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ABSTRACT

MODELLING PRECIPITATION DATA OF CERTAIN REGIONS FOR
TURKEY VIA HIDDEN MARKOV MODELS

Yaman, Nevin
M.S, Department of Statistics
Supervisor: Prof. Dr. inci Batmaz

Co-Supervisor: Assist.Prof.Dr. Ceylan Yozgatligil

December 2014, 164 pages

Estimation methods on climate changes have become increasingly popular in the
world over the recent years. They are useful for making comments about the future
by using the past data related to temperature and precipitation. Especially,
precipitation models, which are usefull for forecasting and simulation purposes,
play a crucial role in forecasting climate changes. Estimations of daily rainfall
amounts and occurrences found by using precipitation models are commonly used

to generate scenarios of runoff, drought, flood, and so on.

The main purpose of this study is to estimate the daily occurrence of rainfall and
the daily amount of rainfall. For this purpose, daily amount of rainfall data from
nine stations located at East Black Sea Region, one of the wettest regions of

Turkey; located at Central Anatolian Region, one of driest regions of Turkey and



Aegean Region, having a normal moisture climate in Turkey are modelled
separately by using Hidden Markov Models (HMMs). HMMs are based on
Markov Chains (MCs). The most suitable models are decided by comparing
Akaike information criterion (AIC), Bayesian mformation criterion (BIC), mean
square error (MSE) and misclassification (Error) rate (MR). It is observed that
HMMs give good results for regions that has normal moisture climate compared
with the wettest and driest region to estimate the daily precipitation occurrence. On
the other hand, they give good results for the wettest region compared with the
driest region or with normal moisture climate region to estimate the daily
precipitation amount. Also, they successfully predict the most probable states that
represents the daily precipitation occurrence by using Viterbi algorithm, when a

sequence of observations and the model parameters are known.

In this context, by using HMMs which is thought to be more effective than other
precipitation models, the precipitation occurrence and precipitation amount are
estimated in this thesis study. This work is the first phase to make estimations
related to precipitation, providing very fast and less costly computations, and it
gives general weather forecast and information about the unknown state of

precipitation occurrences.

Keywords: Hidden Markov Model, Daily Rainfall Occurrence, Daily Rainfall
Amount, Viterbi Algorithm
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0z

SAKLI MARKOV MODELI (SMM) iLE TURKIYE’NIN BELLI
BOLGELERINE ILISKIN YAGIS VERISININ MODELLENMESI

Yaman, Nevin
Yiiksek Lisans, Istatistik Boliimii
Tez Yoneticisi: Prof. Dr. Inci Batmaz

Ortak Tez Yoneticisi: Yrd. Dog. Dr. Ceylan Yozgatligil

Aralik 2014, 164 sayfa

Son yillarda dinyadaki iklim degisikleri iizerine yapilan gelecege doniik tahmin
yontemleri oldukg¢a yaygilagmistir. Bu tahmin yontemleri ge¢mis sicaklik ve
yagis verilerini kullarak gelecege yonelik yorum yapmak igin oldukca
kullamighidir.  Ozellikle yagis modelleri iklim degisiklikleri konusunda gelecege
doniik tahminler yapabilmek i¢in 6nemli bir yere sahiptir. Bu modellerin saglamis
oldugu giinliik yagis miktar1 ve yagis olup olmama durumu gibi tahminler; tagkin,

kuraklik, sel, vb. senaryolar1 olusturmak i¢in yaygin olarak kullanilmaktadir.
Bu ¢aligmanin amaci giinliik yagis olup olmama durumu ve giinliik yagis miktarinm

tahmin etmektir. Bu amacla, Turkiye’ nin en ¢ok yagis alan bolgelerinden biri olan

Dogu Karadeniz Bélgesi, Tlrkiye nin en az yagis alan bolgelerinden biri olan Ig
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Anadolu Boélgesi ve normal yagish bir iklime sahip olan Ege Bdlgesinde
kaydedilen 9 istasyonun giinliik yagis miktarlar1 verisi Markov zincirlerini temel
alan Sakli Markov Modelleri (SMM) ile ayr1 ayr1 modellenmistir. En uygun
modellere Akaike bilgi kriteri, Bayes bilgi kriteri, ortalama karesel hata ve yanlis
smiflandirma orani kullanilarak Karar verilmistir. Segilen en uygun SMM’lerin
normal iklime sahip boélgelerde giinliik yagis olup olmama durumunu tahmin
etmede, kurak ve yagish bolgelere kiyasla daha iyi sonuglar verdigi goriilmiistiir.
Yagis bolgelerde ise SMM’ler giinliik yagis miktarin1 tahmin etmede, diger iki
bolgeye kiyasla daha iyi sonuglar vermistir. Ayrica, model parametreleri ve
g0zlem dizisi bilindiginde, Viterbi algoritmasi kullanilarak giinliik yagis varligini

temsil eden en olas1 durumlar basarili sekilde tahmin edilmistir.

Bu kapsamda, bu tez calismasinda etkinligi diger yagis modellerine gére daha
fazla olacag1 diistiniilen, SMM’ler gelistirilerek yagis varligt ve yagis miktar
tahminleri konusunda c¢alisilmistir. Bu calisma yagis konusunda hizli ve kolay
hesaplanan tahminler yapabilmek i¢in bir asama olusturmus ve bilinmeyen yagis

durumu hakkinda genel tahminler vermistir.

Anahtar Kelimeler: Sakli Markov Modelleri, Giinlik Yagis Varligi Tahmini,
Ginliik Yagis Miktar1 Tahmini, Viterbi Algoritmasi
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CHAPTER 1

INTRODUCTION

The importance of water is increasing rapidly every day with the rapid increase in
population of the world. Like many other regions of the world, also in some
regions of Turkey, irregular precipitation occurs because of reasons like increasing
world population, increasing civilization, climate change due to global warming,
desertification, destruction of forests and etc. While this irregularity sometimes
results in excess precipitation which also causes natural disasters like flood and
mudslide, sometimes it may result in long lasting drought periods. For this reason
precipitation models has an important role about understanding the probabilistic
structure of rainfall and give precipitation simulation. These simulations are used
for modelling data sets related to climate, hydrological and environmental system

to take some precaution for disasters such as runoff, droughts and floods.

There are different precipitation models. However, not all of them use synoptic
atmospheric information such as temperature, solar radiation, and other climatic
factors (Bellone et al., 2000). Also, such precipitation models that do not include
synoptic atmospheric information can only produce simulations under the current
climate systems. They are not suitable for predictions of global climate to local
precipitation patterns. On the other hand, weather-state models such as Global
Climate Models (GCMs) use synoptic atmospheric information to categorize each
day into a weather-state and then precipitation is modeled by using multivariate
distributions (He and Kundu, 1991; Bardossy and Plate, 1992; Hughes et al., 1993;



Bardossy, 1994; Bartholy et al., 1995). These models help to understand regional
and local effects of global climate change (Bellone et al., 2000). GCMs have been
well understood and modeled; however, GCMs cannot get small-scale atmospheric
patterns and specify the impact of changes in the atmosphere due to their grid
scale. In other words, GCMs are not suitable for deriving small local and regional
rainfall (Giorgi and Mearns, 1991; Hughes and Guttorp, 1994).

In addition to GCMs, moving averaging models (MA), autoregressive models
(AR), combined autoregressive moving average models (ARMA) and
autoregressive—integrated-moving average models (ARIMA) could be used as
precipitation models. However, precipitation time series data which have many
zero values due to persistence of dry periods and storms with short durations in
arid and semi-arid areas prevents from using traditional time series approaches that
is MA, AR, ARMA and ARIMA. Also, they can only be used when time series are
Gaussian. Time series data which are not Gaussian need to be transformed
(Yevjevich, 1991).

Other precipitation models are Markov Chain models. This theory is explored and
enhanced by Gabriel and Neumann (1992). Markov Chain that has homogeneous
transition matrix is used for modeling daily wet and dry occurrences at a one rain
station which take place in Israel (Gabriel and Neumann, 1992). This model is
extended to show the seasonal differences by managing time-varying parameters
(Stern and Coe, 1984; Woolhiser, 1992). Markov model has been used to simulate
the Kenyan longest dry and wet spells and largest rain-sums (Sharma, 1996). Also,
monthly rainfall records in arid zones in Saudi Arabia have been modelled using
by Markov Chain (Elfeki and Al-Amiri, 2011).

Nonparametric models can also be used to model precipitation (Young, 1994; Lall

et al., 1996; Moron et al., 2008). They do not require assumption for dependence



on parametric distributions and describe nonlinear relationships between variables.
However, nonparametric models can only generate values which have already
been found and this prevents incorporate effects of long term climate changes into

the precipitation process.

Another stochastic precipitation model is that HMMs which are firstly used by
Zucchini and Guttorp (1991) in the estimation of rainfall occurrence. Basic HMMs
which are stationary in time are developed by incorporating time-varying
covariates such as seasonal forecasts, temperature, etc. (Hughes and Guttorp,
1994a; Hughes and Guttorp, 1994b; Hughes et al., 1999; Bellone et al., 2000;
Robertson et al., 2004; Robertson, 2005; Robertson et al., 2007). In other words,
nonhomogenous HMMs (NHMMs) are derived since global climate change causes
nonstationary patterns in precipitation. Today, many researchers tries to find the
effect of the climate change in precipitation models with improving the future
predictions. Therefore, HMMs are one of the best models for precipitation models
since they have powerful and quick algorithms to solve problems about

nonstationary patterns in precipitation.

When the literature is investigated for Turkey, it can be seen that HMMs are not
used for precipitation modelling. The ARIMA models which are mixture of AR
and MA models are widely used. These models are used for estimating changes
about temperature and precipitation in the Southeast Anatolia Project Area (GAP)
(Bahadir, 2011). Also, they are used for producing synthetic series to estimate the
rainfall potential in Gediz Basin (Topguoglu, 2005) and modelling precipitation
data in Manisa (Topguoglu, 2010). In addition, non-stationary temporal climate
series consisting of temperature, vaporization and precipitation series for Denizli
which is located in Aegean Region of Turkey is analyzed with ARIMA models
(Ozdemir and Bahadir, 2010). Drought analysis is done in Eastern Mediterranean

Region (Fidan, 2011), drought characteristic of Regions are determined in Central



Anatolian Region (Yegnidemir, 2005) and the state of drought is studied in Trakya
Region (Caldag et al., 2004) by using Standardized Precipitation Index (SPI).
Drought occurrence probability is found through by using MCs (Fidan, 2011), total
daily rainfall amount data from Goztepe station is analyzed by second order MC to
define the distribution of daily rainfall amount (Kogak and Sen, 1997). In addition,
MC is used to estimate the yearly precipitation probabilities (Ozgiirel and Kilig,
2003) and it is used to find drought occurrence probability in GAP Region
(Tonkaz, 2008). Projected changes in future air temperature and precipitation
climatology of Turkey are analyzed with RegCM4.3.5 Climate simulations for the
period of 2070-2100 (Oztirk et al., 2002). Also, nonparametric tests (such as
Mann-Kendall), linear regression and coefficient of variation techniques are used
to describe rainfall trends for Kahramanmaras which is located in the Southeast
Anatolia Region of Turkey (Karabulut and Cosun, 2009).

It is known that climate change studies concentrate on temperature and
precipitation (Tirkes, 1996; Tiirkes et al., 2002; Tiirkes et al., 2008; Ozdemir and
Bahadir, 2010). Turkey is one of the countries that has occurrence risk of short-
time and long-time climate changes (Tiirkes et al., 2002). In addition, precipitation
is the most unstable parameter within the climate variables in terms of time and
space.Various models are studied for Turkey’s precipitation data (Aykan et al.,
2012; Aksoy et al., 2013). When studies related to precipitation changes in Turkey
is investigated, precipitation per year tends to decline and the number of dry
periods tends to increase after 1970 (Tiirkes, 1996). Therefore, the problems that
the world and Turkey face due to the irregular precipitation makes it very critical
to make precipitation prediction and taking necessary precautions. With this scope,
by using the previously recorded precipitation data from some Regions of Turkey,
in order to prevent the financial damage that can occur because of flood and
mudslide by the excess precipitation or to prevent the adverse effects of long

lasting drought, daily statistical precipitation prediction will be done by using



Hidden Markov Model (HMM). Since HMM has a more general and flexible
structure and more useful algorithms than other precipitation models, the daily
precipitation amounts of certain Regions of Turkey are modelled by HMMSs. By
the model, daily precipitation occurrence and daily precipitation amount are
predicted and precipitation scenarios are constructed, whose results can help
people that are in charge at the government and the farmers, so that they will have
the chance to take the necessary precautions against the disasters.

In this study, the main purpose is estimating the probability of rainfall occurrence
with amount of rainfall for some specific Regions of Turkey and comparing their
results. Firstly, the probability of rainfall occurrence is estimated for three stations
from Eastern Black Sea Region which is one of the wettest Regions of Turkey and
for three stations from Central Anatolian Region which is one of the driest Regions
of Turkey and for three stations from Aegean Region which is a normal moisture
climate Region of Turkey separately and results are compared. Secondly, the
amount of rainfall is estimated for one station from each three Regions separately

and results are compared.

The thesis study is organized as follows. In chapter 2, the history of HMM and
precipitation models which are developed by HMMs are explained. In chapter 3,
firstly the brief information related MC is given. Secondly, the definition of
HMMs is clarified. In addition, the description of the daily precipitation HMM and
the parameter estimation method are explained. Thirdly, model selection criterion
is described. Lastly, the estimation of hidden states is explained. In chapter 4, the
results of the simulation cases defined in the previous chapter are presented and
discussed. The graphs are prepared from the results obtained by the simulations
according to the objectives of the cases. According to the models defined in the

previous chapter, different types of graphs are presented in order to observe future



prediction related to rainfall. Finally, the main conclusions reached throughout the

study are stated and the work for future investigations is summarized.



CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

HMMs have been mainly used for many areas for three decades especially for
signal-processing implementation and speech recognition. Also, they have been
extended to other fields such as all kinds of recognition problems (face, gesture,
handwriting, and signature), bioinformatics (biological sequence analysis),
environment (wind direction, rainfall, and earthquakes), finance (series of daily

returns), and biophysics (ion channel modelling).

HMMs are simple, versatile and their results are mathematically observable since
likelihood function can be computed in an uncomplex manner. Generally HMMs
could be used as general-purpose models for time series (Zucchini and
MacDonald, 2009). Basic HMM is univariate and roots from a homogeneous MC
which do not have trend and seasonal variation, observations can be discrete or
continuous and without including attainable covariates information. HMMs have
many possible extensions of the basic HMMs. They can be multivariate and can be
used for analyzing time series data that has trend and seasonal variation, and they

can use covariate information.



2.2. History of Hidden Markov Models
The theory of HMMs were introduced in 1966 (Baum and Petrie, 1966) and they

are referred as probabilistic functions of MCs. They studied statistical properties of
HMMs and developed ergodic theorem for almost-sure convergence (Baum and
Petrie, 1966). In 1969, some assumptions related to HMMs were relaxed (Petrie,
1969). Forward-backward algorithm developed for calculating the conditional
probability of a state gives an observation sequence from an HMM and this
algorithm was used for computing maximum likelihood (ML) estimation of HMM
parameters efficiently (Baum et al., 1967; Baum et al., 1970; Baum, 1972). This
parameter estimation procedure is defined as expectation-maximization (EM)
algorithm and it was applied in HMMs (Dempster et al., 1977). Also, Baum-Welch
algorithm which is referred as local convergence was studied (Baum et al., 1970;
Baum, 1972) and forward-backward algorithms were developed. (Chang and
Hancock, 1966). In addition to these studies, there are many studies which
contribute to improve HMMs in recent years (Finesso, 1990; Merhav, 1991;
Robert et al., 1993; Elliott et al., 1994; Ryden, 1995; Macdonald and Zucchini,
1997; Lapidoth and Ziv, 1998; Charles et al., 1999b; Scott, 2002; Charles et al.,
2004; Ailliot, 2009).

HMMs are defined as deterministic function of MC with augmented state space
(Baum and Petrie, 1966; Petrie, 1969; Finesso, 1990). There is a relation between
HMMs and the mixture processes since each observation generated by an HMM
that has a mixture distribution and need not to be statistically independent (Everitt
and Hand, 1981; Redner and Walker, 1984; Titterington et al., 1985 MacLachlan
and Basfard, 1988; Leroux and Puterman, 1992). Also, HMMs are special cases of
switching autoregressive processes whose dynamics at each time instant depend on
the state of an MC at that time (Hamilton, 1994). HMMs are used commonly in
random process such as engineering, statistics, and econometrics. Automatic

character recognition and speech recognition were the earliest applications of



HMMs (Burke and Rosenblatt, 1958; Raviv, 1967; Baum et al., 1970). It has been
developed a new recursion for conditional probability of a state which is defined
by MC given the observations considering minimum character error rate sense. In
the mid-1970s, a phonetic speech recognition system that relies on hidden Markov
modeling of speech signals was developed by using Baum algorithm (Baker, 1975;
Jelinek et al., 1975; Jelinek, 1976). In the early 1980s and 1990s, speech
recognition applications were developed and this area become leading application
of HMMs. (Poritz, 1988; Rabiner, 1989; Lee, 1989a; Lee, 1989b; Huang and Jack,
1989; Huang et al., 1990; Lee, 1990; Charniak, 1993). Therefore, HMMs became
popular and they began to be used in many applications. HMMs was used for
solving problems related to economics, financial mathematics, banking and
assurance (Ryden et al., 1998; Hamilton, 1989; Knab, 2000; Wichern, 2001; Knab
et al., 2003; Ince et al., 2005). They also was used in biosciences, biology,
bioinformatics and genetics (Thompson, 1983; Guttorp et al., 1990; Krogh et al.,
1994; Yada et al., 1994; Yada and Hirosawa, 1996; Yada 1998; Durbin et al.,1998;
Schliep et al., 2003; Won et al., 2004). Gene expression time course data has been
analysed to predict the behavior of gene data by using HMMs (Schliep et al.,
2003). Also, HMMs were used for explaining or predicting the decisions of
persons in the area of social sciences (Schrodt, 1998) and it was used for
simulating data about environment issues to predict the future (Zucchini and
Guttorp, 1991; Hughes et al., 1999; Greene at al., 2008; Zucchini and MacDonald,
2009). Brands choices and their reasons were also studied by using HMMs (Can
and Oz, 2009). HMMs have been used to model time series of epileptic seizure
counts (Albert, 1991; Le et al., 1992). In a similar way, HMMs have been used to

determine pattern movement of a fetal lamb (Leroux and Puterman, 1992).

