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ABSTRACT

ON GENERALIZED INTEGRAL INEQUALITIES WITH APPLICATIONS IN
BIO-MATHEMATICS AND PHYSICAL SCIENCES

Pelen, Neslihan Nesliye
Ph.D., Department of Mathematics
Supervisor : Prof. Dr. Mustafa Hursit Onsiper

Co-Supervisor : Assoc. Prof. Dr. Ayse Feza Giivenilir

January 2015, 97| pages

In this thesis, applications of generalized integral inequalities especially on biomathe-
matics and physics are studied. Application on Biomathematics is about the predator-
prey dynamic systems with Beddington DeAngelis type functional response and ap-
plication on physics is about water percolation equation.

This thesis consists 6 chapters. Chapter 1 is introductory and contains the thesis struc-
ture. Chapter 2 is about under which conditions the two dimensional predator-prey
dynamic system with Beddington DeAngelis type functional response is permenent
and globally attractive. Chapter 3 is about the same type dynamic system but with
impulses. In that chapter under which conditions the dynamic system has at least one
periodic solution is investigated. To get the result we use Continuation Theorem. Us-
ing impulse on this type of dynamic system is also important. Because we can model
the real life much better by this way. In Chapter 4, the predator-prey dynamic system
with Beddington DeAngelis type functional response on periodic time scales in shifts
is studied. In this chapter, first we prove which kind of periodic time scales in shifts
should be used to find there is at least one J..-periodic solution for the given system.
Then again by using Continuation Theorem we get the desired result. In Chapter 5,
first we generalize the Constantin’s Inequality on Nabla and Diamond-« calculus on
time scales. Then by using a topological transversality theorem and using the gen-
eralization of Constantin’s Inequality on Nabla Calculus, we have showed that the



water percolation equation on nabla time scales calculus has solution. This solution
is unique and bounded. The last chapter is the summary of what we have done in this
thesis.

As a result, since this study is on time scales, the findings are also important on the
discrete and continuous case.

Keywords: Generalization of Integral Inequalities, Time Scales Calculus, Predator-
Prey Dynamic Systems, Beddington DeAngelis Type Functional Response, Impulses,
Constantin’s Inequality, Water Percolation Equation
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BiQLQJ IK MATEMATIK VE FiZiKSEL BiLiMLER_E UYGULAMALARIYLA
BIRLIKTE GENELLESTIRILMIS INTEGRAL ESITSIZLIKLERI UZERINE

Pelen, Neslihan Nesliye

Doktora, Matematik Boliimii
Tez Yoneticisi : Prof. Dr. Mustafa Hursit Onsiper
Ortak Tez Yoneticisi : Dog. Dr. Ayse Feza Giivenilir

Ocak 2015,[97|sayfa

Bu tezde genellestirilmis integral esitsizliklerinin 6zellikle biomatematige ve fizige
uygulamalar1 incelenmigtir. Biomatematik tizerindeki uygulama Beddington DeAn-
gelis tipi fonksiyonel cevabi i¢inde barindiran iki boyutlu bir av-avci dinamik sistemi
tizerindedir ve fizikle ilgili olan arastirmada su sizdirma denklemiyle ilgilidir.

Bu tez 6 boliimden olusmaktadir. Birinci boliim giris niteligindedir ve tez yapisi hak-
kinda bilgi vermektedir. ikinci boliimdeyse Beddington DeAngelis tipi fonksiyonel
cevabi icinde barindiran iki boyutlu bir av-avci dinamik sisteminin hangi sartlar al-
tinda permenent ve global atraktiv ¢oziimlerinin var oldugu incelenmistir. Ugiincii
boliimde Siireklilik Teoremi kullanilarak ayni tip bir dinamik sistem i¢in impuls ve-
rilerek hangi sartlar altinda en az bir tane periodik ¢oziimiiniin var olacagi incelendi.
Ayrica bu boliimde sistemin impuls verilmis halini inceliyoruz ¢iinkii bu bize dogal
yasamin daha iyi bir modellemesini veriyor. Dordiincii Boliimde ayni tip bir dinamik
sistemin hangi zaman otelemelerine gore periodik olan zaman skalar lizerinde en az
bir tane d-periodik ¢6ziimil vardir diye bakiyoruz ve sonuca ulagmak igin tekrar Sii-
reklilik Teoremini kullaniyoruz. Besinci Boliimde ise Constantin Esitsizliginin Nabla
ve Diamond-« analize genellestirilmesini inceliyoruz ve Nabla analize uygun olarak
verilmis su s1izdirma denkleminin ¢oziimiiniin var ve tek oldugunu ve sinirli oldugunu
bir topolojik transversal teoremi ve Constantin Esitsizliginin nabla analize genelles-
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tilmis halini kullanarak gosterebiliyoruz. Son boéliim ise tezde yapmig olduklarimizin
Ozeti niteligindedir.

Sonug olarak ¢alismalarimiz zaman skalsi tizerinde yapilmig oldugu i¢in sonuglar bize
ayrik ve siirekli sistemlerle ilgili de fikir vermektedir.

Anahtar Kelimeler: Genellestirilmis Integral Esitsizlikleri, Zaman Skalas1 Analizi,
Av-Avci Dinamik Sistemleri, Beddington DeAngelis Tipi Fonksiyonel Cevaplar, Im-
pulslar, Constantin Esitsizligi, Su Sizdirma Denklemi
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CHAPTER 1

INTRODUCTION

In this thesis, unification of continuous and discrete analysis is significant. For the
unification of the differential and difference equations, Stephan Hilger [31] come up

with a theory which is known as the theory of Time Scales Calculus.

Another important subject in this thesis is mathematical ecology in biomathematics
which can be defined as the relationships between species and the outer environment.
The predator-prey dynamic systems can be seen as the subsection of the ecology in
biomathematics and can be described as the mathematical model of the connections
between different species. For this type of dynamic systems global attractivity and
permanence are very important issues. In [[13], [25], [52], there are some results about
the global attractivity and permanence in different predator- prey dynamic systems.
Various type of functional responses such as semi-ratio dependent and Holling-type
functional responses in predator-prey dynamic systems have been investigated in sev-
eral studies like [49], [SO]. In this thesis, we consider the predator-prey systems with
Beddington DeAngelis type functional response. This type of functional response
was first appeared in [6] and [18]. From these studies we know that at low den-
sities this type of functional response can avoid some of the singular behavior of
ratio-dependent models. Also predator feeding can be described much better over a
range of predator-prey abundances by using this functional response. For such kind of
system, boundedness of solution, permanence and global attractivity are also several

important topics.

In [25] for discrete predator-prey system with Beddington-DeAngelis type functional

response permanence and global attractivity was studied. Also in [21] for continuous



predator-prey system with Beddington-DeAngelis type functional response perma-
nence and global attractivity was studied. Therefore in the second chapter of this
thesis we try to investigate the permanence and global attractivity of the solutions of
predator-prey dynamic systems with Beddington-DeAnglis type functional response

in a general time scale.

In the third chapter of this thesis periodic environment becomes important. On the
other hand, in a periodic environment significant problem in population growth model
is the global existence and stability of a positive periodic solution. This plays a similar
role as a globally stable equilibrium in an autonomous model. Therefore, it is impor-
tant to consider under which conditions the resulting periodic nonautonomous system
would have a positive periodic solution that is globally asymptotically stable. And in
the third chapter we deal with when we can be able to find a globally asymptotically
stable periodic solution for the given dynamic system in the continuous case. For
nonautonomous case there are many studies about the existence of periodic solutions
of predator-prey systems in continuous and discrete models based on the coincidence
theory such as [20], [22]], [23], [24], [25], [33], (371, [49],[53]. Also in [8], [26]
unification of the existence of periodic solutions of continuous population models i.e.
population model for ordinary differential equations and discrete population models
i.e. population model in the form of difference equations and generalization of these

results to more general time scales is studied.

Impulsive dynamic systems are also important in the third chapter and we try to give
some information about this area. Impulsive differential equations used for describ-
ing systems with short-term perturbations. Its theory is explained in [5], [45], [36]
for continuous case and also for discrete case there are some studies such as [48]]. Im-
pulsive differential equations are widely used in many different areas such as physics,
ecology, pest control, population ecology, chemotherapeutic treatment of disease and
impulsive birth. Most of them uses impulses at fixed time as it is studied in [47]]
and [S2]. By using constant coefficient functions some properties of the solution of
predator-prey system with Beddington-DeAnglis type functional response and im-

pulse impact is studied in [51] for continuous case.

In the fourth chapter, we again consider the predator-prey dynamic system with Bed-



dington DeAngelis type functional response on periodic time scales in shifts. Any
periodic time scales in shifts is not appropriate to get a d-periodic solution. There-
fore, in this chapter first we determine which kind of periodic time scales in shifts
is used. Then again by using Continuation Theorem we try to obtain under which
conditions there is a d-periodic solution for the given dynamic system. And we start

to think about this issue after the paper of Murat Adivar[1].

The main contribution of this thesis in these chapters is for the species that have
unusual life cycle. Specifically this contribution is about to be able to find conditions
when the given species are extinct or they will able to save their generation and can
be able to obtain the equilibria after enough time passes or the life cycle of them are

periodic under impulses.

In the fifth chapter, the generalization of Constantin’s inequality is given and by using
this generalization and a topological transversality theorem; the existence, uniqueness
and boundedness of the solutions of the Water Percolation Equation on nabla time

scales calculus is investigated.

To study the boundedness of solutions for some nonautonomuous second order linear
differential equations Ou-lang [42] used a nonlinear integral inequality. To show
global existence, uniqueness and stability properties of various nonlinear differential
equations using Ou-lang type integral inequality is also significant. Pachpatte [43]]
gave the generalized Ou-lang type integral inequality. In 1996, for the generalization
of these integral inequalities Constantin [[14] get the interesting alternative result ;
which is known as Constantin’s inequality now. Then researchers continue to work
on this inequality. Afterwards, Yang and Tan [54] generalized the inequality and gives
the discrete form of the inequality. Then, Ferriara [27] generalized the inequality on
delta time scales calculus. And our study in chapter five is continuation of above

studies.






CHAPTER 2

SOME RESULTS ON PREDATOR-PREY DYNAMIC SYSTEMS
WITH BEDDINGTON DEANGELIS TYPE FUNCTIONAL
RESPONSE ABOUT THE PERMANENCE AND GLOBAL

ATTRACTIVITY OF THE SOLUTIONS

2.1 Preliminaries

[8]The theory of time scales calculus is the unification of continuous and discrete
analysis and by a time scale which is denoted as T, we mean a nonempty closed
subset of R.

Definition 2.1.1 [8],/35] The set T* is defined by T" = T /(p(supT), supT| and the
set T, is defined by T,, = T/[infT,o(infT)). The forward jump operator o : T —
T is defined by o(t) := inf(t,o0)r, for t € T. The forward graininess function
p: T — RY is defined by u(t) := o(t) —t, for t € T. Here it is assumed that
inf0 = supT and supd = infT.

Definition 2.1.2 /i8], [35]] A function f : T — R is rd-continuous if it is continuous
at right dense points in T and its left-sided limits exist at left-dense points in T.
The class of real rd-continuous functions defined on a time scale T is denoted by
Cra(T,R). If f € C,q(T, R) then there exists a function F(t) such that F*(t) = f(t).
The delta integral is defined by fab f(x)Az = F(b) — F(a). If f € C},(T,R) then
f € Cry(T,R) and f* € C,q(T,R).



The definitions related with diamond-alpha and nabla derivatives are can be found in

section[3.1]

Theorem 2.1.1 [39](Diamond-alpha Lagrange’s mean value theorem) Suppose f be
a delta and nabla differentiable function on (a,b) and continuous function on [a, b).

Then there exists o € [0, 1] and ¢ € (a,b) such that the following equality hold true.

f(b) — f(a)
b—a

feele) =
2.2 Predator-Prey Dynamic System with Beddington DeAngelis Type functional

Response
The equation that was investigated in several studies such as in [[10]

Ay c(t)eep(y(®)
z2(t) = a(t) = b()exp(z(t)) — ZmTamRmEm) Tm@erGD)

Ay F(Beap(a(t)
y=(t) = —d(t) + ZiTEme @) TG D)

2.1)

In this system, from [S0];

1. a(t) — b(t)exp(z(t)) is the specific growth rate of the prey in the absence of

predator,

2. d(t) is the death rate of predator,

3 — c(t)exp(y(t))
C a(t)+B(t)exp(z(t))+m(t)exp(y(t)

tor on prey,

3 is the Beddington DeAngelis type effect of preda-

4 [@ep(z(t)
© @ FB@esp(a()+m(Desp(y(D)

predator.

) is the Beddington DeAngelis type effect of prey on

2.3 Permenance

Taking Z(t) = exp(x(t)) and §(t) = exp(y(t)) in (2.1I), then we get

c(®)g(
+B®)E(t)+m(t)y(t)’ (2.2)




Assume a(t), b(t), c(t), d(t), f(t), B(t), m(t) > 0. a(t) > 0 and bounded above in
(2.2). Each functions are from C,4(T,R). x(t),y(t) € Cra(T,R). supiera(t) = a*,

infiera(t) = a'. Similar for the other functions.

x

Definition 2.3.1 [/9] We call that the solution of the system (2.2) is positive
Y

solution if it is positive on the time domain of the given system.

z(t
Definition 2.3.2 [44|] The solution E ; of the system (2.2)) is oscillatory about
y(t
Ju| | ()= S
if has arbitrarily large zeros.
Jo y(t) — Jo

Definition 2.3.3 [25]] The system (2.2) is called permanent if there exist positive con-
stants 11, v, Ry, and Ry such that solution (z(t),y(t)) of system (2.2)) satisfies

r1 < limyooinf T(t) < limy_oosup T(t) < Ry,

Lemma 2.3.1 In system (2.1)) if there exists T' € T such that for each w > T follow-

—/Owd(t)At+/ow%At<0

holds true, then all positive solutions y(t) tends to minus infinity as t tends to infinity,

ing inequality

eqivalently exp(y(t)) tends to 0 as t tends to infinity.

Proof. y~(t) = —d(t) + a(t)+,3(t)ej;g();g)(i(:rzzt)exp(y(t)) < —d(t) % If we integrate
this inequality we obtain,
t
f(s)
t) < 0+/—ds + —=As,
v < 9(0)+ [ s+ 55
' f(s)
exp(y(t)) < exp(y(0))exp( | —d(s) + @(S)AS)‘
0

Since [ —d(t)At + [} %At < 0, then limHooexp(fOt —d(s) + L9 As) = 0.

Hence lim;_,ocexp(y(t)) = 0.



Remark 2.3.1 In system (2.2)) if a(t) < 0, then automatically all positive solutions
Z(t) = exp(x(t)) tends to 0 as t tends to infinity

Remark 2.3.2 Ifin sytem (2.2)) a(t) < 0, or the conditions of Lemma is satisfied
then system (2.2)) can not be permanent by Definition[2.3.3]

The following results are true for the time scales whose grainess function is bounded

over this Time scales and y = maxerp(t).

Lemma 2.3.2 For the system (2.2) if conditions for the coefficient functions are sat-
isfied, then

au
eap(ua") = G,

z(t) <

if —d' + L& > 0 then j(t) < Lrteap (M(—d’ + %)) — Gy,

Proof. Let us start with the first equation of (2.2)),

~ ~ c(t)y(t
(nEO)> = alt) = 6O — sEramen e

(2.3)
< a(t) — b(t)z(t) < a* — bli(t).

Taking M = %-(k+1), where 0 < k < exp{pa"}—1.If () is not oscillatory about
M, there exists T} > 0 such that Z(t) > M, fort > T or Z(t) < M, fort > T}.

If Z(t) < My fort > T, then Z(t) < %reap{ua®}. If Z(t) > M, for ¢t > Ty,

then (In(2(t)))® < —ka*, hence there exists Ty € T such that Ty < T, and for

t > Ty, Z(t) < My, which is a contradiction.

If Z(t) is oscillatory about M for ¢t > T, and o(f) be an arbitrary local maximum of

In(z(t)), then

0< (In(@®)> = a(t)—bt)z(t) — a(f)—l—ﬂ(t?)(i‘)(%(j‘)m({)g(f)
< a(t) —b(t)7(t) < a*



Therefore #(7) < %2 If f is right dense then #(c(f)) < %8 If { is right scattered,

b(t)
then integrating first equation of (2.2) from # to o (#) and using @ we obtain
o(t ~ c(s)y(s
) NAas = [ als) = b(s)76) — s e A9
< pat.
- a’
z(o(t))) < i —exp(ua®) = Gy (2.4)

Since o (%) be an arbitrary local maximum of In((t)) then lim;_,oosup T(t) < G.

Hence lim;_,oosup z(t) < Rj.

Consider the second equation of (2.2) and get

f)z(t)

P
(D) + BOE) + mDiD) = o

B (t) Bl
(2.5)

(In(g(1)))* = —d(t) +

Taking My = %(lﬁ + 1), where 0 < k < ea:p(u(—dl + %)) — 1. If g(t) is

not oscillatory about Mo, there exists 73 > 0 such that g(¢t) > M, for t > T3 or
g(t) < M, fort > Tj;.

If §(t) < My for t > Ty, then §i(t) < LS (k + 1). If §(t) > M, for t > Ty, then

(In(g(t)))> < kaququ%, hence there exists 7, € T such that 7, > T3 and

fort > T}, §y(t) < My, which is a contradiction.

f j(t) is oscillatory about M, for t > Ty, let o() be an arbitrary local maximum of

(gj( )), then by using second equation of (2.2)), we can conclude that

A ; FHi)
0<(In(®)" = —d() + SO
—d(Bold)—dDBDFE—dBm @I+ (D)
@)+ D@ +m DI
- —d()m ()5 + (DG

BBz (t

i T n fDG
Therefore, §j(t) < DO (1) If £ is right dense then g(o (1)) < d(f)m(%)'

D)

If £ is right scattered, integrate (2.3]) from # to o/(#) for the same w above and we obtain

o(t) ~ a(t) s)z(s
JT ()2 as = 79 —d(s) + il s As

< pw(—d + %)




Bl

Since () be an arbitrary local maximum of In(j(t)) then lim,_,o.sup §(t) < Ga.

(o)) < {;G exp( (—d' + fu)) yen 2.6)

Hence lim;_,oosup y(t) < Ra. O

Remark 2.3.3 [f for the system (2.1)) all the solutions of exp(y(t)) does not tend to 0
as t tends to infinity (by Lemma[2.3.1) then Lemma[2.3.2]is otomatically true.

Lemma 2.3.3 For 2.2) when #(t) < Gy, ' —b"G1— < <0, a' — < > 0 is satisfied

then

when §j(t) < G, —d"a* — (d"B* — f)g1 > 0,

ey — Lo ot
d" + Zgia g, < 0 is satisfied then

y(t) > dumu( d'a — (d*B" — fl)gl)eﬂﬂp (N( —d"+ W) >

Proof. Consider the first equation of (2.2)

~ e t~
(In(@0))* = a(t) = b6t — st

> a(t) —b(t)z(t) — ((t)) 2.7
> al — b (t) — &
Z CLZ - qul - ;—Lul

If o — b"Gy — fn—ul > 0, then there exist 7" such that t > T, #(t) > Gy, fort > T. So

there is a contradiction. Therefore a' — b*G; — fn—ul <0.

