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ABSTRACT 
 

 

AN ANALYSIS OF 3D SURFACE CURVATURE 

FEATURES FOR 3D SLAM USING KINECT DATA 
 

 

 

Adil, Ömer Faruk 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. İlkay Ulusoy Parnas 

December 2014, 125 pages 

 

 

 

The introduction of affordable and sufficiently accurate range sensors such as TOF 

cameras, laser scanners and RGBD cameras has significantly contributed to the 

robotic applications like SLAM. Although range sensors are used extensively and 

successfully in SLAM applications, there is still room for improvement in the sensor 

data utilization process. In this thesis a novel approach for the feature extraction part 

of 3D SLAM is introduced. The use of compact surface curvature features in the 

SLAM algorithm is proposed which will appear for the first time in the literature. 

The proposed method uses mean and Gaussian curvature calculations to extract 

curvedness features from RGBD output of Microsoft Kinect sensor. The extracted 

features are then fed to the SLAM algorithm to be used in the global data association 

process. The results are compared to the state-of-the art feature extraction techniques 

for SLAM, namely plane features, SURF features and corner features on real Kinect 

dataset sequences which are conventionally used as benchmark for SLAM 

algorithms. 

Keywords: SLAM, Kinect Sensor, RGBD Data, Salient Feature Extraction, Surface 

Curvature Features, Compact Surface Features 
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ÖZ 
 

 

KINECT VERİSİ İLE 3-BOYUTLU SLAM 

UYGULAMASINDA 3-BOYUTLU YUZEY KAVİS 

ÖZELLİKLERİ KULLANIMI ANALİZİ 
 

 

 

Adil, Ömer Faruk 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. İlkay Ulusoy Parnas 

Aralık 2014, 125 sayfa 

 

 

 

RGBD kameralar, TOF kameralar, lazer tarayıcılar gibi düşük maliyetli ve yeterli 

derecede hassas ölçüm sunabilen sensörlerin ortaya çıkması, SLAM gibi robotik 

uygulamalar için önemli katkılar sağlamıştır. Bu mesafe sensörleri, mevcut SLAM 

uygulamalarında yoğun olarak başarıyla kullanılsa da sensor verilerinin kullanımının 

iyileştirilmesi ve geliştirilmesi hala mümkündür. Bu tezde, 3-boyutlu SLAM 

uygulamasında kullanılmak üzere sensor verilerinden özellik çıkarımı için yeni bir 

method sunulmaktadır. SLAM uygulamarında kompakt yüzey kavis özelliklerinin 

kullanımı literatürde ilk kez bu çalışmada incelenmektedir. Önerilen metotta 

ortalama kavis ve Gaussian kavis hesaplamaları, Microsoft Kinect sensöründen 

alınan RGBD verisinden kavis özellikleri çıkarmada kullanılmaktadır. Çıkarılan 

kavis özellikleri, SLAM algoritmasının veri eşleştirme adımlarında kullanılmaktadır. 

SLAM uygulamaları için karşılaştırmalarda sıkça kullanılan gerçek Kinect veri 

kayıtları kullanılarak yapılan uygulamalar sonucunda bulunan sonuçlar, literatürdeki 

güncel ve kabul gören SURF özellikleri, düzlemsel özellikler ve köşe özellikleri gibi 

özellik çıkarma teknikleri ile karşılaştırılmaktadır. 

Anahtar Kelimeler: SLAM, Kinect Sensörü, RGBD Verisi, Özellik Çıkarımı, Yüzey 

Kavis Özellikleri, Kompakt Yüzey Özellikler, 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Problem Definition and Motivation 

Autonomous agents have long been taking a vital role in many fields in today's 

world. Modern industry is a product of autonomous agents' hard work. It is natural to 

expect that the daily life of people would get its fair share of the help of autonomous 

agents. Driverless cars [1] have been running down the streets, they have been racing 

against other driverless cars on a rally championship [2]. A robot welcomes and 

guides guests in a technology museum. Future life is likely to give bigger roles to 

those "machines with minds" [3]. 

In order to assign heavier duties to autonomous agents, it is imperative that they 

should have already gained fundamental abilities. One of the most basic abilities for 

any autonomous operation is to navigate through unknown environments for the sake 

of real world compatibility. Although this sounds trivial for an intelligent-born 

human, it is a rather tedious task for a man-made agent. Aware of this situation, a 

vast amount of work is devoted for the problem of knowing the whereabouts for an 

autonomous robot. This problem consists of knowing the neighborhood information 

and its own location with respect to them. Although the problems of a robot 

localizing itself and mapping its neighborhood are relatively easier tasks, achieving 

both of them at the same time is a serious challenge. This is sometimes expressed as 

the proverbial “chicken and egg” problem [4]. However, this problem is addressed 

quite well so far under the name of Simultaneous Localization and Mapping 

(SLAM). 

Although the SLAM can be considered as a solved problem [5], there is plenty room 

for SLAM methods' maturity, efficiency and success. Thanks to the SLAM 

techniques being quite complicated, there are a number of sub-sections still to be 
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progressed for the better. The mathematics behind the SLAM techniques can be said 

to be well settled and proven to be practical. On the other hand, sensor data 

management and processing techniques are still a work in progress. This is partly due 

to the evolution of sensor technologies on a regular basis. As the state of the art 

technologies offer more to autonomous systems, the focus of data processing 

algorithms could be shifted towards new ideas. 

 

 
 

Figure 1: A Mobile Robot with a Kinect Sensor [6] 

  

In this thesis, a new idea is introduced in the domain of feature based SLAM. In the 

literature, SLAM techniques generally adopt point, line and plane features as 

landmark measures [7] [5]. Those approaches are designed to be well suited for 

indoor environments and are proven to be thusly so far. There are a number of 

advantages of such techniques making them attractive for SLAM researchers, 

however, the techniques proposed in this thesis are never explored before and they 

could help SLAM algorithms in many ways. In 3D SLAM algorithms, surface 

features have been used mainly as planar features. We investigate the use of surface 

curvature features of the 3D environment data. Although this would seem 

intuitionally straightforward after the plane approaches, the literature has never seen 

a study a SLAM algorithm with surface curvature metric. Like the existence of solid 

SLAM algorithms, there is a good amount of powerful algorithms in the surface 
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curvature feature extraction literature. Thus, this study aims to unite those confident 

techniques and document the results for the first time. 

 

1.2 State of the Art 

SLAM literature could be categorized based on either the main probabilistic 

approach adopted or on the sensor data utilization techniques used. We will start with 

the main SLAM approaches as the literature on those methods could be said to be 

quite well settled. There are certain de-facto approaches which have proven their 

maturity over time.  

The first approach to emerge as a comprehensive solution is the Extended Kalman 

Filter (EKF) method. EKF provided an analytical solution and yielded efficient 

algorithms. The roots of this technique go back to the work by [8]. The success of 

this technique then attracted works such as [9], [10] and [11] to follow. In time, 

extensions for EKF methods are studied. The first consideration was the quadratic 

complexity of the algorithm. In [12] this issue is addressed and with a more efficient 

implementation of EKF, the algorithm was able to operate in real time. Another 

defect of the EKF algorithm is observed to be its vulnerability to data matching 

errors. This problem arises due to the Gaussian error assumption during the 

linearization. Gaussian assumption requires single peak for the probability 

distribution, however, this cannot be expected to strictly hold. Thus, as the real world 

data error deviates from the Gaussian assumption, failure to match the observation to 

the map becomes more and more likely which, in turn, could drive the algorithm 

towards the cliff of divergence. There are extensions such as [13] to overcome this 

problem by a multi-hypothesis approach. This approach was able to limit the local 

maxima problem to some extent. Another inefficiency caused by the linearization 

error in EKF is addressed by Unscented Kalman Filter (UKF) [14] which introduces 

the idea of having sample models other than Gaussian making it possible to choose 

the best model for the corresponding problem. Presently, after years of contributions, 

EKF stands as a reliable and proven method and a nearly finished article. 

Grid-based methods are also early approaches for the SLAM problem the examples 

being [15], [16], [17], [18]. Mainly, the idea is to have the probability likelihood over 

the space of all possible states for the robot where the state space is discretized by the 



 

 

 

4 
 

use of grids. The existence of such a discretization alone introduces an additional 

source of error which causes reluctance even from the start. The addition of the fact 

that this approach requires a much bigger amount of memory on top of the 

discretization error, those approaches did not receive much attention over time. 

Particle filter approaches, however, emerged as a very powerful opponent to EKF 

algorithms. [19], [20] introduced belief distribution of the robot state over the 

particles, unlike the distribution over grids as in grid-based methods. Thus, this 

multi-hypothesis approach was able to eliminate the grid requirement as in grid-

based methods which also eliminated the additional discretization errors. Just like 

grids, the number of particles could be used as a parameter to balance the trade-off 

between performance and memory. This can be viewed as having the multi-

hypothesis advantage of the grid-based methods without having the discretization 

problems. FastSLAM method was introduced shortly afterwards by [21].The biggest 

impact of this method was that the algorithm complexity became linear with respect 

to the number of features used in SLAM algorithm which was quadratic in the case 

of EKF SLAM. Although this algorithm also eliminates the problem of divergence 

caused by the instability of singe-hypothesis approach of EKF, FastSLAM has its 

own nemesis: the problem of diminishing good particles. However, this problem is 

comparatively less probable as the multi-hypothesis structure is able to recover from 

getting stuck around false peaks. 

The final notable family of SLAM methods is based on scan-matching techniques. 

The main principle is, in fact, the tracking methodology. This includes the alignment 

of consecutive sensor measurements and calculation of the state transition based on 

the minimization of relative transformation. The early example for 2D data is studied 

by [22]. For 3D data, [23] introduced much renowned Iterative Closest Point (ICP) 

algorithm. Although not a global solution due to the tracking based approach, SLAM 

literature witnessed successful implementations of ICP in many 3D SLAM 

algorithms as in [24]. 

In the scope of this thesis, we will be more focused on the sensor data representation 

and utilization part of SLAM. We can examine the SLAM solutions in three main 

groups in terms of data representations as raw data, grid-based and feature-based 

representations. Amongst them, as mentioned in [25], feature-based are mostly 
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preferred. There are decisive reasons why feature-based methods are beneficial. 

Firstly, in raw data and grid based approaches, the amount of data processed causes a 

problematic computational complexity and memory requirements. Feature-based 

methods are able to represent the data in a more compact mathematical form which 

reduces both the time complexity and memory demand. Also, grid-based methods 

introduce additional error to the system due to discretization. Another advantage of 

feature-based methods is that the mathematically compact data representation comes 

in handy for the mapping process. Thus the literature is inclined towards these 

techniques. This thesis study also adopts a feature-based approach and aims to 

contribute in the feature utilization part of the SLAM problem. Hence, the following 

sections of the literature survey are allocated to the feature extraction methods used 

in the SLAM algorithms. 

Based on the sensor data output of the robot, feature extraction methods used in 

SLAM systems can be investigated under two main categories: 2D features for vision 

sensors and 3D features for range sensors. Our thesis study uses a feature extraction 

method that lies beneath the family of 3D feature extraction methods. Thus, 3D 

feature extraction methods will be reviewed as relevant work in the literature. 

[26] is one of the most cited works in the 3D SLAM domain. In this study, RGB and 

depth data is utilized using planar features of the environment making use of 

RANSAC (Random Sample Consensus) and ICP (Iterative Closest Points) 

algorithms. Basically, planar patches in the observed scene are detected by using 

RANSAC on the extracted point features and then the detected consecutive patches 

are matched through ICP algorithm. In [27], a similar solution is proposed where 

SURF is used to extract point features from RGB images and then aligned with other 

frames by use of RANSAC algorithm. In [25], where a SLAM technique based on 

planar segment approach, again the scene is decomposed into planar segments via 

RANSAC algorithm and then the smaller segments are grown into bigger segments 

by a breadth-first region growing algorithm. It is possible but not necessary to 

mention many other studies based on planar feature extraction for SLAM. However, 

the literature does provide an example of surface feature utilization other than plane 

features in SLAM algorithms. There are 3D surface feature extraction studies like 

[28] stating that the suggested methods "would" apply quite well on SLAM solutions, 
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nevertheless, no implementation or results could be found in the existing studies. 

This is the gap that our study aims to fill as a contribution.  

 

1.3 Thesis Contribution 

This thesis study aims to contribute to the existing feature-based SLAM techniques 

by introducing the Surface Curvature Feature based SLAM. The use of surface 

curvature features in SLAM domain is a completely novel approach. As reviewed in 

the state-of-the-art section, the existing 3D SLAM techniques are mainly interested 

in planar surfaces and their features. Planar features are useful for they can represent 

indoor environments and some man-made objects quite efficiently. Also, planar 

features are computationally efficient to extract which primarily make them a 

rational choice for robotic applications like SLAM. 

However, SLAM algorithms could get further valuable information from the sensor 

data. The proposed use of surface curvature features provides SLAM algorithm the 

following benefits: 

 Curved surfaces yield more discriminative information compared to planar 

surfaces. It is more likely to mismatch two different planar segments. The 

normal vectors are expected to be salient mostly, however, other features like 

their size could be easily measured different at each appearance in the scene 

which could cause matching errors. In surface curvature features, it becomes 

quite hard to have two surfaces having both matching shapes and sizes. 

 Planar features are sensitive to occlusion. The size of a planar region is 

directly affected by the size of any possible occluded region. On the other 

hand, when an analytical surface is fitted to a surface, only a partial section of 

the curved surface is sufficient to deduce the shape of the complete surface 

and even the size if the surface is a closed symmetrical surface. The missing 

data on the occluded regions are automatically interpolated during the surface 

fitting process. 

 Surface curvature features are additional sources of descriptive information 

for the environment. This could improve the performance of SLAM 

algorithm for the cases when there is a lack of planar landmarks in some 

specific environment. Given sufficient computational power, surface 
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curvature features could improve SLAM at any given case as compared to the 

sole use of planar features. 

 

1.4 Outline of the Thesis 

Brief information about the SLAM problem definition and feature extraction part of 

the problem is described in first part of the introduction. The state of art is mentioned 

in the second section of the introduction part. The contributions of the thesis work 

are explained after pointing out the open field in the literature. 

In Chapter 2, after a literature review on SLAM studies, the literature on 3D feature 

utilization for SLAM problems is detailed as this thesis work aims to improve the 

feature utilization side of the SLAM application. 

In Chapter 3, a theoretical background is given on SLAM concepts and two major 

SLAM algorithms, namely EKF SLAM and FastSLAM. 

In Chapter 4, the theoretical concepts behind the surface curvature feature extraction 

used in the SLAM algorithm is given. 

In Chapter 5, the solution implementation design is presented. The integration of the 

surface curvature feature extraction method into the FastSLAM algorithm is 

explained. 

In Chapter 6, the repeatability of the proposed surface curvature feature technique is 

experimented on a segment of real Kinect data and analyzed for data association 

purposes. 

In Chapter 7, the results of the experiments and analysis based on the results are 

stated. The performance of the proposed novel approach is discussed. 

In Chapter 8, the thesis study is concluded with an overview of what are gained and 

what to be followed next. 
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CHAPTER 2 

 

 

LITERATURE REVIEW ON 3D SURFACE FEATURE 

UTILIZATION FOR SLAM  

 

 

 

The spreading use of range sensors in robotic applications [29] has naturally pushed 

the methods from 2D to 3D universe. Range sensors provide valuable spatial 

information in especially indoor environments for purposes of obstacle avoidance, 

path planning, object manipulation, remote operation and autonomous navigation 

where a global positioning system (GPS) is not available [30]. In order to achieve 

such intelligent abilities, the utilization of range sensor data is vital as in image 

processing methods for vision sensors (cameras). The success of the representation 

of the environment determines how realistic the belief of the robot about its 

surroundings could be. In SLAM applications and other applications which, at some 

stage, require the association of range sensor data pairs have to rely on 3D data 

processing performance. As the most of such methods are feature based approaches, 

the 3D feature detection and description techniques are of utmost importance. 

On the grounds that this thesis work primarily aims to improve SLAM performance 

by means of a new approach in data representation for the 3D data obtained from the 

range sensor, it is inevitable to investigate the already rich literature on 3D feature 

detection and description techniques. This review will provide the fundamental 

insight into various well-known state-of-the-art approaches and a panoramic 

perspective over most of the 3D feature utilization methods. Upon this overview, we 

will delve further into the subsets of 3D feature extraction literature which are 

considered to be relevant to the approaches followed, namely surface feature and 

surface curvature feature approaches.  
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2.1 3D Feature Detection and Description Methods for Data Association in 

SLAM Problem 

The domain of 3D feature detection and description techniques is a vastly broad 

field. The attraction towards 3D features is an outcome of the complexity of the 

methods to infer depth information from 2D vision data [31]. Thus, the 

computational cost devoted to the derivation of range information is discarded by 

sensor technologies capable of a directly supplying the depth information for the 

scene. This is, beyond a reasonable doubt, a tremendous benefit for especially real 

time applications as in the robotics field. Still, to fully exploit such a saving on data 

processing, the feature detection and description techniques have to keep up with 

their 2D counterparts. The perpetual problems of uneven illumination and textures of 

the surfaces in the possibly unknown and uncontrolled environments are other 

important issues that are conveniently avoided in range sensor based approaches. 

Recent studies demonstrate that 3D feature literature is not too far away from 

satisfactory results. In the following sections, recent work on 3D feature utilization 

approaches and techniques are given within the scope of range sensor information 

processing for data association in SLAM domain and possibly other closely related 

applications. 

In [31], the authors compare 2D and 3D SLAM performances on their benchmark 

framework by running them on the same environment in real time. They use Kinect 

as their vision and range sensor and Hokuyo laser scanner as the benchmarking 

sensor. The 3D SLAM method is the RGBD SLAM method presented in [32]. In this 

method, although the features are detected and matched from the RGB images of the 

scene via SURF feature detection and description method, the mapping process 

involves the depth values of the interest points found in the former part. Thus, 

although the feature extraction is performed in 2D, consecutive two frames are 

aligned via the RANSAC process based on 3D point locations of the feature points 

which is why this method could be somehow investigated in 3D feature approaches 

category. The benchmarking 2D SLAM method is chosen as GMapping [33].  

The work in [34] is rather relevant to this thesis work not only in the 3D feature 

utilization side but also some other aspects such as object-based approach and 

curvature feature-based data association methods. We will put the other aspect aside 
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to be later discussed in their respective sections in the remainder of this literature 

survey part. As far as the 3D feature usage for data association is concerned, the 

adopted method accepts the Kinect-style 2D organized 3D sensor input and detects 

3D interest points by making use of local surface variations, namely local curvatures. 

For the curvature-based key point detection, shape index (SI), mean-Gaussian 

curvatures (HK), shape index-curvedness (SC) and factor quality (FQ) by [35] are 

implemented, analyzed and compared for performance parameters such as 

repeatability. Data association for object recognition application is completed by the 

matching process in which the descriptors extracted around the detected key points 

are compared between the model patches and the test patches defined as the 

neighborhood. The descriptors are chosen as the shape index values and the surface 

normal difference of the key point with respect to the average of its neighboring 

points. Thus, the feature vector basically consists of a shape index value in the range 

[0, 1] and a cosine value measured between the aforementioned surface normals. The 

study also includes the comparative analysis of the curvature-based detector 

methods; however, this discussion is left for the more related curvature-based 

methods literature. The results of the study yields a repeatability of as high as 80% 

and a recognition rate of as high as 96.4% in the best configuration of investigated 

methods. From the perspective of the work in thesis, the object recognition is not 

tested in a SLAM application and it stands as the biggest difference as compared to 

the proposed system. Also, the objects are analyzed point-wise and expanded as 

connected neighborhood patches whereas in our work, an initial spatial segmentation 

and a generalized quadratic surface representation is adopted for object detection. 

