

MAP MERGING FOR MULTI ROBOT SLAM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ORHAN KARADENİZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2014

Approval of the thesis:

MAP MERGING FOR MULTI ROBOT SLAM

submitted by ORHAN KARADENİZ in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver _______

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan _______

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. İlkay Ulusoy _______

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Aydan Erkmen _______

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. İlkay Ulusoy _______

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar _______

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Afşar Saranlı _______

Electrical and Electronics Engineering Dept., METU

Onur Alper Erdener _______

Director, ASELSAN

Date: 16.12.2014

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name : Orhan Karadeniz

 Signature :

v

ABSTRACT

MAP MERGING FOR MULTI ROBOT SLAM

Karadeniz, Orhan

MS., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. İlkay Ulusoy

December 2014, 170 pages

In the area of mobile robotics Simultaneous Localization and Mapping (SLAM) is

a challenging problem. In the literature, there are many solutions to this problem

for single robots. However, multi-robot SLAM is a relatively new topic, which

has additional issues, such as communication, task sharing and map merging. This

thesis takes map merging as its focus and this is examined in terms of the

specifications for the unknown initial positions of robots. In the map-merging

scenario, every robot localizes itself and generates maps individually and the

generated local maps of each robot are shared with other robots. This information

vi

sharing can be achieved within different architectures. A distributed approach is

used in the study reported in this thesis. This approach does not need a fully

connected communication network and a central unit to accumulate the

information.

This thesis examines the map-merging problem of multi robot SLAM though

different approaches in literature. The single robot SLAM problem is solved with

Compressed Extended Kalman Filter. The challenging part of map merging is the

problem of the unknown initial position is solved with map similarity algorithms,

the Delaunay Triangulation and triangle similarity metric. The stochastic search of

global transformation matrix is undertaken applying the Random Sample

Consensus, which is used for estimation of the transformation between the

individual maps created by the robots. In the final step, the overlapping regions of

the transferred maps are merged with different algorithms such as Maximum

Likelihood, M-Estimator and Covariance Intersection. For experimental purposes,

an open code simulator for the multi robot SLAM is implemented. Finally, each

algorithm is examined under different scenarios and their performance analyses in

relation to simulated and real world datasets, are presented in Chapter 5, which

contains the details of the experiments.

Keywords: Map Merging, Multi Robot, SLAM, Map Similarity, Global Map

Transformation

vii

ÖZ

ÇOKLU ROBOTLAR İÇİN HARİTA BİRLEŞTİRME

Karadeniz, Orhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. İlkay Ulusoy

Aralık 2014, 170 sayfa

Eş Zamanlı Konumlandırma ve Haritalama (SLAM) problemi robotik alanının

zorlu bir problemidir. Literatürde, bu sorunun tek robot için birçok çözümü

bulunmatadır. Fakat, çoklu robot SLAM nispeten daha yeni bir konudur. Bu

problem iletişim, görev paylaşımı ve harita birleştirme gibi ekstra konuları

içermektedir. Harita birleştirme bu tezin ana konusudur, ve bilinmeyen ilk robot

pozisyonları kısıtı altında incelenmiştir. Bu senaryoda her robot kendini

konumlandırır ve haritalama yapar. Sonrasında oluşan haritalar diğer robotlar ile

paylaşılır. Bu paylaşım farklı mimariler ile gerçeklenebilir. Bu çalışmada tam

bağlı komünikasyon ağı ve merkezi bir işleme birimine ihtiyaç duymayan, dağınık

mimari kullanılmıştır.

viii

Bu tezde, çoklu robot uygulamalarında literatürdeki farklı harita birleştime

yöntemleri detaylı incelenmiştir. Tek robot SLAM problemi Sıkıştırılmış

Genişletilmiş Kalman Filtre (CEKF) algoritması ile çözülmüştür. Dağınık

mimarilerde harita birleştimenin zor bir bölümü olan bilinmeyen ilk robot

pozisyonları sorunu haritalar arası benzerlik bulap, ve bu benzerlik üzerinden

haritalar arasındaki dönüşüm matrisi bulunarak çözülmüştür. Delanuay

Üçgenleme yöntemi harita yapısından geometrik özellikler çıkararak, ve bu

üçgenler üzerinden benzerlik hesaplanarak, haritalar arası benzer alanlar

çıkarılmıştır. Bu benzer alanlar kullanılarak dönüşüm matrisi RANSAC

algoritması kullanılarak aranmıştır. Son olarak haritalar bulunan matris ile aynı

koordinat düzlemine taşınmış ve örtüşen bölgelerideki aynı sınır işaretleri

Maximum Likelihood, Değiştirilmiş M-Tahminleyici ve Kovaryans Kesişimi (CI)

algorithmaları ile birleştirilmiştir. Açık kaynak kodlu çoklu robot SLAM

simülatörü gerçeklenmiş ve deneylerde kullanılmıştır. Son olarak, algoritmalar

similasyon ve gerçek harita verileri kullanılarak değişik senaryolar ile incelenmiş,

ve performans analizleri deneyler ve çıkarımlar bölümünde sunulmuştur.

Anahtar Kelimeler: Harita Birleştirme, Çoklu Robot, Harita Benzerliği

ix

To My Dear Wife

x

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Assoc. Prof. Dr. İlkay Ulusoy for her

guidance, criticism and insight throughout the research.

I am also grateful to ASELSAN Inc. for encouragements and resources that are

supported for this thesis.

I owe my deepest gratitude to my precious wife for her encouragement and

continuous support, and my family for their trust and support.

xi

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

TABLE OF CONTENTS ... xi

LIST OF TABLES .. xv

LIST OF FIGURES .. xvi

CHAPTERS .. 1

1. INTRODUCTION .. 1

1.1. Problem Definition and Motivation .. 1

1.2. Scope of the Thesis ... 5

1.3. Outline of the Thesis ... 6

2. LITERATURE SURVEY .. 7

2.1. Map Representation .. 7

2.2. Simultaneous Localization and Mapping .. 10

2.2.1. Feature Extraction .. 13

2.2.2. Data Association .. 14

2.3. Multi-Robot SLAM .. 17

2.3.1. Global Transformation .. 22

2.3.1.1. Global Transformation Using the Relative Measurements 23

2.3.1.2. Global Transformation Using the Map Overlap 24

2.3.1.2.1. Map Structure Similarity ... 26

2.3.1.2.2. Multi-Robot Data Association ... 29

2.3.2. Map-Merging ... 32

2.4. Evaluation of the Map Performance ... 38

xii

3. THEORETICAL BACKGROUND ... 43

3.1. Data Association ... 43

3.1.1. Individual Compatibility Nearest Neighbor 43

3.1.2. Joint Compatibility Branch and Bound 45

3.2. Filters for SLAM Purpose ... 46

3.2.1. Kalman Filter ... 46

3.2.2. Extended Kalman Filter ... 48

3.2.3. Compressed Extended Kalman Filters ... 50

3.3. Global Map Transformation .. 55

3.3.1. Global Map Transformation by Using Relative Measurements .. 55

3.3.1.1. Relative Distance and Bearing Measurements 56

3.3.1.2. Transformation between Global Frames 57

3.3.2. Global Map Transformation by Using Map Overlap 60

3.3.2.1. Map Structure Similarity .. 60

3.3.2.1.1. Delaunay Triangulation ... 60

3.3.2.1.2. Similarity Metric Calculation .. 64

3.3.2.2. Multi Robot Data Association .. 66

3.3.2.2.1. Transformation Matrix Formulation 66

3.3.2.2.2. Random Sample Consensus ... 67

3.3.2.2.3. Adaptive Random Walk .. 73

3.3.2.2.4. Iterative Translation Search ... 75

3.4. Feature Based Map Merging ... 75

3.4.1. Maximum Likelihood Estimator.. 75

3.4.2. Modified M-Estimator ... 79

3.4.3. Covariance Intersection Estimator ... 80

3.4.4. Orthogonal Gnanadesikan-Kettenring Estimator 83

3.5. Map Performance Evaluation .. 84

3.5.1. Normalized Estimation Error Squared Consistency Test 84

xiii

3.5.2. Area of Covariance Ellipse Metric .. 85

4. SIMULATOR AND MAPS ... 87

4.1. Simulation Environment ... 87

4.1.1. Random Map Generator .. 92

4.1.2. Trajectory Planning ... 93

4.1.3. Motion Model .. 95

4.1.4. Observation Model .. 97

4.1.4.1. Bounding Box Test .. 98

4.1.4.2. Bounding Line Test .. 99

4.1.4.3. Bounding Circle Test ... 99

4.2. Maps and Trajectories ... 101

4.2.1. Extraction of Different Landmark Datasets 101

4.2.1.1. Obtaining Meaningful Real World Map 102

4.2.1.2. Manual Landmark Labeling ... 103

4.2.2. Extraction of Different Trajectories .. 106

4.2.2.1. Obtaining Meaningful Trajectories .. 106

4.2.2.2. Manual Trajectory Planning .. 107

5. EXPERIMENTAL RESULTS ... 109

5.1. Performance Analysis Experiments .. 111

5.1.1. Global Map Transformation Algorithms 111

5.1.1.1. Delaunay Triangulation ... 112

5.1.1.2. Similarity Metric Calculation .. 113

5.1.1.2.1. Computational Cost ... 113

5.1.1.2.2. Success Rate .. 114

5.1.1.3. Random Sample Consensus ... 117

5.1.1.3.1. Computational Cost of Algorithm Steps 117

5.1.1.3.2. Success Rate under Noisy Input 118

5.1.1.3.3. Success Rate under a Mismatched Noisy Input 119

xiv

5.1.1.3.4. Success Rate under Mismatched Noisy Input and RST .. 122

5.1.1.3.5. Computational Cost under Mismatched Noisy Input 123

5.1.1.3.6. Success Rate under Different Distance Methods 125

5.1.1.3.7. Computational Cost under Different Distance Methods . 126

5.1.2. Map Merging Algorithms .. 127

5.1.2.1. Computational Cost of Algorithms .. 128

5.1.2.2. Algorithm Parameter Optimization .. 130

5.1.2.2.1. Covariance Intersection Sensitivity Analysis 130

5.2. Simulated Map and Trajectory Experiments 133

5.2.1. Sensor Bearing Noise Effect on Estimator Performance 134

5.2.2. Robot Velocity Effect on Estimator Performance 137

5.2.3. Trajectory and Sensor Bearing Effect on Map Merging

Performance .. 139

5.2.4. Trajectory and Sensor Range Effect on Map Merging

Performance .. 142

5.3. Real World Map and Trajectory Experiments 145

5.3.1. Sensor Bearing Noise Effect on Map Merging Performance 145

5.3.2. Robot Velocity Noise Effect on Map Merging Performance 148

5.3.3. Sensor Range Effect on the Map Merging Performance 150

5.4. Robustness Analysis of Applied Algorithms 152

6. CONCLUSION AND FUTURE WORK ... 155

REFERENCES .. 163

xv

LIST OF TABLES

TABLES

Table 1 Pseudo Code of Individual Compatibility Nearest Neighbor 43

Table 2 Pseudo Code of Bowyer-Watson's Incremental Delaunay Triangulation

Algorithm [67] ... 63

Table 3 Pseudo Code of Adaptive Random Walk Algorithm [11] 74

Table 4 Pseudo Code of Iterative Translation Search [45] 76

Table 5 Pseudo Code of Orthogonal Gnanadesikan-Kettenring Estimator [53] ... 83

Table 6 Computational Cost of Covariance Intersection Algorithm 129

Table 7 The NEES values of Purposed Algorithms .. 153

xvi

LIST OF FIGURES

FIGURES

Figure 1 Illustration of a Feature-Based Map and the Robot Trajectory [9] 8

Figure 2 Illustration of Topological Map [10] .. 8

Figure 3 Illustration of a Grid-Based Map [11] .. 9

Figure 4 Mono Dimensional Spurious Measurement Scenario [30] 16

Figure 5 Illustration of Different Algorithm Behaviors under the Same Scenario

[30] .. 17

Figure 6 Illustration of the Effect of Transformation on the Overlapping Area ... 25

Figure 7 The upper two maps explored by different robots are merged into the

lower resultant map [11]. ... 33

Figure 8 Ellipses with a larger area are the landmark covariance matrices in

different maps, which are merged with the smaller (inner) ellipses. 34

Figure 9 State Cycle Diagram of Kalman Filter .. 46

Figure 10 Illustration of Active and Stable Regions of Map 51

Figure 11 Relationship Between Positions and Measurements of Robots [42] 57

Figure 12 Geometric Relationship Between Global Frames and Landmark

Position [42] .. 59

Figure 13 Demonstrations of Possible Triangle Shapes .. 61

Figure 14 Possible Outputs of DT under Exceptional Case (Rectangular Shape) 61

Figure 15 Illustration of Relationship between Voronoi Diagram and Delaunay

Triangulation ... 62

Figure 16 Illustration of Similar Triangles with Different Landmarks 65

Figure 17 RANSAC Flow Chart ... 70

Figure 18 Geometric Illustration of Covariance Matrices [47] 82

Figure 19 Simulator Environment Screenshot .. 88

Figure 20 Multi Robot Simulator Environment Screenshot 89

Figure 21 Map Dimensions Popup Dialog Box .. 89

xvii

Figure 22 Manual Landmark Entry View ... 90

Figure 23 Saving Window View ... 90

Figure 24 Manuel Trajectory Planning Ability ... 91

Figure 25 Trajectory Saving Ability ... 91

Figure 26 Illustration of Generated Maps with and without Distance Limitation

(without Distance Limitation and with 10 meters Distance Limitation) 93

Figure 27 Flow Chart of the Trajectory Planning Algorithm 94

Figure 28 Rotational Motion of Robot .. 95

Figure 29 Picture of Pioneer3-AT Robot .. 96

Figure 30 Picture of LMS 200... 97

Figure 31 Illustration of the Scan Model of LMS 200 on Top View 98

Figure 32 Bounding Box Test Illustration ... 98

Figure 33 Bounding Line Test Illustration .. 99

Figure 34 Bounding Circle Test Illustration ... 100

Figure 35 Victoria Park with Labeled Landmarks .. 103

Figure 36 The 2 Dimensional Map of Central Park [86] 104

Figure 37 The 3 Dimensional Map of Central Park [86] 104

Figure 38 The 2 Dimensional Map of Central Park with Labeled Trees 105

Figure 39 Manual Landmark Entered Landmarks of Central Park 105

Figure 40 Victoria Park Trajectories ... 107

Figure 41 Central Park Trajectories .. 108

Figure 42 Multi-Robot Map-Merging Flow Diagram ... 110

Figure 43 Sample Size Effect on Delaunay Triangulation Performance 112

Figure 44 The Effect of Sample Size on the Similarity Calculation Performance

 ... 114

Figure 45 Illustration of Overlap Ratio Change .. 115

Figure 46 Effect of Overlap Ratio Change on Similarity Calculation Performance

 ... 116

Figure 47 Time Cost Illustration of Hypothesis and Test Steps 118

xviii

Figure 48 The Success Rate of RANSAC ... 119

Figure 49 Success Rate of RANSAC for Different Match Ratios 120

Figure 50 Success Rate of RANSAC under Different Match Ratios 123

Figure 51 Computational Cost of RANSAC under Different Match Ratios 124

Figure 52 Success rate of RANSAC using Different Distance Calculation

Methods ... 125

Figure 53 Computational Cost of RANSAC under Different Distance Calculation

Methods ... 127

Figure 54 Computational Cost of Map Merging Algorithms 128

Figure 55 Simulation Scenario of Sensitivity Analysis of Covariance Intersection

 ... 131

Figure 56 Sensor Bearing Noise Effect on the Consistent Landmark Number ... 132

Figure 57 Sensor Bearing Noise Effect on Determinant 132

Figure 58 Covariance Estimations of Map Merging Algorithms 133

Figure 59 Simulated Map and Robot Trajectories .. 134

Figure 60 Sensor Bearing Noise Effect on RANSAC Performance 135

Figure 61 Sensor Bearing Noise Effect on the Consistent Landmark Number ... 136

Figure 62 Sensor Bearing Noise Effect on the Determinant 136

Figure 63 Robot Velocity Noise Effect on RANSAC Performance 138

Figure 64 Robot Velocity Noise Effect on the number of Consistent Landmarks

 ... 138

Figure 65 Robot Velocity Noise Effect on the Determinant 139

Figure 66 Simulated Map and Trajectory Illustration ... 140

Figure 67 Robot Velocity Noise Effect on Map Similarity and RANSAC

Performance ... 141

Figure 68 Sensor Bearing Noise Effect on the Consistent Landmark Ratio 141

Figure 69 Sensor Bearing Noise Effect on the Determinant 142

Figure 70 Simulated Map and Trajectory Illustration ... 143

Figure 71 Sensor Range Effect on Map Similarity and RANSAC Performance 143

xix

Figure 72 Sensor Range Effect on the Consistent Landmark Ratio 145

Figure 73 Sensor Range Effect on the Determinant .. 145

Figure 74 The Victoria Park Extracted Map and Trajectory Illustration 146

Figure 75 Sensor Bearing Noise Effect on Map Similarity and RANSAC

Performance .. 147

Figure 76 Sensor Bearing Noise Effect on Consistent Landmark Ratio 148

Figure 77 Robot Velocity Noise Effect on Map Similarity and the RANSAC

Performance .. 149

Figure 78 Robot Velocity Noise Effect on NEES ... 149

Figure 79 The Victoria Park Extracted Map and Trajectory Illustration 150

Figure 80 Sensor Range Effect on Map Similarity and the RANSAC Performance

 ... 151

Figure 81 Sensor Range Effect on NEES .. 152

Figure 82 The Victoria Park Map and Trajectory Illustration 153

1

CHAPTERS

CHAPTER 1

1. INTRODUCTION

1.1. Problem Definition and Motivation

Robots are being increasingly used in many application areas, where the situation

would be difficult, dangerous or life threatening for human beings; for example,

natural and man-made disasters. Robots are also used in industrial contexts,

particularly in the space industry. However, robots also face difficulties, which

include determining the environment they are in and mapping that environment.

The capacities of a robot are based on their physical structure and the extent of

their ability to communicate. In an unknown area, the robot needs to localize itself

and explore the environment. The sensor types and algorithms used for solving

the problem localization and mapping diverge In terms of whether the

environment is indoor or outdoor.

The interior of buildings and tunnels are examples of indoor environments. Parks,

roads, underwater or air platforms are examples of the outdoor environment.

There have been many robot applications in these type of environments, such as

indoors [1] [2] [3] [4], and outdoors [5] [6] [7]. The indoor environments are

small areas containing features with concentrated distribution. The outdoor

environments consist of larger areas with fewer features. Since features are the

objects, which can be scanned by the robots' sensors the feature density of the

environment is one of the main determinants for the selection of the type of sensor

type. In outdoor environments features are more rare, so more precise information

about the location of features is needed and it is this information that is used for

robot localization and mapping.

2

The sensors used by a robot can be divided into types; bearing-only, and bearing

and range types. Monocular cameras, and sonic scanning and ranging sensors are

examples of the bearing-only sensor type, which only give information about

direction of the feature. Light-based ranging sensors (LIDAR) are an example of

the bearing and range sensor type, providing information about not only direction

but also distance between the features. Despite being more expensive, bearing and

range sensor types provide more precise information than the bearing-only sensor

types.

Using the information about the environment obtained through the sensors, a

robot can solve the localization and mapping problem, which is called

Simultaneous Localization and Mapping (SLAM) problem in the robotics area.

For a robot, the SLAM problem is hard to solve due to the complexity of

simultaneously extracting the map and localizing its own position.

Different algorithms can be used to solve the SLAM problem. However, despite

the precision of sensors, there are still errors in sensor readings. Moreover, the

imprecise nature of the SLAM problem results in the stochastic representation of

the robot's position and map representation. As a result, with their ability to

address complex and stochastic problems, probabilistic algorithms, such as

Kalman Filter and Particle Filter, are more suitable for the SLAM problem. Both

these algorithms have certain advantages under different conditions. For example,

the Kalman Filter is an optimal estimation method when linear Gaussian noise

models with zero mean are used; however, in nonlinear and different noise

distributions, the Particle Filter is more advantageous. Therefore, in order to

choose the right algorithm, the problem should be analyzed in detail. In this study,

the Kalman Filter was used to solve the SLAM problem. The main reason for

choosing the Kalman Filter was its optimal estimation property. Moreover, the

Kalman Filter provides the feasibility of using the Gaussian distribution for the

assumption of the features, and linearizing the model using the Taylor Series

expansion method.

3

Filters are used for the estimation of the robot's position and the description of the

environment. Environment representation is called a map representation. The map

representation of an environment can be performed using feature-based or grid-

based maps.

A feature-based map representation consists of the extracted properties of

features. For example, a tree in an environment is represented by x and y

coordinates. On the other hand, in a grid-based map representation, the map is

divided into cells. Each evenly spaced cell has a binary random variable, which

represents the probability of an obstacle to occur in that cell. The grid-based map

representation has high computational and storage requirements compared with

the feature-based representation.

Although algorithms have been successfully used for the solution of the single-

robot SLAM problem, the multi robot case is still unresolved. This is due to the

issues of task assignment, communication topology and map-merging in multi-

robot applications.

Task assignment is employed when multiple robots are used to explore the same

environment for an investigation. Task assignment decreases the time required for

exploring the whole investigation area. However, in this study, task assignment

was not investigated, and the tasks of the robots were assumed to be initially

assigned.

A communication topology is the structure of communication between robots.

There are different topologies; such as fully connected, and partially connected.

The fully connected communication topology uses extra devices to overcome the

problems of limited bandwidth and limited communication range. The bandwidth

of a network is the rate of data transfer, and it is measured in bits per second.

Limited communication range is the range limitation of the data transfer devices.

Extra devices transfer the information from one robot to all other robots. On the

other hand, in partially connected systems, the bandwidth and range limitation

problems are solved through one to one communication between the robots. In

4

these systems, robots only use the information obtained from other robots that are

within the communication range. The fully and partially connected systems of

communication are also referred to as centralized and decentralized systems,

relatively.

Centralized systems require one central unit for collecting and processing the

accumulated information [8]. These requirements can be supplied by the fully

connected communication topology. On the other hand, decentralized systems do

not require a central unit, nor a fully connected communication topology. In

decentralized systems, every robot is capable of using the information obtained

from any other robot without having to obtain information from all other robots.

In this study, decentralized system requirements were one of the main system

specifications. A detailed description of the centralized and decentralized systems

is given in Section 2.3.

Map-merging is one of the tasks to be performed to solve the multi-robot SLAM.

In this task, the shared information is used to improve the precision of the global

map. A global map is a cumulative map, which is the combination of individual

maps of all robots. Two different scenarios can be used to examine the map-

merging process. In the first scenario, every robot knows the relative positions of

other robots. Therefore, each robot updates its location and builds a map based on

this information. In the second scenario, the robots consider their initial positions

as the origin of frame and construct their maps based on this assumption, which

results in different frames for all robots. In the known initial position case, when

the communication between robots is established, the combination of the local

maps of robots is trivial. Therefore, there is no need for a map transformation

calculation since the positions are already known. On the other hand, since the

initial positions and relative frames are unknown in the second case, before

combining the local maps of robots, frame transformation needs to be performed.

As a result, the second case is more challenging than the first case. A detailed

description of the unknown initial position scenario is given in Section 2.3.1.

5

After the global transformation, two maps in the same global frame are obtained

for the construction of the final map. These two maps can have overlapping

regions, which can be used to increase the precision of the map. This is called the

process of combining maps. In this process, probability distributions of features

are used as the inputs and the combinations of these distributions are given as the

outputs of the process. These outputs with non-overlapping regions form the final

global map. A detailed description of the combining maps process is given in

Section 2.3.2.

In summary, despite the more complex issues involved, multi-robot SLAM

applications have the advantage of providing a faster and more precise exploration

of the environment. Moreover, they have a fault tolerance for failures resulting

from robots and algorithms. Environmental conditions or design mistakes can

damage the electronic or mechanic parts of robots. Moreover, algorithm failures

can results in mistakes in localization and mapping, such as incorrect data

association and wrong model assumptions. These failures can be overcome using

multiple robots. In addition, the required time decreases with the increase in the

number of robots. Moreover, the overlapping regions of the maps provide precise

information, since the information is obtained from different robots. Therefore,

the multi robot SLAM applications have attracted more interest than single-robot

SLAM applications in recent years.

1.2. Scope of the Thesis

The scope of this study was to provide a map-merging algorithm for a team of

robots. Each robot localized and mapped the unknown environment without being

aware of the initial positions of other robots. The inputs for all robots were; sensor

readings (bearing and range) and odometer data (velocity and angular velocity).

Each robot takes measurement without affecting each other, which means

correlation between them is not available. The output was the merged global map

of the environment.

6

The inputs were used for the single-robot SLAM purpose. The Compressed

Extended Kalman Filter was used to estimate the robot pose and construct a map

of the environment. Each robot shared its local map with the other robots that

were within the communication range. The similar regions of these shared maps

were found using the Delaunay Triangulation algorithm to extract the geometric

information from the map; such as the circumference and area of triangles... These

similar regions were used to perform the global map transformation between the

local maps of the robots. Then, the best global map transformation was found

using the Random Sample Consensus algorithm to align the maps. The

overlapping features in the aligned maps were merged through a different

algorithm, involving the use of Maximum Likelihood Estimation, Modified M-

Estimator and Covariance Intersection Estimator.

1.3. Outline of the Thesis

The structure of the thesis is given below.

Chapter 2 presents a survey of previous research conducted on the multi-robot

SLAM problem and map merging process.

Chapter 3gives the theoretical background and formulation of the related literature

under the following five sections, single-robot data association, filters for SLAM,

global map transformation, feature-based map merging and map performance

evaluation.

In Chapter 4, simulator and maps used in experiments are represented in two

sections; simulation environment, and maps and trajectories.

In Chapter 5, experiments and results regarding the examined algorithms are

given in the following sections; performance and sensitivity analysis experiments,

simulated map and trajectory experiments and real world map and trajectory

experiments.

Chapter 6 presents a summary of the research conducted within the scope of this

thesis, the contributions to the literature and suggestions for future work.

7

CHAPTER 2

2. LITERATURE SURVEY

In this part of the thesis, a literature survey on the probabilistic SLAM algorithms,

map representations, and the multi-robot SLAM problem are presented. The

detailed results of the research are given in the following sections.

2.1. Map Representation

The environment representation is called a map representation. The selection of

the map representation is important in the SLAM algorithms. The map

representations of an environment can be mainly divided into two; feature-based

and grid-based maps.

In feature-based map representation, a mean vector and a variance matrix are

obtained from each extracted feature and stored separately. Figure 1 illustrates a

feature-based map representation with the robot trajectory to clarify the stochastic

nature of the SLAM algorithm.

In Figure 1, k represents the steps, xk indicates the robot's state in step k and zk,j

shows the measurement of the jth feature on the map at the step k. The robot's

estimation of its own state and the landmarks on the map is not the same as the

ground truth, which is a good simulation of the map representation and the SLAM

problem.

