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ABSTRACT 

 

MAP MERGING FOR MULTI ROBOT SLAM 

 

 

Karadeniz, Orhan 

MS., Department of Electrical and Electronics Engineering  

Supervisor : Assoc. Prof. Dr. İlkay Ulusoy    

 

December 2014, 170 pages 

 

 

In the area of mobile robotics Simultaneous Localization and Mapping (SLAM) is 

a challenging problem. In the literature, there are many solutions to this problem 

for single robots. However, multi-robot SLAM is a relatively new topic, which 

has additional issues, such as communication, task sharing and map merging. This 

thesis takes map merging as its focus and this is examined in terms of the 

specifications for the unknown initial positions of robots. In the map-merging 

scenario, every robot localizes itself and generates maps individually and the 

generated local maps of each robot are shared with other robots. This information 
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sharing can be achieved within different architectures. A distributed approach is 

used in the study reported in this thesis. This approach does not need a fully 

connected communication network and a central unit to accumulate the 

information.  

This thesis examines the map-merging problem of multi robot SLAM though 

different approaches in literature. The single robot SLAM problem is solved with 

Compressed Extended Kalman Filter. The challenging part of map merging is the 

problem of the unknown initial position is solved with map similarity algorithms, 

the Delaunay Triangulation and triangle similarity metric. The stochastic search of 

global transformation matrix is undertaken applying the Random Sample 

Consensus, which is used for estimation of the transformation between the 

individual maps created by the robots. In the final step, the overlapping regions of 

the transferred maps are merged with different algorithms such as Maximum 

Likelihood, M-Estimator and Covariance Intersection. For experimental purposes, 

an open code simulator for the multi robot SLAM is implemented. Finally, each 

algorithm is examined under different scenarios and their performance analyses in 

relation to simulated and real world datasets, are presented in Chapter 5, which 

contains the details of the experiments.  

 

Keywords: Map Merging, Multi Robot, SLAM, Map Similarity, Global Map 

Transformation  
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ÖZ 

 

ÇOKLU ROBOTLAR İÇİN HARİTA BİRLEŞTİRME 

 

 

Karadeniz, Orhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü  

Tez Yöneticisi : Doç. Dr. İlkay Ulusoy      

 

Aralık 2014, 170 sayfa 

 

 

Eş Zamanlı Konumlandırma ve Haritalama (SLAM) problemi robotik alanının 

zorlu bir problemidir. Literatürde, bu sorunun tek robot için birçok çözümü 

bulunmatadır. Fakat, çoklu robot SLAM nispeten daha yeni bir konudur. Bu 

problem iletişim, görev paylaşımı ve harita birleştirme gibi ekstra konuları 

içermektedir. Harita birleştirme bu tezin ana konusudur, ve bilinmeyen ilk robot 

pozisyonları kısıtı altında incelenmiştir. Bu senaryoda her robot kendini 

konumlandırır ve haritalama yapar. Sonrasında oluşan haritalar diğer robotlar ile 

paylaşılır. Bu paylaşım farklı mimariler ile gerçeklenebilir. Bu çalışmada tam 

bağlı komünikasyon ağı ve merkezi bir işleme birimine ihtiyaç duymayan, dağınık 

mimari kullanılmıştır. 
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Bu tezde, çoklu robot uygulamalarında literatürdeki farklı harita birleştime 

yöntemleri detaylı incelenmiştir. Tek robot SLAM problemi Sıkıştırılmış 

Genişletilmiş Kalman Filtre (CEKF) algoritması ile çözülmüştür. Dağınık 

mimarilerde harita birleştimenin zor bir bölümü olan bilinmeyen ilk robot 

pozisyonları sorunu haritalar arası benzerlik bulap, ve bu benzerlik üzerinden 

haritalar arasındaki dönüşüm matrisi bulunarak çözülmüştür. Delanuay 

Üçgenleme yöntemi harita yapısından geometrik özellikler çıkararak, ve bu 

üçgenler üzerinden benzerlik hesaplanarak, haritalar arası benzer alanlar 

çıkarılmıştır. Bu benzer alanlar kullanılarak dönüşüm matrisi RANSAC 

algoritması kullanılarak aranmıştır. Son olarak haritalar bulunan matris ile aynı 

koordinat düzlemine taşınmış ve örtüşen bölgelerideki aynı sınır işaretleri 

Maximum Likelihood, Değiştirilmiş M-Tahminleyici ve Kovaryans Kesişimi (CI) 

algorithmaları ile birleştirilmiştir. Açık kaynak kodlu çoklu robot SLAM 

simülatörü gerçeklenmiş ve deneylerde kullanılmıştır. Son olarak, algoritmalar 

similasyon ve gerçek harita verileri kullanılarak değişik senaryolar ile incelenmiş, 

ve performans analizleri deneyler ve çıkarımlar bölümünde sunulmuştur.  

 

Anahtar Kelimeler: Harita Birleştirme, Çoklu Robot, Harita Benzerliği 
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CHAPTERS 

CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

1.1. Problem Definition and Motivation 

Robots are being increasingly used in many application areas, where the situation 

would be difficult, dangerous or life threatening for human beings; for example, 

natural and man-made disasters. Robots are also used in industrial contexts, 

particularly in the space industry. However, robots also face difficulties, which 

include determining the environment they are in and mapping that environment. 

The capacities of a robot are based on their physical structure and the extent of 

their ability to communicate. In an unknown area, the robot needs to localize itself 

and explore the environment. The sensor types and algorithms used for solving 

the problem localization and mapping diverge In terms of whether the 

environment is indoor or outdoor. 

The interior of buildings and tunnels are examples of indoor environments. Parks, 

roads, underwater or air platforms are examples of the outdoor environment. 

There have been many robot applications in these type of environments, such as 

indoors [1] [2] [3] [4], and outdoors [5] [6] [7]. The indoor environments are 

small areas containing features with concentrated distribution. The outdoor 

environments consist of larger areas with fewer features. Since features are the 

objects, which can be scanned by the robots' sensors the feature density of the 

environment is one of the main determinants for the selection of the type of sensor 

type. In outdoor environments features are more rare, so more precise information 

about the location of features is needed and it is this information that is used for 

robot localization and mapping. 
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The sensors used by a robot can be divided into types; bearing-only, and bearing 

and range types. Monocular cameras, and sonic scanning and ranging sensors are 

examples of the bearing-only sensor type, which only give information about 

direction of the feature. Light-based ranging sensors (LIDAR) are an example of 

the bearing and range sensor type, providing information about not only direction 

but also distance between the features. Despite being more expensive, bearing and 

range sensor types provide more precise information than the bearing-only sensor 

types.  

Using the information about the environment obtained through the sensors, a 

robot can solve the localization and mapping problem, which is called 

Simultaneous Localization and Mapping (SLAM) problem in the robotics area. 

For a robot, the SLAM problem is hard to solve due to the complexity of 

simultaneously extracting the map and localizing its own position. 

Different algorithms can be used to solve the SLAM problem. However, despite 

the precision of sensors, there are still errors in sensor readings. Moreover, the 

imprecise nature of the SLAM problem results in the stochastic representation of 

the robot's position and map representation. As a result, with their ability to 

address complex and stochastic problems, probabilistic algorithms, such as 

Kalman Filter and Particle Filter, are more suitable for the SLAM problem. Both 

these algorithms have certain advantages under different conditions. For example, 

the Kalman Filter is an optimal estimation method when linear Gaussian noise 

models with zero mean are used; however, in nonlinear and different noise 

distributions, the Particle Filter is more advantageous. Therefore, in order to 

choose the right algorithm, the problem should be analyzed in detail. In this study, 

the Kalman Filter was used to solve the SLAM problem. The main reason for 

choosing the Kalman Filter was its optimal estimation property. Moreover, the 

Kalman Filter provides the feasibility of using the Gaussian distribution for the 

assumption of the features, and linearizing the model using the Taylor Series 

expansion method.  
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Filters are used for the estimation of the robot's position and the description of the 

environment. Environment representation is called a map representation. The map 

representation of an environment can be performed using feature-based or grid-

based maps.  

A feature-based map representation consists of the extracted properties of 

features. For example, a tree in an environment is represented by x and y 

coordinates. On the other hand, in a grid-based map representation, the map is 

divided into cells. Each evenly spaced cell has a binary random variable, which 

represents the probability of an obstacle to occur in that cell. The grid-based map 

representation has high computational and storage requirements compared with 

the feature-based representation.  

Although algorithms have been successfully used for the solution of the single-

robot SLAM problem, the multi robot case is still unresolved.  This is due to the 

issues of task assignment, communication topology and map-merging in multi-

robot applications. 

Task assignment is employed when multiple robots are used to explore the same 

environment for an investigation. Task assignment decreases the time required for 

exploring the whole investigation area. However, in this study, task assignment 

was not investigated, and the tasks of the robots were assumed to be initially 

assigned.  

A communication topology is the structure of communication between robots. 

There are different topologies; such as fully connected, and partially connected. 

The fully connected communication topology uses extra devices to overcome the 

problems of limited bandwidth and limited communication range. The bandwidth 

of a network is the rate of data transfer, and it is measured in bits per second. 

Limited communication range is the range limitation of the data transfer devices. 

Extra devices transfer the information from one robot to all other robots. On the 

other hand, in partially connected systems, the bandwidth and range limitation 

problems are solved through one to one communication between the robots. In 
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these systems, robots only use the information obtained from other robots that are 

within the communication range. The fully and partially connected systems of 

communication are also referred to as centralized and decentralized systems, 

relatively.  

Centralized systems require one central unit for collecting and processing the 

accumulated information [8]. These requirements can be supplied by the fully 

connected communication topology. On the other hand, decentralized systems do 

not require a central unit, nor a fully connected communication topology. In 

decentralized systems, every robot is capable of using the information obtained 

from any other robot without having to obtain information from all other robots. 

In this study, decentralized system requirements were one of the main system 

specifications. A detailed description of the centralized and decentralized systems 

is given in Section 2.3. 

Map-merging is one of the tasks to be performed to solve the multi-robot SLAM. 

In this task, the shared information is used to improve the precision of the global 

map. A global map is a cumulative map, which is the combination of individual 

maps of all robots. Two different scenarios can be used to examine the map-

merging process. In the first scenario, every robot knows the relative positions of 

other robots. Therefore, each robot updates its location and builds a map based on 

this information. In the second scenario, the robots consider their initial positions 

as the origin of frame and construct their maps based on this assumption, which 

results in different frames for all robots. In the known initial position case, when 

the communication between robots is established, the combination of the local 

maps of robots is trivial. Therefore, there is no need for a map transformation 

calculation since the positions are already known. On the other hand, since the 

initial positions and relative frames are unknown in the second case, before 

combining the local maps of robots, frame transformation needs to be performed. 

As a result, the second case is more challenging than the first case. A detailed 

description of the unknown initial position scenario is given in Section 2.3.1. 
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After the global transformation, two maps in the same global frame are obtained 

for the construction of the final map. These two maps can have overlapping 

regions, which can be used to increase the precision of the map. This is called the 

process of combining maps. In this process, probability distributions of features 

are used as the inputs and the combinations of these distributions are given as the 

outputs of the process. These outputs with non-overlapping regions form the final 

global map. A detailed description of the combining maps process is given in 

Section 2.3.2. 

In summary, despite the more complex issues involved, multi-robot SLAM 

applications have the advantage of providing a faster and more precise exploration 

of the environment. Moreover, they have a fault tolerance for failures resulting 

from robots and algorithms. Environmental conditions or design mistakes can 

damage the electronic or mechanic parts of robots. Moreover, algorithm failures 

can results in mistakes in localization and mapping, such as incorrect data 

association and wrong model assumptions. These failures can be overcome using 

multiple robots. In addition, the required time decreases with the increase in the 

number of robots. Moreover, the overlapping regions of the maps provide precise 

information, since the information is obtained from different robots. Therefore, 

the multi robot SLAM applications have attracted more interest than single-robot 

SLAM applications in recent years. 

1.2. Scope of the Thesis 

The scope of this study was to provide a map-merging algorithm for a team of 

robots. Each robot localized and mapped the unknown environment without being 

aware of the initial positions of other robots. The inputs for all robots were; sensor 

readings (bearing and range) and odometer data (velocity and angular velocity). 

Each robot takes measurement without affecting each other, which means 

correlation between them is not available. The output was the merged global map 

of the environment. 
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The inputs were used for the single-robot SLAM purpose. The Compressed 

Extended Kalman Filter was used to estimate the robot pose and construct a map 

of the environment. Each robot shared its local map with the other robots that 

were within the communication range. The similar regions of these shared maps 

were found using the Delaunay Triangulation algorithm to extract the geometric 

information from the map; such as the circumference and area of triangles... These 

similar regions were used to perform the global map transformation between the 

local maps of the robots. Then, the best global map transformation was found 

using the Random Sample Consensus algorithm to align the maps. The 

overlapping features in the aligned maps were merged through a different 

algorithm, involving the use of Maximum Likelihood Estimation, Modified M-

Estimator and Covariance Intersection Estimator. 

1.3. Outline of the Thesis 

The structure of the thesis is given below. 

Chapter 2 presents a survey of previous research conducted on the multi-robot 

SLAM problem and map merging process.  

Chapter 3gives the theoretical background and formulation of the related literature 

under the following five sections, single-robot data association, filters for SLAM, 

global map transformation, feature-based map merging and map performance 

evaluation.  

In Chapter 4, simulator and maps used in experiments are represented in two 

sections; simulation environment, and maps and trajectories.  

In Chapter 5, experiments and results regarding the examined algorithms are 

given in the following sections; performance and sensitivity analysis experiments, 

simulated map and trajectory experiments and real world map and trajectory 

experiments.  

Chapter 6 presents a summary of the research conducted within the scope of this 

thesis, the contributions to the literature and suggestions for future work.  
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CHAPTER 2 

 

 

2. LITERATURE SURVEY 

 

 

 

In this part of the thesis, a literature survey on the probabilistic SLAM algorithms, 

map representations, and the multi-robot SLAM problem are presented. The 

detailed results of the research are given in the following sections. 

2.1. Map Representation 

The environment representation is called a map representation. The selection of 

the map representation is important in the SLAM algorithms. The map 

representations of an environment can be mainly divided into two; feature-based 

and grid-based maps.  

In feature-based map representation, a mean vector and a variance matrix are 

obtained from each extracted feature and stored separately. Figure 1 illustrates a 

feature-based map representation with the robot trajectory to clarify the stochastic 

nature of the SLAM algorithm. 

In Figure 1, k represents the steps, xk  indicates the robot's state in step k and zk,j 

shows the measurement of the jth  feature on the map at the step k. The robot's 

estimation of its own state and the landmarks on the map is not the same as the 

ground truth, which is a good simulation of the map representation and the SLAM 

problem.  
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Figure 1 Illustration of a Feature-Based Map and the Robot Trajectory [9] 

Topological maps are feature-based maps that contain additional information, 

such as the degree of vertices and orientations of edges at vertices in a graphical 

structure [10]. These vertexes are the nodes representing the positions of the robot 

and features. The edges connect one vertex to another using the distance between 

features. Figure 2 presents an example for the topological map representation. 

 

Figure 2 Illustration of Topological Map [10] 

In grid-based map representations, the environment is represented as an evenly 

spaced field of binary random variables, which represent the probability of 

obstacle to occur in a given cell [11]. Grid-map representations require a high 

storage capacity and greater computation time for larger maps, but no landmark 

extraction algorithms or data association are needed. An example of grid-based 

map representation is given in Figure 3. 
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Figure 3 Illustration of a Grid-Based Map [11] 

A graph-based map can be considered a sub-representation method for grid-based 

map representation [12]. In this representation, the trajectory with related scan 

measurements is used for map representation. Similarly, appearance-based map 

representation approaches [13][14] can also be considered graph-based map 

representations. In these approaches, snapshots of environment, captured by the 

camera on the robot, are used. The appearance-based map representation has the 

advantage of detecting the previously visited areas since this method uses visual 

features of the environment.  

Different map representations can be chosen for different areas according to their 

suitability. For instance, for large-scale areas with predefined landmarks, the 

feature-based map representation is more appropriate than the grid-based map 

representation. On the other hand, the latter can be used for an unconstructed 

environment with a denser structure [15]. 

There is interesting research on map representations, investigating the combined 

use of feature and grid-based map representations. Sim [16] and Ho [17]used this 

combination for the SLAM algorithm. However, Sim's method only uses grid map 

for navigation and feature map for pose estimation, and Ho's method uses feature 

map for only loop closure and grid map for pose estimation. Another important 

research in this area is the one by Wurm [18],who used both map representations 

simultaneously for the estimation of the robot pose.  
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2.2. Simultaneous Localization and Mapping 

SLAM is the localization and mapping problem of building a map of the unknown 

environment features while simultaneously finding the trajectory, which is also 

known as concurrent mapping and localization [19][20]. The main issue in this 

problem is the unknown environment and the unknown position of the robot, 

which correlates with the map and the robot trajectory. Different studies have 

investigated and developed methods to localize the known environments and map 

the known localizations [21]. However, SLAM is far more complicated than these 

problems due to its simultaneous nature. The SLAM problem is explained in 

detail in Section 1.1, in which, different methods used in the previous studies to 

solve the SLAM problem are also given.  

In the robotics area, probabilistic SLAM solutions attract more attention than the 

deterministic solutions, with their more complex natures. Probabilistic solutions 

also require approximation to address the impossibility of considering the entire 

probability space. In addition to approximation, a discrete model for the motion of 

the robot is also required to decrease the high computational cost of updating the 

motion. Therefore, probabilistic approaches are needed to approximate the best 

solution and create discrete motion models. There is a crucial relation between the 

model dependency and the precision of a solution. If a solution relies more on the 

model, then the computational cost is less. With the computational gain, the 

precision of the solution decreases. In fact, the model derived from the problem 

itself is uncertain. Therefore, when the solution depends on the model, it is more 

likely to be wrong. If the solution does not highly rely on the model, the solution 

is more likely to perform better in real world implementations, but the 

computational cost increases. There are two main filter classes used to solve this 

stochastic problem, Particle Filter and Kalman Filter. 

In Particle Filter, the zero mean Gaussian noise is not assumed; therefore, a linear 

system model is not needed. Since this method uses samples of distribution, its 

performance relies on the sample count. Under the smoothness assumptions, the 
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posterior probability tends to converge the correct value when the sample count 

goes to infinity [1]. Therefore, the sample count and the performance 

requirements of the system must be optimized in Particle Filter applications. 

However, using large sample sets for Particle Filter is not appropriate under real 

time specifications.  

The Kalman Filter is an alternative solution to the SLAM problem, which is also 

the optimal solution for certain assumptions. It is commonly used in SLAM 

applications due to its optimality. The assumptions of the Kalman Filter are; 

Markov assumption, linear state and measurement transition assumption, 

independent zero mean and Gaussian system noise assumption, and the 

assumption based on the uniform initial distribution of the robot. A detailed 

explanation of the Kalman Filter and its assumptions is given in Section 3.1, and 

the optimality proof can be found in Thrun's book [1]. Since it is difficult to 

satisfy these assumptions in real world applications, improvements have been 

made to the original Kalman Filter resulting in the development of the Extended 

Kalman Filter, Unscented Kalman Filter, Compressed Kalman Filter and 

Covariance Intersection. For instance, the Extended Kalman Filter uses the Taylor 

series expansion to overcome linear system assumptions by linearizing the 

nonlinear system models around the current mean. Furthermore, instead of 

linearizing the system model, the input of the filter can be sampled around the 

mean. These samples, called sigma points, are propagated through the nonlinear 

system model. After this propagation, samples are recombined for the calculation 

of the new mean and sigma. This expansion is called the Unscented Kalman Filter 

[1].  

The Extended Kalman Filter has a computational advantage over the Unscented 

Kalman Filter, but its complexity makes it unsatisfactory for real time applications 

in large areas. This complexity results from storing and updating all the 

correlations between the landmarks and the robot pose, which is explained in 

detail by Leonard [5]. This requirement is satisfied by updating all landmark 

correlations using all available information. Further improvements have been 
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made to the Extended Kalman Filter to reduce the computational cost involved. 

For this purpose, the Compressed Extended Kalman Filter was proposed by 

Guivant and Nebot [6].This filter updates the correlations in the current local area. 

After series of iterations, this information is propagated through the entire 

landmark set. The theoretical background of this algorithm is given in Section 

3.2.3. 

With each improvement to the Kalman filter, the algorithm provides a better 

performance under systems with different characteristics. For instance, the 

Unscented Kalman Filter provides a more precise solution than the Extended 

Kalman Filter despite the slightly higher computational cost. The complexity and 

performance analysis of the Extended Kalman Filter, Unscented Kalman Filter 

and Compressed Extended Kalman Filter under different computational powers 

were explained by Tuna [22]. 

The linearization problem can be solved using the Extended Kalman Filter or 

Unscented Kalman Filter, and the computational complexity can be reduced using 

the Compressed Extended Kalman Filter. However, there is still a detergency 

problem due to the errors related to the accumulated linearization. Julier [23] 

overcame these problems by not relying on the correlation information, and 

developing the Covariance Intersection method. This method is used to combine 

two estimates, which are consistent and optimal under unknown correlation cases 

[24]. The Covariance Intersection is more general and has a lower computational 

cost, but it does not provide the correlation information even if it is known. 

Therefore, a hybrid approach, Split Covariance Intersection, was proposed, which 

splits the information in the correlated and uncorrelated parts [25]. In this 

approach, the system is divided into two parts; known correlation and unknown 

correlation. This way, the state can be more precisely updated than the Covariance 

Intersection algorithm. In cases where the correlation information is fully known, 

the Split Covariance Intersection algorithm takes the place of the Kalman Filter 

approach. A detailed explanation of the Covariance Intersection algorithm is 

given in Section 3.4.3. 
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2.2.1. Feature Extraction 

Feature extraction is the preliminary process of data association in feature-based 

SLAM applications. Sensor data is processed to define a meaningful feature 

structure. In this process, the selection of the sensor to be used is very critical 

since every sensor type has a different output measurement. For instance, cameras 

give an image of the captured scene, while SONAR only gives the distance 

measurement, which is used in Ruiz's work [26], and LIDAR gives the raw data of 

the distance measurement of the scanned angle range. According to the sensor 

output, the algorithm used for feature extraction also changes. For the camera 

output image, edge detection is the most popular feature extraction method, which 

can be performed using a Canny detector [27], Sobel or Prewitt operators. 

Moreover, there are also corner, blob, Scale Invariant Feature Transform [28] and 

Speeded Up Robust Features, used as detectors in the feature extraction process of 

images. LIDAR is widely used in indoor environments for grid-based SLAM 

applications since it is easy to relate the raw data obtained from the LIDAR with 

the map grids without feature extraction. In addition to being commonly used in 

indoor environments, LIDAR is also very useful in outdoor environments due to 

the high resolution and high distance accuracies. The feature extraction process 

for the LIDAR output is the same as those for image processing techniques, such 

as corner, line and tree detections. General purpose features were given by Li 

[29]. 

The main criterion for the selection of a sensor in SLAM is the environment. For 

instance, a camera, SONAR or low range LIDAR can be used for an indoor 

environment. On the other hand, LIDAR with its high resolution and range 

specifications can be more appropriate for underwater applications in the outdoor 

environment. The feature extraction method is then determined according to the 

selected sensor and the environment. In the outdoor environments such as parks, 

LIDAR with a tree detection algorithm is suitable while for indoor environments 

such as corridors, edge and corner detection algorithms are more appropriate.  
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2.2.2. Data Association 

Data association is one of the critical parts of feature-based SLAM techniques. In 

this process, the information on the relation between the measurements and the 

landmarks is extracted and the matching measurement for the existing landmark is 

determined. New landmarks or false positives (outliers) can cause irrelevant 

measurements; therefore, the relation between a landmark and measurement 

should be carefully analyzed. An incorrect data association can lead to the 

algorithm initializing a wrong landmark. The information updated with the 

incorrect landmark measurement causes the robot to correct its state in a wrong 

manner. As result of these cumulative estimation faults, the algorithm diverges as 

explained by Neira [30].  

