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ABSTRACT

SINGLE NUCLETIDE POLYMORPHISM (SNP) DATA INTEGRATED ELECTRONIC
HEALTH RECORD (EHR) FOR PERSONALIZED MEDICINE

Beyan, Timur
Ph.D., Department of Health Informatics
Supervisor: Assist. Prof. Dr. Yesim Aydin Son

January 2014, 216 pages

The digital age is revolutionizing the old and historical population-based healthcare
paradigm towards personalized medicine. Traditional diagnostic approaches fail to define
treatment response or prognosis. Focusing on manifest symptoms often hides risk factors
and, so prevention opportunities of diseases disappear.

Today, it’s known that most of the complex diseases are result of interaction of genomic,
environmental and behavioral factors and personalized medicine is defined as the use of
these data to determine individual patterns of disease. Personalized medicine aims to deliver
a more accurate representation of medical conditions that are multidimensional, predictive,
preventive, pharmacologically effective, person-centered, and individualistic services.
However, to reach personalized medicine opportunities, it’s an obligation to extend current
Electronic Health Record standards and capabilities to support genomic data in healthcare
settings.

In this thesis, we developed genomic sequence variation data integrated capabilities for
personalized medicine practices based on an integrative approach which will allow us to use
genome-wide SNP profiling data and disease models within electronic/personal health
records to support knowledge based systems. Finally, developed capabilities were
represented and assessed for prostate cancer in a data set as a pilot study.

Keywords: National Health System of Turkey, Personalized Medicine, SNP Genotyping
Data, Disease Risk Assessment, Cumulative Models
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TEK NUKLEOTID POLIMORFIZM (TNP) VERISI BUTUNLESIK ELEKTRONIK
SAGLIK KAYDI (ESK)

Beyan, Timur
Ph.D., Department of Health Informatics
Supervisor: Assist. Prof. Dr. Yesim Aydin Son

Ocak 2014, 216 sayfa

Sayisal ¢ag, eski ve tarihsel topluma dayali tibbi bakim paradigmasini kisisellestirilmis tibba
dogru devrimsel sekilde doniistiirmektedir. Geleneksel tanisal yaklasimlar tedaviye tepki ve
prognozu tanimlamada basarisiz kalmaktadir. Apagik belirtilere odaklanmak sikca risk
faktorlerini gizlemekte ve boylece hastaliklar: 6nleme firsatlar1 gozden kaybolmaktadir.

Bugiin bilinmektedir ki, karmasik hastaliklarin ¢ogu genomik, gevresel ve davranigsal
faktorlerin etkilesimi ile ortaya ¢cikmaktadir ve kisisellestirilmis tip bu tiir verilerin bireysel
hastalik oriintiilerini belirlemek {izere kullanimi olarak tanimlanmaktadir. Kisisellestirilmis
tip, tibbi durumlarin daha dogru bir gériiniimiinii yani kisi merkezli, ¢cok boyutlu, dngoriicii,
onleyici, farmakolojik olarak etkin ve bireysel hizmetleri sunmaktadir. Bununla beraber,
kisisellestirilmis tip firsatlarina erismek i¢in, giincel ESK standart ve yeteneklerini tibbi
bakim ortamlarinda genomik veriyi destekleyecek sekilde genisletmek bir zorunluluktur.

Bu tezde, bilgiye dayali sistemleri desteklemek lizere, elektronik/kisisel saglik kayitlarinda
biitiinsel genom TNP profilleme verisi ve hastalik modellerini kullanmaya izin verecek
biitiinlesik bir yaklasima dayali kisisellestirilmis tip uygulamalar1 igin TNP verisi biitiinlesik
yetenekler gelistirdik. Sonunda, gelistirilen yetenekler pilot bir aragtirma olarak prostat
kanseri igin bir veri setinde sunulmus ve degerlendirilmistir.

Keywords: Tiirkiye Ulusal Saglik Sistemi, Kisisellestirilmis Tip, TNP Genotipleme Verisi,
Hastalik Risk Degerlendirme, Birikimli Modeller
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The digital age is revolutionizing the old and historical population-based healthcare
paradigm towards personalized medicine.  Traditional medical approaches are not
sufficiently predictive and preventive, as they focus on the manifest symptoms that often
hide risk factors. Whereas determining risk factors would allow prevention through early
diagnosis. Personalized medicine provides new opportunities based on person-centered,
predictive, preventive, and effective health care services (Downing, 2009).

Genomic data and its derivatives (transcriptomes, proteomes, metabolomes, etc.) are the
most important elements of personalized medicine (Arnold & Vockley, 2011), (Ginsburg &
Willard, 2009). Every individual has around four million variations in their own genome,
when compared to the reference sequence. Genomic variations can range from single
nucleotide changes to gain or loss of whole chromosomes. Single nucleotide polymorphisms
(SNPs), where a single nucleotide in the genome alter between individuals or paired
chromosomes, are about %90 of genomic variants and some already are important markers
in clinic, while others are on the way (Barnes, 2010).

The rapid developments in Next Generation Sequencing (NGS) technologies have
substantially reduced both the cost and the time required to sequence an entire human
genome, and it's expected that NGS-based analyses e.g. Whole Genome Sequencing
(WGS) and Whole Exome Sequencing (WES) will be available for routine use in
healthcare and prevention of disease in the near future (Berg, et al., 2011). Providing
genomic data to medical professionals will facilitate clinical decisions based on individual’s
genome and allow tailoring health care services to patients' specific needs and characteristics
(Scheuner, et al., 2009). In parallel, direct-to-consumer (DTC) genome wide profiling tests
are being developed to assess individual disease risks for many common polygenic diseases
(Bloss, et al., 2011). DTC genomic companies, e.g. 23andMe, GenePlanet, and DNA DTC
generally perform a gene-chip analysis of SNPs using Deoxyribonucleic Acid (DNA)
extracted from saliva or serum sample (Helgason & Stefansson, 2010), (Chua & Kennedy,
2012), (Gullapalli, et al., 2012).

In clinical decision processes, genomic variant data would be used for assessing disease
risks, predicting susceptibility, early clinical diagnosing, following the course of the disease,
targeted screening, and planning treatment regimens (Ginsburg & Willard, 2009) (Chan &
Ginsburg, 2011). A reasonable way to carry this personalized approach into routine for
medical practices would be integrating genotype data and its clinical interpretation within the
electronic healthcare record systems (Belmont & McGuire, 2009), (Scheuner, et al., 2009),
(Hudson, 2011).

Today, in many developed and developing countries, use of health information systems is
inevitable for healthcare providers for reimbursement of services and tracking the quality of
the healthcare provided (Garets & Davis, 2006), (Héyrinen, et al., 2008). Recently, several
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systems and networks have been constituted in many countries of the world, including
National Health Information System (NHIS-T) of Turkey (HIMSS Global Enterprise Task
Force, 2010). These systems and networks have high potential for integrating genomic data
in healthcare practices for personalized medicine.

1.2 Problem Statement

Although, various initiatives was emerged to use genomic data in clinical process e.g. risk
assessment, pharmacotherapy, molecular diagnosis etc., examples of genome enabled
EMR/EHR systems in routine daily medical practice are so rare.

Today, numerous GWAS studies were performed, a great number of disease associated
genomic variation were discovered and some predictive models were proposed to use in
clinical settings. But yet, these efforts mostly were not implemented in real clinical
environment. Lack of conversion of research data into daily practice may depends on several
technical, medical and socio-cultural reasons, but one of the main reasons is definitely the
complex and continuously evolving nature of the problem area.

Regarding Turkey, with Health Transformation Program, a national level EHR was
implemented and integration to this system became an obligation for caregiver organizations.
Despite the lack of clinical genomics researches except a few academic attempts, existing
national EHR has a great potential for personalized medicine practices.

In our thesis, we have investigated how NHIS-T can be transformed into a genome enabled
national EHR and what are the obstacles, possible solutions and additional requirements of
this attempt would be.

1.3 Contributions

e Our thesis is one of the first attempts of genome enabled EHR. There are various
examples in different scopes and sizes but the difference of our work is that it’s the
unique effort to incorporate SNP data into a national level EHR.

e For our study, we have reviewed literature and produced a comprehensive document
for requirements of a genome enabled EHR.

e We have developed a methodology to improve existing NHIS-T as a SNP enabled
NHIS-T. In our analysis, we have also determined and discussed additional
requirements and capabilities, potential problem areas and obstacles.

¢ We have established knowledge base content for prostate cancer and determined
possible decision models, and compare their performances in a case study.

e An example of clinicogenomic knowledge base for predictive medicine was
designed and a prototype was developed.

o We designed and developed a simple decision support tool for the end user level,
that is capable of applying different clinical interpretation and assessment
approaches for SNP data based prostate cancer risk assessment.



e The critical point of study is that our system ensure to process both SNP and external
parameters (i.e. family health history and lifestyle data which couldn’t been recorded
routinely in EHR e.g. BMI, smoking, alcohol consumption etc.) due to bipartite
structure of our approach (i.e. conversion of CR-SNP into clinicogenomic
associations based on knowledge base and final clinical interpretation of these
associations in the end-user application).

1.4 Organization of the Thesis

The main goal of our study is to develop complementary capabilities as prototypes for SNP
enabled NHIS-T i.e. clinicogenomic knowledge base and end user decision support
applications, which specifically focus on disease risk assessment. Organization of this study
is summarized in Figure 1.

First, NHIS-T was analyzed using official technical documentations and the findings were
summarized regarding architecture, messaging infrastructure, and terminology standards. In
parallel, to determine requirements for a genome enabled EMR/EHR, a comprehensive
literature survey was performed. In this work, findings were presented as standards and
messaging, clinicogenomic knowledge bases, clinicogenomic decision support, and
examples of genome enabled EHR/EMR. All these information and complementary concepts
about personalized medicine and clinical use of genomic data were presented as the literature
review in Chapter 2.

General methods of these processes and enabling technologies were explained in Chapter 3.

Then, in Chapter 4, developing architecture for SNP enabled NHIS-T were proposed and
discussed. As a part of this process, possible ways of incorporating SNP data files into
messaging infrastructure using HL7 v3 CDA R2 standard, were explained. In architectural
analysis, it was determined that, we need to develop two complementary capabilities for SNP
enabled NHIS-T i.e. a knowledge base and clinical decision support capabilities for end
users.

In Chapter 5, design and development principles were explained. In this chapter, after
discussion of possible architectures, clinicogenomic associations were studied and
standardized association and model definition tables were described. Finally, development
methods of knowledge base and decision support application were argued and prototype
capabilities were presented.

Then, we focused on to prostate cancer risk assessment. We extracted content of
complementary capabilities (SNP-disease associations for knowledge base and existing risk
assessment models for end user decision support capabilities) from publicly available
databases and scientific literature. These subjects explained in Chapter 6 and 7.

At the end (in Chapter 8), we evaluated complementary components using real data from
personal genome project which is publicly available resource for genomic, environmental
and human trait data (https://my.personalgenomes.org/public_genetic_data) based on
different assessment and reporting approaches.

Finally, we discussed our principle results and limitations in Chapter 9, and future works in
Chapter 10.


https://my.personalgenomes.org/public_genetic_data

In our study, as an initial attempt through development of much sophisticated infrastructure,
we concentrated on the SNP variant data interpretation for prostate cancer as a proof of
concept experiment and excluded other types of variants and diseases.
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Figure 1: Organization of the thesis.



In addition, security and privacy issues and constraints about hardware and infrastructure are
also excluded. Also, the use of personal clinicogenomic information to determine disease
risk of patient’s family members is considered as out of scope.






CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Health Information Systems in Turkey

2.1.1 Information Systems in Healthcare

Current healthcare systems are widely based on standalone or integrated information system
infrastructures. Health Information Systems capture, store, share, transmit and manage data
about health of the individuals or the transactions of the healthcare organizations. This
concept includes integrated hospital and primary care information systems, clinical,
laboratory, pharmacy, radiology and nuclear medicine information systems, patient
administration, human resources, logistics and accounting management systems, and Picture
Archiving and Communication Systems (PACS), etc. (Winter, et al., 2011).

Regarding the capabilities of health information systems three terms come into prominence;
Electronic Medical Record (EMR), Electronic Health Record (EHR) and Personal Health
Record (PHR) (Hayrinen, et al., 2008).

EMR is composed of clinical data repositories, clinical decision support systems, standard
medical terminologies, computerized order entry, and documentation applications.
Erroneously, EHR is sometimes used interchangeably with EMR but essentially they are two
different concepts. An EHR comprise the ability for sharing healthcare data among partners
and is acceptable as an extraction of healthcare organization's EMR based on some standards
e.g. Continuity of Care Document of Health Level 7 (HL7), Continuity of Care Record
(CCR) of American Society for Testing and Materials (ASTM), etc. (Garets & Davis, 2006).

PHR provides individuals to access their own medical data and engage in the healthcare
(Tran & Gonzales, 2012). Interactive preventive health record (IPHR) is a new type of
PHR primarily aiming health promotion and disease prevention via educational support,
disease risk calculation, reminders and other types of decision support approaches (Krist, et
al., 2011).

2.1.2 National Health Information System of Turkey (NHIS-T)

Turkey Health Transformation Program has been gradually implemented since 2003. This
program aimed to transform all aspects of national healthcare system e.g. organization,
services, responsibilities, finance, etc. As declared on e-health strategy, using information
and communication technologies is essential and obligatory component of this
transformation (OECD, 2007).

Today, there are many integrated systems for different aspects of Turkish national healthcare
system e.g. NHIS-T for patient records, claim processing and reimbursement systems of



Social Security Institution (SSI), Turkish Drug and Medical Device National Databank for
medical material identification, etc. (Table 1).

NHIS-T is a national level infrastructure which has centralized service oriented architecture
in order to produce and share medical records between stakeholders (HIMSS Global
Enterprise Task Force, 2010), (Dogac, et al., 2011).

Table 1: Major electronic healthcare systems in Turkey (except NHIS-T)

Claim processing and

reimbursement systems of

Secondary and tertiary level caregiver organizations must use

SSI (MEDULA in | these systems via web services for reimbursement of SSI.
Turkish)
Turkish Drug and | Running to trace and control medical devices at national level

Medical Device National
Databank

with the cooperation of
authorities. (http://ubb.iegm.gov.tr)

governmental

Family Medicine
Information System

Implementing to monitor the performance and activities of
family practitioners. Since 2012, integrated to NHIS-T.

Core Resource

Combination of Material Resource Management System,

Management Svstem  of Human Resources Management System, Investment
anag y Surveillance System, Private Health Institutions Management
Ministry of Health System

An integrated system that enables tracking from notice of
medical emergencies to being archived electronically along
with coordinating the emergency units in the process and

112 Emergency Service
Information Management

System . , X

realizes corporate sources’ planning and management.

An infrastructure for units belonging to each pharmaceutical
Turkish ~ Pharmaceutical | product in Turkey, to guarantee and provide the reliable
Track & Trace System supply of every single drug unit from production to

consumption. (http://itsportal.saglik.gov.tr/)

An application that enables people to make appointments by
Central Hospital | themselves according to their choice of secondary and

Appointment System tertiary care hospitals, oral and dental health centers and

doctors. (http://www.mhrs.gov.tr/\VVatandas/)

Data elements like name, address, marital status, main diagnosis, treatment method, diastolic
blood pressure, healthcare institution, etc. used in the NHIS-T are defined, and then
Minimum Health Data Sets (MHDS) are generated combining relevant data elements.
Both the data elements and MHDS are published as a National Health Data Dictionary
(NHDD). The last version of NHDD, which includes 418 pieces of data elements, and 64
pieces of data set, is version 2.1 and accessible from its official web site (Republic of Turkey
Ministry of Health, 2013). It is mandatory for healthcare providers of Turkey to conform to
the NHDD data definitions and MHDS. New MHDS are produced by existing data elements
or the NHDD is improved by identifying new data elements when required.

The data elements are coded using medical terminology systems which are accessible from
the Health Coding Reference Server (HCRS) or locally defined categorical values, such as
gender or marital status. There are 294 code systems in HCRS and the current version of the
HCRS is 3.0 and is available online via web services. A tabular representation is also
accessible in official web page (Republic of Turkey Ministry of Health, 2012) and allows
users to query through web browsers. The healthcare professional identities are stored in
central Doctor Data Bank and citizen identification is stored in Central Civil Registration
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System (CCRS). Both identities are validated against their original sources at storing in
central repositories (Dogac, et al., 2011).

HL7 Clinical Document Architecture (CDA) a document markup standard, is produced to
exchange information as part of the HL7 Version 3 (V3) standards, and aim to specify the
structural and semantic aspects of clinical documents (Benson, 2010). In NHIS-T, MHDS
are produced as aggregated clinical document elements named as transmission data sets or
episodic EHRs and then serialized into XML based on the HL7 CDA R2 structure to create
transmission schemas. Before storing in the NHIS-T central repositories, incoming
messages are validated regarding syntax semantics and messages passed these two steps are
stored in the central NHIS-T repositories (Figure 2) (Kose, et al., 2008), (Dogac, et al.,
2011).

NATIONAL HEALTH DATA
DICTIONARY (NHDD)

DATA ELEMENTS

ELECTRONIC MEDICAL RECORDS (EMRs)

HOSPITALS | PRIMARY CARE |

MINIMUM HEALTH
DATA SETS
i 4
H H

TRANSMISSION

DATA SETS : :
l | AR PSP g geeeesssessseens 3
TRANSMISSION | | TRANSMISSION
TRANSMISSION SCHEMA | | SCHEMA
SCHEMA (HL7 V3, CDAR2) | ! (HL7V3, CDAR2)
(ML7 V3, CDA R2 v v

CONFORMANT) s )
l ELECTRONIC HEALTH DOCTOR DATA
RECORD (EHR) 8 BANK
SYNTACTIC VALIDATION

SEMANTIC VALIDATION
(Data elements, identifiers,
codes, business rules ets)

1 - CENTRAL CIVIL
STORING NATIONAL HEALTH REGISTRATION
INFORMATION SYSTEM SYSTEM (CCRS)

Figure 2: Schematic Representation of NHIS-T (depicted based on current literature).

Current version of NHIS-T allows transfer of the medical data from care providers’ (hospital
and family practitioner) information systems to central servers via web services. It has the
infrastructure that will provide access to patient’s records for authorized healthcare
professionals within the hospital, and that will allow patients to reach their own medical data
i.e. PHR. But, the legal regulations have to be completed before both type of access,
authorized or self, is available. Then, the establishment of a PHR system will allowed
(Dogac, et al., 2011).

2.2 Introduction to Personalized Medicine

Personalized medicine is a healthcare paradigm that aims to use individual’s unique clinical,
genomic, environmental, behavioral and sociocultural characteristics to predict disease
susceptibility, determine molecular characterization of disease for early diagnosis, tailor
treatment regimens, and monitor prognosis. This emerging approach is based on new
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discoveries in bioinformatics i.e. omics revolution and provide us new opportunities for
precise, preventive, and effective medical care based on omics data (Downing, 2009),
(Schneider & Orchard, 2011).

Some authors proposed three phases for omics data based medical approach. In the first
phase, polymorphism data and mutations of germline cells were used to realize personalized
medicine. In the second step i.e. post-genomic omics based medicine, the essential target is
to deliver predictive and preventive services based on broad molecular profiles of somatic
cells. And finally, omics based systems medicine aim to provide comprehensive
(personalized, predictive and preventive) medicine based on molecular pathways and
networks and its variations by diseases (Tanaka, 2010), (Shimokawa, et al., 2011).
Regarding systems medicine, human health and disease states are defined by interconnected
molecular pathways that can be defined by the omics data e.g. genome, epigenome,
transcriptome, proteome, and metabolome (Chan & Ginsburg, 2011).

The great idea behind the personalized medicine is to incorporate clinical and laboratory
phenotype data and molecular profiling to provide precisely tailored health interventions. For
this reason, the term of precision medicine is sometimes used as synonyms of personalized
medicine (Mirnezami, et al., 2012)

2.2.1 Omes and Omics

Omics revolution, at first, emerged based on the genome sequencing studies. Genome is the
whole set of genetic material involved in a nucleated cell. The term of genome was
introduced in 1920 by the German botanist Hans Winkler, combining gene and chromosome.

Chromosomes are built from DNA sequences which contain about 3 x 10° nucleotides.

Nucleotides are the basic building blocks of the genetic material and every nucleotide
contains phosphate, carbon, sugar structures and an organic base (Figure 3).
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Figure 3: DNA Structure (Attia, et al., 2009A).

Nucleotide is entitled according to the base e.g. Adenine (A), Guanine (G), Cytosine (C) and
Thymine (T). DNA has a double helix structure formed by two strands of nucleotides. In this
structure, specific base pairs must be matching e.g. A with T, and C with G. An Adenine-
Thymine (A-T) connection has two and a Cytosine-Guanine (C-G) connection has three
hydrogen bonds (Attia, et al., 2009A), (Schaaf, et al., 2012).

DNA part coding biological information of the organisms is named as gene (Figure 4). DNA
has two types of sequences i.e. exon and intron. Exon is the functional part and accountable
in genetic expression. Introns are the non-coding parts between exons and not responsible to
produce mature mRNA (Brown, 2009), (Pierce, 2010). About one percent of the human
genome is exons and 99 percent is non-coding regulatory elements, RNA processing
elements, and regions of unknown function. Most of the disease-causing mutations (>85%),
are in exonic parts (Bamshad, et al., 2011), (Majewski, et al., 2011).

Ovalbumin gene

DNA _Bxons.
I o BE Vil S M 8
5' 3
3 N v a -
\/
Introns
| Transcription

| DNA is transcribed |

| into RNA, and introns ——
| are removed by \
| RNA spiicing

1234567 8
N
mRNA S’ (i 3’

Figure 4: Structure of a Gene (Pierce, 2010).
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DNA is a double stranded stretch (plus and minus or forward and reverse respectively), and
every nucleated somatic cell has 22 pairs autosomal and one pair sex chromosome. This
means for autosomal chromosomes we have two version of DNA strands inherited via
maternal and paternal sex cells. Different forms or variations of a particular polymorphism is
called as allele (Attia, et al., 2009A).

Gene expression is a sequence of subcellular complex reactions aiming to convert inherited

data (i.e. gene) into functional chemical molecules. MRNA (transcriptome) is synthesized
from DNA strand in cell nucleus (transcription) (Figure 5).

Transcription slation
m Tran Iano Metabontes

v v v 4
Genome Transcriptome Proteome Metabolome

v v v v
Genomics Transcriptomics Proteomics Metabolomics

Figure 5: Conceptual Representation of Gene Expression, and Corresponding -Omes and —
Omics (Dziuda, 2010).

Then, in ribosomes, proteins are produced from the amino acids using mRNA as a template
(translation). Proteins are converted several metabolic products with enzymatic bioreactions
(Brown, 2009).

Today, “ome” suffix is used to define several subcellular chemicals produced after these
reactions. “Omics” are scientific research areas dealing with -omes using high-throughput
screening techniques and producing big data (Dziuda, 2010), (Gubb & Matthiesen, 2010),
(Schneider & Orchard, 2011).

2.2.2 Components of Diseases

2.2.2.1. Monogenic and Polygenic Diseases

Almost all medical conditions have a genetic basis. In monogenic diseases, DNA variations
of one single gene are predominantly or completely responsible from pathogenesis of
diseases. Monogenic diseases are frequently inherited in one of various patterns, depending
on the involved gene e.g. autosomal, X-linked, mitochondrial etc. (Table 2) (Janssens & van
Duijn, 2008), (National Library of Medicine (US), 2013).
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Table 2: Inheritance patterns of monogenic diseases (National Library of Medicine (US),

2013).
Inheritance o
pattern Description Examples
Huntington
Autosomal One changed (mutation) gene copy in each cell is disease,
dominant adequate to manifest clinical condition. Neurofibromatosis
type 1
Autosomal Two mutated gene copies are required for disease g?é Slzll(e: Eleb”rosw,
recessive manifestation. .
Anemia
X-linked Mutational genes are in X chromosome and two Fragile X
. mutated gene copies are required for manifestation.
dominant . o . Syndrome
Thereby, disease risk is more in females than males.
Mutational genes are in X chromosome, but for
. manifestation of clinical condition, it’s required to .
X-linked - Hemophilia,
. have only mutated copies. Because fathers cannot .
recessive : . . Fabry disease
pass X-linked traits to their sons, males are more
often vulnerable than females.
Two types of alleles of a gene can be expressed. Both ﬁFﬁaﬂOOd group.
Co-dominant | alleles affect the inheritance and identify the features P .
L Antitrypsin
of the genetic situation. L
Deficiency
_ | Because mitochondrial gene transferred only Leber Hereditary
Mitochondrial | maternal ovum, fathers cannot pass these types of Ootic Neuronath
conditions to their children. P pathy

Genetic origin of common complex or multifactorial diseases is more complicated from
monogenic diseases. Common medical conditions, such as heart disease, diabetes,
schizophrenia, many types of cancers, and obesity are complex and multifactorial conditions
which are caused by combination of multiple mutations on different genes, lifestyle and
environmental components. Complex diseases don’t follow the strict inheritance pattern as in
monogenic diseases (Janssens & van Duijn, 2008), (National Library of Medicine (US),
2013).

There are millions of common variations in every population. Each common variation may
play a small role in the pathogenesis of a complex disease, but collectively all variations may
be a strong factor behind the molecular etiology of the disease. In the presence of specific
variation patterns, with the involvement of environmental and behavioral causes clinical
conditions may be triggered (Figure 6). In such cases, if people with high risk based on their
genotypic profiles can avoid the risk factors, they can prevent themselves from possible
manifest of clinical conditions (National Cancer Institute, 2013A).
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Figure 6: Pathogenic Models of Diseases (Janssens & van Duijn, 2008).

A (Huntington Disease) and B (Phenylketonuria) for monogenic conditions. C-F for
polygenic complex diseases. Genetic factors are represented as white areas and
environmental factors are represented as grey areas.

2.2.2.2. Genomic Variants

Genomic DNA sequence is about 99.9% identical among humans (Dziuda, 2010). Compared
with the reference sequence generated by the Human Genome Project (HGP), any single
individual’s genome has about 3-4 million variants (Drmanac, 2012).

Genomic variations can range from single nucleotide changes to gain or loss of whole
chromosomes. In single nucleotide polymorphism (SNP), a single nucleotide in the genome
sequence is different between individuals. Genomic variation can also be caused by insertion
or deletion of nucleotides (indels) e.g. variable or simple number tandem repeat
polymorphisms, block substitutions, inversion variants and, copy number variations (Frazer,
et al., 2009), (Barnes, 2010) (Figure 7).

Reference strand ATTGGCCTTAACCCCCGATTATCAGGAT
ATTGGCCTTAACCCCCGATTATCAGGAT
Single Nucleotide Polymorphism ATTGGCCTTAACCICCGATTATCAGGAT

ATTGGCCTTAACCCGATCCGATTATCAGGAT
Insertion-Deletion Variant ATTGGCCTTAACCCBCGATTATCAGGAT

ATTGGCCTTAACCCCCGATTATCAGGAT
Block Substition ATTGGCCTTAACAGTGGATTATCAGGAT

ATTGGCCTTAACCCCCGATTATCAGGAT
Inversion Variant ATTGGCCT GCGGGGTTATTATCAGGAT

ATTGGCCTTAACCCCCGATTATCAGGAT
Copy Number Variaton ATTGGCCTTAp -~~~ -~ P\CCCCCGATTATCAGGRT

Figure 7: Various genomic variation types (Frazer, et al., 2009).
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SNPs are about 90% of all the genomic variations. Although most of are harmless, some of
them have great values for disease risk assessment, medical diagnostics and pharmaceutical
products (Poo, et al., 2011), (Aronson, et al., 2012), (Drmanac, 2012).

With the advent of NGS technologies, it’s also possible to accomplish rapid and cheap WGS.
Researchers and clinicians expect that WGS will be one of the most important tools in the
personalized medicine era (Berg, et al., 2011), (Scheuner, et al., 2009), (Wright, et al., 2011).

2.2.3 Genomic Tests and Personal Genomics

Conventionally, genetic examinations have been divided into two distinct but connected
disciplines: molecular genetics (goal is to test specific small variations) and cytogenetics
(holistic analysis to identify big structural variation). It’s expected that, WGS will fill this
chasm providing genome-wide molecular feature explaining both small and large variation
(Wright, et al., 2011).

2.2.3.1. Genome Sequencing Techniques

Describing the allele at a specific location in the genome is identified as genotyping.
Various genotyping techniques are developed in time for both diagnostic and research
purposes. These techniques contain a broad range from whole genome scanning to analysis
of particular sequence variations. Study of particular sequence variations can be performed
using polymerase chain reaction (PCR), multiplex ligation-dependent probe amplification,
fluorescence in situ hybridization, DNA microarrays and mass spectrometry among other
techniques. In last thirty years, with the help of automation and development of high
throughput techniques, provided huge improvements for DNA sequencing (Figure 8).
(Wright, et al., 2011).

15



| 0°“
I G Single
B 8 el-based Sanger Sequencing
g 10 molecule
£ 107 High sequencing?
i throughput
Sanger
6

§ 10 sequencing
i 105 Short read
§ sequencers
E 104 DNA
hd \ PCR Microarrays Massively
g 10 Sanger parallel NGS
£
2 02| method
% l Capillary gel

10! clectrophoresis

1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

“ b"‘

“«
; il |
1Y generation V. N

‘yt'm'rurim: generation

Figure 8: DNA sequencing generations and processing capabilities (Wright, et al., 2011).

With the older DNA sequencing approaches, it was not feasible to produce a whole genome
sequence. Due to time and cost limitations, using genomic data in clinical processes have
been characteristically restricted. Today, new high-throughput and massively parallel NGS
technologies can analyze millions of DNA fragments simultaneously. NGS-based analyses
contain WGS and WES. These have considerably decreased both the time and cost
restrictions to analyze whole genome sequence (Wright, et al., 2011), (American Medical
Association, 2012).

In a characteristic human genome, WGS will determine more than 3 million variations. After
the filtering processes, hundreds to thousands of clinically relevant variations, which have
the potential to be underlying reason, could be extracted. WES analyzes all of the exon
sequences i.e. exome. In WES, at first, the exons are separated from the non-coding DNA,
and then analyzed. Usually, around 20,000 individual variations are determined. As costs
continue to decrease, it’s expected that WES will be progressively interchanged with WGS
(Bamshad, et al., 2011), (Bick & Dimmock, 2011), (Biesecker, 2012), (Raffan & Semple,
2011).

2.2.3.2. The Informatics Pipeline for Genome Sequencing

The informatics pipeline for NGS can roughly be separated into three methodical steps;
primary, secondary, and tertiary analytic phases (Figure 9).

At the beginning of sequencing processes, thousands of images are captured as raw (level-0)

data. Raw data are the base signals in one tile for a certain sequence location (R6hm &
Blakeley, 2009), (Nielsen, et al., 2011), (Wright, et al., 2011).
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Figure 9: Phases of NGS (Wright, et al., 2011).

In the primary analysis phase, captured images are analyzed and base-calling are carried
out. In this phase, intensities of light signals are transformed into nucleotide sequences. The
output of this phase i.e. level-1 data is a file comprising millions of short sequence
fragments for each lane and some metadata about each read. Size of every produced level-1
file includes several gigabytes of data. Some examples of file formats generated in this stage
are FASTA, FASTQ, SCARF, QSEQ, SRA, RAW, and TXT formats (R6hm & Blakeley,
2009), (Nielsen, et al., 2011), (Wright, et al., 2011).

In the secondary analysis phase, DNA reads map to a reference sequence and the variations
are determined. The results of this phase are a sorted lists of matches and named as level-2
data. Some examples of file formats generated in this stage are SAM, BAM, and vendor
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specific formats (R6hm & Blakeley, 2009), (Nielsen, et al., 2011), (Wright, et al., 2011).

In the tertiary analysis, variations are analyzed to evaluate their origin, uniqueness and
likely functional impact using various databases, algorithms and software packages. This
phase is based on statistical analysis. The output is level-3 data (human readable text) file
and some example file formats generated in this stage are VCF, BCF, GVF, and GFF
formats (R6hm & Blakeley, 2009), (Nielsen, et al., 2011), (Wright, et al., 2011).

After determining variants, in the clinicogenomic analysis, pathogenic mutations for specific
phenotypes (e.g. medical conditions, drug interactions, etc.) are identified. In clinicogenomic
analysis, in first, non-pathogenic variations are excluded using different filters, and clinically
relevant variants are gathered. In final step of clinicogenomic analysis, relevant variants are
interpreted associating with relevant phenotypic and clinical information and clinicogenomic
associations are extracted (Wright, et al., 2011).

In NGS tests (i.e. WES and WGS) millions of individual variations are extracted. A single
organization cannot curate this type of data file (Aronson, et al., 2012). Many online
genomic variation resources are developed to filter and interpret personal genomic data
(Table 3).

Table 3: Some online genomic variation sources.

Genomic Variation Databases

dbSNP  (Database  of
Single Nucleotide
Polymorphisms)

Simple genetic polymorphisms database (NCBI).
http://www.ncbi.nlm.nih.gov/snp

dbvar  (Database  of
Single Nucleotide
Polymorphisms)

Structural variation database (NCBI).
http://www.ncbi.nlm.nih.gov/dbvar

DGVva . (Database . of Structural variation database (European Bioinformatics
Genomic Variants - i -
. Institute, EBI). http://www.ebi.ac.uk/dgva
Archive)
1000Genomes A catalog of SNPs, structural variants, and their haplotype

contexts around the world. http://www.1000genomes.org/

Genotype-Phenotype Research Databases

dbGaP (Database of
Genotypes and
Phenotypes)

Store and share the results of genotype-phenotype studies
(NCBI). http://www.ncbi.nIm.nih.gov/gap

European Genome-
Phenome Archive

Store and share the genotypic and phenotypic data resulting
from research projects (EMBL). https://www.ebi.ac.uk
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Table 3 (cont.): Some online genomic variation sources.

Clinicogenomic (Disease-Variation Associations) Databases

OMIM (Online
Mendelian Inheritance
in Man)

Catalog of human genes, genetic disorders and traits,
regarding the molecular basis. http://www.omim.org

HGMD (Human Gene
Mutation Database)

Published gene variations responsible for human inherited
diseases. http://www.hgmd.cf.ac.uk

CDC HuGENavigator

A knowledge base in human genome epidemiology
(prevalence of variations, gene-disease, gene-gene and gene-
environment interactions, and evaluation of genetic tests).
http://www.hugenavigator.net

GWAS Central

Summarized findings of human GWAS.
https://www.gwascentral.org

Locus-specific
databases (LSDB)

Many LSDBs which are typically curated by gene experts
without centralized editing.
http://www.hgvs.org/dblist/glsdb.html

ClinVar

Associations among human variations and phenotypes with
supportive evidences. http://www.ncbi.nlm.nih.gov/clinvar

AlzGene Database

A Dbroad field summary of GWAS studies performed in
Alzheimer’s disease. http://www.alzgene.org

PDGene Database

A broad field summary of GWAS studies performed in
Parkinson’s disease. http://www.pdgene.org

SzGene Database

A broad field summary of GWAS studies performed in
schizophrenia. http://www.szgene.org

Other type of sources

PharmKB
(Pharmacogenomics
Knowledge Base)

A knowledge source including clinically relevant genotype-
phenotype and gene-drug relationships.
http://www.pharmgkb.org

SNPedia

A summarized wiki resource of human genetic variation as
published in peer-reviewed studies.
http://www.SNPedia.com

Today, various tools and techniques are developed for all three phases of NGS analyzing. In
the first two phases, analyzes are becoming progressively automated and reliable. However,
clinical interpretation is still a major challenge (Wright, et al., 2011).