8

Figure 1 Illustration of a Feature-Based Map and the Robot Trajectory [9]

Topological maps are feature-based maps that contain additional information,

such as the degree of vertices and orientations of edges at vertices in a graphical

structure [10]. These vertexes are the nodes representing the positions of the robot

and features. The edges connect one vertex to another using the distance between

features. Figure 2 presents an example for the topological map representation.

Figure 2 Illustration of Topological Map [10]

In grid-based map representations, the environment is represented as an evenly

spaced field of binary random variables, which represent the probability of

obstacle to occur in a given cell [11]. Grid-map representations require a high

storage capacity and greater computation time for larger maps, but no landmark

extraction algorithms or data association are needed. An example of grid-based

map representation is given in Figure 3.

9

Figure 3 Illustration of a Grid-Based Map [11]

A graph-based map can be considered a sub-representation method for grid-based

map representation [12]. In this representation, the trajectory with related scan

measurements is used for map representation. Similarly, appearance-based map

representation approaches [13][14] can also be considered graph-based map

representations. In these approaches, snapshots of environment, captured by the

camera on the robot, are used. The appearance-based map representation has the

advantage of detecting the previously visited areas since this method uses visual

features of the environment.

Different map representations can be chosen for different areas according to their

suitability. For instance, for large-scale areas with predefined landmarks, the

feature-based map representation is more appropriate than the grid-based map

representation. On the other hand, the latter can be used for an unconstructed

environment with a denser structure [15].

There is interesting research on map representations, investigating the combined

use of feature and grid-based map representations. Sim [16] and Ho [17]used this

combination for the SLAM algorithm. However, Sim's method only uses grid map

for navigation and feature map for pose estimation, and Ho's method uses feature

map for only loop closure and grid map for pose estimation. Another important

research in this area is the one by Wurm [18],who used both map representations

simultaneously for the estimation of the robot pose.

10

2.2. Simultaneous Localization and Mapping

SLAM is the localization and mapping problem of building a map of the unknown

environment features while simultaneously finding the trajectory, which is also

known as concurrent mapping and localization [19][20]. The main issue in this

problem is the unknown environment and the unknown position of the robot,

which correlates with the map and the robot trajectory. Different studies have

investigated and developed methods to localize the known environments and map

the known localizations [21]. However, SLAM is far more complicated than these

problems due to its simultaneous nature. The SLAM problem is explained in

detail in Section 1.1, in which, different methods used in the previous studies to

solve the SLAM problem are also given.

In the robotics area, probabilistic SLAM solutions attract more attention than the

deterministic solutions, with their more complex natures. Probabilistic solutions

also require approximation to address the impossibility of considering the entire

probability space. In addition to approximation, a discrete model for the motion of

the robot is also required to decrease the high computational cost of updating the

motion. Therefore, probabilistic approaches are needed to approximate the best

solution and create discrete motion models. There is a crucial relation between the

model dependency and the precision of a solution. If a solution relies more on the

model, then the computational cost is less. With the computational gain, the

precision of the solution decreases. In fact, the model derived from the problem

itself is uncertain. Therefore, when the solution depends on the model, it is more

likely to be wrong. If the solution does not highly rely on the model, the solution

is more likely to perform better in real world implementations, but the

computational cost increases. There are two main filter classes used to solve this

stochastic problem, Particle Filter and Kalman Filter.

In Particle Filter, the zero mean Gaussian noise is not assumed; therefore, a linear

system model is not needed. Since this method uses samples of distribution, its

performance relies on the sample count. Under the smoothness assumptions, the

11

posterior probability tends to converge the correct value when the sample count

goes to infinity [1]. Therefore, the sample count and the performance

requirements of the system must be optimized in Particle Filter applications.

However, using large sample sets for Particle Filter is not appropriate under real

time specifications.

The Kalman Filter is an alternative solution to the SLAM problem, which is also

the optimal solution for certain assumptions. It is commonly used in SLAM

applications due to its optimality. The assumptions of the Kalman Filter are;

Markov assumption, linear state and measurement transition assumption,

independent zero mean and Gaussian system noise assumption, and the

assumption based on the uniform initial distribution of the robot. A detailed

explanation of the Kalman Filter and its assumptions is given in Section 3.1, and

the optimality proof can be found in Thrun's book [1]. Since it is difficult to

satisfy these assumptions in real world applications, improvements have been

made to the original Kalman Filter resulting in the development of the Extended

Kalman Filter, Unscented Kalman Filter, Compressed Kalman Filter and

Covariance Intersection. For instance, the Extended Kalman Filter uses the Taylor

series expansion to overcome linear system assumptions by linearizing the

nonlinear system models around the current mean. Furthermore, instead of

linearizing the system model, the input of the filter can be sampled around the

mean. These samples, called sigma points, are propagated through the nonlinear

system model. After this propagation, samples are recombined for the calculation

of the new mean and sigma. This expansion is called the Unscented Kalman Filter

[1].

The Extended Kalman Filter has a computational advantage over the Unscented

Kalman Filter, but its complexity makes it unsatisfactory for real time applications

in large areas. This complexity results from storing and updating all the

correlations between the landmarks and the robot pose, which is explained in

detail by Leonard [5]. This requirement is satisfied by updating all landmark

correlations using all available information. Further improvements have been

12

made to the Extended Kalman Filter to reduce the computational cost involved.

For this purpose, the Compressed Extended Kalman Filter was proposed by

Guivant and Nebot [6].This filter updates the correlations in the current local area.

After series of iterations, this information is propagated through the entire

landmark set. The theoretical background of this algorithm is given in Section

3.2.3.

With each improvement to the Kalman filter, the algorithm provides a better

performance under systems with different characteristics. For instance, the

Unscented Kalman Filter provides a more precise solution than the Extended

Kalman Filter despite the slightly higher computational cost. The complexity and

performance analysis of the Extended Kalman Filter, Unscented Kalman Filter

and Compressed Extended Kalman Filter under different computational powers

were explained by Tuna [22].

The linearization problem can be solved using the Extended Kalman Filter or

Unscented Kalman Filter, and the computational complexity can be reduced using

the Compressed Extended Kalman Filter. However, there is still a detergency

problem due to the errors related to the accumulated linearization. Julier [23]

overcame these problems by not relying on the correlation information, and

developing the Covariance Intersection method. This method is used to combine

two estimates, which are consistent and optimal under unknown correlation cases

[24]. The Covariance Intersection is more general and has a lower computational

cost, but it does not provide the correlation information even if it is known.

Therefore, a hybrid approach, Split Covariance Intersection, was proposed, which

splits the information in the correlated and uncorrelated parts [25]. In this

approach, the system is divided into two parts; known correlation and unknown

correlation. This way, the state can be more precisely updated than the Covariance

Intersection algorithm. In cases where the correlation information is fully known,

the Split Covariance Intersection algorithm takes the place of the Kalman Filter

approach. A detailed explanation of the Covariance Intersection algorithm is

given in Section 3.4.3.

13

2.2.1. Feature Extraction

Feature extraction is the preliminary process of data association in feature-based

SLAM applications. Sensor data is processed to define a meaningful feature

structure. In this process, the selection of the sensor to be used is very critical

since every sensor type has a different output measurement. For instance, cameras

give an image of the captured scene, while SONAR only gives the distance

measurement, which is used in Ruiz's work [26], and LIDAR gives the raw data of

the distance measurement of the scanned angle range. According to the sensor

output, the algorithm used for feature extraction also changes. For the camera

output image, edge detection is the most popular feature extraction method, which

can be performed using a Canny detector [27], Sobel or Prewitt operators.

Moreover, there are also corner, blob, Scale Invariant Feature Transform [28] and

Speeded Up Robust Features, used as detectors in the feature extraction process of

images. LIDAR is widely used in indoor environments for grid-based SLAM

applications since it is easy to relate the raw data obtained from the LIDAR with

the map grids without feature extraction. In addition to being commonly used in

indoor environments, LIDAR is also very useful in outdoor environments due to

the high resolution and high distance accuracies. The feature extraction process

for the LIDAR output is the same as those for image processing techniques, such

as corner, line and tree detections. General purpose features were given by Li

[29].

The main criterion for the selection of a sensor in SLAM is the environment. For

instance, a camera, SONAR or low range LIDAR can be used for an indoor

environment. On the other hand, LIDAR with its high resolution and range

specifications can be more appropriate for underwater applications in the outdoor

environment. The feature extraction method is then determined according to the

selected sensor and the environment. In the outdoor environments such as parks,

LIDAR with a tree detection algorithm is suitable while for indoor environments

such as corridors, edge and corner detection algorithms are more appropriate.

14

2.2.2. Data Association

Data association is one of the critical parts of feature-based SLAM techniques. In

this process, the information on the relation between the measurements and the

landmarks is extracted and the matching measurement for the existing landmark is

determined. New landmarks or false positives (outliers) can cause irrelevant

measurements; therefore, the relation between a landmark and measurement

should be carefully analyzed. An incorrect data association can lead to the

algorithm initializing a wrong landmark. The information updated with the

incorrect landmark measurement causes the robot to correct its state in a wrong

manner. As result of these cumulative estimation faults, the algorithm diverges as

explained by Neira [30].

A data association algorithm can be examined in two parts; a test part, which is

used to determine the compatibility between measurements and features, and a

selection criterion, which is used to choose the best compatible pairs. Therefore,

the data association issue can be considered as a search problem in the space of

measurement and feature correspondences.

In literature on SLAM, the Nearest Neighbor is a very popular algorithm used for

data association due to its simplicity. This algorithm uses the distance between the

landmarks and the measurement to determine the compatible pairs, and searches

for the highest compatibility (shortest distance), which is the nearest neighbor. In

this algorithm, measurements are individually tested for compatibility, so this

algorithm is also called the Individual Compatibility Nearest Neighbor. The most

popular compatibility test is based on Mahalanobis distance [31], which is also

known as the normalized innovation squared [32]. The details of this algorithm

and the Mahalanobis distance calculations are given in Section 3.1.1.

The complexity of the Nearest Neighbor algorithm is O(mn) , m being the

measurement and nbeing the feature number. However, in this algorithm, the

correlation between the measurements of the same vehicle results in an

inconsistency in the compatible pairs. For instance, in loop closing scenarios,

15

robots explore a previously explored area, causing this algorithm to mismatch the

measurements. Due to the accumulated estimation errors in the robot’s position,

the measurements calculated according to the robot pose result in displacement

errors. All the measurements are affected by the error in the robot’s position,

which makes this algorithm inefficient for loop closing events. Despite this

drawback, this method has the lowest complexity with respect to its competitors.

Under complex situations, such as spurious measurement and loop closing

scenarios, the overall compatibility gains more importance for data association.

The Joint Compatibility Branch and Bound algorithm was developed by Neira and

Tardos [30] to reduce this complexity. They used an interpretation tree in their

work, which also increased the overall consistency by taking into consideration

the joint compatibility. The levels in the tree define a possible association with the

measurement and the path from the root to the leaf of the tree indicates the

possible compatible pairs, which gives the joint compatibility. The branch and

bound algorithm searches the tree using the depth-first-search algorithm, and

measures the maximum joint compatibility of set of pairings using the

Mahalanobis distance. The bounding part of this algorithm means that if the

compatibility fails in a certain node, its child nodes are not searched. A detailed

explanation of the joint compatibility test calculations is given in Section 3.1.2.

The difference between the joint compatibility and individual compatibility results

in different compatible pairs under the same scenarios. Figure 4 presents an

example scenario involving a spurious measurement to clarify the difference

between the behaviors of the joint and individual compatibility methods. Here, the

stars represent the landmarks, and due to the static nature of landmark, z2
3 is the

spurious measurement.

16

Figure 4 Mono Dimensional Spurious Measurement Scenario [30]

Figure 5 shows the different behaviors of algorithms under the scenario given in

Figure 4. x R shows the difference in the robot’s position, and x i , y i give the

measurements. In the measurement notations, i represents the number of

measurements. Each circle indicates the matching hypothesis with a range of

uncertainty, the big square represents the uncertainty without correlations and the

ellipsoid shows the uncertainty with correlations. The Nearest Neighbor algorithm

chooses the (y1, x1), (y3, x2) hypothesis since its center is the nearest to the center

of the square. On the other hand, the Branch and Bound algorithm in the Joint

Compatibility chooses the (y1, x1), (y2, x2) hypothesis since it is the only

hypothesis overlapping with the ellipsoid.

Despite the performance improvements brought by the Joint Compatibility, such

as the implementation of the interpretation tree and the use of the branch and

bound algorithm, the complexity problem prevails. For example, in environments

with high frequency rated sensors, the complexity of algorithms is too high for

real time applications. Therefore, the Nearest Neighbor remains to be a very

popular data association approach for SLAM.

17

Figure 5 Illustration of Different Algorithm Behaviors under the Same

Scenario [30]

2.3. Multi-Robot SLAM

The single-robot SLAM has been investigated in detail in recent years, and its

robustness has been verified using the modified versions of probabilistic SLAM

methods. However, there are still concerns regarding the time requirements and

fault tolerance. For instance, if the exploration area is larger, the time required for

mapping increases. Moreover, when working in more complex environments, a

possible robot or algorithm failure results in the failure of the whole mission. On

the other hand, multi-robot solutions have great advantages over single-robot

solutions. For instance, with the increase in the number of robots, the time

requirement reduces, and the fault tolerance and the accuracy of the resulting map

increases.

The time advantage of multi-robot SLAM over single robot SLAM was examined

by Marjovi [33]. In his paper, Marjovi used different number of robots in different

environments, and obtained satisfactory results. For example, the mapping time of

two robots was reported to be reduced by half when compared to the single robot

mapping time. Despite these advantages, the multi-robot SLAM still requires the

exploration of multiple issues, such as online path planning, simultaneous

18

localization and mapping, feature extraction and data associations. However, all

have been examined in studies using the single-robot SLAM. In addition, task

assignment, communication topology and map-merging issues are challenging

issues for the multi-robot SLAM scenarios, which are explained in Section 1.1.

The task assignment and communication topology issues were not included in the

scope of this study. However, map-merging was investigated using the unknown

initial correspondence and limited communication assumptions. These

assumptions make it easier to address the multi-robot SLAM problem as an

extended version of the single case. Similarly, Thrun [1] examined the multi-robot

SLAM using these assumptions. In his work, robots updated their maps with the

information obtained from the maps of other robots by summing the information

vector and matrix. Although, the initial position is known in this assumption

method, there is still the problem of finding the matching (same) landmarks in two

maps. This requires a proper data association algorithm. This problem also exists

in scenarios, without the known initial position assumption, and data association

problem needs to be examined as explained in Section 2.2.2. After matching the

landmark set, the information needs to be merged. The reason for the merging

process is to obtain the precise location of the landmarks. A detailed explanation

of the map merging process is given in Section 2.3.2.

The unknown relative position assumption, on the other hand, makes it difficult to

integrate the data since the maps cannot be directly merged due to the different

frames of robots. Therefore, the first requirement to initialize the map merging

process is the alignment of the maps using the global map transformation. A

detailed explanation of this preliminary process is given in Section 2.3.1.

In the multi robot SLAM, different data fusion architectures can be used for the

system design. To fully understand the map-merging problem in the multi-robot

SLAM, first different types of data fusion architectures need to be examined.

Three types have been defined with respect to their data fusion processing unit;

centralized, decentralized and distributed.

19

Centralized systems have a central unit to process the all transferred data. This

unit is the only unit in the system, which is capable of processing data. Other units

are only responsible for collecting and transferring the raw data (sensor output).

Therefore, this system architecture needs a longer communication range and more

bandwidth. In addition, these network assumptions are not easy to satisfy in real

world applications. Wireless channels are sensitive to failures, their

communication range is limited and their limited bandwidth capacity is not

sufficient to transfer a large amount of data. Moreover, the time delays in the data

transfer of each robot cause critical problems in this type of architecture.

In contrast to the centralized systems, decentralized systems do not have central

unit nor strong network assumptions. The main characteristics of decentralized

systems given by Whyte and Stevens [34] are as follows:

 There is no need for a central fusion center for the operation to be

successful. All nodes are individually responsible for data fusion.

 There is no common communication facility to broadcast information. All

nodes are individually responsible for own one–to-one communication.

 There is no global knowledge of the network topology. All nodes have

information about the neighborhood.

According to this description, nodes can be considered as robots in the

decentralized systems. All the requirements for decentralized systems result in the

scalability of the computational cost and the communication bandwidth.

Moreover, as the number of nodes increases, the system becomes more robust

against possible failures, and changes in the network structure [35]. Node failures

are the faults in the algorithm and the robot breakdown issues. The network

structure changes, such as the disconnection of one-to-one links, are the result of

the changes in the positions of the robots and the communication range

limitations. Although decentralized systems require a lower communication

bandwidth than the centralized systems, there is still a problem due the

information transfer between the robots, which is called as Fisher and Shannon’s

20

measurements [36]. Moreover, an increase in the number of robots results in the

loss of communication, which can be calculated by O(n2) for the each

communication step. Here, nis the number of robots in the system.

In the distributed systems, all robots are responsible for processing the data.

Therefore, instead of the unprocessed raw data, the information about the states of

the robots are transferred to the fusion unit. The fusion unit is responsible for

fusing the local states of robots into a global consistent state, which is the global

map of the environment. In this architecture, multiple fusion units can be used.

With this property, the distributed system designs can be combined with the

decentralized architecture, which results in a hierarchical architecture.

All the mentioned architectures have advantages over one another. For instance,

in theory, with the correct data association process and tolerable data transfer size,

the centralized architecture is optimal. In realistic scenarios, however,

decentralized systems have the advantage of allowing robot-to-robot

communication, which results in a lower bandwidth requirement. However, data

transfer requires a respectively higher bandwidth than the distributed design. In

the distributed design, the states of the robots as well as the associative

probabilities are used for fusion and they are more complex representations than

the measurements. On the other hand, the states also contain the past information

and this complex representation makes it more difficult to associate the current

data with the previous data. In the decentralized systems, separating the old

measurement from the new measurement is easier. The task sharing property of

the distributed systems is another advantage. A detailed comparison between the

decentralized and distributed systems using the multi-robot SLAM was given by

Leung [37]. In his study, Leung used the centralized equivalent to compare the

results of the two implementations. He found that the time requirement of the non-

distributed implementation for the centralized equivalent estimate is lower than

that of the distributed implementation. On the other hand, Leung noted that the

distributed implementation decreased the computational load of the robots.

21

The decentralized and distributed architecture prevent the system from collapsing

in complex environments; however, it is more costly due to the complexity of the

initial design. The centralized system involves the transfer of a huge amount of

data to update the whole system, and the computational cost of processing the

whole sensor measurement of the central node is high [38]. The data transfer

problem also occurs in the decentralized systems at a low level due to one-to-one

nature of the information flow. Therefore, some improvements have been made to

the centralized systems to overcome the problem of the limited communication

bandwidth, such as transferring the most informative features of the map, as

performed by Thrun [39]. In his work, Thrun extracted the most informative

features by subtracting the previously transferred information from the current

information on the state of the robot. Using the subtraction method, the most

informative part of the map is extracted and limited by a constant value, which is

the size of the sub-map. Similarly, in another study, Carlone [40] transferred the

sensor measurements to the other robots. Obtaining this data, the robot augments

its local map with the regions explored by other robots. However, the cost of this

transfer is too high for limited bandwidth capacities. Therefore, the robots reset

the history of the sensor measurements at the end of the transfer. On the other

hand, in Cunningham's study [41], only the information about the landmarks, not

the trajectory, was transferred between the robots. The longer trajectories of the

robot can be a problem in the multi-robot SLAM due to the increase in the

trajectory with the increase in time. Transferring only the landmark information

prevents the divergence of the transfer load system. This shows that information

selection is a requirement even for the decentralized systems.

To summarize, in practice there is no single architecture that is optimal for all

different systems. The selection of the architecture should be performed according

to the system requirements, such as the communication capacity and the

processing ability of the robots.

In the distributed and decentralized systems, the map-merging procedure begins

after the robots share their local information regarding the relative sensor

22

measurements or local maps with their neighbor robots within the communication

range. In this thesis, this procedure will be examined in two main sections; global

map transformation and the map-merging of the overlapped map.

Global map transformation is the first process when the initial positions of the

robots are unknown. The unknown initial position assumption results in each

robot creating a different local map frame since based on the assumption of its

initial position. Therefore, a map alignment using the global map transformation

is necessary. This can be performed using two methods. The first method is to

calculate the relative positions of the robots using the sensor measurements from

other robots, and then finding the overlapping areas using data association

methods. An alternative is to transfer the local map information to another robot

with the assumption that there is an overlap between their maps. After sharing this

information, the robot searches the shared map to find the overlap using possible

translation matrices. After finding the overlapping region, the true translation

matrix is also found. These different approaches to the unknown initial problem of

the multi robot SLAM are examined in Section 2.3.1.

After finding the relative positions of the robots, if there are overlapping regions

on the local maps of the robots, the landmarks in these regions can be merged

through the map merging process. In this process, the matched pairs in the

overlapping regions are merged into one feature using their mean and variance

estimations. Therefore, the positional information is more precise and accurate

than the one that was previously obtained. In the literature, different map-merging

techniques are investigated, which will be examined in Section 2.3.2.

2.3.1. Global Transformation

In the unknown positions scenario, the relative frames of robots need to be

estimated. Global transformation is the process of finding the global

transformation matrix. In this process, there are two main approaches. In the first

approach, the robots estimate the position of another robot by measuring its

relative position, and then find the transformation matrix from the relative frame.

23

In contrast, the second approach only uses the map of the other robot with the

assumption that there is an overlap between their maps. In the first approach, after

finding the transformation matrix, the landmarks can be transformed into the

frame of the other robot. However, there is still a need to perform a data

association, called the multi-robot data association, for which single-robot

association techniques, such as Nearest Neighbor or Joint Compatibility Branch

and Bound, can be used. The details of these association algorithms are given in

Section 3.1. In the second approach, the data association process requires the

calculation of the global transformation matrix. Therefore, search algorithms with

map similarity heuristics are needed.

In both approaches, the transformation matrix and the matched landmark pairs are

the outputs of the process. In this thesis, these approaches are examined in two

sections; global transformation using the relative measurements and global

transformation using the map overlap.

2.3.1.1. Global Transformation Using the Relative Measurements

In this approach, the robots meet at a pre-defined or random point on the map.

Upon meeting, each robot calculates its distance and angle in relation to the other

robot. These measurements are then transferred to each other for the calculation of

the relative transformation, which is given in detail in Section 3.3.1. A camera is

one of the most popular sensors used to find the bearing measurement of the other

robot. For instance, in Kim's work [13], a checkerboard pattern on one robot is

detected by the camera of another robot. Similarly, in Zhou's work [42], an omni-

directional camera is used to detect the upper edge of a cylinder placed on another

robot. The color, height and radius of the cylinder are known by all the robots.

Using this priori information and the measurements, the bearing measurement to

the target robot is calculated. Moreover, both robots shave a range sensor to

obtain the range measurement of the other robot. By calculating the weighted

average of the range measurements of each robot, a more accurate distance

measurement is obtained. After finding the relative transformation between the

robots, the global frame transformation is calculated using the estimates of the

24

states of the robots. Using this transformation, the map of each robot is moved to

the global frame of the other.

Carlone's work [40] is another example of using sensor measurements to find the

transformation matrix between robots. In his work, Carlone used a pan-tilt camera

for angular measurement and a laser range sensor to obtain the relative distance

from the target robot. The same formulation is used in Zhou's work [42] for the

calculation of the global frame transformation. After finding the global

transformation matrix, not the maps but the history of sensor and odometer

measurements is transferred to the other robot. Using this information, the robot

processes the odometer measurements as if it was traveling backward on the

trajectory of the other robot. In this process, the sensor measurements related with

the trajectory are also used to extend the map. In this scenario, robots only transfer

their own sensor measurements due to bandwidth limitations. Moreover, the

previous meeting (rendezvous) time of each robot is used to transfer only the

recent difference in measurements. This not only prevents the system from double

counting the information, but also uses less bandwidth. In this scenario, data

association is not required, since a feature-based map is not used.

After finding the global transformation matrix, which is explained in detail in

Section 3.3.1, multi-robot data association can be simply performed using any of

the single-robot data association techniques. When maps are transferred to the

other robots, the landmarks can be used as sensor measurements in the single

robot data association. For instance, in Zhou's work [42], landmark pairs are

found by using the Nearest Neighbor algorithm, which is explained in detail in

Section 3.1.1.

2.3.1.2. Global Transformation Using the Map Overlap

In this approach, robots transfer their map information with the assumption that

there is an overlap between their maps. The main purpose of this approach is to

find the best transformation by selecting the best overlap from the transferred

information. Figure 6 illustrates the overlapping regions of two maps m1 and m2

25

in two different transformations. Here, the second illustration shows a perfect

match between the maps.

Figure 6 Illustration of the Effect of Transformation on the Overlapping

Area

The search for the best overlap in a robot’s feature set can also be referred to as

the multi-robot data association problem. This association problem is similar to

the single-robot data association problem when the initial positions of robots are

available. Instead of using features extracted from the sensor measurements, the

feature sets of other robots can be used, which is explained in detail in Section

2.3.1.1. However, the lack of prior knowledge about the position of other robots

causes the search for the best association to be performed under different

transformations, which makes the association more difficult than it is for the

single robot case. Therefore, the possible transformation space is also considered

in the multi-robot data association problem.

The search space of possible transformation is too large for even moderate-size

maps in real time applications. Therefore, different preprocessing techniques have

been developed to reduce this space. These techniques use the structure similarity

between the maps for the elimination of possible transformations. A global

transformation including this preprocessing can be examined under two sections;

map similarity and multi-robot data association.

26

In contrast to the relative measurements approach, finding the global

transformation matrix through the overlapping points does not require a

rendezvous between robots. In this approach, being within the communication

range is enough to share the map information. Therefore, this approach has a

better chance of a successful map-merging in complex environments. For

instance, in the indoor environments such as labyrinths, buildings and

underground tunnels, sensor limitations due to features, particularly walls, prevent

robot-to-robot measurements. Under these circumstances, using communication

for the exchange of map information is more suitable than using the relative

sensor measurements.

2.3.1.2.1. Map Structure Similarity

Map structure similarity is the process of finding similar parts between the robots.

These similar parts are possible overlapping regions between the maps. This

similarity can be found using the map structure or geometric information. A map

structure contains the characteristics of features, and geometric information is the

relation between these features, which are meaningful in the feature-based map

SLAM application. However, it can also be performed in grid-based maps with

the use of feature extraction algorithms. The characteristics of the features on a

map include color, shape and length. The edge lengths between features are a

simple example of geometric information that can be extracted from the maps.

These properties are used to reduce the search space of the global transformation.

In the literature, different techniques have been reported to find the structural

similarities between the maps. For instance, Dedeoğlu and Sukhatme used the

extracted features to find the overlapping areas [43]. They classified the

landmarks into two main types; node and link. In their study, corners, junctions

and doors are classified as node while open spaces and blocks are classified as

link-type landmarks. The search space is reduced by using feature properties with

two heuristic functions; pairing up only the same type attributes and considering

only the rare features of candidates. However, in their study, feature classification

is done manually and their probability distributions are not considered.

27

In Konolige's work [44], a similar technique was used with some improvements.

Features, such as corners, doors and junctions, and scan patches consisting of a

recent set of scans were used to determine the similar regions between the maps.