For the description, the same curvature-based features are used, however, not in the 

point level but in the surface level. 

Edge detection is also popular in 3D feature utilization in SLAM applications. A 

recent example of edge detection-based localization is studied in [36]. In this system, 

color image output of the Kinect sensor is used to detect lines in the scene. The RGB 

image choice is due to the use of color and texture around edge regions for matching 

process. Once the lines are detected, they are tested for their curvature being low 

enough to meet the linearity tolerances. To gain robustness against noise, Gaussian 

filtering and dilation steps are applied. Then the detected lines are converted to 3D 
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lines through the depth map information and checked whether the line still satisfies 

the linearity conditions when the depth information is also considered. After the 

detection of the lines are finalized, they are compared between two consecutive 

frames for matching. The intercepts and inclinations of the compared lines are 

considered as descriptors in the matching process. The system is tested in EKF 

SLAM application with real Kinect data recorded in a laboratory environment and 

the results are found to be satisfactory by the authors. 

In [37] 3D features are extracted and used for object classification. The method of 

choice for detection is the application of the absolute value of the determinant of 

Hessian matrix formed by box filters of second order Gaussian derivatives. This 

process is applied to the gridded 3D data into smaller voxels (volumetric pixels). 

After the detection of interest points, the description is achieved by a 3D adaptation 

of 2D SURF method. 

A framework for RGB-D mapping using Kinect-style depth images is presented in 

[26]. In this work, both the RGB and depth images are utilized in the mapping 

application in which TORO [38] is used as a graph-based SLAM optimization 

method. For data association, a two stage operation is performed the first stage of 

which is processed on the RGB image through the use of SIFT feature detection. In 

the second stage, the consecutive frames are aligned by RANSAC application on the 

3D points around detected interest point locations. Thus, it is safe to summarize this 

method as a combination of 2D feature detection and 3D matching. The motivation 

of the study is to globally reconstruct the map of indoor environments. 

Another study that exploits the dual output of RGB-D cameras for data association 

problem is given in [38]. The authors have benefitted from RGB images via Canny 

edge feature detection in 2D. As emphasized in their explanations, it is 

straightforward to refer to the same point from RGB image to depth image and vice 

versa. Thus, the 3D counterpart of the detected feature points in 2D image is 

conveniently referred to and the corresponding 3D edges are found and used as 3D 

feature descriptions. The scope of the study is determined up to the registration of the 

consecutive images by means of ICP algorithm. Hence, this process could be the data 

association part of a SLAM application; however, as the motivation in this work is to 
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improve the image registration part, they did not opt to evaluate the performance of 

the registration inside a SLAM loop. 

The combined approach of 2D detection and matching 3D point-wise association is 

also noted in [27]. In this work, the RGB images are used to detect visual features 

and match consecutive frames using SIFT, SURF and ORB (Oriented FAST and 

Rotated BRIEF, where FAST stands for Features from Accelerated Segment Test and 

BRIEF is the name for Binary  Robust Independent Elementary Features) 

descriptors. The matched features locations are then used to obtain the 3D point pairs 

for frame pairs. The optimal transformation is then obtained by means of a RANSAC 

application to conclude the data registration process. The performance is evaluated 

on a publicly available RGB-D SLAM dataset that the authors themselves have 

recorded. A quite similar system is also proposed in [39] where SIFT and SURF 

methods are applied and analyzed as feature extraction techniques for SLAM. 

A very recent study utilizing the fusion of RGB and depth image output of the Kinect 

sensor to achieve a more accurate 3D tracking technique is presented in [40]. 

Although the study does not aim at global feature matching purposes, there are useful 

results and analysis for the improvement of 3D feature matching in data association 

between consecutive frames. Not surprisingly, the 3D features are in the point level 

instead of higher level features such as surfaces or objects as the tracking processes 

do not require loop closing. This constitutes the reason for the review of this study to 

be located under the headline of 3D features. The author suggests a system which 

receives the intensity and depth images from the sensor. Then, simultaneously, 

detects interest points on both of the images based on the "cornerness" measures 

within local rectangular grid patches of a pre-determined size. For the intensity 

image, the mean error performance of the Harris and Shi-Tomasi corner detection 

methods are compared and Harris features are chosen to be settled with. On the other 

hand, a similar operation is followed on the depth image by making use of the 

curvature properties of the local surface. The peaks of the shape index (SI) 

measurement calculated based on the principal curvature values are detected as the 

3D interest points. The study shows that the mean tracking error performance in the 

case of combined detectors of intensity and depth images yield better results as 

compared to the cases in which only one of them are in use. Then the fusion of the 
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detected points commences in a manner that is inversely related to the deviation of 

the cornerness of the regions around the neighborhood of the detected points. This 

way, more confident feature points are allowed to proceed to the EKF stage where 

the Kalman Gain is modified to alter the weights of 3D and 2D interest points based 

on their deviation. Matching performance of the system is compared against the ICP 

and other tracking methods and it is shown that the system outperforms the others in 

mean projection error; mean and absolute pose error values. As far as the SLAM 

problem is concerned, the discriminative power of the surface curvature property is 

noted in the success of the tracking performance results although only the shape 

index is used as curvature feature instead of possible combinations of mean and 

Gaussian curvatures as in this thesis work. The given study, of course, cannot be 

fully referred to as it deals with local tracking problem; nevertheless the success of 

3D curvature feature matching encourages the feature extraction approach adopted in 

this thesis study which also relies on the surface curvature properties. 

In [41] the problem of place recognition is studied in the mobile robotics domain on 

the grounds that the autonomous mobile robotics is the main field where the place 

recognition is investigated intensively. In this work, the laser range data input from 

the sensor is pre-processed to obtain a depth image similar to that of commercially 

available RGB-D sensors like Kinect. The reason for this transformation lies in the 

aim of processing the depth information in a 2D image-processing sort of manner. 

Depth image representation yields a structural organization for data points which 

allows somewhat easier gridding operation. The proposed system firstly detects the 

interest points by the application of Laplacian of Gaussian (LoG) operator on the 

depth image. The resulting interest points basically result in the points which have 

distinctively different depth values within their neighborhood. Nevertheless, in 

awareness of the false positive interest points due to occlusions, they feel in need for 

the elimination of some initially detected interest points. For this purpose, they filter 

out the very high local gradient points by the assumption that they belong to an 

occluding object edge. Although not mentioned, however, this could potentially 

cause to miss any object edges as any object is an occluding body for any 

background region. We assume though, the background effect is handled accordingly 

against such a case. The authors also find the interest point forming a line 
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undesirable as they prefer corner-like regions rather than edge-like regions and also 

prefer to keep the interest point number low. After the interest points are finalized, a 

fixed-size patch around each point is chosen for the production of feature descriptors 

around the interest points. Within the patch neighborhood, the local gradients along x 

and y directions are calculated and normalized into the range of [0, 1] where the 

values near zero are planar regions and values near one are sharply curved regions. 

Finally, the extracted features are compared against the previously recorded features 

via a scoring system based on location and feature description matching. The results 

are evaluated on a real world range data using the SLAM system, TORO [42]. 

In [30], a SLAM system is proposed which is designed to be used in assistive robots 

for indoor environments. The system utilizes Kinect sensor RGB and depth data by 

means of the 3D feature extraction method, namely ORB [43]. The study suggests a 

system that detects and describes feature points using ORB feature representation 

which is reported to be chosen for its robustness, invariance to rotation, faster 

execution and lack of licensing costs as opposed to the patented SIFT and SURF 

techniques. 

 

2.2 Surface Feature Detection and Description Methods for Data Association in 

SLAM Problem 

In the 3D feature detection and description methods section, the approaches mostly 

utilize low level features focusing on points, curves and lines. Although these low-

level feature-based techniques have proven to be successful and stable in many 

SLAM implementations some of which are mentioned in the previous section, the 

benefits of using higher level features urge SLAM applications towards higher level 

features. The semantic approaches could exploit the rich information obtained from 

higher level features such as surface features [44]. This is may not be vital for solely 

navigational purposes in plain environments; however, it is deadly important in the 

cases of object interaction and object manipulation. The fully extracted surface of a 

coffee mug would be a very helpful input to a service robot which is expected to 

bring that mug to the disabled user at home. But when a massive group of extracted 

corner points of the same mug would require vast additional processing and 

reasoning before any sort of interaction, like grabbing. Another advantage of higher-
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level utilization is the compact representation of the environment [44]. To represent a 

planar wall region with a single feature vector containing normal, size and location 

information as compared to having thousands of feature points with low level 

features is a fatal difference as all other processes build on this fundamental 

representation. The compactness of the representation provides a cumulative 

computational saving for the scan matching, loop closing and mapping process in the 

SLAM chain. When a feature-wise dense environment is considered, the execution 

time required for data association will differ dramatically for the cases of comparing 

a few vectors instead of one-to-one checking of several thousands of point features 

representing the same amount of environment data. Computational cost reduction is 

not the only benefit of compact representations; rather the robustness gained by the 

inclusion of bigger amount of data is also important in the sense that possibly 

erroneous data sections could be compensated by the dominance of other proper data 

sections belonging to the same object. 

The 3D surface feature techniques in the SLAM problem are dominated by the plane 

representation-based proposals. Apart from the compactness benefits, the motivation 

for the tendency to plane representations could lie in the simplicity of detection and 

description on top of the fact that most of the indoor environments consist of planar 

regions. The outcome of the studies dealing with plane features in SLAM 

applications verify that the plane feature representations deserve the attention they 

drive. Including the plane feature-based methods, there are quite a number of studies 

using surface features as high level features for data association purposes in SLAM 

scenarios or other relevant problems. It is aimed to mention some of the most recent 

and milestone examples of those studies in the remainder of this section. 

The study presented in [45] is directly motivated by the benefits of using higher level 

features in SLAM loop instead of low level features such as 3D point or edge 

features. The method actually suggests a hierarchical feature extraction process in 

which 3D points are first detected and described for scan matching. In the next phase 

of the process, the selected 3D points are tested for whether they form acceptable 

planar surfaces. For this detection purpose, RANSAC approach is adopted and the 

descriptor vector for the decided plane constitutes of 9 elements which are the plane 

origin location and 2 orthonormal vectors for the plane normal. The main idea of this 
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work is to augment this 9-element plane feature vector in the SLAM state vector. The 

study also suggests the same approach for line representations, however, as the 

surface features are under consideration in this section, only the plane part is 

mentioned. The solution system is tested on real data and it is concluded that the 

compactness gained from the reduction of the feature vectors in the SLAM state 

vector pays off in reduction of the execution time. This is one of the main 

motivations behind using surface features instead of 3D point features. However, the 

initial 3D feature extraction process is still performed, only the data association 

process effectively works with reduced amount of feature vectors. Thus, the 

computational cost is relaxed only on the matching side not the feature extraction 

side. 

Another work proposed for underlining the positive effect of higher level features is 

given in [44]. This work considers the environmental features in the object level and 

utilizes the object level features for the global matching process, also known as loop 

closing,  rather than for solely local scan matching purposes. The authors’ proposed 

system starts processing the sensor data by first segmenting the scene into planar and 

non-planar clusters. Both of the groups are used as landmarks, however, kept 

separately. The detected planar regions are registered using surface normals and least 

squares fitting. The criteria for plane categorization include the minimum number of 

inliers and low curvature indicated by the low variance of surface normals along the 

planar region. The non-planar regions are further segmented with either a connected 

component approach or a graph-based approach. The process also features a 

semantic noise filter that eliminates extremely big or small clusters which pose a 

high risk of erroneous data. The thresholds are chosen based on the average size of 

the common indoor objects. The segmented clusters are then treated as objects and 

then matched based on their centroid location, CSHOT descriptor [46] and its 

bounding box properties. The matching mechanism works in a safety-first manner in 

which the nearest descriptor match between the observed and known landmarks is 

performed in both directions, only when the both matches agree then the association 

is confirmed. Additionally, the spatial constraints are also applied to make sure the 

objects are consistent not only feature-wise but also location-wise. The system 

detects a matched new observation in terms of whether the loop closure occurred by 
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matching the same object after a period of no detection or a regular match occurred 

either by direct matching or partial matching and merging. The performance of the 

system is evaluated on a real Kinect sensor data record that the authors themselves 

had collected. The object recognition rate, the amount of reduction up to 30% in the 

false positive rate by the help of object refinement and the success in the loop closure 

are emphasized in the results and conclusions sections. This work adopts a similar 

approach to the proposed system in this thesis work in the spatial scene segmentation 

parts and the overall object based approach, however, the feature extraction 

preferences differ and the quadratic surface generalization is not assumed in this 

work. Although the mentioned method seems to be making use of planar features as 

an additional utilization, however, the method proposed system in this thesis actually 

includes the planar regions silently under the quadratic surface generalization which 

also accommodates planar surfaces. 

The surface features of the objects are utilized in [47] with the limitation of surfaces 

lying horizontally with respect to the sensor frame. The reason for such an 

assumption for the surfaces is due to the underlying motivation for the design of 

assistive service robots. In household environments, the objects are usually kept in 

horizontal surfaces such as tables, desks, counters, shelves and so forth, thus the 

service robot is assumed to be interacting with such surfaces most of the times. The 

SLAM system gets the 3D input and deals with the 3D point cloud starting with an 

iterative application of RANSAC in order to find planes in the scene. This method is 

applied on the whole scene and at each iteration; the largest plane that is roughly 

horizontal and contains sufficient amount of inliers. If those conditions are met, the 

selected data constituting the plane is registered in to the map and if not the said data 

is removed from the point cloud under consideration without an update into the map. 

The matching of the detected planes are performed by the inspection of overlapping 

between the pair of planes as projected in the global map. Hence, there is no use of 

feature extraction in the process, instead only location and pose matching are 

considered. Actually, the method uses the planar surfaces only for the mapping 

purposes. The localization problem is left to the line features extracted from the 

indoor wall regions. The method is tested in a regular home environment with a 

mobile robot driven manually and range data obtained by stopping the robot and 
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making a sensor scan. Thus the algorithm is run offline on the recorded data. As the 

design criteria prefers having not detecting planes instead of false positives, some 

planar regions such as smaller tables in the distance and shelves too close to one 

another are missed by the mapping system. However, the results in general serve the 

purpose in the sense that the localization and mapping of the most significant 

horizontal planar surfaces is achieved. The extension of this study into the SLAM 

method in which the planar surface features are used as landmarks in the loop closing 

including other planar surfaces than horizontal planes is presented in [48]. 

 

2.3 Curvature Feature Detection and Description Methods for Data Association 

in SLAM Problem 

Curvature features of object surfaces in the robotic application environments produce 

valuable information as they are able to provide affine invariant descriptors [28]. For 

applications like SLAM where the data association is a vital problem, the 

performance of feature detectors and descriptors is a game-changing factor. The 

appearance of range sensors in such applications did not only help to avoid the 

sensitivity of 2D images to conditions such as illumination and texture, but also 

offered the chance to extract additional complex information from surfaces. The 

extraction of surface topology improves the descriptor performance and thus results 

in better data matching in many applications fields with face recognition being an 

important example where the pits and peaks of human face provides significantly 

robust and repeatable description features [35]. Curvature information of the surface 

is also persistent in the partial occlusion scenarios in which although some properties 

such as size, edge or corner information might get lost. Nevertheless, if the said 

surface is continuous and symmetrical to some degree, then the curvature feature is 

valid for any observable section of the surface. The description power of curvature 

features is also another source of attraction in the sense that these features provide 

robust, affine invariant and repeatable performance. Hence, although not yet quite 

common, the utilization of curvature features in robotic applications as in SLAM 

problem is also promising. As will be noted, it is hard to find direct use of curvature 

features in SLAM systems, which is partly the source of the motivation for this thesis 

work, though the literature on data association and recognition contains valuable 
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work with substantial results. Thus, in the remaining parts of this section the use of 

surface curvature features in data association process of SLAM problem and more 

often other related problems. 

A quite recent and relevant study is reported in [34] which presents a local surface 

curvature feature based object recognition technique. The aim of the study is to 

obtain salient and repeatable key points under view variation which is a typical 

scenario for robotic applications. The system traverses the input depth image 

exploiting the structured distribution of data points and calculates curvature values 

from differential geometry within a local neighborhood patch. The curvature 

calculations include Gaussian curvature (K), mean curvature (H), shape index (SI) 

and proposed factor quality measures. Then maxima and minima are found based on 

selected combinations of these curvature measures which are later evaluated in the 

results section of the study. The key points are detected thusly as the extreme points 

of the curvature values throughout the surface. The performances of the mentioned 

descriptors are evaluated for stability under noise and viewpoint variation. Figure 2 is 

found in the authors' article to depict the results of the repeatability analysis 

performed on a publicly available 3D object dataset. The objects are isolated frames 

in the dataset and the methodology adopted is to define a repeatability measure based 

on the percentage of stable key points detected in one view of the same object with 

respect to another translated and rotated view. If the factor quality descriptor is left 

aside, the results suggest that all other curvature-based features lead to a solid 

repeatability in the levels of %80 to %90. Although the theoretical approach is quite 

relevant to the basis of this thesis work, there are differences to note. For one, SLAM 

performance is not evaluated in the given work which would reflect a more realistic 

problem environment. In our thesis study, a compact surface based curvature feature 

is used instead of the point-wise feature representation in the referred study. 

However, in the scope of feature detection and description from the range sensor 

data, this study stands as an enlightening preview for our work to reach improved 

SLAM performance by means of better sensor data utilization for data association. 
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Figure 2: The repeatability analysis of the curvature feature descriptors under 

viewpoint change and noise conditions in [34] 

 

2.4 Object-based Techniques in SLAM Applications 

The work in this thesis aims to utilize a compact representation for 3D surfaces. For 

that reason, it is necessary to view the literature in the perspective of Object-based 
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SLAM. Basically, we can refer to Object-based approaches as the compact 

representations of the environment where the fundamental elements in the 

environment are object-level regions. Although we try to demonstrate the benefits of 

a method that falls under the object-based approaches in the SLAM domain, in the 

literature object based approaches appear mostly on applications of SLAM in 

dynamic environments. This is natural in the sense that object-based approach is an 

option in SLAM in static environments; however, it is quite unavoidable for SLAM 

in dynamic environments as in real world, not points or lines but "objects" move. If 

everything is stationary, then it is straightforward to break the environments into any 

convenient sub-sections such as planes, lines or points. Nevertheless, when there are 

moving objects in the environment, there has to be an additional consideration on 

whether the regions of interest are moving or stationary. Thus, the intuitive 

representation would naturally be based on object level regions. The literature, 

therefore, contains most of the object-based techniques in studies devoted to SLAM 

in dynamic environments. In this section, we will be mainly reviewing object-based 

SLAM approaches which are vastly on SLAM with moving objects. 

