Predictions are given according to the Algorithm 3.

Figure 5.10: EC number comparator results based on predicted proteins
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Figure 5.11: EC number comparator results based on predictions

Comparator results of GO terms show that 45% of the predictions are given for the

proteins that do not have nay annotation in TrEMBL database. Remaining 55% of

the predictions are given for proteins that have at least one annotation in TrEMBL.

When the Prediction-based results are examined, 39% of the predictions are given for

proteins that do not have any annotation in TrEMBL database. 41% of the predictions

are either new or similar to existing annotations. Finally, 20% of the annotations are

different from available annotations. EC number prediction results show that 56%

of the predictions are given for the enzymes that have EC number annotations in

TrEMBL. Prediction-based results show that 45% of the predictions are given for

the proteins that do not have any EC number annotation in TrEMBL. 52% of the

annotation are similar or identical to available annotations in TrEMBL. When we

examine Comparator results, it is seen that predictions that are given by our system is

consistent with the available predictions. Besides, we can give many new predictions.

5.5 Do False Positives Are Really False Positives?

GO terms are assigned to proteins mainly based on experiments, prediction tools and

manual annotations. There are many proteins that have not been annotated by existing

GO terms even they have that function. In addition, there may exist annotations

based on experiments, but they have not been processed by biocurators. Therefore,
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predictions that are marked as false positive according to method described in Section

4.2.5 may be actually true positive.

A software tool is prepared to determine if false positive predictions are really false

positive or not. The prepared tool searches PubMed to find out if there are existing

studies about predictions, which are marked as false positive. When prediction file

of a protein is selected, false positive predictions are listed according to the specified

threshold. Subsequently, by selecting false positive annotations from the list, protein-

GO term pair is searched on PubMed so that publications for selected predictions

can be inspected. A set of results are investigated by molecular biologists and some

example cases are extracted. For example, in Figure 5.12, it is shown that protein

P00533 is associated with GO:0046983 in [38].

Figure 5.12: An example output of PubMedQuery tool

5.6 Individual vs. Combined Classifiers

In this part of the study, we compared performances of individual methods against

combination of them. First, best F-Scores are calculated for Blast-kNN, SPMap and

PepStats for each functional term. Performances of combination of classifiers based
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on WMean are also calculated. Subsequently, F-Score values of trained terms are

sorted in descending order for each method and the results are plotted. Plots are scaled

between 0.80 and 1.00 according to see the performance differences clearly. As it can

be seen in Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16, the performances

of combinations of methods are always higher than the performances of individual

methods.In addition performances of Blast-knn and SPMap methods are better than

performance of PepStats-SVM.

Figure 5.13: Performances of individual and combined classifiers for MF GO terms.

x-axis shows MF GO terms, y-axis shows F-Score values

Figure 5.14: Performances of individual and combined methods for BP GO terms.

x-axis shows BP GO terms, y-axis shows F-Score values
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Figure 5.15: Performances of individual and combined methods for CC GO terms.

x-axis shows CC GO terms, y-axis shows F-Score values

Figure 5.16: Performances of individual and combined methods for EC numbers.

x-axis shows EC numbers, y-axis shows F-Score values

48



5.7 Performance vs. Functionality

In this part of the study, we separated proteins into groups based on their number

of annotations. For example, proteins which are in group "Exactly 1" have only 1

annotation is Swiss-Prot database. Proteins which are in group "Exactly 2" have

only 2 annotations is Swiss-Prot database and so on. Subsequently, performance

of the system is measured for each group separately. The performance results is

given in Figure 5.17. x-axis shows threshold value and y-axis shows F-Score for

corresponding threshold. When we examine the results, we see that the performance

of our system is better for multi-functional proteins. The maximum performance is

achieved when the number of annotations that each protein have is 8.

Figure 5.17: Performance curves for different number of annotations.
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CHAPTER 6

CONCLUSION AND DISCUSSION

In this study, term prediction is performed using Enzyme Commission and all aspects

of Gene Ontology based on GOPred method. Previously proposed GOPred method is

improved by adding a safety rule for negative data preparation. We extended number

of molecular function Gene Ontology terms from 300 to 514. Biological process

and cellular component aspects of Gene Ontology are also added. 2909 biological

process and 438 cellular component Gene Ontology terms are trained in addition to

514 molecular function Gene Ontology terms. All system is trained with the new

extensions. Results show that average F-Score value of molecular function Gene

Ontology terms increased from 0.79 to 0.86, when the new rule is added for negative

data preparation.