The similarity was scored by using the likelihood metric, which is calculated from

the likelihood and feature likelihood multiplication of the scan readings. The

means of the uncertainty and errors between the maps was used for the likelihood

estimation of the scan readings, and the distance and angle in relation to the

nearest feature were used to estimate the feature likelihood. Using the structure of

the map considerably improved the performance of the transformation search.

However, feature extraction was not examined and performed manually.

To summarize, all the above-mentioned methods for map sharing focus on the

importance of the map structure in finding the step where the overlap occurs.

However, all methods require different feature sets to be compared in this step.

These features were manually labeled in Konolige's work [44], and improved by

Dedeoğlu and Sukhatme using compass readings [43]. With these features,

algorithms are enhanced for a better performance. However, in general scenarios,

extraction of these features is not possible. Therefore, it is more suitable to use the

geometric information from the map to find the overlapping regions not to lose

the generality.

In Huang and Beevers's work [10], the feature extraction issue was addressed by

using a topological map structure. In topological maps, additional information on

the degree of vertices and orientation of edges at vertices are stored in a graphical

structure. The vertexes are the nodes representing the positions of the robot and

features, and edges are the paths connecting one vertex with another using the

measurements. This structure consists of exact features, such as the degree of

vertex, and inexact attributes, such as the length of the edge. In the calculation of

the map similarity, exact features are compared to find a perfect match, but

inexact features are compared using the similarity test. The similarity test is

performed by assuming the Gaussian error for the angular orientation and

distance. Using these matching tests, the algorithm decides whether it will accept

28

the candidate vertex pair and angle as a hypothesis. After the hypothesis

generation step, the hypothesis consistent set is searched by extending the vertex

to sub-graphs. These sub-graphs are the representation of possible overlapping

regions. In fact, Huang and Beevers's study shows that using only the structure of

the map does not give satisfactory results for self-similar environments, so using

the geometric information improves the merging performance.

Saeedi [45] examined the grid-based map representation for the map-merging

problem. However, he suggested that without any preprocessing step, merging

maps with higher dimensions such as grid-based maps is not suitable for real time

implementations. In his work, Saeedi transformed the grid representation into a

reduced topological map representation using the self-organizing maps method.

This method is used to extract meaningful information from a map to accelerate

the map merging process. After this process, the map representation consists of

cluster points and cluster surfaces. Clusters points are the meaningful extracted

features and cluster surfaces are the links between these features. These extracted

features help find the norm vectors of surfaces. Birk and Carpin [11], who did not

use the map similarity preprocessing, obtained similar results and reported the

time requirement to be ten times less .

The contribution of the preprocessing step using the meaningfully extracted

features was given by Saeedi [45]. However, these algorithms still need too much

time to finish the map-merging process due to the segmentation and clustering

requirements. In contrast to the grid-based map representation, the feature-based

map representation has a complex map structure. This complex nature of the

feature-based map was examined by Cunningham [41]. In his work, Cunningham

used the Delaunay Triangulation and a simple similarity metric to find the map

similarity, which is explained in detail in Sections 3.3.2.1 and 3.3.2.1.2. These

geometric features are extracted from the map by obtaining a unique triangle set

using the Delaunay Triangulation algorithm. The circumference and area found by

this algorithm is then used to calculate the similarity metric. This metric reduces

the search space of the transformation matrix.

29

To summarize, all the mentioned algorithms are used to improve the search

performance, and the geometric information is important for the map structure.

For example, in the maps with similar structural properties, such as doors,

windows and corners, the map similarity cannot reduce the search space.

However, using the geometric information gives better results since it gives

information on the relationship between the features. However, if the environment

has similar geometric patterns, even geometric information may not improve the

transformation search performance. In such maps, using outlier-tolerant search

algorithms provides a better performance due to the similar structural and

geometric patterns on the map in false transformations.

2.3.1.2.2. Multi-Robot Data Association

In this section, different multi-robot data association algorithms that have been

reported in the literature are discussed. One of the maps is kept stable while the

other map is transformed using the possible transformation matrix. Following the

transformation, the performance of the transformation matrix is calculated using

the performance of map overlapping. In the literature, different techniques have

been reported for the evaluation of this performance; such as the similarity of the

overlapping regions and the count of compatible features. For the calculation of

candidate transformation, one candidate pair is selected. If this pair has the

heading information, this means that it can provide sufficient data for the

calculation of transformation in the closed form. However, if only position

information is available, then two candidate pairs are required. This calculation is

explained in detail in Section 3.3.2.2.1. After finding the candidate transformation

matrix, the best transformation between the two maps is explored using different

search algorithms. In the following parts of this section, transformation search

algorithms are discussed in terms of their performance metrics in evaluating the

transformation.

In Dedeoğlu and Sukhatme's work [43], landmarks have heading and position

information, so each pair has enough information for the calculation of the

candidate transformation between the local frames of the robots. After finding the

30

candidate transformation for all possible landmark pairs, this transformation is

applied to the rest of the landmarks in the data set. The matched landmark pairs

are counted and the transformation with the highest number is selected. Dedeoğlu

and Sukhatname did not use any search criteria; instead, they scanned the whole

search space. Moreover, in their study, the probabilistic distributions of the

landmarks are not considered, so the Euclidian distance is verified using the

threshold value for the compatibility of the possible landmark pairs.

In Birk and Carpin’s work [11],transformation is guided with Carpin's Adaptive

Random Walk algorithm [46]. In this algorithm, randomness is obtained using the

Gaussian distributed random selector and the adaptive part is obtained through

image similarity and overlapping function. Image similarity is calculated using the

distance map between two maps, which is an array of the Manhattan-distances to

the nearest point with values in the map. The overlapping function is the

measurement of the agreement between the two maps. The Adaptive Random

Walk algorithm searches the configuration space and updates its transformation

matrix with its heuristic function or a randomly generated sample set. In Birk and

Carpin’s heuristic functions, the overlapping area and map similarity are used to

associate the overlapping regions in grid-based maps. This search algorithm is

explained in detailed in Section 3.3.2.2.3. Birk and Carpin’s main motivation

behind using the random walk algorithm for the search of the possible

transformation space is to prevent the algorithm from being stuck in a local

maximum. Moreover, the adaptive part of this algorithm accelerates the search for

a better and larger overlap by using the heuristic function value. A detailed

explanation of this search algorithm is given in Section 3.3.2.2.3.

In Saeedi's work [45], the grid representation is transformed into a reduced

topological map representation. With the use of the features extracted from the

topological map, norm vectors of surfaces and points are found. The directions of

the norm vectors of the cluster surface are put into a 360-degreehistogram, and

then the relative rotation part of the global transformation is determined using this

histogram. In the calculation of the relative translation part of the global

31

transformation, the norm vectors of the cluster points are used by searching a

possible transformation. Saeedi implements a search algorithm similar to the

Iterative Closest Point algorithm, which iteratively updates the transformation

matrix with the correspondence set in that iteration. The details of the algorithm

are given in Section 3.3.2.2.4.

In Cunningham's work [41], features with their probability distribution

information are used to detect the overlaps. Similar Delaunay Triangle center

points and the Random Sample Consensus (RANSAC) algorithm are used to

search the transformation matrix between the maps. This algorithm calculates the

candidate transformation matrix from the similar triangle center pairs and checks

the search space for a match between the landmark pairs. This search space is the

output of the map structure similarity, which gives similar triangle center points.

The matched landmark pairs are obtained using a compatibility test (Mahalanobis

distance) under candidate transformation, and their count is used for the

evaluation of the performance of the transformation matrix. A detailed

explanation of this compatibility test is given in Section 3.1.1, and the RANSAC

algorithm flow chart is explained in Section 3.3.2.2.2.

To summarize, the multi-robot data association issue is different from the single-

robot data association issue. For instance, the compatibility test in the multi-robot

association requires the use of map similarity metrics, such as the correspondence

set size, overlapping area size or Cunningham's similarity metric. The reason

behind this requirement is that the transformation between maps is unknown.

Therefore, map similarity is used link the maps together. Moreover, search

algorithms, such as the Adaptive Random Walk, Iterative Translation Search or

RANSAC, have adaptive or random characteristics due to the possibilities of

different overlapping regions. These possibilities are randomly distributed due to

the random initial positions of robots. Therefore, the multi-robot data association

is a more difficult process.

32

2.3.2. Map-Merging

In this section, map-merging algorithms proposed in the literature are examined in

terms of their use in different map representations. The map-merging process in a

grid-based map representation is obtained by summing the probabilities of the

matched grids. The matched grids are found using the same occupied index of the

map. The grid probabilities are summed if they have the same properties in terms

of being occupied or free. If one of the grids in a matched pairs conflicts with the

other, these grids are marked as unexplored. The information of a pair being

occupied or free is kept in case there is no matching pair. The illustration of the

map-merging process of two grid maps is given in Figure 7.

In contrast to grid-based maps, the merging process for the feature-based maps

needs to combine the distribution functions of the matched landmarks, which is

the output of the global transformation process. The matched landmarks are the

same landmarks that exist in both maps. They need to be calculated using a data

association algorithm, which associates the landmarks in one map with the

landmarks in the other map. The mean and covariance matrices of the landmarks

are used for the fusion of these landmarks in the probabilistic map-merging

process. Through this fusion, more precise and accurate positions can be obtained.

Figure 8 shows the change in the covariance matrices after map-merging.

The map-merging process in feature-based maps has similar characteristics to the

sensor data-fusion process. In sensor data-fusion process, every sensor data is

combined and the precise location of each feature is obtained. The following

sensor data fusion approaches have been reported in the literature;

 Extended Kalman Filter,

 Maximum Likelihood Estimator,

 Modified M-Estimator,

 Covariance Intersection Estimator,

 Orthogonal Gnanadesikan-Kettenring Estimator,

 Hybrid Covariance Intersection and Orthogonal Gnanadesikan-Kettenring,

33

Figure 7 The upper two maps explored by different robots are merged into

the lower resultant map [11].

Centralized, decentralized and distributed systems have different characteristics,

which are explained in detail in Section 2.3. Therefore, the above-mentioned

solutions to the map-merging issue need to be investigated in relation to the

characteristics of different systems.

In centralized systems, the information fusion in the Extended Kalman Filter

solves the map-merging problem using the initial knowledge of the dynamics of

all robots. However, in this solution, the correlation values between the maps are

updated by a central unit. In addition, the memory and time requirement makes

this approach not suitable for real time implementations and the system behaves

similarly to the single-robot SLAM. Therefore, in this thesis, the Kalman Filter

was not used to perform the map-merging process.

34

Figure 8 Ellipses with a larger area are the landmark covariance matrices in

different maps, which are merged with the smaller (inner) ellipses.

In decentralized systems, there is no central unit or a fully connected network.

Therefore, a more detailed (complex) design is required for map-merging. For

instance, using the Kalman Filter requires an independence assumption between

the nodes. However, this assumption can result in divergence for two main

reasons; unpredictable correlated system noises and the correlation resulting from

previous information flow between the robots. The first can be prevented by

modeling the system more precisely. However, the solution to the second case

requires maintaining all the correlations between the nodes. For instance, channel

filters [34] can be used to maintain the correlations, but these filters cannot work

with cyclic network connections, in which the information can flow in multiple

directions. Therefore, using the Kalman Filter in decentralized systems is not

appropriate. A detailed examination of the use of Kalman Filter in decentralized

systems can be found in Julier and Uhlmann’s work [47]. In their study, the use of

Kalman Filter with channel filters in decentralized systems with a cyclic network

connection was reported to be “impossible”.

35

The specifications of a decentralized system require implementing the estimators

without the correlation information or maintaining a global map. Maintaining a

global map means that the robot does not integrate the information obtained from

the other robots into its local map; instead, it clones its local map and merges both

information in another map (the global map). Despite being costly, maintaining

the global map, gives the opportunity to use different map-merging techniques.

In the map-merging process, if the covariance matrices of the features are ignored

or the sensor outputs are stored for the data fusion process, the problem becomes

an inverse probability problem. In inverse probability problem, main concern is to

find the distribution of the data. For instance, if a coin is flipped five times, what

is the probability of getting four tails? This problem is represented

by p(Data|Model). On the other hand, in the inverse probability problem, the

main concern is to find the model parameters for the observed data. Therefore, the

representation of this problem becomes p(Model|Data).

The Maximum Likelihood Estimator is a very popular solution to the inverse

probability problem. It is a conservative method; therefore, it assumes that the

input data has no outliers and tries to minimize the errors without considering the

outlier possibility. Moreover, an initial model is needed to find the parameters for

this model. The distribution function of this model is minimized by taking the

logarithm and the derivative. A detailed explanation of the Maximum Likelihood

Estimator is given in Section 3.4.1.

M-Estimators are another popular class of estimators, which use the functions of

data to obtain the minima. The estimation functions are the derivatives of the

likelihood functions with respect to data. The M-estimator was first proposed by

P.J. Huber [48] in 1981, who generalized the Maximum Likelihood Estimation

[49]. There are also different types of robust estimators in the literature, such as

the R-Estimator, L-Estimator and S-Estimator. These estimators and their

theoretical derivations were explained in terms of their evolution Andersen's work

[50]. These methods can be used in the decentralized systems by transferring the

36

sensor output history for data fusion. They can also be used with the extracted

features without their covariance matrices. However, bandwidth limitations and

the specifications of the distributed system make it difficult to investigate the M-

estimators in detail. In addition, a solution involving these estimators causes

information loss since it does not use the covariance information of the extracted

features. Therefore, in the experiments in this study, the Maximum Likelihood

Estimator was used as the base estimator.

In this thesis, in addition to the base estimator, a special type of M-Estimator,

which assigns weights landmarks based on their covariance matrix, was used for

map-merging. This technique uses the independence between variables to use

additivity of statistical information, which is used for fusion of two sensor outputs

in the lecture notes of Zisserman [51]. Then, in his study, Zisserman reported that

weights cause large covariance matrices resulting in the uncertainty of the

information regarding the landmark position. Using these weights, the resultant

positions of the landmarks can be estimated. In this thesis, this algorithm will be

referred to as the Modified M-Estimator. A detailed explanation about the

implementation of this algorithm is given in Section 3.4.2.

Another estimation method similar to the Modified M-Estimator is the Covariance

Intersection, which is more suitable than the Modified M-Estimator for distributed

and decentralized systems. This algorithm does not use the correlation

information between the features. In addition, its consistency has been proved for

any degree of correlation in the study by Julier and Uhlmann [47]. In their work,

Julier and Uhlmann also explained in detail, the advantages of the Covariance

Intersection algorithm over the Kalman Filter in decentralized systems. This

algorithm uses the convex combination of means and covariance matrices of

random variables. In contrast to the Modified M-Estimator, it can also weigh the

data to adjust the determinant or the trace of the resultant covariance matrix. A

detailed explanation of this algorithm is given in Section 3.4.3.

37

Sequeira et al [52] used the Orthogonal Gnanadesikan-Kettenring Estimator to

overcome the problem of unused correlation values in the Covariance Intersection

algorithm. This method is based on the use of a robust estimator developed by

Gnanadesikan and Kettenring [53], which uses actual measurements and their

estimated covariance matrices, and modified by Sequeira et al [52]. Using these

inputs, outliers are disregarded in the calculation of the final covariance matrix. A

disadvantage of this algorithm is that it needs the whole data set to determine the

outliers with their estimated covariance matrices. This process uses a high

bandwidth; therefore, it is not suitable for distributed applications, but can be used

in decentralized systems. The pseudo code of the algorithm and its explanation is

given in Section 3.4.4.

In their study, Sequeira et al [52] also used a hybrid of the two estimators, the

Orthogonal Gnanadesikan-Kettenring and Covariance Intersection to estimate the

covariance.. They then compared their performance based on the area of the

covariance matrix and chose the better covariance matrix as the final value. Their

study also includes the performance results obtained from different data sets.

These results show that in different data sets one estimator can outperform the

other; therefore, a hybrid algorithm improves the performance in more general

applications. Despite this improvement, a hybrid implementation involves

calculating both covariance matrices with their performance metrics to make the

final decision. This takes more time and increases the bandwidth and storage

costs, which is not preferable in distributed systems. However, in decentralized

systems using this hybrid algorithm improves the performance of the Covariance

Intersection algorithm with the outlier rejection property of the Orthogonal

Gnanadesikan-Kettenring estimator.

To summarize, different data fusion techniques have been developed and

investigated for the map-merging process of the multi-robot SLAM. As

mentioned above, all the algorithms have their advantages for different system

designs. For instance, using the Kalman Filter update in centralized system

architecture is the optimal solution. However, since this requires an extra process

38

in decentralized systems, robust estimators, such as Covariance Intersection or

Orthogonal Gnanadesikan-Kettenring are more suitable than the Kalman Filter.

On the other hand, in distributed systems, sensor outputs cannot be shared with

other robots, so using simple and consistent methods, such as the Covariance

Intersection algorithm is more appropriate.

2.4. Evaluation of the Map Performance

Maps generated by different SLAM algorithms represent the environment in

different ways, as explained in Section 2.1. These differences in representation

result from the purpose for which they are employed, which results in the need to

use different methods for the evaluation of the maps. In the literature, there are

different map quality criteria. These criteria are also called metrics and are not

only used in academic studies for comparison of algorithms as in this thesis, but

also used in competitions such as RoboCup Rescue [54], and Magic [55].

Despite the variety of metrics in the literature, only few can be used in general

applications. Most studies on the evaluation of metrics use only one criterion,

which is directly related with the application area. Therefore, other problematic

areas are disregarded. In his study [56], Lee addressed this issue by introducing

certain attributes to describe a metric for different mapping applications and

suggested that a metric must;

 be clearly defined,

 be multi-valued,

 reflect the purpose of map,

 balance the coverage and detail, and

 be applicable during the construction of the map.

A clearly defined metric does not contain any subjective judgments. Having the

multi-valued property means that the performance evaluation is not based on the

"true/false" value. The reflection of purpose indicates that the metric contains

what is important for the given application. Balancing the coverage and detail

property is used to weigh the criteria in metric calculation. The balancing property

39

can be used between any of the properties. The last property of the metric being

applicable in the construction of the map means that the robot can use the map

when constructing it and evaluate its performance. All these properties give a

clear description of a good metric for map evaluation.

Map evaluation algorithms are classified into three main classes by Schwertfeger

[57]; path-based, place-based and structure-based. In path-based approaches, not

the map information but the robot’s path performance is used for evaluation. In

such evaluations, the ground truth trajectory is required for comparison, which is

hard to satisfy, particularly for outdoor environments. In place-based approach,

the extracted map is compared with the ground truth data of the map, which is a

more general evaluation technique. Structure-based approaches compare the

resultant map structure with the ground truth map-structure, which needs a

structural mapping algorithm, such as topological maps. All these approaches are

explained in detail in Schwertfeger’s work.

Map merging performance evaluation is similar to the map performance

evaluation. Instead of using different SLAM, feature extraction or data association

algorithms, the map-merging algorithms are compared using the merged maps.

Therefore, the metric criteria and approaches for map evaluation can also be used

for the evaluation of the map merging performance. However, path-based

approaches are not applicable to this evaluation.

In this section, feature-based approaches in literature are discussed, and using

Lee's metric properties, a metric that is appropriate for the application is selected

to evaluate the performance of map-merging.

In Yairi's work [58], the Least Mean Squares of Euclidean Distances are used for

map evaluation. Then, the Euclidean distance between the map features and the

ground-truth is calculated. However, the covariance information is not included in

the evaluation metric. Similarly, in Wagan's work [59], different feature extraction

algorithms are compared using the feature-based approach. In his work, A pair

40

wise matching of features is performed based on the distances between the

features. The count of the matched pairs is used as the metric for evaluation.

In Schwertfeger's work [57], artificial markers are placed in environment, and the

resultant map is compared with the ground truth information of these markers in

terms of accuracy. The accuracy of markers is calculated using the distance of

markers to the ground truth positions of them, and the local consistency is

calculated by using the distance between the marker pairs on the resultant map.

These distances are subtracted and assigned to the consistency metric. Coverage is

also used as a metric, which is calculated from the ratio of the count of the

explored markers to the count of all markers. Combining these different metrics,

the current study aims to satisfy Lee's metric property definitions and obtain a

general metric definition. However, this evaluation metric only uses the mean

values of the markers’ position. This kind of evaluation does not consider the

probabilistic distributions of features, which is very important information for

SLAM.

On the other hand, the estimated covariance matrix is used for metric calculation

in Klippenstein's work [60]. However, only the robot’s position is used for error

calculation due to the lack of true positions of the extracted features. In his study,

Klippenstein used the Normalized Estimation Error Squared to calculate the

errors, and the χ2 acceptance test to check the consistency between the estimated

errors and the covariance. After running the Monte Carlo algorithms on the filter,

the average value is tested with a 95% confidence region of the χ2 distribution.

However, since this test of inconsistent values of feature extraction algorithms

only gives true or false values, it is not considered a good evaluation metric.

Therefore, the volumes of covariance ellipses are used as a metric for ranking. In

the calculation of the metric, the volume of the covariance matrix is estimated

using the robot pose. This technique involves the distribution of the estimated

position of the robot, which is the most important input of the estimation of the

next position in probabilistic SLAM algorithms. Therefore, in the current study,

41

this technique has been chosen for the metric calculation and to evaluate different

methods for map-merging as explained in Section 5.

In this study, rather than the robot’s position, features of the merged maps were

used to compare the map-merging algorithms. The estimated feature and ground

truth pairs were found using the Nearest Neighbor algorithm, as explained in

Section 3.1.1. These pairs (ground truth and estimation) were then checked in

terms of their consistency by using the Normalized Estimation Error Squared and

the χ2 acceptance test, which is explained in detail in Section 3.5.1. For the pairs

that passed the test, the metric description of Klippenstein was used to evaluate

the different map-merging algorithms for two-dimensional maps given in Section

3.5.2. An evaluation using this metric includes the covariance information, which

is one of the main parameters in map-merging algorithms.

42

43

CHAPTER 3

3. THEORETICAL BACKGROUND

3.1. Data Association

In this section, Individual Compatibility Nearest Neighbor and Joint Compatibility

Branch and Bound algorithms, which are introduced in Section 2.2.2 are

examined in detail.

3.1.1. Individual Compatibility Nearest Neighbor

In this section, Individual Compatibility Nearest Neighbor data association

algorithm is explained. Mahalanobis distance calculations, which are used in

compatibility test, are also given in the following equations. The pseudo code of

the algorithm is given in Table 1.

Table 1 Pseudo Code of Individual Compatibility Nearest Neighbor

Individual Compatibility Nearest Neighbor (PN , PM)

1: for i = 1 → n

2: for i = 1 → m

3: d i, j = distanceFunc(pi , pj)

4: for i = 1 → n

5: dist i ← ∞

6: for i = 1 → m

7: if i ≠ j and d i, j < dist i

8: dist i ← d i, j

9: NN i ← j

44

In Table 1, PN and PM are the position vectors of two set of features, which are the

parameter of the algorithm, N is the number of first set, M is the number of second

set. distanceFunc() is the compatibility test function, which is selected as

Mahalanobis distance. NN i is the compatible set of features, which are selected

as nearest neighbor. In this algorithm, distance values are calculated and stored, as

mentioned in line 1, 2, 3. By using these values nearest pair is selected with the

smallest distance value, as mentioned in line 7.

Mahalanobis distance function calculations are related with implicit measurement

function, which is given in the equation (1).

 fiji
 x , y = 0 (1)

In equation (1), x and y are the true values of feature and measurement, fiji

represents the relative location between feature i and corresponding measurement

ji . Accumulated errors in the position of features results this equation into the

equation (2).

 fiji
 x, y ≅ hiji

+ Hiji
 x − x + Giji

 y − y (2)

In equation (2), hiji
is the innovation of pairing between measurement and feature,

Hiji
 and Giji

 are the first derivatives of the innovation matrix with respect to

measurement and feature respectively. From these equations covariance matrix

can be calculated as mentioned in the equation (3).

 Ciji
= Hiji

Cov x − x Hiji

T + Giji
Cov y − y Giji

T
 (3)

By the use of resultant covariance matrix Ciji
, following innovation test, which

measures the Mahalanobis distance can be written as in equation (4).

 Diji

2 = hiji

T Ciji

−1hiji
< γ2 (4)

45

In equation (4), Diji

2 is the Mahalanobis distance between feature i and

measurement j, and γ2 is the compatibility gate, which accepts the 95% correct

association for value 6.

3.1.2. Joint Compatibility Branch and Bound

In this section, Joint Compatibility Branch and Bound data association algorithm

is explained. Joint compatibility test calculations, are given in the following

equations.

The consistency of the hypothesis Hi = j1, … , ji , which is joint compatibility is

obtained by using joint implicit function given in equation (5).

 fH i
 x , y = 0 (5)

In equation (5), x and y are the true values of feature and measurement, fH i

represents the relative location between feature i and corresponding measurements

in hypothesis Hi . Accumulated errors in the position of features results this

equation into the equation (6).

 fH i
 x, y ≅ hH i

+ HH i
 x − x + GH i

 y − y (6)

In equation (6), hH i
is the innovation of pairing between measurement and feature,

HH i
 and GH i

 are the first derivatives of the innovation matrix with respect to

measurements and features respectively. From these equations covariance matrix

can be calculated as mentioned in the equation (7).

 CH i
= HH i

Cov x − x HH i

T + GH i
Cov y − y GH i

T
 (7)

By the use of resultant covariance matrix CH i
, following innovation test, which

measures the joint innovation test can be written as in equation (8).

 DH i

2 = hH i

T CH i

−1hH i
< 𝛾 (8)

In equation (8), DH i

2 is the joint innovation and γ is the compatibility gate, which

accepts the 95% correct association for value 6.

46

3.2. Filters for SLAM Purpose

In this section, filters mentioned in Section 2.2 are explained in detail. Kalman

Filter, Extended Kalman Filter and Compressed Extended Kalman Filter are

investigated under feature based SLAM specifications.

3.2.1. Kalman Filter

Kalman Filter is used for estimate the state of system, which corrects the estimate

by using feedback of measurements. This filter is proved optimal estimator under

its assumptions. These assumptions are Markov assumption, independent zero

mean Gaussian distributed noises, normal distributed priori state, and linear state

and measurement models. These assumptions' details and Kalman filter

optimality proof can be found in Thrun's work [1]. Kalman Filter has two main

steps, such as time and measurement update steps, which are called as prediction

and correction states. In Figure 9, the state transition diagram between these two

steps is represented, which shows that time update transition can occurs

independent of measurement update, also they can occur concurrently.

Figure 9 State Cycle Diagram of Kalman Filter

The estimated state consists of positions of robot and observed landmarks in the

map, which is given in the following equation (9).

47

 xk =

xR

yR

∅R
xL1

yL1

...
xLN

yLN

 (9)

In equation (9), xR , yR , ∅R are the x coordinate, y coordinate and direction values

of the robot pose, xLi
, yLi

 are the x and y coordinate of the observed landmarks Li,

and N is the total number of landmarks observed.

Linear state time update equation is represented in formula (10).

 xk = Axk−1 + Buk−1 + ωk−1 (10)

A is nxn the state transition matrix, represents the transition from state xk−1 to

xk , B is control matrix nx1 , which relates the input uk−1 with state xk , wk−1 is

the independent Gaussian noise with p w ~N 0, Q distribution.