A data association algorithm can be examined in two parts; a test part, which is 

used to determine the compatibility between measurements and features, and a 

selection criterion, which is used to choose the best compatible pairs. Therefore, 

the data association issue can be considered as a search problem in the space of 

measurement and feature correspondences. 

In literature on SLAM, the Nearest Neighbor is a very popular algorithm used for 

data association due to its simplicity. This algorithm uses the distance between the 

landmarks and the measurement to determine the compatible pairs, and searches 

for the highest compatibility (shortest distance), which is the nearest neighbor. In 

this algorithm, measurements are individually tested for compatibility, so this 

algorithm is also called the Individual Compatibility Nearest Neighbor. The most 

popular compatibility test is based on Mahalanobis distance [31], which is also 

known as the normalized innovation squared [32]. The details of this algorithm 

and the Mahalanobis distance calculations are given in Section 3.1.1.  

The complexity of the Nearest Neighbor algorithm is  O(mn) , m being the 

measurement and nbeing the feature number. However, in this algorithm, the 

correlation between the measurements of the same vehicle results in an 

inconsistency in the compatible pairs. For instance, in loop closing scenarios, 
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robots explore a previously explored area, causing this algorithm to mismatch the 

measurements. Due to the accumulated estimation errors in the robot’s position, 

the measurements calculated according to the robot pose result in displacement 

errors. All the measurements are affected by the error in the robot’s position, 

which makes this algorithm inefficient for loop closing events. Despite this 

drawback, this method has the lowest complexity with respect to its competitors. 

Under complex situations, such as spurious measurement and loop closing 

scenarios, the overall compatibility gains more importance for data association. 

The Joint Compatibility Branch and Bound algorithm was developed by Neira and 

Tardos [30] to reduce this complexity. They used an interpretation tree in their 

work, which also increased the overall consistency by taking into consideration 

the joint compatibility. The levels in the tree define a possible association with the 

measurement and the path from the root to the leaf of the tree indicates the 

possible compatible pairs, which gives the joint compatibility. The branch and 

bound algorithm searches the tree using the depth-first-search algorithm, and 

measures the maximum joint compatibility of set of pairings using the 

Mahalanobis distance. The bounding part of this algorithm means that if the 

compatibility fails in a certain node, its child nodes are not searched. A detailed 

explanation of the joint compatibility test calculations is given in Section 3.1.2. 

The difference between the joint compatibility and individual compatibility results 

in different compatible pairs under the same scenarios. Figure 4 presents an 

example scenario involving a spurious measurement to clarify the difference 

between the behaviors of the joint and individual compatibility methods. Here, the 

stars represent the landmarks, and due to the static nature of landmark, z2
3 is the 

spurious measurement.  
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Figure 4 Mono Dimensional Spurious Measurement Scenario [30] 

Figure 5 shows the different behaviors of algorithms under the scenario given in 

Figure 4. x R  shows the difference in the robot’s position, and  x i , y i give the 

measurements. In the measurement notations, i  represents the number of 

measurements. Each circle indicates the matching hypothesis with a range of 

uncertainty, the big square represents the uncertainty without correlations and the 

ellipsoid shows the uncertainty with correlations. The Nearest Neighbor algorithm 

chooses the (y1, x1), (y3, x2) hypothesis since its center is the nearest to the center 

of the square. On the other hand, the Branch and Bound algorithm in the Joint 

Compatibility chooses the (y1, x1), (y2, x2)  hypothesis since it is the only 

hypothesis overlapping with the ellipsoid. 

Despite the performance improvements brought by the Joint Compatibility, such 

as the implementation of the interpretation tree and the use of the branch and 

bound algorithm, the complexity problem prevails. For example, in environments 

with high frequency rated sensors, the complexity of algorithms is too high for 

real time applications. Therefore, the Nearest Neighbor remains to be a very 

popular data association approach for SLAM.  
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Figure 5 Illustration of Different Algorithm Behaviors under the Same 

Scenario [30] 

2.3. Multi-Robot SLAM 

The single-robot SLAM has been investigated in detail in recent years, and its 

robustness has been verified using the modified versions of probabilistic SLAM 

methods. However, there are still concerns regarding the time requirements and 

fault tolerance. For instance, if the exploration area is larger, the time required for 

mapping increases. Moreover, when working in more complex environments, a 

possible robot or algorithm failure results in the failure of the whole mission. On 

the other hand, multi-robot solutions have great advantages over single-robot 

solutions. For instance, with the increase in the number of robots, the time 

requirement reduces, and the fault tolerance and the accuracy of the resulting map 

increases.  

The time advantage of multi-robot SLAM over single robot SLAM was examined 

by Marjovi [33]. In his paper, Marjovi used different number of robots in different 

environments, and obtained satisfactory results. For example, the mapping time of 

two robots was reported to be reduced by half when compared to the single robot 

mapping time. Despite these advantages, the multi-robot SLAM still requires the 

exploration of multiple issues, such as online path planning, simultaneous 
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localization and mapping, feature extraction and data associations. However, all 

have been examined in studies using the single-robot SLAM. In addition, task 

assignment, communication topology and map-merging issues are challenging 

issues for the multi-robot SLAM scenarios, which are explained in Section 1.1. 

The task assignment and communication topology issues were not included in the 

scope of this study. However, map-merging was investigated using the unknown 

initial correspondence and limited communication assumptions. These 

assumptions make it easier to address the multi-robot SLAM problem as an 

extended version of the single case. Similarly, Thrun [1] examined the multi-robot 

SLAM using these assumptions. In his work, robots updated their maps with the 

information obtained from the maps of other robots by summing the information 

vector and matrix. Although, the initial position is known in this assumption 

method, there is still the problem of finding the matching (same) landmarks in two 

maps. This requires a proper data association algorithm. This problem also exists 

in scenarios, without the known initial position assumption, and data association 

problem needs to be examined as explained in Section 2.2.2. After matching the 

landmark set, the information needs to be merged. The reason for the merging 

process is to obtain the precise location of the landmarks. A detailed explanation 

of the map merging process is given in Section 2.3.2. 

The unknown relative position assumption, on the other hand, makes it difficult to 

integrate the data since the maps cannot be directly merged due to the different 

frames of robots. Therefore, the first requirement to initialize the map merging 

process is the alignment of the maps using the global map transformation. A 

detailed explanation of this preliminary process is given in Section 2.3.1. 

In the multi robot SLAM, different data fusion architectures can be used for the 

system design. To fully understand the map-merging problem in the multi-robot 

SLAM, first different types of data fusion architectures need to be examined. 

Three types have been defined with respect to their data fusion processing unit; 

centralized, decentralized and distributed.  



 

 
19 

 

Centralized systems have a central unit to process the all transferred data. This 

unit is the only unit in the system, which is capable of processing data. Other units 

are only responsible for collecting and transferring the raw data (sensor output). 

Therefore, this system architecture needs a longer communication range and more 

bandwidth. In addition, these network assumptions are not easy to satisfy in real 

world applications. Wireless channels are sensitive to failures, their 

communication range is limited and their limited bandwidth capacity is not 

sufficient to transfer a large amount of data. Moreover, the time delays in the data 

transfer of each robot cause critical problems in this type of architecture.  

In contrast to the centralized systems, decentralized systems do not have central 

unit nor strong network assumptions. The main characteristics of decentralized 

systems given by Whyte and Stevens [34] are as follows: 

 There is no need for a central fusion center for the operation to be 

successful. All nodes are individually responsible for data fusion. 

 There is no common communication facility to broadcast information. All 

nodes are individually responsible for own one–to-one communication.  

 There is no global knowledge of the network topology. All nodes have 

information about the neighborhood.  

According to this description, nodes can be considered as robots in the 

decentralized systems. All the requirements for decentralized systems result in the 

scalability of the computational cost and the communication bandwidth. 

Moreover, as the number of nodes increases, the system becomes more robust 

against possible failures, and  changes in the network structure [35]. Node failures 

are the faults in the algorithm and the robot breakdown issues. The network 

structure changes, such as the disconnection of one-to-one links, are the result of 

the changes in the positions of the robots and the communication range 

limitations. Although decentralized systems require a lower communication 

bandwidth than the centralized systems, there is still a problem due the 

information transfer between the robots, which is called as Fisher and Shannon’s 
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measurements [36]. Moreover, an increase in the number of robots results in the 

loss of communication, which can be calculated by  O(n2) for the each 

communication step. Here, nis the number of robots in the system.   

In the distributed systems, all robots are responsible for processing the data. 

Therefore, instead of the unprocessed raw data, the information about the states of 

the robots are transferred to the fusion unit. The fusion unit is responsible for 

fusing the local states of robots into a global consistent state, which is the global 

map of the environment. In this architecture, multiple fusion units can be used. 

With this property, the distributed system designs can be combined with the 

decentralized architecture, which results in a hierarchical architecture.  

All the mentioned architectures have advantages over one another. For instance, 

in theory, with the correct data association process and tolerable data transfer size, 

the centralized architecture is optimal. In realistic scenarios, however, 

decentralized systems have the advantage of allowing robot-to-robot 

communication, which results in a lower bandwidth requirement. However, data 

transfer requires a respectively higher bandwidth than the distributed design. In 

the distributed design, the states of the robots as well as the associative 

probabilities are used for fusion and they are more complex representations than 

the measurements. On the other hand, the states also contain the past information 

and this complex representation makes it more difficult to associate the current 

data with the previous data. In the decentralized systems, separating the old 

measurement from the new measurement is easier. The task sharing property of 

the distributed systems is another advantage. A detailed comparison between the 

decentralized and distributed systems using the multi-robot SLAM was given by 

Leung [37]. In his study, Leung used the centralized equivalent to compare the 

results of the two implementations. He found that the time requirement of the non-

distributed implementation for the centralized equivalent estimate is lower than 

that of the distributed implementation. On the other hand, Leung noted that the 

distributed implementation decreased the computational load of the robots. 
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The decentralized and distributed architecture prevent the system from collapsing 

in complex environments; however, it is more costly due to the complexity of the 

initial design. The centralized system involves the transfer of a huge amount of 

data to update the whole system, and the computational cost of processing the 

whole sensor measurement of the central node is high [38]. The data transfer 

problem also occurs in the decentralized systems at a low level due to one-to-one 

nature of the information flow. Therefore, some improvements have been made to 

the centralized systems to overcome the problem of the limited communication 

bandwidth, such as transferring the most informative features of the map, as 

performed by Thrun [39]. In his work, Thrun extracted the most informative 

features by subtracting the previously transferred information from the current 

information on the state of the robot. Using the subtraction method, the most 

informative part of the map is extracted and limited by a constant value, which is 

the size of the sub-map. Similarly, in another study, Carlone [40] transferred the 

sensor measurements to the other robots. Obtaining this data, the robot augments 

its local map with the regions explored by other robots. However, the cost of this 

transfer is too high for limited bandwidth capacities. Therefore, the robots reset 

the history of the sensor measurements at the end of the transfer. On the other 

hand, in Cunningham's study [41], only the information about the landmarks, not 

the trajectory, was transferred between the robots. The longer trajectories of the 

robot can be a problem in the multi-robot SLAM due to the increase in the 

trajectory with the increase in time. Transferring only the landmark information 

prevents the divergence of the transfer load system. This shows that information 

selection is a requirement even for the decentralized systems.  

To summarize, in practice there is no single architecture that is optimal for all 

different systems. The selection of the architecture should be performed according 

to the system requirements, such as the communication capacity and the 

processing ability of the robots.  

In the distributed and decentralized systems, the map-merging procedure begins 

after the robots share their local information regarding the relative sensor 
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measurements or local maps with their neighbor robots within the communication 

range. In this thesis, this procedure will be examined in two main sections; global 

map transformation and the map-merging of the overlapped map.  

Global map transformation is the first process when the initial positions of the 

robots are unknown. The unknown initial position assumption results in each 

robot creating a different local map frame since based on the assumption of its 

initial position. Therefore, a map alignment using the global map transformation 

is necessary. This can be performed using two methods. The first method is to 

calculate the relative positions of the robots using the sensor measurements from 

other robots, and then finding the overlapping areas using data association 

methods. An alternative is to transfer the local map information to another robot 

with the assumption that there is an overlap between their maps. After sharing this 

information, the robot searches the shared map to find the overlap using possible 

translation matrices. After finding the overlapping region, the true translation 

matrix is also found. These different approaches to the unknown initial problem of 

the multi robot SLAM are examined in Section 2.3.1.  

After finding the relative positions of the robots, if there are overlapping regions 

on the local maps of the robots, the landmarks in these regions can be merged 

through the map merging process. In this process, the matched pairs in the 

overlapping regions are merged into one feature using their mean and variance 

estimations. Therefore, the positional information is more precise and accurate 

than the one that was previously obtained. In the literature, different map-merging 

techniques are investigated, which will be examined in Section 2.3.2. 

2.3.1. Global Transformation 

In the unknown positions scenario, the relative frames of robots need to be 

estimated. Global transformation is the process of finding the global 

transformation matrix. In this process, there are two main approaches. In the first 

approach, the robots estimate the position of another robot by measuring its 

relative position, and then find the transformation matrix from the relative frame. 
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In contrast, the second approach only uses the map of the other robot with the 

assumption that there is an overlap between their maps. In the first approach, after 

finding the transformation matrix, the landmarks can be transformed into the 

frame of the other robot. However, there is still a need to perform a data 

association, called the multi-robot data association, for which single-robot 

association techniques, such as Nearest Neighbor or Joint Compatibility Branch 

and Bound, can be used. The details of these association algorithms are given in 

Section 3.1. In the second approach, the data association process requires the 

calculation of the global transformation matrix. Therefore, search algorithms with 

map similarity heuristics are needed. 

In both approaches, the transformation matrix and the matched landmark pairs are 

the outputs of the process. In this thesis, these approaches are examined in two 

sections; global transformation using the relative measurements and global 

transformation using the map overlap. 

2.3.1.1. Global Transformation Using the Relative Measurements 

In this approach, the robots meet at a pre-defined or random point on the map. 

Upon meeting, each robot calculates its distance and angle in relation to the other 

robot. These measurements are then transferred to each other for the calculation of 

the relative transformation, which is given in detail in Section 3.3.1. A camera is 

one of the most popular sensors used to find the bearing measurement of the other 

robot. For instance, in Kim's work [13], a checkerboard pattern on one robot is 

detected by the camera of another robot. Similarly, in Zhou's work [42], an omni-

directional camera is used to detect the upper edge of a cylinder placed on another 

robot. The color, height and radius of the cylinder are known by all the robots. 

Using this priori information and the measurements, the bearing measurement to 

the target robot is calculated. Moreover, both robots shave a range sensor to 

obtain the range measurement of the other robot. By calculating the weighted 

average of the range measurements of each robot, a more accurate distance 

measurement is obtained. After finding the relative transformation between the 

robots, the global frame transformation is calculated using the estimates of the 
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states of the robots. Using this transformation, the map of each robot is moved to 

the global frame of the other. 

Carlone's work [40] is another example of using sensor measurements to find the 

transformation matrix between robots. In his work, Carlone used a pan-tilt camera 

for angular measurement and a laser range sensor to obtain the relative distance 

from the target robot. The same formulation is used in Zhou's work [42] for the 

calculation of the global frame transformation. After finding the global 

transformation matrix, not the maps but the history of sensor and odometer 

measurements is transferred to the other robot. Using this information, the robot 

processes the odometer measurements as if it was traveling backward on the 

trajectory of the other robot. In this process, the sensor measurements related with 

the trajectory are also used to extend the map. In this scenario, robots only transfer 

their own sensor measurements due to bandwidth limitations. Moreover, the 

previous meeting (rendezvous) time of each robot is used to transfer only the 

recent difference in measurements. This not only prevents the system from double 

counting the information, but also uses less bandwidth. In this scenario, data 

association is not required, since a feature-based map is not used.  

After finding the global transformation matrix, which is explained in detail in 

Section 3.3.1, multi-robot data association can be simply performed using any of 

the single-robot data association techniques. When maps are transferred to the 

other robots, the landmarks can be used as sensor measurements in the single 

robot data association. For instance, in Zhou's work [42], landmark pairs are 

found by using the Nearest Neighbor algorithm, which is explained in detail in 

Section 3.1.1. 

2.3.1.2. Global Transformation Using the Map Overlap 

In this approach, robots transfer their map information with the assumption that 

there is an overlap between their maps. The main purpose of this approach is to 

find the best transformation by selecting the best overlap from the transferred 

information. Figure 6 illustrates the overlapping regions of two maps m1 and m2 
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in two different transformations. Here, the second illustration shows a perfect 

match between the maps.  

 

Figure 6 Illustration of the Effect of Transformation on the Overlapping 

Area 

The search for the best overlap in a robot’s feature set can also be referred to as 

the multi-robot data association problem. This association problem is similar to 

the single-robot data association problem when the initial positions of robots are 

available. Instead of using features extracted from the sensor measurements, the 

feature sets of other robots can be used, which is explained in detail in Section 

2.3.1.1. However, the lack of prior knowledge about the position of other robots 

causes the search for the best association to be performed under different 

transformations, which makes the association more difficult than it is for the 

single robot case. Therefore, the possible transformation space is also considered 

in the multi-robot data association problem. 

The search space of possible transformation is too large for even moderate-size 

maps in real time applications. Therefore, different preprocessing techniques have 

been developed to reduce this space. These techniques use the structure similarity 

between the maps for the elimination of possible transformations. A global 

transformation including this preprocessing can be examined under two sections; 

map similarity and multi-robot data association.  
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In contrast to the relative measurements approach, finding the global 

transformation matrix through the overlapping points does not require a 

rendezvous between robots. In this approach, being within the communication 

range is enough to share the map information. Therefore, this approach has a 

better chance of a successful map-merging in complex environments. For 

instance, in the indoor environments such as labyrinths, buildings and 

underground tunnels, sensor limitations due to features, particularly walls, prevent 

robot-to-robot measurements. Under these circumstances, using communication 

for the exchange of map information is more suitable than using the relative 

sensor measurements. 

2.3.1.2.1. Map Structure Similarity 

Map structure similarity is the process of finding similar parts between the robots. 

These similar parts are possible overlapping regions between the maps. This 

similarity can be found using the map structure or geometric information. A map 

structure contains the characteristics of features, and geometric information is the 

relation between these features, which are meaningful in the feature-based map 

SLAM application. However, it can also be performed in grid-based maps with 

the use of feature extraction algorithms. The characteristics of the features on a 

map include color, shape and length. The edge lengths between features are a 

simple example of geometric information that can be extracted from the maps. 

These properties are used to reduce the search space of the global transformation.  

In the literature, different techniques have been reported to find the structural 

similarities between the maps. For instance, Dedeoğlu and Sukhatme used the 

extracted features to find the overlapping areas [43]. They classified the 

landmarks into two main types; node and link. In their study, corners, junctions 

and doors are classified as node while open spaces and blocks are classified as 

link-type landmarks. The search space is reduced by using feature properties with 

two heuristic functions; pairing up only the same type attributes and considering 

only the rare features of candidates. However, in their study, feature classification 

is done manually and their probability distributions are not considered.  
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In Konolige's work [44], a similar technique was used with some improvements. 

Features, such as corners, doors and junctions, and scan patches consisting of a 

recent set of scans were used to determine the similar regions between the maps. 

The similarity was scored by using the likelihood metric, which is calculated from 

the likelihood and feature likelihood multiplication of the scan readings. The 

means of the uncertainty and errors between the maps was used for the likelihood 

estimation of the scan readings, and the distance and angle in relation to the 

nearest feature were used to estimate the feature likelihood. Using the structure of 

the map considerably improved the performance of the transformation search. 

However, feature extraction was not examined and performed manually.  

To summarize, all the above-mentioned methods for map sharing focus on the 

importance of the map structure in finding the step where the overlap occurs. 

However, all methods require different feature sets to be compared in this step. 

These features were manually labeled in Konolige's work [44], and improved by 

Dedeoğlu and Sukhatme using compass readings [43]. With these features, 

algorithms are enhanced for a better performance. However, in general scenarios, 

extraction of these features is not possible. Therefore, it is more suitable to use the 

geometric information from the map to find the overlapping regions not to lose 

the generality.  

In Huang and Beevers's work [10], the feature extraction issue was addressed by 

using a topological map structure. In topological maps, additional information on 

the degree of vertices and orientation of edges at vertices are stored in a graphical 

structure. The vertexes are the nodes representing the positions of the robot and 

features, and edges are the paths connecting one vertex with another using the 

measurements. This structure consists of exact features, such as the degree of 

vertex, and inexact attributes, such as the length of the edge. In the calculation of 

the map similarity, exact features are compared to find a perfect match, but 

inexact features are compared using the similarity test. The similarity test is 

performed by assuming the Gaussian error for the angular orientation and 

distance. Using these matching tests, the algorithm decides whether it will accept 
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the candidate vertex pair and angle as a hypothesis. After the hypothesis 

generation step, the hypothesis consistent set is searched by extending the vertex 

to sub-graphs. These sub-graphs are the representation of possible overlapping 

regions. In fact, Huang and Beevers's study shows that using only the structure of 

the map does not give satisfactory results for self-similar environments, so using 

the geometric information improves the merging performance.  

Saeedi [45] examined the grid-based map representation for the map-merging 

problem. However, he suggested that without any preprocessing step, merging 

maps with higher dimensions such as grid-based maps is not suitable for real time 

implementations. In his work, Saeedi transformed the grid representation into a 

reduced topological map representation using the self-organizing maps method. 

This method is used to extract meaningful information from a map to accelerate 

the map merging process. After this process, the map representation consists of 

cluster points and cluster surfaces. Clusters points are the meaningful extracted 

features and cluster surfaces are the links between these features. These extracted 

features help find the norm vectors of surfaces. Birk and Carpin [11], who did not 

use the map similarity preprocessing, obtained similar results and reported the 

time requirement to be ten times less .  

The contribution of the preprocessing step using the meaningfully extracted 

features was given by Saeedi [45]. However, these algorithms still need too much 

time to finish the map-merging process due to the segmentation and clustering 

requirements. In contrast to the grid-based map representation, the feature-based 

map representation has a complex map structure. This complex nature of the 

feature-based map was examined by Cunningham [41]. In his work, Cunningham 

used the Delaunay Triangulation and a simple similarity metric to find the map 

similarity, which is explained in detail in Sections 3.3.2.1 and 3.3.2.1.2. These 

geometric features are extracted from the map by obtaining a unique triangle set 

using the Delaunay Triangulation algorithm. The circumference and area found by 

this algorithm is then used to calculate the similarity metric. This metric reduces 

the search space of the transformation matrix.  
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To summarize, all the mentioned algorithms are used to improve the search 

performance, and the geometric information is important for the map structure. 

For example, in the maps with similar structural properties, such as doors, 

windows and corners, the map similarity cannot reduce the search space. 

However, using the geometric information gives better results since it gives 

information on the relationship between the features. However, if the environment 

has similar geometric patterns, even geometric information may not improve the 

transformation search performance. In such maps, using outlier-tolerant search 

algorithms provides a better performance due to the similar structural and 

geometric patterns on the map in false transformations.  

2.3.1.2.2. Multi-Robot Data Association 

In this section, different multi-robot data association algorithms that have been 

reported in the literature are discussed. One of the maps is kept stable while the 

other map is transformed using the possible transformation matrix. Following the 

transformation, the performance of the transformation matrix is calculated using 

the performance of map overlapping. In the literature, different techniques have 

been reported for the evaluation of this performance; such as the similarity of the 

overlapping regions and the count of compatible features. For the calculation of 

candidate transformation, one candidate pair is selected. If this pair has the 

heading information, this means that it can provide sufficient data for the 

calculation of transformation in the closed form. However, if only position 

information is available, then two candidate pairs are required. This calculation is 

explained in detail in Section 3.3.2.2.1. After finding the candidate transformation 

matrix, the best transformation between the two maps is explored using different 

search algorithms. In the following parts of this section, transformation search 

algorithms are discussed in terms of their performance metrics in evaluating the 

transformation. 