Take Ny = 5 (a' — 57)(1—§), where § = 1 — exp| w (al -5 - b“G1>> . Suppose

that Z(¢) is not oscillatory around /V;. Then there exists 75, such that Z(¢) > N; for
t > Tsorz(t) < Ny fort > Ts5. If &(t) > N, for t > T5, then Z(¢) satisfies the

10



C

desired result. Since & > 0, then the condition a' — %l > 0 must be satisfied. If
Z(t) < Ny fort > Ty, then (In(i(t)))® > (a' — £)q. Since (o' — £7)¢ > 0, then
there exists Tg such that for ¢ > Ty Z(¢) > N; which is a contradiction. Suppose that

Z(t) is oscillatory around N; and o(t;) be an arbitrary local minimum of In(Z(t)),

thus
0> (In(Et))> = a(tr) - b(t)F(h) — sy s
> aft) — (1) < D) = -
Then we have,
1 l ct 1 C(tl) ~
b_u(a — W) < b(tl)(a(tl) — m(t1)> < Z(t1)

If ¢; is right dense then also Z(c(t1)) > & (a' — <;). If ¢; is right scattered, then
integrate (2.7)) from ¢, to o(¢;), we obtain

o(t1) ~ o o(t1) ~ c(t)y(t
ST an@E@))rar = [T a(t) - b(t)i(t) — Q(M(t;;g; jm(t)g(t) At
> [ <a(t1) —b(t)Gy LA

z(o(t)) > blu(al - %)exp (u <a —-b"Gy — %)) = Gr.

Since Z(o (1)) is the arbitrary local minimum, then lim,_,inf Z(t) < g1,
ie. limy_oosup x(t) < rq.

Consider the second equation of (2.2))

~ A FHZ(@)
(ln(y(t))) - _d(t) + a(t)+B8(t)z(t)+m(t)g(t) (2.8)
u flg '
2 ' Gy e,
15 . -
If —d" + m > 0, then there exits 77 such that for ¢ > T7, g(t) > G
. . .o w fl~
which is a contradiction. Thus —d* + Wﬁmu% < 0. Let us take N5 such that
N2 = (—duOéu — duﬁugl + fl§1)<1 — 7”)

dvm

where

11



r=1—exp (,u ( —d"+ W) . Assume g(t) is not oscillatory around N,.

Then there exists T, such that for ¢t > Tg §(t) > Ny or g(t) < Ns.

~ l,...
For the first case §/(t) > 7~ i (—dta® —d“ﬂ“gl—l—flgl)exp( (—d“—l—m)).

Since § > 0, then —d“a* — d“3%g: + f'g > 0.

For the second case (In(5(t)))> > (d“mu(a“+ﬁlugl+m“G2) (—d"a™ —d"B"g1 + f'g1))r.

Since —d“a* — d*3%g; + f'§1 > 0 there exists Ty, such that for t > Ty j(t) > Ny,

which is a contradiction.

Assume () is oscillatory around N, and () be an arbitrary local minimum of

In(g(t)), then by (2.8),we have

~ A —d(t2)a(ta)—d(t2)B(t2)Z(ta) —d(t2)m(t2)G(t2) +f (t2)Z(t2)

02> (In(g(t2))> = — alta)+ ,B2(t )x(tz)+§1(t2)2(t2)2 -
> —d(t2)a(t2)=d(t2) B(t2) g1 —d(t2)m(t2)y(t

= a(tz)+B(t2)g1+m(t2)y(t2)

2)+f(t2)g1

So we get §(ty) > m(—d(tg)@(tg) — d(t2)B(t2) g1 + f(t2)G1)-

Thus §(ts) > 7 (—d"a® — d*BG1 + f'g1).

If ¢, is right dense, also (o (t2)) > zomr (—d“a® — d"3"G1 + f'G1).

If ¢, is right scattered,we integrate (2.8) from ¢, to o(2) we obtain

/ " () a = / " dw+ o

g . a(0) + B A

t)y(t)

)
+
> —d" +
_’u( a“+ﬁ“G1+muG2>

1 'g
Ho(t2) > (-~ d“6“§1+fl§1)ewp<M(—d“+au+ m@fﬂmu@?))

Since g(o(ty)) is the arbitrary local minimum, then lim, ,inf §(t) < go, i.e.

limy_yoosup y(t) < ro. d

If (2.1) satisfies all the conditions of Lemma[2.3.2]and Lemma[2.3.3] then its solution

1S permanent.
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Example 2.3.1 T = [2k,2k + 1], k € N k start with 0.

0.5ex
xA(t) = (2 - ﬁ> - Bl'p(l') - exp(:r)—l-];(zyz?(y)’
Arn (3+ 15 )eap()
yo () = —1+ e

Example [2.3.T]satisfies all of the conditions of Lemma[2.3.2]and Lemma [2.3.3] there-

fore its solutions are permanent.

ey(m ex(m)
10 30
8
20
6
\ 10
4
2 o———
o] 20 40 60 0 20 40 60
y(m) x(m)
2.5 3
2 2
1.5 \ 1
,,,,,,,,,,,,,,,,,,,,,,,, jreTTmTem e nen s
1 0
o] 20 40 60 0 20 40 60

Figure 2.1: Numeric solution of Example [2.3.1| shows the permanence.

2.4 Global Attractivity

Definition 2.4.1 [25] A positive solution (x*(t),y*(t)) of [2.2) is said to be globally
attractive if each other positive solution (x(t),y(t)) of (2.2) satifies

lim o () — 2(6)] = 0. lim [y*(t) — y(t)| = 0.

t—o0

Theorem 2.4.1 In addition to conditions of Lemma 2.3.2land Lemma2.3.3|

13



ifai,as € (0,1) and § > 0

(almin {bl 2 bu} i [alg( l)c (B)1/3Gh ¥ a Fu(aw)l/3

Gt 2/8(mb)2/37 00,0 T T 0(81)2/3 (2036 g5

(az)2/3(51)2/393/3g;/3 at+BrGr+mtGa)? ) Gaut (al+Blg1+miga)?

+a29 fu(mu)1/3G§/3 ] ’ QZmZ’n { ( flglml 2 _ FUGymY }
w(Hu)l/ u(g3u\l/3 2/3
. [(I ct(a™)t/3 + alg c(B*) ()G ]) > 57

Lo(a1)2/8 (mt)2/3g273 27 (al)2/3(ml)2/3g1/3 g2/

then system ([2.2) is globally attractive.

Proof. For any positive solutions (x1(t),y1(t)) and (xo(t), y2(t)) of system 2.1)), it
follows from Lemma[2.3.2]and Lemma[2.3.3}

lim in fioowi(t) < g1, im supi ooz (t) < G, im in fisooyi(t) < g2,

lim sup;,o0yi(t) < Go fori =1,2.

Let Vi(t) = |lnz1(t) — Inxs(t)], A = a+ Bx1(t) + m(t)yi(t), B = a + Sao(t) +
m(t)ys(t). If t is right scattered,

Vi(o %
VA() = LLOSA0)
|Inz1(o(t))—Inza(o(t))|—|lnzy(t)—Inza ()]
n(t)
< ﬁﬂnml(t) —Inza(t) — u(t)b(t)[z1(t) — z2(t)]| — ﬁ\lnxl(t) — Inxa(t)]

a(t)[m%—m(tﬂ‘+c(t)’B(t)m(t)%t)—m(t)l _

_|_

c(t) (5<t)y1(”[§1,3(“‘“<t)] ‘ +c(t)

Assume £(t) is between x1(t) and x5 (t), then using Diamond-alpha Lagrange’s mean

value theorem and taking o = 1 we get,

x1(t) — xo(t) = exp(lnxy(t)) — exp(lnza(t))
= (t)(Inz1(t) — Inxa(t)).

(2.9)

Since exp function satisfies all of the conditions of Theorem [2.1.1) we can obtain
equality (2.9).

If t is right scattered, using Young’s inequality and (2.9) we obtain,

Apy < L | L |1 (B ()82 ()yr"* ()l (1) — wa(t)]
i < pu(t) lf(t) lé(t) : (t)b<t)H| 10)-m @l 902/3(t)ym2/3 (t)xy > (1) (a3 (¢)
c(t)a 2 (t)]ya(t) — yi(t)] o(t)BY3 (1) () ]ya(t) — v (2)|

954 (E)m /(1) (O (O (00w (8) 9 (e)m/(t)ay (09 (1) (1)

14



(B BGY i (1) — xa(t))|
9(al>2/3(m5)2/3gf/3g;/3

(o) PBlys(t) — ()] | (BY)YVAGT  lya(t) — (1))
+ 1N2/3 (1 1)2/3 ,2/3 2/3 1N2/3 (1)2/3 ,1/3 2/3
9(BN2/3(m')*3g," gy 9(al)?3(m")*3g," g,

2
A < —mi l _u o
V2 (t) < —min {b e b } |z (t) — 2o (t)| +

If t is right dense, then delta- differentiation becomes equal with the normal differen-

tiation thus we can write,

Vi (t) = sgn(Inzi(t) — Inz2(t)) <x’1 (t) _ 22 (t)> =

. (O (1) y
—eonltnn(®= i (1) (‘b“)(“(”‘“(” e+ B0 0+ m @@ 2@+ pOw0) + MO

Since sgn(lnz(t) — Inzy(t)) = sgn(z1(t) — z2(t)), then
BB)yr(t)|21(t) — x5(1))]

VI(t) < =b(t)|x(t) — 22(t)| + c(t)

AB
oty | 020 g | A n) — (1)

c(t) B2 1)y () |21 (t) — a(1)]
902/3(t)m2/3 (t)ay> (t)ay” (t)ys > (1)
c(t)a' P (1) ]ya(t) — pi (1)) c(t) B2 ()2 (1) |y2(t) — i (t)]
0823 (tym2/3xy"* (#)2y* )y (W) () 9023 (t)xy )y (£ (t)
(813G () — 2o (1))
9215 (m!)2 g7 gy
+C“(Oé“)1/3!yz(t) — ()] ENBGya(t) — (1))
9(B123(m!)23g; gy 9(al)23(ml)23g gt

< =Wy (t) — za(t)| +

< bz (t) — zo(t)] +

Therefore
(BYV3GY|x1 (t) — o (1))
9(ad)2/3(m)2/3 g% g,

@) B ya(t) = (B)] e (B)ECT ya(t) — i (t)]
+ 1\2/3 (o 1)2/3 ,2/3 2/3 1N2/3 (0 1)2/3 ,1/3 2/3
9(B1)2/3(m!)*3g," gy 9(al)¥/3(m)*3g," g,

2
A < —min b — ) — xo(t
Vit (t) < —min YN 21 (1) — 2o(t)] +

Let Vo(t) = |lnyi(t) — Inyz(t)|. Now assume &(¢) lies between yy(¢) and ys(t),
therefore by using Diamond-alpha Lagrange’s mean value theorem and taking o = 1,

we have
yi(t) —ye(t) = exp(lnyi(t)) — exp(inya(t))

(2.10)
= &) (nyi(t) — Inya(t).
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Since exp function satisfies all of the conditions of Theorem[2.1.1] we can get equality
(2.10).

If t is a right scattered point, by (2.10)) we have
A L1 1 Oz (Hm(t) -
VA0 <~ e [am — O o) - o)
FOAP () |21(t) — ma(t)] FOMP 0 ()21 (1) — 25(1)]
9823 (tym2/3 (), (t)ay ()3 (1)ya* (1) 9a2/3() B2/3 (1)1 (8)ary > (V) (1)

e mind Lot 2 Gt @) () —wa(0)] )G e (1) — (1)
- AvBrGar - ABL ] g(ps(mt)2lgt gt 9(al)23 (821091 gy

If t is right dense, since delta- differentiation becames equal with the normal differ-

entiation therefore we have

V4 (t) = sgn(lny;(t) — Inys(t)) (Zi_gz; - Zz—8>

FO)z1(t) - F()za(t) )
(t) + Bz (t) + m)yr(t)  at) + B(H)z2(t) + m(t)y2(t)
F(£)a' P ()| (t) — za(t)]
082/3(t)ym2/3(t)zy"" (t)ay > () (£ (1)
FEYmP )y ()21 (t) — a(t)]
902/3(1) B2/3 ()2, (823 (£)a'* (2)

= sgn(lny, (t) — Inys(t)) (a

< OO, ) gy +

Sl F@Plit) = (0] £ G (1) — o)
=T qupe 2 9(51)2/3(ml)2/3gf/3g§/3 9(0/)2/3(@)2/39%/39;/3

Thus

VzA(t) < —min {flglml 2 _ qulmu} fu(au)l/3|$1(t) — x5(1)]

AuBv’ Gop® AlB! 0(B1)2/3(mt)2/32/3 g2/
FHm ) 3G a1 () — 2o (1)
9(al)2/3(81)2/3g2 3 gl

Let us define a Lyapunov function as: V(t) = a1Vi(t) + asVa(t), ai,as € (0,1).
VA(E) = aiViE(t) + a2V (1)

A _ i ! 9 Cul Cu(ﬂu)1/3G;/3 fu(au)l/B
s <a1mm{b’Gw" b} (al9<al>2/3<ml>2/3g5/3g;/3+“29(6!)2/3(ml>2/39?/3g§/3

fm) G o {fam! 2 piGim
+az o(at)2/3(81)2/8g2 3 g173 |z1(t) — 22(t)| — | agmin AuBv > Gap®  AlB

_ Cu(au)l/3 cu(Bu)1/3G2/3 _
(al 9([3’)2/3(ml)2/3gf/gg§/3 +ta 9(al)2/3(7nl)2/3gli/3g§/3 ‘yQ (t) Y1 (t>|
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By assumption
VA(t) < =0flai(t) — w2(t)] + [y2(t) — ()]

Integrating both sides of the above inequality from ¢; to t, we get
t t
[ v2ns <=5 [ fni(s) = nas) + lnals) ~ ma(s))s
t1 t1

/ [lz1(s) — z2(s)| + lya(s) — y1(s)[]As < @

t1

Then .
/ [lz1(s) — xa(8)| + |y2(s) — y1(s)|]As < +o0

Tim [z (8) = 22(0)| + o (6) — 2 ()] = 0
i oc 21 (£) — 22(2)]] = 0 and Tinny e[ (8) — (8)]] = 0.

Hence proof follows.

Corollary 2.4.1 In addition to conditions of Lemma[2.3.2|and Lemma2.3.3)

ifay,as € (0,1), a(t) =0and § >0

L ~1/2 w~1/2
. ! e fage.
(almm{b,cfw—b“}—[al s +a SvAb

4ml 2451
migigs 919

1/2
. flglml 2 . fu.Glmu _ uGl
azrmn { (BUG1+muG2)2? Gau®  (Blgi+mlgs)? msven e J

then system [2.2) is globally attractive.

Example 2.4.1 T = [2k,2k + 1], k € N k start with 0.

. 0.0lex
pA(t) = (0.5 — 1) — exp(x) — LU

A _ 0.2exp(x)
yo(t) = 01+ o nm

Example [2.4.1] satisfies Corollary 2.4.1] therefore solution of this system is globally

attractive.
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eY(Mm
\
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\
\

(o] 50 100
y(m)

o] 50 100

&X(m)

50 100
x(m)
50 100

Figure 2.2: Initial conditions in this example is x(0)=3, y(0)=2.

ey(m
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\
\
\

o] 50 100
y(m)

o] 50 100

ex(m)

50 100
x(m)

50 100

Figure 2.3: Initial conditions in this example is x(0)=2, y(0)=3.
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0.4

0.7

0.65

0.6

0.55

0.5

-0.3

-0.4

-0.5

-0.6

-0.7

eY(m)

\
\
\
\
o] 50 100
y(m)
\
\
\
o] 50 100

0.8

0.6

0.4

oX(m)
50 100

x(m)
50 100

Figure 2.4: Initial conditions in this example is x(0)=0, y(0)=0.

ey(m)

0.8

0.7

0.6

0.5

0.4

-0.2

-0.4

—-0.6

ex(m)

Figure 2.5: Initial conditions in this example is x(0)=-0.3, y(0)=-0.5.
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eY(m)

o
500 1000
y(m)
5
of.
-5
-10
-15
o] 500 1000

eY(m
3000
2000
1000
ol
0 500 1000
y(m)
10
5
0
-5
0 500 1000

Figure 2.7: Initial conditions in this example is x(0)=1, y(0)=8.

Figure 2.6: Initial conditions in this example is x(0)=8, y(0)=1.

&X(m)
3000
2000
1000
(0}
(6] 500 1000
x(m)
50
(0}
-s0}
—100
(6] 500 1000
ex(m)
3
2
1
(0]
(¢] 500 1000
x(m)
1
0.5
(0]
-0.5
-1
(¢] 500 1000
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4 ey(m 4 ex(m)

x 10 x 10
3 3
2 2
1 1
ol )
0 1000 2000 3000 4000 0 1000 2000 3000 4000
y(m) x(m)
50 200
0
0 . . o
-200 g
-50 T g
P —400
-100 -600
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Figure 2.8: Initial conditions in this example is x(0)=10, y(0)=10. Although we take
seven different initial conditions, solutions (exp(x(t)),exp(y(t))) approaches to 0.5 in
each case. Therefore numeric solution of Example[2.4.1|shows the global attractivity.
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CHAPTER 3

PERIODIC SOLUTIONS FOR PREDATOR-PREY DYNAMIC
SYSTEMS WITH BEDDINGTON DEANGELIS TYPE
FUNCTIONAL RESPONSES AND IMPULSES

3.1 Preliminaries

Below informations are from [10]. Let L : DomL C X — Y be a linear mapping,
C : X — Y be a continuous mapping where X,Y be normed vector spaces. If
dimKerL = codimImL < +o0 and ImL is closed in Y, then the mapping L will
be called a Fredholm mapping of index zero. There exist continuous projections
U:X —XandV : Y — Y when L is a Fredholm mapping of index zero such that
ImU = KerL, ImL = KerV = Im(I—V), then it follows that L|pomrarev : (I—
U)X — ImL is invertible. The inverse of that map is denoted as K, . The mapping
C will be called L-compact on € if VC(€2) is bounded and Kyy(I — V)C' : Q@ — X
is compact, where 2 is an open bounded subset of X. Since ImV is isomorphic to
KerL, the isomorphism J : ImV — KerL is exist and the above informations are

important for the Continuation Theorem that we give below.

Definition 3.1.1 [//|] The codimension (or quotient or factor dimension) of a sub-
space L of a vector space V is the dimension of the quotient space V| L; it is denoted
by codimy L or simply by codimL and is equal to the dimension of the orthogonal

complement of L in V and one has dimL + codimL = dimV.