Linear measurement update equation is represented in formula (11).

 zk = Hxk + vk (11)

H is the observation matrix nxn , which relates the measurement with state xk ,

and vk is the independent Gaussian noise with p(v)~N(0, R) distribution.

The given model above result the following equations (12), (13) for predict state.

 x k
− = Ax k−1 + Buk−1 (12)

 Pk
− = APk−1AT + Q (13)

A and B are the same in equation (10), Pk−1 is posteriori estimate of state

covariance matrix nxn .

The given model above result the following equations (14), (15), (16) for

correction state.

48

 Kk = Pk
−HT(HPk

−HT + R)−1 (14)

 x k = x k
− + Kk(zk − Hx k

−) (15)

 Pk = I − KkH Pk
− (16)

In these equations, Kk is the Kalman gain at step k, which is calculated with

equation (14), for detail derivation of Kalman gain Thrun's work [1] can be read.

Equation (15) is the exact correction step, which updates xk with Kalman gain

multiplied measurement prediction. The critical point at this step is measurement

correction on xk is weighted with the inverse covariance, which means if the

measurement is more precise the correction is bigger. In equation (16) same as the

(15) is the state covariance correction step.

The formulations show the recursive nature of the Kalman Filter, which make it

more suitable for real time applications such as SLAM. However, in nonlinear

cases, linearization or sampling is needed. Sampling is explained in detail in

Thrun's work [1], which is called Unscented Kalman Filter. On the other hand,

Extended Kalman Filter's solution lies in Taylor Series expansion as explained in

detail in the following Section 3.2.2.

3.2.2. Extended Kalman Filter

In nonlinear situations, Kalman Filter is used by extension of linearization

process, which is called as Extended Kalman Filter. This filter has two parts as

linearization part and filtering part. In the linearization part simple first order

Taylor series expansion is used, which needs the first derivatives of the state

transition and measurement functions around current mean and covariance value.

In the filtering part, the procedure of Kalman Filter is used.

The discrete state transition and measurement functions representation is not

applicable in nonlinear situations. Therefore following equations will be used,

(17) represents the state transition and (18) represents the measurement functions.

49

 xk = f(xk−1, uk−1, ωk−1) (17)

 zk = h(xk , vk) (18)

Equation (17) is the time update process, which uses nonlinear state transition

function f , and equation (18) is the measurement update process, which uses

nonlinear measurement function h. These notations of parameters used in function

f and h are the same in Kalman Filter. Therefore, the detail explanation is omitted

here.

For the given nonlinear model, prediction functions of the next state becomes as

(19) and (20).

 x k
− = f(x k−1, uk−1) (19)

 Pk
− = AkPk−1Ak

T + WkQk−1Wk
T (20)

Equation (19) is the state prediction, which is derived from the model given in

equation (17), and the notations are the same as in equation (17). Equation (20) is

the state covariance update, Ak and Wk matrices are the Jacobian matrixes at step

k and Pk−1 and Wk are the noise covariance matrixes at k − 1 and k respectively.

The Jacobian matrixes of state transition and measurement functions, Ak and Wk

calculations are given below.

 A[i,j] =
∂f i

∂x j
(x k−1, uk−1) (21)

 W[i,j] =
∂f i

∂w j
(x k−1, uk−1) (22)

Equation (21) is the partial derivative of state transition function with respect to x,

and equation (22) is the partial derivative of state transition function with respect

to w.

For the given nonlinear model, measurement update functions of state at step k

become as in equations (23), (24) and (25).

50

 Kk = Pk
−Hk

T(HkPk
−Hk

T + VkRkVk
T)−1 (23)

 x k = x k
− + Kk(zk − h x k

−) (24)

 Pk = I − KkHk Pk
− (25)

(23) is the Kalman gain calculation equation, the notation is the same as in (14)

except for Vk and Hk . They are the Jacobian matrixes at k , the detail

representations are given in equations (26) and (27).

 H[i,j] =
∂h i

∂x j
(x k) (26)

 V[i,j] =
∂h i

∂v j
(x k) (27)

Equation (26) is the partial derivative of measurement function with respect to x,

and equation (27) is the partial derivative of measurement function with respect to

w.

3.2.3. Compressed Extended Kalman Filters

Extended Kalman Filter gives a solution for nonlinear cases for with linearization

cost. However, its performance is not enough for large-scale environments, which

is inevitable in outdoor applications. These types of environments cause a great

computational cost for inverse calculations in Kalman gain equation, which is

given in equation (23), so N2 problem occurs. The updates in state transition and

measurement equation is usually effects the local area which is independent of the

other landmarks. This fact is used in Compressed Extended Kalman Filter to

reduce the estimation costs, and gives identical solutions with full EKF state

estimation [61].

The idea behind this compressed filter approach is using a local area for standard

state and measurement update. When robot quits from this area boundary, it

combines this area information with its full map by batch update. This procedure

simply reduces the N2 problem to Na
2 problem, Na is the number of landmarks in

51

active area which is independent of the size of the full map [6]. In Figure 10 the

situation is illustrated, the active robot area represented as A, and the stable area

represented as B, triangle is robot's current pose and stars are the landmarks.

Figure 10 Illustration of Active and Stable Regions of Map

The same nonlinear discrete time dynamic system representation is used for

model. The state transition equation and measurement equation are represented in

(28) and (29) respectively.

 x(k + 1) = f(x(k), u(k),ω(k)) (28)

 z k + 1 = h x k , v k (29)

These equations have the similar notation as EKF time and measurement update

equations represented (17) and (18). However, the different notation is used in this

part of the study. Notation (k) is used instead of subscript for iteration number k.

The subscript notation is used for sub matrices' notation. x ∈ Rn , z ∈ Rm .

The compressed structure is needed for using this algorithm. Therefore, the state

is divided in two parts as in following representation (30).

x =
xa

xb

xa ∈ Rna , xb ∈ Rnb , x ∈ Rn

(30)

52

In equation (30) xa represents the upper part of state matrix, which is the active

part, and the xb represents the lower part, which is kept constant.

The state covariance matrix is divided into two, according to division in equation

(30). As a result, following equations are obtained as represented in (31).

P =
Paa Pab

Pba Pbb
 = E x − x . x − x T ∈ Rn.n

Paa = E xa − xa . xa − xa
T ∈ Rna .na

Pbb = E xb − xb . xb − xb
T ∈ Rnb .nb

Pab = E xa − xa . xb − xb
T ∈ Rna .nb

Pba = Pab
T ∈ Rnb .na

(31)

It is seen that, the stable part of state xb has no time or measurement update, when

the observations in time period τ between k1 and k2 have the following

characteristic, as represented in equation (32).

xa(k + 1)

xb(k + 1)
 =

fa(xa k , u k , ωa(k)

xb k , ωb(k)

z k + 1 = h x k , v k

∀ x, u, k / k ∈ τ

(32)

Equation (32) shows that, xa has independent measurement and time update, and

wa , wb and wh represent the independent noises. The noise characteristics of the

model are represented in the equations (33).

53

E ωa(k) = 0

E ωb(k) = 0

E ωh(k) = 0

E ωa k . ωa j
T = δk,j . Qaa (k)

E ωb k .ωb j
T = δk,j . Qbb k

E ωh k .ωh j
T = δk,j . R(k)

E ωa k .ωb j
T = 0

E ωa k .ωh j
T = 0

E ωb k .ωh j
T = 0

(33)

Equation (33) shows that, the expected values of noises are zero, and their

covariance matrices are Qaa ,Qbb , R respectively. Moreover, the correlations

between them are zero, which means that if the noises are Gaussian these

uncorrelated noises are independent.

According to the mentioned model, calculations in the period τ are given in the

following part. At the beginning of the period (at k1) set of auxiliary matrixes

∅,φ, θ, Qbb
∗ are created, which are in the following dimensions as represented in

equation (34) and their initial conditions are represented in equation (35).

 ∅,φ ∈ Rna .na , θ ∈ Rna , Qbb
∗ ∈ Rnb .nb (34)

 ∅ k1 = I, φ k1 = 0 , θ k1 = 0 , Qbb
∗ k1 = 0 (35)

In every prediction state calculation in the period τ, standard Extended Kalman

Filter calculations of xa and Paa , and auxiliary matrix calculations are done. These

auxiliary matrix calculations are represented in the equations (36).

54

∅ k = Jaa . ∅ k − 1

φ k = φ k − 1

θ k = θ k − 1

Qbb
∗ k = Qbb

∗ k − 1 + Qbb k

Jaa = ∂fa ∂xa |xa (k)

(36)

The following auxiliary matrix calculations are done as represented in equations

(37).

∅ k = I − μ k . ∅ k − 1

φ k = φ k − 1 + ∅T k − 1 . β k . ∅ k − 1

θ k = θ k − 1 + ∅T k − 2 Ha
T k − 1 S k − 1 −1z k − 1

Ha k = ∂h ∂xa |xa k

β k = Ha
T k . S k −1. Ha k

μ k = Paa k . β k

S k = Ha k . Paa k . Ha
T k + R

z k = z k − h xa k , v k

(37)

Whole state x is updated by using these auxiliary matrixes, when the time period

is finished (at k2), which is called as batch update. The batch update equations are

represented in equation (38).

Pab k2 = ∅ k2 . Pab k1

Pbb k2 = Pbb k1 − Pab k1 . φ k2 . Pab k1 + Qbb
∗ k2

xb k2 = xb k1 − Pab k1 . θ k2

(38)

55

Equation (38) shows that the xb , Pbb , Pab and Pba matrices are only required at the

begging and at the end of the time interval τ (at k1 and k2). These matrices are

kept constant between the interval, and the related information for their updates

are calculated and stored by auxiliary matrices ∅,φ, θ. The auxiliary matrixes

have dimensions as naxna , naxna and na respectively. The detailed prove and

demonstrations can be found in the given references [61] [6].

This algorithm is very useful in large areas or working with the high frequency

rate sensors such as laser sensor. When working with these sensors, the map is

updated so frequently, and the computational cost for this batch update will

increase a lot. On the other hand, the real time requirement is one of the most

important specifications in SLAM applications. Therefore, this algorithm takes

attention with its low computational complexity without losing any information.

Moreover, batch update of the algorithm can also be done as a background task

with a low priority, while updating local map. As a result, these advantages makes

Compressed Extended Kalman Filter suitable algorithm for real time outdoor

SLAM.

3.3. Global Map Transformation

In this section of study, algorithm details of the techniques mentioned in the

Section 2.3.1 are investigated in two parts; global map transformation by using

relative measurements and by using maps' overlapping region.

3.3.1. Global Map Transformation by Using Relative Measurements

In this section, global map transformation problem of multi robot SLAM is

examined by the use of relative robot measurements. This problem is handled by

the mutual relative measurements of robots. The sensor reading, which is

composed of bearing and range information, is transferred to other robot and these

measurements are processed to calculate the global map transformation matrix

between local frames of robots. The following calculations are taken from the

Zhou’s work [42]. The procedure examined in two parts as relative distance and

bearing measurements, transformation between global frames.

56

3.3.1.1. Relative Distance and Bearing Measurements

Each robot on the map has its own global frame, and they explore and extract the

map of the environment on these frames. Robots are represented by Ri and their

global frames are represented by Gi in the following calculations, where i = 1,2.

The coordinates of Ri , with respect to Gi is represented as XR i
G i =

 xi yi ∅i
T . In this representation, xi is the x-coordinate, yi is the y-coordinate

and ∅i is the direction of the robot pose. The relative position measurement of

Rj with respect to Ri is zi j, which is given in the equation (39).

 zi j =
ρi m

θi jm

 =
ρ

θi j
 +

ω
ρi

ω
θi j

 i, j = 1,2 (39)

In equation (39), ρ is the distance measurement and θ is the bearing measurement

of Ri , ω
ρi

 and ω
θi j

 are white zero-mean Gaussian noises, whose variance

matrices are ς
ρi

2 and ς
θi j

2 respectively. Two distance measurements are

independent, so precise distance can be calculated with the following equation

(40).

 ρm = ςρ
2

ρ1
m

ς
ρ1

2 +
ρ2

m

ς
ρ2

2 ,
1

ςρ2
=

1

ς
ρ1

2 +
1

ς
ρ2

2 (40)

These measurements of two robots can be reformed into the following equation

(41).

 Z =

ρm

θ1
2m

θ2
1m

 =

ρm

θ1
2

θ2
1

 +

ωρ

ω θ1
2

ω θ2
1

 = Zt + ω (41)

In equation (41), Zt is the real value of the measurements and E ωρ
2 = ςρ

2.

Figure 11 illustrates the geometric relationship between positions and

measurements of robots and it is seen that the following equation (42) holds.

57

 p
R1

R2
= − CR2

R1 θ p
R2

R1
 (42)

 p
R j

R i
= ρ

cos θ
j

i

sin θ
j

i

 = ρC θ
j

i e1, i = 1,2 (43)

Figure 11 Relationship Between Positions and Measurements of Robots [42]

In equation (42), p
R j

R i
is the position of Ri in the local frame of Rj, CR2

R1 θ is the

angular transformation between R1 and R2 , and e1 is the unit vector along the

x-axis. By substituting equation (42) into (43) rotational angle between robots'

frames can be calculated as mentioned in the following equation (44).

 θ = π + θ1
2 − θ2

1 (44)

The transformation matrix between R1 and R2 can be calculated in close form

with the angle in equation (44) and the distance in equation (40).

3.3.1.2. Transformation between Global Frames

In this section, by using the bearing and range measurements, transformation

between global frames of robots is determined. This transformation enables to

represent the state estimate X
G1

2 of R2 with respect to G1 as in the equation (45).

58

 X
G1

2 = h X
G1

1, X
G2

2, Z (45)

In equation (45), X
G1

1 is the state of R1 with respect to G1 , X
G2

2 is the state of

R2 with respect to G2 , and Z is the measurement given in the equation (41). The

detailed representations of these states are given in the following equation (46).

X
G1

1 = X
G1

R1

T X
G1

L1

T … X
G1

Li

T … X
G1

Ln 1

T

X
G2

2 = X
G2

R2

T X
G2

l1

T … X
G2

lj

T … X
G2

ln 2

T

X
G1

Li
=

xLi

yLi
 ∈ M1, X

G2
li

=
xli

yli
 ∈ M2

(46)

In equation (46), i = 1. . . n1, j = 1. . . n2 and n1 n2 is the total landmark count in

the map M1 M2 of robot R1 R2 .

The rotational transformation of frames from G2 to G1 is CG2

 G1 . The rotational

transformation of frames from R2 to G1 is CR2

G1 . These transformations can be

computed with the following equations (47).

CG2

G1 ∅ = CR1

G1 ∅1 CR2

R1 θ CR2

G2 ∅2
T

=> ∅ = ∅1 + θ − ∅2

CR2

G1 ∅
G1

R2
 = CR1

G1 ∅1 CR2

R1 θ

∅
G1

R2
= ∅1 + θ

(47)

By substituting equation (44) into equation (47) for θ, following equation (48) can

be obtained.

 ∅
G1

R2
= ∅1 + π + θ1

2 − θ2
1 (48)

In equation (48), ∅1 is the orientation of R1 with respect to G1 .

59

Figure 12 Geometric Relationship Between Global Frames and Landmark

Position [42]

In Figure 12, the geometric relationship between global frames and landmark

position is illustrated, and it is seen that the following equation (49) holds.

p
G1

G2
= p

G1
R1

+ CR1

G1 ∅1 p
R1

R2
− CG2

G1 ∅ p
G2

R2

p
G1

R2
= p

G1
R1

+ CR1

G1 ∅1 p
R1

R2

(49)

In equation (49), p
G i

R i
is the position of Ri with respect to Gi. Similar equation can

be written for the position of each landmark li ∈ M2 with respect to G1 as in

equation (50).

 p
G1

li
= p

G1
G2

+ CG2

G1 ∅ p
G2

li
, i = 1. . . n2 (50)

In equation (50), p
G1

li
is the position of landmark li in the map M2 with respect

to G1 . By using this transformation landmarks in them map M2 can be

transformed to the global frame of R1.

60

3.3.2. Global Map Transformation by Using Map Overlap

In this section, global map transformation problem of multi robot SLAM is

examined by the use of overlap between maps. The local map information is

transferred to other robots to calculate the global map transformation matrix

between local frames of robots. This information is searched with possible

transformations, if overlap between maps is found; this transformation can be

used as a candidate global map transformation. The best transformation, which

gives the perfect overlap between maps, is searched by comparing the overlapping

area. This comparison can be done with appropriate heuristic functions such as

matched landmark count, similarity metric etc. However, the search space of this

transformation is infinite because of the lack of prior knowledge about robot’s

positions. Therefore, preprocess step can be used for finding similar regions in the

map. For this purpose following algorithms; Delaunay Triangulation and

similarity metric are examined in the following sections. After this process

different search algorithms; Random Sample Consensus, Adaptive Random Walk

and Iterative Translation Search are explained in detail. The transformation matrix

formulation and derivation is also mentioned in Section 3.3.2.2.1.

3.3.2.1. Map Structure Similarity

In this section, Delaunay Triangulation and similarity metric calculation

techniques, which were used in Cunningham's work [41], are explained in detail.

3.3.2.1.1. Delaunay Triangulation

The complexity of the search space for finding the best transformation matrix

between local frames of robots leads to reduction in the input sample set. The

geometric feature extraction and their similarities are used for this improvement.

In this section, Delaunay Triangulation algorithm [62], which is a well studied

geometric feature extraction method is explained in detail. This algorithm takes

the coordinates of landmarks as input and calculates the triangles, whose ensure

empty circum circle criterion. This criterion means that the circum circle related

with the triangle contains no more point than the triangle edges. Moreover,

Delaunay Triangle algorithm maximizes the minimum angle of the all triangles,

61

which avoids the skinny triangles. These properties of algorithm can be seen in

Figure 13.

(a) Delaunay Triangles (b) (c) Non Delaunay Triangles

Figure 13 Demonstrations of Possible Triangle Shapes

In Figure 13, (b) and (c) have a more skinny triangles than (a), which shows the

possibility of different geometric features.

Delaunay Triangle algorithm gives the same output triangle set for the same input

set. However, there exist exceptional cases, in these cases such as rectangular

shape, which is illustrated in Figure 14; algorithm is able to produce two different

triangles for the same input points.

Figure 14 Possible Outputs of DT under Exceptional Case (Rectangular

Shape)

62

The exceptional case presented in Figure 14 has very low possibility in real

implementations. The sensor noises and the asymmetric nature of the environment

cause the occurrence of the perfect rectangular shape in nature to almost zero.

There exists various types of implementation of the this algorithm in literature

such as Guibas and Stolfi’s Divide and Conquer [63], Fortune’s Sweepline [64],

and Bowyer-Watson's Incremental algorithms. The pseudo code of Bowyer-

Watson's Incremental Delaunay Triangulation Algorithm is mentioned as an

example in the following Table 2.

Delaunay Triangulation is closely related with Nearest Neighbor Graph and

Voronoi Diagram [65]. The Nearest Neighbor Graph is a sub graph of the

Delaunay Triangulation, because of its empty circum circle property, the closest

point to any point lies in the edge of that point in the Delaunay Triangles.

Moreover, the center points of the circles of triangles are the joints in the Voronoi

diagram. The illustration of this relationship is represented in Figure 5. The dots

in (a) show the joints of Voronoi diagram and (b) show the center points of the

triangles.

(a) Voronoi Diagram (b) Delaunay Triangulation

Figure 15 Illustration of Relationship between Voronoi Diagram and

Delaunay Triangulation

63

Table 2 Pseudo Code of Bowyer-Watson's Incremental Delaunay

Triangulation Algorithm [66]

function BowyerWatson (pointList)

// pointList is a set of points to be triangulated

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

 triangulation := empty triangle mesh data structure

 add super-triangle to triangulation

 for each point in pointList do // add all the points one at a time to the

triangulation

 badTriangles := empty set

 for each triangle in triangulation do // find the invalid triangle

 if point is inside circumcircle of triangle

 add triangle to badTriangles

 polygon := empty set

 for each triangle in badTriangles do // find the boundary of the

polygonal hole

 for each edge in triangle do

 if edge is not shared by any other triangles in badTriangles

 add edge to polygon

 for each triangle in badTriangles do // remove them from the data

structure

 remove triangle from triangulation

 for each edge in polygon do // re-triangulate the polygonal hole

 newTri := form a triangle from edge to point

 add newTri to triangulation

 for each triangle in triangulation // done inserting points, now clean up

 if triangle contains a vertex from original super-triangle

 remove triangle from triangulation

 return triangulation

64

The implementation of the Delaunay Triangulation in this thesis, uses

Computational Geometry Algorithms Library (CGAL) [67]. The insertion,

removal and displacement abilities are available in this library implementation in

MATLAB. Triangles can be computed in batch with O(n ∗ log(n)) complexity.

The insertion of a new point is performed by inserting member function of the

basic triangulation and performing a sequence of flips for restoring the Delaunay

property. The number of flips is O(d) if the new vertex has d degree, for the

uniformly distributed points it is O(1) on average. The removal of the point is

done by removing and triangulating again, which takes O(d2) for degree d. The

displacement checks whether the triangulation remains planar or not. If

triangulation remains, algorithm performs sequence of flips for restoration, which

has a complexity of O(d) . Otherwise, new point is inserted and the past is

removed, which has an O(n) in worst case.

Different implementations are compared with each other in Su’s work [68]. His

study shows that Dwyer's improvement on the Guibas and Stolfi's Divide and

Conquer algorithm is the strongest algorithm in its competitors. However, it is

also mentioned that all of these algorithms can be fastest on different dataset.

3.3.2.1.2. Similarity Metric Calculation

In this section, similarity metric used in the Cunningham's work [41] is explained

in detail. This similarity metric uses the features of triangles, which are calculated

by the use of Delaunay Triangulation algorithm. These features are used for

calculating the overlapped regions between two maps and extracted from the

Euclidian distances between points. The triangle circumference and area are

selected as geometric features for this similarity metric calculation. These feature

calculations are represented in the equations (51).

65

f1
j

= aj + bj + cj

f2
j

= s(s − aj)(s − bj)(s − cj), s =
1

2
f1

j

(51)

In equation (51), f1 represents the circumference of the triangle, and f2 represents

the area of the triangle, and a, b, c are the edges of the triangle.

All features are calculated according to the equation (51) and the correspondence

set is calculated by using these features as mentioned in equation (52).

 C T1, T2 = t1, t2 t1 ∈ T1, t2 ∈ T2, S t1, t2 < 𝜏} (52)

In equation (52), τ represents the threshold value for the similarity match

decision. The C(T1, T2) represents the correspondence set. The similarity s(t1, t2)

is calculated as mentioned in equation (53).

 S t1, t2 = e
 fi

1−fi
2

2

i

 (53)

The similarity calculation has errors, because of the geometric similarity of

triangles and the selection of the threshold value could be too small or too big.

The geometric similarity, which can be similar in different cases, is illustrated in

the following Figure 16. The features of two triangles are almost the same but it is

seen that they are extracted from different landmarks.

Figure 16 Illustration of Similar Triangles with Different Landmarks

66

3.3.2.2. Multi Robot Data Association

In this section, transformation matrix formulation with different multi-robot data

association algorithms mentioned in Section 2.3.1.2.2 is explained in detail.

3.3.2.2.1. Transformation Matrix Formulation

Transformation matrix, which is searched for map alignment of two local maps, is

explained in detail. These maps are built locally and they needs to be transferred

to the same reference frame before map merging process. This transfer consists of

rotation and translation in two-dimensional space, because of the planar

environment. The functional representation of the transformation in Euclidian

coordinates is represented in the following equation (54).

 Tθ y =
cos ∅ − sin∅
sin∅ cos∅

 y +
t1

t2
 (54)

In equation (54), φ represents the rotation and t1, t2 represent the transformation

in x and y coordinates relatively. The related parameter vector can be represented

as in the following equation (55).

 θ = θ1 θ2 θ3 θ4
T = cos ∅ sin ∅ t1 t2

T (55)

By using the equation (55), parameters can be estimated in least square sense, by

using the following equation (56).

 Tθ p1 = S I2x2 θ = Aθ, S =
x1 −y1

y1 x1
 (56)

In equation (56), S is a skew symmetric matrix and I is the identity matrix. These

transformation needs one point (x1, y1) to transfer, which means one transfer

gives two equations. However, there are four parameters to be calculated, so two

independent point transformations are required for close form calculation.

Therefore, the cardinality of MSS is k = 2 . For this calculation, A matrix is

augmented as in the following equations (57).

67

Tθ p1

Tθ p2
 = S

(1) I
S(2) I

 θ (57)

For performance improvement, M matrix is defined as M = S(1) − S(2), which is

Schur complement as represented in equation (58).

Tθ p1

Tθ p2
 =

I I
0 I

M 0
0 I

I 0

S(2) I
 θ =

M I
0 I

I 0

S(2) I
 θ (58)

By taking the inverse of the augmented A matrix, the parameters are left on the

right hand side of the equation (58), as represented in the equation (59).

I 0

−S 2 I
 M

−1 −M−1

0 I

Tθ p1

Tθ p2

=
I 0

−S 2 I

M−1 Tθ p1 − Tθ p2

Tθ p2
 =

θ1:2

θ3:4

(59)

This improvement reduces the total algebraic operation of the estimating the

model parameter to 12 multiplications and 11 additions. The model estimation's

calculation complexity is essential, because it is repeated at every iteration step of

search algorithm.

3.3.2.2.2. Random Sample Consensus

The outliers exist after the correspondence set is obtained. Therefore, robust

algorithm is needed, while searching for the transformation matrix for global map

transformation. Random Sample Consensus is best known for its capability for

elimination of outliers and originally used for matching arbitrary point clouds by

Fischler and Bolles, in 1981 [69]. It is an iterative algorithm, mostly used for

estimating the model of the observed data. It works with a basic assumption,

which assumes that, by using a small set of inliers optimal model of the observed

data can be found. Algorithm randomly chooses a set of data, and generates a

model based on this set. After the candidate model calculation, it is tested on the

whole data set and its performance is compared with new generated model.

68

RANSAC is composed of two essential steps (hypothesize and test), which are

repeated iteratively [70].

 In hypothesize step, the Minimal Sample Set (MSS) is selected, which

consists of the required number of samples for computing the model

parameters. The crucial point here is, the MSS has the smallest number of

samples in contrast to other techniques such as least square where the

parameter is estimated with all input data.

 In test step, initially computed model is used on the whole data set and the

consistent samples are acquired in Consensus Set (CS).

The termination rule of RANSAC is related the probability of finding a better set.

If this probability decreases under the threshold or the maximum iteration number

is achieved, algorithm terminates with its best model. The detailed representation

of these steps is illustrated in the following Figure 17.

The dataset used for model estimation process is represented by D = {d1 , … , dN },

and the MSS is represented with k . Let the model parameters estimated by

RANSAC is θ ({d1, … , dh }), which is estimated by data set {d1, … , dh }. The h

here is larger than the MSS count (k). The related model is defined as in the

equation (60).