2.3. Modelling Precipitation with HMMs

Precipitation models help us to understand the probabilistic structure of rainfall

and give precipitation simulations. These simulations are used for modelling data



sets related to climate, hydrological and environmental system to take some

precaution for disasters such as runoff, droughts and floods.

It is known that GCMs, ARMA, ARIMA, MC and nonparametric models are used
to model precipitation. Another precipitation model is HMM. It is firstly used by
Zucchini and Guttorp (1991) in the estimation of rainfall occurrence. MC
assumption holds in the climate process and unobserved states. This HMMs are
then extended by Hughes and Guttorp (1994a) by describing a non-homogeneous
HMM (NHMM) which links the synoptic atmospheric information. Also, Hughes
and Guttorp (1994b) use autologistic model for the transition probability of rainfall
data given the weather state to extend the NHMM.

Chain-dependent models assuming that precipitation amounts are conditionally
independent given the precipitation occurrences which follow a first-order MC are
developed by Katz (1977) and Katz and Parlange (1996).

A 15-year sequence south-western Australia winter data which includes 30 rain
stations is used by Hughes et al. (1999). Their model produces accurate rainfall
statistics and gives important prediction related to rainfall process in the South-

Western Australia.

Charles et al. (1999a) introduces a new NHMM as extending NHMM to observe
climate change in the South-Western Australia and describes that NHMM can be
placed against the criteria of Wilby et al. (1998) for a useful downscaling model.
This model simulates the survival curves related to dry (wet) spell lengths, wet day
probabilities, daily rainfall amount, and correlation between daily rainfall amounts.
Bellone et al. (2000) simulate precipitation data for 24 rain gauge stations in
Washington as extending NHMMS for precipitation occurrences which include

precipitation amount.
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Robertson et al. (2004) explore if NHMM enables to understand frequency of daily
occurrence in terms of large-scale atmospheric patterns at the station level, and to

get scenarios related to daily rainfall sequence in Northeast Brazil.

Neytchev et al. (2008) find that NHMM helps to give insights specific information
related to inter-annual climate variability and detection of climate change for

Bulgaria’s precipitation data.

It is confirmed that the NHMMs are beneficial appliance to search the connections
between large-scale climatic process and local climate variables by Neykov et al.
(2008). NHMMs are successfully given statistics of daily precipitation results

related to 32 stations of Bulgaria.

Robertson et al. (2009) have been recently used NHMMs and their simulation
results related to precipitation occurrences are very accurate. It is observed that
such downscaling methods have become significant on climatic researchers.
Hence, HMMs are successfully used in prediction of precipitation occurrence in

this research.

Neykov et al. (2014) has been compared stochastic daily precipitation models and
realized that these models tend to underestimate the occurrence of storms. Hybrid
gamma-generalized Pareto (GP) and hybrid Weibull-GP have been used to
develope new precipitation models for daily rainfall data. They found that the
underestimate problems of extreme weather conditions would be solved, if

NHMMs had been developed by using such distributions.
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CHAPTER 3

METHODS

3.1. Markov Chain (MC)

In this chapter, firstly the brief information related to MC is given. Secondly, the
definition of HMMs, the description of the daily precipitation HMMs and the
parameter estimation method are explained. Thirdly, model selection criterion are

described.

An MC is defined as a discrete-time process for which the future behavior only
depends on the present when it is given the past and the present values. On the
other hand, a Markov process is defined as the continuous-time version of an MC
(Zucchini and MacDonald, 2009).

An MC analyzes discrete time points defined as “0, 7, 2...” A set of states denoted
S and the transition probabilities denoted pj; which are the probabilities that the MC
is at the next time point in state j, given that it is at the present time point at state i
(Sahin and Sen, 2001).

{S; : t e N}, which is a sequence of discrete random variables, is defined as an

MC, if it satisfies the following Markov property for all t € N:

13



Pr(Ses1lSes s S1) = Pr(Se411S0). 1)

The process “St+1” depends only on the most recent value “S;” (Cinemre, 2003).
S® is defined as

S(t) = (SlrSZr--';St)' (2)
Then Markov property can be written as:
Pr(Se1|S®) = Pr(Ses11S0). 3)

Figure 1 shows that past and future are dependent only through present.

Figure 1 Markov Chain

An MC includes the following conditional probabilities called transition
probabilities (Tijms, 2003)
Pr(Ss+e = JjISs = 0. (4)

The MC is homogeneous when transition probabilities do not depend on “s.” It is

assumed that MC is homogeneous, if there is no expression related to

homogeneity. If MC is homogeneous, the transition probabilities are defined as

Vij(©) = Pr(Ssse = jISs = 0), ()
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where “y;;” is the probability that the MC is at next time point in state j, given that
this chain is at the present time point at state i. The row sum of “p;;”’s are equal to
1.

The transition probabilities (y;j(t)) constitute the transition matrix (7'(z)) (Chung
and Walsh, 2005).

Y11 - Vim

VYmi1 o Ymm

All finite state space homogeneous MCs satisfy the following Chapman-

Kolmogorov equation (Zucchini and MacDonald, 2009):
I'(t+u) =T)r'(w. @)

This equation imply that,
L) =r?, (8)

for all t. In other words, it is said that the matrix of t-step transition probabilities
equals to the t" power of I'(1) which is the matrix of one-step transition
probabilities.
Pr(Si=j) is defined as unconditional probabilities of an MC in a given state at time
t. These probabilities are denoted by the following row vector:

u(t) = (Pr(S; = 1), ..., Pr(S; = m)), 9)

for t € N. Here, u(1) is defined as the initial distribution of MC, and

u(t+1) =u(t)r. (10)
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An MC is defined as “stationary” if 6T = § and 61’ = 1 hold. First expression
refers “stationarity” and second expression refers that § is indeed a probability
distribution. Also, T represents transition probability matrix (Gabriel and Neuman,
1992; Zucchini and Guttorp, 2009).

3.2. Hidden Markov Models

3.2.1. The Definition of Hidden Markov Models

An HMM is an extension of Markov models to the case where the observation is a
probabilistic function of the state. HMMs are mixture models and they include
mixture component which generates observation described by the state of a hidden
Markov process instead of a static mixing distribution. It is known that a mixture
distribution is the marginal distribution of an HMM. Mixture components can be
represented by the known probability distribution and first or higher-order Markov
process (Zucchini and MacDonald, 2009). Hidden Markov Process, Latent Markov
Models, Markov-Switching Models, Markov Dependent Mixture are other names
of the HMM used in the literature (Leroux and Puterman, 1992; Eprahaim and
Merhav, 2002). Hidden-Semi Markov Models, State-Space Models and Markov-

Switching Models are also related models of HMM in literature.

It is known that independent mixture model is not useful when the serial
dependence is observed in the observations. In this situation, MC assumption holds
and HMMs could be constructed. HMMs consist of two stochastic processes. The
first one is an MC that is characterized by the states and transition probabilities.
The states of the chain are externally not visible, therefore it is defined as
“Hidden.” The second stochastic process, on the other hand, produces observations

at each moment, depending on a state-dependent probability distribution. Each

16



HMM is defined by states, state probabilities, transition probabilities, emission

probabilities and initial probabilities.

In order to define an HMM completely, the following five elements have to be

defined (Rabiner, 1989):

1. The states of model are shown as S and there are N states of the model. The
individual states are denoted as follows:

S= {S4,...,Sn}-
The state at time ¢ is denoted as q, for t=1,2,...,N.

2. There are M distinct observations which are the physical output of the
system and they represent discrete output for per state. It is denoted as a set
of individual observation symbols as V= {vy, v,, ...,vy,).

3. The state transition probability distribution is shown as

A = {ay},
where aj; is the probability that the state at time t + 1 is S; given that the
state at time tis S; . These transition probabilities constitute the transition
probability matrix. The transition probabilities should satisfy the normal

stochastic constraints:

N
CLUZO,]-SL]SNZG'U:1'1SLSN (11)
j=1

4. The observation symbol probability distribution in each state is shown as

B = {b;()};
where b; (k) is the probability that symbol X}, is emitted in state S; and
bj(k) =p{0; = XxIS: =}, (12)

17



1)
2)

3)

4)

5)

where X, denotes the k" observation symbol in the alphabet, and O, is
one of the symbols from V, for 1 <j <N, 1<k <M.

The HMM has the initial state distribution which is shown as w = {m;},
where m; is the probability that the model is in state S; at the same time
t = 0 with

T = p{Sl = l}r (13)
for 1<i<N.

The HMM can be used as a generator to find an observation sequence, such

an

0 = 01, 02 seees OK,

where O, is one of the symbols from V, and K denotes the number of
observations in the sequence when it is given suitable values of N, M, 4,

B, and m as follows,
Choose an initial state gq; = S; by using 7 which is initial state distribution.
Define =1.

Choose 0,=v}, by using b;(k) which is the symbol probability distribution
in state S;.

Skip next state q;4,=S; by using the state transition probability distribution
for S;.

Skip t=¢+1 and return step 3 if #<7, otherwise end the procedure.

18



The representation of a basic HMM is shown in Figure 2. Orange circles show
“Hidden States”. Hidden states are dependent only on the previous state. The past
is independent of the future given the present (Markov assumption). Blue circles
show “Observations.” Observations depend only on their corresponding hidden

state.

Figure 2 Representation of basic HMM

S: {Si1,...,Sn } represents the values for the hidden states and X : {Xi...,Xm}

represents the values for the observations.

An HMM (X,: t € N) is defined as a particular dependent mixture. X® which
denotes the observations and S® which denotes the states represent the time
histories between 1 and t. The simplest model can be summarized as two

dependency structures:
1% order of Markov assumption of transition:
P(S¢|S1, Sz0 s Se—1) = P(Sy, Se_1)- (14)

Conditional independency of observation parameters:

P(thst,Xl, ...,Xt_l, Sl’ ey St—l) = P(thst). (15)

The model includes two processes. First process is unobserved “parameter
process” {S; : t=1,2,...} which satisfies “Markov assumption.” Second process is

“state-dependent process” {X; : t=1,2,....}. When S, is known, the distribution of
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X, depends only on the current state S;, it does not depend on the other states and
observations (Zucchini and Macdonald, 2009). These structures represent in Figure
3, {X;} represents the m-state HMM if the MC S, has m states.

Figure 3 Basic representation of m-state HMM

3.2.2. Description of the Daily Precipitation Model

In this study, the development of daily precipitation models for three Regions
which are the wet, dry and normal dry in Turkey has been considered. For this
reason, HMMs are used to describe daily rainfall occurrence and daily amount of
precipitation for these Regions. The precipitation process is defined as a two-state
first order MC and 1t has been discovered as an adequate model in many different
Regions of the world (Katz, 1977; Coe and Stern, 1982; Stern and Coe, 1984 and
Zucchini et al., 2001a).

Daily total precipitation data from 1964 to 2005 for East Black Sea Region, 1977
to 2006 for Central Anatolian Region and 1972 to 2005 for Aegean Region which
are obtained from Turkish State Meteorological Service are used. Because of
missing values in the daily series, these time periods are selected. Data include
amount of total precipitation for a day. Also, we observe that amount of
precipitation is zero for many days in Central Anatolian Region and Aegean
Region. Therefore, we define “dry day” and “wet day” before applying daily
precipitation occurrence process which is used for estimating daily precipitation

occurrence. If the total amount of precipitation is less than 0.1 mm, it is defined as
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“dry day,” otherwise, it is defined as “wet day.” This criterion value is chosen
according to the meteorological expert opinion (Tiirkes, 1996). In intensity process
which is used for estimating daily precipitation amount, the daily precipitation

series is used directly.

We use the following notations to describe our model. Let “R, = (R%, ... ,RK)"is
a nonnegative multivariate vector of precipitation amounts at a network on K
stations. Observed values on day t, where ¢=17,2,..., N at station i, where i
=1,2,...,K is shown as r{ . Also, S, is defined as hidden rainfall state for day t. In
addition daily sequences of precipitation, total amounts are represented by R;.r

and hidden rainfall states are represented by S;.r (Hughes et al., 1999).

There are two conditional independence assumptions to construct an HMM for
rainfall (Hughes and Guttorp, 1994a; Zucchini and MacDonald, 2009). The first
independence assumption is that R, (multivariate precipitation observations at time
t) is independent of all other variables which take place in the model up to time t.
That is,

P(R¢|S1.t, Ry:e-1) = P(Re | Sp). (16)

The second independence assumption is that the hidden state are the first-order

Markov process. That is,
P(S¢1S1.6-1) = P(S¢ | Se-1)- (17)
We try to find density of R, to construct an HMM for the rainfall data. In this

contex, so-called occurrence and intensity processes are used to find the density of
R, in an explicit form (Katz, 1977; Stern and Coe, 1984; Neykov et al., 2003).
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I. Occurrence Process

In this study, R, = (R},..,RK) is a nonnegative multivariate vector of
precipitation amounts for a network of K=3 stations. Observed values are denoted
by "ri" are either “0” or “1” for the occurrence process. Observed values are

defined as follows:

r{=1, if the rainfall amount observed on day t at station i is greater than 0.1
mm,

r}=0, if the rainfall amount observed on day t at station i is less than 0.1 mm.

Therefore R, becomes a multivariate random vector of rainfall occurrences for a
network of K stations and we assume that the distribution of R, is Bernoulli
(Zucchini, 1991; Neykov et al., 2003; Neykov et al., 2007). Also, R,.;- denotes the
daily sequence of precipitation occurences and S;. denotes the sequence of hidden
states. An HMM for the rainfall data includes two conditional independence

assumptions which are already explained.
The first assumption is that:

P(Rtlsl:t: Rl:t—l) = P(Rt | St)- (18)

And, the second assumption is that:

P(5t|51:t—1) = P(St | St-1)- (19)

In words, it is a first-order Markov process and the Markov process is
homogeneous in time. In other words, transition probability matrix which is part of

the Markov process does not change within time. If transition probability matrix
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changes over the time, nonhomogeneous model is extended by using the

homogenous model.

In order to model these transition probabilities, we have needed to use “logit link

function.”

“Logit link function” is defined as follows:

m(xe) = l(u(xt)) = exp(u(xt)) /(1 + eXp(u(xt)))- (20)

The function “u(x;)” provides connection and explains the different temporal and
seasonal effects. Also, it should be periodic and parametric, and its shape is
sinusoidal (Stern and Coe, 1984; Neykov et al., 2003).

The following function is used as a logit link function to capture the seasonal
behavior:

—wt ) <2ntk>+ (2ntk> 21)
u(x;) = ap + asin 365 oz cos (=)

This function includes seasonal terms that repeat each year and remainder term
that provides information related to deviation from the regular pattern. Also,
instead of square root function, logarithm, cubic root or power transformation

could also be used (Neykov et al., 2003).

ii.  Intensity (Precipitation Amount) Process

R, is a multivariate vector of precipitation amounts for a network of K stations for
an intensity process, and observed values are denoted by X;. In this process, we

define “W;” as follows:

23



W, = {Rt, if Re >0,wheret=12,...,n 22)
t= 1o, 0.w '

The distribution of rainfall amount on the wet days is assumed as positively
skewed. Because, it is known that larger amounts occur less than smaller amounts.
Therefore, the distribution could be exponential, lognormal, Weibull or gamma.
(Stern and Coe, 1984; Grunwald and Jones, 2000; Zucchini et al., 2001a). Also, it
can be seen that seasonal variability exists in this distribution. To model such
precipitation data, a single family distribution whose parameters change smoothly
over the year is chosen and they are represented as a Fourier series (Neykov et al.,
2003).

In order to model our data, gamma distribution has been chosen. Gamma

probability density function y(z,u,5) is given:

Vo = [ ORI 1) for 20

where r(f) denotes the gamma function, u>0 denotes the mean and 8 > 0 denotes

the shape parameter.

In the precipitation amount model, a “log link function” has been used again. This

function is:
2mtk 2mtk
= in|—— —_— 24
log(pe (x)) = 6, + Hlsm( 36E ) + 6, cos ( T ), (24)

where (8, ,6,,6, )T are the unknown parameters.
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3.2.3. The Estimation of Parameters

In general, HMMs have many parameters. The number of parameter equals to
“m(m—1) + q” for a stationary m-state HMM and the number of parameter
equals to “m? — 1+ q” for a homogeneous and stationary HMM where “m”
denotes the number of states, “g” denotes the total number of parameters in the
state dependent models. These parameters are estimated by using the distribution
of X, and higher-order marginal distributions of (X; X;yx) (Zucchini and
MacDonald, 2009).