The pioneering work on SLAM in dynamic environments is presented in [49]. In this 

work, a mathematical framework is proposed under the name of Simultaneous 

Localization, Mapping and Moving Object Tracking (SLAMMOT) which combines 

SLAM in dynamic environments and detection and tracking of the respective moving 

objects. The illustration for the overall system is given in Figure 3. 

 

 
 

Figure 3: SLAM Process and Moving Object Tracking Process (MOT) 

combining into Simultaneous Localization, Mapping and Moving Object 

Tracking (SLAMMOT) Process [49] 
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The motivation for this work is described as to build a framework for autonomous 

safe driving in the urban traffic environments. The detection and tracking of moving 

objects requirement of the system therefore arises from the dynamic nature of the 

traffic environment. When the elements of a traffic environment are considered, it is 

seen that a large variety of objects could be found in such an environment. The 

objects could be buildings, walls, sign posts, traffic lights, humans, cats, vehicles, 

bicycles, trees, shops, sidewalks and so forth. Due to the diversity of the object types, 

it is not feasible to have a finite model database or certain object characteristics. For 

that reason, the authors proposed a “free-form” object representation which assumes 

no a priori constraint on the objects to be detected and tracked. In this free-form 

object representation, the scan points from the range sensors are segmented based on 

solely the distance criterion. Thus, the only assumption of the method about the 

object candidates is the connectedness of the scan points forming the objects. To give 

a brief insight into the segmentation process, it could be noted that considering the 

urban traffic environments, they have determined the constraint that two different 

segments cannot have points which are closer than 1 meter in distance. This is the 

initial coarse segmentation applied on the scene data, however, more precise 

segmentation of the objects rely on the performance of the SLAMMOT algorithm 

over time frames. 

 

 
 

Figure 4: Free-form Object Representation in Partially Overlapping Grid Maps 

[49] 
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In SLAMMOT method, the local localization is achieved by ICP (Iterative Closest 

Points) algorithm and the sensor measurements are stored into a local grid map as 

stationary or moving objects. The objects are obtained through the segmentation of 

the scene into object clusters based on only the distance criterion. The only features 

of the segmented objects are the locations of the centroids of the data points 

belonging to the objects. This is the result of the generalization to free-form objects. 

The grid map size is determined as 160m and 200m for the width and length, 

respectively with a grid resolution of 0.2m. The overlapping regions are the 40m 

margins of the grid borders. The aforementioned sizes are determined experimentally 

for the application in [49], however, it is noted that the sizes can be adjusted on-line 

in practice. Figure 4 depicts the local grid maps and the overlapped combinations of 

those maps over the trajectory. Each local grid map is formed by detected objects 

which are localized by ICP matching. Those locally formed grid maps are then 

utilized as 3 DoF features for the feature based EKF SLAM algorithm used for the 

global SLAM loop. Thus, the global SLAM is achieved by matching of the local grid 

maps via a 3 DoF feature vectors which represent the location and orientation of each 

local grid map. As seen in Figure 4, there are 14 local grid maps, in other words, 14 

global features for EKF SLAM algorithm. Thus, as far as the feature extraction and 

description part of the SLAM is concerned, a truly original method is used which is 

quite different from the approach used in the proposed method for this thesis work. 

The object features used in the local localization part, however, could be compared to 

the object representation used in the proposed method. In [49], only the location of 

the segmented objects are used as features, dropping even the orientation of the 

objects as with the distance criteria for their free-form object segmentation a reliable 

orientation detection is not possible. This approach again differs from the proposed 

method due to the use of 3D surface curvature features in the object feature vector in 

addition to the location information. The absence of orientation, however, is common 

in both approaches as orientation provides misleading information for quadratic 

surfaces when the partial visibility of surfaces is considered. 

The preceding work [49] on object-based SLAM is given in relatively more detail 

due to the fact that the most of studies in this field deals with the similar SLAM in 

dynamic environments problem and the referenced work is the pioneering work 
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among others. In [50], a moving object detection algorithm is proposed along with 

visual SLAM on a small-size humanoid robot. The system has a monocular vision 

camera as the only sensor, from which the distance information is obtained using 

consecutive image frames. The moving object detection is achieved concurrently 

with SLAM; however, the objects are registered in a start-up procedure before the 

SLAM operation. Thus, the categorization of moving and stationary objects is 

performed offline. The features used in EKF algorithm are selected as SURF 

features. Hence, this method actually uses a point feature, namely SURF, and then 

recognizes objects by matching the strongest features belonging to the objects. 

Objects are not represented directly by object features but through the point features 

on them. Although the authors themselves refer their work to be based on object 

recognition and object-based SLAM, the implementation is somewhere between 

object feature representation and point feature representation. The approach is thus 

quite different from the proposed 3D surface feature representation based method in 

which strict object segmentation precedes the quadratic surface fitting and feature 

extraction from the fitted surface. 

Another work featuring an object-based approach is presented in [51]. The 

motivation of the work is basically about the indoor use of mobile robot help for 

humans. The data representation is accordingly based on typical household objects 

and doors. Their proposed system uses a laser range finder to detect lines in 2D space 

which are then used for door detection. A stereo camera is used to recognize the 

detected doors by means of SIFT feature matching against the previously detected 

doors. This method considers only the doors for SLAM and uses line detection and 

SIFT features for door object utilization. This way, the authors choose to deal with a 

limited amount of objects among the objects in a scene which is quite different from 

the proposed approach in which a more generalized family of objects which have 

quadratic surfaces is considered. 

Object mapping is handled by the help of SLAM method in [52]. In this work, the 

map of the environment is first mapped by means of stereo SLAM application with 

Canny edge detector for data association. The mapped scenes are then segmented 

into objects which are modeled in a database beforehand. For this segmentation, first 

the objects are detected as composed of edge points found in SLAM application and 
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then compared to the objects in the database in terms of SIFT descriptors of the 

objects in the database and detected objects from the scene. 

In [53], a different object-based SLAM method is introduced in which no feature 

extraction is involved. The study features a mobile system that navigates and collects 

environment data with a 2D laser range scanner which is driven by a servo motor in 

order to obtain 3D range data. The 3D range data is then segmented into two main 

groups where the vertical point clusters which are connected to the ground level are 

considered as robust landmarks and the “overhang” point clusters which have a 

certain gap below them from the ground level are considered as obstacles and not 

landmarks. The latter group is segmented as such due to their distortion effect on the 

2D projection process of the vertical type landmarks. For example, a tree body is 

considered as a landmark and the when the system tries to project the tree body onto 

the 2D xy-plane, the leaves and branches on top of the body distort the projection 

and injects undesired points into the landmark map. In summary, the method uses 

raw segmented vertical point clusters as the SLAM landmarks and although it is 

object-based, it does not describe the objects with their features. The method only 

makes use of a subset of raw data clusters. 

An interesting application of SLAM is studied in [54] where the system is designed 

to help people interact with the objects previously learnt by the agent. The human 

user wears the system equipments which consist of camera, odometry sensor and a 

hand-held screen. As the human traverses the environment, the system recognizes the 

objects that are stored in its database and displays helpful instructions on the screen 

to the human user. The use of SLAM basically serves for the localization of the 

objects of interest and the consistent mapping of the environment to the user via the 

hand-held screen. Apart from its interesting motivation, the method uses classical 

mono-camera SLAM and benefits from SIFT features for data association between 

the known objects and the live scene objects. 

Another example of object-based SLAM implementation is given in [55]. The study 

aims to make use of natural scene objects, especially trees. In the experimental work, 

the robot registers and recognizes tree objects primarily by the help of SIFT features 

and some other segmentation and image processing techniques. 
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In [56] and [57], SLAM with moving object tracking (SLAMMOT) problem is 

handled with the motivation of computational saving. The latter work is based on the 

first work except that it tries to accomplish the task with a monocular vision instead 

of stereo vision. In both studies, the SLAMMOT problem is approached in the way 

that tries to estimate the robot state, the static map and the moving object trajectories 

at the same time by separating the classical SLAM problem and the moving object 

tracking problem. Separate filters for each moving object are defined which renders 

the landmarks and robot state independent similar to the d-separation concept in 

FastSLAM [21]. As far as the feature detection and description parts are concerned, 

in [56], a simple Harris corner detector is used and the intelligence to manage 

features is left to higher level mechanisms that process and reason the interest points. 

In general, the images are divided into uniform but variable size grids and the Harris 

corner features found within those grids are analyzed in terms of the categorization 

into groups of moving objects, stationary landmarks or objects that are neither. In 

[57], however, the feature detection and description are left out of discussion by 

performing a manual data association and feature injection. 

Object detection is studied for home environment service robot SLAM scenarios in 

[58] and [59]. The former work is based on an off-line known landmark database 

construction. Thus, the process of adding new landmarks to the map, also referred to 

as the database, is omitted from the thesis discussion. The authors basically aim to 

analyze the performance of the data association performance of their proposed 

method which relies on multi-scale Harris corner detection and SIFT descriptors of 

those detected corners. The novelty of their work lies on the concept of points 

displaying group transformations which, in turn, lead to object detection and 

tracking. As the main focus is the home environment, their data association process 

is optimized for mostly planar geometrical objects commonly encountered in such 

environments. The latter work similarly targets the home environments and is 

implemented with the help of an off-line training of objects of interest. The object 

matching performance of histogram based techniques is analyzed within EKF SLAM 

framework in terms of color, gradient and Laplacian histograms. Although both two 

studies deal with object based SLAM, their implementations do not fully correspond 

to a mobile robotic application as they heavily include off-line computation. 
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Another object SLAM example is given in [60] in which, multi-body moving objects 

are also considered in SLAM. The moving objects are not reconstructed as they are 

assumed to be usually smaller foreground objects which are not quite feasible to 

map. They also state that for some applications, it is sufficient to notice the moving 

object rather than fully describe. The method aims to segment, detect and track 

multiple moving objects through the temporal process. In the tracking process, 

groups of FAST (Features from Accelerated Segment Test) corner features are 

detected. Although all of the feature points are tracked, only a selected subset of 

them is allowed to be the part of the 3D map. Matching for the tracking is performed 

on the patches generated around the feature points based on the vicinity, affine 

similarity and occlusion criteria. The tracked features are then fed to the motion 

segmentation process in which the independently moving feature groups are detected 

considering the camera motions and epipolar geometry. Then, the convex hull of the 

segmented moving feature points is described as the moving object. 

An important work on object-based SLAM is presented in [61]. Apart from the other 

work mentioned among the object-based SLAM that deal with moving objects in 

dynamic environments; this study focuses on the object representation part of the 

SLAM. From that aspect, the motivation of this work is similar to that of this thesis 

study. The computational benefit of using higher level features such as object 

features instead of lower level features such as points, planes or patches is 

emphasized. With the compactness of the object level representation, a comparable 

performance is reported to be achieved at a lower computational and map storage 

cost. This philosophy is quite parallel to our approach to the problem of data 

representation in SLAM. However, there is a fundamental difference in the object 

detection mechanism. The authors’ method requires a pre-run object database model 

generation in which the common objects in the operation environment are modeled 

using marching cubes technique where each object is observed and modeled in 

isolation. This is not consistent with the complete autonomous operation as the object 

detection process requires a type of preliminary training. In addition to this important 

difference, the adopted object recognition technique is based on a generalized Hough 

Transform approach [62] as compared to the quadratic surface representation 

approach in this thesis work. 
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2.5  Review of the Surface Feature and Curvature Feature Detection and 

Description Techniques for Use in SLAM Applications with Range Sensor Data 

This thesis study aims to achieve improvement on the performance of the state of the 

art 3D SLAM techniques, namely FastSLAM [21], by means of a compact 3D 

feature extraction technique that is desired to respond to the challenges in the sensor 

data utilization for mobile robotics applications. Thus, the feature detection and 

description techniques are expected to provide some fundamental properties in order 

to be feasible in robotic applications. The extracted features must be robust as the 

mobile robots navigate through unknown environments with possibly different 

conditions. Viewpoint invariance is necessary due to the fact that the robot may have 

different views of the same part of the scene and needs to recognize and associate 

these views. Another important demand is for the repeatability which is vital for the 

loop closure scenarios in which previously seen objects might be encountered several 

times and the features derived from that object must be repetitively consistent for 

successful association. From this perspective, the methods investigated in this 

literature survey chapter will be reviewed in this section. The point feature-based 

techniques such as the ones making use of SIFT, SURF, ORB [43], Canny, Harris 

and other features are herein disregarded as our thesis study is built upon the 

compact surface representation approach. 

In [34], a rather relevant study in terms of 3D curvature feature utilization is 

reported. The suggested method makes use of surface curvature measurements, 

namely, shape index, mean and Gaussian curvature, shape index and curvedness in 

order to detect key points at the maximal points within surface patches. After the 

detection of key points, descriptors around them are defined as shape index which is 

within the range of [0, 1] and the surface normal difference margin with respect to its 

neighborhood which is represented by the cosine value of the said normal vectors. 

Although this method is not tested under the SLAM problem, it is straightforward to 

apply the same method that is able to prove itself in the object recognition problem in 

the data association process of the SLAM applications. Thus the results of this study 

stand as a positive reference for our curvature feature utilization proposal except that 

our approach handles the curvature measurements in the surface level in a compact 

manner whereas in the aforementioned work curvature features are treated as key 
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points. The analysis and results of the referenced study is given in further detail in 

the chapter about the proposed system details. 

A semi-3D feature detection and description method is proposed in [40] as a solution 

to accurate tracking harnessing both of the dual output image types which are of 

intensity and depth information. The most fundamental difference of this work from 

the other Kinect fusion methods given in [26], [27] and [38] is that the key point 

detection is not strictly performed on the 2D intensity image. This is a fatal 

difference in the sense that intensity images are much more sensitive to the 

environmental conditions such as illumination, texture and color diversion and 

shadow regions which are important limitations for mobile robotics systems expected 

to work in unknown and uncontrolled environments. In the method, however, 

although the system benefits from the readily available intensity image, the detection 

process has another choice which is the 3D feature key point detection based on 

surface curvature properties. The system detects key points simultaneously on both 

intensity and depth image grids and proceeds with the less deviating detection which 

automatically eliminates the possible problems with intensity images and vice versa 

although not as often as the former case. For the 3D feature case, the method chooses 

to utilize the maximal shape index features for description and prefers corner features 

for the 2D case. Thus, the surface curvature feature approach is similar to our thesis 

work in the sense that the principle curvatures are exploited; however, the point-wise 

feature representation makes the difference. Also, the method is purely targeted for 

tracking and not for loop closing globally which explains the point feature approach 

as it is the common choice in tracking methods.  

A study that is directly aimed at the demonstration of compact higher level feature 

utilization in SLAM problem is proposed in [45]. In their proposed system, the 

authors perform feature extraction in a hierarchical manner which starts with 3D 

interest point detection and followed by detection of the possible planes formed by 

the respective 3D interest points. The detected planes are then represented by 9-

element feature descriptor vectors consisting of plane origin and two orthonormal 

vectors with respect to the plane surface normal. Then those planar surface feature 

descriptors are augmented into the SLAM state vector which, in turn, means that the 

planar feature vectors are used not only for local scan matching, but also for the 
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global loop closing phenomenon of the SLAM problem. This concept is the main 

connection between this work and our thesis study. Albeit, our approach aspires to 

take this idea further into a feature description that is able to represent more general 

surfaces, namely quadratic surfaces, rather than only planar surfaces. But still, the 

mentioned study gives a good estimate of what the compact surface feature 

representations could bring for an improved SLAM performance. Mainly, it is shown 

by the authors that, planar surface features provide comparable performance to point 

level features at a significantly lower computational cost thanks to the compactness 

of the surface features. This is quite parallel to the idea that our thesis work is built 

upon. The results that are verified on real Kinect data will be elaborated further in the 

proposed system discussion. 

A similar work exploiting the compact surface feature representation, namely planar 

features, is presented in [44]. The notable difference is the use of non-planar regions 

as object candidates in addition to the planar surface feature utilization. Thus, on the 

grounds that this work combines compact surface feature approach with object level 

feature approach, the solution gets one step closer to our proposed system. However, 

our system does not perform a categorization of planar or non-planar surfaces; 

instead, planar surfaces are implicitly covered as they are a subset of quadratic 

surfaces. The authors’ suggested method first segments the scene in a connected 

component manner as in our method and proceeds further by classifying the 

segments into the groups of planar and non-planar surfaces. Then treats both of the 

detections as landmarks and uses them in the loop closing feature matching process. 

In the object features, the authors check location-based and bounding box properties 

for matching. The performance of the system is investigated on real Kinect record 

and promising results are achieved the details of which will be mentioned in the 

system proposal chapter. 

In [63] a comprehensive evaluation of 3D key point detectors is presented. The 

benchmark methods are chosen among the most popular techniques in the 3D feature 

literature. The methods are tested on a publicly available RGB-D Kinect object 

dataset [64]. The main interest of the evaluation is the “repeatability” of the detectors 

against the factors such as noise, view point change and occlusion. The metric is 

based on the method in [65] which is defined as the difference of extracted key 
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points before and after the applied transformations of rotation, translation and scale 

change. In the results of this work which will be given in more detail in proposed 

system chapter, it is seen that the curvature features have a good balance in 

computational complexity, rotational invariance, translational invariance and scale 

invariance. In general, curvature features result in the best computational 

performance with a %30 difference to the nearest method and similar performance to 

other methods which validates our choice as far as the accuracy and computational 

complexity criteria are considered. 

Another informative evaluation is conducted in [66] where presents a comparison of 

local feature descriptors including a notably large variety of descriptors is presented. 

The curvature description methods including mean, Gaussian curvature, shape and 

curvature index result in one of the best performances in the evaluation that considers 

the deviation of the feature values and the distinctiveness of features as a measure of 

how likely a point from one set is undesirably matched to another set. The results of 

this work stands as another supportive factor for the use of curvature features for our 

data association purposes. 

As the related literature does not contain a directly comparable method employing 

both the surface curvature feature and the compact surface approaches, it is found 

fair to investigate them separately and to try to infer the results as a combination. In 

light of the point curvature feature and compact planar surface feature methods 

proposed in the literature, our method intends to incorporate the benefits of compact 

surface features and the robustness the discriminative power of surface curvature 

features. This is the foundation that this thesis is built on and the motivation for the 

use of compact quadratic surface representation and surface curvature features.  

 

2.6 Multi-scale Approach for 3D Feature Extraction in SLAM Applications 

In 2D feature matching applications, the benefits of multi-scale approaches are 

observed in the de facto methods in the literature, namely SIFT and SURF. Both of 

these methods are based on texture variation which is a scale-dependent property of 

the surfaces. Thus, the need for such multi-scale approaches is obviously legitimate. 

However, in 3D universe, with the additional depth information, different types of 

features could be extracted from the surfaces one of which is the surface curvature 
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variation. As explained in [67], surface variation is invariant to re-scaling. Thus, for 

the surface curvature features, multi-scaling might not be too critical. Moreover, the 

scale space representations are mostly considered for point-feature matching cases 

where the features drawn from the same surfaces at different scales vary significantly 

especially in the quantity. However, in the case of this thesis work, the surface 

matching is not processed point-wise but compact quadratic surfaces are matched 

based on their surface curvature properties for the whole segmented surface. Thus, it 

could be anticipated that the multi-scale implementation of the surface curvature 

feature extraction is probably a computational cost that does not return equivalent 

benefit for the matching performance. This is indeed the case for the results of our 

experimentations. As no significant effect of multi-scale surface curvature feature 

extraction is observed, the multi-scale approach is discontinued in order to reduce the 

computational cost that does not pay off. 
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CHAPTER 3 

 

 

THEORETICAL BACKGROUND FOR SLAM 

 

 

 

There seems to be many types of SLAM algorithms, however, there are two main 

approaches which constitute the basis for others. These two approaches are EKF-

based and particle filter-based techniques. In fact, EKF is usually a part of particle 

filter-based techniques in the sense that it is used within each particle in the particle 

filter methods. Thus, it is more explanatory to investigate EKF SLAM first and then 

FastSLAM [21] which is the state of the art technique for particle filter-based 

SLAM. 

