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ABSTRACT 

 

 

BODY SURFACE LEAD REDUCTION ALGORITHM AND ITS 

USE IN INVERSE PROBLEM OF ELECTROCARDIOGRAPHY 

 

 

 

Fourough Gharbalchi No 

M.S. Department of Biomedical Engineering 

Supervisor: Assoc. Prof. Yeşim Serinağaoğlu Doğrusöz 

January 2015, 97 pages 

 

 

 

Determining electrical activity of the heart in a non-invasive way is one of the main 

issues in electrocardiography (ECG). Although several cardiac abnormalities can be 

diagnosed by the standard 12-lead ECG, many others are not detectable by this fixed 

lead configuration. One alternative to compensate for the imperfection of standard 

12-lead ECG in detecting many of the most informative signals is Body Surface 

Potential Mapping (BSPM), which measures ECG signals from a dense array of 

electrodes (32-256 electrodes) over the body surface. 

However, besides having no standard lead-set configuration, this method suffers 

from the need for a large number of leads to perform with an acceptable accuracy.  

Therefore, despite having the potential to be used in clinical applications, BSPM has 

not been a practically accepted method.  

This study aims to propose a specific lead-set configuration, whose acquired data is 

sufficient to be used in inverse problem of ECG to reconstruct epicardial potentials 

with high accuracy. Towards this end, in our study, a lead reduction algorithm is 
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proposed and implemented. As a result of applying the lead reduction algorithm on 

23 different data-sets related to 23 different stimulation sites on the surface of the 

heart, 23 exclusive lead-set configurations corresponding to these 23 data-sets are 

obtained. Then, by selecting the most repeated leads, two common lead-set 

configurations, one consisting 64 and the other consisting of 32 leads, are obtained.  

To assess the performance of the proposed common lead-set configurations, inverse 

problem of ECG is solved using the data obtained by these lead-sets and the results 

are compared to those of exclusively optimal lead-sets, and the original complete 

lead-set. Mean and standard deviation values of Correlation Coefficient (CC) values 

obtained at each time instant between the true epicardial potentials and the inverse 

solutions are used to compare the results. By examining these mean and standard 

deviation of CC values, it has been observed that, instead of large number of leads, 

small number of leads optimally located on the surface of the torso would be 

sufficient to reconstruct the epicardial potentials accurately.  

Additionally, inverse problem of ECG is solved using four different regularization 

algorithms, namely, Tikhonov Regularization, Truncated Total Least Squares 

(TTLS), Lanczos Truncated Total Least Squares (LTTLS), and Lanczos Least 

Squares QR (LLSQR), using data from the original complete lead-set, exclusively 

optimal and common lead-sets (32 and leads). Mean and standard deviation values of 

Correlation Coefficient (CC) for these inverse solutions are calculated and compared 

for three different data-sets. It is observed that LTTLS method reconstructs the 

epicardial potentials better than the TTLS and LLSQR methods. 

 

Keywords: Lead reduction algorithm, Tikhonov regularization, Truncated Total 

Least Squares (TTLS) method, Lanczos Truncated Total Least Squares (LTTLS) 

method, Lanczos Least Squares QR (LLSQR) method, regularization parameter 

selection methods. 
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Kalbin elektriksel aktivitesini non-invazif bir şekilde belirlemek, 

elektrokardiyografideki (EKG) temel konulardan biridir. Kalpteki anormalliklerden 

bazılarının standart 12 kanallı EKG yöntemi ile teşhis edilebilmesine karşın, başka 

birçok anormallikler, bu sabit ölçüm noktası yapılandırması tarafından tespit 

edilememektedir. 12 kanallı EKG’nin gövde üzerinden detaylı bilgi taşıyan 

sinyallerin pek çoğunu algılayamama sorununu gidermek için bir altertatif, Vücut 

Yüzeyi Potansiyel Haritalaması (VYPH) yöntemidir. Bu yöntemde EKG sinyalleri 

vücut yüzeyinden çok kanallı (32-256) bir elektrot dizisinden ölçülmektedir.  

Ancak, bu yöntemin iyi tanımlanmış bir kayıt noktası yapılandırmasının 

olmamasının yanı sıra, kabul edilebilir bir doğrululuğa ulaşabilmek için çok sayıda 

elektrot kullanılması da gerekmektedir. Bu nedenle, VYPH’nin klinik uygulamalarda 

kullanılabilme potansiyeli olmasına rağmen, bu yöntem pratik uygulamalarda kabul 

görmemiştir. 

Bu çalışmada hedef, ters EKG probleminin çözümünde epikart potansiyel 

dağılımlarının yüksek doğrulukla elde edilebilmesini sağlayacak belirli bir kayıt 
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noktası yapılandırmasının  önerilmesidir. Bu çalışmada, sözü geçen hedefe yönelik 

olarak bir kayıt noktası azaltma algoritmasi önerilmiş ve uygulanmıştır. Bu kayıt 

noktası azaltma algoritması, kalp üzerinde 23 farklı noktadan uyarılma sonucu elde 

edilen 23 farklı veri kümesine uygulanmış, bunun sonucunda 23 tane birbirinden 

farklı ve veriye özel kayıt noktası yapılandırması elde edilmiştir. Daha sonra, 

belirlenen bu kayıt noktalarından her veride en çok tekrar edilen kanallar seçilmiş ve 

biri 64 kanallı, diğeri 32 kanallı olmak üzere iki tane “ortak” (her veriye 

uygulanabilecek) kayıt noktası yapılandırması elde edilmiştir. 

Elde edilen ortak kayıt noktası yapılandırmalarının performanslarını 

değerlendirebilmek amacıyla, her bir veri kümesi için ters EKG problemi hem ortak, 

hem de kendisine özel olan kayıt noktası yapılandırmalarından elde edilmiş VYPH 

kullanılarak çözülmüştür. Sonuçlar ayrıca tüm kayıt noktalarına ait VYPH 

kullanılarak elde edilen ters EKG çözümleriyle de karşılaştırılmıştır. Bu 

karşılaştırmalarda, çözümlerle gerçek epikart potansiyelleri arasında her zaman 

anında ayrı olarak hesaplanan korelasyon katsayılarının (KK) ortalama ve standart 

sapma değerleri kullanılmıştır. KK değerlerinin ortalama ve standart sapmalarının 

kıyaslanması sonucunda görülmüştür ki, çok sayıda kayıt noktası kullanmak yerine, 

az ama yeterli sayıda ve en uygun şekilde yapılandırılmış kayıt noktalarının 

kullanılmasıyla, epikart potansiyel dağılımlarının doğru bir şekilde elde edilmesi 

mümkün olmaktadır. 

Ayrıca, bu çalışmada ters EKG problemi dört farklı düzenlileştirme yöntemi 

kullanılarak çözülmüştür. Bunlar, Tikhonov, Kesilmiş En Küçük Kareler Toplamı 

(TTLS), Lanczos Kesilmiş En Küçük Kareler Toplamı (LTTLS) ve Lanczos En 

Küçük Kareler QR (LLSQR) düzenlileştirme yöntemleridir. Bu yöntemlerle ters 

EKG problemi asıl (çok kanallı), veriye özgün elde edilmiş az kanallı, ortak elde 

edilmiş az kanallı (64 ve 32) kayıt noktası yapılandırmaları kullanılarak çözülmüş, 

çözümler birbirleriyle ve gerçek epikart potansiyelleriyle karşılaştırılmıştır. Bu 

karşılaştırmalar, yine KK ortalama ve standart sapma değerleri ile ve üç farklı veri 

seti için yapılmıştır. Sonuçlar incelendiğinde LTTLS yönteminin epikart potansiyel 

dağılımlarını TTLS ve LLSQR yöntemlerine göre daha iyi bir şekilde elde etmeye 

yaradığı görülmüştür. 
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Anahtar Kelimeler: Kayıt noktası azaltma algoritması, Tikhonov düzenlileştirmesi, 

Kesilmiş En Küçük Kareler Toplamı (TTLS), Lanczos Kesilmiş En Küçük Kareler 

Toplamı (LTTLS), Lanczos En Küçük Kareler QR (LLSQR), düzenlileştirme 

parametresi seçim yöntemleri.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

According to World Health Organization (WHO) report, an estimated 17 million 

people die of cardiovascular diseases, namely, heart attack and stroke, around the 

world every year [1]. There are over 2 million people in Turkey who are suffering 

from various types of heart diseases, and each year 160-170 thousand people die as a 

result of heart failure [2]. The yearly growing number of patients not only in Turkey, 

but also around the world has motivated researchers to seek for clinically practical 

methods to attain detailed and precise information about the electrical activity of the 

heart.  

To obtain and understand the electrical activity of the heart is important in 

order to diagnose the problem and treat it before it leads to death. Determining 

electrical activity of the heart in non-invasive way is one of the main issues in 

Electrocardiography (ECG). Although several cardiac abnormalities are diagnosable 

by standard 12-lead ECG, many others are not detectable by this fixed lead 

configuration. An alternative to compensate for the imperfection of standard 12-lead 

ECG in detection of many of the most informative signals from the torso surface is 

Body Surface Potential Mapping (BSPM). This method is an ECG technique that 

records the potentials from a wide region of the chest using 100-200 or even more 

electrodes. There is no standard configuration for the BSPM approach. Although, 

this method has the potential to be used in clinical applications, due to the large 

number of employed electrodes, it has no uptake in practical approaches. The 

attachment of large number of leads makes the BSPM approach practically hard to 

apply. However, since the acquired electrical signals of the heart using BSPM 

approach are quite accurate and contain invaluable information, when they are 
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employed to solve the inverse problem of ECG, the results are also accurate. In other 

words, solving inverse problem of ECG using BSPM provides accurate information 

about the electrical sources on the surface of the heart. 

Same as many other bioelectric signals, measured heart signals from the torso 

surface are noise contaminated, attenuated and smoothed due to inhomogeneity 

inside of the thorax. Thus, inverse problem of ECG is ill-posed and it needs to be 

regularized to give meaningful and stable solutions. Several regularization 

algorithms are proposed in literature to solve inverse problem of ECG. In this study, 

Tikhonov, Truncated Total Least Squares (TTLS), Lanczos Truncated Total Least 

Squares (LTTLS), and Lanczos Least Squares QR (LLSQR) regularization methods 

are used to solve the inverse problem of ECG to reconstruct potentials on the 

epicardial surface. 

In this study, lead reduction algorithm is proposed and implemented to 

choose the leads whose acquired signals are informative and eliminate those whose 

signals have small or no contribution to understand the electrical activity of the heart. 

During the selection process Tikhonov regularization along with Maximum 

Correlation Coefficient (MCC) method as regularization parameter selection 

approach is used.  

In this study, 23 data-sets each resulting from 23 different stimulation points 

are used. Given each of these 23 data-sets to the lead reduction algorithm as inputs, 

23 exclusive lead-set configurations are obtained which are different from each 

other. Consequently, 23 different configurations with 32 and 64 number of leads are 

resulted.  

This study aims to propose one specific lead-set configuration, consists of 64 

or 32 leads, whose acquired data is qualified enough to be used to reconstruct 

epicardial potentials with high accuracy. By selecting the most repeated leads among 

all of 23 different lead-set configurations, 32 and 64 reduced lead-sets, namely, 

common lead-sets, appropriate for different data-sets are selected.  

To assess the performance of these common lead-sets, the inverse problem of 

ECG is solved using the data obtained by these common lead-sets. Then the obtained 

solutions for common lead-set are compared with the solutions obtained by exclusive 
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configurations optimal for each data-set by calculating mean of Correlation 

Coefficient values between real epicardial potentials and related inverse solutions. 

 

1.1 Scope of the Thesis 

The aim of this study is to propose a lead-set configuration that works for different 

data-sets in order to effectively estimate the epicardial potentials on the surface of the 

heart, the latter is the result of the solution of inverse problem of electrocardiography 

(ECG). In this study, a new method to reduce the number of measurement leads 

attached to the surface of the torso is proposed and implemented. To this end, our 

proposed lead reduction algorithm is applied on 23 different data-sets related to 23 

different stimulation sites. Since the data-sets are different from each other, 

application of the lead reduction algorithm on these data-sets results in 23 different 

lead-set configurations. The inverse solutions obtained by these lead-sets are 

compared quantitatively using Correlation Coefficient (CC) and Relative Difference 

Measurement Star (RDMS) to the real epicardial potentials. Later, having considered 

all 23 lead-set configurations according to number of lead number repetitions, the 

most repeated leads are chosen to form one common lead-set whose acquired data 

can produce a proper answer for all lead-sets.  

The lead reduction algorithm employs Tikhonov regularization during lead 

selection process. To assess the performance of the common lead-set, four 

regularization methods, Tikhonov, Truncated Total Least Squares (TTLS), Lanczos 

Truncated Total Least Squares (LTTLS) and Lanczos Least Squares QR (LLSQR) 

are applied on the data obtained by this common lead-set. The results then are 

compared by calculating mean of Correlation Coefficient (CC) values between real 

epicardial potentials and the potentials related to inverse solution. The regularization 

parameter selection method used for above-mentioned regularization methods is 

Maximum Correlation Coefficient (MCC).  

In this study, 30 dB Signal to Noise Ratio (SNR) is added to all of the data-

sets prior to application of any method. In addition to the visualization software used 

in this study, MAP3D, all the data is provided by Utah Eccles Harrison 

Cardiovascular Research and Training Institute (CVRTI) [3]. 
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1.2 Contribution of the Thesis 

Nearly all of the lead-set configurations provided in the literature to derive Body 

Surface Potential Map (BSPM) suffer from the need of large number of electrodes 

that have to be attached to the torso surface in order to obtain data. This study 

proposes a lead-set configuration that is able to acquire many of the most informative 

signals related to the electrical activity of the heart. As it is stated in the previous 

section, all of the data used in this study is provided by Utah Eccles Harrison 

Cardiovascular Research and training Institute [3]. Tikhonov regularization and 

TTLS method used in this study are modified version provided by regularization 

toolbox [4], since the provided versions in the toolbox are suitable for over-

determined systems but the systems in this study turn to be under-determined 

systems. The other regularization methods, LTTLS and LLSQR, are implemented to 

solve inverse problem of ECG, related to different lead-sets. In this study the lead 

reduction algorithm is newly proposed and implemented. 

 

1.3. Outline of the Thesis 

In Chapter 2, theory and literature survey about lead selection methods and different 

regularization methods to solve inverse problems of electrocardiography (ECG) or 

other kinds of inverse problems are discussed and explained. 

In Chapter 3, the proposed and implemented method for lead reduction is 

explained, thoroughly. Additionally, the methods which are used in this study to 

solve the inverse problem of ECG are presented completely. The regularization 

parameter selection method used during regularization process MCC, which is also 

explained in Chapter 3. 

Chapter 4 contains the results of the lead reduction algorithm for all 23 data-

sets presenting the mean and standard deviation values of CC between real epicardial 

potentials and reconstructed potentials using data acquired by reduced lead-sets. 

Furthermore, this chapter includes MAP3D images of reconstructed potentials 

through Tikhonov regularization for different lead-sets. Finally, four different 

regularization methods, Tikhonov, TTLS, LTTLS, and LLSQR are applied to three 
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different data-sets. Mean and standard deviation of CC values are then calculated for 

these reconstructed potentials and presented in separate tables. 

Chapter 5 includes conclusions of this study and future work.   
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CHAPTER 2 

 

 

REVIEW AND BACKGROUND 

 

 

 

In this chapter, first electrophysiology of the heart is discussed, including anatomy of 

the heart and its electrical activity, action potential generation and propagation. Then, 

after an introduction to the major methods of electrocardiography (ECG), the 

electrode selection approach which is one of the main subjects of this study, is 

discussed. Afterwards, forward and inverse problems of electrocardiography are 

defined. Later on, different methods to solve the inverse problem of ECG are 

introduced. To solve the inverse problem of ECG is another main subject of this 

study. 

 

2.1 Anatomy of the Heart 

Heart is the electro-mechanical pump of the body. The human heart lies within the 

thorax, in mediastinum. It pumps blood though vessels to the whole body. All parts 

of the body are fed by oxygen and nutrition received through blood flow, which the 

heart is responsible for. Thus the heart is a vital organ whose failure, most probably, 

causes death.  

A healthy adult heart beats about 72 times, pumping 4.7-5.7 liters of blood per 

minute. It weights between 250-300 gr in females and between 300-350 gr in males 

[5, 6]. 

