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ABSTRACT 
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GRAPHICS PROCESSORS FOR THE SOLUTION OF INCOMPRESSIBLE 

FLOWS 

 

 

 

Göçmen, Mahmut Murat 

M.S., Department of Mechanical Engineering 

Supervisor : Assist. Prof. Dr. Cüneyt Sert 

December 2014, 96 pages 

 

In recent years clock speeds and memory bandwidths of Graphics Processing Units 

(GPUs) increased dramatically compared to CPUs. Also GPU vendors developed and 

freely released new programming tools to make scientific computing on GPUs 

easier. With these recent developments the use of GPUs for general purpose 

computing becomes a popular research field. Researchers previously demonstrated 

that use of GPUs may provide tens of times of speeds-ups compared to CPU solvers 

for CFD methods such as Smoothed Particle Hydrodynamics, Lattice Boltzmann and 

Discontinuous Galerkin, which are known to offer very high parallelization potential. 

However, studies for the utilization of GPUs for classical finite volume and 

especially for finite element based CFD codes are rare in the literature. 

This study involves the development of a flow solver based on the Finite Element 

Method (FEM) working parallel on GPUs. CUDA (Compute Unified Device 

Architecture) programming toolkit developed by NVIDIA is used for GPU 

programming. Three-dimensional, laminar, incompressible, flows with possible heat 

transfer effects are considered. Governing equations are discretized using 2 different 

fractional step algorithms. Accuracy of the developed solver is tested using 5 
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benchmark problems, including a microchannel flow and flow inside a tube with 

conjugate heat transfer. 

Each step of the fractional step algorithm is investigated in detail on the CPU and 

GPU for run time performance. Speed-up tests are performed on a series of meshes 

with total number of unknowns between 700,000 and 6.7 million. Parallelization on 

the CPU is achieved by using Intel’s MKL library and OpenMP and on the GPU 

mostly CUBLAS, CUSPARSE and CUSP libraries are used with some scratch-built 

GPU kernels whenever necessary. For the largest mesh tried, GPU usage resulted in 

5.79 and 1.86 times speed-ups compared to single-thread and 8-thread CPU 

solutions, respectively. The use of single precision arithmetic is investigated from 

accuracy and efficient points of view and it is seen that it does not degrade accuracy, 

while providing almost 2 times speed-up both on the CPU and the GPU. Compared 

to the explicit version, implicit fractional step algorithm turned out to be 

advantageous in terms of run time for steady state problems. On the other hand, 

explicit method uses less memory as expected. 

 

Keywords: General Purpose GPU Computing, GPGPU, CUDA, Parallel Computing, 

Finite Element Method, Fractional Step Method, Computational Fluid Dynamics, 

Incompressible Flows 
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ÖZ 

 
 

GRAFİK KARTLARINDA PARALEL BİR BİÇİMDE ÇALIŞACAK SONLU 

ELEMANLAR YÖNTEMİ TABANLI SIKIŞTIRILAMAZ AKIŞ ÇÖZÜCÜ 

GELİŞTİRİLMESİ 

 

 

 

Göçmen, Mahmut Murat 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. Cüneyt Sert 

Aralık 2014, 96 sayfa 

 

Son yıllarda grafik kartlarının (GPU) performanslarının ana işlemci (CPU) 

performanslarına göre çok daha hızlı artması ve bu kartların bilimsel hesaplama için 

kullanılmasını kolaylaştıran programlama araçlarının geliştirilmesi ile birlikte 

GPU’lar yüksek başarımlı bilimsel hesaplama ihtiyaçları için önemli bir alternatif 

olmuş ve popüler araştırma konuları arasına girmiştir. Akışkanlar mekaniği alanında 

çalışan araştırmacılar, paralelleştirme potansiyeli çok yüksek olan Lattice Boltzmann 

ve Sürekli Olmayan Galerkin gibi metotların GPU üzerinde programlanması ile 

CPU'larda çalışan kodlara göre 10'larca kata varan hız artışları elde edebilmişlerdir. 

Ancak sonlu hacim ve özellikle sonlu eleman metodu tabanlı akış çözücülerinin GPU 

üzerinde paralel çalıştırılması ile ilgili çalışmalar literatürde çok az sayıdadır. 

Bu proje çalışması Sonlu Eleman Metodu temelli bir akış çözücüsünün GPU 

üzerinde paralel çalışacak biçimde geliştirilmesini kapsamaktadır. GPU üzerinde 

paralel programlama için NVIDIA firmasının 2007 yılında geliştirdiği CUDA 

(Compute Unified Device Architecture) programlama aracı kullanılmış ve üç 

boyutlu, laminer, sıkıştırılamayan, ısı transferi içeren akışlar çalışılmıştır. 

Denklemlerin ayrıştırılmasında 2 farklı kademeli adım tekniği kullanılmıştır. 
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Geliştirilen çözücünün doğruluğu mikro kanal akışı ve eşlenik ısı transferli boru akışı 

da dahil olmak üzere 5 farklı test problemiyle denenmiştir. 

Kademeli adım tekniğinin her bir aşamasının CPU ve GPU’da aldığı süreler 

detaylıca incelenmiştir. Karşılaştırmalı hız testleri 700 bin ile 6.7 milyon arasında 

bilinmeyen içeren ağlarda yapılmıştır. CPU’daki paralelleştirmeler Intel’in MKL 

kütüphanesi ve OpenMP ile GPU’daki paralelleştirmeler ise çoğunlukla CUBLAS, 

CUSPARSE ve CUSP kütüphaneleri gerektiğinde ise GPU üzerinde çalışacak 

kerneller yazılarak yapılmıştır. Denenen en büyük ağ için GPU, CPU’nun 1 izleği 

(thread) ve 8 izleği (8 threads) karşısında sırasıyla 5.79 kat ve 1.86 hızlı 

çalışmaktadır. Kayan noktalı sayıların tek hassasiyetli depolanması durumu özel 

olarak incelenmiş ve bu durumda çözüm doğruluğunda bir kötüleşme tespit 

edilmemekle birlikte, hem CPU’da hem GPU’da 2 kat hızlanma kaydedilmiştir. Açık 

(explicit) kademeli adım tekniği ile karşılaştırıldığında kapalı (implicit) yöntemin 

zamana bağlı olmayan problemleri daha hızlı çözdüğü görülmüş, buna karşın açık 

kademeli adım tekniğinin daha az hafıza kullandığı ortaya çıkmıştır. 

 

Anahtar Kelimeler: Genel Amaçlı GPU Hesaplama, GPGPU, CUDA, Paralel 

Hesaplama, Sonlu Eleman Metodu, Kademeli Adım Tekniği, Hesaplamalı 

Akışkanlar Dinamiği, Sıkıştırılamaz Akışlar 
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CHAPTER 1  

INTRODUCTION 

Computational Fluid Dynamics (CFD) is a fluid mechanics practice that uses 

computers for the numerical solution of conservation equations that govern fluid 

flow and heat transfer problems. Navier-Stokes equations are the fundamental basis 

of almost all flow problems that can be treated as continuum. Depending on the 

dominance of different effects, certain simplifications can be done on the Navier-

Stokes equations to obtain parabolized Navier-Stokes equations, Stokes equations, 

Euler equations, full potential equations, linearized potential equations, etc. 

Historically, linearized potential equations were the ones solved initially. Two-

dimensional (2D) methods based on conformal transformations of the flow around an 

airfoil to the flow around a cylinder were developed in the 1930s [1]. Over the years, 

with increasing computational power and availability of robust numerical methods, 

three-dimensional, transient and turbulent flows became solvable. As the problems 

that can be simulated becomes more complicated serial solutions on a single 

computer turn out to be insufficient. For many years researchers parallelized their 

CFD codes on shared and distributed memory architectures using OpenMP, MPI, 

PVM and similar libraries. On the other hand, in recent years clock speeds and 

memory bandwidths of Graphics Processing Units (GPUs) have increased 

dramatically compared to Central Processing Units (CPUs), making them a 

promising alternative. Some of the most commonly used terms throughout this thesis 

in the context of programming and hardware are explained briefly at Appendix.  

In 2007 NVIDIA freely released Compute Unified Device Architecture (CUDA) 

programming toolkit, which makes general purpose computing on GPUs almost as 

simple as writing codes for CPUs. With the availability of CUDA, utilizing GPUs for 

very demanding scientific tasks, including CFD, becomes a popular research field. 
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Researchers previously demonstrated that, for methods that are known to offer very 

high parallelization potential such as Lattice Boltzmann Method (LBM) or 

Discontinuous Galerkin Method (DGM), the use of GPUs may provide tens of times 

of speeds-ups compared to CPUs. However, studies for the utilization of GPUs for 

classical finite volume and especially finite element based CFD codes are rare in the 

literature. This thesis study involves the development and performance tests of a flow 

solver based on the Finite Element Method (FEM) working parallel on GPUs. 

Present works in the literature on the use of FEM with GPU’s follow the idea of 

porting codes that are initially designed for CPUs to GPUs. This is obviously not the 

best approach for the full utilization of the parallel performance potential of GPUs. 

Instead, in this study a CFD code is written directly for the GPU from scratch. 

1.1 Finite Element Method (FEM) 

Since 1960’s FEM is the most commonly used numerical technique for solving 

structural mechanics problems. Actually it is better to consider FEM as a 

mathematical tool for solving Partial Differential Equations, so its use should not be 

limited to structural mechanics. In order to solve a differential equation by FEM, first 

it is put into an equivalent weak form [2]. This is based on the weighted residual 

statement (∫ 𝑤(𝑥) 𝑅(𝑥) 𝑑𝑥
Ω

= 0) of the problem which forces the integral of the 

residual of the differential equation multiplied by a weight function to zero. The 

residual 𝑅 makes use of approximate solution over each element (𝑢𝑒(𝑥) =

∑ 𝑢𝑗
𝑒𝑆𝑗𝑗 (𝑥)) is defined as a combination of nodal unknown values (𝑢𝑗

𝑒) and shape 

functions (𝑆𝑗). After the selection of proper weight functions, the task reduces to the 

solution of a linear algebraic system of equations for the nodal unknowns. 

Finite Volume Method (FVM) is used more widely for fluid flow problems. Main 

reason for this is the suitability of FVM to the Eulerian based conservation equations 

of fluid mechanics written in integral form for a control volume. Another reason 

behind the popularity of the use of FVM for CFD is its simplicity, which appeals 

practicing engineers. Contrary to FEM’s complex mathematical details, FVM’s 

discretization of conservation equations on control volumes is more natural and 

easier to grasp for an engineer. However, from a numerical point of view it is not 

easy to state a clear advantage of FVM over FEM. Due to its exceptional success at 
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structural mechanics problems, and particularly for elliptic equations, FEM had a 

hard time to meet the expectations of fluid flow problems. However, this should not 

be considered as a weakness of FEM. Numerical solution of fluid flow problems are 

generally more demanding than structural mechanics ones, mainly due to the 

existence of the advection phenomena. Nearly all of the difficulties that FEM faces 

while solving fluid flows are also seen with FVM. FEM has also advantages over 

FVM. For example, it is naturally applicable to unstructured meshes. Unlike FVM, 

increasing the approximation order on unstructured meshes is easy. Related to this, 

p-type mesh refinement that can be used to increase regional accuracy can easily be 

done with FEM. Neumann type boundary conditions are naturally supported by 

FEM. Because almost all structural mechanics solvers are FEM based, fluid structure 

interaction problems can be solved in a single framework, when the fluid flow part is 

also formulated using FEM. In summary it is possible to say that both FEM and 

FVM have their own advantages and disadvantages and choosing between them is 

mostly related with personal experience and level of knowledge. Literature review 

for the use of FEM for fluid flow problems will be given in the next chapter.  

1.2 Graphics Processing Units (GPU) 

Originally GPUs were designed as pure fixed-function devices to specifically process 

stages of a graphics pipeline such as vertex and pixel shaders [3]. But over the years, 

they have evolved into increasingly flexible programmable processors. In a simple 

way, modern GPU’s can be defined as many core chips built around an array of 

streaming multiprocessors (SM). This architecture of a GPU makes it suitable for 

high performance computing (HPC). As seen in Table 1.1 Tesla C2075 GPU that 

was specifically produced for HPC by NVIDIA and also used in this thesis study has 

448 CUDA cores and 14 SMs. Each SM has 32 CUDA cores and all CUDA cores in 

a SM execute the same instruction. On the other hand Intel Xeon E5-2670 CPU 

which has 8 classic CPU cores used in this study. 

Not only the number of cores, but also GPU’s core clock speeds are increasing hence 

their theoretical computational power is increasing even faster as shown at Fig. 1.1. 

Memory access characteristics of CPUs and GPUs are also different. Because of the 

requirement for very fast execution of one thread on CPUs, their memory access 
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Table 1.1 Xeon E5-2670 and Tesla C2075 Specifications [4, 5, 6]. (SP: Single 

Precision, DP: Double Precision, flops: Floating Point Operations Per Second)  

 

Device 
Number 

of Cores 

Frequency 

of Cores 

Peak DP 

Performance 

Peak SP 

Performance 
Bandwidth 

Xeon E5-2670 8 2.6 GHz 177 Gflops  333 Gflops 51.2 GB/s 

Tesla C2075 448 1.15 GHz 515 Gflops 1030 Gflops 144 GB/s 

 

 

 

Figure 1.1 Increasing Computational Power of CPUs and GPUs over the Years [7]. 

 

speed is very high. On the other hand, GPU is processing too many data in a highly 

parallel way, where all threads are executing the same sequential code. In other 

words CPUs are developed for low latency for a single throughput while GPUs are 

developed for higher throughput while sacrificing latency. At the end overall 

memory bandwidth values heavily favor GPUs and the bandwidth gap between CPU 

and GPU is continuously increasing as it can be seen at Fig. 1.2. The following 

analogy with car manufacturing [8] can be very explanatory for latency and 

throughput:  
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A factory with ten assembly lines is manufacturing cars. It takes 6 hours to 

manufacture a car on an assembly line. In this case, the latency is 6 hours and the 

throughput is 40 cars/day (An assembly line produces 4 cars per day and there are 10 

assembly lines.). If this specific factory is accepted as CPU, GPU is a factory with 

400 assembly lines. But this time each of these assembly lines can produce a car in 

24 hours. This second factory’s latency is 24 hours and throughput is 240 cars/day 

(An assembly line produces 1 car per day and there are 240 assembly lines.).  