 

3.1 3D 6DOF EKF SLAM 

In this thesis work, FastSLAM technique is used as the probabilistic filter for the 

SLAM problem. Although the main focus of this work is the feature extraction part, 

it is vital that the de facto techniques should be used for implementation and testing. 

As FastSLAM also contains EKF in the particle level, the theory behind EKF SLAM 

algorithm is presented. 

In the formulizations, the notation in [68] is used. The expressions are stated such 

that they apply to any type of landmark captured by any type of 3D sensor. This is to 

isolate the thesis work which is about the feature extraction for landmark detection 

park from the state of the art SLAM techniques which are used for testing. 

 

3.1.1 Definitions 

In Figure 5, a symbolic representation of a SLAM environment is given. In this 

environment, we will denote the related variables as given in the following 

definitions. 
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Figure 5: An Example of SLAM Environment [69] 

 

The robot state consists of 3D Cartesian coordinates and the bearing angles, namely 

yaw, pitch, roll, where the state variable is named as 𝑥𝑟  given in (3.1). 

 

 𝑥𝑟 =  𝑥 𝑦 𝑧 𝜙 𝜒 𝜓 𝑇  (3.1)  

𝜙:𝑦𝑎𝑤, 𝜒:𝑝𝑖𝑡𝑐, 𝜓: 𝑟𝑜𝑙𝑙 

 

As illustrated in Figure 5, at any given time frame 𝑘, there expected to be a number 𝐿 

of landmarks created from the extracted features of the sensor measurements. Those 

landmarks are referenced by global coordinates 𝑦𝑖  given in (3.2). 

 

 𝑦𝑖 =  𝑥𝑖  𝑦𝑖  𝑧𝑖 
𝑇  (3.2)  

 

The complete state vector is defined as 𝑥 and is made of the augmentation of the 

robot state vector and all 𝐿 landmark position vectors up to the time frame 𝑘 at that 

instance as given in (3.3). 
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 𝑥 =  

𝑥𝑟
𝑦1

⋮
𝑦𝐿

  (3.3)  

 

As the SLAM problem is handled in probabilistic approach, there will be a 

probabilistic estimation for the state variables. This is modeled as a multivariate 

Gaussian at each time frame 𝑘 with mean 𝑥 𝑘𝑘  and covariance 𝑃𝑘𝑘 . The size of the 

covariance matrix is (6 + 3𝐿) ∗ (6 + 3𝐿). The state is an augmented matrix of robot 

state and landmark locations. This matrix is the heart of EKF and it contains the 

complete state of the environment and the robot at each time frame as given in (3.4). 

 

 𝑃𝑘𝑘 =  

𝑃𝑥𝑥 |6𝑥6 𝑃𝑥𝑦1|6𝑥3

𝑃𝑦1𝑥|3𝑥6 𝑃𝑦1𝑦1|3𝑥3

… 𝑃𝑥𝑦𝐿 |6𝑥3

… 𝑃𝑦1𝑦𝐿 |3𝑥3
… …

𝑃𝑦𝐿𝑥 |3𝑥6 𝑃𝑦𝐿𝑦1|3𝑥3

… …
… 𝑃𝑦𝐿𝑦𝐿 |3𝑥3

  (3.4)  

 

Practically, this covariance matrix is initially set to zeros. This means that the robot 

location is placed to the center of the global map. This convention is mainly due to 

the ease of calculations. 

EKF iterates through this covariance matrix updating the belief values of the state 

variables based on the prediction with motion and update with sensor measurements. 

The prediction and update (correction) cycle of EKF is depicted in Figure 6. 

The equations for the prediction and update steps are given in (3.5) to (3.11). 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛: 

 𝑥 𝑘|𝑘−1 = 𝑓(𝑥 𝑘−1|𝑘−1,𝑢𝑘) (3.5)  

 𝑃𝑘|𝑘−1 =
𝜕𝑓

𝜕𝑥
𝑃𝑘−1|𝑘−1

𝜕𝑓

𝜕𝑥

𝑇

+ 𝑄𝑘  (3.6)  

 

𝑈𝑝𝑑𝑎𝑡𝑒 (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛): 

 𝑦 𝑘 = 𝑧𝑘 − (𝑥 𝑘|𝑘−1) (3.7)  
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 𝑆𝑘 =
𝜕

𝜕𝑥
𝑃𝑘|𝑘−1

𝜕

𝜕𝑥

𝑇

+ 𝑅𝑘  (3.8)  

 𝐾𝑘 = 𝑃𝑘 |𝑘−1

𝜕

𝜕𝑥

𝑇

𝑆𝑘
−1 (3.9)  

 𝑥 𝑘|𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾𝑘𝑦 𝑘 = (3.10)  

 𝑃𝑘|𝑘 = (1 − 𝐾𝑘
𝜕

𝜕𝑥
)𝑃𝑘|𝑘−1 (3.11)  

 

Where 𝑓(. ) represents the motion model and (. ) stands for the observation model. 

The above two cycles of calculations lie at the core of the EKF process. At each 

iteration of the EKF cycle, the estimations could have less and less errors if the 

landmarks provide sufficient information. 

 

 

 

Figure 6: Prediction and Update Steps 

 

3.1.2 Prediction Step Calculations 

Prediction step is defined as the next pose estimation of the robot based on the 

motion control data, namely 𝑢𝑘 . This vector represents the "noisy" belief of the robot 

about its location and pose based on measurements from sensors such as odometer, 

inertial sensor and others. Thus, 𝑢𝑘  vector is assumed to be of 6D as it contains both 

𝑥𝐿  

𝑦𝐿  

𝑢2 

 

𝑢𝐿  

 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑒𝑝  

𝑓𝑜𝑟 𝑘 =  2 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑠𝑡𝑒𝑝  

𝑓𝑜𝑟 𝑘 =  1 

𝑥1 𝑥2 

𝑦1 

𝑦2 

𝑢1 
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the location and the pose change between the consecutive states at time frames 𝑘 − 1 

and 𝑘. 

The odometry information is supposed to be "extra" information that improves the 

error rate of the estimations. Actually, EKF works well without any motion 

information from the sensors. The decisive information basically comes from the 

range sensors. Hence, we can virtually discard odometry information from the cycle 

by setting the uncertainty to a large value. Nevertheless, any useful information 

could improve the estimations in this probabilistic filtering algorithm hence the 

odometry data is also considered in EKF. 

 

3.1.3 The Motion Model 

The robot is assumed to be the only moving object on the map. At each transition 

between time steps, robot state changes as given in (3.12) and (3.13). 

 

 𝑥𝑟{𝑘} = 𝑓𝑟 𝑥𝑟 𝑘−1 , 𝑢𝑘  (3.12)  

 

 𝑢 =  𝑥𝑢  𝑦𝑢  𝑧𝑢  𝜙𝑢  𝜒𝑢  𝜓𝑢   (3.13)  

 

𝑓𝑟  then becomes by making use of the homogeneous coordinates as in (3.14); 

 

 

 
 
 

 
 
𝑥𝑘 = 𝑥𝑘−1 + 𝑅11𝑥𝑢 + 𝑅12𝑦𝑢 + 𝑅13𝑧𝑢
𝑦𝑘 = 𝑦𝑘−1 + 𝑅21𝑥𝑢 + 𝑅22𝑦𝑢 + 𝑅23𝑧𝑢
𝑧𝑘 = 𝑧𝑘−1 + 𝑅31𝑥𝑢 + 𝑅32𝑦𝑢 + 𝑅33𝑧𝑢

𝜙𝑘 = 𝜙𝑘−1 + 𝜙𝑢
𝜒𝑘 = 𝜒𝑘−1 + 𝜒𝑢
𝜓𝑘 = 𝜓𝑘−1 + 𝜓𝑢

  (3.14)  

 

where, 𝑅𝑖𝑗  corresponds to the transition matrix obtained by augmenting the rotation 

matrix and the translation vector. 

 

3.1.4 State Vector Update 

In the prediction step with the motion data, only the robots pose changes. Hence, 

only the robot pose variables are updated based on the formulations given in (3.15).  

The rest of the state vectors occupied by the landmark positions remain unchanged. 
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 𝑥 𝑟{𝑘|𝑘−1} = 𝑓𝑟 𝑥 𝑟 𝑘−1|𝑘−1 ,𝑢  (3.15)  

 

3.1.5 Covariance Matrix Update 

The new prediction based on the motion model and the control data is now reflected 

on the covariance matrix for the complete state vector. In order to find the updated 

covariance matrix, the first step is to compute the Jacobian of the transition matrix 

with respect to the state vector.  

 

  𝜕𝑓

𝜕𝑥
 
 6+3𝐿 ∗(6+3𝐿)

=

 

 
 
 

 𝜕𝑓𝑟
𝜕𝑥𝑟

 
6𝑥6

 0 6𝑥3
 0 6𝑥3

 0 3𝑥3
 𝐼 3𝑥3

 0 3𝑥3
 0 3𝑥3

 0 3𝑥3
 𝐼 3𝑥3

…  0 6𝑥3

…  0 3𝑥3

…  0 3𝑥3

… … …
 0 3𝑥3

 0 3𝑥3
 0 3𝑥3

… …
…  𝐼 3𝑥3 

 
 
 

 (3.16)  

 

The special structure of the Jacobian in (3.16) allows for the manipulation in (3.17). 

 

 𝑥𝑟 =  

 

 
 
 
 
 

𝜕𝑓𝑟
𝜕𝑥𝑟

𝑃𝑥𝑥
𝜕𝑓𝑟
𝜕𝑥𝑟

𝑇 𝜕𝑓𝑟
𝜕𝑥𝑟

𝑃𝑥𝑦1 …
𝜕𝑓𝑟
𝜕𝑥𝑟

𝑃𝑥𝑦𝐿

𝑃𝑦1𝑥

𝜕𝑓𝑟
𝜕𝑥𝑟

𝑇

…

𝑃𝑦𝐿𝑥
𝜕𝑓𝑟
𝜕𝑥𝑟

𝑇

 

 

 
 
 
 
 

+ 𝑄𝑘  (3.17)  

 

Only the first row and the first column is updated and all other entries in the 

covariance matrix remain unchanged. The 𝑄𝑘  matrix represents the noise induced 

from the motion step as the odometry data contains some error with respect to the 

actual pose change. Also, since landmarks are static, it is sufficient to compute only 

the sub matrix for the robot state variables. 

 

 𝑄𝑘𝑣 |6𝑥66𝑥6 =  𝜕𝑓𝑟
𝜕𝑢

 
6𝑥6

𝑈|6𝑥6

𝜕𝑓𝑟
𝜕𝑢

𝑇

 (3.18)  
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The sub matrix calculation given in (3.18) is to be later added upper-left sub matrix 

which represents the robot pose covariance. 

 

3.1.6 The Update Step 

The update step is where the range sensor measurement is propagated to the belief 

distribution of the robot. As in the motion model, a sensor model is used to represent 

the noise distribution of the sensors used for landmark detection. 

 

3.1.7 The Sensor Model 

The sensor model for the range-bearing sensor is given in (3.19). 

 

 𝑧𝑖 = 𝑖(𝑥𝑟 ,𝑦𝑖) (3.19)  

 

where 𝑥𝑟  is the robot pose and 𝑦𝑖 =  (𝑥𝑖  𝑦𝑖  𝑧𝑖)
𝑇 is the vector for the landmark 

locations. 

 

Any observation vector 𝑧𝑘  is defined as in (3.20). 

 

 

𝑧𝑘

=  

𝑟
𝛼
𝛽
 ,𝑤𝑒𝑟𝑒  

𝑟:𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑒 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 (𝑅𝑎𝑛𝑔𝑒)
𝛼:𝐴𝑧𝑖𝑚𝑢𝑡 𝑡𝑜 𝑡𝑒 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 (𝑌𝑎𝑤)
𝛽:𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡𝑒 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 (𝑃𝑖𝑡𝑐)

  
(3.20)  

 

Those parameters are related to the Cartesian coordinates of the landmarks with 

respect to the robot as in (3.21) to (3.23). 

 

 𝑟 =  𝑥 𝑖
2 + 𝑦 𝑖

2 + 𝑧 𝑖
2 (3.21)  

 𝛼 = tan−1
𝑦 𝑖
𝑥 𝑖

 (3.22)  

 
𝛽 = − tan−1

𝑧 𝑖

 𝑥 𝑖
2 + 𝑦 𝑖

2

 
(3.23)  
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Then, using the homogeneous coordinates, the equation in (3.24) is obtained: 

 

   

𝑥 𝑖
𝑦 𝑖
𝑧 𝑖

0 0 0 1

  = 𝑅(𝑥𝑟)−1   

𝑥𝑖
𝑦𝑖
𝑧𝑖

0 0 0 1

   (3.24)  

 

This time, only the three coordinates are sufficient to calculate the function 𝑖 . 

 

3.1.8 The Observation Noise 

The matrix R used in the preceding equations is the error induced by the sensor 

measurements which also represents the uncertainty for the respective sensor given 

in (3.25). 

 

 𝑅 =  

𝜎𝑟
2 0 0

0 𝜎𝑟
2 0

0 0 𝜎𝑟
2

  (3.25)  

 

The variance values in the matrix are characteristic values for various types of 

sensors. The diagonal nature of the matrix reflects the assumption of the 

independence between the noises for each coordinate component [68]. 

 

3.1.9 The Kalman Correction 

This step is for the calculation of the 𝑆 matrix used in equations (3.8) and (3.9). With 

this calculation given in (3.26), all the equations featured in the prediction-correction 

cycle is are addressed.  

 

 𝑆𝑘 =
𝜕

𝜕𝑥
𝑃𝑘|𝑘−1

𝜕

𝜕𝑥

𝑇

+ 𝑅𝑘  (3.26)  

 

3.1.10 Landmark Introduction to the Map 

If at some time frame 𝑘, a new landmark is introduced into the existing map with 

𝐿 − 1 landmarks after the feature extraction and matching steps, then the system is 

expanded according to 𝐿 number of landmarks as in (3.27) and (3.28): 
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 𝑥 ∶= (𝑥  𝑦 𝐿) (3.27)  

 𝑦 𝐿 = 𝑦𝐿(𝑥 𝑟 ,𝐿) (3.28)  

 

In (3.27) and (3.28),  the state vector is updated by the insertion of the 𝐿𝑡  landmark 

𝑦 𝐿 which is obtained by inverse sensor model calculation. The complete covariance 

matrix is then expanded in a straightforward manner in which the number of both the 

columns and the rows are increased by one. The inverse sensor model is applied as 

given in (3.29). 

 

 𝑦𝐿 𝑥𝑟 ,𝐿 =  

𝑥𝐿
𝑦𝐿
𝑧𝐿
 = 𝑥𝑟  

𝑟 cos 𝛼 cos 𝛽
𝑟 sin𝛼 cos 𝛽
−𝑟 sin𝛽

  (3.29)  

 

The range (distance) and bearing angles yaw and pitch are converted to the global 

map coordinates thusly. 

In summary, the EKF steps are processed as given in Table 1: 

 

Table 1: The Overview of EKF SLAM Steps 
 

Step Definition 

1 The next robot pose is estimated with (3.5). 

2 The complete covariance matrix is updated with (3.16). 

3 Observation prediction with (3.20). 

4 Computation of matrix S (3.26). 

5 Computation of Kalman gain through the inverse of matrix S (3.9). 

6 The state vector update with (3.10). 

7 The complete covarience matrix updates (3.11). 

8 If necessary, the introduction of a new landmark. 

 

3.2  FastSLAM 

FastSLAM [21] is a novel approach to the SLAM problem which is proposed based 

on a fundamental assumption in the probabilistic relations of the states. FastSLAM 
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has overcome the problems of EKF caused by single hypothesis approach. It is 

considered in FastSLAM that if the trajectory of the robot is known, then the 

measurements probabilities would be independent from each other [70]. Thus, 

FastSLAM makes this assumption in order to be able to avoid the complete 

covariance matrix which is of size  6 + 𝐿 ∗ (6 + 𝐿). There are two major benefits 

of this: 

 As an ever growing covariance matrix is avoided, the number of landmarks is 

no longer causing the algorithm to have quadratic complexity. Also in EKF, 

as the covariance matrix grows with the addition of landmarks, complex 

matrix operations suffer gradually, however, for FastSLAM, as there is no 

covariance matrix, it handles large number of landmarks seamlessly. 

 FastSLAM addresses another problem of EKF SLAM which is the sensitivity 

of the algorithm to data association problems which could go so far up to 

divergence as the algorithm relies on a single belief hypothesis. FastSLAM 

adopts particle filter approach and it can be said that it has 𝑀 number of 

different EKF SLAM algorithms running in parallel and after each time step, 

particles are regenerated such that the better beliefs survive more. So, when 

there are data association problems and some EKF SLAM particles are losing 

the track, if the number of particles is sufficient, there are some other 

particles having better belief probabilities. After the end of time steps, 

FastSLAM diminishes the worse particles and replaces with the resamplings 

of the better particles. This approach drastically reduces the chances of 

divergence due to poor landmark detection and matching. 

In the following sections, the principles of FastSLAM are given in more detail. 

However, as EKF SLAM part is given with full formulations and mathematics, in 

FastSLAM sections, that much finer detail will not be needed. Instead, more of a 

conceptual explanation will be given. 

 

3.2.1 Theoretical Concepts 

In FastSLAM, the SLAM problem is elaborated as a Dynamic Bayesian Network 

(DBN). The network structure is as seen in Figure 7. 
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In DBNs (Dynamic Bayesian Networks), the probability is propagated through other 

probabilistic nodes. If there exists a node in the trail which is "observed", in other 

words, known, then the nodes connected by the observed node cannot affect each 

other and thus become independent. This is also called "d-separation". Further detail 

can be found in [70], however, in Figure 8 a brief example is given. 

 

 
 

Figure 7: SLAM Problem as a DBN [21] 

 

Thus, the idea in FastSLAM is to assume that the trajectory of the robot, which refers 

to the robot pose. This assumption renders the control data and the sensor data 

independent.  

 

 

 

Figure 8: D-separation in DBNs [70], if Z is observed; X and Y are no longer 

dependent 

 

Before the explanation of the formulations, the definitions of the variables are given 

in (3.30). 

X Z Y 
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In Figure 9, the SLAM problem is shown as a DBN and the gray-shaded nodes are 

the robot pose stated assumed to be known, in other words, observed. This 

assumption breaks the propagation trail between 𝑢2 and 𝑧2, 𝑢3 and 𝑧3, 𝑢𝑛  and 𝑧𝑛 . 

The broken links are shown in red. 