As it is illustrated in Figure 2.1, the heart consists of four chambers, which are 

filled and discharged with blood in every beat. Two atria and two ventricles compose 

four chambers of the heart. In every single cardiac cycle, the two atria receive blood 

and contract forcing the received blood to enter the corresponding ventricles, then 
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ventricles contract pumping the blood out of the heart. There are two blood 

circulation systems in the body; pulmonary and systemic. During pulmonary 

circulation, deoxygenated blood fills the right atrium through vena cava, then by 

contraction, right atrium forces the blood to the right ventricle. After passing the 

tricuspid valve, the blood enters the right ventricle, which afterward contracts and 

sends the blood out via pulmonary valve to pulmonary arteries leading to lungs. 

Simultaneously, oxygenated blood from the lungs enters the left atrium through 

pulmonary veins, and left atrium forces the blood through the mitral valve into the 

left ventricle, whose subsequent contraction pumps the blood through aortic valve 

into the aorta, leading to a systemic circulation. 

 

 

Figure 2.1: The anatomy of the heart and the vessels [7]. 

As it can be inferred from Figure 2.1, there are four heart valves; the tricuspid valve 

which prevents backflow of blood to the right atrium from the right ventricle. The 

pulmonary valve blocks the blood pumped to left pulmonary arteries from flowing 

back to the right ventricle, the mitral valve is the one way port to the left ventricle 
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and has the same prohibitive function, and the aortic valve restricts blood flow 

direction only towards the aorta. 

The heart tissue is composed of four layers as it is illustrated in Figure 2.2. 

1. Pericardium: the outermost double layer membrane of the heart, which 

encloses the heart. 

2. Epicardium: inner layer of the heart tissue that is in contact with the surface 

of the heart. Usually the epicardial potentials are used to build electrical 

model of the heart which is used to solve forward and inverse problem of 

ECG. 

3. Myocardium: muscular tissue of the heart made of cardiac muscle. 

Myocardium is the middle layer of the wall of the heart. This layer contracts 

spontaneously to pump the blood out of the heart. The myocardial potentials 

are determined by solving three dimensional electrocardiography imaging. 

4. Endocardium: innermost layer of the heart which provides protection to the 

valves and heart chambers. 

 

 

Figure 2.2: Four layers of the heart tissue [8]. 

 

2.2 Cardiac Electrophysiology  

Every single cell including the cardiac cell, contains three main parts: cytoplasm, 

nucleus, and membrane. The cytoplasm is the semi-fluidic material filling the cell in 

which all organelles float. The nucleus is the control center of the cell, which 

controls all actions taken by the cell. The membrane is a protective wall of the cell, 
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holding the contents together, protecting the cell, communicating with extracellular 

environment, and controlling the entrance and exit of materials. The latter is done 

through the channels, some of which are used to pass specific ions between 

intracellular and extracellular environments. Because ions are charged particles, 

difference in their intracellular and extracellular concentrations causes an electrical 

potential across the membrane, which is called the transmembrane potential (TMP).  

TMP is a potential difference across the cell membrane, which can be defined as: 

𝑉𝑚 = 𝜑𝑖−𝜑𝑒,                                                       (2.1) 

where 𝜑𝑖 and 𝜑𝑒 are the intracellular and the extracellular potentials, respectively.  

There are some types of cells called excitable cells, each of which response to 

stimulation in a nonlinear manner. This response causes amplification and 

propagation of electrical impulse, namely, action potentials. 

The TMP in the heart cells is due to movement of calcium, potassium, sodium 

and few other ions across the cell membrane.  

       Action potential of a healthy cardiac cell is accompanied by contraction of the 

heart. The action potential of the cardiac cell contains five phases, which are shown 

in Figure 2.3, along with related ions and their movement directions [9, 10].  
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Figure 2.3: Action potential generated by a cardiac cell [11]. 

 

Phase 4 is a duration in which the cell is at resting potential. The heart is in diastole 

during this period. However, the resting period ends if an external electrical stimulus 

excites the cell. Some cells including some cardiac cells are able to depolarize 

continuously without any external stimuli. These cells are called the pacemaker cells 

that are located in a small pace generator region of the heart called the Sinoatrial 

(SA) node. 

         Phase 0 follows immediately after stimulation. This is the depolarization phase, 

during which the stimulus causes the TMP to go above the threshold value, i.e., the 

minimum necessary potential value to trigger the action potential. At once, fast 

sodium channels are opened and the sodium ions rush into the cell. Since sodium 

ions have positive charge, the inner potential of the cell gets a more positive value. 

         Phase 1 is a duration when fast sodium channels are closed and simultaneously 

the outflow of potassium and chlorine ions makes a tiny downward deflection in the 

waveform of the action potential. 
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         Phase 2 is called the plateau phase where a balance between inflow of calcium 

ions and outflow of potassium ions is achieved. 

         Phase 3 is a very quick repolarization phase where calcium channels are closed 

and due to the movement of potassium ions there is an outward current, which leads 

to a negative membrane potential. 

The above-mentioned action potential propagates through the specific path on 

the heart, meaning that after action potential generation, it is passed to neighboring 

cells, also stimulating them. In other words, the action potential moves from one cell 

to another. Each part of the heart has its specific action potential characteristic which 

is slightly different from each other. Figure 2.4 illustrates action potential waveforms 

related to different regions of the heart.  

 

 

Figure 2.4: Different action potential wave forms related to different regions of the 

heart [12]. 

 

As it is mentioned, the action potential is generated by natural pacemaker of the heart 

called the Sinoatrial (SA) node, the point from which the heart beat starts. It means 

that without any external stimuli from other neighbor cells, the cells located in the 

SA node depolarize spontaneously. This spontaneous depolarization is due to phase 4 

which is explained above. This action potential makes the atria contract, then it 
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follows its way to the AV node. After a small delay, it travels to Purkinji fibers 

through bundle of His, the fastest conduction network. The action potential finally 

reaches ventricular epicardium immediately after it has passed the endocardium and 

the myocardium.  

 

2.3 Standard 12 – Lead Electrocardiography (ECG) 

It is not easy to record the electrical activity from a single cell, especially in-vivo. 

The direct measurements from a tissue or an organ are often invasive, since in direct 

measurements direct contact electrodes are used to obtain the electrical signals from 

that tissue or organ. Therefore, noninvasive extracellular measurements, especially 

from outside of the body are of a great importance. 

The well-known standard 12-lead ECG is a routine approach in clinical 

applications which records and amplifies the electrical changes on the body surface 

which are caused by depolarization of the myocardium. The objective of ECG is to 

reconstruct the information of spatio-temporal pattern of cardiac electrical activity 

[13, 14], in other words ECG translates the electrical impulses of the heart into a 

waveform. Several symptoms such as myocardial infarction, pulmonary embolism, 

abnormal cardiac murmurs, etc., are detectable from the ECG. The configuration of 

standard 12-lead ECG is illustrated in Figure 2.5. 
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Figure 2.5: Standard configuration of 12-lead ECG [15]. 

 

As it is shown in the Figure 2.5, V1-V6 are precordial leads attached to the surface of 

the torso, RA and LA electrodes are attached to right and left arms, and RL and LL 

electrodes are attached to right and left legs, respectively.  

The electrocardiogram consists of superposition of signals from all active heart 

cells shown in Figure 2.4., as they are reflected on the torso surface. A normal 

electrocardiogram consists of three major parts (Figure 2.6): 

 P wave reflects the depolarization of the right and left atria, which starts from 

the SA node and as a result the atria contract. Any change in duration, 

amplitude, or frequency of the P wave can be interpreted as atrial 

abnormality. The duration between the initiation of P wave and the starting 

point of QRS complex is called the PR interval, in which the electric impulse 

is conducted to ventricles. The P wave duration is around 40-100ms [16]. 

 QRS complex is the most noticeable part of the electrocardiogram which 

reflects the repolarization of atria and depolarization of ventricles. The left 

ventricle has thicker myocardium, because it is responsible for sending the 

blood out of the heart into the whole body, therefore the majority of the QRS 

signal reflects the depolarization of muscle cells of the left ventricle. QRS 

complex is composed of Q wave, the first negative deflection, R wave, the 

first positive deflection and S wave, the second negative deflection. Since 
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bundle of His – Purkinji fibers network has a very fast conduction, the peak 

of QRS waveform is sharp rather than round. The duration change of this 

complex may be an indication of arrhythmias, ventricular hypertrophy, or 

myocardial infarction. 

 T wave reflects the ventricular repolarization. The absolute refractory period 

is a duration which the cell does not respond to any stimuli. The duration 

between the beginning of the QRS complex and to the peak of the T wave is 

the refractory period. The second half of the T wave is the relative refractory 

period, where the initiation of action potential is probable.  

 

 

Figure 2.6: The normal electrocardiogram [17]. 

 

Although several cardiac abnormalities are diagnosable by standard 12-lead ECG, 

many others are not detectable by this fixed lead configuration. Since cardiac 

diseases are localized and ECG effect of those localized diseases are projected to 

other regions of the torso surface by different magnitudes, fixed lead measurements 

can lead to misinterpretation or misdetection in diagnosing and identifying the 

underlying disease [18]. 
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One alternative to compensate the imperfection of standard 12-lead ECG in 

detection of many of the most informative signals from the torso surface is the Body 

Surface Potential Mapping (BSPM) method.  

 

2.4. Body Surface Potential Mapping (BSPM) Method 

Body surface potential mapping (BSPM) is an ECG technique that records the 

potentials from a wide region of the chest using 100-200 electrodes. Since the 

potentials are recorded from a broad area, this technique explores more information 

about the electrical activity of the heart than the standard 12-lead ECG [14] [19- 22]. 

The reason that the electrical activity of the heart can be interpreted less ambiguously 

by BSPM is its further sensitivity to the local electric fields than the conventional 12-

lead ECG. Localized heart diseases or abnormal ECGs present specific ECG patterns 

on the body surface, these patterns play a significant role in diagnosing the problem. 

For instance, cardiac diseases such as myocardial infarction, transient myocardial 

ischemia, Wolf Parkinson White syndrome (WPW), etc., present detectable, 

characterized and special patterns on the body surface [18]. 

The prominent aspects of recording electrical activity from a broad area, which 

is not usually covered by conventional lead-systems, fall into three groups. First, 

clinically and diagnostically important information may be projected to the parts of 

the chest not usually sampled by the standard 12-lead system. Detection of such vital 

information is an important pre-requisite to investigate the disease. Second, extracted 

information from any sub-set of the complete lead set can be considered as adequate 

information only if they are considered as part of the total body surface lead-set. 

Last, the complete torso electric field sampling is a demanding part of the methods 

that require surface integration [23]. 

Despite standard 12-lead ECG, there is no standard configuration for the BSPM 

approach. Although this method has potential benefits in clinical applications, in fact 

it has not been used widely in practice since at least 100 electrodes should be 

attached to the torso for data acquisition. Additionally, complexity of processing of 

the acquired data, their analysis and display are other insufficiencies of the BSPM 

approach. There are a number of studies that have undertaken to reduce the number 

of leads used in BSPM approach, and at the same time maintaining the efficiency of 
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this method. In this study, to make BSPM more practical than its current state, a 

novel method is proposed and implemented to select optimal electrodes from a large 

number of BSPM electrodes. 

 

2.5. Lead Selection for BSPM 

As it is mentioned before, BSPM is an invaluable method in cardiac diagnostic 

approaches. For this method to also be clinically practical, the number of attached 

electrodes on the torso surface should be as small as possible considering their 

optimal configuration to acquire information as much as possible. Toward this end, 

numerous studies are conducted under “Lead Reduction” topic, each of which aims 

to reduce the number of attached electrodes to the body surface in a way that 

informative potential distribution on the torso surface would still be accurately 

detectable. The common aim of all these studies is to use less number of electrodes 

than the nodes in associated geometry model. 

Barr et al., [24, 25] were among pioneers in the context of lead reduction, who 

years ago intended to select the most signal information containing leads. Their work 

consists of locating the sites needed for proper recording the signals to precisely 

estimate the total QRS signals on the body surface as they change over time. In that 

study, 150 lead BSPM data were acquired from 45 subjects. The notation 𝐺𝑗 is used 

to show the mathematical generator matrix, and the coefficient matrix, 𝐴, relates 

mathematical generators to surface recording positions. An approximation of 

experimentally measured surface potentials 𝑊𝑗 can be calculated by Eqn. (2.2). 

𝑊𝑗 = 𝐴. 𝐺𝑗,                                         (2.1) 

where 𝐴 is a matrix containing eigenvectors, and 𝐺𝑗 are surface voltages that vary in 

time. The Principal Component Analysis (PCA) method is used to determine 𝐴 

and  𝐺𝑗. After 𝐴 and 𝐺𝑗  are determined, a group of experimentally measured surface 

voltages is used to estimate values of generators (𝐺𝑗) now called as 𝐺𝑒. Then, the 

estimated 𝐺𝑒 values are used along with previously calculated coefficient matrix 𝐴 to 

obtain potential maps. An iterative method, which selects different individual leads 

each time, is then adopted to choose the best recording site. At last, the study has 
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concluded that minimum of 24 appropriately located leads are enough to get 

acceptable accuracy in body surface potential reconstruction. 

In another set of invaluable studies undertaken by Lux et al., [24, 26, 27], 

Sequential Selection method is proposed, which is the lead selection process that 

accounts for how well one individual recording site can contribute to estimate the 

potentials on other sites. In this method, a recording site which has the highest 

correlation with other recording sites can be a reasonable choice for being in the 

reduced lead-set. For a recording site to be in the reduced lead-set, only having the 

highest correlation with the unmeasured sites is not sufficient, since sites with high 

correlation but little signal variations most probably contain similar information. 

Therefore, they introduced a notion called “information index” which provides a 

qualifying measurement of how well one site correlates with other remaining sites 

considering the signal variation. The algorithm starts with calculating the information 

index for all recording sites to find the maximum value of information index. Then 

the corresponding lead that owns the highest information index value is removed 

from the data matrix and placed in reduced lead-set as the first lead. Then the process 

repeats itself to select the second lead of reduced lead-set. Again the information 

index value is calculated for each of the remaining recording sites in the data matrix, 

whose rank is now reduced by one. And the process continuous until a stopping 

criteria, for example the desired number of leads, is reached. For this study, data are 

obtained from 70 normal subjects with no cardiac disease and 62 subjects with old 

myocardial infarction. The data are acquired by 192 electrodes, which consists of 

uniformly spaced grid of 16 columns and 12 rows. To evaluate the performance of 

the Sequential Selection algorithm, the authors considered three criteria. The first one 

is the Correlation Coefficient (CC), second is the spatial root mean square (RMS), 

and the last one is ratio of error power to signal power. As the result of this study, it 

is claimed that 32 leads are significant to estimate the remaining sites with 

considerable accuracy, additionally, the configuration of the reduced lead-set is not 

unique since the distance between the source of the signals and recording sites causes 

blurring and smoothing effect on surface distribution. The Sequential Selection 

method is then suggested as a “clinically practical lead system” [27], in which it is 

concluded that applying this method with no constraint, which means setting no limit 

for the location of candidate leads, gives better results than solving the problem by 
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constraint, which means limiting the solution to precordial leads. Additionally, 

according to the results, they claimed that using 20-35 leads out of 192 leads can 

reconstruct nearly all of the information content of the 192 lead-system.  

In another lead reduction algorithm called Sequential Forward Selection (SFS) 

proposed by the same authors [28], data mining methodology is employed. This 

algorithm starts with a set of BSPM recording site, 192 recording sites, and tries to 

find out how well one individual recording site is able to estimate the remaining 

unmeasured sites. The site that best estimates the unmeasured sites becomes first 

selected lead in the reduced lead-set. Then, in the second iteration, each of the 

remaining 191 sites are individually employed to estimate the remaining unseen sites 

in conjugate with the previously selected site. The algorithm goes on until a stopping 

criteria, for example desired number of leads is reached. To compare the quality of 

the reconstructed BSPM with the original data, two criteria are considered, one is 

spatial root mean square (RMS) voltage error, between estimated and measured sites, 

and the other is CC between estimated and original data. According to the results, 

performance of 32 leads chosen by this method have nearly the same accuracy as 32 

leads chosen by Sequential Selection method. 

