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ABSTRACT

AERODYNAMIC ANALYSIS OF FLATBACK AIRFOILS USING VORTEX
PARTICLE METHOD

Haser, Senem Ayse
MS., Department of Aerospace Engineering
Supervisor: Assoc. Prof. Dr. Oguz Uzol

December 2014, 70 pages

In this thesis, aerodynamic analysis of flatback airfoils, which have been proposed
and investigated to improve the aerodynamic performance of thick airfoils, is
studied. Vortex particle method, which is commonly used for simulation of two
dimensional, incompressible, viscous flows, is used for this purpose. In the content
of this thesis, vortex particle method code developed by Kaya [1] is improved by
changing method of diffusion and method of vorticity releasing from solid boundary.
Deterministic Particle Strength Exchange (PSE) method is implemented to solve
diffusion equation. In addition, instead of vortex particle releasing algorithm,
vorticity releasing algorithm, which is more suitable for PSE method, is

implemented.

The method and algorithm are explained in detail and results of analysis are
presented. The validation and applicability of the improved code is illustrated by
solving flow past a flat plate, a circular cylinder and a square cylinder. After that,
flow around FB3500 series flatback airfoils at Reynolds number of 1000 are
simulated by using the improved vortex particle method code. In order to compare

\Y



results, laminar and unsteady Computational Fluid Dynamics (CFD) analyses are

performed.

Keywords: Vortex Particle Method, Particle Strength Exchange, Flatback Airfoil
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KUT FIRAR KENARLI KANAT KESITLERININ GIRDAP PARCACIK
YONTEMI iLE AERODINAMIK ANALIZI

Haser, Senem Ayse
Yiksek Lisans, Havacilik ve Uzay Miihendisligi BOlumu
Tez Yoneticisi: Dog. Dr. Oguz Uzol

Aralik 2014, 70 sayfa

Bu tezde, kalin profillerin performansini arttirmak igin Onerilen ve son zamanlarda
siklikla arastirilan bir konu olan kiit firar kenarli kanat kesitlerinin aerodinamik
analizleri anlatilmaktadir. Analizler, kiit cisimler etrafindan gecgen iki boyutlu,
sikigtirllamayan, stirtlinmeli akimlarin simulasyonlarinda siklikla kullanilan girdap
parcacik yontemi ile gergeklestirilmistir. Bu tezin kapsaminda, Kaya [1] tarafindan
gelistirilen girdap parcacik yontemi kodu, diflizyon ve model sinirlarindan akisa
girdap giici salimimi yontemleri degistirilerek gelistirilmistir. Diflizyon yontemi
olarak deterministik bir yontem olan Pargacik Giicii Degisimi (PGD) ydntemi
kullanilmistir. Ayrica, sinirda olusan girdap parcaciklarimi akisa birakma yontemi
yerine, parcaciklarin girdap giiclerini akisa saliimi yontemi uygulanmistir. Bu

yontem, PGD difuizyon yontemi igin daha uygun bir yontemdir.

Tezde, kullanilan yontem ve gelistirilen algoritmanin detaylar1 ve analiz sonuglari
anlatilmaktadir. Gelistirilen algotitmanin dogrulugu ve uygulanabilirligi diiz plaka,
kare kesitli silindir ve dairesel kesitli silindir etrafindaki akis ¢6ziimlenerek
gosterilmistir. Sonrasinda, FB3500 serisi kiit firar kenarli kanat kesitleri etrafindaki
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1000 Reynolds sayisindaki akis alani ¢Oziilmiistiir. Sonuglar1 karsilagtirmak ig¢in

laminar ve zamana bagli Hesaplamali Akiskanlar Dinamigi (HAD) analizleri

gerceklestirilmistir.

Anahtar Kelimeler: Girdap Pargacik Yontemi, Parcacik Giicii Degisimi, Kiit Firar

Kenarli Kanat Kesitleri
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CHAPTER 1

INTRODUCTION

As power demand increases, the sizes of the wind turbines are expected to be
increased. Figure 1.1 shows the relation between wind turbine size and power
produced from a wind turbine. Increasing blade size raises structural concerns like
increased gravitational and aerodynamic loading and economic concerns like cost of
materials corresponding rise in blade size and weight. Increasing the thickness of the
airfoil helps to reduce these concerns. The thicker airfoils reduce the specific weight
as a function of rotor diameter and also improve structural efficiency [2].
Unfortunately, increasing the thickness of airfoils has disadvantages as well. Due to
surface contamination, the boundary layer laminar to turbulent transition can occur
very near to the leading edge. In order to remove the sensitivity to premature
transition the airfoils can be equipped with a blunt trailing edge [3]. Airfoil with
blunt trailing edge, which is also called flatback airfoil, introduces unique vortex
shedding behavior due to the blunt trailing edge which acts similar to a bluff body

[4]. An example for flatback airfoils is given in Figure 1. 2.
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Figure 1. 2 Flatback Airfoils [5]

Bluff body areodynamics is quite different than lifting body aerodynamics. At
surfaces with high curvature an adverse pressure gradient will add to the retarding
action of the skin friction, which may cause the flow to be interrupted entirely and
reverse in a region adjacent to the surface. This results in a region of backward flow
and a detached boundary layer beyond it. At sufficiently high Reynolds numbers the



circulation region due to the separation becomes unstable. Moreover, the von
Karman vortex street, which is an oscillating wake comprising large-scale eddies,
forms downstream of the body. Because of the regularity of the eddy formation, the
vortex shedding occurs at a dominant frequency f. This dominant frequency depends

on the geometry and Reynolds number.

In bluff body aerodynamics, the interest in vortex methods boost notably. Vortex
methods are based on Lagrangian numerical scheme and provide direct numerical
simulation of unsteady, incompressible and viscous flows. Vortex methods for the
simulation of incompressible flows have three fundamental properties [6]. First, the
Navier-Stokes equations are formulated with regard to vorticity, so that the spatial
discretization is achieved by using the vorticity field instead of the velocity field. In
addition, the pressure drops out of the governing equation, and thus pressure term is
solved only when and where force calculations are desired. Second, taking advantage
of Helmholtz’ theorems, in vortex methods, vortex particles are computational
elements and convected with the local fluid velocity. Third, velocity field is obtained
from velocity field by means of Biot-Savart law in vorticity kinematics, which allows
completely describing the flow field by following vorticity elements. Another
advantage of vortex methods is that different from the grid methods, no
computational elements are devoted to the irrotational part of the flow. Moreover,
boundary condition at the infinity is ensured automatically. Vortex methods can be
faster than the Eulerian finite difference schemes by up to an order of magnitude,

even when the volume is completely filled with vorticity [7].