 M(θ) ≝ d ∈ Rd : fM d; θ = 0 (60)

In equation (60), θ is the parameter vector, and fM is the smoothing function at

zero level it contains the matching parameter set with model M . In real

applications, the zero level smoothing is not possible, so the following error

calculation in equation (61) and the CS calculation in equation (62) are applied for

model extraction.

 eM d; θ ≝ min
d ′ ∈M(θ)

dist d, d′ (61)

69

In equation (61), the error eM is defined as the minimum distance between the

data set d and the model space. The distance function selection is done according

to the application.

 S θ ≝ d ∈ D: eM (d; θ) ≤ δ (62)

In equation (62), S(θ) represents the CS with respect given model parameters, and

it contains from the samples, which have a smaller error than the given

threshold δ.

After the CS is found, error calculation and inliers counting is done and if the

inliers ratio is larger than the best model's inliers ratio, current CS's inliers ratio

and its related model parameters are stored. The algorithm stop mechanism works

in the following manner.

If the probability of choosing the true model from the dataset D is q, then the

probability of choosing the set k with at least one outlier becomes (1 − q). When

the selection of k is iterated over h times, the probability of choosing MSSs with

all of them have at least one outlier becomes 1 − q h . The critical point here is

this probability goes to zero, if the iteration number h goes to infinity. The real

time implementation requirements leads to use acceptable probability threshold ε

such that 1 − q h ≤ ε. From this inequality iteration number h can be specify to

the following range as in equation (63), in which x is used for smallest integer

larger than x.

 h ≥
log ε

log(1 − q)
 (63)

70

Figure 17 RANSAC Flow Chart

71

The iteration number h can be set to the minimum integer number by using the

using equation (63). The threshold value ε can be determined according to the

model, but the probability of choosing the true model q needs to be examined in

detail. Under the assumption of equal probability of sample selection and the

noise free inliers, which means inliers gives the true model without an error; the

following equation (64) can be used for true inliers MSS selection probability

calculation.

 q =

NI

k

N
k

=
NI! N − k !

N! NI − k !
=

NI − i

N − i

k−1

i=0

 (64)

In equation (64), N represents the whole dataset number, NI represents the inliers

number and k represents the MSS number. It is seen that if the NI >> 𝑘, then the

equation (64) is approximated as the following equation (65).

q =
NI − i

N − i

k−1

i=0

≈
NI

N

k

 (65)

In equation (65), there still exists unknown parameter NI. However, if number of

inliers estimated conservatively as N I which is the largest set of inliers found so

far, i.e. N I ≤ NI . Therefore, the following equations hold for this

assumption; q(N I) ≤ q(NI) and 1 − q N I
h

≥ 1 − q NI
h

. These results

can be used in threshold equation (66).

 T iter =
log ε

log 1 − q N I
 (66)

In equation (66), T iter represents the determined threshold for related N I

estimation.

The overall complexity analysis of RANSAC is done with respect to the

hypothesis and test steps. In hypothesis step, the computational complexity of

72

model estimation is Cestimate (k) , in which from the MSS the parameters are

calculated. After the model is instantiated, evaluation of the model over the whole

dataset is required. If one sample fitting calculation complexity is Cfitting , whole

step calculation complexity becomes N ∗ Cfitting . The overall worst-case

complexity of RANSAC becomes as the following equation (67), when the all

iterations are included.

 Complexity = O Titer ∗ Cestimate k + N ∗ Cfitting (67)

RANSAC is very popular in different areas, such as image processing and SLAM

areas. For instance, in image processing area it is used for segmentation of image

by feature extraction and parameter fitting [71][72]. On the other hand, in SLAM

area, Iser and Wahl used an improved version of RANSAC for loop closing [73]

and Cunningham used RANSAC for map merging process with unknown relative

pose of robots [41]. In 2006, the 25th anniversary of RANSAC a workshop for

examining the variations of RANSAC algorithm is done at International

Conference on Computer Vision and Pattern Recognition. The detailed analysis

based on different criteria such as speed, accuracy and robustness, is done and the

following variations of RANSAC are announced.

The robustness criterion of the RANSAC is examined by Torr [74]. The

performance of the RANSAC is directly related with the threshold of the model

fitting decision. If the threshold is too small, the inliers can be missed and

algorithm time requirement increases, in contrast, if it is too large the outliers can

be included in Consensus Set and the model will fluctuate. Therefore, two

different versions of RANSAC, M-estimator Sample and Consensus (MSAC) and

Maximum Likelihood Estimation Sample and Consensus (MLESAC), which are

evaluating the quality of the Consensus Set by using its likelihood, are purposed.

Moreover, another improvement is done on the MLESAC by Tordoff, which uses

the priori information of samples and called as Guided-MLESAC [75]. Similarly,

Chum purposed another improvement by using the same priori information for

73

deciding the inliers and outliers, which is called as Progressive Sample Consensus

(PROSAC) [76].

The speed criterion of RANSAC is improved by Matas and Chum [77], which is

called as Randomized RANSAC. Instead of using the entire data set for

evaluating the performance of model, randomly selected subsets of the whole data

is used. However, this strategy assumes the inliers ratio is large and has less

robust performance on data sets with high outlier ratio. Moreover, there exists

modifications such as perform on unknown and multiple models. Wang and Suter

purposed robust adaptive parameter estimation method for unknown models [78].

For multi model applications, Zulaini’s Multi-RANSAC [79] and Toldo’s cluster

algorithm which, uses J-linkage cluster algorithm [80]. The detailed comparison

of these variations of RANSAC can be found in Choi's work [81].

3.3.2.2.3. Adaptive Random Walk

In this section, Carpin's Adaptive Random Walk algorithm is explained in detail.

This algorithm can be used for the stochastic search of the transformation matrix

between the global frames of robots as an alternative to RANSAC. One map is

kept stable while other one is moved by candidate transformations. This

movement corresponds to the search of the possible transformations. In this

algorithm, randomness is obtained by Gaussian distributed random selector,

which is mentioned as Random Selector (RS) in the pseudo code. The adaptive

part is obtained by the heuristic function ∆, which accelerates the search in the

better and larger overlap in map merging process. Their main motivation of using

random walk in the search of the possible transformation space is preventing the

algorithm to stick in local maximum with only using adaptive part. The pseudo

code of the algorithm is given in the following Table 3.

Adaptive Random Walk algorithm starts the search with the given starting

configuration, which is given in the lines 1, 2, and 3. While the iteration number is

under the limit value numSteps, new sample is generated and the related heuristic

cs is computed with function ∆, as given in the lines 4, 5, and 6. This generation

74

step uses a Gaussian distribution with mean μk and covariance Σk , which are

updated with the new accepted sample at step k , as mentioned in the lines 8, 9,

and 10. This update is done with the last M values accepted by the algorithm,

which is the algorithm parameter. The selection is done with the Random Selector

(RS) or with the higher heuristic value cs , as mentioned in the line 7. If the

selection is not done, new sample is discarded and new sample is generated, as

mentioned in the line 12 and 4.

Table 3 Pseudo Code of Adaptive Random Walk Algorithm [11]

Adaptive Random Walk

1: k ← 0, tk ← sstart

2: Σ0 = Σinit , μ0 ← μinit

3: c0 ← ∆ m1, Ttstart
 m2

4: while k < numSteps

5: generate a new sample s ← tk + vk

6: cs = ∆ m1, Ts m2

7: if cs > ck OR RS tk , s = s

8: k ← k + 1, tk ← s, ck = c

9: Σk ← Update tk , tk−1, … , tk−M

10 μk ← Update tk , tk−1, … , tk−M

11: else

12: discard the sample s

The existence of algorithm convergence to best transformation is an important

criterion for search algorithms. The following theorem given in the equation (68)

ensures this convergence. The proof of the algorithm can be found in Carpin's

work [46], which is omitted here.

 lim
k→+∞

Pr ∆ m1, Tb
k m2 ≠ ∆ m1, Ts∗ m2 = 0 (68)

75

Let s∗ ∈ S an element, which maximizes ∆ m1, Ts m2 , and let T0, T1, … the

sequence of transformations, which is generated by the algorithm in Table 3. Tb
k is

the best transformation generated in the first k iterations, which gives the highest

value of ∆ . This theorem given in the equation (68), only guarantees the

convergence, when the iteration goes to infinity.

3.3.2.2.4. Iterative Translation Search

In this section, Saeedi's Iterative Translation Search algorithm [45] is explained in

detail. In this algorithm, features are translated with initial translation matrix.

Translated features are compared with directions and the features in other map

with angular difference smaller than the initial angular threshold are saved. After

obtaining possible pairs for all features, matching feature with the smallest

Euclidian distance is selected. After this selection, translation matrix is updated

with these pairs and the angular threshold is reduced for precise calculation. The

algorithm pseudo code is given in the Table 4.

In Table 4, angular threshold ϵ , maximum iteration number iterationsmax ,

translation error threshold Jthresh , maps M1,2 and norm n1,2 of each point in maps

M1,2 are the parameters of the algorithm. T1,2 i is used as a container for possible

pairs in the maps and T is the output of the algorithm, which gives the best

translation at the end of the iteration.

3.4. Feature Based Map Merging

In this section, feature based map-merging algorithms, which are mentioned in

Section 2.3.2 are examined in detail. The following methods are examined in the

given order; Maximum Likelihood Estimator, Modified M-Estimator, Covariance

Intersection Estimator and Orthogonal Gnanadesikan-Kettenring Estimator.

3.4.1. Maximum Likelihood Estimator

Maximum likelihood estimation is a conservative method of combining the

observed data, which means that it assumes the input data is good and tries to

minimize the error. As mentioned previously, in decentralized architecture

76

problem becomes the inverse probability p(θ|y) problem of the given data y. The

basic conditional probability equations hold as in given equations (69), which is

called as Bayes' theorem.

p θ, y = p θ p y θ

p(θ, y) = p(y)p(θ|y)

(69)

Table 4 Pseudo Code of Iterative Translation Search [45]

Iterative Translation Search

1: iteration ← 0

2: while J > Jthresh and iterations < iterationsmax

3: i = 1

4: for k = 1 → point number in M2

5: Pk ← ∀m1 ∈ M1, if n1satisfies n1 − n2
k < 𝜖

6: if Pk ≠ ∅

7: T1 i ← element of Pk that is closest to m2
k

8: T2 i ← m2
k

9: i ← i + 1

10: δx ←
1

i−1
 T1x l

i−1
l=1 − T2x l

i−1
l=1

11: δy ←
1

i−1
 T1y l

i−1
l=1 − T2y l

i−1
l=1

12: T ←
δx

δy

13: each point in M2 gets shifted by T

14: J = T1
l − T2

l i−1
l=1

15: reduce ϵ

16: iterations ← iterations + 1

By combining the equations in (69) following equation for conditional density

holds as given in equation (70).

77

 p θ y =
p(θ, y)

p y
=

p(θ)p(y|θ)

p(y)
 (70)

In equation (70), p(y) is the function of given data, which is called as constant of

proportionality, so it can be ignored as in equation (71).

 p θ y ∝ p(θ)p(y|θ) (71)

In equation (71), p θ is the prior density of θ, and p(y|θ) is the likelihood and

p(θ|y) is the posterior of θ. Therefore, it is seen that, the likelihood function

converts the prior into the posterior density of θ . The prior density p θ is

constant information so it is invariant to the observations, so the following

equation (72) holds.

p θ y = k y p y θ

k y = p(θ)/p(y)

(72)

k(y) remains same for given data set of y for all values of θ . It is seen that,

without the prior information equation (72) cannot be solved. R.A. Fisher purpose

a likelihood notation for solution of this problem. In this theory, parameters of

distribution are variables and data is fixed as mentioned in equation (73).

 L θ y = k y p y θ ∝ p y θ (73)

The likelihood calculation is traditional probability calculation of p(y|θ) ,

therefore, the observed data is searched for θ , which maximizing the likelihood

equation. In multiple scenarios, such as independent observations, the likelihood

equation becomes the multiplication of the individual likelihoods as mentioned in

equation (74).

 L = L1 ∗ L2 ∗ … ∗ LN = Li

N

i=1

 (74)

78

In equation (74), Li = p yi θ instead of minimazing this equation, it is easier to

minimize the negative log likelihood as mentioned in equation (75), because of

the simplicity of summation over multiplication.

 ln L = ln p yi θ

N

i=1

 (75)

Under large sample sets, MLE has the following properties.

 Consistency: If the sample size goes to infinity, MLE converges to the true

probability of the estimation.

 Asymptotic Normality: If the sample size goes to infinity, the distribution

of MLE tends to Gaussian distribution.

 Efficiency: If the sample size goes to infinity, MLE achieves the lower

asymptotical mean squared error, which is called as Cramer-Rao Lower

Bound.

The detailed explanations and proofs of MLE properties can be found in the

reference [82].

In this thesis, landmark distributions are assumed to be normally distributed.

Therefore, the following probability density function (76) is used for parameter

estimation process.

 p y1 , … , yN θ =
1

2ΠDN /2|Σ|N/2
e −

1
2
 yn−μ

TΣ−1 yn−μ
N
1 (76)

In equation (76), D is the dimension of covariance matrix, Σ is the covariance

matrix and μ is the mean value of the distribution. By using sample set and

likelihood function, MLE estimates the mean and the covariance parameters of the

multivariate normal distribution as follows. Firstly, the logarithm of the

distribution of the conditional probability function is taken as in (77).

79

ln p y1, … , yN θ

= ln
1

2Π
DN

2 Σ
N
2

 + ln e −
1
2
 yn−μ

TΣ−1 yn−μ
N
1

ln p y1 , … , yN θ

= −
DN

2
ln 2Π −

N

2
ln⁡(Σ)

+ −
1

2
 yn − μ TΣ−1 yn − μ

N

n=1

(77)

The equation (77) is differentiated with respect to mean and covariance and

equated to zero for the optimal value and the following equations (78) and (79)

are derived.

 μML =
1

N
 yn

N

1

 (78)

 ΣML =
1

N
 yn − μML yn − μML

T

N

n=1

 (79)

Detailed proofs of the derivation of the equations (78) and (79), are given in [83].

3.4.2. Modified M-Estimator

Similar to the Maximum Likelihood Estimator calculation steps, modified M-

estimator uses the log-likelihood function as mentioned in equation (75).

However, the critical difference of this estimator is it uses the covariance matrices

of the landmarks, because of the independence between the robots, as mentioned

in the equation (80).

 p y1, … , yN θ = p y1 θ …p yN θ (80)

By taking the negative logarithm of the equation (80), similar to the equation (77),

the following log-likelihood equation (81) is obtained. In the following equations

80

matched landmarks estimated mean vectors are represented as yn and covariance

matrices are represented as Σn , where N represents the robot number. The true

value of mean is represented as μ.

− ln L y =
1

2
 yn − μ TΣn

−1 yn − μ + cnst

N

n=1

=
1

2
 Σn

−1 μ −
 Σn

−1yn
N
1

 Σn
−1 N

1

2

N

n=1

+ const

(81)

By taking the derivative of equation (81) with respect to μ and equate it to zero.

The following equation (82) is obtained.

∂ − ln L y

∂μ
= Σn

−1

N

1

 μ −
 Σn

−1yn
N
1

 Σn
−1 N

1

2

= 0

 μ −
 Σn

−1yn
N
1

 Σn
−1 N

1

 = 0

(82)

The mean, which maximizes the equation (82), is mentioned in the following

equation (83) and represented as μM .

 μM =
 Σn

−1yn
N
1

 Σn
−1 N

1

 (83)

The additivity of the statistical information is used for the calculation of the

covariance matrix as mentioned in the following equation (84) and combined

covariance matrix is represented as ΣM .

 ΣM
−1 = Σn

−1

N

1

 (84)

3.4.3. Covariance Intersection Estimator

The matched landmarks estimated mean vectors are represented as y1 , y2 and

covariance matrices are represented as Σ1, Σ2. The true values mean vectors are

81

represented as y1 , y2 and covariance matrices are represented as Σ1
 , Σ2

 in the

following equations.

 Σ1
 = E y1 y1

T , Σ2
 = E y2 y2

T , Σ12
 = E y1 y2

T (85)

In equation (85), y1 ≝ y1 − y1 and y2 ≝ y2 − y2 are the true values of the mean

errors and the cross-correlation between random variables is represented as Σ12
 ,

which is not known and assumed to be zero.

For ensuring the consistency of the estimation [84], estimator holds the following

inequalities (86).

 Σ1 − Σ1
 ≥ 0 Σ2 − Σ2

 ≥ 0 (86)

By ensuring the inequalities (86), the fused information is guaranteed to be

consistent as mentioned in the following inequality (87).

 Σf − Σf
 ≥ 0 (87)

In inequality (87), Σf
 = E yf yf

T and yf ≝ yf − yf , yf is the true value of the mean

error.

This algorithm ensures the given consistency, and uses the convex combination of

mean and covariance matrices, which are represented as information (inversed)

form. The key point here is using the geometric form of the Kalman Filter

equations; mean calculation is represented in following equation (88).

 yf = W1y1 − W2y2 (88)

The covariance calculation is represented in the following equation (89).

 Σf = W1Σ1W1
T + W1Σ12W2

T + W2Σ21W1
T + W2Σ2W2

T (89)

In equations (88) and (89), W1, W2 are weight matrices, which can be used for

optimizing the estimation with respect to trace or determinant. If the variables are

independent, which means that Σ12 = 0, the equations reduces to conventional

82

Kalman Filter. The geometric interpretation of this algorithm is represented in the

following Figure 18.

In Figure 18, the outer ellipses represent the covariance of the random

variables Σ1, Σ2 , and inner ellipses represent the combination of them Σf with

different values of Σ12 . Therefore, if the consistency is satisfied for the

intersection area, consistency is also satisfied for every value of cross-correlation

even if it is unknown.

Figure 18 Geometric Illustration of Covariance Matrices [47]

The algorithm satisfies the mentioned consistency by using convex combination

of covariance matrices is given in the following equations (90) and (91).

 Σf
−1 = ωΣ1

−1 + (1 − ω)Σ2
−1 (90)

 Σf
−1yf = ωΣ1

−1y1 + (1 − ω)Σ2
−1y2 (91)

In equation (90) and (91), ω ∈ 0,1 , and the detailed proof of the equations can

be found in the [47]. The choice of ω is depend on the cost function used for

optimization, any optimization strategy can be used for search process of ω. The

generalized form algorithm for more than two point intersection can be

represented as in the following equations (92) and (93).

83

 Σf
−1 = ωnΣn

−1

N

1

 (92)

 Σf
−1yf = ωnΣn

−1yn

N

1

 (93)

In equation (92) and (93), ωn satisfies the ωn
N
1 = 1, which can be used for

batch covariance calculations.

3.4.4. Orthogonal Gnanadesikan-Kettenring Estimator

In this section, the class of Orthogonal Gnanadesikan-Kettenring estimator, which

is mentioned in the Sequeira's work [53], is explained in detail. This algorithm

uses both covariance estimates and actual measurements, which is mentioned in

Table 5.

Table 5 Pseudo Code of Orthogonal Gnanadesikan-Kettenring Estimator

[53]

OGK Covariance Estimator (Ω is the class parameter)

1: Let ς(.) be a standard deviation function applied to its argument

2: Let X = (X1, … , Xp) ∈ Rnxp be the set of n observations, each of

dimension p

3: Let D = diag ς Xj , j = 1,… , p and define Y = XD−1

4: Compute U = ujk =

1

4
 ς Xj + Xk

2
− ς Xj − Xk

2
 j ≠ k

ς Xj
2

j = k

5: Compute E such that U = EVE−1 with V the diagonal matrix with

eigenvalues of U

6: Let Z = YE and A = ΩED−1, with T = diag ς Zj
2
 , j = 1,… , p and

Ω = diag(ω1, ω2)

7: The covariance estimate is Σ = ATTA

84

Orthogonal Gnanadesikan-Kettenring estimator initially scales the input

measurements D as mentioned in line 3. Then it computes the initial covariance

estimate U, as mentioned in line 4. This initial estimate is used for the new base E

calculation as mentioned in the line 5. The scaled data D are projected on this base

and new variances are calculated on this frame as mentioned in the line 6. The Ω

matrix in line 6 is the input parameter of the estimator and affects the scale of the

resultant covariance estimate. In the final step of estimator data are back projected

onto its original frame, as mentioned in the line 7.

This algorithm estimates the covariance by the use of the distance between

measurements. For instance, the distant data on the smaller variance valued axis,

are considered as outliers and eliminated by the algorithm.

3.5. Map Performance Evaluation

In this section, map performance evaluation techniques, mentioned in Section 2.4

are examined in detail.

3.5.1. Normalized Estimation Error Squared Consistency Test

In this section, Normalized Estimation Error Squared (NEES) consistency test is

examined in detail. This test simply estimates the error between estimated feature

position and ground truth position of feature as mentioned in equation (94).

 ϵli
= xli

− x li

T
Σli

−1 xli
− x li

 (94)

In equation (94), ϵli
 is the error of estimated feature position xli

 and Σli
 is the

covariance of ith landmark li. x li
 is the true values of feature position.

In χ2 distribution degrees of freedom is taken as the dimension of feature

positions, which is two. This calculation is gated for acceptance test as given in

the following equation (95).

1

K
 ϵli

k

K

k=1

< γ2 (95)

85

In equation (95), K is the Monte Carlo run count of the error ϵli
, and γ2 is the

acceptance gate, which accepts the 99% correct association for value 9.21.

3.5.2. Area of Covariance Ellipse Metric

In this technique, area of ellipse used as an evaluation metric is explained in

detail. These ellipses are obtained from the covariance matrices of the features in

the map. This method is applied to maps, which are the resultant maps of different

map merging algorithms.

The area of ellipses A, calculation is given in the following equation (96).

 A Σli
 = πr1r2 (96)

In equation (96), r1 and r2 represents the biggest and smallest radius of the

ellipse, and Σli
 represents the covariance matrix of ith landmark li . In the

covariance ellipse these values are the square roots of eigenvalues λ1, λ2, and the

area simply becomes the determinant of the matrix as given in the following

equation (97).

 A Σli
 = π λ1λ2 = π det Σli

 (97)

86

87

CHAPTER 4

4. SIMULATOR AND MAPS

4.1. Simulation Environment

In this section, the simulator used in the experiments is explained in detail. The

main purposes of implementing this simulator are

 defining different maps,

 planning different trajectories for different robots,

 representing the local maps of robots,

 represents the merged global map,

 defining different ranges for robot sensors,

 evaluating of different combining methods.

The simulation code for one robot is taken from the Open-SLAM community.

This one robot simulator program uses the Compressed Extended Kalman Filter

based SLAM implementation and it is implemented by Z. Haiqiang [85]. This

simulator code is used for one robot SLAM purpose. This simulator inputs are the

landmark set and the waypoints of the robot. The SLAM simulator uses the

motion model for trajectory and a sensor model for observations. For easy

understanding, snapshot of the simulator is given in the following Figure 19.

In Figure 19, the true robot’s position is represented by blue colored triangle; the

estimated value of the robot’s position is represented by red colored triangle with

red colored ellipse. The landmarks’ true positions are represented by blue colored

stars and estimated positions are represented by red colored pluses with red

88

covariance ellipses. The covariance ellipses are drawn by 2.448 sigma values for

cumulative distribution function, which correspondence in 0.95 confidence

region. The true trajectory of the robot is represented by the blue line, and the

estimated trajectory of the robot is represented by the red line. The trajectory

planning of the robot is given in detail in the following section.

Figure 19 Simulator Environment Screenshot

Defining different maps, planning different trajectories, and representing the

merged map are the requirements of the implemented simulator. The implemented

simulator supplies a graphical user interface and uses the Haiqiang’s simulator

code. The snapshot of the implemented simulator is represented in Figure 20.

In Figure 20, the simulator user interface is represented. In the plots, named as

Robot 1 and Robot 2, different trajectory SLAM results, resultant triangles and

merged map results are plotted.

The simulator searches in the "DataSets" folder and lists the subfolders in the

dataset popup menu. These folders categorize the different datasets by name.

After the dataset selection, simulator searches for the “landmarks.mat” file, which

is used as reserved name. This file contains the x and y coordinates of the

landmarks on the map. Simulator contains 3 different datasets, which are “Central

Park”, “Victoria Park” and “Simulated Park”. Users are able to use these

89

predefined datasets, and they are able to define new datasets. “Manual Entry”

option in the dataset menu activates the new popup dialog box named as “Map

Dimensions”, users are responsible for entering the related x and y dimensions of

examined map. The box is illustrated in Figure 21.

Figure 20 Multi Robot Simulator Environment Screenshot

Figure 21 Map Dimensions Popup Dialog Box

After this step, a new popup window is opened for manual landmark entry. By left

mouse clicks on the map, simulator stores the landmarks. This window is

represented in Figure 22 for easy understanding.

After the landmark entry, by right click on the mouse button saving step is started.

In this step, saving the dataset under the “DataSets” folder is needed and the

90

“landmarks.mat” is the reserved name for saving a new dataset correctly. The

saving window is illustrated in Figure 23.

Figure 22 Manual Landmark Entry View

Figure 23 Saving Window View

After the selection of the dataset, the loaded maps are plotted on the Robot1 and

Robot2 axes. The trajectory popup menu lists the ".mat" files in the selected

91

dataset folder for listing predefined trajectories. Users are able to select these

trajectories, and they are able to define new trajectories for robots. "Manual

Entry" option in the trajectory menu activates the trajectory defining ability. By

left mouse clicks on the map, simulator saves the trajectory points sequentially.

This scenario is represented in Figure 24.

Figure 24 Manuel Trajectory Planning Ability

In Figure 24, crossed line intersection shows the next point of the trajectory. The

circles represent the already placed trajectory points.

Figure 25 Trajectory Saving Ability

92

In Figure 25, planned trajectory is named as "NewTrajectoy" and it will be saved

under the "DataSets\Simulated Park" directory.

The trajectory planning process can be finished by right mouse click. In this step,

simulator gives opportunity to the user for saving this trajectory. In the following

Figure 25, the finishing procedure is represented.

This saving ability gives opportunity to use this trajectory for other robot, also

stores this information permanently for other experiments. Changing sensor range

of the robots is another ability of the simulator. Different sensor ranges can be

used in the simulation.

After setting map, trajectory and sensor ranges for all robots, by clicking on "Run

Simulation" button simulation starts. Robots follow the given trajectory and sense

the environment by the given sensor range limitation. When the individual SLAM

process finishes, robots local maps are shared for map merging purpose. These

shared map information is used for global map calculation and the resultant map

of the robots are plotted with their local maps.

4.1.1. Random Map Generator

The landmark set generation is done by map generator algorithm, which is

implemented in MATLAB environment. The generator takes the point number,

range and distance limitation. Generator tries to generate number of points in the

given range; if the distance limitation is also required, it also put minimum

distance between points. The following represents the different generated maps by

the random map generator.

93

Figure 26 Illustration of Generated Maps with and without Distance

Limitation (without Distance Limitation and with 10 meters Distance

Limitation)

In Figure 26, (a) and (b) represents the random nature of the generated maps, (c)

and (d) represents the distance limitation effect on the generated maps.