 

 

𝑠𝑡 :𝑇𝑒 𝑟𝑜𝑏𝑜𝑡 𝑝𝑜𝑠𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑓𝑟𝑎𝑚𝑒 𝑡  

𝑢𝑡 :𝑇𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑑𝑎𝑡𝑎 (𝑙𝑖𝑘𝑒 𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦) 

𝑧𝑡 :𝑇𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

Θ𝑛𝑡 : 𝑇𝑒 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 𝑡𝑎𝑡 𝑡𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑚𝑎𝑑𝑒 

𝑛𝑡 :𝑇𝑒 𝑑𝑎𝑡𝑎 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑚𝑎𝑝 

(3.30)  

 

In general, the assumption of known trajectory leaves all observations and control 

data independent within the relative time frame. As such an assumption is sacrificed, 

the SLAM calculation can be simplified from (3.31) to (3.32). 

 

 

𝑝 𝑠𝑡 ,Θ 𝑧
𝑡 ,𝑛𝑡 , 𝑢𝑡 

= 𝜂𝑝 𝑧𝑡  𝑠𝑡 ,Θ,𝑛𝑡 

∙  𝑝 𝑠𝑡  𝑠𝑡−1,𝑢𝑡 𝑝 𝑠𝑡−1,Θ 𝑧𝑡−1,𝑛𝑡−1,𝑢𝑡−1 𝑑𝑠𝑡−1 

 

(3.31)  

 

𝑝 𝑠𝑡 ,Θ 𝑧𝑡 ,𝑢𝑡 ,𝑛𝑡 

= 𝑝 𝑠𝑡  𝑧𝑡 ,𝑢𝑡 ,𝑛𝑡  𝑝 θn 𝑠
𝑡 , 𝑧𝑡 ,𝑢𝑡 ,𝑛𝑡 

𝑁

𝑛=1

 

 

(3.32)  

(3.32) states that the iterative calculation of SLAM state is now decomposed into 

𝑁 + 1 estimator products. The first component in (3.32) is the path estimation and 

the other 𝑁 products are the estimations for each landmark location. 

In FastSLAM, the independence provided by the known robot trajectory assumption 

is utilized by particle filter approach, namely Rao-Blackwellized particle filter 

[71].With the particle filter use, multi-hypothesis property is gained. Each particle is 

an instance of (3.32) where there is one estimations per landmark summing up to a 
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total of 𝑁 estimations which is the number of landmarks. Each landmark estimation 

is implemented as EKFs. Thus, if there are 𝑀 particles in the particle filter, 𝑁 ∙ 𝑀 

Kalman filters are used. 

 

 

 

Figure 9: D-separation in SLAM Network [21] 

 

The particle filter and EKF being the basis, FastSLAM is implemented in four 

recursive stages. Figure 10 shows the basic steps of FastSLAM algortihm. In first 

step, classical EKF prediction step is performed for each particle. The next robot 

pose is estimated based on the previous pose and the control data. In the second step, 

standard EKF correction step is performed for each particle where the robot pose 

estimation is corrected based on the sensor observations. Up to that point, everything 

is equivalent to EKF steps except for the fact that not only one EKF is implemented 

but 𝑀 EKFs are implemented simultaneously. This gives the FastSLAM algorithm 

the "multi-hypothesis" feature. Because, at that step, the algorithm possesses 𝑀 

alternative beliefs about the landmark locations to choose from. That is what the 

algorithm actually does in the third step, it selects the particles with less uncertainty 

as the better samples by giving weights to each particle based on how certain they are 

with respect to the map. Then in the last step, the algorithm regenerates the particle 

population such that there are more of the better fit particles and less of the worse fit 

particles in the next generation of particle population. 
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Figure 10: Basic FastSLAM Algorithm [21] 

 

As in Monte-Carlo approaches and genetic approaches, the number of particles 

provides the control on how close the estimation will asymptotically get to the truth. 

As expected, number of particles determines the tradeoff between computational cost 

and error performance. Figure 11 displays an overview of the FastSLAM data 

structure. 

 

 
 

Figure 11: FastSLAM Structure [21] 
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CHAPTER 4 

 

 

3D SURFACE CURVATURE FEATURE EXTRACTION 

FROM RANGE DATA 

 

 

 

Before the introduction of reliable and affordable 3D range sensors such as TOF 

cameras, laser scanners, Kinect-style RGB plus depth sensors, SLAM studies were 

mostly based on 2D vision data which is 2D projection of the 3D world onto the 

image plane. Although there are quite an amount of successful SLAM work with 2D 

data there are still limitations as compared to the range data like sensitivity to 

occlusion and lighting conditions. Thus, the studies began to incline to be based o 

range data which represents 3D world significantly better. The first appearance of 

Kinect data in a SLAM implementation is seen in [26]. Then the use of Kinect and 

other range sensors constantly increased. As put in the state-of-the-art section of the 

Introduction chapter, there exist many proven work in the literature that uses range 

data in SLAM.  

The most extensively used methods are usually based on planar feature extraction as 

in [6] [25] [24]. However, in SLAM literature, there is no implementation example 

of surface curvature features other than planar features. This is actually the 

motivation for this thesis study.  

Related work on 3D surface features includes appearance based techniques [72] [73] 

[74] [75], object silhouette based methods [76] [77], 3D correlation methods [78] 

[79], exhaustive search techniques [80] [81] and the most notable family of methods 

which are the local surface descriptor based methods [82] [83] [84] [85] [86] [87] 

[88] [89]. In SLAM and other robotic applications, expectations from features are 

basically robustness, saliency and to be automatic especially if the robot is expected 

to operate in unknown environments. Thus, in this thesis, a multi-scale 3D surface 
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feature extraction method is adopted which is a local surface descriptor based 

technique. In this technique, local surface curvature is considered as the descriptor.  

 

4.1 Review and Analysis of the Surface Feature and Curvature Feature 

Detection and Description Techniques for Use in SLAM Applications with 

Range Sensors 

In this section, the foundations of the proposed feature detection and description 

technique will be explained. The results of the relevant work will be analyzed to 

demonstrate the feasibility of the adopted methods in our problem of data association 

improvement in SLAM problem. To the best of our knowledge, the most relevant 

studies are referenced in this section; however, there is not a direct application of 

surface level curvature feature utilization evaluated in SLAM applications. 

To have an overview of the related work from the literature on the use of curvature 

features and compact surface features in the data association process in general or 

within the SLAM algorithm, we will briefly mention the methods that are presented 

in more detail in the literature chapter. These studies are the considered as reference 

for the determination of the data utilization process in our thesis work. 

In [34], 3D curvature features are explored as 3D key points in the object recognition 

problem. In this method, mean curvature, Gaussian curvature, shape index and 

curvedness values of the surfaces are calculated and the maximal points within the 

fixed patch regions are detected as key points. Around the detected key points, 

feature descriptor vector is defined as the shape index which is a value in the range 

[0, 1] and the surface normal vector difference between the key point and its 

neighborhood which is a cosine value. This feature detection and description method 

based on surface curvature properties is tested on a real 3D object dataset under the 

rotation, translation and noise conditions. The key performance factor is defined as 

repeatability which is decided as the stability of the percentage of the feature points 

of the same object under varying conditions. Figure 12 summarizes the results from 

which it could be drawn that surface curvature features displayed a repeatability rate 

at the levels of %80 to %90. This result is accepted as a reference for the 

repeatability of our feature utilization system for data association problem in SLAM. 
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Figure 12: The repeatability analysis of the curvature feature descriptors under 

viewpoint change and noise conditions in [34] 

 

An evaluation of local feature description techniques including the surface curvature 

features is presented in [66]. In this study, the feature descriptors are compared based 

on two criteria one of which is the deviation of the feature values and the other is the 
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distinctiveness which is defined as the ability to maintain the matches consistent 

before and after the change of viewpoint and error conditions. Figure 13 shows the 

respective results. The blue bars and green bars represent the spread of feature values 

and the rate of false matches under view point changes where the smaller the bars the 

better the descriptor performance. Thus mean curvature, shape index and curvedness 

index descriptors are observed near the top performances which again supports the 

surface curvature approach in the proposed system. 

As our aim is to exploit the robustness and the invariance of surface curvature 

features in a compact manner, we will now review the compact surface features as 

used for data association problems as in SLAM. The closest approach in the SLAM 

literature is the planar feature approach as compact surface representation. On the 

grounds that planes are the less complex form of curved surfaces, it is safe to 

investigate the related work on the planar surface feature utilization for SLAM as far 

as the compact surface concept is concerned. A quite recent work uses planar surface 

features is reported in [44]. In this method, the scene is segmented into planar and 

non-planar regions where both of the groups are registered as landmarks; however, 

the latter group is treated as object candidates. Plane feature descriptions and the 

location and bounding box properties of the objects are augmented into the SLAM 

state and used for global matching during the loop closing stage. The objects 

mentioned here are the outcomes of the filtering from the candidates by semantic 

criteria such as reasonable size and spatial variance in order to distinguish from plain 

noise. When we consider the fact that what our study aims to achieve is the more 

generalized form of this method that is additionally capable of detecting and 

describing more complex curved surfaces such as quadratic surfaces. As the authors 

emphasizes in Figure 14, the most important conclusion to draw for our proposal is 

the success of the compact surface feature landmarks in the loop closing stage which 

yields the global matching for SLAM.  
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Figure 13: The deviation and distinctiveness analysis results, green bars 

represent the deviation of feature values from the mean (smaller is better) and 

blue bars show the tendency of mismatches (smaller is better) [66] 

 

Another similar approach is documented in [45] which directly focuses on the 

benefits of compact surface representation in SLAM applications. The planar surface 
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features are described by a 9-element feature vector that consists of three position 

elements and two orthonormal vectors to the plane normal of both three elements. 

These features are used for loop closing process of the SLAM. The authors 

emphasize that by utilizing compact surface features in SLAM, comparable error 

performance could be achieved as compared to computationally more complex point 

feature based techniques. This result is also a source of confidence for the compact 

quadratic surface feature approach adopted in our work. 

 

 
 

Figure 14: (a): Robot trajectory without loop closing with landmarks (b): Robot 

trajectory with landmarks for loop closing (c): The respective covariance 

determinant values as an indication of errors [44] 

 

Based on the analysis and results in the literature, our system design relies on the 

surface curvature feature description techniques for a discriminative and stable 

feature matching and prefers to utilize the features in the higher level surface 

approach to achieve compactness which serves to save from computational cost for 
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the ultimate real time prospects that any robotics application should consider. The 

repeatability analysis for the feature detection and description processes of our 

proposed system will be investigated thoroughly in Chapter 6 which is dedicated to 

this analysis. 

Thus, the performance analysis is left aside for the relevant chapter and in the 

following sections the details of the feature detection and description techniques 

adopted are explained. 

 

4.2 Local Surface Curvature 

Local surface curvature is determined by the amount change in the surface normal 

from one point to another. In other words, local surface curvature indicates how the 

surface bends around each point on the surface. We can define a “shape operator” 

that yields the amount of change in the surface curvature change between two points 

on the surface. If we let 𝑀 ∈ 𝑅3 be a surface and 𝑛 be the normal vector to the 

surface at the surface point 𝑝 ∈ 𝑀, then a shape operator can be defined using 

directional derivative 𝐷𝑣 as given in (4.1).   

 

 𝑠 𝑣𝑝 = −𝐷𝑣𝑛 (4.1)  

 

𝐷𝑣𝑛 is the directional derivative of 𝑛 in the direction of 𝑣𝑛  around point 𝑝 and is 

defined as in (4.2) 

 

 𝐷𝑣𝑛 = lim
→0

𝑛 𝑝 + 𝑣𝑝 − 𝑛(𝑝)


 (4.2)  

 

It is obvious that such a shape operator would yield zero if the surface is ideally 

planar. Using the shape operator defined, the sharpest changes in the surface normal 

can be found which is named as the principle curvature at a point on the surface. 

 

4.3 Principal Curvatures 

Principal curvatures are the extremal changes in the surface normal at a point. This 

determines the dominant curvature directions for a point on the surface. Let 𝑢𝑝  be the 
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tangent vector for the point 𝑝 on the surface 𝑀. Assume further that  𝑢𝑝 = 1 then 

the normal curvature along 𝑢𝑝  can be defined as in (4.3). 

 

 𝑘 𝑢𝑝 = 𝑠(𝑢𝑝) ∙ 𝑢𝑝  (4.3)  

 

The critical points for 𝑘(𝑢𝑝) are found as 𝑘1 and 𝑘2 corresponding the maximum and 

minimum values. These points are defined as the “principal curvatures” representing 

the most and least curvature values. Unit vectors 𝑒1 and 𝑒2 yielding the maximum 

and minimum values of the normal curvature are the “principal directions” leading 

to the definitions mean curvature 𝐻 and Gaussian curvature 𝐾. 

 

 𝑘1 = 𝐻 +  𝐻2 − 𝐾 (4.4)  

 

  𝑘2 = 𝐻 −  𝐻2 − 𝐾 (4.5)  

 

Geometrically shown in Figure 5, 𝑘1 and 𝑘2 can be viewed as the vectors showing 

the directions at which the surface is bending the most positively and negatively.  

 

 
 

Figure 15: Principle curvatures at point p [28] 

 

4.4 Shape Index and Curvedness 

Additional high-level measurements can be drawn from the principle curvatures such 

as shape index and curvedness. Shape index yields a measure of how 

convex/concave the surface is and is given in (4.6). 
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 𝑆𝐼 𝑝 =
2

𝜋
tan−1

𝑘1 + 𝑘2

𝑘2 − 𝑘1
 (4.6)  

 

From (4.6) it is seen that the shape index can take values within the range [−1,1], 

however, if the surface is planar then shape index becomes undefined as both of the 

principle curvatures are zero. Shape index is an indicator for the surface curvature 

that contains both mean and Gaussian curvature. 

Similarly, another measure of surface curvature that reflects the combination of two 

principle curvatures is the "curvedness" feature. Curvedness represents the bending 

energy for each point on the surface and is given as in (4.7). 

 

 𝑐𝑝 =  
𝑘1

2 + 𝑘2
2

2
 (4.7)  

 

The curvedness yields the strength or sharpness of the surface curvature. Curvedness 

is a more informative measure then the Gaussian curvature which vanishes on 

parabolic edges. Curvedness value is lost only on planar regions. As far as the feature 

extraction is concerned, shape index and curvedness features are affine invariant 

[40]. 

 

4.5 Calculation Local Differential Properties 

There are numerous techniques to approximate the local curvature features like mean 

and Gaussian curvature and curvedness [90]. Among them, the method in [91] is 

widely accepted and has a very close estimation for local curvature feature values. In 

this method, a "jet" which is a truncated Taylor expansion is fitted to the surface 

patch. This enables the surface curvature features to be analytically available. The 

approximation is determined by the performance of the fitting. 

In [92], it is shown that any continuous curve or surface can be represented as a 

"height function" graph as given in (4.8) for the point 𝑝 = (𝑥,𝑦, 𝑧) in 3D space. 
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𝑓 𝑥 = 𝐽𝐵,𝑛 𝑥 + 𝑂(𝑥𝑛+1) 

𝑥 =  𝑥,𝑦 , 𝑧 = 𝑓 𝑥 , 𝑂 𝑥𝑛+1 = 𝐻𝑂𝑇  
(4.8)  

 

 𝐽𝐵,𝑛 𝑥  is the 𝑛th
 order Taylor expansion of the height function given in (4.9). 

 

 𝐽𝐵,𝑛 𝑥,𝑦 =   𝐵𝑘−𝑗 ,𝑗𝑥
𝑘−𝑗𝑦𝑗

𝑘

𝑗=0

𝑛

𝑘=1
 (4.9)  

 

where, 

 

 𝐵𝑘−𝑗 ,𝑗 =
1

 𝑘 − 𝑗 ! 𝑗!

𝜕𝑘𝑓(0,0)

𝜕𝑥𝑘−𝑗𝜕𝑦𝑗
 (4.10)  

 

The given Taylor expansion represents the tangent plane with the first order features. 

Second order features correspond to the principal curvatures. The third order features 

could be an estimate to the directional derivatives of the principal curvature lines. 

The equation for the jet has a canonical form and is given in (4.11). 

 

 
𝐽𝐵,3 𝑥,𝑦 =

1

2
(𝑘1𝑥

2 + 𝑘2𝑦
2) +

1

6
(𝑏0𝑥

3 + 3𝑏1𝑥
2𝑦

+ 3𝑏2𝑥𝑦
2 + 𝑏3𝑦

3) 
(4.11)  

 

Where, 𝑘2 ,𝑘2 are the defined principle curvatures, 𝑢 =  𝑏0, 𝑏1 ,𝑣 = (𝑏3,𝑏2) are the 

directional derivatives of the principle curvatures along the curvature lines. This 

fitting method is applicable to not only the mesh surfaces, but also to the point 

clouds. 

 

4.6 Curvedness Feature Extraction 

Given a 3D surface in the form of either a mesh or a point cloud as in this thesis 

study, we can extract salient features based on the curvedness measures of the 3D 
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surface. The idea is to choose the points with extreme values of curvedness. This 

way, the sharpest and the most robust feature points are obtained. 

In order the feature extraction to be multi-scale, the size of the patch that constitutes 

the neighborhood of the point is considered. The size of the patch for the curvature 

measurement is chosen in multiple values by selecting the amount of neighboring 

depth image pixels in our case. Each surrounding array of pixels is named as “rings”. 

If we set ring, r = 1, that means the curvature around the point is calculated within 

the 3x3 patch from the depth image. Similarly, if r = 2, 5x5 depth image patch will 

be used as shown in  

Figure 16. 

 

         

         

 𝑝     𝑝   

         

         

𝑟 = 1   𝑟 = 2  

 

Figure 16: Example of scale selections with r=1 and r=2 

 

In general, the curvedness-based feature extraction algorithm is given in [28]. 

The multi-scaling process is similar to many other techniques in the main principle. 

In Hessian matrix-based feature extraction methods such as SIFT and SURF, the 

scale spaces are constructed by changing the filter window size which is analogous to 

the changing of the neighborhood rings in the curvature feature extraction technique. 

The multi-scale approach was first implemented for the surface curvature extraction 

method, however, is later discarded as the benefits of it to the system is outweighed 

by its additional computational cost. This could be an expected result in the sense 

that, unlike methods like SIFT and SURF, our method does not rely on any texture 
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detail on the images; but is purely based on surface curvature, i.e. the relative 

positions of data points with respect to each other within each segmented quadratic 

surface. Thus, this relative distribution of data points is, to some extent, stable 

whether the surface is observed in the near vicinity or further away. Hence, with this 

intuition and the results of experiment, the multi-scale approach was discontinued for 

the feature extraction process. 

 

 
 

 Figure 17: Multi-scale Curvedness-based Feature Extraction Algorithm [28] 
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CHAPTER 5 

 

 

PROPOSED SYSTEM FOR 3D SURFACE CURVATURE 

FEATURE BASED SLAM 

 

 

 

In this thesis, the aim is to implement 3D SLAM algorithm with 3D surface 

curvature features about which there is no existing study in the literature yet. Thus, 

the main focus is not the SLAM algorithm itself, but the use of 3D surface curvature 

in SLAM. Thus, the SLAM part of the implementation is considered as a 

benchmarking tool and is based on the existing state-of-the methods [93] [94]. 