In Dedeoğlu and Sukhatme's work [43], landmarks have heading and position 

information, so each pair has enough information for the calculation of the 

candidate transformation between the local frames of the robots. After finding the 
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candidate transformation for all possible landmark pairs, this transformation is 

applied to the rest of the landmarks in the data set. The matched landmark pairs 

are counted and the transformation with the highest number is selected. Dedeoğlu 

and Sukhatname did not use any search criteria; instead, they scanned the whole 

search space. Moreover, in their study, the probabilistic distributions of the 

landmarks are not considered, so the Euclidian distance is verified using the 

threshold value for the compatibility of the possible landmark pairs. 

In Birk and Carpin’s work [11],transformation is guided with Carpin's Adaptive 

Random Walk algorithm [46]. In this algorithm, randomness is obtained using the 

Gaussian distributed random selector and the adaptive part is obtained through 

image similarity and overlapping function. Image similarity is calculated using the 

distance map between two maps, which is an array of the Manhattan-distances to 

the nearest point with values in the map. The overlapping function is the 

measurement of the agreement between the two maps. The Adaptive Random 

Walk algorithm searches the configuration space and updates its transformation 

matrix with its heuristic function or a randomly generated sample set. In Birk and 

Carpin’s heuristic functions, the overlapping area and map similarity are used to 

associate the overlapping regions in grid-based maps. This search algorithm is 

explained in detailed in Section 3.3.2.2.3. Birk and Carpin’s main motivation 

behind using the random walk algorithm for the search of the possible 

transformation space is to prevent the algorithm from being stuck in a local 

maximum. Moreover, the adaptive part of this algorithm accelerates the search for 

a better and larger overlap by using the heuristic function value. A detailed 

explanation of this search algorithm is given in Section 3.3.2.2.3. 

In Saeedi's work [45], the grid representation is transformed into a reduced 

topological map representation. With the use of the features extracted from the 

topological map, norm vectors of surfaces and points are found. The directions of 

the norm vectors of the cluster surface are put into a 360-degreehistogram, and 

then the relative rotation part of the global transformation is determined using this 

histogram. In the calculation of the relative translation part of the global 
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transformation, the norm vectors of the cluster points are used by searching a 

possible transformation. Saeedi implements a search algorithm similar to the 

Iterative Closest Point algorithm, which iteratively updates the transformation 

matrix with the correspondence set in that iteration. The details of the algorithm 

are given in Section 3.3.2.2.4. 

In Cunningham's work [41], features with their probability distribution 

information are used to detect the overlaps. Similar Delaunay Triangle center 

points and the Random Sample Consensus (RANSAC) algorithm are used to 

search the transformation matrix between the maps. This algorithm calculates the 

candidate transformation matrix from the similar triangle center pairs and checks 

the search space for a match between the landmark pairs. This search space is the 

output of the map structure similarity, which gives similar triangle center points. 

The matched landmark pairs are obtained using a compatibility test (Mahalanobis 

distance) under candidate transformation, and their count is used for the 

evaluation of the performance of the transformation matrix. A detailed 

explanation of this compatibility test is given in Section 3.1.1, and the RANSAC 

algorithm flow chart is explained in Section 3.3.2.2.2. 

To summarize, the multi-robot data association issue is different from the single-

robot data association issue. For instance, the compatibility test in the multi-robot 

association requires the use of map similarity metrics, such as the correspondence 

set size, overlapping area size or Cunningham's similarity metric. The reason 

behind this requirement is that the transformation between maps is unknown. 

Therefore, map similarity is used link the maps together. Moreover, search 

algorithms, such as the Adaptive Random Walk, Iterative Translation Search or 

RANSAC, have adaptive or random characteristics due to the possibilities of 

different overlapping regions. These possibilities are randomly distributed due to 

the random initial positions of robots. Therefore, the multi-robot data association 

is a more difficult process.   
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2.3.2. Map-Merging 

In this section, map-merging algorithms proposed in the literature are examined in 

terms of their use in different map representations. The map-merging process in a 

grid-based map representation is obtained by summing the probabilities of the 

matched grids. The matched grids are found using the same occupied index of the 

map. The grid probabilities are summed if they have the same properties in terms 

of being occupied or free. If one of the grids in a matched pairs conflicts with the 

other, these grids are marked as unexplored. The information of a pair being 

occupied or free is kept in case there is no matching pair. The illustration of the 

map-merging process of two grid maps is given in Figure 7. 

In contrast to grid-based maps, the merging process for the feature-based maps 

needs to combine the distribution functions of the matched landmarks, which is 

the output of the global transformation process. The matched landmarks are the 

same landmarks that exist in both maps. They need to be calculated using a data 

association algorithm, which associates the landmarks in one map with the 

landmarks in the other map. The mean and covariance matrices of the landmarks 

are used for the fusion of these landmarks in the probabilistic map-merging 

process. Through this fusion, more precise and accurate positions can be obtained. 

Figure 8 shows the change in the covariance matrices after map-merging.  

The map-merging process in feature-based maps has similar characteristics to the 

sensor data-fusion process. In sensor data-fusion process, every sensor data is 

combined and the precise location of each feature is obtained. The following 

sensor data fusion approaches have been reported in the literature; 

 Extended Kalman Filter, 

 Maximum Likelihood Estimator, 

 Modified M-Estimator, 

 Covariance Intersection Estimator, 

 Orthogonal Gnanadesikan-Kettenring Estimator, 

 Hybrid Covariance Intersection and Orthogonal Gnanadesikan-Kettenring, 
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Figure 7 The upper two maps explored by different robots are merged into 

the lower resultant map [11]. 

Centralized, decentralized and distributed systems have different characteristics, 

which are explained in detail in Section 2.3. Therefore, the above-mentioned 

solutions to the map-merging issue need to be investigated in relation to the 

characteristics of different systems. 

In centralized systems, the information fusion in the Extended Kalman Filter 

solves the map-merging problem using the initial knowledge of the dynamics of 

all robots. However, in this solution, the correlation values between the maps are 

updated by a central unit. In addition, the memory and time requirement makes 

this approach not suitable for real time implementations and the system behaves 

similarly to the single-robot SLAM. Therefore, in this thesis, the Kalman Filter 

was not used to perform the map-merging process. 
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Figure 8 Ellipses with a larger area are the landmark covariance matrices in 

different maps, which are merged with the smaller (inner) ellipses. 

In decentralized systems, there is no central unit or a fully connected network. 

Therefore, a more detailed (complex) design is required for map-merging. For 

instance, using the Kalman Filter requires an independence assumption between 

the nodes. However, this assumption can result in divergence for two main 

reasons; unpredictable correlated system noises and the correlation resulting from 

previous information flow between the robots. The first can be prevented by 

modeling the system more precisely. However, the solution to the second case 

requires maintaining all the correlations between the nodes. For instance, channel 

filters [34] can be used to maintain the correlations, but these filters cannot work 

with cyclic network connections, in which the information can flow in multiple 

directions. Therefore, using the Kalman Filter in decentralized systems is not 

appropriate. A detailed examination of the use of Kalman Filter in decentralized 

systems can be found in Julier and Uhlmann’s work [47]. In their study, the use of 

Kalman Filter with channel filters in decentralized systems with a cyclic network 

connection was reported to be “impossible”. 
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The specifications of a decentralized system require implementing the estimators 

without the correlation information or maintaining a global map. Maintaining a 

global map means that the robot does not integrate the information obtained from 

the other robots into its local map; instead, it clones its local map and merges both 

information in another map (the global map). Despite being costly, maintaining 

the global map, gives the opportunity to use different map-merging techniques.  

In the map-merging process, if the covariance matrices of the features are ignored 

or the sensor outputs are stored for the data fusion process, the problem becomes 

an inverse probability problem. In inverse probability problem, main concern is to 

find the distribution of the data. For instance, if a coin is flipped five times, what 

is the probability of getting four tails? This problem is represented 

by p(Data|Model). On the other hand, in the inverse probability problem, the 

main concern is to find the model parameters for the observed data. Therefore, the 

representation of this problem becomes p(Model|Data).  

The Maximum Likelihood Estimator is a very popular solution to the inverse 

probability problem. It is a conservative method; therefore, it assumes that the 

input data has no outliers and tries to minimize the errors without considering the 

outlier possibility. Moreover, an initial model is needed to find the parameters for 

this model. The distribution function of this model is minimized by taking the 

logarithm and the derivative. A detailed explanation of the Maximum Likelihood 

Estimator is given in Section 3.4.1.  

M-Estimators are another popular class of estimators, which use the functions of 

data to obtain the minima. The estimation functions are the derivatives of the 

likelihood functions with respect to data. The M-estimator was first proposed by 

P.J. Huber [48] in 1981, who generalized the Maximum Likelihood Estimation 

[49]. There are also different types of robust estimators in the literature, such as 

the R-Estimator, L-Estimator and S-Estimator. These estimators and their 

theoretical derivations were explained in terms of their evolution Andersen's work 

[50]. These methods can be used in the decentralized systems by transferring the 
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sensor output history for data fusion. They can also be used with the extracted 

features without their covariance matrices. However, bandwidth limitations and 

the specifications of the distributed system make it difficult to investigate the M-

estimators in detail. In addition, a solution involving these estimators causes 

information loss since it does not use the covariance information of the extracted 

features. Therefore, in the experiments in this study, the Maximum Likelihood 

Estimator was used as the base estimator. 

In this thesis, in addition to the base estimator, a special type of M-Estimator, 

which assigns weights landmarks based on their covariance matrix, was used for 

map-merging. This technique uses the independence between variables to use 

additivity of statistical information, which is used for fusion of two sensor outputs 

in the lecture notes of Zisserman [51]. Then, in his study, Zisserman reported that 

weights cause large covariance matrices resulting in the uncertainty of the 

information regarding the landmark position. Using these weights, the resultant 

positions of the landmarks can be estimated. In this thesis, this algorithm will be 

referred to as the Modified M-Estimator. A detailed explanation about the 

implementation of this algorithm is given in Section 3.4.2. 

Another estimation method similar to the Modified M-Estimator is the Covariance 

Intersection, which is more suitable than the Modified M-Estimator for distributed 

and decentralized systems. This algorithm does not use the correlation 

information between the features. In addition, its consistency has been proved for 

any degree of correlation in the study by Julier and Uhlmann [47]. In their work, 

Julier and Uhlmann also explained in detail, the advantages of the Covariance 

Intersection algorithm over the Kalman Filter in decentralized systems. This 

algorithm uses the convex combination of means and covariance matrices of 

random variables. In contrast to the Modified M-Estimator, it can also weigh the 

data to adjust the determinant or the trace of the resultant covariance matrix. A 

detailed explanation of this algorithm is given in Section 3.4.3. 
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Sequeira et al [52] used the Orthogonal Gnanadesikan-Kettenring Estimator to 

overcome the problem of unused correlation values in the Covariance Intersection 

algorithm. This method is based on the use of a robust estimator developed by 

Gnanadesikan and Kettenring [53], which uses actual measurements and their 

estimated covariance matrices, and modified by Sequeira et al [52]. Using these 

inputs, outliers are disregarded in the calculation of the final covariance matrix. A 

disadvantage of this algorithm is that it needs the whole data set to determine the 

outliers with their estimated covariance matrices. This process uses a high 

bandwidth; therefore, it is not suitable for distributed applications, but can be used 

in decentralized systems. The pseudo code of the algorithm and its explanation is 

given in Section 3.4.4.  

In their study, Sequeira et al [52] also used a hybrid of the two estimators, the 

Orthogonal Gnanadesikan-Kettenring and Covariance Intersection to estimate the 

covariance.. They then compared their performance based on the area of the 

covariance matrix and chose the better covariance matrix as the final value. Their 

study also includes the performance results obtained from different data sets. 

These results show that in different data sets one estimator can outperform the 

other; therefore, a hybrid algorithm improves the performance in more general 

applications. Despite this improvement, a hybrid implementation involves 

calculating both covariance matrices with their performance metrics to make the 

final decision. This takes more time and increases the bandwidth and storage 

costs, which is not preferable in distributed systems. However, in decentralized 

systems using this hybrid algorithm improves the performance of the Covariance 

Intersection algorithm with the outlier rejection property of the Orthogonal 

Gnanadesikan-Kettenring estimator.  

To summarize, different data fusion techniques have been developed and 

investigated for the map-merging process of the multi-robot SLAM. As 

mentioned above, all the algorithms have their advantages for different system 

designs. For instance, using the Kalman Filter update in centralized system 

architecture is the optimal solution. However, since this requires an extra process 
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in decentralized systems, robust estimators, such as Covariance Intersection or 

Orthogonal Gnanadesikan-Kettenring are more suitable than the Kalman Filter. 

On the other hand, in distributed systems, sensor outputs cannot be shared with 

other robots, so using simple and consistent methods, such as the Covariance 

Intersection algorithm is more appropriate. 

2.4. Evaluation of the Map Performance 

Maps generated by different SLAM algorithms represent the environment in 

different ways, as explained in Section 2.1. These differences in representation 

result from the purpose for which they are employed, which results in the need to 

use different methods for the evaluation of the maps. In the literature, there are 

different map quality criteria. These criteria are also called metrics and are not 

only used in academic studies for comparison of algorithms as in this thesis, but 

also used in competitions such as RoboCup Rescue [54], and Magic [55]. 

Despite the variety of metrics in the literature, only few can be used in general 

applications. Most studies on the evaluation of metrics use only one criterion, 

which is directly related with the application area. Therefore, other problematic 

areas are disregarded. In his study [56], Lee addressed this issue by introducing 

certain attributes to describe a metric for different mapping applications and 

suggested that a metric must; 

 be clearly defined, 

 be multi-valued, 

 reflect the purpose of map, 

 balance the coverage and detail, and 

 be applicable during the construction of the map.  

A clearly defined metric does not contain any subjective judgments. Having the 

multi-valued property means that the performance evaluation is not based on the 

"true/false" value. The reflection of purpose indicates that the metric contains 

what is important for the given application. Balancing the coverage and detail 

property is used to weigh the criteria in metric calculation. The balancing property 
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can be used between any of the properties. The last property of the metric being 

applicable in the construction of the map means that the robot can use the map 

when constructing it and evaluate its performance. All these properties give a 

clear description of a good metric for map evaluation.  

Map evaluation algorithms are classified into three main classes by Schwertfeger 

[57]; path-based, place-based and structure-based. In path-based approaches, not 

the map information but the robot’s path performance is used for evaluation. In 

such evaluations, the ground truth trajectory is required for comparison, which is 

hard to satisfy, particularly for outdoor environments. In place-based approach, 

the extracted map is compared with the ground truth data of the map, which is a 

more general evaluation technique. Structure-based approaches compare the 

resultant map structure with the ground truth map-structure, which needs a 

structural mapping algorithm, such as topological maps. All these approaches are 

explained in detail in Schwertfeger’s work.  

Map merging performance evaluation is similar to the map performance 

evaluation. Instead of using different SLAM, feature extraction or data association 

algorithms, the map-merging algorithms are compared using the merged maps. 

Therefore, the metric criteria and approaches for map evaluation can also be used 

for the evaluation of the map merging performance. However, path-based 

approaches are not applicable to this evaluation. 

In this section, feature-based approaches in literature are discussed, and using 

Lee's metric properties, a metric that is appropriate for the application is selected 

to evaluate the performance of map-merging. 

In Yairi's work [58], the Least Mean Squares of Euclidean Distances are used for 

map evaluation. Then, the Euclidean distance between the map features and the 

ground-truth is calculated. However, the covariance information is not included in 

the evaluation metric. Similarly, in Wagan's work [59], different feature extraction 

algorithms are compared using the feature-based approach. In his work, A pair 
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wise matching of features is performed based on the distances between the 

features. The count of the matched pairs is used as the metric for evaluation.  

In Schwertfeger's work [57], artificial markers are placed in environment, and the 

resultant map is compared with the ground truth information of these markers in 

terms of accuracy. The accuracy of markers is calculated using the distance of 

markers to the ground truth positions of them, and the local consistency is 

calculated by using the distance between the marker pairs on the resultant map. 

These distances are subtracted and assigned to the consistency metric. Coverage is 

also used as a metric, which is calculated from the ratio of the count of the 

explored markers to the count of all markers. Combining these different metrics, 

the current study aims to satisfy Lee's metric property definitions and obtain a 

general metric definition. However, this evaluation metric only uses the mean 

values of the markers’ position. This kind of evaluation does not consider the 

probabilistic distributions of features, which is very important information for 

SLAM.  

On the other hand, the estimated covariance matrix is used for metric calculation 

in Klippenstein's work [60]. However, only the robot’s position is used for error 

calculation due to the lack of true positions of the extracted features. In his study, 

Klippenstein used the Normalized Estimation Error Squared to calculate the 

errors, and the χ2 acceptance test to check the consistency between the estimated 

errors and the covariance. After running the Monte Carlo algorithms on the filter, 

the average value is tested with a 95% confidence region of the χ2 distribution. 

However, since this test of inconsistent values of feature extraction algorithms 

only gives true or false values, it is not considered a good evaluation metric. 

Therefore, the volumes of covariance ellipses are used as a metric for ranking. In 

the calculation of the metric, the volume of the covariance matrix is estimated 

using the robot pose. This technique involves the distribution of the estimated 

position of the robot, which is the most important input of the estimation of the 

next position in probabilistic SLAM algorithms. Therefore, in the current study, 
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this technique has been chosen for the metric calculation and to evaluate different 

methods for map-merging as explained in Section 5. 

In this study, rather than the robot’s position, features of the merged maps were 

used to compare the map-merging algorithms. The estimated feature and ground 

truth pairs were found using the Nearest Neighbor algorithm, as explained in 

Section 3.1.1. These pairs (ground truth and estimation) were then checked in 

terms of their consistency by using the Normalized Estimation Error Squared and 

the χ2 acceptance test, which is explained in detail in Section 3.5.1. For the pairs 

that passed the test, the metric description of Klippenstein was used to evaluate 

the different map-merging algorithms for two-dimensional maps given in Section 

3.5.2. An evaluation using this metric includes the covariance information, which 

is one of the main parameters in map-merging algorithms.   

  



 

 
42 

 

  



 

 
43 

 

 

CHAPTER 3 

 

 

3. THEORETICAL BACKGROUND 
 

 

 

3.1. Data Association 

In this section, Individual Compatibility Nearest Neighbor and Joint Compatibility 

Branch and Bound algorithms, which are introduced in Section 2.2.2 are 

examined in detail.  

3.1.1. Individual Compatibility Nearest Neighbor 

In this section, Individual Compatibility Nearest Neighbor data association 

algorithm is explained. Mahalanobis distance calculations, which are used in 

compatibility test, are also given in the following equations. The pseudo code of 

the algorithm is given in Table 1. 

Table 1 Pseudo Code of Individual Compatibility Nearest Neighbor 

Individual Compatibility Nearest Neighbor (PN , PM ) 

1: for i = 1 → n 

2:      for i = 1 → m 

3:           d i, j = distanceFunc(pi , pj) 

4: for i = 1 → n 

5:      dist i ← ∞ 

6:      for i = 1 → m 

7:           if i ≠ j and d i, j < dist i   

8:                dist i ← d i, j  

9:                NN i ← j 
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In Table 1, PN  and PM  are the position vectors of two set of features, which are the 

parameter of the algorithm, N is the number of first set, M is the number of second 

set. distanceFunc()  is the compatibility test function, which is selected as 

Mahalanobis distance. NN i  is the compatible set of features, which are selected 

as nearest neighbor. In this algorithm, distance values are calculated and stored, as 

mentioned in line 1, 2, 3. By using these values nearest pair is selected with the 

smallest distance value, as mentioned in line 7.  

Mahalanobis distance function calculations are related with implicit measurement 

function, which is given in the equation (1). 

 fiji
 x , y  = 0 (1) 

In equation (1),  x  and y  are the true values of feature and measurement, fiji
 

represents the relative location between feature i and corresponding measurement 

ji . Accumulated errors in the position of features results this equation into the 

equation (2). 

 fiji
 x, y ≅ hiji

+ Hiji
 x − x + Giji

 y − y  (2) 

In equation (2), hiji
is the innovation of pairing between measurement and feature, 

Hiji
 and Giji

 are the first derivatives of the innovation matrix with respect to 

measurement and feature respectively. From these equations covariance matrix 

can be calculated as mentioned in the equation (3). 

 Ciji
= Hiji

Cov x − x Hiji

T + Giji
Cov y − y Giji

T
 (3) 

By the use of resultant covariance matrix Ciji
, following innovation test, which 

measures the Mahalanobis distance can be written as in equation (4). 

 Diji

2 = hiji

T Ciji

−1hiji
< γ2 (4) 
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In equation (4), Diji

2  is the Mahalanobis distance between feature i and 

measurement  j, and γ2 is the compatibility gate, which accepts the 95% correct 

association for value 6.  

3.1.2. Joint Compatibility Branch and Bound 

In this section, Joint Compatibility Branch and Bound data association algorithm 

is explained. Joint compatibility test calculations, are given in the following 

equations.  

The consistency of the hypothesis Hi =  j1, … , ji , which is joint compatibility is 

obtained by using joint implicit function given in equation (5). 

 fH i
 x , y  = 0 (5) 

In equation (5),  x  and y  are the true values of feature and measurement, fH i
 

represents the relative location between feature i and corresponding measurements 

in hypothesis Hi . Accumulated errors in the position of features results this 

equation into the equation (6). 

 fH i
 x, y ≅ hH i

+ HH i
 x − x + GH i

 y − y  (6) 

In equation (6), hH i
is the innovation of pairing between measurement and feature, 

HH i
 and GH i

 are the first derivatives of the innovation matrix with respect to 

measurements and features respectively. From these equations covariance matrix 

can be calculated as mentioned in the equation (7). 

 CH i
= HH i

Cov x − x HH i

T + GH i
Cov y − y GH i

T
 (7) 

By the use of resultant covariance matrix CH i
, following innovation test, which 

measures the joint innovation test can be written as in equation (8). 

 DH i

2 = hH i

T CH i

−1hH i
< 𝛾 (8) 

In equation (8), DH i

2  is the joint innovation and γ is the compatibility gate, which 

accepts the 95% correct association for value 6.  



 

 
46 

 

3.2. Filters for SLAM Purpose 

In this section, filters mentioned in Section 2.2 are explained in detail. Kalman 

Filter, Extended Kalman Filter and Compressed Extended Kalman Filter are 

investigated under feature based SLAM specifications. 

3.2.1. Kalman Filter 

Kalman Filter is used for estimate the state of system, which corrects the estimate 

by using feedback of measurements. This filter is proved optimal estimator under 

its assumptions. These assumptions are Markov assumption, independent zero 

mean Gaussian distributed noises, normal distributed priori state, and linear state 

and measurement models.  These assumptions' details and Kalman filter 

optimality proof can be found in Thrun's work [1]. Kalman Filter has two main 

steps, such as time and measurement update steps, which are called as prediction 

and correction states. In Figure 9, the state transition diagram between these two 

steps is represented, which shows that time update transition can occurs 

independent of measurement update, also they can occur concurrently.  

 

Figure 9 State Cycle Diagram of Kalman Filter 

The estimated state consists of positions of robot and observed landmarks in the 

map, which is given in the following equation (9). 
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 xk =

 
 
 
 
 
 
 
 
 

xR

yR

∅R
xL1

yL1

...
xLN

yLN  
 
 
 
 
 
 
 
 

 (9) 

In equation (9), xR , yR , ∅R  are the x coordinate, y coordinate and direction values 

of the robot pose, xLi
, yLi

 are the x and y coordinate of the observed landmarks Li, 

and N is the total number of landmarks observed.  