Theorem 3.1.1 [10] (Continuation Theorem). Let L be a Fredholm mapping of index

zero and C be L-compact on ). Assume
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(a) For each \ € (0,1), any y satisfying Ly = AC'y is not on 6X, i.e.y & 6€);
(b) For each y € 600 N KerL, VCy # 0 and the Brouwer degree

deg{JVC,6Q N KerL,0} # 0. Then Ly = Cy has at least one solution lying in
DomL N HS2.

We will also give the following lemma, which is essential for this paper.

Lemma 3.1.1 [[0] Let 1,75 € [0,w] andt € T. If f : T — R is w-periodic, then

£(t) < fim) + / CAEIAs and  f(0) > flm) - / C 1)),

Remark 3.1.1 In the study of [38] for predator-prey dynamic models with several
type of functional responses with impulses on time scales is studied and they found a
general result. On the other hand on their study only the effect of functional response
is seen on the prey, but on predator the effect of the given functional response can
not be seen. Therefore our results are also important since the impact of Beddington

DeAngelis type functional response is taken into account for both prey and predator.

Definition 3.1.2 [32/]If a function is regulated and it is rd- continuous at all except
possibly at finitely many right dense points t € T, then this function is called piece-
wise rd-continuous function and the class of piecewise rd-continuous functions de-

naoted as Cp,q(T,R).

3.2 Main Result

The equation that we investigate is:

Ay — c(t)eap(y(t)
=2 (t) = at) = b()exp(z(t) — rrrameate) rm@erG@ t 7

Ay ft)esp(a(t)
y2(t) = —d() + @ smenst@) tm@ameo 7 G.1)
Azx(ty) = In(1+ gx)

where ty, = ti+w, a(t+w) = a(t), b(t+w) = b(t), c(t+w) = c(t), d(t+w) = d(t),
ft+w) = f(t), at+w) = alt), B(t+w) = B(t), m(t+w) = m(t), Yk, 1> g, > —1,
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and r;, > 0. HereTlsperlodlc ieift € Tthent +w € T, and fo t)At > 0,
Jo b()AE >0, [P d(t)At > 0.

B = mingep,w B(t), m' = mingepwym(t), B = matiepwf(t), m* = matepym(t),
m(t) > 0and ¢(t), f(t) > 0b(t),a(t) > 0, 5(t) > 0. Each coefficient functions are
from C,4(T, R).

Lemma 3.2.1 If

’ : | [ S (O AU
/Oa(t)At+lnE(1+gz)<0and /Od(t)At—i-lnEn—i-/o 6(75)At<0’

then all positive solutions (exp(x(t)), exp(y(t))) are tends to 0 as t tends to infinity.

Proof. If we using the first equation of (3.1)) we obtain,

exp(a(t)) < exp((0) [ (1 + gi)exp(/o a(s)As)

ti<lt
Since [, a(t)At + In ], (1 + g;) < 0. Hence lim;_,ocexp(x(t)) = 0

Similarly lim;—,.cexp(y(t)) = 0.

Theorem 3.2.1 In addition to conditions on coefficient functions if

/Ow a(t)At +In ﬁ(l +9;) — /Ow :1((% At >0

i=1

and

(fo, F)AL = ([ d(t)At = InTT_; (12))) — *( [y d(t)At = In [T (r:)) > 0

then there exist at least a w-periodic solution.

Proof.

X = € Cpra(T,R?) : p(t + w) = p(t), 2(t + w) = 2(t) p with the norm:
z
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p
‘ ‘ H = SUP;epou, ([P(T)]; [2(t)]) and
z

AL

€ Cpra(T,R?) x (RH)Y, p(t 4+ w) = p(t), 2(t + w) = z(t)} with
the norm:

Let us define the mappings L and C' by L : DomL C X — Y such that

and C' : X — Y such that

cllPl)=
Z

({ oft) ~ b)) ~ s ] [ tn(1+ g } | [ in(1+ 9, ]) |

J(®ern(p(t)
—d(t) + SETEDE @) D) In(p1) In(pq)

c
Then KerL = P : P = ! , ¢; and ¢y are constants.
Co
p dq dg fowp(5>A3 + Zgzl d; 0
ImL = , e ; " =
z h fq Jo #(s)As+ 37, fi 0

ImL isclosed in Y and dimKerL = codimImL = 2. We can show this as follows.
It is obvious that summation of any element from /m/L and KerL isin Y. WLOG

take p € Y and [ p(t)At + 3L d; = I # 0. Let us define a new function

where mes(t)=/’ """ 1At. Then is constant because V x,

— _ I I
g =p mes(w)’ mes(w)
f:“ p(t)At is always same by the definition of periodic time scales and the impulses

are constant and there are same number of impulses in the interval [k, w + k|, Vk. If

26



we take the integral of g from x to w + k, we get

w+kK q w4k q
/ gt)AL+> " d; :/ p(t)AL+> "d; =1 =0.
K i=1 r i=1

Then p € Y can be written as the summation of g € I'm/L and —— ( y € KerlL. Since

I
mes(w)

. .. p .
is constant. Similar steps are used for z. € Y can be written as the
z

summation of an element from Im L and an element from Ker L. Also it is easy to
show that any element in Y is uniquely expressed as the summation of an element
Ker L and an element from Im L. So codimImL is also 2, we get the desired result.

Therefore L is a Fredholm mapping of index zero.

There exist continuous projectors U : X — X and V : Y — Y such that
U P _ 1 fow p(s)As
z mes(w) Iy z(s)As
and
v P dy dg, 1 I p(s)As+ 321 ds 0 0
2 ’ f1 T fa mes(w) fow z2(s)As+ >0 fi ’ 0 o 0 .
The generalized inverse Ky = ImL — DomL C KerP is given,

“ iiliHi:D-

fo §)As + 30y di — m N fotp (s)AsAt — 31 d;i + ﬁ(w) Y4 dimes(t;)
Jo 2$)As + o i = sty Jo' Jo 2($)AsAL = X1 fi+ ot L fmes(ts)

c(s)exp(z(s)) q .
1 < { Jo'a b(s)ezp(p(s)) = a1 FAG ean(p(s) Fmyeapzie) 28 T I Tizi (1 + 9i) . o)
fo

w f(s)exp(p(s)) q )
mes(w) 7d(8) a(s)+B(s)exp(p (s))+m(8)61P(2(5))AS + lnHizl(rl)

Let
B c(t)exp((t)) -
(1) = b0)eapp(0) = 5 BT ean(o(e) + e = O
a0 + f(t)exp(p(t)) — O,

a(t) + B(t)exp(p(t)) + m(t)exp(z(t))
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) " als) — bls)eap(p(s)) - ds)erp(z(s)) As= 0,
0

mes(w) a(s) + B(s)exp(p(s)) + m(s)exp(2(s))
and
1 Y s f(s)exp(p(s)) s
s Jy Ot ST B - ey = O
Ku(I - V)C P _ K, (& —le In(l+ g1) o In(1+gq)
z Cy — Cy In(py) In(pg)

Jy Ci(s) = Ci(s)As + In ], (1 + g:)
— ey Jo Sy Crls) — Cl(s)AsAt —InTl_, (1 +g) + m S0 (1 + gt
[y Ca(s) = Ca(s)As + InT],.,, v
— oty Jo. ) Ca(s) — ( YAsAt — In %, 7 + m;(w) S0, In(r)t;
Clearly, VC and Ky (I — V)C are continuous. Since X and Y are Banach spaces,
then by using Arzela-Ascoli theorem we can find Ky (I — V)C( §} is compact for any
open bounded set 2 C X. Additionally, VC() is bounded. Thus, C' is L-compact

on 2 with any open bounded set 2 C X.

To apply the continuation theorem we investigate the below operator equation.

22(t) = Aa(t) — b(t)exp(z(t)) — a(t)w(t)e;gg;g;gg;y( T ] t £t

Ay | J@)erp(a(t)
y2 () = A —d(t) + a(t)+ﬁ<t>exp<z(t)>+m(t>exp(y<t>>] 17 t 3.2)

x
Let € X be any solution of system (3.2)). If we integrate both sides of system
Y

(3:2)) over the interval [0, w] then we have,

w c(exp(y(t))
Jo a@®At+In[TL (14 i) = [y b(t)exp(=(t) + srmmeanteyem@amm A

w B F(Beap(a(®)
Jo d®At = In[TL (r) = ) sormmentet) tm@enmm At )
3.3)
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Using (3.2)) and (3.3)) we obtain,

Jo =2 @®)]At < [fo la(t)| At + [ b(t)exp(x(t) + i i) At

)

t)exp(x(t))+m(t)exp(y(t))

< M la@)]At+ [ a(t) At +In T (1 + g:)
< My;
(3.4)
where My := [ a(t)|At + [ a(t)At +In T (1 + g:).
Jo wr0lAt < A[fo”d(t)m”fow TR ) e O
(3.5)

< A[fo“’]d( )| At + [ d(t)At — In T 17“1]
< M;
where M, := [* |d(t)|At + [ d(t)At — InT]E 7

x

Since € X and there are q impulses which are constant, then there exist 7;, &;,
)

1 =1, 2 such that

x(&1) = min{in frep4)2(t), infre@ 12 (t), - 0 freyw @ (t) }
x(n) = max{supeo4,12(t), SUPte(ty o) T(t), .-, SUDse(t,wT(t) }

(3.6)

y(&) = min{infte[oytﬂy(t)a Z-nufte(thh]y(t)a e Z‘nfte(tq,w]y(t)}
y(T/?) = max{supte[o,tl]y(t)> Supte(tl,tz]y(t)7 ooy SUPte(tq,w]y(t)}

(3.7)

By the second equation of (3.3 and (3.6) and the first assumption of Theorem [3.2.1]

we have

[a®)At+n[[L,0+g) < [ [b(f)efvp(x@l)) + 53)

= exp(x(n) fo At+f m

At

At InTT14 1 i w c(t) At
and x(n;) > l;; where [; := ln(fo Hn T (90)—Jo” gy )

Jo  b(t)At

using the second inequality in Lemma [3.1.1] we have

a(t)

Y

fo |22 ()| At > z(m1) <fo la(t |At+f0 (At +In ], (1 +gi)>

H1 = ll 7M1.

v

(3.8)
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By the first equation of (3.3]) and (3.6) we get

Y a(t)At+Hin [T i
513(51) < l2, where [y := ln<fo (t) fi—i— tl)_IAtl(l-i-g)) ‘

using the first inequality in Lemma [3.1.1| we have

a(t) Sx(&) + [y |22 ()| At

IN

<fo HIAL+ [ a(t)At +In T (1+gi)>

H2 = l2 + Ml.

IN

(3.9)

By (3.8) and (B.9) maxcpo,u|z(t)] < By := max{|Hi|,|H,|}. Using (3.9), second
equation of (3.3) and first equation of (3.7), we can derive that

f(t)exp(z(t)) w f(t)ef2
f d( )At —In HZ 1 711 < fO 5lea}p( (t))+m! exp(y(t) At < f[) Blef2 tmlexp(y(£2)) At

~ Bl H2+mlexp(y (€2)) fO

Therefore

5 (e o
Py(&)) < ( s At—znnz 5 )

By the assumption of the Theorem [3.2.1) we can show that

fO At — fO At —In Hq ( z)) > (0 and y(fg) S L1

where L; := ln( (f de Z{O—l{l(lt_)[i — o H2)>

Hence, by using the first inequality in Lemma [3.1.T]and the second equation of (3.3),

y(t) <y(&)+ Jy 2 @)lAt < y(&) + (fowld( )AL+ [ d(t) At —In L 1(7}))

< Hs := L1 + M.
(3.10)

Again by using the second equation of (3.3) we can derive,

w t t
f d( )At —ln Hz 1(7“1) 2 fO av4pu ea{;tg(a):?f)p)gilz‘)ewp( (t))A
w F(t)ef
=z o a H1+muezp<y<nz>>At

eH1

av+fpue H1+m exp(y(n2)) fO t)At
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ex 1 e fi f( ueth _ qu
p(y(n2)) = <f0 At—anz 1 (72) 7 )

Again using second assumption of Theorem [3.2.1] we obtain

eH1</O f(t)At—ﬁ“(/o d(?ﬁ)At—lnE(n))) —a“(/o d(t)At—lnil;[l(ri)> >0

! f f(H)At u,H u
> — 0 _ .
and y(772) LQ where LQ ln( <fw A At—In Hq ) 5 et «

By using the second inequality in Lemma|3.1.1}

y(t) > — Jo 12 (@t)]At
> y(ne) — (fo“’yd( )| At + [P d(t) At — In[]L 1(7«2)) (3.11)
Z H4 = L2 — MQ.

By (3.10) and (3.T1) we have mawzicpo,w)|y(t)] < B = max{|Hs|,|Hs|}. Ob-
viously, By and B, are both independent of \. Let M = B; + By + 1. Then

xXr
MAT te[0,w)

<M.LetQ—{

x
eX:H |
Y

<M} and

Y Y

x x
verifies the requirement (a) in Theorem|3.1.1, When € KerLNox, is

a constant with

H = M, then

({jﬁM@_“@“”@—a@ﬂﬂﬁxxﬁuMMwA*””“i“L“mlvwlo})

w f(s)ezp(a)
Jo =d(8) + SErTE@enp) tm@eanm A8 + 0 Il (i) 0

w f(s)exp(z(s)) q )
fO 7d($) a(s)+B(s)exp(x(s))+m(s)exp(y(s)) AS+ZTL Hi:l(rl)

[ Iy’ als) = b()exp(e(s)) = srrrammtia ity A + i [T (L + 6) } |
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x 0
where J : ImV — KerL such that J , - =
Y 0 0 Y

Define the homotopy H, = v(JVC) + (1 — v)G where

o x B fow a(s) — b(s)exp(x)As +In [, (1+ g:)
B f(s)ezp(z)
Y fO o s)+,8(s)exp(x§’+m(s)e:rp As+in Hz 1(Tl)

x
Take D.Jgs as the determinant of the jacobian of G. Since € KerlL, then

Y
jacobian of G is
xfo 0
w —e”f(s) “)?f(s)B(s) e’e? f(s)m(s)
Jo ()1 B(s)e® tm(s)ev As+ fo (a(s )+ﬁ(b)ez+m(5)ey)2AS fo (a(s)+B8(s )€I+rn(a)ey)2A

All the functions in jacobian of G is positive then sign D J is always positive. Hence

deg(JC, QN KerL,0) = deg(G,2N KerL,0) = Z signDJg ( v } ) #0.
Yy

0

0

Thus all the conditions of Theorem [3.1.1] are satisfied. Therefore system (3.I]) has at

least a positive w-periodic solution. 0

Corollary 3.2.1 If a(t) = 0 in the system (3.1),

Jo a®)At +InTTL,(1+ g:) —

Jo fO)AL = pu(f, d(t)At — In ]!, (r:)) > 0 is satisfied then the system (31) has

at least one w—permdlc solution.

Theorem 3.2.2 If same conditions are valid for the coefficient functions in system

(3.1); except a(t) where o(t) > 0 and

(fo Afrz)+27(ztl'[A§’t1(1+gz)>ea;p[— (fo la(t)|At + [J" a(t)At + In[]L (1+gi)>
(Jo FOAE=pU(f5" d()At = In [T}, (r:)) — a*([fy dt)At —In i, (r:)) > 0

is satisfied then there exist at least a w-periodic solution.
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Proof. First part of the proof is very similar with the proof of Theorem [3.2.1 By

(3-2), (3-3) and (3.6)

_w F(eapla(t))
Jo d®)At = InTTL () =[5 zma (o) 0 <(>)At
< exp(z(m)) [} L at

By B3) [, d(t)At — InT]¢_,(r;) > 0. Also by the assumption of Theorem m

f(t), a(t) > 0. Then we get z(n;) > Iy, [ := ln<f0 ok AL lnl‘[m(m))

and using the second inequality in Lemmam we have
z(t) > — [y a2 ()] At
> (fo la(t)|At + [ a(t)At +In i, (1 —i—gi)) (3.12)

= I‘jl :llfMl

By the first equation of (3.3)) and (3.6)

Jo aAt+In[[L(1+g) = [ b(t)ewp(z (61))
exp(x(&1)) fy b(

Then we get z(&;) < I where [y == (fo AftHnHE‘ 1(1+gz)> _
0

Using the first inequality in Lemma [3.1.1] we have

z(t) < z(&1) + [y a2 (t)|At
< <f0 la(t)|At + [ a(t)At + In T (1+gi)> (3.13)
S ﬁg = l~2 +M1

By (3:12) and (3.13) mazicjo|z(t)| < By := maz{|H,|,|Hs|}. From the second
equation of (3.3) and the second equation of (3.7)), we can derive that

w w f(t)exp(z(t))
fO d(t)At — ln ngl(n-) S 0 WZ}}@))AI&
2
S fO m(t) exp( ( ))At
- ewp(y §2 ) fU At

Therefore

ex e fo ot
P(y(&)) < <f0 d(t )At —In H,-l(n-))
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Since 2, f(t), m(t) > 0, then y(&) < L

- . o f AL
where L, :=In <€H2 (f do At anZ 1(7"1)))'

Hence, by using the first inequality in Lemma/[3.1.1]and the second equation of (3.3)),

y(t) < y(&) + [y 1y ()AL
< y(&)+ <f0w|d( )AL+ [ d At—lnH_l(n)> (3.14)
S ]’.?3 = El + Mg.

By the assumption of Theorem there exists ng such that Vn > ng
(fof%(g(itﬁi:znj? t%é))m) exp l - (fo |la(t)|At + fo At +In T, (1+ gi)>
(Jo FOAL =B ([ dO)AL = In[T{_, (1)) — a*(fy d(t)At — In T (i) > 0

is true. We need to get H, such that V ¢ € [0, w]r y(t) > H,. Let us assume there
exists ¢, s € [0, w]r such that y(s) > x(t) — In(ng). Then by using (3.6) and (3.7) we

obtain
y(m) = y(s) > x(t) — In(ng) > x(&) — In(ng) > Hy — In(ng) := M.

If there does not exists such t,s then V ¢, s € [0, w]r, y(s) < x(t) — In(ng). Also from
the first equation of (3.3)), we have

Jo a®)At+InTT (14 g;) < expla(m)) [; b&)AL + exp(y(n2)) [ = a(t
< exp(x (fo AL+ (1/no) [, = a(t)

By using first inequality in Lemma(3.1.1} we have exp(x(t)) > K, where

o fowa(t)At+lan1(1+gz> ( (/ la(t |At+/ (t)At—i—lnf[(l-l—gi))).