In the implementation, a real world dataset is used which is TUM (University of 

Technology, Munich) SLAM Benchmark Dataset [6]. This dataset is recorded with a 

Kinect sensor around indoor environments. The choice was motivated by the thought 

that both planar and curved surfaces should be present in the dataset as the surface 

curvature feature extraction method is compared against other methods including 

ones with planar features. Also, in order to observe the loop closing behavior, both of 

the sequences complete a loop path. The availability of the ground truth information 

for the robot path is another consideration which important for the sake of reliable 

error measurements. It is important to note that the supplied ground truth is a proper 

information obtained from external camera measurements which is significantly 

more reliable than some other ground truth assumptions such as the output of state of 

the art estimation techniques. 

 

 
 

Figure 18: TUM RGBD SLAM Dataset Scene Samples  [6] 
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5.1 Overview 

The proposed system could be considered as a generalization for planar feature based 

SLAM systems. Our solution is designed to use a more general surface 

representation which is not only able to utilize planar surfaces but also curved 

surfaces. 

The introduction of more types of surfaces into the SLAM algorithm is actually quite 

intuitive. From the perspective of humans, who are naturally intelligent mobile 

agents, to learn the whereabouts and remember previously visited places is mainly 

based on matching some distinctive features from the environment. Planes are 

distinctive in this sense, as humans, we tend to remember notable planes in our 

vicinity. However, if we consider a large ball in the scene, that is also quite 

memorable for humans, maybe even more distinct from the planes due to the fact that 

planes resemble each other whereas more complicated surfaces such as a spherical 

surfaces are less likely to have that level of similarity. 

The complexity of the surfaces of interest is also an important issue to consider. If 

we once more consider as a human, it is more difficult to remember a terrain surface 

with many complex and unorganized surface patches, however, it is quite easy to 

match a previously observed bowl on a table. 

Thus, in this SLAM system, the extracted surfaces from the environment are 

determined as quadratic surfaces. This provides a suitable tradeoff between surface 

distinctiveness and complexity. 

The flow of the system begins with the introduction of motion data from odometry. 

The next state prediction is done based on the odometry data and the motion model. 

FastSLAM initializes the particles with the first prediction belief values. In the next 

step, the sensor data is processed. First, the raw data from the scene is clustered via 

hierarchical clustering method. The clustering method has to be unsupervised in 

order to have a fully automated system which is able to work in unknown 

environments. The surface patches obtained by hierarchical clustering are then fit to 

an algebraic quadratic surface. The fit is either accepted or declined based on the 

goodness of the surface fit. If the fit is sufficiently accurate, then the surface patch is 

approved as a quadratic surface. At that stage, the analytical parameters of the 

surface which represents the extracted patch are available. That means any 
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mathematical feature can be drawn from the surface. In this work, Mean and 

Gaussian curvature based features are considered and calculated by making use of 

differential geometry calculations. The extracted surface features and the location of 

the surface constitute the landmark feature vector. 

 

 

 

Figure 19: Overview of the Proposed System 
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In the update step of the FastSLAM algorithm, the feature vectors representing the 

landmarks are compared against those of newly observed surfaces in search of 

possible matches. This is the data association step of the SLAM algorithm. After that 

step, the prediction and update steps are repeated till the end of sensor data, updating 

and lowering the errors iteratively. The overall process is depicted in Figure 19. 

In remainder of this chapter, the details of implementation will be given for each 

section of the algorithm. 

 

5.2 The Environment 

The proposed system is implemented in MATLAB on real Kinect data from TUM 

SLAM Benchmark Dataset [6]. FastSLAM implementation is based on [93] and [94]. 

which is considered as the state of the art for our surface curvature feature SLAM 

assessment.  

 

5.3 The Motion Update 

The Kinect dataset does not provide sufficient odometry data which leaves no choice 

but to induce artificial errors in order to have a motion prediction. Thus, in this 

implementation, the odometry is obtained by noise injection. 

 

5.4 Pre-processing of Sensor Data 

Kinect output is considerably noisy, however, as can be seen in the amount of work 

dealing with Kinect data, the noise levels are in a manageable range. Also, our 

method contains surface fitting procedure which implicitly has smoothing effects. 

Thus, there is not much need for a complicated pre-processing. Only a series of 

median filtering and mean filtering is applied with a local window of 5𝑥5 

neighborhood.  

 

5.5 Hierarchical Clustering 

A sample Kinect sensor output is given in Figure 20. The scene is relatively sparse; 

however, the need for clustering the image into meaningful patches is apparent. 
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Figure 20: RGB and Depth Output of Kinect Sensor [27] 

 

Hierarchical clustering method was chosen due to the assumption that there is no a 

priori information available about the environment. Hence, we can only make use of 

connectivity property of man-made objects in the scene. The connectivity 

information can be captured if the distance metric of the clustering is chosen 

accordingly, which is usually the Euclidean distance for point sampled data. For the 

depth data given in Figure 20, the corresponding dendogram and the labeled data 

points are given in Figure 21 and Figure 22, respectively. 

 

 
 

Figure 21: Dendogram for the Hierarchical Clustering 
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Dendograms display in a tree-like structure the discrepancy of the labeled points in 

the clustered data. There are in fact 9 clusters although not visible in Figure 21. This 

is due to some clusters being too small and lay within small regions like the yellow 

region in the dendogram. Such small regions, along with other regions with certain 

properties are eliminated from the data after the initial clustering. The properties of 

the regions to be removed are as follows: 

 Regions with less number of point below the threshold, 

 Regions that have high depth variance, 

 Regions that are further away from the Kinect sensor reliable range, 

 Regions that are not fully observed within the frame. 

 

 
 

Figure 22: Labeled Point Clusters 

 

Among the clusters seen in Figure 22, only the blue and green labeled clusters 

remain due to the aforementioned constraints. The implementation of hierarchical 
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clustering algorithm is included within the MATLAB software; however, the design 

of the clustering still must be done through the parameters such as distance metric, 

cut-off threshold and neighborhood linkage. The distance metric selection was 

already done as Euclidean distance due to the nature of the Kinect data. For cut-off 

threshold, the best way is to observe the experimental results as the calculations for 

the ideal cases would be distorted by the noisy measurements. The cut-off threshold 

is thusly determined as 0.2 meters. 

 

5.6 Compact Feature Representation Approach 

In the proposed system, compact higher level feature representation for the sensor 

data is the core of the design criteria. Some of the benefits of using higher level 

features for data association in SLAM applications are studied and explained in [45] 

and [44] as well as in the sections of this thesis which are about the literature survey 

and results of the experimentation. Briefly, the use of such features provides more 

robustness due to the inclusion of a large amount of data points and their correlation, 

better computational efficiency thanks to the more compact feature vector to 

represent large regions, more distinct features for better matching performance and a 

semantically more meaningful representation that helps both the mapping processes 

and human understanding of the scene. The success of the compact planar feature 

representations as in [25], [44], [47] and [48] has inspired this thesis study to 

advance further into the realms of compact feature representation by the 

generalization from planar surface features towards quadratic surface features which 

allow to exploit the differential geometry of the surfaces with no loss of the ability to 

represent planar surfaces. The motivation is to extend the compact higher level 

features by making use of more discriminative and more complex surface features, 

namely the curvature properties. This extension is expected to improve the data 

association performance in two main ways; by the inclusion of curved surfaces into 

the SLAM features that were previously left out due to the planar surface limitations 

and by utilizing the distinctiveness of the curved surface features as compared to the 

planar surfaces which are more likely to lead to possible false positive matches as the 

planar surfaces usually resemble each other. 
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5.7 Quadratic Surface Fitting 

Quadratic surface fitting is used in the state of the art techniques for surface 

curvature calculations as in [95] [96] [97] and many others. The main idea is to first 

fit a quadratic surface to the clustered data points, and then calculate the surface 

curvature features analytically via the fitted algebraic surface.  

Quadratic surface fitting lies at a good point between memorization and 

generalization of the surfaces. One degree less means to have only planes and one 

degree more results in overly complex surface that are not suitable for matching 

purposes. For general purpose indoor applications, the surfaces are expected to have 

regular surfaces like planes, ellipsoids, cones, cylinders, spheres, hyperbolas and so 

forth. Such surfaces can be perfectly represented by quadratic surfaces which are 

algebraically polynomials of second degree. It is also preferable in terms of 

computational cost. Polynomial fitting of second degree is quite computationally 

effective, so that even the MATLAB implementation with thousands of points 

executes instantly. The second degree polynomial fitting for the quadratic surfaces is 

pretty much the finished article in the literature. Almost all methods adopt least 

squares minimization approach. In our system, this efficient method is used.  

To have a better representation from the very beginning of the SLAM algorithm 

prevents from the further introduction of error. Figure 23 is a very clear example of 

the difference between the fitting performances. In the first image, blue cloud is the 

surface points and the grey thin line is the edge of the fitted plane. The second image 

displays the same surface data points with green dots and the fitted quadric surface as 

the dark sheet. It is worth noting that even with near planar surfaces, quadratic fit 

provides an apparent improvement. Although the data points have a low level of 

curvature, quadratic fitting is apparently less erroneous. If this is a very large group 

of points, even that much of a difference could make up to meter level error margins. 

Also, if the curvature of the surface is higher and higher, the planar fitting will be 

less and less accurate and in turn it will be unable to fit to a plane. 
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Figure 23: Planar and Quadratic Surface Fitting results for the same data (X, Y 

and Z-axis values are coordinates in meters) 

 

Our method addresses this issue by generalizing the surface representation from 

planar only to quadratic surfaces. Although it is possible to fit deeper with cubic 

representations and higher, it is not feasible to try and match such overly complex 
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surfaces. In fact, that much of accuracy could be deadly in the sense that it could fit 

surfaces to combination of several objects which stay in close distance. This is not a 

failure mode in the quadratic fitting as the goodness of the fitting performance is a 

constraint of feature extraction. So, if the surface is not fit properly, in other words, 

the underlying geometry of the surface points cannot be represented by second 

degree polynomials, and then the SLAM algorithm will simply ignore this 

measurement. This is an admissible approach in the sense that we try to minimize the 

possible additional computational noise. 

The mathematics of the least squares minimization for the fitting is given in 

Appendix C and could be further reviewed from [95], [96], [97]. 

The result of quadratic surface fitting is a 6 parameter vector that algebraically 

describes the surface as given in (5.1). 

 

 𝑧 𝑥,𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥𝑦 + 𝑝3𝑦

2 + 𝑝4𝑥 + 𝑝5𝑦 + 𝑝6 (5.1)  

 

The vector returned from the fitting algorithm is given in (5.2). 

 

 𝑝 =  𝑝1 𝑝2 𝑝3 𝑝4
𝑝5 𝑝6  (5.2)  

 

The availability of an algebraic representation makes any mathematical manipulation 

possible for the surface. The curvature calculations are analytically calculated based 

on those parameters. 

 

5.8 Surface Curvature Features 

The surface curvature features are implicitly defined by the derivatives of the 

surface. The exact calculations of Mean Curvature and Gaussian Curvature are given 

in (5.4) and (5.5), however, approximated calculations yield sufficiently close values. 

Hence, the calculation of Mean and Gaussian curvature features is given in (5.3) to 

(5.5). 
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𝑑𝑢 = 𝑝4 

𝑑𝑣 = 𝑝5 

𝑑𝑢𝑢 = 2𝑝1 

𝑑𝑣𝑣 = 2𝑝3 

𝑑𝑢𝑣 = 2𝑝2 

 

(5.3)  

 

 

 

𝐻 = (𝑑𝑢𝑢 + 𝑑𝑣𝑣 + 𝑑𝑢𝑢 ∗ 𝑑𝑣 ∗ 𝑑𝑣 + 𝑑𝑣𝑣 ∗ 𝑑𝑢 ∗ 𝑑𝑢 − 2

∗ 𝑑𝑢 ∗ 𝑑𝑣 ∗ 𝑑𝑢𝑣)/(2

∗   1 + 𝑑𝑢 ∗ 𝑑𝑢 + 𝑑𝑣 ∗ 𝑑𝑣 
1.5 ) 

(5.4)  

 

 
𝐾 = (𝑑𝑢𝑢 ∗ 𝑑𝑣𝑣 − 𝑑𝑢𝑣

+ 𝑑𝑢𝑣)/( 1 + 𝑑𝑢 ∗ 𝑑𝑢 + 𝑑𝑣 ∗ 𝑑𝑣 
2) 

(5.5)  

 

From Mean and Gaussian curvatures (𝐻,𝐾) it is possible to define a curvedness 

value which is affine invariant [28] as given in (5.6). 

 

 𝐶 =  (2 ∗ 𝐻2 − 𝐾) (5.6)  

 

Thus, the feature vector for the clustered surface patch is now complete. The vector 

content is given in (5.7). 

 

 𝑓 =  𝑥 𝑦 𝑧 𝐻 𝐾 𝐶  (5.7)  

 

The use of Mean and Gaussian curvature values for surface matching is a preferred 

method in the literature for 3D surface matching. Nevertheless, the use of these 

features in SLAM algorithm is the novelty of this study. Our aim is to observe the 
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results for this elegant surface matching technique in the SLAM domain in which the 

range sensor data is vital and to have an improvement on sensor data utilization 

could prove quite useful. 

 

5.9 Data Association 

This work is based on unknown correspondence case of SLAM which means that it 

is not known which sensor measurement is associated to which previously observed 

landmark. This relation is found during the algorithm through the state covariance 

matrices. Although data association problem could be seen as simply comparing the 

measurement feature vector against all the known landmarks, the difficulty lies in the 

quality of the comparison. It is not straightforward to decide whether an object is 

equal to another as in the case of numbers. The key factor was the surface curvature 

feature extraction section. The more descriptive and discriminative the feature 

vector, the better the data association will be. 

Data association concept is less of a problem with FastSLAM which adopts multi-

hypothesis belief propagation. This leaves a safety margin for data association errors. 

However, with less number of particles or more sparsely sampled scans could 

compensate for the advantage of multi-hypothesis approach. Thus, although 

FastSLAM could recover from data association errors unlike EKF SLAM, the error 

performance is still dependent on the associating the data correctly. 

 

5.10 Measurement Correction 

The mathematics of Kalman update is given in detail in Chapter 3, hence will not be 

given again here. As far as this thesis study is concerned, the measurement update 

step is a straightforward implementation of FastSLAM. The main focus was to 

improve the features obtained from sensor measurements. The rest of the 

implementation solely tries to keep up with the state of the art. The novelty of this 

work is to use the surface curvature features inside SLAM algorithm.  

 

5.11 Real Time Application Discussion 

In a recent work [98], Mean and Gaussian curvature from a surface range data is 

estimated using FPGA technology. The benefits of low-level and parallel processing 

in this application, made it possible to compute the same operation in dramatically 
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shorter execution time as compared to the high-level programming environments 

such as MATLAB. In this work, the range data of size 128x128 was processed and 

curvature values were calculated within duration of as short as 471μs which is a 

quite promising speed for real time considerations. If the rest of the SLAM algorithm 

was implemented on such a hardware then real time operation would seem practical 

and feasible. 
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CHAPTER 6 

 

 

ANALYSIS ON THE SURFACE CURVATURE FEATURE 

MATCHING STABILITY 

 

 

 

In this chapter, the repeatability and the distinctiveness of the chosen surface 

curvature features are analyzed based on the experimentation with the real Kinect 

data sequences. This analysis is carried on the grounds that although the success of 

the surface curvature feature matching process could be implicitly observed from the 

SLAM performance, it would be informative to investigate the feature matching 

alone as some other factors could be affecting the SLAM performance other than the 

feature matching process. Thus, for such an analysis, in order to isolate all other 

parameters, the Kinect scans are read and clustered by hand, then the quadratic 

surface fitting and surface curvature features are extracted. For this procedure, scans 

are chosen in a larger period in order to observe varying scene conditions. The details 

of the analysis are presented in the following sections. 

 

6.1 Methodology 

Basically, for feature detectors and descriptors, the measure of performance is 

repeatability and distinctiveness. For the first measure, the surface curvature feature 

elements of the feature vector, namely H, K and C elements, are tracked across the 

Kinect scans at different time intervals which tests the repeatability, scale and view-

point invariance of the surface curvature features. For the latter measure, the 

distinctiveness of the surface curvature features are compared across the 

measurements taken from the surfaces of a bowl, a smaller glass and a planar region 

in order to see whether the features are able to discriminate different objects surfaces 

from one another. For all feature extraction processes, the segmentation of the 

relevant object surface is done manually by choosing the region of interest within a 
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drawn polygon in order to eliminate all other factors other than the feature extraction 

process itself. In the analysis discussion, a through experimentation including many 

object types is not aimed as it is beyond the scope of this work and also the results of 

the feature matching performance are implicitly observed within the overall 

performance of the SLAM algorithm.  

 

6.2 Repeatability Analysis 

In order to investigate the repeatability of the surface curvature features, a sequence 

of Kinect data is chosen such that throughout the sequence scale and view-point 

changes occur so that different data samples collected from the same object surface.  

 

 
 

Figure 24: Scale and view-point variation during the scan sequence [27] 

 

Figure 24 shows the variation of the scenes across sixteen scans at different time 

intervals. The tracked object surface is shown as the bowl near one edge of a table in 

the scene. The scale change is visible especially between the scenes that the sensor 
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locations are at the opposite sides of the table. The viewpoint change is extensive 

between the scenes that the sensor displays the bowl almost from the top, sides and 

oblique angles. Thus, the experimentations are carried out under significant amount 

of scale and viewpoint changes which is able to represent the real application 

conditions. 

The variation of the H, K and C values corresponding to the surface curvature feature 

elements of the feature vector is given Figure 25. To begin with, deviations in all of 

the feature values are quite acceptable in the sense of repeatability when the 

significant scale and view-point changes are taken into account. As the Gaussian 

curvature value, namely K, is constantly very low, the curvedness value is seen to 

closely follow the mean curvature value. 

 

 
 

Figure 25: The variation of H, K and C values over different scene scans 

 

The mean and variance for the H, K and C values measured across different scale 

and view-point conditions are given in Table 2. 



 

 

 

78 
 

The consistency of the values is also observed in mean and variance values of the 

feature values as given in Table 2. The variations of the values across the scene scans 

at different time instances are also seen to be stable. This stability is vital for any 

mobile robotics application in the sense that the mobile robot could observe the same 

object surface at rather different angles and distances. Still, the mobile robot has to 

be able to recognize that the measurements are taken from the same object surface, 

otherwise such data association problems accumulate and might render the 

estimations useless. However, in this experimentation it is observed that the feature 

values belonging to the same object surfaces are quite robust against significant 

changes in the scale and viewpoint variations. Thus, the analysis of repeatability and 

invariance to scale and view-point changes properties of the proposed surface 

curvature feature method are concluded. 

 

Table 2: Mean and variance of the surface curvature feature elements 

 

 

Mean 

Curvature 

(H) 

Gaussian 

Curvature 

(K) 

Curvedness 

(C) 

Mean Value 0.4306 0.0019 0.6077 

Variance 0.0076 0.0000 0.0149 

 

6.3 Distinctiveness Analysis 

In this section, analysis on the distinctiveness of the surface curvature features is 

presented. For this purpose, the experimentation for the previous section containing 

the bowl object is compared against the same measurements taken from the table 

surface. The surface fitting process actually makes the difference felt even before the 

feature extraction as seen in Figure 26. The difference in the mean values of the 

surface curvature feature values also reflects a similar result as seen in Table 3. 