2.2.3.3. Direct to Consumer (DTC) Genomic Testing

DTC genomic testing does not need the support of a medical doctor or other kinds of
healthcare professional to acquire. These sorts of genomic tests comprise carrier testing,
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pharmacogenomic testing, and predictive testing for multifactorial complex diseases e.g.
hereditary cancers; cardiovascular disease, and depression (American Medical Association,
2010).

As sequencing and genotyping technologies gets cheaper and faster, DTC companies
emerged (e.g. 23andMe, GenePlanet, and DNA DTC, etc.), who markets DTC personal
genomic services analyzing SNPs to assess polygenic disease risks (Helgason & Stefansson,
2010), (Bloss, et al., 2011).

2.2.4 Environmental Components of Diseases

Since the HGP completed in 2003, the epidemiological researchers focused on to determine
causative polymorphisms as genetic determinants of diseases (Lioy & Rappaport, 2011).
With GWAS numerous variants have identified associated with diseases (Balshaw & Kwok,
2012), but findings cannot explain the variability of diseases by only genetic polymorphism.
Essentially, in 1980s, molecular epidemiologists had discovered several biomarkers as
reflection of interaction between genetic and environmental factors. Currently, some authors
propose that, in chronic diseases between 70 to 90% of disease risks are due to
environmental factors (Rappaport & Smith, 2010), (Swan, 2012). Because modifying genetic
determinants of risk are not feasible except gene therapy, in order to target prevention
efforts, it is critical to determine and assess changeable enviro-behavioral factors that interact
with genetic determinants to cause disease. Therefore, to study and analysis of
environmental factors, in a manner analogous to a GWAS, Environmental Wide Association
Studies (EWAS) have started (Balshaw & Kwok, 2012).

Today, a number of groups have undertaken efforts to determine the environmental causes of
diseases. These factors concerning with mechanisms of human diseases can be categorized
as sociodemographic parameters (age, ethnicity, race, gender, family health history),
environmental causes (tobacco smoke, pollution, hazardous chemicals, occupational agents,
microbial agents, radiation, etc.), behavioral factors (diet, physical activity, use of
supplements, drugs, etc.), and internal environment of individual (ageing, body morphology,
metabolism, hormones, microflora, inflammation, lipid peroxidation, oxidative stress, etc.)
(Rappaport & Smith, 2010), (Wild, 2012). Regarding public health and clinical medicine,
these factors can be classified as risk and protective factors according to effects on disease
mechanism and prognosis.

To identify lifelong environmental, behavioral, and endogenous exposure history of the
human body as an important complementary of disease etiology, the term of exposome
proposed, inspired from the term of genome. To analyze internal exposures of the body,
several omic techniques and tools are also proposed used in genomics, metabonomics,
lipidomics, transcriptomics and proteomics (Rappaport & Smith, 2010), (Lioy & Rappaport,
2011), (Wild, 2012).

2.2.5 Sociodemographic Data for Health Records

Age, gender, ethnicity, and race are major sociodemographic factors affecting personal
health status. Age is related with almost all medical conditions and often used to categorize
patients for comparative studies. In daily life, the terms sex and gender are often used
interchangeably, despite they have different meanings. Sex is defined as biological
characteristics based on chromosomes, physiology, etc., while gender refers to the
sociocultural construction of masculinity and femininity in a society (Verdonk & Klinge,

20



2012). This distinction is very important in some medical conditions. For example, in
prostate cancer; as the male-to-female gender reassignment surgery generally does not
involve prostatectomy, a female patient by gender can have prostate cancer (Miksad, et al.,
2006).

Race is a socioeconomic construct of human variability based on differences in biological
characteristics, physical appearance, social structures, shared worldview, and behavior. This
definition contains intertwined cultural and biological factors and sometimes used
synonymously with ethnicity, ancestry, nationality, and culture. But in practical life
sometimes race and ethnicity accepted as different concepts. All of these terms are valuable
predictors to assess disease risk (National Research Council, 2009).

2.2.6  Family Health History

Family health history (family history, family medical history, and family medical tree) is an
aggregation of information about health status affecting a person and his/her family
members. The scope of family members typically involves three generations of relatives by
birth, person, his/her children and his/her siblings (parents, maternal and paternal
grandparents, and maternal and paternal aunts and uncles) (Alspach, 2011).

In personal disease risk assessment, family health history is accepted as the most efficient
tool to solve complex interactions between genes and environmental factors for a great
number of disease e.g. arthritis, asthma, cancer, diabetes mellitus, hypertension,
hypercholesterolemia, single-gene disorders (Mendelian inheritance), etc. (Guttmacher, et
al., 2004), (Ginsburg & Willard, 2009), (Alspach, 2011).

Today, there are web-based tools to collect and assess family health history in an easy
fashion, and patient-completed tools to collect family history are also developed (Weitzel, et
al., 2011). Still the EMR/EHR is used to record and store family health history data in
narrative format (Hoffman & Williams, 2011). The American Health Information
Community's (AHIC) Family Health History Multi-Stakeholder Workgroup proposed a
structured data set for family health history within EMR/EHR (Feero, et al., 2008), (Glaser,
et al., 2008), (Ginsburg & Willard, 2009).

2.2.7 Clinical Use of Genomic Data

In medical care processes, genomic data and its derivatives can be used on risk assessment,
to predict disease susceptibility, targeted screening, clinical diagnosis, to predict the course
of the disease, to create a treatment plan and follow-up (Ginsburg & Willard, 2009), (Chan
& Ginsburg, 2011) (Figure 10).

2.2.7.1. Genome Wide Association Studies (GWAS)

In an extensive term, examining the genomic variations to detect the variances between
individuals is known as GWAS. With GWAS, numerous SNPs can be recognized and
examined for their associations regarding the pathogenesis of complex diseases. Today
around 12 million SNPs identified and with GWAS nearly 40 multifactorial complex
diseases are found to be linked with specific SNPs (Pearson & Manolio, 2008).
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In the beginning of the GWAS, the dominant approach was based designed to find direct
impacts of common variants on the disease mechanisms (Cirulli & Goldstein, 2010). This
approach was named as common disease—-common variant (CDCV) hypothesis. These
hypothesis has originated great number of the very common gene variants (minor allele
frequency (MAF) > 5%) with minor effect sizes (odds ratios <1.5) in the human genome
(Khoury, et al., 2009), (Cirulli & Goldstein, 2010).
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Figure 10: The role of genomics in clinical processes (Chan & Ginsburg, 2011).

CDCYV approach didn’t become successful to explain all genetic mechanism behind most
complex multifactorial diseases, and clinicogenomic associations with strong effects didn’t
found. Hence, common disease-rare-variant (CDRYV) hypothesis was constructed to discover
possible explanations of genetic mechanisms of complex disease. Rare SNP is identified as
the variation which has major allele frequency of <1% (Cordero & Ashley, 2012).

Today, GWAS sequencing approach is extending to study role of rare variations on disease
mechanisms and develop a rare variant-disease catalog (Roden & Tyndale, 2013).

2.2.7.2. Predictive Models and Population Based Screening

For predictive evaluation, combination of limited number of well-known genetic variations
can be used to categorize population regarding potential risk of disease. But the number of
possible genotype combinations exponentially increase with the number of contained
variations (Janssens & van Duijn, 2009).

A person has three different risk allele combinations for every locus i.e. homozygote healthy
(zero risk allele), heterozygote risky (one risk allele), and homozygote risky (two risk
alleles). For example, in a prostate cancer case with thirty-one risk loci, the number of
possible risk alleles can be ranged from zero (all alleles healthy) to 62 (all alleles risky) and
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there are 33! distinct possible combinations of these 31 alleles (Pashayan & Pharoah, 2012).
For this reason, different type of collective predictive models are developing.

Due to the complex genetic construction of many common diseases, it’s hard to explain the
associations and interactions between genetic and non-genetic risk factors. Thus, developing
analytic models to integrate genetic and non-genetic factors for disease risk assessment is
still a critical problem (Salari, et al., 2012), (Khoury, et al., 2013).

Presently, predictive risk models based on the identified common susceptible variations have
small values to assess disease risk. Recently, it’s proposed that these susceptible common
variations can be used as screening tests for population level risk stratification (Pashayan &
Pharoah, 2012).

Screening tests have high false-positive rates. Therefore, these tests are not ideal to predict
given medical condition in a population and typically definitive diagnostic tests are used to
precise diagnosis. The real advantage of population screening is to discover all possible
cases of clinical conditions in the population (maximum sensitivity). Suspected individuals
i.e. positive individuals regarding screening test, usually undergo subsequent procedures,
interventions, and tests (Khoury, et al., 2013).

In genomic medicine, risk-stratified population screening can be applied as only polygenic
risk profiling or combined with conventional risk factors (e.g. race, age, family history, etc.).
By this approach, standard public health interventions could be applied more effective than
conventional screening to each population stratum (Chowdhury, et al., 2013), (Pashayan, et
al., 2013).

2.2.7.2.1. Cumulative Risk Models

Typically, most of the clinically relevant SNPs have minor effect (Odds Ratio <1.50-2.00)
and there are only limited number of different examples (Stranger, et al., 2011), (Kalf, et al.,
2013). Despite the small impact degree of single clinicogenomic association, the
combinations of various SNP alleles may be declarative in the pathogenesis of diseases.
Some investigators attempt to improve models and multi panels assigning values for various
SNP alleles and estimates entire risk of disease for more effective risk prediction (Manolio,
2010).

To assess the cumulative effect of genetic variations, investigators may use several
approaches e.g. Risk Allele Scores (RAS), logistic regression analyses (LR), and Cox
proportional hazards regression analyses (Cox PH). RAS calculates risk scores by counting
the number of risk alleles but ignores the different effects of the individual variations. This
model may be rational for polygenic complex conditions which have small magnitude of
impacts. In LR and Cox PH methods, risks are predicted using weighted risk scores
(Janssens & van Duijn, 2009), (Salari, et al., 2012).

In the literature, several cumulative prediction models have been proposed but most of these

are criticized regarding comprehensive evaluation especially for clinical utility (Table 4)
(Janssens & van Duijn, 2009), (Little, et al., 2012).

23



2.2.7.2.2. Combination of SNP Data and Environmental Factors

As explained in the “Components of Diseases” especially common medical conditions e.g.
heart disease, obesity, diabetes, schizophrenia, and many types of cancers have complex and
multifactorial interactions between genomic, lifestyle and environmental components. For
this reason these types of diseases don’t follow the strict inheritance pattern as in monogenic
diseases (Janssens & van Duijn, 2008), (National Library of Medicine (US), 2013).

Today, several researches carry out studies to develop enviro-genomic risk models. A
statistical approach, and software were developed using enviro-genomic parameters and
determining individual disease risk (Crouch, et al., 2013).

In a study about colorectal cancer, using this statistical risk model and software, it’s found
that, disease risk prediction of colorectal cancer could be possible tracking and managing
enviro-genomic profile (selected SNPs, alcohol intake, smoking, exercise levels, BMI, fibre
intake and consumption of red and processed meat) and prevention of disease could be
accomplished changing risky lifestyle factors (Yarnall, et al., 2013).

Table 4: Methodological characteristics of recent studies on the prediction of complex
diseases using multiple genes (Janssens & van Duijn, 2009)

First author, (year) |Cases Analyses

Cauchi (2008) Type Il Diabetes Mellitus LR

Harley (2008) Women with Systematic Lupus |LR

Humphries (2007) | Coronary heart disease Cox PH, weighted
Kathiresan (2008) | Myocardial infarction, ischemic stroke and | Cox PH, RAS
Lango (2008) Type |l Diabetes Mellitus LR, RAS
Lyssenko (2005) Type 11 Diabetes Mellitus Cox PH

Lyssenko (2008) Type I Diabetes Mellitus LR, RAS

Maller (2006) Advanced Age Related Macular | LR

Meigs (2008) Type Il Diabetes Mellitus LR, RAS

Morrison (2007) Coronary heart disease Cox PH, RAS
Podgoreanu (2006) | Myocardial infarction LR

Van der Net (2009) | Coronary heart disease Cox PH, RAS

Van Hoek (2008) Type |l Diabetes Mellitus Cox PH, LR, RAS
Vaxillaire (2008) Type |1 Diabetes Mellitus LR

Wang (2008) Severe hypertriglyceridemia LR

Weedon (2006) Type |l Diabetes Mellitus LR, RAS
Weersma (2008) Chronic inflammatory bowel disease LR, RAS

Yeh (2007) Colorectal cancer LR

Zheng (2008) Prostate cancer LR, genotype score
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2.2.7.2.3. Hybrid Model Based Risk Prediction

Among risk assessment tools besides cumulative models, there are other ongoing efforts
utilizing different data mining algorithms to interpret GWAS data for building various
predictive models. In studies of “Yiicebag and Aydin Son”, several combined parameters
were discovered through a hybrid approach combining Support Vector Machine (SVM) and
ID3 decision tree based on “A Multiethnic Genome-wide Scan of Prostate Cancer” data set
from dbGaP database (study accession no: phs000306 and version 2). First hybrid model
(only SNP model) includes 33 SNPs and their alleles and the accuracy, precision, and recall
values of this model are %71.6, %72.69 and %68.96 respectively. The second hybrid model
was originally developed for African American cohort and contained 28 SNPs, Body Mass
Index (BMI), alcohol and cigarette usage. The accuracy, precision, and recall values of this
model for African-Americans are %93.81, %96.55 and %90.92 respectively (Yiicebas &
Aydin Son, 2014).

2.2.7.4. Clinical Usefulness and ACCE Frameworks

Evaluation of Genomic Applications in Practice and Prevention (EGAPP) working group is
an independent group that tests and evaluates existing models regarding validity and utility,
and prepare evidence-based recommendations. EGAPP-WG formalized an ACCE (analytic
validity, clinical validity, clinical utility, and ethical, legal, and social implications)
framework for these purposes (Khoury, et al., 2009).

But still, the absence of central validation of genetic tests is an essential barrier to integrate
genetic data with EMR/EHRs in the efficient, effective and ethical manner (Shoenbill, et al.,
2013).

2.3 Integration of SNP Data into EMR/EHR

As explained above, the informatics pipeline for genome sequencing can be divided into
several analytical steps e.g. base calling, alignment, variant analysis, interpretation, and in all
levels different file formats are generated (R6hm & Blakeley, 2009), (Nielsen, et al., 2011),
(Wright, et al., 2011). Currently, tools and techniques are developed for automated and
reliable analysis, but clinical interpretation of variant data is still a major problem (Wright, et
al., 2011).

After WGS tests, a file which contains a huge amount of variant data is acquired (Aronson,
et al., 2012). WGS data involve about 3 billion base pairs and entire genome sequence is
about 3.2 Gbh. Storing and sharing of personal raw genomic sequence exceeds the
transmission and storage capacity in many healthcare organizations (Kahn, 2011). Due to the
technical limitations, raw genomic data is stored the outside of the EMR similar to PACS for
medical images and clinical interpretation of data is preferable sent to the EMR database
(Starren, et al., 2013), (Masys, et al., 2012), (Green, et al., 2013).

Today, most of the EMR/EHRs were designed to store and retrieve the transient diagnostic
values, such as laboratory or clinical findings, but don’t have the ability to manage genomic
data (Hoffman, 2007), (Sethi & Theodos, 2009), (Jacob, et al., 2013). The initiatives of
integrating a patient's genomic data into EMR/EHRs is of a preliminary nature (Jing, et al.,
2012), (Ury, 2013) and until recently, only a few successful systems are established such as
Cerner’s Genomics Solutions, McKesson’s Horizon Clinicals and Genelnsight (Aronson, et
al., 2012), (Ginsburg & Willard, 2013).

25



In the literature, basic requirements of genomic enabled EMR/EHRs were listed as
incorporating genotype data and its clinical interpretation into EMR/EHRs, developing
accurate and accessible clinicogenomic interpretation resources (knowledge base),
interpretation and reinterpretation of variant data, and immersion of clinicogenomic
information into the medical decision processes (Figure 11) (Manolio, et al., 2013).
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Figure 11: Main Components of a Genome Enabled EMR/EHR (depicted based on current
literature). In the genome laboratory side, several levels of sequence data are produced.
Since the clinicians need actionable clinical interpretation of variant data, it’s sufficient to
share clinically relevant data between laboratory and clinical systems. Development of
clinicogenomic knowledge base is an obligation to extract clinical meaning from variant
data. In clinical side, it’s needed to use decision support systems due to the amount of
variant. Sometimes, clinicogenomic information may be useful to manage of health status of
other family members and other close relatives.

2.3.1 Standards and Messaging

In order to integrate structured genotype and phenotype data into any system, first
requirement is to determine data components, terminology standards and identifiers of
clinicogenomic information i.e. genotype data and its associated clinical interpretation.

2.3.1.1. SNP ldentifiers

In genomic terminology, identifying gene symbols and identifiers are standardized by
Human Gene Nomenclature Committee (HGNC), and variant nomenclature defined by the
Human Genome Variation Society (HGVS). A candidate identifier for SNP is variant
nomenclature from the Human Genome Variation Society (HGVS) ie. “<Accession
Number>.<version number> (<Gene symbol>): <sequence type>.<mutation>".
Nevertheless, this one is not extensively accepted as a common standard, since it is more
complicated, and rs number is widely adopted and used in the biomedical literature (Poo, et
al., 2011). “Rs number, rs#” or refSNP is used to identify every single SNP entry in dbSNP
which is the largest database maintained by the National Center for Biotechnology
Information (NCBI), doSNP is interconnected with many other resources, e.g. EntrezGene,
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GenBank, the Universal Protein Resource (UniProt), the International HapMap Project, and
PharmGKB, AlzGene, PDGene, SzGene and Japanese Single Nucleotide Polymorphism
(JSNP) by that rs number (Thomas, et al., 2011). Additionally, in some types of personal
genomic file formats (e.g. 23andMe, deCODEme, and Navigenics), SNPs are identified by rs
number.

Because different alleles of SNPs may have different degrees and kinds of clinical impact, rs
number is insufficient alone to identify the clinicogenomic significance of SNPs. For
example, to have a heterozygote allele may not change the risk for the disease but
homozygote allele of the same SNP variant may change the risk for a disease dramatically.
Consequently, to identify clinically relevant SNP, we need to use a combination of rs
number and allele data as a minimum requirement (Attia, et al., 2009A).

Due to double stranded (plus and minus or forward and reverse respectively) nature of DNA,
every SNP, can be identified using either of these strands. Sometimes, in various genomic
databases, same SNPs alleles are defined with different alleles based on the orientation
discrepancy (Attia, et al., 2009A). For clinical researches, both identification approaches are
correct but it’s required to use and declare a standard.

2.3.1.2. Clinical Terminologies

Integration of variant data and clinical relevancies bring out the issue of terminological
standardization. Unfortunately, conventional health information terminologies do not
completely support genetic diseases accordingly. There is a critical gap between the
databases which involve many terms defining genetic diseases and Systematized
Nomenclature of Medicine (SNOMED) (Ullman-Cullere & Mathew, 2011).

In order to address the chasm between medical vocabularies and bioinformatics resources,
the Clinical Bioinformatics Ontology (CBO) is developed and implemented. CBO is a
curated semantic network trying to combine different kind of clinical vocabularies
(SNOMED-CT, and LOINC), and NCBI bioinformatics resources (Hoffman, et al., 2005),
(Hoffman & Williams, 2011).

In addition, the International Classification of Diseases (ICD) codes, like in Turkey, is also
preferred to use for identifying clinical conditions, but released versions of ICD does not
fully support genomic medicine (Ullman-Cullere & Mathew, 2011).

2.3.1.3. Interoperability Standards

HL7 is a global organization developing health information standards. HL7 Clinical
Genomics (CG) Work Group developed standards intended to interoperability issues in
genomic medicine (Table 5) (HL7 Clinical Genomic Work Group, 2013).

HL7 suggests the sharing of the essential part of raw genomic when it’s needed via
encapsulation and bubble-up extracting clinically relevant data based on genomic decision
support application (Shabo, 2006).

The HL7 Genotype model determined a genotype related data, which is proposed as an
essential unit of genomic information exchange in healthcare. This model contains a subset
of the overall Clinical Genomics Domain Information Model (HL7 Clinical Genomics SIG,
2005).
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Table 5: Some standards of HL7 CG Work Group (HL7 Clinical Genomic Work Group,
2013)

HL7 CGPED, R1, HL7 Version 3 Pedigree Topic - Family History, Last Ballot:
Normative Ballot 1 - May, 2007

HL7 IG CG_GENO, R1, HL7 Version 3 Genotype, Release 1, Last Ballot: DSTU Ballot 1
- January 2009

HL7 CG_GV, R1, HL7 Version 3 Standard: Genetic Variation, Release 1, Last Ballot:
Normative Ballot 2 - January 2009

HL7 IG LOINCGENVA, R1, HL7 Version 2 Implementation Guide: Clinical Genomics;
Fully LOINC-Qualified Genetic Variation Model, Release 1 (US Realm)

The US Department of Health and Human Services, Office of the National Coordinator for
Health IT published the Personalized Healthcare Detailed Use Case. This use case
concentrated to provide a secure transmission of genetic laboratory results, in addition to
family history and associated risk assessments. (Office of the National Coordinator for HIT,
2008).

The HL7 Version 3 Domain Information Model, Clinical Sequencing, Release 1 detailed
the Personalized Healthcare Use Case. This model produce a variety of additional use case
scenarios for clinical genomic, e.g. testing of an individual’s hereditary or germline genome,
cancer genomics/tumor profiling, early childhood developmental interruption, neonatal
testing, and newborn screening (Ullman-Cullere & Mathew, 2011).

HL7 Version 3 Genetic Variation Model specifies the syntaxes and semantics of genetic
test transmission. This model is additionally restricted to genetic variation analyses methods.

Also, HL7 organization has published an implementation guide (HL7 Version 2
Implementation Guide: Clinical Genomics; Fully LOINC-Qualified Genetic Variation
Model) based on both the HL7 Version 2 Implementation Guide Laboratory Result
Reporting to the EHR, and the HL7 Version 3 Genetic Variation data model. This guide
covers the reporting of test results for sequencing and genotyping tests and includes testing
for DNA variants associated with diseases and pharmacogenomic applications, (Ullman-
Cullere & Mathew, 2011).

HL7 Version 2 Implementation Guide: Clinical Genomics; Fully LOINC-Qualified Genetic
Variation Model was the first example used by The Partners HealthCare Center for
Personalized Genetic Medicine (PCPGM) and the Intermountain Healthcare Clinical
Genetics Institute to gather genetic test results and transmit them to a patient's EHR (Shabo,
et al., 2009), (Ribick, 2010). Genelnsight Suite (Genelnsight Lab, Genelnsight Clinic and
Genelnsight Network) is a platform where clinical variant data sharing was based on HL7
standards (Aronson, et al., 2011), (Aronson, et al., 2012), (National Research Council, 2012),
(Masys, et al., 2012).

2.3.2 Clinicogenomic Knowledge Bases
Clinicians can't extract clinical interpretation of variants directly from the medical sources
due to temporal and cognitive limitations (Oetting, 2009), (Starren, et al., 2013). So, instead

of incorporating all sequence data into medical records, integration of the clinical
interpretations of variant data will be more efficient for clinical decision making (Marian,
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2011), (National Research Council, 2012). To gain this capability clinically relevant variants
must be selected and presented with their clinical meaning, i.e. clinicogenomic associations,
and an action plan for clinicians. Since HGP, researches have been discovering new
clinicogenomic associations increasingly, it is critical to reinterpret variants and integrate
new clinical interpretations into clinical processes (Aronson, et al., 2012).

2.3.2.1. Sources for Clinicogenomic Associations

Clinicogenomic associations which are acquired via researches based on the candidate gene
investigation or agnostic screening of complete genome, are published in the scientific
literature (Attia, et al., 2009B). Some clinicogenomic knowledge bases collect, curate,
interpret and categorize these published associations between genomic variations and clinical
conditions. Cancer Genome-wide Association and Meta Analyses Database (Cancer
GAMAGdD) is a part of Cancer Genomic Evidence-based Medicine Knowledge Base (Cancer
GEM KB) and provides GWAS researches and meta-analysis about clinicogenomic
associations (http://www.hugenavigator.net/CancerGEMKB/calntegratorStartPage.do)
(Schully, et al., 2011). ClinVar (http://www.ncbi.nlm.nih.gov/clinvar) provides reports for
variations and related phenotypes with evidences. AlzGene (http://www.alzgene.orq),
PDGene (http://www.pdgene.org), and SzGene (http://www.szgene.orq) are resources which
contain manually curated PubMed articles using systematic methods for Alzheimer disease,
Parkinson’s disease, and schizophrenia, respectively. SNPedia (http://www.SNPedia.com)
is a wiki resource of human genetic variation as published in peer-reviewed studies (Cariaso
& Lennon, 2012). PharmGKB (http://www.pharmgkb.org) is a knowledge source containing
clinically relevant genotype-phenotype and gene-drug relationships.

However many of existing knowledge bases for the clinical interpretation of variant data
have different conventions. Also, they are not error proof and are not sustainable due to
funding issues (National Research Council, 2012). Especially for polygenic complex
diseases, impact degrees of clinicogenomic association may be different according to race,
ethnicity and environmental factors (Stepanov, 2010). Therefore, in personalized risk
assessment, it will be an ideal approach to use population specific clinicogenomic results or
at least findings from similar communities. If these not possible, it might be conceivable to
use other scientific resources with a confidence range. Eventually, experts have been
advocating for generating centrally-curated national repositories of clinically significant
variants for the interpretation of individual's genomic information (Kawamoto, et al., 2009),
(Starren, et al., 2013). To develop a national level clinicogenomic knowledge base is critical
to consider consistency of clinicogenomic associations with the sociodemographic
characteristics of citizens and overcome the issues about sustainability.

2.3.2.2. Magnitude of Impact and Quality of Evidence

Regarding published results of clinicogenomic associations, two major points are critical i.e.
evidence quality of study and effect size of these associations (Attia, et al., 2009B), (Van
Allen, et al., 2013).

In clinical practice, absolute risk value of genetic variations are important, but in most of the
disease-variation researches, absolute risk cannot be calculated due to lack of information
about disease incidence (Janssens & van Duijn, 2009). To measure magnitude of impact for
clinicogenomic associations, researchers usually prefer to use conventional approaches, e.g.
odds ratios and relative risks for case control studies and cohort studies respectively. These
values are presented with confidence interval (Attia, et al., 2009C). In GWAS, several
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defects and biases due to the study design, genotyping or collected data quality, will affect
the clinical value of results (Pearson & Manolio, 2008), (Attia, et al., 2009B), (Little, et al.,
2009). The quality of evidence is scored based on the type of study and how well the study is
conducted (Riegelman, 2010) and some guidelines are proposed to calculate evidence degree
(loannidis, et al., 2008).

For the significance of clinicogenomic association, some of the knowledge sources contain
additional data fields that define the magnitude of clinical effects and strength of the
relationship between variants and diseases. In ClinVar, clinical significance is defined as a
combination of impact and clinical function (e.g. benign, pathogenic, protective, drug
response, etc.), and evidence for clinical significance is categorized regarding study count
and type such as in vitro studies, animal models, etc.
(http://www.ncbi.nlm.nih.gov/clinvar/intro) The PharmGKB uses a systematic categorization
for quality of evidence depending on several parameters about methods and results of
references (http://pharmgkb.org/page/clinAnnLevels), but impact value is not emphasized as
a different criteria. In SNPedia, magnitude is constructed as a subjective measure of interest
for magnitude of impact and repute (good, bad) for quality of evidence, but these concepts
are not well established. In GET-Evidence (http://evidence.personalgenomes.org/about)
clinicogenomic references are categorized according to their evidence degree (high,
moderate, or low) and clinical significance (high, medium, or low) are used to produce
impact score (Ball, et al., 2012).

2.3.2.3. A Brilliant Example: Pharmacogenomic Knowledgebase (PharmGKB)

The PharmGKB (http://www.pharmgkb.org/) is a pharmacogenomics knowledge resource
that target to store and improve clinicogenomic information about drug effects and
interactions e.g. drug dose guidelines and drug labels, potentially clinically relevant gene-
drug relationships and genotype-phenotype associations (Thorn, et al., 2010).

PharmGKB collects, stores, curates and shares this sort of knowledge. The PharmGKB
Knowledge Pyramid is in Figure 12. In the development of PharmGKB content, first
scientific pharmacogenomic sources are manually collected by the domain experts. To
capture relevant information faster and in an effective manner, natural language processing
techniques are utilized. In extraction stage, curators find drug-variation associations,
improve drug specific pharmacokinetic and pharmacodynamic pathways and extract critical
gene-drug interactions summaries.
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Figure 12: The PharmGKB Knowledge Pyramid (Whirl-Carrillo, et al., 2012).
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In clinical interpretation step, curators aggregate variant annotations regarding a specific
genetic variant-drug association, and write standardized clinical annotations. These clinical
annotations are given a level of evidence depending pre-defined criteria, including study size
and statistical relevance of the association.

And finally, in clinical implementation stage, clinically relevant information (drug labels
with pharmacogenomics information, genetic tests for pharmacogenomics, drug dosage
guidelines) are prepared and published (Whirl-Carrillo, et al., 2012).

2.3.3  Clinicogenomic Decision Support

Conventional medical paradigm compelled clinicians to rely on the indication lists for every
advanced examination. But NGS genotyping technologies is a candidate to transform this
approach as “firstly examine, than reinterpret repetitively” due to changing nature of
genomic information. Individual genetic structure is mostly stable in all lifetime, but its
clinical interpretation and effect on medical processes will be changing in time. The basic
reason of this effect of genomic data depends on two essential causes i.e. changed scientific
information about the role of genetic data, and newly discovered disease-variation
associations. It’s impossible to track, learn and apply all of these dynamical movement of
information for a healthcare professional. (Starren, et al., 2012).

Also, size of genomic data files are huge. An individual can have more than 3,000,000
genetic variants. Globally, in omics domain, produced data exceeds any individual’s mental
competence (Starren, et al., 2012).

For example, if SNP data i.e. the simplest type of variation can be presented as numerous
variation displayed in laboratory report, clinicians cannot be interpret or evaluate these
information stack. The volume of variation data integrated into clinical practice exceeds the
boundaries of unsupported human cognition and interpretive capacity. Additionally the
rapidly growing literature about clinicogenomic associations make it more complicated to
stay current for even professionals (Masys, et al., 2012).

Also, it’s not reasonable to expect the interpretation of all clinicogenomic data by limited
number of genetics experts, and we need more automated solutions to overcome these
obstacles (Welch & Kawamoto, 2013). With the growing data load in the genomic era, in
order to make informed decisions in a timely manner, the healthcare systems need to shift
from expert-based practice to systems-supported practice (Figure 13) (National Research
Council, 2008).

To provide the clinical decision support for genomic variations, it is required to integrate
genomic data and patient’s EMR/EHR, construct an infrastructure allowing interaction with
the data over the lifetime of the patient and clinical decision support system (Ginsburg &
Willard, 2013).
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Figure 13: Omic Data and Clinical Decision Making (National Research Council, 2008).

Efficiency of clinical decision support systems are mostly determined by knowledge base
and rule engine. Therefore, both of these components must be updated regarding changed
scientific literature. To produce a more flexible clinical decision support system, knowledge
bases and rule engines are should not be embedded into EMR/EHRSs, but developed as
externally integrated components (Kannry & Williams, 2013).

Eventually, it’s critical to develop a national clinical decision support system infrastructure
that allows centrally-curated, accredited, and authoritative clinicogenomic knowledge to the
clinical practices through the nation (Kawamoto, et al., 2009).

2.3.4  Using Genomic Information for Consanguineous

Genomic information has lifelong value and one’s genomic findings can reveal others’
within families (Hoffman, 2007). If a patient is found to have a disease associated variant,
possibly other blood relatives would carry the same risk and this new clinical information
could be utilized by the patient's health-care provider (Aronson, et al., 2012). This is
especially important, not only because of the medical perspective but also for security and
privacy issues.

Family history is an important tool for personalized medicine. But structured family history
is not a mandatory part of EMR/EHRS, and because of its dynamical characteristics, it’s
reasonable to collect and confirmed by the patient at each visit. It’s clear that, similar to

clinicogenomic associations, collection and reinterpretation of family history is critical to
capture effective results from these types of predictive models.

2.3.5 Examples of Genomic Data Integrated EMR/EHR

2.3.5.1. Genelnsight Suite

The first successful electronic transmission of genetic test results were realized between
Partners HealthCare Center for Personalized Genetic Medicine (PCPGM) and Intermountain
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Healthcare in Salt Lake City, Utah in 2009 (Shabo, et al., 2009), (Ribick, 2010), (Aronson, et
al., 2011).

PCPGM developed a platform where clinical variant data sharing was based on HL7
standards i.e. Genelnsight Suite and using these systems genetic results are shared by
stakeholders electronically (Aronson, et al., 2011), (Aronson, et al., 2012), (National
Research Council, 2012), (Masys, et al., 2012).

The workflow of Genelnsight is as presented in Figure 14. The innovation of the
PCPGM/Intermountain transmission was made possible by PCPGM’s development of
medical laboratory report message gateway (VariantWire). VariantWire is a clinicogenomic
networking system based on InterSystems Ensemble (Aronson, et al., 2011).
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Figure 14: Workflow of Genelnsight.

The PCPGM accomplished a knowledge base containing more than 10,000 unique variants
and actively manage and update in time. This knowledge base involves several different type
of variations e.g. clinically significant (%20), unknown significant (%210) and likely benign
(%30), and unclassified (%40) (Aronson, et al., 2012).

If a variation is changed in the mutation database, patient laboratory test results are
automatically updated. Clinicians can see the change of previous category and also receives
the e-mail alerts about relevant clinical information (National Research Council, 2012).