Even though these advantages make GPUs very suitable for scientific calculations, 

there were very few such studies until recently. The main reason behind this was the 

necessity of using graphic processing libraries like OpenGL or Direct3D for coding 

on the GPU. In other words programmers were forced to express their scientific 

calculation algorithms in terms of graphical calculation algorithms, which requires a 

high level of programming skill. With the help of CUDA (Compute Unified Device 

Architecture), which is parallel programming toolkit developed by NVIDIA in 2007,  

 

 

Figure 1.2 Increasing Memory Bandwidth of CPUs and GPUs over the Years [7]. 
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today it is much easier to write general purpose codes on GPUs. After the release of 

CUDA, a huge increase is observed in the number of studies utilizing GPUs for 

purpose scientific computing, including Computational Fluid Dynamics. Following 

the success of CUDA, similar GPU programming toolkits like OpenCL (Open 

Computing Language) [9] and APP SDK (AMD OpenCL™ Accelerated Parallel 

Processing) [10] appeared. OpenCL is a framework for writing programs for both 

CPUs and GPUs in parallel. It supports a variety of products by different 

manufacturers (AMD, NVIDIA, Intel, ARM, etc.). On the other hand, APP SDK is a 

code development platform particularly for AMD products. 

CUDA Toolkit comes with a C compiler (nvcc) with extra functionality compared to 

a standard one. These add-ons enable functions such as data transfer between CPU 

and the GPU, synchronization after asynchronous parallel processes, etc. A CUDA 

code basically has two parts, standard C/C++ codes and CUDA kernels. CUDA’s C 

compiler sends the standard C codes to the standard C compiler and handles the 

kernels by itself. It then combines everything into a single executable. In order to 

write a code that will work on a GPU, the first thing to do is to determine the parallel 

programmable parts of the task at hand. After determining these parts, suitable 

kernels to operate on them in parallel should be written and the data transfer between 

the CPU and GPU should be established. 

Not only a compiler but also other programming tools, such as a GPU debugger and 

a performance analyzer comes with the CUDA Toolkit. Also it includes CUBLAS 

library [11], which is GPU counterpart of BLAS (Basic Linear Algebra 

Subprograms) and CUSPARSE library [12], which is used for sparse matrix 

operations. As CUDA usage spreads, some third party free and commercial libraries 

for scientific computations are developed as well. Examples are Tennessee 

University’s MAGMA library [13], which can be used to work with dense matrices, 

CUSP library [14], which provides iterative solvers for sparse matrices, CULA 

library [15], which provides GPU versions of a number of standard LAPACK 

functions. At different stages of the thesis study, all of these libraries were tried and 

CUBLAS, CUSPARSE and CUSP libraries were used in the final version of the 

developed solver. 
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According to Flynn’s taxonomy processor architectures can be classified into four 

based upon their number of concurrent instruction (or control) and data streams [16]. 

These four different types are Single Instruction Single Data stream (SISD), Single 

Instruction Multiple Data streams (SIMD), Multiple Instruction Single Data stream 

(MISD) and Multiple Instruction Multiple Data streams (MIMD). GPUs are mainly 

suitable for SIMD type parallelization, in which each of the concurrently executing 

processors applies the same instruction on a different part of a big data set, as can be 

seen from Fig. 1.3. Adding two large vectors and writing the sum on a third one is an 

example of this type of work. In MIMD, processors work asynchronously on lots of 

different small data sets with same instruction. Calculating the inverse of a large 

number of small matrices is this kind of work. Although GPUs can be used for 

MIMD type calculations in theory, libraries developed and studies conducted so far 

are generally based on SIMD. For example flow solvers based on Smoothed Particle 

Hydrodynamics (SPH) and Lattice Boltzmann Method (LBM) have very 

parallelizable algorithms with SIMD type calculations, and researchers reported very 

large speed-ups when they implemented these techniques on GPUs. 

 

 

Figure 1.3 Classification due to Flynn’s Taxonomy [17]. 
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As mentioned above certain algorithms are very suitable to GPU parallelization. For 

example, compared to CPUs, it was possible to obtain 40, 50, 114 times speed-ups 

when GPUs are used for Fast Fourier Transform (FFT) [18], Monte Carlo Method 

[19], Lattice Boltzmann Method (LBM) [20], respectively. However, one must be 

cautious about these speed-up values and be aware of the problems for which they 

are reported. As demonstrated by Lee et al. [21] CPU and GPU performances can be 

quite different for different tasks. As seen in Fig. 1.4, they studied 14 different 

problems such as LBM, sparse matrix vector multiplication (SpMV), sorting, etc., 

and they obtained CPU and GPU performances that are closer to each other than the 

orders of magnitude differences reported in literature. Whether the problem is 

compute bounded or bandwidth bounded changes the performance of the GPU, most 

of the time. They reached as much as 14.9 times speed-up for Gilbert–Johnson–

Keerthi (GJK) distance algorithm (It is used for real time collision detection used in 

physics engines of video games.) and mean speed-up value for all algorithms is 2.5 

times. For example SpMV is a very commonly encountered task in FEM and nearly 

2 times speed-up is obtained for it. The study was conducted using Intel Core i7-960 

CPU and NVIDIA GTX280 GPU, both utilized fully as much as possible. It is worth 

to note that in this study one year old NVIDIA GPU was compared with a brand new 

Intel CPU of the time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Comparison of Intel Core i7-960 CPU and NVIDIA GTX280 GPU 

Performances [21]. (SGEMM: SP General Matrix Multiply, MC: Monte Carlo, 

Convol: Convolution, Solv: Constraint Solver, RC: Ray Casting, Hist: Histogram 

Computation, Bilat: Bilateral Filter) 
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1.3 GPU Programming with CUDA 

Even though the CUDA compiler enables a very similar coding experience with the 

standard C/C++ programming, there are some differences between the codes that 

work on the CPU and on the GPU. In order to understand the similarities and 

differences, a simple example that adds two vectors and stores the result in a third 

one is explained below. 

CPU version of vector addition (no parallelization) [22] 

   #include <stdio.h> 

   #include <stdlib.h> 

 

   #define N 256 

 

   void add(int *vec1, int *vec2, int *sum) { 

      int threadID = 0; 

      while (threadID < N) { 

         sum[threadID] = vec1[threadID] + vec2[threadID]; 

         threadID += 1; // There is single CPU core, so increment is one 

      } 

   } 

 

   int main(void) { 

      int *vec1, *vec2, *sum; 

 

      // Allocate the memory on the CPU 

      vec1 = (int*)malloc(N * sizeof(int)); 

      vec2 = (int*)malloc(N * sizeof(int)); 

      sum  = (int*)malloc(N * sizeof(int)); 

 

      // Fill the vectors 'vec1' and 'vec2' on the CPU 

      for (int i=0; i<N; i++) { 

         vec1[i] = -i; 

         vec2[i] = i * i; 

      } 

 

      // Add vec1 to vec2 and write the results to sum 

      add(vec1, vec2, sum); 

 

      // Free the memory we allocated on the CPU 

      free(vec1); 

      free(vec2); 

      free(sum);     

 

      return 0; 

   } 

 

The add() function is consciously written in that complex form in order to be able 

to compare it with its GPU version. The usual simple way of writing it will result in 

the following code; 
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   void add(int *vec1, int *vec2, int *sum) { 

      for (int i=0; i<N; i++) { 

         sum[i] = vec1[i] + vec2[i]; 

      } 

   } 

 

Using CUDA the same vector addition can be performed on a GPU in parallel by 

mainly writing the GPU version of the function add() and transferring the vectors 

between the GPU and the CPU. 

GPU version of vector addition [22] 

   #include <stdio.h> 

   #include <stdlib.h> 

 

   #define N 256 

 

   __global__ void add(int *vec1, int *vec2, int *sum) { 

      int threadID = threadIdx.x; // This thread handles the data 

                                  // at its thread id 

      if (threadID < N) { 

         sum[threadID] = vec1[threadID] + vec2[threadID]; 

      } 

   } 

 

   int main(void) { 

      int vec1[N], vec2[N], sum[N];   // Allocate the memory on the CPU 

      int *dev_vec1, *dev_vec2, *dev_sum; 

 

      // Allocate the memory on the GPU 

      cudaMalloc((void**)&dev_vec1, N * sizeof(int)); 

      cudaMalloc((void**)&dev_vec2, N * sizeof(int)); 

      cudaMalloc((void**)&dev_sum,  N * sizeof(int)); 

 

      // Fill the vectors 'vec1' and 'vec2' on the CPU 

      for (int i=0; i<N; i++) { 

         vec1[i] = -i; 

         vec2[i] = i * i; 

      } 

 

      // Copy the vectors 'vec1' and 'vec2' to the GPU 

      cudaMemcpy(dev_vec1, vec1, N * sizeof(int), cudaMemcpyHostToDevice); 

      cudaMemcpy(dev_vec2, vec2, N * sizeof(int), cudaMemcpyHostToDevice);     

 

      // Add vec1 to vec2 and write the results to sum 

      add<<<1,N>>>(dev_vec1, dev_vec2, dev_sum); 

       

      // Free the memory allocated on the GPU    

      cudaFree(dev_vec1);    

      cudaFree(dev_vec2);    

      cudaFree(dev_sum);    

 

      return 0; 

   } 

 

Implementation of the main() function is very similar in both versions. As the main 

difference cudaMalloc() is used in the GPU version to allocate memory instead of 
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malloc() and at the end cudaFree() is used to free memory instead of free(). 

Using cudaMemcpy(), input vectors are copied to the device (GPU). Input vector 

could also be filled directly in the GPU, which is not preferred here because the main 

intent is to show how a particular operation, namely, the addition of two vectors, can 

be performed on a graphics processor. GPU version of the main function calls the 

add() function that works on the GPU using the special triple angle bracket syntax 

(<<< … >>>). 

GPU version of the add() function is defined using the __global__ qualifier, 

making it a device kernel. Inside it parallel vector addition is performed. Although 

CPU and GPU versions of the add() function look very similar, CPU code is 

sequential, i.e. working with a single thread, whereas GPU code is working with N 

threads simultaneously. Number of threads, N, is defined when function is called as 

add<<<1,N>>>. threadIdx.x is one of the built-in variables that the CUDA 

runtime defines for the user. It contains the value of the thread index for the thread 

that is currently running the device code. In this sample program N threads that have 

threadIdx.x values changing from 0 to N-1 are working simultaneously.  

Unfortunately, it is not that simple to port every algorithm to GPU. Reduction is a 

simple yet useful example to show it. Summation of the values of a vector is selected 

as a reduction operation. In order to keep the discussion short only the summation 

function is considered. Size of vector1 is taken as 256 for the particular example. 

CPU version of vector reduction 

   void sumVector(float *vector1, float *sumTotal) { 

      sumTotal[0] = 0.0; // Note: sumTotal[0] is used instead of sumTotal   

                         // in order to be compatible with GPU code 

      for (int i=0; i<256; i++) { 

         sumTotal[0] += vector1[i]; 

      } 

   } 

 

Parallelized GPU version of vector reduction [23] 

   __global__ void sumVector(float *vector1, float *sumTotal) 

   { 

      __shared__ float sum[256]; // Declare array in shared memory 

 

      int threadID = threadIdx.x; 

      sum[threadID] = vector1[threadID]; // Copy array to shared memory 

 

      __syncthreads(); 
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      int nTotalThreads = blockDim.x; // Total number of active threads 

 

      while(nTotalThreads > 1) 

      { 

         int halfPoint = (nTotalThreads / 2); // Divide by two to obtain  

                                               // the # of active threads                                  

 

if (threadID < halfPoint) // Only the first half of the threads                                 

                                   // will be active 

         {  

            sum[threadID] += sum[threadID + halfPoint]; // Calculate the   

                                                        // sum 

         } 

         __syncthreads(); 

 

         nTotalThreads = (nTotalThreads / 2); // Divide by two to be ready 

                                               // for next reduction step 

      } 

 

      // At this point, thread zero has the sum. 

      if (threadID == 0) 

      { 

         sumTotal[0] = sum[0];  
      } 

   } 

 

 

The idea is that each thread adds two of the values in sum and stores the result back 

to sum. Since each thread combines two entries into one, every step of the while loop 

is completed with half as many entries as it started with (see Fig. 1.5). In the next 

step, the same operation is done on the remaining half. When every entry in sum is 

summed, program exits the while loop.  

 

 

Figure 1.5 One Step of Summation Reduction [22]. 
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For this example, when 256 threads per block are used, it takes 8 iterations of this 

process to reduce the 256 entries in sum to a single value. One can realize that a new 

function called __syncthreads() is used. This call guarantees that every thread in 

the block has completed its instructions before the hardware executes the next 

instruction on any thread. With the help of this synchronization, it is guaranteed that 

all of the writes to the shared array sum are completed before anyone tries to read 

from it. 
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CHAPTER 2  

LITERATURE 

Existing studies in the literature will be presented in two parts, the ones related with 

the use of the Finite Element Method (FEM) for flow problems and the use of GPUs 

for scientific computing. 

2.1 Literature on the Use of FEM for Incompressible Flows 

Use of FEM for the solution of flow problems goes back to 1960s when Zienkiewicz 

and Gheung [24] used the technique to study potential flows. Since early 1970’s it 

has been used for the solution of Navier-Stokes equations. One of the pioneering 

studies is the thesis work of Hood [25], in which Navier-Stokes equations was solved 

for incompressible flows. In Hood’s study the conservation of mass and momentum 

equations were solved separately, known as the segregated approach. First, the 

velocity was calculated by the use of assumed pressure values, followed by the 

calculation of pressure by solving a Poisson equation, which was obtained by 

combining conservation of mass and momentum equations. Velocities and pressures 

are estimated like this iteratively until convergence occurs. In this manner, Hood’s 

study was the first of its kind. 

Pressure and velocity components are known to be the primate variables of the 

incompressible Navier-Stokes equations. For a three-dimensional, isothermal flow 

with constant fluid properties, there are a total of four scalar unknowns (pressure and 

velocity components) and four scalar equations (continuity and momentum 

conservation). The solution of all primitive variables by the use of a single set of 

linear algebraic equation system is known as the mixed (coupled) formulation. In the 

early days of CFD, mixed formulation was too costly due to its high memory 

requirements. Despite this, it found use in the literature (Huyakorn et al. [26]). With 
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constant development of computer hardware mixed formulation became more and 

more accessible (Zahedi et al. [27]). 

In literature, it is possible to find various different versions of FEM applied to flow 

problems. For incompressible flows, in order to overcome difficulties of satisfying 

the continuity equation accurately, i.e. finding the correct pressure field that yields a 

divergence free velocity field, people tried using alternative unknown sets, such as 

the vorticity and the stream function. Although this approach resulted in successful 

simulations of two-dimensional problems, it turned out to be costly in three-

dimensional problems due to the increased number of scalar unknowns (Taylor and 

Hood [28], Barragy and Carey [29]). Also specification of boundary conditions 

turned out to be cumbersome. 