The cases of discrete and continuous observations are defined as follows, for

i=1,2,..m:

pi(x) = Pr(X, = x| Sy = 1), (25)

where pi(x) is defined as the probability mass function for X, if the MC is in state
“1” at time t for discrete case; pi(x) is defined as the probability density function of

X, if the MC is in state “;” at time t for continuous case.

We assume that X; denotes the discrete-valued observations and w;(t) = Pr(S; =
i) denotes that the MC is in state “i”” at time “t.” The univariate distribution of X,

is:

Pr(X; =x) = Z Pr(S; =) Pr(X; = x|S; =1i) = Zui(t)pi(t). (26)

i=1 i=1

This expression can be written in matrix notation as follows:

( )(pl(x) 0 ><1>
Pr(X; = x) = (u,(t), ..., uy, (t) : : :
0 .. pp(x)/\1 (27)

=u(t)P(x)1'.
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where P(x) denotes the diagonal matrix and i th diagonal element is pi(x).

u(t) = u()ret (28)

Pr(X, = x) = u(DH1P(x)1". (29)

MC is merely homogeneous and it is not necessarily stationary, if equation (28)
holds, otherwise not. If MC is homogeneous and stationary, i.e., MC includes
stationary distribution 5, 8T¢~V = § for t=1,2,...,T, the equation (29) become

more simpler.

Pr(X, = x) = 6P(x)1’. (30)

The bivariate distribution of X, and X,,, which are discrete-valued observations
can be witten by using u;(t) = Pr(S; = i) which denotes the MC is in state ‘i’ at

time “t” for i=1,2,...,T as follows:

Pr(X; = v, Xisp = W)

PI‘(Xt = U,Xt+k =Ww, St = ilSt+k =])

. . (31)
Pr(6, = 1) p;(v)Pr(8pik = jl16; = D)p;(w)

Il
DMz IDVE i3
BRI g B N

vi(Op; @)y (K)pj(w),

~
Il
-
-
Il
-

where y;;(k) denotes the i,j-th element of I'(k). This expression can be written in

the matrix notation as:

26



Pr(X, = v, X;op = w) = u()P(W)I*P(w)1". (32)

If an MC is stationary, then:

Pr(X; = v,Xeip = W) = SP(W)TFP(W)1'. (33)

In a similar way, higher-order marginal distributions can be obtained. For our data
set, we have three rain stations and three observations X;, X;,, and X;,x4+; . The

marginal distributions of X;, X;,, and X;,j; IS:

Pr(X, = v, Xeix = 2, Xeypr = W) = SP(W)T*P(2)T'P(w)1'. (34)

To estimate the unknown parameters, the likelihood function has to be calculated.
However, calculation of likelihood function requires many calculations which
makes it diffucult to find. On the other hand, likelihood function can be computed
for the consecutive observations X, Xz, ..., Xr, Which are generated by HMMs in a
simple way (Baum, 1972; Lange and Boehnke, 1983; Zucchini and MacDonald,
2009). Therefore, unknown parameters can be estimated by maximizing the
likelihood function. Here, Xi={x1, X2, ..., X7} is an observation sequence generated
by the HMM. The likelihood function for the observation sequence can be
calculated as follows:

Ly = 8P(x)TP(x,)TP(x3) ... TP(xp) 1, (35)

where "§" denotes the initial distribution of the MC, “I"” denotes the transition
probability matrix and “p;” denotes the state dependent probability function for the
m-state HMM.

If it is known that § is the stationary distribution of MC, i.e., 8T = §, then;
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Ly = 8TP(x)TP(x,)TP(x3) ... TP ()1, (36)

To simply eq. (36), a new matrix is defined which is called D,. It is equal to

“T'P(x;)." Then, the equation becomes:

LT == 5P(x1)D2D3 ...DTll ES 6D1D2D3 "'DT1,' (37)

Hence, the likelihood function is shown as:

Ly = L(T,A, X)) = 6D,D, ... D1/, (38)

where T is the transition probability matrix for MC (§ = 4T, for stationary chain),
A is the state dependent distributions, X™ is an observation sequence generated

by the HMM and D is equal to I'P(x;), in other words, it is a function of I" and A.

3.2.4. Application of Two-State Bernoulli HMM

Precipitation models are based on MCs (Dunn, 2004). The simplest precipitation
model has two states which are “rain” and “no rain” and first order MC, i.e, the
precipitation probability depends only on the previous precipitation probability.

This model can be extended by increasing number of states and order of MC.

We constructed the simplest precipitation model for Turkey certain Region data
and we decided 2-state and 3-state Bernoulli-HMM can be suitable for Turkish
precipitation data set for analyzing the occurrence probability of rainfall. State-
dependent distribution parameters are “p1, P2 and ps” observations are “X;, X, and

X3.” The likelihood function can be calculated as follows:

L, = 6TP(x;)TP(x,)[P(x3)1'. (39)

This expression can be rewritten in matrix notation as follows:
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e For two state cases:

_ (Y11 Y12\ (Pr(x|statel) 0 )
[P(x) = (V21 sz)( 0 Pr(x|state2)
x 1 (40)
_ (V11 Vlz) (pl (1-py) 0 )
Y21 V22 0 p5(1—p )™/
e For three state cases:
I'P(x)
Y11 Y12 Y13\ [ Pr(x|statel) 0 0
= <V21 V22 Vz3> 0 Pr(x|state2) 0
Y31 V32 V33 0 0 Pr(x|state3) (41)
Yii Yiz Vis\ [Pi(1—p)' ¥ 0 0
= <V21 V22 Vz3> 0 p3¥(1—py)t™* 0 ,
Y31 V32 V33 0 0 p¥(1—ps)t*

where f(x;p) = p*(1 — p)™* for x € {0,1} is a probability mass function for the
Bernoulli distribution. However, there are parameter constraints which lead to
problems to estimate the parameters for the Bernoulli-HMM. These constraints

are:

1) 0<p;<1,i=1.2,..,m
The occurrence probability p; of the state dependent distribution is between

0 and 1, inclusive.

2) 0<y;;<1,i,j=12,..,m;
The transition probabilities are between 0 and 1, inclusive.

3) Z}Tl:l]/lj =1 ,1: = 1’2’ .., m.
The rows of the transition probability matrix "I'" summation must be equal
to 1.
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In order to overcome these problems, which stem from constraints, that
transformations can be done (Zucchini and Macdonald, 2009). It is defined
n; =logp; ,fori =1,..,m (n; € R) for the transformation of the parameters"p;."
Firstly, maximized likelihood function by using unconstrained parameters (n;’s)
has to be obtained; secondly it has been transformed back to the following
constrained parameter estimates. Therefore, p, which is an estimate of constrained
parameter is defined by using n; which is an estimate of the unconstrained

parameter expressed as follows:

D, = exp ;. (42)

In addition, we need to transform transition probability matrix I'. However,
transformation of it involves more work. It is known that “I'"> has m? entries but

only m (m-1) free parameters. There are m row sum constraints:

YiotVYiet+t -+ Vim=1, (43)

wherei = 1,2, ..., m.

Assume that m=2 and define a matrix as:

(™)

It has m(m-1)=2 entries and T;; € R.

Define a k: R - R* be strictly increasing function, in other words:

e* x<0

(45)
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Define a g;; function by using this increasing function:

k(T;;) , ori#j
gij = {1( i) ]j:O”. _{ (46)
] _]

gij
Y7191
k=19ij

Define y;; = ,fori,j =1,2 and the set transition probability matrix

I' = (y;;) which satisfies the constraints. “n;” and “T;;” are defined as working
parameters; “p;” and “y;;” are defined as natural parameters. The transformation

of I and p; are useful for computing the likelihood-maximizing parameters in two

following steps:

Step 1: Likelihood function is maximized with respect to working parameters T =
{Ti;}and n = (1, ., ).

Step 2: The estimates of working parameters are transformed to the estimates of

the natural parameters:
T — T (Estimate of transition probability matrix).

11 = p (Estimate of state-dependent distribution).

3.3. Model Selection

There are two problems when data are modelled with HMM. The first problem is
selecting an appropriate number of states “m.” The second one is selecting the
state—dependent distributions such as Bernoulli, Poisson, and Geometric. For
these reasons, we have to use some criteria to compare the performances of models
developed (Zucchini and Macdonald, 2009).

In our model, four model selection criteria, which are Akaike information criterion
(AIC), Bayesian information criterion (BIC), mean square error (MSE), and

misclassification error rate (MR) are calculated and some plots which includes
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observed and predicted values are drawn. The model which has the minimum AIC,
BIC, MSE and misclassification error rate values can be selected as the best
model. However, in some cases different model selection criteria may not give the
same model as the best. Therefore, the best model is defined by using overall

performance of them and the observed versus predicted graphs.

3.3.1. Akaike Information Criterion (AIC)
AIC is calculated as follows (Akaike, 1973):

AIC= -2logL+2p, (47)
where L denotes the log-likelihood value observed from the fitted model, and p
denotes the number of parameters. The measure of the fit part is “-2logL” term and
it decreases when the number of states increases; the penalty part is “2p” term and

it increases when the number of parameters increases.

3.3.2. Bayesian Information Criterion (BIC)

BIC is calculated as follows (Schwarz, 1978; Acquah, 2010):

BIC=-2logL+plogT, (48)
where L denotes the log-likelihood value which is observed from the fitted model
and p denotes the number of parameters, T denotes the number of observations.
The measure of the fit part is the same as in AIC; the penalty term is different
however. BIC often chooses models which have fewer parameters compared to

AIC criterion.

3.3.3. Mean Square Error (MSE)

MSE is calculated as follows:

365 _ 2
MSE = 2. (”01;56 5”1’”) , (49)

where P, denotes the observed values obtained from the data set, P,,. denotes

the predicted values derived from two-state HMMs. MSE values are used to show
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the difference between the observed values and the predicted values. Minimum

value of it indicate that predicted values are close to the observed ones.

3.3.4. Misclassification (Error) Rate (MR)

MR for a two-class classification problem is calculated by using the “Confusion
Matrix” given in Table 1. It shows the results for a two-class classification

problem.

Table 1 Confusion matrix

Predicted Values

0 1
Observed Values 0 a
1 c d
Then, MR is calculated as follows:
b+c .
R = a+b+c+d (50)

MR represents the proportion of an observation being assigned to incorrect class.

3.4. Estimation of the Sequences of Hidden States

There are three problems which can be solved by using HMMs’ algorithm in order
to use HMMs in practical application (Rabiner, 1989). One of them is to find
optimal state sequence or optimal path in the HMM that maximizes the
observation probability of the given observation sequence. We want to find the
state sequence that best describes the observation sequences among all possible
state sequences (Yoon, 2009).

The Viterbi algorithm is a dynamical programming algorithm which helps us to
compute the most probable path. When a sequence of observations O= O; O, ...,
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Or, and the model parameters A = (A4, B, ) are given, a sequence of optimal
states S = 53, S,, ..., St can be obtained by using the algorithm of Viterbi (Rabiner,
1989; Can and Oz, 2009; Yoon, 2009).

However, there is a difficulty to describe the definition of optimal state sequence,
because there are many possible optimality criteria. One of them is to choose the
states q; that are individually most likely (Rabiner, 1989).

We define the variable "y, (i)" as follows:
)/t(l) = P(Qt = Si | O' /1)' (51)

and it is the probability of being in state S; at time t, given an observation
sequence, and the model parameters. The variable "a,(i)," which is forward
variable is defined as follows:

a,(i) = P(04,0,, ..., 0., q; = S;|), (52)

and it is the probability of the partial observation sequence O= Oy,...,O; and the
state S; at time t, given the model parameters. “a,(i)” can be solved inductively as
follows, according to Rabiner (1989):

1) Initialization:

al(i) = nibi(ol)'l <i<N. (53)
2) Induction:
N
a't+1(]') = [Z at(i)aij] bj(0t+1)11 <t<T-11 S] <N. (54)
i=1
3) Termination:
P(0I) = T, a: (D). (55)
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The forward variable "B, (i)" is defined as follows:

B () = P(Ot41, O¢yz, o, O7lqe = Si, A), (56)
and it is the probability of the partial observation sequence from t+1 to the end,
given the state S; at time t and the model parameters. “S;(i)” can be solved

inductively as follows:

1) Initialization:

Br()=11<i<N. (57)
2) Induction:
ﬁt(l) = z al-jbj (0t+1)Bt+1(j); (58)
j=1

wheret =T—-1,T—-2,..,1; 1<i<N;i<j<N.
v+(0) can be written in terms of a.(i) which explains the partial observation
sequence Oy, O, ..., Or; state S at t, and S (i) which explains the remainder of the

observation sequence Og+1, O, ..., Ot given state S; at t as:

aDBe() _ _ aDBe(i) . (59)
P(0|2) TN ae(DBe ()

ye(@) =

Here, P(0|1) = ¥V, a,(D)B:()) is a normalization factor that makes y.(i) a

probability measure. Then:

il e =1. (60)
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Hence, we can find the individually most likely state g; at time t by using y;(i), as
follows:
q: = argmax|y:(i)],1<t<T,1<i<N. (61)
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CHAPTER 4

RESULTS

4.1. Introduction

In this chapter, the results of the precipitation models defined in the previous
chapter are presented and discussed. The graphs are prepared from the results
obtained by precipitation models according to the objectives of the cases.
According to the models defined in the previous chapter, different types of graphs
are presented in order to observe future prediction related to precipitation. For each

model, the results are discussed in terms of some criteria listed in Section 3.3.

In the following sections, firstly brief information about data is given. Secondly,
the probability of precipitation occurrence in three stations which take place in the
East Black Sea Region, the Central Anatolian Region and the Aegean Region are
found and HMMs are compared to choose the best model by using the model
selection criteria considered. Thirdly, analyses of the precipitation amount
estimation for one station which takes place in three regions are done separately
and results are compared. Lastly, Viterbi algorithm is applied and some unknown

states tried to be estimated.
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4.2. Description of Data

Daily total precipitation series from 1964 to 2005 for the East Black Sea Region,
from 1977 to 2006 for the Central Anatolian Region and from 1972 to 2005 for the
Aegean Region are obtained from Turkish State Meteorological Service. Totally
nine stations are chosen, three from each region. HMMs are applied to wet region,
normal moisture Region and dry region for comparing the performance of them.
These regions are selected according to yearly total precipitation amounts and
drought map obtained from Meteorology Administration of Turkey. Figure 4
shows the meteorological drought map obtained by using Percent of Normal Index
(PNI) method.

Normalin Yiizdesi Metodu ile

Kurakhk Haritasi
- {Percent of Hormaly
= Buwerller kalite kortralden gegriemighr =", 12 Aylik (Ocak 2013-Aralik 2013)
Hazirlang Tarhi: Ocak 2014

FOFH AL VE TIER TAFT ETRAE TFTAJIIIETE ETRAE SIDDETLI ETRAE
(Risk Yok i zlemee Bay by [Trari (il urum§

% 25 L) L1

Figure 4 Meteorological drought map by using PNI

PNI method shows that drought cannot be observed in the East Black Sea Region
and the Southwest Aegean Region. When two regions are compared, the yearly
total precipitation amounts for the East Black Sea Region is higher than the South
Aegean Region according to the data obtained from website of Meteorology

Administration Turkey.
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The stations are chosen according to their locations, completeness of the data and
total precipitation amounts. The 29™ of Februaries are omitted so that we have the
same number of time points in data and then data are classified into two groups
namely “wet day” and “dry day.” If the daily precipitation amount is greater than
the threshold value that is 0.1 mm, then it is labeled as “1,” if it is smaller than the
threshold value, then it is labeled “0.” This threshold value is determined as
measurable precipitation amount. (Neykov et al., 2014).

4.2.1. Central Anatolian Region (Konya-Karaman)

The map of stations from Central Anatolian Region is shown in Figure 5 and the

information belongs to them are given in Table 2.
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Figure 5 The selected stations from Central Anatolian Region

Table 2 Information related to the selected stations from Konya and Karaman

Station Number | Station Name Longitude Latitude
17244 Konya_Centre 37°.52'N 32°.28'E
17246 Karaman 37°.12'N 33°.13'E
17900 Cumra 37°.34'N 32°47'E

39




4.2.2 East Black Sea Region (Rize-Artvin)

The map of stations from East Black Sea Region is given in Figure 6 and the

information belongs to them is shown in Table 3.
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Figure 6 The selected stations from East Black Sea Region

Table 3 Information related to the selected stations from Rize and Artvin

Station Number | Station Name Longitude Latitude
17040 Rize_Centre 41°.02'N 40°.30'E
17042 Hopa 41°.24'N 41°.25'E
17628 Pazar 41°.17'N 40°91'E

4.2.3 Aegean Region (Aydin-Mugla)
Figure 7 shows the map of stations from Aegean Region and Table 4 gives some

information about them.
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Figure 7 The selected stations from Aegean Region

Table 4 Information related to the selected stations from Aydin and Mugla

Station Number | Station Name Longitude Latitude
17860 Nazilli 37°.54'N 28°20'E
17234 Aydin_Center 37°.50'N 27°.50'E
17924 Mugla 36°.57'N 28°.41'E

4.3 Results of Daily Precipitation Occurrence Analyses

In the following sections, the probability of daily precipitation occurrences in nine
stations, which take place in the Aegean Region, Central Anatolian Region and

East Black Sea Region, are estimated and evaluated separately.