2.3.5.2. Cerner’s Genomics Solutions

Cerner’s Genomics Solutions module allows to data capture from the clinical molecular
diagnostic laboratory and incorporate into the EMR. It accommodates mutation and DNA
methylation results, numeric results associated with short tandem repeat markers, and viral
load data (Gerhard, et al., 2013).
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A structured molecular vocabulary (CBO, Clinical Bioinformatics Ontology) is available for
simplifying database development and offer reliable reporting of results (Hoffman &
Williams, 2011).

2.3.5.3. Genomic Data Integrated CCR based EHR

In this project, integration of genomic variations and Continuity of Care Record (CCR)
based EHR was studied and a prototype developed. This system based on an external
knowledge base named as OntoKBCF which had been developed to represent
clinicogenomic information. OntoKBCF was used to transform individual EHR data to
clinical conclusions for clinical decision support. This research evaluated in cystic fibrosis
based on simulated patient data (Jing, et al., 2012).
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CHAPTER 3

GENERAL METHODOLOGY AND ENABLING TECHNOLOGIES

To develop the SNP data incorporated NHIS-T, we need to produce a general NHIS-T
architecture by extending existing infrastructure and developing additional complementary
capabilities. Therefore, the current characteristics and capabilities of NHIS-T were studied in
the first step and the NHIS-T architecture is criticized regarding main components of
genome enabled EHR.

Based on the requirement analysis and results of NHIS-T analysis, we focused how to
develop a clinicogenomic knowledge base and a clinicogenomic web application. In this
phase we studied some scientific sources to determine and design the structure of
clinicogenomic associations and their assessment methods. Then, we have constituted
standardized definition tables for clinicogenomic associations and predictive models to
design ClinGenKB and ClinGenWeb.

Next, to evaluate our complementary capabilities as a whole, we selected prostate cancer as
an ideal clinical condition. In parallel, we prepared the content for knowledge base and
assessment and reporting approaches for decision support application. In this phase, we
studied medical literature and knowledge sources to extract clinicogenomic associations
between SNP alleles and increased prostate cancer risk. Additionally, we searched predictive
genomic models assessing individual prostate cancer risk.

In parallel, to evaluate our system with real data, we gathered personal SNP data (24andMe
files) of individuals who have been diagnosed with prostate cancer and age matched
controls. In the evaluation phase, using these data files, we inferred personal clinicogenomic
associations based on ClinGenKB. Finally, we evaluated prostate cancer risk assessment
approaches using real personal clinicogenomic data and external data e.g. BMI.

Detailed organization of the whole study is summarized in Figure 15.
3.1 SNP Data Incorporated NHIS-T Architecture

The current characteristics and capabilities of NHIS-T are studied initially, and the NHIS-T
architecture is evaluated regarding main components of a genome enabled EHR.

In terms of interoperability, the existing data elements, MHDS, messaging schemas, and
terminology standards of NHIS-T were investigated through its official documentation
(http://www.e-saglik.gov.tr/SaglikNet/SaglikNetDokumanlari.aspx).

Also, different types of personal genomic file formats, data types and interoperability
standards for genomic data were reviewed from the literature. Overall requirements to extent
the NHIS-T infrastructure integrating SNP data and associated clinical information were
determined and proposed architectures were criticized regarding interoperability issues.
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Figure 15: Detailed organization of the study.
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3.2 Design and Development of Complementary Components

In the phase of literature survey, we determined the need for two complementary
components i.e. knowledge base and decision support application, which are capabilities that
supports each other. Therefore, the standardized design elements and models are designed
and then developed as the components of the proposed system.

3.2.1 Design of Standardized Association and Model Definitions

To design and develop complementary capabilities (i.e. knowledge base and decision support
and reporting applications), we needed to extract the structure of clinicogenomic associations
(namely rules).

We analyzed SNPedia and studied scientific literature in a detailed manner and determined
the data fields and structure of associations for knowledge base and decision support
applications. At the same time, in the scientific literature, we discovered several types of
assessment and reporting approaches i.e. collective assessment and reporting of independent
associations, polygenic scoring based on all independent associations and model based
assessment and reporting methods.

The aim of knowledge base is to collect whole information (independent, complete and
model based) about clinicogenomic associations. First, we have analyzed all types of
clinicogenomic associations regarding required data fields. Later, we have extracted
associations (independent associations and model based associations), that will allow us to
define a standard definition. Then, the ClinGenKB is designed using the proposed standard
definition and its data parameters.

Additionally, because final interpretation of clinicogenomic associations will be completed
at the end user side (ClinGenWeb) using predictive models, we generated a standardized
model definition table involving reference values for variants and their corresponding
disease risk.

3.2.2 Development of Knowledge Base

Knowledge bases are repositories which help to collect, organize, share, search and utilize
information. Developing an accurate and accessible, structured clinicogenomic knowledge
source (ClinGenKB) is an essential component of proposed clinicogenomic information
integrated EHR. Raw genomic variant data is not appropriate to support clinicians’ decision
due to its high-dimension. The clinical association of the variant is convenient for clinical
decision support where the interpretation of the variant and its associated clinical meaning is
periodically updated in the knowledge base. Such systems will allow reinterpretation of
variant data throughout dynamic updates.

3.2.2.1. Knowledge Representation and Management Approaches
Clinicogenomic associations, discovered via researches are published in the scientific

literature. Some clinicogenomic knowledge bases collect, curate, interpret and categorize
these clinically relevant genotype-phenotype associations such as Cancer Genome-wide
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Association and Meta Analyses Database (Cancer GAMAdD), AlzGene, PDGene, SzGen,
SNPedia and PharmGKB etc.

Despite the fact that those beneficial knowledge bases are publicly available, utilizing them
in daily practice is still uncommon for clinicians and scientists. One of the reasons is the
diversity of each knowledge base and the information contained within. Knowledge bases
are widely distributed, maintained by various institutions or projects and represented
differently to serve local needs. Retrieving and integrating information from those sources is
time consuming in daily practice (Beyan, et al., 2013).

Semantic web technologies can be applied for identifying genomic risk factors across
heterogeneous multiple knowledge bases. A primary aspect of semantic web technologies
such as Resource Description Framework (RDF), ontologies, federated queries etc. can be
useful to ensure a mechanism for defining and linking heterogeneous data using web
protocols and a flexible data model. RDF was introduced since 1998 and now has become a
standard for exchanging data in the web. At present, huge amount of data has been converted
to RDF and published to general public. Apart from that, those datasets are interlinked each
other and formed Linked Open Data. Such condition attracts researchers to develop
applications that merge data from multiple medical data sources. SPARQL endpoint is an
interface to execute SPARQL query which is a standard language to retrieve RDF data like
SQL in the relational databases. Federated SPARQL query is a systems that consists of a
federated engine as a mediator and a group of SPARQL endpoints. The federated engine
plays a critical role to receive a query from the client and distribute the query to the relevant
SPARQL endpoints (Rakhmawati, et al., 2013).

But, when we studied relevant clinicogenomic knowledge sources we faced with various
problems areas to use these publicly available databases via semantic technologies e.g.
terminology standards, data representation standard, availability and usability of information
etc.

Firstly, data types of the included knowledge sources, mostly don’t match with each other.
For example, in both CancerGAMAdb and SNPedia for allele data which is needed for
clinical interpretation, different standards are used. In SNPedia, a standardization based on
plus strand is used for allele identification. But allele data of CancerGAMAdDb is not
consistent and standardized. Also, disease definitions of studied databases are not based on a
standard classification or code system. Data type conflictions of databases will be complicate
to produce complex queries and inferences. Finally, impact and evidence degrees of
associations are not standardized and all are (if exist) based on different approaches.

These knowledge sources ensure clinicogenomic associations as web page or .xIs and does
not support a standard RDF schema. If we will use these type of data with semantic
technologies, we would need to convert these data to RDF.

Eventually, not every clinicogenomic association is applicable for other humans. Especially
for polygenic complex diseases, impact degrees of clinicogenomic associations may be very
different between different races, based on ethnicity and environmental factors (Stepanov,
2010). We either need population specific researches to define these clinicogenomic
association or adjust them at individual level. Additionally, experts have been advocating for
generating centrally-curated, national repositories of clinically significant variants for the
interpretation of individual's genomic information (Kawamoto, et al., 2009), (Starren, et al.,
2013).
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Therefore, we decided to develop our knowledge base to store, update and use
clinicogenomic associations to support our approach. Actually, clinicogenomic associations
are typical examples of logical knowledge. On the contrary of the factual (facts, or data) and
procedural knowledge (knowledge about how to perform some task), logical knowledge is
the knowledge of relationships between entities. There are various approaches to model and
implement these types of knowledge. A logical relationship can be coded as an “if-then” rule
inserting into procedural code. But the semantics of procedural code are designed to express
a sequence of operations and once encoded procedurally, logical knowledge is no longer
easily accessible.

If the relationships can be represented in a tabular form, it is possible to insert these
relationships into a database. However, database approach is restricted for exact and clear
logical relationships.

Sometimes a mixed approaches can be useful i.e. of both the database and procedural
methods. Logical relationships stored in database tables, and the relationships are coded as
procedural if-then statements. This can simplify the coding task, but it makes maintenance
harder.

The meaning, or semantics, of the logical knowledge is best captured in a pattern-matching
sense and the rule engines are designed to use pattern-matching search to find and apply the
right logical knowledge at the right time. Today, there are many choices for these types of
tools, and they are mostly vendor specific (Merritt, 2004).

3.2.2.2. Implementation of Knowledge Base

For this study, we have preferred to develop our prototype using BioXM™ Knowledge
Management Environment (BioXM™) which is a distributed software platform providing a
central inventory of information and knowledge (http://www.biomax.com/home/home.php).
With BioXM™, we easily generate, manage and visualize scientific models as an extendible
network of interrelated concepts.

To build a knowledge base with BioXM, we designed the domain-specific data model with
semantic objects (elements, annotations, ontologies and databanks) and the connections
(relations) using BioXM™ graph viewer based on our clinicogenomic association
definitions.

Next, we defined importing scripts to transfer extracted independent and model based
clinicogenomic associations and personal CR-SNP data to knowledge base. BioXM™
supports the data import and export as XML, HTML, excel or plain text format.

Finally, we prepared views, queries and smart folders to manage our data model and
inferring processes.

3.2.3 Development of Decision Support and Reporting Application

After the transferring the personal clinicogenomic associations data file to the end users’
(specialists, family practitioners and patients) application, another critical issue namely the
final interpretation and reporting is emerged. Reporting presents itself here as a critical point
for maximizing the effectiveness of the overall system in translating clinicogenomic data
into clinic. High-dimensional variant data and its clinical associations along with its
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interpretation have to be reported and visualized in a simplistic and holistic manner both for
healthcare professionals and patients.

Regarding clinicogenomic decision support, our approach aims to divide two phases of
clinicogenomic interpretation i.e. conversion of variant SNP into clinicogenomic association
and clinical interpretation of these associations. Final interpretation is completed on the
client side. This approach ensures us an opportunity to add external parameters which will be
monitored or collected by end users. For example, in some cumulative prostate models,
positive family history augments the total risk value in addition to clinically relevant SNPs.
Family history is not a constant parameter and may be changed in time. Effective tracking of
changes in family history ideally is accomplished by individuals. Similarly, clinical,
environmental, behavioral or sociodemographic factors can be involved to assess the total
risk with variant data in end user level.

Accordingly, we developed the practical reporting approaches and a simple prototype system
using Zoho Reports™ on the client side. Zoho Reports™ (https://reports.zoho.com) is an on-
demand reporting and business intelligence tool which supports several report generation
capabilities e.g. chart/graph, tabular views, summary views, pivot tables, dashboards and
SQL driven querying. Most importantly, it’s possible to embed generated reports within
external web sites and web applications.

The decision support application developed in this thesis (specifically named as
ClinGenWeb for prostate cancer) is a web application processing genomic associations,
clinical and environmental risk parameters. In this application, it’s possible to report relevant
clinicogenomic SNPs or to assess independent risk based on some models with the
combination of conventional health data and clinicogenomic associations.

In ClinGenWeb, personal predictive risk can be analyzed in three main category i.e. detailed
reporting of independent associations, the complete assessment of total clinically relevant
SNPs (polygenic scoring), and model based interpretation of clinicogenomic associations.
Some types of models are based on assessing only relevant SNPs. But a few models involve
external data (family history, BMI, etc.). If collected, corresponding risk factors for prostate
cancer can be used to calculate the model based risk. Also, external personal data about
clinical and some environmental risk factors for prostate cancer can be reported.

3.3 Preparation of Systems for Evaluation Phase

To evaluate our complementary components, we need some contents and individual data
including SNP variant data for a specific medical conditions. Because of its complicated
nature and burden on public health, we preferred to choose prostate cancer to evaluate our
complementary capabilities i.e. knowledge base (i.e. ClinGenKB) and decision support
application (i.e. ClinGenWeb) (Figure 16).

Prostate cancer, which is the most common malignancy affecting men in Western countries
is highly heterogeneous and multifactorial polygenic disease. This heterogeneous
characteristics of prostate cancer could be a partially explained by genetic factors (Boyd, et
al., 2012). In additional to genetic factors, age, race, family history, endogenous hormones,
diseases, some environmental exposures and several behavioral features are proposed in
literature as confounders of prostate cancer (National Cancer Institute, 2013B), (Sartor,
2013). This characteristics make prostate cancer as an ideal case for researching benefits of
incorporations individual SNP data into EHR regarding personalized medicine.
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POPULATION
1: Extraction of knowledge base content

2: Determination of predictive models

3: Testing and evaluation of the system

A: Personal clinically relevant SNP data

B: Personal clinicogenomic association data
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Figure 16: Main components of the evaluation preparations. 1: Extraction of SNP-prostate
cancer risk associations (knowledge base content) from sources, 2: Determination of
predictive models, 3: Testing and evaluation of the system. A: Personal clinically relevant
SNP data, B: Personal clinicogenomic associations data.
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3.3.1 Extraction of Clinicogenomic Associations

Knowledge base component includes clinicogenomic associations, namely associations
between a specific clinical conditions and a specific genomic variant. To extract SNP-
prostate cancer risk associations as the content of our knowledge base, we developed a
layered approach i.e. extraction, preprocessing, selection and assignment of evidence degree.
The details of our methods and results are presented in Chapter 6 as a whole. After that, we
transferred these extracted associations and converted to suitable structure for developed
knowledge base.

3.3.2  Assessment and Reporting Approaches

The second component of complementary capabilities of SNP integrated NHIS-T is a
decision support application. In our study, input data (genomic data e.g. SNP file) is firstly
processed using knowledge base and then assessed by decision support applications.

Therefore, we need to analyze assessment and reporting approaches from scientific literature
and add these approaches to our application. In literature, there are various types of risk
assessment and reporting approaches. Detailed analysis of these methods are explained in
“Ch.7: Assessment and Reporting Approaches”.

After we analyzed and determined the meaningful and useful assessment and reporting

methods from literature, we constructed our decision support application to exploit these
approaches and evaluate case and control data.
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3.4 Evaluation of the System

To evaluate our complementary capabilities (i.e. ClinGenKB and ClinGenWeb), we gathered
real data (24andMe files) from personal genome project
(https://my.personalgenomes.org/public_genetic_data).

Then we prepared our data to process in knowledge base. After processing of these data, we
acquired personal CR-SNP data file. After that, we transferred these data into clinical
decision support application and we assessed and reported using various methods gathered
from scientific literature. Finally, the results are studied and compared regarding clinical
usefulness.

Various tests are used to calculate the performance of diagnostic and screening tests e.g.
sensitivity, specificity, PPV, NPV, LR+, LR-, accuracy, AUC etc. We can use these metrics
to determine and compare the value of our models (Fardy, 2009) (Okeh & Ogbonna, 2013).

The sensitivity and specificity of a model may be useful to explain how well the test was
carried on, but they ensure limited information on the impact of a positive or negative test for
a person.

Theoretically, the best test for both screening and diagnosis is the one with the highest
sensitivity and specificity. However, these types of tests are often complex, expensive,
invasive and impractical for screening population. Therefore, for high-risk population
screening test, sensitivity is preferred to evaluate performance, while specificity is preferred
for low-risk population screening tests.

High PPV makes the model disease quite likely in a subject with a positive test. A test with a
high negative predictive value makes the disease quite unlikely in a subject with a negative
test.

LR+ and LR- may be good indicators to determine a disease risk. If LR+ is more than 10, the
presence of risk has critical for disease risk. And also, if LR- is less than 0.1, the absence of
disease risk is prominent.

The area under the curve (AUC) may be another indicator to determine disease risk. For
diagnostic tests, the relationship between the AUC and diagnostic accuracy can be classified
as excellent (0.9-1.0), very good (0.8-0.9), good (0.7-0.8), sufficient (0.6-0.7), bad (0.5-0.6)
and not useful (< 0.5).

To measure accuracy of a test, the overall accuracy can be used but this value is highly

dependent on the prevalence of the disease. Another option is the diagnostic odds ratio
(DOR) which has relationships with likelihood ratios (DOR=LR+/LR-).
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CHAPTER 4

SNP DATA INCORPORATED NHIS-T ARCHITECTURE

4.1 Existing NHIS-T

4.1.1 Data Elements and Data Sets

Data elements like name, address, marital status, main diagnosis, treatment method, diastolic
blood pressure, healthcare institution, etc. used in the NHIS-T are defined, and then
Minimum Health Data Sets (MHDS) are generated combining relevant data elements.
Both the data elements and MHDS are published as a National Health Data Dictionary
(NHDD). The last version of NHDD, which includes 418 pieces of data elements, and 64
pieces of data set, is version 2.1 and accessible from its official web site (Republic of Turkey
Ministry of Health, 2013).

It is mandatory for healthcare providers of Turkey to conform the NHDD data definitions
and MHDS. New MHDS are produced by existing data elements or the NHDD is improved
by identifying new data elements when required.

4.1.2 Codes and Identifiers

The data elements are coded using medical terminology systems which are accessible from
the Health Coding Reference Server (HCRS) or locally defined categorical values, such as
gender or marital status.

There are 342 code systems in HCRS and the current version of the HCRS is 3.0, which is
available online via web services. A tabular representation is also accessible in official web
page (Republic of Turkey Ministry of Health, 2012) and allows users to query through web
browsers.

The healthcare professional identities are stored in central Doctor Data Bank and citizen
identification is stored in Central Civil Registration System (CCRS). Both identities are
validated against their original sources at storing in central repositories (Dogac, et al., 2011).

4.1.3 Messaging of Data Sets

4.1.3.1. HL7 Standards

HL7 is one of the American National Standards Institute (ANSI) accredited Standards
Developing Organizations (SDOs) operating in the healthcare arena. The HL7 version 2.x
(HL7v2.x) is the most widely used in the world and the HL7 version 3 (HL7v3), the latest
versions.
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HL7 v2.x has not a clear information model and involves many optional data fields. To
overcome this vagueness problem, HL7 v3 is developed, which is based on an object
oriented data model, called Reference Information Model (RIM). HL7 v3 RIM keep
information as has classes (e.g. people, places, roles, things, events) and relationships. Every
class has a name, description, sets of attributes, relationships, and states. The core RIM
classes are Act, Entity, Role, Participation, ActRelationship, and RoleLink. (Figure 17)
(Benson, 2010).
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Figure 17: RIM Version 2.41 (HL7 International, 2012).

RIM classes may be used in a RIM-derived model. HL7 v3 specifications are derived from
the RIM, thus ensuring a better level of semantic interoperability. Main idea of the HL7 v3
approach is that of constraining RIM, for specific usages. There are several specific
constrained models e.g. Domain Message Information Model (DMIM), Refined Message
Information Model (RMIM), Hierarchical Message Description (HMD) and message type
etc.

DMIM is a general model of a domain. RMIM, which is most used constrained information
model, only have one point of entry and can be expressed as a tabular format, i.e. a HMD. A
message type can be exchanged as a linear string of XML and validated using an XML
schema.

To develop the HL7 v3 message specifications, Message Development Framework (MDF) is
used. The MDF is a complete, fully documented, model-based methodology and based on
object oriented methodologies. HL7 V3 specification is built around subject domains, for
each of which it provides storyboard descriptions, trigger events, interaction designs, DMIM
derived from the RIM, RMIM derived from the DMIM, HMD and its resulting message
types. Finally, those are encoded in XML. Based on the MDF, each Technical Committee
and Special Interest Group in HL7v3 is contributing to the standard in its domain of
expertise.
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HL7 Clinical Document Architecture (CDA) a document markup standard, is produced to
exchange information as part of the HL7 v3 standards, and aim to specify the structural and
semantic aspects of clinical documents (Benson, 2010).

A HL7 CDA document is an XML file containing header and body sections. A CDA
template is defined as a complete set of constraints of a CDA document and can be explained
as detailed and human-readable document based on xPath based tabular approach. The
generic CDA specification can be constrained through the document-level, section-level and
entry-level templates. The unconstrained CDA specification is called “CDA Level One”.
When section-level templates are applied to an unconstrained CDA document, it is called
“CDA Level Two”. “CDA Level Three” is the CDA specification with entry-level templates
applied (Boone, 2011).

4.1.3.2. HL7 Standards in NHIS-T
In NHIS-T, MHDS are produced as aggregated clinical document elements named as
transmission data sets or episodic EHRs and then serialized into XML based on the HL7

Clinical Document Architecture (CDA) R2 structure to create transmission schemas
(Figure 18) (Kose, et al., 2008), (Dogac, et al., 2011).
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Figure 18: Schematic Representation of NHIS-T (depicted based on current literature).

In the current version of the NHIS-T, the transmission schema instances are localized
according to Turkey’s HL7 Profile. During this process, the rules which are set in the “HL7
Refinement, Constraint and Localization” are applied. However, the original HL7 CDA
schemas are modified which breaks the CDA conformance of NHIS-T transmission
schemas, since a conformant CDA document should at a minimum validate against the CDA
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Level One Schema. Yet, since the messages are derived from CDA RMIM, the current
version of NHIS is HL7 v3 CDA R2 compliant.

Then, each “Transmission Schema” is wrapped with a root element named after the main
data set in the transmission. The “Data Sets” in the “Transmission Schemas” correspond to
the “Sections” in the CDA Documents. And, the data elements are represented by nesting
new “section” elements in the data set’s “section” elements (Figure 19).
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Figure 19: Relationships between the artifacts of NHIS-T, the “Transmission Schemas” and
the HL7 v3 CDA R2 (Kabak, et al., 2008).

4.1.4 Validation and Storing

Before storing in the NHIS-T central repositories, incoming messages are validated
regarding syntax, semantics and messages passed these two steps are stored in the central
NHIS-T repositories (Kose, et al., 2008), (Dogac, et al., 2011).

Current version of NHIS-T allows the transfer of medical data from care providers’
information systems to central servers via web services. It has the infrastructure that will
provide access to patient’s records for authorized healthcare professionals within the
hospital, and that will allow patients to reach their own medical data i.e. PHR. But, the legal
regulations have to be completed before both type of access, authorized or self, is available.
Then, the establishment of a PHR system will allowed (Dogac, et al., 2011).

4.2 HL7 Standards for Clinical Genomic Domain

HL7 Clinical Genomics (CG) Work Group developed standards intended to interoperability
issues in genomic medicine (HL7 Clinical Genomic Work Group, 2013).
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421 HL7v2 Standard for Genomic Data Sharing

HL7 organization has published an implementation guide based on HL7 Version 2 standards
(i.e. HL7 Version 2 Implementation Guide: Clinical Genomics; Fully LOINC-Qualified
Genetic Variation Model) using both the HL7 Version 2 Implementation Guide Laboratory
Result Reporting to the EHR, and the HL7 Version 3 Genetic Variation data model. This
guide covers the reporting of test results for sequencing and genotyping tests and includes
testing for DNA variants associated with diseases and pharmacogenomic applications
(Ullman-Cullere & Mathew, 2011). In Figure 20, an example of HL7 v2 message for genetic
variation is presented.

according to HL7 VERSION 2.5.1 IMPLEMENTATION GUIDE: ORDERS AND
,,,,, ONS; INTEROPERABLE LABORATORY RESULT REPORTING TO EHR (US
RELLH), RELEASE 1, CRU”R01, HL? Version 2.5.1, November, 2007.

OBR|1| |PM-08-JC0094"HPCGG-LMM"2.16.840.1.113883.3.167.17I50|1m_DCM-
pnlB L*Dilated Cardiomyocpathy Panel B (5 genes)“99LMM-ORDER-TEST-
ID||20080702000000|20080702100309| (1| 11111234567891"Pump”“Patrick™®*"***"NPI
AL 1200807030C0C00 |1 IF||)]))100000009%Cardicvascular*99HPCGG-GVIE-
INDICATION~"**"*"Clinical Diagnosis and Family History of
DCHi&Genetici“f&Jenr;&&;&” DTANAANANIPCGG-
LMM&2.16.840.1.113883.3.167.2&ISCI 1111111111 1)1155233-1*Genetic analysis
master panel “LN
EllllIIT]“”T““pUuLQV1phP*%1 blood&SNM3&&&&0707Intl&&Blood,
e*'phPV~ll|1.|1||¢I1|| 2008C ,MULUHP
OBR|2| | PM-08-J00094-1"HPCGG-LMM"~2.16.840.1.113883.3.167.1°150|55232~
3*Genetic analysis summary
panel”LN| | |200807C2C00C00 1 [ |1 1I1HIL111120C8070300C000| | IF) ||| "PM-08-
JO0094 &HPCGG-LMM&2 . 1 340.1.113883.3.1 18IS0C
OBX|1|CWE|51967-8"Genetic disease asse :d”LN| |399020009"DCM-Dilated
Cardiomyopathy”SNM34~*0707Intl| ||| ||F]| 8C7021C09CGS |11 11I]]|Laboratory

for Mclecular Medicine”L”*22D1005307*""CLIA&2.16.840.1.113883.4.7&1I8S0|10C00

Laboratory Lane”Ste. 123"Campbridge”MA~29999~USA"B
Figure 20: An example of HL7v2 message for genetic variation: MSH segment maps to the
ClinicalDocumentModel; OBR (ObservationGroupModels) represent a set of Observations;
SPM is SpecimenModel; OBX (ObservationModel) segment can be laboratory result.

“HL7 Version 2 Implementation Guide: Clinical Genomics; Fully LOINC-Qualified Genetic
Variation Model” was the first example used by The Partners HealthCare Center for
Personalized Genetic Medicine (PCPGM) and the Intermountain Healthcare Clinical
Genetics Institute to gather genetic test results and transmit them to a patient's EHR (Shabo,
et al., 2009), (Ribick, 2010).

4.2.2 HL7v3 Standard for Genomic Data Sharing

The HL7 v3 Genetic Variation specification is based on the HL7 RIM. It uses the HL7 data
types, vocabulary binding mechanisms built into the RIM and Bioinformatic Sequence
Markup Language (BSML) to model the sequence information.

The root class in the Genetic Variation model is “GeneticLoci”. The GeneticLoci model
describes a set of loci, such as a haplotype, a genetic profile, and genetic testing results of
multiple variations or gene expression panels. The GeneticLoci model uses the GeneticLocus
model to describe each of these loci.
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A Genetic Locus represents a single gene or coding region, and may have its own
interpretation. A Genetic Locus is composed of one or more individual alleles, sequences
and observed sequence variations.

Within the GeneticLocus model, HL7 suggests the sharing of the essential part of raw
genomic via “encapsulation” and extracting clinically relevant data via “bubble-up” based on
genomic decision support application (Figure 21) (Shabo, 2006).
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Figure 21: Encapsulation and bubble-up workflow with a focus on enterprise EHR systems
accompanied by decision-support applications: In the static phase of this workflow,
encapsulation is performed based on a static predefined BSML schema. In the dynamic
phase, clinically relevant SNP data is bubbled up into HL7 SequenceVariation objects, and
these objects are linked with clinical data from the patient EHR, thus ensuring the disease
and therapeutic risk assessment.

An example XML code segment for GeneticLocus is presented in Figure 22. The
encapsulation phase contains the incorporation of raw genomic data sent from genomic data
sources to clinical settings, based on a predefined, constrained biocinformatics format i.e.
BSML. Constraining the bioinformatics markup schemas ensure us to dismiss clinically
irrelevant data elements and to refer genomic data to one patient only with the patient
identifiers.

The bubble-up phase is an iterative process wherein various clinical genomic decision
support applications parse the encapsulated raw genomic data and make prominent the
clinically relevant data based on the most up-to-date knowledge available. The results of this
phase are held in genotype-phenotype associations supported by the standard’s specification.
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Figure 22: Sample code segment from GeneticLocus XML instance.

4.3 Architectural Extension of SNP Data Incorporated NHIS-T

To incorporate clinicogenomic information into medical records, as explained in the
“Background and Literature Review”, it is necessary to build an infrastructure providing
clinicogenomic information and subsequent updates to physicians, a curated knowledge base
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extracting clinical information from relevant SNP data, and supporting systems processing
up-to-date data for clinical decisions over the patient’s lifetime (Aronson, et al., 2012)
(Ginsburg & Willard, 2013).

In the light of literature, for a SNP data incorporated NHIS-T, we need some improvements
in three components; 1) Enhancement of existing messaging infrastructure to share personal
SNP data and clinicogenomic associations between stakeholders, 2) Development of a
national level clinicogenomic knowledge base for transforming personal SNP data to
clinicogenomic associations, 3) Advancement of end user applications (EMR, PHR, etc.) for
reporting of clinicogenomic interpretation of clinically relevant SNP data.

Regarding technical capabilities (e.g. network bandwidth, storing and processing capacities,
etc.) different types of architectures can be developed, but development of two additional
components (knowledge base and reporting capability) is inevitable. Clinicogenomic
knowledge base must be constructed at the national level as a manually curated and
continuously updated source which contains clinical information and its possible
associations with SNP variants. In the end users applications (EMR, PHR, etc.),
clinicogenomic associations and external data (e.g. family history, environmental and
behavioral data) must be interpreted independently or based on predictive models to support
decision making. In this section, possible architectures are overviewed. Knowledge base,
decision support and reporting capabilities will be analyzed in the next chapters.

4.3.1 Sharing Raw Data

After next generation genotyping tests (e.g. WGS), a file which contains a huge amount of
variant data is acquired (Aronson, et al., 2012). WGS data involve about 3 billion base pairs
and entire genome sequence is about 3.2 Gb. Storing and sharing of personal raw genomic
sequence exceeds the transmission and storage capacity in many healthcare organizations
(Kahn, 2011). Due to the technical limitations, raw genomic data is stored the outside of the
EMR similar to PACS for medical images and clinical interpretation of data is preferable
sent to the EMR database (Starren, et al., 2013), (Masys, et al., 2012), (Green, et al., 2013).
In a characteristic human genome, WGS will determine more than 3 million variations. After
filtering processes, hundreds to thousands of clinically relevant variations, which have the
potential to be underlying reason, could be extracted. (Bamshad, et al., 2011), (Bick &
Dimmock, 2011), (Biesecker, 2012), (Raffan & Semple, 2011).

In our study, we have several restrictions and additional focuses that are not provided throuh
HL7 v3 clinical genomics presumptions. In our design we propose to;

o use only SNP variation data (not other types of variations and omics data),

e present SNP data as a preprocessed input file e.g. direct to consumer genomic
variation file (not as raw data or nucleotide sequence),

o develop and exploit a central, accredited and national level knowledge base,
e concentrate on clinical practice (not research domain),

e interpret the clinical effects of SNPs using predictive models (not only
independently),
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o exploit additional behavioral and family history data.

For these reasons, although it’s possible to share raw data in HL7 v3 standards, we preferred
to reduce raw data into clinically relevant data and accepted to collect raw data in genomic
laboratory side and share clinically relevant data in EMR/EHR/PHR level. Additionally, we
used both rs number and allele value as unique identifier for SNPs and we didn’t use HGVS
and HGNS standards.

4.3.2 Examples of DTC Genomic Data Formats
In DeCODEme file, SNP data is reported in a comma-separated text file (Figure 23).

~ioix
Dosya Duzen Bigm Gorinim Yardm

Name,variation,Chromosome,Position,Strand, YourCode g
rs4477212 ,A/G,1,72017 ,+,AA
rs2185539,¢/71,1,556738,+,CC
rs6681105,c/71,1,581938,+,TT
rs11240767,c/1,1,718814 ,+,CC
rs3094315,Cc/71,1,742429,-,CT
rs3131972,¢/7,1,742584,-,CT
rs3131969,¢/71,1,744045,-,CC
rs1048488,Cc/71,1,750775,+,CT
rs2905046,A/G6,1,752518,-,GG
rs12562034 ,A/G,1,758311,+,AA
rs4040617 ,A/G,1,769185,+,AA
rs2980314,A/c,1,771121,-,CC
rs2980300,c/71,1,775852,+,CC
rs2905036,A/G,1,782343,-,AA
rs4245756,C/71,1,789326,+,CC
rs4970383,G6/7,1,828418,-,GT
rs28609852,A/G,1,841053,+,AG
rs28587382,A/G,1,842635,+,GG
rs1806509,A/C,1,843817,+,CC
rs7537756,A/G,1,844113 ,+ ,AG
rs6694982,A/G,1,847691,+,AA

4] 407

Figure 23: DeCODEme file format.

In this file format, “name” refer to rs number of SNP from dbSNP, “variation” contain are
the possible allele nucleotides (A, C, G, T, or --), “chromosome” and “position” define the
physical location of the SNPs. “Strand” refer to the orientation used to identify SNP e.g. plus
or minus. "YourCode" provides the two genotypes for the sample.

There are several 23andMe file formats e.g. version 1, 2 and 3. SNP data is reported in a tab-
separated text file (Figure 24).

In this file format, “rs_id” refer to rs number of SNP from dbSNP, “chromosome” and
“position” identify the physical locations of the SNPs. "Genotype" ensures the two
genotypes for the sample. In 23andMe file format, genotype values are oriented with respect
to the plus strand on the human reference.
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|8 gcrometiikolay Hobryn_20080522154706 -HotDefteri _loixd
Dosya Digzen Bigm Gorundm Yardm

# This data file generated by 23andMe at: Thu May 22 15:47:06 2008 ﬂ
#

# Below is a text version of your data. Fields are TAB-separated

# Each Tine corresponds to a single SNP. For each SNP, we provide its identifier

# (an rsid or_an internal id), its location on the reference human genome, and the

# genotype call oriented with respect to the plus strand on the human reference

# sequence. Wwe are using reference human assembly build 36. Note that it is possible

# that data downloaded at different times may be different due to ongoing improvements

# in our ability to call genotypes.

#

# More information on reference human assembly build 36:

# http://www.ncbi.nim.nih. gov/projects/mapview/map_search. cgi?taxid=9606&build=36

#

# rsid chromosome position genotype

rs3094315 1 742429 AG

rs12562034 1 758311 AG

rs3934834 1 995669 cC

rs9442372 1 1008567 AG

rs3737728 1 1011278 AG

rs11260588 1 1011521 GG

rs6687776 1 1020428 cC

rs9651273 1 1021403 AG

rs4970405 X 1038818 AA

rsl12726255 : | 1039813 AA

rs11807848 1 1051029 cT

rs9442373 1 1052501 AC

rs2298217 1 1054842 cC

rs12145826 1 1055892 GG

rs4970357 1 1066927 AA

rs9442380 1 1077546 cC

rs7553429 1 1080420 AA =
« IH}J,

Figure 24: 23andMe file format.