1.1. Literature Survey

1.1.1. Vortex Methods

Vortex methods depend on a discrete Lagrangian representation of the vorticity field
to satisfy the Kelvin & Helmholtz theorems approximately. The dynamics of
vorticity for inviscid flows are governed by Kelvin & Helmholtz theorems [8].
Historically, simulations with vortex methods began at 1930s, with Rosenhead's
calculations of Kelvin-Helmholtz instabilities [9]. The modern developments of
vortex methods were started in the 1970s by Chorin [10], Leonard [11], Sarpkaya
[12] and Rehbach [13]. During the early 1980s vortex methods focused on
mathematical aspects like the convergence properties. In later years, researchers have
concentrated on involvement of viscous effects accurately, the boundary conditions

treatment at solid surfaces, and the reduction of the computational costs.

1.1.1.1. Diffusion Methods

In vortex methods, modeling diffusion is very critical issue since it includes viscous
effects. There are three common diffusion methods used in vortex particle methods
which are Random Walk Method, Core Spreading Model and Particle Strength
Exchange Method.

The Random Walk Method (RWM) was introduced by Chorin [10] to study slightly
viscous flows. The RWM simulates vorticity diffusion by pertubing the motion of
vortex particles by using a Wiener process. The implementation of this method in
flows with solid boundaries is easy. Leonard [11] references a study which shows
that in order to model viscous diffusion accurately, the RWM requires a large
number of particles compared to the Reynolds number. The problem about RWM is
its low-order non-uniform convergence due to its stochastic character. This method

also has statistical noise.

The Core Expansion Method was first proposed by Leonard [11]. It is a deterministic
scheme which accounts for diffusion by allowing each discrete vortex core to grow at
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a rate proportional to the kinematic viscosity. This formulation has simple
implementation and grid-free in nature. Its convergence is better than the RWM and
its scheme does not necessarily rely on the fractional step method. The inconsistency
of the core spreading method is related to the treatment of the particles as solid
bodies. With the core spreading method the diffusion of vorticity is approximated
accurately, but the vorticity is advected with an average velocity and not with the
actual local velocity. The vorticity is incorrectly convected even in the limit of

infinitely many particles [6].

The Particle Strength Exchange (PSE) method is based on the general particle
methods proposed by Degond and Mas-Gallic [14]. The basis of the algorithm is that
the Laplacian can be replaced by an integral operator. The principal features of the
PSE method are [6],

i. It is based on the exchange of circulation among particles to approximate
diffusion;
ii. It involves approximating the Laplacian at a particle’s location based on
nearby particles,
iii.  Itis formulated grid-free but requires frequent remeshing of the particle field

onto a well-ordered field.

PSE has been successfully used for a number of high-resolution studies. Pepin
simulated flow past an impulsively started cylinder by using PSE method [8].
Koumoutsakos used PSE method to simulate the inviscid evolution of an elliptical
vortex in an unbounded fluid and unsteady separated flows around circular cylinders
[15]. Ploumhans and Winkelmans used PSE method to simulate flow around a square
and a capsule at angle of attack. In addition, they simulated 3D flow around a sphere
by using vortex method based on PSE [16], [17]. Yang analyzed flow past bridge
deck sections by means of vortex method with PSE diffusion algorithm [18].



1.1.1.2. Boundary Conditions

There are two commonly used methods for the treatment of viscous boundaries in a
vortex method. The first one is defining vorticity sheets at the boundary and
diffusing their vorticity to free elements. The second one is defining vorticity sheets
at the boundary and shedding their created vorticity on to the free elements.

Chorin [10] introduces a method for creating vorticity at boundaries and shedding
this vorticity into the flow. The model of vorticity shedding away from a wall was
also studied. In this method, number of particles is increasing at each time step.

Alternatively, a viscous boundary will create vorticity at its surface and release it into
the flow. Methods must be created to allow the creation of vorticity of proper
strength and position at each time step. The implementation of this method is studied

by Koumoutsakos [15]. In this method, number of particles is kept constant.

1.1.1.3.  Hybrid Methods

In hybrid schemes, Lagrangian vortex methods and Eulerian schemes rnay be
combined in the same part of the domain, in which each method is used in order to

discretize different parts of the governing equations.

Particle methods are grid-free methods, so that these methods are more preferable
than mesh based methods for flows past complex and deforming boundaries.
However the adaptivity of the Lagrangian particle methods can include errors. In
order to provide consistent, efficient and accurate simulations, particle methods have
to be combined with a grid. The grid does not detract from the adaptive character of
the method. The function of the grid is restoring regularity in the particle locations
via remeshing while it simultaneously enables systematic multiresolution particle

simulations, allows fast velocity evaluations and facilitates Hybrid Particle-Mesh



methods capableof handling different numerical methods and different equations in

various parts of the domain [19].

1.1.2. Flatback Airfoils

Flatback airfoils have been proposed to improve the aerodynamic performance of
thick airfoils. In 1950s, Hoerner [20] presented wind tunnel results of symmetric Go-
490 airfoil with truncated trailing edge at Reynolds number of 500 000 and
illustrated that truncating G6-490 airfoil trailing edge, its maximum lift coefficient
incereases. Several studies have been conducted to determine the aerodynamic effect
of blunt trailing edges by Standish & van Dam [21]. Their studies are critical to
understanding the effects of blunt trailing edges because they includes isolated
comparisons and illustrates problems with the approach in previous studies. Prior
work had typically relied on a truncation technique for the edge creation. With this
technique, the rear section of a baseline airfoil is simply cut-off to create a blunt
edge. Standish & van Dam [21] introduced a method of creating a blunt edge by
symmetrically blending thickness on either side of the camber line in order to keep
the maximum thickness and camber constant. Additionally, Winnemoller & van Dam
[22] presented a numerical optimization scheme using zero-order (genetic) and first-
order (gradient-based) methods resulting in a Pareto front of airfoils with significant

trailing edge thicknesses.