One of the methods that eliminates the problematic pressure unknown and the 

challenging continuity equation is the penalty technique. It works by removing the 

pressure term from the momentum equation by the help of the continuity equation 

(Hughes et al. [30], Reddy [31]). This requires the definition of a penalty parameter, 

which is unfortunately problem dependent. Proper selection of the penalty parameter 

and the increased condition number of the resulting linear algebraic system are the 

disadvantages of this method. 

Similar to the use of central differencing in the Finite Difference and Finite Volume 

Methods, the use of the standard Galerkin formulation in the Finite Element Method 

is known to yield unphysical wiggles for the simulation of highly convective flows. 

Although these wiggles can be considered as the warning of a not fine enough mesh, 

researches worked a lot to find formulations that provide smooth solutions on 

relatively coarse meshes. The most popular of such stabilizations is known as the 

Streamline Upwind Petrov Galerkin (SUPG), which is frequently used to solve high 

Reynolds number flows in acceptable tolerances without using excessively fine 

meshes (Brooks and Hughes [32]). Galerkin Least Squares (GLS) and Taylor 

Galerkin are among alternative stabilization techniques (Hannai et al. [33], Donea 

[34]). 

In the literature of the use of FEM for incompressible flows, a great number of 

studies were done to overcome the Ladyzhenskaya-Babuska-Brezzi (LBB) condition, 
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which requires the storage of pressure and velocity components at different sets of 

points over the elements. This is not desired because it greatly limits the elements 

that can be used and makes the programming difficult. To overcome this, Rice and 

Schipke [35] developed a modified Galerkin FEM that can work with velocity and 

pressure stored at the same nodes. Another important similar study that combines 

Finite Volume Method and FEM was done by Prakash and Patankar [36]. SUPG and 

similar stabilization techniques mentioned in the previous paragraph are also known 

to circumvent the LBB condition (Hughes et al. [37]). 

Patankar’s SIMPLE algorithm is the most commonly used segregated solution 

technique used with the Finite Volume Method. Haroutunian’s [38] remarkable work 

is a successful finite element adaptation of this approach. The studies by Shaw [39] 

and Du Toit [40] also used the same approach with FEM. 

Unlike compressible flows, solving transient incompressible flows are not straight 

forward due to the missing time derivative in the continuity equation. Fractional step 

(aka splitting or projection) is a solution algorithm commonly used for solving 

transient incompressible flows (Donea et al. [41], Blasco et al. [42], Guermond et al. 

[43]). In this technique, solution is achieved in two stages. At the first step, 

approximate velocities are calculated by the solution of the momentum equation, 

without using the continuity equation. At the second step, calculated velocities are 

corrected according to the mass conservation. The solver developed in this thesis is 

of fractional step type.  

For structural mechanics problems, low order elements are generally used in a finite 

element analysis, however in literature it is possible to find studies that make use of 

high-order elements for the simulation of flow problems (Volker [44]). Hierarchical 

shape functions, which make mesh coarsening and refining easier compared to the 

use of Lagrange type shape functions was preferred by Whitling and Jansen [45]. 

Characteristic Based Split (CBS) method is a relatively new FEM version conducted 

by a group of scientist led by Zienkiewicz (Nithiarasu et al. [46]). Yet another 

popular FEM technique in recent years is the Discontinuous Galerkin technique 

which stands out especially with its nature very suitable for parallelization (Cockburn 

[47]). 
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In this thesis an incompressible flow solver is developed. Therefore the above 

literature summary focused on incompressible flow studies. However, FEM was also 

utilized for compressible flows with success (Löhner et al. [48]). There are also 

works which managed to solve both compressible and incompressible flows with a 

single formulation (Hauke and Hughes [49]). 

2.2 Literature on the Use of GPUs for Flow Problems 

Scientific calculations with GPUs and particularly GPU usage for CFD are fairly 

new topics. Nearly all studies were performed after 2000. Moreover, studies which 

used CUDA programming Toolkit started after 2007, which was the year that CUDA 

was introduced. Because there are very few CFD studies that combine FEM and 

GPU, the ones that use GPU with different methods will also be mentioned in this 

section. 

First CFD applications running parallel on GPUs are real time, particle based 

solutions for movie and advertisement industries (Liu et al. [50]). Creating a realistic 

visualization was the main aim of these studies and accurate satisfaction of the 

physical laws were of secondary importance. These particle based Lagrangian 

simulations were very suitable for parallelization on the GPU. Smoothed Particle 

Hydrodynamics (SPH) is another particle based method, with high parallel 

performance potential and gives better results in physical regards than real time 

solvers. SPH is the most frequently used CFD technique on the GPUs. Herault et al. 

[51] reported that SPH runs which lasted weeks can be solved in days or hours when 

GPUs are utilized. 

It is possible to notice that, as far as GPU usage is concerned, compressible flow 

studies are more common than incompressible flow ones. Hagen et al. [52] reported 

12 times speed up when GPUs are used instead of CPUs in their finite volume based 

two- and three-dimensional compressible flow solver. Brandwik and Pullan [53] 

achieved 29 and 16 times speed ups for two- and three-dimensional inviscid flows, 

respectively, around turbine blades. They used CUDA programing toolkit for GPU 

coding. Elsen et al. [54] used CUDA to parallelize their finite difference solver for 

hypersonic flows and they reached 15 to 40 times speed up compared to their code 

working serial on the CPU. 
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Lattice Boltzmann Method (LBM) has an algorithm that is highly parallelizable and 

used with GPUs frequently. Tölke and Krafczyk [55] used CUDA programming 

toolkit with success to solve Lattice Boltzmann equations and they reached a 

performance in the order of teraFLOPS. In a similar study, Riegel and Indiger [56] 

solved flow around a motorcycle with LBM on a NVIDIA Tesla C1060 GPU and 

reported 23 times speed-ups. 

Sparse matrices and sparse matrix solvers are an important part of many CFD codes. 

In literature it is possible to find studies focusing on them, such as the one performed 

by Bolz et al. [57]. Sparse matrix-vector multiplication (SpMV) is an important 

operation for many CFD codes. Bell and Garland [58] studied the parallel 

implementation of SpMV on a GPU. 

One of the few FEM based flow solver implementations on GPU was done by 

Göddeke et al. [59]. They ported their flow solver named FEAST to a small GPU 

cluster. According to their findings, in contrast to their earlier structural mechanics 

studies, incompressible flow solver could reach lower speed up values (only 2 times). 

At the time they conducted this study, double precision performance of GPUs were 

rather poor, so they used single precision and discussed its effect on the accuracy. In 

a similar study, Euler equations were solved using FEM on GPUs (Phillips et al. 

[60]). A distinct feature of this study is the use of FORTRAN language for GPU 

coding, which is not a common choice. There are also successful implementations of 

Discontinuous Galerkin type FEM on GPUs (Klöckner et al. [61]).  

Constructing the elemental system is a time consuming part of a FEM solver and the 

process is highly parallelizable. With the help of GPUs working in single precision, 

Cecka et al. [62] reached 30 times speed up compared to single core of CPU in 

constructing elemental systems. In another study, global stiffness matrices weren’t 

created at all and the solution was reached directly through elemental stiffness 

matrices (Refsnæs [63]). Poisson equations were solved on GPUs with more than 30 

million unknowns and up to 24 times speed up was observed compared to the use of 

a single core of a CPU. 

In another noteworthy study, Overflow’s (a code developed and used by NASA for 

space research) small but time consuming SSOR solver was transferred to GPU and 
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2.5 to 3 times speed up values were reported (Jespersen [64]). As an interesting 

aspect of this study, with the experience obtained while transferring the code to GPU, 

CPU version of the code was also modified and experienced an increase in speed. 

Corrigan et al.’s [65] study presented many interesting details about transferring a 

code designed for CPU to GPU. In another important study, Malecha et al. [66] 

added GPU support to OpenFOAM, which is popular freely available, open source 

CFD software, and used the code to solve biological flows. 

Looking at the studies between 2011 and 2014, which is the period of the current 

thesis study, one can notice the dominance of FVM, LBM and SPH techniques. 

Asouti et al. [67] reported 45 times speed up while solving steady and unsteady 

turbulent flows on GPU compared to single core of CPU with a vertex centered finite 

volume code. Lefebvre et al. [68] solved Euler equations with FVM and reported 3.5 

and 2.5 times speed ups for single and double precision usage, respectively. 

Niemeyer and Sung [69] used GPUs in their finite volume and finite difference codes 

and reported 10 times and 8.1 times speed ups, respectively. Habich et al. [70] 

developed optimization strategies for LBM on GPUs using CUDA in double 

precision. They created their own performance criterion as the number of lattice cells 

updated per second (FluidMLUPS/s). CPU and GPU codes reached 75 

FluidMLUPS/s and 100 FluidMLUPS/s, respectively. Another LBM implementation 

was done by Stumbauer et al. [71], who reported 20 times speed up while solving 

The Couette-Taylor photo-bioreactor problem. Dominguez et al. [72] studied CPU 

and GPU implementations of the SPH method. They compared the optimized codes 

for CPU (4 cores) and two different GPUs, and reported 12.5 times and 6.1 times 

speed ups.  

As mentioned before general purpose scientific computations using GPUs became a 

very popular research field in recent years. Not only the constantly improving 

hardware, but also the software tools that made GPU programming easier contributed 

to this. On the software side, the CUDA Toolkit itself renewed itself periodically. 

Third party libraries like CUSP [14], MAGMA [13], CULA [15], ArrayFire [73] and 

Paralution [74] also had an important role. On the hardware side, better double 

precision performance and increased memory of GPU architectures like Tesla, Fermi 
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and Kepler that are specifically designed for scientific computing made the switch 

from CPU to GPU easier. Realizing the potential of many-core usage for general 

purpose computing, Intel recently joined the competition and started to manufacture 

scientific computing oriented accelerator chips called Xeon Phi Coprocessors 

(Reinder and Jeffers [75]). 

As seen from the above review, studies that utilize GPUs for incompressible flows 

are very rare. Also in only a few studies that use GPU, the discretization was done 

using the finite volume method. The current thesis study is conducted to fill this gap 

by writing a FEM based incompressible flow solver that can take advantage of GPU 

parallelization as much as possible. 
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CHAPTER 3  

FORMULATIONS AND CODE DEVELOPMENT 

In this thesis study, three-dimensional, incompressible, laminar flows are solved in a 

time dependent setting. For constant viscosity, these flows require the solution of the 

following mass and momentum conservation equations; 

𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ⋅ ∇)�⃗⃗� = −

1

𝜌
∇𝑝 + 

𝜇

𝜌
∇2�⃗⃗� + 𝑓 3.1 

∇ ⋅ �⃗⃗� = 0 3.2 

where 𝜌 and 𝜇 are the constant and known density and dynamic viscosity, 𝑓 is a 

known body force per unit mass, �⃗⃗� and 𝑝 are the unknown velocity and pressure 

fields. For a three-dimensional flow these equations constitute a set of four scalar 

equations with 4 scalar unknowns (3 velocity component and pressure). These 

unknowns are functions of time and the three-dimensional space. 

For incompressible flows, Eqn. (3.2), known as the continuity equation, is always 

independent of time, even for unsteady flows. This makes it impossible to perform an 

explicit time discretization, which is a common procedure for compressible flow 

solutions. Also the continuity equation does not contain the pressure unknown. Not 

only that but also the missing equation of state, makes the bonding between the 

pressure and velocity unknowns weak for incompressible flows. Due to these, it can 

be said that numerical simulation of incompressible flows are more challenging 

compared to compressible ones. 

In literature researchers tried many different approaches for the solution of 

incompressible flows. The ones that are most frequently used with a finite element 

formulation are the penalty method [30], artificial incompressibility method [76], 
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pressure correction method [77] and the fractional step method. The last one is used 

in this study and its details will be given in the next section. 

3.1 Explicit Fractional Step Method 

This method works with time dependent equations and the solution is obtained in two 

main steps. In the first step, approximate values for the velocity field are calculated 

without using the mass conservation equation. In the second step, this velocity field 

is updated such that conservation of mass is ensured. Due to the decoupled solution 

of velocity and pressure fields, fractional step method turns out to be an efficient 

technique for simulating large scale problems [78]. In literature it is possible to find a 

number of different versions of this method with small differences between each. 

Two such versions are considered in this study, explicit and implicit ones. The 

explicit one used as the main solver is based on the work of Blasco et al. [42] and its 

details will be explained below. 

First Step: In this step, Eqn. (3.1) is considered to find an intermediate velocity 

(�⃗⃗�  𝑛+
1

2), which is obtained using the velocity (�⃗⃗�  𝑛) and pressure (𝑝𝑛) fields of the 

previous time level 𝑛. Equation that needs to be solved is given below. 

�⃗⃗�  𝑛+
1
2 − �⃗⃗�  𝑛

∆𝑡
+ (�⃗⃗�𝑛 ⋅ ∇)�⃗⃗�  𝑛+

1
2 −

𝜇

𝜌
∇2�⃗⃗�  𝑛+

1
2 = −

1

𝜌
∇𝑝𝑛  + 𝑓  𝑛 3.3 

Time derivative is discretized using a first order explicit Euler scheme. The 

convective term, which is the second one on the left hand side of the equation is 

linearized by using velocity values of time levels 𝑛 and 𝑛 +
1

2
 together. Viscous term 

is included implicitly by using the intermediate velocity value in this term. On the 

other hand, pressure term is treated explicitly. The unknown of Eqn. (3.3) is 

intermediate velocity vector (�⃗⃗�  𝑛+1/2).   

Second Step: With the help of the intermediate velocity field calculated in the first 

step, velocity of the new time step (�⃗⃗�  𝑛+1) can be obtained using 

�⃗⃗�  𝑛+1 − �⃗⃗�  𝑛+
1
2

∆𝑡
−

𝜇

𝜌
∇2 (�⃗⃗�  𝑛+1 − �⃗⃗�  𝑛+

1
2) +

1

𝜌
∇(𝑝𝑛+1 − 𝑝𝑛) = 0 3.4 

Velocity of the new time step (�⃗⃗�  𝑛+1) have also ensure the conservation of mass. 
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∇ ⋅ �⃗⃗�  𝑛+1 = 0  3.5 

As seen, nonlinear term is totally missing from Eqn. (3.4). If Eqn. (3.3) and Eqn. 