4.3.3 ldentifiers for SNP Data

In order to integrate structured genotype and phenotype data into any system, first
requirement is to determine data components, terminology standards and identifiers of
clinicogenomic information i.e. genotype data and its associated clinical interpretation.

Because of extensive usage and practicality we decided to use “rs number” to identify every
single SNP. As explained before, SNPs are identified by rs number in many SNP resources,
e.g. PharmGKB, AlzGene, PDGene, SzGene, SNPedia, GWAS Central Cancer GAMAdb
and some sorts of personal genomic file formats (e.g. 23andMe, deCODEme, and
Navigenics).

Because different alleles of SNPs may have different degrees and types of clinical impact, rs
number is insufficient alone to identify the clinicogenomic significance of SNPs. For
example, to have a heterozygote allele may not change the risk for the disease but
homozygote allele of the same SNP variant may change the risk for a disease dramatically.
To identify clinically relevant SNP, we need to use the combination of rs number and allele
data as a minimum requirement (Attia, et al., 2009A).

Due to double stranded (plus and minus or forward and reverse respectively) nature of DNA,
every SNP, can be identified using either of these strands. Sometimes, in various genomic
databases, same SNPs alleles are defined with different alleles based on the orientation
discrepancy (Attia, et al., 2009A). In our system, we have used plus strand as the standard.
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4.3.4 SNP Data and NHIS-T CDA Transmission Schemas

In existing NHIS-T, medical and laboratory examination results are sent from hospitals to
the central EHR databases as “Examination Result Transmission Data Set”. The HL7 v3
CDA R2 conformant transmission schema of this data set contains several MHDS e.g.
registration MHDS, result of tests MHDS, patient MHDS, etc. “Result of tests MHDS”
involves data elements about examination features (order time, protocol number, result time,
test result, reference value ranges, etc.). The data type of laboratory examination should be
numeric or textual data regarding current schema standards (http:/www.e-
saglik.gov.tr/SaglikNet/SaglikNetDokumanlari.aspx).

Although WGS and other types of genotyping tests are acceptable as laboratory tests, they
have different characteristics than other laboratory tests in routine practice. After clinical
WGS test, a personal SNP data file which contains a huge amount of variant data is
produced, in which all variant data need to be managed in an effective way. As explained in
Chapter 2.3, to cope with the technical limitations, raw genomic data is stored the outside of
the EMR and clinical interpretation of data is sent to the EMR database (Starren, et al.,
2013), (Masys, et al., 2012), (Green, et al., 2013).

In our case, personal sequencing data is planned to store as raw data within a genomic
laboratory information system. The clinically relevant part of individual SNP file and
inferred clinical meaning of this data file is shared between corresponding databases via
NHIS-T CDA schemas as an encapsulated text file.

HL7 v3 interoperability standards support encapsulated data type for text data (Benson,
2010). Encapsulated data can be used to transmit audio, video, images, genetic sequences,
etc. In CDA, encapsulated data can be used in two ways i.e. directly incorporating into the
CDA document or referencing by a URL. Mostly, encapsulated data types found in either
<section> elements of the CDA document or in various clinical statement elements.
Genomic sequence data may appeared in the <value> element of an <observation>. When
the encapsulated data is provided through a reference the element containing the
encapsulated data will contain a <reference> element (Boone, 2011).

Possible architectural alternatives for NHIS-T are discussed in detail in the following
Chapter 5.

54


http://www.e-saglik.gov.tr/SaglikNet/SaglikNetDokumanlari.aspx
http://www.e-saglik.gov.tr/SaglikNet/SaglikNetDokumanlari.aspx

55



CHAPTER 5

DESIGN AND DEVELOPMENT

5.1 General Architecture of SNP Data Incorporated NHIS-T

In the proposed architecture, personal sequencing data is acquired and stored as raw data
within a genomic laboratory information system (Figure 25). The clinically relevant personal
SNP (CR-SNP) data extracted from personal SNP data file using the CR-SNP data list
(genomic identifiers of clinicogenomic associations in clinicogenomic knowledge base).
Then, personal CR-SNP data file is sent via NHIS-T infrastructure from genomic laboratory
to central EHR databases as an encapsulated text file.

EMR/PHRECDSS
s R
jomevons b eaves » CG-ASSOC, CR-SNP
GENOMIC LABORATORY : LIsY 92"\
CR-SNP €efererans ¢ : 9 ;
(7 : ) 3
DATA LisT [ cunicogeNoMIc 1] | |\ ridaney *— CG-ASSOC.
| KNOWLEDGE BASE ’ A }
RAW DATA c

CR-SNP _ CG-ASSOC.

" —
R-SNP DATA : :
i CG-ASSOC, | i CR-SNP DATA
: (HLTIXML) | ! (HLT/XML)

| DATA LIST * LIST J ( :

H N
---------- «<+p CG-ASSOC. : :
LIST t '
CG-ASSOC. |
.
i ;
ORI AT e eeeaccnccnenressssnasnd heeste CR-SNP DATA er. ....... !
o 9 9 9 @
L. J

CENTRAL EHR DATABASES (NHIS-T)

Figure 25: Extended architecture for genome enabled NHIS-T. Two possible sharing
alternatives are drawn. Based on clinicogenomic knowledge base, extraction of
clinicogenomic associations from personal CR-SNP data in EHR is the first choice (red
lines), and extraction of these associations in EMR/PHR is the second (blue lines). In both
alternatives, final clinicogenomic interpretation can be completed in end user. CR-SNP;
Clinically Relevant SNP, CG-ASSOC.; Clinicogenomic Associations, CDSS: Clinical
Decision Support System.

Personal CR-SNP file has to include SNP identifiers (e.g. rs number and allele data) in the

HL7 CDA R2 schema. The received CR-SNP files are stored within the central EHR
databases. Then CR-SNP files are processed to infer clinically relevant data by using the
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clinicogenomic associations from knowledge base (Figure 26). Resulting personal
clinicogenomic association files are sent to end users.
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Figure 26: Converting CR-SNP to clinicogenomic associations based on clinicogenomic
knowledge base.

Based on existing technical capabilities, to decrease the load of sharing clinicogenomic
associations files, replicated knowledge bases can be used in client side web applications,
and in central servers only CR-SNP data files can be stored. In this situation, clinicogenomic
associations are inferred in client side replicated knowledge base. In this approach, the
replication of reference central knowledge base to client side knowledge base must be
synchronous.

When an authorized user, (patient, family practitioner, or a specialist in a hospital) need to
reach personal CR-SNP or clinicogenomic association files, a request is sent to the central
EHR and current data file is received via NHIS-T communication infrastructure.

In practice, to be able to share CR-SNP or personal clinicogenomic associations between
central EHR databases and end-user systems, the capabilities of NHIS-T need to be extended
(e.g. web services, client side inference and reporting capabilities, if demanded PHR).

When clinicogenomic knowledge base is updated by domain experts, according to type and
level of change and preferred architecture, existing personal SNP data, CR-SNP data and/or
clinicogenomic associations must be re-interpreted automatically in genomic laboratory
system, national EHR repository and/or client side.
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5.2 Complementary Components

Here, we have analyzed how we can use design and develop complementary capabilities
using with the existing clinicogenomic information and assessment approaches. In general,
our proposed architecture contains two complementary components i.e. knowledge base and
decision support application (Figure 27). In our model, input data (genomic data e.g. SNP
file) is processed using knowledge base and assessed by decision support applications. In
scientific literature and daily practices, various assessment and reporting approaches are
proposed e.g. collective reporting of associations, polygenic risk scoring, model based
approaches etc. Detailed analyses of these methods are explained in “Ch.7: Assessment and
Reporting Approaches”.

( ) DECISION SUPPORT
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Figure 27: Complementary components and their functionalities.

5.2.1 Analysis of Clinicogenomic Associations and Models

The general analysis of clinicogenomic information specifically focuses on the SNP data and
its clinical associations. In our study, we extracted more than 100 associations between SNPs
and clinical information for cancer cases from SNPedia. SNPedia is a wiki source and
contains categorized information summaries from scientific literature. Also, we profoundly
studied various scientific publications to determine the assessment and reporting methods of
clinicogenomic information for prostate cancer risk assessment.

In this step, we have determined that clinicogenomic associations have several
characteristics in terms of clinical functionality, complexity of information, input variable
types, and degree of clinical significance. Table 6 shows these features and examples as a
whole.

5.2.2  Clinical Functionality

Various clinical functionality categories are determined for cancer cases including risk
assessment (increased or decreased risk of disease), disease prognosis, treatment efficacy,
and presence of adverse events.

“Clinical functionality” section of Table 6 ensures examples for each category. For risk
assessment category, gathered associations indicated that T allele of rs798766 variation
increases disease risk, whereas G allele of same variation has decreasing effect. Regarding
disease prognosis, after diagnosis of certain disease, existence of a SNP have negative
impact, such as rs713041(T) allele in breast cancer. Third type of association shows how a
specific allele increase or decrease efficient of treatment. And last one, association (4),
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presents an example of SNP associated adverse event for a specific drug. We have
discovered that, most of (95%) of the extracted associations are SNPs associated with
disease risk. We were able to collect less than ten SNPs about prognosis and only three SNPs
about pharmacotherapy of cancer cases from SNPedia (Table 6, Examples 1-4).

Table 6: Categorization of different types of clinicogenomic associations from SNPedia.

Parameter

| Examples of Information

Clinical Functionality

Risk assessment

(1)The T allele at rs798766 is associated with 1.24 higher odds of
bladder cancer (SNPedia, 2011), but G allele of Rs3790844 appears
to lower the risk of pancreatic cancer (SNPedia, 2010).

Disease prognosis
(poor)

(2)The rs713041(T) allele is associated with an increased risk of
death following breast cancer diagnosis, with a hazard ratio of 1.27
per rare allele (SNPedia, 2007).

Efficacy of
treatment

(3)A testicular cancer patient with a rs1050565(G;G) genotype which
is treated with bleomycin , has an odds ratio of 4.97 for testicular
germ-cell cancer related death compared to (A;G) or (A;A) genotypes.
The rs1050565(G;G) genotype also shows a higher prevalence of
early relapses (SNPedia, 2008).

Drug adverse
events

(4)rs12762549 and rs11045585 can be used to predict whether
docetaxel will induce leukopenia/neutropenia (SNPedia, 2008).

Information Complexity

Simple

(5)rs3218536(A) carriers also appear to be at lower risk for epithelial
ovarian cancer. In a study of ~1,600 cases, the odds ratio for
rs3218536(A;G) heterozygotes was 0.8 (Cl: 0.7-1.0) and for the (quite
rare) rs3218536(A;A) homozygotes 0.3 (0.1-0.9) ).[PMID 15924337]
(SNPedia, 2005).

Combined

(6)A report that attracted some media attention of a model for risk of
prostate cancer was based on a combination of 5 SNPs plus family
history, which the authors believe may account for 50% of the
cancers. Although the model estimates risk, clinical parameters (such
as age of onset and disease progression) are not predicted by this
model. The 5 SNPs ... are rs4430796, from ch 17q12, rs1859962, from
ch 17924.3, rs16901979, from ch 8qg24 (region 2), rs6983267, from
8024 (region 3), rs1447295, from 8924 (region 1. Risk for prostate
cancer (shown here as odds ratio, with CI) increases cumulatively
based on the number of SNP risk genotypes for these 5 (or, second set
of numbers, with family history counted as a 6th factor) as follows: O:
1.00, 1: 1.50 (ClI: 1.18-1.92); 1.62 (1.27-2.08), 2: 1.96 (1.54-2.49);
2.07 (1.62-2.64), 3: 2.21 (1.70-2.89); 2.71 (2.08-3.53), 4: 4.47 (2.93-
6.80); 4.76 (3.31-6.84), 5: 4.47 (2.93-6.80); 9.46 (3.62-24.72), 6: 9.46
(3.62-24.72) (SNPedia, 2008).

Input Variable Types

(7)To have rs1052133 (C,G) variant increases the risk of gallbladder

Only SNP cancer 1.9 times (SNPedia, 2011).

SNP and (8)In African American males, CYP3A4 variation rs2740574 -is

sociodemographic associated with a ~10 fold higher risk of prostate cancer... (SNPedia,
2008).

SNP and (9)There is evidence tha-t high intake of phytoestr_ogens substantially

envirobehavioral _reduce prostate cancer risk among men with a variation of rs2987983

(nutrition) in the promoter region of the estrogen receptor-beta gene (SNPedia,

2008).
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Since there are insufficient information for the last three categories of clinical functionalities
(i.e. prognosis, efficacy of treatment and adverse event of treatment), it would be misleading
to design structured typologies based on these limited information. Therefore, we focused on
clinicogenomic associations related with disease risk assessment.

5.2.3 Information Complexity

According to the complexity of components, clinicogenomic information can be categorized
as simple or combined statements. “Information Complexity” section of Table 6 presents
examples for both simple and combined statements.

Simple information is representable as independent associations including only one SNP
variant and its associated clinical characteristics. Example (5) of Table 6 contains two simple
clinicogenomic associations. In these statements, presence of one SNP data with certain
allele has specified impact on a disease with odds ratios.

On the other hand, combined information can be acceptable as integrated statistical impact
model of more than one SNP on a specific medical condition. Example (6) given in Table 6
is an example for combination of more than one simple association. This is an example of
predictive model which are more sophisticated and valuable tools regarding clinical practice.

In SNPedia, we found three combined information (one for prostate cancer and two for
breast cancer). All of these are focused to calculate and interpret cumulative impact of
various SNPs on specific medical conditions. We can construct such types of combined
information unifying several simple clinicogenomic associations within a risk assessment
model. In some cumulative models, impact factors may be altered according to which alleles
of SNPs are homozygotes or heterozygotes.

In models, existence of each association contributes to the total risk of the clinical condition
for patients. In cumulative models, through analysis of patient’s genotype, total count of
associations are determined and calculated additively. Among risk assessment tools besides
cumulative disease models, there are other ongoing efforts utilizing different data mining
algorithms to interpret GWAS data for building various risk assessment models. For all types
of these models, we can abstract a holistic model as combination of different number of
simple independent associations.

Various models has been proposed to assess and report genomic data in scientific literature.
These models, their components and calculation of their impact on clinical conditions are
explained in “Ch.7: Assessment and Reporting Approaches”.

5.2.4 Classification of Input Variables

Another characteristic of clinicogenomic information extracted from SNPedia is the diversity
and complexity of input variables. It’s known that, many of the complex diseases are aroused
by virtue of interactions between environmental, behavioral, sociodemographic or/and
biological (e.g. genomic, pathologic, etc.) parameters. Some information in SNPedia contain
only one input variable, i.e. SNP variant, but other sources may include combination of SNP
variant and additional variables about clinical findings, environmental, behavioral or
sociodemographic parameters. In Table 6, 7" clinicogenomic association is an example of
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one input with only SNP variable, whereas 8" and 9" associations include multiple types of
variables.

Today, unfortunately most of the environmental and behavioral parameters are not recorded
and stored in EMR/EHR in a structural way including NHIS-T. Therefore in this study, we
limited our scope to share only SNP data and incorporate other types of data i.e.
environmental, behavioral and sociodemographic parameters in the end user level to
calculate total risk of disease.

5.25 Degree of Clinical Significance

For significance of clinicogenomic association, in SNPedia, magnitude is accepted as a
subjective measure of interest for magnitude of impact and repute (good, bad) for quality of
evidence, but these concepts are not well established.

Some of clinicogenomic knowledge sources contain different attributes to identify
magnitude of clinical effects and strength of relationship between SNP variations and
diseases. As a measurement of impact value for clinicogenomic associations, researchers
usually prefer to use conventional approaches, e.g. odds ratios and relative risks for case
control studies and cohort studies respectively (Attia, et al., 2009C). Most of clinicogenomic
associations have small effect sizes and their credibility may largely depend on the success
of control for errors and biases. To calculate and assign an evidence degree, several studies
performed (loannidis, et al., 2008). Detailed information is given in “Ch. 6.4: Qualifiers for
Clinicogenomic Associations.”

5.3 Design of Standardized Association and Model Definitions

After analyzing the various sorts of clinicogenomic associations (independent and model
based) from SNPedia and extraction of the scientific literature regarding assessment and
reporting methods, we have compare the required data fields for knowledge base and
decision support applications to determine which parameter will be included in our study
(Table 7).

Table 7: Comparison of assessment and reporting types of associations and data fields.

Assessment and Reporting of Associations
Collective Polygenic Risk
Parameters Assessment of Y9 Cumulative
Risk Parameters
Independent . Models
C Scoring Sequences
Associations
Association definition
Association identifier X X X
Rs number X X X X
Allele X X X X
Disease code X X X X
Disease name X X X X
Magnitude of impact X
(Odds ratio)
Degree of evidence
. X
quality
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Table 7 (cont.): Comparison of assessment and reporting types of associations and data
fields.

Assessment and Reporting of Associations
Collective
Parameters Assessment of
Independent
Associations

Polygenic Risk

Risk Cumulativ Parameters
. e Models
Scoring Sequences

Association definition
Impact category X
Evidence category X
Impact value
Branch_id
Model definition
Model type X X
Model name X X
Total impact

Total count of SNPs
Branch _id

Narrative interpretation
External data
definition

Family history X
Other type (BMI, etc.)
a= In this study, only increased risk covered

XXX [X
XIX|X|[ XXX X

X

XX

5.3.1 Definition of Clinicogenomic Associations

After comparison of assessment and reporting types of associations and data fields, we have
produced a standard representation of all types of clinicogenomic associations as Figure 28.

CLINICOGENOMIC ASSOCIATIONS

Genomic Part Clinical Part
(Association '
Identifier) Medical data (for all)
SNP Data Representation model of associations (for all)
Association values (different values and criteria for all)

Figure 28: Standard representation of clinicogenomic associations.

Detailed data analysis of association typology is presented in Table 8. This table is used to
develop the clinicogenomic knowledge base.
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Table 8: Analysis of data fields for association parameters.

Data category | Parameters Values
Association . . .
f o Assoc_id Unique numeric value
identifier
Rs number Rs value
SNP data Allele Allele value
(e.g. AA, AT, CG, etc.)

Medical data D!sease code ICD-10 standard
Disease name

Independent associations, Cumulative model,

Representation Model type Hybrid model based associations
model of [CA];increased, decreased
associations Model name [CM]; number of SNP, name of author

[RS]; name of author and date

Parameter 1

[CA]; magnitude of [CA]; Numeric value,
impact, [CM]; numeric value
[CM]; impact value, [RS]; Numeric identifier
[RS]; branch_id
Association Parameter 2
Values [CA]; degree of quality of | [CA]; Numeric value (between 1 and 3)
evidence
Parameter 3 [PS]; 1,2,3 (corresponding Weak, Moderate,
[PS]; impact category Strong respectively)
Parameter 4 [PS]; 1,2,3 (corresponding Weak, Moderate,

[PS]; evidence category Strong respectively)

[CA] Collective Assessment of Independent Associations
[PS] Polygenic Risk Scoring

[CM] Cumulative Models

[RS] Risk Parameter Sequences

In this representation, clinicogenomic associations must have a unique identifier assigned
automatically. In ClinGenKB, SNPs are identified by both rs number and allele value on the
forward strand. If a SNP refers to more than one medical condition or model, then for every
case, a new association was defined, and a different identifier is assigned for every different
rule. Medical data category contains diagnosis code and name. Values of this data fields are
selected from ICD-10, which is used as diagnostic terminology for diseases in current NHIS-
T.

Model data has two components i.e. type and name. In ClinGenKB, we have two main
clinicogenomic associations i.e. model based or model free (or independent) associations.
Names for independent associations are categorized increased and decreased regarding
potential risks or protective characteristics. In this study, we only focused on increased risk.
Model based associations are used in predictive models.

Association values are tightly related to the type of model i.e. independent associations,
cumulative model, and hybrid model based associations. For independent associations; odds
ratios, degree of evidence quality, impact and evidence categories are appropriate and
sufficient elements to evaluate clinical significance in an independent and complete way. In
cumulative model based associations, it’s required to assign an impact value for every
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association to calculate total personal risk value according to model definition table. For
hybrid models, we calculate the total effects of variants using branch_id. In client side, all
risk parameters involved in hybrid models grouping by “branch_id” and for all these groups,
the total impact of risk parameters are determined. If one of these values is equal to the total
value of the corresponding branch, it’s accepted to have a risk of prostate cancer with
accuracy, precision and recall values of the model.

5.3.2 Definition for Predictive Risk Models

We developed a model definition table to the process model based associations on the end
user side (Table 9). In this table, the terms of “model type” identifies the category of models
and “model name” entitles them. The fields of “total value” and “explanation” are map to the
total impact of related SNPs and corresponding risk categories.

For cumulative models, these fields are about total impact and its explanation. For risk
parameter sequences, the total value is referred to count of all SNPs for every branch,
explanation is the interpretation of risk values regarding accuracy and precision. Risk
parameter sequences used in our cases are hybrid model (SVM and decision tree) based
associations and we need to determine additional data field to identify branches of decision
tree.

These tables must be kept up to date and shared other stakeholders to use in their systems as
a standard reference to interpret the model based associations in a proper manner. Also,
model type and model name fields must be used as a standard reference for same fields in
definition tables.

Table 9: Data field analysis of model definition table.

Data . .
category Parameters Value (Domain) Explanation
independent associations,

Model type cuml_JIative model,

hybrid model based
associations
[CA];increased,
decreased
Model name [CM]; number of SNP,

name of author

Model [RS]; Model number,

definition name of author and date

data . [CM]Total impact

Total value Numeric value [RS] Total count of SNPs
[CM]Explanation (Odds
ratio)

Explanation 1 Text value [RS]Explanation (Brief
interpretation about risk
assessment)

Explanation 2 Text value i[(F;)S] Explanation (Branch

[PS] Polygenic Risk Scoring , [CM] Cumulative Models, [RS] Risk Parameter Sequences
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5.4 Design and Development of Complementary Components

The complementary capabilities of the proposed prototype i.e. ClinGenKB and ClinGenWeb,
which ensures clinical decision support capability is described in this section.

Requirements of a clinical decision support infrastructure are centrally managed repositories
of machine readable medical knowledge, standardization of clinical decision support
information provided for specific aspects of genomic medicine, standardized representation
of patient data, standard approaches for leveraging machine readable medical knowledge,
and standard approach for locating and retrieving patient data (Kawamoto, et al., 2009). The
components of the proposed SNP incorporated NHIS-T system, and how it complies with the
requirements is described in detail in Table 10.

Table 10: Analysis of the SNP incorporated NHIS-T regarding clinicogenomic decision
support system requirements (Kawamoto, et al., 2009).

Requirement, Explanation and Examples

SNP incorporated NHIS-T

Centrally managed repositories of machine
readable medical knowledge (e.g. PharmGKB,
NCBI dbGaP, ClinVar)

ClinGenKB (specifically designed and
developed for prostate cancer risk
assessment)

Various formalisms for representing medical
knowledge in a computer processable format
(e.g., Arden Syntax, GELLO, GLIF, PROforma,
SAGE, SEBASTIAN)

Vendor specific (BioXM Knowledge
Management Environment)

Standardization of clinical decision support
information provided for specific aspects of
genomic medicine (e.g., HL7 refined message
information models, openEHR Archetypes, HL7
Decision Support Service semantic profiles)

Model definition table (tabular
representation of models, specifically
designed and developed for prostate
cancer risk assessment)

Standardized representation of patient data (e.qg.,
HL?7 data standards; openEHR Archetypes;
SNOMED CT; LOINC; BSML; MAGE-ML,;
National Cancer Institute/caBIG Common Data
Elements)

Rs number and allele value for SNP,
ICD-10 for diagnostic terminology,
encapsulated CR-SNP data in HL7
CDA R2 schema and CG-ASSOC.
data for messaging.

Resources that enable mapping between different
terminologies (e.g., Unified Medical Language
System, National Cancer Institute Enterprise
Vocabulary Services, HL7 Common
Terminology Services standard)

Not needed yet for the coverage of
system.

Standard approaches for leveraging machine
readable medical knowledge (e.g., Arden Syntax,
SAGE, PRODIGY, GLIF, SEBASTIAN, First
DataBank Drug Information Framework, HL7
Decision Support Service)

ClinGenWeb, as a calculation and
reporting capability (specifically
designed and developed for prostate
cancer risk assessment)
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Table 10 (cont.): Analysis of the SNP incorporated NHIS-T regarding clinicogenomic
decision support system requirements (Kawamoto, et al., 2009).

Requirement, Explanation and Examples SNP incorporated NHIS-T

Regional and national initiatives for secure health
data exchange (e.g., U.K. National Health Service
Connecting for Health, U.S. Nationwide Health NHIS-T infrastructure
Information Network prototypes, caBIG, Indiana
Health Information Exchange)

Complementary components of our system provide the following functions;
e Capturing, storing and real-time access to the individual data,

e Ensure communication channels between the end user, individual and domain
expert,

e Assistance for the decision making process by assessing the individuals’ risk status
based on the entered data and generating reports,

¢ Recognition of patterns in the collected data set and assessment of risk degree.

5.4.1 General System Architecture

Knowledge base (i.e. specifically ClinGenKB for prostate cancer) contains the
clinicogenomic associative rules. The rules in the knowledge base can be generated through
a knowledge base editor or can be transferred from another application by the human
medical experts. The general rules and common facts about the disease can be extracted from
the medical books, websites, or human expert knowledge.

ClinGenWeb is a web-based system, including modules that cover the individual prostate
cancer risks including personal SNPs, comorbidities, environmental and behavioral
parameters. The system is composed of the data transfer, manual data entry, data storage,
and data view and reporting functions.

Personal clinically relevant SNP (CR-SNP) data is stored in “raw data table” and personal
clinicogenomic associations (CG-ASSOC) are stored in “processed data table”. CR-SNP
data converted to CG-ASSOC based on the knowledge base. Then, individual CG-ASSOC
file is transferred to the ClinGenWeb CG-ASSOC table. If web services are built and
integrated, it’s possible to automatically transfer individual CR-SNP and CG-ASSOC files to
the ClinGenWeb from central EHR servers. Additionally, comorbidities, environmental and
behavioral parameters can be recorded by data entry module. Model and equation definition
are recorded by model definition module. Reporting module provides structured outputs of
the collected data set. The system has the capability to show different statistical reports and
graphical representation of the collected data.

Figure 29 represents the proposed system architecture, main modules and interaction
between modules.
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Figure 29: System architecture, main modules and the interactions between modules
(focused on to complementary components).

5.4.2 Use Case Diagrams

Use-Case diagram of Unified Modeling Language (UML), is a kind of behavioral diagram
which represents a graphical overview of the functionality provided by a system regarding
actors, targets (i.e. use cases ), and dependencies between use cases. An actor can be a
human being or another system interacting with modeled system (Aleksovska - Stojkovska
& Loskovska, 2011). The use case diagram of the complementary capabilities presented as a
whole in Figure 30.

ClinGenkB ClinGenWeb ®)
——“M 7 / \
T ——— Add and Update Add/Update Modals <8 }
] Npd ) /\
/ \ Associations (Rules) y \
Knowledge Expert System Expert
Pull CR-SNP Data fron,
NH1S5-T and Store ?
<<include>>
: flecord External Dats* > P
Acguirs Individusl CG- L
% ASSOC. Data
)
/ i T Usaer (patient,
<<include>> e /
l Report Ingividual Risk physicians etc. |
A3 Convert CR-SNP to
: 3 T CG-ASS0C, Dats
Scheduler Send parsonal (G-
oo A(SJS?: D;;:;u “External Dota: Envirenmental, Behavioral, Fomily
. |.>e_n Health History dato etc

Figure 30: The use case diagram of our ClinGenKB and ClinGenWeb with NHIS-T

infrastructure.
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Major actors of our systems are NHIS-T, ClingenKB, ClinGenWeb Application, end user
(physicians or patients), knowledge expert and system expert. Sending and storing
functionalities will be performed automatically by NHIS-t infrastructure, ClinGenKB, and
ClinGenWeb. Knowledge expert add and update clinicogenomic associations into the
ClinGenKB. Conversion process of CR-SNP to the CG-ASSOC accomplished
synchronously by ClinGenKB at the first uploading and then in each rule update session.

In ClinGenWeb application, system experts define reporting processes and models based on
standard model definition table.

End users (i.e. patients, authorized physicians etc.) can record external data of patients (e.g.
environmental, behavioral, family health history etc.) and report individual disease risk
independently and using defined assessment models.

5.4.3 Data Model of Knowledge Base

We composed our domain model defining elements, annotations, relations and scopes of this
components in BioXM™ based on association definition table (Figure 31). In this domain
model, we have three types of elements; person, SNP variant and rule (clinical association).
Every element has their specific annotations. Person element is related with the SNP variant
by ‘has’ relation, referring that each patient might have a set of SNP variants. SNP identifiers
are assigned to variants for ensuring uniqueness. Then each SNP variants are related with a
rule (clinical association) element as input.

@) Annotation: _personal identifiers i) Annotation: _SNP identifers
Property: name Property: name
Aftribute: Mame: Text Attribute: rs_id: Text
Aftribute: Surname: Text Attribute: allele: Thesaurus
Annotation assignment Annotation assignment
@ Element: _person Relation: _has @ Element: _SNP variant
k.
~

Property: name Propery: name
Property: description Property: description

Relation: _input parameters of

] Annotation: _output of rules

FProperty: name ]
Aftribute: disease name: Text Annotation assignment @ Element: _rule
Attribute: model type: Thesaurus
Aftribute: model name: Thesaurus
Attribute: reference: URL

Aftribute: parameter_1: Text
Attribute: parameter_2: Text

A

Froperty: name
Property: description

Figure 31: The graphical representation of data model of the proposed ClinGenKB
implemented with BioXM™ Knowledge Management Environment.
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5.4.4 Implementation of Knowledge Base

We have imported the content of knowledge base definition table as an external file with
scripts. This content can be updated with subsequent importing operations. If a new
association is generated or existing associations are changed or cancelled, authors can
prepare all these changes in an external source according to association definition table and
then easily can upload all of them via BioXM compatible files. After an importing process,
clinicogenomic associations can be sorted and managed by administrator from table (Figure
32a).
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Figure 32: Some screens from ClinGenKB.

Clinicogenomic associations are prepared in an external source as suitable for ClinGenKB
association definition table and uploaded with importing script. Personal CR-SNP data is
stored in ClinGenKB as a separate file and accessed with a citizen identifier. Personal CR-
SNP data can be easily converted to clinicogenomic associations data file based on the
content of ClinGenKB and exported as a text file.
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In addition, we can store personal CR-SNP data as a separate file on BioXM™ (Figure 32b).
CR-SNP data can be easily converted to clinicogenomic associations based on the content of
ClinGenKB, and this data file is exported as a text file. For all individuals, whom his/her
CR-SNP data stored in BioXM™, whenever it’s needed, it’s possible to access personal CR-
SNP data and to produce new clinicogenomic associations data files based on current
ClinGen. All of these files can be accessible with a citizen identifier for our prototype and
can be sorted according to data categories (Figure 32c).

5.4.5 Entity-Relationship Diagram of Decision Support

An entity—relationship (ER) model is a data model to draw the data aspects of a relational
database. The main components of ER models are entities and the relationships. A possible
ER diagram for decision support and reporting application is presented in Figure 33.

urrame ( peesongd id )
B el (bpennid) ( name )
sureams )

person L——" has > CR-SNP Hle ‘ [ System expert  —

(Model rame ) Model type

Figure 33: Entity-relationship diagram of decision support and reporting application.

5.4.6 Implementation of Decision Support and Reporting Application

During the implementation of our prototype, we have selected the Zoho Reports™ | and a
simple prototype system has been developed by using the Zoho Reports™ on the client side.
Our prototype (specifically named as ClinGenWeb for prostate cancer) is built as a web
application processing genomic associations, clinical and environmental risk parameters. In
this application, it’s possible to report the relevant clinicogenomic SNPs or to assess the
independent risk based on the models with the combination of conventional health data and
clinicogenomic associations.

In ClinGenWeb, the personal predictive risk can be analyzed in three main categories i.e.
collective reporting of independent associations, the complete assessment of clinically
relevant SNPs (polygenic scoring), and model based interpretation of clinicogenomic
associations. Some type of models are based on assessing only relevant SNPs. But a few
models involve external data (family history, BMI, etc.). If collected, corresponding risk
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factors for prostate cancer can be used to calculate the model based risk. Also, external
personal data about clinical and some environmental risk factors for prostate cancer can be
reported.

5.4.6.1. Collective Assessment and Reporting of Independent Associations

Reporting of all independent associations one by one will be very confusing, and the
interpretation of these data by users will be time consuming. Instead of this approach, we
considered using associated data in a category based graph which axes correspondingly to
impact and evidence categories (Figure 34).
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Figure 34: Visualization of independent associations in ClinGenWeb. Independent
associations and their clinical significances (magnitude of impact and quality of evidence)
are listed in the screen. Below, users can access the total graphical representation of
clinically relevant variants for any disease. If users move cursor on a point, a brief
explanation (count of variant according significance) is appeared and if clicking at this point,
more detailed list of variants are sorted in the screen.
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5.4.6.2. Reporting of Model Based Associations

Comparatively, results of model based interpretation give us more effective information to
the end users for decision making. These are based on more accepted and proven integrated
models.

In our study, we have two kinds of model i.e. cumulative and the hybrid model based
association sets. In ClinGenWeb, results of these models and detailed explanation of
reference values are presented to end users as a whole. If needed and end users can exploit
detailed analysis of risk factors sorted below the total evaluation of the model (Figure 35).
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Figure 35: Reporting of model based rules in ClinGenWeb.

In client side, model based rules are processed using CGDF and model operators. Finally,
total results of model based evaluation are presented for every disease. Users can access the
whole impact (and meaning) of models clicking on interpretation link. List of clinically
relevant variants is sorted following total evaluation, and if users want to access relevant
variants for any disease, they can select proper disease(s) from “disease name” combobox.

5.4.6.3. Combining Clinicogenomic Associations and External Data
In ClinGenWeb, users can record and store other types of risk factors (family history,

environmental, behavioral, and clinical data) to assess their prostate cancer risk. If this type
of data is collected, these can be used as part of models or reported as a whole.
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5.5 Interoperability Level of the Proposed Architecture

Interoperability is defined by Institute of Electrical and Electronics Engineers as “the ability
of two or more systems or components to exchange information and to use the information
that has been exchanged”.