Linear state time update equation is represented in formula (10). 

 xk = Axk−1 + Buk−1  + ωk−1 (10) 

A is  nxn  the state transition matrix, represents the transition from state xk−1 to 

xk , B is control matrix  nx1 , which relates the input uk−1  with state xk , wk−1 is 

the independent Gaussian noise with p w ~N 0, Q  distribution.  

Linear measurement update equation is represented in formula (11). 

 zk = Hxk + vk  (11) 

H is the observation matrix  nxn , which relates the measurement with state xk , 

and vk  is the independent Gaussian noise with p(v)~N(0, R) distribution. 

The given model above result the following equations (12), (13) for predict state.  

 x k
− = Ax k−1 + Buk−1 (12) 

 Pk
− = APk−1AT + Q (13) 

A  and B  are the same in equation (10), Pk−1  is posteriori estimate of state 

covariance matrix  nxn .  

The given model above result the following equations (14), (15), (16) for 

correction state. 
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 Kk = Pk
−HT(HPk

−HT + R)−1 (14) 

 x k = x k
− + Kk(zk − Hx k

−) (15) 

 Pk =  I − KkH Pk
− (16) 

In these equations, Kk  is the Kalman gain at step k, which is calculated with 

equation (14), for detail derivation of Kalman gain Thrun's work [1] can be read. 

Equation (15) is the exact correction step, which updates xk  with Kalman gain 

multiplied measurement prediction. The critical point at this step is measurement 

correction on xk  is weighted with the inverse covariance, which means if the 

measurement is more precise the correction is bigger. In equation (16) same as the 

(15) is the state covariance correction step.  

The formulations show the recursive nature of the Kalman Filter, which make it 

more suitable for real time applications such as SLAM. However, in nonlinear 

cases, linearization or sampling is needed. Sampling is explained in detail in 

Thrun's work [1], which is called Unscented Kalman Filter. On the other hand, 

Extended Kalman Filter's solution lies in Taylor Series expansion as explained in 

detail in the following Section 3.2.2. 

3.2.2. Extended Kalman Filter 

In nonlinear situations, Kalman Filter is used by extension of linearization 

process, which is called as Extended Kalman Filter. This filter has two parts as 

linearization part and filtering part. In the linearization part simple first order 

Taylor series expansion is used, which needs the first derivatives of the state 

transition and measurement functions around current mean and covariance value. 

In the filtering part, the procedure of Kalman Filter is used.  

The discrete state transition and measurement functions representation is not 

applicable in nonlinear situations. Therefore following equations will be used, 

(17) represents the state transition and (18) represents the measurement functions. 
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 xk = f(xk−1, uk−1, ωk−1) (17) 

 zk = h(xk , vk) (18) 

Equation (17) is the time update process, which uses nonlinear state transition 

function f , and equation (18) is the measurement update process, which uses 

nonlinear measurement function h. These notations of parameters used in function 

f and h are the same in Kalman Filter. Therefore, the detail explanation is omitted 

here.  

For the given nonlinear model, prediction functions of the next state becomes as 

(19) and (20).  

 x k
− = f(x k−1, uk−1) (19) 

 Pk
− = AkPk−1Ak

T + WkQk−1Wk
T  (20) 

Equation (19) is the state prediction, which is derived from the model given in 

equation (17), and the notations are the same as in equation (17). Equation (20) is 

the state covariance update, Ak  and Wk  matrices are the Jacobian matrixes at step 

k and Pk−1 and Wk  are the noise covariance matrixes at k − 1 and k respectively. 

The Jacobian matrixes of state transition and measurement functions, Ak  and Wk  

calculations are given below. 

 A[i,j] =
∂f i 

∂x j 
(x k−1, uk−1) (21) 

 W[i,j] =
∂f i 

∂w j 
(x k−1, uk−1) (22) 

Equation (21) is the partial derivative of state transition function with respect to x, 

and equation (22) is the partial derivative of state transition function with respect 

to w. 

For the given nonlinear model, measurement update functions of state at step k 

become as in equations (23), (24) and (25). 
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 Kk = Pk
−Hk

T(HkPk
−Hk

T + VkRkVk
T)−1 (23) 

 x k = x k
− + Kk(zk − h x k

− ) (24) 

 Pk =  I − KkHk Pk
− (25) 

(23) is the Kalman gain calculation equation, the notation is the same as in (14) 

except for Vk  and Hk . They are the Jacobian matrixes at k , the detail 

representations are given in equations (26) and (27). 

 H[i,j] =
∂h i 

∂x j 
(x k) (26) 

 V[i,j] =
∂h i 

∂v j 
(x k) (27) 

Equation (26) is the partial derivative of measurement function with respect to x, 

and equation (27) is the partial derivative of measurement function with respect to 

w. 

3.2.3. Compressed Extended Kalman Filters 

Extended Kalman Filter gives a solution for nonlinear cases for with linearization 

cost. However, its performance is not enough for large-scale environments, which 

is inevitable in outdoor applications. These types of environments cause a great 

computational cost for inverse calculations in Kalman gain equation, which is 

given in equation (23), so N2 problem occurs. The updates in state transition and 

measurement equation is usually effects the local area which is independent of the 

other landmarks. This fact is used in Compressed Extended Kalman Filter to 

reduce the estimation costs, and gives identical solutions with full EKF state 

estimation [61].  

The idea behind this compressed filter approach is using a local area for standard 

state and measurement update. When robot quits from this area boundary, it 

combines this area information with its full map by batch update. This procedure 

simply reduces the N2 problem to Na
2 problem, Na  is the number of landmarks in 
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active area which is independent of the size of the full map [6]. In Figure 10 the 

situation is illustrated, the active robot area represented as A, and the stable area 

represented as B, triangle is robot's current pose and stars are the landmarks. 

 

Figure 10 Illustration of Active and Stable Regions of Map 

The same nonlinear discrete time dynamic system representation is used for 

model. The state transition equation and measurement equation are represented in 

(28) and (29) respectively. 

 x(k + 1) = f(x(k), u(k),ω(k)) (28) 

 z k + 1 = h x k , v k   (29) 

These equations have the similar notation as EKF time and measurement update 

equations represented (17) and (18). However, the different notation is used in this 

part of the study. Notation (k) is used instead of subscript for iteration number k. 

The subscript notation is used for sub matrices' notation. x ∈ Rn , z ∈ Rm . 

The compressed structure is needed for using this algorithm. Therefore, the state 

is divided in two parts as in following representation (30). 

 

x =   
xa

xb
  

xa  ∈ Rna , xb  ∈ Rnb , x ∈ Rn  

(30) 
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In equation (30) xa  represents the upper part of state matrix, which is the active 

part, and the xb  represents the lower part, which is kept constant.  

The state covariance matrix is divided into two, according to division in equation 

(30). As a result, following equations are obtained as represented in (31). 

 

P =  
Paa Pab

Pba Pbb
 = E  x − x .  x − x T  ∈ Rn.n 

Paa = E  xa − xa .  xa − xa 
T  ∈ Rna .na  

Pbb = E  xb − xb .  xb − xb 
T  ∈ Rnb .nb  

Pab = E  xa − xa .  xb − xb 
T  ∈ Rna .nb  

Pba = Pab
T  ∈ Rnb .na  

(31) 

It is seen that, the stable part of state xb  has no time or measurement update, when 

the observations in time period τ  between k1  and k2  have the following 

characteristic, as represented in equation (32). 

 

 
xa(k + 1)

xb(k + 1)
 =  

fa(xa k , u k , ωa(k)

xb k , ωb(k)
  

z k + 1 = h x k , v k   

∀  x, u, k / k ∈  τ 

(32) 

Equation (32) shows that, xa  has independent measurement and time update, and 

wa , wb  and wh  represent the independent noises. The noise characteristics of the 

model are represented in the equations (33).  
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E ωa(k) = 0  

E ωb(k) = 0  

E ωh(k) = 0  

E ωa k . ωa j 
T =  δk,j . Qaa (k) 

E ωb k .ωb j 
T =  δk,j . Qbb  k  

E ωh k .ωh j 
T =  δk,j . R(k) 

E ωa k .ωb j 
T =  0  

E ωa k .ωh j 
T =  0  

E ωb k .ωh j 
T =  0  

(33) 

Equation (33) shows that, the expected values of noises are zero, and their 

covariance matrices are Qaa ,Qbb , R  respectively. Moreover, the correlations 

between them are zero, which means that if the noises are Gaussian these 

uncorrelated noises are independent.  

According to the mentioned model, calculations in the period τ are given in the 

following part. At the beginning of the period (at k1) set of auxiliary matrixes 

∅,φ, θ, Qbb
∗  are created, which are in the following dimensions as represented in 

equation (34) and their initial conditions are represented in equation (35). 

 ∅,φ ∈ Rna .na , θ ∈ Rna , Qbb
∗  ∈ Rnb .nb  (34) 

 ∅ k1 = I, φ k1 =  0 , θ k1 =  0 , Qbb
∗  k1 =  0  (35) 

In every prediction state calculation in the period τ, standard Extended Kalman 

Filter calculations of xa  and Paa , and auxiliary matrix calculations are done. These 

auxiliary matrix calculations are represented in the equations (36).  
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∅ k = Jaa . ∅ k − 1  

φ k =  φ k − 1  

θ k =  θ k − 1  

Qbb
∗  k =  Qbb

∗  k − 1 + Qbb  k  

Jaa =   ∂fa ∂xa  |xa (k) 

(36) 

The following auxiliary matrix calculations are done as represented in equations 

(37). 

 

∅ k =  I − μ k  . ∅ k − 1  

φ k =  φ k − 1 + ∅T k − 1  . β k . ∅ k − 1  

θ k = θ k − 1 + ∅T k − 2 Ha
T k − 1 S k − 1 −1z  k − 1  

Ha k =  ∂h ∂xa  |xa  k  

β k = Ha
T k . S k −1. Ha k  

μ k = Paa k . β k  

S k = Ha k . Paa k . Ha
T k + R 

z  k = z k − h xa k , v k   

(37) 

Whole state x is updated by using these auxiliary matrixes, when the time period 

is finished (at k2), which is called as batch update. The batch update equations are 

represented in equation (38). 

 

Pab  k2 = ∅ k2 . Pab  k1  

Pbb  k2 = Pbb  k1 − Pab  k1  . φ k2  . Pab  k1 + Qbb
∗  k2  

xb k2 = xb k1 − Pab  k1  . θ k2  

(38) 
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Equation (38) shows that the xb , Pbb , Pab  and Pba  matrices are only required at the 

begging and at the end of the time interval τ (at k1 and k2). These matrices are 

kept constant between the interval, and the related information for their updates 

are calculated and stored by auxiliary matrices ∅,φ, θ. The auxiliary matrixes 

have dimensions as naxna , naxna  and na  respectively. The detailed prove and 

demonstrations can be found in the given references [61] [6]. 

This algorithm is very useful in large areas or working with the high frequency 

rate sensors such as laser sensor. When working with these sensors, the map is 

updated so frequently, and the computational cost for this batch update will 

increase a lot. On the other hand, the real time requirement is one of the most 

important specifications in SLAM applications. Therefore, this algorithm takes 

attention with its low computational complexity without losing any information. 

Moreover, batch update of the algorithm can also be done as a background task 

with a low priority, while updating local map. As a result, these advantages makes 

Compressed Extended Kalman Filter suitable algorithm for real time outdoor 

SLAM.  

3.3. Global Map Transformation 

In this section of study, algorithm details of the techniques mentioned in the 

Section 2.3.1 are investigated in two parts; global map transformation by using 

relative measurements and by using maps' overlapping region.  

3.3.1. Global Map Transformation by Using Relative Measurements 

In this section, global map transformation problem of multi robot SLAM is 

examined by the use of relative robot measurements. This problem is handled by 

the mutual relative measurements of robots. The sensor reading, which is 

composed of bearing and range information, is transferred to other robot and these 

measurements are processed to calculate the global map transformation matrix 

between local frames of robots. The following calculations are taken from the 

Zhou’s work [42]. The procedure examined in two parts as relative distance and 

bearing measurements, transformation between global frames. 
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3.3.1.1. Relative Distance and Bearing Measurements 

Each robot on the map has its own global frame, and they explore and extract the 

map of the environment on these frames. Robots are represented by Ri and their 

global frames are represented by  Gi  in the following calculations, where i = 1,2. 

The coordinates of Ri ,  with respect to  Gi  is represented as XR i  
G i =

 xi yi ∅i 
T . In this representation, xi is the x-coordinate, yi  is the y-coordinate 

and ∅i  is the direction of the robot pose. The relative position measurement of 

Rj  with respect to Ri is zi j, which is given in the equation (39). 

 zi j =  
ρi m

θi jm

 =  
ρ

θi j
 +  

ω
ρi

ω
θi j

    i, j = 1,2 (39) 

In equation (39), ρ is the distance measurement and θ is the bearing measurement 

of Ri , ω
ρi

 and ω
θi j

 are white zero-mean Gaussian noises, whose variance 

matrices are ς
ρi

2 and ς
θi j

2 respectively. Two distance measurements are 

independent, so precise distance can be calculated with the following equation 

(40). 

 ρm = ςρ
2  

ρ1
m

ς
ρ1

2 +
ρ2

m

ς
ρ2

2  ,    
1

ςρ2
=

1

ς
ρ1

2 +
1

ς
ρ2

2  (40) 

These measurements of two robots can be reformed into the following equation 

(41). 

 Z =  

ρm

θ1
2m

θ2
1m

 =  

ρm

θ1
2

θ2
1

 +  

ωρ

ω θ1
2

ω θ2
1

 = Zt + ω (41) 

In equation (41), Zt  is the real value of the measurements and E ωρ
2 = ςρ

2.  

Figure 11 illustrates the geometric relationship between positions and 

measurements of robots and it is seen that the following equation (42) holds. 
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 p
R1

R2
= − CR2

R1  θ  p
R2

R1
 (42) 

 p
R j

R i
= ρ  

cos θ
j

i

sin θ
j

i

 = ρC θ
j

i e1, i = 1,2 (43) 

 

Figure 11 Relationship Between Positions and Measurements of Robots [42] 

In equation (42), p
R j

R i
is the position of Ri in the local frame of Rj, CR2

R1  θ  is the 

angular transformation between  R1  and  R2 , and e1 is the unit vector along the 

x-axis. By substituting equation (42) into (43) rotational angle between robots' 

frames can be calculated as mentioned in the following equation (44). 

 θ = π + θ1
2 − θ2

1 (44) 

The transformation matrix between  R1  and  R2  can be calculated in close form 

with the angle in equation (44) and the distance in equation (40).  

3.3.1.2. Transformation between Global Frames 

In this section, by using the bearing and range measurements, transformation 

between global frames of robots is determined. This transformation enables to 

represent the state estimate X
G1

2 of R2 with respect to  G1  as in the equation (45). 
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 X
G1

2 = h X
G1

1, X
G2

2, Z  (45) 

In equation (45), X
G1

1 is the state of R1 with respect to  G1 , X
G2

2 is the state of 

R2 with respect to  G2 , and Z is the measurement given in the equation (41). The 

detailed representations of these states are given in the following equation (46). 

 

X
G1

1 =  X
G1

R1

T X
G1

L1

T … X
G1

Li

T … X
G1

Ln 1

T   

X
G2

2 =  X
G2

R2

T X
G2

l1

T … X
G2

lj

T … X
G2

ln 2

T   

X
G1

Li
=  

xLi

yLi
 ∈ M1, X

G2
li

=  
xli

yli
 ∈ M2  

(46) 

In equation (46), i = 1. . . n1, j = 1. . . n2 and n1 n2  is the total landmark count in 

the map M1 M2  of robot R1 R2 .  

The rotational transformation of frames from  G2  to  G1  is CG2

 G1 . The rotational 

transformation of frames from  R2  to   G1  is CR2

G1 . These transformations can be 

computed with the following equations (47). 

 

CG2

G1  ∅ =  CR1

G1  ∅1 CR2

R1  θ  CR2

G2  ∅2 
T  

=> ∅ =  ∅1 + θ − ∅2 

CR2

G1  ∅
G1

R2
 =  CR1

G1  ∅1 CR2

R1  θ  

∅
G1

R2
= ∅1 +  θ 

(47) 

By substituting equation (44) into equation (47) for θ, following equation (48) can 

be obtained.  

 ∅
G1

R2
= ∅1 +  π + θ1

2 − θ2
1 (48) 

In equation (48), ∅1 is the orientation of R1 with respect to  G1 . 
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Figure 12 Geometric Relationship Between Global Frames and Landmark 

Position [42] 

In Figure 12, the geometric relationship between global frames and landmark 

position is illustrated, and it is seen that the following equation (49) holds. 

 

p
G1

G2
= p

G1
R1

+  CR1

G1  ∅1 p
R1

R2
− CG2

G1  ∅ p
G2

R2
 

p
G1

R2
= p

G1
R1

+  CR1

G1  ∅1 p
R1

R2
 

(49) 

In equation (49), p
G i

R i
is the position of Ri with respect to Gi. Similar equation can 

be written for the position of each landmark li ∈  M2 with respect to  G1  as in 

equation (50). 

 p
G1

li
= p

G1
G2

+  CG2

G1  ∅ p
G2

li
, i = 1. . . n2 (50) 

In equation (50), p
G1

li
is the position of landmark li  in the map M2  with respect 

to   G1 . By using this transformation landmarks in them map  M2  can be 

transformed to the global frame of R1. 
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3.3.2. Global Map Transformation by Using Map Overlap 

In this section, global map transformation problem of multi robot SLAM is 

examined by the use of overlap between maps. The local map information is 

transferred to other robots to calculate the global map transformation matrix 

between local frames of robots. This information is searched with possible 

transformations, if overlap between maps is found; this transformation can be 

used as a candidate global map transformation. The best transformation, which 

gives the perfect overlap between maps, is searched by comparing the overlapping 

area. This comparison can be done with appropriate heuristic functions such as 

matched landmark count, similarity metric etc. However, the search space of this 

transformation is infinite because of the lack of prior knowledge about robot’s 

positions. Therefore, preprocess step can be used for finding similar regions in the 

map. For this purpose following algorithms; Delaunay Triangulation and 

similarity metric are examined in the following sections. After this process 

different search algorithms; Random Sample Consensus, Adaptive Random Walk 

and Iterative Translation Search are explained in detail. The transformation matrix 

formulation and derivation is also mentioned in Section 3.3.2.2.1. 

3.3.2.1. Map Structure Similarity 

In this section, Delaunay Triangulation and similarity metric calculation 

techniques, which were used in Cunningham's work [41], are explained in detail.  

3.3.2.1.1. Delaunay Triangulation 

The complexity of the search space for finding the best transformation matrix 

between local frames of robots leads to reduction in the input sample set. The 

geometric feature extraction and their similarities are used for this improvement. 

In this section, Delaunay Triangulation algorithm [62], which is a well studied 

geometric feature extraction method is explained in detail. This algorithm takes 

the coordinates of landmarks as input and calculates the triangles, whose ensure 

empty circum circle criterion. This criterion means that the circum circle related 

with the triangle contains no more point than the triangle edges. Moreover, 

Delaunay Triangle algorithm maximizes the minimum angle of the all triangles, 
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which avoids the skinny triangles. These properties of algorithm can be seen in 

Figure 13. 

 

(a) Delaunay Triangles (b) (c) Non Delaunay Triangles 

Figure 13 Demonstrations of Possible Triangle Shapes 

In Figure 13, (b) and (c) have a more skinny triangles than (a), which shows the 

possibility of different geometric features.   

Delaunay Triangle algorithm gives the same output triangle set for the same input 

set. However, there exist exceptional cases, in these cases such as rectangular 

shape, which is illustrated in Figure 14; algorithm is able to produce two different 

triangles for the same input points. 

 

Figure 14 Possible Outputs of DT under Exceptional Case (Rectangular 

Shape) 
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The exceptional case presented in Figure 14 has very low possibility in real 

implementations. The sensor noises and the asymmetric nature of the environment 

cause the occurrence of the perfect rectangular shape in nature to almost zero.  

There exists various types of implementation of the this algorithm in literature 

such as Guibas and Stolfi’s Divide and Conquer [63], Fortune’s Sweepline [64],  

and Bowyer-Watson's Incremental algorithms. The pseudo code of Bowyer-

Watson's Incremental Delaunay Triangulation Algorithm is mentioned as an 

example in the following Table 2. 

Delaunay Triangulation is closely related with Nearest Neighbor Graph and 

Voronoi Diagram [65]. The Nearest Neighbor Graph is a sub graph of the 

Delaunay Triangulation, because of its empty circum circle property, the closest 

point to any point lies in the edge of that point in the Delaunay Triangles. 

Moreover, the center points of the circles of triangles are the joints in the Voronoi 

diagram. The illustration of this relationship is represented in Figure 5. The dots 

in (a) show the joints of Voronoi diagram and (b) show the center points of the 

triangles. 

 

(a) Voronoi Diagram (b) Delaunay Triangulation 

Figure 15 Illustration of Relationship between Voronoi Diagram and 

Delaunay Triangulation 
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Table 2 Pseudo Code of Bowyer-Watson's Incremental Delaunay 

Triangulation Algorithm [66] 

function BowyerWatson (pointList)  

// pointList is a set of points to be triangulated 

1: 

2: 

3:  

 

4: 

5: 

6: 

7: 

8: 

9:  

 

10: 

11: 

12: 

13:  

 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21:  

 triangulation := empty triangle mesh data structure 

  add super-triangle to triangulation  

  for each point in pointList do // add all the points one at a time to the 

triangulation 

     badTriangles := empty set 

     for each triangle in triangulation do // find the invalid triangle 

        if point is inside circumcircle of triangle 

           add triangle to badTriangles 

     polygon := empty set 

     for each triangle in badTriangles do // find the boundary of the 

polygonal hole 

        for each edge in triangle do 

           if edge is not shared by any other triangles in badTriangles 

              add edge to polygon 

     for each triangle in badTriangles do // remove them from the data 

structure 

        remove triangle from triangulation 

     for each edge in polygon do // re-triangulate the polygonal hole 

        newTri := form a triangle from edge to point 

        add newTri to triangulation 

  for each triangle in triangulation // done inserting points, now clean up 

     if triangle contains a vertex from original super-triangle 

        remove triangle from triangulation 

  return triangulation 
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The implementation of the Delaunay Triangulation in this thesis, uses 

Computational Geometry Algorithms Library (CGAL) [67]. The insertion, 

removal and displacement abilities are available in this library implementation in 

MATLAB. Triangles can be computed in batch with O(n ∗ log(n)) complexity. 

The insertion of a new point is performed by inserting member function of the 

basic triangulation and performing a sequence of flips for restoring the Delaunay 

property. The number of flips is O(d) if the new vertex has d degree, for the 

uniformly distributed points it is O(1) on average. The removal of the point is 

done by removing and triangulating again, which takes O(d2) for degree d. The 

displacement checks whether the triangulation remains planar or not. If 

triangulation remains, algorithm performs sequence of flips for restoration, which 

has a complexity of  O(d) . Otherwise, new point is inserted and the past is 

removed, which has an O(n) in worst case.   

Different implementations are compared with each other in Su’s work [68]. His 

study shows that Dwyer's improvement on the Guibas and Stolfi's Divide and 

Conquer algorithm is the strongest algorithm in its competitors. However, it is 

also mentioned that all of these algorithms can be fastest on different dataset. 