(3.4) are put together we get; 

�⃗⃗�  𝑛+1 − �⃗⃗�  𝑛

∆𝑡
+ (�⃗⃗�𝑛 ⋅ ∇)�⃗⃗�  𝑛+

1
2 −

𝜇

𝜌
∇2�⃗⃗�  𝑛+1 = −

1

𝜌
∇𝑝𝑛+1  + 𝑓  𝑛 3.6 

which is a discretization of the momentum conservation Eqn. (3.1). Dividing the 

solution into 2 steps allows alleviating the numerical difficulties related to the 

saddle-point nature of the variational formulation of incompressible flows [79]. The 

basic idea is to separate the nonlinear convective term and the conservation of mass, 

thus decomposing the initially difficult problem into relatively easier sub problems. 

Convective term is only present in the first step, where mass conservation is not 

considered. 

When discretized using the standard Galerkin FEM, details of which will be given in 

the Section 3.4, Eqns. (3.3), (3.4) and (3.5) become 

[𝑀]
{𝑈 𝑛+

1
2} − {𝑈 𝑛}

∆𝑡
+ [𝐴(𝑈𝑛)]{𝑈 𝑛+

1
2} + [𝐾]{𝑈 𝑛+

1
2} = −[𝐺][𝑃𝑛]  + {𝐹 𝑛}    3.7 

[𝑀]
{𝑈 𝑛+1} − {𝑈 𝑛+

1
2}

∆𝑡
+ [𝐾] ({𝑈 𝑛+1} − {𝑈 𝑛+

1
2}) + [𝐺]({𝑃𝑛+1} − {𝑃𝑛}) = 0 3.8 

[𝐺]𝑇{𝑈𝑛+1} = 0    3.9 

where the vectors {𝑈 𝑛+1} and {𝑃 𝑛+1} store the velocity components and the 

pressures at the nodes of the finite element mesh, at the new time level 𝑛 + 1. [𝑀] is 

the mass matrix, [𝐴] is the advection matrix, [𝐾] is the viscous-stiffness matrix, [𝐺] 

represents the discrete gradient operator, [𝐺]𝑇 represents the discrete divergence, and 

{𝐹} is the forcing term. 

Unfortunately, there are difficulties in the solution of this equation set. The advection 

matrix, [𝐴], of the Eqn. (3.7) depends on the velocity field and it has to be calculated 

once every time step. Moreover, a new linear algebraic system needs to be solved at 

each time step to get the intermediate velocity field, and the coefficient matrix of 

Eqn. (3.7) is not symmetrical due to the convective term. In order to overcome this 
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difficulty Blasco et al. [42] suggested the use of an extra iterative loop in each time 

step. With this approach, Eqns. (3.7), (3.8) and (3.9) can be revised as follows 

[𝑀]
{𝑈

𝑖+1

 𝑛+
1
2} − {𝑈 𝑛}

∆𝑡
+ [𝐴(𝑈𝑛)]{𝑈

𝑖

 𝑛+
1
2} + [𝐾]{𝑈

𝑖

 𝑛+
1
2} = −[𝐺]{𝑃𝑛}  + {𝐹 𝑛}    

3.10 

[𝑀]
{𝑈𝑖+1

 𝑛+1} − {𝑈
𝑖+1

 𝑛+
1
2}

∆𝑡
+ [𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2}) + [𝐺]({𝑃𝑖+1

𝑛+1} − {𝑃𝑛}) = 0 3.11 

[𝐺]𝑇{𝑈𝑖+1
𝑛+1} = 0 3.12 

The difference between Eqns. (3.7), (3.8), (3.9) and Eqns. (3.10), (3.11), (3.12) is the 

usage of 𝑖 and 𝑖 + 1 indices, which are the iteration counters of each time step. By 

using the intermediate velocity values of the previous iteration in the convective and 

viscous terms, the only unknown intermediate velocity of Eqn. (3.10) appears in the 

first term as {𝑈𝑖+1
 𝑛+1/2

}. Convergence in each time step can be reached in a few 

(usually in the range of one to four) iterations at each time step. 

Another important challenge is to solve for the velocity and pressure fields of the 

new time level by using Eqn. (3.11) and (3.12) together. The reason behind the 

difficulty is the lack of pressure in Eqn. (3.12).  To overcome this problem, a new 

equation that can be obtained by eliminating {𝑈𝑖+1
 𝑛+1} from Eqn. (3.11) and (3.12) can 

be used. First Eqn. (3.11) can be used to write {𝑈𝑖+1
 𝑛+1} as follows 

 

{𝑈𝑖+1
 𝑛+1}  = 

[𝑀]−1

(

  
 
[𝑀]

{𝑈
𝑖+1

 𝑛+
1
2}

∆𝑡
− [𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2}) − [𝐺]({𝑃𝑖+1

𝑛+1} − {𝑃𝑛})

)

  
 

 

3.13 

 

Substituting this into Eqn. (3.12) one gets 
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[𝐺]𝑇

(

  
 
{𝑈

𝑖+1

 𝑛+
1
2}

∆𝑡
− [𝑀]−1[𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2})

− [𝑀]−1[𝐺]({𝑃𝑖+1
𝑛+1} − {𝑃𝑛})

)

  
 

= 0 

3.14 

 

Finally Eqn. (3.14) can be rearranged as follows, which can be used to solve for 

{𝑃𝑖+1
𝑛+1}. 

([𝐺]𝑇[𝑀]−1[𝐺])({𝑃𝑖+1
𝑛+1} − {𝑃𝑛}) = 

1

∆𝑡
[𝐺]𝑇 ({𝑈

𝑖+1

 𝑛+
1
2} − ∆𝑡[𝑀]−1[𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2})) 

3.15 

After calculating {𝑃𝑖+1
𝑛+1} using Eqn. (3.15), {𝑈𝑖+1

 𝑛+1} is calculated with using Eqn. 

(3.13).  This completes one iteration of a time step. Eqn. (3.16) is used to check for 

the convergence of these iterations. |𝑋|2 is the Euclidean norm of a vector 𝑋. 

Typically maximum 4 iterations is enough for convergence, and the number drops to 

1 as the solution approaches to its steady state, if it exists. 

𝑚𝑎𝑥 (
|{𝑈𝑖+1

𝑛+1} − {𝑈𝑖
𝑛+1}|

2

|{𝑈𝑖+1
𝑛+1}|

2

,
|{𝑃𝑖+1

𝑛+1} − {𝑃𝑖
𝑛+1}|

2

|{𝑃𝑖+1
𝑛+1}|

2

) ≤ 𝜖   3.16 

The final difficulty in solving Eqns. (3.10), (3.13) and (3.15) is taking the inverse of 

the mass matrix [𝑀]. Fortunately the lumped diagonal ([𝑀𝑑]) version of [𝑀] that is 

easy to work with can be used. This simplification worked well for the steady state 

problems that are solved in this study, but its effect on the accuracy of transient 

problems should be investigated carefully. With the use of lumped mass matrix, 

fractional step method can be summarized as the solutions of the following three 

systems 

System 1 ∶ 
[𝑀𝑑]

{𝑈
𝑖+1

 𝑛+
1
2} − {𝑈 𝑛}

∆𝑡
= {𝑅1} 

3.17 
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System 2 ∶ ([𝐺]𝑇[𝑀𝑑]
−1[𝐺])({𝑃𝑖+1

𝑛+1} − {𝑃𝑛}) = {𝑅2} 3.18 

System 3 ∶ 
  [𝑀𝑑]

{𝑈𝑖+1
 𝑛+1} − {𝑈

𝑖+1

 𝑛+
1
2}

∆𝑡
= {𝑅3}  

3.19 

where the right hand side vectors of these systems are given as 

{𝑅1} = −[𝐴(𝑈𝑛)]{𝑈
𝑖

 𝑛+
1
2} − [𝐾]{𝑈

𝑖

 𝑛+
1
2} − [𝐺]{𝑃𝑛}  + {𝐹 𝑛} 3.20 

{𝑅2} =
1

∆𝑡
[𝐺]𝑇 ({𝑈

𝑖+1

 𝑛+
1
2} − ∆𝑡[𝑀

𝑑
]−1

[𝐾] ({𝑈𝑖
 𝑛+1} − {𝑈

𝑖

 𝑛+
1
2})) 3.21 

{𝑅3} = −[𝐾]({𝑈𝑖
 𝑛+1} − {𝑈

𝑖

 𝑛+
1
2}) − [𝐺]({𝑃𝑖+1

𝑛+1} − {𝑃𝑛})  3.22 

The first system calculates {𝑈
𝑖+1

 𝑛+
1

2}, i.e. the intermediate velocity at the new iteration. 

Calculation of {𝑅1} is costly in the sense that it requires the evaluation of a new [𝐴] 

matrix for each time step (not every iteration of each time step). The actual solution 

of the system is computationally cheap due to the use of the lumped mass matrix. 

The second system calculates {𝑃𝑖+1
𝑛+1} by using {𝑈𝑖+1

 𝑛+1/2
} that was just calculated in 

the previous step. Constructing of {𝑅2} is not costly. ([𝐺]𝑇[𝑀𝑑]
−1[𝐺]) matrix on the 

left hand side of System 2 is independent of time. It can be calculated at the 

beginning of the solution once and because of its symmetric and positive-definite 

nature, Cholesky decomposition can be used for the solution of this system. With 

Cholesky decomposition, System 2 can be efficiently solved with two triangular 

matrix solutions. However, increase in the size of the resulting triangular matrices 

with increasing problem size becomes a problem for the limited memory of GPUs. 

To overcome this issue Conjugate Gradient (CG) type iterative techniques can be 

employed. Both Cholesky decomposition and CG is used in this study. 

Lastly, the third system calculates {𝑈𝑖+1
 𝑛+1} by using {𝑃𝑖+1

 𝑛+1} that was just calculated 

in the previous step. Both the calculation of the right hand side vector and the 

solution of the system is cheap in this case. After the solution of System 3, 

convergence check is performed and either one more iteration is done or the 

calculations of the next time step are started. 
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As mentioned previously, there are various different versions of the fractional step 

method. The one explained above is selected mainly due to its simple algorithm. An 

alternative implicit one is also investigated. Its details will be given in next section 

and the advantages and disadvantages of these two formulations will be compared in 

Section 5.5. 

3.2 Implicit Fractional Step Method 

The fractional step method described in detail in the previous section has severe 

limitations on the allowable time step, due to its explicit treatment of certain terms. 

This resulted in quite long total run times to complete a solution. To improve this, an 

implicit fractional step formulation, which has no time step restriction due to stability 

concerns, is also tried. This second formulation is based on the work of Guermond 

and Quartapelle [80]. 

In the implicit formulation there is no intermediate velocity calculation. First the 

advection-diffusion equation given in Eqn. (3.23) is solved. As seen, the velocity at 

the new time step (�⃗⃗�  𝑛+1) is obtained using the velocity of the previous time step 

(�⃗⃗�  𝑛) and pressures from earlier two time steps (𝑝𝑛 and 𝑝𝑛−1). 

    
�⃗⃗�  𝑛+1 − �⃗⃗�  𝑛

∆𝑡
+ ((�⃗⃗�𝑛 ⋅ ∇)�⃗⃗�  𝑛+1 +

1

2
(∇ ⋅ �⃗⃗�𝑛)�⃗⃗�𝑛+1) −

𝜇

𝜌
∇2�⃗⃗�  𝑛+1 = 

                                                                                      −
1

𝜌
∇(2𝑝𝑛 − 𝑝𝑛−1) + 𝑓  𝑛 

3.23 

Unlike the explicit method that uses convective form for the advection term (see 

Eqn. (3.3)), Eqn. (3.23) uses skew-symmetric form as suggested by Guermond and 

Quartapelle [80]. In the second step, the following Poisson equation is solved for the 

pressure increment (𝑝𝑛+1 − 𝑝𝑛) 

   −∇2(𝑝𝑛+1 − 𝑝𝑛) = −
1

∆𝑡
∇ ⋅ �⃗⃗�𝑛+1  3.24 

After introducing the Galerkin finite element discretization, Eqns. (3.23) and (3.24) 

take the following forms; 
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   [𝑀]
{𝑈 𝑛+1} − {𝑈 𝑛}

∆𝑡
+ [𝐴(𝑈𝑛)]{𝑈 𝑛+1} + [𝐾]{𝑈 𝑛+1} = 

                                                                         −[𝐺](2{𝑃𝑛} − {𝑃𝑛−1}) + {𝐹 𝑛} 

3.25 

[�̂�]({𝑃𝑛+1} − {𝑃𝑛}) = −
1

∆𝑡
[𝐺]𝑇{𝑈 𝑛+1} 3.26 

where {𝑈},{𝑃}, [𝑀], [𝐴], [𝐾], [𝐺] and {𝐹} were defined in Section 3.1. The new [�̂�] 

is the global stiffness matrix associated with pressure interpolation, which is a 

Laplacian operator. After proper adjustments, the implicit formulation solves the 

following systems at each time step. It is worth to note that, unlike the explicit 

formulation, implicit one does not use any iterations in a time step. 

System 1 ∶ [
1

∆𝑡
[𝑀] + [𝐴(𝑈𝑛)] + [𝐾]] {𝑈 𝑛+1} = {𝑅1} 3.27 

System 2 ∶ [�̂�]({𝑃𝑛+1} − {𝑃𝑛}) = {𝑅2} 3.28 

where the right hand sides vectors are 

{𝑅1} =
1

∆𝑡
[𝑀]{𝑈 𝑛} − [𝐺](2{𝑃𝑛} − {𝑃𝑛−1}) + {𝐹 𝑛} 3.29 

{𝑅2} = −
1

∆𝑡
[𝐺]𝑇{𝑈 𝑛+1} 3.30 

Sparse linear systems need to be solved at each step to get new velocity and pressure 

values. System 1 has a non-symmetric left hand side matrix, which changes at each 

time level. System 2 has a symmetric left hand side matrix that does not depend on 

time. Because of the non-symmetric nature of the first system matrix, Biconjugate 

Gradient Stabilized (BiCGStab) solver is used to solve it. Intel MKL and CUSP 

libraries are used for BiCGStab on the CPU and GPU, respectively. [�̂�] is a 

symmetric matrix so Preconditioned Conjugate Gradient (PCG) is used to solve this 

pressure Poisson problem. For both BiCGStab and PCG methods Jacobi 

preconditioner is employed. 
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3.3 Time Consuming Parts of the Explicit Fractional Step Solution and Their 

Parallelization on the CPU and the GPU 

The explicit fractional step method, explained in the Section 3.1, have a number of 

time consuming calculations. They can be classified under four main categories; 

sparse matrix-vector operations, vector-vector operations, creating global matrices 

and solving sparse systems. Sparse matrix-vector and vector-vector operations are 

SIMD type operations. Creating a stiffness matrix is MIMD type work due to the 

calculation of independent elemental systems and their assembly. Solving a sparse 

system mostly contains SIMD type operations particularly for a symmetric, positive-

definite system. Details of these operations and how they are parallelized on the CPU 

and the GPU are explained below 

 Calculation of convective stiffness matrix,[𝐴(𝑈𝑛)]: This is performed once at 

each time step for the construction of {𝑅1} (see Eqn. (3.20)). This process needs 

the creation of a large number of small elemental stiffness matrices and their 

assembly. There is no readily available GPU library that can perform this 

operation as a black box. Therefore a new GPU kernel is written for it. 