The HL7 EHR Interoperability Work Group has developed a framework, which covers three
layers i.e. technical, semantic and process interoperability. Technical interoperability focus
on to moves data from one system to another apart from its meaning. Semantic
interoperability ensures that systems understand the data in the same way. This is specific to
domain and context and usually involves the use of codes and identifiers. Process
interoperability coordinates work processes, enabling the business processes at the
organizations which have systems to work together.

Currently, the Health Level 7 (HL7) version 2 Messaging Standard is the most widely
implemented message interface standard in the healthcare domain. However, being HL7
version 2 compliant does not support semantic interoperability between healthcare systems.
To solve this problem, HL7 version 3 is developed, which is based on an object oriented data
model i.e. RIM.

But some studies extended the interoperability definitions and models. The Levels of
Conceptual Interoperability Model (LCIM) represents a hierarchy of capabilities for
representing the meaning of information passed between systems, components, or services
(Table 11) (Tolk, et al., 2009).

Table 11: Levels of Conceptual Interoperability Model (LCIM)

Level | Type Description Requirements
0 !\Io N No build in capability to None
interoperability | exchange data
Ability to produce and consume
| Technical Systems are exchanging | data in exchange with systems
Interoperability | data with each other. external to self is required to be
technically interoperable.
DIZE:Z S\ﬁfﬁi?wn%i ;s rgzglqg An agreed-to protocol that all can
Syntactic P g be supported by the technical level
Il - protocol, that all systems LU . . ;
Interoperability solution is required to achieve this
are able to produce to, and . -
level of interoperability.
can consume them.
Agreement between all systems on
Semantic Systems are exchanging a | a set of terms that grammatically
i ... | set of terms that they can | satisfies the syntactic level solution
Interoperability . . . . .
semantically parse. requirements is required for this
level.
Systems will be aware of A method for _sharmg meaning of
. . terms is required, as well as a
Pragmatic the context and meaning of L
v Interoperability | information bein method for anticipating context.
P y 9| These both should be based on
exchanged. ) .
what exists at the semantic level.
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Table 11 (cont.): Levels of Conceptual Interoperability Model (LCIM)

Level | Type Description Requirements

Systems are able to A method for defining meaning and

reorient information . ; . .
. context is required to achieve this
. production and .
Dynamic . level. The means of producing and
\ .. | consumption  based on . o .
Interoperability consuming these definitions is
understood changes to . .
] . required for dynamic
meaning, due to changing | . -
interoperability.
context.
Svstems at this level are A shared understanding of the
y conceptual model of a system
completely aware of each . . . .
Conceptual . i (exposing its information,
VI others information,

Interoperability processes, states and operations)
must be possible in order to operate

at this level.

processes, contexts, and
modeling assumptions.

Both HL7 Clinical Genomics model and NHIS-T are based on HL7 RIM and support
semantic interoperability. For this reason, our model also is capable to support semantic
interoperability.

Our architecture, also support pragmatic and dynamic interoperability. To ensure pragmatic
interoperability, message sent by a system causes the effect intended by that system; i.e., the
intended effect of the message is understood by the collaborating systems (Asuncion & van
Sinderen, 2010). Standardizing and disseminating predictive models to use in decision
support systems ensure pragmatic interoperability. In Ch. 5 we proposed a standardized
definition table for predictive models. Pragmatic interoperability can only be achieved if
systems are also syntactically and semantically interoperable.

Dynamic interoperability can be achieved if systems are able to reorient information
production and consumption based on understood changes to meaning. We emphasized that
it’s an obligation to develop knowledge base system to re-interpret CR-SNPs using scientific
changes and new information in our architecture. Re-interpretation of CR-SNP based on
standard, accredited and curated knowledge base ensure us the dynamic interoperability.
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CHAPTER 6

EXTRACTION OF CLINICOGENOMIC ASSOCIATIONS FOR PROSTATE
CANCER CLINICOGENOMIC KNOWLEDGE BASE

6.1 General Approach

Clinicogenomic associations, namely associations between a specific clinical conditions and
a specific genomic variant, can be discovered through GWAS studies. As explained in
chapter 5.2, every clinicogenomic association identified through GWAS has three different
data category i.e. variation identifier (e.g. rs number and allele), clinical condition (e.g.
disease) and qualifiers of associations (magnitude of impact and quality of evidence).

To extract SNP-prostate cancer risk associations as the content of our knowledge base, we
have developed a layered approach i.e. extraction, preprocessing, selection and assignment
of evidence degree (Figure 36).

KNOWLEDGE SOURCES

E’.ancerGAMAle [GWAS Catalogj [ SNPedia j

EXTRACTION

o Risk increasing SNPs for prostate cancer.

o Excluded studies about gene-environment
(e.g. nutrition, drugs, chemical agents, etc.)
interactions.

Extracted
Associations o Ignored clinicogenomic associations
measuring SNP effects on aggressivity and

mortality of prostate cancer.

PREPROCESSING
e Controlled association and

matched identifiers (rsIDs and
alleles) using dbSNP.,

e SNP allele values were

A\ 4

transformed to the forward strand.
Preprocessed
Associations
SELECTION

e To solve redundant
publications and conflictions.

A

y
Selected
Associations
ASSIGNMENT OF
EVIDENCE DEGREE
e Determine evidence
assignment methodology

o Assign evidence degrees
and categories

\ 4

Qualified Clinicogenomic
Associations
(Knowledge Base)

Figure 36: Associations extraction methodology for a clinicogenomic knowledge base.
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6.2 Knowledge Sources

Since the completion of HGP, SNP-disease relationships have been extensively investigated
and published in the medical literature. Results of these studies are mostly collected in
various clinicogenomic knowledge sources in structured or narrative forms. To develop a
structured clinicogenomic knowledge base for prostate cancer risk assessment, we need to
determine reliable medical sources and collect clinicogenomic associations in a standardized
form.

In our study, to extract these type of associations, we have preferred to utilize some publicly
available knowledge sources i.e. The National Human Genome Research Institute (NHGRI)
Catalog of Published Genome-Wide Association Studies (GWAS Catalog), Cancer Genome-
wide Association and Meta Analyses Database (Cancer GAMAdD) and SNPedia. Cancer
GAMAdD is a part of Cancer Genomic Evidence-based Medicine Knowledge Base (Cancer
GEM KB) and provides GWAS researches and meta-analysis about clinicogenomic
associations (http://www.hugenavigator.net/CancerGEMKB/calntegratorStartPage.do)
(Schully, et al., 2011). GWAS Catalog provides 1751 curated publications of 11,912 SNPs
(Welter, et al., 2014). SNPedia (http://www.SNPedia.com) is a wiki resource of human
genetic variation as published in peer-reviewed studies (Cariaso & Lennon, 2012).

6.3 Extraction and Preprocessing

We have collected clinicogenomic associations from the knowledge sources mentioned
above, which are known to increase prostate cancer risk from, excluding studies about gene-
environment (e.g. nutrition, drugs, chemical agents, etc.) interactions. We have also ignored
clinicogenomic associations measuring SNP effects on degree and mortality of prostate
cancer.

As SNP nomenclatures and notations are represented heterogeneously among different
medical sources, proper unification and standardization of SNP identifiers was a critical step.
We have checked all selected associations and corrected rs numbers and alleles by using
dbSNP (http://www.ncbi.nlm.nih.qov/SNP) as our reference. For only one SNP rsID which
had been merged to another SNP was updated, and allele values which had been identified
based on reverse strand were transformed to the forward strand.

6.4 Qualifiers for Clinicogenomic Associations

For published clinicogenomic associations, the magnitude of impact and quality of evidence
were critical to qualify the associations (Attia, et al., 2009B), (Van Allen, et al., 2013).

6.4.1 Magnitude of Impact

In clinical practices, absolute risk value of genetic variations are important but, in most of
the disease-variation researches, absolute risk cannot be calculated due to lack of information
about disease incidence (Janssens & van Duijn, 2009). As a measurement of impact value for
clinicogenomic associations, researchers usually prefer to use conventional approaches, e.g.
odds ratios and relative risks for case control studies and cohort studies respectively. These
risks are presented with a confidence interval (Attia, et al., 2009C) (Figure 37).
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Disease (+) Disease (-)

Disease (+) Disease (-)
SNP- Allele (X) AND AND
SNP- Allele (X) SNP- Allele (X)
Disease (+) Disease (-)
SNP- Allele (Y) AND AND
SNP- Allele (Y) SNP- Allele (Y)

[Disease (+) AND SNP-Allele(X)] * [Disease (-) AND SNP-Allele (Y)]
[Disease (+) AND SNP-Allele(Y)] * [Disease (-) AND SNP-Allele (X)]

Odds Ratio=

Figure 37: Calculation of Odds ratio for disease associated SNPs.

In the literature, many SNPs with minor degree of association were published for the
prediction of the prostate cancer risk. For a physician, it’s impossible to interpret the every
single SNP to determine appropriate clinical action.

Thus, to visualize and represent all of the personal risk SNPs in a graphical way, the
magnitude of impact can be categorized. In our study, we have arbitrarily categorized the
magnitude of impact (odds ratio) into three classes i.e. strong (>=2.50), moderate (>=1.50,
<2.50) and weak (<1.50).

6.4.2 Quality of Evidence

In GWAS, various defects and biases about study design, genotyping or collected data
quality affect the clinical value of results (Pearson & Manolio, 2008), (Attia, et al., 2009B),
(Little, et al., 2009). The quality of evidence is scored based on the type of study and how
well the study is conducted (Riegelman, 2010).

Most of clinicogenomic associations have small effect sizes and their credibility may largely
depend on the success of control for errors and biases. Traditional epidemiological
guidelines are not appropriate for the specifications for study of genetic epidemiology. To
overcome this issue, a Human Genome Epidemiology Network (HuGENet) workshop
organized in Venice, Italy in 2006 and the interim Venice guidelines were published to grade
the cumulative evidence in genetic associations. This guideline is based on three criteria 1)
the amount of evidence (sample size), 2) replication of studies (determining association in
different studies), and 3) protection from bias (loannidis, et al., 2008) (Table 12).
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Table 12: Venice interim guideline criteria for assessment of cumulative evidence on
genetic associations (loannidis, et al., 2008)

Amount of evidence Category A: Sample size >1000

Category B: Sample size >100 and <1000,

Category C: Sample size <100

(total number in cases and controls assuming 1:1 ratio)

Extent of replication Category A: Extensive replication including at least one well-
conducted  meta-analysis  with little  between-study
inconsistency.
Category B: Well-conducted meta-analysis with some
methodological limitations or moderate between-study
inconsistency.
Category C: No association; no independent replication; failed
replication; scattered studies; flawed meta-analysis or large
inconsistency.

Protection from bias Category A: Bias, if at all present, could affect the magnitude
but probably not the presence of the association.

Category B: No obvious bias that may affect the presence of
the association but there is considerable missing information on
the generation of evidence.

Category C: Considerable potential for or demonstrable bias
that can affect even the presence or absence of the association.

In genetic association studies, four kinds of biases were well recognized, which are
phenotype misclassification, genotyping error, population stratification, selective reporting
biases.

Large sample sizes tend to decrease the uncertainty for the impact values of the
clinicogenomic associations. Also larger studies usually conducted by more experienced
groups, so supposed to be affected less from selective reporting biases. The critical
thresholds for sample size were determined as 100 and 1.000 regarding operational
characteristics in VVenice criteria.

Meta-analyses provide information on variation in effects across populations, and on using
different methods. Lack of replication may be a marker for underlying biases and extensive
replication may provide optimal evidence for clinicogenomic association. Also, the threshold
of replication is a matter of considerable debate.

Regarding eliminating bias, investigators should assess studies regarding major biases e.g.
phenotype, genotype, population stratification and selective reporting. These cover the two
variables involved in the association, study specific confounding and field-wide bias.

After evaluation of a study, all considerations is categorized as A, B and C and finally,
merged as a composite assessment using a semi quantitative index i.e. strong, moderate, and
weak epidemiological credibility for genetic associations (loannidis, et al., 2008).

Today, Venice criteria are used to assess genomic association studies in several controlled
and structured knowledge bases e.g. Alz-Gene, PD-Gene, SZ-Gene. For other various
clinicogenomic association knowledge sources, different types of approaches are proposed to
identify evidence quality. In ClinVar, evidence for clinical significance is categorized
regarding study count and type such as in vitro studies, animal models, etc.
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(http://www.ncbi.nlm.nih.gov/clinvar/intro). But for ClinVar, there is not a quantitative
categorization of evidence quality.

In SNPedia, magnitude is constructed as a subjective measure of interest for magnitude of
impact and repute (good, bad) for quality of evidence, but these concepts are not well
established (http://snpedia.com/index.php/Genotype).

GET-Evidence (http://evidence.personalgenomes.org/about) categorizes clinicogenomic
references according to their evidence degree (high, moderate, or low) and clinical
significance (high, medium, or low) are used to produce impact score (Ball, et al., 2012). But
evidence degree is not assigned in allele level. Also, this source is not sufficient for our study
because only two SNP from our knowledge base is defined i.e. two associations as “Low
clinical importance, Uncertain pathogenic”, and 38 associations as “Insufficiently evaluated
pathogenic”).

6.5 Selection of Clinicogenomic Associations

In GWAS knowledge sources, generally there is multiple odds ratio for per clinicogenomic
associations depending on the diversity of studies. To solve these value redundancies and
confliction, there were two possible strategies, first merging all evidences and second
selecting most compatible associations.

In our study, we preferred to follow the selection strategy because “merging” would need
more time, domain expertise and cost. For our clinicogenomic association set, we have
developed a four-phased selection approach to determine a reasonable value per SNP allele.
Our selection approach is mostly inspired from Venice criteria.

In the first step, because all test data was gathered from Caucasians, we obtained have
gathered the clinicogenomic association values from studies which were performed on this
ethnic group. If there was not any study with Caucasians population, next we have preferred
to use the mixed population results as second choice and results from other populations
(Africans, Asians, etc.) as the last choice. This criterion was about avoiding population
stratification bias. In the second step, we have assessed the study type and preferred meta-
analysis results to research studies. Next, if we still had more than one association value, we
evaluated the number of citation for the referenced article. Last two steps were adapted to be
able to integrate credible studies and associations with replicated studies to reduce bias.

In the final step, we selected biggest odds ratio, when still required (Table 13).

Table 13: Selection criteria for extracted associations

Step | Category Order of preference

1. Caucasians

1 Race and ethnicity | 2. Mixed

3. Other races (Africans, Asians, etc.).
1. Meta-analysis

2. Research study

2 Study type

3 .Cred'b'“ty of Highest citation number
journal
4 Odds ratio Highest value.
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With this approach, we have extracted one odds ratio for every single clinicogenomic
association in the knowledge sources.

6.6 Assignment of Evidence Degree

We have assigned a degree of evidence quality for all the association values, in order to
indicate possible biases and faults in the results of genetic association studies. Ideally, it’s
preferred to evaluate association values regarding all bias sources (study design, genotyping
problems, publication bias, etc.) of studies, but it is time consuming, costly and requires
professional domain expertise. As the main objective of our study was to compare to
different predictive model structures for prostate cancer regarding the clinical utility, we
have generated a simpler approach using some indirect metrics to acquire a quality of
evidence degree for every association.

In our approach, we have studied Venice criteria and extracted various indirect metrics to
assign an evidence degree using PubMed publications and our knowledge sources. This
method has a potential for automated evidence degree assignment. Matching of our
parameters and Venice criteria is presented in Table 14.

Table 14: Comparison of selected criteria and Venice criteria for determining degree of

evidence
Venice Criteria
Amount of

Proposed Criteria evidence Extent of Protection from

(Sample replication bias

size)
Citation number of article v 4
v v
Type of study and number of (Research article (Number of
authors and Meta-
. Author)
analysis)

Race and ethnicity of studied v
population
Sample size (each of case and v
controls)
Number of article for SNP-
prostate cancer relationship in 4 v
PubMed
Number of cumulative models v v
which involve SNP allele

In our approach, we used three main dimensions i.e. credibility of referenced article,
reliability of the study and the scientific familiarity of SNP-disease relationship. To calculate
the credibility of referenced article, “citation number of the article” and “type of study and
number of authors” were used. Reliability of the studies were assessed by determination of
race and ethnicity status and sample size (number of cases and controls). To evaluate the
scientific familiarity of SNP-clinical condition relationship, we calculated the number of the
scientific articles about SNP-prostate cancer relationship in PubMed and number of
cumulative models which involve SNP allele. These criteria are also summarized in Table
15.
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Table 15: Suggested model to assign the evidence degree for clinicogenomic

associations.

referenced article

Type of study and
number of authors

Dimension Order of preference Value
o 1-15=1
;:r[['[izitlg)n number of 16-50=2
>50=3
Credibility of Research article-<10, author=1

Research article-<35, >=10
author=2

Research article->=35, author=3
Meta-analysis- <7, author=2
Meta-analysis->=7, author=3

Reliability of study

Race and ethnicity of
studied population

Other races (Africans, Asians,
etc.)=1

Mixed=2

Caucasians=3

Sample size (each of

Unknown or <100=1

case and controls) 100-1000=2
>1000=3
Number of article for <10=1
Scientific SNP-prostate cancer >=]11, <39=2
e relationship in PubMed | >=80=3
familiarity of SNP- - —
disease relationship Number of_cumulatlve None=1
models which involve 1-2 model=2
SNP allele >2 model=3
Degree of evidence 1-<1.5= weak
. =Total value/6 >=1.5-<2.3= moderate
quality >=2.3= strong

We used two measurement parameters, namely “citation number of article” and “type of
study and number of authors” to evaluate the “credibility of referenced article”. Results for
“citation number of article” are in Table 16. We have clustered citation numbers as three

groups using k-means clustering algorithm and assigned values for these groups.

Table 16: Assigning value for parameter of “citation number”

o Number of cited articles in “Citation number”
Citation count PubMed Value
0 8 1
1 2 1
2 4 1
3 5 1
4 2 1
5 2 1
6 1 1
7 1 1
9 1 1
10 1 1
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Table 16 (cont.): Assigning value for parameter of “citation number”

16 1 2
17 1 2
19 3 2
23 2 2
27 1 2
29 1 2
39 1 2
82 1 3
88 1 3
>100 4 3

The “type of study and number of authors” is another critical factor. The meta-analysis
publications are more credible from research articles, because it means that there are some
different articles about same SNP-disease association values. For this reason, we categorized
this parameter as two major category i.e. “research article” and “meta-analysis” and assigned
arbitrary values regarding number of author (Table 17).

Table 17: Assigning value for parameter of “type of study and number of authors”.

Type #of authors | # of articles Assigned value
Meta-analysis 3 28 2
Meta-analysis 4 16 2
Meta-analysis 5 8 2
Meta-analysis 6 4 2
Meta-analysis 8 2 3
Meta-analysis 9 46 3
Meta-analysis 10 10 3
Meta-analysis 11 4 3
Meta-analysis 12 2 3
Meta-analysis 13 2 3
Meta-analysis 15 2 3
Meta-analysis 17 4 3
Meta-analysis 25 4 3
Meta-analysis 100 4 3

Research article 6 2 1
Research article 8 2 1
Research article 9 2 1
Research article 13 12 2
Research article 20 1 2
Research article 31 12 2
Research article 39 4 3
Research article 49 4 3
Research article 61 17 3
Research article 70 4 3
Research article >100 26 3
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For the reliability of the study, we have assessed “race and ethnicity status” and “sample size
(number of cases and controls)”.In value assignment for “race and ethnicity of studied
population”, as all of our test data were Caucasians, we assigned 3 point for studies
performed on Caucasians, 2 point for studies about mixed populations including Caucasians
and 1 point for other ethnicities (Table 18).

Table 18: Assigning value for parameter of “race and ethnicity of studied population”.

Ethnicity Number of study Category Assigned value
African 1 Other 1
African-American 2 Other 1
Asian 7 Other 1
Japanese 3 Other 1

Japanese, Latin

IOAmerican 2 ey 1
General 22 Mixed 2
American White 2 Caucasian 3
Caucasian 38 Caucasian 3
European 24 Caucasian 3
European White 1 Caucasian 3
UK, Australian 1 Caucasian 3
White 3 Caucasian 3

For the parameter of “sample size”, we used same thresholds with Venice criteria, namely 1
point for studies where sample size was unknown or smaller than 100, 2 points for sample
size between 100 and 1000 and 3 points for more 1000 individuals (Table 19).

Table 19: Assigning value for parameter of “sample size”.

Number of cases
Sample size and controls Assigned value
(both of)
Unknown or <100 22 1
100-1000 7 2
>1000 77 3

To evaluate the scientific familiarity of SNP-clinical condition relationship, we have
calculated the “number of the scientific articles about SNP-prostate cancer relationship in
PubMed” and “number of cumulative models which involve SNP allele”.

The “number of article for SNP-prostate cancer relationship in PubMed” directly point out,
there are more than one studies about same SNP value. Results for this parameter are in
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Table 20. We have clustered citation numbers as three groups using k-means clustering
algorithm and assigned numeric values for these groups.

Table 20: Assigning value for parameter of “number of article for SNP-
prostate cancer relationship in PubMed”

Number of articles for
SNP-prgstate_ cancer Number of SN_P-pro_state Assigned value
relationship in cancer relationships
PubMed
0 12 1
1 2 1
2 7 1
3 6 1
4 2 1
5 15 1
6 1 1
7 1 1
9 1 1
10 2 1
16 8 2
17 19 2
19 5 2
23 9 2
27 1 2
29 1 2
39 4 2
82 1 3
84 1 3
>100 8 3

On the other hand, the “number of cumulative models which involve SNP allele” is an
indirect parameter pointing more than one studies about same SNP value. The threshold
values for this parameters are determined arbitrarily (Table 21).

Table 21: Assigning value for parameter of “number of cumulative
models which involve SNP allele”

#of involved cumulative #0f SNP Assigned value
model for prostate cancer
0 89 1
9 2
2 3 2
3 1 3
4 2 3
>5 2 3
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Finally, the degree of evidence quality was calculated as the arithmetic average for each
association. To visualize all of personal risk SNPs as a whole, we have categorized evidence
values of associations in three classes like magnitude of impact. Evidence degree of
clinicogenomic associations categorized as strong, moderate and weak (Table 15). It’s clear
that, as our approach is mostly based on literature survey, it is open to debate and further
comparative studies are needed.

6.7 Overview of the Clinicogenomic Associations

Initially, we have determined 87 SNP alleles from the GWAS catalog, 32 SNP alleles from
SNPedia and 236 SNP alleles from the Cancer GAMAdb, which are associated with
increased prostate cancer risk. Through the extraction and selection processes of SNP-
prostate cancer risk associations, we have excluded redundant, conflicted and incomplete
associations. Finally, we have acquired 209 independent associations for increased risk of
prostate cancer from the knowledge sources. Next, the evidence and impact categories to
these associations are assigned (Appendix A).

To complete assessment of all different types of clinicogenomic associations, we have
extracted counts of clinically relevant SNP alleles in terms of evidence and impact categories
in Table 22.

Table 22: Distribution of clinicogenomic associations according to
evidence degree

Evidence Degree
Impact Degree Strong Moderate Weak Total
Strong 5 2 7
Moderate 3 1 4
Weak 42 123 33 198
Total 42 131 36 209
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CHAPTER 7

CLINICOGENOMIC ASSESSMENT AND REPORTING APPROACHES FOR
PROSTATE CANCER

In literature, there are various types of risk assessment and reporting approaches e.g.
collective reporting, model based risk assessment, polygenic risk scoring combining
genomic and/or environmental data (Figure 38).

Disease Risk Assessment and Reporting
Approaches

\ 4 A 4

[ G Rk Ratdse e } [Genomic and EnvirobehavioralJ

Risk Assessment

[ Collective Reporting }4— —P[ Collective Reporting }

Clinicogenomic Associations
Enviro-behavioral parameters

® (Clinicogenomic Associations

® (linical paramelers
Model Based Risk Model Based Risk
Assessment Assessment
® Cumulative models ® Risky parameter sequences

® Risky parameter sequences

[ Polygenic Risk Scoring } ‘DL Polygenic Risk Scoring \J

® Global risk assessment ® Global risk assessment
® Stratified screening and ® Stratified screening and
reclassification of risk reclassification of risk

Figure 38: Different approaches to evaluate disease risk based on clinicogenomic
associations.
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7.1 Genomic Based Risk Assessment and Reporting Approaches

With the advent of NGS technologies, it’s also possible to accomplish rapid and cheap whole
genome sequencing (WGS). Researchers and clinicians expect that WGS will be one of the
most important tools in personalized medicine age (Berg, et al., 2011), (Scheuner, et al.,
2009), (Wright, et al., 2011). SNPs are about 90% of all the genomic variations. Although
most are harmless, some of them have great values for disease risk assessment, and can be
utilized in medical diagnostics and pharmaceutical products (Poo, et al., 2011), (Aronson, et
al., 2012), (Drmanac, 2012).

With genome-wide association studies (GWAS), numerous SNPs can be recognized and
examined for their associations regarding the pathogenesis of complex diseases (Pearson &
Manolio, 2008). Following the GWAS and the filtering processes, hundreds to thousands of
clinically relevant variations, which have the potential to be the underlying reason, could be
extracted (Bamshad, et al., 2011), (Bick & Dimmock, 2011), (Biesecker, 2012), (Raffan &
Semple, 2011).

In medical care processes, genomic data and its derivatives can be used on risk assessment,
to predict disease susceptibility, targeted screening, clinical diagnosis, to predict the course
of the disease, and to create a treatment plan and follow-up (Ginsburg & Willard, 2009),
(Chan & Ginsburg, 2011).Today various methods and approaches are improving to utilize
clinicogenomic associations e.g. collective reporting, model based approaches and polygenic
risk scoring of personal genomic profile.

7.1.1 Collective Reporting of Genomic Risk Parameters

Independent associations and their effects as risk factors can be present one by one. If we
report a limited number of independent associations, this approach may be useful.
Especially, for diseased associated SNPs with strong impact and strong evidence can be
shared by users one by one. At this point, using carefully chosen graphics and visualization
techniques will be an efficient way.

In Partners Healthcare Center for Personalized Genetic Medicine, independent associations
are reported one by one (Figure 39).

Also, various DTC companies report personal genomic risk using graphics. These graphics

contain personal information representing relative risk and providing estimates of disease
prevalence as a reference point (Figure 40).

89



LABORATORY FOR MOLECULAR MEDICINE £ - CENTER FOR PERSONALIZED A toaching afiiate of:
PARTNERS.

65 Landsdowne St., Cambridge, MA 02139 GENETIC MEDICINE
PHONE: (617) 768-8500 / FAX: (617) 768-8513 WARTLRCANS g
http:lipcpgm partners. orgmm SCHOOL
I Name: John Doe

DOB: 01/23/45 Accession ID: 0123456789 Family # F12345

Sox: Male Specimen: Blood, Peripheral Reforring physician: John Smith, M.D.

Race: Caucaslan Recelved: 01/23/45 Referring facility: Doubile Helix Hospital

SAMPLE GENERAL GENOME REPORT SAMPLE

Sequencing of this individual's genome was performed and coverad 98.2% of all positions at 8X or higher, resulting in over 3.6 million
variants compared to a reference genome. These data were analyzed to identify previously reported vanants of potential clinical
refevance as well as novel vanants that could reasonably be assumed 10 cause disease (see methodology below). All results are
summarized on page 1 with further details provided on subsequent papes.

| RESULT SUMMARY
A. MONOGENIC DISEASE RISK: 1 VARIANT IDENTIFIED
This test identified 1 genetic vaniant that may be responsible for existing disease or the development of diseasa in this individual's

B. CARRIER RISK: 3 VARIANTS IDENTIFIED
mwmmmwsummuwm

B1. Cystic fibrosis Chronic lung and digestive R : _ D

disease c.1585-1G>A evidencs)
B2 M = . Musda di qcm Pat 3 (L;?m
B3. Usher syndrome type Il m“m mwﬂ Pathogenic None reported

As a camer for recassive genetic vaniants, this ndividual is at higher risk for having a child with one or more of thase highly penetrant
disorders. To detarmine the risk for this individual's children to be affected, the partner of this individual would also need to be tested for
these vanants. Other biologically related famidy members may also be camiers of these vanants.*Carmiers for some recessive disorders
may be at risk for cartain mild phenotypes. Please see vaniant descriptions for more informaton.

C. PHARMACOGENOMIC ASSOCIATIONS
mummmmwwmmmm Additional pharmacogenomic results may be requestad,
buwi = mmm dndoau'e

C1. Warfarin Decreased dose requrement

C2. Clopidogrel Typical nsk of bieeding and cardovascular events.
C3. Digoxin Increased sensm cancentration of digoxin.

C4. Metformin Typical giycemsc respense to metiormn

C5. Simvastatin Lowee risk of simvastatn-related mycpathy.

D. BLOOD GROUPS
This test identified the ABO Rh blood type as O positive. Addional blood group information is available at the end of the report.

nwouluuwmmmmmombmbmmunmmmmmmm
penetrant disease, or contributing to highly penetrant disease in a recessive manner. Not all variants identified have been
mmwamammmmmwmmmuwhm
mndmmmummmmimm mmwmmmu

classification and/o mewmmlmmm“m For questions about this
report, please contact the Genome Resource Center at GRC@partners. org.

Figure 39: A sample general genome report.
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Figure 40: Sample pictographs from 23andMe results (Lautenbach, et al., 2013).

But, most of the clinically relevant SNPs have minor effect (Odds Ratio <1.50-2.00) and
there are only limited number of different examples (Stranger, et al., 2011), (Kalf, et al.,
2013). Also an individual can have more than 1,000,000 genetic variants (Starren, et al.,
2012). Although the simplest reporting way of SNP variations is displaying these numerous
variations in laboratory report, clinicians cannot interpret or evaluate these information stack.
The volume of variation data integrated into clinical practice exceeds the boundaries of
unsupported human cognition and interpretive capacity. Additionally the rapidly growing
literature about clinicogenomic associations makes it more complicated to stay current for
even the professionals (Masys, et al., 2012). For this reason, we need more sofisticated and
improved approaches e.g. polygenic risk scoring and other types of model based approaches
etc.

In our study, we have developed our system to report all disease associated SNPs
individually with their magnitude of impact and quality of evidence. In evaluation step, we
assess all cases and controls regarding amounts and qualifications of these clinicogenomic
associations.

7.1.2  Genomic Risk Models

Despite the small impact degree of single clinicogenomic association, the combinations of
various SNP alleles may be declarative in the pathogenesis of diseases. Some investigators
attempt to improve models and multipanels assigning values for various SNP alleles and

estimates entire risk of disease for more effective risk prediction (Manolio, 2010).

To combine these type of clinicogenomic associations, cumulative model is mainly used, but
several different techniques also exist e.g. hybrid model based risky parameter sequences.
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7.1.2.1 Cumulative Models

In the literature, several cumulative prediction models have been proposed but most of these
are criticized regarding comprehensive evaluation especially for the lack of clinical utility
(Janssens & van Duijn, 2009), (Little, et al., 2012).

We have extracted few of the cumulative predictive models from the scientific literature. For
our study, we have checked rs number and allele values of climicogenomic associations and
adapted to forward DNA strand using dbSNP. Models which involve additional external
parameters e.g. family history were also determined. SNP alleles and genetic models of
cumulative models are summarized in Table 23.

Table 23: Some cumulative risk prediction models for prostate cancer.

— o o ) — o
ER| ER| 28| g 8 =%
S=| & c_é S| B= Z - 3=
Chr | rsnumber | Risk allele I| 5] II o NI = < g o f_f ml g
L5l ags | B2 o . Z o o .
Z2| =2 Z Z & N = Z <
Ps| GE| 25| YE| 35| 92
NSl o | V5| ©S Z ™ @
e -
1 |rs1819698 T D
2 |rs2710646 A R
2 |rs721048 A R
3  |rs10934853 A D
5 |rs2736098 A R
5 |rs401681 C D
6 |rs1800629 A D
7 |rs2348763 A R
8 rs1447295 A D D D D D
8 |rs16901979 A D D D
8 |rs16902094 G D
8 |rs445114 T D
8 |rs6983267 G D D D D
8 |rs6983561 C D
10 |rs10993994 T R R
11 |rs10896450 G D D
11 |rs11228565 A D
15 |rs10459592 T
15 |rs12439137 G D
15 |rs2470152 T D
17 |rs11649743 G R
17 |rs1859962 G R R R R R
17 |rs4430796 A D D R R
19 |[rs8102476 C D
20 | rs3787554 A
23(X) | rs5945572 A D D
External data Fa}mlly X X X
History

Chr: Chromosome, D: Dominant, R: Recessive, X: EXxist.
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Cumulative models can be considered as unification of impact of several clinicogenomic
associations using arithmetic operators. For some SNPs, only homozygote alleles are
involved in model (recessive model), but mostly heterozygote SNPs (dominant model) also
are parts of models. Both in dominant and recessive models, the values of risk SNPs are
accepted as one unit of impact. Alterations of SNPs’ impact values regarding homozygote
and heterozygote alleles are defined as the additive model (Figure 41). In our cases,
dominant and recessive models are remarked as in Table 23.

Normal (Homozygotes healthy)

( l | ‘eg%g‘{l; S gt
DA, —

1 .\6% c“‘( One risk allele (Heterozygote risky)
S ll .Lg ll-‘ ll & (ll from parent |

i’“ ﬂ“é‘l' \‘h ﬂ;&(l! from pren

Two risk alleles (Homozygote risky)

Npdipq) ——
e -

Genetic models Risk groups

Dominant Homozygotes and heterozygotes individuals

Recessive Only homozygotes individuals

Different risk degrees for homozygotes

Adiive and heterozygotes individuals

Figure 41: Schematic representation of possible genetic models.

In cumulative models, existence of each association contributes to the total. For example, in
5-SNP_Zheng model, there are five different SNPs. The genetic model is dominant for three
SNPs (rs1447295-A, rs16901979-A, rs6983267-G) and recessive for others (rs1859962-G,
rs4430796-A). For dominant models, homozygote and heterozygote combination of alleles
are identified as a risk factor in the same degree. For recessive models, only homozygote
combinations are risk factors and heterozygote combinations are accepted as harmless.
Through analysis of patient’s genotype, total impact values of clinicogenomic associations
are determined and calculated additively. Besides the associations for five different allelic
SNPs, existence of prostate cancer in family history is added as an additional impact factor.

93



Table 24 presents how the increased risk of prostate cancer in terms of odds ratio is
represented depending on total impact value. For example if patients without family history
has only one impact factor, the risk of having prostate cancer increases by 1.5 compared to
those who has none of the impact factors. If a patient has all of the five risk SNPs with
specified alleles and a positive family history for prostate cancer, total impact is calculated as
6. According to the Table 24 this would correspond to an increased risk of 9.46 for having
prostate cancer when compared to the general population.