In another study conducted by Kors et al., [22], the authors used already 

available 12-lead ECG device to reconstruct BSPM. Due to impracticality of the 

several proposed lead configurations which use more than 10 electrodes, the 

available electrodes for measurement in ECG device, the proposed method seeks one 

or more electrodes in standard 12-lead configuration whose information can be 

reconstructed by other remaining leads. In other words, this method aims to increase 

the information content of standard 12-lead ECG, by repositioning one or more 

electrodes. The process of selecting the best position for the electrode/electrodes 

starts with analyzing recorded data from 746 subjects with healthy hearts together 

with patients with various cardiac abnormalities. Data are recorded by 120 non-

equally spaced electrodes that cover the torso surface. The exact configuration for 

this system is available in Appendix A. Then the recorded data are randomly divided 

into training set and learning set. Using the linear regression on training data, the 

general coefficient is obtained to reconstruct the BSPM. This study was successful 

since information captured by 12-lead ECG contains redundant information and 

information content of missing electrode/electrodes can be reconstructed by adjacent 
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electrodes. The study concluded that the absent information in standard 12-lead ECG 

can be captured by repositioning V4 and V6 to a different position than standard 12-

lead configuration. The positions of the leads in the proposed lead configuration are 

so specific that they are hardly misplaced. The resultant lead configuration is 

presented in Appendix A. 

 Lux et al., in [29] have tried to extract optimal diagnostic information from 

torso surface by using new electrodes in addition to 12 leads and estimation of 

unmeasured leads.  Considering that the best signal leads do not necessarily contain 

the best diagnostic information, the process of selecting the position of the new 

electrodes starts with selecting the best classifier for the given pairs of electrodes. 

Data for this study are collected from a population of 841 patients: 159 subjects with 

normal heart, 233 patients with myocardial infarction, and 189 patients with left 

ventricular hypertrophy. The complete lead system in this study contains 120 

electrodes, which simultaneously record electrical activity of the heart from the body 

surface. In this study the investigators compared 3 different strategies of classifying 

ECG data in order to attain an improvement over the diagnostic performance of the 

standard 12-lead ECG. In the first strategy, it is tried to select the electrodes from 

120 leads, which are optimal in the sense of discrimination. In the second, few 

optimal electrodes in terms of best signal and best diagnostic leads are selected from 

leads for discrimination, and added to the 12-lead ECG. The third strategy is based 

on estimating the 120 BSPM leads using the 12-leads augmented by a few optimal 

signal leads and then selecting those leads which are best for discrimination. This 

study concluded that using 4 additional leads along with 8 independent leads of 12-

lead ECG can compromise between the best signal leads and the best diagnostic 

leads. After applying the resultant configuration, it is revealed that this system is 

capable of reconstructing BSPM in acceptable extent. They refer to this lead system 

as “8+4” lead-system. The complete lead system used in this study (120 lead system) 

and the resultant 8+4 lead system configuration is shown in Appendix A. 

In another study conducted by the same authors [30], Principal Component 

Analysis (PCA) is applied to the BSPM to identify eigenvectors. The process of 

selecting the electrodes starts with representing the original data as the product of 

PCs and eigenvectors for the 117 complete lead set. Considering isopotential map 
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frame which consists of the potential at each recording site, the total map frame can 

be represented: 

𝑃 = (𝑝1, 𝑝2, … , 𝑝117).                                         (2.2) 

After applying PCA, each spatial map can be shown: 

 𝑃 = ∑ 𝛼𝑖𝜑𝑖
117
𝑖=1 ,                                (2.3) 

where  𝜑𝑖 is the ith eigenvector and 𝛼𝑖 is the ith PC that weights that eigenvector. 

Then three bipolar leads called “eigenleads” are identified using extrema on the 

resultant eigenvectors. Not surprisingly, the main location for these eigenleads is on 

precordial region. It is reported that the signal strength of the proposed lead system is 

higher than other lead systems. Although the proposed lead-configuration using 

eigenleads is not able to reconstruct the whole BSPM, it can estimate the information 

content of the standard 12-lead ECG comparable with other limited lead-sets. As it is 

concluded in this study, the proposed lead system is better than EASI lead system in 

reconstructing the information of precordial leads. The lead configuration of EASI 

can be found in Appendix A. 

 

2.6 Forward Problem of Electrocardiography 

In order to locate the sources of electrical activity recorded from the body surface, 

inverse problem of electrocardiography should be solved, as it will be discussed in 

the next section in detail. For inverse electrocardiography problem to be solved, 

forward problem of electrocardiography should be solved in advance. In this section, 

we briefly discuss forward problem of electrocardiography in terms of cardiac 

electrical source distribution. 

To get forward solution for epicardial potential source model, the Laplace’s 

equation should be solved in source free volume, 𝛺 , limited between two closed 

surfaces, Γ𝑇 and Γ𝐸, representing the torso and epicardium surfaces, respectively:  

𝛻. (𝜎. 𝛻𝛷) = 0   in   𝛺                                         (2.4) 

by employing the proper boundary conditions [31- 35]. In the above equation, 𝜎 is 

the conductivity of the medium, and 𝛷 is the scalar electrostatic potential at any 

point within the volume. In order to define analytical forward problem, considering 
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𝛷𝐸 as potential distribution on the epicardium surface and 𝛷𝑇 as potential 

distribution on torso surface, by defining boundary conditions we have: 

𝛷 = 𝛷𝐸 on Γ𝐸,               Dirichlet                               (2.5) 

𝛷 = 𝛷𝑇 on 𝛤𝑇,                                                            (2.7) 

         (𝜎. 𝛻𝛷). 𝑛 = 0 on Γ𝑇,          Neumann                              (2.8) 

where 𝑛 is the outward surface normal vector. 

        Several elements are needed for solving the forward problem, such as geometric 

model which includes both heart and torso surfaces, intermediate surfaces or 

intervening volume, and assumptions of 𝜎, inside of the volume conductor.  

As it is mentioned, realistic heart-torso geometry is complex, so the related 

geometry can be obtained by imaging modalities such as Computerized Tomography 

(CT), or Magnetic Resonance Imaging (MRI). Then the resulting images should be 

discretized and segmented, and electrode locations should be mapped to the torso and 

heart surfaces in the geometry, then both heart and torso should be represented by a 

group of nodes in space in a way that they form polygons in order to form a mesh 

(triangle for surface based methods, and tetrahedra or hexahedra for volume based 

methods) [36]. 

In simulation studies for ECG, analytic solutions are only available for the 

simple surfaces as spheres, while the realistic surface of the heart is much more 

irregular and complex than that of the sphere. Thus numerical methods are employed 

to calculate the forward problem [37, 38]. Two major groups of methods to solve 

electromagnetic problems are volume methods and surface methods. While volume 

methods are based on differential equations such as Finite Element Method (FEM) 

[39- 41], surface methods are based on integral equations such as Boundary Element 

Method (BEM) [42- 50]. Both of these methods require node choice and construction 

of meshes. 

In this thesis, a BEM formulation based on what proposed by Barr et al., in [34] 

is employed. The calculation of the solution related to Eqn. (2.5) using boundary 

conditions from Eqn. (2.6-2.8), results in the forward transfer matrix  𝐴. This matrix 

calculates a set of discrete torso potentials from a set of discrete epicardial potential 

distributions. The related numerical solution can be displayed as: 
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𝛷𝑇 = 𝐴𝛷𝐸,                                                  (2.9) 

where 𝐴 is the forward transfer matrix, 𝛷𝐸 and 𝛷𝑇 are the matrices including 

potentials on the epicardium and the torso surface nodes, respectively. Thus the rows 

of 𝐴 can be interpreted as weights of the linear combination of the epicardial 

potentials which yield the potentials on each node of the torso surface. Then, by 

using a forward model, having epicardial potential distribution, 𝛷𝐸  , the torso surface 

potential distribution, 𝛷𝑇, can be calculated. 

The inverse problem of electrocardiography, as it will be discussed more in the 

next section, includes determination of the potential distribution on epicardium, 𝛷𝐸, 

on the epicardial surface, 𝛤𝐸.  

 

2.7 Inverse Problem of Electrocardiography 

The objective of inverse problem of electrocardiography is to reconstruct electrical 

activity of the heart using noninvasive potential measurements from body surface 

along with a geometric model of the conducting volume between desired sources and 

sites of measurements. 

Gulrajani et al., in [51] gave a detailed review of equivalent intracardiac dipole, 

and multipole models. In other methods such as epicardial potential-based models 

the sources for forward and inverse problems are considered as potentials on the 

outer surface of the heart [34, 52, 53]. 

The epicardial potential-based inverse solution has several advantages over 

equivalent source solutions: 

1. The solution of potential-based models, at least theoretically, is unique 

[31]. 

2. The underlying physiological processes are more feasible in potential-

based solutions than equivalent solutions [31]. 

3. Unlike equivalent source model, there is no need to make prior 

assumptions about nature of the sources, for instance number of 

dipoles [31]. 
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4. In potential-based formulation the most important inhomogeneity, 

intra-cavity blood inhomogeneity, is implicitly taken into account [31, 

51, 54]. 

5. The direct comparison of the potential-based solution with epicardial 

measurements obtained in parallel with BSPM in animal experiments 

[52], or with an electrolyte filled tank model of heart-torso model is 

possible [31]. 

More detailed information about potential-based solutions can be found in [54- 

57]. Another potential-based method acquires information invasively from inner 

surface of the heart, i.e., from the endocardial surface. This method measures 

potentials inside of the chambers of the heart employing noncontact electrodes [58- 

60]. This method is extremely invasive so it is impractical in clinical applications. 

In this thesis, heart surface potentials are used as equivalent sources, resulting in 

a linear forward model. In the following part, we briefly discuss the methods to treat 

inverse problems in order to obtain reliable solutions. 

Inverse problem of electrocardiography is ill-posed, or in other words the 

forward matrix is ill-conditioned, due to attenuation and smoothing effect of the 

intermediate volume between electrical sources located on the surface of the heart 

and the measurement points on the body surface [61]. This means that small 

perturbation, caused by noise, error in the forward model, attenuation, discretization 

effects etc., can result in an unbounded error in the solution of the inverse problem. 

In order to overcome the mentioned ill-posedness, various regularization methods are 

used imposing constraints derived from prior information. In what follows, several 

regularization methods are explained, including the well-known Tikhonov 

regularization, Truncated Singular Value Decomposition (TSVD), Truncated 

Generalized Singular Value Decomposition (TGSVD), Total Truncated Least 

Squares (TTLS) method, Lanczos Bidiagonalization Total Truncated Least Squares 

(LTTLS) method, Least Squares QR factorization (LSQR), Lanczos 

Bidiagonalization Least Square QR factorization (LLSQR) method, L1-norm based 

solutions, Generalized global Arnoldi method, and combination of self-organizing 

feature maps and support vector. 
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Almost all of above-mentioned regularization algorithms need a regularization 

parameter, which is selected by the regularization parameter selection method. The 

parameter selection methods will be discussed in the next section in detail.  

Tikhonov regularization is a well-known method to regularize ill-posed inverse 

problems. In terms of inverse problem of ECG, Tikhonov regularization method aims 

to minimize the cost function, which is least square minimization, by imposing 

constraints on magnitude or derivatives of epicardial potentials. Although Tikhonov 

regularization can effectively deal with measurement errors in torso measurements, it 

fails to handle geometric errors. Tikhonov regularization in its standard form is 

shown below, 

𝛷𝐸𝜆
 = argmin ‖𝐴𝛷𝐸 − 𝛷𝑇‖2

2  + 𝜆2  ∥ 𝑅𝛷𝐸 ∥2
2,                  (2.10) 

where 𝐴 ∈ ℝm×n is the forward transfer matrix, 𝜆 is a scalar regularization 

parameter, and 𝑅 ∈ ℝn×n is the regularization matrix, 𝛷𝐸 and 𝛷𝑇 are epicardial 

potentials and torso measurements, respectively. 

There are many studies on selecting the optimal regularization parameter, 𝜆 , for 

Tikhonov regularization method. Johnson et al., in [62] compared three parameter 

selection methods, L-curve, Composite Residual and Smoothing Operator (CRESO), 

and zero crossing method which they proposed in their article. According to their 

reported results, similar results are obtained for all three methods, however, selecting 

the regularization parameter by zero crossing method is simpler than the other two. 

In another study conducted by Shou et al. [63] the performance of Generalized Cross 

Validation (GCV), L-curve and Discrepancy Principle (DP) are compared. 

According to the reported results, although DP obtains better results, L-curve and 

GCV methods are more useful than DP, since the latter needs prior information about 

noise. 

There is a modified version of Tikhonov regularization called Twomey 

regularization which is not as practical as Tikhonov regularization, as it needs prior 

information about the desired epicardial potential [64].  

In [65], Liu introduced a new dynamical Tikhonov regularization method and 

called it Optimal Vector Method (OVM) for solving ill-posed linear algebraic 

systems. Besides allowing stability, on a proper invariant manifold, this method 
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computes the approximate linear solution for the system. The selection of 

regularization parameter, the central issue of Tikhonov like methods, is adaptively 

and optimally embedded in the main algorithm. By examining several ill-posed 

numerical examples, the author showed that this method works better than classical 

methods like Steepest Descent Method (SDM) and Conjugate Gradient method 

(CGM).  

In [66], Reichel et al., have considered Tikhonov regularization with 

regularization operator in a general scheme and present an iterative approach to solve 

linear ill-posed problems based on generalized Krylov subspace method. In this 

method, both matrix of a linear discrete ill-posed problem and the regularization 

operator are reduced simultaneously. Then the reduced-sized problem is solved by an 

ordinary method, e.g., Singular Value Decomposition (SVD). 

Another well-known regularization method is TSVD, which is based on 

eliminating very small singular values. For ill-conditioned matrices, many of the 

eigenvalues, while non-zero, can become too small leading to matrix inversions to 

become extremely large if there is any error in the measurements. By truncating 

these very small singular values, high frequency components are ignored, and this 

leads to a smooth solution. Similar to other least square based methods for ill-posed 

problems, TSVD, which is also a least square based method, is affected by 

geometrical error. Most frequently both Tikhonov regularization and TSVD are used 

as reference methods to evaluate the performances of other regularization methods. 

In a study conducted by Shou et al., [67], TSVD method is compared with 

Tikhonov regularization and Truncated Total Least Squares (TTLS) method. 

According to the results reported by these authors, although when only a 

measurement error is considered all methods give similar results, by increasing the 

measurement noise Tikhonov regularization and TTLS give better results. 

Furthermore, in the case of both measurement error and geometry error, TTLS 

performs better than the other two. 

TTLS method is very similar to TSVD method. The significant difference is that 

in TTLS method unlike TSVD, the singular values of conjugate matrix (𝐴  𝛷𝑇) are 

computed and small singular values are neglected in the reconstruction process [68]. 
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TTLS method performs notably well in presence of both measurement errors and 

geometry errors. 

Shou et al., [69] employed a new TTLS-based method to solve ECG inverse 

problem, to obtain epicardial potentials. In this study, the error is considered on both 

sides of the equation, 𝛷𝐸 = 𝛷𝑇 .  This newly proposed method treats geometrical 

error in a new manner. To test the proposed algorithm, a realistic heart-lung-torso 

model with inhomogeneous conductivities is used. To solve the related forward 

problem h-adaptive boundary element method (h-BEM) is used and the performance 

of the proposed algorithm is compared with conventional Tikhonov regularization 

and TSVD with zeroth-, first-, and second-order. The simulation results revealed 

that, in the presence of only measurement noise TTLS performs very similar to 

Tikhonov regularization and TSVD, but it performs better than the other two when 

geometry error is involved. In this study, it is reported that it is better to use zero-

order regularization in order to solve ECG inverse problem to find the epicardial 

potentials.  

LTTLS algorithm is a modified version of TTLS method. Due to the complexity 

of SVD algorithm, 𝑂(𝑚𝑛2), the problems with large dimensions are computationally 

expensive, since it is difficult to calculate SVD of a large transfer matrix. Although, 

there are partial singular value decomposition algorithms to calculate SVD of 

conjugate matrix (𝐴  𝛷𝑇), for a considerably large truncation parameter, by applying 

these methods the structure and sparsity of the transfer matrix is lost. To compensate 

for this shortcoming, iterative methods based on Lanczos- bidiagonalization, which 

leaves the transfer matrix unchanged, are used [68]. Therefore, the computational 

cost of the Lanczos TTLS is less than TTLS, subsequently, the runtime of the 

Lanczos TTLS method is shorter than that of TTLS algorithm. LTTLS method has 

been used to solve discretization of Phillip’s problem [70] and in image 

reconstruction problems [71]. But, for the first time, Güçlü has used this method to 

solve inverse problem of ECG [72]. 