( Iy b(#)At + (1/no) [y LAt =t

Using the second equality in (3.3 and the assumption of the Theorem[3.2.2] we obtain

w 4q K w
/0 d(t)At—lng(ri)z PN Qi m— oy s /0 f(t)At.
This implies y(n2) > M?, where
M = m[(m&iﬁzﬁfrzzf}éés;tzz;m)ew[ (fo 0180+ a8+ 0T 10
(S fe)At— ([, dt)At — In T ([ dt) At —In T, (r ))]
—In(m*(f;" d(t)At — In T2, (r2))).
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Thus, according what we have done above y(7 4 = min{ M}, M?}. Using

2) > M
second inequality in Lemma we have y(t) < H, where

Hy =M, — (fow |d(t)|At + fo t)At — In [, (r:)))-

Thus maziefow),[y(t)| < By := max{|Hz|, |H4|}. Obviously, B, and B, are both

. - x
independent of \. Let M = B; + By + 1. Then maw;cjo,u) < M. Let
Y
Q= { e X : ‘ < M } then (2 verifies the requirement (a) in
) Y
Theorem Rest of the proof is similar to Theorem [3.2.1] O

By using the informations from [10] and [50] we give the model of the example as

follows:

Let there are two insect populations, one of them is the predator, the other one is the
prey. While in a season, for instance during the six warm months of the year both
insects has a continuous life cycle and they die out in winter, while their eggs are
incubating or dormant, and then they both hatch in a new season and both of them
giving rise to non-overlapping populations. This situation can be modeled using the

time scale

T=J@2k 2k +1], with w=2
kEZ

Here impulsive effect of the pest population density is after its partial destruction by
catching, poisoning with chemicals used in agriculture and some other negative ef-
fects of environment on the prey (can be shown by —1 < g5 < 0) and impulsive
increase of the predator population density is by artificially breeding the species or
releasing some species (r; > 0). In addition to these, if the model assumes a Bed-
dington—DeAngelis functional response as in (3.1)) and if the assumptions in Theorem

[3.2.1] are satisfied then there exists a 2-periodic solution of (3.1

Example 3.2.1 T = [2k,2k + 1], k € N k start with 0.

2 (t) = (0.2sin(27t) + 0.3) — (0.2sin(2nt) + 0.2)exp(z) — T 5sin(2m)4£g;;fi1?;,%11?85%?582;;&)+ezp(y)7
A . (4cos(27t)+6.5)exp(x)
Yy (t) _(03‘%”(27Tt) + 1) + (0.5sin(27t)+0.7)4+(14-0. 500@(27rpt))e'cp(w)+exp(u) it 7& tk

tk) = ln(l + gk)
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Impulse points: t, = 2k + 1/4, to = 2k + 3/4 and q = 2.

g1 = 670.01 o 1, Go = 670.01 —1

1= %l py = €01

Example [3.2.1] satisfies all the conditions of Theorem [3.2.1] thus it has at least one

periodic solution.

- AR o
: rs]

AN

-0.2
0.5
—-0.25
o
—-0.5 —-0.3
20 40 60 o 20 40 60

Figure 3.1: Numeric solution of Example [3.2.1] shows the periodicity.
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Example 3.2.2 T = [2k,2k + 1], k € N k start with 0.

2 (t) = (0.2sin(2nt) + 0.3) — (0.1sin(2nt) + 0.2)exp(z) — (Sm(%t)“)ﬁ?ﬁ‘(’fézxgzﬁ(gzp(z)+4ezp(y)7
A _ . (4cos(27t)46.5)exp(x)

Y (t) - _(035“7’(27”6) + 1) + (sin(27rt)+2)+(1+0A5cos(277t))Z;xp(x)+4exp(y) ’ t 7& 122

Az(ty) = In(l + gi)

Ay(ty) = In(rk)

Impulse points: t; = 2k + 1/4, to = 2k + 3/4 and q = 2.

gr=e 00 1 gy=e 00 ]

_ 0.1 _ .01
pl_e :p2_e

Example [3.2.2] satisfies all the conditions of Theorem [3.2.2] thus it has at least one

periodic solution.

. R
A =

Figure 3.2: Numeric solution of Example [3.2.2] shows the periodicity.

37



Definition 3.2.1 [[/2l] Let ) be a nonempty open subset of R, then the function f is
said to be Lipschitz continuous with respect to the first variable if x € ) and if for
every a,b € T such that a < b and L > 0 such that

1f (21, 8) = f22, D] < L[y = 22|,

forall x1, x5 € Q and for all t € [a,b)r.

Lemma 3.2.2 Ler z(t), u(t) € C!,(T,R). Consider the following inequality and
equation x> (t) < (=) f(t,z(t)), u?(t) = f(t,u(t)) ifulte) = (<)z(to) and f(t,v(t))
is Lipschitz continuous with respect to v(t), then x(t) < (>)u(t).

Proof. By contradiction, we get the result. If z(7") > (<)u(T’) for some T" > t;, then
set

t) = sup{t: to <t <Tandz(t) < (>)u(t)}.
Thenty < t; < T, 2(t) < (>)u(ty), and z(t) > (<)u(t) for t > t,.
Fort; <t < T, |o(t) — u(t)| = a(t) — u(t)(|u(t) — 2(t)] = u(t) — z(t)) so we have
(x —uw)2(t) < ft.2) = f(t,u) < |Ll|lz —ul = |L|(z —w).
((u—2)2(t) < f(t,u) = f(t,2) < |[Ll]u — 2| = |L](u — ).

By Gronwall’s inequality [2] (applied to x — w on [t;, T], with (z — u)(¢t;) < 0),
(x —u)(t) < 0on [t;,T], since er(t;,t) > 0.

(By Gronwall’s inequality [2] (applied to u — « on [t;, T, with (u — z)(t;) < 0),
(u—x)(t) < 0on [ty,T], since e (t1,t) > 0.)

Hence there is a contradiction. O

Lemma 3.2.3 Consider the below equations

A1) < (2)alt) - MOeap(a(t)), 1 # by
Az(ty) = In(1+ gx)

ul(t) = alt) — b(t)exp(u(t)), t # ti
[
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Proof. By using induction we try to prove the lemma. First of all since

2(t), u®(t) < a(t), then the solutions z(#), u(t) are bounded on a bounded interval.
therefore on the interval [0, ¢;]r exp function becomes Lipschitz continuous and since

b(t) is periodic we can apply Lemma Then u(t) > x(t) on [0, t1]r.

Thus u(ty) + In(1 + g1) > (t1) + In(1 + g1). Similarly in the interval [t1, ¢5]r since
u(tﬁ—) Z $(t1+), then U(t) Z ZL’(t) on [tl,tg]']r.

Therefore u(ts) + (n(1 + go) > x(t2) + In(1 + g2). Equivalently, u(to+) > z(ta+).

Let us also assume that u(¢) > x(t) is true on [t,,_1,t,]r. Then

u(ty,) + In(1 + g,) > x(t,) + In(1 + g,), In other words u(t,+) > x(t,+) by
the Lemma u(t) > x(t) on [t,, t,1|r- Hence u(t) > x(t) on T. Other part is

similar.

Lemma 3.2.4 If [ a(s) —

“eds + in [T, (1 + g:) > 0,

m

— [y d(s)ds + InT[{(r;) = 0, T = R then all solutions y(t) are bounded below,

x(t) are bounded above and below.

Proof. By the first equality of (3.1)), we have
2(t) < a(t) = bt)exp(x(t)), t # te
Az(ty) = In(1+ gx)

Then by Lemma z(t) < u(t). Since [ a(s)ds+In [, (1+g;) > 0, then u(t)
is a periodic solution by Theorem [3.2.1| which is globally attractive by Lemma 2.2 in
[50]. Hence x(t) is bounded above.

By the first equality of (3.1)) , we obtain




Aﬁ(tk) = ln(l + gk)

By Lemma 3.2.3|2(t) > @(t) and since [ a(s) —

ds—l—lnH 1(14+¢;) >0, then
@(t) has a periodic solution which is globally attractive by Lemma 2.2 in [50]], then
x(t) is bounded below.

m(s

By the second equality of (3.1) , we have
Y(t) > —d(t), t # b
Ay(ty) = Inry

Then

y(t) > y(0) — /Ot d(s)ds +In H rr > y(0).

0<trp<t

Hence y(t) is bounded below.

0

Remark 3.2.1 For any arbitrary T if we can find u(t) in Lemma is globally

attractive, then Lemma will also be true.

Lemma 3.2.5 If [ a(s) — %ds +In][_,(1+¢) > 0,0 <ry <1foreachkand
T = R then all solutions (exp(x(t)), exp(y(t))) are bounded above and below.

Proof. By Lemma exp(x(t)) is bounded above and below. By the second
equality of (3.1)), we have

—d(t)eap(y(t))+ £(8) /m(t)eap(
y(t) < R R A

Ay(tk) =lIn Tk

Then
£)) + f(&)/m(t)exp(z(t))
)-
)

k
Since z(t) is bounded above and if exp(x(t)) < S;, we obtain

leap(y(t))) < —d(t)exp(y
exp(y(te+)) = rrexp(y(t

(
)

lexp(y(t)] < —d(t)exp(y(t)) + f*/m'S,
exp(y(tr+)) = rrexp(y(te)).

By [36] Theorem 1.4.1 we have
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exp(y(t)) < exp(y H rkexp</ - ) / H rkemp(/ d(J)dJ)f”/mlSlds.

O0<tp<t s<tp<t
At the beginning we assume that fo s)ds > 0 also by [50] Lemma 3.2 since r < 1
for each k and taking f*/m'S; = M, we have

exp(y(t)) < exp(y(0)) H0<tk<t rp eltPu=et 4 NfeltDw f(f Hs<tk<t ry. e dg

< exp(y(0)) (6””‘“‘“ + M2 (1 - 6‘“))

< exp(y(0)) <el+Dw - —Mef”W) .

Here D = {|d(t)| : t € [0,w]} and ¢ = min{ [, d(s)ds/w,1/w} therefore apper-
antly exp(y(t)) is bounded above. Hence y(t) is bounded above. 0 < exp(y(t)), then
(exp(z(t)), exp(y(t))) are bounded above and below. O

Lemma 3.2.6 If T =R, ["a(s) —
each k, and

Li(149) >0,0 <7, <1for

— fo s)ds+In T, (r:) + fo ol s)+5{s()z)1sim(s ds > 0, where s is the infimum of

the solution

u' = a(t) — (t)exp(u(t)), t 7 ty
AU(ty) = In(1 + gg),
Sy is In of the supremum of the solution
[exp(v(t))] = —d(t)exp(v(t)) + Sif(E)/m(t)
exp(v(tpt+)) = reexp(v(tr)),
and Sy is exp of the supremum of the solution
u' = a(t) = b(t)exp(u(t)), t # bk
Au(ty) = In(1+ gx),

then all solutions (exp(x(t)), exp(y(t))) are bounded above and below with positive

constants.

Proof. By the second equality of (3.1), we have

f(t)s
Y (t) 2 —d(t) + amsme mmss ¢ 7

Ay(ty) = In 7.
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Then by assumption

y(t fo +5(J[()Z)fim(8)52 ds—+In H0<tk<t rr > y(0). Hence exp(y(t))

is bounded below with a posmve constant. By Lemma we know that exp(y(t))

is bounded above with a positive constant. Also exp(z(t)) is bounded above and

below with a positive constant. 0J

Remark 3.2.2 From [29] the definition of globally asymptotically stable solution is

same with the globally attractive solution.

Corollary 3.2.2 By [50] Theorem 4.4, if the conditions of Lemma[3.2.6|are satisfied,
then solution of system (3.1)) is globally asymptotically stable.

Lemma 3.2.7 Ifa(t) =0, [’ a

;1:1(1 + gi) Z 07

min[oyw}(—d(t) + f(t)/5(t)) >0

fow ( g((j))ﬁ(j);ré()‘g;lds + In[]L, ri > 0, where s1, Sy are as in Lemma |3.2.6| for

eachi0 < r; < 1and T = R then all solutions (x(t),y(t)) are bounded above and

below.

Proof. By the second equality of (3.1)), using minjg . (—d(t) + f(t)/B6(t)) > 0
and by Lemma since z(t) bounded above and y(t) is bounded above (let say
s1 < z(t) < Sy and y(t) < Sy and s, Sy, and S; is same as in Lemma [3.2.6)), we

have

/ - f(t)exp(x
y(t) = ~d(t) + S e m t# b
_ aBE L) ety A rieranty i1
B eap(@(t) +mDezp(y(D) g
S _(CdOBOIW)eplalt) _ _ diymit erp(a) 41
= Bl esu) ~ OO e k
S CdpErH @ dm(esplute) 4 4 4

ﬁ(t)51+m(t)52 /B(t)sl

Ay(tk) =lIn Tk

Therefore let us consider the equation

pA(t) = LIS )1 _ dimepo(®) 4 4 4,

B(t)s1+m(t)$2 ﬂ(t)81
A@(tk) =In Tk.
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Therefore by Lemma 4 y(¢) > ©(t) and since

I ( 5((5))51 (s ﬁ;ré Ss)jlds +InJ]l, 7 >0, then y(¢) is bounded below. Other parts are

same with Lemma[3.2.4] Hence (exp(x(t)), exp(y(t))) are bounded above and below

with positive constants. [

Corollary 3.2.3 If conditions of Lemma are satisfied, then automatically Theo-
rem[3.2.1)is satisfied. Also by [50] Theorem 4.4, if the conditions of Lemma are
satisfied, then solution of system (3.1) is globally asymptotically stable which means
if the conditions of Lemma [3.2.7| are satisfied then there is a globally asymptotically

stable periodic solution.

Corollary 3.2.4 For the non-impulsive case of system (3.1) on R

if a(t) =0, fo

mingw(—d(t) + f(t)/B(t)) > 0, then there exits a periodic solution which is per-

manent and globally attractive.

Theorem 3.2.3 [f all the coefficient functions in system (3.1)) is positive, w-periodic,
from C,4(T,R) and impulses are 0; also
(2 )ewp(p(a = b* (a" /b (exp(pa™))) — ¢ /m").(f3" F)AL = B (fy" d()AL) — o™ (f, d(t)AL) >

w(t), for the

is satisfied then there exist at least a w-periodic solution. |1 = supy ),

time scales whose grainess function is bounded over this Time scales.

Proof. First part of the proof is similar to Theorem [3.2.1] only difference is the zero
impulses. If the assumption of Theorem is true then there exists ny such that for

alln > ng

(4 (1/no) r)eap(p(a — b“(a“/bl(eﬂfp(ﬂa“))) —ct/m'))
(Jy FO)AL = ([, d(t)At)) — a*( [, d(t)At) >0
is satisfied. Also let us assume there exist s, ¢ € [0, w]r such that y(s) > x(t)—In(no).

Then similar to proof of Theorem we can find M i

x
If such s,t does not exist, then we have y(s) < x(t) — In(ng). Since € X, then
)

x(t) has a maximum and a minimum. Therefore by using the first equation of (3.1
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and assuming (%) is the minimum of (). We have

A 7 Ay c(t)exp(y(l))
02 (r0)7 = all) =bltenlel0) = S Heap(a®)) + mDeap(y(@)

Thus we get
ad < blexp(z(t)) + —cuexz(ly(t))
< (0 + (1/ng)et /ol )exp(x(t)).

____a
bu+(1/ng)cv/at "
we interested with the maximum of the solution. Let a(f) be the maximum of x(t).

If ¢ is a right dense point then exp(z(co(f))) > If £ is right scattered,

0 = (w (i)™
= a() — b(Dexp(z(f)) — —cDezplu®)
a(t)+8(t)exp(z(t))+m(f)exp(y(t))
= a®.

Then exp(x()) < a*/b'. If t = o (%), then exp(x(a(f))) < a*/b.

If t # o(t),then exp(x(o(t))) < a*/b (exp(pa®)).

Thus

cap(a(o(®) = gerrfmmenn(u(a — (o /¥ (exp(pa®))) — ¢ fm)
= Kl.

Using (3.3) and (3.7)) above results we obtain

/0 d(t)At > o T B+ mrenp(y(m) /0 f(t)At.

This implies
y(ie) > In [(Wwewp(u(al — b*(a" /b (exp(pa))) — C“/ml)))

(2 F)AE = B [ d()AL) — o ([ d(t)AL) | — tn(m™( [} d(t)At)) = MZ.

According to the above findings we have y(n,) > M, = min{M}, M2}. Using
second inequality in Lemma we have y(t) < My — (2 [," d(t)At)) = H,. Thus
MaTiefo,w). |Y(1)| < max{|Hs|,|H,|}. Rest of the proof is similar to Theoremm
0J
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Corollary 3.2.5 In Theorem[3.2.3]if we take T as R then we get Theorem 3 in [26]].

Example 3.2.3 T = [2k, 2k + 1], k € N k start with 0.

22 (t) = (0.1sin(2rt) +0.2) — (0.Lsin(2mt) +0.25)exp(r) — GammaraiasionseCremnn

A _ . (4cos(27t)+6.5)exp(x)
Y (t) - —(O3szn(27rt) + 1) + (0.23in(27rt)+0.2)+(1+O45cos(27rpt))e:cp(x)+eacp(y) :

Example [3.2.3] satisfies all the conditions of Theorem 4, thus it has at least one peri-

odic solution.

LTS Wwwrrwwww
N 0.3 ff

> y(m) o x(m)

' LAV -1 ff”W”W”W”W””
0 ~1.2})/

Figure 3.3: Numeric solution of Example [3.2.3|shows the periodicity.
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CHAPTER 4

BEHAVIOR OF THE SOLUTIONS FOR PREDATOR-PREY
DYNAMIC SYSTEMS WITH BEDDINGTON DEANGELIS
TYPE FUNCTIONAL RESPONSE ON PERIODIC TIME
SCALES IN SHIFTS

4.1 Preliminaries

Definition 4.1.1 [/|] Let the time scale T including a fixed number t, € T* where T*
be a non-empty subset of T, such that there exist operators d=+ : [tg; 00)r X T* — T*

which satisfies the following properties:
P.1 With respect to their second arguments the functions =+ are strictly increasing,
ie., if

(So,v), (S0, s) € Dx 1= {(u,v) € [tg,00)r x T* : 6£(u,v) € T*},

then
So < v < s implies §+(Sp,v) < 0£(Sy, ),

P2 If (S1,s), (S2,s) € D_ with Sy < Ss, then §_(S1,s) > 0_(Ss,s), and if
(S1,5), (Sa2,s) € Dy with S1 < 52, then 6, (S1,s) < 04(52,s),

P3Ifv € [to;00)r, then (v,ty) € Dy and 6, (v,tg) = s. Moreover, if v € T*, then
(to,v) € Dy and 04 (to,v) = v holds,

P4 If (u,v) € Dy, then (u, 6+ (u,v)) € Dy and 6+(u; 9+ (u,v)) = v, respectively,
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P51If (u,v) € Dy and (s,01(u,v)) € Dy, then (u,0+(s,v)) € Dy and
05 (5,04 (u,v)) = 04 (u, 0x(s,v)), respectively.

Then the backward operator is §_ and the forward operator is §, which are associ-
ated with tq € T*(called the initial point). Shift size is the variable u € [ty; 00)T in
d1(u,v). The values 0, (u,v) and d,(u,v) in T* indicate u units translation of the
term v € T* to the right and left, respectively. The sets D, are the domains of the

shift operators 0§, respectively.