Flatback airfoil can increase lift, trailing edge strength and resistance to performance
degradation due to blade soiling, and decrease manufacturing costs [23]. However,
all this comes at the expense of increased drag and increased noise due to flow
separation at the trailing edge. The blunt trailing edge gives rise to drag coeffcients
that negatively affect wind turbine performance. The blunt trailing edge of flatback
airfoils can also lead to bluff body vortex shedding in the wake of the blade. This
vortex shedding can cause rapid pressure changes which contribute to unsteady blade
loading. Mertes [24] conducted experiments to observe vortex shedding of the wake

behind a flatback airfoil under both static and dynamically pitching configurations.
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In order to decrease drag and aerodynamic noise caused by flatback trailing edge,
several passive control techniques are proposed. The use of a splitter plate is a
popular method for drag mitigation due to its simplicity. It is essentially a thin plate
attached at the center perpendicular to the blunt trailing edge. This modification
forces the vortex sheet to be displaced further away from the edge allowing for
increased base pressure. Metzinger states that drag reductions of at least 27% from
the baseline were observed with the inclusion of a splitter plate length of 50%
tariling edge thickness. Additionally, increasing splitter plate length was shown to

continue to decrease the base drag [4].

1.2.  Obijective and scope

The objective of this thesis is to improve the vortex particle code developed by Kaya
[1]. In the previous version of the code which Kaya [1] developed, random walk
method is used to simulate vortex diffusion. In the content of this thesis, particle
strength exchange method is implemented to model diffusion. Moreover, algorithm
for releasing of vorticity generated on solid surface is changed. In this study, instead
of generating vortex particle and sheeding them into the flow at each time step,
vorticity is generated at the surface and released into flow without changing particle
number. Finally, it is aimed to improve reliability of the vortex particle method code
which is able to simulate flow field around bluff bodies and to analyze flatback

airfoils with the developed code.

1.3.  Thesis content

The thesis is organized as follows:

In CHAPTER 2, fundamental of vortex method are summarized. In CHAPTER 3,
numerical implementation of vortex particle method is explained in detail. In

CHAPTER 4, validation and applicability of vortex particle method code is shown

8



by solving general fluid dynamics problems like flow past a flat plate, a circular
cylinder and a square cylinder. In CHAPTER 5, flow past flatback airfoils is
simulated by using improved code. Comparisons of results obtained with present
numerical implementation and CFD results are presented. Finally, in CHAPTER 6

the summary of the present study is given and future works are summarized.
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CHAPTER 2

FUNDAMENTALS OF VORTEX PARTICLE METHOD

2.1. Governing Equations

Two-dimensional incompressible flow of a viscous fluid is governed by the Navier-

Stokes equations, the conservation of momentum:

6u+ Vu = 1|7+ 72 (2.1)
T u.u—ppvu :

where u is velocity of the flow, p is pressure of the flow, p is the fluid density and v
is the fluid kinematic viscosity. The conservation of mass:

Vu=0 (2.2)

The vorticity is defined as the curl of the velocity.

w=VXxXu (2.3)

The vorticity — velocity formulation of incompressible Navier-Stokes equations is

obtained by taking the curl of equation (2. 1).

ow 5
E-I_ ulVw = vWw (2. 4)
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Rewriting equation (2. 4) in material derivative form, the following equation is

obtained.

Dw _ 2
Py w.Vu+ vVWw (2.5)

L J ;Y_I
I Il I

In equation (2. 5), | is convection term, Il is stretching term and 11 is diffusion term.

For two-dimensional flows, stretching term is zero. Then, equation (2. 5) becomes:

Dw )
E =vW‘w (2 6)

Koumoutsakos proposed a fractional step algorithm for the solution of equation (2.

6). A time step At of the vortex method is divided into two substeps.

e Substep 1: Initially, the local velocity is computed and integrated. Then,
strength of vortex particles is updated by applying particle strength exchange
scheme. In this substep, no-slip boundary condition is not explicitly enforced.

Algorithmically, substep 1 is summarized as:

dx

prie u™(x™, nAt) (2.7)
6(»1 2
o vWow, (2.8)

e Substep 2: In previous substep, vorticity field w; causes slip velocity on the
surface. In this substep, the vortex sheet required to cancel slip velocity is
computed. This vorticity sheet is emitted by the flow with the modification of

vorticity field during time step At.
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Substep 2 is expessed as:

— — v?w, = (2.9)

At the end of Substep 2, vorticity field w, obtained in Substep 1 and vorticity field

w, obtained in Substep 2 are superimposed.

w" = w;+ W, (2. 10)

2.2. Poisson Equation

In order to evolve the flow, the velocity field needs to be determined. Velocity field

associated with the stream function is given as:

U=V X (2. 11)

Poisson equation is derived from equation (2. 11), the conservation of mass equation
(2. 2) and vorticity equation (2. 3).

VY = —w (2. 12)

A common approach to obtain velocity distribution from vorticity field is solving
Poisson equations using Green’s function. Solution of Poisson equation is given as

equation (2. 13).

1
u=K*w=—§fK(x—y)xwdy+ Uy (2.13)
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where Uy, is the solution of the homogeneous Poisson equation and K is the Cauchy

velocity kernel defined below.

(x—-y)

D=

(2. 14)

Equation (2. 13) is also called Biot-Savart law.

2.3. Convection

Helmholtz’ theorem states that vortex lines are advected with the local fluid velocity
while a collocation of these lines conserves its circulation. Convection step of the
vortex particle method includes the integration of local velocity field to update
locations of the particles without changing strength of particles.

dxn+1
dt

= u"(x", nAt) (2.15)

2.4. Diffusion

In this thesis, Particle Strength Exchange (PSE) method is used to solve diffusion
equation. In this method, the diffusion equation is satisfied by modifying the strength

of the vortex particles. Diffusion equation is given as;

dw,,
F = VA(Up (2 16)

The main idea of PSE method is to replace the diffusion operator by an integral one.
For this purpose, the kernel n which must satisfy the following moment properties is
described [14].
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fxixjn(x)dx =26;; fori,j=1,23 (2.17)
fxiilxjizn(x)dx =0ifiy+i,=10r3<i;+i,<r+1 (2. 18)

f x|+ (0 dx < oo (2. 19)

Laplace operator A is approximated by integral operator A% which is defined as

Afw = 2N * 0 — W) (2. 20)

where n,(x) = ¢7%n(x/¢) is a regularization function.

Then, diffusion equation is replaced by the following integro-differential equation

dw

2 =ve [l00) - 0@lnex - V)dy (2.21)

When the integral operator is discretized using as quadrature points the locations of

the particles, the equation below is obtained.

dw
14 _
ar V¢ 2 Z(Uqwq — Vgwp) Me(xg = %xp) (2.22)
q
where ¢ is core radius and v is volume of a particle.