LLSQR method is based on Lanczos bidiagonalization and at the same time QR 

factorization. LLSQR method performs well when the transfer matrix is large and 

sparse. Jiang et al., in [73] compared the performances of conventional regularization 

methods, Tikhonov regularization and TSVD, with LLSQR method. In this study, in 



  28 
 

order to improve the performance of LLSQR method, Genetic Algorithm (GA) is 

used. During the study, a realistic heart-torso model is used. A single dipole is used 

to model epicardial potentials and different Gaussian noise levels are added to 

measured torso potentials. During the process of solving the ECG inverse problem in 

this study, the iteration number of LLSQR method, the regularization parameter of 

Tikhonov method and the truncation level of TSVD method are selected by L-curve 

method. According to the results reported by this study, LLSQR method gives better 

results than Tikhonov regularization and TSVD method in different measurement 

and geometry noise levels. Additionally, the superiority of LLSQR method becomes 

clearer when the noise levels go further. It is also reported that the combination of 

LLSQR method and genetic algorithm (GA) gives better results than using only 

LLSQR in regularizing inverse problem of ECG. 

Many proposed regularization methods employ L2-norm based approaches, both 

in data term and penalty term, to deal with the ill-posed nature of the inverse 

problems. But, the use of L2-norm in the penalty function leads to considerable 

smoothing of the solution and generates sensitive solutions to the measurement 

noise. This affects distinguishing abnormal activities of the heart and makes it 

difficult to locate the diseased region [14]. To overcome this defect, L1-norm based 

solutions are used to handle ill-posedness of the inverse problem. In [14], Wang et 

al., proposed a kind of L1-norm based method to solve the inverse problem in the 

form: 

𝛷𝐸𝜆
 = min ‖𝐴𝛷𝐸 − 𝛷𝑇‖2

  + 𝜆  ∥ 𝑅𝛷𝐸 ∥1
                                  (2.11) 

where 𝐴 ∈ ℝm×n is the forward transfer matrix, 𝜆 is a scalar regularization 

parameter, and 𝑅 ∈ ℝn×n is the regularization matrix, 𝛷𝐸 and 𝛷𝑇 are epicardial 

potentials and torso measurements respectively.  

To solve Eqn. (2.11), the method starts with variable splitting, since many L1-

norm based approaches operate better on sparse data than the dense data. After 

transforming the data to sparse form, the problem is reformulated as a quadratic 

problem. Then, it is solved by Gradient Projection (GP) in an iterative manner, which 

is based on successive projections on the feasible region. At this step, Barzilai and 

Borwein (BB) method [74], as the line search parameter method, is used to find 

optimal parameters. As it is reported in this study, the results of the proposed method 
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are more accurate than the methods which use other combinations of L2- norm and 

L1-norm, i.e., the methods that employ L2-norm minimization on data term and L1-

norm minimization on penalty term. In addition to the efficient results, this method 

can significantly handle both geometry and measurement errors. Besides, non-

expensive operations, low memory requirements, and simplicity of the algorithm are 

further advantages of this method. 

In another study conducted by Shou et al., [75] L1-norm minimization is applied 

on data term to solve the inverse problem of ECG. To solve the minimization 

problem Iterative Reweighted Norm (IRN) algorithm is applied to the L1-norm-

related part along with both L1 and L2 penalty terms of normal derivative constraint. 

The results of this study demonstrate that the solutions obtained by this method have 

less relative error than other L2-norm based solutions. Additionally, when large noise 

occurs in the data received from some electrodes, L1L2 approach can obtain more 

robust results than other methods. 

 In the next chapter, few of the above-mentioned regularization methods that 

are used in this thesis work will be discussed and explained, thoroughly. 
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CHAPTER 3 

 

 

METHODS 

 

 

 

The inverse problem of electrocardiography (ECG) is the determination of electrical 

sources on the heart surface having the measured body surface potentials. As 

previously mentioned in Chapter 2, inverse problem of ECG is ill-conditioned [57], 

hence in order to solve it regularization methods should be applied. In this chapter, 

the problem definition of inverse ECG in terms of epicardial potentials and different 

regularization methods that are used to solve it are discussed. In this study, among 

various regularization methods, the well-known Tikhonov regularization, Lanczos 

Least Squares QR factorization (LLSQR), Lanczos bidiagonalization Truncated 

Total Leads Squares (LTTLS), and Truncated Total Least Squares (TTLS) methods 

are selected to solve the inverse ECG problem, since these regularization methods 

are widely used in the context of inverse problems. For all of the employed 

regularization methods, Maximum Correlation Coefficient (MCC) regularization 

parameter selection method is used, which will also be discussed in this chapter. 

As explained before, to obtain Body Surface Potential Maps (BSPM), one 

needs to attach a large number of electrodes to the torso in order to detect the 

electrical activity of the heart. BSPM provides a denser spatial sampling over the 

torso surface, which provides more detailed information about the electrical activity 

of the heart than the traditional 12-lead ECG system. However, an increased number 

of electrodes in BSPM approach makes it less practical to use in clinical applications 

than the 12-lead ECG system. In this chapter, we propose a novel lead reduction 

algorithm to reduce the number of leads in BSPM approach with the goal of making 

this method more practical in clinical applications with little or no loss of 

information. 
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3.1 Problem Definition 

In the forward problem of ECG, the epicardial potentials are related to body surface 

potentials by the following linear equation: 

 𝛷𝑇 = 𝐴 𝛷𝐸 + 𝑁,               (3.1) 

where 𝛷𝑇 ∈ ℝm×t and 𝛷𝐸 ∈ ℝn×t are the matrices that contain body surface 

potentials and epicardial potentials, respectively. The matrix 𝐴 ∈ ℝm×n is the 

forward transfer matrix, which is the result of the solution of the forward problem of 

ECG, and the matrix 𝑁 ∈ ℝm×t is used to model measurement errors. Here, it is 

assumed that, there are 𝑚 measurement leads on the torso and 𝑛 nodes on the 

epicardial surface, and the signals are measured on body surface at 𝑡 different time 

instances in terms of milliseconds. Therefore, the matrix 𝛷𝑇 is composed of 𝑚 rows 

representing 𝑚 number of measurement leads, and 𝑡 columns each representing one 

time instant. For example, 𝛷𝑇 12
 means the measured potential from lead number 1 

in time instant 2. Similarly, the matrix 𝛷𝐸  is composed of 𝑛 rows representing 𝑛 

number of nodes on the epicardial surface, and 𝑡 columns each representing one time 

instant. For example, 𝛷𝐸 12
 , means the potential obtained at node 1 in time instant 2. 

An example of the lead locations on the torso and the node locations on the 

epicardial surface is shown in the Figure 3.1. There are 771 leads on the torso surface 

and 490 nodes on the epicardial surface. As it can be seen in the Figure 3.1, 771 torso 

leads are distributed equidistantly on the surface on the body surface. Similarly, 490 

measuring points on the surface of the heart are distributed in order. 
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(a)                                                             (b) 

Figure 3.1: (a) The locations of 771 leads on torso surface, and (b) the location of 

490 nodes on epicardial surface. 

 

For every time instant, Eqn. (3.1) can also be stated by vector notation as follows: 

 𝛷𝑇(𝑘) = 𝐴 𝛷𝐸(𝑘) + 𝑁(𝑘)            (𝑘 = 1,2, … , 𝑡),       (3.2) 

where 𝑘 represents each time instant. So one can solve the problem by using the 

forward transfer matrix, 𝐴, and vectors 𝛷𝑇(𝑘) and 𝛷𝐸(𝑘) representing measured 

torso surface and epicardial surface potentials at time instant 𝑘, respectively. The 

notation used in this study is the matrix form of the equation as in Eqn. (3.1). 

 

3.2 Properties of the Forward Transfer Matrix (A) 

The transfer matrix 𝐴 is the result of the solution of the forward problem of ECG. In 

order to calculate the forward matrix, Boundary Element Method (BEM) is used 

[76]. 

In our case, the forward transfer matrix 𝐴 is not a square matrix so that its 

direct inversion cannot be calculated. For a full rank non-square matrix 𝐴 ∈ ℝm×n, 

the left inverse of matrix , 𝐴, is calculated as follows: 

𝐴−1 = (𝐴𝑇𝐴)−1𝐴𝑇                                                         (3.3) 
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where 𝐴𝑇 represents the transpose of the matrix 𝐴. But here in our case, the matrix 𝐴 

is not full rank either, therefore Eqn. (3.3) is not applicable. Hence, the pseudo 

inverse of the matrix 𝐴 is calculated; however, using this pseudo inverse matrix may 

not give good results. This is related to an attribute of a matrix called the condition 

number or singular values of the matrix. The condition number can be used to 

consider a matrix as ill or well-conditioned.  

One way to calculate the condition number of a matrix is to divide the largest 

singular value by the smallest singular value of the matrix. If the answer of division 

is closed to 1, then the matrix can be called well-conditioned, which means that the 

inverse of the matrix can be calculated accurately. Conversely, matrices with large 

condition numbers are called ill-conditioned, so their inverse cannot be calculated 

correctly. If the condition number of a matrix is infinity, then it is not invertible at all 

[77]. 

The Singular Value Decomposition (SVD) is one on the effective methods to 

solve ill-posed problems. The singular value decomposition is defined for a matrix 

𝐴 ∈ ℝm×n, where 𝑚 ≥ 𝑛 as: 

𝐴 = 𝑈𝑆𝑉𝑇,                (3.4) 

where 𝑈 and 𝑉 are: 

𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚 ∈ ℝm×m} and 𝑈𝑈𝑇 = 𝐼m×m, 

 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} ∈ ℝn×n and 𝑉𝑉𝑇 = 𝐼n×n. 

The columns of 𝑈  and 𝑉 are left and right singular matrices, respectively. 

Furthermore, 𝑆 is a diagonal matrix consisting of singular values (𝑠1, 𝑠2, … , 𝑠3) of 

matrix 𝐴 where 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑚. Additionally, the off-diagonal elements of 𝑆 are 

zero. 

The aim of SVD method is to calculate the eigenvectors and eigenvalues of 

the matrix 𝐴𝑇𝐴 and 𝐴𝐴𝑇. The eigenvectors of 𝐴𝑇𝐴  are the columns of the matrix 𝑈, 

and the eigenvalues of the matrix 𝐴𝐴𝑇 are the columns of the matrix 𝑉.  

The singular values of matrix 𝐴 corresponding to the complete lead-set 

containing 771 leads, is presented in the Figure 3.2. As it is displayed in the figure, 

the largest singular value of the matrix 𝐴 is 2.39 and the smallest singular value is 
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something near to 0. Therefore, the condition number of the matrix 𝐴 is very large so 

that it can be called an ill-conditioned matrix. 

 

Figure 3.2: The singular values vs. the number of singular values of the coefficient 

matrix A. 

 

3.3 Regularization Methods 

As it was mentioned in the previous section, the forward transfer matrix 𝐴 is ill-

conditioned causing the inverse problem to be ill-posed, which means any small 

amount of noise in the measurements leads to large perturbations in the solution. 

This means that even a small amount of noise can lead in meaningless solutions. To 

overcome this problem many regularization methods are proposed and implemented 

in literature. In this section four different regularization methods, which are 

employed to estimate epicardial potentials 𝛷𝐸 in this study, are presented. These 

methods are Tikhonov regularization, Truncated Total Least Square (TTLS) method, 

Lanczos Truncated Total Least Squares (LTTLS) method, and Lanczos Least 

Squares QR (LLSQR) method, all of which are explained thoroughly in the next 

sections. 
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3.3.1 Tikhonov Regularization 

Tikhonov regularization method is one of the most well-known and popular 

regularization methods to deal with the ill-posed nature of the inverse ECG problem 

[78]. In this method a cost function consisting of the residual norm and the constraint 

norm is defined, and the solution is chosen to such minimize the cost function. The 

cost function defined for Tikhonov regularization is as follows: 

𝛷𝐸𝜆
 = min ‖𝐴𝛷𝐸 − 𝛷𝑇‖2

2  + 𝜆2  ∥ 𝑅𝛷𝐸 ∥2
2,  (3.5) 

where 𝜆 is the regularization parameter balancing the relative weights of the residual 

and constraint norms, 𝛷𝐸𝜆
 is the solution according to a specific regularization 

parameter 𝜆, and 𝑅 is the regularization matrix which defines regularization 

constraint. In the “zero order” Tikhonov regularization, the identity matrix,  𝐼, is used 

as the regularization matrix (𝑅 = 𝐼). In the “first-order” Tikhonov regularization, 𝑅 

is chosen to be surface gradient matrix (𝐺 = 𝑅), and for “second-order” Tikhonov 

regularization 𝑅 is defined as the surface Laplacian operator (𝑅 = 𝐿). In this study, 

zero-order Tikhonov regularization method is used, since it is more suitable for 

solving the inverse ECG problem [79]. 

Two alternative representations of Tikhonov regularization is presented below: 

(𝐴𝑇𝐴 + 𝜆2𝑅𝑇𝑅)𝛷𝐸 = 𝐴𝑇𝛷𝑇,         (3.6) 

min‖(
𝐴
𝜆𝑅

)𝛷𝐸 − (
𝛷𝑇

0
)‖

2
.                                             (3.7) 

Considering the above two equations, it can be inferred that if the null space of 𝐴 

intersects with the null space of 𝑅 (i.e., 𝑁(𝐴) ∩ 𝑁(𝑅) = {0}), then there would be a 

unique solution, 𝛷𝐸𝑒𝑠𝑡
, then the coefficient matrix, (𝐴𝑇𝐴 + 𝜆2𝑅𝑇𝑅), has full rank, and 

the solution is calculated as: 

𝛷𝐸𝑒𝑠𝑡
= 𝐴𝜆𝛷𝑇 ,                                     (3.8) 

where 

𝐴𝜆 = (𝐴𝑇𝐴 + 𝜆2𝑅𝑇𝑅)
−1

𝐴𝑇.                (3.9) 

Tikhonov regularization is equivalent to applying filter factors on singular value 

decomposition (SVD) representation of 𝛷𝐸: 
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𝛷𝐸𝑒𝑠𝑡
= ∑

𝑠𝑖
2

𝑠𝑖
2+𝜆2

𝑛
𝑖=1

𝑢𝑖
𝑇𝛷𝑇

𝑠𝑖
𝑉𝑖,                (3.10) 

where 𝑉 is the same 𝑉 matrix in the SVD decomposition of 𝐴. The term ,  𝑓𝑖(𝜆) =

𝑠𝑖
2

𝑠𝑖
2+𝜆2 , in the above equation is called the filter factor since it filters the amplification 

of small singular values. By using this filter factor Eqn. (3.8) can be re-written as: 

𝛷𝐸𝑒𝑠𝑡
= ∑ 𝑓𝑖

𝑛
𝑖=1

𝑢𝑖
𝑇𝛷𝑇

𝑠𝑖
𝑉𝑖      (3.11) 

It can be inferred from the above equation that the larger a singular value, the larger 

the effect it has on the solution. Additionally, the effect of the regularization 

parameter on the solution is very important. Here, MCC is used as the regularization 

parameter selection method, which will be explained later on in this chapter. 

 

3.3.2 Lanczos Least Squares QR Factorization (LLSQR) Method 

Lanczos Least Squares QR Factorization (LLSQR) is an iterative method to solve 

linear systems. When the coefficient matrix is large, iterative methods are more 

preferable than the direct solutions. LLSQR method iteratively produces solution 

matrices in each iteration. After 𝑘 iterations, the solution will approach to the optimal 

solution. However, this method suffers from a phenomena of “semi-convergence”. If 

the number of iterations are not limited, the solution may converge to a worse 

solution with higher relative error [69]. To avoid obtaining a noise contaminated 

solution, a reasonable stopping criteria should be defined for 𝑘. One of the most 

important steps of this algorithm is to determine the regularization parameter, 𝑘 [65]. 

The general theme of LLSQR method is explained below. 