The measurements for the smaller cup are quite noisy and it is difficult to obtain 

stable data for long sequences. Thus, only a rough mean value is provided in Table 3. 

It is noted that the table surface curvature values are near the zero level as it is a 
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planar surface. Thus, the difference from a curved surface is quite decisive. The 

distinctiveness between the bowl and the smaller cup is also notable in the sense that 

they are similarly curved surfaces; however, the smaller cup is more curved as it has 

a smaller radius on the base and top regions. To conclude the distinctiveness 

analysis, it is observed in the experimentations that the surface curvature features are 

able to discriminate non-curved and differently curved surfaces seen in various scale 

and view-point conditions. 

It should be noted that, the surface fitting operation provides a complete surface 

representation even in the case of missing data points by the help of the surface 

symmetry. Thus, if the shape of the surface is notably asymmetrical, then due to the 

quadratic surface assumption, the representation may have a higher fitting error. 

Nevertheless, common indoor objects, or in a broader sense, man-made objects 

usually have a certain degree of symmetry which allows the quadratic surface 

assumption to represent the object surfaces reliably with low fitting error values. 

 

Table 3: Mean and variance of the surface curvature features from bowl and 

table surfaces 

 

 

Mean 

Curvature 

(H) 

Gaussian 

Curvature 

(K) 

Curvedness 

(C) 

Bowl Surface (Mean) 0.4306 0.0019 0.6077 

Bowl Surface (Variance) 0.0076 0.0000 0.0149 

Table Surface (Mean) -0.0740 -0.0006 0.0830 

Table Surface (Variance) 0.0400 0.0003 0.0478 

Smaller Cup (Mean) 1,6627 -0,2091 2,3955 
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Figure 26: Quadratic surfaces fitted to the surface of the bowl and the table (X, 

Y and Z-axis values are coordinates in meters) 
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CHAPTER 7 

 

 

RESULTS AND ANALYSIS 

 

 

 

The proposed method introduces a novel approach for the feature representation in 

SLAM algorithm. Thus, the only way to experiment and observe the results is to 

compare against existing methods. The first method to compare would naturally be 

the plane feature based SLAM. In principle, our work could seem to be a more 

generalize form of a surface representation as compared to planar approaches. 

However, it is not as straightforward as it would sound to utilize curved surfaces in 

3D space. Many algorithms working on planar surfaces would not work on curved 

surfaces as the constancy of planar surfaces allow numerous approximations and 

assumptions. That completely changes the solution approach. Although it is not 

possible to investigate and compare the results in every aspect of the problem due to 

lack of 3D Kinect dataset diversity among the publicly available resources, there is 

still a good chance to observe fundamental properties of the compared techniques. 

In this chapter, basically the error performances and the computational cost analysis 

will be given. The final path and landmark estimations will be also compared against 

planar feature based, SURF based and corner feature based SLAM methods. 

 

7.1 Benchmark Environment 

In order to evaluate the performance of the proposed method, a set of SLAM feature 

techniques and Kinect dataset records are employed. The selected SLAM feature 

techniques for comparison are plane feature-based SLAM, SURF feature-based 

SLAM and corner feature-based SLAM methods. The planar surface based technique 

is a natural competitor due to the fact that the planar features are also surface features 

as in the case of the proposed surface curvature feature based SLAM. The other two 

techniques are included in the benchmarking domain in order to have not only a 

similar approach but also fundamentally different approaches. Point feature approach 
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in SLAM represents the idea of having a dense landmark map which prefers to have 

a better error performance in expense for more computational power demand. 

Among such techniques, SURF and corner features are selected for both their 

popularity in SLAM applications and their conceptual diversity. 

The experimentations are carried out on MATLAB version 2011a 64-bit running on 

a PC with Windows 8 operating system installed. The computer hardware features 

Intel Core i7-3632QM processor at 2.20GHz, 6GB RAM and 2GB Nvidia GeForce 

GT-635M graphics processor. The processed depth images count up to 100 frames 

each of which contain 640 by 480 pixels. 

 

7.1.1 Dataset Used in the Experiments 

Although there is a good number of publicly available Kinect dataset packages on the 

web, there are only a few packages which provide sufficient ground truth data, if any, 

a suitable path featuring loop closure and object variety in the scenes. The SLAM 

benchmarking dataset provided by [6] in Technical University of Munich. The given 

name of the dataset is actually self-explanatory: "RGB-D SLAM Dataset". Thus, the 

main purpose of the record is to provide a medium for SLAM implementation, 

evaluation and benchmarking. This dataset proves quite useful as it supplies reliable 

ground truth data constructed using external calibrated camera system which is 

valuable information in the sense that the ground truth is obtained independently 

without being perturbed by the system itself. Other equivalent dataset options either 

lack a proper ground truth or ground truth is assumed to be the output of most 

optimal algorithm the authors decide. In that sense, the most sensible dataset of 

choice is left as the one chosen in this thesis work. There are some sequences 

suitable for object recognition, camera calibration, dynamic object tracking and so 

forth, however, the main focus is the SLAM studies and the records are mainly used 

thusly. A recent study which performs the experiments on this Kinect dataset is [27]. 

The authors evaluate the state of the art SLAM techniques on the publicly available 

records belonging to the aforementioned dataset. The evaluated SLAM methods are 

based on the OpenCV [99] implementations [100] of the feature extraction and 

matching techniques SIFTGPU [101], SURF [102] and ORB [43]. Other than the 

mentioned work, although being published quite recently in 2012, the dataset is cited 



 

 

 

83 
 

by 130 studies [103] some of which are on SLAM [104] [105] [106], RGB-D 

mapping [107], localization [108], tracking [109] [110], ICP [111] and scene 

reconstruction [112]. 

From many Kinect data sequences, two records were chosen based on the surface 

types observed in the scenes. One of the records mainly contains planar or nearly 

planar object surfaces which provides a challenge between planar and surface 

curvature methods in the comfort zone of planar feature based method. The result of 

the execution on this sequence will be informant on how the surface curvature 

method performs on planar surfaces which are one of the less complex quadratic 

surfaces. In this scenario, planar and surface curvature features are expected to have 

comparable results because although quadratic surface representation is able to 

describe more types of surfaces with less error values, the absence of such complex 

surfaces in the sequence should prevent such difference. Conversely, the other 

sequence contains curved surfaces which are expected to differentiate the complex 

surface description power of the proposed system from the planar feature based 

system. The point feature based methods, namely SURF features and corner features, 

are not considered in the discussion of surface types as they work with a large 

number of landmarks and there will be points of interest for them in almost any 

scene. The selected dataset sequences are listed in Table 4 with their basic properties. 

In summary, the first dataset in Table 4 is chosen for observing the performances of 

the SLAM techniques with mostly planar and near-planar surfaces. Also, this 

sequence is recorded on an actual mobile robot, which provides more direct analysis 

considering the real mobile application of SLAM; however, as the ground surface is 

mostly flat, no significant change in some dimensions is observable. The second 

dataset is chosen in order to analyze the performances of the benchmarking SLAM 

methods on planar and curved surfaces combined. Additionally, as the sequence is 

recorded with a hand-held sensor, it is possible to obtain results with significant 

variation in all six dimensions. Thus, through the experimentations, it is expected to 

observe the SLAM performance in different environments with various objects 

surface types and with different motion characteristics such as a mobile robot 

platform motion or the hand-held motion. 

 



 

 

 

84 
 

Table 4: Properties of the Experimenting Dataset Sequences 

 

Sequences 
Duration 

(s) 

Length 

(m) 

Avg. Trans. 

Velocity 

(m/s) 

Avg. Rot. 

Velocity 

(deg/s) 

freiburg2_pioneer_360 72.75 16.118 0.225 12.053 

freiburg2_dishes 100.55 15.009 0.151 9.666 

 

Figure 27 shows one scene from the second benchmarking Kinect sensor record. The 

curved surfaces in the scene make it challenging for the planar surface feature based 

SLAM to properly represent the object surfaces. Figure 20 is from the first record in 

which the foreground objects have planar or nearly planar regions that are mostly 

suitable for plane fitting. 

Also, the first recorded data is taken from the measurements of Kinect sensor 

mounted on a moving Pioneer robot. As the ground of the environment is flat, there 

is not much variation in elevation, roll and pitch directions. In this case, the results 

do not give much information about the error performance on these axes. The second 

record, however, is taken from hand-held Kinect movements, which not only 

provides variation on all axes, but also features more abrupt moves as compared to 

the robot movement. Hence, the second Kinect data is a more challenging benchmark 

in the sense that the sensor moves freely in the air. 

 

 
 

Figure 27: Kinect Data record with curved surfaces in the scenes [27] 
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7.2 Benchmark Methods 

The benchmarking methods are chosen from state-of-the-art techniques. The 

implementations for these techniques and the main FastSLAM algorithm are mainly 

based on the work in the literature [94] [93]. Thus, those methods are presented only 

briefly.   

 

7.2.1 Planar Feature Based SLAM 

The SLAM technique used as a benchmark is based on planar segments with normal 

vectors. In this technique, the planar surfaces are detected by making use of a 

modified version of RANSAC in which a seed planar region is selected and a large 

amount of points are included in the plane fitting. For the point clusters that satisfy 

plane constraints are then described with its central location, area and normal vector 

to the plane surface. Thus, the landmarks are represented as planar regions with their 

location, area and normal vector. The feature vector contains 3 elements for central 

location, 3 elements for normal vector representation and 1 element for the area 

information as given in (7.1). 

 

 𝑋 =

 
 
 
 
 
 
𝑥𝑐
𝑦𝑐
𝑧𝑐
𝑛𝑥
𝑛𝑦
𝑛𝑧
𝑎  
 
 
 
 
 

 (7.1)  

 

The initial clustering of the scene is the same as the proposed SLAM technique. 

Thus, the same object candidates arrive at feature extraction parts of the algorithms. 

The planar feature based system tries to its best to represent those surfaces as planes. 

 

7.2.2 SURF Feature Based SLAM 

SURF features provide point features at sharp regions on the object surfaces. There is 

not much need for an initial clustering; however, such a clustering will save 

computational power by avoiding less stable background measurements which are 

out of Kinect sensor comfort zone. Thus, the object clustering is performed as in 
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other benchmarking techniques. The features are represented by their location, scale 

and Laplacian as given in (7.2). 

 

 𝑋 =

 
 
 
 
 
𝑥𝑐
𝑦𝑐
𝑧𝑐
𝑠
𝐿  
 
 
 
 

 (7.2)  

 

SURF is a Hessian based feature detector like SIFT. The scale entry in the feature 

vector provides the scale invariance of the features and the Laplacian parameter 

provides robustness as it represents the trace of the Hessian matrix. For more detail 

on the SURF feature extraction method, Appendix A could be visited. 

 

7.2.3 Corner Feature Based SLAM 

Corner features are seen as the features with only point location data. As the 

benchmark method, Shi & Tomasi's minimum eigenvalue method is preferred. This 

algorithm is integrated in the standard library of MATLAB. In this method, basically, 

the corners are detected by analyzing the Taylor-approximated auto-correlation of 

the image and its shifted version which yields the image gradient. Then the minimum 

eigenvalue points of the gradient matrix which corresponds to the fastest change. The 

feature vector resulting from the corner detection is then simply the location of the 

detected corner as given in (7.3). 

 

 𝑋 =  

𝑥𝑐
𝑦𝑐
𝑧𝑐
  (7.3)  

 

The fundamentals of Shi & Tomasi corner feature extraction method is given here 

only briefly, Appendix B provides further information. 

 

7.3 Performance Analysis 

The performance of the proposed system as compared to the state of the art 

benchmark methods is measured via the experimentation on real Kinect data 
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simulations. For the sake of diversity in the experimentations, two Kinect records 

that are different in terms of surface types and motion characteristics. Mainly, the 

first sequence is recorded on a Pioneer platform and the environment contains mostly 

planar surfaces and the second sequence is recorded from a hand-held Kinect sensor 

and the environment contains both planar and curved surfaces. 

 

7.3.1. Execution with Kinect Data from Moving Robot 

In this part, the plane feature based SLAM, SURF feature based SLAM and corner 

feature based SLAM are compared against the proposed method in terms of 

estimation errors. The implementations of the benchmark algorithms are based on 

[93] and [94]. 

Figure 28 and Figure 29 depict the total translational and rotational error results, 

respectively for the FastSLAM algorithm running with four different feature 

matching techniques. These two graphs reflect the overall performance of the 

benchmark methods. In terms of error performance, it is observed that SURF feature 

method yields the best results. Surface curvature feature and corner feature methods 

follow with close results; however, surface curvature feature method error results are 

slightly better. Planar feature method stands at the last spot; nevertheless the results 

are still comparable to the other three methods. These scores are quite conformant 

with the expectations. SURF reaches the best error performance by using more 

complex and quantitatively more features at the expense of a higher computational 

complexity. Corner feature matching is less complex as compared to SURF and this 

is visible in the inferior results in spite of the similarly high amount of features used. 

Two compact surface feature methods, namely plane and surface curvature methods 

are observed to catch up with other two point feature methods. In fact, surface 

curvature method is seen to yield better results than not only plane feature method 

but also the corner feature method. It is parallel to the expectation that the quadratic 

surface curvature representation would have more expressive power than the planar 

features. It should be noted that planar feature and surface curvature feature methods 

are higher level compact representations using very few number of features, 

however, these methods, especially surface curvature feature method, are able to 

yield comparable results to the more complex point feature methods. 
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The loop closing behaviors of algorithms differ noticeably. Corner and plane 

methods seem to have smaller loop closures whereas SURF and surface curvature 

methods seem to have dramatic loop closure error reductions. However, the loop 

closing occurs at similar time instances (around the step 90) which correspond to the 

moment when features are re-encountered after a period. For the other SLAM phase 

behaviors, it is firstly noticed that there is no "no feature observation" as the dataset 

sequence starts with object surfaces within the field of view. In the "features 

observed, before loop closure" phase, for all of the four methods, there is an 

increasing trend in the error values, where local differences are observed due to the 

structural differences of the method approaches. 

 

 
Figure 28: Total Translational Error Performance Comparison (X-axis: 

number of depth image frames, Y-axis: per-particle errors in meters) 

 

If the translational error results in x, y and z dimensions are considered separately as 

given in Figure 30, Figure 31 and Figure 32, it is noted that the best performances 

differ between the three dimensions. SURF, corner and surface curvature feature 

methods yielded best results for the errors in x, y and z dimensions, respectively. 

However, the overall trend is consistent with the total translational error comparison. 
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Figure 29: Total Rotational Error Performance Comparison (X-axis: number of 

depth image frames, Y-axis: per-particle errors in meters) 

 

 
Figure 30: X-axis Error Performance Comparison (X-axis: number of depth 

image frames, Y-axis: per-particle errors in meters) 

 

The errors in the rotational axes display different characteristics as compared to the 

translational axes errors. The errors in yaw axis are naturally higher as the robot 

moves on a flat surface where roll and pitch values do not vary significantly. Thus 
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the most informant results are for the yaw axes which indicate that the SURF feature 

method performs the best, followed by surface curvature feature method. Plane and 

corner feature methods have similar results and follow the other two methods. 

 

 
Figure 31: Y-axis Error Performance Comparison (X-axis: number of depth 

image frames, Y-axis: per-particle errors in meters) 

 

 
Figure 32: Z-axis Error Performance Comparison (X-axis: number of depth 

image frames, Y-axis: per-particle errors in meters) 
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Figure 33: Roll-axis Error Performance Comparison (X-axis: number of depth 

image frames, Y-axis: per-particle errors in meters) 

 

 
Figure 34: Pitch-axis Error Performance Comparison (X-axis: number of depth 

image frames, Y-axis: per-particle errors in meters) 

 

The error performances in rotational axes, namely roll, pitch and yaw, are given 

separately in Figure 33, Figure 34 and Figure 35, respectively. 
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Number of features is almost like the trade-off parameter between performance and 

computational cost. However, still the compactness advantage lies beside the plane 

and surface curvature methods. The computational cost comparison is implicitly 

involved in the landmark number discussion.  

 

 
Figure 35: Yaw-axis Error Performance Comparison (X-axis: number of depth 

image frames, Y-axis: per-particle errors in meters) 

 

In the final estimation of path and landmark locations, the results can be said to be as 

expected. The most computationally complex and thus, the most robust SURF 

technique seem to have made nearly perfect data associations whereas other methods 

had a small number of data association faults. The path estimation seems equivalent 

in all of the methods that is partly because of the success of the measurement update 

cycles and partly due to a fairly simpler path followed. The final path and landmark 

location estimation results are given in Figure 36. 

Table 5 shows the execution times of the four algorithms. In accordance to the 

previous discussion, the performance costs computational power. The performance 

of the proposed method is satisfying in the sense that although the results with SIFT 

features are better, a close performance is achieved by our compact surface curvature 

features at a lower computational cost. 
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Figure 36: Final Path and Landmark Locations Comparisons for (a) Plane 

features, (b) SURF features, (c) Corner features, (d) Surface Curvature 

Features (proposed) 

 

Table 5: Execution Times (Based on the conditions given in the section 7.1 

Benchmark Environment) 

 

 Plane Features 
SURF 

Features 

Corner 

Features 

Surface 

Curvature 

Features 

Time 

(sec) 
322.6 1266.0 365.2 352.4 

 

7.3.2. Execution with Kinect Data from Hand-held Movement 

As the object surfaces and scenes are more complex and there are more foreground 

objects in this record, the execution times are higher as compared to the first record. 

The point features are excessively affected from the complexity of the scenes in 

terms of execution times. This makes the use of point features less feasible. Also, the 
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performance of the point features does not vary much with the scene complexity or 

the movement characteristics of the sensors. However, although not feasible, for the 

sake of a complete observation, the point feature methods, namely SURF and corner 

features, are included in the experimentation. 

Figure 37 shows an example of an analytical surface fitted to a surface patch from 

the Kinect data. The first figure shows the scatter of points that emerge from the 

initial clustering of the scene. Those points actually belong to one of the bowls seen 

in Figure 27. The second figure shows the surface fitted to represent that data It 

could be noted that the fitted surface was able to capture the original and proves a 

fine representation for a bowl. Planar features either could not fit a plane to this data 

which is the optimistic scenario, or they could fit a plane which would be almost 

random for this data. In our benchmarking algorithm, fortunately, such a surface is 

rejected as a plane and not introduced as an additional source of error into the SLAM 

algorithm. 

Figure 38 and Figure 39 display the total translational and rotational error 

performance results of the four methods. The overall behavior is consistent with the 

surface representation performance. In this sequence of Kinect data which contains 

more complex surfaces, the quadratic surface representation yields better fitting 

results as seen in Figure 37. In general; the error rates are very low due to the path of 

the Kinect sensor which keeps the dishes on the table within the field of view most of 

the time. Thus, the error rates stay low as the algorithm is able to observe the most of 

the features continuously. The results express that SURF and surface curvature 

features have the better error performance as compared to the plane and corner 

feature methods. It is important to note that the performance difference between the 

surface curvature feature and the plane feature methods become more distinct as 

compared to the first Kinect sequence due to the increased amount of curved 

surfaces. Another observation to be made is that the increased complexity of the 

scene caused corner features to be less stable on the grounds that the corner locations 

begin to overlap with the increase in the feature density. 
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Figure 37: A Sample Surface Fit from the Second Kinect Record (X, Y and Z-

axis values are coordinates in meters) 
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The better results in surface representation are then propagated to the overall error 

results of the SLAM implementation. From Figure 38 and Figure 39, we note that 

although the error rates are low, there is a significant amount of error performance 

difference final and average error values of plane feature and surface curvature 

feature methods. Although this is consistent with expectations, considering the 

dominance of curved surfaces in the scene. Thus, the expressive power of the 

quadratic surface representation displays its added value upon the planar surface 

representation.  