3.3.2.1.2. Similarity Metric Calculation 

In this section, similarity metric used in the Cunningham's work [41] is explained 

in detail. This similarity metric uses the features of triangles, which are calculated 

by the use of Delaunay Triangulation algorithm. These features are used for 

calculating the overlapped regions between two maps and extracted from the 

Euclidian distances between points. The triangle circumference and area are 

selected as geometric features for this similarity metric calculation. These feature 

calculations are represented in the equations (51). 
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f1
j

= aj + bj + cj 

f2
j

=  s(s − aj)(s − bj)(s − cj), s =
1

2
f1

j
 

(51) 

In equation (51), f1 represents the circumference of the triangle, and f2 represents 

the area of the triangle, and a, b, c are the edges of the triangle.  

All features are calculated according to the equation (51) and the correspondence 

set is calculated by using these features as mentioned in equation (52).  

 C T1, T2 =   t1, t2    t1 ∈ T1, t2 ∈ T2, S t1, t2 < 𝜏} (52) 

In equation (52), τ  represents the threshold value for the similarity match 

decision. The C(T1, T2) represents the correspondence set. The similarity s(t1, t2) 

is calculated as mentioned in equation (53). 

 S t1, t2 =  e 
 fi

1−fi
2 

2
 

i

 (53) 

The similarity calculation has errors, because of the geometric similarity of 

triangles and the selection of the threshold value could be too small or too big. 

The geometric similarity, which can be similar in different cases, is illustrated in 

the following Figure 16. The features of two triangles are almost the same but it is 

seen that they are extracted from different landmarks.  

 

Figure 16 Illustration of Similar Triangles with Different Landmarks 
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3.3.2.2. Multi Robot Data Association 

In this section, transformation matrix formulation with different multi-robot data 

association algorithms mentioned in Section 2.3.1.2.2 is explained in detail.  

3.3.2.2.1. Transformation Matrix Formulation 

Transformation matrix, which is searched for map alignment of two local maps, is 

explained in detail. These maps are built locally and they needs to be transferred 

to the same reference frame before map merging process. This transfer consists of 

rotation and translation in two-dimensional space, because of the planar 

environment. The functional representation of the transformation in Euclidian 

coordinates is represented in the following equation (54).  

 Tθ y =  
cos ∅ − sin∅
sin∅ cos∅

 y +  
t1

t2
  (54) 

In equation (54), φ represents the rotation and t1, t2 represent the transformation 

in x and y coordinates relatively. The related parameter vector can be represented 

as in the following equation (55). 

 θ =  θ1  θ2  θ3  θ4 
T =  cos ∅  sin ∅  t1  t2 

T (55) 

By using the equation (55), parameters can be estimated in least square sense, by 

using the following equation (56). 

 Tθ p1 =  S I2x2 θ = Aθ, S =  
x1 −y1

y1 x1
  (56) 

In equation (56), S is a skew symmetric matrix and I is the identity matrix. These 

transformation needs one point (x1, y1)  to transfer, which means one transfer 

gives two equations. However, there are four parameters to be calculated, so two 

independent point transformations are required for close form calculation. 

Therefore, the cardinality of MSS is  k =  2 . For this calculation, A  matrix is 

augmented as in the following equations (57).  
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Tθ p1 

Tθ p2 
 =  S

(1) I
S(2) I

 θ (57) 

For performance improvement, M matrix is defined as M =  S(1) − S(2), which is 

Schur complement as represented in equation (58). 

  
Tθ p1 

Tθ p2 
 =  

I I
0 I

  
M 0
0 I

  
I 0

S(2) I
 θ =  

M I
0 I

  
I 0

S(2) I
 θ (58) 

By taking the inverse of the augmented A matrix, the parameters are left on the 

right hand side of the equation (58), as represented in the equation (59). 

 

 
I 0

−S 2 I
  M

−1 −M−1

0 I
  

Tθ p1 

Tθ p2 
 

=  
I 0

−S 2 I
  

M−1 Tθ p1 − Tθ p2  

Tθ p2 
 =  

θ1:2

θ3:4
  

(59) 

This improvement reduces the total algebraic operation of the estimating the 

model parameter to 12 multiplications and 11 additions. The model estimation's 

calculation complexity is essential, because it is repeated at every iteration step of 

search algorithm. 

3.3.2.2.2. Random Sample Consensus 

The outliers exist after the correspondence set is obtained. Therefore, robust 

algorithm is needed, while searching for the transformation matrix for global map 

transformation. Random Sample Consensus is best known for its capability for 

elimination of outliers and originally used for matching arbitrary point clouds by 

Fischler and Bolles, in 1981 [69]. It is an iterative algorithm, mostly used for 

estimating the model of the observed data. It works with a basic assumption, 

which assumes that, by using a small set of inliers optimal model of the observed 

data can be found. Algorithm randomly chooses a set of data, and generates a 

model based on this set. After the candidate model calculation, it is tested on the 

whole data set and its performance is compared with new generated model.  
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RANSAC is composed of two essential steps (hypothesize and test), which are 

repeated iteratively [70].  

 In hypothesize step, the Minimal Sample Set (MSS) is selected, which 

consists of the required number of samples for computing the model 

parameters. The crucial point here is, the MSS has the smallest number of 

samples in contrast to other techniques such as least square where the 

parameter is estimated with all input data.  

 In test step, initially computed model is used on the whole data set and the 

consistent samples are acquired in Consensus Set (CS).  

The termination rule of RANSAC is related the probability of finding a better set. 

If this probability decreases under the threshold or the maximum iteration number 

is achieved, algorithm terminates with its best model.  The detailed representation 

of these steps is illustrated in the following Figure 17. 

The dataset used for model estimation process is represented by D =  {d1 , … , dN }, 

and the MSS is represented with  k . Let the model parameters estimated by 

RANSAC is θ ({d1, … , dh }), which is estimated by data set {d1, … , dh }. The h 

here is larger than the MSS count (k). The related model is defined as in the 

equation (60). 

 M(θ) ≝  d ∈ Rd : fM d; θ = 0  (60) 

In equation (60), θ is the parameter vector, and fM  is the smoothing function at 

zero level it contains the matching parameter set with model  M . In real 

applications, the zero level smoothing is not possible, so the following error 

calculation in equation (61) and the CS calculation in equation (62) are applied for 

model extraction. 

 eM d; θ ≝ min
d ′ ∈M(θ)

dist d, d′  (61) 
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In equation (61), the error eM  is defined as the minimum distance between the 

data set d and the model space. The distance function selection is done according 

to the application.  

 S θ ≝  d ∈ D: eM (d; θ) ≤ δ  (62) 

In equation (62), S(θ) represents the CS with respect given model parameters, and 

it contains from the samples, which have a smaller error than the given 

threshold δ. 

After the CS is found, error calculation and inliers counting is done and if the 

inliers ratio is larger than the best model's inliers ratio, current CS's inliers ratio 

and its related model parameters are stored. The algorithm stop mechanism works 

in the following manner.  

If the probability of choosing the true model from the dataset D is q, then the 

probability of choosing the set k with at least one outlier becomes (1 − q). When 

the selection of k is iterated over h times, the probability of choosing MSSs with 

all of them have at least one outlier becomes  1 − q h . The critical point here is 

this probability goes to zero, if the iteration number h goes to infinity. The real 

time implementation requirements leads to use acceptable probability threshold ε 

such that  1 − q h ≤  ε. From this inequality iteration number h can be specify to 

the following range as in equation (63), in which  x  is used for smallest integer 

larger than x. 

 h ≥  
log ε

log(1 − q)
  (63) 
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Figure 17 RANSAC Flow Chart 
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The iteration number h can be set to the minimum integer number by using the 

using equation (63). The threshold value ε can be determined according to the 

model, but the probability of choosing the true model q needs to be examined in 

detail. Under the assumption of equal probability of sample selection and the 

noise free inliers, which means inliers gives the true model without an error; the 

following equation (64) can be used for true inliers MSS selection probability 

calculation. 

 q =
 

NI

k
 

 
N
k
 

=
NI!  N − k !

N!  NI − k !
=  

NI − i

N − i

k−1

i=0

 (64) 

In equation (64), N represents the whole dataset number, NI represents the inliers 

number and k represents the MSS number. It is seen that if the NI  >>  𝑘, then the 

equation (64) is approximated as the following equation (65).  

q =  
NI − i

N − i

k−1

i=0

≈  
NI

N
 

k

 (65) 

In equation (65), there still exists unknown parameter NI. However, if number of 

inliers estimated conservatively as N I which is the largest set of inliers found so 

far, i.e. N I ≤ NI . Therefore, the following equations hold for this 

assumption;  q(N I)  ≤ q(NI)  and   1 − q N I  
h

≥  1 −  q NI  
h

. These results 

can be used in threshold equation (66).  

 T iter =   
log ε

log  1 − q N I  
  (66) 

In equation (66), T iter  represents the determined threshold for related N I 

estimation. 

The overall complexity analysis of RANSAC is done with respect to the 

hypothesis and test steps. In hypothesis step, the computational complexity of 
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model estimation is  Cestimate (k) , in which from the MSS the parameters are 

calculated. After the model is instantiated, evaluation of the model over the whole 

dataset is required. If one sample fitting calculation complexity is Cfitting , whole 

step calculation complexity becomes N ∗ Cfitting . The overall worst-case 

complexity of RANSAC becomes as the following equation (67), when the all 

iterations are included.  

 Complexity = O  Titer ∗  Cestimate  k + N ∗ Cfitting    (67) 

RANSAC is very popular in different areas, such as image processing and SLAM 

areas. For instance, in image processing area it is used for segmentation of image 

by feature extraction and parameter fitting [71][72]. On the other hand, in SLAM 

area, Iser and Wahl used an improved version of RANSAC for loop closing [73] 

and Cunningham used RANSAC for map merging process with unknown relative 

pose of robots [41]. In 2006, the 25th anniversary of RANSAC a workshop for 

examining the variations of RANSAC algorithm is done at International 

Conference on Computer Vision and Pattern Recognition. The detailed analysis 

based on different criteria such as speed, accuracy and robustness, is done and the 

following variations of RANSAC are announced. 

The robustness criterion of the RANSAC is examined by Torr [74]. The 

performance of the RANSAC is directly related with the threshold of the model 

fitting decision. If the threshold is too small, the inliers can be missed and 

algorithm time requirement increases, in contrast, if it is too large the outliers can 

be included in Consensus Set and the model will fluctuate. Therefore, two 

different versions of RANSAC, M-estimator Sample and Consensus (MSAC) and 

Maximum Likelihood Estimation Sample and Consensus (MLESAC), which are 

evaluating the quality of the Consensus Set by using its likelihood, are purposed. 

Moreover, another improvement is done on the MLESAC by Tordoff, which uses 

the priori information of samples and called as Guided-MLESAC [75]. Similarly, 

Chum purposed another improvement by using the same priori information for 
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deciding the inliers and outliers, which is called as Progressive Sample Consensus 

(PROSAC) [76].  

The speed criterion of RANSAC is improved by Matas and Chum [77], which is 

called as Randomized RANSAC. Instead of using the entire data set for 

evaluating the performance of model, randomly selected subsets of the whole data 

is used. However, this strategy assumes the inliers ratio is large and has less 

robust performance on data sets with high outlier ratio. Moreover, there exists 

modifications such as perform on unknown and multiple models. Wang and Suter 

purposed robust adaptive parameter estimation method for unknown models [78].  

For multi model applications, Zulaini’s Multi-RANSAC [79] and Toldo’s cluster 

algorithm which, uses J-linkage cluster algorithm [80]. The detailed comparison 

of these variations of RANSAC can be found in Choi's work [81].  

3.3.2.2.3. Adaptive Random Walk 

In this section, Carpin's Adaptive Random Walk algorithm is explained in detail. 

This algorithm can be used for the stochastic search of the transformation matrix 

between the global frames of robots as an alternative to RANSAC. One map is 

kept stable while other one is moved by candidate transformations. This 

movement corresponds to the search of the possible transformations. In this 

algorithm, randomness is obtained by Gaussian distributed random selector, 

which is mentioned as Random Selector (RS) in the pseudo code. The adaptive 

part is obtained by the heuristic function ∆, which accelerates the search in the 

better and larger overlap in map merging process. Their main motivation of using 

random walk in the search of the possible transformation space is preventing the 

algorithm to stick in local maximum with only using adaptive part. The pseudo 

code of the algorithm is given in the following Table 3.   

Adaptive Random Walk algorithm starts the search with the given starting 

configuration, which is given in the lines 1, 2, and 3. While the iteration number is 

under the limit value numSteps, new sample is generated and the related heuristic 

cs  is computed with function ∆, as given in the lines 4, 5, and 6.  This generation 
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step uses a Gaussian distribution with mean μk  and covariance  Σk , which are 

updated with the new accepted sample at step k , as mentioned in the lines 8, 9, 

and 10. This update is done with the last M values accepted by the algorithm, 

which is the algorithm parameter. The selection is done with the Random Selector 

(RS) or with the higher heuristic value  cs , as mentioned in the line 7. If the 

selection is not done, new sample is discarded and new sample is generated, as 

mentioned in the line 12 and 4.  

Table 3 Pseudo Code of Adaptive Random Walk Algorithm [11] 

Adaptive Random Walk 

1: k ← 0, tk ← sstart  

2: Σ0 = Σinit , μ0 ← μinit  

3: c0 ← ∆ m1, Ttstart
 m2   

4: while k < numSteps 

5:      generate a new sample s ← tk + vk  

6:      cs = ∆ m1, Ts m2   

7:      if cs > ck  OR RS tk , s = s 

8:           k ← k + 1, tk ← s, ck = c 

9:           Σk ← Update tk , tk−1, … , tk−M  

10           μk ← Update tk , tk−1, … , tk−M  

11:      else 

12:           discard the sample s 

 

The existence of algorithm convergence to best transformation is an important 

criterion for search algorithms. The following theorem given in the equation (68) 

ensures this convergence. The proof of the algorithm can be found in Carpin's 

work [46], which is omitted here. 

 lim
k→+∞

Pr  ∆  m1, Tb
k m2  ≠ ∆ m1, Ts∗ m2   = 0 (68) 
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Let s∗ ∈ S an element, which maximizes ∆ m1, Ts m2  , and let  T0, T1, …  the 

sequence of transformations, which is generated by the algorithm in Table 3. Tb
k  is 

the best transformation generated in the first k iterations, which gives the highest 

value of  ∆ . This theorem given in the equation (68), only guarantees the 

convergence, when the iteration goes to infinity. 

3.3.2.2.4. Iterative Translation Search 

In this section, Saeedi's Iterative Translation Search algorithm [45] is explained in 

detail. In this algorithm, features are translated with initial translation matrix. 

Translated features are compared with directions and the features in other map 

with angular difference smaller than the initial angular threshold are saved. After 

obtaining possible pairs for all features, matching feature with the smallest 

Euclidian distance is selected. After this selection, translation matrix is updated 

with these pairs and the angular threshold is reduced for precise calculation. The 

algorithm pseudo code is given in the Table 4. 

In Table 4, angular threshold ϵ , maximum iteration number iterationsmax , 

translation error threshold Jthresh , maps M1,2 and norm n1,2 of each point in maps 

M1,2 are the parameters of the algorithm. T1,2 i  is used as a container for possible 

pairs in the maps and T  is the output of the algorithm, which gives the best 

translation at the end of the iteration. 

3.4. Feature Based Map Merging 

In this section, feature based map-merging algorithms, which are mentioned in 

Section 2.3.2 are examined in detail. The following methods are examined in the 

given order; Maximum Likelihood Estimator, Modified M-Estimator, Covariance 

Intersection Estimator and Orthogonal Gnanadesikan-Kettenring Estimator. 

3.4.1. Maximum Likelihood Estimator 

Maximum likelihood estimation is a conservative method of combining the 

observed data, which means that it assumes the input data is good and tries to 

minimize the error. As mentioned previously, in decentralized architecture 
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problem becomes the inverse probability p(θ|y) problem of the given data y. The 

basic conditional probability equations hold as in given equations (69), which is 

called as Bayes' theorem. 

 

p θ, y = p θ p y θ  

p(θ, y) = p(y)p(θ|y) 

(69) 

Table 4 Pseudo Code of Iterative Translation Search [45] 

Iterative Translation Search 

1: iteration ← 0 

2: while J > Jthresh  and iterations < iterationsmax  

3:      i = 1 

4:      for k = 1 → point number in M2 

5:           Pk ←  ∀m1 ∈ M1, if n1satisfies  n1 − n2
k < 𝜖  

6:           if  Pk ≠ ∅ 

7:                T1 i ← element of Pk  that is closest to m2
k  

8:                T2 i ← m2
k  

9:                i ← i + 1 

10:      δx ←
1

i−1
  T1x l 

i−1
l=1 −  T2x l 

i−1
l=1   

11:      δy ←
1

i−1
  T1y l 

i−1
l=1 −  T2y l 

i−1
l=1   

12:      T ←  
δx

δy
  

13:      each point in M2 gets shifted by T 

14:      J =   T1
l − T2

l i−1
l=1  

15:      reduce ϵ  

16:      iterations ← iterations + 1   

 

By combining the equations in (69) following equation for conditional density 

holds as given in equation (70). 
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 p θ y =
p(θ, y)

p y 
=

p(θ)p(y|θ)

p(y)
 (70) 

In equation (70), p(y) is the function of given data, which is called as constant of 

proportionality, so it can be ignored as in equation (71). 

 p θ y ∝ p(θ)p(y|θ) (71) 

In equation (71), p θ  is the prior density of θ, and p(y|θ) is the likelihood and 

p(θ|y) is the posterior of θ. Therefore, it is seen that, the likelihood function 

converts the prior into the posterior density of  θ . The prior density  p θ  is 

constant information so it is invariant to the observations, so the following 

equation (72) holds. 

 

p θ y = k y p y θ  

k y = p(θ)/p(y) 

(72) 

k(y) remains same for given data set of y for all values of θ . It is seen that, 

without the prior information equation (72) cannot be solved. R.A. Fisher purpose 

a likelihood notation for solution of this problem. In this theory, parameters of 

distribution are variables and data is fixed as mentioned in equation (73). 

 L θ y = k y p y θ ∝ p y θ   (73) 

The likelihood calculation is traditional probability calculation of  p(y|θ) , 

therefore, the observed data is searched for θ , which maximizing the likelihood 

equation. In multiple scenarios, such as independent observations, the likelihood 

equation becomes the multiplication of the individual likelihoods as mentioned in 

equation (74). 

 L = L1 ∗ L2 ∗ … ∗ LN =  Li

N

i=1

  (74) 
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In equation (74), Li = p yi θ   instead of minimazing this equation, it is easier to 

minimize the negative log likelihood as mentioned in equation (75), because of 

the simplicity of summation over multiplication.  

 ln L =  ln p yi θ  

N

i=1

  (75) 

Under large sample sets, MLE has the following properties. 

 Consistency: If the sample size goes to infinity, MLE converges to the true 

probability of the estimation.  

 Asymptotic Normality: If the sample size goes to infinity, the distribution 

of MLE tends to Gaussian distribution. 

 Efficiency: If the sample size goes to infinity, MLE achieves the lower 

asymptotical mean squared error, which is called as Cramer-Rao Lower 

Bound.  

The detailed explanations and proofs of MLE properties can be found in the 

reference [82]. 

In this thesis, landmark distributions are assumed to be normally distributed. 

Therefore, the following probability density function (76) is used for parameter 

estimation process. 

 p y1 , … , yN  θ  =  
1

2ΠDN /2|Σ|N/2
e −

1
2
  yn−μ 

TΣ−1 yn−μ 
N
1    (76) 

In equation (76), D is the dimension of covariance matrix, Σ is the covariance 

matrix and μ  is the mean value of the distribution. By using sample set and 

likelihood function, MLE estimates the mean and the covariance parameters of the 

multivariate normal distribution as follows. Firstly, the logarithm of the 

distribution of the conditional probability function is taken as in (77). 
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ln  p y1, … , yN  θ   

= ln 
1

2Π
DN

2  Σ 
N
2

 + ln  e −
1
2
  yn−μ 

TΣ−1 yn−μ 
N
1    

ln  p y1 , … , yN  θ   

= −
DN

2
ln 2Π −

N

2
ln⁡( Σ )

+ −
1

2
  yn − μ TΣ−1 yn − μ 

N

n=1

 

(77) 

The equation (77) is differentiated with respect to mean and covariance and 

equated to zero for the optimal value and the following equations (78) and (79) 

are derived.  

 μML =  
1

N
 yn

N

1

 (78) 

 ΣML =
1

N
  yn − μML   yn − μML  

T

N

n=1

 (79) 

Detailed proofs of the derivation of the equations (78) and (79), are given in [83]. 

3.4.2. Modified M-Estimator 

Similar to the Maximum Likelihood Estimator calculation steps, modified M-

estimator uses the log-likelihood function as mentioned in equation (75). 

However, the critical difference of this estimator is it uses the covariance matrices 

of the landmarks, because of the independence between the robots, as mentioned 

in the equation (80). 

 p y1, … , yN  θ  =  p y1 θ  …p yN  θ   (80) 

By taking the negative logarithm of the equation (80), similar to the equation (77), 

the following log-likelihood equation (81) is obtained. In the following equations 
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matched landmarks estimated mean vectors are represented as yn  and covariance 

matrices are represented as Σn , where N represents the robot number. The true 

value of mean is represented as μ.  

 

− ln L y  =  
1

2
   yn − μ TΣn

−1 yn − μ  + cnst

N

n=1

=
1

2
  Σn

−1   μ − 
  Σn

−1yn 
N
1

  Σn
−1 N

1

 

2

 

N

n=1

+ const 

(81) 

By taking the derivative of equation (81) with respect to μ and equate it to zero. 

The following equation (82) is obtained. 

 

∂ − ln L y  

∂μ
=   Σn

−1

N

1

  μ − 
  Σn

−1yn 
N
1

  Σn
−1 N

1

 

2

= 0 

  μ − 
  Σn

−1yn 
N
1

  Σn
−1 N

1

 = 0 

(82) 

The mean, which maximizes the equation (82), is mentioned in the following 

equation (83) and represented as μM . 

 μM =
  Σn

−1yn 
N
1

  Σn
−1 N

1

 (83) 

The additivity of the statistical information is used for the calculation of the 

covariance matrix as mentioned in the following equation (84) and combined 

covariance matrix is represented as ΣM . 

 ΣM
−1 =   Σn

−1 

N

1

 (84) 

3.4.3. Covariance Intersection Estimator 

The matched landmarks estimated mean vectors are represented as y1 , y2  and 

covariance matrices are represented as Σ1, Σ2. The true values mean vectors are 
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represented as y1 , y2    and covariance matrices are represented as Σ1
   , Σ2

    in the 

following equations.  

 Σ1
   = E y1 y1 

T , Σ2
   = E y2 y2 

T , Σ12
    = E y1 y2 

T  (85) 

In equation (85), y1 ≝  y1 − y1  and y2 ≝ y2 − y2    are the true values of the mean 

errors and the cross-correlation between random variables is represented as Σ12
    , 

which is not known and assumed to be zero.  

For ensuring the consistency of the estimation [84], estimator holds the following 

inequalities (86). 

 Σ1 − Σ1
   ≥ 0 Σ2 − Σ2

   ≥ 0 (86) 

By ensuring the inequalities (86), the fused information is guaranteed to be 

consistent as mentioned in the following inequality (87). 

 Σf − Σf
 ≥ 0 (87) 

In inequality (87), Σf
 = E yf yf 

T  and yf ≝ yf − yf , yf  is the true value of the mean 

error.  

This algorithm ensures the given consistency, and uses the convex combination of 

mean and covariance matrices, which are represented as information (inversed) 

form. The key point here is using the geometric form of the Kalman Filter 

equations; mean calculation is represented in following equation (88). 

 yf = W1y1 − W2y2    (88) 

The covariance calculation is represented in the following equation (89). 