LLSQR method starts with finding the sequence of Lanczos vectors using Lanczos 

Bidiagonalization method. Lanczos Bidiagonalization computes  𝑢𝑗 ∈ ℝ𝑚, 𝑣𝑗 ∈

ℝ𝑛 and scalars 𝛼𝑗  and 𝛽𝑗, such that 𝐵𝑘 = 𝑈𝑇𝐴𝑉 is met. 𝐵𝑘 is lower bidiagonal 

matrix: 



  38 
 

𝐵𝑘 =

[
 
 
 
 
 
 
𝛼1  
𝛽1 𝛼2

   
  

     𝛽2 
 

 
  

 

   

  
⋱ 
⋱

 

 
 

    𝛼𝑘

    𝛽𝑘+1]
 
 
 
 
 
 

          (3.12) 

Lanczos vectors are orthonormal such that: 

𝑈𝑘+1 = (𝑢1, 𝑢2, … , 𝑢𝑘+1) ∈  ℝ𝑚×(𝑘+1) , 𝑈𝑘+1
𝑇 𝑈𝑘+1 = 𝐼𝑘+1 

and, 

𝑉𝑘 = (𝑣1, 𝑣2, … , 𝑣𝑘) ∈ ℝ𝑚×𝑘, 𝑉𝑘
𝑇𝑉𝑘 = 𝐼𝑘. 

The Lanczos Bidiagonalization algorithm is given below [83]: 

 

Lanczos Bidiagonalization 

1. Choose a starting vector 𝛷𝑇 ∈ 𝐼𝑅𝑚 and 𝛽1 = ‖𝛷𝑇‖2, 𝑢1 =
𝛷𝑇

𝛽1
, 𝑣0 = 0 and 𝛼1 

2. For 𝑘 = 1, 2, … , 𝑘 do 

3. 𝑟𝑖 = 𝐴𝑇𝑢𝑖 − 𝛽𝑖𝑣𝑖−1 

4. 𝛼𝑖 = ‖𝑟𝑖‖2 

5. 𝑣𝑖 =
𝑟𝑖

𝛼𝑖
 

6. 𝑃𝑖 = 𝐴𝑣𝑖 − 𝛼𝑖𝑢𝑖 

7. 𝛽𝑖+1 = ‖𝑃𝑖‖2 

8. 𝑢𝑖+1 =
𝑃𝑖

𝛽𝑖+1
 

9. End 

After 𝑘 iterations, three matrices will have been computed, a lower bidiagonal matrix 

𝐵𝑘 and two matrices 𝑈𝑘+1 and  𝑉𝑘. These matrices are related by the following 

relationships: 

                                                    𝛷𝑇 = 𝛽1𝑢1 = 𝛽1𝑈𝑘+1𝑒1,  

 𝐴𝑉𝑘 = 𝑈𝑘+1𝐵𝑘,                                           (3.13) 

                                           𝐴𝑇𝑈𝑘+1 = 𝑉𝑘𝐵𝑘
𝑇 + 𝛼𝑘+1𝑣𝑘+1𝑒𝑘+1

𝑇 ,     

where  𝑒𝑖 represents the ith unit vector. Now, the calculated quantities by Lanczos 

Bidiagonalization algorithm can be used to solve the least squares problem: 

          min ‖𝐴𝛷𝐸 − 𝛷𝑇‖2
 .                                                (3.14) 
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Here, the solution has the form:   

𝛷𝐸
(𝑘)

= 𝑣𝑘𝑦(𝑘),                                                 (3.15) 

where the length of the vector 𝑦(𝑘) is 𝑘. Then, 𝑟(𝑘) = 𝛷𝑇 − 𝐴𝛷𝐸 is defined and by 

substituting we have: 

𝑟(𝑘) = 𝛽1𝑢1 − 𝐴𝑉𝑘𝑦
(𝑘) = 𝑈𝑘+1(𝛽1𝑒1 − 𝐵𝑘𝑦

(𝑘)).   (3.16) 

Let us define  𝑡𝑘+1 = 𝛽1𝑢1 − 𝐵𝑘𝑦
(𝑘). Since  𝑈𝑘+1 has orthonormal columns this can 

be concluded that 𝑦(𝑘) should be chosen in a way that it minimizes ‖ 𝑡𝑘+1‖. So the 

least square problem changes to: 

min ‖𝛽1𝑒1 − 𝐵𝑘𝑦
(𝑘)‖

2
.                                         (3.17) 

By standard QR factorization of Eqn. (3.17) we have: 

𝑄𝑘[𝐵𝑘   𝛽1𝑒1] = [
𝑅𝑘 𝑓𝑘
 �̃�𝑘+1

]  =  

[
 
 
 
 
 
 
 
 
𝜌1 𝜃1  
 𝜌2 𝜃2

    .

   
   

.            

     ⋮    𝜑1   
     ⋮ 𝜑2

     ⋮  .    
 

   
   
   

 

.    .    
 .     .
      .

   ⋮   .         
   ⋮   .         

𝜃𝑘  ⋮  𝜑𝑘−1
   
… … …
   

   
… … …
   

 𝜌𝑘 ⋮    𝜑𝑘     

… ⋮ …
 ⋮ �̃�𝑘+1 ]

 
 
 
 
 
 
 
 

               

(3.18) 

Then, by Eqn. (3.19) 𝑦(𝑘) and  𝑡𝑘+1 can be found: 

𝑓𝑘 = 𝑅𝑘𝑦
(𝑘),  𝑡𝑘+1 = 𝑄𝑘

𝑇 [
0

�̃�
𝑘+1

].    (3.19) 

Finally, by combining Eqn. (3.15) and (3.19) we have: 

𝛷𝐸
(𝑘)

= 𝑣𝑘𝑅𝑘
−1𝑓𝑘 = 𝐷𝑘𝑓𝑘.                                    (3.20) 

As it was stated before LLSQR is semi-convergence method, which by further 

iteration may diverge from optimal solution. Therefore, defining a limit for 𝑘, 

number of iterations, can solve the semi-convergence phenomena problem. 
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3.3.3 Truncated Total Least Square (TTLS) Method 

The total least squares method (TLS) is based on the least squares approximation. 

This method is used when the coefficient matrix  𝐴 and the left hand side matrix 𝛷𝑇 

contain errors. Truncated Total Least Square (TTLS) method is modified version of 

TLS method. This method filters the effect of the very small singular values on the 

solution [68, 81, 82], in other words this method discards the redundant information 

from both 𝐴 and  𝛷𝑇 matrices. The most important stage of the TTLS method is the 

truncation level.  

The steps of TTLS algorithm is given below: 

1. The Singular Value Decomposition (SVD) of the augmented matrix 

(𝐴 𝛷𝑇) is calculated as: 

(𝐴  𝛷𝑇) =  𝑈𝑆𝑉𝑇 = ∑ 𝑢𝑖𝑠𝑖𝑣𝑖
𝑇𝑛+1

𝑖=1 ,                       (3.21) 

where 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑛+1. 

2. A truncation parameter 𝑘 ≤ min(𝑛, 𝑟𝑎𝑛𝑘(𝐴  𝛷𝑇)) is selected such that: 

𝑠𝑘 ≥ 𝑠𝑘+1 and 𝑣22 = (𝑣𝑛+1,𝑘+1, … , 𝑣𝑛+1,𝑛+1) ≠ 0. The selection of the 

regularization parameter is accomplished by using different regularization 

parameter selection methods. 

3. The 𝑉 matrix should be partitioned as: 

�̅� = (
�̅�11 �̅�12

�̅�21 �̅�22
),     (3.22) 

where �̅�11 𝜖 ℝ
𝑛×𝑘 , �̅�12 𝜖 ℝ

𝑛×(𝑛−𝑘+1), �̅�21 𝜖 ℝ
1×𝑘 and �̅�22 𝜖 ℝ

1×(𝑛−𝑘+1). 

4. Then the TTLS solution can be calculated by: 

𝛷𝐸𝑘
= −�̅�12�̅�22

+ = −
�̅�12�̅�22

𝑇

‖�̅�22‖2
2     (3.23) 

In (3.23) the pseudo inverse of �̅�22 exists, because ‖�̅�22‖2 ≠ 0. 

The norm of the solution is calculated as: 

‖𝛷𝐸𝑘
‖ = √‖�̅�22‖−2 − 1.    (3.24) 

And TLS residual matrix is calculated as: 

‖(𝐴 −  𝛷𝑇) − (�̃� −  𝛷�̃�)‖𝐹 = √𝑠𝑘+1
2 + ⋯+ 𝑠𝑛+1

2 ,       (3.25) 
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where ‖   ‖𝐹is Frobenius norm and 𝐴,  𝛷𝑇 are error containing versions of 𝐴 and  𝛷𝑇, 

respectively. We see that the norm of 𝛷𝐸𝑘
 increases with 𝑘, while the residual norm 

decreases with 𝑘. When the sub-matrix �̅�22 is zero or something near zero 𝑥𝑘 grows 

very large, therefore it is beneficial to define a threshold for this sub-matrix in order 

to limit the solution norm ‖𝛷𝐸𝑘
‖

2
. 

 

3.3.4 Lanczos Truncated Total Least Square (LTTLS) Method 

Although Singular Value Decomposition (SVD) method itself and the methods 

which use this process as a part of their regularization approaches are efficient, they 

become inapplicable when the size of coefficient matrix is large. Since the 

complexity of SVD method is O (mn2), it is time consuming and impractical to 

employ this method to solve inverse problems with large coefficient matrices. 

Instead, a method called “Lanczos Bidiagonalization” which minimizes the size of 

coefficient matrix without losing the large and efficient singular values is used to 

solve large discrete ill-posed inverse problems. The Lanczos Bidiagonalization 

method is able to be combined and used along with other regularization methods like 

TTLS. In this case, it is called Lanczos TTLS (LTTLS). 

In LTTLS algorithm [80], by starting vector, 𝑢1 = 𝑏/‖𝑏‖2, after 𝑘 iterations the two 

sets of vectors 𝑉𝑘 and 𝑈𝑘 , and (𝑘 +  1) × 𝑘 bidiagonal matrix, 𝐵𝑘, are produced 

such that: 

𝑉𝑘 = {𝑣1, 𝑣2, … , 𝑣𝑘}, and 𝑈𝑘 = {𝑢1, 𝑢2, … , 𝑢𝑘+1}, 

where these matrices are related to each other by the equations: 

𝐴𝑉𝑘 = 𝑈𝑘𝐵𝑘 and  𝛷𝑇 = 𝛽1𝑢1.                                    (3.26) 

After 𝑘 iterations, if 𝑘 is large enough to include all singular values of the matrix 𝐴, 

the TLS problem can be projected into subspaces spanned by 𝑉𝑘 and 𝑈𝑘. 

The final form of the problem will be: 

min  ‖(𝐵𝑘, 𝛽1𝑒1) − �̂�𝑘, �̂�𝑘‖𝐹
,  subject to �̂�𝑘𝑦 = �̂�𝑘.       (3.27) 

Then the TLS method is applied on small sized matrix, which is the result of Lanczos 

Bidiagonalization process, in order to create the truncated TLS solution, namely, the 



  42 
 

TTLS solution. To calculate TTLS solution, SVD is applied on the matrix (𝐵𝑘 =

 𝛽1𝑢1): 

(𝐵𝑘  𝛽1𝑢1) = �̿�(𝑘)Σ̿(𝑘)(�̿�(𝑘))
𝑇
.   (3.28) 

The matrix �̿�(𝑘) is partitioned as noted below: 

�̿� =  (
�̿�11 �̿�12

�̿�21 �̿�22

),    (3.29) 

where �̿�11 𝜖 ℝ
(𝑘−1)×(𝑘−1) ,�̿�12 𝜖 ℝ

(𝑘−1)×1, �̅�21 𝜖 ℝ
1×(𝑘−1), and �̿�22 𝜖 ℝ

1×1. 

Then the standars TLS solutiona can be defined as: 

�̅�𝑘 = −�̿�12
(𝑘)

(�̿�22
(𝑘)

)−1,     (3.30) 

Finally, the solution is calculated as: 

 𝛷�̃� = 𝑉𝑘�̿�12
(𝑘)

(�̿�22
(𝑘)

)−1
 
,     (3.31) 

 

3.4 Regularization Parameter Selection Method 

The regularization parameter is a positive scalar used to find the balance point when 

it is to minimize the residual norm and the solution norm simultaneously. This 

parameter is symbolized as  𝜆, a very small positive scalar, or 𝑘, truncation level, 

according to the regularization method. When a regularization parameter is selected 

to be small, the effect of high frequency elements of a signal increases. This case is 

called under-regularization, no meaningful information about ECG signal is 

obtained in this way. Conversely, when the regularization parameter is selected to be 

large, the effect of high frequency signal elements is eliminated and this causes 

smoothing effect on the signal. This case is called over-regularization.  

Therefore, selecting a correct and effective regularization parameter is one of 

the most important stages of regularization procedure. As it was stated before, in this 

study, Maximum Correlation Coefficient (MCC) method is used as regularization 

parameter selection method. 

Although, MCC method is neither practical nor suitable for clinical usage, 

since it uses real epicardial potentials to determine regularization parameter, it 
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provides significant information about the effectiveness of the regularization 

parameter during the regularization process. 

In the MCC method, first the number of regularization parameters to be tested 

are decided, then upper and lower limits are also decided. Finally, for each single 

parameter the corresponding inverse solution is calculated. These calculated results 

are compared with the real values of the epicardial potentials and the solution that 

gives the maximum Correlation Coefficient (CC) is selected to be regularization 

parameter. MCC method is invaluable when the aim is to assess the performance of 

the regularization methods independent from regularization parameter selection 

method. 

 

3.5 Lead Reduction Algorithm 

As it is stated before, to obtain BSPM, a large number of leads are attached to the 

body surface to detect the informative heart signals. The attachment of large number 

of leads makes the BSPM approach hard to apply in practice. There are several lead 

selection methods to choose a subset of leads that provides significant information 

about the heart signals. In the lead reduction algorithm, proposed in this study, this 

goal is accomplished by choosing the leads whose acquired signals are informative 

and eliminating those whose signals have small or no contribution to understand the 

electrical activity of the heart.  

In this section, the lead reduction algorithm is explained completely. During 

the lead selection process, Tikhonov regularization along with Maximum Correlation 

Coefficient method are used, which are described in the previous sections of this 

chapter. 

In this study, the lead reduction algorithm is applied on a 192 lead-set, whose 

configuration is the same as the one used by Lux et al. [27] to select 64 and 32 

optimal and reduced lead-sets. The lead reduction algorithm is an iterative algorithm 

and to make it easier to understand, the algorithm is divided into 4 main steps. 

Starting from the first iteration, in the first step of the algorithm, Tikhonov 

regularization is applied on every single row of the data matrix. In the second step, 

the mean of Correlation Coefficient (CC) values are calculated for the obtained 



  44 
 

solutions. In the third step, maximum value of mean CC is selected and the 

corresponding rows are extracted from data and the forward transfer matrices. In the 

fourth step, the selected rows are deleted from data and forward transfer matrices, 

and are kept to be used in further iterations. In the next iterations, the algorithm looks 

for the lead whose performance is the best when combined with the previously 

selected lead(s), by going through steps one to four. The algorithm repeats itself until 

the desired number of leads is reached. The four main steps of the algorithm are 

explained below along with their illustrations, comprehensively. 

In step one, the lead reduction algorithm starts with selecting a single lead 

that gives the best solution in terms of CC when it is employed to solve the inverse 

ECG problem through Tikhonov regularization. In other words, Tikhonov 

regularization is applied on every single row of the data matrix,  𝛷𝑇 , and forward 

transfer matrix 𝐴. As it was explained before, each row in the data matrix is a signal 

received from a specific lead. In this step, all epicardial potentials are estimated using 

the signal from only one electrode.  At the end of this step, the number of computed 

inverse solutions equals to the number of rows of the data matrix; here, 192. The 

schematic explanation of this step is illustrated in the Figure 3.3. 
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Figure 3.3: The illustration of the first step of the lead reduction algorithm. 

 

In the second step, for each of these 192 solutions, mean of Correlation Coefficient 

values are calculated. Figure 3.4 shows the second step of the algorithm. 

 

Figure 3.4: The illustration of the second step of the lead reduction algorithm. 
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In the third step, the largest mean Correlation Coefficient value, among calculated 

values in the previous step, is selected and its corresponding rows from data matrix 

and forward transfer matrix are retrieved. In Figure 3.5, this selection is illustrated 

with the assumption that the maximum mean CC value, 𝐶𝐶̅̅̅̅
�̃�𝑖

 , belongs to the ith row. 