Parallelization of this task is not straightforward and in literature a number of 

different alternatives were suggested [81, 82, 83]. These techniques were 

developed with the purpose of preventing the race condition arising during the 

assembly and effective utilization of GPU hardware. They differ from each other 

in terms of their usage of various levels of GPU memories (registers, shared 

memory and global memory), the responsible computing unit (thread, block) for 

creating the elemental stiffness matrices and the way the assembly operation is 

done. Some of them favor fast calculations and the others favor the use of less 

memory. 

In the current study the mesh coloring method, which groups the elements that do 

not share a common node, is utilized for eliminating the race condition. Fig. 3.1 

demonstrates an example of mesh coloring of a two-dimensional mesh consisting 

of 6 quadrilateral elements. Elements of the same color have no common nodes 

and therefore their stiffness matrices are created and assembled together, while 

the calculations on the elements of a different color can be done in parallel 

simultaneously. Because the GPU works best with blocks consisting of multiples 
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of 32 threads [22], blocks consisting of 32 threads are used for 27 node 

hexahedral elements. By this way, calculations associated with each velocity 

node of an element can be calculated parallel on a different thread. 

As seen in Eqn. (3.20) what really is needed is the [𝐴(𝑈𝑛)]{𝑈𝑖
 𝑛+1/2

} matrix-vector 

multiplication, but not the [𝐴] matrix itself. This suggests an alternative solution, 

which totally eliminates the assembly of the global [𝐴] matrix. Instead matrix-

vector multiplications can be done at the element level and the resulting vectors 

can be assembled. Again the mesh coloring method is utilized in order to prevent 

race conditions. This alternative method is used in the final version of the code 

because it has better performance and it needs less memory. Performance of these 

two approaches will be compared in the Chapter 5. 

CPU parallelization of this part is completed using OpenMP [84]. Mesh coloring 

method is also utilized on the CPU side. 

 

 

Figure 3.1 Illustration of Mesh Coloring in 2D [83]. 

 

 BLAS operations to calculate {𝑅1}, {𝑅2} and {𝑅3}: As seen in Eqns. (3.20), 

(3.21) and (3.22) calculation of the right hand side vectors require sparse matrix-

vector  calculations and vector-vector operations. These are all simple SIMD type 

operations and they are very suitable for parallelization. GPU implementation of 

these operations is mainly done with CUSPARSE and CUBLAS libraries that 

come with the CUDA Toolkit, and new small GPU kernels are written when a 

readily available solution cannot be found. On the CPU side these are parallelized 

using Intel’s Math Kernel Library (MKL) library [85]. 
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 Solution of Systems 1 and 3: As seen in Eqns. (3.17) and (3.19) due to the use of 

the diagonalized mass matrix, these system solutions are simple and performed 

using CUBLAS. Intel’s MKL library is used for CPU parallelization. 

 Solution of System 2: As discussed in the previous section either Cholesky 

factorization or CG technique is used for the solution of Eqn. (3.18). When 

Cholesky factorization is used, solution of the system requires two triangular 

system solutions, which are performed using Timothy Davis' CSparse library 

[86] on the CPU, whereas CUSPARSE is used on the GPU. When the problem 

size, hence the size of the triangular systems exceed a certain limit, GPU’s 

memory becomes insufficient for Cholesky factorization. For such cases 

Preconditioned Conjugate Gradient (PCG) solver is preferred, for which Intel’s 

MKL is used on the CPU and CUSP library is used on the GPU. 

Other than these calculations, there are some that have to be performed only once 

outside the time loop, such as the calculation of time independent global systems  

[𝑀], [𝑀𝑑], [𝑀𝑑]
−1, [𝐾], [𝐺], [𝐺]𝑇 , ([𝐺]𝑇[𝑀𝑑]

−1[𝐺]) and calculating the Cholesky 

factorization of ([𝐺]𝑇[𝑀𝑑]
−1[𝐺]) matrix. These calculations are not parallelized. 

Fig. 3.2 shows the flow chart of the developed flow solver. As seen all the time 

consuming operations that lie inside the time loop are parallelized on the GPU. Step 

numbers 0, 1, 2 and 3 will be used in analyzing the performance of the solver in the 

Chapter 5. 

3.4 Finite Element Formulation 

In this study the discretized Eqns. (3.17), (3.18) and (3.19) are obtained using the 

standard Galerkin Finite Element Method (GFEM). As with almost all numerical 

techniques, first the problem domain is discretized into small parts, called elements. 

After creating the numerical mesh by defining the elements and their nodes where 

the unknowns are stored at, FEM formulation makes use of approximate solutions 

over each element as given below; 

𝜙ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝜙𝑗  𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑈

𝑗=1

 3.31 

 



 

34 

 

 

Figure 3.2 Flow Chart of Solver. (Blue Parts are the Ones Parallelized on the GPU) 

Read the input file 

Create sparse storage (CSR) vectors for global [𝑀] and [𝐺] matrices and 
setup local to global mappings 

Setup FE shape funtions 

Setup Gauss Quadrature (GQ) points and weights 

Define shape functions and Calculate their derivatives   

Calculate Jacobian of each element 

Calculate 𝑥, 𝑦, 𝑧 derivatives of shape functions for each GQ point 

Initiallize and allocate sparse matrices and vectors 

Calculate global 𝑀 , 𝐺 , [𝐾] matrices 

Calculate [𝑀𝑑] and its inverse [𝑀𝑑]
−1  and apply BCs to [𝑀𝑑] 

Calculate ([𝐺]𝑇[𝑀𝑑]
−1[𝐺]) and apply BCs 

Initialize variables before the new iteration 

Calculate 𝐴 ∗ {𝑈𝑖
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Calculate {𝑅1} and apply BC 

Calculate {𝑈𝑖+1
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Calculate {𝑅2} and apply BC 

Calculate {𝑃𝑖+1
𝑛+1} with Cholesky or PCG 

Calculate {𝑅3} and apply BC 

Calculate {𝑈𝑖+1
𝑛+1} 

Check convergence 

Get ready for the next time step 

Write the final result file and exit 
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where 𝜙ℎ represents the approximate solution over an element for any scalar 

unknown 𝜙, which can be a velocity component or pressure. 𝜙𝑗 are the values of the 

unknown at the nodes of an element and 𝑆𝑗 are polynomial shape functions that are 

defined separately at each elemental node. 𝑁𝐸𝑈 is number of nodal 𝜙 unknowns 

defined over the element. The developed solver makes use of hexahedral elements 

seen in Fig. 3.3. Instead of using a set of different shape functions over each actual 

element, it is preferred to work with a master element (see Fig. 3.3) and only define a 

single set of shape functions, which requires the construction of a geometric mapping 

between the actual coordinates (𝑥, 𝑦, 𝑧) and master coordinates (𝜉, 𝜂, 𝜁). 

In order to satisfy the Ladyzenskaja-Babuška-Brezzi (LBB) condition, elements that 

have more velocity nodes than pressure nodes are used. Two element types are used. 

The high order element with 27 velocity nodes and 8 pressure nodes, i.e. quadratic in 

velocity and linear in pressure, is shown in Fig. 3.4. In total this element has 

3 ∗ 27 + 8 = 89 scalar unknowns over it. The low order one with 8 velocity nodes 

and 1 pressure node, i.e. linear in velocity and constant in pressure, is shown in Fig. 

3.5. It has 3 ∗ 8 + 1 = 25 scalar unknowns on it. For each element type two different 

shape function sets are used for velocity and pressure approximation. 

 

 

Figure 3.3 An Actual, Arbitrarily Shaped Hexahedral Element and Its Corresponding 

Master Element. 

 

𝑥 

𝑦 

𝑧 

𝜉 

𝜁 

6 (1,-1, 1) 

3 (1, 1,-1) 

2 (1,-1,-1) 

5 (-1,-1, 1) 

7 (1, 1, 1) 8 (-1, 1, 1) 

4 (-1, 1,-1) 
𝜂 
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Figure 3.4 Hexahedral Element with 27 Velocity Nodes and 8 Pressure Nodes 

(Element Type 1). 

 

 

 
Figure 3.5 Hexahedral Element with 8 Velocity Nodes and 1 Pressure Node (Element 

Type 2). 

 

After defining element types and the corresponding shape functions, discretization 

procedure continues by obtaining the residual of each differential equation, 

multiplying them with proper weight functions and equating their integrals over each 

element to zero. Starting with writing Eqn. (3.3) in the Cartesian coordinate system;  

 

x − Momentum ∶ 

𝑢𝑛+1/2 − 𝑢𝑛

∆𝑡
+ (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
) 

          −
𝜇

𝜌
(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑥
− 𝑓𝑥 = 0 

3.32 
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y − Momentum ∶ 

𝑣𝑛+1/2 − 𝑣𝑛

∆𝑡
+ (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
) 

           −
𝜇

𝜌
(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑓𝑦 = 0 

3.33 

z − Momentum ∶ 

𝑤𝑛+1/2 − 𝑤𝑛

∆𝑡
+ (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
) 

          −
𝜇

𝜌
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑧
− 𝑓𝑧 = 0 

3.34 

where variables 𝑢0, 𝑣0, 𝑤0 are known velocity components from previous time step. 

They are used in order to linearize the non-linear advection term. Residuals of the 

aforementioned DEs are; 

𝑅(𝑥) =
�̇�

∆𝑡
+ (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
) 

                     −
𝜇

𝜌
(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑥
− 𝑓𝑥 

3.35 

 𝑅(𝑦) =
�̇�

∆𝑡
+ (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
) 

                       −
𝜇

𝜌
(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑓𝑦 

3.36 

𝑅(𝑧) =
�̇�

∆𝑡
+ (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
) 

                  −
𝜇

𝜌
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑧
− 𝑓𝑧 

3.37 

The (𝑢𝑛+1/2 − 𝑢𝑛), (𝑣𝑛+1/2 − 𝑣𝑛), (𝑤𝑛+1/2 − 𝑤𝑛) term are replaced with �̇�, �̇�, �̇� 

for the sake of simplicity. 

Weighted residual methods’ main principle is to minimize the residual in a weighted 

integral logic as demonstrated below; 

∫𝑤(𝑥) 𝑅(𝑥) 𝑑𝑥
Ω

= 0 3.38 

 ∫𝑤(𝑦) 𝑅(𝑦) 𝑑𝑦
Ω

= 0 3.39 
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∫𝑤(𝑧) 𝑅(𝑧) 𝑑𝑧
Ω

= 0 3.40 

Substituting Eqns. (3.35), (3.36) and (3.37) into Eqns. (3.38), (3.39) and (3.40); 

∫ (𝑤𝑥

�̇�

∆𝑡
+𝑤𝑥 (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
) −

𝜇

𝜌
𝑤𝑥 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
)

Ω

+
1

𝜌

𝜕𝑤𝑥

𝜕𝑥
𝑝 − 𝑤𝑥𝑓𝑥)  𝑑𝑥 = 0 

3.41 

 ∫ (𝑤𝑦

�̇�

∆𝑡
+𝑤𝑦 (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
) −

𝜇

𝜌
𝑤𝑦 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
)

Ω

+
1

𝜌

𝜕𝑤𝑦

𝜕𝑦
𝑝 − 𝑤𝑦𝑓𝑦)  𝑑𝑦 = 0 

3.42 

∫ (𝑤𝑧

�̇�

∆𝑡
+𝑤𝑧 (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
) −

𝜇

𝜌
𝑤𝑧 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
)

Ω

+
1

𝜌

𝜕𝑤𝑧

𝜕𝑧
𝑝 − 𝑤𝑧𝑓𝑧)  𝑑𝑧 = 0 

3.43 

The equation above is known as the residual statement of the differential equation 

where 𝑤𝑥, 𝑤𝑦, 𝑤𝑧 are user selected weight functions. 

When a C
0
 continuous solution is utilized in the weighted residual statement, there 

will be a problem in the diffusion term since its second order derivatives cannot be 

computed properly. Therefore the differentiation requirements of unknown in the 

weighted residual statement should be lowered which can be achieved by applying 

integration by parts to the diffusion term of the equation.  