Definition 4.1.2 [[/|] Let T be a time scale with the shift operators 6+ associated with
the initial point ty € T* . The time scale T is said to be periodic in shifts 6+ if there
exists a q € (to, 00)y~ such that (q,t) € Dy forallt € T*. Furthermore, if

Q :=inf{q € (ty,00)r~ : (¢,t) € Dy forallt € T*} # ¢

then P is called the period of the time scale T.

Definition 4.1.3 [|] (Periodic function in shifts 0y and d_). Let T be a time scale that
is periodic in shifts 0, and 6_ with the period Q. We say that a real valued function g
defined on T* is periodic in shifts if there exists a T e [Q, 00) 1+ such that

9(6:(T,1) = g(t).

The smallest number T' € [Q, 00) 1+ such that is called the period of f.
Definition §.1.1] Definition 4.1.2]and Definition 4.1.3|are from [1].

Notation 1 0% (T, k) = 6.(T,0.(T, K)),
53—(Ta '%) = 5+<T7 5+(T7 5+(T7 K’)))?

(T, k) = 04 (T, 6. (T, 6, (T,5,(....))).

Lemma 4.1.1 Let our time scale T be periodic in shifts and for eacht € T*, (67 (T, t))*
L2+ ) At

is constant. Then e TR also constant V' € T,

5+ (T’H)

where . = 07(T',to) for m € N and mes(6,(T,k)) = [ 1At. Here u(t) is a

periodic function in shifts.
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Proof. We get the desired result, if we can be able to show that for any

K1 # Ko (K1, kg € T).
JorEE @ Aar Ry ) At

K2

mes(0(T, k1)) mes(8,(T, ka))’

Since T is a periodic time scale in shifts (WLOG k9 > k1) there exits n € N such
that

ko = 07 (T, k1). Hence it is also enough to show that

5.4 (T k1) 04 (1,67 (Tyk1))
f,‘ij ' U(t)At B 51(T,f{1) u<t)At

mes(0+(T, k1)) mes(84(T, 0% (T, k1))

Because of the definition of the time scale and u, u(x1) = u(67 (T, k1)),

u(04(T, k1)) = w(8(T, k1)) and for each t € [k1, 6, (T, k1)), u(t) = u(d(T,t)).
By using change of variables we get the result. If s = 67 (7, t), then by the assumption
of the lemma As = ¢At. When s = 0% (T, k1), thent = 0™ (T,s) = x; and when
s = 0" T, k1), thent = §" (T, s) = 8, (T, ky).

6i+1(T7"€1) 6+(T7“1)
/ u(s)As = 6/ u(t)At,

61(T,m) K1
5 (Tok1) 54(Tyk1)
/ 1At = 6/ 1At,
éi(T,lil) K1

and 5 5
JEE A @ [T ) At

K1

mes(0, (T, k1))  Emes(6,(T, k1))’

Hence proof follows.

O
4.2 Main Result
The equation that we investigate is:
Arpy — c(t)exp(y(t))
v2(t) = a(t) = b(t)exp((t) — SmTa@em(e) tmEemG®) @.1)

Apy F(teap(z(t))
y= () = —d(t) + T @) TG D)
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In equation (4.1), let a(t) = a(d+(T,t)), b(0+(T\,1) b
d(0+(T,1)) = d(t), [(0<(T,1)) = [(t), a(0=(T1)) = a(t), B(0+(T,1)) = B(1),
(6T, 1)) = m(?),

~—

and [7*T a)at, [T b AL [T d($)AL > 0. 81 = mingeps, e B(0),
m' = Minep s, (rom(t), B = maieps, ) B), m" = mazieps, o) m(t),

such that k = 67 (T, ty) for m € N. m(t) > 0 and c(t), f(¢),b(t) > 0 a(t) > 0,
B(t) > 0. Each functions are from C,4(T, R).

Lemma 4.2.1 Let t1,ty € [k,0,.(T,k)] andt € T. k is defined as in Lemma 1. If

g : T — R is periodic function in shifts, then

0+(T.k) A 64 (T.k) A
olt) < gltr) + / A(s)As  and  g(t) > glts) — / 19°(s)| As.

Proof. We only show the first inequality as the proof of the second inequality is
similar to the proof of the other one. Since g is periodic function in shifts , without
loss of generality, it suffices to show that the inequality is valid for t € [k, 0, (T, k)].
If t = t; hen the first inequality is obviously true. If ¢ > ¢,

g(t)—g(t1) < lg(t)—g(t1)| =

t 04+(T,k)
< [lreas< [ el
t1 K

/t lt 4 (5)As

Therefore g(t) < g(t;) + ff(T’ﬂ) 9% (s)|As.

Ift<t

t1 04 (T,k)
altr) — g(t) > —lg(t) — g(t)] = — > - / 192 ()| As < — / 192(5)|As,

/t ’ 9°(5)As

that gives g(t) < g(t1) + f?(T’R) |92 (s)|As.

The proof is complete. U

Theorem 4.2.1 In addition to conditions on coefficient functions and
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m

ST a(ae— [+ L0 A 54 (Tyk 54 (T
( T A O— fexp| — fl;’( )]a(t)]At—kfnJ’( )a(t)At

'(f’jJr(Tﬁ) f(t)At o ﬂu(ffer(T,fi) d(t)At) . Oéu(f:Jr(Tﬁ) d(t))At >0

Lemmal4.1.1 iff’fJ’(T’H) a(t)At — ff(T’n) C((tt)) At > 0 and

are satisfied then there exist at least a d,.-periodic solution.

Proof. X = ! € C(T,R?) : u(6+(T,t)) = u(t),v(0+(T,t)) = v(t) p with
v
the norm:
u
= maxte[t0,5+(T,t0)]T(‘u(t)‘7 ‘/U(t)’)
v
Y = e C(T,R?) : u(6+(T,t)) = u(t),v(6+(T,t)) = v(t) p with the norm:
v
u
= maxte[to,5+(T,t0)]1r(‘u(t)‘7 ‘U(t)’)
v

Let us define the mappings L and C' by L : DomL C X — Y such that

u UA
I —
v UA
and C' : X — Y such that
[ B c(t)eap(v(t))
ol 1) 2 | o® —btexp(ult)) = Grameatut) m@emtm
N F(Dexp(u(t))
v i d(t) + T OFE D) Fmearom)
U U c1
Then KerL = : = , ¢; and ¢4 are constants.
v v Ca
u fj* TR () At 0
ImL = : 5y (Tr) =
v Ik v(t)At 0
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ImLisclosedin Y. Its obvious that dim Ker L = 2 To show dimKer L = codimImL =
2, we have to prove that KerL & ImL = Y. It is obvious that when we take an el-

ement from Ker L, an element from Im L; we find an element of Y by summing

u
these two elements. If we take an element € Y, and WLOG taking u(t)
v

we have, f?(T’”) u(t)At = I where [ is a constant. Let us define a new function

y- Since

g=u-— m ) is constant by Lemma (4.1.1|if we take the

I
mes(04+(T,k)

integral of ¢ from x to 6 (T, k), we get

64 (T,k) 04 (Tk)
/ g(t)At = / u(t)At — 1 =0.

u
Similar steps are used for v. € Y can be written as the summation of an
v

element from Im L and an element from Ker L. Also it is easy to show that any
element in Y is uniquely expressed as the summation of an element Ker L and an
element from Im L. So codimImL is also 2, we get the desired result. Hence L is a
Fredholm mapping of index zero. There exist continuous projectors U : X — X and

V :Y — Y such that

U u B 1 fff* T () At
v mes(04(T, k)) fff*(T"{) v(t)At
and
el 2 1 [T ) At
v mes(04(T, k)) fff* TRy () At

The generalized inverse Ky = ImL — DomL N KerU is given,

t 0+ (T,k) pt
KU u _ f/q U(S)AS B mes(&i(T,n)) fn+( ) f/{ U’(S)AS
o t 54(Tk) rt
v f/{ U(S)AS o mes(541r(T7n)) fn+ fn U(S)AS
u
VC =
v
0+(Tox) o(s)ewp(v(s))
;( e a(s) = b(s)exp(u(s)) — FTTaETeantars) ) tm o@D )
04+ (T s)exp(u(s
mes(0+ (7T, k)) [T _g(s) + a(s)+5(s)ej;;()u(;;gfni()s)exp(v(s))AS
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Let

it (t)exp(u(t) )
(1) = bOeep(ult) = Sy T B eep(u(t) + mBeep(e(®) ~ "
F(t)exp(u(t)) B
U+ T BDeap(u(t) + mDeape®) ~ 2
| st ) o(s)eap(v(s)) -
mes(MT,n))/H als) =b(s)exp(uls)) = T B s eap(uls)) + m(eeplo(@) - - O

and

| SN F(s)eap(u(s)) A
mes(65 (T, 7)) / W) ¥ S T B)eapluls)) + m(@emp(m) >~ 2

oye

Koli-wvc| ||| =Ko L

v 02 - CQ
_ f: C1(s) — Cy(s)As — m f f C1(s) — C1(s)As
Ji. Cals) = Co(8)As — it T [1 Cy(s) — Cals)As

Clearly, VC and Ky (I — V')C are continuous. Since X and Y are Banach spaces,
then by using Arzela-Ascoli theorem we can find Ky (I — V)C( §} is compact for any
open bounded set 2 C X. Additionally, VC(() is bounded. Thus, C is L-compact
on 2 with any open bounded set 2 C X.

To apply the continuation theorem we investigate the below operator equation.

Ay _ c(Dezp(u(®))
z2(t) = Ala(t) = b(t)exp(z(t)) — a(t)+5(t)exp(m(t’;)im(t)mp(y(t))]
] 4.2)

A | J()eap(a(t))
yo(t) = A = d) + ST Eweaa) T e ®)

x
Let € X be any solution of system (4.2). Integrating both sides of system
Yy

(@.2)) over the interval [0, w] we obtain,

04+(T,k) 64 (T\k) c(t)exp(y(t))

Jo T aA = [T b(exp((t) + smmmeat ) mmamm O
54 (T) 54 (T,5) F(B)eap(a(®)

Jo T AOAL = [T et ) rm ey )

4.3)
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From (@.2)) and (@.3) we get

ST A mlar < A {ff”m) la®)| At + [ b(t)eap(e(t)) + a<t>+5<t>eii3§?t?§i‘2?t)exp<ym>At]v
< A{ L2 a() At + [0+ a(t)At]
< [T a) At + [7H T a(t)At == M,y
a.4)
5+(Tor) | A 04 (T,k) 64 (T'k) f(t)exp(x(t))
fﬁ |y <t>|At =7 [fﬁ |d(t>|At * f"‘ a(t)+5(t)6mp(x(t))+m(t)ew(y(t))At
< A [ [Ny At + [T a) At
< Srrta At + [T d(b A= M,
4.5
T
Since € X , then there exist ;,&;, © = 1,2 such that
Yy
r(&1) = mingeiier,s, (0T (), (M) = MaTicpelrs, (T.x) 2 (1), 4.6)

y(fz) = minte[te[m,5+(T,n)]y(t)a y(m) = maxte[te[n,5+(T,n)]y(t)

If & is the minimum point of x(¢) on the interval [k, d, (T, k)| because z(t) is a
function that is periodic in shifts for any n € N on the interval [67 (T, k1), 0 (T, k1))
the minimum point of x(¢) is 6% (7, &) and z(§;) = x(0%(71,&1)). We have similar

results for the other points for &, 71, 1s.

By the first equation of (.3)) and (4.6)

54(Tyk O4(To -
[T g mar < Jor [b<t>€fﬂp(x(?71)) + At

é K 4. \K) ¢
= eap(a(m)) [TV )AL+ [T LA

Since fj*mﬁ) b(t)At > 0 so we get

K K m

L2y At

= ll

[ (T,H) _ ot (Tv’i) ﬂ
z(m) > In (f a(t)At — [ 0 At)
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using the second inequality in Lemma[d.2.T| we have

z(t) > w(m) — [7T |22 1)) At
> x(m) — (ff“T’”) ja(t)|At + [0 a(t)At) 4.7)
- ll - M1 = H1

By the first equation of (.3)) and (4.6)

[0 qiyat > [T by erp(a(€y)) At
)

- K

= eap(x(€)) [T b(t)AL
Then we get i
(&) <ln (‘[‘;((Ti:))a(t)At) = I,
I b(t)At
using the first inequality in Lemma[d.2.T| we have
(t) < 2(&) + [ A )|t
< 2(&)+ < [T o)) At 4 2T a(t)At) (4.8)

= ly + My = Hy

By @.7) and @.8) mazicix s, (x| ()| < max{|Hi|,|Hs|} := B;. From the second
equation of (@.3) and the second equation of (4.7)), we can derive that

§4(Tk) 04+ (T,k) f()exp(x(t
Jortamar < [ S LLemet) S Ay
04 (T,k) f(t)eHz
< fn ﬁleH2+mlez(p(y()§2))
6H2 (5+ T,k
BleH2+mlexp(y(£2)) f” fB)at.

Therefore

exp(y(£2)) <

1 eH2 fj%—(Tﬁ) f(t)At -
l 54 (Tor) — e
m N d(t)At

By the assumption of the Theorem [4.2.1| we get,

SO syt =5 d(e) At > 0 and

1 (e [ f) At ;
y(&)gn(_( a0
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Hence, by using the first inequality in Lemma4.2.T]and the second equation of (#.3),

y(t) < y(&) + [0 [y ()| At
< (&) + < [Ty At 4 [0 d(t)At) (4.9)
S L1 + MQ = Hg.

Again using the second equation of (4.3)) we obtain

5+ (Tk) 64 (T,x) f(t)exp(x(t))
S dwar = [ ( ;w+B“ewp(r(t£;m“62p(y(t))At
04+(T,k f(t)e1
2 fn av+pBuef1+miexp(y(nz))
_ eH1 §+(T»K)
T autprelli4+muenp(y(nz)) f"‘ f(t)At7

1 [0+(Tk)
e > (H " pwae BueHl_au)

[ g At

Using the assumption of the Theorem [4.2.1| we obtain,

04+(T,k) 0+(T,k) 0+(T\K)
et (/ fH)At — 6“(/ d(t)At)) - a“(/ d(t)At) >0

and
1 e [P+ TR) rpy At
y(772> Z ln _u (;/‘R(TR) f( ) - BUeHl - Oéu = L2-

m LT () At

By using the second inequality in Lemma[d.2.1]

y(t) > y(m) — 250 [yA ()] At
> y(n2) — ( [T q(e) At 4 [T d(t)At> (4.10)
= L2 — M2 = H4.

By @.9) and @.10) we have mazicp, s, (1,40)|y(t)| < max{|Hs|,|Hs|} = By Ob-
viously, B; and B, are both independent of \. Let M = B; + By + 1. Then

-}

X
MaTielty,é4 (T,to)]

< M. LetQ) = {‘

:E ‘

GX:‘

) ) Y
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x
then () verifies the requirement (a) in Theorem [3.1.1, When € KerL N os,

T
1s a constant with

x
H = M, then
(Y Y

51(T ) o(s)ewp(y)
z ]) _ ( [ fn+ a(s) - b(s)exp(:c) - a(s)+[3(s)exp(x§)+ym(s)exp(y) At ] )

64 (ToR) f(s)exp(x)
y f,€ d(s) + a(s)+B(s)exp(z)+m(s)exp(y) At
0
£
0
x
JVC =VC
Y )

where J : ImV — KerlL is the identity operator.

Let us define he homotopy such that: H, = v(JVC) + (1 — v)G where

o T _ f?(T’H) a(s) — b(s)exp(z)At

64+ (Tk) _ f(s)exp(z)
Yy fﬂ d(‘S) a(s)+B(s)exp(z)+m(s)exp(y) At

T
Take D.Jgs as the determinant of the jacobian of G. Since € KerlL, then

)
jacobian of GG is
_e® fs+ (T,x) b(s)At 0 :|
64(Tk) —cf(s) 54(T,k) (™) f()B(s) _ [0+(Tk) e®e¥ f(s)m(s)
fm a(s)+B(s)eT+m(s)eV At + fm (a(s)+B(s)e+m(s)eY)2 At fH (a(s)+B(s)e*+m(s)e¥)? At

All the functions in jacobian of G is positive then signD.Js; is always positive. Hence

deg(JVC,QNKerL,0) = deg(G,QNKerL,0) = Z signDJg ’ £ 0.

Thus all the conditions of Theorem [3.1.1] are satisfied. Therefore system (4.I)) has at

least a positive d+-periodic solution. 0
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Example 4.2.1 Let T = {0} U U,cz[2%", 22", 6.(4,t) is the shift operator and

to = 1.
A - In(t) Inlt| exp(y(t))

) = (eos(igymm) +3) = (cos(pupmm) + Deer@l)) = gga) sammm
Ay - In]t| (sin( 7773y ™) +5) exp(a(t))

y>(t) = —(sinlzgyymm) + 05) + —g @ mammm

4.11)
Each functions in system (11) are d.(4,t) periodic and satisfies Theorem 1 then
the system has at least one 04 (4,t) periodic solution. Here mes(64(4,1)) = 1,
mes(d4(4,1.5)) = 2.5, mes(64(4,2)) = 4, mes(6+(4,4)) = 4, mes(d(4,8)) = 16
... goes like that.

Example 4.2.2 Let T = {0} U ¢%. 5.(q, t) is the shift operator and to = 1.
Ay — 1 71177(“') 4 1 71’2(“') 0 exp(y(t))
22(t) = (=1)"@ +4) = (=1)"@ + 0.5)exp(2(t)) — mmtoeammm”
In|t|

Arpy (—1) @) 17) eap(a(t))
y2 (1) = =03+ = e er)

(4.12)
Each functions in system (12) are 6+ (q*,t) periodic and satisfies Theorem I then the

system has at least one 01(q?,t) periodic solution. Here mes(d, (¢*,t)) = 2.

58



CHAPTER 5

GENERALIZATION OF CONSTANTIN’S INEQUALITY AND
ITS APPLICATION ON WATER PERCOLATION EQUATION

5.1 Some Basic Definitions Related to Nabla and Diamond-«o Time Scales Cal-

culus

Definition 5.1.1 /3] For a function f : T — T, we define the NV —derivative of f
att € T, denoted by f¥(t), for all ¢ > 0. There exists a neighborhood V C T of
t € T, such that

[f(s) = flp(t)) = FY(£)(s — p(1)] < els — p(t)],
forall s €'V.

Definition 5.1.2 [4]] ©,-derivative of f att € T%, denoted by f°(t) for all ¢ > 0.
There is a neighbourhood U C T such that for any s € U

alf(o(t)) = f($)llp(t) = sl + (1 = )| f(p(t)) = f(s)[lo(t) = s[ = fo (#)]p(t) — s[|o(t) — ]

< elp(t) = sllo(t) - sl.

