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ABSTRACT

SYNTHESIS OF ZINC OXIDE NANOPARTICLES BY AQUEOUS METHODS
AND EFFECT OF METAL INCORPORATION ON THE
STRUCTURAL/FUNCTIONAL PROPERTIES OF NANOPARTICLES

Altintas Yildirim, Ozlem
PhD, Department of Metallurgical and Materials Engineering

Supervisor: Prof. Dr. Caner Durucan

December 2014, 176 pages

Zinc oxide (ZnO) nanostructures have attracted considerable attention in many
electrical, optoelectronic and magnetic applications due to their unique properties
originating form characteristic wide band gap and large exciton binding energy of
ZnO. Electrical, optical and magnetic properties of ZnO nanostructures strongly
depend on their size and morphology. Therefore, there has been a strong interest in the
synthesis of ZnO nanostructures with well-controlled size and shape. These synthesis
approaches should allow morphological control and size modification for the resultant
ZnO nanostructures. Meanwhile, simple experimental conditions without any
sophisticate equipment requirements are critical for achieving economically feasible
and large-scale production. The main objective of this study was to establish such
synthesis routes for obtaining ZnO nanostructures. This study focuses on two main
topics: (i) investigation of solution based synthesis methods for size and morphology
controlled ZnO nanostructures and (ii) investigation of functional properties of ZnO

nanostructures with silver (Ag) and copper (Cu) incorporation.

Synthesis of pure ZnO nanostructures was carried out using two different generic
agueous routes; microemulsion and precipitation. In microemulsion technique, ZnO

nanoparticles  were  synthesized by using sodium  bis(2-ethylhexyl)
%



sulfosuccinate:glycerol:n-heptane microemulsion system. The formation of ZnO
nanoparticles was achieved after calcination of microemulsion products in air at
various temperatures. Size and morphology of the nanostructures were controlled with
applying different microemulsion formulations and calcination temperatures.
Synthesis of ZnO nanoparticles was also achieved by low temperature precipitation
method due to intrinsic yield problem of microemulsion approach. The precipitation
system was formed using zinc acetate dihydrate as zinc source, ethylene glycol or
water as solvent, and polyvinyl pyrrolidone as chelating agent. The size and shape of
the ZnO nanoparticles were manipulated by the choice of precipitation temperature,
amount of the chelating agent and type of the solvent, which essentially change the
nature of adsorption events between ZnO crystals and organic molecules leading to

changes in nucleation and growth events during precipitation.

The precipitation method was further expanded in order to realize chemical
modifications of ZnO nanostructures for tailoring their functional properties. Both Ag
and Cu doped ZnO (ZnO:Ag and ZnO:Cu) nanoparticles were synthesized by room
temperature precipitation method without any subsequent thermal treatment. A
rigorous structural analyses Rietveld and electron microscopy techniques have been
performed on these chemically modified particles to explain the nature and mechanism
of metal doping in ZnO crystal lattice. In addition, the effect of metal ion doping on
the functional properties, such as photocatalytic activity (for ZnO:Ag) and room
temperature ferromagnetism (for ZnO:Cu) have been demonstrated.

Keywords: Zinc oxide, microemulsion method, precipitation method, silver doped

zinc oxide, copper doped zinc oxide.
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SU BAZLI METOTLARLA CINKO OKSIiT NANO PARCACIKLARIN SENTEZI
VE METAL KATKISININ NANO PARCACIKLARIN
YAPISAL/FONKSIYONEL OZELLIKLERE ETKISI

Altintas Yildirim, Ozlem
Doktora, Metalurji ve Malzeme Miihendisligi BOlimu

Tez Yoneticisi: Prof. Dr. Caner Durucan

Aralik 2014, 176 sayfa

Cinko oksit (ZnO) nano yapilar genis bant aralifi ve yiiksek elektron-hol bag
enerjilerinden kaynakli 6zelliklerinden dolayr elektriksel, optik ve manyetik
uygulamalarda yaygin bir kullanima sahiptir. ZnO nano yapilarin yapisal, optik ve
manyetik 6zellikleri ¢ogunlukla bu parcacik boyut ve morfolojisine baghdir. Bu
nedenle kontrollii ve tekrarlanabilir olarak ZnO nano yapilarin sentezlenmesi biyik
Oonem tasimaktadir. S6z konusu sentez yoOntemlerinin, olusturulan ZnO nano
parcaciklarin boyut ve sekil kontroliine imkan vermesinin yaninda, sofistike ekipman
ve altyapr gerektirmeden uygulanabilir olmasi ekonomik olarak verimli ve yiiksek
miktarda Uretim saglanmasi ac¢isindan 6nemli diger bir husustur. Bu ¢alismada temelde
konu edilen bu tiir sentez siirecleridir. Calisma genel olarak iki ana konuya
odaklanmistir; (1) boyut ve sekil kontrollii ZnO nano pargaciklarin ¢ozelti bazh
yontemlerle sentezlenmesi, ve (ii) giimis (Ag) ve bakir (Cu) katkili ZnO nano