4.3.1 Analyses of Daily Precipitation Occurrence in Three Stations from
Aegean Region

To observe the daily occurrences of precipitation in the Aegean Region, a
homogeneous, i.e, the transition probability matrix, which is part of Markov
process, does not change with time, two-state HMM and three-state HMM have

been developed. The observation probability distribution is chosen as Bernoulli
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distribution because this is the most suitable distribution for the occurrence
analysis of precipitation. This distribution generates observations which are
denoted by R;.

R,= (R!...REF), where K denotes the number of stations, represents the
multivariate random vector of precipitation occurrence for three stations.

Observed values denoted by " " are either “0” or “1.”

Three stations are selected from the Aegean Region to compare the wettest and the
driest Regions from Turkey. These stations are also chosen according to closeness

and correlation between them to make the local analyses successfully.

Data include the daily precipitation amounts between 1972 and 2005 years. Figure
8 shows the daily relative frequency of wet days for three stations from Aegean

Region.

Relative frequency of wet days
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Figure 8 The daily relative frequency of wet days for three stations from Aegean
Region
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The daily relative frequency of wet days is used to compare stations. When Figure
8 is analyzed, it can be seen that there are three lines. The red line shows the
corresponding relative frequency for Nazilli station, the green line shows the
corresponding relative frequency for Koycegiz station and the blue line shows the
corresponding relative frequency for Aydin Center station. When these
frequencies are compared, it is observed that they are not the same for three
stations. However there are similarities between them. Also, the summary statistics
for three stations arecalculated in order to find whether the stations have the same

characteristic or not.

Table 5 Summary statistics for stations from Aegean Region

Standard
Station Name | Min | Max | Median | Mean | Variance o
Deviation
Nazilli 0 | 88.40 0 1.56 29.83 5.46
Aydin_Center 0 92.0 0 1.69 33.13 5.76
Koycegiz 0 | 239.2 0 2.92 105.21 10.26

Table 5 shows the summary statistics for stations from Aegean Region. It is
observed that the minimum total amount of precipitation for three stations is the
same and the maximum total amount of precipitation for three stations are
different, especially the maximum total amount of precipitation in Kdycegiz
station is much more than the others. Also, mean and variance of total
precipitation amount are similar in Nazilli and Aydin_Center stations. However,
their values are less than Kdycegiz station. Therefore, it can be said that the
summary statistics of Nazilli and Aydin_Center are similar and clearly differ from
Koycegiz station. However, they show similar characteristics in terms of the
relative frequency of wet days. In addition, they have parallel weather conditions

because all of them are under the influence by Mediterranean climate. Therefore,
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these stations are used to develop two-state and three-state HMMs. Table 6 shows

the models and model selection criteria which are AIC and BIC.

Table 6 Comparison of AIC and BIC values for stations from Aegean Region

Model ikelihood AIC Values | BIC Values
Values
1 Model 131 19330 38663 38678
2 Model 132 19330 38663 38678
3 Model 133 11062 22129 22143
4 Model 332 11061 22127 22142
5 Model 532 10959 21622 21637
6 Model 533 10840 21683 21698
7 Model 732 10931 21866 21881
8 Model 733 10777 21557 21572
9 Model 932 10925 21854 21869

There are nine models and each model is represented with three numbers. The first
number is the number of seasonality term. This seasonal term that is observed in
time series as periodic oscilliatons is represented with sine and cosine terms in Eq.
(21). Also, it should be periodic and parametric, and its shape is sinusoidal (Stern
and Coe, 1984; Neykov et al., 2003). The second number represents the number of
stations and third number represents the number of states. For example, Model 332
has three seasonality terms, three stations and two-states.

Models are compared by using AIC and BIC values shown in Table 6. Also,

Figure 9 is drawn to observe the increase or decrease in the values of AIC and
BIC.
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Figure 9 Comparison of AIC and BIC values for stations from the Aegean Region

It is clearly seen that there are nine dots which represent the models in order given
in Figure 9. The model which has the minimum values of AIC and/or BIC is
chosen as the best model. Therefore, it can be said that “Model 532” and Model
““733” are the candidates to be the best model. Before deciding which model is
better, other model selection criteria (MSE, MR and Observed versus Predicted
Values Plots) should be calculated and analyzed. MSE values are calculated and

displayed in Table 7.
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Table 7 Comparison of MSE values for stations from the Aegean Region

Station Station
Station Number

Model Number Number
17900

17244 17246
1 Model 131 0.0195 0.0213 0.0257
2 Model 132 0.0195 0.0213 0.0257
3 Model 133 0.0182 0.0194 0.0241
4 | Model 332 0.0094 0.0091 0.0080
5 Model 532 0.0082 0.0083 0.0079
6 Model 533 0.0083 0.0078 0.0085
7 Model 732 0.0072 0.0072 0.0067
8 Model 733 0.0055 0.0052 0.0051
9 Model 932 0.0007 0.0007 0.0007

It is observed that values of MSE are close to each other. The best model is
defined as the model with the minimum value of MSE. When Table 7 is
investigated, it can be seen that the minimum values of MSE belong to “Model
932” and “Model 733”. Therefore, one of them is chosen as the best model. Other

model selection criterion which is misclassification error rate is calculated and

shown in Table 8.
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Table 8 Comparison of MR values for stations from the Aegean Region

Station Station
Station Number

Model Number Number
17900

17244 17246
1 Model 131 0.4767 0.4958 0.5205
2 Model 132 0.4767 0.4958 0.5205
3 Model 133 0.4685 0.4362 0.4673
4 Model 332 0.1096 0.1068 0.0877
5 Model 532 0.1288 0.1178 0.0986
6 Model 533 0.1276 0.1190 0.1078
7 Model 732 0.1342 0.1370 0.1315
8 Model 733 0.1178 0.1205 0.1150
9 Model 932 0.1342 0.1425 0.1315

In order to calculate MR, the estimated probability of precipitation occurrence is
categorized according to a threshold value. It is not chosen as 0.5 since data sets
lead to a considerably higher prediction error rate (Kutner et al., 2005). Instead,
threshold value has been calculated as follows:

Threshold value — Total number of rainy days 61)
TesnotE Vatte = T o tal number of days

Threshold value enables to classify the estimated probability values. These values
are categorized as “1” if it is greater or equal to the threshold value; and they are
categorized as “0” if it is smaller than the threshold value. Threshold values for

each station are given in Table 9.
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Table 9 Threshold values for stations from Aegean Region

Station Name | Threshold
Value
Nazilli 0.2002
Aydin_Center 0.1970
Koycegiz 0.2140

When Table 8 is examined, it can be said that the MR values of “Model 131" and
“Model 132 are very higher than the other models. On the other hand, minimum
values of it belong to the “Model 332” and “Model 532.” This means that the
probability of precipitation occurrence is more accurate in “Model 332” and
“Model 532” when compared with the other models. Since MR values of them are
between 0.0877 and 0.1178.

After calculating model selection criteria, observed versus predicted probability of
precipitation occurrence graphs are drawn for each station to observe the
performance of the model. When all graphs are compared, it can be seen that the
graph of “Model 532” is better than the others. The graphs of “Model 532” for
each station are shown in Figure 10, Figure 11 and Figure 12. Other graphs are
placed in the Appendix A.
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Figure 10 The observed versus predicted probability of precipitation occurrence
for Nazilli station
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Observed Prob. Values vs Predicted Prob. Values Aydin_Centre
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Figure 11 The observed versus predicted probability of precipitation occurrence
for Aydin_Center station
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Figure 12 The observed versus predicted probability of precipitation occurrence
for Koycegiz station

The distribution of the observed versus predicted probability values around “x=y”
line is similar in Figure 10, Figure 11 and Figure 12. This means that predicted
probability values are close to observed probability values for stations. Especially,
the deviation is significantly lower in Koycegiz station. However, the maximum
values show a small deviation around “X=Yy” line. This result shows that the model

should be improved to predict extreme values.
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When selecting the best model, several model selection criteria are considered,
because a single model selection criterion may not be helpful to decide the best
model. However all model selection criteria do not give the same results.
Therefore, the best model is defined by using overall performance of them and the

observed versus predicted graphs.

In conclusion, “Model 532 gives better results according to AIC, BIC, MR and
the observed versus predicted graphs. Therefore, the result of this model is
considered for estimation. The estimation graph is drawn and the results are shown

in Figure 13.
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Figure 13 The estimated probability of precipitation occurrence for stations from
Aegean Region

The estimation graph shows the probability of precipitation occurrence for three
stations in the Aegean Region. According to Figure 13, there are two states and the
overall estimated probability of precipitation occurrence which is between two
states. The first state represents the minimum estimated probability of precipitation

occurrence, which means precipitation will not occur and the second state
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represents the maximum estimated probability of precipitation occurrence, which
means precipitation will occur. In addition, there are three lines which represent
the probability of precipitation occurrence for stations in each state. Black line
represents the probability of precipitation occurrence for Nazilli station, green line
represents the probability of precipitation occurrence for Kdycegiz station and red
line represents the probability of precipitation occurrence for Aydin Center
station.

The probability of precipitation occurrence is evaluated for each station according
to its closeness to states. For example, the probability of precipitation occurrence
for Kdycegiz station in the first day of January is close to state 2; this means that
precipitation will occur for Koycegiz station in the first day of January and each
day for each station is evaluated similarly. Also, the overall probability of
precipitation occurrence lines for Nazilli station and Aydin_Center station are
parallel to each other and are close to state 1, between January and April. This
means that there are more dry days in Nazilli station, and Aydin Center station
compare to Koycegiz station between January and April. In addition, it is observed
that the overall probability of precipitation occurrence lines for all stations are very
close to first state between June and August. This means that precipitation will not

occur between these months.

4.3.2 Analyses of Daily Precipitation Occurrence in Three Stations from
Central Anatolian Region

Two-state and three-state HMMs have been developed to estimate the daily
probability of precipitation occurrences in the Central Anatolian Region. Bernoulli
distribution is chosen as the observation probability distribution which generates

observations for predicting the probability of precipitation occurrence in stations.
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Three stations which are among the driest stations in Turkey are chosen from the
Central Anatolian Region to compare with other regions. In order to make local
analyses successfully, they are selected by considering closeness and correlation

between them.

Data include the daily amount of precipitation between 1964 and 2005 years. The
daily relative frequency of wet days for three stations from the Central Anatolian

Region is shown in Figure 14.
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Figure 14 The daily relative frequency of wet days for three stations from Central
Anatolian Region
It is observed that there are three lines in Figure 14. The red line shows the
corresponding relative frequency for Konya_Center station, the yellow line shows
the corresponding relative frequency for Karaman station and the blue line shows
the corresponding relative frequency for Cumra station. These lines are not the
same; however there are similarities between them. In addition, summary statistics

are calculated to observe the addition similarities and are shown in Table 10.
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Table 10 Summary statistics for stations from Central Anatolian Region

Station Name | Min | Max | Median | Mean | Variance | Standard
Deviation
Konya Centre |0 64.50 |0 0.85 |10.20 3.19
Karaman 0 60.70 |0 0.88 |10.14 3.18
Cumra 0 50.10 | O 0.86 |9.08 3.01

When Table 10 is analyzed, the minimum value of precipitation amount for three
stations is the same. However, the maximum values of precipitation amount for
three stations are different. Specially, the maximum value of precipitation amount
in Cumra station is less than others. In addition, mean and variance of precipitation
amount are similar for three stations. Therefore, it can be said that these stations
show similar characteristics according to the relative frequency of wet days and
summary statistics and they are used to constitute two-state and three-state HMM:s.

AIC and BIC values calculated for nine different HMMs are shown in Table 11.

Table 11 Comparison of AIC and BIC values for stations from Central Anatolian

Region
Model Likelihood AIC Values | BIC Values
Values
1 Model 131 17297 34597 34612
2 Model 132 17297 34597 34612
3 Model 133 11336 22676 22690
4 | Model 332 11393 22790 22805
5 Model 532 11307 22617 22632
6 Model 533 11200 22617 22632
7 Model 732 11290 22258 22272
8 Model 733 11127 22258 22272
9 Model 932 11281 22567 22581
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Table 11 shows the models and their associated AIC and BIC values. The meaning
of the numbers at the name of the models is as explained in section 4.3.1. Figure

15 is composed in order to see the changes in the values of AIC and BIC.

AIC & BIC

22000 24000 26000 28000 30000 32000 34000
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Figure 15 Comparison of AIC and BIC values for stations from Central Anatolian
Region

There are nine dots that present the models in order given in Table 11. It can be
said that there is no difference between the two-state and three-state models with
respect to the AIC and BIC values for “Model 532” and “Model 732.” The
minimum values of AIC and BIC are observed in “Model 732” and “Model 932.”
Therefore, they can be best models according to AIC and BIC values. However,
other model selection criteria should be calculated and examined, before deciding
which model is the better. MSE values are shown in Table 12.
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Table 12 Comparison of MSE values for stations from the Central Anatolian

Region

Station Station Station

Model Number Number Number

17244 17246 17900

1 | Model 131 0.0164 0.0168 0.0169
2 | Model 132 0.0164 0.0168 0.0169
3 | Model 133 0.0158 0.0154 0.0163
4 | Model 332 0.0117 0.0082 0.0103
5 | Model 532 0.0080 0.0067 0.0078
6 | Model 533 0.0081 0.0065 0.0079
7 | Model 732 0.0077 0.0065 0.0078
8 | Model 733 0.0081 0.0066 0.0079
9 | Model 932 0.0076 0.0065 0.0076

Table 12 shows the MSE values are very small. In other words, the observed
probability values are close to estimated probability values. The minimum value of
MSE is used to describe the best model, and “Model 732 and “Model 932” have
minimum values of MSE. This means that “Model 732” and “Model 932” are the
best models according to MSE values. Another model selection criterion which is

MR is calculated and shown in Table 13.
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Table 13 Comparison of MR values for stations from the Central Anatolian Region

Station Station Station

Model Number Number Number

17244 17246 17900
1 Model 131 0.4520 0.4931 0.4931
2 Model 132 0.5479 0.5068 0.5397
3 Model 133 0.4489 0.5043 0.4912
4 Model 332 0.2320 0.2109 0.2164
5 Model 532 0.1424 0.1753 0.1369
6 Model 533 0.1432 0.1618 0.1462
7 Model 732 0.1424 0.1616 0.1452
8 Model 733 0.1433 0.1620 0.1467
9 Model 932 0.1369 0.1534 0.1452

Table 13 displays MR values for each model. Estimated and observed probabilities
are categorized as “0” and “l1” by using threshold value as calculated in the

Aegean Region. These values for each station are in Table 14.

Table 14 Threshold values for stations from Central Anatolian Region

Station Threshold
Name Value
17244 0.2284
17246 0.2111
17900 0.2199

According to Table 14, the MR values are still high in “Model 131” and “Model
132.” However, the value of misclassification error rates obtained from other

models is less than them.
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Also, it can be said that the probability of precipitation occurrence is more
accurate in “Model 532” , “Model 732” and “Model 932” when compared with
other models because the minimum values of MR are belong to them. In addition,
MR values from Central Anatolian Region are higher than MR values from the
Aegean Region. This shows that the results of HMMs develop for the Aegean

Region seems to be better than for Central Anatolian Region.

In addition to model selection criteria, observed versus predicted probability of
precipitation occurrence graphs are composed to observe the performance of the
model. When graphs which are composed for each model are compared, the graph
of “Model 932" is better than others. Other graphs are placed in the Appendix A.
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Figure 16 The observed versus predicted probability of precipitation occurrence for
Konya_Center station
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Observed Prob. Values vs Predicted Prob. Values for Karaman
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Figure 17 The observed versus predicted probability of precipitation occurrence

values for Karaman station

Observed Prob. Values vs Predicted Prob. Values for Gumra

05
I

0.4

02

Predicted Prob.

Y

wae

@moe
@o o mam
o
commm
—
v
ammo
onzo
@

@

@oooco® 0 O

0.1
amo o o

0.0

Observed Prob.

Figure 18 The observed versus predicted probability of precipitation occurrence values for
Cumra station

It is said that the observed and predicted probability of precipitation occurrence
values are similar for small probability values in Figure 16, Figure 17 and Figure
18. However, there is a deviation around “x=y” line for high probability values.
This shows that model which is develop to estimate the occurrence probability for

the Central Anatolian Region lack of estimating maximum probabilities.

Finally, “Model 732” is defined as best model by using model selection criteria

and the observed versus predicted probability of precipitation occurrence graphs.
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For this reason, the result of this model is used for estimation. The estimation

graph is made up and the results are shown in Figure 19.

Model 732

probability

Figure 19 The estimated probability of precipitation occurrence for stations from Central
Anatolian Region

Figure 19 shows two state and overall estimated probability of precipitation
occurrence lines. The minimum estimated probability of precipitation occurrence
is defined as first state and the maximum estimated probability of precipitation
occurrence is defined as second state. Overall estimated probability of
precipitation occurrence is between the first state and the second state. Also, it is
observed that there are three lines in each state. They represent the probability of
precipitation occurrence for stations. Black line represents the probability of
precipitation occurrence for Konya Center station, green line represents the
probability of precipitation occurrence for Karaman station and red line represents

the probability of precipitation occurrence for Cumra station.
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Overall estimated probability of precipitation occurrence lines are used to predict
the precipitation. The probability of precipitation occurrence is evaluated for each
station according to their closeness to states. For example, the probability of
precipitation occurrence for stations in the first day of January and the last day of
December are close to state 2; this means that precipitation is likely to occur at
Konya_Center station, Karaman station and Cumra station in the first day of
January and last day of December. Similarly, the probability of precipitation
occurrence for each day and each station can be evaluated. Also, it is observed that
the overall estimated probability line for Konya_Center station is close to state 2
and the overall estimated probability lines for Karaman station and Cumra station
are close to state 1 between April and September. This means that there are more
rainy days in Konya_Center station compare with Karaman station and Cumra

station in April through September.