Definition 5.1.3 /3] A function g : T — R is ld-continuous if it is continuous at left
dense points in T and its right-sided limits exist at right-dense points in T. The class
of real ld-continuous functions defined on a time scale T is denoted by Ci4(T,R). If
g € Ciq(T,R) then there exists a function G(t) such that GV (t) = g(t). The nabla
integral is defined by fabg(x)Va: = G(b) — G(a). If g € CL(T,R) then g¥ (x) and
g(x) are in Ciy(T, R).
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Definition 5.1.4 [4]] A function h(t) : T — Ris C,j-continuous if h(t) € C.q(T,R) () Cia(T, R).
If h € CL(T,R) then h*>(z) and h(x) are from C,y(T,R). Fundemental theorem of

calculus does not true for o-derivative. By [46], we know that

(i 75 eas)™ = (1= 20 +200)£(1) + (o — @) [(p(t) + F(o (1))

Below formulas are taken from [8]], [3]] and [[17].

The linear combination of af + B¢ : T — R is delta differentiable at ¢ with

(af + Bg)™ = af® + Bg>.

The linear combination of aof + 8¢ : T — R is nabla differentiable at ¢ with

(af +Bg)Y = af¥ + Bg".

The linear combination of o f + Sg : T — R is diamond alpha differentiable at ¢ with

(af +Pg)* = af* + Bg™.
The linear combination of af + 8¢ : T — R is delta integrable with
t t t
[ar+ o985 =a [ fs)85+5 [ gts)as
The linear combination of aof 4+ B¢ : T — R is nabla integrable with
t t t
[t +s9vs=a [ s6)Vs+5 [ os)9s

The linear combination of o f + ¢ : T — R is diamond alpha integrable with

/at(af + B89)(5)0as = a/at f(s)oas + /atg(S)oas.

5.2 Literature Review on Constantin’s Inequality

Adrian Constantin [14] while studying the integrodifferential equation
¢
() =F (t,x(t),/ K[t,s,x(s)ds])
0
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found the following interesting result in 1996. Applying the below inequality and a
topological transversality theorem, he showed that, under some suitable assumptions,

the above integrodifferential equation has a solution and gave bounds on that solution.

Theorem 5.2.1 [[[4] If for some k, T > 0, u € C(RJ,R{) satisfies

c<ive [ {1 |at)+ [ atryotutrar] + nsyuts) as

Vt € [0,T], where f,g,h € C (]Rar , ]RS’ ) and w belongs to the continuous nondecreas-
ing functions class on Ry such that w(r) > 0 if r > 0 and satisfying [° -2 = oo,

w(s)

then

u) < KO+ [ 67 Lo+ [+ g(rar fas

where K(t) = k + [y h(s)ds, G(r) = [[ =%~ r > 1. G~! denotes the inverse

1 s+w(s)?
function of G.

The generalization of this inequality given by Yang and Tan and can be stated as:

Theorem 5.2.2 [54] Let u,c € C(RY,RY) with ¢ being non-decreasing and
¢ € CH(RY,RY) where ¢/ is non-negative and non-decreasing. Let

f(t,€),9(t.8),h(t,&) € C(RY x RY,RY) be nondecreasing in t for every fixed .
Further let w € C(RY, RY.) be non decreasing, w(r) > 0 for r > 0, and

f:)o wﬁ j = 00 hold for some number ro > 0. Then the integral inequality

0(u(v) < cltr+ [ {58t [+ [ arrututmiar] + e uen fas
implies
w0+ [ f06 {6+ [+ ol as
where
K(t) = & Y(c(t) + [, h(s)ds
G(r) = [ som ™ > 70, 1>19>0.
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They also present the discrete analogue of Theorem [5.2.1| which is given by

Theorem 5.2.3 [54)] Let the function w € C(R,R ) be non decreasing,

w(r) > 0forr >0, ¢ € CY(R,,R ) with ¢’ being non negative and non decreasing.

u, ¢ € C(Ny, Ry) with ¢(n) non-decreasing. Further let

f(n,s),g(n,s),h(n,s) € C(Ny x Ny, Ry) be non-decreasing with respect to n for

every s fixed. Then the discrete inequality
s—1

()] < clm)+ YL, ) Tu(s)]x [us) + 3 a(s. ()] +hrm. )6/ u(s)]),
s=0 §=0
n € Ny implies

n—1 s—1

u(n)) < Ln) + Y f(n, )G (GILM)] + Y f(n,€) + g(n.€) ).

5=0 £=0

Here G(r) = fr:) s+‘fj(s),r <rg 1 >rg >0, lim, . G(x) = oo,

L(n) = ¢~ [e(n)] + 32070 h(n, s).

Ny ={neN:n< M MeN}

Ferriara generalized Constantin’s inequality involving delta derivatives on an arbitrary

Time Scale.

Theorem 5.2.4 [27] Assume that u € Cyq ([a,blp,R}), ¢ € Crq([a,bly,RT) is

non-decreasing, ® € C (RBL , Rar) is strictly increasing function such that

lim ®(z) = co.

z—00
Let f(t,€),h(t,€) € Crq ([a, by x [a, bl ,RE) and g(t, &) € Crg ([a, blpe X [a,b]pe2 ,RY)
be non-decreasing in for every fixed &. Further ,let w,p, ¥V € C (Rg ,RY ) be non-
decreasing such that {w, ¢, V} (x) > 0 for every x > 0. Define

M(x) = max {p(x), ¥(z)}

on R and assume that the following function

Fle) /ﬁ()
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<ooandx > c(a) > x9 >0

with:c>c(a)>a:020iffﬁfl(s)
0

l‘fbf Wﬁl(s) = 0Q; Satisﬁes hmmﬁ)oo F<x> = Q.

Also assume that the function

T

70 = [

0

whererZ(),rOinff%<ooand7“>0,r0>0
0

if Of e = o0 jsatisfies lim,. o, P(r) = 0.

t

Define K (t) =: F [c(t)] + [ h(t,s)As and G(r) = [ —2

) w(s)+s”

If o7 [F(2)] < =, for all x > 0 then the inequlity

S

B [u(o)] < () + | (f(t, )0 [u(s)] lu<s> + [ ots.gwluts) a¢

a

+ h(t,s)¥ [u(s)]) As

a

fort € [a,b], , implies

ult) < &1 [F (r+ ] (f(t, G [G(K(t» + [ (£(2.6).0(0.9) AgD A)} |

5.3 Some New Results

We try to generalize Constantin’s inequality containing nabla and diamond-alpha

derivatives and present the results we have obtained.

First we look for the discrete analogue of Constantin’s inequality involving nabla
derivatives. By using mean value theorem and the fundemental theorem of calculus

for nabla derivatives we get the below result.

Theorem 5.3.1 Let the function w € C(R.,R) be non decreasing, w(r) > 0 for
r>0, ¢ € CL(R,,R,) with ¢ being non negative and non-decresing.

u, c € C(Ny, Ry ) with ¢(n) non-decreasing. Further, let
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6(n,s), A(n,s),vy(n,s) € C(Ny x Ny, Ry ) be non-decreasing with respect to n for
every s fixed. Then if the following discrete inequality is satisfied

Slu(n)] < c(n)+> _{8(n, 5)¢[u(s)]x [U(SHZ A(s, Qw(u(€) | +v(n, )¢ [u(s)]},
s=1 =1

n € Ny, there exists k,l > 0 such that the follwing inequality is true

n 3
u(n)) < Ln) + Y k0(n, )G (G[i(n)] +13 " ko(n, s) + A(n, s)) el > 1
e=1

s=1

Here G(r) = fr:) s+‘fus(s), r<ro 1>1r9>0,lim, o G(z) = 00,

L(n) = ¢~ [e(n)] + k 20, v(n. 5).

Ny={neN:n<M MeN}

Proof. Fixing an arbitrary positive integer m € (0, M]. We denote the set

I =1{0,1,2,...,m} and we define a positive function v(n) € K(I,R) such that
v(n) = clm)+ Y {00m, 5)6/[u(s)] [u(s)+ > Am, w(u() | +7(m, )/ u(s)) |
s=1 &=1

Then ¢(u(n)) < v(n), equivalently u(n) < ¢~ '[v(n)]. Taking the nabla derivative of

v(n) we get,

m,n)¢'u(n)] [u(n) + >0 A, s)w(u(s)) | +y(m,n)
m,m)/ o~ fo(n)]) |67 ()] + 0y A, s)w(@ o(m)])] +(m,n)
= o m{o0m. n) |6 o) + S0y A, s)w(o o)) +y(m.n) }.

Vou(n)
¢'lo~ v(n)]]

Since we have finitely many elements in the domain then the value of the functions

< 0(m,n) 97 fo(n)] + 3 Am, s)w(@ ™ [o()]) +5(m,n). (5.1)

are bounded and since each function goes to R, never takes 0. Then

¢p~ o(m)]]  ¢'[o u(m — D] ¢'[o~ w(n)]] ¢'lo~ oWl }

k= max{¢,[¢71[v(m — 1)“ ) ¢/[¢71[U(m — 2)“ yeenny ¢,[¢71[U(n — 1)H yeenny ¢,[¢71[U(0)H

18 exist.
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If we multiply (5.1)) by k, we get

Vo(n)

Vou(n)
T oD kg

- T T
< kO(m,m) |67 ()] + X0 A, s)uw(@ om)])] + ky(m, n).

By mean value theorem Vo~ {v(n)] < Vo) Therefore

= ¢ (-1
Vo o) < kom,m) [67 [o(n)] + 30 Ao, 5)w (@ [o(m)])] + ky(m, ).

Substituting n with £ in the last assertion and summing over £ = 1, ..., n we have

m n 5
6~ ()] < 67 ()] + kY A(m,€©) + k> 0(m, ) [T (] + D Am, syulo [u(s)]].

=1 =1 s=1

Define the right hand side of the last inequality as y(n), then we get

¢ v(n)] < y(n) for n € I. Taking the nabla derivtive of y(n), we obtain

Vy(n) kO(m,n) [gb_l[v(n)] + > A(m, s)w[gb_l[v(s)]]
1|

< kO(m,n) [y(n) + >0 A, s)wly(s)]|,n € 1.
We define Q(n) = y(n) + >_._, A(m, s)wly(s)]. Here y(n) < (n). Then we get
Vy(n) = kO(m,n)Q(n).

Take the nabla derivative of Q2(n), we get

VQ(n) Vy(n) + A(m, n)w(y(n))
EO(m,n)Q(n) + A(m,n)w(2(n))

[0(m, n) + A(m, n)][Q(n) + w(§2(n))].

VAN VAN

VQ(n)
Q(n) + w(2(n))

< kf(m,n) + A(m,n). (5.2)

By mean value theorem

/QW) s _ vQ(n)
am-1) S Tw(s) = Qn—1) +w(Q(n—1))

Substituting n with s and summing over s = 1,2, ...n, we have

Qm) s & VQ(s)
/Q(O) ST w(s) = 2; Q-1 rw@Qs-1)
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For inequality (5.2)) substituting n with s and summing over s = 1, 2, ...n, we obtain

& VQ(s) =
< kB(m,s) + A(m, s). 5.3
n VQ(s)
Let | = maz,epom] ot Slempel=U  Here [ is exits again because of the same

. i1 o e
reason of existence of k. Multiply (5.3)) with [, we get

- VQ(s) n
; Ofs— 1) + w(@(s —1) ~ l; kO(m, s) + A(m, ).

Therefore,
Q(n) ds n
— < kO(m,s) + A(m, s).
L, o > k0l 5) + X

Then

G[Qn)] — GIQ0)] < 1Y kb(m, s) + A(m, s)

s=1

and

O(n) < G~ <G[Q(0)] +13" ko(m, ) + A(m, s)).
Since Vy(n) < kf(m,n)2(n), then
Vy(n) < k0(m,n)G~! (G[Q(O)} +13" kO(m, s) + A(m, s)).

Substituting n with £ and summing over £ = 1,2, ....n we get
£=1 s=1

n ¢

u(n) < L(m) + 3 k0(m, £)G™ (G[z(m)] +13 ko(m, ) + A(m, s)).

&=1 s=1

If we set m = n we have

m 3

u(m) < Lm) + 3 k0(m, )G (GIL(m)] + 1> kb(m, 5) + A(m, s) ).
£=1 s=1
Hence we get the desired result. U
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Example 5.3.1 Let

u*(n) = L +2 Zn: P(n — s)u(s). (5.4)

s=1
Here n € [0, M]. The unique positive solution for equation (5.4) can be obtained by

successive substitution. For instance by letting n = 0, 1,2 we obtain,

u(0) = VL

u(l) = /L +2P(0)u(1)

u(2) = /L+2P(1)u(1) 4+ 2P(0)u(2). By using solution of quadratic equations
we can find u(0),u(1),u(2), ....,u(M) succesively. If we use the theorem above the
bound for u will be u(n) < VL + k Yo P(n — s). With the help of the proof of
Theorem[5.3. 1) here

- 2P(M—1)u(1) 2P(M—2)u(2
k—mal’ne[07M]{1++’1+W_l)lt()l), ...... s

1+ 2P(M—n)u(n)
L+2P(M—1)u(1)+2P(M—2)u(2)... 4 2P(M—n+Duln—1)7 """ )

14+ 2P(0)u(M)
L+2P(M—1)u(l) ... +2P(D)u(M—1)

2P(M—2)u(1) 2P(M —3)u(2)
L+ L e S e TR ,

1 2P(M—1—n)u(n)
+ L+2P(M—2)u(1)+2P(M—3)u(2).... - 2P(M—n)u(n—1)7 """ )

14 2P(0)u(M—1)
L12P(M—2)u(1)tot2P(Dyu(M—2) 7 "2 e )

1+ 2P(0L)u(1)}

Here 0(n,s) = A(n,s) = 0, y(n,s) = P(n —s),c(n) = L > 0, L is constant,
u, P € K(No,R,), P is non-decreasing, and ¢(z) = z*.

If we choose P(n, s), L good enough k does not exceed a number ¢ when M tends to
infinity. For instance, if P(n,s) = 1, L = 3 then k does not exceed 3 when M tends
to infinity. Therefore, for the equality u*(n) = 3+ 2 »_, u(s), by using the theorem

above we have the bound for
u(n) <V3+3n,neN
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5.4 Generalization on Nabla Calculus

By using the two lemmas below we proved the generalized version of Theorem[5.3.1]

for nabla derivatives.

Lemma 5.4.1 Let f : R — R continuously differentiable and g : T — R is nabla
differentiable then fog is nabla differentiable and the formula is given by

(Foa)" (1) = g% (1) / F(alp(t)) + (1) (1)) ]

L. v(t) =1t —p(t)

2. T, =T — {m} where m is the right scattered minimum.

Proof. Apply ordinary substitution rule from calculus.

9(s)
F(9(s) — F(g(o(t)) = / f(7)dr.
g(p(t))

If we take 7 = hg(s)+(1—h)g(p(t)) , then dT = g(s) — g(p(t))dh. Then our integral

becomes

fg(s) = fa(p(t)) = g(s) — g(p(t)) / f'(hg(s) — (1 = h)g(p(t)))dh.

Let e > 0 be given and ¢t € T,. Then there exists neighbourhood U; of ¢, since g is
nabla diffrentiable at ¢ such that

|9(s) = g(p(t)) = g" (t)(s = p(1)| < €[5 — p(t)] Vs € Uy

€

142 17 (ha()~ (1= ap(0)
tinuous, then we can obtain Vo > 0 3U, neighbourhood of ¢ such that

where €* = . Since g is nabla differentiable then g is con-

lg(s) — g(t)| < 6,Vs € Us. Since

|hg(s) + (1 = h)g(p(t)) — (hg(t) + (L = R)g(p())| = hlg(s) —g(t)|
lg(s) — g(t)] < 0.

IN
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Here f is continuously differentiable function, then f’ is continuous on R and f’ is

uniformly continuous on closed subsets of R. Therefore we have

|/ (h(g(s) + (L= h)g(p(1))) = f'(h(g(t) + (1 = h)g(p(t)))] < Vs € Us.

€
e +1gv(t)]
Here let us define neighbourhood U of ¢ such that U = U; N Us. Let us take

a=hg(s)+ (1 —h)g(p(t)) and 5 = hg(t) + (1 — h)g(p(t)). Then we have

< efs = p |f|f ) dh + s = p t)l\gv(t)loflf’(a)—f’(ﬂ)ldh
=" [s = p( |f|f (@) = f'(B) + (B dh +|s —p (t)llgv()|bf| (@) = /(B dh

=

1
<els—n( Iflf ) dh+ s = p(®)] (|g¥ ()| +€) [1f (a (B)] dh
0
<s5ls— ()|+§|s— p(t)] = €ls — p(t)]
Hence fog is nabla differentiable and its derivative is as claimed above. U

Lemma [5.4.1| first occured in the article of F. Atici [4] as

(fog)¥ /f t) + hv(t)g (t))dh]-

With a counter example we can show that their version of the formula is not true.

Example 5.4.1 Let g(z) : Z — R such that g(n) = %, f(z) : R — R such that
f(x) = z% Therefore the first derivative of f(x) is continuous. If we apply the
formula in Lemmal[5.4.1)to find the nabla derivative of the function (fog)(t) we get

1—2n I\Y , /IN\Y [tr./1 1\V 3—2n
(= - 2(-) 2h<—> ]dh:—.
2)(n —1)? Gz) #() /0 2(;) +20(;; ) (n—1)2
Lemma 5.4.2 Let a,b € T, consider the Time Scale [a, b and a function

p € CL([a,b]y,R) with p¥(t) > 0. Suppose that afunction f e C(RERY) is

positive and non-decreasing on R. Define F(x f 7) where x> 0,19 >0
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if f y <00 and x> 0,z9>0 = 00 . Then for each t € [a,b]y, we

have
pY (1)
/ Flem)

Proof. Since f is positive and non-decreasing on (0, c0) , we have
plp(t)) < p(p(t)) + hv(t)pY (1)

f (1)) < f (p(p(t)) + hu(t)pY (t))

and
1 1

F @) + e @) =~ T o)

If we integrate the last inequality from 0 to 1, we get

/f +hv /f pp(t)))‘

Multiply both sides of the last inequality with pV (¢), since p¥ (t) > 0 the inequality

does not change

1

. dh pY ()
O [ S om R E < T

0

Here we use Lemma[5.4.T]and we get

(Fop)¥ (t) <

If we integrate it from a to ¢t we have

pY(7)
) f (plp(r)

and
pY(7)
J Tl
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Hence we get the desired result. 0

The delta derivative version of the above lemma was proved by Torres and Ferriara

[28]. By using these results we proved the below theorem.

Theorem 5.4.1 Assume that v € Cq ([a,blp,R}), ¢ € Ci([a,bly,RY) is non-

decreasing, ® € C (Rg , ]Rar) is strictly increasing function such that

lim ®(z) = oo.

T—r00
Let 6<t7 £)7 f}/(t? 5) S Cld ([CL, b]’[[‘ X [aﬁ b]’]I‘R 7R(J)r) and
At, &) € Cy ([a, bly, X [a, by, ,]Rar) be non-decreasing in for every fixed &. Fur-
ther, let w, ¢,V € C (R{,R{) be non-decreasing such that {w, ¢, V} () > 0 for
every x > (. Define
M (z) = max {¢(z), ¥(z)}

on Ry and assume that the following function

ﬂ”{jﬂﬁ%Q

< ooandx > c(a) > x9 >0

with x > c(a) > xo > 0 if [ Mogil(s)
0

’f{ Wfl(s) = oo; satisfies lim,_,o, E(z) = oc.