Table 24: Reference table for 5-SNP_Zheng model (Zheng,

et al., 2008).
Total O ads ratio. Odds ratio
impact (W'thQUI Family (with Family History)
History)
0 1.00 (by definition) 1.00 (by definition)
1 1.50 (CI: 1.18-1.92) 1.62 (Cl: 1.27-2.08)
2 1.96 (Cl: 1.54-2.49) 2.07 (Cl: 1.62-2.64)
3 2.21 (CI: 1.70-2.89) 2.71 (ClI: 2.08-3.53)
4 4.47 (Cl: 2.93-6.80) 4.76 (Cl: 3.31-6.84)
5 4.47 (Cl: 2.93-6.80) | 9.46 (Cl: 3.62-24.72)
6 9.46 (Cl: 3.62-24.72)

We prepared a reference tables for all models containing total impact of involved parameters
and corresponding risk values. Full reference table for all cumulative models is in Appendix
B.

In this study, we evaluated all our cases and controls regarding determined six predictive
cumulative models and a hybrid based risky parameter sequences. Then the success of the
results were interpreted and discussed.

7.1.2.2 Evidence based Probabilistic Models

Among risk assessment tools besides cumulative models, there are other ongoing efforts
utilizing different data mining algorithms to interpret GWAS data for building various
predictive models.

In order to present how these modeling approaches could be implemented in our prototype
system, we also included such an examples into our study. This example is based on the
works of “Yiicebas and Aydin Son” to assess prostate cancer risk and was developed through
a hybrid approach combining Support Vector Machine (SVM) and ID3 decision tree based
on “A Multiethnic Genome-wide Scan of Prostate Cancer” data set from dbGaP database
(study accession no: phs000306 and version 2). The authors developed two kinds of model
in thi study i.e. first (only SNP) model and second (combined SNP and envirobehavioral)
model.

First hybrid model (only SNP model) includes 33 SNPs and their alleles and the accuracy,
precision, and recall values of this model are %71.6, %72.69 and %68.96 respectively.
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It’s possible to represent this kind of model using different approaches. In our study, we
identified each branch of decision tree corresponding prostate cancer as an association set.
When we transformed “Yiicebas-Aydin Son” first hybrid model (only SNP model), we
captured 154 different association sets containing the combination of several different SNPs
and alleles. Total list of decision tree and association sets is in Appendix C and D.

If an individual suitable for all parameters of one branch (i.e. association set), this individual
has a prostate cancer risk with the accuracy and precision of complete model. Table 25
presents an example of the reference table for association sets of first hybrid model.

Table 25: Reference table for Yiicebas and Aydin Son model
(Yiicebas & Aydin Son, 2014).

. Total count

Branch_id of SNPs Result
Branch_ 1 4
Branch 2 4 Prostate cancer risk
Branch_ 3 7 (Accuracy: %71.6;
Branch_4 9 Precision: %72.69; Recall:

%68.96)

Branch 5 2

The second (combined SNP and envirobehavioral) model was explained in 7.2.2.

7.1.3 Polygenic Risk Scoring

The dominant paradigm in human complex-trait genetics has been to map loci affecting
disease risk and then to identify the causative mutations. With new technologies, SNPs could
be used to produce a “genomic profile” for disease risk prediction testing hundreds of
thousands of loci across the personal genome (Wray, et al., 2007), (Evans, et al., 2009).

Today, most of the SNP based risk assessment models have limited predictive utility and
discriminative accuracy because most of the disease associated SNPs have small impacts
(Evans, et al., 2009). It has been suggested that, genomic risk scores based on large numbers
of SNPs could explain more heritability than models based on a small number and rigorously
validated SNPs. But it’s required to process large data sets to build such a discriminative risk
assessment models (Jostins & Barrett, 2011), (Wu, et al., 2013).

Genetic architecture of a disease refers to the number of genetic polymorphisms that affect
risk of disease, the distribution of their allelic frequencies, the distribution of their effect
sizes and their genetic mode of action (additive, dominant and/or epistatic). Prediction of
genetic risk depends on the underlying genetic architecture. Indeed, the SNPs do not have to
be the causative mutations. They just need to be in high linked disequilibrium with the
causative mutations so that there is a consistent association between the SNP and disease risk
(Wray, et al., 2008).
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7.1.3.1. Global Risk Assessment

The number of possible genotype combinations exponentially increase with the number of
contained variations (Janssens & van Duijn, 2009). A person has three different risk allele
combinations for every locus i.e. homozygote healthy (zero risk allele), heterozygote risky
(one risk allele), and homozygote risky (two risk alleles). For example, in a prostate cancer
case with thirty-one risk loci, the number of possible risk alleles can be ranged from zero (all
alleles healthy) to 62 (all alleles risky) and there are 3! distinct possible combinations of
these 31 alleles (Pashayan & Pharoah, 2012). For this reason, different type of polygenic
prediction models were developed to combine the impact of disease associated SNP data e.g.
count method, log-odds method, multiplicative model etc.

Count method is the calculation of total count of independent genomic risk alleles. In this
method disease risk (Nrisk);

N (risk) = 3" xi EQUATION (1)

where xi=number of risk alleles (0, 1, 2) at SNP i. This method assumes that all risk alleles
contribute equally to disease risk (Evans, et al., 2009).

Another method (log odds method), sums together the natural logarithm of the allelic odds
ratio for each risk allele;

log(risk) = " xi log (ORy) EQUATION (2)

where OR; is the allelic odds ratio (Evans, et al., 2009).

DTC testing companies typically employ a multiplicative model to calculate life time risk in
the absence of an established method for combining SNP risk estimates i.e. multiplication of
odds ratios of each genotype and average population risk. This model assumes that the
independent SNPs occur and behave independently (Nusbaum, et al., 2013).

Scores can be transformed into binary outcomes by defining high risk to be individuals with
a score greater than a threshold, and all others as low risk. The simplest measures of
classification accuracy are the sensitivity and specificity of the test. These values vary with
the choice of threshold, which represents the unavoidable trade-off between sensitivity and
specificity (Jostins & Barrett, 2011). Related definitions presented in Figure 42.

A plot of the sensitivity against (1-specificity) for all possible choices of thresholds is known
as a Receiver Operating Characteristic (ROC) curve. The area under the ROC curve (AUC)
has the pleasing property of being equal to the probability that a randomly selected
individuals with the disease has a higher score than a randomly selected healthy individuals
(Jostins & Barrett, 2011).

In the evaluation phase, we assessed total impact of independent associations (polygenic risk
score) based on five approaches i.e. number of SNP (based on both dominant and additive
models), evidence-impact-SNP degree (based on both dominant and additive models) and
the weighted version of number of SNP (dominant model).
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Disease (+) Disease (-)

Test (+) A
Test (-) B D

m Explanation

Probability that a test result will be positive when the disease

Seosivity AdiaE) is present (True Positive Rate-TPR, Recall).
Sarit Probability that a test result will be negative when the disease
Speciicity D7(C+D) is not present (True Negative Rate, TNR).
= e o Ratio between the probability of a positive test result given
Positive Likelihood Sensitivity / ¥ 2 N
Ratio (+LR) (1-Specifity) the presence of the disease and the probability of a positive

test result given the absence of the disease.

Ratio between the probability of a negative test result given
the presence of the disease and the probability of a negative
test result given the absence of the disease.

Negative Likelihood (1-Sensitivity) /
Ratio (-LR) Specificity

Positive Predictive Probability that the disease is present when the test is

Value (PPV) AT(AFC) positive (Precision).
Negative Predictive D/ (B+D) Probability that the disease is not present when the test is
Value (NPV) negative.
(A+D) / 5 : :
Accuracy (A+B+C+D) Proportion of true results in the population.

Figure 42: Concepts and terms about binary classification of medical tests (Macaskill, et al.,
2010), (Jenicek, 2013).

In the approach of “number of SNP”, we calculated total count of existing relevant SNPs. In
the dominant model, we only calculated the count of relevant SNPs, but in the additive
model we considered the value of homozygote SNPs two times compared to heterozygote
SNPs. In “evidence-impact-SNP” approach, for every existing SNP, we calculated an impact
degree using evidence degrees (1, 2, and 3) and impact degrees (1, 2, and 3). Also, similar to
the number of SNP calculation, for the additive model we assigned 1 and 2 to heterozygote
and homozygote SNPs as coefficients respectively. In weighted method, un-analyzed SNPs
were excluded.

Then, the sensitivity, specificity, PPV, NPV, ROC, and AUC, for every model was
calculated with XLSTAT 2014.1.06. Finally, results for all of the methods were compared
and interpreted to explain whether these tests were useful for diagnostic and/or screening
purposes.

7.1.3.2. Stratified Screening and Reclassification of Disease Risk

Presently, predictive risk models based on the identified common susceptible variations have
small values to assess disease risk. Recently, it’s proposed that these susceptible common
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variations can be used as screening tests for population level risk stratification (Pashayan &
Pharoah, 2012).

Screening tests are presumptive diagnostic techniques whose purpose is not to establish a
definitive diagnosis and prescribe treatment but to lead patients with positive results to a
more complete diagnostic workup and evaluation and treatment if needed (Jenicek, 2013).
Screening tests have high false-positive rates. Therefore, these tests are not ideal to predict
given medical condition in a population and typically definitive diagnostic tests are used to
precise diagnosis. The real advantage of population screening is to discover all possible
cases of clinical conditions in the population (maximum sensitivity). Suspected individuals
i.e. positive individuals regarding screening test, usually undergo subsequent procedures,
interventions, and tests (Khoury, et al., 2013).

In genomic medicine, risk-stratified population screening can be applied as only polygenic
risk profiling or combined with conventional risk factors (e.g. race, age, family history, etc.).
By this approach, reclassifying risk, standard public health interventions could be applied
more effective than conventional screening to each population stratum (Chowdhury, et al.,
2013), (Dent T, et al., 2013), (Manolio, 2013), (Pashayan, et al., 2013).

In our study, ages of all samples were in the same range. Ethnicity of cases and controls were
Caucasians. Family history data of samples were not exist. Therefore, we couldn’t evaluate
our data for stratified screening based on polygenic risk profiling and combined with
conventional risk. We attempt to develop an example approach using genomic and
envirobehavioral features in section 6.2.3.

7.2 Combined Genomic and Enviro-behavioral Risk Assessment

Common medical conditions e.g. heart disease, diabetes, schizophrenia, many types of
cancers, and obesity are complex and multifactorial conditions which are caused by
combination of multiple genes, lifestyle and environmental components (Janssens & van
Duijn, 2008).

Genomic variations are very common in population. Each common variation may play a low
role in the pathogenesis of complex diseases, but collectively all variations may be a strong
reason of these. In the presence of specific variation patterns, with the involvement of
environmental and behavioral causes clinical conditions may be triggered. In such cases, if
people with risky genotype patterns avoid from some environmental agents, they can prevent
themselves from possible manifest clinical conditions (National Cancer Institute, 2013A).

In disease risk assessment for common complex disease, it may be helpful to analysis the
existence of traditional risk factors for specific types of medical conditions (e.g., family
history, diet, physical activity etc.) by genetic rick score (Liu & Song, 2010).

Today, emerging technologies facilitated to collect different types of enviro-behavioral risk
factors. Currently, smartphone-based mobile applications, pre-programmed questionnaires,
wearable electronics and multi-sensor platforms (e.g. smart watches, wristband sensors,
wearable sensor patches, artificial reality-augmented glasses, brain computer interfaces,
wearable body metric textiles) can be used to collect personal physiological and
psychological data (Paddock, 2013), (Swan, 2012). Today, most favorite mobile health
applications are developed to track diet, exercises and weight management (Fox & Duggan,
2012).
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Recently, there are growing the number of sensors and applications to monitor several
physical, chemical and biological agents e.g. temperature, barometric pressure, humidity, air
quality, carbon monoxide, radiation levels, airborne contaminants etc. Some types of these
sensors are used to record and share data in real-time. Also, it’s possible to track movements
of individuals using mobile phones, and geolocation data can be used, for example, to help
determine exposure e.g. air pollutants (Van Tongeren & Cherrie, 2012).

Eventually, various approaches and models are developed combining genomic and enviro-
behavioral risk factors to assess possible risks for several common complex diseases.

In the literature, in addition to genetic factors, several diseases, sociodemographic
characteristics, environmental and behavioral exposures are proposed as confounders of
prostate cancer (Table 26). Therefore, we analyzed personal clinical and environmental
characteristics using possible disease risk prediction methods which are meaningful for
prostate cancer.

Table 26: List of various risk and protective factors for prostate cancer. (National Cancer
Institute, 2013B), (Sartor, 2013)

Sociodemographic Data

Age, Family health history, Ethnicity, Race

Environmental Sources

Animal fat, fruits, legumes, yellow-orange and cruciferous
Nutrition and diet vegetables, soy foods, dairy products, fatty fish, alcohol, coffee,
green tea, modified citrus pectin, pomegranate.

Multivitamins, supplement containing products (vitamin E -with or
Supplements without selenium, folic acid, zinc, calcium, vitamin D, retinoid),
zyflamend.

5 alpha-reductase inhibitors, Non-steroidal anti-inflammatory

Drugs drugs, statins, toremifene.

Vasectomy, barium enema, hip or pelvis x-rays, and external beam

Medical procedures radiation therapy for rectal cancer

Tobacco use Tobacco products, smoking.

Personal Health Status (Internal Environment)

Prostatitis, prostatic intraepithelial neoplasia, syphilis, skin basal
Diagnosis cell carcinoma, benign prostate hyperplasia (BPH), type 2 diabetes
mellitus (T2DM).

Anatomic

Measurements High BML.
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7.2.1  Collective Reporting of Genomic and Envirobehavioral Parameters

The Coriell Personalized Medicine Collaborative has been used graphics to communicate
genetic, environmental and lifestyle risks (Figure 43).
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Figure 43: Sample risk summary from the Coriell Institute for Medical Research.

If we have not an approved and proven model integrating enviro-behavioral and genomic
parameters as whole, it is impossible to accurately combine risks about genetic, familial,
environmental and behavioral factors as one relative risk number. Because, it’s not known
how these risk factors interact to each other and determine overall disease risk. Therefore,
the Coriell Institute for Medical Research preferred to provide risk values for each risk
factor.

Before reporting risk factors, because occasionally there are conflicting scientific
conclusions about effect type (risky, protective or normal), level of research evidence and
impact of parameters in the literature, these scientific findings should be evaluated, curated
and merged by domain experts.

During this process, the clinical impact value and quality of evidence degree should be
assigned to each type of independent associations. This is a critical process because a risk
factor may have a weak effect and strong evidence, but another factor may have a strong
effect but weak evidence. When reporting these risk (or protective) factors as a whole, all
aspects of the data need to be presented regarding the dimensions of clinical significance.
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In our knowledge sources, there are several different approaches and techniques to
categorize these parameters i.e. UpToDate Grading Guide
(http://www.uptodate.com/home/grading-guide), NCI Levels of Evidence for Cancer
Screening and Prevention Studies (http:/Iwww.
cancer.gov/cancertopics/pdg/screening/levels-of-evidence/HealthProfessional). These
grading methods should be compatible with each to be used as information sources in a
single system.

To visualize all independent uniparametric associations as a whole, we can use scatter graphs
where the axes corresponds to categories (low, medium, and high) of impact and quality
(Figure 44).
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Figure 44: A graphical visualization of complete environmental parameters for an example
case.

7.2.2 Envirogenomic Risk Models

Today, various researches carry out studies to develop envirogenomic risk models. A
statistical approach, and software were developed using envirogenomic parameters and
determining individual disease risk (Crouch, et al., 2013). Using this statistical risk model
and software, it’s suggested that, disease risk prediction of colorectal cancer could be
possible tracking and managing envirogenomic profile (selected SNPs, alcohol intake,
smoking, exercise levels, BMI, fibre intake and consumption of red and processed meat) and
prevention of disease could be accomplished changing risky lifestyle factors (Yarnall, et al.,
2013).

Another example of genome-environmental risk assessment model is based on a study of
“Yiicebas and Aydin Son”. In this study, to assess prostate cancer risk and was developed
through a hybrid approach combining Support Vector Machine (SVM) and 1D3 decision tree
based on “A Multiethnic Genome-wide Scan of Prostate Cancer” data set from dbGaP
database (study accession no: phs000306 and version 2). The authors developed two kinds
of model in this study i.e. first (only SNP) model and second (combined SNP and
envirobehavioral) model. In the second model of Yiicebas-Aydin Son hybrid based
association sets (risky parameter sequences), SNPs and BMI data was used. In this model, to
calculate the risk of some individuals we need smoking and alcohol consumption data.

101


http://www.uptodate.com/home/grading-guide
http://www.cancer.gov/cancertopics/pdq/screening/levels-of-evidence/HealthProfessional
http://www.cancer.gov/cancertopics/pdq/screening/levels-of-evidence/HealthProfessional

The second hybrid model originally was developed for African Americans and contains 23
association sets containing 28 SNPs, BMI, alcohol, and cigarette usages. The accuracy,
precision, and recall values of this model for African-Americans are %93.81, %96.55 and
%90.92 respectively (Yiicebas & Aydin Son, 2014).

Similar to cumulative models, to prepare these hybrid models, in first, we checked rs
numbers and adapted allele values of contained SNPs to forward DNA strand using doSNP.
After that, we converted the results of hybrid models as association sets. Total list of these
association sets is in Appendix E and F. Finally, we prepared a reference tables for both
models containing SNP parameters.

7.2.3 Polygenic Risk Scoring with Enviro-behavioral Parameters

7.2.3.1. Global Risk Assessment

Due to the complex genetic construction of many common diseases, it’s hard to explain the
associations and interactions between genetic and non-genetic risk factors. Thus, developing
analytic models to integrate genetic and non-genetic factors for disease risk assessment is a
still a critical problem (Salari, et al., 2012), (Khoury, et al., 2013).

In a study about cocaine dependence, a genome-environmental risk assessment model was
developed using 330 SNPs and nine potentially cocaine related facets of environment. Such
a genome-environmental risk assessment study simultaneously considers nearly one million
predictors and their possible interactions. In this study, to handle such a large amount of
data, a newly developed receiver operating characteristic approach i.e. tree-assembling ROC
(TA-ROC), was used (Wei, et al., 2012).

In our study, we proposed a simple demonstrative model for evaluation phase. This model is
needed to evaluate with large samples.

7.2.3.2. Stratified Screening and Reclassification of Disease Risk

Risk-stratified population screening approach can be applied as combined with conventional
risk factors (e.g. race, age, family history, etc.). By this approach, reclassifying risk, standard
public health interventions could be applied more effective than conventional screening to
each population stratum (Chowdhury, et al., 2013), (Dent T, et al., 2013), (Manolio, 2013),
(Pashayan, et al., 2013).

Disease associated SNP variations with enviro-behavioral or clinical parameters can be used
to reclassify the subjects who are initially assigned to a low-risk category on the basis on
different risk score. Reclassification can be of particular value in clinical decision making in
people defined as intermediate risk by standard guidelines (Manolio, 2013).

In our study, we analyzed the effects of possible risk factors on polygenic risk scores and
how we could use these factors to acquire more effective results.
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CHAPTER 8

EVALUATION OF THE COMPLEMENTARY COMPONENTS FOR PROSTATE
CANCER

8.1 Test Data

The proposed ClinGenKB and ClinGenWeb is evaluated by the real data (23andMe files) of
personal genome project (https://my.personalgenomes.org/public_genetic_data) as use cases.
This publicly available resource brings genomic, environmental and human trait data
together.

Among the data in personal genome project, we have extracted four 23andMe files that
belongs to men who have been diagnosed with prostate cancer. All of these patients were
white and over 60 years of age. As controls white men greater than 60 years of age were
selected. There were 15 healthy individual white men over the age of 60, whom 23andMe
file was provided (Table 27).

Table 27: Characteristics of genomic data owners.

Participant id Prostate Ancestral origin Birth

cancer year
01-hul213DA Yes Germany-Norway 1937
03-huD889CC Yes Ireland 1938
07-hu28F39C Yes United States 1943
13-hu6ED94A Yes United States-Austria 1950
02-hu59141C No United States-Canada 1937

United States-United
04-huF7E042 No Kingdom 1939
05-hu75BE2C No United States 1939
06-hu56B3B6 No United States 1941
08-huB59C05 No United States-Ireland 1943
10-hu7A2F1D No United States-Germany 1947
12-huD57BBF No United States 1949
14-huD7960A No Hungary-Ukraine-Russia 1951
15-hu2E413D No United States 1952
16-hu76CAA5 No United States 1952
United States-United

17-huA720D3 No Kingdom 1953
18-hu63DA55 No United States 1953
19-hu43860C No United Kingdom-Hungary 1954
20-huD00199 No Germany-Poland 1954
21-huAC827A No United States-Sweden 1954
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8.2 Preparation of Data

In the evaluation phase, first, we have generated personal CR-SNP data files for prostate
cancer from the original 23andMe files based on clinicogenomic associations. Then, we have
transferred clinicogenomic associations and the test data into ClinGenKB. Personal
clinicogenomic associations were acquired processing personal CR-SNP data with a smart
query based on ClinGenKB. After that, acquired clinicogenomic associations were
transferred into ClinGenWeb. Also, the relevant personal health data were transferred from
the personal genome project web site into the ClinGenWeb to be used in the determination of
disease risk based on the models. Finally, validity of the implemented models and
approaches were compared and discussed.

Prostate cancer assessment and reporting approaches and their specific examples which will
be evaluated in this chapter are summarized in Figure 45.

Prostate Cancer Risk Assessment and
Reporting Approaches

h 4 Y

Genomic and Envirobehavioral

Genomic Risk Assessment Risk Assessment

Collective Reporting Collective Reporting
® (Clinicogenomic Associations ® (Clinicogenomic Associations
(Personal disease associated ° g :
SNPs) Enviro-behavioral parameters
® (linical parameters
Model Based Risk Model Based Risk
Assessment Assessment
® Cumulative models ® Risky parameter sequences
(Helfand, Zheng, Salinas, Nam, Beuten) (Second model of Yucebas-Aydin
® Risky parameter sequences Son)
(First model of Yucebas-Aydin Son)
Polygenic Risk Scoring Polygenic Risk Scoring
® Global risk assessment ® Global risk assessment
(number of SNP and evidence- e Stratified screening and

impacl-SNP approaches with
dominant and additive models and
weighted score of number of SNP
dominant model)

® Stratified screening and
reclassification of risk

reclassification of risk

Figure 45: Prostate cancer assessment and reporting approaches.
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8.3 Evaluation Results

Complete results (independent association assessment, model based evaluations, and clinical
and environmental data) of test and evaluation processes were presented as a whole in
Appendix G.

8.3.1 Collective Reporting of Independent Clinicogenomic Associations

In our test scenario, we have searched 106 SNPs in case and control groups. Results of these
independent clinicogenomic associations are summarized in Table 28.

Table 28: Complete number of clinicogenomic associations.

PERSONAL- | HOMO- | HETERO- NOT-
ID ZYGOTE | ZYGOTE NORMAL ANALYZED TOTAL
o | 01-hu1213DA 13 38 42 13 106
1] 03-huD889CC 13 32 41 20 106
6 07-hu28F39C 21 28 48 9 106
13-hu6ED94A 16 36 34 20 106
17-huA720D3 18 36 43 9 106
21-huAC827A 17 37 43 9 106
10-hu7A2F1D 12 33 37 24 106
08-huB59C05 21 32 45 8 106
15-hu2E413D 19 34 45 8 106
| 06-hu56B3B6 14 39 45 8 106
O| 04-huF7E042 20 26 43 17 106
& 02-hu59141C 16 32 50 8 106
% 12-huD57BBF 9 39 50 8 106
O| 14-huD7960A 15 31 ol 9 106
16-hu76CAAS5 12 33 52 9 106
05-hu75BE2C 9 36 52 9 106
19-hu43860C 14 23 45 24 106
20-huD00199 22 21 53 10 106
18-hu63DA55 13 28 o7 8 106

Due to version differences of 23andMe genomic test, some of the SNPs were not included in
the analysis. Homozygote and heterozygote risk alleles are categorized as listed in table 28.

8.3.2 Genomic Risk Models Based Approaches

8.3.2.1. Cumulative Models

Overall results of cumulative models are in Appendix H. Results of these models are also
summarized in Table 29.

106



Due to lack of family history data of individuals; we couldn’t use this data to calculate
cumulative risks. In our limited number of cases, cumulative models were not successful at
predicting the outcome. But, like in the complete evaluation of independent associations, it
must be considered that, non-analyzed SNPs might be distorting the results.

While developing Table 29, we accepted the individuals which have OR values more than

2.5 as under risk. In this table, unknown means that, if the unmeasured SNPs could be
measured, there was a possibility to determine a risk.

Table 29: Summarized results for cumulative models

Model Case Control
ode OR>=25 OR<2.5 | Unknown OR>=25 OR<2.5 | Unknown
2
17-SNP_ (02-hu59141C,
Helfand 1 ) 3 12- 10 3
huD57BBF)
3
(01-
hul213D 1
9-SNP A, 03-
- 1 ! - a7- 12 2
Helfand huD889C
C. 07- huA720D39)
hu28F39
9,
5-SNP_
Zheng i 4 i i 15 i
5-S_NP_ i 4 i i 15 i
Salinas
4-SNP_
Nam i 4 i i 15 i
3-SNP_
Beuten i 2 2 i 13 2

Excluding the unknown results, the total evaluation of all models are in the Table 30.

Table 30: Risk calculation using only SNP model.

GROUPS PERSONAL-ID RESULTS
Case 01-hul213DA None
Control 02-hu59141C Yes (1)
Case 03-huD889CC None
Control 04-huF7E042 None

Control 05-hu75BE2C Yes
Control 06-hu56B3B6 None
Case 07-hu28F39C Yes (1)
Control 08-huB59C05 None
Control 10-hu7A2F1D None
Control 12-huD57BBF Yes (1)
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Table 30 (cont.): Risk calculation using only SNP

model.

Case 13-hu6ED94A Yes (1)
Control 14-huD7960A None
Control 15-hu2E413D None
Control 16-hu76 CAA5S None
Control 17-huA720D3 Yes (1)
Control 18-hu63DA55 None
Control 19-hu43860C None
Control 20-huD00199 None
Control 21-huAC827A None

The sensitivity (recall) of cumulative models are %50 and the specificity of these models are
%80. The accuracy rate is %73.68 and the precision rate is %40.

8.3.2.2. Probabilistic Models
The first model (only genotyping model) of Yiicebas-Aydin Son study was not able to

predict the disease outcome for any of the cases, as summarized in Table 31.

Table 31: Risk calculation using only SNP model.

GROUPS PERSONAL-ID RESULTS
Case 01-hul213DA Not exact
Control 02-hu59141C None
Case 03-huD889CC None
Control 04-huF7E042 None
Control 05-hu75BE2C Yes
Control 06-hu56B3B6 None
Case 07-hu28F39C None
Control 08-huB59C05 None
Control 10-hu7A2F1D None
Control 12-huD57BBF None
Case 13-hu6ED94A None
Control 14-huD7960A None
Control 15-hu2E413D None
Control 16-hu76CAA5 None
Control 17-huA720D3 None
Control 18-hu63DA55 None
Control 19-hu43860C None
Control 20-huD00199 None
Control 21-huAC827A None

108



One control was individual under prostate cancer risk and for one case risk there was an
uncertain risk i.e. needed further analysis with additional SNPs. All of other individuals
(cases and controls) did not have any risk regarding this model.

8.3.3 Polygenic Risk Scoring Based Approaches

In prostate cancer, known relevant SNPs have mostly modest odds ratio. Therefore, we
assessed total number and values of relevant personal SNPs with four approaches, namely
number of SNP dominant and additive models and evidence-impact-SNP dominant and
additive models. The results of sensitivity, specificity, PPV, NPV, ROC and AUC for every
model was presented and compared regarding the possible advantages of models as
diagnostic and screening test below.

8.3.3.1. Number of SNP-Dominant Model

This method is the calculation of total count of individual genomic risk SNPs (regardless of
allele characteristics). In this method disease risk (Nrisk);

N (risk) = 3" % (EQUATION 3)

where x;=existing of risk SNPs (0 or 1) at SNP i. The values of cases and controls are
presented in Table 32.

Table 32: Risk calculation using “Number of SNP-Dominant

Model”.
Group Patient _id Value
Control 19-hu43860C 37
Control 18-hu63DA55 41
Control 20-huD00199 43
Control 05-hu75BE2C 45
Control 10-hu7A2F1D 45
Control 16-hu76CAA5 45
Case 03-huD889CC 45
Control 04-huF7E042 46
Control 14-huD7960A 46
Control 02-hu59141C 48
Control 12-huD57BBF 48
Case 07-hu28F39C 49
Case 01-hul213DA 51
Case 13-hu6ED94A 52
Control 08-huB59C05 53
Control 15-hu2E413D 53
Control 06-hu56B3B6 54
Control 17-huA720D3 54
Control 21-huAC827A 54
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Minimum and maximum values of observations are 37 and 54 respectively. Mean value is
47, 842 and standard deviation is 4,845. Evaluation of “Number of SNP-Dominant Model”

is in Table 33.
Table 33: Evaluation of “Number of SNP-Dominant Model”.
Value |TP|TN|FP|FN | Sensitivity | Specificity| PPV | NPV | LR+ | LR- | Accuracy
37,000 4|0 (15| 0 1,000 0,000 0,211 1,000 0,211
41000 | 4 | 1 (14| 0 1,000 0,067 0,222 | 1,000 | 1,071 | 0,000 | 0,263
43,000 | 4 | 2 [13| 0 1,000 0,133 0,235 | 1,000 | 1,154 | 0,000 | 0,316
45000 | 4 | 3 |12| 0 1,000 0,200 0,250 | 1,000 | 1,250 | 0,000 | 0,368
46,000 | 3| 6 |91 0,750 0,400 0,250 | 0,857 | 1,250 | 0,625 | 0,474
48000 | 3| 8 |7 |1 0,750 0,533 0,300 | 0,889 | 1,607 | 0,469 | 0,579
49000 | 3 |10| 5|1 0,750 0,667 0,375 0,909 | 2,250 | 0,375 | 0,684
51,000 2 |10| 5| 2 0,500 0,667 0,286 | 0,833 | 1,500 | 0,750 | 0,632
52,000 | 1 |10| 5| 3 0,250 0,667 0,167 | 0,769 | 0,750 | 1,125 | 0,579
53,000 0 |10| 5 | 4 0,000 0,667 0,000 | 0,714 | 0,000 | 1,500 | 0,526
54,000 0 |12 | 3 | 4 0,000 0,800 0,000 | 0,750 | 0,000 | 1,250 | 0,632

Test is positive if Value >= threshold value (Bold row)
TP; True Positive, TN; True Negative, FP; False Positive, FN; False Negative, PPV; Positive
Predictive Value, NPV; Negative Predictive Value, LR+; Positive Likelihood Ratio, LR-;

Negative Likelihood Ratio.

Optimum threshold for diagnostic purposes is 49 for “Number of SNP-Dominant Model”

(Figure 46).
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Figure 46: Graphical representation of optimum threshold for “Number of SNP-Dominant

Model”.

Receiver-Operating Characteristic (ROC) is drawn in Figure 47. VValue of area under the
curve (AUC) is 0,575.
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Figure 47: Receiver-Operating Characteristic (ROC) graph of “Number of SNP-Dominant
Model”.

8.3.3.2. Number of SNP-Dominant Model-Weighted Score

Because different version of analyzing, personal genome file may contain different type of
SNPs. As explained in Table 28 (Complete number of clinicogenomic associations), some of
clinicogenomic associations were not analyzed. Therefore, we transformed the results based
on only analyzed SNPs and acquired weighted SNP risks by dividing total risky SNP by total
analyzed risky SNP.

This method is the weighted mean of total count of individual genomic risk SNPs (regardless
of allele characteristics). In this method weighted disease risk score (Nrisk);

N (risk) = (X x)/S (EQUATION 4)

where x;=existing of risk SNPs (0 or 1) at SNP and S= number of analyzed SNP. The values
of cases and controls are presented in Table 34.

Table 34: Weighted scores for Number of SNP-Dominant Model-Weighted Score

PERSONAL-| HOMO- HETERO- NOT- WEIGHTED
GROUP ID ZYGOTE | ZYGOTE |ANALYZED TOTAL SN(PDIIT/II)SK
13-

Case huSED9Y4A 16 36 20 106 0,60
Control | 10-hu7A2F1D 12 33 24 106 0,55
Control |21-huAC827A 17 37 9 106 0,56
Control | 17-huA720D3 18 36 9 106 0,56

Case 01-hul213DA 13 38 13 106 0,55
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Table 34 (cont.): Weighted scores for Number of SNP-Dominant Model-Weighted Score

PERSONAL-| HOMO- | HETERO- | NOT- WEIGHTED
GROUP ID ZYGOTE | ZYGOTE |ANALYZED| OTAL SN(FI’DIF\{A')SK
Control | 08-huB59C05 21 32 8 106 0,54
Control | 06-hu56B386 14 39 8 106 0,54
Control | 15-hu2E413D 19 34 8 106 0,54
Control | 04-huF7E042 20 26 17 106 0,52
03-

Case | .00 13 32 20 106 0,52

Case |07-hu28F3oC| 21 28 9 106 0,51
Control | 02-hu59141C 16 32 8 106 0,49
Control | 12-huD57BBF 9 39 8 106 0,49
Control | 19-hu43860C 14 23 24 106 0,45
Control | 16-nu76CAAS | 12 33 9 106 0,46
Control | 05-hu75BE2C 9 36 9 106 0,46
Control | 14-huD7960A | 15 31 9 106 0,47
Control | 20-huD00199 22 21 10 106 0,45
Control | 18-hu63DA55 | 13 28 8 106 0,42

Minimum and maximum values of observations are 0,418 and 0,605 respectively. Mean
value is 0,510 and standard deviation is 0,048. Evaluation of “Number of SNP-Dominant
Model” is in Table 35.