2.5.  Potential Flow Analysis in the Presence of a Vortex Cloud

In quasiy-steady flow the potential flow past a two dimensional body can be
described by the boundary integral equation
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Z
! ! k d We.d ! L AL, =0 (2.23)
_Ey(sm)"*_ﬁ (vasn)y(sn) Sp + We. S+g. ’ (m,j) Jj—
]:

In equation (2. 23), the first term is the velocity discontinuity experienced when
moving from the centre of the vorticity sheet onto body surface beneath [25]. The
second term is the coupling coefficient. The third term is the component of
freestream W, parallel to the body surface at m.The last term represents the
contribution to the Dirichlet boundary condition at the surface element m due to Z

discrete vortices AI; which form vortex cloud. The coupling coefficient, K (s, sp),

can be written as;

As, {(ym — Yn) 0SBy — (X — xn)Sinﬁm} (2. 24)

K(s,,, = —
(Sm $1) 21 (Xm — X0)% + Y — Yn)?

Surface vorticity
element

v(s.)ds,

Figure 2. 1 Discrete surface vorticity model — Velocity induced by surface element s,,
[25]
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2.6. Surface Pressure

The determination of aerodynamic forces on solid body embedded in a fluid requires
the pressure distribution on body surface. The surface pressure is obtained from

vorticity flux on the surface. Conservation of momentum equation is

Ju 1 )
E+u.|7u-—;|7p+ vVu (2. 25)
The dot product of the momentum equation with the tangential vector of the body

surface;

DU 1dp Jw

Dt p 0s on

(2. 26)

wheres and n denotes the tangential and normal direction of the surface panels,

respectively.

Assuming that the surface velocity is constant, the equation (2. 26) reduces to;

1op  Odw
—— = —V— (2.27)

where the right hand side term indicates the creation of vorticity at the surface.

dw 0Jy
—_— = 2.28
Von ~ ot (2. 28)

Combining equation (2. 27) and equation (2. 28) , equation (2. 29) which is an

expression for pressure gradient along the solid boundary, can be obtained.

op Oy

- 2.29
as  Por (2.29)
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CHAPTER 3

NUMERICAL IMPLEMENTATION OF VORTEX PARTICLE METHOD

3.1. Computational Scheme

After describing fundamentals of vortex particle methods in CHAPTER 2, the
computational scheme of the present code is illustrated below.

Firstly, input data which includes information about model geometry, conditions of
analysis such as freestream velocity components, viscosity and time step and grid
properties like grid size are loaded. At the beginning, all particles are located at grid
points and their strengths are zero. Then, boundary vortices are determined by using
vortex panel method and released into the flow field. Strengths of released vortex
particles are distributed to vortex particles located at grid points near the boundary.
After that, time step iterations start with calculation of velocity vectors of vortex
particles from Biot Savart law. Then, particles are convected with these velocity
vectors. Particles’ locations are updated at the end of convection process. Before
moving on diffusion part, strengths of particles are redistributed to gird points.
During diffusion with PSE method, only strengths of particles are updated. At the
end of diffusion, slip velocity is generated on the surface. Then, the boundary
vortices to cancel this slip velocity are calculated and diffused into the flow. Finally,
pressure distiribution and aerodynamic forces on the surface are calculated and new

time step starts with calculation of vortex particles’ velocity vectors.
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Figure 3. 1 Computational Scheme
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3.2.  Vortex Sheet Diffusion

Vorticities created at the wall surface is diffused into the flow by using a method
proposed by Porthouse [26]. According to this method, vortex particles are released
to flow field in the normal direction of wall with an offset e which is a function of

viscosity and time step size.

€ = ,/4vat/3 (3.1)

In this study, initially, vortex particles are released into the flow. Then, their vorticity
values are distributed to the particles located at the nearast grid points. Distribution
of particles’ vorticity values is done by using A; interpolation scheme which is

explained in Section 3.5.

3.3.  Velocity Calculation

Using Biot-Savart law described in Section 2.2, velocity of each particle is calculated

by summing up the contribution of all particles in the domain.

1w (x, - x,)
w, = UO—Z—Z—Z x Tk 3.2)
T |xp — x|

In equation (3. 2), N is number of particles, x, is location of particle and T is

circulation of particle.
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3.4. Convection

In this study, first order Euler scheme is used to integrate velocity field. Convection

equation is given below.

a1 = x" + AtU;(x™,TT) (3.3)

3.5.  Redistribution of Vortex Particle Strength

In order to maintain accuracy by regulating particles and to be able to perform faster
analyses a redistribution of vortex particle strength is performed. Redistribution of

vortex particle strength to grids is done when one of the following cases takes place;

e Particles cease to overlap at any location of the computational domain
e Particles cluster in some region

e There are not enough to properly resolve the diffusion step

Redistribution includes interpolating vorticity field @ with particles located at X to
vorticity field e with particles located at x. Vorticity field before redistribution

(w(x)) and after redistribution (@(%)) should be equal.

5 ~ @) (3.4
M

F@) ~ ) TAG - %) (3.5
j=1

where T and T' denote new and old particle strengths respectively and A is

interpolation kernel.
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In this study, first order linear interpolation function is used for particle to mesh

interpolations.

(11—, 0<u<1 (3.6)
A, (w) = {0, otherwise

where u = |x|/h. x denotes particle location and h denotes grid spacing. For two

dimensional schemes, equation (3. 7) can be used.

ACx,y) = AXAWY) (.7)

In this study, a rectangular grid is used. Figure 3. 2 shows A, interpolation scheme.
Particles at grid points, which encircle shaded area are affected by particle to mesh
interpolation.

® :old particle

®  newparficle
(i4+1) (i+1,+1)
L <
o
—9 - —
(1) (1*1y)

Figure 3. 2 A; scheme interpolation
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3.6. Diffusion

In this thesis, diffusion of vortex particles is modelled by using Particle Strength
Exchange method which is described in Section 2.4. Cottet et. al [19] state that
Gaussian kernel G can be used in equation (2. 22) n kernel. Gaussian kernel G is

defined as;

1
Glx—y) = Ee‘(x‘y)z/‘“ (3.8)

where s = vAt.