∫
𝜇

𝜌
𝑤𝑥 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
)𝑑𝑥

Ω

= −(
𝜇

𝜌
∫

𝜕𝑤𝑥

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

𝜕𝑤𝑥

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑤𝑥

𝜕𝑧

𝜕𝑢

𝜕𝑧
𝑑𝑥

Ω

) 

                                                                 +∫
𝜇

𝜌
𝑤𝑥 (𝑛𝑥

𝜕𝑢

𝜕𝑥
+ 𝑛𝑦

𝜕𝑢

𝜕𝑦
+ 𝑛𝑧

𝜕𝑢

𝜕𝑧
) 𝑑Γ

Γ

 

3.44 

The last term of equation above is called boundary integral which is a by-product of 

integration by parts. Boundary integral is evaluated at the boundaries (Γ) of the 

problem domain (Ω), where 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are the 𝑥, 𝑦, 𝑧 component of the unit outward 

normal of the boundary respectively. Boundary integrals that are the by-products of 

integration by parts include the following traction terms; 
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𝑡𝑥 =
𝜇

𝜌
(𝑛𝑥

𝜕𝑢

𝜕𝑥
+ 𝑛𝑦

𝜕𝑢

𝜕𝑦
+ 𝑛𝑧

𝜕𝑢

𝜕𝑧
) 3.45 

𝑡𝑦 =
𝜇

𝜌
(𝑛𝑥

𝜕𝑣

𝜕𝑥
+ 𝑛𝑦

𝜕𝑣

𝜕𝑦
+ 𝑛𝑧

𝜕𝑣

𝜕𝑧
) 3.46 

𝑡𝑧 =
𝜇

𝜌
(𝑛𝑥

𝜕𝑤

𝜕𝑥
+ 𝑛𝑦

𝜕𝑤

𝜕𝑦
+ 𝑛𝑧

𝜕𝑤

𝜕𝑧
) 3.47 

Applying integration by parts to the diffusion term of all the equations (Eqns. (3.41), 

(3.42) and (3.43)); 

∫ (𝑤𝑥

�̇�

∆𝑡
+𝑤𝑥 (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
) +

𝜇

𝜌
(
𝜕𝑤𝑥

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

𝜕𝑤𝑥

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑤𝑥

𝜕𝑧

𝜕𝑢

𝜕𝑧
))  𝑑𝑥

Ω

= ∫ (−
1

𝜌

𝜕𝑤𝑥

𝜕𝑥
𝑝) 𝑑𝑥

Ω

+∫(𝑤𝑥𝑓𝑥)𝑑𝑥
Ω

+∫𝑤𝑥𝑡𝑥𝑑Γ
Γ

 

3.48 

∫ (𝑤𝑦

�̇�

∆𝑡
+𝑤𝑦 (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
) +

𝜇

𝜌
(
𝜕𝑤𝑦

𝜕𝑥

𝜕𝑣

𝜕𝑥
+

𝜕𝑤𝑦

𝜕𝑦

𝜕𝑣

𝜕𝑦
+

𝜕𝑤𝑦

𝜕𝑧

𝜕𝑣

𝜕𝑧
))  𝑑𝑦

Ω

= ∫ (−
1

𝜌

𝜕𝑤𝑦

𝜕𝑦
𝑝) 𝑑𝑦

Ω

+∫(𝑤𝑦𝑓𝑦)𝑑𝑦
Ω

+∫𝑤𝑦𝑡𝑦𝑑Γ
Γ

 

3.49 

∫ (𝑤𝑧

�̇�

∆𝑡
+𝑤𝑧 (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
) +

𝜇

𝜌
(
𝜕𝑤𝑧

𝜕𝑥

𝜕𝑤

𝜕𝑥
+

𝜕𝑤𝑧

𝜕𝑦

𝜕𝑤

𝜕𝑦
+

𝜕𝑤𝑧

𝜕𝑧

𝜕𝑤

𝜕𝑧
))  𝑑𝑧

Ω

= ∫ (−
1

𝜌

𝜕𝑤𝑧

𝜕𝑧
𝑝) 𝑑𝑧

Ω

+∫(𝑤𝑧𝑓𝑧)𝑑𝑧
Ω

+∫𝑤𝑧𝑡𝑧𝑑Γ
Γ

 

3.50 

The above equation is called the weak form of the problem since it has lower 

differentiability requirements compared to the original weighted residual statements. 

By transferring a given DE into the weak form one can use C
0
 continuous solution 

and also natural boundary conditions (NBC) will automatically be included into the 

formulation. This is a unique property of FEM.  

C
0
 continuous approximate solutions for velocity and pressure unknowns take the 

following form; 

𝑢ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝑢𝑗  𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑁𝑣

𝑗=1

 3.51 

𝑣ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝑣𝑗  𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑁𝑣

𝑗=1

 3.52 
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𝑤ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝑤𝑗  𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑁𝑣

𝑗=1

 3.53 

𝑝ℎ(𝑥, 𝑦) = ∑ 𝑝𝑗  �̂�𝑗(𝑥, 𝑦)

𝑁𝐸𝑁𝑝

𝑗=1

 3.54 

where NENv and NENp are the number of velocity and pressure nodes over an 

element. Because NENv and NENp are different for the used elements, different 

shape fuctions are used for velocity and pressure components and they are denoted as 

𝑆 and �̂�.  

Substituting 𝑢ℎ, 𝑣ℎ, 𝑤ℎ, 𝑝ℎ into the elemental weak forms (Eqns. (3.48), (3.49) and  

(3.50)); 

∑ (∫ (𝑤𝑥

�̇�𝑗  𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (𝑤𝑥 (𝑢0𝑢𝑖

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0𝑢𝑖

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0𝑢𝑖

𝜕𝑆𝑗

𝜕𝑧
))  𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑤𝑥

𝜕𝑥
𝑢𝑖

𝜕𝑆𝑗

𝑑𝑥
+

𝜕𝑤𝑥

𝜕𝑦
𝑢𝑖

𝜕𝑆𝑗

𝑑𝑦
+

𝜕𝑤𝑥

𝜕𝑧
𝑢𝑖

𝜕𝑆𝑗

𝑑𝑧
))𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌

𝜕𝑤𝑥

𝜕𝑥
 �̂�𝑗) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑤𝑥𝑓𝑥)𝑑Ω
Ω

+∫ 𝑤𝑥𝑡𝑥𝑑Γ
Γ𝑒

 

3.55 

∑ (∫ (𝑤𝑦

�̇�𝑗 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (𝑤𝑦 (𝑢0𝑣𝑖

𝑑𝑆𝑗

𝑑𝑥
+ 𝑣0𝑣𝑖

𝑑𝑆𝑗

𝑑𝑦
+ 𝑤0𝑣𝑖

𝑑𝑆𝑗

𝑑𝑧
))  𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑤𝑦

𝜕𝑥
𝑣𝑖

𝜕𝑆𝑗

𝑑𝑥
+

𝜕𝑤𝑦

𝜕𝑦
𝑣𝑖

𝜕𝑆𝑗

𝑑𝑦
+

𝜕𝑤𝑦

𝜕𝑧
𝑣𝑖

𝜕𝑆𝑗

𝑑𝑧
))𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌

𝜕𝑤𝑦

𝜕𝑦
 �̂�𝑗)𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑤𝑦𝑓𝑦)𝑑Ω
Ω

+∫ 𝑤𝑦𝑡𝑦𝑑Γ
Γ𝑒

 

3.56 

∑ (∫ (𝑤𝑧

�̇�𝑗  𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (𝑤𝑧 (𝑢0𝑤𝑖

𝜕𝑆𝑗

𝑑𝑥
+ 𝑣0𝑤𝑖

𝜕𝑆𝑗

𝑑𝑦
+ 𝑤0𝑤𝑖

𝜕𝑆𝑗

𝑑𝑧
))  𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑤𝑧

𝜕𝑥
𝑤𝑖

𝜕𝑆𝑗

𝑑𝑥
+

𝜕𝑤𝑧

𝜕𝑦
𝑤𝑖

𝜕𝑆𝑗

𝑑𝑦
+

𝜕𝑤𝑧

𝜕𝑧
𝑤𝑖

𝜕𝑆𝑗

𝑑𝑧
))𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌

𝜕𝑤𝑧

𝜕𝑧
 �̂�𝑗) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑤𝑧𝑓𝑧)𝑑Ω
Ω

+∫ 𝑤𝑧𝑡𝑧𝑑Γ
Γ𝑒

 

3.57 
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Galerkin FEM (GFEM) is the most common variation of FEM, which is also utilized 

in the present study. The weight functions are selected to be the same as shape 

functions at GFEM, it can be demonstrated as; 

𝑤(𝑥) = 𝑆𝑖(𝑥) 3.58 

With using GFEM, Eqns. (3.55), (3.56) and (3.57) are transformed into these 

equations below; 

∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

�̇�𝑗 + ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
))  𝑑Ω

Ω𝑒
) 𝑢𝑗

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒
) 𝑢𝑗

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑥

) 𝑑Ω
Ω𝑒

) 𝑝𝑗

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑆𝑖𝑓𝑥)𝑑Ω
Ω

+∫ 𝑆𝑖𝑡𝑥𝑑Γ
Γ𝑒

 

3.59 

∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

�̇�𝑗 + ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
))  𝑑Ω

Ω𝑒
) 𝑣𝑗

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒
) 𝑣𝑗

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑦

) 𝑑Ω
Ω𝑒

)𝑝𝑗

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑆𝑖𝑓𝑦)𝑑Ω
Ω

+∫ 𝑆𝑖𝑡𝑦𝑑Γ
Γ𝑒

 

3.60 

∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

�̇�𝑗 + ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
))  𝑑Ω

Ω𝑒
)𝑤𝑗

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒
)𝑤𝑗

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑧

) 𝑑Ω
Ω𝑒

) 𝑝𝑗

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑆𝑖𝑓𝑧)𝑑Ω
Ω

+∫ 𝑆𝑖𝑡𝑧𝑑Γ
Γ𝑒

 

3.61 

It can be seen that other than pressure gradient and body force terms all terms are 

same for x, y, z momentum equations. The compact matrix notation may help 

simplifying the Eqns. (3.59), (3.60) and (3.61); 

[𝑀]𝑒
{𝑈 𝑛+

1
2}𝑒 − {𝑈 𝑛}𝑒

∆𝑡
+ [𝐴(𝑈𝑛)]𝑒{𝑈 𝑛+

1
2}𝑒 + [𝐾]𝑒{𝑈 𝑛+

1
2}𝑒

= −[𝐺]𝑥
𝑒[𝑃𝑛]𝑒  + {𝐹𝑛}𝑥

𝑒    

3.62 
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[𝑀]𝑒
{𝑈 𝑛+

1
2}𝑒 − {𝑈 𝑛}𝑒

∆𝑡
+ [𝐴(𝑈𝑛)]𝑒{𝑈 𝑛+

1
2}𝑒 + [𝐾]𝑒{𝑈 𝑛+

1
2}𝑒

= −[𝐺]𝑦
𝑒 [𝑃𝑛]𝑒  + {𝐹𝑛}𝑦

𝑒     

3.63 

[𝑀]𝑒
{𝑈 𝑛+

1
2}𝑒 − {𝑈 𝑛}𝑒

∆𝑡
+ [𝐴(𝑈𝑛)]𝑒{𝑈 𝑛+

1
2}𝑒 + [𝐾]𝑒{𝑈 𝑛+

1
2}𝑒

= −[𝐺]𝑧
𝑒[𝑃𝑛]𝑒  + {𝐹𝑛}𝑧

𝑒      

3.64 

where; 

[𝑀]𝑒 = ∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒

)

𝑁𝐸𝑁𝑣

𝑗=1

  3.65 

[𝐴(𝑈𝑛)]𝑒 = ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
))  𝑑Ω

Ω𝑒

)

𝑁𝐸𝑁𝑣

𝑗=1

 3.66 

[𝐾]𝑒 = ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒

)

𝑁𝐸𝑁𝑣

𝑗=1

 3.67 

[𝐺]𝑥
𝑒 = ∑ (∫ (−

1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑥

) 𝑑Ω
Ω𝑒

)

𝑁𝐸𝑁𝑝

𝑗=1

 3.68 

[𝐺]𝑦
𝑒 = ∑ (∫ (−

1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑦

) 𝑑Ω
Ω𝑒

)

𝑁𝐸𝑁𝑝

𝑗=1

 3.69 

[𝐺]𝑧
𝑒 = ∑ (∫ (−

1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑧

) 𝑑Ω
Ω𝑒

)

𝑁𝐸𝑁𝑝

𝑗=1

 3.70 

{𝐹𝑛}𝑥,𝑦,𝑧
𝑒 = ∫(𝑆𝑖𝑓𝑥,𝑦,𝑧)𝑑Ω

Ω

+∫ 𝑆𝑖𝑡𝑥,𝑦,𝑧𝑑Γ
Γ𝑒

 3.71 

The global versions of these stiffness matrices are nothing but assembled version of 

their elemental counterparts. Size of the global stiffness matrices, [𝑀], [𝐴(𝑈)] and 

[𝐾] are NNxNN; [𝐺] are NNxNNp; {𝐹} are NNx1, where NN is number of nodes 

(velocity nodes), NNp is number of pressure nodes. 

Galerkin FEM discretization of Eqn. (3.4) and Eqn. (3.5) are very similar to do Eqn. 

(3.3). 
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3.5 Solution of the Energy Conservation Equation  

Galerkin FEM discretization of the continuity and the momentum equations are 

given in the previous section. For non-isothermal problems that include heat transfer 

effects also the energy equation needs to be solved. In this study only steady state 

non-isothermal problems are solved and the dependency of fluid properties with 

temperature is not considered. For such cases, the energy conservation equation 

becomes decoupled from the continuity and momentum conservation equations and 

it can be solved by itself after obtaining the velocity field. The equation that needs to 

be solved to get the temperature field in an incompressible flow is given as  

𝜌𝑐𝑝(�⃗⃗� ⋅ ∇)𝑇 = 𝑘∇2𝑇 + Φ  3.72 

where 𝜌, 𝑐𝑝 and 𝑘 are the constant viscosity, specific heat and conductivity of the 

fluid, respectively. Velocity vector �⃗⃗� of Eqn. (3.72) is considered to be known. Φ is 

the viscous dissipation term, which is negligibly small in many practical applications 

and it is also neglected in the current study for simplicity. 

The developed solver supports conjugate heat transfer problems where heat transfer 

takes place over both fluid and solid regions. For such cases, each element is labeled 

to be either a fluid element or a solid element and for the ones corresponding to the 

solid regions velocity vector is set to zero. All fluid and solid elements are then 

assembled to form a single linear algebraic system, the solution of which gives the 

temperature field of the whole problem domain. 

Nodal temperature unknowns are stored at the same points as the velocity unknowns. 

Galerkin FEM discretization of the energy conservation equation results in the 

following elemental system 

[𝐾𝑒 ]{𝑇𝑒} =  {𝐵𝑒} 3.73 

where the elemental coefficient matrix is given by 

𝐾𝑖𝑗
𝑒 = ∫ [𝜌𝑐𝑝𝑆𝑖 (𝑢

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤

𝜕𝑆𝑗

𝜕𝑧
)

 

Ωe

+ 𝑘 (
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
)] 𝑑Ω  

3.74 
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and the elemental boundary integral vector is 

𝐵𝑖
𝑒 = ∫ 𝑆𝑖  (

𝜕𝑇

𝜕𝑥
𝑛𝑥 +

𝜕𝑇

𝜕𝑦
𝑛𝑦 +

𝜕𝑇

𝜕𝑧
𝑛𝑧)𝑑Γ

 

Γe

  3.75 

For a steady state problem solution of the energy equation takes a negligibly small 

time compared to the solution of the continuity and the momentum equations. 

Therefore, no effort is spent to parallelize it. 
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CHAPTER 4  

VERIFICATION OF THE DEVELOPED SOLVER 

The developed solver is tested for accuracy using 5 problems that either have known 

analytical solutions or previously studied numerically or experimentally. The first 

benchmark problem is selected to be the flow inside a lid driven cavity. The problem 

is studied at three different Reynolds numbers and the results are compared with 

available numerical results in the literature. The second test problem is the flow 

inside a square duct with a 90
o
 bend. This one is more challenging than the first one 

in terms of the three dimensionality of the created flow structures. The results are 

again compared with an existing numerical study. As the third problem 

hydrodynamically and thermally developing flow inside a square duct is solved and 

analytically known fully developed Nusselt number is used to check the correctness 

of the solution. Fourth problem considered is again for a duct flow, but this time the 

cross section dimensions are in the order of microns. The results are compared with 

the available experimental values. The final test is selected to be a conjugate heat 

transfer problem, for which the problem geometry is a pipe. 