Table 35: Evaluation of “Number of SNP-Dominant Model--Weighted Score”

\S’\I’\fF',ggt.ed TP | TN | FP | FN | Sensitivity | Specificity | PPV | NPV | LR+ | LR- | Accuracy
isk
0,418 4 10([15]0 1,000 0,000 0,500 1,000 0,211
0,448 411 ]14]0 1,000 0,067 0,517 | 1,000 | 1,071 | 0,000 | 0,263
0,451 412130 1,000 0,133 0,536 | 1,000 | 1,154 | 0,000 | 0,316
0,464 4 13 [12]0 1,000 0,200 0,556 | 1,000 | 1,250 | 0,000 | 0,368
0,474 415100 1,000 0,333 0,600 | 1,000 | 1,500 | 0,000 | 0,474
0,490 416 [9]0 1,000 0,400 0,625 | 1,000 | 1,667 | 0,000 | 0,526
0,505 4 18|71]0 1,000 0,533 0,682 | 1,000 | 2,143 | 0,000 | 0,632
0,517 31871 0,750 0,533 0,616 | 0,681 | 1,607 | 0,469 | 0,579
0,523 31961 0,750 0,600 0,652 | 0,706 | 1,875 | 0,417 | 0,632
0,541 219162 0,500 0,600 0,556 | 0,545 | 1,250 | 0,833 | 0,579
0,548 2 112|132 0,500 0,800 0,714 | 0,615 | 2,500 | 0,625 | 0,737
0,549 1112133 0,250 0,800 0,556 | 0,516 | 1,250 | 0,938 | 0,684
0,557 1113]2 |3 0,250 0,867 0,652 | 0,536 | 1,875 0,865 | 0,737
0,605 1115/ 0 | 3 0,250 1,000 1,000 | 0,571 | +Inf | 0,750 | 0,842
Test is positive if Value >= threshold value (Bold row) TP; True Positive, TN; True Negative, FP;
False Positive, FN; False Negative, PPV; Positive Predictive Value, NPV; Negative Predictive
Value, LR+; Positive Likelihood Ratio, LR-; Negative Likelihood Ratio.
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Optimum threshold for diagnostic purposes is 0,505 for “Number of SNP-Dominant Model-
Weighted Score” (Figure 48).
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Figure 48: Graphical representation of optimum threshold for “Number of SNP-Dominant
Model- Weighted Score”.

Value of area under the curve (AUC) is 0,733. ROC graph of “Number of SNP-Dominant
Model-Weighted Score” is presented in Figure 49.
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Figure 49: Receiver-Operating Characteristic (ROC) graph of “Number of SNP-Dominant
Model-Weighted Score”.
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8.3.3.3. Number of SNP-Additive Model

This method is the calculation of total count of individual genomic risk alleles. In this
method disease risk (Nrisk);

N (risk) = 3" xi (EQUATION 5)

where xi=number of risk alleles (0=homozygote healthy, 1=heterozygote risky,
2=homozygote risky) at SNP i. The values of cases and controls are presented in Table 36.

Table 36: Risk calculation using “Number of SNP-Additive Model”.

Group Patient_id Value
Control 19-hu43860C 51
Control 05-hu75BE2C 54
Control 18-hu63DA55 54
Control 10-hu7A2F1D 57
Control 12-huD57BBF 57
Control 16-hu76CAAS 57
Case 03-huD889CC 58
Control 14-huD7960A 61
Control 02-hu59141C 64
Case 01-hul213DA 64
Control 20-huD00199 65
Control 04-huF7E042 66
Control 06-hu56B3B6 68
Case 13-hu6ED94A 68
Case 07-hu28F39C 70
Control 21-huAC827A 71
Control 15-hu2E413D 72
Control 17-huA720D3 12
Control 08-huB59C05 74

Minimum and maximum values of observations are 51 and 74 respectively. Mean value is
63,316 and standard deviation is 7,079. Evaluation of “Number of SNP-Additive Model” is
in Table 37.

Table 37; Evaluation of “Number of SNP-Additive Model”.

Value | TP | TN | FP | EN | Sensitivity | Specificity | PPV | NPV | LR+ | LR- | Accuracy

51,000 | 4 0 |15] 0 1,000 0,000 0,211 1,000 0,211
54,000 | 4 1 (1410 1,000 0,067 0,222 | 1,000 | 1,071 | 0,000 | 0,263
57,000 | 4 3 [12] 0 1,000 0,200 0,250 | 1,000 | 1,250 | 0,000 | 0,368
58,000 | 4 6 9]0 1,000 0,400 0,308 | 1,000 | 1,667 | 0,000 | 0,526
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Table 37 (cont.): Evaluation of “Number of SNP-Additive Model”.

Value | TP | TN | FP | FN | Sensitivity | Specificity | PPV | NPV | LR+ | LR- |Accuracy
61,000 | 3 6 | 9|1 0,750 0,400 |0,250|0,857|1,250|0,625| 0,474
64,000 | 3 7 181 0,750 0,467 |0,273|0,875| 1,406 | 0,536 | 0,526
65,000 | 2 8 | 7|2 0,500 0,533 |0,222|0,800|1,071|0,938| 0,526
66,000 | 2 9 | 6| 2 0,500 0,600 |0,2500,818|1,250|0,833| 0,579
68,000 2 |10 | 5| 2 0,500 0,667 |0,286|0,833|1,500|0,750| 0,632
70000 1 [ 11 | 4 | 3 0,250 0,733 |0,200| 0,786 | 0,938 | 1,023 | 0,632
71000 O | 11 | 4 | 4 0,000 0,733 |0,000 | 0,733 | 0,000 | 1,364 | 0,579
72000 | 0 |12 | 3 | 4 0,000 0,800 | 0,000 | 0,750 | 0,000 | 1,250 | 0,632
74000 O |14 | 1 | 4 0,000 0,933 |0,000]|0,778 | 0,000 | 1,071 | 0,737

Test is positive if Value >= threshold value (Bold row)
TP; True Positive, TN; True Negative, FP; False Positive, FN; False Negative, PPV; Positive

Predictive Value, NPV; Negative Predictive Value, LR+; Positive Likelihood Ratio, LR-; Negative
Likelihood Ratio.

Optimum threshold for diagnostic purposes is 49 for “Number of SNP-Additive Model”

(Figure 50).
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Figure 50: Graphical representation of optimum threshold for “Number of SNP-Additive
Model”.

Receiver-Operating Characteristic (ROC) is drawn in Figure 51. Value of area under the

curve (AUC) is 0,583.

115




ROC Curve / Value / AUC=0,583

[

o o o o o o
> wn ) N %) ©

True positive rate (Sensitivity)
o
w

0,2 +

01 +

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
False positive rate (1 - Specificity)

Figure 51: Receiver-Operating Characteristic (ROC) graph of “Number of SNP-Additive
Model”.

8.3.3.4. Evidence-Impact-SNP- Dominant Model

This method is the summation of the evidence and impact values of complete individual
genomic risk SNPs regardless of allele characteristics. In this method disease risk (Nrisk);

N (risk) = (> xi) i E; (EQUATION 6)

where x=existing of risk SNPs (0 or 1), li=magnitude of impact degree, Ei=quality of
evidence degree at SNP i. The values of cases and controls are presented in Table 38.

Table 38: Risk calculation using “Evidence-Impact-SNP- Dominant Model”.

Group Patient_id Value
Control 19-hu43860C 122
Control 18-hu63DA55 132
Control 20-huD00199 133
Case 03-huD889CC 137
Control 14-huD7960A 142
Control 05-hu75BE2C 143
Control 16-hu76CAA5 143
Control 10-hu7A2F1D 145
Control 04-huF7E042 145
Control 12-huD57BBF 147
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Table 38 (cont.): Risk calculation using “Evidence-Impact-SNP- Dominant

Model”.

Group Patient _id Value
Control 02-hu59141C 150

Case 07-hu28F39C 152

Case 01-hul213DA 159
Control 15-hu2E413D 161

Case 13-hu6ED94A 161
Control 06-hu56B3B6 164
Control 17-huA720D3 166
Control 08-huB59C05 166
Control 21-huAC827A 170

Minimum and maximum values of observations are 122 and 170 respectively. Mean value is
149,368 and standard deviation is 13,363. Evaluation of “Evidence-Impact-SNP- Dominant

Model” is in Table 39.

Table 39: Evaluation of “Evidence-Impact-SNP- Dominant Model”.

Value | TP | TN | FP | FN | Sensitivity | Specificity| PPV | NPV | LR+ | LR- | Accuracy
122,000 4 0 |[15] 0 1,000 0,000 |0,211 1,000 0,211
132,000| 4 1 [14] 0 1,000 0,067 |0,222|1,000|1,071|0,000| 0,263
133,000 4 2 | 13] 0 1,000 0,133 |0,235|1,000| 1,154 |0,000| 0,316
137,000 4 3 |12] 0 1,000 0,200 | 0,250 | 1,000 | 1,250 | 0,000 | 0,368
142,000 3 3 |12] 1 0,750 0,200 |0,200|0,750 {0,938 | 1,250 | 0,316
143,000 3 4 11| 1 0,750 0,267 |0,214 0,800 | 1,023 | 0,938 | 0,368
145,000 3 6 9 1 0,750 0,400 |0,250|0,857 1,250 |0,625| 0,474
147,000 3 8 7 1 0,750 0,533 |0,3000,889 | 1,607 |0,469 | 0,579
150,000 3 9 6 1 0,750 0,600 |0,333|0,900|1,875|0,417| 0,632
152,000 3 10 | 5 1 0,750 0,667 |0,375|0,909 | 2,250 | 0,375 | 0,684
159,000 2 10 | 5 | 2 0,500 0,667 |0,286|0,833|1,500|0,750| 0,632
161,000 1 10 | 5 | 3 0,250 0,667 |0,167 0,769 | 0,750 | 1,125 | 0,579
164,000 0O 11 | 4 | 4 0,000 0,733 | 0,000 | 0,733 0,000 | 1,364 | 0,579
166,000 O 12 | 3 | 4 0,000 0,800 | 0,000 | 0,750 | 0,000 | 1,250 | 0,632
170,000 O 14 |11 | 4 0,000 0,933 |0,000 0,778 | 0,000 | 1,071 | 0,737

Test is positive if Value >= threshold value (Bold row)
TP; True Positive, TN; True Negative, FP; False Positive, FN; False Negative, PPV; Positive

Predictive Value, NPV; Negative Predictive Value, LR+; Positive Likelihood Ratio, LR-; Negative
Likelihood Ratio.

Optimum threshold for diagnostic purposes is 49 for “Evidence-Impact-SNP- Dominant
Model” (Figure 52).
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Figure 52: Graphical representation of optimum threshold for “Evidence-Impact-SNP-
Dominant Model”.

Value of area under the curve (AUC) is 0,558. ROC graph of “Evidence-Impact-SNP-
Dominant Model” is presented in Figure 53.
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Figure 53: Receiver-Operating Characteristic (ROC) graph of Evidence-Impact-SNP-
Dominant Model”.

8.3.3.5. Evidence-Impact-SNP- Additive Model

This method is the sum of the evidence and impact values of complete individual genomic
risk alleles. In this method disease risk (Nrisk);

118



N (risk) = (> xi) i Ej (EQUATION 7)

where xi=number of risk alleles (0=homozygote healthy, 1=heterozygote risky,
2=homozygote risky), li=magnitude of impact degree, Ei=quality of evidence degree at SNP
i. The values of cases and controls are presented in Table 40.

Table 40: Risk calculation using “Evidence-Impact-SNP- Additive Model”.

Group Patient_id Value
Control 08-huB59C05 236
Control 21-huAC827A 225
Control 17-huA720D3 222
Case 07-hu28F39C 220
Control 15-hu2E413D 219
Control 04-huF7E042 210
Case 13-hu6ED94A 210
Control 06-hu56B3B6 210
Control 20-huD00199 204
Control 02-hu59141C 202
Case 01-hul213DA 198
Control 10-hu7A2F1D 190
Control 14-huD7960A 189
Control 16-hu76CAA5 182
Control 18-hu63DA55 179
Control 12-huD57BBF 177
Case 03-huD889CC 177
Control 05-hu75BE2C 172
Control 19-hu43860C 171

Minimum and maximum values of observations are 171 and 236 respectively. Mean value is
199,632 and standard deviation is 19,939. Evaluation of “Evidence-Impact-SNP- Additive
Model” is in Table 41.

Table 41: Evaluation of “Evidence-Impact-SNP- Additive Model”.

Value |TP|TN|FP|FN |Sensitivity | Specificity| PPV | NPV | LR+ | LR- | Accuracy
171,000 4 | 0 |15| O 1,000 0,000 0,211 1,000 0,211
172,000 4 | 1 |14 O 1,000 0,067 0,222 | 1,000 | 1,071 | 0,000 | 0,263
177,000 4 | 2 |13| O 1,000 0,133 0,235 | 1,000 | 1,154 | 0,000 | 0,316
179,000 3 | 3 |12 1 0,750 0,200 0,200 | 0,750 | 0,938 | 1,250 | 0,316
182,000 3 | 4 |11 1 0,750 0,267 0,214 | 0,800 | 1,023 | 0,938 | 0,368
189,000 3 | 5 |10 1 0,750 0,333 0,231 10,833 1,125 | 0,750 | 0,421
190,000 3 | 6 | 9 | 1 0,750 0,400 0,250 | 0,857 | 1,250 | 0,625 | 0,474
198000 3 | 7 | 8| 1 0,750 0,467 0,273 10,875 | 1,406 | 0,536 | 0,526
202,000 2 | 7 | 8 | 2 0,500 0,467 0,200 | 0,778 | 0,938 | 1,071 | 0,474
204,000 2 | 8 | 7 | 2 0,500 0,533 0,222 | 0,800 | 1,071 | 0,938 | 0,526
210,000 2 | 9 | 6 | 2 0,500 0,600 0,250 | 0,818 | 1,250 | 0,833 | 0,579
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Table 41 (cont.): Evaluation of “Evidence-Impact-SNP- Additive Model”.

Value | TP | TN |FP |FN|Sensitivity | Specificity| PPV | NPV | LR+ | LR- | Accuracy
219000) 1 (114 | 3 0,250 0,733 10,200 | 0,786 | 0,938 | 1,023 | 0,632
220,0000 1 (123 | 3 0,250 0,800 ]0,250|0,800 | 1,250 0,938 | 0,684
222,000 0 (12| 3 | 4 0,000 0,800 |0,000|0,750|0,000|1,250| 0,632
2250000 0 132 | 4 0,000 0,867 0,000 | 0,765 | 0,000 | 1,154 | 0,684
236,0000 0 (141 | 4 0,000 0,933 ]0,000|0,778 0,000 | 1,071 | 0,737

Test is positive if Value >= threshold value (Bold row)
TP; True Positive, TN; True Negative, FP; False Positive, FN; False Negative, PPV; Positive
Predictive Value, NPV; Negative Predictive Value, LR+; Positive Likelihood Ratio, LR-;

Negative Likelihood Ratio.

Optimum threshold for diagnostic purposes is 49 for “Evidence-Impact-SNP- Additive
Model” (Figure 54).
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Figure 54: Graphical representation of optimum threshold for “Evidence-Impact-SNP-

Additive Model”.

Value of area under the curve (AUC) is 0,525. ROC graph of “Evidence-Impact-SNP-
Additive Model” is presented in Figure 55.
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Figure 55: Receiver-Operating Characteristic (ROC) graph of “Evidence-Impact-SNP-
Additive Model”.

When we have evaluated and compared the performance of the models which explained
these approaches and indicators, the “Number of SNP-Dominant Model-Weighted Score”
become more prominent (Table 42). But, it must be remembered that, the sample size is too
small and we need to evaluate these results in larger data samples.

Table 42: Comparison of different models regarding several performance indicators.

Models Sensitivity | Specificity | PPV | NPV | LR+ | LR- | Accuracy | AUC
Number of
SNP-
Dominant
Model
Number of
SNP-
Dominant
Model-
Weighted
Score
Number of
SNP-Additive 1,000 0,400 0,308 | 1,000 | 1,667 | 0,000 | 0,526 | 0,583
Model
Evidence-
Impact-SNP-
Dominant
Model
Evidence-
Impact-SNP-
Additive
Model

0,750 0,667 |0,375|0,909|2,250|0,375| 0,684 | 0,575

1,000 0,533 ]0,682|1,000|2,143 0,000 0,632 |0,733

0,750 0,667 ]0,375|0,909 2,250 (0,375| 0,684 | 0,558

0,750 0,467 |0,273|0,875|1,406|0,536| 0,526 | 0,525
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8.3.4 Collective Reporting of Genomic and Envirobehavioral

Parameters

Disease Risk

Prostate cancer is a polygenic multifactorial disease and both environmental, and genetic
factors take important roles in its pathogenic mechanism. Therefore, if we analyze genomic
risks with clinical and environmental characteristics, we can infer some useful results. But
in literature, there are many controversial risk or protective factors about prostate cancer.
Characteristics of cases and control regarding clinical and environmental risk factors for
prostate cancer is summarized in Table 43.

Table 43: Clinical, environmental and behavioral risk factors of cases and control.

Risk factors Individuals Protective factors
Cases
Hypercholesterolemia, BPH? 01-hul213DA
Syphilis 03-huD889CC

Hypercholesterolemia, BPH
Lipitor

07-hu28F39C

Obesity, Hypercholesterolemia
Simvastatin

13-hu6ED94A

Controls
Obesity T2DM .
A 02-hu59141C | Vegetable consumption,
Multivitamins . g
Regular physical activity (?)
BPH 04-huF7E042 | TURP (2010)

05-hu75BE2C

Regular physical activity

Obesity, Hypercholesterolemia,
Chlamydia Infection, Alcoholism
Ibuprofen, Multivitamin

Folic Acid, Vitamin E, Selenium

06-hu56B3B6

Basal cell skin cancer,
Lycopene, Pomegranate

Obesity

08-huB59C05

Hypercholesterolemia
Atorvastatin

10-hu7A2F1D

Non-melanoma skin cancer,
Regular physical activity

Hypercholesterolemia, BPH
Simvastatin, Aspirin

12-huD57BBF

Regular physical activity

Vasectomy

Overweight,

Hypercholesterolemia, BPH 14-huD7960A | T2DM
Overweight 15-hu2E413D

Overweight 16-hu76CAA5 | Omega-3 Fish Oil
Aspirin

Hypercholesterolemia
Aspirin, Multivitamin

17-huA720D3

Phytosterols, Omega-3 Fish OQil,
Melatonin

18-hu63DA55

Omega-3 Fish Qil

Overweight, Hypercholesterolemia
Lovastatin

19-hu43860C

Non-melanoma skin cancer

Overweight, Hypercholesterolemia
Atorvastatin

20-huD00199

Overweight, Hypercholesterolemia
Simvastatin

21-huAC827A

Hypogonadism

'Benign enlargement of prostate gland (Benign Prostate Hyperplasia, BPH) mostly is not
accepted as a risk factor for prostate cancer, although the two frequently coexist.
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In enviro-behavioral and clinical evaluation, it was found that patient “03-huD889CC” had
previously diagnosed as syphilis. In some publications, syphilis is accepted as a modest risk
factor for prostate cancer (Sartor, 2013).

In high valued control individuals; “06-hu56B3B6” had basal cell carcinoma, 10-hu7A2F1D
and 19-hu43860C had non-melanoma skin cancer and “21-huAC827A” had hypogonadism
i.e. low level of testosterone. Both of these clinical conditions decreases the prostate cancer
risk (National Cancer Institute, 2013B), (Sartor, 2013).

Also “06-hu56B3B6” and “17-huA720D3” uses several risky and protective drugs and
supplements regarding prostate cancer risk.

In patient “08-huB59C05” and “15-hu2E413D”, we have not enough data to evaluate risk
and protective factors. In health records of some cases and controls, there were several data
about nutritional status, physical activity and usages of supplement data, etc. But, due to lack
of precise measurement information (amount, period, duration, etc.) these data couldn’t use
for evaluation.

8.3.5 Envirogenomic Model Based Approaches

In second hybrid model of Yiicebas-Aydin Son study, one patient was determined as under
risk, two patients cannot be evaluated because of data incompleteness (smoking and alcohol
consumption data) and one patient (03-huD889CC) was determined as risk-free. In controls,
only one individual (04-huF7E042) was determined in risk group but six individuals was
determined as risk-free. Eight individuals of this group cannot be evaluated due to data
incompleteness. Although this model was produced for African Americans, and we had
limited number of cases and controls for the evaluation process, this model was the most
successful approach compared to other approaches. Interestingly, patient (03-huD889CC)
who was determined as risk free is the same individual with the patient who was determined
as in low risk group in the complete assessment approaches.

8.3.6  Polygenic Risk Scoring and Envirobehavioral Parameters Based Approaches

8.3.6.1. Global Risk Assessment

In scientific literature, various disease are indicated as important factors to increase or
decrease the risk of prostate cancer e.g. syphilis, hypogonadism, non-melanoma skin
cancers, diabetes mellitus etc.

There is a significant modest relationship between the risk of prostate cancer and the history
of syphilis or gonorrhea (Sartor, 2013).

In some references, androgenic exposure of the prostate gland is studied as a risk factor.
Ecological studies have ensured relationship between serum levels of testosterone and
overall risk of prostate cancer (National Cancer Institute, 2013B). For this reason,
hypogonadism may be a protective condition for prostate cancer. Additionally, testosterone
supplementation for hypogonadism treatment does not increased risk of prostate cancer
(Sartor, 2013).
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Exposure to sunlight may ensure a protection for prostate cancer. The reason of this
association is not clarified but the mechanism possibly related with vitamin D metabolism.

Long term sunlight is also a major cause of non-melanoma skin cancers (Sartor, 2013).

And finally, patients with diabetes may have a lower risk of prostate cancer. The mechanism
is not clear but the level of blood IGF-1 is proposed as a reason (Cancer Research UK,

2014).

We can produce a hypothetic risk assessment model based on personal genomic risk score
and various risk factors to reclassify disease risk. In our model we used comorbidities,
previous diseases and polygenic risk score based on number of SNP-Dominant Model. The
values of cases and controls are presented in Table 44.

Table 44: Global risk assessment model containing polygenic risk score and co-morbidities.

Total

Risk

Risky/

GROUP PERSONAL- | Risky PrRo'I[Zl((:%/iCe categor P_olygenic protecti_V(_e L?;il
ID SNP comorbidities y of | risk value | comorbidit Value
(DM) SNP y value

Control | 17-huA720D3 54 High 1,00 0,00 1,00

Control | 21-huAC827A 54 | hypogonadism | High 1,00 -1,00 0,00

Control | 08-huB59C05 53 High 1,00 0,00 1,00

Control | 15-hu2E413D 53 High 1,00 0,00 1,00

basal cell .

Control | 06-hu56B3B6 53 . High 1,00 -1,00 0,00
carcinoma

Case | 13-hu6ED94A | 52 High 1,00 0,00 1,00

Case | 01-hul213DA 51 High 1,00 0,00 1,00

Case | 07-hu28F39C 49 High 1,00 0,00 1,00

Control | 12-huD57BBF | 48 Low 0,00 0,00 0,00

Control | 02-hu59141C 48 T2DM Low 0,00 -1,00 -1,00

Control | 04-huF7E042 46 Low 0,00 0,00 0,00

Control | 14-huD7960A 46 T2DM Low 0,00 -1,00 -1,00

Case | 03-huD889CC | 45 syphilis Low 0,00 1,00 1,00

Control | 05-hu75BE2C 45 Low 0,00 0,00 0,00

Control | 16-hu76CAA5 45 Low 0,00 0,00 0,00

Non-

Control | 10-hu7A2F1D 45 melanoma Low 0,00 -1,00 -1,00
skin cancer

Control | 20-huD00199 43 Low 0,00 0,00 0,00

Control | 18-hu63DA55 41 Low 0,00 0,00 0,00

Non-

Control | 19-hu43860C 37 melanoma Low 0,00 0,00 0,00

skin cancer

Risky comorbidites: Syphilis

Protective comorbidites: Hypogonadism, Basal Cell Carcinoma, Type 2 Diabetes Mellitus
(T2DM), Non-Melanoma Skin Cancer.
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In this model, for polygenic risk scores we determined high and low risk categories using 49
as a threshold and assigned 1 point for high risk category and 0 point for low risk category.
Then, we determined risky and protective comorbidities and assigned 1 point for risky
disease and -1 point for protective disease. Then we summed all these values and found total
risk value for global risk assessment model containing polygenic risk score and
comorbidities. Then we evaluated these values (Table 45).

Table 45: Evaluation of global risk assessment model.

Upper bound

Statistic Value | Lower bound (95%) (95%)
Sensitivity 1,000 0,450 1,000
Specificity 0,786 0,515 0,929
False positive rate 0,214 0,025 0,404
False negative rate 0,000 0,000 0,000
PPV (Positive Predictive Value) 0,571 0,205 0,938
NPV (Negative Predictive Value) 1,000 1,000 1,000
LR+ (Positive likelihood ratio) 4,667 1,712 12,724
LR- (Negative likelihood ratio) 0,000

8.3.6.2. Stratified Screening and Reclassification of Disease Risk

Using same parameters as in simple global risk assessment model, we developed a stratified
screening model. In our model, firstly we evaluated comorbidities and excluded risky and
protective comorbidities. We accepted risky comorbidities as “High Risk “category and
protective comorbidities as “Low Risk” free from polygenic risk score.

After that, we have 3 cases and 9 controls and re-evaluate these individuals.

Total analysis of these approach is in Table 46.

Table 46: Evaluation of the stratified screening model.

Upper bound

Statistic Value | Lower bound (95%) (95%0)
Sensitivity 1,000 0,450 1,000
Specificity 0,800 0,539 0,935
False positive rate 0,200 0,020 0,380
False negative rate 0,000 0,000 0,000
PPV (Positive Predictive

Value) 0,211 0,027 0,394
NPV (Negative Predictive

Value) 0,571 0,205 0,938
LR+ (Positive likelihood ratio) 1,000 1,000 1,000
LR- (Negative likelihood ratio) 5,000 1,817 13,757
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CHAPTER 9

DISCUSSION

9.1 Principal Results

In this study, we extended current architecture of a centralized national EHR i.e. NHIS-T and
developed some complementary capabilities namely knowledge base (ClinGenKB) and
reporting application (ClinGenWeb) to predict risk of diseases using SNP data.

With respect to interoperability, HL7 CG-SIG developed several standards and guidelines
and try to cross the chasm between genomic laboratory and clinical practice. Comparing
current and requiring infrastructure characteristics and determining some terminology
standards for genome enabled messaging, NHIS-T can be adapted to HL7 CG standards
because it’s preferred to use HL7 v3 standards in NHIS-T.

Unique identification of SNP data is a critical issue in clinical genomics. In our system, due
to simplicity and easiness, we proposed to use rs number and allele values for identification
of SNPs. But, it’s critical to remember that, some rs numbers have been merged in the course
of time and to avoid inconsistencies. For this reason, SNP numbers must be checked out
based on dbSNP and transformed into current values if required. Additionally, because
different strand types are preferred among some clinicogenomic knowledge sources and
publications, standardization of strand identification is another important point for SNP data
incorporated clinical systems.

Regarding clinical terminology, we used existing NHIS-T standards e.g. ICD-10 for disease
identification. For new data types (model name, model type, etc.), we produced our specific
value categories.

To store and process of the huge amount of raw variant files, in our architecture, we accepted
the idea defending of raw or processed genomic data was stored in genomic laboratory
database, and clinically relevant variant data and/or clinicogenomic association information
were shared between partners. To derive CR-SNP data from personal SNP data, we need to
use a CR-SNP list. This list was designed as part of national level clinicogenomic knowledge
base. This knowledge base is also required to transform CR-SNP data to clinicogenomic
associations.

As it is emphasized in the literature, one of the most critical component of the genome
enabled EHRs is to develop a national level knowledge base for clinicogenomic information.
This capability must be kept up to date and manually curated by domain experts. For our
study, we produced a prototype knowledge base (ClinGenKB) including clinicogenomic
associations for prostate cancer.

Various different approaches are published to define clinical impact and evidence qualities
of clinicogenomic associations in various knowledge sources. But there is still a lack of
structured, objective and comprehensive methodologies for matching, selecting and merging
different studies. In our prototype, we developed a simple methodology, but the best choice
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will be to use available research standards (e.g. Venice criteria) to calculate and limit biases
and faults for future clinicogenomic association studies.

ClinGenWeb is a prototype for end-user systems that present interpretations of
clinicogenomic associations. To evaluate our system, we used real data from personal
genome project. Collected data involved 23andMe data file, age, ethnicity, ancestral origin,
clinical data, and some behavioral parameters. Age and ethnicity are extensively accepted as
proven risk factors for prostate cancer. All of our cases and controls were selected from
white men over 60 years old. Risk for prostate cancer is 1 in 15 for men aged 60 through 69
years, and 1 in 8 for men aged 70 years and older (National Cancer Institute, 2013C). There
are several publications about some comorbidities and behavioral parameters.

ClinGenWeb uses both complete and model based interpretations for clinicogenomic
associations. Independent associations may have very little importance for clinical processes
alone but in complete interpretation, we tried to interpret all relevant data as a whole. After
our experimental approaches, we considered that cases and controls could be divided into
two or three different risk groups due to genetic heterogeneity. With the commissioning of
WGS in clinical practice, similarity measurements of clinically relevant SNP patterns may be
a new way to produce predictive models in genomic medicine, but this approach need to be
supported with more phenotypic data and to be tested in large study samples.

Some authors proposed several cumulative models to predict prostate cancer, but we
couldn’t acquire meaningful results with these models in our subjects. Another original
approach was to use hybrid (SVM+ID3 decision tree) model based associations. Only SNP
model of this approach was not successful but another model i.e. combining genomic,
clinical and behavioral factors was partly consistent. This model was produced for African-
American, Latin and Japan individuals, and we used a template for African-Americans.
Unfortunately, holistic enviro-genomic models are quite limited.

Another critical point is that clinical, environmental and behavioral data can be used to
explain pathogenic and clinical heterogeneity and to clarify the complexity of results. With
the support of clinical and behavioral data, we could interpret some contradictory results.
Because, most of the environmental and behavioral data wasn’t stored in EMR/EHRSs in a
structured manner, we added these type of data in end-user level.

Due to bipartite structure of our interpretation (i.e. conversion of CR-SNP into
clinicogenomic associations and final clinical interpretation of associations) and final
interpretation was accomplished in the end-user side, we combined both clinicogenomic
associations and external parameters (such as BMI) which have been recorded or tracking by
end users for decision making.

9.2 General Comparison of our Model with Prior Works

Genelnsight Suite is a comprehensive application environment to evaluate and share
sequencing based test results between stakeholders. Genelnsight Clinic can be integrated
with EMR or stand alone, Genelnsignt-Lab manages knowledge, and facilitates reporting.
Genelnsight Network (VariantWire) provides the mechanism to connect laboratories and
providers. Using this system, interpretations of sequencing based tests are shared with
corresponding caregiver organizations. Genelnsight Suite allows clinicians to receive
updates when new information on previously unknown variants is certified for clinical use.

There are critical differences between our system and Genelnsight (Table 47).
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Table 47: Comparison with prior work in the field

Characteristics Our Work Genelnsight

Aim As a part of national level EHR Integrate peer stakeholders
(NHIS-T) (laboratory and hospitals)

Architecture Central Federated

Medical scope

Variant type SNP All type variation data

Scope of clinical Predictive risk assessment General

process

Medical condition

Prostate cancer

General

Terminology and standards

Identifier of variant

Rs_id, allele, plus strand

HGVS nomenclature

Messaging standard

HL7 v3 CDA R2, encapsulated
data

HL7 v2, text data

Disease terminology

SNOMED-CT

ICD-10

Knowledge base/ variant database

Owner

National level, as a part of central
NHIS-T

Partners healthcare

Sources for
associations

CancerGAMAdb, SNPedia,
NHGRI GWAS Catalog

Literature

Content extraction

Specifically produced based on
Venice criteria

Manual curation

Extracted content

Associations with impact degree
evidence category

Associations with impact
degree and evidence category

Interpretation of
relevant SNP

Automated

Manual reporting (?)

Impact value

Yes (numeric and categorical
values)

Categorical definition

Evidence value

Yes (numeric and categorical
values)

Categorical definition

Evidence assignment
method

Yes (offered)

Not determined

Decision support application for end users

Reporting of
independent
clinicogenomic
associations

Yes

Yes

Reporting of
polygenic scores

Yes

None

Reporting of model
based genomic
interpretation

Yes

None

Integration of
external data
(environmental,
behavioral, etc.). by
end users

Yes

None
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In first, our system is designed to aim as the part of a central national level EHR namely,
NHIS-T. But Genelnsight interconnect corresponding caregiver organizations and genomic
laboratory to share genomic interpretations.

While the architecture of NHIS-T is has a central service oriented nature, the architecture of
EHR systems in USA is more federated. Both systems contain knowledge base for the
interpretation and end user applications to collect and present clinicogenomic reports.

Variant database of Genelnsight is supported by domain experts of Partners Healthcare.
Interpretations are reviewed by expert persons and presented as a collective manner. But
these do not contain separate and structured impact degree or magnitude of evidence. Instead
of these sorts of qualifiers, these systems use only a classification system containing several
categories e.g. pathogenic and emphasize possible phenotype with evidence category.

In Genelnsight, interpretation and re-interpretation of critical variants are reported for
clinical use as a collective way. These interpretations do not contain external data which is
not in EMR, so not capable to process these types of data. Also, other types of assessment
techniques e.g. model based assessment and polygenic scoring are not possible.

But in our system we presented all these types of assessment approaches. Additionally,
clinical interpretation of SNP data is divided into two sequential processes, i.e. conversion of
CR-SNP into clinicogenomic associations and clinical interpretation of them. Therefore,
final interpretation can be completed in end-user application and so it’s possible to use other
kinds of data for risk prediction (environmental, behavioral, etc.).

9.3 Limitations

Complete implementation of SNP data incorporated NHIS-T in real systems was not
possible due to regulative and technical issues at this stage. So, we restricted our focus to
develop complementary capabilities as prototypes for NHIS-T i.e. ClinGenKB and
ClinGenWeb which specifically targeted prostate cancer risk prediction.

In our study, we used SNP data, but recent studies show that the different type of variants
(CNV, etc.) may be more responsible for clinical conditions.

In ClinGenKB, our critical focus is to generate a structured clinicogenomic representation
for only risk prediction for prostate cancer. But in literature, there are several kinds of
information related to different stages of clinical decision processes e.g. prognosis,
pharmacogenomic, etc. In the real world project, this prototype has to be enhanced with
other kinds of associations and diseases.

GWAS is based on “common disease, common variant” hypothesis. But, some authors
proposed that, common variants can explain only a modest part of complex diseases and
“common disease, rare variant” hypothesis was put forward (Lake, et al.,, 2012).
Clinicogenomic associations using our knowledge base, based on GWAS researches and
publication about them.

We obtained case and control data from personal genome project to evaluate our system and
number of cases and controls were so limited. To determine the value of this system in
clinical settings, we need comprehensive genomic, environmental, family health data and
clinical conditions. Unfortunately, none of cases and controls had family history data, and
we couldn’t involve this critical parameter in our evaluation processes. Existing clinical data
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about subjects didn’t reflect the clinical and pathological heterogeneity of prostate cancer.
Especially, we have not precise measurement information (amount, period, duration, etc.)
about behavioral characteristics of subjects (diet, physical activity, supplements, etc.) and we
couldn’t interpret the possible effects of these parameters on prostate cancer risk.