 Σf =  W1Σ1W1
T + W1Σ12W2

T + W2Σ21W1
T + W2Σ2W2

T  (89) 

In equations (88) and (89), W1, W2  are weight matrices, which can be used for 

optimizing the estimation with respect to trace or determinant. If the variables are 

independent, which means that Σ12 = 0, the equations reduces to conventional 
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Kalman Filter. The geometric interpretation of this algorithm is represented in the 

following Figure 18. 

In Figure 18, the outer ellipses represent the covariance of the random 

variables  Σ1, Σ2 , and inner ellipses represent the combination of them Σf  with 

different values of  Σ12 . Therefore, if the consistency is satisfied for the 

intersection area, consistency is also satisfied for every value of cross-correlation 

even if it is unknown.  

 

Figure 18 Geometric Illustration of Covariance Matrices [47] 

The algorithm satisfies the mentioned consistency by using convex combination 

of covariance matrices is given in the following equations (90) and (91). 

 Σf
−1 =  ωΣ1

−1 + (1 − ω)Σ2
−1 (90) 

 Σf
−1yf =  ωΣ1

−1y1 + (1 − ω)Σ2
−1y2 (91) 

In equation (90) and (91), ω ∈  0,1 , and the detailed proof of the equations can 

be found in the [47]. The choice of ω is depend on the cost function used for 

optimization, any optimization strategy can be used for search process of ω. The 

generalized form algorithm for more than two point intersection can be 

represented as in the following equations (92) and (93). 
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 Σf
−1 =   ωnΣn

−1

N

1

 (92) 

 Σf
−1yf =  ωnΣn

−1yn

N

1

 (93) 

In equation (92) and (93), ωn  satisfies the   ωn
N
1 = 1, which can be used for 

batch covariance calculations.  

3.4.4. Orthogonal Gnanadesikan-Kettenring Estimator 

In this section, the class of Orthogonal Gnanadesikan-Kettenring estimator, which 

is mentioned in the Sequeira's work [53], is explained in detail. This algorithm 

uses both covariance estimates and actual measurements, which is mentioned in 

Table 5. 

Table 5 Pseudo Code of Orthogonal Gnanadesikan-Kettenring Estimator 

[53] 

OGK Covariance Estimator (Ω is the class parameter) 

1: Let ς(. ) be a standard deviation function applied to its argument 

2: Let X = (X1, … , Xp ) ∈ Rnxp  be the set of n observations, each of 

dimension p 

3: Let D = diag  ς Xj  , j = 1,… , p and define Y = XD−1 

4: Compute U =  ujk  =  

1

4
 ς Xj + Xk 

2
− ς Xj − Xk 

2
 j ≠ k

ς Xj 
2

j = k

  

5: Compute E such that U = EVE−1 with V the diagonal matrix with 

eigenvalues of U 

6: Let Z = YE and A = ΩED−1, with T = diag  ς Zj 
2
 , j = 1,… , p and 

Ω = diag(ω1, ω2) 

7: The covariance estimate is Σ = ATTA 
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Orthogonal Gnanadesikan-Kettenring estimator initially scales the input 

measurements D as mentioned in line 3. Then it computes the initial covariance 

estimate U, as mentioned in line 4. This initial estimate is used for the new base E 

calculation as mentioned in the line 5. The scaled data D are projected on this base 

and new variances are calculated on this frame as mentioned in the line 6. The Ω 

matrix in line 6 is the input parameter of the estimator and affects the scale of the 

resultant covariance estimate. In the final step of estimator data are back projected 

onto its original frame, as mentioned in the line 7.  

This algorithm estimates the covariance by the use of the distance between 

measurements. For instance, the distant data on the smaller variance valued axis, 

are considered as outliers and eliminated by the algorithm. 

3.5. Map Performance Evaluation 

In this section, map performance evaluation techniques, mentioned in Section 2.4 

are examined in detail. 

3.5.1. Normalized Estimation Error Squared Consistency Test 

In this section, Normalized Estimation Error Squared (NEES) consistency test is 

examined in detail. This test simply estimates the error between estimated feature 

position and ground truth position of feature as mentioned in equation (94). 

 ϵli
=   xli

− x li
 

T
Σli

−1 xli
− x li

   (94) 

In equation (94), ϵli
 is the error of estimated feature position xli

 and Σli
 is the 

covariance of ith  landmark li. x li
 is the true values of feature position.  

In χ2  distribution degrees of freedom is taken as the dimension of feature 

positions, which is two. This calculation is gated for acceptance test as given in 

the following equation (95). 

 
1

K
 ϵli

k

K

k=1

< γ2 (95) 
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In equation (95), K is the Monte Carlo run count of the error ϵli
, and γ2  is the 

acceptance gate, which accepts the 99% correct association for value 9.21.  

3.5.2. Area of Covariance Ellipse Metric 

In this technique, area of ellipse used as an evaluation metric is explained in 

detail. These ellipses are obtained from the covariance matrices of the features in 

the map. This method is applied to maps, which are the resultant maps of different 

map merging algorithms.  

The area of ellipses A, calculation is given in the following equation (96). 

 A Σli
 =  πr1r2  (96) 

In equation (96), r1  and r2  represents the biggest and smallest radius of the 

ellipse, and Σli
 represents the covariance matrix of ith  landmark li . In the 

covariance ellipse these values are the square roots of eigenvalues λ1, λ2, and the 

area simply becomes the determinant of the matrix as given in the following 

equation (97). 

 A Σli
 =  π λ1λ2 = π det Σli

   (97) 
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CHAPTER 4 

 

 

4. SIMULATOR AND MAPS 
 

 

 

4.1. Simulation Environment 

In this section, the simulator used in the experiments is explained in detail. The 

main purposes of implementing this simulator are 

 defining different maps, 

 planning different trajectories for different robots, 

 representing the local maps of robots, 

 represents the merged global map, 

 defining different ranges for robot sensors, 

 evaluating of different combining methods. 

The simulation code for one robot is taken from the Open-SLAM community. 

This one robot simulator program uses the Compressed Extended Kalman Filter 

based SLAM implementation and it is implemented by Z. Haiqiang [85]. This 

simulator code is used for one robot SLAM purpose. This simulator inputs are the 

landmark set and the waypoints of the robot. The SLAM simulator uses the 

motion model for trajectory and a sensor model for observations. For easy 

understanding, snapshot of the simulator is given in the following Figure 19. 

In Figure 19, the true robot’s position is represented by blue colored triangle; the 

estimated value of the robot’s position is represented by red colored triangle with 

red colored ellipse. The landmarks’ true positions are represented by blue colored 

stars and estimated positions are represented by red colored pluses with red 



 

 
88 

 

covariance ellipses. The covariance ellipses are drawn by 2.448 sigma values for 

cumulative distribution function, which correspondence in 0.95 confidence 

region. The true trajectory of the robot is represented by the blue line, and the 

estimated trajectory of the robot is represented by the red line. The trajectory 

planning of the robot is given in detail in the following section. 

 

Figure 19 Simulator Environment Screenshot 

Defining different maps, planning different trajectories, and representing the 

merged map are the requirements of the implemented simulator. The implemented 

simulator supplies a graphical user interface and uses the Haiqiang’s simulator 

code.  The snapshot of the implemented simulator is represented in Figure 20. 

In Figure 20, the simulator user interface is represented. In the plots, named as 

Robot 1 and Robot 2, different trajectory SLAM results, resultant triangles and 

merged map results are plotted.  

The simulator searches in the "DataSets" folder and lists the subfolders in the 

dataset popup menu. These folders categorize the different datasets by name. 

After the dataset selection, simulator searches for the “landmarks.mat” file, which 

is used as reserved name. This file contains the x and y coordinates of the 

landmarks on the map. Simulator contains 3 different datasets, which are “Central 

Park”, “Victoria Park” and “Simulated Park”. Users are able to use these 
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predefined datasets, and they are able to define new datasets. “Manual Entry” 

option in the dataset menu activates the new popup dialog box named as “Map 

Dimensions”, users are responsible for entering the related x and y dimensions of 

examined map. The box is illustrated in Figure 21. 

 

Figure 20 Multi Robot Simulator Environment Screenshot 

 

Figure 21 Map Dimensions Popup Dialog Box 

After this step, a new popup window is opened for manual landmark entry. By left 

mouse clicks on the map, simulator stores the landmarks. This window is 

represented in Figure 22 for easy understanding.    

After the landmark entry, by right click on the mouse button saving step is started. 

In this step, saving the dataset under the “DataSets” folder is needed and the 
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“landmarks.mat” is the reserved name for saving a new dataset correctly. The 

saving window is illustrated in Figure 23. 

 

Figure 22 Manual Landmark Entry View 

 

Figure 23 Saving Window View 

After the selection of the dataset, the loaded maps are plotted on the Robot1 and 

Robot2 axes. The trajectory popup menu lists the ".mat" files in the selected 
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dataset folder for listing predefined trajectories. Users are able to select these 

trajectories, and they are able to define new trajectories for robots. "Manual 

Entry" option in the trajectory menu activates the trajectory defining ability. By 

left mouse clicks on the map, simulator saves the trajectory points sequentially. 

This scenario is represented in Figure 24. 

 

Figure 24 Manuel Trajectory Planning Ability 

In Figure 24, crossed line intersection shows the next point of the trajectory. The 

circles represent the already placed trajectory points.  

 

Figure 25 Trajectory Saving Ability 
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In Figure 25, planned trajectory is named as "NewTrajectoy" and it will be saved 

under the "DataSets\Simulated Park" directory. 

The trajectory planning process can be finished by right mouse click. In this step, 

simulator gives opportunity to the user for saving this trajectory. In the following 

Figure 25, the finishing procedure is represented.  

This saving ability gives opportunity to use this trajectory for other robot, also 

stores this information permanently for other experiments. Changing sensor range 

of the robots is another ability of the simulator. Different sensor ranges can be 

used in the simulation. 

After setting map, trajectory and sensor ranges for all robots, by clicking on "Run 

Simulation" button simulation starts. Robots follow the given trajectory and sense 

the environment by the given sensor range limitation. When the individual SLAM 

process finishes, robots local maps are shared for map merging purpose. These 

shared map information is used for global map calculation and the resultant map 

of the robots are plotted with their local maps.  

4.1.1. Random Map Generator 

The landmark set generation is done by map generator algorithm, which is 

implemented in MATLAB environment. The generator takes the point number, 

range and distance limitation. Generator tries to generate number of points in the 

given range; if the distance limitation is also required, it also put minimum 

distance between points. The following represents the different generated maps by 

the random map generator. 
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Figure 26 Illustration of Generated Maps with and without Distance 

Limitation (without Distance Limitation and with 10 meters Distance 

Limitation) 

In Figure 26, (a) and (b) represents the random nature of the generated maps, (c) 

and (d) represents the distance limitation effect on the generated maps.  

4.1.2. Trajectory Planning 

The simulator uses the landmarks and waypoints for simulation, which is given in 

the begging of the SLAM process. The waypoints are in two dimensional array 

structures, which consist of the ordered points. These points are visited by robot in 

the given order. The important part of the path planning is that, is the given 

trajectory possible for the robot specifications. The robot motion model is setup to 

be like a Pioneer3-AT robot, which is skid steering. Therefore, the rotational 

speed of the robot is limited by a configurable constant, which is used as 30 
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degree per second (0.5236 meters per second). The transition speed of the robot is 

used as configurable constant, which is set to 0.3 meters per second. The flow 

chart of the algorithm is given in the following Figure 27. 

 

Figure 27 Flow Chart of the Trajectory Planning Algorithm 

In trajectory planning part of the simulation, true value of the robot position is 

used for understanding the robot's current location relative to the next waypoint. If 

robot is close enough to next waypoint, the next waypoint is updated and the 

required rotational speed calculation starts. The current location and the next 

waypoint are used for calculation of the required heading change of the robot. If 

the required heading change is larger than the maximum rotational speed, the 

current rotational speed is set to maximum, otherwise the requirement is 

considered as zero and nothing is done.  
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The rotational motion of the robot is illustrated in the following Figure 28, for 

easy understanding of the systematic rotational motion. 

 

(a) At Current Way Point  (b) First Step of Rotation 

 

(c) Second Step of Rotation  (b) Heading to Next Way Point 

Figure 28 Rotational Motion of Robot 

4.1.3. Motion Model 

The robot motion model is setup to be like a Pioneer3-AT robot, which has four 

wheels and four motors, skid steer robot. The picture of the original robot is 

shown in the following Figure 29. 
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Figure 29 Picture of Pioneer3-AT Robot 

Pioneer3-AT has 0.7 meters per second maximum forward and backward speed 

and 140 degree per second rotational speed. In our simulator, about half and 

quarter of the maximum specifications are used for maximum values. The motion 

model of the given robot without rotational velocity is given in the following 

equations (98). 

 x = x +   

V ∗ dt ∗ cos x 3  

V ∗ dt ∗ sin x 3  

0

  (98) 

In equation (98), V  represents the transition speed and dt  represents the time 

difference for every step. If the rotational is calculated by the algorithm explained 

in Figure 27, the following equation (99) is used for the next true value of the 

robot's position.  

 x =

 
 
 
 
   x 1 +

V

W
∗  sin x 3 + W ∗ dt − sin x 3   

x 2 +
V

W
∗  cos x 3 − cos x 3 + W ∗ dt  

pi_to_pi x 3 + W ∗ dt  
 
 
 
 

 (99) 

In equation (99), W represents the rotational speed and pi_to_pi() represents the 

MATLAB function, which is used for taking mod of the input angle with respect 

to pi. 
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The iterated robot position by using the true position of the robot is noised with 

the configurable zero mean normally distributed noise, which is called as control 

noise. The control noise consists of transitional velocity noise and rotational 

velocity noise. Transitional velocity noise is generated with 0.03 sigma value, and 

rotational velocity noise is generated with 0.0524 sigma value. The generated 

noises are used to disturbed the true values and feed to the CEKF-SLAM 

algorithm prediction step.  

4.1.4. Observation Model 

Observation model is setup to be like LMS 200, which is a bearing and range 

sensor. LMS 200 operates with principle of laser light velocity and time 

difference between the reflection and the transmission. The picture of LMS 200 is 

represented in the following Figure 30, for easy understanding. 

 

Figure 30 Picture of LMS 200 

While the robot moves simulator controls the landmarks can be observed 

according to the sensor specifications. The sensor observation frequency is set to 

five times to the control input iteration time, which is used as 0.5 seconds. 

Whenever the given landmark set is in the range of sensor, the observation model 

is used for calculating the bearing and range of landmark. The range of sensor is 

configurable value, which is set to 8 meters as default value. The scanning range 

of the sensor is 180 degree, and the scanning illustration is represented in the 

following Figure 31. 
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Figure 31 Illustration of the Scan Model of LMS 200 on Top View 

Simulator controls the landmark set according to the given specifications below, 

and extract the visible landmarks within the semi-circular field of view of the 

sensor. In control procedure, bounding box test, bounding line test and bounding 

circle test are applied in the given order for efficiently searching for the visible 

landmarks. The simple explanations are given for the applied test procedures.  

4.1.4.1. Bounding Box Test 

In bounding box test step, the maximum observation range is compared with the x 

and y coordinates distances between robot and tested landmark.  If one the 

distance is larger than the maximum observation range, testing procedure is failed 

and the landmark is considered as invisible, otherwise the following test 

procedures are applied. The following Figure 32, illustrates the bounding box test 

procedure.  

 

Figure 32 Bounding Box Test Illustration 
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In Figure 32, rectangle represents the bounding box acceptance borders, semi 

circle represents true scanning range and the pluses show the landmarks. 

According to the bounding box test, first landmark is eliminated and second, third 

and fourth landmarks are passed to the next test procedure. 

4.1.4.2. Bounding Line Test 

In bounding line test step, the eliminated landmarks are tested whether they are in 

front of the robot of not. Bounding line test is done by using the heading angle of 

robot and the x and y coordinate distances between robot and tested landmark.  X 

and y moments of the landmark is calculated by multiplying the x coordinate 

distance with cosine of heading angle, and y coordinate distance with sine of the 

heading angle. The moments are summed and checked if it is larger than zero. If 

the summation is large than zero, it means that landmark is in front of the robot. 

The following Figure 33 illustrates the bounding line test procedure.  

 

Figure 33 Bounding Line Test Illustration 

In Figure 33, line represents the bounding line acceptance borders, semi circle 

represents true scanning range and the pluses show the landmarks. According to 

the bounding line test, fourth landmark is eliminated and second and third 

landmarks are passed to the next test procedure. 

4.1.4.3. Bounding Circle Test 

In bounding circle test step, the eliminated landmarks are tested whether they are 

in circular range sensor of not. Bounding circle test is done by using the x and y 

coordinates distances between robot and tested landmark. The square root of sum 

of the square of distances is checked if it is larger than maximum observation 
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range. If this final test is passed, it means that landmark is in the range of the true 

sensing region and it is visible to sensor. The following Figure 34 illustrates the 

bounding circle test procedure.  

 

Figure 34 Bounding Circle Test Illustration 

In Figure 34, line represents the bounding circle acceptance borders, upper half of 

the semi circle represents the true scanning range and the pluses show the 

landmarks. According to the bounding circle test, second landmark is eliminated 

and third landmark is accepted as visible landmark. 

After the visible landmarks are found, they are ready for bearing and range 

calculation. That calculation is done simulator for every visible landmark, before 

adding the observation noise. The calculation of bearing and range is mentioned 

in the following equation (100). 

 z =   
 dx2 + dy22

pi_to_pi(atan2 dy, dx − ∅)
  (100) 

In equation (100), dx  and dy  represents the x  and y  coordinate distances, 

pi_to_pi(), atan2()  are MATLAB functions and ∅  is the heading angle of the 

robot. pi_to_pi() takes the mod of the given angle with respect to pi, and atan2() 

gives the inverse tangent value of the given distances.  

The sensor measurement is disturbed with configurable zero mean normally 

distributed noise, which is called as observation noise. Observation noise consists 
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of bearing and range noise. Range noise is generated with 0.05 meter sigma value, 

and bearing noise is generated with 0.0175 radian sigma value. The generated 

noises are used to disturbed the true values and feed to the CEKF-SLAM 

algorithm update step.  

4.2. Maps and Trajectories 

The comparison of the performances of the map merging algorithms requires 

different test cases. These cases can be obtained by changing the algorithm 

parameters or running algorithms with different inputs. Changing algorithm 

parameters can be obtained by taking and setting different values by the user 

interface of the simulator. On the other hand, running different algorithms with 

different inputs, needs more detailed procedure. These inputs of the algorithm are 

maps and trajectories. The implemented simulator provides an easy graphical 

interface for creating different maps and trajectories. The detailed explanation of 

this procedure can be found in the section 4.1. In this section, the map and 

trajectory selection criteria are mentioned.  

The different algorithm parameters and different inputs enable the algorithms 

performances can be examined in detailed. However, using large test spaces such 

as too many different maps and trajectories can also mislead to wrong evaluations 

and waste of time. Therefore, real world datasets are very useful for obtaining 

more realistic evaluation conditions. In this section, the extraction of different 

landmark data sets and the related trajectory planning methods used in this study 

and the reason for choosing these maps and trajectories are explained in detailed.  

4.2.1. Extraction of Different Landmark Datasets  

The landmark data sets consist of the extracted landmarks' x and y coordinates. 

These coordinates represent the positions of the features on the map. These 

positions can be extracted from the sensor readings in real world test scenarios. 

On the other hand, these positions can also be obtained by using random map 

generators or by entering manually. The extraction of positions from sensor 

reading method can be obtained from the real world experiments. These 
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experiments need real robots, sensors and stable environment for consistent data 

set. This scenario is costly and time consuming, so it is out of the scope of this 

study. 

In the experimental part of the thesis, randomly generated maps and manually 

entered maps are used. However, generated maps are randomly distributed maps 

and they enforce the algorithms computational costs increase. These maps are 

used for extreme test scenarios, but still more maps that are realistic are required 

for more meaningful comparison criteria. Therefore, manual entry ability of 

simulator is used for dataset generation. By using this ability, more structured 

maps are obtained and the real world maps are used as reference maps for real 

world data set. The real world data set extraction has two main procedures, 

obtaining maps of meaningful area and manual landmark labeling.  

4.2.1.1. Obtaining Meaningful Real World Map 

The main reason for using real world data is obtaining more realistic data set than 

the randomly distributed data sets. Therefore, more structured areas than 

distributed areas are examined. For instance, parks are the popular places for 

outdoor SLAM, because of similar structure of trees. This similarity is used for 

landmark extraction and data association algorithms in SLAM. Moreover, the tree 

distribution of the parks generally has a structure. For instance, trees occur on the 

sides of the paths in the park. Therefore, the algorithms used for understanding the 

similarity between local maps of robots, perform better by using this structured 

distribution. Without this distribution, triangles have similar properties, and this 

similarity leads algorithm to match false pairs of landmarks. Therefore, using the 

structured area is one the reason for selection of parks. The other criterion is the 

popularity of the parks in SLAM literature and dataset availability.  

Victoria Park and Central Park are selected as reference real world maps in this 

study. Victoria Park is one the most popular map for SLAM community and its 

dataset is available. Thrun's study on Victoria Park [1] is used for extracting 
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Victoria Park dataset. In his study, the extracted landmarks are already labeled by 

SLAM algorithm. This labeled map is represented in Figure 35. 

 

Figure 35 Victoria Park with Labeled Landmarks 

In Figure 35, dots represents the extracted and labeled trees, lines represents the 

trajectory of robot.  

In Victoria Park map, the trees are extracted and labeled by SLAM algorithm. On 

the other hand, in Central Park map manual extraction and labeling is required. 

4.2.1.2. Manual Landmark Labeling 

In contrast to Victoria Park, Central Park has not been examined in the literature 

for SLAM purpose. However, because of its popularity and its 3 dimensional 

satellite view supplied by Google Map [86], Central Park is examined as second 

real world map for SLAM and map merging purpose. The manual landmark 

labeling is the main drawback of working in uninspected areas such as Central 

Park. The manual landmark labeling is the process of marking the trees on the 

map. In this process, 3 dimensional satellite views are used as extra information 

about the trees. The 2 and 3 dimensional maps are displayed for illustration of the 

park area in Figure 36 and Figure 37. 
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Figure 36 The 2 Dimensional Map of Central Park [86] 

Figure 36, represents the partial region of Central Park around Arthur Ross 

Pinetum, the map is divided into 50 meters by 50 meters squares. 

 

Figure 37 The 3 Dimensional Map of Central Park [86] 

Figure 37 represents 3 dimensional view of the partial region of Central Park 

around Arthur Ross Pinetum. This view is used for understanding and labeling the 

trees in Figure 36.  
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The second step of manual landmark labeling is labeling the trees in the map. In 

this step, by using the 3 dimensional view landmarks are marked with the simple 

graphics painting program. The final view of map is illustrated in Figure 38. 

 

Figure 38 The 2 Dimensional Map of Central Park with Labeled Trees 

 

Figure 39 Manual Landmark Entered Landmarks of Central Park 

In the final step of manual landmark labeling, simulator manual landmark entry 

option is used. By using this interface, landmarks are saved as two-dimensional 
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MATLAB array format. The user interface of the simulator in manual landmark 

entry mode is illustrated in Figure 39. 

The landmarks are entered as represented in Figure 39 by using the labels in 

Figure 38. These landmarks are saved as "landmarks.mat" file under the related 

directory "Datasets\Central Park". This saving process enables the simulator for 

searching the directory and obtaining the related landmarks for simulation purpose 

as explained in the section 4.1. 

4.2.2. Extraction of Different Trajectories 

The trajectory of a robot consists of the waypoints' x and y coordinates. These 

coordinates represent the positions of iterative checkpoints on the map. While 

working with real world datasets, these waypoints are also supplied with 

experiment data. The trajectory of the robot or vehicle is given as odometer data, 

this data is supplied to the algorithm and next position is predicted. On the other 

hand, these waypoints can also be simulated by using random point generators or 

by entering them manually. Using random point generators can be used for 

performance analysis of algorithms, but they are not appropriate for realistic 

scenarios. Therefore, the real world data sets and manual trajectory planning are 

used in this study for performance tests. In this section, Victoria Park and Central 

Park are examined for extracting meaningful trajectories.  