4.1 Lid Driven Cavity Flow 

This is one the most frequently used benchmark problems to verify newly developed 

incompressible flow solvers. It is appealing due to its simple geometry that is 

suitable for a structured mesh and all Dirichlet boundary conditions. Problem domain 

is a 1 × 1 × 1 sized cube as seen in Fig. 4.1. Top face (𝑧 = 1) of the cube, which is 

known as its lid, is pulled in the 𝑥 direction with a speed of 1.0, while other faces are 

kept stationary. No slip boundary condition is applied on all 6 faces. Due to the lack 

of inflow/outflow boundaries, the uniqueness of the pressure field is controlled by 

specifying 0 pressure, at the center of the bottom wall (point A of Fig. 4.1). Density 

of the fluid is taken to be 1.0 and the computations are performed for Reynolds 



 

46 

 

numbers of 100, 400 and 1000. The desired 𝑅𝑒 values are obtained by using 

dynamic viscosity values of 0.01, 0.0025 and 0.001. 

The results are compared with Yang et al.’s [87] numerical study, which used an 

implicit weighted ENO scheme on a non-uniform grid of 33 × 33 × 33 nodes. A 

similar non-uniform, structured mesh with 27000 (30 × 30 × 30) elements is used 

in this study. The elements used are the high order ones (see Fig. 4.2), which results 

in 313 = 29,791 pressure nodes and 612 = 226,981 velocity nodes. Total solved 

number of unknowns is calculated as 710,734. Fig. 4.2 shows the distribution of the 

velocity nodes on the faces of the cube. 

For all three Reynolds numbers, time step is used as 10−3. Presented results show the 

steady state solution, which is determined by the continuous checking of the 

variations of the unknowns at selected monitoring points. Fig. 4.3 shows the velocity 

component in the 𝑥 direction along line AB of Fig. 4.1 for 𝑅𝑒 = 100. Similarly it 

shows the velocity component in the 𝑧 direction along line CD of Fig. 4.1. Fig. 4.4 

and Fig. 4.5 are similar plots for 𝑅𝑒 = 400 and 𝑅𝑒 = 1000, respectively. As seen in 

these figures, current results show good agreement with those of the reference study. 

 

 

Figure 4.1 Lid Driven Cavity Flow. 
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Figure 4.2 Non-Uniform Distribution of 61 × 61 Velocity Nodes on the Faces of the 

Lid Driven Cavity. 

 

4.2 Bending Square Duct Flow 

The second benchmark test is the flow inside a square duct with a 90° bend. Results 

obtained are compared with those presented by Yang et al. [87], which is the study 

already used as the reference for the first test case. Problem geometry can be seen in 

Fig. 4.6. The duct has two straight sections of length 5 units each, with a square 

cross-sectional area of 1×1 units. These straight sections have a 90° bend between 

them, with an inner radius ( 𝑖) of 1.8 and outer radius ( 𝑜) of 2.8. Fully developed 

inflow velocity profile prescribed at the inlet boundary is given by Eqn. (4.1), which 

corresponds to a maximum centerline velocity of 2.25 and average velocity of 1.0. 

Pressure at the midpoint of the exit plane is set to zero. Density of the fluid is taken 

as 1.0 and by using a dynamic viscosity of 0.0012658, the required Reynolds number 

of 790 is obtained. 

𝑢𝑖𝑛𝑙𝑒𝑡 = 36(𝑦 − 𝑦2)(𝑧 − 𝑧2) 4.1 
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Figure 4.3 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD 

of the Lid Driven Cavity. 𝑅𝑒 = 100. 
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Figure 4.4 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD 

of the Lid Driven Cavity. 𝑅𝑒 = 400. 
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Figure 4.5 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD 

of the Lid Driven Cavity. 𝑅𝑒 = 1000. 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

z

 

 

Yang et al. [87]

Current Work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

w

 

 

Yang et al. [87]

Current Work



 

51 

 

The results of the bending square duct problem are obtained with a non-uniform, 

structured mesh of 53,361 (49 × 33 × 33) elements, which is very similar to the 

one used by Yang et al. [87]. As seen in Fig. 4.7 elements are finer near the duct 

walls. Also the elements are concentrated near the bending part. Element type 1 with 

8 pressure nodes and 27 velocity nodes are used, resulting in a total of 57,800 

pressure and 444,441 velocity nodes. Total number of unknowns for this problem is 

1,391,123. 

 

 

Figure 4.6 The Geometry of the 90° Bending Square Duct. 

 

The stream-wise velocity profiles along three different lines at 𝑧 = 0.5 plane of the 

bending part of the duct are shown in Fig 4.8. Location of 𝜃 = 30°, 60° and 90° 

planes that are referred in Fig. 4.8 can be seen in Fig. 4.6. Results obtained are in 

general agreement with the reference study, with small deviations. Contours of the 

velocity component in the 𝑦 direction at four different planes after the bending part 

are shown in Fig. 4.9. The secondary flow, which is known to develop in bending 

ducts can clearly be seen. 

 



 

52 

 

 

 

Figure 4.7 Non-Uniform Distribution of 67 × 67 Velocity Nodes on the Inlet Plane 

and Bend Part of the Bending Square Duct. 
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Figure 4.8 Stream-wise Velocity Profiles (𝑉𝜃) at the Intersection of 𝑧 = 0.5 Plane 

and 𝜃 = 30°, 60° and 90° Planes of the Bending Duct. 
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Figure 4.8 (continued) Stream-wise Velocity Profiles (𝑉𝜃) at the Intersection of 

𝑧 = 0.5 Plane and 𝜃 = 30°, 60° and 90° Planes of the Bending Duct. 

 

4.3 Hydrodynamically and Thermally Developing Flow in a Square Duct 

Problem domain, shown in Fig. 4.10, is a duct of 1 × 1 square cross-section, with a 

length of 10 units. Uniform velocity of magnitude 1.0 is specified at the inlet. 

Pressure is set to zero at the mid-point of the exit plane. Temperature of the incoming 

fluid is taken as 1 and wall temperatures are fixed at zero. To study the case of 

𝑅𝑒 = 100 and 𝑃 = 1, dynamic viscosity, specific heat and thermal conductivity of 

the fluid are taken as 1 and its density is selected to be 0.01. 

To check the solution’s correctness, analytically known Nusselt number (𝑁𝑢) value 

of 2.98 given for the thermally fully developed region of the duct is used [88]. 

Nusselt number is defined as 

𝑁𝑢 =  
ℎ𝐷ℎ

𝑘
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Figure 4.9 Contours of Velocity in the 𝑦 Direction at Four Different Planes. 

 

 

Figure 4.10 Geometry of the Square Duct. 
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where ℎ is the convective heat transfer coefficient and 𝐷ℎ is the hydraulic diameter 

of the duct, which is 1 for the problem being solved. ℎ is needed in order to calculate 

𝑁𝑢. Average heat transfer coefficient (ℎ̅) between two cross sections (𝑥1, 𝑥2) can be 

calculated using [89] 

𝑇𝑠 − 𝑇𝑚(𝑥2)

𝑇𝑠 − 𝑇𝑚(𝑥1)
= exp (−

𝑃(𝑥2 − 𝑥1)

�̇�𝑐𝑝
ℎ̅ ) 4.3 

where �̇� is the mass flow rate, 𝑃 is the perimeter of the duct, 𝑇𝑠 is the constant wall 

temperature and 𝑇𝑚 is the bulk fluid temperature defined as 

𝑇𝑚 =
1

𝑄
∫𝑢 𝑇 𝑑A

 

A

 4.4 

where 𝑢 is velocity component in the stream-wise direction and 𝑄 is volumetric flow 

rate. 

Because the analytically calculated 𝑁𝑢 values are valid for the thermally fully 

developed region, 𝑥1 and 𝑥2 of Eqn. (4.3) have to be selected in this region. The 

following thermal entrance length (𝐿𝑇) estimation can be used for this purpose; 

𝐿𝑇 = 0.05(𝑅𝑒)(𝐷ℎ)(𝑃 ) 4.5 

which gives the value of 5 for the problem being studied. Accordingly 𝑥1 and 𝑥2 

values are selected as 7 and 9, respectively. After obtaining the velocity and 

temperature fields using the developed solver, 𝑇𝑚(𝑥1) and 𝑇𝑚(𝑥2) are calculated 

using Eqn. (4.4) and these values are used in Eqn. (4.3) to find ℎ̅. Finally, Nusselt 

number of the thermally fully developed region is obtained using Eqn. (4.2). These 

are repeated for 4 different meshes and the 𝑁𝑢 values obtained are shown in Table 

4.1. 

As seen from Table 4.1 calculated Nu values approach to the analytical value of 2.98 

[88] as the mesh gets finer. For the 25 × 25 × 100 grid, exact value is obtained. As 

an additional result temperature contours at the mid cross-section of the duct is given 

in Fig. 4.11. 
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Table 4.1 𝑁𝑢 Values for the Thermally Fully Developed Region of the Square Duct 

Obtained with 4 Different Grids. 

 

Grid 𝑁𝑢 

10 × 10 × 40 2.997 

15 × 15 × 60 2.988 

20 × 20 × 80 2.987 

25 × 25 × 100 2.980 

 

 

 

Figure 4.11 Temperature Contours at the Mid Cross-Section of the Square Duct. 

 

4.4 Heat Transfer in a Micro Channel 

This problem is based on the work of Lee and Garimella, which includes both 

numerical and experimental results [90]. Problem geometry that can be seen in Fig. 

4.12 is a rectangular channel with dimensions of 25.4 mm ×  194 μm ×  884 μm. 

Similar to the reference numerical study, fully developed velocity profile is provided 

at the inlet section, geometric details of which are given in Fig. 4.12. Eqn. (4.7), 
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suggested by Natarajan and Lakshmanan [91], is used to calculate the inlet velocity 

profile. 

 

Figure 4.12 Geometry of the Micro Channel and Details of its Inlet Plane. 

 

𝑢 = 𝑢𝑚𝑎𝑥 [1 − ( 
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𝑎
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𝑛

]       
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𝑚
) (

𝑛 + 1

𝑛
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𝛼 =
𝑏

𝑎
,𝑚 = 1.7 + 0.5𝛼−1.4, 𝑛 =  {

2                              for   𝛼 ≤ 1/3

2 + 0.3 (𝛼 −
1

3
)   for   𝛼 ≥ 1/3

 

4.7 

 

Simulations are done for three different Reynolds numbers, based on the hydraulic 

diameter of the duct, which is 318 μm. Used 𝑅𝑒 values, as well as the corresponding 

average and maximum inlet velocities are given in Table 4.2. The working fluid is 

water and its properties at 300 °𝐾 are used as 𝜌 = 997 𝑘𝑔 𝑚3⁄ , 𝜇 = 10−3 𝑃𝑎  , 

𝑐𝑝 = 4181 𝐽 (𝑘𝑔𝐾)⁄  and 𝑘 = 0.61𝑊 (𝑚𝐾)⁄ . Temperature at the inlet is taken to be 

constant as 295 °𝐾 and wall temperatures are assigned as 350 °𝐾. 
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Table 4.2 Three Different Reynolds Numbers and the Corresponding Average and 

Maximum Velocities at the Inlet of the Micro Channel. 

 

𝑅𝑒 𝑢𝑎𝑣𝑔 [m/s] 𝑢𝑚𝑎𝑥  [m/s] 

500 1.577 2.748 

750 2.365 4.123 

1000 3.154 6.184 

 

For the numerical simulations of the reference study, commercial CFD software 

Fluent was used and only one quarter of the whole problem domain is solved. 

Unfortunately this simplification was not possible for the developed solver due to its 

lack of support for the symmetry boundary condition. For the whole domain a mesh 

with 50 × 16 × 40 = 32,000 elements is used. Similar to the previous problems the 

mesh is structured and non-uniform, getting finer close to the walls. Using the first 

element type total number of unknowns turned out to be 952,107. 

Average Nusselt numbers of the duct are calculated as explained in the previous 

section. Results obtained for three different Reynolds numbers are illustrated in Fig. 

4.13 and compared with the experimental and numerical results of Lee and Garimella 

[90]. As seen in the figure the current results are close to the numerical results of the 

reference, but considerable deviation is seen between the numerical and experimental 

results due to the simplifications on the boundaries. 

For the 𝑅𝑒 values investigated, temperature contours at 𝑦 = 0 and 𝑧 = 0 planes are 

shown in Fig. 4.14. As seen, temperature gradients near the walls are getting sharper 

as 𝑅𝑒 increases, making it harder to resolve these regions accurately. 

4.5 Conjugate Heat Transfer in a Tube 

As the last test problem, conjugate heat transfer on a thick walled tube with constant 

outer wall temperature is considered. Numerical solution of Zhang et al. [92] is used 

for comparison. Inner radius of the tube is 1.0 and its wall thickness is 0.84. For 

𝑅𝑒 = 50, for which the solution is obtained, hydrodynamically fully developed flow 

occurs at 0.05(𝑅𝑒)(𝐷) = 5. Tube length is selected as 25, which is 5 times the 
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Figure 4.13 Nusselt Numbers Obtained for the Micro Channel Problem at Three 

Different Re Values. 

 

entrance length. Unit velocity is defined at the inlet of the tube and zero pressure is 

defined at the center of the outlet plane. In order to simulate 𝑅𝑒 = 50 case, density 

and dynamic viscosity are taken as 1 and 0.04, respectively. Inlet temperature is 

taken as 0 and wall temperatures are fixed at 1. For the solid parts temperature 

gradient in the axial direction is taken as zero at the inlet and outlet planes. 

Simulations areperformed for 𝑃 = 1, which is obtained by using 𝑐𝑝 = 1 and 

𝑘𝑓𝑙𝑢𝑖𝑑 = 0.04. 

Solutions are obtained for two different conductivity values for the tube material, 

𝑘𝑠𝑜𝑙𝑖𝑑 = 0.04 and 𝑘𝑠𝑜𝑙𝑖𝑑 = 1. These values correspond to 𝑘𝑠𝑓 = 𝑘𝑠𝑜𝑙𝑖𝑑/𝑘𝑓𝑙𝑢𝑖𝑑 ratio 

of 1 and 25, respectively. 

Unfortunately, the details of the mesh used in the reference study are not shared. 

Details of the mesh used in this study are shown in Fig. 4.15. It contains 21,000 fluid 

elements and 160,00 solid elements. Using the first element type, 173,821 pressure 

and 521,463 velocity unknowns are solved for the flow analysis part. Energy 

equation had 303,101 temperature unknowns. 
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Figure 4.14 Temperature (°𝐾) Contours at 𝑦 = 0 and 𝑧 = 0 Planes for Three 

Different 𝑅𝑒 Values of the Micro Channel Problem (Axes Are Out of Scale). 