Another limitation is to align clinical and bioinformatics domain terminologies in a
consistent way. ICD classification is accepted as a standard for disease classification in
many countries including Turkey. But, ICD-10 is not useful to manage all levels of clinical,
pathologic and genetic heterogeneities. It is expected that, next version of ICD i.e. ICD-11
will be released in 2015 and this version can be integrated other medical terminologies such
as SNOMED CT (Zafar & Ezat, 2012). Nevertheless, some authors proposed that, it’s an
unavoidable requirement to develop a new taxonomy of disease which will be based on
information commons and knowledge network including a combination of molecular, social,
environmental and clinical data and health outcomes (National Research Council, 2011).

We have collected clinicogenomic associations from literature. Due to ethnic characteristics
of our subjects, we preferred primarily studies performed with Caucasians. But, the terms of
ethnicity and race are beyond biological distinctions, might refer to sociocultural construct
and affected both biological and environmental factors. For this reason, for a real world
NHIS-T system, we will need data for Turkish population.

We do not have sufficient predictive models that can be used in clinical settings. Especially,
we need approaches to assess complete analysis of clinically relevant SNPs. With the
commissioning of WGS in clinical practice, similarity measurements of clinically relevant
SNP patterns may be a new way to produce predictive models in genomic medicine, but this
approach need to be enhanced with more phenotypic data and to be tested in large study
samples.

On the other hand, in the present, holistic enviro-genomic models are quite limited. Due to

most of the complex diseases progress as interaction of genomic and environmental factors,
additionally we need more enviro-genomic models predictive such diseases.
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CHAPTER 10

CONCLUSION AND FUTURE WORKS

Today, the healthcare systems are continuously evolving and transforming under the
influence of developments in technology and globalization. A revolutionary paradigm
shifting is changing the focus of medicine from traditional provider-centric approach to
patient-centric personalized medicine. This paradigm shifting radically transforms clinical
processes, medical education, and researches in theory and praxis. The commissioning of
new health services based on emerging technologies (mobile health systems, pervasive
applications, environmental sensors, body area sensor networks, etc.) also dramatically
support these tendencies.

But in the light of literature on personalized medicine, we can argue that, the area of
biomedical informatics did not begin to perform its essential mission on healthcare systems
and the major shifting in healthcare practices increasingly have getting closer via genomic
technologies. When we look at the big picture, we can see the emergence of evidence based
managed healthcare systems with knowledge discovery capabilities driven by big data and
knowledge infrastructure for sustainable, fair and effective care services.

In this respect, we consider that the next generation of health information systems will be
constructed based on tracking and monitoring all aspects of individual health status in 24/7
and turn evidence based recommendations to empower individuals. Today, most of personal
behavioral and environmental data is not a subject of EMR/EHR and even PHR contents.
Characteristics of most environmental and behavioral data required frequent measurements
and (nearly) continuous tracking. And, possibly if we extent PHR content (with genomic
data) towards to involve environmental and behavioral factors, we can add value to disease
risk assessment and prediction.

As we emphasized before, a national level manually curated and accredited knowledge base
is the most important component of evidence based decision making. Based on this
knowledge base, collected risk data will gain a predictive meaningful, and improvements in
clinical sciences will be reflected individuals by reinterpretation of collected data. At this
point, we need additional and improved analytic tools based on genomic and environmental
parameters. To make easier to extract and manually curate existing references for domain
experts, we aim to develop a knowledge repository integrating several knowledge bases with
semantic technologies and adding some automatic evaluation techniques.

In healthcare systems, regarding public health and financial burden, most of the important
diseases are in the complex nature. In the pathogenesis of complex diseases, interaction of
genetic and environmental factors have critical importance, and ethnicity, race and
geographic factors may play distinctive roles. Hence, it’s necessary to have appropriate
clinicogenomic information about subjected population and use this content for right
peoples. Clinical data, environmental factors and family history are critical components, and
it’s needed to study of relationships between these parameters and genomic factors.
Eventually, it will be effective and reasonable way to both enhance NHIS-T data fields to
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record structured data which will be used in enviro-genetic studies, and conduct researches
to acquire original data for population.

Omics area is not only represented by genomic data and in the near future different types of
omic data is expected to be added to the routine clinical practices e.g. transcriptomics,
proteomics, metabolomics, and epigenomics. Also, systems medicine is an impressive
approach and possibly will increase the effectiveness of risk prediction strategies.

In addition, we aim to enhance our system, by integrating data warehouses for research. With
this capability, integrated genomic and environmental data sets can also be used for clinical
research. We will extract the meaningful relationship patterns via this system and, by using
these patterns, we can calculate risks of groups who have similar characteristics e.g. family
members or communities.

The major aim of our system is to provide true and actionable information for patients and
their family practitioners. Our system will return evidence based recommendations to the
individuals processing collected data, and make them more responsible about their
preferences and consequences. Empowerment of individuals to participate their healthcare
decisions is an emerging trend in personalized medicine. At this point, we need more
understandable information sources and visual representation approaches intended for
unprofessional individuals. Area of representation and reporting of clinicogenomic results
should be the focus to develop new approaches, techniques and tools.

In last 10 years of Turkey, there has been a great effort to accomplish a transformation in
national healthcare system based on information technologies. But yet, practical applications
of personal genomics and integration into healthcare services are in its infancy and studies
about personalized medicine are in academic level.

Our architecture and prototype which aim to incorporate personal SNP data into NHIS-T is
in the preliminary level. Although, we need additional visions, works and tools extending
our EHR capabilities for the future genome enabled healthcare systems, we believe that our
work will enable a starting point for national healthcare system.
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APPENDIX B-) Reference Tables for Cumulative Models

SNP, without F/H)

1.48 (1.09-2.01)

1.88 (1.38-2.56)

2.97 (2.08-4.26)

\

3.36 (1.90-6.08)

5-SNP_Salinas (with
F/H)

1.00 (by definition)

1.41 (1.02-1.97)

2.25 (1.63-3.13)

3.43 (2.40-4.94)

3.65 (2.24-6.03)

IS WINFPIO[WINFP|IOO|UIAR|IWIN|FPIO|OTAWIN|FL O

V

4.92 (1.58-18.53)

Model Name Count of risk Odds Ratio (CI) Reference
factors (PubMed ID)
17-SNP_Helfand (only 0-4 1.00 (by definition) 20860009
SNP, without F/H) 5 1.6 (0.4-6.3)
6 1.0 (0.3-3.7)
7 1.4 (0.4-4.9)
8 1.4 (0.4-5.0)
9 2.5(0.7-8.9)
10 3.1(0.9-11.5)
>10 10.6 (2.7-42.0)
17-SNP_Helfand (with 0-5 1.00 (by definition)
F/H) 6 0.5 (0.2-1.3)
7 1.6 (0.7-3.5)
8 1.3 (0.6-2.8)
9 1.7 (0.8-3.8)
10 3.7 (1.6-8.4)
>10 11.2 (4.3-29.2)
9-SNP_Helfand (only 0-1 1.00 (by definition) 20620408
SNP) 2 1.46 (0.74-2.86)
3 2.46 (1.29-4.66)
4 3.05 (1.60-5.79)
5 4.39 (2.24-8.61)
>6 5.75 (2.50-13.24)
5-SNP_Zheng (only 1.00 (by definition) 18199855
SNP, without F/H) 1.50 (CI: 1.18-1.92)
1.96 (Cl: 1.54-2.49)
2.21 (Cl: 1.70-2.89)
4.47 (Cl: 2.93-6.80)
4.47 (Cl: 2.93-6.80)
5-SNP_Zheng (with 1.00 (by definition)
F/H) 1.62 (Cl: 1.27-2.08)
2.07 (Cl: 1.62-2.64)
2.71 (Cl: 2.08-3.53)
4.76 (Cl: 3.31-6.84)
9.46 (Cl: 3.62-24.72)
9.46 (Cl: 3.62-24.72)
5-SNP_Salinas (only 1.00 (by definition) 19058137
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Model Name

Count of risk
factors

Odds Ratio (ClI)

Reference
(PubMed ID)

4-SNP_Nam

0

1.00 (by definition)

1.26 (1.0-1.6)

1.61 (1.3-2.1)

3.05 (2.0-4.6)

3.81 (1.2-12.3)

19223501

3-SNP_Beuten

1.00 (by definition)

139 (1.0-1.9)

1.56 (1.11-2.20)

WINRPO|RIWIN|F

2.87 (1.64-5.02)

19505920

Descriptions:

ClI: Confidence interval

PubMed ID: Identifier of scientific reference from PubMed
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APPENDIX C-) Decision Tree Structure of First Hybrid Model Based Associations
(Only SNP Model)

rs11720239 = AA
rs2999081 = AG
| rs2811518 = AG

| | rs4793790 = AA: 1 {1=3, 2=0}
| | rs4793790 = AG: 2 {1=0, 2=1}
| | rs4793790 = GG: 1 {1=1, 2=0}
1s2999081 = CT: 2 {1=0, 2=16}
1s2999081 = CC: 2 {1=0, 2=80}

rs2999081 = GG
| rs2811518 = AA
rs4793790 = AA
rs2811415 = AG
| rs6798749 = GG
| | rs463967 = AG: 1 {1=3, 2=0}
| | rs463967 = GG
| | rs693913 = GG
| | | rs585513 =AG: 1
| | | rs585513 =GG: 2
52811415 = GG
$6798749 = GG
rs463967 = AA
rs693913 = AA
rs585513 = AG: 2 {1=0, 2=2}
rs585513 = GG
| rs2960482 = AA
rs2103869 = GG
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rs1496306 = GG
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rs9857492 = AA
rs2132528 = AA
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|
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rs11720239 = AG

rs2999081 = AA: 2 {1=0, 2=2}
rs2999081 = AG
rs2811518 = AA

| rs4793790 = AG

| | rs2811415 = AG

| | | rs6798749 = GG

| | | rs463967 = GG

| | | rs693913 =AA:1
| | | rs693913 =GG: 2

|
|
|
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
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|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
S2

811518 = AG
rs4793790 = AA
rs2811415 = AA: 1 {1=1, 2=0}
rs2811415 = AG

rs6798749 = AG
rs463967 = AA
rs693913 = GG

5463967 = AG

rs585513 = AG

rs2960482 = AA

rs2103869 = GG

rs3774796 = AG
rs1496306 = GG

| rs7838995 = AA

| | rs7845891 = AA

| | | rs6549458 = AA

| | rs9857492 = AG

| | | rs2132528 = AA

| | | | rs17571004 = AA: 1
|

| {1=
| | | rs17571004 = AG: 2 {1=

rs693913 = AA: 2 {1=0, 2=1}

rs693913 = GG

| rs585513 = AG: 2 {1=0, 2=1}

| rs585513 = GG

| | rs2960482 = AA: 1 {1=1, 2=0}
| | rs2960482 = AG: 2 {1=0, 2=1}

5463967 = GG

rs693913 = AA: 1 {1=5, 2=0}

rs693913 = GG

rs585513 = GG

rs2960482 = AA

| rs2103869 = GG
rs3774796 = AG
rs1496306 = GG
rs7838995 = AA

rs7845891 = AA

| rs6549458 = AA

| | rs9857492 = AG

| | | rs2132528 = AA

| | | | rs17571004 = AA: 1{1
| | | | rs17571004 = AG: 2 {1
| rs6549458 = AC: 1 {1=1, 2=0}
rs7845891 = AC: 2 {1=0, 2=1}
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| | rs6798749 = GG: 1 {1=1, 2=0}
| | rs6798749 = xx: 2 {1=0, 2=1}
rs4793790 = AG
rs2811415 = AG
rs6798749 = AG
rs463967 = AA: 1 {1=3, 2=0}
rs463967 = AG
rs693913 = AA
| rs585513 = AG
| | rs2960482 = AG
| | | rs2103869 = GG
| | | | rs3774796 = AG
| | | | | rs1496306 = AG: 2 {1=0,
| | | | | rs1496306 = GG: 1 {1=1,
| rs585513 = GG: 1 {1=1, 2=0}
rs693913 = GG
| rs585513 = AG: 1 {1=1, 2=0}
| rs585513 = GG: 2 {1=0, 2=3}
rs463967 = GG
| rs693913 = AA: 1 {1=2, 2=0}
| rs693913 = GG
| | rs585513 = AG: 1 {1=2, 2=0}
| | | rs585513 = GG: 2 {1=0, 2=4}
rs6798749 = GG: 1 {1=1, 2=0}
54793790 = GG
rs2811415 = AG
| rs6798749 = AG
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4

| rs463967 = AG

| | rs693913 =AA:2{1
| | | rs693913=GG:1{1
| || | | rs463967 =GG: 1{1=1,
rs2999081 = TT: 2 {1=0, 2=7}
rs2999081 = CT: 2 {1=0, 2=31}
rs2999081 = CC: 2 {1=0, 2=3}

|
|
|
||
|||
| ]|
| ]|
|||
| ]|
| ]|
||
|||
| ]|
|||
|||
||
||
|||
||
||
|||
|||
||
||
| r
||
||
|||
||
||

, 2=1}
0}

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
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|
|
|
|
|
|
|
|
|
|
| =
| =
| 0}

0,2
2,2
2=0

rs11720239 = GG

rs2999081 = AA: 1{1:, 0}
rs2999081 = TT: 2 {1=0, 2=8}
1s2999081 = CT: 2 {1=0, 2=6}
1s2999081 = CC: 2 {1=0, 2=2}

rs11720239 = zzz: 1 {1=1, 2=0}
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APPENDIX D-) List of SVM-ID3 Hybrid Model Based Associations (Only SNP Model)
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rs9643617
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rs10420793
rs11079162
rs569072
rs2811388

rs17571004
rs2132528

rs9857492

rs6549458

rs7845891

rs7838995

rs1496306

rs3774796

rs2103869
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Descriptions:

Identifier of hybrid model derived associations. Every single association has a different branch_id.

Branch id:
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APPENDIX E-) Decision Tree Structure of Second Hybrid Model Based Associations
(SNP-Environmental Combined, for African-Americans)

ethnicity = African American
BMI<22.5
| rs11729739=TT
22.5<BMI<24.9
| rs17701543 = AG
rs17701543 = GG
| rs9848588 = AG
rs9848588 = GG
| rs964130 = AA
rs10195113 = AG
rs10195113 = GG
| rs1433369=CT
| rs1433369 =CC
| | rs12733054=CT
| | rs12733054 =CC
| | | rs17375010=CT
| | | rs17375010 =CC
| | | | rs766045 = AG
| | | | | Alcohol = NONE
| rs964130 = AG
4.9<BMI<29.9

smoking= none

| rs12201462 =CT

| rs12201462 = CC

| | rs4908656 = AA

| | | rs9462806 = AA

|

|

| | | rs1974562 = AG
| | rs9462806 = AG

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | 154908656 = AC

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|

191



| smoking<5 years
| | rs10954845 = AA

| | | rs6997228 = AA

| 5 years<smoking<10 years
| | rs10745253 = AG

| 10 years<smoking<20 years
| | rs12980509 = CT

| | rs12980509 = CC

| | | rs2296370 = AA

| | | rs2296370 = AG

| 20 years<smoking<30 years
| | rs7843255=AA

| | rs7843255=GG

| 30 years<smoking

| | rs2194505=CT
24.9<BMI

| rs10517581 = AA

| | rs2103869 = GG

| | | rs10788555 = GG

| | | | rs7067548 = AA

| | | | | rs17001078 =TT
| | ]| | | rs918285=TT
| rs10517581 = AG

| | rs9462806 = AG
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APPENDIX F-) List of Second Hybrid Model Based Associations (SNP-Environmental

Combined)
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APPENDIX G-) Complete results of test and evaluation processes

Nutrition

Evaluation | Approaches Methods 01-hul213DA
Homozygote 13
Independent
L Heterozygote 38
associations
Not-Analyzed 13
Number of SNP (DM) 51
Polygenic risk Number of SNP (AM) 64
scores Evidence-Impact-SNP (DM) 159
Genomic Evidence-Impact-SNP (AM) 198
Evaluation 17-SNP_Helfand 8 (1)
9-SNP_Helfand 2(1)
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 2
3-SNP_Beuten 2(1)
Hybrid model Yiicebas-Aydin Son Not exact
EG . ..
Evaluation Hybrid model Yiicebas-Aydin Son Not exact
Family history Not available
SD birth year 1937 (76)
Evaluation | Age - -
PCa diagnosis year 2010 (73)
weight (kg) 86
Anatomic height (cm) 190
o findings BMI (kg/cm2) 23,82
Clinical BMI (category) Normal (BB)
Evaluation gory -
) Hypercholesterolemia
Medical
conditions BPH
Drugs
Surgical
procedures
Lifestyle (EB) | Supplements
Evaluation

Physical activity

Alcohol
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Evaluation | Approaches Methods 03-huD889CC
Homozygote 13
Independent
L Heterozygote 32
associations
Not-Analyzed 20
Number of SNP (DM) 45
o Number of SNP (AM) 58
Polygenic risk | Evidence-Impact-SNP 137
scores (DM)
Genomic Evidence-Impact-SNP 177
Evaluation (AM)
17-SNP_Helfand 4 (5)
9-SNP_Helfand 1
Cumulative 5-SNP_Zheng 0
models 5-SNP_Salinas 0
4-SNP_Nam 1
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son None
Family history Not available
SD birth year 1938 (75)
Evaluation |Age . - ]
PCa diagnosis year Not available
weight (kg) 64
Anatomic height (cm) 177
Clinicgl findings BMI (kg/cm2) 20,43
Evaluation BMI (category) Normal (AA)
Medical -
conditions Syphilis
Drugs
Surgical
_ procedures
ngéséy)/le Supplements

Evaluation

Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 07-hu28F39C
Homozygote 21
Independent
L Heterozygote 28
associations
Not-Analyzed 9
Number of SNP (DM) 49
o Number of SNP (AM) 70
Polygenic risk [ Evidence-Impact-SNP 152
scores (DM)
Genomic Evidence-Impact-SNP 220
Evaluation (AM)
17-SNP_Helfand 9
9-SNP_Helfand 3
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 1
3-SNP_Beuten 1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
5D birth year 1043 (70)
Evaluation |Age - - .
PCa diagnosis year Not available
weight (kg) 70
Anatomic height (cm) 170
o findings BMI (kg/cm2) 24,22
Clinical BMI (category) Normal (BB)
Evaluation gory -
) Hypercholesterolemia
Medical
conditions BPH
Drugs Lipitor
Surgical
_ procedures
ngéséy)/le Supplements
Evaluation | Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 13-hu6ED94A
Homozygote 16
Independent
L Heterozygote 36
associations
Not-Analyzed 20
Number of SNP (DM) 52
o Number of SNP (AM) 68
Polygenic risk | Evidence-Impact-SNP 161
scores (DM)
Genomic Evidence-Impact-SNP 210
Evaluation (AM)
17-SNP_Helfand 8 (5)
9-SNP_Helfand 4
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 1
3-SNP_Beuten 2(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Yes
D Family history Not available
Evaluation | Age birth y_ear . 1950 (63)
PCa diagnosis year 2011 (61)
weight (kg) 58
Anatomic height (cm) 170
Clinicgl findings BMI (kg/cm2) 20,07
Evaluation BMI (category) Normal (AA)
Medical .
conditions Hypercholesterolemia
Drugs Simvastatin
Surgical
procedures
Lifestyle | supplements
(EB) —
Evaluation | Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 02-hu59141C
Homozygote 16
Independent
L Heterozygote 32
associations
Not-Analyzed 8
Number of SNP (DM) 48
o Number of SNP (AM) 64
Polygenic risk [ Evidence-Impact-SNP 150
scores (DM)
Genomic Evidence-Impact-SNP 202
Evaluation (AM)
17-SNP_Helfand 9
9-SNP_Helfand 3
Cumulative 5-SNP_Zheng 2
models 5-SNP_Salinas 2
4-SNP_Nam 2
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model Yiicebas-Aydin Son None
Family history Not available
SD birth year 1937 (76)
Evaluation |Age . .
PCa diagnosis year
weight (kg) 108
Anatomic height (cm) 177
Clinical  |findings BMI (kg/cm2) 34.47
Evaluation BMI (category) Obese (DD)
Medical Asbestosis
conditions T2DM
Drugs
Surgical
procedures
Li{esty)/le Supplements Multivitamin
EB -
Evaluation | Nutrition Vegetable servings (5

servings)

Physical activity

regular physical activity ?

Alcohol
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Evaluation | Approaches Methods 04-huF7E042
Homozygote 20
Independent
L Heterozygote 26
associations
Not-Analyzed 17
Number of SNP (DM) 46
o Number of SNP (AM) 66
Polygenic risk | Evidence-Impact-SNP 145
scores (DM)
Genomic Evidence-Impact-SNP 210
Evaluation (AM)
17-SNP_Helfand 6 (4)
9-SNP_Helfand 2
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 2
3-SNP_Beuten 0(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Yes
b Family history Not available
SD birth year 1939 (74)
Evaluation |Age . .
PCa diagnosis year
weight (kg) 69
Anatomic height (cm) 177
Clinicgl findings BMI (kg/cm2) 22,02
Evaluation BMI (category) Normal (AA)
Medl_cql BPH
conditions
Drugs
Surgical TURP
procedures
Lifestyle
S
(EB) upplements
Evaluation | Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 05-hu75BE2C
Homozygote 9
Independent
o Heterozygote 36
associations
Not-Analyzed 9
Number of SNP (DM) 45
o Number of SNP (AM) 54
Polygenic risk [ Evidence-Impact-SNP 143
scores (DM)
Genomic Evidence-Impact-SNP 172
Evaluation (AM)
17-SNP_Helfand 8
9-SNP_Helfand 3
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 1
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son Yes
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
5D birth year 1039 (74)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 75
Anatomic height (cm) 180
Clinicz_il findings BMI (kg/cm2) 23,15
Evaluation BMI (category) Normal (BB)
Medical
conditions
Drugs
Surgical
_ procedures
ngéséy)/le Supplements
Evaluation | Nutrition

Physical activity

regular physical activity

Alcohol
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Evaluation | Approaches Methods 06-hu56B3B6
Homozygote 14
Independent
L Heterozygote 40
associations
Not-Analyzed 8
Number of SNP (DM) 54
o Number of SNP (AM) 68
Polygenic risk | Evidence-Impact-SNP 164
scores (DM)
Genomic Evidence-Impact-SNP 210
Evaluation (AM)
17-SNP_Helfand 7
9-SNP_Helfand 3
Cumulative 5-SNP_Zheng 2
models 5-SNP_Salinas 2
4-SNP_Nam 0
3-SNP_Beuten 0(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son None
Family history Not available
SD birth year 1941 (72)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 99
Anatomic height (cm) 177
findings BMI (kg/cm2) 31,6
Clinical BMI (category) Obese (DD)
Evaluation Hypercholesterolemia
Medl_cgl Chlamydia Infection
conditions
Basal cell skin cancer
Drugs Ibuprofen
Surgical
procedures
: Multivitamin, Folic Acid
Lifestyle o . ’
I(ESBB)/ Supplements Vitamin E, Selenium,
Evaluation Lycopene, Pomegranate

Nutrition

Physical activity

Alcohol

Alcoholism
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Evaluation | Approaches Methods 08-huB59C05
Homozygote 21
Independent
o Heterozygote 32
associations
Not-Analyzed 8
Number of SNP (DM) 53
o Number of SNP (AM) 74
Polygenic risk [ Evidence-Impact-SNP 166
scores (DM)
Genomic Evidence-Impact-SNP 236
Evaluation (AM)
17-SNP_Helfand 8
9-SNP_Helfand 3
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 2
3-SNP_Beuten 2(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son None
Family history Not available
5D birth year 1043 (70)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 99
Anatomic height (cm) 180
Clinicz_il findings BMI (kg/cm2) 30,56
Evaluation BMI (category) Obese (DD)
Medical
conditions
Drugs
Surgical
_ procedures
ngéséy)/le Supplements
Evaluation | Nutrition

Physical activity

Alcohol

203




Evaluation | Approaches Methods 10-hu7A2F1D
Homozygote 12
Independent Heterozygote 33
associations Y9
Not-Analyzed 24
Number of SNP (DM) 45
o Number of SNP (AM) 57
Polygenic risk | Evidence-Impact-SNP 145
scores (DM)
Genomic Evidence-Impact-SNP 190
Evaluation (AM)
17-SNP_Helfand 6 (4)
9-SNP_Helfand 3(1)
Cumulative 5-SNP_Zheng 1(1)
models 5-SNP_Salinas 1(1)
4-SNP_Nam 1
3-SNP_Beuten 1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model Yiicebas-Aydin Son None
D Family history Not available
Evaluation | Age birth y_ear . 1947 (66)
PCa diagnosis year
weight (kg) 75
Anatomic height (cm) 177
o findings BMI (kg/cm2) 23,94
Clinical BMI (category) Normal (BB)
Evaluation gory -
. Hypercholesterolemia
Medical | K
conditions Non-melanoma skin
cancer
Drugs Atorvastatin
Surgical
procedures
Lifestyle
Suppl
(EB) upplements
Evaluation | Nutrition

Physical activity

regular physical activity

Alcohol
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Evaluation | Approaches Methods 12-huD57BBF
Homozygote 9
Independent
L Heterozygote 39
associations
Not-Analyzed 8
Number of SNP (DM) 48
o Number of SNP (AM) 57
Polygenic risk [ Evidence-Impact-SNP 147
scores (DM)
Genomic Evidence-Impact-SNP 177
Evaluation (AM)
17-SNP_Helfand 9
9-SNP_Helfand 3
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 1
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model Yiicebas-Aydin Son None
Family history Not available
SD birth year 1049 (64)
Evaluation |Age . -
PCa diagnosis year
weight (kg) 75
Anatomic height (cm) 177
Clinical | findings BMI (kg/cm2) 23,94
Evaluation BMI (category) Normal (BB)
Medical Hypercholesterolemia
conditions BPH
Drugs Simvastatin, Aspirin
Surgical Vasectomy
procedures
Lifestyle
Supplem
(EB) upplements
Evaluation | Nutrition

Physical activity

regular physical activity

Alcohol
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Evaluation | Approaches Methods 14-huD7960A
Homozygote 15
Independent
L Heterozygote 31
associations
Not-Analyzed 9
Number of SNP (DM) 46
o Number of SNP (AM) 61
Polygenic risk | Evidence-Impact-SNP 142
scores (DM)
Genomic Evidence-Impact-SNP 189
Evaluation (AM)
17-SNP_Helfand 6
9-SNP_Helfand 3
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 1
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
SD birth year 1951 (62)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 75
Anatomic height (cm) 172
o findings BMI (kg/cm2) 25,35
CInmch BMI (category) Overweight (CC)
Evaluation -
Hypercholesterolemia
Medical
it BPH
conditions
T2DM
Drugs
Surgical
procedures
Lifestyle |
(EB) Supplements
Evaluation | Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 15-hu2E413D
Homozygote 19
Independent
L Heterozygote 34
associations
Not-Analyzed 8
Number of SNP (DM) 53
o Number of SNP (AM) 72
Polygenic risk [ Evidence-Impact-SNP 161
scores (DM)
Genomic Evidence-Impact-SNP 219
Evaluation (AM)
17-SNP_Helfand 6
9-SNP_Helfand 1
Cumulative 5-SNP_Zheng 0
models 5-SNP_Salinas 0
4-SNP_Nam 0
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
SD birth year 1952 (61)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 82
Anatomic height (cm) 180
Clinicz_il findings BMI (kg/cm2) 25,31
Evaluation BMI (category) Overweight (CC)
Medical
conditions
Drugs
Surgical
procedures
Lifestyle
S
(EB) upplements
Evaluation | Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 16-hu76CAA5
Homozygote 12
Independent
L Heterozygote 33
associations
Not-Analyzed 9
Number of SNP (DM) 45
o Number of SNP (AM) 57
Polygenic risk | Evidence-Impact-SNP 143
scores (DM)
Genomic Evidence-Impact-SNP 182
Evaluation (AM)
17-SNP_Helfand 8
9-SNP_Helfand 2
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 1
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
b Family history Not available
SD birth year 1952 (61)
Evaluation |Age . .
PCa diagnosis year
weight (kg) 93
Anatomic height (cm) 177
Clinicgl findings BMI (kg/cm2) 29,68
Evaluation BMI (category) Overweight (CC)
Medical
conditions
Drugs Aspirin
Surgical
procedures
Lifestyle : .
O -3
(EB) Supplements mega-3 Fish QOil
Evaluation | Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 17-huA720D3
Homozygote 18
Independent
L Heterozygote 36
associations
Not-Analyzed 9
Number of SNP (DM) 54
o Number of SNP (AM) 72
Polygenic risk [ Evidence-Impact-SNP 166
scores (DM)
Genomic Evidence-Impact-SNP 292
Evaluation (AM)
17-SNP_Helfand 8
9-SNP_Helfand 4
Cumulative 5-SNP_Zheng 2
models 5-SNP_Salinas 2
4-SNP_Nam 2
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
SD birth year 1953 (60)
Evaluation |Age . .
PCa diagnosis year
weight (kg) 79
Anatomic height (cm) 180
Clinicz_il findings BMI (kg/cm2) 24,38
Evaluation BMI (category) Normal (BB)
Medical .
conditions Hypercholesterolemia
Drugs Aspirin
Surgical
procedures
Lifesty] Multivitamin,
! éséy € Supplements Phytosterols, Omega-3
( ). Fish Oil, Melatonin
Evaluation

Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 18-hu63DA55
Homozygote 13
Independent
L Heterozygote 28
associations
Not-Analyzed 8
Number of SNP (DM) 41
o Number of SNP (AM) 54
Polygenic risk | Evidence-Impact-SNP 13
scores (DM)
Genomic Evidence-Impact-SNP 179
Evaluation (AM)
17-SNP_Helfand 6
9-SNP_Helfand 2
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 2
3-SNP_Beuten 2(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son None
Family history Not available
SD birth year 1953 (60)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 91
Anatomic height (cm) 195
Clinicgl findings BMI (kg/cm2) 23,93
Evaluation BMI (category) Normal (BB)
Medical
conditions
Drugs
Surgical
_ procedures
ngéséy)/le Supplements Omega-3 Fish Qil

Evaluation

Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 19-hu43860C
Homozygote 14
Independent
o Heterozygote 23
associations
Not-Analyzed 24
Number of SNP (DM) 37
o Number of SNP (AM) 51
Polygenic risk [ Evidence-Impact-SNP 12
scores (DM)
Genomic Evidence-Impact-SNP 171
Evaluation (AM)
17-SNP_Helfand 6 (5)
9-SNP_Helfand 3(2)
Cumulative 5-SNP_Zheng 1(1)
models 5-SNP_Salinas 1(1)
4-SNP_Nam 0
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
5D birth year 1954 (59)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 112
Anatomic height (cm) 195
o findings BMI (kg/cm2) 29,45
Clinical BMI (category) Overweight (CC)
Evaluation gory 9 .
) Hypercholesterolemia
Medical N | K
conditions on-melanoma skin
cancer
Drugs Lovastatin
Surgical
_ procedures
ngéséy)/le Supplements
Evaluation | Nutrition

Physical activity

Alcohol
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Evaluation | Approaches Methods 20-huD00199
Homozygote 22
Independent
L Heterozygote 21
associations
Not-Analyzed 10
Number of SNP (DM) 43
o Number of SNP (AM) 65
Polygenic risk | Evidence-Impact-SNP 133
scores (DM)
Genomic Evidence-Impact-SNP 204
Evaluation (AM)
17-SNP_Helfand 6
9-SNP_Helfand 1
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 2
4-SNP_Nam 0
3-SNP_Beuten 0(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
SD birth year 1954 (59)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 75
Anatomic height (cm) 172
Clinicgl findings BMI (kg/cm2) 25,35
Evaluation BMI (category) Overweight (CC)
Medical .
conditions Hypercholesterolemia
Drugs Atorvastatin
Surgical
_ procedures
ngéséy)/le Supplements
Evaluation | Nutrition

Physical activity

Alcohol

212




Evaluation | Approaches Methods 21-huACB827A
Homozygote 17
Independent
L Heterozygote 37
associations
Not-Analyzed 9
Number of SNP (DM) 54
o Number of SNP (AM) 71
Polygenic risk [ Evidence-Impact-SNP 170
scores (DM)
Genomic Evidence-Impact-SNP 295
Evaluation (AM)
17-SNP_Helfand 7
9-SNP_Helfand 2
Cumulative 5-SNP_Zheng 1
models 5-SNP_Salinas 1
4-SNP_Nam 2
3-SNP_Beuten 1(1)
Hybrid model | Yiicebas-Aydin Son None
EG . ..
Evaluation Hybrid model | Yiicebas-Aydin Son Not exact
Family history Not available
SD birth year 1954 (59)
Evaluation |Age - -
PCa diagnosis year
weight (kg) 79
Anatomic height (cm) 170
o findings BMI (kg/cm2) 27,34
Clinical BMI (category) Overweight (CC)
Evaluation gory g -
. Hypercholesterolemia
Medical
conditions Hypogonadism
Drugs Simvastatin
Surgical
_ procedures
ngéséy)/le Supplements
Evaluation | Nutrition

Physical activity

Alcohol

Descriptions: EG: Envirogenomic, SD: Sociodemographic, EB: Envirobehavioral, DM
Dominant model, AM: Additive model.
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APPENDIX H-) Personal disease risks for various cumulative models

Group Person id 17-SNP_ | 9-SNP_ |5-SNP_| 5-SNP_ |4-SNP_ | 3-SNP_
- Helfand | Helfand | Zheng | Salinas | Nam | Beuten
Case 01-hul213DA 8 (1) 2 (1) 1 1 2 2 ()
Case 03-huD889CC 4 (5) 1 0 0 1 1(1)
Case 07-hu28F39C 9 3 1 1 1 1()
Case 13-hu6ED94A 8 (5) 4 1 1 1 2(1)
Control | 02-hu59141C 9 3 2 2 2 1()
Control | 04-huF7E042 6 (4) 2 1 1 2 0(1)
Control | 05-hu75BE2C 8 3 1 1 1 1(1)
Control | 06-hu56B3B6 7 3 2 2 0 0(1)
Control | 08-huB59C05 8 3 1 1 2 2 (1)
Control | 10-hu7A2F1D 6 (4) 3(1) 1(1) 1(1) 1 1(1)
Control | 12-huD57BBF 9 3 1 1 1 1(1)
Control | 14-huD7960A 6 3 1 1 1 1(1)
Control | 15-hu2E413D 6 1 0 0 0 1(1)
Control | 16-hu76CAA5 8 2 1 1 1 1(1)
Control | 17-huA720D3 8 4 2 2 2 1(1)
Control | 18-hu63DA55 6 2 1 1 2 2 (1)
Control | 19-hu43860C 6 (5) 3(1) 1(1) 1(1) 0 1(1)
Control | 20-huD00199 6 1 1 2 0 0(2)
Control | 21-huAC827A 7 2 1 1 2 1(1)

Values in the parenthesis are number of missing values (unanalyzed SNP alleles).
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