4.3.3 Analyses of Daily Precipitation Occurrence in Three Stations from East

Black Sea Region

The daily probability of precipitation occurrence is analyzed with two-state and
three-state HMMs in East Black Sea Region. Observations are generated by
Bernoulli distribution which is described as the observation probability

distribution.

Three stations which are located near to each other and correlated are selected to
make regional analyses accurately. Data have the daily precipitation amounts from
1964 to 2005. Time series plot of relative frequency of wet days for three stations
from East Black Sea Region is shown in Figure 20.
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Figure 20 The relative frequency of wet days for stations from East Black Sea Region

Figure 20 shows the corresponding relative frequency lines for each station. These
line shows similarity with each other. This result helps to make local analyses. In

addition, it is calculated the summary statistics for three stations and it is given in

Table 15.

Table 15 Summary statistics for stations from East Black Sea Region

Station ) ) ) Standard
Min Max | Median | Mean | Variance o

Name Deviation
Rize_Centre 0 178.7 0 6.08 178.9 13.38
Pazar 0 186.2 0 5.59 171.9 13.11
Hopa 0 209.8 0 6.09 187.5 13.69

Table 15 displays that the minimum value of precipitation for three stations is the
same and maximum amount of precipitation for three stations are different;

especially the amount of precipitation in Hopa station is greater than the others.
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Mean of precipitation amount is similar in Rize_Centre station and Hopa station,
and higher than Pazar station. On the other hand, variances of total precipitation
amount are similar in Rize_Centre station and Pazar station, and less than Hopa

station.

It can be said that Rize Centre, Pazar and Hopa stations show similar
characteristics according to the relative frequency of wet days and summary
statistics. Therefore nine HMMs are developed and calculated AIC and BIC values

to compare the models. Models and values of AIC and BIC are given in Table 16.

Table 16 Comparison of AIC and BIC values for station from East Black Sea

Region
Model ikelihood AIC Values | BIC Values
Values
1 Model 131 34133 68720 68285
2 Model 132 34133 68270 68285
3 Model 133 22689 45832 45997
4 Model 332 22808 45621 45636
5 Model 532 22779 45562 45578
6 Model 533 22779 45562 45578
7 Model 732 22766 45536 45552
8 Model 733 22766 45536 45552
9 Model 932 22754 45511 45527

Table 16 gives the two-state and three-state HMMs with their AIC and BIC values.
It is clearly seen that there are nine models and each model is represented with
three numbers. These numbers represents the number of seasonality terms, stations
and states. Detailed information about the models is given in section 4.3.1. The

changes in the values of AIC and BIC can be observed in Figure 21.
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Figure 21 Comparison of HMMs by AIC and BIC

It is observed that AIC and BIC values are decreasing at the beginning, then there
are little increase and decrease and then there is a continuous decrease. Also, there
is no difference between the two-state and three-state models with respect to AIC
and BIC values in Model 532 and Model 732. Model 932 can be chosen as the best
model according to AIC and BIC values. Before deciding which model is the best,
other criteria such as MSE, MR should be computed and the observed versus

predicted values graphs should be examined. MSE values are shown in Table 17.
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Table 17 Comparison of MSE values for stations from East Black Sea Region

Model 733 0.00477 0.00540 0.00536

Model Station Station Station

Number Number Number

17040 17042 17628

1 Model 131 0.00471 0.00584 0.00542

2 Model 132 0.00471 0.00584 0.00543

3 Model 133 0.00471 0.00573 0.00542

4 Model 332 0.00470 0.00536 0.00544

5 Model 532 0.00468 0.00539 0.00541

6 Model 533 0.00468 0.00538 0.00538

7 Model 732 0.00467 0.00539 0.00537
8
9

Model 932 0.00481 0.00537 0.00535

When Table 17 is examined, it can be said that observed and predicted occurrence
probabilities are close to each other, and hence, MSE values are very small.
However, it is observed that the minimum values of MSE belong to the “Model
732” and “Model 932.” Therefore, “Model 732” and “Model 932” are the best
models according to MSE values. In addition, the MR values are calculated and

given in Table 18.
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Table 18 Comparison of MR values for stations from East Black Sea Region

Station Station Station

Model Number Number Number

17040 17042 17628

1 | Model 131 0.4547 0.4821 0.4438
2 | Model 132 0.5095 0.4054 0.5013
3 | Model 133 0.5082 0.4039 0.5011
4 | Model 332 0.4657 0.4027 0.4328
5 | Model 532 0.4767 0.3972 0.4383
6 | Model 533 0.4689 0.4056 0.4231
7 | Model 732 0.4739 0.4027 0.4109
8 | Model 733 0.4487 0.4068 0.4039
9 | Model 932 0.4465 0.4000 0.4027

It is observe that the MR values of HMMs are not very small although the
threshold value is not defined as “0.5”. It is calculated as in the Aegean and the
Central Anatolian Regions. However, it can be observed that MR values are still
high for stations from East Black Sea Region compared to results obtained from
other regions. This might be due to the fact that East Black Sea Region is an
extremely wet region and its distribution is highly skewed. Threshold values for

each station are displayed in Table 19.

Table 19 Threshold values for stations from East Black Sea Region

Station Threshold
Name Value
Rize_Center 0.4923
Hopa 0.4741
Pazar 0.4913
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It is observe that the MR values of HMMs are not very small. When models are
compared according to MR, “Model 932 seems to be better than the other models,

since it has smaller misclassification values than others.

In order to evaluate the performance of models, observed versus predicted
probability of precipitation occurrence graphs are composed in addition to model
selection criteria and it is concluded that the graph of “Model 932" is better than

others. Other graphs are placed in the Appendix A.
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Figure 22 The observed versus predicted probability precipitation occurence for
Rize_Center station
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Figure 23 The observed versus predicted probability of precipitation occurrence for Hopa
station
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Observed Prob. Values vs Predicted Prob. Values for Pazar
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Figure 24 The observed versus predicted proability of precipitation occurrence for Pazar
station

When Figures 22, 23 and 24 are analyzed, it can be said that the observed and
predicted probability values do not look like each other. Especially, extreme values
show great deviation around “x=Yy” line. This means that models for East Black

Sea Region do not give good results when compare with other regions.

In conclusion, “Model 932” can be selected for estimation because model selection
criteria and the graph of observed and predicted values of this model are
considerably good. The estimation plot is drawn by using results of this model and

it is shown in Figure 25.
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Figure 25 Estimation values for East Black Sea Region

We can observe the probability of precipitation occurrence for three stations by
using the estimation plots given in Figure 25. There are two states from which the
two-state HMM is derived. The first state represents the minimum estimate of
probability for precipitation occurrence, which means precipitation will not occur
and the second state represents the maximum estimate of probability for
precipitation occurrence, which means precipitation will occur. Also, there is
overall estimate of probability for precipitation which is derived from our model.
The probability of precipitation occurrence is evaluated for each station according

to its closeness to states.
Two states which are minimum and maximum estimated probability of

precipitation occurrence and overall estimated probability of precipitation

occurrence lines can be seen in Figure 24. There are three lines which represent the
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probability of precipitation occurrence for stations in each station. Black line
represents the probability of precipitation occurrence for Rize Center station,
green line represents the probability of precipitation occurrence for Hopa station
and red line represents the probability of precipitation occurrence for Pazar station.
Overall estimated probability of precipitation occurrence which is between the first
state and second state is used for estimating daily precipitation occurrence for each
station. If it is close to the first state, precipitation will not occur; if it is close to

the second state, precipitation will occur.

The probability of precipitation occurrence is evaluated for each station according
to it closeness to states. When Figure 25 is analyzed, it is said that overall
estimated probability of precipitation lines for Rize_Center station and Hopa
station are parallel to each other and they are close to second state between August
and October. This means that there are more rainy days at these stations compare
with Pazar station at these months. Therefore, each day for each station is
evaluated similarly. In addition, it is observed that the overall estimated probability
values are higher than other regions. In other words, East Black Sea Region has
more rainy days compare the Aegean and Central Anatolian Region according to
this estimation plot. However, it is observed that the misclassification error rates
which are calculated from the Aegean and Central Anatolian Region are smaller
than misclassification rates which are derived from the East Black Sea Region.
Also, when the graph of observed versus predicted probability values is examined,
it can be said that there is great deviation around “x=y” lines. This shows that
HMMs which are develop for estimating occurrence probabilities to East Black
Sea Region do not give good prediction for precipitation occurrence compare with

the other regions.

In other words, two-state homogenous HMMs are useful tool for predicting overall

probability of precipitation in regions like the Aegean and Central Anatolian.
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4.4 Results of Daily Total Precipitation Amount Analyses

In the following sections, the daily total precipitation amount in one station which
takes place in the East Black Sea Region, Central Anatolian Region and Aegean

Region are estimated and evaluated separately.

4.4.1 Analyses of the Precipitation Amount Estimation for One Station from
East Black Sea Region

The distribution of rainfall amount on the wet days is assumed as positively
skewed. Because, it is known that larger amounts occur less than smaller amounts.
In order to model daily precipitation amount data, gamma distribution is chosen.
Daily precipitation amount data of Rize_Center station is used to estimate the total
precipitation amount by using HMMs. This station is chosen among stations which

are used to estimate precipitation occurrence.

Data include the daily precipitation amount between 1964 and 2005 years. Some
graphics are composed to show the difference of daily total precipitation amount

between days. The mean of daily total precipitation amount is shown in Figure 26.
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Figure 26 Mean of daily total precipitation amount for Rize_Center station from
East Black Sea Region
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Figure 26 shows the mean of precipitation and two smoothing line for Rize_Center
station. It is said that mean of precipitation decreases until 100" day of the year
and then it increases and reaches maximum value around the 300" day of the year.
In general, overall mean of daily total precipitation amount is above the 5mm.
Also, the standard deviation of daily total precipitation amount is shown in Figure

27.
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Figure 27 Standard deviation of daily precipitation amount for Rize_Center station
from East Black Sea Region

Figure 27 shows the standard deviation of daily precipitation amount for
Rize_Center station. This value is the smallest around 100" day of year which
means that the precipitation amount of these days closes to mean and it reaches
higher value around the 300" day of the year which means that the total
precipitation amount of these days are spread out over a large range of total
precipitation amounts. In addition, the coefficient of variation of daily total

precipitation amount is calculated and it is displayed in Figure 28.
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Figure 28 Coefficient of variation values of daily total precipitation amount for
Rize_Center station from East Black Sea Region

Figure 28 shows that the coefficient of variation of daily precipitation amount is
not the same for all days. This means that there is different ratio of standard

deviation to the mean between the days.

In order to analyze the daily precipitation amount data, two-state seasonal gamma
HMMs are developed. Information about the models is given in Table 20.

Table 20 Information about two-state seasonal gamma HMMs

Seasonal
Seasonal
Components for The Number
Models | Components o
Coefficient of of States
for Mean o
Variation
Model 1 3 3 2
Model 2 5 3 2
Model 3 5 5 2
Model 4 7 3 2
Model 5 7 5 2
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It can be seen that there are five HMMs developed to observe the daily total
precipitation amount for Rize_Center station. Each model contains estimates. For
example, “Model 1” has two-State and each state has three parameters in the
seasonal component for the mean and three parameters for the coefficient of
variation, i.e., a total of 12 parameters. Hence, other models contain more than 12
parameters. In addition, the values of AIC and BIC are calculated to compare the
models and they are given in Table 21.
Table 21 Comparison of AIC and BIC for Rize_Center Station from East Black

Sea Region
Model Likelihood Values AIC Values BIC Values
Model 1 26694 53416 53524
Model 2 26675 53386 53525
Model 3 26660 53365 53534
Model 4 26673 53391 53560
Model 5 26659 53370 53570

As can be seen from the Table 21, “Model 3” has minimum AIC value and “Model
1” has minimum BIC value. Therefore, they are candidates of the best model.
Before deciding which model is better, MSE values are calculated and a graph
which includes the observed versus predicted values is drawn. MSE values are

shown in Table 22.

Table 22 MSE values for Rize_Center station from East Black Sea Region

Model MSE Values
Model 1 43.8062
Model 2 43.2053
Model 3 43.6797
Model 4 43.1057
Model 5 42.9254

73



When Table 22 is analyzed, it can be seen that MSE values are close to each other.
However, it is observed that the minimum values of MSE belong to the “Model 4”
and “Model 5.” Hence one of these models could be the best model to observe the
total precipitation amount for Rize_Center station according to MSE values. In
addition to model selection criteria, graphs that contain the observed versus the
predicted precipitation values are drawn for each model and it is observed that the
result of “Model 4” is the best compare with other models. Other graphs are placed

in the Appendix A.
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Figure 29 The observed versus predicted values of precipitation amount for
Rize_Center station

Figure 29 displays the observed and predicted precipitation amount values look
like each other. However, there is a deviation around “x=y” line especially in
maximum probability values. In conclusion, it seems to logical choose the best
model as Model 4 according to BIC, MSE values and graph of the observed and
predicted precipitation amount values. Finally, the results of this model are used

for estimation. Estimation plots are shown in Figure 30.
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Figure 30 Estimation of the mean, standard deviation and coefficient of variation
of total precipitation amount for Rize_Center station

The estimation plots of mean, standard deviation and coefficient of variation about
precipitation amount for Rize_Center station are given in Figure 30. There are two
states which are derived from two-state HMMs and overall value in each
estimation plots. The first state (red line) represents the minimum estimated value
of mean, standard deviation and coefficient of variation for precipitation amount.
The second state (blue line) represents the maximum estimated value of mean,
standard deviation and coefficient of variation for precipitation amount. However
these states are unknown from definition of HMM and they can be defined
according to goal of the study. Also, there is an overall estimate of precipitation
amount (dark line) which is between the first state and the second state. When the

precipitation amount is estimated, the overall estimate of precipitation amount help
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to evaluate the precipitation amount according to closeness to states. For example,
estimation plot for mean indicates that overall estimate of precipitation amount
line close to the second state. This gives an idea about the mean of precipitation
amount to us. For Rize_Center station, it will be about 20mm. In addition to mean
of precipitation amount, standard deviation of precipitation amount and coefficient
of variation of precipitation can be evaluated day by day with these estimation
plots. Also, predictions of 365 days related to mean, standard deviation and
coefficient of variation of precipitation amount give general information about

daily precipitation amount for people.

4.4.2 Analyses of the Precipitation Amount Estimation for One Station from
Central Anatolian Region

In order to estimate daily precipitation amount at the Central Anatolian Region,
Konya Center station is selected. This station is one of the stations which are used
to estimate precipitation occurrence. Data include the daily amount of total
precipitation between 1977 and 2006 years. Some graphics are drawn to get
general opinion about the difference of daily precipitation amount between days.

The mean of daily precipitation amount is shown in Figure 31.
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Figure 31 Mean of daily total precipitation amount for Konya_Center station
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According to Figure 31, the mean of precipitation amount is low for Konya_Center
station compare to Rize_Center station. There are few days for which mean of
precipitation amount is more than 10mm. In general, overall mean of daily
precipitation amount is below 5 mm. Also, the standard deviation of daily

precipitation amount is displayed in Figure 32.
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Figure 32 Standard deviation values of daily total precipitation amount for
Konya_Center station

Figure 32 provides information about the standard deviation of total precipitation
for Konya_Center station. This value is zero around 200" day of year which means
that the precipitation amount of these days closes to mean. Also, it reaches high
values around the 300" day of the year which means that the total precipitation
amount of these days spread out over a large range of precipitation amounts. In
general, overall standard deviation of daily total precipitation amount is between 0
mm and 5 mm. In addition to the mean and standard deviation of precipitation
amount, the coefficient of variation of daily precipitation amount is calculated and

it is given in Figure 33.
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Figure 33 The coefficient of variation of daily precipitation amount for
Konya_Center station

It is observed that the coefficient of variation is not the same for all days from
Figure 33. This shows that there is a significant difference between the days in
terms of mean and standard deviation. Also, there are some days that coefficient of
variation values cannot be calculated. This happens because mean takes value of

Zero.

Two-state seasonal HMMs have been developed to estimate the daily precipitation
amount at the Central Anatolian Region. Gamma distribution is selected as the
observation probability distribution which generates observations for predicting
the probability of precipitation amount at stations. To compare models, model
selection criteria such as AIC, BIC and MSE are calculated and graphs which
include the observed and predicted precipitation amount are drawn. It has been
shown that AIC and BIC values for five different HMMs in Table 23.
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Table 23 Comparison of AIC and BIC values for Konya_Center station

Likelihood
Model AIC Values BIC Values
Values
Model 1 5433 10894 10996
Model 2 5419 10874 11005
Model 3 5418 10880 11041
Model 4 5412 10868 11028
Model 5 5410 10873 11063

Models and the values of AIC and BIC are given in Table 23. The explanation of
models is as given in section 4.4.1. This table indicates that the minimum value of
AIC belongs to “Model 4” and the minimum value of BIC belongs to “Model 1.”
However, MSE should be calculated and graphs which include the observed and
predicted values should be analyzed to describe the best model. Table 24 displays
the MSE values.