4.1.2. Trajectory Planning

The simulator uses the landmarks and waypoints for simulation, which is given in

the begging of the SLAM process. The waypoints are in two dimensional array

structures, which consist of the ordered points. These points are visited by robot in

the given order. The important part of the path planning is that, is the given

trajectory possible for the robot specifications. The robot motion model is setup to

be like a Pioneer3-AT robot, which is skid steering. Therefore, the rotational

speed of the robot is limited by a configurable constant, which is used as 30

94

degree per second (0.5236 meters per second). The transition speed of the robot is

used as configurable constant, which is set to 0.3 meters per second. The flow

chart of the algorithm is given in the following Figure 27.

Figure 27 Flow Chart of the Trajectory Planning Algorithm

In trajectory planning part of the simulation, true value of the robot position is

used for understanding the robot's current location relative to the next waypoint. If

robot is close enough to next waypoint, the next waypoint is updated and the

required rotational speed calculation starts. The current location and the next

waypoint are used for calculation of the required heading change of the robot. If

the required heading change is larger than the maximum rotational speed, the

current rotational speed is set to maximum, otherwise the requirement is

considered as zero and nothing is done.

95

The rotational motion of the robot is illustrated in the following Figure 28, for

easy understanding of the systematic rotational motion.

(a) At Current Way Point (b) First Step of Rotation

(c) Second Step of Rotation (b) Heading to Next Way Point

Figure 28 Rotational Motion of Robot

4.1.3. Motion Model

The robot motion model is setup to be like a Pioneer3-AT robot, which has four

wheels and four motors, skid steer robot. The picture of the original robot is

shown in the following Figure 29.

96

Figure 29 Picture of Pioneer3-AT Robot

Pioneer3-AT has 0.7 meters per second maximum forward and backward speed

and 140 degree per second rotational speed. In our simulator, about half and

quarter of the maximum specifications are used for maximum values. The motion

model of the given robot without rotational velocity is given in the following

equations (98).

 x = x +

V ∗ dt ∗ cos x 3

V ∗ dt ∗ sin x 3

0

 (98)

In equation (98), V represents the transition speed and dt represents the time

difference for every step. If the rotational is calculated by the algorithm explained

in Figure 27, the following equation (99) is used for the next true value of the

robot's position.

 x =

 x 1 +

V

W
∗ sin x 3 + W ∗ dt − sin x 3

x 2 +
V

W
∗ cos x 3 − cos x 3 + W ∗ dt

pi_to_pi x 3 + W ∗ dt

 (99)

In equation (99), W represents the rotational speed and pi_to_pi() represents the

MATLAB function, which is used for taking mod of the input angle with respect

to pi.

97

The iterated robot position by using the true position of the robot is noised with

the configurable zero mean normally distributed noise, which is called as control

noise. The control noise consists of transitional velocity noise and rotational

velocity noise. Transitional velocity noise is generated with 0.03 sigma value, and

rotational velocity noise is generated with 0.0524 sigma value. The generated

noises are used to disturbed the true values and feed to the CEKF-SLAM

algorithm prediction step.

4.1.4. Observation Model

Observation model is setup to be like LMS 200, which is a bearing and range

sensor. LMS 200 operates with principle of laser light velocity and time

difference between the reflection and the transmission. The picture of LMS 200 is

represented in the following Figure 30, for easy understanding.

Figure 30 Picture of LMS 200

While the robot moves simulator controls the landmarks can be observed

according to the sensor specifications. The sensor observation frequency is set to

five times to the control input iteration time, which is used as 0.5 seconds.

Whenever the given landmark set is in the range of sensor, the observation model

is used for calculating the bearing and range of landmark. The range of sensor is

configurable value, which is set to 8 meters as default value. The scanning range

of the sensor is 180 degree, and the scanning illustration is represented in the

following Figure 31.

98

Figure 31 Illustration of the Scan Model of LMS 200 on Top View

Simulator controls the landmark set according to the given specifications below,

and extract the visible landmarks within the semi-circular field of view of the

sensor. In control procedure, bounding box test, bounding line test and bounding

circle test are applied in the given order for efficiently searching for the visible

landmarks. The simple explanations are given for the applied test procedures.

4.1.4.1. Bounding Box Test

In bounding box test step, the maximum observation range is compared with the x

and y coordinates distances between robot and tested landmark. If one the

distance is larger than the maximum observation range, testing procedure is failed

and the landmark is considered as invisible, otherwise the following test

procedures are applied. The following Figure 32, illustrates the bounding box test

procedure.

Figure 32 Bounding Box Test Illustration

99

In Figure 32, rectangle represents the bounding box acceptance borders, semi

circle represents true scanning range and the pluses show the landmarks.

According to the bounding box test, first landmark is eliminated and second, third

and fourth landmarks are passed to the next test procedure.

4.1.4.2. Bounding Line Test

In bounding line test step, the eliminated landmarks are tested whether they are in

front of the robot of not. Bounding line test is done by using the heading angle of

robot and the x and y coordinate distances between robot and tested landmark. X

and y moments of the landmark is calculated by multiplying the x coordinate

distance with cosine of heading angle, and y coordinate distance with sine of the

heading angle. The moments are summed and checked if it is larger than zero. If

the summation is large than zero, it means that landmark is in front of the robot.

The following Figure 33 illustrates the bounding line test procedure.

Figure 33 Bounding Line Test Illustration

In Figure 33, line represents the bounding line acceptance borders, semi circle

represents true scanning range and the pluses show the landmarks. According to

the bounding line test, fourth landmark is eliminated and second and third

landmarks are passed to the next test procedure.

4.1.4.3. Bounding Circle Test

In bounding circle test step, the eliminated landmarks are tested whether they are

in circular range sensor of not. Bounding circle test is done by using the x and y

coordinates distances between robot and tested landmark. The square root of sum

of the square of distances is checked if it is larger than maximum observation

100

range. If this final test is passed, it means that landmark is in the range of the true

sensing region and it is visible to sensor. The following Figure 34 illustrates the

bounding circle test procedure.

Figure 34 Bounding Circle Test Illustration

In Figure 34, line represents the bounding circle acceptance borders, upper half of

the semi circle represents the true scanning range and the pluses show the

landmarks. According to the bounding circle test, second landmark is eliminated

and third landmark is accepted as visible landmark.

After the visible landmarks are found, they are ready for bearing and range

calculation. That calculation is done simulator for every visible landmark, before

adding the observation noise. The calculation of bearing and range is mentioned

in the following equation (100).

 z =
 dx2 + dy22

pi_to_pi(atan2 dy, dx − ∅)
 (100)

In equation (100), dx and dy represents the x and y coordinate distances,

pi_to_pi(), atan2() are MATLAB functions and ∅ is the heading angle of the

robot. pi_to_pi() takes the mod of the given angle with respect to pi, and atan2()

gives the inverse tangent value of the given distances.

The sensor measurement is disturbed with configurable zero mean normally

distributed noise, which is called as observation noise. Observation noise consists

101

of bearing and range noise. Range noise is generated with 0.05 meter sigma value,

and bearing noise is generated with 0.0175 radian sigma value. The generated

noises are used to disturbed the true values and feed to the CEKF-SLAM

algorithm update step.

4.2. Maps and Trajectories

The comparison of the performances of the map merging algorithms requires

different test cases. These cases can be obtained by changing the algorithm

parameters or running algorithms with different inputs. Changing algorithm

parameters can be obtained by taking and setting different values by the user

interface of the simulator. On the other hand, running different algorithms with

different inputs, needs more detailed procedure. These inputs of the algorithm are

maps and trajectories. The implemented simulator provides an easy graphical

interface for creating different maps and trajectories. The detailed explanation of

this procedure can be found in the section 4.1. In this section, the map and

trajectory selection criteria are mentioned.

The different algorithm parameters and different inputs enable the algorithms

performances can be examined in detailed. However, using large test spaces such

as too many different maps and trajectories can also mislead to wrong evaluations

and waste of time. Therefore, real world datasets are very useful for obtaining

more realistic evaluation conditions. In this section, the extraction of different

landmark data sets and the related trajectory planning methods used in this study

and the reason for choosing these maps and trajectories are explained in detailed.

4.2.1. Extraction of Different Landmark Datasets

The landmark data sets consist of the extracted landmarks' x and y coordinates.

These coordinates represent the positions of the features on the map. These

positions can be extracted from the sensor readings in real world test scenarios.

On the other hand, these positions can also be obtained by using random map

generators or by entering manually. The extraction of positions from sensor

reading method can be obtained from the real world experiments. These

102

experiments need real robots, sensors and stable environment for consistent data

set. This scenario is costly and time consuming, so it is out of the scope of this

study.

In the experimental part of the thesis, randomly generated maps and manually

entered maps are used. However, generated maps are randomly distributed maps

and they enforce the algorithms computational costs increase. These maps are

used for extreme test scenarios, but still more maps that are realistic are required

for more meaningful comparison criteria. Therefore, manual entry ability of

simulator is used for dataset generation. By using this ability, more structured

maps are obtained and the real world maps are used as reference maps for real

world data set. The real world data set extraction has two main procedures,

obtaining maps of meaningful area and manual landmark labeling.

4.2.1.1. Obtaining Meaningful Real World Map

The main reason for using real world data is obtaining more realistic data set than

the randomly distributed data sets. Therefore, more structured areas than

distributed areas are examined. For instance, parks are the popular places for

outdoor SLAM, because of similar structure of trees. This similarity is used for

landmark extraction and data association algorithms in SLAM. Moreover, the tree

distribution of the parks generally has a structure. For instance, trees occur on the

sides of the paths in the park. Therefore, the algorithms used for understanding the

similarity between local maps of robots, perform better by using this structured

distribution. Without this distribution, triangles have similar properties, and this

similarity leads algorithm to match false pairs of landmarks. Therefore, using the

structured area is one the reason for selection of parks. The other criterion is the

popularity of the parks in SLAM literature and dataset availability.

Victoria Park and Central Park are selected as reference real world maps in this

study. Victoria Park is one the most popular map for SLAM community and its

dataset is available. Thrun's study on Victoria Park [1] is used for extracting

103

Victoria Park dataset. In his study, the extracted landmarks are already labeled by

SLAM algorithm. This labeled map is represented in Figure 35.

Figure 35 Victoria Park with Labeled Landmarks

In Figure 35, dots represents the extracted and labeled trees, lines represents the

trajectory of robot.

In Victoria Park map, the trees are extracted and labeled by SLAM algorithm. On

the other hand, in Central Park map manual extraction and labeling is required.

4.2.1.2. Manual Landmark Labeling

In contrast to Victoria Park, Central Park has not been examined in the literature

for SLAM purpose. However, because of its popularity and its 3 dimensional

satellite view supplied by Google Map [86], Central Park is examined as second

real world map for SLAM and map merging purpose. The manual landmark

labeling is the main drawback of working in uninspected areas such as Central

Park. The manual landmark labeling is the process of marking the trees on the

map. In this process, 3 dimensional satellite views are used as extra information

about the trees. The 2 and 3 dimensional maps are displayed for illustration of the

park area in Figure 36 and Figure 37.

104

Figure 36 The 2 Dimensional Map of Central Park [86]

Figure 36, represents the partial region of Central Park around Arthur Ross

Pinetum, the map is divided into 50 meters by 50 meters squares.

Figure 37 The 3 Dimensional Map of Central Park [86]

Figure 37 represents 3 dimensional view of the partial region of Central Park

around Arthur Ross Pinetum. This view is used for understanding and labeling the

trees in Figure 36.

105

The second step of manual landmark labeling is labeling the trees in the map. In

this step, by using the 3 dimensional view landmarks are marked with the simple

graphics painting program. The final view of map is illustrated in Figure 38.

Figure 38 The 2 Dimensional Map of Central Park with Labeled Trees

Figure 39 Manual Landmark Entered Landmarks of Central Park

In the final step of manual landmark labeling, simulator manual landmark entry

option is used. By using this interface, landmarks are saved as two-dimensional

106

MATLAB array format. The user interface of the simulator in manual landmark

entry mode is illustrated in Figure 39.

The landmarks are entered as represented in Figure 39 by using the labels in

Figure 38. These landmarks are saved as "landmarks.mat" file under the related

directory "Datasets\Central Park". This saving process enables the simulator for

searching the directory and obtaining the related landmarks for simulation purpose

as explained in the section 4.1.

4.2.2. Extraction of Different Trajectories

The trajectory of a robot consists of the waypoints' x and y coordinates. These

coordinates represent the positions of iterative checkpoints on the map. While

working with real world datasets, these waypoints are also supplied with

experiment data. The trajectory of the robot or vehicle is given as odometer data,

this data is supplied to the algorithm and next position is predicted. On the other

hand, these waypoints can also be simulated by using random point generators or

by entering them manually. Using random point generators can be used for

performance analysis of algorithms, but they are not appropriate for realistic

scenarios. Therefore, the real world data sets and manual trajectory planning are

used in this study for performance tests. In this section, Victoria Park and Central

Park are examined for extracting meaningful trajectories.

4.2.2.1. Obtaining Meaningful Trajectories

In Victoria Park map, the trajectories similar with Thrun's multi robot SLAM

scenario is created [1]. These trajectories are the obtained by splitting the full

trajectory into eight disjoint sequence for multi robot SLAM purpose. The four of

these trajectories are selected for map merging, according to their overlapped

regions. The overlapped region is the first requirement of calculation of relative

frame transformation. Therefore, the following trajectories are selected and

entered by using the manual trajectory ability of simulator, which are illustrated in

Figure 40.

107

Figure 40 Victoria Park Trajectories

In contrast to Victoria Park, Central Park has no predefined trajectories.

Therefore, a manual trajectory planning is required for this map.

4.2.2.2. Manual Trajectory Planning

In the Central Park map, the trajectory is not available, so the manual trajectories

are created. These trajectories are planned by using the possible paths in the park.

These paths can be seen in Figure 36. The other planning criterion is the overlap

requirement of relative frame transformation. Therefore, paths are designed with

overlapped paths. For entering these trajectories, simulator manual trajectory

entering ability is used as mentioned in the section 4.1. The resulting trajectories

are illustrated in Figure 41.

108

Figure 41 Central Park Trajectories

109

CHAPTER 5

5. EXPERIMENTAL RESULTS

In this chapter, the experimental procedures are presented and results are given for

the selected map similarity, global map transformation and map merging

algorithms together with a detailed analysis.

In this study, the Delaunay Triangulation algorithm is used for geometric map

feature extraction, (explained in detail in Section 3.3.2.1.1). The extracted

circumference and area from the triangles' are used to find map similarity (given

in Section 3.3.2.1.2). These similar parts are the possible overlapping areas

between the maps. Then RANSAC is used to search these possible areas to

achieve the global map transformation, this process is explained in Section

3.3.2.2.2. The features in the overlapping regions, found by RANSAC, are the

same in different maps. These matched features are merged with the Maximum

Likelihood Estimator, Modified M-Estimator and the Covariance Intersection

Estimator. Figure 42 shows a flow chart of the algorithms used in the study.

Firstly, computational cost analysis of implemented algorithms and their run time

performances are examined, also these algorithms parameter sensitivity analysis

are done. The performance experiments undertaken using the Delaunay

110

Triangulation, similarity metric calculation and the RANSAC algorithms are

given in Section 5.1.1. The performance experiments of the Maximum Likelihood

Estimator, Modified M-Estimator and Covariance Intersection Estimator are given

in Section 5.1.2.1, and the sensitivity analysis of Covariance Intersection

Estimator is given in Section 5.1.2.2.

Figure 42 Multi-Robot Map-Merging Flow Diagram

111

The performance experiments of algorithms given above are carried out using

simulated map and trajectories. The sensor bearing noise, robot velocity noise and

sensor range effects on RANSAC and map similarity performance, and the effects

on performance of the map-merging algorithms are presented in Section 5.2.

In Section 5.3, the performances of the algorithms, given above, are tested on real

world data sets. The sensor bearing noise, robot velocity noise and sensor range

effects with different trajectories on RANSAC and the map similarity

performance, and the effects on performance of the Covariance Intersection and

Modified M-Estimator are given.

Finally, the robustness analysis of the purposed algorithms combination, which

consists of Delaunay Triangulation, RANSAC and Covariance Intersection, is

given in Section 5.4.

5.1. Performance Analysis Experiments

In this section, the performance analyses of the implemented algorithms are

present with a detailed examination of the behaviors of the algorithms under

different conditions.

5.1.1. Global Map Transformation Algorithms

In this section, the global map transformation algorithms as explained in Section

3.4are examined in detail. Firstly, the algorithm computational costs are

investigated with Monte Carlo runs with different input sets. Moreover, the

algorithm parameters are tuned with respect to their computational costs, and their

optimum values are selected for the following experiments.

112

5.1.1.1. Delaunay Triangulation

There are different implementations of the Delaunay Triangulation algorithm,

which are mentioned in Section 3.3.2.1.1. This study applies the MATLAB

default library implementation of this algorithm using the Computational

Geometry Algorithms Library (CGAL). The computational complexity of the

Delaunay Triangulation is given as O(n ∗ log(n)). In this section, computational

cost of this algorithm is analyzed in detail.

The performance experiment of this algorithm requires a landmark data

simulation. This simulation is achieved by using random map generator,

(explained in Section 4.1.1). In this test, the landmark count is varied from 50 to

1000, to analyze the computational cost of the algorithm. The result of this test is

shown in Figure 43, which was repeated 1000 times and the average value is

displayed for outlier elimination.

Figure 43 Sample Size Effect on Delaunay Triangulation Performance

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

Time (msec.)

Sample Number

Sample Size Effect on Delaunay
Triangulation Performance

113

Figure 43 shows the linear relationship between the effects of the sample size on

the algorithm performance. Despite some fluctuations, the time requirement for

fixed sample size being almost linear shows that the number of sample directly

effects the batch calculation of the algorithm.

5.1.1.2. Similarity Metric Calculation

The similarity calculation, explained in detail in Section 3.3.2.1.2 is examined

here, to better understand its computational complexity. The landmark sets of

maps are transformed to the triangle sets by the Delaunay Triangulation

Algorithm. These triangle sets are used as an input for the similarity metric

calculation, which in turn is used for eliminating the irrelevant landmarks and

finding the map similarity. By using this similarity metric, two triangle sets are

compared and their most similar triangle sets generate a matched landmark pairs

list. The computation cost of this metric calculation is examined with the tests

given below.

5.1.1.2.1. Computational Cost

In this experiment, the similarity metric calculation is examined using different

triangle sets generated using normal distributed random landmarks. Figure 44

shows the performance of similarity metric calculation with respect to sample

size. This experiment is repeated 1000 times and the average value is displayed

for outlier elimination.

114

As seen in Figure 44 the time cost of the similarity calculation is exponentially

related with the sample number size. Despite this relation, the computational cost

of this calculation is acceptable for 1000 landmarks, which costs about 14 msec.

Figure 44 The Effect of Sample Size on the Similarity Calculation

Performance

5.1.1.2.2. Success Rate

The similarity success rate refers to the true matched landmark pairs. The true

similar landmark match ratio over all input landmark count shows the success

rate. This rate is examined using different overlap ratios, which are the ratio of the

landmark size of one set over another landmark size set. The overlap ratio change

in the given experiment is illustrated in Figure 45.

0

2

4

6

8

10

12

14

Computational Cost of Similarity Calculation
Time (msec)

Sample Number

115

Figure 45 Illustration of Overlap Ratio Change

In Figure 45, the first darker colored bars represent the stable landmark set, which

is used as the reference map, and the second bars represent the changing landmark

set. The overlap ratio decrease is the decrease in the number of second landmark

set. The ratio started from 100%, which is the full overlap between two landmark

sets, and finished at 0.1, which means that only 10% of the landmark overlaps

with the reference landmark set. The overlap criterion is the tested on the success

rate of similarity calculation algorithm and the results are presented in Figure 46.

In Figure 46, effect of the ratio change on the success rate of the similarity

calculation algorithm can be seen. The experiment is undertaken 100 times and

average value is displayed for outlier elimination.

Although there are some fluctuations, the success rate decreases with reduces in

the overlap ratio. However, in a small set of landmarks such as 100 the success

rate stability even with the overlap ratio of 10% seems promising. The

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10

Landmark Set 1

Landmark Set 2

Test Steps

116

experiment is also under taken for different number of landmark sets, which are

given in the legend in the graph given in Figure 46. The success rate decreases

with the increase in the number of landmarks. This result can be explained

through the increase in the number of landmarks, the probability of finding similar

pattern in the reference landmark set also increases. In fact, the results show that

the overlapped region decrease affects the similarity success in negative way in

large landmark sets such as 1000, which can be seen in the 0.1 overlapped region

performance being below the larger overlapped region performances. However,

the negative effect of the sample size and overlap region ratio does not cause low

success rates in the worst-case scenario the experiment algorithm has a success

rate of 99.465% . Therefore, using this similarity algorithm in the landmark

elimination process before carrying out the transformation matrix search is

efficient in terms of the overall performance.

Figure 46 Effect of Overlap Ratio Change on Similarity Calculation

Performance

0,991

0,992

0,993

0,994

0,995

0,996

0,997

0,998

0,999

1

1,001

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

100
Landmark
200
Landmark
300
Landmark
400
Landmark
500
Landmark
600
Landmark
700
Landmark
800
Landmark

Rate (over 1)Rate (over 1) Success Rate of Similarity Calculation

Landmark Overlap Ratio

117

5.1.1.3. Random Sample Consensus

This part of the study reviews the experiments carried out on the Random Sample

Consensus algorithm and examines the behaviors of the algorithm under different

conditions.

5.1.1.3.1. Computational Cost of Algorithm Steps

The algorithm used for transformation matrix estimation is explained in detail in

Section 3.3.2.2.2. The transformation model used in the map-merging scenario is

a rotation and translation matrix in two-dimensional spaces. For the initial

estimate of this matrix, the algorithm takes Minimum Sample Set (MSS)

randomly and derives a model hypothesis from this set. This derivation cost is

minimal for a smaller sample set for the hypothesis step, however, the whole

landmark set is tested with this model in test step of algorithm, which can result in

high computational cost.

The first experiment is carried out to better understand the computational cost

relation between the RANSAC algorithm steps. In this experiment, the hypothesis

and test steps computational costs are examined with a randomly generated

sample set. Figure 47 presents the results of the experiment carried out 1000 times

and average value is displayed for outlier elimination.

In Figure 47, the time cost of the hypothesis step fluctuates around 0.038 msec,

which shows that the time complexity of the hypothesis step is not related to the

sample number. On the other hand, the test step is directly related to the sample

number and it is seen that the time cost of this step increases if the sample number

118

increases. Another important result shown in this graph is that the hypothesis step

cost starts higher than the cost of the test step. This shows that if the sample

number is below 100, the computational cost of the model is larger than the test

step cost. This is the result of the matrix inversion operations in the test step,

which is given in equation (59).

Figure 47 Time Cost Illustration of Hypothesis and Test Steps

5.1.1.3.2. Success Rate under Noisy Input

In this experiment, success rate of RANSAC with noisy input landmarks is

analyzed. These landmarks are randomly distributed; also, they are disturbed by

different noise levels. In this experiment, Gaussian noise with a zero mean and

different sigma values is added to the randomly generated landmarks. Moreover,

the different number of sample characteristics is also examined. These landmarks

are given to RANSAC just to examine the effect of the noise level. The success

rate of algorithm is achieved by taking the inliers ratio over the whole landmark

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10
Hypothesis Step
Test Step

Time (msec.)

Sample Number

Time Cost Analysis of Steps

119

set. The test is done 1000 times and average value is displayed for outlier

elimination, and its results are given in Figure 48,.

Figure 48 The Success Rate of RANSAC

Figure 48 shows that the RANSAC performance decreases with the increase in the

sigma values of the landmark noises. In the graph, there is a break point at sigma

value 0.3, and it can be seen that the 95% success rate is accomplished even with

a 0.44 sigma value. Moreover, in the experiments a different number of sample

points are tested as given in the legend of the graph in Figure 48. The sample

number effect on the success rate is negligible. The distance threshold parameter

of the algorithm is set to 2 meters, and the Euclidian distance is used as the

distance function of algorithm. These results show that the RANSAC performance

is promising under even noisy environment.

5.1.1.3.3. Success Rate under a Mismatched Noisy Input

In this experiment, the mismatched input effect on the RANSAC success rate is

analyzed. The landmarks are generated by map generator in a randomly

0

0,2

0,4

0,6

0,8

1

1,2

200 Sample

400 Sample

600 Sample

800 Sample

1000 Sample

Success Rate of RANSACRate
(over 1)

Sigma Value

120

distributed manner and they are disturbed with noise. The sigma level of the

Gaussian noise, independently added to the landmarks is maintained as constant to

understand the behavior of the algorithm under the different ratio levels of the

correct landmark pairs. Moreover, the different number of sample characteristic is

also examined. The input of this experiment consists of two landmark sets with

the same mean values but disturbed with independent noises. One of these sets is

selected as the reference and other set is reduced to a given ratio by elimination.

The landmarks set generated by the Random Map Generator is not created by the

distance limitation option, which means that the algorithm is also dealing with

landmarks that are closer than the distance limit of the algorithm.

The calculation of success rate is undertaken by taking the inliers ratio over the

true landmark pairs. In Figure 49, the results are given for the experiment, which

was carried out 1000 times and average value is displayed after outlier

elimination.

Figure 49 Success Rate of RANSAC for Different Match Ratios

0,7

0,75

0,8

0,85

0,9

0,95

1

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

200 Landmark

400 Landmark

Success Rate of RANSACRate (over 1)

True Landmark Match Ratio

121

Figure 49 shows that the success rate of RANSAC increases with the decrease of

the true landmark pair ratio. In the graph, there are some fluctuations because of

the random nature of the algorithm. The increase in the success rate can be

explained by the true landmark pair affecting the overall success more than in the

large set. Although the success rate increases with the match ratio decrease, this

change is negligible. The increase from 0.845 to 0.87 is just 2.5% of the success

rate. This experiment is tested for a different number of sample points as given in

the legend of the graph in Figure 49. The larger sample variety is not tested

because of the test results of the previous experimental results; Figure 48 shows

that sample number effect on success rate is negligible. The distance threshold

parameter of algorithm is set to 2 meters, and Euclidian distance is used as the

distance function of algorithm. The sigma value of the independent landmark

noise is 0.6. The selection of the sigma value is obtained from the results of the

previous experiment results (Figure 48), which give a success rate of around 0.84.

These results show that, the RANSAC performance is promising even under

harsher conditions such as very small true matched ratios. The true matched

landmark pair ratio simulates the overlap ratio of the individual local maps of the

robots. Although the success rate of the smaller match ratios are satisfactory, the

calculation cost of the whole RANSAC procedure needs to be examined. Due to

the random sample selection step of RANSAC, the algorithm iteration time taken

in searching for the best model estimation could diverge.

122

5.1.1.3.4. Success Rate under Mismatched Noisy Input and RST

In this experiment, the performance of algorithm is examined under different

transformation matrixes with different noise levels. The same experimental

procedure given in section 5.1.1.3.3 is applied to the algorithm, but the true

landmark match ratio is taken as one, because the differences in the success rates

are small. The transformation matrix is also randomly generated and noise is

generated with different sigma values. The calculation of the success rate is

carried out by taking the inliers ratio over the undisturbed landmark subset. This

experiment was repeated 1000 times and the average values after outlier

elimination are given in Figure 50.