 

Figure 3.5: The illustration of the third step of the Lead Reduction Algorithm. 

 

In the fourth step, selected rows from the previous step are deleted from data and 

forward transfer matrices and kept in temporary matrices 𝜙𝑇𝑇𝑒𝑚𝑝
 and 𝐴𝑇𝑒𝑚𝑝 to be 

used in the next iterations. Figure 3.6 illustrates this step. 

 

Figure 3.6: The illustration of the fourth step of the lead reduction algorithm. 
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In the next iteration, again the algorithm looks for the next optimal lead by going 

through steps one to four. From second iteration on, as it is shown in the Figure 3.7, 

the previously selected rows from data and forward transfer matrices are conjugated 

with each row of remaining data and forward transfer matrices, respectively. Again 

the algorithm looks for the answer that gives the best mean Correlation Coefficient 

value by applying Tikhonov regularization on each of augmented matrices. It is 

obvious that at the end of each iteration, the size of the data matrix and forward 

transfer matrix reduces by one, and the size of  𝜙𝑇𝑇𝑒𝑚𝑝
 and the forward matrix 

corresponding to these data increase by one. The algorithm proceeds untill the 

number of desired leads in   𝜙𝑇𝑇𝑒𝑚𝑝
 is reached.  

 

                           

       

Figure 3.7: The illustration of the lead reduction algorithm at each iteration. 
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Finally, at the end of iterations, all of the selected rows from data and forward 

transfer matrices are stored and their corresponding electrodes on the surface of the 

torso are specified. 

In this study, the lead reduction algorithm is applied on different data-sets to 

obtain data-set dependent lead-set configurations for a number of 64 and 32 leads, 

respectively. These data-sets, their configuration, and their quantitative and 

qualitative comparisons will be discussed in the next chapter. 
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CHAPTER 4 

 

 

RESULTS 

 

 

 

In this chapter, first, the properties of the data used in the lead selection process are 

explained, and for few samples, the resulted lead-set configurations are shown. Then, 

a single lead-set is proposed that works for all data-sets. Finally, different 

regularization methods are applied on data-sets and the results are compared.  

 

4.1 Test Data 

The epicardial potentials used for this study were measured at University of Utah 

Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) [84]. 

The epicardial measurements were taken from a dog’s heart, perfused from another 

dog’s circulatory system and suspended in an electrolytic filled (500 Ω.cm) 

adolescence human thorax shaped fiberglass tank. To measure the epicardial 

potentials, a nylon sock electrode with silver wires was slipped over the ventricles. 

During measurements the heart is stimulated from the ventricles to simulate 

ventricular arrhythmias. The epicardial measurements are taken from 490 points with 

sampling rate 1000 samples per second. Figure 4.1 shows the illustration of the data 

acquisition setup. 
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Figure 4.1: Perfused dog heart suspended in the electrolytic tank. Recording 

electrodes consist of 490 lead epicardial sock array [23]. 

 

To calculate the forward matrix, Boundary Element Method (BEM) is used. The 

geometric model consists heart, torso, and lungs. This forward model along with the 

epicardial potential measurements from 490 leads were used to simulate torso 

potentials at 771 points on the body surface. In this study, the actual size of the 

forward matrix is 771-by-490. The body surface potentials are obtained by 

multiplying the forward matrix with epicardial potentials and adding independent 

and identically distributed Gaussian noise (Figure 4.2). 
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Figure 4.2: Calculation of torso potentials. 

 

To assess the efficiency of the lead reduction algorithm proposed in this study, 

several data-sets are used. In order to achieve a maximum diversity from data-set 

standpoint, we utilize 23 data-sets related to 23 different stimulation sites on the 

epicardium surface. Figure 4.3 shows the heart geometry that is divided into 23 

different regions. Because of 3-dimensional geometry of the heart, the whole surface 

of the heart is shown in three connected planes, frontal plane (panel (a)), backplane 

(panel (b)), and side plane (panel (c)). For each of the 23 regions, we pick one 

epicardial potential data-set stimulated from a site that falls within that region.  
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              (a)                                                             (b) 

 
(c) 

Figure 4.3: Regions on the surface of the heart are divided by dotted line and 

stimulation sites are marked by yellow dots, (a) 10 frontal regions, (b) 9 back 

regions, (c) 4 side regions. 

  

Due to stimulation sites other than the natural pace maker, i.e., the SA node, the QRS 

waves have different durations and propagation paths, meaning that every individual 

pacing site results in a different data-set.  

Here, instead of applying lead reduction algorithm on the complete lead-set 

consisting of 771 torso surface leads, the 192 lead-set configuration (12-by-16 

equidistant electrode arrays), proposed by Lux et al., [23- 24] is used. Figure 4.4 
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shows this 192 lead-set configuration on the body surface. As it is seen in this figure, 

a large number of leads have to be attached to the surface of the torso to obtain 

BSPM. Not only attaching a large number of electrodes to the body surface of 

patients is impractical, but also it takes a long time to process the acquired data. 

Additionally, these acquired data should be stored which is space consuming process. 

Therefore, the motivation here is to reduce the number of electrodes and receiving an 

informative signals at the same time. 

   

 
               (a)                   (b) 

Figure 4.4: 192 lead-set configuration, (a) Frontal view, (b) back view. 

 

4.2 Quantitative Comparisons 

To compare the quality of the inverse solutions related to each different data-set, 

Correlation Coefficient (CC) and Relative Difference Measurement Star (RDMS) are 

used. 

𝐶𝐶(𝑖) =
∑ ⌈(𝜙𝐶)𝑖− �̅�𝐶⌉.[(𝜙𝐸)𝑖−�̅�𝐸]𝑡

𝑖=1

‖𝜙𝐶−�̅�𝐶
 
‖
2
.‖𝜙𝐸 

 

 
−𝜙𝐸

 
‖

2

,    (4.1) 

𝑅𝐷𝑀𝑆(𝑖) = ‖
(𝜙𝐶)𝑖

‖(𝜙𝐶)𝑖‖2

−
(𝜙𝐸)𝑖

‖(𝜙𝐸)𝑖‖2

‖
2

,    (4.2) 

where 𝜙𝐸  and 𝜙𝐶  represent known epicardial potentials and computed epicardial 

potentials, respectively. The quantities �̅�𝐸 and  �̅�𝐶 are mean values of 𝜙𝐸  and 𝜙𝐶 , 

respectively.  If the value of CC increases or the value of RDMS decreases, it can be 
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interpreted that the solution has improved. These measures give quantitative 

comparisons between true epicardial potentials and the reconstructed ones, however, 

it is beneficial to compare the true epicardial potentials and the reconstructions 

visually, in other words, qualitatively. Another reason to use visual comparison is to 

assess the ability of the method to reconstruct the activation wave front correctly. 

The latter is one of the most important aims of inverse electrocardiography. In this 

study, MAP3D software is used to visualize the reconstructed epicardial potentials. 

This software is a part of Scientific Computing and Imaging (SCI) software 

developed by University of Utah researchers. With this software, displaying and 

editing three-dimensional geometric models and time-based data associated with 

those models are possible. The results are displayed as isopotential surfaces of 

epicardial potential distribution on the 3D heart geometry. 

Through comparing the results visually, two important characteristics are taken into 

account: 

1. The ability of the solution to reconstruct the wave front without dispersion. 

The reason of the dispersion of the solution is the smoothing effect of the 

regularization method. 

2. The ability of the solution to estimate the potential contours as correct as 

possible, and to approximate activated or inactivated regions appropriately.  

 

4.3 Results of Lead-Set Reduction  

In this section, first the effect of the reduction in the number of used leads in the 

signal acquisition is studied to see how the quality of the acquired data changes when 

the number of the leads is reduced. Then, a single common 64 and 32 lead-set is 

proposed. These reduced lead-sets are then assessed in terms of their signal 

information, whether their acquired signals are qualified enough to be used in the 

reconstruction of epicardial potentials. 
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4.3.1 Reduced Lead-set Effects 

In this section, we study the effects of reduced lead-sets on the quality of the 

reconstructed epicardial potentials by both quantitative and qualitative approaches.  

To have a clear understanding about the resultant lead-sets of lead reduction 

algorithm, here, 3 samples out of 23 different pacing sites, on the epicardium surface 

are selected and the lead reduction algorithm is applied on their corresponding data.  

These three activation sites are chosen from three different regions of the heart, one 

from frontal region (data-set-I), one from back region (data-set-II), and one from side 

region (data-set-III). The selected 3 pacing sites are shown in Figure 4.5 These 

pacing sites are marked in blue in the Figure 4.5.   

 
(a)                                    (b)                                         (c) 

Figure 4.5: Three selected pacing sites are marked with blue color (a) a pacing site 

from frontal region of the heart, (b) a pacing site from back region of the heart, (c) a 

pacing site from side region of the heart. 

 

As it is stated before, the primary complete lead-set which is used in this study, is the 

configuration that is proposed by Lux et al., [23, 24] as shown in Figure 4.4. 

Applying the lead reduction algorithm on these 3 data-sets related to 3 different 

activation sites results in three different reduced 64 and 32 lead-sets optimal for these 

three specific data. The reduced 64 and 32 lead-set configurations are shown in 

Figure 4.6. In this figure two left columns are frontal and back view of the reduced 

64 lead-set, and two right columns are frontal and back view of the reduced 32 lead-

set, respectively, related to each of the mentioned data-sets. 
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       (a)                                                                  (b) 

     
                  (c)                       (d) 

    

        (e)                                (f) 

Figure 4.6: (a) reduced 64 lead-set related to data-set-I, (b) reduced 32 lead-set 

related to data-set-I, (c) reduced 64 lead-set related to data-set-II, (d) reduced 32 

lead-set related to data-set-II, (e) reduced 64 lead-set related to data-set-III, and (f) 

reduced 32 lead-set related to data-set-III. 

 

Not surprisingly, each data-set results in a specific optimal lead-set configuration 

which is arranged exclusively for that data-set. Depending on the specific activation 

site, the distribution of the selected leads differs such that useful information is 

obtained as much as possible. Since every data-set has a specific lead-set 

configuration, applying lead reduction algorithm on 23 different data-sets results in 

to 23 different lead-set configurations.  
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The main motivation here is to find one common lead-set configuration for all 

of the data-sets whose acquired signals are qualified and informative in an acceptable 

extent. If such a lead-set configuration is found it can be used instead of all other 

exclusive configurations. 

The remaining part of the section is organized as following steps: 

1. The lead reduction algorithm is applied on each of  23 data-sets, and 64 and 

32 reduced lead-sets tuned to each inidividual recording sites are obtained, 

separately. 

2. For each reduced lead-set (64 and 32 lead-sets) according to each of 23 data-

sets, related rows and columns are extracted from data-matrix, 𝛷𝑇 , and 

forward transfer matrix, 𝐴. Then, these reduced-sized data and forward 

transfer matrices are used to solve inverse problem of ECG. To solve the 

inverse problem related to each data-set, Tikhonov regularization is employed 

and as a regularization parameter selection approach Maximum Correlation 

Coefficient (MCC) method is used. For each 23 data-set, Tikhonov 

regularization is applied on the complete 771 lead-set, 192 lead-set, reduced 

64-lead-set, and reduced optimal 32 lead-set related to that data set. In this 

study, a fixed 30 SNR dB Gaussian noise is added to all data-sets in advance. 

3. The results of regularization, reconstructed epicardial potentials, are then 

compared quantitatively by the means of calculating the average and the 

standard deviation values of Correlation Coefficient (CC) values, and 

similarly for Relative Difference Measurement Star (RDMS) values. The 

higher values of CC, as values approach to 1, indicate inverse problem 

solutions with high quality. So, higher values of CC are preferable. The 

smaller values of RDMS indicate that less error exists in the solution, so that 

the smaller values of RDMS are preferable. 

The results of calculation of CC and RDMS of the inverse problem solution of each 

23 data-set are presented in Table 4.1 and Table 4.2, respectively. 
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Table 4.1: Mean (avg) and standard deviation (std) of Correlation Coefficient (CC) 

values for complete 771 lead-set, 192 lead-set, reduced 64-lead-set, and reduced 

optimal 32 lead-set for each of the 23 different data-sets. 

   # of Leads 

 

Data Sets 

771 

(avg±std) 

192 

(avg±std) 

64 

(avg±std) 

32 

(avg±std) 

Data-1 0.79±0.20 0.78±0.20 0.74±0.22 0.73±0.22 

Data-2 0.72±0.22 0.70±0.23 0.68±0.25 0.67±0.25 

Data-3 0.78±0.20 0.75±0.20 0.75±0.21 0.74±0.21 

Data-4 0.74±0.18 0.72±0.19 0.72±0.20 0.70±0.20 

Data-5 0.79±0.17 0.77±0.18 0.76±0.19 0.72±0.17 

Data-6 0.79±0.17 0.77±0.18 0.77±0.18 0.76±0.19 

Data-7 0.79±0.15 0.77±0.16 0.77±0.17 0.76±0.18 

Data-8 0.73±0.16 0.71±0.17 0.71±0.17 0.70±0.18 

Data-9 0.79±0.16 0.76±0.17 0.75±0.19 0.74±0.19 

Data-10 0.77±0.19 0.75±0.20 0.75±0.20 0.73±0.21 

Data-11 0.67±0.27 0.64±0.27 0.60±0.29 0.60±0.30 

Data-12 0.70±0.28 0.68±0.29 0.67±0.30 0.65±0.30 

Data-13 0.77±0.19 0.76±0.19 0.76±0.19 0.75±0.19 

Data-14 0.70±0.23 0.68±0.23 0.67±0.25 0.65±0.25 

Data-15 0.78±0.17 0.76±0.18 0.75±0.18 0.74±0.18 

Data-16 0.79±0.15 0.77±0.17 0.77±0.16 0.77±0.16 

Data-17 0.66±0.22 0.64±0.22 0.64±0.23 0.62±0.23 

Data-18 0.66±0.20 0.64±0.21 0.63±0.20 0.62±0.21 

Data-19 0.74±0.15 0.71±0.16 0.71±0.16 0.70±0.15 

Data-20 0.74±0.17 0.72±0.19 0.71±0.19 0.70±0.20 

Data-21 0.66±0.25 0.63±0.26 0.61±0.28 0.59±0.28 

Data-22 0.80±0.13 0.78±0.14 0.77±0.16 0.75±0.17 

Data-23 0.68±0.18 0.66±0.19 0.66±0.18 0.65±0.18 

 

Table 4.2: Mean (avg) and standard deviation (std) of Relative Difference 

Measurement Star (RDMS) value for complete 771 lead-set, 192 lead-set, reduced 

64-lead-set, and reduced optimal 32 lead-set for different 23 data-sets. 