parcaciklarin sentezlenerek fonksiyonel 6zelliklerinin belirlenmesi.

Saf ZnO nano yapilarin sentezlenmesi ¢ozelti-esashi farkli yontemler kullanilarak
gerceklestirilmistir; mikro emiilsiyon ve c¢okeltme teknigi. Mikro emiilsiyon
tekniginde ZnO nano pargaciklar sodyum bis(2-ethylhexyl) sulfosuccinate: gliserol:n-

heptan sistemi kullanilarak iiretilmistir. ZnO nano parcgaciklarin olusumu 1s1l islem
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gormemis mikro emiilsiyon iirlinliniin hava ortaminda farkli sicakliklarda kalsine
edilmesiyle saglanmistir. Nano pargaciklarin boyut ve sekilleri farkli miktarda bilesen
iceren mikro emiilsiyon formulasyonlar1 ve kalsinasyon sicakliklar1 uygulanarak
kontrol  edilebilmistir. Mikro  emiilsiyon tekniginin miktarsal anlamda
verimsizliginden dolay1 ZnO nano pargaciklar, alternatif olarak ¢okeltme yontemi
kullanilarak da elde edilmistir. Cokeltme sisteminde ¢inko asetat dehidrat cinko
kaynagi, etilen glikol ¢oziicli ve polivinil prolidon (PVP) ise selatlama malzemesi
olarak kullanilmistir. ZnO nano parcaciklarin boyut ve sekilleri ¢cokeltme sicakliginin
secimi, PVP miktar1 ve kullanilan ¢6ziicii tipi ile kontrol edilmistir. Bu degiskenlerin
temel olarak ¢cokeltme sirasinda olugsmakta olan ZnO kristalleri ve organik molekiiller
arasindaki adsorpsiyon farklilagsmalara neden oldugu ve bunun sonucunda ger¢eklesen
farkli ¢ekirdeklenme ve biiyiime olaylar1 sonucunda ¢dkelen ZnO parcaciklar i¢in

boyutsal ve sekilsel degisimlerin saglanabilecegi ortaya konulmustur.

Bu tezde ayrica, ¢okeltme teknigi kullanilarak ZnO nano yapilar i¢in bazi kimyasal
modifikasyonlarin saglanarak fonksiyonel &zelliklerin degistirilmesi yOniinde
caligmalar yapilmistir. Bu baglamda, herhangi ek bir 1s1l islem uygulamadan oda
sicakliginda ¢okeltme yontemi kullanilarak ZnO yapilara giimiis (ZnO:Ag) ve bakir
(Zn0O:Cu) katkilamasi gergeklestirilmistir. Rietveld ve elektron mikroskop yontemleri
kullanilarak yapilan kapsamli yapisal analizlerle her iki metal iyonunun ZnO kristal
yapisina yerlesme mekanizmast ve kristal yapida olusturduklart degisimler
belirlenmistir. Ek olarak, metalik iyon ilavelerinin ZnO’in foto katalitik aktivitesi
(glimiig-katkil1 durumda) ve oda sicakliginda ferro manyetik (bakir-katkili durumda)

davranimi gibi fonksiyonel 6zelliklere etkisi gozlemlenmistir.

Anahtar Sozcukler: Cinko oksit, mikro emiulsiyon, c¢Okeltme teknigi, giimiis

eklenmis ¢inko oksit, bakir eklenmis ¢inko oksit.
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CHAPTER 1

INTRODUCTION

Metal oxide nanoparticles have attracted considerable attention in many scientific and
technological applications due to unique properties originating from their particle sizes
in nano scale. Zinc oxide (ZnO) is one of the well-known semiconductor metal oxide
with wide direct band gap (3.37 eV) and large exciton binding energy (60 meV) at
room temperature [1]. Reduction in size to nano scale, novel electrical, mechanical,
chemical and optical properties are introduced to ZnO nanomaterials due to surface
and quantum confinement effect [2]. These unique properties give ZnO several
advantages as active material in the usage of gas sensors, solar cells, field effect

transistors, light emitting devices [3-6].