Table 24 Comparison of MSE values for Konya _Center station

Model MSE Values
Model 1 10.9192
Model 2 9.1819
Model 3 9.1487
Model 4 9.2455
Model 5 9.2251

It is said that there is no big difference between the MSE values of models.
However, it can be seen that the minimum MSE value is found with “Model 3.”
Hence it could be the best model to estimate the total precipitation amount for

Konya_Center station according to MSE values. In addition to MSE values, some
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graphs are drawn to see the values of observed versus predicted precipitation

amount together.

Observed vs Predicted Rainfall Amount for Konya
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Figure 34 The observed versus predicted values of precipitation amount for
Konya_Center station

It can be clearly seen that the values of observed and predicted precipitation
amount do not seem to be similar. There is high deviation around “x=y” line.
Because the predicted precipitation amount values are higher than observed
precipitation amount. However, the graph which is drawn by using the result of
“Model 3” is better than other models. Other graphs can be seen in Appendix A.
At the end, “Model 3” is chosen as the best model according to the values of BIC,
MSE and the graph of the observed versus predicted precipitation amount.
Therefore, it is used for estimation. The plots of estimation are drawn by using the
result of “Model 3.”
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Figure 35 Estimation of precipitation amount for Konya_Center station

Figure 35 includes the estimation plots of mean, standard deviation and coefficient
of variation about precipitation amount for Konya_Center station. There are two
states which are derived from two-state HMM in each graph. The minimum
estimate of precipitation amount is presented by the first state (red line). The
maximum estimate of precipitation amount is presented by the second state (blue
line). Also, there is overall estimate of total precipitation amount (dark line).
Precipitation amount is predicted according to the position of the overall line. For
example, overall line is close to the second state in the graphs of mean and
standard deviation of precipitation amount. It means that the value of mean and

precipitation amount will be around 5mm. On the other hand, overall line is close
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to the first state in the graph of coefficient of variation. It means that the value of
coefficient variation will be around 1mm. Therefore; the value of mean, standard
deviation and coefficient of variation for precipitation amount are estimated day by
day in addition to overall evaluation for precipitation amount by using the plots of

estimation.

4.4.3 Analyses of Total Precipitation Amount Estimation for One Rain Station

from Aegean Region

In order to develop a model for Aegean Region, Aydin_Centre station is chosen.
This station is chosen among stations which are used to estimate precipitation
occurrence. Data include the daily amount of precipitation between 1972 and 2005
years. The graphs of mean, standard deviation and coefficient of variation are
drawn to observe the difference of daily precipitation amount between days. The

mean of daily precipitation amount is shown in Figure 36.
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Figure 36 Mean of daily precipitation amount for Aydin_Center station
As can be seen from Figure 36, the mean of precipitation is between 5mm and

10mm. There are few days whose mean of precipitation amount is more than

20mm. In general, overall mean of daily total precipitation amount is below 10
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mm. However, mean of daily total precipitation amount in Aydin Center station is
higher than Konya_Centre station from Central Anatolian Region and less than
Rize_Center station from East Black Sea Region. Also, the standard deviation of

daily precipitation amount is calculated and displayed in Figure 37.
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Figure 37 Standard deviation of daily precipitation amount for Aydin_Center
station

Figure 37 reveals the standard deviation of precipitation amount for Aydin_Center
station and it is zero around 200" day of year which means that the precipitation
amount is equal to mean of it. In general, overall standard deviation of daily total
precipitation amount is 0 mm and 10 mm. In addition, the coefficient of variation
of daily precipitation amount is calculated to compare the ratio of mean and

standard deviation for every day.
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Figure 38 Coefficient of variation values of daily total precipitation amount for
Aydin_Center station

The coefficient of variation of daily precipitation amount is revealed in Figure 38.
It is not the same for all days. However, there is similarity between the first 100
and the last day of the year. Also, it cannot be calculated the values of coefficient

of variations for many days since the mean of precipitation amount is zero.
In the following sections, AIC, BIC and MSE are calculated by using the results of
the two-state seasonal gamma HMMs. Table 25 indicates the models and the

values of AIC and BIC.

Table 25 Comparison of AIC and BIC values for Aydin_Center station

Model Likelihood Values | AIC Values BIC Values
Model 1 7638 15304 15408
Model 2 7634 15304 15438
Model 3 7628 15301 15464
Model 4 7629 15301 15465.
Model 5 7625 15303 15496
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The values of AIC and BIC in Table 25 indicates that the minimum value of AIC
are found in both “Model 3” and “Model 4” and the minimum value of BIC is
found in “Model 2.” These models can be described as the best model. However,
MSE and the graphs of observed versus predicted values should be controlled to

decide the best model. The MSE values are given in Table 26.

Table 26 Comparison of MSE values for Aydin_Center station

Model MSE Values
Model 1 103.5531
Model 2 103.2161
Model 3 84.1768
Model 4 101.9010
Model 5 101.6165

As it can be seen from Table 26, the values of MSE are similar except for the MSE
value for “Model 3” which is the minimum value. Therefore, it could be the best
model to estimate the precipitation amount for Aydin Centre station according to
MSE values.

In order to see the closeness of observed versus predicted precipitation amount,
some graphs are drawn by using the results of two-state seasonal gamma HMMs.
It is found that all graphs are similar to each other. A graph which is drawn by
using the result of “Model 3" is shown in below.
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Figure 39 The observed versus predicted values of precipitation amount for
Aydin_Center station

It is figured out that the values of observed and predicted precipitation amount
values do not show similarity. There is a high deviation around “x=y” line as in
Konya_Centre station from Central Anatolian Region and an underestimation of

the precipitation amount.

Finally, “Model 3” seems to be better than the other models according to the
values of BIC, MSE and the graph of the observed versus predicted values.
Therefore, the result of this model is used for estimation. The plot of estimation is
revealed in Figure 40.
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Figure 40 Estimation of total precipitation amount for Aydin_Center station

The graphs of estimation of mean, standard deviation and coefficient of variation
for precipitation amount at the Aydin_Center station are displayed in Figure 40. It
can be observed the first state (red line) which presents the minimum estimate of
precipitation amount, the second state (blue line) which presents the maximum
estimate of precipitation amount and also, overall estimate of precipitation amount

(dark line) which is between the first state and the second state.
When the mean of precipitation amount is analyzed, it can be seen that overall line

is close to the second state at the end of the year. This means that the precipitation

amount will be around 10 mm. On the other hand, when coefficient of variation of
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precipitation amount is analyzed, the overall line is not close to the second state at
the end of the year. Especially, the overall line is close to the first state around the
200th of the year. It can be said that the coefficient of variation of precipitation
amount will be less than 2 mm in these days. Similarly, an evaluation can be done
for standard deviation of precipitation amount. Also, daily predictions can be done
by using the estimation plots of mean, standard deviation and coefficient of

variation.

4.5 Application of Viterbi Algorithm

The Viterbi algorithm helps us to find the state sequence that best describes the
observation sequences among all possible state sequences. In other words, when a
sequence of observations and the model parameters (A,B,m) are known, a
sequence of optimal states can be obtained by using this algorithm (Rabiner,
1989). It shows the the prediction power of HMMs. A plan is made for events
which occur more likely at a future date. For example, a sequence of observation is
considered for the next year, and the most probable sequences of states are
estimated through the algorithm of Viterbi (YYoon, 2009).

In order to apply the algorithm of Viterbi, the examples of observation sequence
are taken from the results of precipitation occurrence which is derived from the
Aegean Region.

Observations are used to perform the algorithm of Viterbi to find the
corresponding state. Dry day is defined as state “1”, wet day is defined as state
“2”. Observation for dry day is defined as “D” and observation for wet day is
defined as “W”. Also, the model parameters are required to apply this algorithm.
For this reason, initial probability values, transition matrix and emission matrix are

taken from “Model 532" described as the best model for Aegean Region.
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The transition matrix is:

1 2
1[0.7569003 0.3009495
210.2439997 0.6990505

The emission matrix is:

. Observations

Stcites D W

0.7 0.3

0.3 0.7

In addition to model parameters, the sequences of observations are generated for
“January and April” randomly. Each sequence of observations includes ten values
and this number can be increased. The sequence of observations which are
generated for the first ten days of “April” is "”D, "D", "D", "D", "W", "D", "D",
"W W, "W and  the prediction of sequence of states is "1", "1", "1", "1", “1",
"o, m2v, M2, "2, The real sequences of states are estimated by using the
observed data set. Finally, results are compared to compute the error due to the

model.

Hidden States

Days

==@==(Observed Value ==@==Predicted Value

Figure 41 Comparison of sequences of real hidden and predicted states by the
model
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When drawing the graph, the sequence of observations is represented by the more
likely for this sequence of states as shown in Figure 41. When analyzing the
sequences of observations and states, it can be seen that there is only one
observation which are estimated wrong. Therefore, error is calculated as 10 %.

This means that this algorithm gives good prediction for future.

In order to compare the performance of the algorithm of Viterbi, the second
sequence of observation is generated for the first ten days of “January” and the
most probable states are predicted. The observation sequence of observations is
"wrwr W "D, DY W T, W, W D™ and the prediction of sequence
of states is "2", "2", "2", "1", “1", “1", "2", "2", "2", "2"),

Hidden States

Days

==@==(Observed Value ==@==Predicted Value

Figure 42 Comparison of sequences of real hidden and predicted states by the
model

Figure 42 displays two different sequences of hidden states. One of them shows
the predicted sequence which represents the sequence of observed values. The
other one shows the predicted sequence which is estimated by the algorithm of
Viterbi. It can be seen that there are two mispredicted observation. Hence, the
error value can be found as 20 %. It can be said that the model estimates the reality
80%.
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At the end, it can be concluded that the performance of algorithm of Viterbi is
better at “April” when compared with the result of “January.” Since the number of
true prediction is higher. Therefore, it can be said that the most probable path
corresponding to a given sequence of observations can be determined by this

algorithm easily.

Viterbi algorithm is used to find some sequence of states which is derived in
Aegean Region. It provides information for unknown states. In our example, our
observations are defined by using past data related to daily total precipitation
amount and we want to know the unknown states which lead to occur these
observations. In our cases, we have just two states and estimating these states may
not seem to be beneficial. However, in many HMM applications there are more
states and estimating states are very beneficial. For example, when trying to
predict unknown states at four-state HMM which is developed for estimating
precipitation amounts, the estimated results of algorithm of Viterbi becomes

important.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The main purpose of this study is modelling the daily precipitation occurrence and
the amount of total precipitation observed in certain regions of Turkey by using
HMMs. HMMs have been successfully applied in precipitation modelling. The
main advantage of HMMs for this study is that they provide general information
about understanding the probabilistic structure of precipitation and estimate the

daily total precipitation amount.

The first chapter of the thesis starts with an introduction. The motivation of study
is briefly explained and outline of thesis is given in this chapter. In the second
chapter of the thesis, the history of HMMs and precipitation models are explained.
In the third chapter, firstly the brief information related to MC is given. Secondly,
the definition of HMMs, the description of the daily precipitation HMMs and the
parameter estimation method are explained. Thirdly, model selection criteria are
described. In the fourth part of the study, the results of the simulation cases
defined in previous chapter are presented and discussed. The graphs are prepared
from the results obtained from the simulations according to the objectives of the
cases. According to the models defined in previous chapter, different types of
graphs are presented in order to observe the future prediction related to
precipitation.
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In this study, homogeneous HMM is applied to daily total precipitation data from
three stations in the East Black Sea Region, three stations in the Central Anatolian
Region and three stations in the Aegean Region of Turkey. In the first part of the
study, two-state and three-state Bernoulli HMM are developed to observe the
probability of rainfall occurrence. The performance of HMMs is evaluated by
comparing AIC, BIC, MSE, MR and plots which depict observed probability
values versus predicted probability values. HMMs which are developed for the
East Black Sea Region do not give better results compare to results of the other
Regions. Because the MR values are very high and the plots which include
observed and predicted probability values do not deviate from “x=y.” On the other
hand, it is observed that the MR values are small and observed and predicted
probability values are similar in the results of HMMs developed for the Aegean
Region. This shows that the two-state homogeneous HMM is the most successful
for regions that has normal moisture climate like Aegean Region compare to
wettest region like East Black Sea and driest region like Central Anatolian.

In the second part of the study, two-state seasonal gamma HMM is developed for
one station from the East Black Sea Region, one station from the Central
Anatolian Region and one station from the Aegean Region to observe the amount
of total precipitation. The performance of HMMs is evaluated by comparing AIC,
BIC, MSE and plots of observed versus predicted probability values. HMMs
developed for the East Black Sea Region give better results compare to the results
of other regions. Because plots of observed versus predicted precipitation amounts
scatter around “x=y.” On the other hand, HMMs developed for the Central
Anatolian Region and Aegean Region do not give good results. It is observed that
the predicted amount of total precipitation is higher than the observed amount of
total precipitation. This is mainly because data includes many zeros, and this leads
to false predictions. In the third part of study, we apply Viterbi algorithm to find

some sequence of states which are derived for the Aegean Region. It is observed
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that this algorithm can be used to estimate an unknown situation. In our cases, we
have just two states and estimating states may not seem to be beneficial. However,
in many HMM applications there are more states and estimating states are very

beneficial to observe unknown states.

In conclusion, we see that two-state homogeneous HMM may not be a useful tool
to find the probabilities of rainfall occurrence for wettest regions like East Black
Sea Region. However it can be useful tool to find the amount of total precipitation
these regions for preparing strategies and planning for the unpredicted disaster

such as flood.

As the future study, we consider developing nonhomogeneous HMMs by using
synoptic atmospheric information such as temperature, solar radiation, and other
climatic factors. Because it is known that there are more factors that affect the
weather conditions in addition to past data related to total rainfall. When the
number of variables which affect the future weather conditions increase to estimate
weather condition, the success of prediction of weather condition will increase.
Therefore, better results can be observed for the occurrence probability of rainfall
predictions and amount of rainfall predictions. Also, the number of states can be
increased to observe different weather conditions. Since, we see that homogeneous
HMMs are not successful to estimate extreme values. When the number of states

for HMMs increases, it can estimate extreme values.

Finally, we believe that HMM is a very useful tool to simulate precipitation. The
results obtained from the application of HMM encourage us to find possibility of
realizing good local predictions of precipitation. This work would be first phase to
make estimations related to precipitation, providing very fast and less costly
computations and it gives general weather forecast and information about the state

of regions. When a nonhomogeneous HMM is developed, extreme precipitation
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events could be estimated and an alert system could be constructed. Also, we think
that HMMs can help us to understand the probabilistic structure of different
application areas.
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APPENDIX A

ESTIMATION PLOTS

A.1. Estimation Plots of Probability of Precipitation Occurence

Estimation Plots For East Black Sea Region

Model 332

probability
.

Figure 43 The estimated probability of precipitation occurrence for stations from
East Black Sea Region (Model 332)

Model 532

Figure 44 The estimated probability of precipitation occurrence for stations from
East Black Sea Region (Model 532)
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Figure 45 The estimated probability of precipitation occurrence for stations from
East Black Sea Region (Model 932)

Observed Probability vs Predicted Probability Plots for East Black Sea
Region
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3
S

8 4

SEEERRRV SR

Predicted Prob,

0.45

0.40

035

Observed Prob.