Using Gaussian kernel and discretizing equation (2. 22) by means of explicit forward
Euler scheme with a time step At, diffusion equation to advance from time ¢,, to t,,,1

becomes;

1 )
— - - A
Ot = 0f + 5 ) vg(wg — w, )e~Cra) /st (3.9)
q

In diffusion subroutine, strength of particles is updated by implementing equation (3.
9).

3.7.  Calculation of Boundary Vortices

After completion of convection steps in which location of particles are modified and
completion of diffusion step in which strengths of particles are modified, slip
velocity is generated on the solid boundary. However, for a viscous flow, normal and
tangential velocity components on the solid boundary must be zero. In other words,
flow must adhere to the boundary. In order to cancel slip velocity caused by

particles, vorticity is generated on the solid boundary.
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In this study, firstly, slip velocity on the solid boundary is calculated by using Biot-
Savart law. Then, surface vorticity which ensures no-slip boundary condition is

calculated by using Dirichlet type boundary condition.

Boundary vorticies at the first time step are calculated by using equation (3. 10)

which is numerical form of equation (2. 23).

M
D Klsms) ¥(sn)
n=1

= —(UgC0SBm — VouSinBy,) (3.10)
Z
- Z AT (U jcoSBm + Vi iSinfm)
=1

In order to calculate boundary vorticies at the next time steps, vorticity conservation
equation for vortex particle models equation (3. 11) and equation (3. 10) are

combined and equation (3. 12) is obtained.

M VA
Z yY(sp)As, + z Al—}' —Teire =0 (3.11)
n=1 j=1

M
> K smosw) +Bs) v(s0)

= —(UwcoSBm + Voo Sinfs,) (3.12)
VA
- Z AI}-(Umjcosﬁm — Vinjsinf, + 1) + [ire
j=1

The vorticies which are some distance downstream of a body are eliminated to

reduce computational requirements and their effect is added to I;;,. term.
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3.8.  Pressure Force Calculation

The expression for the pressure gradient along the solid boundary which is obtained

in Section 0 can be discretized as;

Yils;
Ap; = — 3.13
Pi=—P 4, (3.13)
Moreover, the discrete pressure values at surface panels are obtained as
i
_ p A
Pi =P1— At YjAs; (3.14)
j=1

Using equation (3. 14), surface pressure can be calculated relative to a datum value
p1. Lewis states that pressure p, should be taken as zero for numerical convenience

[25]. Then, the pressure at leading edge stagnation point (p;) is searched. Then, the

.. 1
surface pressure values is increased by the amount of Eonoz — Ds.

3.9. Parallelization

In VPM code, velocity vectors of particles are calculated by using Biot Savart law.
As can be seen from equation (3. 2), velocity of one particle is affected by all of the
particles in the flow field. If number of particles in the flow field is N, velocity field
calculation requires work proportional to N2 In VPM code, velocity field
determination is the most time consuming part. It can be also seen from Figure 3. 3
which shows total loop time at each time step and time required for velocity

calculation subroutine at each time step.
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Figure 3. 3 Total loop time at each time step and time required for velocity calculation
subroutine at each time step

Parallelization is only implemented to velocity calculation subroutine by using
OPENMP (Open Multi-Processing) which supports multi-platform shared memory

multiprocessing programming libraries.

The parallel computation of the improved method is achieved by using a shared
memory system (on a workstation computer) for a test case. The computer has two
Intel Xeon E5530 2.4 GHz processors. Each processor has 4 cores and 24 GB shared
memory. The operating system is Microsoft Windows Vista Business. In order to test
efficiency of parallelization, flow around a square cylinder with 200 panels is solved
for 200 time steps by using respectively 1, 2, 4, 8 cores of the computer. Flow field
of the test case includes 180 000 (300*600) grid points.

Effect of parallelization on total loop time at each time step is shown in Figure 3. 4

and the spped-up graph is given in Figure 3. 5.
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Figure 3. 4 Effect of parallelization of velocity calculation subroutine on total loop time
at each time step
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Figure 3. 5 The speed-up graph

As can be seen from Figure 3. 5, there is a linear relation between number of core

and VPM code speed-up for core numbers up to 8.
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CHAPTER 4

VALIDATION STUDIES

4.1. Introduction

In this chapter, the improved code is validated by solving case studies. Firstly, flow
past a flat plate at Reynolds numbers of 200 and 1000 are analyzed to validate
boundary layer solution of VPM code. Results are compared with Blasius boundary
layer solutions. Then, flow around a circular cylinder at Reynolds number of 200 is
analyzed for different panel numbers and grid sizes. VPM results which are pressure
distribution, Strouhal number, lift and drag coefficients are compared with
experimental and numerical results from literature. After that, flow around a square
cylinder at Reynolds number of 200 is solved and results are validated with results
from literature. Finally, flow around a circular cylinder at Reynolds number of 200 is
analyzed by using RVM code developed by Kaya [1]. Results are compared and

differences due to different diffusion methods are discussed.

4.2. Flow Past a Flat Plate

Flow past a flat plate is a fundamental test case to validate diffusion part of VPM
code because boundary layer formed along an infinitely long flat plate surface is
determined by viscous effects and analytical solution for this boundary layer profile

is known.
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4.2.1. Blasius Solution for Laminar Boundary Layer

Blasius equation for the laminar boundary layer on a flat plate is given below.
ff+2f"=0 (4.1)

where f(n) =u(n)/U, and f' = af/dn with n being the similarity parameter

Uoo
n=yj; (4.2)

A schematic view of flate plate with laminar boundary layer is given in Figure 4. 1.

which is defined as:

Figure 4. 1 Schematic view laminar boundary layer

4.2.2. Flat Plate at Re = 200

The flat plate having aspect ratio of 1:100 is used in simulation. Figure 4. 2 shows a
snapshot of the instantaneous velocity contour plot for flow past the flat plate at
Reynold number of 200. Laminar boundary layer development on the flat plate

surface is observed from Figure 4. 2.
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Figure 4. 2 Velocity contour of flow around flat plate at Re = 200

Figure 4. 3 shows boundary layer profiles at the 3 different locations of flat plate and
comparison of results obtained from VPM code with Blasius solution. VPM results
presented are time-averaged over 20 time steps. Figure 4. 3 shows that the agreement

between the simulated boundary layer and the laminar Blasius solution is fairly good.
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Figure 4. 3 Boundary layer profile at Re=200 — (a) x/L=0.2, (b) x/L=0.5, (¢) x/L=0.8
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Figure 4. 4 illustrates Blasius similarity plot for 3 different locations of flat plate and
comparison of results with Blasius solution. It can be clearly seen that VPM results

are well-matched with Blasius solution.
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Figure 4. 4 Blasius similarity plot for 3 different locations of flat plate at Re=200