Due to the specific needs in these diverse applications, there has been a strong interest
in development of preparation methods enabling of production of ZnO nanostructures
with well-controlled size and shape. Chemical vapor deposition, physical vapor
deposition, spray pyrolysis, hydrothermal synthesis, sol-gel process, microemulsion
method and solution precipitation method are the possible synthesis techniques of ZnO
nanoparticles [7-12]. The techniques which are employed to synthesize ZnO should
enable not only production of ZnO nanoparticles with different size and morphology,
but also rely on experimental conditions, non-sophisticated equipments and low
product cost. Microemulsion technique is especially attractive because it does not
require sophisticated equipment or rigorous experimental conditions, but still
providing possibilities in controlling the size and morphology of the particles in a size
scale approaching to nanometers. This technique is based on the thermodynamically
stable dispersion of two immiscible liquids which are oil and water. Stability of

dispersion is provided by addition of surfactant molecules [11].



However, low product yield is the main disadvantage of microemulsion method.
Therefore, aqueous precipitation method has attracted considerable attention due to its
simple manipulation, low production cost and large scale production probabilities of
ZnO nanostructures. These processing properties give some advantages over the other
synthesis methods due to low energy consumption and providing the template free
synthesis approaches which may lead to prevent incorporation of impurities and
deterioration the optical/electrical properties of the ZnO particles [12]. However, only
a few studies have been focused on room temperature synthesis of ZnO nanoparticles
with well controllable size and morphology. So, one of the objectives of this study was
exploring the potential of low temperature aqueous synthesis routes for obtaining ZnO

nanoparticles.

ZnO can be functionalized by incorporation of various metal ions to control and
change its functional properties. For example, ZnO nanostructures are also potential
candidates for photocatalytic applications [13]. However, pure ZnO nanoparticles
could not completely meet all of the needs of photocatalytic devices since they require
high energy UV light to activate ZnO as catalysts leading to low efficiency in visible
and near infrared regions. In order to solve this drawback, considerable efforts have
been spent in improving photocatalytic ability by means of doping nanoparticles with

noble metals such as silver (Ag) [14], as it has been also explored in this thesis.

Furthermore, when doped with small amounts of transition metals such as copper (Cu),
ZnO shows room temperature ferromagnetism (RTFM), making it a dilute
ferromagnetic semiconductor with properties that lead to potential applications in
spintronic devices [15]. The origins of the RTFM are still under debate, even for doped
ZnO nanoparticles. Therefore, there is an intense research interest on exploring RTFM
behavior of Cu incorporated ZnO nanostructures and understanding the way in which
Cu distribution affects both the semiconducting properties and also the room

temperature ferromagnetic properties [16].

There are seven chapters in this thesis. It begins with the general introduction and

structure of the thesis.



In the second chapter of the thesis, the history, basic properties, application fields and
synthesis methods of ZnO are introduced. This chapter ends up with functionalizing

of ZnO with doping various metals.

The third chapter of the study is on the synthesis of ZnO nanoparticles with different
size and morphology by using a reverse microemulsion system. In studies, the effects
of surfactant concentration, calcination temperature and solvent concentration on the
size and morphology of the resultant ZnO nanoparticles were investigated. At the end
of this chapter, a ternary phase diagram of microemulsion components according to
morphological stable regions of microemulsion components has been presented.

In Chapter 4, aqueous precipitation method was employed for large scale production
of phase pure ZnO nanoparticles at economically/technologically relevant conditions.
The specific objective of this part is to determine the process parameters and the effects
of precipitation temperature, solvent type and chelating agent concentration on the size

and morphology of the resultant ZnO nanoparticles.

In the Chapter 5, Ag-doped ZnO nanoparticles were synthesized with room
temperature precipitation method. The specific objection of this phase of the work is
to synthesize Ag-doped ZnO nanostructures at room temperature by using aqueous
system and to characterize and investigate photocatalytic properties of resultant ZnO
nanostructures. The effects on the Ag amount on the structural, morphological, optical
and so photocatalytic properties of ZnO nanoparticles are presented and discussed in
detail.

In Chapter 6, we intend to explore the behavior of Cu-doped ZnO synthesized with
simple room temperature precipitation method, and to understand the way in which Cu
amount affects both the semiconducting properties and also the room temperature

ferromagnetic properties.