 

 
Figure 38: Total Translational Error Comparison (X-axis: number of depth 

image frames, Y-axis: per-particle errors in meters) 

 

When each of the translational and rotational error components are considered 

separately, the results are as given in Figure 40. Unlike the results in the first Kinect 

sequence, the error results of each dimension are given together as the values are low 

and thus it is more useful to observe them together. It is seen that in the most active 

dimensions, namely x,y and yaw, surface curvature feature method yields the 

superior performance. This meets the expectation that the impact of the more surface 

curvature feature utilization would be more distinct as such complex surfaces cannot 

be easily represented by planar features. The point feature approaches, namely SURF 
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and corner features, are not affected significantly as they deal with low level point 

features which are almost always utilized to some extent. Nevertheless, corner 

feature method are observed to have failed to adapt to a dense feature environment as 

its feature stability is not as powerful as SURF method. 

 

 
 

Figure 39: Total Rotational Error Comparison (X-axis: number of depth image 

frames, Y-axis: per-particle errors in meters) 

 

The computational cost performance is in accordance with the results in the first 

Kinect record when compared to each other. However, in absolute values, the 

execution times are significantly longer due to the increase in the amount of data to 

be processed. In the first record, an important part of the scene images are from 

background regions whereas in the second record, the scenes are taken in closer 

range and also the angle of the sensor does not allow much of the background to 

enter into the field of view. Thus, the execution times are measured as high as the 

values given in Table 6. In summary, it could be drawn from the results that with 

surface curvature features, it is possible to obtain superior error performance at a 

comparably less computational cost which shows that the aim of using compact 

surface features has been achieved. 
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Table 6: Execution Times (Based on the conditions given in the section 7.1 

Benchmark Environment) 

 

 
Plane 

Features 

SURF 

Features 

Corner 

Features 

Surface 

Curvature 

Features 

Time 

(sec) 
6322 10166 6465 8482 

 

 
Figure 40: Error performance in x, y, z, roll, pitch and yaw dimensions. (X-axis: 

number of depth image frames, Y-axis: per-particle errors in meters) 
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7.3.3. Analysis of Higher-level Compact Feature Effects in SLAM 

The benchmarking feature representations could be categorized into three main 

groups in terms of the complexity and compactness. Corner features are considered 

as low-level point features, SURF features stand as higher-level point features as the 

feature points are chosen based on the local surface geometry. The planar features 

and surface curvature features, on the other hand, are higher-level compact features 

that are able to describe the same region of scene data with a 6 or 7 element feature 

vector instead of possibly hundreds of feature points as in the case of corner features 

and especially SURF features which extracts a substantial amount of feature points 

from a given scene section. Figure 28 and Figure 29 show the results of the four 

feature types used in the data association of the same SLAM algorithm running on 

the same Kinect sensor dataset. It is observed that SURF features result in the best 

error performance at the expense of more than 50 feature points to be tracked. 

Although the corner features yielded about 20 features, the error performance was 

significantly worse than that of the SURF features. The use of plane and surface 

curvature features, however, result in a comparably close performance to that of 

SURF features at the cost of a dramatically lower number of features which is in the 

range of 5 to 10. The execution times given in Table 5 are an immediate indication of 

what this compactness could grant for SLAM applications. In a broader sense, the 

ability to represent the same set of scene data more compactly with fewer features 

provides savings in several stages of the SLAM algorithm which yields a cumulative 

benefit. The feature extraction stage might be still complex however, right after the 

compact surface representation is obtained; the remaining path is a peaceful 

downhill. For the FastSLAM method as in this thesis work, the number of features 

lead to a logarithmic complexity whereas in the case of EKF-SLAM the complexity 

grows quadratically with the number of features as the cross correlations between the 

landmarks are kept throughout the operation. This reflects the global matching side 

of the SLAM problem which is visible in the growth of the SLAM state variables. 

The data association phase composed of consecutive pair-wise comparison within the 

monotonically growing database of feature landmarks kept inside the SLAM state. In 

addition to that, the local scan matching process is also affected by the compactness 

of the features for the complexity considerations. For the real time applicability of 
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SLAM algorithms, the use of compact features for data association is quite 

promising. Another practicality of the compact representations emerges during the 

visual mapping processes. If the SLAM environment is to be reconstructed, then the 

higher level surface representations such as planar or quadratic surfaces would prove 

to be a better input and requires less further processing than point feature 

representations. 
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CHAPTER 8 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

The implementation of surface curvature features inside SLAM is introduced. This is 

a novel approach in the sense that although the surface curvature features have been 

used in surface matching methods, there has been no attempt to use that technique 

within SLAM domain. This makes sense due to the fact that in especially indoors 

robotic environments, such curved surfaces are encountered. Instead of reducing 

them down to planar level or even completely ignoring, this method tries to utilize 

these surfaces as a means of features for landmark representations. Another 

advantage is that the method implicitly contains planar features when the fitted 

surface is a planar patch. Thus, without loss of generality, the planar feature based 

SLAM could be incrementally improved. 

The experimental results support the theoretical expectations. The following results 

are drawn from this thesis work: 

 A new approach is introduced for feature extraction in SLAM domain which 

makes use of surface curvature features extracted locally from clustered range 

data. It is shown that quadratic surfaces can be utilized for SLAM algorithms. 

 The repeatability and distinctiveness analysis of the proposed surface 

curvature feature extraction method is verified with the experiment conducted 

on selected object surfaces that are observed under various view point 

changes. It is shown that the proposed surface curvature feature extraction 

method produces successful feature representations for the data association 

problem in the SLAM application. 

 The performance of the proposed method yielded satisfactory results in the 

sense that it is able to utilize curved surfaces and provides improvement as 

compared to the sole use of planar surfaces. 
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 After planar approaches, quadratic surface approach verified that compact 

representations are useful for SLAM applications as they provide more robust 

representations and fewer amounts of features which, in turn, lead to a 

significant computational cost reduction. 

 The real time concept is discussed and an existing application of Mean and 

Gaussian curvature estimation is mentioned which is able to execute in 

microsecond levels. This loosely proves the real time applicability of the 

proposed feature extraction method. 

The results indicate that selected surface curvature features are promising in the data 

association problems in mobile robotics applications such as SLAM. The surface 

fitting approach was quite successful, however, it can be said to be almost ideal. 

Some higher level features could be driven from the algebraic parameters of the 

fitted surface patches. 

Another extension would naturally be the real time application. The existence of 

some methods encourages such a long term project which involves hardware 

programming. 

The use of surface curvatures may lead the way towards a better terrain 

representations and better outdoors SLAM. The feasibility of this approach on terrain 

surfaces will be investigated.  

Maybe, the most practical extension of this SLAM work is to extend the operation to 

be applicable in dynamic environments instead of static. In real life, it is rather hard 

to safely assume that everything in the environment except the mobile robot itself is 

static. Thus, if the SLAM is ever going to be blend in daily life activities in the full 

and literal sense; SLAM with Moving Object Tracking (SLAMMOT) ability must be 

at hand. Therefore the first priority for further research on SLAM is aimed towards 

the SLAM in dynamic environments which have considerable common aspects with 

this thesis work such as compact object representation, no a priori assumption for 

object surfaces. 
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APPENDIX A 

 

 

METHOD OF SPEEDED-UP ROBUST FEATURES 

(SURF)  

 

 

 

SURF (Speeded-Up Robust Features) [102] is introduced as a scale- and rotation-

invariant feature detection and description technique. The method uses a Hessian 

matrix-based measure for the detection and a distribution-based approach for the 

description with the aim of achieving superior repeatability, distinctiveness and 

robustness. 

At the core of the fast computation capability of the method, lies the integral image 

formation which speeds up the box type convolution filter executions. An entry 𝐼Σ(𝑥) 

at the location 𝑥 = (𝑥,𝑦)𝑇 in the integral image is defined as the sum of all pixel 

values in the image 𝐼 within the rectangular region formed by the corners at the 

origin and the point under consideration, 𝑥 as given in (A.1). 

 

 𝐼Σ 𝑥 =   𝐼(𝑖, 𝑗)

𝑗≤𝑦

𝑗=0

𝑖≤𝑥

𝑖=0

 (A.1) 

 

After the integral image is formed, then the calculations at any region of the image 

with any size is calculated simply by three addition operations as depicted in Figure 

41. 
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Figure 41: Only three additions to calculate the sum of intensities inside a 

rectangular region of any size [102] 

 

Blob-like structures are detected at the locations where the determinant of the 

Hessian matrix is maximum. The scale selection is also carried out in the Hessian 

matrix as given in (A.2) where x = (x, y) is a point in an image I, the Hessian matrix 

is found for location x and scale σ. 

 

 𝐻 𝑥,𝜎 =  
𝐿𝑥𝑥 (𝑥,𝜎) 𝐿𝑥𝑦 (𝑥,𝜎)

𝐿𝑥𝑦 (𝑥,𝜎) 𝐿𝑦𝑦 (𝑥,𝜎)
  (A.2) 

 

Lxx (x,σ), Lxy (x,σ) and Lyy (x,σ) terms stand for the convolution of the Gaussian 

second order derivative with the image at pointx. Gaussian second order partial 

derivatives are approximated as given in Figure 42. In this figure, first two images 

show the images obtained by the calculations of Lxx , Lxy  and Lyy  whereas; last two 

images are the approximations to them, namely Dxx , Dxy  and Dyy . As visible in 

Figure 42, the weights are kept simple at 1, −1 and −2 instead of more complex 

values for computational efficiency. After the approximations, the determinant of the 

Hessian matrix is found as given in (A.3) where w is a constant used to balance the 

expression for the Hessian determinant and found as given in (A.4) for the scale of 

1.2 which is the lowest scale for the detection process. 
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 𝑑𝑒𝑡 𝐻𝑎𝑝𝑝𝑟𝑜𝑥  = 𝐷𝑥𝑥𝐷𝑦𝑦 − (𝑤𝐷𝑥𝑦 )2 (A.3) 

 
𝑤 =

 𝐿𝑥𝑦 (1.2) 
𝐹
 𝐷𝑦𝑦 (9) 

𝐹

 𝐿𝑦𝑦 (1.2) 
𝐹
 𝐷𝑥𝑦 (9) 

𝐹

= 0.912… ≅ 0.9 
(A.4) 

   

In (A.4),  .  𝐹 is the Frobenius norm. Although this constant is obviously different for 

each scale, based on the experimental results, there was no significant effect of the 

change, the value is kept constant. The result of determinant approximation of the 

Hessian matrix is therefore, yields the blob response in the image at the respective 

location. 

 

 
 

Figure 42: Left to right; discretised Gaussian second order derivative in y and 

xy directions and their approximations, respectively [102] 

 

The authors show that the approximation for the second order Gaussian derivatives 

result in comparable performance as compared to the original calculations with a 

repeatability rate ranging from %65 to %95 against the rotation of the images from 

0° to 180°.  

The scale invariance is maintained by exploiting the integral image once more. 

Contrary to the other scaling approaches such as reducing the image size, the filter 

box size is increased which does not increase the computational cost at upper scales 

thanks to the integral image conversion where the computations at any size are for 

exactly the same cost. The scale space is divided into octaves which are the series of 

consecutive scales. The minimum scale corresponds to a 9x9 box filter. Then the 

next scale filter size is chosen by increasing the size by one third of the initial size at 

each side. Thus, the second scale is 15x15 by adding 3 = 9(1 3 ) to each lobe of the 

box. In this manner, the octave has another two up-scaled filter boxes and then a new 
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overlapping octave starts at 15x15 size. This could be seen as a smooth transmission 

from one octave to the other. With the addition of a new octave, the coverage of the 

scale increases as seen in Figure 43. 

 

 
 

Figure 43: Three octaves, the horizontal axis yields logarithmic scales [102] 

 

The interest points are then localized by application of non-maximum suppression 

within a 3𝑥3𝑥3 neighborhood followed by the determination of the maxima of the 

Hessian determinant interpolated in scale and image space. 

After the interest points are detected, the descriptor vector is formed with 64 

elements. First, for rotation invariance the orientations of the interest points are 

determined by finding the Haar wavelet response in 𝑥 and 𝑦 directions near the 

image and scale space neighborhood. Then a square region around the interest point 

is placed the size of which is determined by the scale at which it is detected as shown 

in Figure 44. 

 

 
 

Figure 44: The sizes of descriptor windows at different scales [102] 
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Then the region is divided into 4𝑥4 sub regions for each of which Haar wavelet 

responses, namely 𝑑𝑥  and 𝑑𝑦 , are calculated at 5𝑥5 sample points in horizontal and 

vertical directions. For each square, wavelet responses are calculated and the 2x2 sub 

regions of each square yields the actual descriptor values. These are the summations 

𝑑𝑥 ,  𝑑𝑥  , 𝑑𝑦  and  𝑑𝑦   as computed relatively to the grid orientation. The descriptor 

building process is depicted in Figure 45. 

 

 
 

Figure 45: The descriptor building process [102] 

 

The summations in the absolute values are used in order to keep the polarity 

information of intensity changes. Thus, each sub region is left with a 4-element 

feature vector which, in turn, makes a total of 64 elements for the resultant descriptor 

of each interest point. 

  



 

 

 

120 
 

 

  



 

 

 

121 
 

 

 

APPENDIX B 

 

 

SHI & TOMASI CORNER DETECTION METHOD 

 

 

 

This is a well-known corner detection method also known as Minimum Eigenvalue 

Method which is introduced as a part of the work in [113] which deals with the 

visual tracking problem. In this method, the gradients of the input image, 𝐼, is found 

in the x and y directions, namely 𝐼𝑥  and 𝐼𝑦 , respectively. Then the matrix 𝑀 is 

formed by the squared gradients as given in (B.1). 

 

 𝑀 =  
(𝐼𝑥)2 (𝐼𝑥𝐼𝑦)2

(𝐼𝑥𝐼𝑦)2 (𝐼𝑦)2   (B.1) 

 

After the sum of the squared difference matrix, M, is calculated the eigenvalues of 

this matrix are found. The smaller of the eigenvalues corresponds to the corner 

metric matrix. Then it is only a matter of defining a threshold as in (B.2) for the 

measure of how sharp should the interest be in order to be counted as a corner. 

 

 min 𝜆1,𝜆2 > λ (B.2) 

 

This corner feature extraction method could be seen as the modification of Harris 

corner method in order to achieve better video tracking results. The main difference 

with respect to the Harris corner detection lies in the final metric calculation given in 

(B.2). In the case of Harris corner detection, the metric is defined as in (B.3) instead. 

 

 λ1λ2 − k(λ1 + λ2)2 > 𝜆 (B.3) 
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A sample execution of Shi-Tomasi corner feature is given in Figure 46. 

 

 
 

Figure 46: Corner features detected by Shi-Tomasi method as in [114] 
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. 

APPENDIX C 

 

 

NON-LINEAR LEAST SQUARES SURFACE FITTING 

 

 

 

For the quadratic surface fitting process used in the proposed system, a non-linear 

least squares error minimization approach is adopted  in which Levenberg-Marquardt 

method is used for iteratively adjusting the fitting parameters towards a better fit. 

The implementation of the method is supplied by the MATLAB software. The 

theoretical details are explained in the remainder of this section. 

The problem of fitting model is given in (C.1). 

 

 𝑦 = 𝜑 𝑋,𝛽 + 𝜀 (C.1) 

 

where, 

 

𝑦: 𝑛𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 

𝜑: 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 𝑎𝑛𝑑 𝛽 

𝛽:𝑚𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

𝑋: 𝑛𝑥𝑚 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 

𝜀:𝑛𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 

 

Then the least squares problem can be formulated as given in (C.3). 

 

 min
𝑥∈𝑅𝑚

𝑓 𝑥 =  (𝑦 𝑥𝑖 − 𝜑 𝑥𝑖 ,𝛽 )
2

𝑛

𝑖=1

 (C.3) 

 

The residual vector is denoted as given in (C.4). 
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 𝐹 𝑥 =  

𝑦 𝑥1 − 𝜑 𝑥1,𝛽 

𝑦 𝑥2 − 𝜑 𝑥2,𝛽 
…

𝑦 𝑥𝑛 − 𝜑 𝑥𝑛 ,𝛽 

  (C.4) 

 

Normally, the least squares function can be minimized via unconstrained 

optimization, certain characteristics of the problem could be used to improve the 

iteration efficiency. The said characteristics is observed in the special structure of the 

gradient and Hessian matrix of least squares matrix. If we denote 𝐽(𝑥) as the 𝑚𝑥𝑛 

Jacobian matrix of 𝐹(𝑥), 𝐺(𝑥) as the gradient vector of 𝑓(𝑥), 𝐻(𝑥) as the Hessian 

matrix of 𝑓(𝑥) and 𝐻𝑖(𝑥) as the Hessian matrix of each 𝐹𝑖(𝑥) then the equations in 

(C.5) are obtained. 

 

 

𝐺 𝑥 = 2𝐽 𝑥 𝑇𝐹(𝑥) 

𝐻 𝑥 = 2𝐽 𝑥 𝑇𝐽 𝑥 + 2𝑄(𝑥) 

𝑄 𝑥 =  𝐹𝑖(𝑥) ∙ 𝐻𝑖(𝑥)

𝑛

𝑖=1

 

(C.5) 

 

The matrix 𝑄(𝑥) tends to zero as the residual  𝐹(𝑥)  tends to zero as a result of 𝑥𝑘  

approaching to the solution. This is an effective way to determine the direction of the 

iterations towards the optimality point. In Levenberg-Marquardt method, this search 

direction is chosen as the solution of the linear set of equations given in (C.6). 

 

  𝐽 𝑥𝑘 
𝑇𝐽 𝑥𝑘 + 𝜆𝑘𝐼 𝑑𝑘 = −𝐽 𝑥𝑘 

𝑇𝐹(𝑥𝑘) (C.6) 

 

In (C.6), 𝜆𝑘  is the control scalar to determine the magnitude and direction of 𝑑𝑘 . If 

this scalar is chosen as zero, the method is identical to Gauss-Newton method and if 

this scalar tends to infinity then the method becomes equivalent to the steepest 

descent iteration. Thus, Levenberg-Marquardt method is a cross between the steepest 

descent and Gauss-Newton. In other words, it relies on the trade-off between speed 
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and robustness. In the case of quadratic surface fitting, the least squares minimization 

problem is set as given in (C.7). 

 

 

𝑛:𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡𝑜 𝑓𝑖𝑡 𝑡𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 

𝑦:𝑇𝑒 𝑧 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑒 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

𝜑:𝑇𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 

𝛽:𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

(C.7) 

 

The error vector and the model matrix are formed from the definitions in (C.7). After 

that point, the least squares minimization process determines a starting parameters 

set for the quadratic surface, finds the error vector as the difference of the data values 

and the evaluation of the fitted function with initial quadratic surface parameters. 

Then calculates the direction for the next iteration and iterates until the error between 

the actual data point values and the fitted function responses is minimized.  

 

 

 