As shown in Figure 50, the RANSAC performance decreases with the increase of

the sigma values of the landmark noises which is similar to the experimental

results in section 5.1.1.3.3. These results show that the randomly generated

transformation matrix does not affect the RANSAC performance, so even under a

noisy environment with noisy transformation its performance is promising. The

randomly generated transformation matrix simulates the local frame

transformations of the robots’ to that of the other robots e. Therefore, to solve the

unknown initial position problem of the Multi-Robot problem, RANSAC could be

used even in harsher environments.

In this experiment, the calculation time cost of RANSAC is examined in detail.

The same experimental procedure as given in section 5.1.1.3.3 is applied. The

time cost of calculation is measured before and after the whole RANSAC

123

procedure. This experiment was carried out 1000 times and the average value is

displayed after the outlier elimination in Figure 51.

Figure 50 Success Rate of RANSAC under Different Match Ratios

5.1.1.3.5. Computational Cost under Mismatched Noisy Input

In Figure 51, the time cost of RANSAC increases with the decrease of the true

landmark pair ratio. In the graph, there is a breaking point at the ratio of 0.3,

which shows that the algorithm requires more iteration to find the landmark pairs

in small true match ratios. Although there is an increase in the success rate shown

in Figure 49, the increase in time cost is exponential. The increase of ratio from

0.3 to 0.1 results in time cost increase from 2 to 18 msec. which requires a time

that is nine times longer. All the experiments tested for a different number of

sample points as given in the legend of the graph. Although there is not a big

difference between 200 and 400 landmarks the larger sample variety is not tested

since the results of the previous experiment shown in Figure 48revealsthat the

sample number effect on the success rate is negligible. The distance threshold

0

0,2

0,4

0,6

0,8

1

1,2
100 Landmark

200 Landmark

Success Rate of RANSACRate (over 1)Rate (over 1)

Sigma Value

124

parameter of the algorithm is set to 2 meters, and Euclidian distance is used as the

distance function of the algorithm. The sigma value of the independent landmark

noises is given as 0.6. The selection of the sigma value is obtained from the

previous experiment's results (shown in Figure 48), which gives a success rate of

about 0.84.

Figure 51 Computational Cost of RANSAC under Different Match Ratios

These results show that the RANSAC time requirement for harsher conditions

such as very small true matched ratios is too large for real time applications.

Therefore, triangulation and similarity elimination procedures are necessary for

performance improvement. Since the time costs of the Delaunay Triangulation

and the Similarity Calculation are independent from the true landmark match

ratio, all that is the effect of sample size on these algorithms for calculations. The

time requirements of the Delaunay Triangulation and the Similarity Calculation,

given in Figure 43 and Figure 44, are promising. The triangulation time cost for

400 samples is around 0.04 msec. and for the similarity calculation it is around 3

msec. a total of 3.04 msec. and almost 17% of the time cost of RANSAC is under

0

5

10

15

20

25

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

200 Landmark

400 Landmark

Time Cost of RANSACTime (msec)

True Landmark Match Ratio

125

0.1-match ratio. Therefore, the elimination procedure is crucial requirement for

the real time application of RANSAC.

5.1.1.3.6. Success Rate under Different Distance Methods

This experiment examines the success rate of RANSAC under different distance

methods such as the Mahalanobis and Euclidean methods. The experimental

procedure given in Section 5.1.1.3.5 is applied to the algorithm. The noise sigma

value, used for generated landmark positions, is also used for the Mahalanobis

distance calculations. Since the experimental results in Figure 51 show that, the

effect of the sample number on the success rate of RANSAC is negligible; the

sample set is kept constant in this experiment. The sigma value of the noises is

changed from 0.1 to 2 in the experiment, which is carried out 100 times and the

average value is displayed after outlier elimination in Figure 52.

Figure 52 Success rate of RANSAC using Different Distance Calculation

Methods

0

0,2

0,4

0,6

0,8

1

1,2
Euclidean

Mahalanobis

Success Rate of RANSACRate (over 1)Rate (over 1)

Sigma Value

126

In Figure 52, RANSAC with Euclidean performance decreases with the increase

of the sigma values of the landmark noises similar to the experiment results in

Section 5.1.1.3.5. On the other hand, the RANSAC success rate using the

Mahalanobis distance calculation method is almost constant around 60%. The

critical point of the distance calculation method is the one sigma value. The graph

in Figure 52 shows that the performance of RANSAC with the Euclidean method

has a decreasing trend with an increasing sigma value. Despite successful results

in the small sigma values, the Euclidean method does not give satisfactory result

after the one sigma value. The main reason for the success rate decrease of the

Euclidean method is the increase in the sigma value results in the landmark points

too far to be handled. Therefore, if the sigma values are higher in the application

using Mahalanobis distance calculation method has an advantage over the

Euclidean distance calculation method. However, without examining the

computational cost of these methods, this experiment is not sufficient to

understand the performance of the algorithm.

5.1.1.3.7. Computational Cost under Different Distance Methods

In section 5.1.1.3.6 only the success rate of the algorithm with different distance

calculation methods is examined. However, this is not sufficient to understand the

real time applicability of these methods. Therefore, it is necessary to investigate

the computational cost of RANSAC with different distance calculation methods.

The same experimental procedure as given in Section 5.1.1.3.6 is applied to the

algorithm. This experiment was carried out 1000 times, and the average value is

displayed after outlier elimination and the results are given in Figure 53.

127

Figure 53 shows the time cost analysis of the whole RANSAC procedure. The

graph shows that the cost of work with Mahalanobis distance calculation method

requires more time than with the Euclidean distance calculation method. The time

cost with Mahalanobis method fluctuates around 450 msec. The Euclidean

method shows an increase from 4.5 msec. to 50 msec. Despite the100 times longer

time cost requirement, the cost with Euclidean method is far below that of the

Mahalanobis method. Therefore, with small sigma values this technique is more

suited to real time applications.

Figure 53 Computational Cost of RANSAC under Different Distance

Calculation Methods

5.1.2. Map Merging Algorithms

In this section, the map-merging algorithms explained in Section 3.4, are

examined in detail. Firstly, the algorithm performances are tuned with their

parameters, and the optimum parameter set is selected for every algorithm used in

the following experiments. For the evaluation of the algorithms, performance

metrics are used as explained in Section 3.5, and the Monte Carlo run results are

given.

0

100

200

300

400

500

600
Euclidean

Mahalanobis

Time Cost of RANSACTime (msec.)

Sigma Value

128

5.1.2.1. Computational Cost of Algorithms

In this section, every algorithm used for map merging is analyzed with respect to

their computational load; this is a very important issue in systems with a real time

specification. To better understand the algorithms' computational loads; randomly

generated features are merged using these algorithms. This randomness is

obtained by using zero mean Gaussian distributed positions and covariance

matrices. Each algorithm takes these positions and the covariance information and

its computational time is recorded during this process. For stability of the

performance analysis, every test is repeated 1000 times. In this test, the

Covariance Intersection weight value is selected as the constant, which means no

optimization is undertaken. The test results are given in Figure 54.

Figure 54 Computational Cost of Map Merging Algorithms

In Figure 54, Maximum Likelihood estimator's computational time is almost half

that of its competitors, because it does not use the covariance information of the

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09

0,1

2 4 6 8 10

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

se
c.

)

Landmark Count

Computational Cost of Algorithms

Maximum
Likelihood
Estimator

Modified M-
Estimator

Covariance
Intersection with
Constant Weight

129

landmarks. On the other hand, the Modified M-Estimator's computational time is

less than that of the Covariance Intersection Estimator. The reason for this time

difference is the weighting multiplication in the Covariance Intersection

algorithm, given in equations (92) and (93). In fact, the computational time for

both of these estimators is satisfactory for the SLAM application. For instance, the

cost of merging 1000 landmarks is about 10 msec.

To understand the computational load of the Covariance Intersection algorithm,

one more test is implemented using the determinant minimization of the

Covariance Intersection algorithm. These results are given in Table 6 for the

constant weighting parameter and optimum parameter.

Table 6 Computational Cost of Covariance Intersection Algorithm

 Time Cost for

2 landmarks

Time Cost for

10 landmarks

Time Cost for

100 landmarks

Constant weight value 0.018 msec. 0.09 msec. 1 msec.

Optimum weight value 4.3 msec. 21.5 msec. 21.5 msec.

Table 6 shows the computational time requirement of the Covariance Intersection

Estimator with different weight values. It can be seen that for large landmark sets,

the optimization of this algorithm requires about 20 times more time. Therefore,

this algorithm sensitivity analysis should be undertaken carefully as mentioned in

Section 5.1.2.2.1.

130

5.1.2.2. Algorithm Parameter Optimization

In this section, all the map-merging algorithms used in the experiments are

analyzed with their configuration parameters. For the optimization of the

algorithms, first the evaluation criterion must be clarified. The resultant feature

covariance matrix’s determinant and the Normalized Estimated Error Squared are

also used for evaluation. Therefore, the performance of all the map-merging

algorithms must be considered with these criteria.

The Maximum Likelihood estimator does not have any configurable class

parameter; it just assumes the Gaussian distribution over the data and tries to

minimize its error. Similarly, the Modified M-Estimator does have not any

configurable parameter, so only the Covariance Intersection estimator is examined

with its class parameters. The Covariance Intersection estimator has an adaptable

weight parameter, which can be used for any optimization property. The most

important criterion in the evaluation of the algorithms is the determinant of the

resultant covariance matrix. Therefore, this parameter is changed to minimize the

determinant of the resultant covariance matrix. The following experiment shows

the improvement on the determinant with this optimization strategy.

5.1.2.2.1. Covariance Intersection Sensitivity Analysis

The main purpose of this experiment is to undertake a sensitivity analysis to

determine the weight parameter of the Covariance Intersection estimator. For this

purpose, the robots follow the same circular trajectories on the given simulated

map as a test scenario, as given in Figure 55.

131

The scenario given in Figure 55 is implemented with two different robots, which

have different sensors and characteristics. In this experiment, the first robot is

identical to the second robot, but has a constant1-degree sigma bearing noise. On

the other hand, the bearing sigma value of the second robot is changed from 1 to

4.5 degrees. This difference affects the estimated landmark covariance matrices,

which can be seen in Figure 55. After both robots complete their trajectories, their

maps are merged using the Covariance Intersection estimator. The following

experimental results show the different performances of estimator under different

weight values, as given in Figure 56 and Figure 57. These results are obtained

from an average of 500 Monte Carlo runs.

Figure 55 Simulation Scenario of Sensitivity Analysis of Covariance

Intersection

132

Figure 56 Sensor Bearing Noise Effect on the Consistent Landmark Number

Figure 57 Sensor Bearing Noise Effect on Determinant

In Figure 56, it can be seen that the optimum weight value gives almost same

results as the constant weight value. This experiment is not sufficient to evaluate

different parameter performances. Therefore, for this algorithm's weight

parameter selection one more evaluation criterion is required that of the area of

covariance ellipses. In Figure 57, shows that the Covariance Intersection estimator

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4 4.5

C
o

n
si

st
e

n
t

La
n

d
m

ar
k

R
at

io

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on
Consistent Landmark Ratio

Covariance Intersection
Optimum Weigth

Covariance Intersection
Constant Weigth

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

1 1.5 2 2.5 3 3.5 4 4.5

D
e

te
rm

in
an

t

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on the Determinant

Covariance Intersection
Optimum Weigth

Covariance Intersection
Constant Weigth

133

with an optimum weight parameter always has the lowest value, as expected.

These experimental results clearly indicate the trade of between minimum

determinant and consistency. In fact, there is no perfect parameter configuration

for this algorithm therefore; the results of the experiment given in Table 6 are the

main criterion for parameter selection. Since there is a high time cost in the

optimum weight calculation, a constant weight is used in the following

experiments. There is no preferred robot map, so 0.5 is used for the equal

weighting between the robots’ maps.

5.2. Simulated Map and Trajectory Experiments

This section examines the performance of the map merging algorithms using

different simulated maps and trajectories. All the algorithms are used with their

optimum parameter sets, as calculated in Section 5.1. For easy understanding,

merged landmarks covariance matrices are plotted for 2.448 sigma region in

Figure 58.

Figure 58 Covariance Estimations of Map Merging Algorithms

134

In Figure 58, the black and red ellipses represents the robots' landmark estimates,

the blue, green, cyan ellipses represents Maximum Likelihood, Modified M-

Estimator and Covariance Intersection estimations, respectively.

5.2.1. Sensor Bearing Noise Effect on Estimator Performance

In this experiment, the robots' sigma value sensor bearing noise effect on

estimator performance is analyzed to better understand the estimator performances

under different noise levels. Different estimator classes are examined with a

simulated map with a circular trajectory as shown in Figure 59.

Figure 59 Simulated Map and Robot Trajectories

During this experiment, the first robot sigma values are kept constant, while

second robot's bearing sigma value is changed from 0.5 to 4.5 degrees. The

similarity metric success ratio and the RANSAC success ratio are given in the

Sensor Bearing Noise Effect on RANSAC Performanceas shown in Figure 60.

135

The map merging algorithms results are given in Figure 61 and Figure 62, they are

obtained with an average of 500 Monte Carlo runs.

Figure 60 Sensor Bearing Noise Effect on RANSAC Performance

In Figure 60, it can be clearly seen that the performance of map similarity

decreases with the increase in sigma value, which is an expected result. Since the

trajectories of robots are the same, RANSAC performance is always successful

for the map similarity performance above 50%.

In Figure 61, the Sensor bearing noise effect on consistent landmark ratio is given

for different estimators and it can be observed that the consistency of the

Maximum Likelihood estimator is not satisfactory for every sigma value. On the

other hand, the Modified M-Estimator gives satisfactory results, but Covariance

Intersection estimator gives the best results. In fact, this experiment also shows

that the different sigma values of sensors do not affect the consistency, because

the landmark counts are kept almost constant. Although, these results show that

maximum likelihood does not compete with the other evaluation criterion, which

0

20

40

60

80

100

120

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Su
cc

e
ss

 R
at

io
 (

%
)

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on
RANSAC Performance

Map Similarity
Performance

RANSAC Performance

136

is the determinant of the resultant covariance matrix that is tested for a better

evaluation of all the algorithms.

Figure 61 Sensor Bearing Noise Effect on the Consistent Landmark Number

Figure 62 Sensor Bearing Noise Effect on the Determinant

The sensor bearing noise effect on resultant covariance determinant value is

presented in Figure 62 and it is seen that Maximum Likelihood estimator always

has the lowest value, but it is meaningless to use inconsistent values covariance

determinant for comparison. Therefore, the other algorithm results are used for the

evaluation. Although the Modified M-Estimator has a lower determinant value

0

20

40

60

80

0.5 1 1.5 2 2.5 3 3.5 4 4.5C
o

n
si

st
e

n
t

La
n

d
m

ar
k

R
at

io

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on the Consistent
Landmark Ratio

Maximum Likelihood

Modified M-Estimator

Covariance Intersection

0

0,02

0,04

0,06

0,08

0,1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
e

te
rm

in
an

t

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on the Determinant

Maximum Likelihood

Modified M-Estimator

Covariance Intersection

137

than the Covariance Intersection estimator, its consistency decreases from 50% to

40%as seen in Figure 61. However, the Covariance Intersection estimator

consistent landmark ratio decreases from 65% to 55%, and is always higher than

the Modified M-Estimator's ratio.

In this experiment, the Covariance Intersection estimator gives more consistent

results than its competitors. However, its determinant values for the estimated

covariance matrix is higher than its competitors. As stated above, it is meaningless

to use inconsistent values of the covariance determinant for comparison.

Therefore, the conclusion is that the Covariance Intersection algorithm

performance is satisfactory and better than its competitors.

5.2.2. Robot Velocity Effect on Estimator Performance

In this experiment, the robot’s velocity noise effect on estimator performance is

analyzed for a better understanding of the estimator performances under different

noise levels. To achieve this different estimator classes are examined with the

same map and trajectory as in the experiment in Section 5.2.1.

Rather than changing sensor bearing noise level, the robot’s velocity noise level is

changed from 0.05 to 0.45 meters while the first robot’s velocity sigma level is

kept constant at 0.03 meters. The similarity metric success ratio and RANSAC

success ratio are given in Figure 63. These experiment results are obtained from

an average of 500 Monte Carlo runs and given in the Figure 64.

138

Figure 63 Robot Velocity Noise Effect on RANSAC Performance

This experiment gives similar results to the experiment in Section 5.2.1, which

shows the consistent performance of the estimators under different noise level of

robot’s velocity. Moreover, it is concluded that the Maximum Likelihood is not

applicable in distributed systems, because its results are far below than its

competitors. Therefore, this estimator is omitted from the following experiments.

Figure 64 Robot Velocity Noise Effect on the number of Consistent

Landmarks

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Su
cc

e
ss

 R
at

io
 (

%
)

Noise Sigma (meters/sec)

Robot Velocity Noise Effect on Map Similarity and
RANSAC Performance

Map Similarity
Performance

RANSAC Performance

0

20

40

60

80

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

C
o

n
si

st
e

n
t

La
n

d
m

ar
k

R
at

io

Noise Sigma (meters/sec)

Robot Velocity Noise Effect on the Consistent
Landmark Ratio

Maximum Likelihood

Modified M-Estimator

Covariance Intersection

139

Figure 65 Robot Velocity Noise Effect on the Determinant

5.2.3. Trajectory and Sensor Bearing Effect on Map Merging Performance

In this experiment, the effect of the trajectory and sensor bearing noise on

estimator performance is examined for a better understanding of the estimator

performances under different noise levels with different trajectories. Different

estimator classes are examined with simulated map with circular trajectory, which

is given in Figure 66.

In this experiment, the robots' sigma value of bearing noise effect on the

estimators' performance is examined. During this experiment, the robot sigma

values are kept constant, while the second robot's bearing sigma value is changed

from 0.5 to 4.5 degrees. The similarity metric success ratio and RANSAC success

ratio are given in Figure 67. These results of the experiment of the map merging

algorithms, obtained with average of 500 Monte Carlo runs, are given in Figure

68 and Figure 69.

0

0,005

0,01

0,015

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

D
e

te
rm

in
an

t

Noise Sigma (meters/sec)

Robot Velocity Noise Effect on the Determinant

Maximum Likelihood

Modified M-Estimator

Covariance Intersection

140

Figure 66 Simulated Map and Trajectory Illustration

In Figure 66, the overlapping area is around 5% of the total explored area, which

makes it very difficult to find the global transformation matrix.

Figure 67 clearly shows that the performance of map similarity and RANSAC

decreases with the increase in the sigma value, which is an expected result.

Furthermore, the similar characteristic can also be seen in the graph, this indicates

that map similarity and RANSAC are highly correlated with each other. It can

also be seen that RANSAC performance is satisfactory even with a very low map

similarity performance. For instance, RANSAC success ratio is 60% for 40%

success ratio of map similarity.

141

Figure 67 Robot Velocity Noise Effect on Map Similarity and RANSAC

Performance

Figure 68 Sensor Bearing Noise Effect on the Consistent Landmark Ratio

0

20

40

60

80

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Su
cc

e
ss

 R
at

io
 (

%
)

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on Map Similarity and
RANSAC Performance

Map Similarity
Performance

RANSAC Performance

0

20

40

60

80

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

n
si

st
e

n
t

La
n

d
m

ar
k

R
at

io

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on the Consistent
Landmark Ratio

Modified M-Estimator

Covariance Intersection

142

Figure 69 Sensor Bearing Noise Effect on the Determinant

In this experiment, the trajectory effect on estimators’ performances is also tested

under different sensor noise. These results of the experiment are given in Figure

68 and Figure 69 for the Covariance Intersection and the Modified M-Estimator.

In fact, similar results are obtained from the previous experiments, this shows that

the trajectory change does not affect the map merging algorithms' performances.

5.2.4. Trajectory and Sensor Range Effect on Map Merging Performance

In this experiment, the effect of the trajectory and sensor range on the estimator

performance is analyzed to better understand the estimator performances under

different noise levels with different trajectories. The different estimator classes are

examined using a simulated map with circular trajectory as shown in Figure 70.

0

0,0001

0,0002

0,0003

0,0004

0,0005

0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
e

te
rm

in
an

t

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on the Determinant

Modified M-Estimator

Covariance Intersection

143

Figure 70 Simulated Map and Trajectory Illustration

Figure 70 shows an overlapping area of about 5% of the total explored area, which

makes it very difficult to find the global transformation matrix. Under these

limited conditions obtained with average of 500 Monte Carlo runs, the map

similarity and RANSAC success performance is given in Figure 71, which are.

Figure 71 Sensor Range Effect on Map Similarity and RANSAC

Performance

0

20

40

60

80

100

120

9 10 11 12 13 14 15 16 17

Su
cc

e
ss

 R
at

io
 (

%
)

Sensor Range (meters)

Sensor Bearing Noise Effect on Map Similarity and
RANSAC Performance

Map Similarity
Performance

RANSAC Performance

144

In Figure 71, shows that the performance of map similarity and RANSAC is

increases with the increase in the sensor range, which is an expected result. A

similar characteristic can also be seen in the graph, which shows that they are

highly correlated. It is also seen that, even with very low map similarity

performance, the RANSAC performance is satisfactory, at around 100% at sensor

range 9 with 40% map similarity success.

The trajectory effect is tested under different sensor ranges, by changing the

sensor range of the second robot from 9 to 12. The results of the experiment are

given in Figure 72 and Figure 73for the Covariance Intersection and Modified M-

Estimator.

In fact, similar results were obtained from the previous experiments, but

consistency decreases with the increase in the sensor range. The second robot

does not close its loop, when the overlapping exists. Due to the robot’s position

errors erroneous landmark estimates are created. Therefore, consistency decreases

with the increase in sensor range. Moreover, the increase in the sensor range

results in an increase in the overlapping area. However, this area is unstable and

the landmarks in this area are erroneous because of the robot’s cumulative

position errors. As a result, this experiment shows that the increase in the sensor

range can result in a decrease in consistency if the overlapping area is not

sufficiently consistent.

145

Figure 72 Sensor Range Effect on the Consistent Landmark Ratio

Figure 73 Sensor Range Effect on the Determinant

5.3. Real World Map and Trajectory Experiments

In this section, map merging algorithm performances are examined using real

world maps and trajectories. All the algorithms are used with their optimum

parameter sets as calculated in section 5.1.

5.3.1. Sensor Bearing Noise Effect on Map Merging Performance

This section presents the examination of the map-merging performance using

different trajectories from the Victoria Park dataset. This dataset and the

0

20

40

60

80

100

9 10 11 12 13 14 15 16 17

C
o

n
si

st
e

n
t

La
n

d
m

ar
k

R
at

io

Sensor Range (meters)

Sensor Range Effect on the Consistent Landmark
Ratio

Modified M-Estimator

Covariance Intersection

0

1

2

3

4

5

9 10 11 12 13 14 15 16 17

N
EE

S

Sensor Range (meters)

Sensor Range Effect on NEES

Modified M-Estimator

Covariance Intersection

146

extraction technique are explained in detail in Sections 4.2.1.1 and 4.2.2.1, and

their extracted maps are given in Figure 74.

Figure 74 The Victoria Park Extracted Map and Trajectory Illustration

The robots' trajectories with their extracted map are given in Figure 74. This

experiment is carried out by changing second robot's sensor sigma value of

bearing noise from 0.5to 4.5. Based on these conditions, map similarity and the

RANSAC success performance obtained with an average of 50 Monte Carlo runs

is given in Figure 75.

Figure 75 clearly shows that the success ratios of the performance of map

similarity decreases from 90% to 70% and RANSAC is stable at 100%. The stable

and perfect performance of RANSAC is an expected result of successful map

similarity performance. Therefore, these results are consistent with the results of

the simulated data set. The successful performance of map similarity algorithm is

147

an expected result of closed loops in the trajectories. However, it can be seen that

the map similarity performance is decreasing due to the non-deterministic SLAM

outputs.

Figure 75 Sensor Bearing Noise Effect on Map Similarity and RANSAC

Performance

The results of this experiment concerning the Covariance Intersection and

Modified M-Estimator are similar to those observed in the previous experiments.

Therefore, the consistent landmark ratio and determinant graphics are not included

in this section. To better understand these methods' performances, their unfiltered

results can also be examined. In fact, the consistency test does not bias their

errors, but the determinant without its relationship with consistency does not give

clear ranking results. Therefore, the results of Normalized Estimation Error

Squared (NEES), which is unfiltered output of the estimators, explained in detail

in Section 3.5, are used for better ranking and given in Figure 76.

Despite some fluctuations, Figure 76 shows that there are results that are

consistent with the previous simulated environment experiment. This experiment

0

20

40

60

80

100

120

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Su
cc

e
ss

 R
at

io
 (

%
)

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on Map Similarity and
RANSAC Performance

Map Similarity
Performance

RANSAC Performance

148

clearly demonstrates that the NEES of Covariance Intersection algorithm remains

below the NEES of Modified M-Estimator.

Figure 76 Sensor Bearing Noise Effect on Consistent Landmark Ratio

5.3.2. Robot Velocity Noise Effect on Map Merging Performance

In this experiment, the same map and trajectories given in Figure 74areused, and

the experiment is carried out by changing the velocity sigma value of the second

robot from 0.05 to 0.45. Under these conditions, map similarity and the RANSAC

success performance is given in Figure 77. The results were obtained from an

average of 250 Monte Carlo runs.

Figure 77 shows clearly that the performance of the map similarity decreases from

an 80% to a 70% success ratio, and RANSAC is stable at 100%. The stable

performance of RANSAC is an expected result of a successful map similarity

performance. Therefore, these results are consistent with the simulated dataset

results and previous real world dataset results.

0

1

2

3

4

5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
EE

S

Sensor Bearing Noise Sigma (degree)

Sensor Bearing Noise Effect on NEES

Modified M-Estimator

Covariance Intersection

149

Figure 77 Robot Velocity Noise Effect on Map Similarity and the RANSAC

Performance

The results from these experiments for the Covariance Intersection and Modified

M-Estimator were similar to the previous experiments. Therefore, the consistent

landmark ratio and determinant graphics are omitted in this section. The

Normalized Estimation Error Squared results are given in Figure 78. This

experiment clearly shows that the NEES of Covariance Intersection algorithm is

below the NEES of the Modified M-Estimator.

Figure 78 Robot Velocity Noise Effect on NEES

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Su
cc

e
ss

 R
at

io
 (

%
)

Noise Sigma (meters/sec.)

Robot Velocity Effect on Map Similarity and the
RANSAC Performance

Map Similarity
Performance

RANSAC Performance

0

1

2

3

4

5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

N
EE

S

Noise Sigma (meters/sec.)

Robot Velocity Noise Effect on NEES

Modified M-Estimator

Covariance Intersection

150

5.3.3. Sensor Range Effect on the Map Merging Performance

In this experiment, the map and trajectories given in Figure 79 are used, and

experiment is implemented by changing second sensor range from 9 to 17.

Figure 79 The Victoria Park Extracted Map and Trajectory Illustration

For these conditions, the map similarity and the RANSAC success performance

are given in Figure 80; the results were obtained from an average of 500 Monte

Carlo runs.

In Figure 80, the performance of map similarity can be clearly seen to be

increasing from a 60% to an 80% success ratio, and RANSAC is stable at 100%.