     # of Leads 

 

Data Sets 

771 

(avg±std) 

192 

(avg±std) 

64 

(avg±std) 

32 

(avg±std) 

Data-1 0.55±0.23 0.58±0.24 0.63±0.26 0.64±0.26 

Data-2 0.68±0.25 0.71±0.26 0.73±0.28 0.75±0.27 

Data-3 0.60±0.25 0.65±0.25 0.65±0.25 0.67±0.25 

Data-4 0.67±0.23 0.70±0.23 0.67±0.23 0.72±0.24 

Data-5 0.59±0.23 0.64±0.23 0.65±0.24 0.71±0.21 

Data-6 0.59±0.21 0.62±0.22 0.62±0.22 0.64±0.23 

Data-7 0.60±0.20 0.62±0.21 0.62±0.21 0.64±0.21 

Data-8 0.65±0.16 0.68±0.17 0.68±0.17 0.69±0.17 

Data-9 0.60±0.20 0.64±0.21 0.65±0.22 0.67±0.22 

Data-10 0.63±0.22 0.66±0.23 0.67±0.23 0.69±0.24 

Data-11 0.74±0.30 0.78±0.30 0.81±0.31 0.82±0.31 
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(Table 4.2 continued) 

Data-12 0.67±0.32 0.70±0.32 0.72±0.32 0.74±0.32 

Data-13 0.61±0.20 0.63±0.20 0.64±0.20 0.65±0.20 

Data-14 0.70±0.26 0.73±0.27 0.73±0.26 0.76±0.26 

Data-15 0.61±0.20 0.65±0.20 0.65±0.20 0.67±0.20 

Data-16 0.60±0.18 0.64±0.19 0.63±0.19 0.64±0.19 

Data-17 0.73±0.26 0.76±0.26 0.76±0.26 0.78±0.27 

Data-18 0.73±0.20 0.75±0.24 0.76±0.23 0.77±0.23 

Data-19 0.65±0.19 0.68±0.19 0.69±0.19 0.70±0.19 

Data-20 0.68±0.20 0.70±0.20 0.71±0.21 0.73±0.21 

Data-21 0.75±0.29 0.78±0.28 0.79±0.29 0.81±0.29 

Data-22 0.59±0.17 0.62±0.18 0.63±0.19 0.65±0.20 

Data-23 0.71±0.22 0.73±0.22 0.73±0.22 0.75±0.21 

 

Considering the results shown in Table 4.1 it can be concluded that, while the 

number of involved leads in solving the inverse problem of ECG decreases, the mean 

of CC values of the inverse solution, which is a numerical indicator of the quality of 

the solution, shows a small decrease. While comparing mean of CC values of 771 

complete lead-sets and reduced 32 lead-sets the largest variation in mean of CC 

values is about 0.07 is related to data-sets 11 and 21, the smallest variation in mean 

CC value is about 0.02 which is related to data-sets 13 and 16. The mean variation 

between all mean CC values of all 771 data-sets and all reduced 32 lead-sets is about 

0.042. This means that decreased number of measurement leads does not have a 

considerable effect on the final inverse solution. In other words, solving the inverse 

problem of ECG using smaller number of leads instead of the complete lead-set 

provides approximately similar results to that of the complete lead-set. Therefore, by 

using small number of leads configured optimally to acquire informative signals 

from body surface, the need of using large number of leads will be eliminated.  

In the case of RDMS, as it is shown in Table 4.2, while the number of 

measurement leads decrease, the mean of RDMS values show small increase. This 

again validates that instead of complete lead-set, which uses large number of leads, a 

small number of optimally placed leads can be used to reconstruct epicardial 

potentials, since the results of the latter have a negligible difference with the former. 

To have an overview about the difference between the mean of Correlation 

Coefficient (CC) values of 23 different lead-sets, we present two different plots in 

Figures 4.7 and 4.8. These plots are different presentations of Table 4.1. Each 
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column group in the Figure 4.7, presents average CC values related to 23 data-sets 

for 771 lead-set, 192 lead-set, reduced 64 and 32 lead-sets, respectively.  

Figure 4.7 represents the bar plot of average CC values of each individual lead-set, 

for 23 different lead-sets. 

 
Figure 4.7: Bar plot of average Correlation Coefficient (CC) value. 

 

As it can be inferred from Figure 4.7 there is not a considerable difference between 

the average CC values of complete 771 lead-sets and reduced 32 lead-sets.  

Figure 4.8 shows average over average of CC values for all data-sets together, 

along with average over standard deviation of their CC values. Each bar of this plot 

represents average over columns of Table 4.1 related to 771, 192, 64, and 32 lead-

sets, respectively. The average over standard deviation of CC values are shown by 

pins in the plot. 

 



  61 
 

 

Figure 4.8: Average over average of CC values for all data-sets along with average 

over standard deviation of all data-sets. 

 

From Figure 4.8 again it can be concluded that there is not a considerable difference 

between the left most bar, related to average CC over all 771 lead-sets, and the right 

most bar, related to average CC over all 32 lead-sets. To mention the difference 

between these two plots by percentage, there is 5% difference between mentioned 

two bars, which is very small and negligible.  

 

4.3.2 Common Lead-set for All Data-sets 

In the previous section, reduced 64 lead-sets and reduced 32- lead-sets optimal for 

each of the 23 data-sets, related to 23 different pacing sites on epicardium, are 

investigated. Therefore, as a result, 23 different configurations for 64 lead-sets and 

similarly, 23 different configurations for 32 lead-sets were obtained. 

In this section, it will be shown that a common reduced 64 and 32 lead-set 

optimal for all of the data-sets can be obtained using the results of the previous 

section. To achieve such a common lead-set, the position of the most repeated leads 

and the number of their repetition have to be known. Therefore, first we should 

determine how many times a specific lead is repeated in the all of the reduced 64 

lead-sets related to 23 different data-sets. The same procedure should be done to 

determine the common reduced 32 lead-set which is optimal for all data-sets. 
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4.3.2.1 Common 64 Lead-set for All Data-sets 

To tackle the question “Is there any single common lead-set whose acquired data can 

be used to reconstruct the epicardial potentials?” one needs to know the number of 

times that any individual lead from 192 lead-set configuration is selected in 23 

reduced lead-sets. To accomplish this mission, Figure 4.9 is shown to display the 

location of leads on the torso and the number of times that they have been repeated 

for 64 lead-sets obtained from each of 23 data-sets. In other words, this figure 

represents all 192 leads in terms of the number of times that they have been repeated 

when the lead reduction algorithm is applied on 23 data-sets individually to select 64 

leads optimally configured for that individual data-set. 

 

 

          (a)            (b) 

Figure 4.9: 192 leads and the number of their repetition in the case of selecting 64 

leads from 192 leads. (a) Frontal view and (b) back view. 

 

As it was expected, the quantity of leads and their number of repetitions are more in 

the frontal region of the torso, where the electrical activity of the heart is more 

detectable. Now the aim is to select the most repeated 64 leads to form a common 

optimal lead-set for which acquired data is consistent enough to reconstruct the 

epicardial potentials in an acceptable quality.  To facilitate the selection process a 

histogram plot is obtained by applying the steps below: 
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1. Finding the reduced lead set for each of the 23 data-set by applying lead 

reduction algorithm (see section 4.3.1). 

2. Finding the number of repetition for each lead in 192 lead-set, e.g., Figure 

4.9. 

3. Finally, picking 64 leads (depending on desired number of leads in final 

configuration this can be 32 leads too) that have been selected the most by 

the algorithm in each data-set. 

Figure 4.10 displays the histogram plot which shows lead numbers (indices) versus 

the number of times that they have been repeated in every 64 lead-set selected for 

each of the 23 single data-sets.  

 

Figure 4.10: Histogram plot for 64 lead-set. 

 

To have a better view of the above plot, Figure 4.11 is presented, in which the 

number of leads are sorted according to their number of times that they have been 

repeated. Note that the indices in the x-axis are no longer displayed from the 1st lead 

to the last (192nd) lead, but displayed from the most selected lead to the least selected 

lead. 
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Figure 4.11: Bar graph of sorted leads according to their number of repetition, x-axis 

is lead number and y-axis is repetition time. 

 

As it is shown in the Figure 4.11, several leads are selected by the algorithm (when 

applied on 23 different data-sets) more than 20 times. As is can be seen in the Figure 

4.11 only 4 leads are selected more than 20 times, leads 157, 173, 188, and 189. By 

looking to Figure 4.11, it is obvious that lead number 128 is repeated 16 times, lead 

number 82 is repeated 13 times, and lead number 102 is repeated 10 times. 

To form the common reduced 64 lead-set, which is aimed to be optimal for all 

23 data-sets, all the lead numbers that are repeated more than 10 times are selected. 

This selection results in a lead-set with 57 leads. It left 7 leads to be selected from the 

leads which are repeated 9 times, but there are 12 leads with 9 repetitions. Figure 

4.12 shows these 12 leads.  
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Figure 4.12: 9 times repeated leads shown by red bars. 

 

In order to select 7 leads out of these 12 leads, the positions of all 12 leads are 

examined on the torso surface, and then the leads that ensure the most attainable 

sparse configuration is obtained (by following the idea that any selected pair should 

have the largest possible distance in between). The main reason to select these 7 

leads in this way is to obtain the heart signals from wider region, consequently 

getting samples from widely distributed lead-set configuration. Figure 4.13: shows 

57 selected leads (black dots) together with these 12 candidate leads for selection 

(blue and yellow). In these images, 7 out of 12 leads which are selected are shown in 

blue and rejected ones are in yellow. 
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                               (a)            (b) 

Figure 4.13: position of 57 selected are shown by black mark. 7 out of 12 leads 

which are selected are shown in blue and rejected ones are in yellow. (a) Frontal 

view of lead-set configuration on the torso surface and (b) back view of lead-set 

configuration on the torso surface. 

 

Finally, after considering all criteria above, 64 lead-set optimal for all data-sets, 

namely common 64 lead-set, is obtained. Figure 4.14 shows the position of these 64 

leads on the torso surface.  
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       (a)              (b) 

Figure 4.14: The lead-set configuration for common 64 lead-set, (a) frontal view of 

lead-set configuration on the torso surface and (b) back view of lead-set 

configuration on the torso surface. 

 

Considering Figure 4.14, as it was expected, the leads are denser in the frontal part of 

the torso leaving the small number of leads for the back region of the torso. This 

indicates that the method used to select common 64 lead-set is wise enough to select 

the leads from the regions in which the electrical activity of the hart is more 

detectable by electrodes. 

The resultant configuration for 64 lead-set would be an efficient arrangement 

of leads to reconstruct the epicardial potentials. The ability of this common 64 lead-

set to reconstruct the epicardial potentials will be assessed by comparing the results 

of the reconstructed epicardial potentials using the individual optimal 64 lead-sets 

and the results of reconstructed epicardial potentials using the common 64 lead-set. 

To this end, the epicardial potentials related to all 23 data-sets are reconstructed by 

by Tikhonov regularization and Maximum Correlation Coefficient (MCC) as the 

regularization parameter selection method. Then, the average of CC and standard 

deviation values of every single result are calculated. Table 4.3 displays these results 

together with the average and standard deviation values of the results obtained using 

individual optimal lead-sets for all 23 data-sets the second column (including the 

data-set label column) of this table is equal to the forth column of Table 4.1). 



  68 
 

 

Table 4.3: Mean (avg) and standard deviation (std) of Correlation Coefficient (CC) 

values for optimal individual 64 lead-sets and common 64 lead-set for different 23 

data-sets. 

           Lead-set 

Data-set 

64 Optimal Lead-set 

CC(avg±std) 

Common 64 Lead-set 

CC(avg±std) 

Data-1 0.74±0.22 0.77±0.20 

Data-2 0.68±0.25 0.69±0.23 

Data-3 0.75±0.21 0.75±0.20 

Data-4 0.72±0.12 0.69±0.20 

Data-5 0.76±0.18 0.76±0.19 

Data-6 0.77±0.18 0.77±0.18 

Data-7 0.77±0.17 0.76±0.17 

Data-8 0.71±0.17 0.71±0.18 

Data-9 0.75±0.19 0.75±0.17 

Data-10 0.75±0.20 0.74±0.20 

Data-11 0.61±0.29 0.62±0.28 

Data-12 0.67±0.30 0.67±0.30 

Data-13 0.76±0.19 0.75±0.19 

Data-14 0.68±0.25 0.67±0.23 

Data-15 0.75±0.18 0.75±0.18 

Data-16 0.77±0.16 0.76±0.16 

Data-17 0.64±0.23 0.63±0.23 

Data-18 0.63±0.20 0.63±0.21 

Data-19 0.71±0.16 0.71±0.15 

Data-20 0.71±0.19 0.67±0.21 

Data-21 0.61±0.28 0.61±0.27 

Data-22 0.77±0.16 0.75±0.18 

Data-23 0.66±0.18 0.64±0.19 

 

To better understand the results presented in Table 4.3, they are displayed in two 

ways in the Figure 4.15. The mean of Correlation Coefficient values presented in the 

above table are shown by bars in the up panel of the Figure 4.15 and by dots in the 

bottom panel.  
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Figure 4.15: Mean (avg) of Correlation Coefficient (CC) values for optimal 

individual 64 lead-sets and common 64 lead-set for different 23 data-sets. 

 

As it is displayed in Table 4.3. and Figure 4.15 there are some data-sets whose 

individually optimal 64 lead-set give better results than common 64 lead-set, as well 

as data-sets whose individual optimal lead-sets give equal or worse results than 

common 64 lead-set. This behavior can be explained by the nature of the lead 

reduction algorithm which stands on the conditional selection of the candidate leads 

in conjugate with the previously selected leads such that the selected set gives the 

best result in each step (see Chapter 3).  

Obviously, it is not feasible to examine all possible number of 64 

combinations from the complete primary 771 lead-set (or the 192 lead-set), since the 

related binomial coefficient (see Appendix A) approximately equals to 3.1619𝑒 +

94. This amount of combination is impossible to test in MATLAB to select the best 

configuration. Therefore, by applying the lead reduction algorithm on each data-set, 

we tried to estimate a nearly optimal configuration for each of the data-sets.  
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4.3.2.2 Common 32 Lead-set for All Data-sets 

All of the above-mentioned procedure is again repeated to select common 32 lead-set 

out if the optimal individual 32 lead-sets related to 23 data-sets. Here, the results are 

presented exactly in the same order as they have been presented for the common 64 

Lead-set. 

Same as common 64 lead-set, the figure that displays the number of lead 

repetition along with their locations should be obtained. Figure 4.16 displays the 

mentioned property for every individual optimal 32 lead-set for 23 different data-

sets. 

 
          (a)           (b)  

Figure 4.16: 192 leads and their repetition times in the case of selecting 32 leads 

from 192 leads. (a) Frontal view and (b) back view. 

 

Similar to what we have done to form common 64 lead-set, a histogram plot should 

be obtained to facilitate the selection process following the steps mentioned in the 

previous section. Figure 4.17 displays the histogram plot which shows lead numbers 

(indices) versus the number of times that they have been repeated in the case of 

selecting 32 lead-set for every one of 23 data-set.  
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Figure 4.17: Histogram plot for 32 lead-set. 

 

To have better view of the plot in Figure 4.17, first the number of leads are sorted 

according to the number of times that they have been repeated, then the most 

repeated leads are selected to be insert in common 32 lead-set. This sorted histogram 

is displayed in Figure 4.18. As it is shown in this figure, all of the leads with 

repetitions times 21 to 8 are selected to form common 32 lead-set.  

 

 

Figure 4.18: 32 leads that are selected to form common lead-set 32 are shown by the 

red bars. 
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           (a)                       (b) 

Figure 4.19: Common 32 lead-set configuration. (a) Frontal view and (b) back view. 

 

Figure 4.19 shows the location of common 32 lead-set on the torso surface. As it is 

seen in the figure, there is no lead in the back part of the torso. The reason for this is 

that when a limited number of leads is desired, it is more beneficial to select the leads 

from the frontal part of the torso surface, where the electrical signals of the heart are 

more significant, informative, and powerful [26]. Therefore, the epicardial potentials 

are expected to be reconstructed efficiently using this common lead-set. 

Same as what was done for common 64 lead-set, in order to assess the ability 

of the acquired data using common 32 lead-set to reconstruct the epicardial 

potentials, inverse problem of ECG is solved. The epicardial potentials related to 23 

data-sets are reconstructed using Tikhonov regularization along with Maximum 

Correlation Coefficient (MCC) as the regularization parameter selection method. 

Then, the average and standard deviation of CC values for each one of the 23 data-

sets are calculated using the common 32-lead data and compared with the average 

and standard deviation of CC values related to every single 23 individual optimal 

lead-sets (the second column of this table is equal to the last column of Table 4.1 ). 

Table 4.4 displays these results. 
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Table 4.4: Mean (avg) and standard deviation (std) of Correlation Coefficient (CC) 

values for optimal individual 64 lead-sets and common 32 lead-set for different 23 

data-sets. 

                 Lead-set 

Data-set 

32 Optimal Lead-set 

CC(avg±std) 

Common 32 Lead-set 

CC(avg±std) 

Data-1 0.73±0.22 0.74±0.20 

Data-2 0.67±0.25 0.66±0.23 

Data-3 0.74±0.21 0.73±0.21 

Data-4 0.70±0.20 0.65±0.22 

Data-5 0.72±0.17 0.73±0.20 

Data-6 0.76±0.19 0.76±0.18 

Data-7 0.76±0.18 0.73±0.18 

Data-8 0.70±0.18 0.69±0.18 

Data-9 0.74±0.19 0.74±0.17 

Data-10 0.73±0.21 0.71±0.22 

Data-11 0.60±0.30 0.58±0.30 

Data-12 0.65±0.30 0.63±0.30 

Data-13 0.75±0.19 0.74±0.19 

Data-14 0.65±0.25 0.63±0.25 

Data-15 0.74±0.18 0.72±0.18 

Data-16 0.77±0.16 0.74±0.16 

Data-17 0.62±0.23 0.59±0.23 

Data-18 0.62±0.21 0.58±0.21 

Data-19 0.70±0.15 0.69±0.15 

Data-20 0.70±0.20 0.56±0.27 

Data-21 0.59±0.28 0.56±0.28 

Data-22 0.75±0.17 0.71±0.20 

Data-23 0.65±0.18 0.60±0.20 

 

Generally, as it is expected that the CC values of individually optimal 32 lead-sets 

are better than CC values of common 32 lead-set. Only a few data-sets show 

different behaviors. 