4.2.3. Flat Plate at Re = 1000
The flat plate used in this simulation has an aspect ratio of 1:100. Figure 4. 5 shows a

snapshot of the instantaneous velocity contour plot for flow past the flat plate at
Reynold number of 1000.
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Figure 4. 5 Velocity contour of flow around flat plate at Re = 1000

Figure 4. 6 shows boundary layer profiles at the 3 different locations of flat plate
which are obtained from VPM analysis and comparison of VPM results with Blasius
solution. VPM results presented are time-averaged over 20 time steps. As can be
seen from figure Figure 4. 6, the laminar boundary layer profile which VPM code

provides is very similar to Blasius solution.
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Figure 4. 7 illustrates Blasius similarity plot for 3 different locations of flat plate and
comparison of results with Blasius solution. As can be seen, VPM results are well-

matched with Blasius solution.
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Figure 4. 7 Blasius similarity plot for 3 different locations of flat plate at Re=1000

4.3. Flow Past a Circular Cylinder

In this part of the thesis, flow past a circular cylinder is simulated by using improved
VPM code. The reason for selecting this case is that there is a lot of experimental and
numerical test data in literature for flow around a circular cylinder to compare VPM

simulation results.

4.3.1. Convergence Study

The purpose of this study is to investigate the effect of the numerical resolution on
the quality of the computed solution. The numerical experiments are conducted at
Reynolds number of 200. Convergence studies are achieved for three different
resolutions whih are called as coarse, medium and fine. Numerical parameters of the
medium resolution case are selected such that there is a relation between grid size

and time step as Koumoutsakos [15] and Pepin [8] suggested.
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As? = 4vAt (4.3)

Another consideration about selection of grid size and time step is convection. Lewis
suggested that during convection, particles should go distance between half grid size
an done grid size [25]. This consideration is taken into account for there resolution

Ccases.

Numerical parameters of 3 cases are given in Table 4.1.

Table 4. 1 Numerical parameters of the convergence study

Resolution No. of panels Grid size No. of grid Time step
Coarse 100 0.08 525x350 0.08
Medium 200 0.04 1050x700 0.04
Fine 400 0.02 2100x1400 0.02

Results of lift coeficients r.m.s. values, drag coefficients and Strouhal numbers

obtained with 3 different resolution cases and comparison of these results with values

from literature are presented in Table 4. 2, Table 4. 3 and Table 4. 4 respectively.

Table 4. 2 Comparison of C. r.m.s. results between VPM simulations with different

resolutions and numerical values

. Present 2D Numerical Difference
Resolution
Result Value [27] (%)
Coarse 0.36 0.4 10.0
Medium 0.37 0.4 7.5
Fine 0.37 0.4 75
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Table 4. 3 Comparison of Cp, results between VPM simulations with different
resolutions and experimental values

: Present Experimental Difference
Resolution
Result Value [28] (%)
Coarse 1.48 1.30 13.8
Medium 1.25 1.30 3.8
Fine 1.23 1.30 5.4

Table 4. 4 Comparison of Strouhal number results between VPM simulations with
different resolutions and experimental values

: Present Experimental Difference
Resolution
Result Value [29] (%)
Coarse 0.15 0.18 16.7
Medium 0.17 0.18 5.6
Fine 0.17 0.18 5.6

As can be seen from the results presented above, Strouhal number and drag
coefficient cannot be predicted accurately by using coarse resolution parameters.
Results obtained by using medium and fine resolutions are similar and well-matched
with data from literature. When computational case is considered, fine resolution
case has the highest computational cost. It can be concluded that medium resolution
parameters are optimum for flow past a circular cylinder simulation at Reynolds

numbers of 200.

4.3.2. Vorticity Field

Vorticity fields of flow around a circular cylinder at different non-dimensional times

are given in Figure 4. 8.
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Figure 4. 8 Vorticity contours of flow past a circular cylinder at Re =200-(a) T = 2,
(b) T=10,(c) T=20,(d) T=30, (e) T=40

39



4.3.3. Pressure Distribution and Force Coefficients

The comparisons for the flow around a circular cylinder case are made also with
force data. It should be mentioned that, VPM calculates forces by considering only
pressure forces, so viscous forces are neglected. This assumption is reasonable,

because the pressure force is dominant for bluff bodies.

For flow around a circular cylinder, mean pressure coefficient distribution calculated
in the medium resolution test case is given below. The comparison of pressure
distribution result is made with the 2D numerical results based on finite volume
method [30]. As can be seen, present pressure coefficient results and numerical

values from literature are similar.
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Figure 4. 9 Mean pressure coefficient distribution around a circular cylinder at Re =
200 and comparison of present results with numerical results of Rajani et. al [30]
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The time history of lift and drag coefficients obtained in medium resolution case

study are figured below.
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Figure 4. 10 Time histories of force coefficients for flow around a circular cylinder at
Re =200

4.3.4. Vortex Shedding Frequency

The vortex shedding frequency which are obtained with the numerical simulations,
are calculated by using lift coefficient oscillations. By taking discrete Fourier
transform of lift oscillations, the frequencies of vortex shedding are calculated. Then,
Strouhal number is determined by averaging the dominant frequencies according to

their amplitude,

St ="+ (4. 4)
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where St is Strouhal number, f is the vortex shedding frequency and V is freestream

velocity.

Single-sided amplitude spectrum of lift coefficient data of medium resolution case is

given below.
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Figure 4. 11 Discrete Fourier transformation result of lift oscillation of flow around a
circular cylinder at Re =200

4.4. Flow Past a Square Cylinder

Another test case to validate VPM code is flow around a square cylinder at Reynolds
number of 200. Numerical parameters of current simulation are selected same as

medium resolution parameters given in Table 4. 1.