Figure 46 The observed versus predicted probability of precipitation occurrence
for Rize_Center station (Model 332)
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Figure 47 The observed versus predicted probability of precipitation occurrence
for Hopa station (Model 332)
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Figure 48 The observed versus predicted probability of precipitation occurrence
for Pazar station (Model 332)

Observed Prob. Values vs Predicted Prob. Values for Rize_Centre
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Figure 49 The observed versus predicted probability of precipitation occurrence
for Rize_Center station (Model 532)
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Figure 50 The observed versus predicted probability of precipitation occurrence
for Hopa station (Model 532)
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Figure 51 The observed versus predicted probability of precipitation occurrence
for Pazar station (Model 532)

Observed Prob. Values vs Predicted Prob. Values for Rize_Centre
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Figure 52 The observed versus predicted probability of precipitation occurrence
for Rize_Center station (Model 932)
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Figure 53 The observed versus predicted probability of precipitation occurrence
for Hopa station (Model 932)

114



Observed Prob. Values vs Predicted Prob. Values for Pazar
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Figure 54 The observed versus predicted probability of precipitation occurrence
for Pazar station (Model 932)

Estimation Plots for Central Anatolian Region

Model 332
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Figure 55 The estimated probability of precipitation occurrence for stations from
Central Anatolian Region (Model 332)
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Figure 56 The estimated probability of precipitation occurrence for stations from
Central Anatolian Region (Model 532)
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Figure 57 The estimated probability of precipitation occurrence for stations from
Central Anatolian Region (Model 932)

Observed Probability vs Predicted Probability Plots for Central Anatolian
Region
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Figure 58 The observed versus predicted probability of precipitation occurrence
for Konya_Center station (Model 332)
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Observed Prob. Values vs Predicted Prob. Values for Karaman
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Figure 59 The observed versus predicted probability of precipitation occurrence
for Karaman station (Model 332)
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Figure 60 The observed versus predicted probability of precipitation occurrence
for Cumra station (Model 332
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Figure 61 The observed versus predicted probability of precipitation occurrence
for Konya_Center station (Model 532)
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Observed Prob. Values vs Predicted Prob. Values for Karaman
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Figure 62 The observed versus predicted probability of precipitation occurrence
for Karaman station (Model 532)

Observed Prob. Values vs Predicted Prob. Values for Gumra
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Figure 63 The observed versus predicted probability of precipitation occurrence
for Cumra station (Model 532)

Estimation Plots for Aegean Region

Model 332
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Figure 64 The estimated probability of precipitation occurrence for stations from
Aegean Region (Model 332)

118



Blzadal S50

Figure 65 The estimated probability of precipitation occurrence for stations from
Aegean Region (Model 533)
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Figure 66 The estimated probability of precipitation occurrence for stations from
Aegean Region (Model 732)
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Figure 67 The estimated probability of precipitation occurrence for stations from
Aegean Region (Model 733)
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Figure 68 The estimated probability of precipitation occurrence for stations from
Aegean Region (Model 932)

Observed Probability Values vs Predicted Probability Values Plots for
Aegean Region
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Figure 69 The observed versus predicted probability of precipitation occurrence
for Nazilli station (Model 332)
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Figure 70 The observed versus predicted probability of precipitation occurrence
for Aydin_Center station (Model 332)
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Observed Prob. Values vs Predicted Prob. Values for Kdycegiz
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Figure 71 The observed versus predicted probability of precipitation occurrence
for Koycegiz station (Model 332)

Observed Prob. Values vs Predicted Prob. Values for Nazilli
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Figure 72 The observed versus predicted probability of precipitation occurrence
for Nazilli station (Model 532)

Observed Prob. Values vs Predicted Prob. Values Aydin_Centre
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Figure 73 The observed versus predicted probability of precipitation occurrence
for Aydin_Center station (Model 532)
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Observed Prob. Values vs Predicted Prob. Values for Kdycegiz
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Figure 74 The observed versus predicted probability of precipitation occurrence
for Kdycegiz station (Model 532)

Observed Prob. Values vs Predicted Prob. Values for Nazilli
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Figure 75 The observed versus predicted probability of precipitation occurrence
for Nazilli station (Model 732)

Observed Prob. Values vs Predicted Prob. Values Aydin_Centre
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Figure 76 The observed versus predicted probability of precipitation occurrence
for Aydin_Center station (Model 732)
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Observed Prob. Values vs Predicted Prob. Values for Kdycegiz
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Figure 77 The observed versus predicted probability of precipitation occurrence
for Koycegiz station (Model 732)

A.2. Estimation Plots of Precipitation Amount

Estimation Plots of Precipitation Amount for East Black Sea Region
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Figure 78 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Rize_Center station (Model 1)
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Figure 79 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Rize_Center station (Model 2)
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Figure 80 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Rize_Center station (Model 3)
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Figure 81 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Rize_Center station (Model 4)

Daily depth: mean Daily depth: standard deviation
30 35
25 - 30
204 25
£ e 20
15
£ E s
10 10
5 5 |
QUL T L HTTTU UL
0 0l
T T T T T T T T
0 100 200 300 0 100 200 300
day day
Daily depth: coef. of variation
25
2.0
15
05
001 T T T T
0 100 200 300
day

Figure 82 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Rize_Center station (Model 5)

Observed Probability vs Predicted Amount of Precipitation Plots for East
Black Sea Region
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Observed vs Predicted Rainfall Amount for Rize
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Figure 83 The observed versus predicted values of precipitation amount for Rize_Center
station (Model 1)
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Figure 84 The observed versus predicted values of precipitation amount for Rize_Center
station (Model 2)
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Figure 85 The observed versus predicted values of precipitation amount for Rize_Center
station (Model 3)
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Observed vs Predicted Rainfall Amount for Rize
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Figure 86 The observed versus predicted values of precipitation amount for Rize_Center
station (Model 4)
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Figure 87 The observed versus predicted values of precipitation amount for Rize_Center
station (Model 5)
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Estimation Plots of Precipitation Amount for Central Anatolian Region
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Figure 88 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Konya_Center station (Model 1)

mm

Daily depth: mean

Daily depth: coef. of variation

2.5

2.0

15

1.0

0.5 1

0.0 1

Daily depth: mean

Daily depth: coef. of variation

25

2.0

15

1.0 |

05

0.0 L

[ 100 200 300

day

mm

mm

Daily depth: standard deviation

20

15 o

10

T T T T
0 100 200 300

day

Daily depth: standard deviation

20

15

10

0 100 200 300

day

Figure 89 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Konya_Center station (Model 2)
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Figure 90 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Konya_Center station (Model 3)
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Figure 91 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Konya_Center station (Model 4)
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Figure 92 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Konya_Center station (Model 5)

Observed Probability vs Predicted Amount of Precipitation Plots for Central
Anatolian Region
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Figure 93 The observed versus predicted values of precipitation amount for Konya_Center
station (Model 1)
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Observed vs Predicted Rainfall Amount for Konya
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Figure 94 The observed versus predicted values of precipitation amount for Konya_Center
station (Model 2)
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Figure 95 The observed versus predicted values of precipitation amount for Konya_ Center
station (Model 3)
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Figure 96 The observed versus predicted values of precipitation amount for Konya_Center
station (Model 4)
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Observed vs Predicted Rainfall Amount for Konya
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Figure 97 The observed versus predicted values of precipitation amount for Konya_Center
station (Model 5)

Estimation Plots of Precipitation Amount for Aegean Region
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Figure 98 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for aydin_Center station (Model 1)
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Figure 99 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Aydin_Center station (Model 2)
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Figure 100 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Aydin_Center station (Model 3)
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Figure 101 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Aydin_Center station (Model 4)
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Figure 102 Estimation of mean, standard deviation and coefficient of variation of total
precipitation amount for Aydin_Center station (Model 5)
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Observed Probability vs Predicted Amount of Precipitation Plots for Aegean

Region
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Figure 103 The observed versus predicted values of precipitation amount for
Aydin_Center station (Model 1)
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Figure 104 The observed versus predicted values of precipitation amount for
Aydin_Center station(Model 2)
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Figure 105 The observed versus predicted values of precipitation amount for
Aydin_Center station (Model 3)
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Observed vs Predicted Rainfall Amount for Aydin
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Figure 106 The observed versus predicted values of precipitation amount for
Aydin_Center station (Model 4)
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Figure 107 The observed versus predicted values of precipitation amount for
Aydin_Center station (Model 5)
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APPENDIX B

R CODES

B.1. R Codes for HMMs to Find Probability of Precipitation Occurrence

The following R codes are used to find probability of precipitation and estimation

plots for each region seperately.

# =======Read and arrange data

chirpan<- read.csv("C:\\Users\\Lab_User\\Desktop\\17040.csv")
plovdiv<- read.csv("C:\\Users\\Lab_User\\Desktop\\17628.csv")

klovpan<-read.csv("C:\\Users\\Lab_User\\Desktop\\17042.csv")

dc<-unlist(t(chirpan))
dp<-unlist(t(plovdiv))

pc<-unlist(t(klovpan))
oc<-as.integer(dc>0)
op<-as.integer(dp>0)

ok<-as.integer(pc>0)

ocm<-t(matrix(oc,nrow=365))

opm<-t(matrix(op,nrow=365))
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okm<-t(matrix(ok,nrow=365))

mean.c<-apply(ocm,2,mean)

mean.p<-apply(opm,2,mean)

mean.k<-apply(okm,2,mean)

plot(mean.c,type="1",col="blue",ylim=c(0,1),xlab="day",ylab="rel. freq.", main="Relative

frequency of wet days")
lines(mean.p,col="red")

lines(mean.k,col="green2")

rain<-cbind(oc,op,0k)
rm(dc,dp,pc,oc,0p,0k,ocm,opm,okm)
dev.off()

#=====Descriptive statistics
summary(chirpan)
var(chirpan)
sqrt(var(chirpan))
summary(plovdiv)
var(plovdiv)
sqrt(var(plovdiv))
summary(klovpan)
var(klovpan)

sqrt(var(klovpan))
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H= = = = =Set up seasonal factors
x0 <-rep(1,365)

x1s <- sin(1*2*pi*(1:365)/365);x1c <- cos(1*2*pi*(1:365)/365)

X2s <- sin(2*2*pi*(1:365)/365);x2c <- cos(2*2*pi*(1:365)/365)

x3s <- sin(3*2*pi*(1:365)/365);x3c <- cos(3*2*pi*(1:365)/365)

x4s <- sin(4*2*pi*(1:365)/365);x4c <- cos(4*2*pi*(1:365)/365)

X<-cbind(x0, x1s, x1c, x2s, x2c, X3s,X3¢, x4s, x4c)

rm(x0,x1s,x1c, x2s,x2c, x3s,X3¢, x4s, x4c)

#= Transform natural parameters to working parameters
multivariate.seasonal.bernoulli.HMM.pn2pw <- function(nfact,nsite,m,pipars,gamma)
{
tpipars <- as.vector(pipars)
tgamma <- NULL
if(m>1)
{
foo <-log(gamma/diag(gamma))
tgammac- as.vector(foo[!diag(m)])
}
parvect <- c(tpipars,tgamma)
return(parvect)

}
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H= = Transform working parameters to natural parameters
multivariate.seasonal.bernoulli.HMM.pw2pn <- function(nfact,nsite,m,parvect)
{
npiterms<-nfact*nsite*m
pipars <- array(parvect[1l:npiterms],dim=c(nfact,nsite,m))
gamma<- diag(m)
if(m>1)
{
gammal[!gamma] <- exp(parvect[(npiterms+1):length(parvect)])
gamma <- gamma/apply(gamma,1,sum)
}
delta <- solve(t(diag(m)-gamma+1),rep(1,m))

list(pipars=pipars,gamma=gamma,delta=delta)

H#= = = == Function to compute the likelihood

multivariate.seasonal.bernoulli.HMM.mllk<-
function(parvect,rain,nfact,nsite,m,X,details=TRUE,...)

{

n <-length(rain[,1])

pir <-array(NA,dim=c(365,nsite,m))

pn <-multivariate.seasonal.bernoulli.HMM.pw2pn(nfact,nsite,m,parvect)
for (imin 1:m){

for (isite in 1:nsite){

pir[,isite,im]<-X[,1:nfact]%*%as.matrix(pnSpipars|,isite,im])
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}
}
pir<-exp(pir)/(1+exp(pir))
Iscale <-0
foo<-pnSdelta
j<-0
for (i in 1:n)
{

j<-j+1; if(j==366) j<-1
prob=rep(1,m)

for (isite in 1:nsite){

if (lis.na(rainli,isite])) prob=prob*pir(j,isite,]*rain[i,isite]* (1-pir[j,isite,])*(1-rain]i,isite])
}
foo<-foo%*%pnSgamma*prob
sumfoo<-sum(foo)
Iscale<-Iscale+log(sumfoo)
foo<-foo/sumfoo
}
mllk<- -Iscale
if(details) cat(paste("-log(likelihood) =",mllk,"\n"))
return(mllk)

}
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#= = Function to maximize the likelihood

multivariate.seasonal.bernoulli.HMM.mle<-
function(rain,nfact,nsite,m,pipars0,gamma0,X=X,details=TRUE...)

{
n <-length(rain[,1])
parvectO <-multivariate.seasonal.bernoulli.HMM.pn2pw(nfact,nsite,m,pipars0,gamma0)

mod  <-
nim(multivariate.seasonal.bernoulli.HMM.mllk,parvectO,rain=rain,nfact=nfact,nsite=nsite
,m=m,X=X,details=details,iterlim = 1000)

milk  <-modSminimum
pn  <-multivariate.seasonal.bernoulli.HMM.pw2pn(nfact,nsite,m,modSestimate)
pir  <-array(NA,dim=c(365,nsite,m))

for (im in 1:m){for (isite in 1:nsite) pir[,isite,im]<-
X[,1:nfact]%*%as.matrix(pnSpipars[,isite,im])}

pir<-exp(pir)/(1+exp(pir))

np  <-length(parvect0[13:14])
AIC  <-2*(mllk+np)

BIC  <-2*mllk+np*log(n)

return(list(nfact=nfact,nsite=nsite,m=m,pir=pir,gamma=pnSgamma,delta=pnSdelta,pipar
s=pnSpipars,code=modScode, mllk=mllk,AIC=AIC,BIC=BIC))

}

#H= Function to plot & summarize model

multivariate.seasonal.bernoulli.HMM.plot<-function(mod,pdf=FALSE){
modname <-paste("Model ",modSnfact,modSnsite,modSm,sep="")
mpir  <-matrix(0,ncol=modSnsite,nrow=365)

nmon <_C(IIJanll,IlFeblllllMarll'IIAprII,IIMayll'lljunll,llJuIIl,IlAugll'Ilsepll'lloctll'llNOVIIIIIDeCII)
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dmon  <-cumsum(c(0,31,28,31,30,31,30,31,31,30,31,30,31))
mmon  <-(dmon[-1]+dmon[-13])/2

if(pdf) {pdf(paste(modname,".pdf",sep=""),width=8,height=7)} else
{windows(width=8,height=7)}

par(las=1,cex.axis=0.7)
plot(modSpir[,1,1],type="n",xlim=c(0,365),ylim=c(0,1),xlab="day",ylab="probability",
main=modname)
#lines((modSpir[,1,1]+(modSpir[,1,2])/2,col="yellow")
lines(mean.c,col="gray")
lines(mean.p,col="pink")
abline(v=dmon,col="gray",Ilwd=1)
text(mmon,rep(-0.03,12),nmon,cex=0.7,xpd=TRUE)
for (isite in 1:modS$nsite) {for (im in 1:modSm){
mpir[,isite]<-mpir[,isite]+modSdelta[im]*modSpir][,isite,im]
print(mpir[,isite])
lines(modSpir[,isite,im],lwd=2,col=isite, lty=im+1)
}
lines(mpir[,isite],lwd=2,col=isite,lty=1)
}
if(pdf) dev.off()

return(list(nfact=modSnfact,nsite=modSnsite,m=modSm,gamma=modSgamma,delta=m
odSdelta,code=modScode,mllk=modSmllk,AIC=modSAIC,BIC=modS$BIC))

}
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#= = mod131

nfact=1;nsite<-3;m=1

pipars0<-array(

c(

-1,-1

),dim=c(nfact,nsite,m))
gammaO0<-matrix(c(1),m,m,byrow=TRUE)

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)

mod131<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod131

#= ==mod132

nfact=1;nsite<-3;m=2

piparsO<-array(

d

-0.85,-0.94,

-1.00-1.00
),dim=c(nfact,nsite,m))

gammaO0<-matrix(c(

9,1,

1,9
)/10,m,m,byrow=TRUE)

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)
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mod132<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod132

#= == = = mod133

nfact=1;nsite<-3;m<-3

pipars0<-array(

d

1.9, 1.5,

0.0,0.5,

-2.0,-2.5
),dim=c(nfact,nsite,m))
gammaO0<-matrix(c(

7,2,1,

3,6,1,

1,3,6

)/10,m,m,byrow=TRUE)

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)

mod133<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod133
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#= = == = = ==mod331

nfact=3;nsite<-3;m<-1

pipars0<-array(

c(

1.4,1.0,0.0,
0.5,-0.1,0.0
),dim=c(nfact,nsite,m))

gammaO0<-matrix(c(

10
)/10,m,m,byrow=TRUE)

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)

mod331<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod331

#======= ================ mod332

nfact=3;nsite<-3;m<-2
piparsO<-array(

d

1.1,0.5,0.1,
1.2,0.4,0.1,
-1.2,0.5,0.1,
-1.1,0.4,0.1

),dim=c(nfact,nsite,m))
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gamma0<-matrix(c(
7,3,

4,6
)/10,m,m,byrow=TRUE)

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)

mod332<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod332

# = = =mod333

nfact=3;nsite<-3;m<-3
piparsO<-array(
d

1.1,0.5,0.1,

1.2,0.4,0.1,
-1.2,0.5,0.1,
-1.1,0.4,0.1

),dim=c(nfact,nsite,m))
gammaO0<-matrix(c(
7,3,
4,6
)/10,m,m,byrow=TRUE)

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)

mod333<-mod
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rm(nfact,nsite,m,pipars0,gamma0)

mod333

#= = == = = mod532

nfact=5;nsite<-3;m<-2
pipars0<-array(
o
1.1,0.5,0.1,0.1,0.0,
1.2,0.4,0.1,0.1,0.0,
-1.2,0.5,0.1,0.1,0.0,
-1.1,0.4,0.1,0.1,0.0
),dim=c(nfact,nsite,m))
gammaO0<-matrix(c(
7,3,
4,6
)/10,m,m,byrow=TRUE)

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)

mod532<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod532

#= = == = = mod533
nfact=5;nsite<-3;m<-3
piparsO<-array(0,dim=c(nfact,nsite,m))

pipars0[,,1]<-mod522$pipars|,,1]
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pipars0[,,3]<-mod522$pipars|,,2]
pipars0l[,,2]<-(pipars0[,,1]+pipars0[,,3])/2
gamma0<-mod123Sgamma

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X,
details=TRUE)

mod533<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod533

#= == = = mod732

nfact=7;nsite<-3;m<-2

piparsO<-array(

d
1.9,0.4,0.2,-0.2,0.1,0.0,0.0,
1.7,0.3,0.3,-0.5,0.0,0.0,0.0,

-3.4,0.9,0.1,-0.8,0.6,0.0,0.0,

-4.0,1.5,-0.5,-0.4,0.7,0.0,0.0
),dim=c(nfact,nsite,m))

gammaO0<-matrix(c(

6,4,

2,8

)/10,m,m,byrow=TRUE)

mod<-multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,
gamma0,X=X,details=TRUE)

mod732<-mod

rm(nfact,nsite,m,pipars0,gamma0)
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mod732