General optimal threshold is determined by changing threshold (WMean) and select-

ing threshold with the best F-Score value. General optimal thresholds are defined

without considering terms as separate classifiers. The F-Score values are calculated

as 0.80, 0.69 and 0.72 for molecular function, biological process and cellular com-

ponent Gene Ontology terms, when general optimal decision thresholds are used.

However, instead of using a general optimal decision threshold, it is more reasonable

to determine separate optimal thresholds for each trained term, since performances of

classifiers are different than each other. Therefore, we used a method to determine

optimal decision thresholds for each trained term. Proposed method is used to de-

crease number of false negative predictions. F-Score values for Gene Ontology terms

are calculated as 0.86, 0,75 and 0.80 for molecular function, biological process and

cellular component Gene Ontology terms, respectively. We also showed that perfor-
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mance of our system is better for multi-functional proteins.

Same classification methods is also applied on Enzyme Commission number pre-

diction with hierarchical data preparation and evaluation methods. We trained 851

Enzyme Commission numbers including fourth level Enzyme Commission numbers.

Average F-Score value for Enzyme Commission numbers are calculated as 0.96 which

is higher than all aspects of Gene Ontology terms. This result shows that function

of enzymes can be determined more accurately with our method.To the best of our

knowledge this is the best result achieved in the literature.

Trained system is tested on about 56 million proteins TrEMBL proteins for molecular

function Gene Ontology terms. Predictions given by our system is compared with

the predictions that are given by TrEMBL reference systems. Results show that our

system gives 39% new predictions, 5% identical predictions, 35% similar predictions

and 21% mismatch predictions. As it is seen, most of the predictions that are given

by our system is consistent with the TrEMBL predictions. We investigated the Gene

Ontology terms that give significantly more predictions than others and we see that

they are too general Gene Ontology terms on the hierarchy. We also tested our system

on 1.7 million enzymes from TrEMBL database. Nearly half of the predictions are

identical or similar and the other half of the predictions is new predictions.Only a

small number of predictions are not consistent with the available predictions.

As a future work, taxonomic restriction can be added to the existing methods. Proteins

are classified according to their taxonomies in Swiss-Prot database. In addition, some

Gene Ontology terms have taxonomic information and training data can be prepared

by considering taxonomies of these GO terms. Predictions that are given for proteins

from other taxonomies can be removed to increase the prediction quality for Gene

Ontology terms that have taxonomic information. Gene Ontology term and Enzyme

Commission number predictions will be investigated by experienced curators from

European Bioinformatics Institute (EBI). GOPred system is planned to be integrated

into EBI pipeline according to the results of manual inspection.
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APPENDIX A

AMINO ACID TABLE

Table A.1: Amino acid table

Amino Acid Name 3-Letter Abbreviation 1-Letter Abbreviation
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Asparagine Asp D
Aspartic acid Cys C
Cysteine Glu E
Glutamic acid Gln Q
Glutamine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V
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APPENDIX B

GO EVIDENCE CODES

Table B.1: Experimental evidence codes

Evidence Name Evidence Code
Inferred from Experiment EXP

Inferred from Direct Assay IDA
Inferred from Physical Interaction IPI
Inferred from Mutant Phenotype IMP
Inferred from Genetic Interaction IGI
Inferred from Expression Pattern IEP

Inferred from Sequence or structural Similarity ISS
Inferred from Sequence Orthology ISO
Inferred from Sequence Alignment ISA

Inferred from Sequence Model ISM
Inferred from Genomic Context IGC

Inferred from Biological aspect of Ancestor IBA
Inferred from Biological aspect of Descendant IBD

Inferred from Key Residues IKR
Inferred from Rapid Divergence IRD

Inferred from Reviewed Computational Analysis RCA
Traceable Author Statement TAS

Non-traceable Author Statement NAS
Inferred by Curator IC

No biological Data available ND
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