Considering the values presented in the Table 4.4, it can be seen that there are 

some data-sets whose common 32 lead-set gives better results than their individually 

optimal 32 lead-set. The same thing is observed in the previous section for 64 lead-

sets. Here, again the nature of the lead reduction algorithm, which selects the next 

lead depending on the previously selected leads, namely conditional selection of 

leads, could be the reason for such difference. 
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To better understand the results presented in Table 4.4, they are displayed in 

two different plots in the figure below. The mean of Correlation Coefficient values 

presented in the above table are shown by bars in the upper panel of Figure 4.20 and 

by dots in the bottom panel.  

 

 

 

Figure 4.20: Mean (avg) values of Correlation Coefficient (CC) for optimal 

individual 64 lead-sets and common 32 lead-set for different 23 data-sets. 

 

As it can be inferred from the Figure 4.20, average of CC values do not show 

significant changes when they are compared to individually optimal 32 lead-set, 

exclusive for each of the 23 data-sets. 

To further demonstrate that reducing the lead number and solving the inverse 

problem of ECG using the related data to those reduced-sized lead-sets does not 

significantly affect the solution of inverse problem, MAP3D visualization software is 
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used to present the reconstructed epicardial potentials. MAP3D visualization 

software is developed at University of Utah, Nora Eccles Harrison Cardiovascular 

Research and Training Institute (CVRTI) for the purpose of displaying and editing 

three-dimensional geometric models and time-based data associated with those 

models. Another reason to visualize the reconstructed epicardial potentials by 

MAP3D software is to observe the reconstruction of activation wave front, which is 

one of the most important features of the inverse electrocardiography problem. 

Towards this end, three data-sets are selected out of 23 data-sets and displayed in two 

time instances. The next three figures show MAP3D results for data-sets 2, 11, and 

23 at two different time instants. Figure 4.21 displays MAP3D images of 

reconstructed potentials of data-set 2, using Tikhonov regularization with Maximum 

Correlation Coefficient as the regularization parameter selection method. To 

recognize the quality of different solutions using different number of leads, the true 

potential distribution on the epicardial surface is also presented. Panel (a) and (b) in 

the Figure 4.21, display related solutions for data-set 2 in time t=32 ms and t=69 ms, 

respectively. The top maps in both panels are true potential distribution on epicardial 

surface along with color-bar related to those specific time instances.  

In the figures, 4.21-4.23, the reconstructed potentials on epicardial surface 

using three data-sets, 2, 11, and 23 are displayed, respectively. Each figure contains 

the MAP3D results in 2 different time instances. As it can be inferred from the set of 

figures in one time instant, although, the wave-front is widened in all of the results 

related to different lead-sets (Figure 4.21 (b-g)), the reduced common lead-sets can 

estimate the active regions on the epicardial surface Figure 4.21 (e, g). 

 

 

 

 

 

 



  76 
 

                                

 a) Real data                                             i) Real data 

    

    b) 771 leads       c) 192 leads                         j) 771 leads       k) 192 leads 

   

 d) 64 leads         e) 64 common     l) 64 leads         m) 64 common 

   

  f) 32 leads     g) 32 common      n) 32 leads     o) 32 common  

  

(h)                                                              (p) 

Figure 4.21: Epicardial potential map for data-set 2 at t=32 ms in the left panels and 

t=69 ms in the right panels. (a) and (i) are the real epicardial potentials, (b) and (j) are 

the reconstructed epicardial potentials using the 771 lead-set, (c) and (k) are the 

reconstructed epicardial potentials using the 192 lead-set, (d) and (l) are the 

reconstructed epicardial potentials using individually optimal 64 lead-set, (e) and (m) 

are the reconstructed epicardial potentials using common 64 lead-set, (f) and (n) are 

the reconstructed epicardial potentials using individually optimal 32 lead-set, (g) and 

(o) are the reconstructed epicardial potentials using common 32 lead-set. 
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          a) Real data                                                       i) Real data 

    

    b) 771 leads       c) 192 leads                                    j) 771 leads         k) 192 leads 

     

    d) 64 leads         e) 64 common                  l) 64 leads         m) 64 common 

     

    f) 32 lead     (g) 32 common                  n) 32 leads        o) 32common 

    

  (h)       (p) 

Figure 4.22: Epicardial potential map for data-set 11 at t=56 ms in the left panels and 

t=78 ms in the right panels. (a) and (i) are the real epicardial potentials, (b) and (j) are 

the reconstructed epicardial potentials using the 771 lead-set, (c) and (k) are the 

reconstructed epicardial potentials using the 192 lead-set, (d) and (l) are the 

reconstructed epicardial potentials using individually optimal 64 lead-set, (e) and (m) 

are the reconstructed epicardial potentials using common 64 lead-set, (f) and (n) are 

the reconstructed epicardial potentials using individually optimal 32 lead-set, (g) and 

(o) are the reconstructed epicardial potentials using common 32 lead-set. 
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              a) Real data                                                       i) Real data 

     

  b) 771 leads       c) 192 leads                                    j) 771 leads         k) 192 leads 

    

  d) 64 leads         e) 64 common                 l) 64 leads         m) 64 common 

     

  f) 32 leads         g) 32 common                                  n) 32 leads         o) 32 common 

      

  (h)       (p) 

Figure 4.23: Epicardial potential map for data-set 23 at t=51 ms in the left panels and 

t=70 ms in the right panels. (a) and (i) are the real epicardial potentials, (b) and (j) are 

the reconstructed epicardial potentials using the 771 lead-set, (c) and (k) are the 

reconstructed epicardial potentials using the 192 lead-set, (d) and (l) are the 

reconstructed epicardial potentials using individually optimal 64 lead-set, (e) and (m) 

are the reconstructed epicardial potentials using common 64 lead-set, (f) and (n) are 

the reconstructed epicardial potentials using individually optimal 32 lead-set, (g) and 

(o) are the reconstructed epicardial potentials using common 32 lead-set. 
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4.3.3 Comparison of Different Methods 

In this section, four different regularization methods, described in Chapter 3, are 

applied to 3 data-sets out of the 23 data-sets in order to compare the ability of these 

regularization methods to reconstruct the epicardial potentials with reduced number 

of leads. The regularization methods compared here are Tikhonov regularization, 

Truncated Total Least Square (TTLS), Lanczos Truncated Total Least Square 

(LTTLS), and Lanczos Least Square QR factorization (LLSQR) methods. For all of 

these regularization methods, MCC method is used as the regularization parameter 

selection method.  

The results for each data-set are presented in separate tables in order to give a 

clear view about the performances of the applied regularization methods.  

In Tables 4.5, 4.6, and 4.7 mean and standard deviation of of Correlation 

Coefficient (CC) values corresponding to inverse solutions using the 771 and 192 

lead-sets, along with 64 and 32 lead-sets selected exclusively for that data-set only 

and common 64 and 32 lead-sets are presented, respectively. 

 

Table 4.5: The results of mean (avg) and standard deviation (std) of Correlation 

Coefficient (CC) values calculated for different lead-sets for data-set 2. 

  Data-                  

set 2 

 

 

 

Method      

771 

Complete 

Lead-set 

CC 

(avg±std) 

192 

Lux 

Configur. 

CC 

(avg±std) 

64 

Optimal 

Lead-set 

CC 

(avg±std) 

Common 

64 Lead-

set 

CC 

(avg±std) 

32 

Optimal 

Lead-set 

CC 

(avg±std) 

Common 

32 Lead-

set      

 CC 

(avg±std) 

Tikhonov  0.72±0.22 0.70±0.23 0.68±0.25 0.69±0.23 0.67±0.25 0.66±0.23 

TTLS 0.65±0.23 0.65±0.24 0.66±0.25 0.66±0.24 0.66±0.25 0.65±0.24 

LTTLS 0.69±0.23 0.68±0.24 0.67±0.25 0.68±0.24 0.67±0.25 0.66±0.24 

LLSQR 0.64±0.23 0.64±0.23 0.64±0.24 0.65±0.23 0.65±0.24 0.64±0.24 
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Table 4.6: The results of mean (avg) and standard deviation (std) of Correlation 

Coefficient (CC) values calculated for different lead-sets for data-set 11. 

Data-                  

set 11 

 

 

 

Method      

771 

Complete 

Lead-set 

CC 

(avg±std) 

192 

Lux 

Configur. 

CC 

(avg±std) 

64 

Optimal 

Lead-set 

CC 

(avg±std) 

Common 

64 Lead-

set 

CC 

(avg±std) 

32 

Optimal 

Lead-set 

CC 

(avg±std) 

Common 

32 Lead-

set         

CC 

(avg±std) 

Tikhonov  0.67±0.27 0.64±0.27 0.61±0.29 0.62±0.28 0.60±0.30 0.58±0.30 

TTLS 0.59±0.27 0.59±0.28 0.59±0.29 0.60±0.28 0.60±0.29 0.58±0.29 

LTTLS 0.62±0.28 0.62±0.28 0.60±0.30 0.61±0.29 0.60±0.29 0.58±0.30 

LLSQR 0.58±0.26 0.58±0.27 0.58±0.29 0.59±0.28 0.59±0.29 0.57±0.29 

 

Table 4.7: The results of mean (avg) and standard deviation (std) of Correlation 

Coefficient (CC) values calculated for different lead-sets for data-set 23. 

Data-                  

set 23 

 

 

 

Method      

771 

Complete 

Lead-set 

CC 

(avg±std) 

192 

Lux 

Configur. 

CC 

(avg±std) 

64 

Optimal 

Lead-set 

CC 

(avg±std) 

Common 

64 Lead-

set 

CC 

(avg±std) 

32 

Optimal 

Lead-set 

CC 

(avg±std) 

Common 

32 Lead-

set         

CC 

(avg±std) 

Tikhonov  0.68±0.18 0.66±0.19 0.66±0.18 0.64±0.19 0.65±0.18 0.60±0.20 

TTLS 0.58±0.20 0.59±0.20 0.62±0.20 0.61±0.20 0.63±0.19 0.60±0.21 

LTTLS 0.63±0.19 0.63±0.20 0.64±0.19 0.63±0.20 0.64±0.19 0.61±0.21 

LLSQR 0.57±0.20 0.58±0.19 0.60±0.18 0.60±0.20 0.62±0.19 0.59±0.21 

 

As it can be inferred from these results, Tikhonov regularization yields better mean 

CC values than other regularization methods. Methods like LTTLS yield 

approximately similar results to that of Tikhonov regularization with shorter runtime. 

The runtime issue may seem unimportant when the size of the problem is medium or 

small. But when the problem has a large size, runtime issue gains further importance. 

For instance, when the inverse problem of ECG is solved in terms of Transmembrane 

Potentials (TMP) the size of the problem becomes very large, therefore it would be 

beneficial to use methods with short runtime. 

To compare runtime duration for the above-mentioned regularization 

methods, namely Tikhonov, TTLS, LTTLS, and LLSQR, the execution time is 

calculated for several test-data. Since the sizes of the 23 used data-sets in this thesis 

are approximately similar, the runtimes are also approximately similar. The runtime 

is calculated for solving the inverse problem of ECG using 771 complete lead-set by 

1.74 GHz Core i7 processor with 8 GB RAM. For Tikhonov, TTLS, LTTLS, and 
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LLSQR regularization methods the runtimes are 60, 100, 41, and 40 seconds, 

respectively. As it was mentioned before, although the difference between different 

runtimes is not eye-catching in our particular data-sets, in the case of dealing with 

large data-sets, it would be beneficial to use methods for which run times are short 

and are able to produce accurate results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  83 
 

 

 

CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

In this study, a new method is proposed and implemented to reduce the number of 

leads attached to the body surface. The aim of this study is to propose a lead-set 

configuration whose acquired data from the surface of the torso is informative 

enough to reconstruct the epicardial potentials through solving the inverse problem 

of electrocardiography. In order to achieve such a lead-set, 23 different data-sets are 

used. In these data-sets, the heart is stimulated from 23 different sites and epicardial 

potentials are obtained from 490 electrodes. Then, these epicardial potentials are 

used to simulate body surface potentials at 192 equally spaced electrodes, which is 

the electrode configuration that Lux et al. used in [27]. Then the lead reduction 

algorithm is applied on each of these 23 data-sets. The algorithm terminated when 

the desired number of leads is reached. In this study, first the desired number of leads 

are set to 64 and then to 32 leads. Since 23 different data-sets are used, 23 different 

lead configurations consisting of 64 leads and 23 different lead configurations 

consisting of 32 leads are obtained. The performance of each of these lead-sets are 

assessed by solving the inverse problem of ECG, reconstructing epicardial potentials, 

using the data obtained by these lead-set configurations. In order to reconstruct 

epicardial potentials, in this study, Tikhonov regularization is used, and Maximum 

Correlation Coefficient (MCC) is employed as the regularization parameter selection 

method. To assess the performance of different lead-sets, Correlation Coefficient 

(CC) values between the reconstructed potentials using data obtained by reduced 

lead-sets and real potentials on the surface of the epicedium are calculated and 

compared. As it is reported in the result chapter of this thesis, there are not any 

significant difference between the performances of complete lead-sets and reduced 

ones.  
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However, a reduced lead-set obtained for one data-set may not be appropriate 

for another data-set. Therefore, there is need to obtain a lead-set configuration that 

works accurate enough for all 23 data-sets. To achieve one common 64 or 32 lead-

set, whose obtained data performs with an acceptable accuracy when employed to 

reconstruct epicardial surface potentials, the most repeated leads in 23 different lead-

set configurations are chosen. Then the performances of previously obtained 23 lead-

sets related to 23 data-sets are compared calculating CC values between 

reconstructed epicardial potentials using data, obtained by common lead-set and, and 

real epicardial potential values. It has been revealed that no significant difference 

exists between the reconstructed epicardial potentials using large number of leads 

and the reconstructed epicardial potentials using common reduced lead-set. 

To evaluate the performance of the reduced common lead-set, in addition to 

Tikhonov regularization, Lanczos Least Squares QR (LLSQR), Truncated Total 

Least Squares (TTLS), and Lanczos Truncated Total Least Squares (LTTLS) 

regularization methods are employed to reconstruct the epicardial potentials using 

the data acquired by this lead-set. As it is reported in the Results chapter, the 

reconstructed epicardial potentials using these regularization methods give 

reasonable answers. By further examining the performance tables related to these 

four regularization methods, it can be inferred that the LTTLS method, which 

employs Lanczos bidiagonalization algorithm as part of its regularization scheme, 

performs better than the TTLS method. Additionally, the runtime related to LTTLS 

regularization method is shorter than that of TTLS. It can be concluded that it would 

be better to use LTTLS method instead of TTLS method when dealing with large 

data matrices. For example, to solve inverse problem of ECG using Transmembrane 

Potentials (TMP), one has to deal with really large matrices and it would be 

beneficial to use LTTLS to reduce time cost of the operation. 

 

5.1 Future Work 

 Making the lead reduction algorithm independent of using the real values of 

epicardial potentials. 

 Reducing the runtime of lead reduction algorithm. 
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Figure A.1: Positions of the leads proposed by Kors et al., [22]. 

 

 
Figure A.2: Positions of the eigenleads proposed by Lux et al. [29]. 
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Figure A.3: Positions of the leads proposed by Lux et al. [27]. 

 

 
Figure A.4: Positions of the leads in EASI [30]. 
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For natural numbers (taken to include 0) n and k, the binomial coefficient (
𝑛
𝑘
) can be 

defined as the coefficient of the monomial 𝑋𝑘 in the expansion of (1 +  𝑋)𝑛
 
. The 

same coefficient also occurs (if 𝑘 ≤  𝑛) in the binomial formula: 

 

(
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
 (A.1) 