Also assume that the function

r

M”:/ﬁz

T0

whererZO,rOZOiffw‘fs) <ooandr >0,rg >0
0

if g" e = o0 satisfies 1im, oo R(r) = o0,

T

Define L(t) := E [c(t)] + aft’y(t, s)Vsand G(r) = [ w(g)s+s.

To

If o1 [E*l(:p)} <z, for all x > 0 then the inequlity

o(s) + / A(s, ) [v(s)] Ve

a

Bloe) <c(t)+ [ (w, )6 (o)

+(t, 8)¥ [v(s)]) Vs
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fort € [a,b]y, implies

v(t) < o1 {El (ﬁ(t) +a ft <0(t7 s)G~1 {G(ﬁ(t)) + ﬁafsmax {ab(t,6), \(t,€)} ng vsﬂ where

a, B > 1 are constants.

Proof. If t = a obviously theorem holds. Let us fix an arbitrary number ¢y € (a, b|t
we define z(t) on [a, o]y such that

t

z(t) :C(to)+/ (9(1‘0,5)(25(”(8))

a

S

o(s) + / Altor )w(v(€))VE

a

+ v(to, s)¥ [v(s)]) Vs.
Since ®(v(t)) < z(t), then v(t) < ®1(z(t)). Let us differentiate function z(t).
2V(t) = 0(to, t)p(v(1)) {U(t) + ft/\(to,f)w(v(i))vﬁ} + (to, 1) ¥ [v(t)]
< M 10(0] {000,1) [o00) + M0, (@] V€] +5(00.0)}
M0 )] {81t ) [0 (0) + [ At Q@ (] VE] 2000}

a

S

IA

Then we get

Define the function 2(¢) on [a, b|T such that

t

Z(t) =C(b)+/ (9(6, 5)¢ [v(s)] [U(S)Jr/k(b,f)w [v(&)] V¢

a

+ (b, s)¥ [v(s)]) Vs.

It is obvious that z(t) < Z(t) on [a, to|; . Using Z(t) we define « such that

Mo® 1ox(t)
‘= ter[IaliﬁT Mo®—1toz(a)
Here functions 2(t) and z(t) are Cj; continuous because each function that consti-
tude the functions Z(¢) and z(t) are continuous or Cjy continuous.Here M and !
are continuous functions then Mo® 0% and Mo® oz are also C},; continuous func-
tions,since each continuous function is Cj; continuous. We know that any Cj, contin-

uous function is regulated and every regulated function is bounded in a compact inter-

val by theorem from [8]. Therefore the functions Mo®'0z(t) and Mo® toz(t) are
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bounded on [a, b]r, and also z(a) = ¢(tg) can not be 0 since ¢(t) € Ciy ([a,b] ,RT).
Additionally since @ is strictly increasing M (x) is non decreasing and can not be zero
if z # 0 then Mo® 'oz(a) # 0 so the constant « exists.Then

Mo® oz (t) Mod1(z(1))
o = max >
telatoly Mo®~roz(a) = Mod~(z(p(t))

forall t € [a,to]; . Itis obvious that v > 1.

If we multiply (5.5) by « , we get

t

< af(to, 1) [‘P_I(Z(t)) +/A(to7f)w [~ (2(€))] V¢

a

2 (t)
M [~ (z(p(1)))]

+ ay(to, t).

By the Lemmal[5.4.2], we get

~ t

B(a(t) < E(C(to)+04f<9(to78) [¢-1<z<s>>+fsx<to,g>w [ (=(6))] vg])w

a

to
+ a [~(to,s)Vs.

t

2(t) < E‘l[E(c(to)—Faf(H(tms) {@‘1(2(8))4-[5)\(160,5)111 [@=1(2(9))] vg])vs

a a

to
+ afw(t()?s)Vs}.

Let’s define y(t) as

yt) = E(c(to>>+af(e<to,s> [¢—1<z<s>>+fx<to,e>w [®1(=(6))] vg])w

a

to
+ a [~(to,s)Vs.

Then z(t) < E~'(y(t)). Let us diffrentiate the function y(t),

yu(t) = af(to, 1) q)_l(Z(t))Jrft/\(to,f)w [‘D_I(Z(ﬁ))]vfl

a
t

o, t) (2B (0) + [ At [ (B 0(©)]

a

IN
<

§

t

< ablto,?) {y@) Ao, S [y(€) vg} since @1 (E1(y(1))) < y(1).

a

Let us define W (t) as W (t) = y(t) + jA(tO, Sw [y(&)] VE, so W (t) > y(t). When

a

we differentiate 1V (t) we get

wy(t) = yV () + Alto, hw [y (¢)]
< ab(te, )W (t) + Alto, t)w [W ()] .
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Then
WY ()
W(t) +w [W(t)]
Let us define §(t) and W () on [a, b]; such that

< max{af(ty,t), \(to,t)} . (5.6)

)vs

It is obvious that y() < §(t) and W (¢) < W (t) on [a, to]y - Using W (t) we define /3
such that

y(t) Zﬁ(b)+a/ (9(1% s) {QI)l(z(S))Jr/A(b,é)w (271 (2(¢))VE]

a

a

t

W(t) = g(t) + / A(b. €y [5(6)] VE.

a

b e O (V@)

telatoly Wi(a) +w(W(a))

Here again W (t), y(t), §(t), W (t) and w(W (¢)) are Cq continuous. Thus these func-
tions are bounded on [a, o] [8] and W(a) + w(W(a)) can not be zero. We know
that W (a) = y(a) = E(c(t)) + afh to, s)Vs. Here also E(c(ty)) can not be zero
since c¢(tg) > xo, c(to) is finite and 1n51de of the integral is never zero in the interval
[0, c(to)] so the constant [ exists. Then

= V() w(W (1) W (
0= B )+ w(V(a) = Wil

If we multiply (5.6) by 5, then we get
WY ()

W(p(t)) +w(W(p(t)))

Again by using the Lemma[5.4.2 we have

< fmax {ad(ty, t), A(to, )}

GOV (1) < G(E(ts)) + B / max {af(to, ), A(to, )} Vs.

Then

W(t) =G~ | G(L(ty) +B/max{a9 to,s), AM(to,s)} Vs| .

Since yV (t) < af(to, )W (t) then y(t) < L(to) + af@(to, s)W (s)Vs. Therefore

y(t) < Lito) + a / B(t0, )G

G(L(to)) + 3 / max {a(to, £), A(to, )} VE| |
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Using above information we have v(t) < ®~(2(t)) < & '(E~'(y(t)). Hence

o(t) < o1

E_l (ﬁ(toHaj <9<t078)G‘1 G(L(to))

wofs])e)

Since % is arbitrary we can set t = ¢, in the above inequality and we get the desired

+ 5jmax {Oée(t[)’g), )\(fo,f)}Vf

result.

Remark 5.4.1 The above function G(r) defined above satisfes

lim, o G(r) = 0o by Constantin|16] . This was disgust in [7], [15], [30]

Example 5.4.2 If we take ¢(x) = p(x) = P'(x) with Y is non decreasing then
M (z) = ®'(x) and this implies

Bz) = / mds — o (z) — ().

Choose ©yg = ®(0) > 0. Then ®(®(0)) = 0 hence E(z) = & (z). For the
particular case T = 7, an application af Theorem gives Theorem For the
particular case T = R an application of Theorem gives the generalization of

Constantin’s inequality done by Yang and Tan. Since o, 5 > 1,there is no problem.

Example 5.4.3 Let us take T = hZ such that x,t € [0, Mh], v(z,t) = P(x — t),
Az, t) = 0(t,z) = 0, ®(x) = 22, ¢(x) = 0, Y(x) = % defined for > 0 and

¢(n) = L, L > 0is constant. Then

8

M(x) = max{g,O} =—.

(\V]

If we set xq = 0, we obtain

Blz) = /0 éds _1/E

~ 2 ~
Thus, lim,_,., F(z) = co. F~}(z) = f) and Y (E~Y(z)) = (%) <z,Vr>0.
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If we get the equality

u(hn)? = L + Xn: hP(hn — ht)“(;”).

t=1

By lettingn = 0,1, 2,

u(h) = \/ L+ hP(0)“D)

2 2

w(2h) = /L + hP(R)"2) 1 hP(0)"2)

If we apply Theorem we find a upper bound for u(hn) as

u(hn) < VI 4 o2tz PO 1),

Here

P((M—1)h)“) P((M—2)h) %20
o = maxne[o,M} {1 —+ T 2 s 1 —+ L+P((M—1)h)i(—h)7 ...... s

P((M—n)h)“5")

1+ L+P((M—1)h) P 4 p((M—2)h) YCR)  12P((M—n+1)p) DR 2w ’

u(Mh)
P((f?)) : ((M—=1)h)
" " TIYRY g cecerecteeecananan 5
L-‘,—P((M—l)h)T-l— ..... -‘rP(h)f

1+

P((M—2)h) ")

_ u(2h)
1+ - ,1+ P((M 3)h) P

L P((M—2)h) 20 ’

P((M—n—1)h) 2"

1+ L4+P((M—2)h) "8 4 p((M—3)h) “ER) | 2P ((M—n)h) sl th) > e ’

(M=1)h)
O —

1 + L+P((M_2)h)@+ ..... +P(h) u((]\/[;2)h) g secscscecocee 9
| 4 PO }

5.5 Generalization on Diamond-« Calculus

We also proved Constantin’s inequality for diamond-alpha derivatives. To get the

desired result we use the below lemma.

Lemma 5.5.1 Let T be a regulated Times Scale, a,b € T,and consider the Times
Scale [a, b]y such that o(a) = a. Let p € C}([a, b]1, R) with
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pV(t),p>(t) > 0. Suppose that a function f € C(R{,RY) is positive and non-

decreasing on R.

Define F(x ): N ds where x > 0, xy > 0 if F(x) = Oxfcés) < o0 and x > 0,

xo > 0if F(x fz ds = 00. Then for each t € [a, b, we have

(Fop)(t) < 2(Fop)(a) +2 | m

Proof. Since f is positive and non-decreasing on (0, co) , we have
p(p(t)) < plp(t)) + hw(t)p™ (t)

Fp(p(1))) < f (plp(t) + hu(t)p¥ (1))

and
1 1

F o) + e @) — F o)

If we integrate the last in equality from 0 to 1, we get

/f +hv /f f(p(;(t)))'

Multiply both sides of the last inequality with pV(t), since p¥ (¢) > 0 the inequality

does not change.

/1 pY(t)

/70 T R = T

Again since f is positive and non-decreasing on (0, c0) , we have
p(t) < p(t) + hu(t)p™(t)

f (@) < f (p(t) + hu(t)p™ (1))

and
1 1
F o0+ hepn @) = Fe0)

If we integrate the last in equality from 0 to 1, we get
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1 1

/ dh . / 1
S @) +hu®)pr(t) =) f®#)  f(p@)

0 0

Multiply both sides of the last inequality with p(#), since p>(t) > 0 the inequality
does not change.

1

A dh pA (t)
P “)/ 7o) + ha(OA (D) |

0

Since « € (0, 1), then

1

dh P (t)

o (”0/ TG+ @) = “Th0) 7
and X
oY dh R M0
1= | Form mam < O ey O

0

If we sum the inequalities (5.7) and (5.8) we get

1

o dh
/ e +hu sy TA TP (“/ F o) + w7 ()

=]

A )
=Fem) T VT em)
If we use the chain rule for nabla derivative and chain rule for delta derivative we get
i ORI ()
(Fop)2(e) (1 = e)tFen)™ ) < oz iy + 1= ) F o)

Since pY (t),p™(t) > 0, then p is non-decreasing. Therefore p(p(t)) < p(t) and we
can write above inequality as

ap® () + (1 — a)p¥ (1)

A — o v
a(Fop)2(t) + (1 = a)(Fop) ™ (1) < == oy

In other words,




Now integrate both sides of the inequality from « to .

t Ce(g)o s t—poa(8> o, 5
/JFOP) ()% S/a o)

/ (Fop)®(8)oas = oz2/ (Fop)?(s)As + (1 — a)2/ (Fop)Y(s)Vs
+a(l — a)/ (Fop)*(s)Vs + a(l — a)/ (Fop)Y (s)As.

Since our Times Scales are regulated then by [40] we can use the the condition

(Fop)¥ (s) = (Fop)®(p(s)) and (Fop)™(s) = (Fop)¥ (c(s)). We have

/ (Fop)®(s)oas = a2/ (Fop)®(s)As + (1 — a)Q/ (Fop)¥ (s)Vs

Fo(l - a) / (Fop)¥ (0(s))Vs + a1 — o) / (Fop)® (p(s))As.

Since a is the initial point then p(a) = a = o(a). Therefore we get

(1 — 20+ 20%) Fop(t) + (@ — a?) Fop(p(t)) + (@ — a?) Fop(a(t))

O‘(S

< Fop(a) + [} -2 o057 %S

Since [’ and p are positive functions then we can write the last inequality as

()

(1 —2a + 2a®)Fop(t) < Fop(a /f - ()

It is easily seen that 1 — 2a + 20 takes its minimum value at o = 3 when a € (0, 1)

and at that point 1 — 2a + 2a% = 1.

Hence we get the desired result

p S

1
—Fop(t) < Fop(a) +
©) o F(o(p(s))

2

Using Lemma [5.5.1) above we get the following result.

Theorem 5.5.1 u € C,([a.b]r, R,) satisfies for some k > 0 such that
u?(t) < k?* + 2/ {f(s)u(s) {u(s) + /Sg(T)w(u(T)) Ou 7‘} + h(s)u(s)] O S
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Here our Times Scale is regulated and o (a) = a.Vt € [a.br f,g,h € Cyy([a.b]r,RY),
w(t) € C(RY,RY) and w(t) is non-decreasing,then

u(t) < 4k+2c f;(l — 20+ 202)h(1) 4 (a — &®)h(p(1)) + (. — &) (0 (7)) 00 T

+ 2[; |:(20(1 — 20+ 20%)? +de(a — a®)?) f(s) + de(1 — 2a + 202 (a — a?) f(p(s))

+ 4e(l = 2a +20%) (o — o) f(o(s)) + 2c(a — a®)* f(0?(5)) + 2¢(or — a2)2f(p2(8))}

E! {2E(2k + e[ = 2a + 20%)h(1) + (o — a®)h(p(7)) + (o — a®)h(0(T)) a 7)

+ [ [(4mc(1 —2a + 20°)% + 8me(a — a®)?) f(0?(7)) + 8me(l — 2a + 202) (a — &®) f (o (7))
+ 8me(l — 20+ 20°) (o — a?) f(03(7)) + dme(a — o) f(o (7)) + dme(a — o) f(7) | oa T
+ [7[2(1 = 2a + 20%)m g(63(7)) + 2(a — a*)m g(a(7)) + 2(a — @*)m g(a*(7))] 0a T } O 5.

where E(r fl r > 0. Here m,c > 1.

wers’

Proof. If we take a = t, then the inequality obviously hols true. Let ty € (a, b] and
define z(t) in [a, to] such that

A(t) = K+ 2 / t [f(s)u(s) {u(s) + / T g(Pw(ulr)) o T} + h(s)u(s)} Oa 5.

Therefore for ¢ € [a, to]r, u(t) < /z(t). By using theorem from Sheng [46] we take

the diamond alpha derivative of z(¢) and we get

() = 201 = 2a+20%) [f(u(t) {u®) + [} g(rhw(u(r) oa 7} + hB)u()]
+ 2 —a?) [£(p@)ulp(®) {ulp®) + [/ g(r)w(u(r) o0} +h(p(E)u(p(t)]
+ 2a—a?) [fe®)ue®) {u6®) + [[ grwur) ot} +hle®)u((?)]
Since each of the functions constitude z°*(¢) are non-negative, then z°*(t) > 0. If we
take the delta and nabla derivative of z(t) we also see that 22(t), zV(¢) > 0. Then

z(t) is non decreasing, in other words z(o(t)) > z(t) > z(p(t)). Since u(t) < +/z(t)
then we have

() < (172a+2a 1OV {20 + [ 9(r) Foa }+ h()v/Z0)]
£ 20— a?) [£l(t) \/7{\/744"“) (/7)) o }+h (1) V0]
+ 2(a- )[( (V200 @) { V2@ + 7 g(r)w(V/=() oa 7} + h(o(t) V(@)
Since z(o(t)) > z(t) > z(p )) we have
Pat) < [1—2@—1—204 {Fﬁg w(y/2( ))0a7}+h(t)}
T ) {VE®) + [19 g(ryu(y/=7) 0a 7} + h(p(1))]

+ (a—a? [ o(t {\/T—I— fad g(Mw(y/2(7)) 0a T} + h(o(t))} ] .
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Then we get

2\2/% < (1—2a+2a?) { {F—i—fg OaT} t}
+ (a—a?) [f(p {\/T+ff“)97w %T} h(p(t) } (5.9
+ (a=a?) [fo®) { V2o + []" g(rw(y/2() oa T} +hlo®)]

Our functions are from C;;([a.b]r, RY ), then they are regulated on [a.b]r, then z(¢) is

bounded and z(t) never takes zero.

VOO e multiply (5.9) by ¢,

Therefore there exists ¢ such that ¢ = maxejq ), o0
z(p

we obtain

s < el-20+20%) PO LV + [ o) oa 7} + h(D)]
+ ela—a2) [1o) {V/0) + [V g(ryw(V/2() a7} + hlp(t))]
+ ela—a?) [Fle®) { V2o ®) + []" g(ruw(y/z() oa )+ ho®)] -

Now we use the Lemma(5.5.1and we get,

20 < 2k +2e(1— 20+ 2a2) [ [ {Fﬂg w(y/z(7)) 0 T }]oas
+ 2c¢(a—a?) [, [ s){\/;—i—fpg) \/T))OQTHOQS
+ 2c(a—a?) [ s){\/i—&-fa() m)oaTHoas
+ 71 =200+ 20%)h(s) + (a — a®)h(p(s)) + (@ — a2)h(0(s)) oq 5.

Let us say the right hand side of the above inequality V'(¢), then \/z(t) < V (¢). If we
take the diamond alpha derivative of V'(¢) then we get

Voa(t) = (2¢(1 - 20+ 202)? —|—4c( —a?)?) [ {F+ftg w(y/z(7)) a T}]
de(1 = 2a + 20%) (o — {f {Q/ +fpt) m)OQTH
(

_|_

i (1—2a+2a)a [ {\/7+fa(t) m)%TH
+ 2c(a— [ f(p* (1)) {\/Zi‘kfap Y g(r)w(y/=m) oa T H

# 2o 0?2 [£(07(0) {mwf@mm ) eary]

Since \/z(t) < V(t), then we get

Voalt) < (2¢(1—2a+2a2)? + de(a — a?)?) [f(t){ )+ [ g(rw V(T))oar}]
+ (1 — 200+ 202)(a — a?) [fp ){V(p )+ [7) g( T)w(V(T))oaTH
+ (1—2a+2a o —a?) [f(olt ){ (@) + [TV 9wV (r) oa ]
+ 2ea— a2 [f(2) {V (2@ + I > (v <>><>w}]
+ 2e(a— > [(a?(t)){ (o*(1)) f “ V() o}

Since each of the functions that constitude V°>(¢) are non-negative then V°*(¢) > 0.