The stable performance of RANSAC is an expected result of successful map

similarity performance. Therefore, these results are consistent with the simulated

dataset results and previous real world dataset results.

151

Figure 80 Sensor Range Effect on Map Similarity and the RANSAC

Performance

The results from this experiment for the Covariance Intersection and Modified M-

Estimator show similar results to the previous experiments. Therefore, the

consistent landmark ratio and determinant graphics are omitted in this section.

The Normalized Estimation Error Squared results are given in Figure 81. This

experiment reveals that the NEES of the Covariance Intersection algorithm is

below the NEES of the Modified M-Estimator.

To conclude, these real world dataset experiments show that the RANSAC and

map similarity technique used in this thesis give satisfactory results. This is an

expected result of RANSAC, because of its outlier elimination property. In fact,

RANSAC gives 80% success rate even with the 60% success rate of the map

similarity output, as shown in Section 5.2.3. This also reveals that triangle

similarity is an appropriate elimination technique to increase the performance of

RANSAC even in harsher environments. Moreover, the Covariance Intersection

Estimator gives more consistent map merging results than its competitors under

0

20

40

60

80

100

120

9 10 11 12 13 14 15 16 17

Su
cc

e
ss

 R
at

io
 (

%
)

Sensor Range (meters)

Sensor Bearing Noise Effect on Map Similarity and
the RANSAC Performance

Map Similarity
Performance

RANSAC Performance

152

different maps and trajectories with different sensor and robot noise levels. In fact,

due its geometric property, which satisfies any degree of correlation between

landmarks this is the expected result for the Covariance Intersection.

Figure 81 Sensor Range Effect on NEES

5.4. Robustness Analysis of Applied Algorithms

In this section, performance of purposed algorithms, which are Delaunay

Triangulation, RANSAC and Covariance Intersection, are examined in terms of

their robustness by using real world maps and trajectories. All the algorithms are

used with their optimum parameter sets as calculated in section 5.1.

In this experiment, all of the combinations of the trajectories given in Figure 40

are used, and experiment is implemented with the given sensor and robot

configuration in Figure 82.

0

1

2

3

4

5

9 10 11 12 13 14 15 16 17

N
EE

S

Sensor Range (meters)

Sensor Range Effect on NEES

Modified M-Estimator

Covariance Intersection

153

Figure 82 The Victoria Park Map and Trajectory Illustration

For these conditions, the Delaunay Triangulation, map similarity, RANSAC and

Covariance Intersection robustness performance is given in Table 7, the results

were obtained from an average of 50 Monte Carlo runs, and the ground truth

positions of the landmarks are used for the calculation of the NEES values.

Table 7 The NEES values of Purposed Algorithms

Victoria Park Merged

Maps

NEES of

Robot 1's Map

NEES of

Robot 2's Map

NEES of

Merged Map

trajectory2 & trajectory1 2,31 4,38 1,54

trajectory2 & trajectory3 2,46 2,64 2,40

trajectory2 & trajectory4 2,92 3,08 2,14

trajectory3 & trajectory1 2,65 3,70 1,84

trajectory3 & trajectory4 2,95 3,13 2,29

trajectory4 & trajectory1 3,14 3,93 2,39

154

In Table 7, NEES values of landmarks in overlapping region of Robot 1's map and

Robot 2's map, and NEES values of merged landmarks are given. This experiment

reveals that the NEES values of merged map are always below the NEES of the

individual maps of the robots under given experimental specifications.

To conclude, these real world dataset experiments show that, the purposed

algorithms used in this thesis give satisfactory results. In fact, merging different

sources of information gives more precise and correct results, which is an

expected result of map merging process.

155

CHAPTER 6

6. CONCLUSION AND FUTURE WORK

In this chapter, the overall summary of the completed work, the contributions of

the study, and the experimental results will be presented.

In this thesis, a multi robot SLAM problem is addressed focusing on the map

merging issue. The aim is to offer a practical solution to the mapping and

localization problem by using the individual robot maps in a team format. This

problem is given in detail in Chapter 1. A literature search is undertaken to collate

different solutions for the single and multi robot SLAM problems, together with

different mapping, data association, multi robot map merging, and map

performance evaluation techniques.

Firstly, the single robot SLAM problem is examined and a detailed explanation of

the Kalman Filter and its expansions, such as Extended Kalman Filter and

Compressed Extended Kalman Filter were given. The Compressed Extended

Kalman Filter was selected because it has a low performance cost and satisfactory

precision. Moreover, the data association issue was examined with different

techniques and their detailed formulations and comparisons are given in the

Literature Survey Chapter 2 and the Theoretical Background Chapter 3.

156

The multi robot SLAM problem is explained by comparison with a single robot

case. For instance, extra issues, such as task sharing, communication, and map

merging are explained. Moreover, benefits of multi robot solution are also given

for comparison. The map merging issue, which is the main purpose of this study,

is investigated under different architectures. Centralized, decentralized, and

distributed architectures were explained and their advantages and disadvantages

were given. Furthermore, a detailed literature survey concerning map-merging

issue was presented.

The map merging issue is investigated under two main cases, that of the known

relative initial positions of the robots, and the unknown relative positions of the

robots. For both of these cases solutions from the literature are presented, and a

comparison is given. The unknown initial position, which is a harder problem than

known initial position case was selected as a specification of this study. This

problem is referred to as map alignment in the literature but in this thesis is called

global map transformation. Different algorithms for the solution of this problem

are examined in detail; and their detailed formulations are given in theoretical

background chapter.

The global map transformation issue is examined through two main approaches.

In first approach, the robots estimate the relative position of the other robots using

the relative measurement of the robot. For this approach, a detailed formulation

for estimation of the transformation matrix is given in the Theoretical Background

Chapter 3. For the second approach, the robots share their map information with

157

their neighbor robots within communication range. For this approach, there are

two sub parts; finding the map similarity between transferred landmarks and the

search for the transformation matrix. These two issues are explained in detailed

and solutions in the literature are given the theoretical background chapter. For

solution to the map similarity problem, geometric feature extraction algorithms

and similarity calculation techniques, such as the Delaunay Triangulation,

topological feature extraction are drawn from the literature and a comparison of

their performance is given. For the transformation search, the Adaptive Random

Walk, Iterative Translation Search and Random Sample Consensus algorithms are

explained and their formulations given.

For final part of the map-merging process, different techniques are used to merge

associated (matched) landmark pairs into a more precise single landmark. The

result of the literature survey on these techniques is given together with an

investigation into the sensor data-fusion issue. To resolve this problem, different

techniques such as Maximum Likelihood Estimator, Modified M-Estimator,

Covariance Intersection Estimator, Orthogonal Gnanadesikan-Kettenring

Estimator, Hybrid Covariance Intersection and Orthogonal Gnanadesikan-

Kettenring Estimators are investigated in detail.

For simulation purposes, the open source single robot SLAM with Compressed

Extended Kalman Filter is extended to the multi robot SLAM simulator. This

extended simulator can load previously generated maps and trajectories, and

visualize them. In the SLAM simulation, all this data is hidden from the robot and

158

they are given as input to the robots with Gaussian distributed noise. The robot's

true and estimated positions with covariance ellipse, the true and estimated

positions of the measured landmarks with covariance ellipses are visualized by the

simulator. All the noise adjustments are enabled by user interfaces, which are

implemented in MATLAB GUI from coding created by the author of this thesis.

This gives an easy user interaction with the simulator, and the algorithms can be

tested using these interfaces. For instance, sensor range, sensor bearing and range

noise, robot velocity noise, robot angular velocity noise levels can be adjusted

easily by this interface for both robots. For detailed experiments, Monte Carlo

analysis option is added to simulation code. Moreover, different real world

datasets, such as Central Park, Victoria Park maps and related trajectories are

generated manually for realistic experiments. In addition, manual map and

trajectory entry ability is added to simulator for new map and trajectory entries.

First part of global map transformation, which is map similarity problem is solved

by implementation of Delaunay Triangulation and similarity metric of these

triangles. Second part, which is transformation search, is solved with RANSAC

implementation. In this implementation, different distance methods and

transformation matrix equations are implemented and integrated.

Map merging problem is solved with Maximum Likelihood Estimator, Modified

M-Estimator, and Covariance Intersection Estimator implementations.

For evaluation of map-merging algorithms, detailed literature survey is conducted

and related works about this study is given in literature chapter. Most suitable

159

evaluation metrics are implemented for algorithm evaluations in experiments and

results chapter. All evaluations of algorithms are done with respect to these

metrics.

In experimental part of the study, firstly all algorithms' sensitivity analysis and

their run time performances are examined with Monte Carlo runs. The most

successful parameter sets of the algorithms are selected by these analyses.

Secondly, their performances are compared with simulated map and trajectory

data under different conditions. For instance, sensor bearing noise effect, robot's

velocity noise effect, sensor range effect, and different trajectory effects are

examined by keeping other variable parameters as constant and changing the

objective parameter in logical values. Then, similar tests are conducted with real

world datasets. All experimental results are represented after running Monte Carlo

runs and taking average values of these runs. These experiments show that

RANSAC and map similarity technique used in this thesis gives satisfactory

results even in harsher environments, which is simulated with real world datasets.

Moreover, Covariance Intersection Estimator gives more consistent map merging

results than its competitors under different maps and trajectories with different

sensor and robot noise levels. Finally, purposed combination of algorithms, which

consists of Delaunay Triangulation, RANSAC and Covariance Intersection, is

examined with Victoria Park Map and all possible combinations of trajectories.

This experiment reveals that robustness of the purposed combination of

algorithms.

160

To conclude, in this thesis the map-merging problem of the multi robot SLAM is

examined in detail. Different approaches in literature are presented and compared.

The most suitable algorithms are implemented and their formulations are given as

theoretical background. For comparisons of implemented algorithms, literature

survey is conducted and appropriate evaluation technique is implemented. For

simulation environment, multi robot simulator with extended and user-friendly

graphical user interface is implemented. In experimental part of the study,

algorithms are compared with respect to given evaluation criteria, and their

comparison results are presented after the Monte Carlo runs in simulation

environment. Moreover, it is conducted that, the combination of algorithms,

Delaunay Triangulation, triangle similarity, RANSAC and Covariance

Intersection Estimator gives satisfactory results with tolerable time requirements

for the solution of distributed map merging problem.

Finally, suggestions concerning future work to extend this study are given below.

 In the current work, global map transformation issue is handled by using a

map overlap technique. The detailed formulation of the alternative

technique, of using the relative measurements of robots, is given but it is

not implemented. In future, the implementation and performance

evaluation of these two techniques may be compared.

 In this work, the Delaunay Triangulation and a similarity metric based on

these triangles are implemented. However, the literature survey in this

161

thesis mentions various techniques such as using topological structure of

the map. These techniques may be applied and compared.

 The Random Sample Consensus algorithm is used for the multi-robot data

association issue in this study. However, the evaluation of alternative

techniques such as the Adaptive Random Walk and the Iterative

Translation Search may be a beneficial contribution to the SLAM

problem.

 Although detailed explanations and comparisons of different map merging

architectures are given, only the distributed approach is examined.

Therefore, centralized and decentralized architectures may be

implemented for the performance analysis and the results analyzed.

 In this study, the Compressed Extended Kalman Filter is used as

probabilistic SLAM algorithm. The effect of alternative SLAM algorithms

on map-merging performance can also be investigated.

162

163

REFERENCES

[1] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45.

2002.

[2] D. Hong-de, D. Shao-wu, C. Yuan-cai, and W. Guang-bin, “Performance

Comparison of EKF / UKF / CKF for the,” TELKOMNIKA, vol. 10, no. 7,

pp. 1692–1699, 2012.

[3] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map building and

localization for an autonomous mobile robot,” Proc. IROS ’91IEEE/RSJ

Int. Work. Intell. Robot. Syst. '91, 1991.

[4] J. A. Castellanos, J. M. Martinez, J. Neira, and J. D. Tardos, “Simultaneous

map building and localization for mobile robots: a multisensor fusion

approach,” Proceedings. 1998 IEEE Int. Conf. Robot. Autom. (Cat.

No.98CH36146), vol. 2, 1998.

[5] J. A. Castellanos, J. D. Tardos, and G. Schmidt, “Building a global map of

the environment of a mobile robot: the importance of correlations,” Proc.

Int. Conf. Robot. Autom., vol. 2, 1997.

[6] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous

localization and map-building algorithm for real-time implementation,”

IEEE Trans. Robot. Autom., vol. 17, pp. 242–257, 2001.

[7] J. E. Guivant, F. R. Masson, and E. M. Nebot, “Simultaneous localization

and map building using natural features and absolute information,” in

Robotics and Autonomous Systems, 2002, vol. 40, pp. 79–90.

[8] E. Ferranti, N. Trigoni, and M. Levene, “Brick&Mortar: An on-line multi-

agent exploration algorithm,” in Proceedings - IEEE International

Conference on Robotics and Automation, 2007, pp. 761–767.

[9] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:

part I,” IEEE Robot. Autom. Mag., vol. 13, 2006.

[10] W. H. Huang, “Topological Map Merging,” The International Journal of

Robotics Research, vol. 24. pp. 601–613, 2005.

164

[11] A. Birk and S. Carpin, “Merging occupancy grid maps from multiple

robots,” Proc. IEEE, vol. 94, pp. 1384–1397, 2006.

[12] H. Kretzschmar, C. Stachniss, and G. Grisetti, “Efficient information-

theoretic graph pruning for graph-based SLAM with laser range finders,” in

IEEE International Conference on Intelligent Robots and Systems, 2011,

pp. 865–871.

[13] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and S.

Teller, “Multiple relative pose graphs for robust cooperative mapping,” in

Proceedings - IEEE International Conference on Robotics and Automation,

2010, pp. 3185–3192.

[14] W. Maddern, M. Milford, and G. Wyeth, “Continuous appearance-based

trajectory SLAM,” in Proceedings - IEEE International Conference on

Robotics and Automation, 2011, pp. 3595–3600.

[15] Y. H. Choi and S. Y. Oh, “Grid-based visual SLAM in complex

environments,” J. Intell. Robot. Syst. Theory Appl., vol. 50, pp. 241–255,

2007.

[16] R. Sim and J. J. Little, “Autonomous vision-based exploration and mapping

using hybrid maps and Rao-Blackwellised particle filters,” in IEEE

International Conference on Intelligent Robots and Systems, 2006, pp.

2082–2089.

[17] K. L. Ho and P. Newman, “Loop closure detection in SLAM by combining

visual and spatial appearance,” Rob. Auton. Syst., vol. 54, pp. 740–749,

2006.

[18] K. M. Wurm, C. Stachniss, and G. Grisetti, “Bridging the gap between

feature- and grid-based SLAM,” Rob. Auton. Syst., vol. 58, pp. 140–148,

2010.

[19] I. Tena Ruiz, S. de Raucourt, Y. Petillot, and D. M. Lane, “Concurrent

mapping and localization using sidescan sonar,” IEEE J. Ocean. Eng., vol.

29, pp. 442–456, 2004.

[20] J. W. Fenwick, P. M. Newman, and J. J. Leonard, “Cooperative concurrent

mapping and localization,” Proc. 2002 IEEE Int. Conf. Robot. Autom. (Cat.

No.02CH37292), vol. 2, 2002.

[21] H. F. Durrant-Whyte, “An Autonomous Guided Vehicle for Cargo

Handling Applications,” The International Journal of Robotics Research,

vol. 15. pp. 407–440, 1996.

165

[22] G. Tuna, K. Gulez, V. Cagri Gungor, and T. Veli Mumcu, “Evaluations of

different Simultaneous Localization and Mapping (SLAM) algorithms,” in

IECON Proceedings (Industrial Electronics Conference), 2012, pp. 2693–

2698.

[23] Uhlmann Jeffrey K., “Dynamic map building and localization for

autonomous vehicles,” University of Oxford, 1995.

[24] S. J. Julier and J. K. Uhlmann, “Using covariance intersection for SLAM,”

Rob. Auton. Syst., vol. 55, pp. 3–20, 2007.

[25] S. J. Julier and J. K. Uhlmann, “Simultaneous localisation and map

building using split covariance intersection,” Proc. 2001 IEEE/RSJ Int.

Conf. Intell. Robot. Syst. Expand. Soc. Role Robot. Next Millenn. (Cat.

No.01CH37180), vol. 3, 2001.

[26] I. T. Ruiz, Y. Petillot, D. M. Lane, and C. Salson, “Feature extraction and

data association for AUV concurrent mapping and localisation,” Proc.

2001 ICRA. IEEE Int. Conf. Robot. Autom. (Cat. No.01CH37164), vol. 3,

2001.

[27] M. Tomono, “Robust 3D SLAM with a stereo camera based on an edge-

point ICP algorithm,” 2009 IEEE Int. Conf. Robot. Autom., 2009.

[28] H. Andreasson, A. Treptow, and T. Duckett, “Localization for Mobile

Robots using Panoramic Vision, Local Features and Particle Filter,” Proc.

2005 IEEE Int. Conf. Robot. Autom., 2005.

[29] Y. Li and E. B. Olson, “Extracting general-purpose features from LIDAR

data,” in Proceedings - IEEE International Conference on Robotics and

Automation, 2010, pp. 1388–1393.

[30] J. Neira and J. D. Tardós, “Data association in stochastic mapping using the

joint compatibility test,” IEEE Trans. Robot. Autom., vol. 17, pp. 890–897,

2001.

[31] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, vol.

7. 1973, p. 482.

[32] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications

to Tracking and Navigation, vol. 9. 2001, p. 584.

[33] A. Marjovi, J. G. Nunes, L. Marques, and A. De Almeida, “Multi-robot

exploration and fire searching,” in 2009 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS 2009, 2009, pp. 1929–

1934.

166

[34] H. Durrant-Whyte, M. Stevens, and E. Nettleton, “Data fusion in

decentralised sensing networks,” … Conf. Inf. Fusion, pp. 2–7, 2001.

[35] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully distributed

SLAM using constrained factor graphs,” in IEEE/RSJ 2010 International

Conference on Intelligent Robots and Systems, IROS 2010 - Conference

Proceedings, 2010, pp. 3025–3030.

[36] S. Grime and H. F. Durrant-Whyte, “Data fusion in decentralized sensor

networks,” Control Engineering Practice, vol. 2. pp. 849–863, 1994.

[37] F. Castanedo, “A review of data fusion techniques.,”

ScientificWorldJournal., vol. 2013, p. 704504, 2013.

[38] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “Towards multi-

vehicle simultaneous localisation and mapping,” Proc. 2002 IEEE Int.

Conf. Robot. Autom. (Cat. No.02CH37292), vol. 3, 2002.

[39] E. Nettleton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh,

“Decentralised SLAM with low-bandwidth communication for teams of

vehicles,” Springer Tracts Adv. Robot., vol. 24, pp. 179–188, 2006.

[40] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, “Rao-blackwellized

particle filters multi robot SLAM with unknown initial correspondences

and limited communication,” in Proceedings - IEEE International

Conference on Robotics and Automation, 2010, pp. 243–249.

[41] A. Cunningham, K. M. Wurm, W. Burgard, and F. Dellaert, “Fully

distributed scalable smoothing and mapping with robust multi-robot data

association,” in Proceedings - IEEE International Conference on Robotics

and Automation, 2012, pp. 1093–1100.

[42] X. S. Zhou and S. I. Roumeliotis, “Multi-robot SLAM with unknown initial

correspondence: The robot rendezvous case,” in IEEE International

Conference on Intelligent Robots and Systems, 2006, pp. 1785–1792.

[43] G. Dedeoglu and G. S. Sukhatme, “Landmark-based Matching Algorithm

for Cooperative Mapping by Autonomous Robots,” Distrib. Auton. Robot.

Syst. 4, pp. 251–260, 2000.

[44] K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart, “Map merging

for distributed robot navigation,” Proc. 2003 IEEE/RSJ Int. Conf. Intell.

Robot. Syst. (IROS 2003) (Cat. No.03CH37453), vol. 1, 2003.

167

[45] S. Saeedi, L. Paull, M. Trentini, and H. Li, “Neural network-based multiple

robot simultaneous localization and mapping,” in IEEE International

Conference on Intelligent Robots and Systems, 2011, pp. 880–885.

[46] S. Carpin and G. Pillonetto, “Robot motion planning using adaptive

random walks,” 2003 IEEE Int. Conf. Robot. Autom. (Cat.

No.03CH37422), vol. 3, 2003.

[47] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm in

the presence of unknown correlations,” Proc. 1997 Am. Control Conf. (Cat.

No.97CH36041), vol. 4, 1997.

[48] P. J. Huber, “Robust Statistics,” Statistics (Ber)., vol. 60, pp. 1–11, 2004.

[49] P. J. Huber, Robust Statistics, vol. 82. 1981, p. 308.

[50] Sagepub, “ROBUST REGRESSION FOR THE LINEAR MODEL.”

[Online]. Available: http://www.sagepub.com/upm-

data/17839_Chapter_4.pdf, last visited on October 2014.

[51] A. Zisserman, “Estimators - ML, LS, MAP.” [Online]. Available:

http://www.robots.ox.ac.uk/~az/lectures/est/lect34.pdf, last visited on

October 2014.

[52] R. Gnanadesikan and J. Kettenring, “Robust estimates, residuals, and

outlier detection with multiresponse data,” Biometrics, vol. 28, pp. 81–124,

1972.

[53] J. Sequeira, A. Tsourdos, and S. B. Lazarus, “Robust covariance estimation

for data fusion from multiple sensors,” IEEE Trans. Instrum. Meas., vol.

60, pp. 3833–3844, 2011.

[54] A. Bredenfeld, U. Visser, I. Noda, Y. Takahashi, P. Fidelman, and W.

Nowak, RoboCup 2006: Robot Soccer World Cup X, vol. 4020. 2006, pp.

716–723.

[55] A. Finn, A. Jacoff, M. Del Rose, B. Kania, J. Overholt, U. Silva, and J.

Bornstein, “Evaluating autonomous ground-robots,” J. F. Robot., vol. 29,

pp. 689–706, 2012.

[56] D. Lee, “The map-building and exploration strategies of a simple sonar-

equipped robot,” Disting. Diss. Comput. Sci., 19996.

[57] S. Schwertfeger, “Robotic Mapping in the Real World: Performance

Evaluation and System Integration.,” Jacobs Univ., 2012.

168

[58] T. Yairi, “Covisibility-based map learning method for mobile robots,”

Pasific Rim Int. Conf. Artif. Intell., 2004.

[59] A. I. Wagan, A. Godil, and X. Li, “Map quality assessment,” Proc. 8th

Work. Perform. Metrics Intell. Syst. - Permis ’08, p. 278, 2008.

[60] J. Klippenstein and H. Zhang, “Performance evaluation of visual SLAM

using several feature extractors,” 2009 IEEE/RSJ Int. Conf. Intell. Robot.

Syst., pp. 1574–1581, 2009.

[61] Centre for Autonomous Systems, “The Compressed Extended Kalman

Filter (CEKF).” [Online]. Available:

http://www.cas.kth.se/SLAM/Presentations/cekf.pdf , last visited on

October 2014.

[62] B. Delaunay, “Sur la sphère vide. A la mémoire de Georges Voronoï,” Bull.

l’Académie des Sci. l'URSS, no. 6, pp. 793–800, 1934.

[63] L. Guibas and J. Stolfi, “Primitives for the manipulation of general

subdivisions and the computation of Voronoi,” ACM Transactions on

Graphics, vol. 4. pp. 74–123, 1985.

[64] S. Fortune, “A sweepline algorithm for Voronoi diagrams,” Algorithmica,

vol. 2, pp. 153–174, 1987.

[65] Wikipedia, “Delaunay triangulation.” [Online]. Available:

http://en.wikipedia.org/wiki/Delaunay_triangulation, last visited on

October 2014.

[66] Wikipedia, “Bowyer-Watson Algorithm.” [Online]. Available:

http://en.wikipedia.org/wiki/Bowyer–Watson_algorithm, last visited on

October 2014.

[67] C. G. A. L. Community, “Computational Geometry Algorithms Library.”

[Online]. Available: http://www.cgal.org, last visited on October 2014.

[68] P. Su and R. L. Scot Drysdale, “A comparison of sequential Delaunay

triangulation algorithms,” Computational Geometry, vol. 7. pp. 361–385,

1997.

[69] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated

cartography,” Communications of the ACM, vol. 24. pp. 381–395, 1981.

[70] M. Zuliani, “RANSAC for Dummies,” Citeseer, 2008.

169

[71] X. Yu, T. D. Bui, and A. Krzyzak, “Robust Estimation for Range Image

Segmentation and Reconstruction,” {\sc ieee} Trans. Pattern Anal. Mach.

Intell., vol. 16, pp. 530–538, 1994.

[72] H. Wang and D. Suter, “MDPE: A very robust estimator for model fitting

and range image segmentation,” Int. J. Comput. Vis., vol. 59, pp. 139–166,

2004.

[73] R. Iser and F. M. Wahl, “Building local metrical and global topological

maps using efficient scan matching approaches,” in 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS, 2008,

pp. 1023–1030.

[74] P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with

Application to Estimating Image Geometry,” Comput. Vis. Image Underst.,

vol. 78, pp. 138–156, 2000.

[75] B. J. Tordoff and D. W. Murray, “Guided-MLESAC: Faster image

transform estimation by using matching priors,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 27, pp. 1523–1535, 2005.

[76] O. Chum and J. Matas, “Matching with PROSAC - Progressive Sample

Consensus,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 220–226.

[77] J. rí Matas and O. rej Chum, “Randomized RANSAC,” in Proceedings of

the CVWW’02, 2002, pp. 49–58.

[78] H. Wang and D. Suter, “Robust adaptive-scale parametric model estimation

for computer vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, pp.

1459–1474, 2004.

[79] M. Zuliani, C. S. Kenney, and B. S. Manjunath, “The multiransac

algorithm and its application to detect planar homographies,” in

Proceedings - International Conference on Image Processing, ICIP, 2005,

vol. 3, pp. 153–156.

[80] Z. Zhang, “Parameter estimation techniques: a tutorial with application to

conic fitting,” Image and Vision Computing, vol. 15. pp. 59–76, 1997.

[81] S. Choi, T. Kim, and W. Yu, “Performance Evaluation of RANSAC

Family,” Procedings Br. Mach. Vis. Conf. 2009, pp. 81.1–81.12, 2009.

[82] Wikipedia, “Maximum Likelihood.” [Online]. Available:

http://en.wikipedia.org/wiki/Maximum_likelihood, last visited on October

2014.

170

[83] J. Elder, “Multivariate Normal Distribution.” [Online]. Available:

http://www.eecs.yorku.ca/course_archive/2012-13/F/4404-5327/lectures/03

Multivariate Normal Distribution.pdf, last visited on October 2014.

[84] K. Senne, “Stochastic processes and filtering theory,” IEEE Trans.

Automat. Contr., vol. 17, 1972.

[85] OpenSLAM, “OpenSLAM.” [Online]. Available:

http://www.openslam.org/, last visited on October 2014.

[86] Google, “Central Park Map.” [Online]. Available:

https://www.google.com/maps/place/Central+Park/@40.7842406,-

73.9651565,16z/data=!4m2!3m1!1s0x89c2589a018531e3:0xb9df1f7387a9

4119, last visited on October 2014.