Finally, this thesis is concluded in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

2.1 General introduction

Zinc oxide with the chemical formula of ZnO is one of the well-known semiconductor
material. For only 2014, with the key word ZnO, the data collections in Web of Science
give more than 6000 scientific studies within the various research areas including
physics, chemistry, nanotechnology and material science. However, this does not mean
that ZnO is newly discovered material. The history of ZnO goes back to ancient age.
The ancients discovered the production of the first brass-metal and the medical
equipment’s made with purified ZnO. In the last few decades, the interest in this
fascinating chemical compounds remerges with the usage ZnO powder as an industrial
processing chemical and a white paint pigment. In addition, for over one hundred
years, polycrystalline form of ZnO has been used in a variety of applications such as
electronic materials, gas sensors, cosmetic and pigment industry [1, 2]. The focused
interest in this material started in the 1920s with the first utilization of ZnO for its
semiconductor properties. With the discovery of attractive semiconductor properties
of ZnO during 1950s, researchers focused on the bulk ZnO growth and applications
[3]. During 1960s, synthesis of ZnO thin film has been extensively studied due to
potential applications of ZnO thin film in the sensor and catalyst applications [4]. Since
1990s, a major research interest has been on the synthesis of ZnO nanostructures by
different growth methods [5, 6]. Nowadays, the world wide afford in the fabrication
of the high quality single crystal ZnO for the ZnO-based electronic and optoelectronic
devices encouraged the researchers and provided to document hundreds of papers and

patents every year since 2000.



ZnO is a wide bandgap semiconductor with bandgap energy of 3.37 eV which provides
to operate in the blue and ultra-violet optical devices [7]. In addition, it has large
exciton binding energy of 60 meV which gives ZnO several advantages over gallium
nitride (GaN, 25 meV) such as better radiation resistance for devices used in space and
nuclear applications and simpler and cost effective crystal growth methods [8]. Large
exciton binding energy of ZnO provides to increase the exciton stability and enhance
luminescence efficiency by increasing the possibility of radiative recombination.
Gallium arsenide (GaAs) with a direct bandgap is another important semiconductor
for high speed integrated circuits and optoelectronic applications like light emitting
diodes and laser diodes [9]. However, GaAs is an unsuitable material for high
temperature electronics and blue/ultra-violet light emitters [10]. Therefore, ZnO is a
very interesting semiconductor and has been extensively used electronic and

optoelectronic devices [11].

2.2 Basic properties of ZnO

ZnO is an inorganic compound which usually appears as a odorless white powder in
the bulk form. In nature, mineral form of ZnO is zincite which contains impurity
phases such as iron and manganese and appears as yellow or red according to impurity
content [12]. The basic physical and chemical properties of ZnO are listed in Table
2.1.

Table 2.1. Basic physical and chemical properties of ZnO [13].

Property Value
Molecular weight 81.37 g/mol
Melting point 1975 °C
Boiling point sublimes
Solubility 0.16 mg/100 mL water (30 °C)
Stable phase at 300 K wurtzite
Lattice parameters at 300 K a: 0.32495 nm
c: 0.50269 nm
c/a: 1.602
Band gap energy 3.4eV
Exciton binding energy 60 eV




2.2.1 Crystal structures of ZnO

ZnO is a 1I-VI type of binary semiconductor compounds which comprise the binary
compounds of Zn, Cd and Hg with O, S, Se and Te. The most common crystal structure
of the I1-VI type binary semiconductor compounds are either the cubic zinc blende or
hexagonal wurtzite structures. In these structures, each anion is surrounded by four
cations at the corners of a tetrahedron, and vice versa. The tetrahedral coordination
provides sp® hybridised covalent bonding character but all 11-VI type binary
semiconductor compounds have a partial ionicity, as well. ZnO has also ionicity

between covalent and ionic semiconductors [14].

With the electronic configurations of Zn ((1s)?, (2s)?, (2p)®, (3s)?, (3p)®, (3d)%°, (4s)?)
and O ((1s)%, (1s)?, (2p)*), sp® hybridization of the electron states leading to
tetrahedrally coordinated bonding character determines the crystal structure of ZnO.
Indeed the tetrahedral geometry of ZnQ results in a rather low space filling so it should
be stabilized by the angular rigidity of the binding. In a crystal matrix, the arrangement
of tetrahedrons consisting of zinc and oxygen layers may determine its crystal structure
depending on the stacking sequence of zinc and oxygen layers.

The crystal structure of ZnO is shared by 