Similarly if we take the delta and nabla derivative of V' (¢) we also see that V2(t),
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VV(t) > 0. Therefore V(c%(t)) > V(o (t)) > V(t) > V(p(t)) > V(p*(t)). Then

Vea(t) < [(20(1 —2a+202)% + de(a — a?)?) f(t) + 4e(1 — 2a + 2a2) (a — a?) f(p(t))
+  de(l =20+ 202)(a — a?) f(o(t)) + 2c(a — a?)2 f(0%(t)) + 2c(a — a®)2 f(p2(t))
x V@) +[7 O grwvn)oar},
Let us take V(02() + [7© g(r)w(V (7)) 00 T = Q(t)
Q=) = Vo (o®(t) + (1 - 2a +2a2)g(?(t))w(V(a?(t))) + (o = @?)g (o (t)w(V (o (1))
+ (a=a?)g(e®®)w(V(e®(#)))-

Therefore we get

Qo) < |(2e(1 = 20+ 202)% + de(a — a2)2) f(02 (1)) + 4e(1 — 20+ 202) (o — a2) f(o (1))

+ de(1 = 2a+ 2a?)(a — a?) f(03(t)) + 2c(a — a?)2 f(o(t)) + 2c(a — a®)2 £(t) | 2(2)

(1 - 20+ 202)g(0*(1) w(V (02(1))) + (@ — a2)g(o(t))w(V (o (1))

+
+ (a=a®)g(@®®)w(V(e®(®)))-
Since functions in Q2°*(¢) non-negative then 2°*(¢) > 0.

Similarly Q2(t), QV(t) > 0. It is obvious that V (02(t)) < Q(t)and since w is non-
decreasing we also have w(Q2(o(t))) > w(Q(t)) > w(Q(p(t))).

Therefore w(2(o(t))) > w(V (a3(t))). Then

Q% (t)

IN

|:(20(1 —2a +2a%)? + 4c(a — ®)?) f(02(t)) + 4c(1 — 2o + 20%) (o — &?) f(o (1))

+ de(1 = 2o+ 20%) (a — a®) f(3(t) 4+ 2c(a — &®)? F(0* (1)) + 2¢c(a — a®) 2 £ () | Q1)

+ (1= 20+202)9(0% (1)) + (a — a®)gla(t)) + (a — a?)g(o™ ()] w(QAa(1))-

Q% (t)
Q(t)+w (o (1))

IN

[(20(1 — 20+ 20%)? + dc(a — o®)?) f(% (1)) + 4e(1 — 2a + 202) (o — ?) f (o (t))

+ 4e(1 — 2o+ 202) (a — &) f (02 (1)) 4 2¢(a — a?) 2 f(o* (1)) + 2¢(a — a2)2f(t):|

+ [(1 =20 +2a%)g(0”(1)) + (o — @*)g(a (1)) + (o — a®)g(c*(1)] -
(5.10)

Since each of the functions in (¢) are from C([a.b]r, R}), then Q(¢) is bounded on

[a.b]T and never takes zero.
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Therefore there exists m such that m = maz,cjq4,)

Q) +w(Q(a(t)))

9 tempmy - I we multiply

(3.10) by m, we have
ey < |@me(l — 20+ 20%) + dme(a — 0?)2) f((0*(1))
+  dme(l — 20+ 2a2) (o — a?) f((a(t))
+  dme(l — 2a + 2a2)(a — a?) f((03(t)) + 2me(a — a2)2 f(o4 (1)) + 2mc(a — a?)2 f(t)

+ (1 =2a+20%)mg(0(t) + (o — a®)m g(o(t)) + (o — a®)m g(o*(1))] -

Again we use Lemma[5.5.T]and get

E(Q())

Vee(t)

<

+

—+

IN

—+

Jr

IN

2E(Q(a)) + f; (4me(1 — 2a + 202)? 4+ 8me(a — o?)?) f((02(s))

8me(1 — 2a + 20°) (o — a?) f(o(s)) + 8me(1 — 2a + 20%) (o — a2) f((0°(s))

dme(o — a®)?f(o"(s)) + dme(a — o®)? f(s) | 0a s

Ju 201 =20+ 20%)m g(0%(s)) + 2(a = &®)m g(0(s)) + 2(a = &®)m g(0°(s))] 0a s.
2B(2k + ¢ [°(1 — 2a + 2a%)h(s) + (a — a?)h(p(s)) + (a — a*)h(o(s)) oa )

I |:(4mc(1 = 2a +20%)% + 8me(a — o®)?) f((0*(5))

8me(1 — 2a + 202) (o — a?) f(o(s)) + 8me(1 — 2o+ 20%) (o — a2) f((0°(s))

dme(a — o®)? f(0*(s)) + 4me(a — a®)* f(s) | oa s

fat [2(1 — 20+ 20®)m g(o?(s)) + 2(a — a®)m g(a(s)) + 2(a — a®)m g(0°(s))] 0 s.

EI{QE(Qk + cf:‘)(l — 20+ 202)h(s) + (. — &®)h(p(s)) + (@ — a?)h(o(s)) oa 5)

+ fat [(4mc(1 — 20+ 20%)? + 8me(a — o®)?) f(a?(s))

+  8mc(l — 2a + 202)(a — a®) f(o(s)) + 8me(l — 2a + 2a?) (o — a?) f(03(s))

+  dme(a — a®)2f(0*(s) + 4me(a — a?)2f(s)| oa s

+ fat [2(1 — 2a+ 20®)m g(0?(s)) + 2(a — &®)m g(o(s)) + 2(a — &®)m g(0°(s))] ©a s}.

IN

X

|:(20(1 — 20+ 202)? + de(a — o®)?) F(t) + 4e(1 — 2a + 207 (a — a?) f(p(t))
4e(1 — 20 + 20%) (@ — ) f(o (1)) + 2¢(a — 0?)? f(0*(¢)) + 2¢(a — a2)2f(92(t))}
o {2E(2k Fe (1= 20+ 20%)h(s) + (a — a®)h(p(s) + (a — a®)h(0(5)) oa s)

I |:(4mc(1 — 20+ 20°)% 4 8me(a — a?)?) f(a%(s))
8me(l — 2a + 202) (o — &?) f(0(5)) + 8me(1l — 2a + 2a2) (a — o®) f((s))
dme(a — o®)? f(o*(s) 4+ 4me(a — a2)2f(5):| Oa 8
fat [2(1 = 20+ 20%)m g(0°(s)) + 2(a — a®)m g(a(s)) + 2(a — a®)m g(0°(s))] oa s ¢

(5.11)
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If we integrate V> (¢) from a to ¢, we have

/ Vo (s)oqs = (1—-2a+2a*)V(t)+ (a—a*)V(pt)) + (a—a®)V(a(t)) — V(a).

If we integrate (5.11)) from a to ¢, we obtain

(1 —2a+2a2)V(t) + (a — a®)V(p(t)) + (a — a®)V (o (t)) <

o)+ [,

(2¢(1 = 2a + 20%)% + de(a — a?)?) f(s) + 4e(1 — 2a + 202) (a — a?) f(p(s))

+ac(1 —2a+ 2a2) (a — a?) f(o(s)) + 2c(a — a?)? f(02(s)) + 2c(a — a2)2f(p2(s))]

X

E-! {2E(2k + cfato(l —2a+ 2a?)h(1) + (a — a®)h(p(7)) + (a — a®) (o (T)) 04 7')
(4me(l — 2a + 202)? + 8mc(a — a?)?) f(o?(7))

+ /.

+8me(1l — 2a + 2a?) (o — a?) f(o (7))

+8me(1 — 2a + 2a?) (o — a?) f(3(7)) + 4mc(a — a?)? f(o* (7)) + dmec(a — 042)2]”(7)] O T

+ f; [2(1 —2a+2a?)m g(o?(1)) + 2(a — a®)m g(o (7)) + 2(a — a®)m g(U?’(T))] Sy T}] o 8.
Since V(p(t)),V(o(t)) > 0 and o € (0,1) we can omit them and get

(1—-2a+20°)V(t) < V(a) + [, | (2¢(1 = 20+ 20%)* + de(a — a®)?) f(s)

(1 - 20+ 20%) (0 — a?) f(p(s))

+4c(1 = 2a + 20%) (a — a?) f(o(s)) + 2¢(a — a®)? f(o?(s)) + 2¢c(a — a2)2f(p2(s)):|

x [El {2E(2k +ef(1 = 2a 4 20%)A(7) + (a — a®)h(p(7)) + (@ — a®)h(a (7)) o0 T)
(4me(1 — 2a + 202)? + 8mc(a — o2)?) f(o?(7))

+/2

+8me(l — 2a + 2a2)(a - Olz)f(U(T))

+8me(l — 2a + 207 (a — a?) f (a3 (1)) + 4mc(a — o?)? f(o* (1)) + d4mc(a — 042)2f(7'):| O T

+ 7 [2(1 = 200+ 20°)m g(0* (7)) + 2(a — &*)m g(o (7)) + 2(a — &*)m g(0°(7))] ©al ’T}:| Oq 8.
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Since 1 — 2a + 2a? can minimum be %, we have

v

IN

2k + cfato(l —2a 4 2a?)h(7) + (a — a®)h(p(T)) + (o — a®)h(o (7)) 0a T

+ f; |:(20(1 — 20+ 2a2)? 4 de(a — a?)2) f(s) + 4e(1 — 2a + 2a2) (a — a2?) f(p(s))
+  de(l = 2a +20%)(a — a?) f(a(s)) + 2¢(a — a?)? f(a?(s)) + 2¢(a — aQ)Qf(PQ(S))]
X |:E1 {QE(Qk + cf(fo(l — 2+ 2a2)h(T) + (@ — a®)h(p(T)) + (@ — a®)h(a(T)) 0a T)

+ [(4mc(1 — 2a +2a7)? + 8me(a — a?)?) f(a?(T))
+  8me(l — 20+ 2a2)(a — a?) f(o(7))

+  8mc(l — 2a + 2a2)(a — a?) f(03(7)) + dmc(a — a?)2 f(o*(7)) + d4mc(a — )2 f(1)| oa T

+ 720 = 20+ 202)m g(0%(7)) + 2(a — a®)m g(o (7)) + 2(a — a®)m g(o3(7))] 0a T ] Oa S.

Since u(t) < \/2(t) < V(t) we get

u(t)

IN

4k + 2¢ fato(l —2a + 2a2)h(7) + (a — a®)h(p(T)) + (@ — a2?)h(0o(T)) 0a T
+ 2ff {(%(1 — 20 4 202)2 + de(a — a?)?) f(s)
+ el — 20+ 202) (@ — a?) f(p(s))

+ Ae(l =20+ 20%)(a — a®) f(a(s) + 2c(a — &) f(02(5)) + 2c(x — a2)2f(92(8))}

fotl {QE (21<; +e (1 = 2a + 2a2)h(r) + (a — a)h(p(1)) + (a — a2)h((T)) 0a T)

+ 2 |:(4mc(1 —2a 4+ 2a?)2 4 8mc(a — a?)?) f(o2(1))
8me(l — 2a + 2a2)(a — a2) f(a (7))

8me(l — 2a + 2a2)(a — a?) f(a3(1)) + dme(a — a?)? f(o(1)) + dmc(a — a?)2 f(7) | 0a T

+ 720 =20+ 20%)m g(o%(1)) + 2(a — a?)m g(o (1)) + 2(a — a?)m g(03(7))] 0a T :| Oa S.
Since we choose ? arbitrary then we can take ¢ = t;. Hence we get the desired result.

O

Example 5.5.1 If we choose oo = 1, T = R, m = ¢ = 1/2, then Theorem
becomes Theorem|[5.2.1]

Example 5.5.2 Let T = {0} (J{ : n € N} UN. Here we assume that N starts

1
n+1
with 1. It is obvious that our time scales is regulated and 0 = o(0). Let us choose

M € N and investigate the below equality on the time scales [0, M|r.

u(t) = k* + 2/0 h(s)u(s) oq s
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ht) =0ift € {0} U{;15 : n € N} and h(t) = P(t) ift € N. Therefore u(t) = k if
te {0} {77 :n e NLw*(1) =k + (1 — ) P()u(l), coorrrvvernee. ,

u?(n) = B>+ P(D)u(1)+P2)u(2)+....+P(n—1)u(n—1)+(1—a) P(n)u(n) ..oe..... :
w* (M) = K24+ P()u(1)+P(2)u(2)+..... 4+ P(M —1)u(M —1)+(1—a) P(M)u(M)

If we apply Theorem we get the bound for u(t) such that

u(t) < 4k +2ca Zt;:ll(l —2a+20?)P(7) + (a — a®)P(1 — 1) + (o — &) P(T + 1)
+ 2¢(1-a) Z:Zl(l —2a+2a?)P(1) + (a — a?)P(1 — 1) + (a — a?) P(7 + 1)

u(t) < 4k+ 2021;_:11(1 —2a+2a2)P(1) + (a — a?)P(1 — 1) + (o — a?)P(7 + 1)
+ 2c(1-a)[(1-2a+202)P(t) + (. — a?)P(t — 1) + (a — o?)P(t + 1)]

where
¢ = MaXpe[1, ] {\/1  20=adPull) \/1 P20 -e)PQuR)
\/1 2P (n— l)u(n 1)+2(1—a)P(n)u(n)
E2+2P(Du(1)+2P(2)u(2)... +2P(n—2)u(n—2) 7 ***"**" )
1 2P(M— 1 u(M 1)+2(1—a) P(M)u(M)
. k2+2P ..... +2P(M—2)u(M-2) "
If we take oo = , k?* = 2,then for the equation u*(t) = 2 + 2 fo u(s) oq s, where

h(s) =0, ift € {0} U{35 : » € N} and h(s) = 1ift € N, then ¢ = % and u(t)
is bound with u(t) < /2 ift € {0} U{:5 : n € N} and u(n) < 4W2+3n-3if
n € N.

5.6 An Application on Water Percolation Equation on Nabla Time Scales Cal-

culus

Consider the equality

(z(t)Y = F(t,:z:(t),/o i[t,s,x(s)]vs)

such that F : C([0, M, R) — Cia([0, M)z, R).

H) 52, if v >0

Let2(0) = VL, F(t,z,y) =y +
0, 2fx <0
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If we denote \/x(t) = u(t), then we obtain

(e(6)Y = H(() V2D 1 [ (- )Y

2 Y

- (v’

If we take the nabla integral of the last equality we have,

L+/H Vs

Then by Theorem

t—s

ult) < VE+ =) .

S?
where « is the constant in the Theorem 5.4.11

The norm on C,([0, M]r, R) is defined as for u(t) € CL ([0, M]r, R),

lu(®ll = mazgo a. [u(®)] + mazp . |lu™ (O]l

Define the linear operator L : C},([0, M]r, R) — Ci4([0, M]r, R) such that
Lu(t) = uV(t). By Theorem 1.65 in [§] L has a bounded inverse L.
Let Fy : CL([0, M]1,R) — Ci4([0, M]p,R) and 1 > X > 0 such that

Fy(2(t)) = AE(t, 2(b), /0 ift, s, 2(5)]Vs.

and
H(z,\) = L' Fyu, u € C4([0, M]1,R), X € [0,1]

This homotopy is compact and is also fixed point free on the boudary of O such that

(F(t,z(t),/otﬁ[t,s,z(s)]Vs) }},

where M = /L + @st. Since H(.,0) is the zero map it is essential so

0= {l’ € Olld([O:M]'JT el <1+ M + Supte[O,AI]Ta7zdx|<NI{

H(.,1) is also essential. Then by topological transversality theorem in [14] H(.,1)

has a fixed point which is the solution of the above system.
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Investigating uniqueness of the solution we will use Gronwall inequality for nabla
differentiation. First, let u(t), v(¢) be the solutions of the given equation, and let

2(t) = |u(t) — v(t)] and z(0) = 0, then
t
2(t) = / H(t - s)@Vs.
0 2
Since by Theorem [5.4.1]u(t), v(t) < V/L.
By Theorem 1.65 in [8]] mazcpo, a1 H (t) < . Hence we get
t
2V Lz(t) < B/ @V&
0

If we take nabla derivative both sides of the inequality we get,

B
4L

Then by [34] Gronwall inequality for nabla differentiation z(¢) < 0, hence there is

2V(t) <

z(t).

unique solution.
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CHAPTER 6

CONCLUSION

This thesis is devoted to applications of generalized integral inequalities to specific ar-
eas of biological mathematics and physics. The important notion in this thesis is time
scales calculus. Especially in population sciences such organisms like insects does not
have a continuous life cycle. For instance, they live a season, but the following sea-
son because of the weather conditions they could not live. In such a case, time scales
calculus becomes a useful tool. Because such a situation can be expressed mathemat-
ically by this notion. Therefore in chapter 2, chapter 3 and chapter 4, we have studied
some properties of predator-prey dynamical systems on a general time scales and our
finding are important for the organisms whose life cycle is unusual. The conditions
which are expressed by the generalized integral inequalities in Lemma[2.3.2] Lemma
[2.3.3] Theorem [2.4.T]and Theorem [4.2.1] are important to determine the permanence,
globally attractivity and periodicity of the solutions the given system. Also in our
thesis we have studied the impulsive case of the given predator-prey dynamic system
and we have shown how important the impulses are. Lemma [3.1.1] shows apparently
the effect of the impulses on prey and predator that can cause extinction or rescue
the species from the extiction. In addition to these, because of the impacts of the
impulses on the inequalities in Theorem [3.2.1] Theorem [3.2.2] Theorem [3.2.3] and
Lemma impulses have also an important effect on the periodicity, permenance
and global attractivity of the solutions. Additionally, if the results that we have find
in the third chapter which are related with the globally attractive periodic solutions of
the given system for the continuous case can be generalized to any time scales, this

will also be an important study.
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And in the fifth chapter we have deal with a special inequality, Constantin’s Inequal-
ity. We have generalized this inequality to the nabla and diamond-alpha calculus.
Although we does not have chance to study about the numeric explanation of the di-
amond alpha Constantin’s Inequality, diamond alpha generalization of this inequality
is very beneficial to get more accurate results for the numeric solutions of the water
percolation equation or such kind of integro-diffrential equations that are convenient
to the application of Constantin’s inequality. Also in [46] it was shown that solving
an integral numerically by using diamond-alpha notion, we can be able to get a more
accurate result. Therefore by using the diamond-alpha forms of the equations more
accurate numeric results can be obtained and because of this reason our generaliza-

tions become significant.
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