4.4.1. Vorticity Field

Vorticity fields at different non-dimensional times are given in Figure 4. 12.
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4.4.2. Pressure Distribution and Force Coefficients

For flow around a square cylinder case, mean pressure coefficient distribution
calculated in the present study is given below. The comparison of pressure
distribution result is made with the 2D numerical results [31]. It can be seen that

present pressure coefficient results and numerical values from literature are matched
well.
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Figure 4. 13 Mean pressure coefficient distribution around a square cylinder at Re =
200 and comparison of present results with numerical results of Yoon et. al [31]

The time history of lift and drag coefficients obtained in present study are figured
below.
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Figure 4. 14 Time histories of force coefficients for flow around a square cylinder at
Re=200

Sohankar [32] compiled the drag coefficient values from different numerical and
experimental studies in literature. Figure 4. 15 shows these drag coefficients at

different Reynolds numbers for a square cylinder.
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Figure 4. 15 Variation of drag coefficient with Reynolds number for a square cylinder
[32]
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Comparison of present drag coefficient and root mean square of lift coefficient with
the values in literature are presented in Table 4. 5 and Table 4. 6, respectively.
Comparisons show that present results are in good agreement with values in

literature.

Table 4. 5 Comparison of the present drag coefficient result with experimental value in

literature
Present Experimental Difference
Result Value [32] (%)
Co 1.37 145 55

Table 4. 6 Comparison of the present lift coefficient rms result with numerical value in
literature [33]

Present Experimental Difference
Result Value [33] (%)
CLrms 0.365 0.377 3.2

4.4.3. Vortex Shedding Frequency

Strouhal number is determined from time history of lift coefficient. Discrete Fourier
transform of lift coefficient is calculated to obtain vortex shedding frequency (Figure
4. 16).
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Figure 4. 16 Discrete Fourier transformation result of lift oscillation of flow around a
square cylinder at Re = 200

Figure 4. 17 illustrates the experimental results about the relation between Strouhal
number and Reynolds number for a square [34]. According to this figure, Strouhal
number of flow past a square at Reynolds number of 200 obtained by VPM is very

close to experimental value in Figure 4. 17.

47



o M =2mm
02 . imml
= mm W unnel
s s m ind tun
o 4 mm
- 15mm/!
A A mm Water tank
015 ﬁ Al
5 a8 “*"g&b
& l. . t LE ]
L ]
! R TR L
[ &
&
n1|~ &
005 L e 1 v el B 1o prraialo 1 Lotrraunal, L Lo
10 107 107 iy

R
Figure 4. 17 Variation of Strouhal number with Reynolds number for a square cylinder
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Table 4. 7 Comparison of the present Strouhal number result with experimental value
in literature [34]

Present Experimental Difference
Result Value [34] (%)
Strouhal
0.147 0.145 1.4
number '

4.5. Comparison of Random Walk Method and Particle Strength Exchange
Method

As explained in Section 1.1.1, Random Walk method is a stochastic method, whereas
Particle Strength Exchange method is deterministic. Random Walk method has
statictical noise and low rate of convergence. Koumoutsakos solved a 1D diffusion

problem, by using Random Walk (RW) and Particle Strength Exchange (PSE)
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methods of diffusion and he compared results with analytical results [15]. Figure 4.

18 illustrates comparison of results.

Figure 4. 18 Comparison of PSE and RW methods for a 1D diffusion problem [15] — (a)
Comparison of PSE result with exact solution, (b) Comparison of RW result with exact
solution

As can be seen, result obtained by using PSE algoritm and exact solution are

matched well. PSE result does not have any noise, whereas RW result is noisy.

Flow around a circular cylinder at Reynolds number of 200 is simulated by using
RVM algoritm developed by Kaya and includes diffusion Random Walk algorihm
[1] and results are compaired with the results obtained by VPM algorithm, which
includes diffusion with PSE, in Section 4.3.

Figure 4. 19 ilustrates the time history of oscillating part of lift and drag coefficients
obtained by means of VPM and RVM.
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Figure 4. 19 Time histories of force coefficients for flow around a circular cylinder at
Re =200 obtained by using VPM and RVM methods

As can be seen from Figure 4. 19, RVM provides noisy results. Because of
randomness of the diffusion, oscillations start much earlier in RVM simulation.
Moreover, amplitudes of lift coefficient oscillations obtained by RVM have not

regular behavior as VPM results have.

Results of lift coeficients r.m.s. values, drag coefficients and Strouhal numbers
obtained with VPM and RVM algorithms and comparison of these results with
values from literature are presented in Table 4. 8, Table 4. 9 and Table 4. 10

respectively.
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Table 4. 8 Comparison of C, r.m.s. results of VPM and RVM simulations and

numerical values from literature

Present 2D Numerical
Method
Result Value [27]
VPM 0.37 0.4
RVM 0.48 0.4

Table 4. 9 Comparison of Cp, results of VPM and RVM simulations and experimental

values from literature

Present Experimental
Method
Result Value [28]
VPM 1.25 1.30
RVM 1.40 1.30

Table 4. 10 Comparison of Strouhal number results of VPM and RVM simulations and

experimental values from literature

Present Experimental
Method
Result Value [29]
VPM 0.17 0.18
RVM 0.17 0.18

Comparison of results shows that Strouhal numbers obtained by VPM and RVM are

same. However, RVM overpredict drag coefficient and r.m.s. value of lift coefficient.
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CHAPTER 5

AERODYNAMIC ANALYSIS OF FLATBACK AIRFOILS

5.1. Introduction

In this thesis, aerodynamic analysis of FB3500-1750 flatback airfoil, which is
commonly used in wind turbine airfoil investigations, is carried out by means of
Vortex Particle Method (VPM). Coordinates of FB3500-1750 airfoil are found in
literature. FB3500 series flatback airfoils are obtained by adding thickness to both
sides of the airfoil from maximum thicknesss location to trailing edge. In order to
investigate effect of trailing edge thickness on aerodynamic parameters FB3500-

2250 flatback airfoil is generated. FB3500 flatback airfoil series are given below.

0.2
—_
e —————

X o/ FB3500 1750
> FB3500 2250

— ~

0.1 //-—_\

—
0.2
0 01 02 03 04 05 06 07 08 09 1

x/c

Figure 5. 1 FB3500 Flatback Airfoil Series

Literature survey about flatback airfoils shows that flow around flatback airfoils is

usually investigated for Reynolds number higher than 600 000. VPM code which is
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developed in the content of this thesis is a laminar solver, so that it is not able to
solve turbulent flow accurately. Thus, VPM analyses are done for Reynolds number
of 1000 at 0° angle of attack. In order to compare VPM results, unsteady CFD
analyses are employed.