4.2.2.1. Obtaining Meaningful Trajectories 

In Victoria Park map, the trajectories similar with Thrun's multi robot SLAM 

scenario is created [1]. These trajectories are the obtained by splitting the full 

trajectory into eight disjoint sequence for multi robot SLAM purpose. The four of 

these trajectories are selected for map merging, according to their overlapped 

regions. The overlapped region is the first requirement of calculation of relative 

frame transformation. Therefore, the following trajectories are selected and 

entered by using the manual trajectory ability of simulator, which are illustrated in 

Figure 40. 
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Figure 40 Victoria Park Trajectories 

In contrast to Victoria Park, Central Park has no predefined trajectories. 

Therefore, a manual trajectory planning is required for this map.  

4.2.2.2. Manual Trajectory Planning 

In the Central Park map, the trajectory is not available, so the manual trajectories 

are created. These trajectories are planned by using the possible paths in the park. 

These paths can be seen in Figure 36. The other planning criterion is the overlap 

requirement of relative frame transformation. Therefore, paths are designed with 

overlapped paths. For entering these trajectories, simulator manual trajectory 

entering ability is used as mentioned in the section 4.1. The resulting trajectories 

are illustrated in Figure 41. 
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Figure 41 Central Park Trajectories 
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CHAPTER 5 

 

 

5. EXPERIMENTAL RESULTS 

 

 

 

In this chapter, the experimental procedures are presented and results are given for 

the selected map similarity, global map transformation and map merging 

algorithms together with a detailed analysis.  

In this study, the Delaunay Triangulation algorithm is used for geometric map 

feature extraction, (explained in detail in Section 3.3.2.1.1). The extracted 

circumference and area from the triangles' are used to find map similarity (given 

in Section 3.3.2.1.2). These similar parts are the possible overlapping areas 

between the maps. Then RANSAC is used to search these possible areas to 

achieve the global map transformation, this process is explained in Section 

3.3.2.2.2. The features in the overlapping regions, found by RANSAC, are the 

same in different maps. These matched features are merged with the Maximum 

Likelihood Estimator, Modified M-Estimator and the Covariance Intersection 

Estimator. Figure 42 shows a flow chart of the algorithms used in the study. 

Firstly, computational cost analysis of implemented algorithms and their run time 

performances are examined, also these algorithms parameter sensitivity analysis 

are done. The performance experiments undertaken using the Delaunay 
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Triangulation, similarity metric calculation and the RANSAC algorithms are 

given in Section 5.1.1. The performance experiments of the Maximum Likelihood 

Estimator, Modified M-Estimator and Covariance Intersection Estimator are given 

in Section 5.1.2.1, and the sensitivity analysis of Covariance Intersection 

Estimator is given in Section 5.1.2.2. 

 

Figure 42 Multi-Robot Map-Merging Flow Diagram 
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The performance experiments of algorithms given above are carried out using 

simulated map and trajectories. The sensor bearing noise, robot velocity noise and 

sensor range effects on RANSAC and map similarity performance, and the effects 

on performance of the map-merging algorithms are presented in Section 5.2. 

In Section 5.3, the performances of the algorithms, given above, are tested on real 

world data sets. The sensor bearing noise, robot velocity noise and sensor range 

effects with different trajectories on RANSAC and the map similarity 

performance, and the effects on performance of the Covariance Intersection and 

Modified M-Estimator are given.  

Finally, the robustness analysis of the purposed algorithms combination, which 

consists of Delaunay Triangulation, RANSAC and Covariance Intersection, is 

given in Section 5.4. 

5.1. Performance Analysis Experiments 

In this section, the performance analyses of the implemented algorithms are 

present with a detailed examination of the behaviors of the algorithms under 

different conditions. 

5.1.1. Global Map Transformation Algorithms 

In this section, the global map transformation algorithms as explained in Section 

3.4are examined in detail. Firstly, the algorithm computational costs are 

investigated with Monte Carlo runs with different input sets. Moreover, the 

algorithm parameters are tuned with respect to their computational costs, and their 

optimum values are selected for the following experiments.  
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5.1.1.1. Delaunay Triangulation 

There are different implementations of the Delaunay Triangulation algorithm, 

which are mentioned in Section 3.3.2.1.1. This study applies the MATLAB 

default library implementation of this algorithm using the Computational 

Geometry Algorithms Library (CGAL). The computational complexity of the 

Delaunay Triangulation is given as O(n ∗ log(n)). In this section, computational 

cost of this algorithm is analyzed in detail.  

The performance experiment of this algorithm requires a landmark data 

simulation. This simulation is achieved by using random map generator, 

(explained in Section 4.1.1). In this test, the landmark count is varied from 50 to 

1000, to analyze the computational cost of the algorithm. The result of this test is 

shown in Figure 43, which was repeated 1000 times and the average value is 

displayed for outlier elimination. 

 

Figure 43 Sample Size Effect on Delaunay Triangulation Performance 
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Figure 43 shows the linear relationship between the effects of the sample size on 

the algorithm performance. Despite some fluctuations, the time requirement for 

fixed sample size being almost linear shows that the number of sample directly 

effects the batch calculation of the algorithm.  

5.1.1.2. Similarity Metric Calculation 

The similarity calculation, explained in detail in Section 3.3.2.1.2 is examined 

here, to better understand its computational complexity. The landmark sets of 

maps are transformed to the triangle sets by the Delaunay Triangulation 

Algorithm. These triangle sets are used as an input for the similarity metric 

calculation, which in turn is used for eliminating the irrelevant landmarks and 

finding the map similarity. By using this similarity metric, two triangle sets are 

compared and their most similar triangle sets generate a matched landmark pairs 

list. The computation cost of this metric calculation is examined with the tests 

given below.  

5.1.1.2.1. Computational Cost 

In this experiment, the similarity metric calculation is examined using different 

triangle sets generated using normal distributed random landmarks. Figure 44 

shows the performance of similarity metric calculation with respect to sample 

size. This experiment is repeated 1000 times and the average value is displayed 

for outlier elimination. 
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As seen in Figure 44 the time cost of the similarity calculation is exponentially 

related with the sample number size. Despite this relation, the computational cost 

of this calculation is acceptable for 1000 landmarks, which costs about 14 msec. 

 

Figure 44 The Effect of Sample Size on the Similarity Calculation 
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Figure 45 Illustration of Overlap Ratio Change 

In Figure 45, the first darker colored bars represent the stable landmark set, which 

is used as the reference map, and the second bars represent the changing landmark 

set. The overlap ratio decrease is the decrease in the number of second landmark 

set. The ratio started from 100%, which is the full overlap between two landmark 

sets, and finished at 0.1, which means that only 10% of the landmark overlaps 

with the reference landmark set. The overlap criterion is the tested on the success 

rate of similarity calculation algorithm and the results are presented in Figure 46. 

In Figure 46, effect of the ratio change on the success rate of the similarity 

calculation algorithm can be seen. The experiment is undertaken 100 times and 

average value is displayed for outlier elimination. 

Although there are some fluctuations, the success rate decreases with reduces in 

the overlap ratio. However, in a small set of landmarks such as 100 the success 

rate stability even with the overlap ratio of 10%  seems promising. The 

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10

Landmark Set 1

Landmark Set 2

Test Steps



 

 
116 

 

experiment is also under taken for different number of landmark sets, which are 

given in the legend in the graph given in Figure 46. The success rate decreases 

with the increase in the number of landmarks. This result can be explained 

through the increase in the number of landmarks, the probability of finding similar 

pattern in the reference landmark set also increases. In fact, the results show that 

the overlapped region decrease affects the similarity success in negative way in 

large landmark sets such as 1000, which can be seen in the 0.1 overlapped region 

performance being below the larger overlapped region performances. However, 

the negative effect of the sample size and overlap region ratio does not cause low 

success rates in the worst-case scenario the experiment algorithm has a success 

rate of  99.465% . Therefore, using this similarity algorithm in the landmark 

elimination process before carrying out the transformation matrix search is 

efficient in terms of the overall performance.  

 

Figure 46 Effect of Overlap Ratio Change on Similarity Calculation 
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5.1.1.3. Random Sample Consensus 

This part of the study reviews the experiments carried out on the Random Sample 

Consensus algorithm and examines the behaviors of the algorithm under different 

conditions.  

5.1.1.3.1. Computational Cost of Algorithm Steps 

The algorithm used for transformation matrix estimation is explained in detail in 

Section 3.3.2.2.2. The transformation model used in the map-merging scenario is 

a rotation and translation matrix in two-dimensional spaces. For the initial 

estimate of this matrix, the algorithm takes Minimum Sample Set (MSS) 

randomly and derives a model hypothesis from this set. This derivation cost is 

minimal for a smaller sample set for the hypothesis step, however, the whole 

landmark set is tested with this model in test step of algorithm, which can result in 

high computational cost.  

The first experiment is carried out to better understand the computational cost 

relation between the RANSAC algorithm steps. In this experiment, the hypothesis 

and test steps computational costs are examined with a randomly generated 

sample set. Figure 47 presents the results of the experiment carried out 1000 times 

and average value is displayed for outlier elimination. 

In Figure 47, the time cost of the hypothesis step fluctuates around 0.038 msec, 

which shows that the time complexity of the hypothesis step is not related to the 

sample number. On the other hand, the test step is directly related to the sample 

number and it is seen that the time cost of this step increases if the sample number 
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increases. Another important result shown in this graph is that the hypothesis step 

cost starts higher than the cost of the test step. This shows that if the sample 

number is below 100, the computational cost of the model is larger than the test 

step cost. This is the result of the matrix inversion operations in the test step, 

which is given in equation (59). 

 

Figure 47 Time Cost Illustration of Hypothesis and Test Steps 
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set. The test is done 1000 times and average value is displayed for outlier 

elimination, and its results are given in Figure 48,. 

 

Figure 48 The Success Rate of RANSAC 

Figure 48 shows that the RANSAC performance decreases with the increase in the 

sigma values of the landmark noises. In the graph, there is a break point at sigma 

value 0.3, and it can be seen that the 95% success rate is accomplished even with 

a 0.44 sigma value. Moreover, in the experiments a different number of sample 

points are tested as given in the legend of the graph in Figure 48. The sample 

number effect on the success rate is negligible. The distance threshold parameter 

of the algorithm is set to 2 meters, and the Euclidian distance is used as the 

distance function of algorithm. These results show that the RANSAC performance 

is promising under even noisy environment.  
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distributed manner and they are disturbed with noise. The sigma level of the 

Gaussian noise, independently added to the landmarks is maintained as constant to 

understand the behavior of the algorithm under the different ratio levels of the 

correct landmark pairs. Moreover, the different number of sample characteristic is 

also examined. The input of this experiment consists of two landmark sets with 

the same mean values but disturbed with independent noises. One of these sets is 

selected as the reference and other set is reduced to a given ratio by elimination. 

The landmarks set generated by the Random Map Generator is not created by the 

distance limitation option, which means that the algorithm is also dealing with 

landmarks that are closer than the distance limit of the algorithm.  

The calculation of success rate is undertaken by taking the inliers ratio over the 

true landmark pairs. In Figure 49, the results are given for the experiment, which 

was carried out 1000 times and average value is displayed after outlier 

elimination. 

 

Figure 49 Success Rate of RANSAC for Different Match Ratios 
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Figure 49 shows that the success rate of RANSAC increases with the decrease of 

the true landmark pair ratio. In the graph, there are some fluctuations because of 

the random nature of the algorithm. The increase in the success rate can be 

explained by the true landmark pair affecting the overall success more than in the 

large set. Although the success rate increases with the match ratio decrease, this 

change is negligible. The increase from 0.845 to 0.87 is just 2.5% of the success 

rate. This experiment is tested for a different number of sample points as given in 

the legend of the graph in Figure 49. The larger sample variety is not tested 

because of the test results of the previous experimental results; Figure 48 shows 

that sample number effect on success rate is negligible. The distance threshold 

parameter of algorithm is set to 2 meters, and Euclidian distance is used as the 

distance function of algorithm. The sigma value of the independent landmark 

noise is 0.6. The selection of the sigma value is obtained from the results of the 

previous experiment results (Figure 48), which give a success rate of around 0.84.  

These results show that, the RANSAC performance is promising even under 

harsher conditions such as very small true matched ratios. The true matched 

landmark pair ratio simulates the overlap ratio of the individual local maps of the 

robots. Although the success rate of the smaller match ratios are satisfactory, the 

calculation cost of the whole RANSAC procedure needs to be examined. Due to 

the random sample selection step of RANSAC, the algorithm iteration time taken 

in searching for the best model estimation could diverge.  
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5.1.1.3.4. Success Rate under Mismatched Noisy Input and RST 

In this experiment, the performance of algorithm is examined under different 

transformation matrixes with different noise levels. The same experimental 

procedure given in section 5.1.1.3.3 is applied to the algorithm, but the true 

landmark match ratio is taken as one, because the differences in the success rates 

are small. The transformation matrix is also randomly generated and noise is 

generated with different sigma values. The calculation of the success rate is 

carried out by taking the inliers ratio over the undisturbed landmark subset. This 

experiment was repeated 1000 times and the average values after outlier 

elimination are given in Figure 50. 

As shown in Figure 50, the RANSAC performance decreases with the increase of 

the sigma values of the landmark noises which is similar to the experimental 

results in section 5.1.1.3.3. These results show that the randomly generated 

transformation matrix does not affect the RANSAC performance, so even under a 

noisy environment with noisy transformation its performance is promising. The 

randomly generated transformation matrix simulates the local frame 

transformations of the robots’ to that of the other robots e. Therefore, to solve the 

unknown initial position problem of the Multi-Robot problem, RANSAC could be 

used even in harsher environments.  

In this experiment, the calculation time cost of RANSAC is examined in detail. 

The same experimental procedure as given in section 5.1.1.3.3 is applied. The 

time cost of calculation is measured before and after the whole RANSAC 
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procedure. This experiment was carried out 1000 times and the average value is 

displayed after the outlier elimination in Figure 51. 

 

Figure 50 Success Rate of RANSAC under Different Match Ratios 

5.1.1.3.5. Computational Cost under Mismatched Noisy Input 
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parameter of the algorithm is set to 2 meters, and Euclidian distance is used as the 

distance function of the algorithm. The sigma value of the independent landmark 

noises is given as 0.6. The selection of the sigma value is obtained from the 

previous experiment's results (shown in Figure 48), which gives a success rate of 

about 0.84. 

 

Figure 51 Computational Cost of RANSAC under Different Match Ratios 

These results show that the RANSAC time requirement for harsher conditions 

such as very small true matched ratios is too large for real time applications. 

Therefore, triangulation and similarity elimination procedures are necessary for 

performance improvement. Since the time costs of the Delaunay Triangulation 

and the Similarity Calculation are independent from the true landmark match 

ratio, all that is the effect of sample size on these algorithms for calculations. The 

time requirements of the Delaunay Triangulation and the Similarity Calculation, 

given in Figure 43 and Figure 44, are promising. The triangulation time cost for 

400 samples is around 0.04 msec. and for the similarity calculation it is around 3 

msec. a total of 3.04 msec. and almost 17% of the time cost of RANSAC is under 

0

5

10

15

20

25

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

200 Landmark

400 Landmark

Time Cost of RANSACTime (msec)

True Landmark Match Ratio



 

 
125 

 

0.1-match ratio. Therefore, the elimination procedure is crucial requirement for 

the real time application of RANSAC.  

5.1.1.3.6. Success Rate under Different Distance Methods 

This experiment examines the success rate of RANSAC under different distance 

methods such as the Mahalanobis and Euclidean methods. The experimental 

procedure given in Section 5.1.1.3.5 is applied to the algorithm. The noise sigma 

value, used for generated landmark positions, is also used for the Mahalanobis 

distance calculations. Since the experimental results in Figure 51 show that, the 

effect of the sample number on the success rate of RANSAC is negligible; the 

sample set is kept constant in this experiment. The sigma value of the noises is 

changed from 0.1 to 2 in the experiment, which is carried out 100 times and the 

average value is displayed after outlier elimination in Figure 52. 

 

Figure 52 Success rate of RANSAC using Different Distance Calculation 

Methods 
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In Figure 52, RANSAC with Euclidean performance decreases with the increase 

of the sigma values of the landmark noises similar to the experiment results in 

Section 5.1.1.3.5. On the other hand, the RANSAC success rate using the 

Mahalanobis distance calculation method is almost constant around 60%. The 

critical point of the distance calculation method is the one sigma value. The graph 

in Figure 52 shows that the performance of RANSAC with the Euclidean method 

has a decreasing trend with an increasing sigma value. Despite successful results 

in the small sigma values, the Euclidean method does not give satisfactory result 

after the one sigma value. The main reason for the success rate decrease of the 

Euclidean method is the increase in the sigma value results in the landmark points 

too far to be handled. Therefore, if the sigma values are higher in the application 

using Mahalanobis distance calculation method has an advantage over the 

Euclidean distance calculation method. However, without examining the 

computational cost of these methods, this experiment is not sufficient to 

understand the performance of the algorithm.  

5.1.1.3.7. Computational Cost under Different Distance Methods 

In section 5.1.1.3.6 only the success rate of the algorithm with different distance 

calculation methods is examined. However, this is not sufficient to understand the 

real time applicability of these methods. Therefore, it is necessary to investigate 

the computational cost of RANSAC with different distance calculation methods. 

The same experimental procedure as given in Section 5.1.1.3.6 is applied to the 

algorithm. This experiment was carried out 1000 times, and the average value is 

displayed after outlier elimination and the results are given in Figure 53. 
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Figure 53 shows the time cost analysis of the whole RANSAC procedure. The 

graph shows that the cost of work with Mahalanobis distance calculation method 

requires more time than with the Euclidean distance calculation method. The time 

cost with Mahalanobis method fluctuates around 450 msec. The Euclidean 

method shows an increase from 4.5 msec. to 50 msec. Despite the100 times longer 

time cost requirement, the cost with Euclidean method is far below that of the 

Mahalanobis method.  Therefore, with small sigma values this technique is more 

suited to real time applications. 

 

Figure 53 Computational Cost of RANSAC under Different Distance 

Calculation Methods 
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5.1.2.1. Computational Cost of Algorithms 

In this section, every algorithm used for map merging is analyzed with respect to 

their computational load; this is a very important issue in systems with a real time 

specification. To better understand the algorithms' computational loads; randomly 

generated features are merged using these algorithms. This randomness is 

obtained by using zero mean Gaussian distributed positions and covariance 

matrices. Each algorithm takes these positions and the covariance information and 

its computational time is recorded during this process. For stability of the 

performance analysis, every test is repeated 1000 times. In this test, the 

Covariance Intersection weight value is selected as the constant, which means no 

optimization is undertaken. The test results are given in Figure 54.  

 

Figure 54 Computational Cost of Map Merging Algorithms 
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landmarks. On the other hand, the Modified M-Estimator's computational time is 

less than that of the Covariance Intersection Estimator. The reason for this time 

difference is the weighting multiplication in the Covariance Intersection 

algorithm, given in equations (92) and (93). In fact, the computational time for 

both of these estimators is satisfactory for the SLAM application. For instance, the 

cost of merging 1000 landmarks is about 10 msec.  

To understand the computational load of the Covariance Intersection algorithm, 

one more test is implemented using the determinant minimization of the 

Covariance Intersection algorithm. These results are given in Table 6 for the 

constant weighting parameter and optimum parameter.  

Table 6 Computational Cost of Covariance Intersection Algorithm 

 Time Cost for 

2 landmarks  

Time Cost for 

10 landmarks  

Time Cost for 

100 landmarks  

Constant weight value 0.018 msec. 0.09 msec. 1 msec. 

Optimum weight value 4.3 msec. 21.5 msec. 21.5 msec. 

 

Table 6 shows the computational time requirement of the Covariance Intersection 

Estimator with different weight values. It can be seen that for large landmark sets, 

the optimization of this algorithm requires about 20 times more time. Therefore, 

this algorithm sensitivity analysis should be undertaken carefully as mentioned in 

Section 5.1.2.2.1. 



 

 
130 

 

5.1.2.2. Algorithm Parameter Optimization 

In this section, all the map-merging algorithms used in the experiments are 

analyzed with their configuration parameters. For the optimization of the 

algorithms, first the evaluation criterion must be clarified. The resultant feature 

covariance matrix’s determinant and the Normalized Estimated Error Squared are 

also used for evaluation. Therefore, the performance of all the map-merging 

algorithms must be considered with these criteria.  

The Maximum Likelihood estimator does not have any configurable class 

parameter; it just assumes the Gaussian distribution over the data and tries to 

minimize its error. Similarly, the Modified M-Estimator does have not any 

configurable parameter, so only the Covariance Intersection estimator is examined 

with its class parameters. The Covariance Intersection estimator has an adaptable 

weight parameter, which can be used for any optimization property. The most 

important criterion in the evaluation of the algorithms is the determinant of the 

resultant covariance matrix. Therefore, this parameter is changed to minimize the 

determinant of the resultant covariance matrix. The following experiment shows 

the improvement on the determinant with this optimization strategy.  

5.1.2.2.1. Covariance Intersection Sensitivity Analysis 

The main purpose of this experiment is to undertake a sensitivity analysis to 

determine the weight parameter of the Covariance Intersection estimator. For this 

purpose, the robots follow the same circular trajectories on the given simulated 

map as a test scenario, as given in Figure 55. 
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The scenario given in Figure 55 is implemented with two different robots, which 

have different sensors and characteristics. In this experiment, the first robot is 

identical to the second robot, but has a constant1-degree sigma bearing noise. On 

the other hand, the bearing sigma value of the second robot is changed from 1 to 

4.5 degrees. This difference affects the estimated landmark covariance matrices, 

which can be seen in Figure 55. After both robots complete their trajectories, their 

maps are merged using the Covariance Intersection estimator. The following 

experimental results show the different performances of estimator under different 

weight values, as given in Figure 56 and Figure 57. These results are obtained 

from an average of 500 Monte Carlo runs. 

 

Figure 55 Simulation Scenario of Sensitivity Analysis of Covariance 

Intersection 
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Figure 56 Sensor Bearing Noise Effect on the Consistent Landmark Number 

 

Figure 57 Sensor Bearing Noise Effect on Determinant 

In Figure 56, it can be seen that the optimum weight value gives almost same 

results as the constant weight value. This experiment is not sufficient to evaluate 

different parameter performances. Therefore, for this algorithm's weight 

parameter selection one more evaluation criterion is required that of the area of 

covariance ellipses. In Figure 57, shows that the Covariance Intersection estimator 

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4 4.5

C
o

n
si

st
e

n
t 

La
n

d
m

ar
k 

R
at

io

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on 
Consistent Landmark Ratio

Covariance Intersection 
Optimum Weigth

Covariance Intersection 
Constant Weigth

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

1 1.5 2 2.5 3 3.5 4 4.5

D
e

te
rm

in
an

t

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on the Determinant

Covariance Intersection 
Optimum Weigth

Covariance Intersection 
Constant Weigth



 

 
133 

 

with an optimum weight parameter always has the lowest value, as expected. 

These experimental results clearly indicate the trade of between minimum 

determinant and consistency. In fact, there is no perfect parameter configuration 

for this algorithm therefore; the results of the experiment given in Table 6 are the 

main criterion for parameter selection. Since there is a high time cost in the 

optimum weight calculation, a constant weight is used in the following 

experiments. There is no preferred robot map, so 0.5 is used for the equal 

weighting between the robots’ maps.  

5.2. Simulated Map and Trajectory Experiments 

This section examines the performance of the map merging algorithms using 

different simulated maps and trajectories. All the algorithms are used with their 

optimum parameter sets, as calculated in Section 5.1. For easy understanding, 

merged landmarks covariance matrices are plotted for 2.448 sigma region in 

Figure 58. 