H===== ==== mod733

nfact=7;nsite<-3;m<-3
piparsO<-array(0,dim=c(nfact,nsite,m))
pipars0[,,1]<-mod722$pipars|,,1]
pipars0[,,3]<-mod722$pipars|,,2]
pipars0[,,2]<-(pipars0[,,1]+pipars0[,,3])/2
gamma0<-mod523Sgamma

mod<-multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,piparso0,
gamma0,X=X,details=TRUE)

mod733<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod733

#= = = = mod932
nfact=9;nsite<-3;m<-2

piparsO<-array(

d

1.9,0.4,0.2,-0.2,0.2,0.3,0.1,0.0,0.0,
1.6,0.3,0.3,-0.4,0.0,0.2,0.0,0.0,0.0,
-3.4,0.8,0.1,-0.7,0.6,0.1,0.0,0.0,0.0,
-4.2,1.7,-0.5,-0.4,0.9,0.1,0.1,0.0,0.0

),dim=c(nfact,nsite,m))

gammaO0<-matrix(c(

6,4,
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2,8
)/10,m,m,byrow=TRUE)

mod<-multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,
gamma0,X=X,details=TRUE)

mod932<-mod
rm(nfact,nsite,m,pipars0,gamma0)

mod932

H= == = = plots

multivariate.seasonal.bernoulli.HMM.plot(mod131,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod132,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod133,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod332,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod532,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod533,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod732,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod733,pdf=FALSE)
multivariate.seasonal.bernoulli.HMM.plot(mod932,pdf=FALSE)
# Summarize

round(c(mod131Smllk,mod132Smllk,mod133Smllk,mod332Smllk,mod532Smll,mod533$
mllk,mod732Smllk,mod7335Smllk,mod9325Smllk))

round(c(mod131SAIC,mod132SAIC,mod133SAIC,mod332SAIC,mod5325AIC,mod533SAIC
,mod732SAIC,mod733SAIC,mod932SAIC))

round(c(mod131$BIC,mod1325BIC,mod133SBIC,mod3325BIC,mod5325BIC,mod533SBIC,
mod732SBIC,mod733SBIC,mod932SBIC))
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#======== Compare the AIC BIC values of models

BICs<c(mod131SAIC,mod1325AIC,mod133SAIC,mod332SAIC,mod5325AIC,mod533SAIC,
mod732SAIC,mod733SAIC,mod932SAIC)

AlCs<c(mod131$BIC,mod1325BIC,mod1335BIC,mod332$BIC,mod5325BIC,mod533$BIC,
mod7325BIC,mod733$BIC,m0d9325BIC)

plot(AICs,type="b",col="blue",ylab="AICs", xlab="Models")

plot(BICs,type="b",col="red",ylab="BICs", xlab="Models")

plot(AICs,type="b",col="blue",ylab="AIC & BIC", xlab="Models")

lines(BICs,type="b",col="red")

B.2. R Codes for HMMs to Find Amount of Precipitation

The following R codes are used to find the amount of precipitation and estimation

plots for each region seperately.

#H= = Import the dailydata

dailydata<- read.csv("C:\\Users\\Lab_User\\Desktop\\17234.csv")
# extract rainfall amounts

r<-dailydatal[,1]

summary(r)

n<-length(r)

# remove the last January (for now)

n<-floor(n/365)*365

r<-r[1:n]
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H================= The following exploratory bits work only for the complete years
# Extract wet days

ro<- r==

ri<-r>0

r1g0<- as.numeric(c(TRUE,r0[-n] & r1[-1]))

rigl<- as.numeric(c(TRUE,r1[-n] & r1[-1]))

rw<-r;rw[r0]<-NA

rm <-matrix(r,nrow=365)
rOom <-matrix(r0,nrow=365)
rim <-matrix(rl,nrow=365)
r1gOm<-matrix(r1g0,nrow=365)
rlglm<-matrix(rlgl,nrow=365)

rwm <-matrix(rw,nrow=365)

rmean <-apply(rm,1,mean)

rOmean <-apply(rOm,1,mean)

rimean <-apply(rim,1,mean)

rwmean <-apply(rwm,1,mean,na.rm=TRUE)
rwsd <-apply(rwm,1,sd,na.rm=TRUE)

rwecv  <-rwsd/rwmean

rOsum <-apply(rOm,1,sum)
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rlsum <-apply(rlm,1,sum)
r1gOsum <-apply(rigOm,1,sum);r1gOsum[1]<-r1gOsum[1]-1

riglsum <-apply(rlglm,1,sum);riglsum[1]<-rlglsum[1]-1

nl <-cbind(rlsum,ny-rlsum)
nlg0 <-cbind(rlgOsum,c(rOsum[365],rOsum[1:364])-r1g0sum)

nlgl <-cbind(riglsum,c(rlsum[365],risum[1:364])-rlglsum)

rigOmean <-n1g0[,1]/(n1g0[,1]+n1g0[,2])

rlgimean <-nl1gl[,1]/(n1gl1[,1]+n1g1[,2])

# = ===Plots for depths

par(mfrow=c(2,2),las=1)
plot(rmean,type="h",Iwd=0.5,col="gray",xlab="day",ylab="mm",
main="Daily rainfall: mean")
lines(lowess(rmean,f=2/3),col=2,lwd=2)
lines(lowess(rmean,f=0.2),col=4,lwd=2)

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),lwd=c(1,1),col=c(2,4),cex=0.8)

plot(rwmean,type="h",Iwd=0.5,col="gray",xlab="day",ylab="mm",
main="Daily depth: mean")
lines(lowess(rwmean,f=2/3),col=2,lwd=2)
lines(lowess(rwmean,f=0.1),col=4,lwd=2)

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),lwd=c(1,1),col=c(2,4),cex=0.8)
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plot(rwsd,type="h",lwd=0.5,col="gray" xlab="day",ylab="mm",

main="Daily depth: standard deviation")

lines(lowess(rwsd,f=2/3),col=2,lwd=2)

lines(lowess(rwsd,f=0.1),col=4,lwd=2)

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),Iwd=c(1,1),col=c(2,4),cex=0.8)
plot(rwev,type="h",lwd=0.5,col="gray" xlab="day",ylab="",

main="Daily depth: coef. of variation")

lines(lowess(rwcev,f=2/3),col=2,lwd=2)

lines(lowess(rwcv,f=0.1),col=4,lwd=2)

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),Iwd=c(1,1),col=c(2,4),cex=0.8)

dev.off()

# Model for depths

# Functions needed to fit a seasonal gamma-HMM model

# = == = ====

# Function to transform seasonal_gamma-HMM

# Natural parameters to working parameters
seasonal_gamma.HMM.pn2pw<-function(parsm1,parsm2,parscl,parsc2,gamma)
{

tspars <- c(parsml,parsm2,parscl,parsc2)

tgamma <- NULL
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foo <-log(gamma/diag(gamma))
tgamma <- as.vector(foo[!diag(2)])
parvect <- c(tspars,tgamma)

parvect

# Function to transform seasonal_gamma-HMM
# working parameters to natural parameters
seasonal_gamma.HMM.pw2pn<-function(parsn,parvect)
{

nl<-1;n2=nl+parsn[1]-1
parsml<-parvect[nl:n2]
nl<-n2+1;n2=n2+parsn(2]
parsm2<-parvect[nl:n2]
nl<-n2+1;n2=n2+parsn|[3]
parscl<-parvect[nl:n2]
nl<-n2+1;n2=n2+parsn[4]
parsc2<-parvect[nl:n2]

nl<-n2+1;n2=n2+2

gamma <- diag(2)

gamma[!gammal<- exp(parvect[n1:n2])

gamma <- gamma/apply(gamma,1,sum)

delta <- solve(t(diag(2)-gamma+1),rep(1,2))
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list(parsn=parsn, parsml=parsm1, parsm2=parsmz2, parscl=parscl, parsc2=parsc2,
gamma=gamma,delta=delta)

}

# - - - —_————

# Function to compute the likelihood of a gamma-HMM
seasonal_gamma.HMM.mllk<-function(parvect,rain,parsn,X,details=TRUE,...)
{

n  <-length(rain)

p <-seasonal_gamma.HMM.pw2pn(parsn,parvect)

m1l <-exp(as.matrix(X[,1:parsn[1]])%*%pSparsm1)

m2 <-exp(as.matrix(X[,1:parsn[2]])%*%pSparsm2)

cl <-exp(as.matrix(X[,1:parsn[3]])%*%pSparscl)

c2 <-exp(as.matrix( X[,1:parsn[4]])%*%pSparsc2)

shape <-cbind(c1,c2)"2

rate <-cbind((c1”2)/m1,(c272)/m2)

Iscale <-0

foo<-pSdelta

j<-0

for (i in 1:n)

{

j<-j+1; if(j==366) j<-1

B<-pSgamma

if (lis.na(rain[i])) B<-B*dgamma(rain[i],shape=shape[j,],rate=rate[j,])

foo<-foo%*%B
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sumfoo<-sum(foo)

Iscale<-Iscale+log(sumfoo)

foo<-foo/sumfoo

}

mllk<- -Iscale

if(details) cat(paste("-log(likelihood) =",mllk,"\n"))
return(mllk)

}

# test it

rain<-rw

parsn=c(3,3,3,3)

parsml =c(1.38,-0.01,0.01)

parsm2 =c(1.38,0,0.01)

parscl =¢(0,0.01,0.01)

parsc2 =¢(0,-0.01,0.01)

gamma = matrix(c(0.9,0.2,0.1,0.8),2,2)
parvect<-seasonal_gamma.HMM.pn2pw(parsm1l, parsm2, parscl,parsc2,gamma)
seasonal_gamma.HMM.pw2pn(parsn,parvect)

seasonal_gamma.HMM.mllk(parvect,rain=rain,parsn,X=X, details=TRUE)

# = = == ====

# Function to minimize mllk=-log(likelihood) of a seasonal gamma-HMM

seasonal_gamma.HMM.mle<-function(rain,parsn,parsm10,
parsm20,parscl0,parsc20,gamma0,X=X,details=TRUE...)

{

158



n <-length(rain)

parvectO <-seasonal_gamma.HMM.pn2pw(parsm10, parsm20,
parsc10,parsc20,gamma0)

mod  <-nlm(seasonal_gamma.HMM.mllk,parvectO,rain=rain,parsn=parsn, X=X,
details=details,iterlim = 1000)

milk  <-modSminimum

p <-seasonal_gamma.HMM.pw2pn(parsn,modSestimate)

np  <-length(parvect0)

AIC  <-2*(mllk+np)

BIC <-2*mllk+np*log(n)
return(list(parsn=pSparsn,parsml=pSparsm1l,parsm2=pSparsm2,parscl=pSparscl,

parsc2
=pSparsc2,gamma=pSgamma,delta=pSdelta,code=modScode,mllk=mllk,AIC=AIC,BIC=BIC

)
}

H= == = = mod3333

parsn=parsn0=c(3,3,3,3)

parsml=parsm10 =c(1.84,-0.06,0.33)
parsm2=parsm20 =c(-0.34,0.14,0.42)
parscl=parsc10 =c(0.003,0.008,-0.008)
parsc2=parsc20 =c(0.25,-0.02,-0.10)
gamma=gamma0 =matrix(c(0.8,0.6,0.2,0.4),2,2)

parvect=parvectO=seasonal_gamma.HMM.pn2pw(parsm1l, parsm2,
parscl,parsc2,gamma)

seasonal_gamma.HMM.pw2pn(parsn,parvect)
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seasonal_gamma.HMM.mllk(parvectO,rain=rain,parsn=parsn0,X=X, details=TRUE)

mod3333<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20,
parsc10,parsc20,gamma0,X=X,details=TRUE)

mod3333

#= = = = mod5533
parsn=parsn0=c(5,5,3,3)

parsml=parsm10 =c(mod3333Sparsm1,0,0)
parsm2=parsm20 =c(mod3333Sparsm2,0,0)
parscl=parsc10 =mod3333Sparscl

parsc2=parsc20 =mod3333Sparsc2

gamma=gamma0 =mod3333Sgamma

parvect=parvectO=seasonal_gamma.HMM.pn2pw(parsm1l, parsm2,
parscl,parsc2,gamma)

seasonal_gamma.HMM.pw2pn(parsn,parvect)

seasonal_gamma.HMM.mllk(parvectO,rain=rain,parsn=parsn0,X=X, details=TRUE)

mod5533<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20,
parscl0,parsc20,gamma0,X=X,details=TRUE)

mod5533

#= = == = = mod5555

parsn=parsn0=c(5,5,5,5)
parsmil=parsm10 =mod5533Sparsmi
parsm2=parsm20 =mod5533Sparsm2

parscl=parscl0 =c(mod5533Sparsc1,0,0)
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parsc2=parsc20 =c(mod5533Sparsc2,0,0)
gamma=gamma0 =mod5533$gamma

parvect=parvectO=seasonal_gamma.HMM.pn2pw(parsm1l, parsm2,
parscl,parsc2,gamma)

seasonal_gamma.HMM.pw2pn(parsn,parvect)

seasonal_gamma.HMM.mllk(parvectO,rain=rain,parsn=parsn0,X=X, details=TRUE)

mod5555<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20,
parsc10,parsc20,gamma0,X=X,details=TRUE)

mod5555

#= == = = mod7733

parsn=parsn0=c(7,7,3,3)

parsml=parsm10 =c(mod5533Sparsm1,0,0)
parsm2=parsm20 =c(mod5533Sparsm2,0,0)
parscl=parsc10 =mod5533Sparscl
parsc2=parsc20 =mod5533Sparsc2
gamma=gamma0 =mod55335Sgamma

parvect=parvectO=seasonal_gamma.HMM.pn2pw(parsm1, parsm2,
parscl,parsc2,gamma)

seasonal_gamma.HMM.pw2pn(parsn,parvect)
seasonal_gamma.HMM.mllk(parvectO,rain=rain,parsn=parsn0,X=X, details=TRUE)

mod7733<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20,
parscl0,parsc20,gamma0,X=X,details=TRUE)

mod7733
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#= = == = = mod7755
parsn=parsn0=c(7,7,5,5)

parsml=parsm10 =mod7733Sparsmil

parsm2=parsm20 =mod7733Sparsm2

parscl=parsc10 =mod5555$parscl

parsc2=parsc20 =mod5555$parsc2

gamma=gamma0 =mod77335gamma

parvect=parvectO=seasonal_gamma.HMM.pn2pw(parsm1l, parsm2,
parscl,parsc2,gamma)

seasonal_gamma.HMM.pw2pn(parsn,parvect)

seasonal_gamma.HMM.mllk(parvectO,rain=rain,parsn=parsn0,X=X, details=TRUE)

mod7755<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20,
parsc10,parsc20,gamma0,X=X,details=TRUE)

mod7755

# Select
mod3333Smllk;mod5533Smllk;mod7733Smllk;mod5555Smllk;mod7755Smllk
mod3333SAIC;mod5533SAIC;mod7733SAIC;mod5555SAIC;mod7755SAIC

mod3333SBIC;mod55335BIC;mod7733SBIC;mod55555BIC;mod7755SBIC

#----For each model repeat all following steps removing by "#"----
mod<-mod3333; modcaption<-"Model(3,3,3,3)"
#mod<-mod5533; modcaption<-"Model(5,5,3,3)"
#mod<-mod5555; modcaption<-"Model(5,5,5,5)"

#mod<-mod7733; modcaption<-"Model(7,7,3,3)"
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#mod<-mod7755; modcaption<-"Model(7,7,5,5)"

# Repeat the plot for each model
filename=paste("Depth-",modcaption,".pdf",sep="")
m1ifit<-exp(X[,1:modSparsn[1]]%*%modSparsm1)
m2fit<-exp(X[,1:modSparsn[2]]%*%modSparsm2)
mfit<-modSdelta[1]*m1fit+modSdelta[2]*m2fit
clfit<-exp(X[,1:modSparsn[3]1%*%modSparscl)
c2fit<-exp(X[,1:modSparsn[4]1%*%modSparsc2)

cfit<-modSdelta[1]*c1fit+modSdelta[2]*c2fit

# Plots for depth model

par(mfrow=c(2,2),las=1)

plot(rmean,type="h",ylim=c(0,5),col="gray",lwd=1,xlab="day",ylab="mm",
main="Daily rainfall: mean")

text(365/2,5*0.95,paste(modcaption,": AIC = ",round(modSAIC,1),sep=""),col=1,cex=1)
text(365/2,5*0.85,paste("P(State 1) =",round(modSdelta[1],2)),col=4)

text(365/2,5*0.75,paste("P(State 2) =",round(modSdelta[2],2)),col=2)

plot(rwmean,type="h",ylim=c(0,15),col="gray",Iwd=1, xlab="day",ylab="mm",
main="Daily depth: mean")
lines(m1fit,col=4,lwd=2)

lines(m2fit,col=2,lwd=2)
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lines(mfit,col=1,lwd=1)

plot(rwsd,type="h",ylim=c(0,20),col="gray",Iwd=1,,xlab="day",ylab="mm",
main="Daily depth: standard deviation")

lines(c1fit*m1fit,col=4,lwd=2)

lines(c2fit*m2fit,col=2,lwd=2)

lines(cfit*mfit,col=1,lwd=1)
plot(rwcv,type="h",,ylim=c(0,2.5),col="gray",Iwd=1,,xlab="day",ylab="",
main="Daily depth: coef. of variation")

lines(c1fit,col=4,lwd=2)

lines(c2fit,col=2,lwd=2)

lines(cfit,col=1,lwd=1)

dev.off()

B.3. Viterbi Algorithm for Hidden Markov Model

“HiddenMarkov” package from R 1is used to find the most likely state sequences. It
contains for the analysis of “Discrete Time Hidden Markov Models” and functions

for simulation, parameter estimation and the Viterbi algorithm.
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