CFD analyses are performed with FLUENT software. Laminar, pressure based,
implicit and node based solver is used for analyzing flow field around the flatback
airfoils. The unsteady computations are carried out until a steady or a periodic

behavior in aerodynamic coefficients is observed

5.2.  Computational Grids for CFD Analysis

Computational grid used in CFD analyses is illustrated in Figure 5. 2. Near the solid
boundary, grids are structured. For the rest of the computational domain,
unstructured grids are generated. The computational grid is refined at the airfoil wake

location to prevent numerical diffusion.
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Cartesian grid with uniform grid size is used in VPM analyses. In Figure 5. 3, a
zoomed view of computational domain used in VPM analyses is given. In VPM
analysis, flow variables at grid points inside the model are set zero, so that these grid

points are ignored during the calculations.

05k
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> 0 :=
o H =
05
0 0.5 1

Figure 5. 3 Zoomed view of computational domain used in VPM analyses

5.3. Vorticity Field

Vorticity fields of FB3500-1750 and FB3500-2250 airfoils at different non-

dimensional times are given Figure 5. 4 and Figure 5. 5 respectively.
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Figure 5. 4 Vorticity contours of flow past a FB3500-1750 flatback airfoil at Re = 1000 —
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5.4.  Pressure Distributions

For flow around flatback airfoil cases, mean pressure coefficient distribution

calculated in the present study is given below.
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Figure 5. 6 Mean pressure coefficient distribution around FB3500-1750 flatback airfoil
at Re = 1000 — VPM and CFD results
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Figure 5. 7 Mean pressure coefficient distribution around FB3500-2250 flatback airfoil
at Re =1000 — VPM and CFD results
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As can be seen from figures, pressure distributions obtained from CFD and VPM are

in fairly good agreement. Minimum pressure coefficient values calculated by CFD and

VPM are similar. There is a small difference between base pressure values which

explains difference in drag coefficient values.

Pressure coefficient distributions of FB3500-1750 and FB3500-2250 airfoils at
different non-dimensional times are given Figure 5. 8 and Figure 5. 9 respectively.
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Figure 5. 8 Pressure coefficient distributions of flow past a FB3500-1750 flatback airfoil
at Re =1000-(a) T=18.9, (b) T=19.5,(c) T=20
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5.5.  Force Coefficients and Vortex Shedding Frequency

Figure 5. 10 and Figure 5. 12 show time history of lift coefficient and drag
coefficient at Reynolds number of 1000 obtained from VPM analyses for FB3500-
1750 and FB3500-2250 flatback airfoils respectively.
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Figure 5. 10 Time histories of force coefficients for flow around FB3500-1750 flatback
airfoil at Re = 1000 — VPM result
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Figure 5. 11 Time histories of force coefficients for flow around FB3500-2250 flatback
airfoil at Re = 1000 — VPM result
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Singel-sided amplitude spectrums of lift coefficient data for FB3500-1750 and
FB3500-2250 flatback airfoils are given below.
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Figure 5. 12 Discrete Fourier transformation result of lift oscillation of flow around a
FB3500-1750 flatback airfoil at Re = 1000 — VPM result
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Figure 5. 13 Discrete Fourier transformation result of lift oscillation of flow around a
FB3500-2250 flatback airfoil at Re = 1000 — VPM result
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Comparisons of lift coeficients, drag coefficients and Strouhal numbers obtained
from VPM and CFD analysis for FB3500-1750 and FB3500-2250 airfoils are
presented in Table 5.1 and Table 5.2. It should be noted that drag coefficients given
in Table 5.1 and Table 5.2 are due to pressure forces. Since the forces calculated with
VPM is obtained by considering only pressure forces, drag coefficients due to
viscous forces in CFD results are neglected.

Table 5. 1 Comparison of VPM and CFD Results for FB3500-1750 Flatback Airfoil at

Re = 1000
Parameter VPM Results CFD Results
Cv (mean) -0.0112 -0.0115
CvL (rms) 0.0259 0.0267
Cp (mean) 0.1508 0.1390
Strouhal Number 0.0940 0.1030

Table 5. 2 Comparison of VPM and CFD Results for FB3500-2250 Flatback Airfoil at

Re = 1000
Parameter VPM Results CFD Results
C. (mean) -0.0221 -0.0189
CL (rms) 0.0283 0.0296
Co (mean) 0.1650 0.1430
Strouhal Number 0.1210 0.1320

Comparison of results shows that drag coefficients, lift coefficients and Strouhal
numbers obtained from VPM and CFD analyses are well-matched. As can be
explained before, the small difference between drag coefficient results is due to the
difference between base pressures.
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CHAPTER 6

CONCLUSION

6.1. Summary

In the present study, aerodynamic analysis of flatback airfoils are investigated by
using vortex particle method, which is commonly used for simulation of two
dimensional, incompressible, viscous flows. In the content of this thesis, vortex
particle method code developed by Kaya [1] is improved by changing diffusion
method. Previously, diffusion of vortex particles was modelled by means of Random
Walk Method. In the present study, deterministic Particle Strength Exchange method
is employed to solve diffusion equatiton. In addition, vorticity creation method,
which provides the enforcement of boundary condition, is modified. Instead of
generating particles at each time step as Kaya [1] did, number of particles in the flow

domain is kept constant.

The validation and applicability of the improved algorithm is illustrated by solving
several test cases which are flow past a flat plate, flow past a square cylinder and
flow past a circular cylinder. After that, flow field around FB3500 series flatback
airfoils at Reynolds number of 1000 are simulated by using the improved vortex
particle method code. In order to compare results, laminar and unsteady CFD
analyses are achieved. Comparisons show that reasonable flow features and physical
quantities are obtained by present numerical simulations. VPM code provides fairly
good results for laminar regime. Unlike RVM code which is developed by Kaya [1]
and uses Random Walk Method to model diffusion, VPM simulation results do not
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include noise. In additon, VPM algorithm has higher rate of convergenge and gives

more stable results than RVM algorithm.

6.2. Recommendations for Future Works

In order to improve code, to be able to get more accurate results and to have more

useful analysis tool, future works listed below could be implemented;

e The most time consuming part of the VPM code is velocity calculation
subroutine. Fast algorithms could be used in this subroutine. For instance,
poisson equation could be solved by using fast Fourier transform instead of
direct method.

e In the present code, uniform grid size is employed. To decrease
computational time, adaptive grid sizes could be used. For example, near the
solid boundary, grid sizes could be much smaller than grid sizes of the rest of

the domain.
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