 

Figure 58 Covariance Estimations of Map Merging Algorithms 
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In Figure 58, the black and red ellipses represents the robots' landmark estimates, 

the blue, green, cyan ellipses represents Maximum Likelihood, Modified M-

Estimator and Covariance Intersection estimations, respectively.  

5.2.1. Sensor Bearing Noise Effect on Estimator Performance 

In this experiment, the robots' sigma value sensor bearing noise effect on 

estimator performance is analyzed to better understand the estimator performances 

under different noise levels. Different estimator classes are examined with a 

simulated map with a circular trajectory as shown in Figure 59.  

 

Figure 59 Simulated Map and Robot Trajectories 

During this experiment, the first robot sigma values are kept constant, while 

second robot's bearing sigma value is changed from 0.5 to 4.5 degrees. The 

similarity metric success ratio and the RANSAC success ratio are given in the 

Sensor Bearing Noise Effect on RANSAC Performanceas shown in Figure 60. 
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The map merging algorithms results are given in Figure 61 and Figure 62, they are 

obtained with an average of 500 Monte Carlo runs.  

 

Figure 60 Sensor Bearing Noise Effect on RANSAC Performance 

In Figure 60, it can be clearly seen that the performance of map similarity 

decreases with the increase in sigma value, which is an expected result. Since the 

trajectories of robots are the same, RANSAC performance is always successful 

for the map similarity performance above 50%.  

In Figure 61, the Sensor bearing noise effect on consistent landmark ratio is given 

for different estimators and it can be observed that the consistency of the 

Maximum Likelihood estimator is not satisfactory for every sigma value. On the 

other hand, the Modified M-Estimator gives satisfactory results, but Covariance 

Intersection estimator gives the best results. In fact, this experiment also shows 

that the different sigma values of sensors do not affect the consistency, because 

the landmark counts are kept almost constant. Although, these results show that 

maximum likelihood does not compete with the other evaluation criterion, which 
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is the determinant of the resultant covariance matrix that is tested for a better 

evaluation of all the algorithms.  

 

Figure 61 Sensor Bearing Noise Effect on the Consistent Landmark Number 

 

Figure 62 Sensor Bearing Noise Effect on the Determinant 

The sensor bearing noise effect on resultant covariance determinant value is 

presented in Figure 62 and it is seen that Maximum Likelihood estimator always 

has the lowest value, but it is meaningless to use inconsistent values covariance 

determinant for comparison. Therefore, the other algorithm results are used for the 

evaluation. Although the Modified M-Estimator has a lower determinant value 
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than the Covariance Intersection estimator, its consistency decreases from 50% to 

40%as seen in Figure 61. However, the Covariance Intersection estimator 

consistent landmark ratio decreases from 65% to 55%, and is always higher than 

the Modified M-Estimator's ratio. 

In this experiment, the Covariance Intersection estimator gives more consistent 

results than its competitors. However, its determinant values for the estimated 

covariance matrix is higher than its competitors. As stated above, it is meaningless 

to use inconsistent values of the covariance determinant for comparison. 

Therefore, the conclusion is that the Covariance Intersection algorithm 

performance is satisfactory and better than its competitors. 

5.2.2. Robot Velocity Effect on Estimator Performance 

In this experiment, the robot’s velocity noise effect on estimator performance is 

analyzed for a better understanding of the estimator performances under different 

noise levels. To achieve this different estimator classes are examined with the 

same map and trajectory as in the experiment in Section 5.2.1. 

Rather than changing sensor bearing noise level, the robot’s velocity noise level is 

changed from 0.05 to 0.45 meters while the first robot’s velocity sigma level is 

kept constant at 0.03 meters. The similarity metric success ratio and RANSAC 

success ratio are given in Figure 63. These experiment results are obtained from 

an average of 500 Monte Carlo runs and given in the Figure 64. 
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Figure 63 Robot Velocity Noise Effect on RANSAC Performance 

This experiment gives similar results to the experiment in Section 5.2.1, which 

shows the consistent performance of the estimators under different noise level of 

robot’s velocity. Moreover, it is concluded that the Maximum Likelihood is not 

applicable in distributed systems, because its results are far below than its 

competitors. Therefore, this estimator is omitted from the following experiments. 

 

Figure 64 Robot Velocity Noise Effect on the number of Consistent 
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Figure 65 Robot Velocity Noise Effect on the Determinant 

5.2.3. Trajectory and Sensor Bearing Effect on Map Merging Performance 

In this experiment, the effect of the trajectory and sensor bearing noise on 

estimator performance is examined for a better understanding of the estimator 

performances under different noise levels with different trajectories. Different 

estimator classes are examined with simulated map with circular trajectory, which 

is given in Figure 66. 

In this experiment, the robots' sigma value of bearing noise effect on the 

estimators' performance is examined. During this experiment, the robot sigma 

values are kept constant, while the second robot's bearing sigma value is changed 

from 0.5 to 4.5 degrees. The similarity metric success ratio and RANSAC success 

ratio are given in Figure 67. These results of the experiment of the map merging 

algorithms, obtained with average of 500 Monte Carlo runs, are given in Figure 

68 and Figure 69.  
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Figure 66 Simulated Map and Trajectory Illustration 

In Figure 66, the overlapping area is around 5% of the total explored area, which 

makes it very difficult to find the global transformation matrix. 

Figure 67 clearly shows that the performance of map similarity and RANSAC 

decreases with the increase in the sigma value, which is an expected result. 

Furthermore, the similar characteristic can also be seen in the graph, this indicates 

that map similarity and RANSAC are highly correlated with each other. It can 

also be seen that RANSAC performance is satisfactory even with a very low map 

similarity performance. For instance, RANSAC success ratio is 60% for 40% 

success ratio of map similarity. 
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Figure 67 Robot Velocity Noise Effect on Map Similarity and RANSAC 

Performance 

 

Figure 68 Sensor Bearing Noise Effect on the Consistent Landmark Ratio 
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Figure 69 Sensor Bearing Noise Effect on the Determinant 

In this experiment, the trajectory effect on estimators’ performances is also tested 

under different sensor noise. These results of the experiment are given in Figure 

68 and Figure 69 for the Covariance Intersection and the Modified M-Estimator. 

In fact, similar results are obtained from the previous experiments, this shows that 

the trajectory change does not affect the map merging algorithms' performances. 

5.2.4. Trajectory and Sensor Range Effect on Map Merging Performance 

In this experiment, the effect of the trajectory and sensor range on the estimator 

performance is analyzed to better understand the estimator performances under 

different noise levels with different trajectories. The different estimator classes are 

examined using a simulated map with circular trajectory as shown in Figure 70.  
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Figure 70 Simulated Map and Trajectory Illustration 

Figure 70 shows an overlapping area of about 5% of the total explored area, which 

makes it very difficult to find the global transformation matrix. Under these 

limited conditions obtained with average of 500 Monte Carlo runs, the map 

similarity and RANSAC success performance is given in Figure 71, which are.  

 

Figure 71 Sensor Range Effect on Map Similarity and RANSAC 
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In Figure 71, shows that the performance of map similarity and RANSAC is 

increases with the increase in the sensor range, which is an expected result. A 

similar characteristic can also be seen in the graph, which shows that they are 

highly correlated. It is also seen that, even with very low map similarity 

performance, the RANSAC performance is satisfactory, at around 100% at sensor 

range 9 with 40% map similarity success. 

The trajectory effect is tested under different sensor ranges, by changing the 

sensor range of the second robot from 9 to 12. The results of the experiment are 

given in Figure 72 and Figure 73for the Covariance Intersection and Modified M-

Estimator.  

In fact, similar results were obtained from the previous experiments, but 

consistency decreases with the increase in the sensor range. The second robot 

does not close its loop, when the overlapping exists. Due to the robot’s position 

errors erroneous landmark estimates are created. Therefore, consistency decreases 

with the increase in sensor range. Moreover, the increase in the sensor range 

results in an increase in the overlapping area. However, this area is unstable and 

the landmarks in this area are erroneous because of the robot’s cumulative 

position errors. As a result, this experiment shows that the increase in the sensor 

range can result in a decrease in consistency if the overlapping area is not 

sufficiently consistent. 
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Figure 72 Sensor Range Effect on the Consistent Landmark Ratio 

 

Figure 73 Sensor Range Effect on the Determinant 

5.3. Real World Map and Trajectory Experiments 

In this section, map merging algorithm performances are examined using real 

world maps and trajectories. All the algorithms are used with their optimum 

parameter sets as calculated in section 5.1. 

5.3.1. Sensor Bearing Noise Effect on Map Merging Performance 

This section presents the examination of the map-merging performance using 

different trajectories from the Victoria Park dataset. This dataset and the 
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extraction technique are explained in detail in Sections 4.2.1.1 and 4.2.2.1, and 

their extracted maps are given in Figure 74.  

 

Figure 74 The Victoria Park Extracted Map and Trajectory Illustration 

The robots' trajectories with their extracted map are given in Figure 74. This 

experiment is carried out by changing second robot's sensor sigma value of 

bearing noise from 0.5to 4.5. Based on these conditions, map similarity and the 

RANSAC success performance obtained with an average of 50 Monte Carlo runs 

is given in Figure 75.  

Figure 75 clearly shows that the success ratios of the performance of map 

similarity decreases from 90% to 70% and RANSAC is stable at 100%. The stable 

and perfect performance of RANSAC is an expected result of successful map 

similarity performance. Therefore, these results are consistent with the results of 

the simulated data set. The successful performance of map similarity algorithm is 
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an expected result of closed loops in the trajectories. However, it can be seen that 

the map similarity performance is decreasing due to the non-deterministic SLAM 

outputs. 

 

Figure 75 Sensor Bearing Noise Effect on Map Similarity and RANSAC 

Performance 

The results of this experiment concerning the Covariance Intersection and 

Modified M-Estimator are similar to those observed in the previous experiments. 

Therefore, the consistent landmark ratio and determinant graphics are not included 

in this section. To better understand these methods' performances, their unfiltered 

results can also be examined. In fact, the consistency test does not bias their 

errors, but the determinant without its relationship with consistency does not give 

clear ranking results. Therefore, the results of Normalized Estimation Error 

Squared (NEES), which is unfiltered output of the estimators, explained in detail 

in Section 3.5, are used for better ranking and given in Figure 76.  

Despite some fluctuations, Figure 76 shows that there are results that are 

consistent with the previous simulated environment experiment. This experiment 

0

20

40

60

80

100

120

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Su
cc

e
ss

 R
at

io
 (

%
)

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on Map Similarity and 
RANSAC Performance

Map Similarity 
Performance

RANSAC Performance



 

 
148 

 

clearly demonstrates that the NEES of Covariance Intersection algorithm remains 

below the NEES of Modified M-Estimator.   

 

Figure 76 Sensor Bearing Noise Effect on Consistent Landmark Ratio 

5.3.2. Robot Velocity Noise Effect on Map Merging Performance 

In this experiment, the same map and trajectories given in Figure 74areused, and 

the experiment is carried out by changing the velocity sigma value of the second 

robot from 0.05 to 0.45. Under these conditions, map similarity and the RANSAC 

success performance is given in Figure 77. The results were obtained from an 

average of 250 Monte Carlo runs. 

Figure 77 shows clearly that the performance of the map similarity decreases from 

an 80% to a 70% success ratio, and RANSAC is stable at 100%. The stable 

performance of RANSAC is an expected result of a successful map similarity 

performance. Therefore, these results are consistent with the simulated dataset 

results and previous real world dataset results.  
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Figure 77 Robot Velocity Noise Effect on Map Similarity and the RANSAC 

Performance 

The results from these experiments for the Covariance Intersection and Modified 

M-Estimator were similar to the previous experiments. Therefore, the consistent 

landmark ratio and determinant graphics are omitted in this section. The 

Normalized Estimation Error Squared results are given in Figure 78. This 

experiment clearly shows that the NEES of Covariance Intersection algorithm is 

below the NEES of the Modified M-Estimator. 

 

Figure 78 Robot Velocity Noise Effect on NEES 
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5.3.3. Sensor Range Effect on the Map Merging Performance 

In this experiment, the map and trajectories given in Figure 79 are used, and 

experiment is implemented by changing second sensor range from 9 to 17. 

 

Figure 79 The Victoria Park Extracted Map and Trajectory Illustration 

For these conditions, the map similarity and the RANSAC success performance 

are given in Figure 80; the results were obtained from an average of 500 Monte 

Carlo runs.  

In Figure 80, the performance of map similarity can be clearly seen to be 

increasing from a 60% to an 80% success ratio, and RANSAC is stable at 100%. 

The stable performance of RANSAC is an expected result of successful map 

similarity performance. Therefore, these results are consistent with the simulated 

dataset results and previous real world dataset results. 
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Figure 80 Sensor Range Effect on Map Similarity and the RANSAC 

Performance 

The results from this experiment for the Covariance Intersection and Modified M-

Estimator show similar results to the previous experiments. Therefore, the 

consistent landmark ratio and determinant graphics are omitted in this section. 

The Normalized Estimation Error Squared results are given in Figure 81. This 

experiment reveals that the NEES of the Covariance Intersection algorithm is 

below the NEES of the Modified M-Estimator. 

To conclude, these real world dataset experiments show that the RANSAC and 

map similarity technique used in this thesis give satisfactory results. This is an 

expected result of RANSAC, because of its outlier elimination property. In fact, 

RANSAC gives 80% success rate even with the 60% success rate of the map 

similarity output, as shown in Section 5.2.3. This also reveals that triangle 

similarity is an appropriate elimination technique to increase the performance of 

RANSAC even in harsher environments. Moreover, the Covariance Intersection 

Estimator gives more consistent map merging results than its competitors under 
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different maps and trajectories with different sensor and robot noise levels. In fact, 

due its geometric property, which satisfies any degree of correlation between 

landmarks this is the expected result for the Covariance Intersection. 

 

Figure 81 Sensor Range Effect on NEES 

5.4. Robustness Analysis of Applied Algorithms  

In this section, performance of purposed algorithms, which are Delaunay 

Triangulation, RANSAC and Covariance Intersection, are examined in terms of 

their robustness by using real world maps and trajectories. All the algorithms are 

used with their optimum parameter sets as calculated in section 5.1. 

In this experiment, all of the combinations of the trajectories given in Figure 40 

are used, and experiment is implemented with the given sensor and robot 

configuration in Figure 82. 
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Figure 82 The Victoria Park Map and Trajectory Illustration 

For these conditions, the Delaunay Triangulation, map similarity, RANSAC and 

Covariance Intersection robustness performance is given in Table 7, the results 

were obtained from an average of 50 Monte Carlo runs, and the ground truth 

positions of the landmarks are used for the calculation of the NEES values.  

Table 7 The NEES values of Purposed Algorithms 

Victoria Park Merged 

Maps 

NEES of  

Robot 1's Map 

NEES of  

Robot 2's Map 

NEES of 

Merged Map 

trajectory2 & trajectory1 2,31 4,38 1,54 

trajectory2 & trajectory3 2,46 2,64 2,40 

trajectory2 & trajectory4 2,92 3,08 2,14 

trajectory3 & trajectory1 2,65 3,70 1,84 

trajectory3 & trajectory4 2,95 3,13 2,29 

trajectory4 & trajectory1 3,14 3,93 2,39 
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In Table 7, NEES values of landmarks in overlapping region of Robot 1's map and 

Robot 2's map, and NEES values of merged landmarks are given. This experiment 

reveals that the NEES values of merged map are always below the NEES of the 

individual maps of the robots under given experimental specifications. 

To conclude, these real world dataset experiments show that, the purposed 

algorithms used in this thesis give satisfactory results. In fact, merging different 

sources of information gives more precise and correct results, which is an 

expected result of map merging process. 
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CHAPTER 6 

 

 

6. CONCLUSION AND FUTURE WORK 
 

 

 

In this chapter, the overall summary of the completed work, the contributions of 

the study, and the experimental results will be presented.  

In this thesis, a multi robot SLAM problem is addressed focusing on the map 

merging issue. The aim is to offer a practical solution to the mapping and 

localization problem by using the individual robot maps in a team format. This 

problem is given in detail in Chapter 1. A literature search is undertaken to collate 

different solutions for the single and multi robot SLAM problems, together with 

different mapping, data association, multi robot map merging, and map 

performance evaluation techniques.   

Firstly, the single robot SLAM problem is examined and a detailed explanation of 

the Kalman Filter and its expansions, such as Extended Kalman Filter and 

Compressed Extended Kalman Filter were given. The Compressed Extended 

Kalman Filter was selected because it has a low performance cost and satisfactory 

precision. Moreover, the data association issue was examined with different 

techniques and their detailed formulations and comparisons are given in the 

Literature Survey Chapter 2 and the Theoretical Background Chapter 3.  
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The multi robot SLAM problem is explained by comparison with a single robot 

case. For instance, extra issues, such as task sharing, communication, and map 

merging are explained. Moreover, benefits of multi robot solution are also given 

for comparison.  The map merging issue, which is the main purpose of this study, 

is investigated under different architectures. Centralized, decentralized, and 

distributed architectures were explained and their advantages and disadvantages 

were given. Furthermore, a detailed literature survey concerning map-merging 

issue was presented. 

The map merging issue is investigated under two main cases, that of the known 

relative initial positions of the robots, and the unknown relative positions of the 

robots. For both of these cases solutions from the literature are presented, and a 

comparison is given. The unknown initial position, which is a harder problem than 

known initial position case was selected as a specification of this study. This 

problem is referred to as map alignment in the literature but in this thesis is called 

global map transformation. Different algorithms for the solution of this problem 

are examined in detail; and their detailed formulations are given in theoretical 

background chapter.  

The global map transformation issue is examined through two main approaches. 

In first approach, the robots estimate the relative position of the other robots using 

the relative measurement of the robot. For this approach, a detailed formulation 

for estimation of the transformation matrix is given in the Theoretical Background 

Chapter 3. For the second approach, the robots share their map information with 
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their neighbor robots within communication range. For this approach, there are 

two sub parts; finding the map similarity between transferred landmarks and the 

search for the transformation matrix. These two issues are explained in detailed 

and solutions in the literature are given the theoretical background chapter. For 

solution to the map similarity problem, geometric feature extraction algorithms 

and similarity calculation techniques, such as the Delaunay Triangulation, 

topological feature extraction are drawn from the literature and a comparison of 

their performance is given. For the transformation search, the Adaptive Random 

Walk, Iterative Translation Search and Random Sample Consensus algorithms are 

explained and their formulations given.  

For final part of the map-merging process, different techniques are used to merge 

associated (matched) landmark pairs into a more precise single landmark. The 

result of the literature survey on these techniques is given together with an 

investigation into the sensor data-fusion issue. To resolve this problem, different 

techniques such as Maximum Likelihood Estimator, Modified M-Estimator, 

Covariance Intersection Estimator, Orthogonal Gnanadesikan-Kettenring 

Estimator, Hybrid Covariance Intersection and Orthogonal Gnanadesikan-

Kettenring Estimators are investigated in detail.  

For simulation purposes, the open source single robot SLAM with Compressed 

Extended Kalman Filter is extended to the multi robot SLAM simulator. This 

extended simulator can load previously generated maps and trajectories, and 

visualize them. In the SLAM simulation, all this data is hidden from the robot and 
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they are given as input to the robots with Gaussian distributed noise. The robot's 

true and estimated positions with covariance ellipse, the true and estimated 

positions of the measured landmarks with covariance ellipses are visualized by the 

simulator. All the noise adjustments are enabled by user interfaces, which are 

implemented in MATLAB GUI from coding created by the author of this thesis. 

This gives an easy user interaction with the simulator, and the algorithms can be 

tested using these interfaces. For instance, sensor range, sensor bearing and range 

noise, robot velocity noise, robot angular velocity noise levels can be adjusted 

easily by this interface for both robots. For detailed experiments, Monte Carlo 

analysis option is added to simulation code. Moreover, different real world 

datasets, such as Central Park, Victoria Park maps and related trajectories are 

generated manually for realistic experiments. In addition, manual map and 

trajectory entry ability is added to simulator for new map and trajectory entries.  

First part of global map transformation, which is map similarity problem is solved 

by implementation of Delaunay Triangulation and similarity metric of these 

triangles. Second part, which is transformation search, is solved with RANSAC 

implementation. In this implementation, different distance methods and 

transformation matrix equations are implemented and integrated.  

Map merging problem is solved with Maximum Likelihood Estimator, Modified 

M-Estimator, and Covariance Intersection Estimator implementations.  

For evaluation of map-merging algorithms, detailed literature survey is conducted 

and related works about this study is given in literature chapter. Most suitable 
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evaluation metrics are implemented for algorithm evaluations in experiments and 

results chapter. All evaluations of algorithms are done with respect to these 

metrics.  

In experimental part of the study, firstly all algorithms' sensitivity analysis and 

their run time performances are examined with Monte Carlo runs. The most 

successful parameter sets of the algorithms are selected by these analyses. 

Secondly, their performances are compared with simulated map and trajectory 

data under different conditions. For instance, sensor bearing noise effect, robot's 

velocity noise effect, sensor range effect, and different trajectory effects are 

examined by keeping other variable parameters as constant and changing the 

objective parameter in logical values. Then, similar tests are conducted with real 

world datasets. All experimental results are represented after running Monte Carlo 

runs and taking average values of these runs. These experiments show that 

RANSAC and map similarity technique used in this thesis gives satisfactory 

results even in harsher environments, which is simulated with real world datasets. 

Moreover, Covariance Intersection Estimator gives more consistent map merging 

results than its competitors under different maps and trajectories with different 

sensor and robot noise levels. Finally, purposed combination of algorithms, which 

consists of Delaunay Triangulation, RANSAC and Covariance Intersection, is 

examined with Victoria Park Map and all possible combinations of trajectories. 

This experiment reveals that robustness of the purposed combination of 

algorithms. 
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To conclude, in this thesis the map-merging problem of the multi robot SLAM is 

examined in detail. Different approaches in literature are presented and compared. 

The most suitable algorithms are implemented and their formulations are given as 

theoretical background. For comparisons of implemented algorithms, literature 

survey is conducted and appropriate evaluation technique is implemented. For 

simulation environment, multi robot simulator with extended and user-friendly 

graphical user interface is implemented. In experimental part of the study, 

algorithms are compared with respect to given evaluation criteria, and their 

comparison results are presented after the Monte Carlo runs in simulation 

environment. Moreover, it is conducted that, the combination of algorithms, 

Delaunay Triangulation, triangle similarity, RANSAC and Covariance 

Intersection Estimator gives satisfactory results with tolerable time requirements 

for the solution of distributed map merging problem.  

Finally, suggestions concerning future work to extend this study are given below. 

 In the current work, global map transformation issue is handled by using a 

map overlap technique. The detailed formulation of the alternative 

technique, of using the relative measurements of robots, is given but it is 

not implemented. In future, the implementation and performance 

evaluation of these two techniques may be compared.  

 In this work, the Delaunay Triangulation and a similarity metric based on 

these triangles are implemented. However, the literature survey in this 



 

 
161 

 

thesis mentions various techniques such as using topological structure of 

the map. These techniques may be applied and compared.  

 The Random Sample Consensus algorithm is used for the multi-robot data 

association issue in this study. However, the evaluation of alternative 

techniques such as the Adaptive Random Walk and the Iterative 

Translation Search may be a beneficial contribution to the SLAM 

problem.  

 Although detailed explanations and comparisons of different map merging 

architectures are given, only the distributed approach is examined. 

Therefore, centralized and decentralized architectures may be 

implemented for the performance analysis and the results analyzed. 

 In this study, the Compressed Extended Kalman Filter is used as 

probabilistic SLAM algorithm. The effect of alternative SLAM algorithms 

on map-merging performance can also be investigated. 
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