 

In Fig. 4.16, temperature profiles on the inner wall (𝑇𝑤𝑖) along the tube is presented 

for 𝑘𝑠𝑓 = 1 and 𝑘𝑠𝑓 = 25. For 𝑘𝑠𝑓 = 25, high thermal conductivity of the solid 

causes very rapid increase of 𝑇𝑤𝑖, as expected. Both results show good agreement 

with the reference results, which are obtained with the finite volume method where 

discretization of the convective term is done with the SGSD scheme and the 

SIMPLEC algorithm is utilized for velocity-pressure coupling. In Fig. 4.17 some 

oscillations are seen at the solid-fluid interface for 𝑘𝑠𝑓 = 25 case. The reason behind 

this is thought to be the large difference between the solid and fluid conductivity 

values, which may require a very carefully crafted mesh close to the interface for 

𝑧 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 500 𝑦 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 500 

𝑧 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 750 𝑦 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 750 

𝑧 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 1000 𝑦 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 1000 
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accurate capturing of the heat flow. Fig. 4.17 shows the axisymmetric temperature 

contours. The oscillations for 𝑘𝑠𝑓 = 25 can also be seen in this figure. 

Finally, variation of bulk fluid temperature (𝑇𝑓𝑏) along the tube is shown in Fig. 4.18. 

For 𝑘𝑠𝑓 = 25, 𝑇𝑓𝑏 increases rapidly along the tube and almost reaches to the 

specified outer wall temperature at the exit. On the other hand, variation of 𝑇𝑓𝑏 is 

more linear for 𝑘𝑠𝑓 = 1. Results are in a good agreement with the reference results. 

Oscillations seen in other figures are not present in this figure because 𝑇𝑓𝑏 is an 

integral parameter with inherent smoothing in it. 

 

 

 

Figure 4.15 A View of the Mesh Used for the Tube Flow Problem. Red Color Shows 

the Solid Tube Wall.   
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Figure 4.16 Temperature Profiles on the Inner Wall along the Tube. 
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Figure 4.17 Axisymmetric Temperature Contours of the Tube Flow Problem. 

 

 

 

Figure 4.18 Change of the Bulk Fluid Temperature along the Tube. 
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Figure 4.18 (continued) Change of the Bulk Fluid Temperature along the Tube. 
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CHAPTER 5  

PARALLEL PERFORMANCE ANALYSIS OF THE 

DEVELOPED SOLVER 

For parallel performance analysis of the developed solver, lid driven cavity problem 

that was used before as a benchmark problem is used. Unless otherwise mentioned, 

results presented in these sections are obtained using the explicit version of the 

solver. Three different meshes with details given in Table 5.1 are created to represent 

a small, medium and large size problem. Elements used are of type 1, with 27 

velocity nodes and 8 pressure nodes. These three meshes will help to identify how 

the time consumed by different parts of the flow solver scales with the problem size. 

Considering the 𝑁𝑁 values given in the last column of the table, the Mesh II is 3.1 

times larger than Mesh I, whereas Mesh III is 3.0 times larger than Mesh II. The 

closeness of these ratios is important in analyzing the importance of problem size on 

run time performance. Similar ratios can be calculated by using the values of the 

other columns of Table 5.1, too. 

 

Table 5.1 Details of the Meshes Used for Parallel Performance Analysis. 

 

Mesh 

No. 

Number of 

Elements (𝑁𝐸) 

Number of 

Pressure Nodes 

(𝑁𝑁𝑝) 

Number of 

Velocity Nodes 

(𝑁𝑁𝑣) 

Total Number 

of Unknowns 

(𝑁𝑁) 

I 
30 × 30 × 30
= 27,000 

31 × 31 × 31
= 29,791 

61 × 61 × 61
= 226,981 

𝑁𝑁𝑝 + 3𝑁𝑁𝑣
= 710,734 

II 
44 × 44 × 44
= 85,184 

45 × 45 × 45
= 91,125 

89 × 89 × 89
= 704,969 

𝑁𝑁𝑝 + 3𝑁𝑁𝑣
= 2,206,032 

III 
64 × 64 × 64
= 262,144 

65 × 65 × 65
= 274,625 

129 × 129 × 129
= 2,146,689 

𝑁𝑁𝑝 + 3𝑁𝑁𝑣
= 6,714,692 
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5.1 Determining the Most Time Consuming Parts of the Solver 

Before making any parallelization or optimization on the code, time consumed by 

different parts of it are examined. This is done with a code that works serially on a 

single core of the CPU, which is Intel Xeon E5-2670. At this point it is good to 

remember the following major tasks performed by the code, which were previously 

mentioned in Chapter 3. 

Task 0: Major calculations that are done only once outside the time loop. 

Includes the calculation of the global matrices 

[𝑀], [𝑀𝑑], [𝑀𝑑]
−1, [𝐾], [𝐺], [𝐺]𝑇 and calculating [𝑍] = [𝐺]𝑇[𝑀𝑑]

−1[𝐺]. 

Task 1a: Calculating the resulting vector from [𝐴(𝑈𝑛)]{𝑈
𝑖

 𝑛+
1

2} multiplication at 

the element level, which is used to calculate {𝑅1} of Eqn. (3.18). 

Task 1b:  Calculating {𝑅1} of Eqn. (3.18) and solving this equation to get {𝑈
𝑖+1

 𝑛+
1

2}. 

Task 2: Calculating {𝑅2} of Eqn. (3.19) and solving this equation to get {𝑃𝑖+1
𝑛+1}. 

Task 3: Calculating {𝑅3} of Eqn. (3.20) and solving this equation to get {𝑈
𝑖+1

 𝑛+
1

2}. 

Task 1 contains two different types of operations namely MIMD type elemental level 

matrix vector multiplications and SIMD type sparse matrix vector operations. Due to 

this difference Task 1 is divided into two as Tasks 1a and 1b.  Maximum number of 

iterations per time step is selected as 5. Eqn. (3.16) with a tolerance value of 10−3 is 

used to check the convergence of the iterations. At the beginning of a typical run, 

usually 3-4 iterations are seen to be enough for convergence and the number drops to 

1 as the solution converges to steady state.  

Although both Cholesky decomposition and Jacobi Preconditioned Conjugate 

Gradient (PCG) are used for Task 2, only the results obtained with PCG will be 

presented for brevity. Compared to PCG, Cholesky decomposition has the major 

drawback of high memory usage, which becomes especially critical when GPUs are 

used. On the other hand, being an iterative method, PCG presented a minor issue in 

performance comparisons of different implementations on the CPU (in MKL) and 

the GPU (in CUSP) due to their use of different converge criteria. 
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Table 5.2 Time Spent for Different Tasks During 1 Iteration of a Time Step. 

Obtained Using One Core of the CPU. Values Are Based on a Single Iteration of 

One Time Step. 

 

Mesh 

No. 

Task 1a Task 1b Task 2 Task 3 

Time 

[s] 

Ratio 

to 

Mesh I 

Time 

[s] 

Ratio 

to 

Mesh I 

Time 

[s] 

Ratio 

to 

Mesh I 

Time 

[s] 

Ratio 

to 

Mesh I 

I 0.452 − 0.067 − 0.355 − 0.017 − 

II 1.427 3.2 0.209 3.1 1.681 4.7 0.056 3.3 

III 4.382 9.7 0.654 9.8 7.294 20.5 0.173 10.2 

 

Time spent for different tasks in one iteration of a single time step are presented in 

Table 5.2. Presented times are averaged values obtained during the initial few time 

steps of a solution. The values are wall clock times that are calculated by high 

accuracy timers inside the code. Task 0 is not shown in this table because it is only 

executed once per solution so it takes a negligible amount of time compared to other 

tasks. Determining time consumption of the PCG solver used in Task 2 needs special 

care because of the iterative nature of the process and the dependency of the time 

spent by it on the selected tolerance criteria. PCG convergence tolerances are 

selected based on the accuracy and efficiency observations made during the 

verification runs of Chapter 4. 

Results given in Table 5.2 can be summarized as follows; 

 For the case of a single iteration per time step, the most time consuming task 

is 1a for small meshes. As the mesh gets finer, Task 2 becomes more 

dominant. It should be noted that one iteration per time step is the best case 

scenario for a simulation.  

 Task 3 is the least time consuming part among others. Time spent for Task 1b 

is also small, but not negligible compared to Task 1a and Task 2. 
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 As the mesh is refined, time spent for Tasks 1a, 1b and 3 increase almost 

linearly with the total number of unknowns (see 𝑁𝑁 of Table 5.1). For 

example, time spent for Task 1a for Mesh II and Mesh III are 3.2 and 9.7 

times those spent for Mesh I, whereas the number of total unknowns for 

Mesh II and Mesh III are 3.1 and 9.45 times that of Mesh I, respectively. But 

the time spent for Task 2 increases at a higher rate as the mesh is refined, 

which means that Task 2 becomes more and more critical as the problem size 

increases. 

 To sum up, Tasks 1a and 2 stand out when run time is considered. Task 1b 

should also be watched carefully. 

5.2 Multi Thread Usage for the CPU 

The workstation used in this study has two Intel Xeon E5-2670 processors, each 

having 8 cores (16 threads). For the CPU version of the code, this multi core 

environment is taken advantage of by the use of Intel’s MKL library and OpenMP, 

which have multi-threading support. MKL is used for all matrix-vector operations 

and the PCG solver. Task 1a cannot be performed in parallel with an already 

available library. A special OpenMP code is written for it from scratch. The speed-up 

values obtained for different tasks on different meshes by using multiple threads are 

shown in Table 5.3. 

When Table 5.3 is examined, it is seen that using 8 threads gives the best results for 

almost all tasks, even though the computer used has 32 threads on 2 CPUs. For Tasks 

1b and 3, even the difference between using 4 and 8 threads is very small. Although 

the saturation at the performance after 8 threads seems rather unexpected, similar 

results were also reported in a study by Venetis et al. [93]. In their FEM based study, 

a similar Intel Xeon E5-2658 processor was used.  

According to Table 5.3, Task 1a seems to benefit the most from multi-threading and 

Task 3 seems to benefits the least. 
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Table 5.3 Achieved Speed-ups by Multi-Threading with Respect to 1 Thread Usage 

on the CPU. Values are Based on a Single Iteration of One Time Step. 

 

 Task 1a Task 1b Task 2 Task 3 

# of 

Threads 
2 4 8 16 2  4  8  16 2  4  8  16 2  4  8  16 

Mesh    

I 
1.9 3.4 6.3 3.5 1.3 1.8 2.4 2.3 1.6 2.5 3.4 2.7 1.3 1.9 2.1 1.9 

Mesh   

II 
1.8 3.5 6.3 3.5 1.2 2.2 2.3 2.0 1.4 2.3 2.6 2.3 1.2 2.0 2.0 1.8 

Mesh 

III 
1.9 3.5 6.2 3.5 1.5 2.2 2.2 2.2 1.7 2.3 2.5 2.3 1.4 2.0 2.0 2.0 

 

5.3 Performance Comparisons between CPU and GPU 

All four main time consuming parts of the code that are executed repetitively inside 

the time loop are migrated to the GPU. Parallel coding on the GPU is mostly done 

using freely available libraries CUBLAS, CUSPARSE and CUSP, and new parallel 

GPU kernels are coded when needed, such as the parallelization of Task 1a. Graphics 

card used is a single NVIDIA Tesla C2075. After the observation made in the 

previous section, GPU performance is compared with the performance of the CPU 

with 1 and 8 threads. In this section, in addition to three lid-driven cavity meshes, 

performance results for a bending square duct (shown as BSD in Table 5.4 and Table 

5.5) mesh is also examined. This mesh has 53,361 elements and 1,391,123 

unknowns, which locates it between Mesh I and Mesh II in terms of number of 

unknowns.  

Two different algorithms are tried for Task 1a as explained in Section 3.3. Results 

obtained by the one that calculates [𝐴]{𝑈} multiplication at the element level without 

creating the global [𝐴] are presented because it is more memory efficient and faster 

than the one that first assembles the global [𝐴] and then multiplies it with {𝑈}. It is 

important to note that the latter algorithm calculates elemental [𝐴] matrices and 



 

72 

 

assembles them into the global [𝐴] only once per time step, but due to GPU memory 

limitations the former one calculates the elemental [𝐴] matrices at each iteration 

inside a time step. The former one is still faster because it bypasses the assembly of 

[𝐴] and iteration number per time step decreases to 1 as the solution approaches to 

steady state. Moreover at CPU performance analyses, it is seen that making the 

multiplication elemental level is also beneficial for CPU hence at both CPU and GPU 

this approach is chosen. For an unsteady problem, this selection needs 

reconsideration. 

Speed-ups obtained by the GPU with respect to 1 and 8 thread usage on the CPU are 

shown in Table 5.4. Values larger than 1 indicate faster operation on the GPU 

compared to the CPU. When the performances of GPU and single thread CPU are 

compared, a maximum of 16.5 times speed-up is seen, which is obtained for Task 1a 

on the finest mesh. Although in the literature GPU-CPU performance comparisons 

are usually done for a single thread CPU usage, this is not a fair comparison. When 8 

thread CPU usage is considered, speeds-up values decrease and the maximum speed-

up is now 4.0, which is seen for Task 3 on Mesh I. 

For the finest mesh, GPU vs. 8-thread CPU speed-ups for Tasks 1a, 1b, 2 and 3 are 

2.35, 2.79, 1.69 and 3.78, respectively. As seen in the previous sections, Task 2 

becomes the most critical part of the code as the mesh gets finer and from that 

perspective 1.69 times speed up on the finest mesh suggests that there may be room 

for improvement. PCG solver of the CUSP library is used for Task 2 on the GPU. As 

an alternative PCG can be coded by using the CUSPARSE library or another third 

party library can be tried. Another important point here is the possible differences in 

the residual calculations and the convergence checks of MKL’s and CUSP’s PCG 

implementations. In that case providing the same tolerance value for both might not 

result in a fair comparison. This issue needs further control and clarification. The 

good news is though, that there is an overall trend of increase in speed-up values as 

the problem size increases. 

Time consumption and speed-up values of all tasks together are shown in Table 5.5. 

It is seen that GPU outperforms 8 threads of CPU for all three lid-driven cavity 

meshes and bending square duct mesh. Moreover performance of GPU increases 
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Table 5.4 Achieved Speed-ups by GPU with Respect to 1 and 8 Thread Usage on the 

CPU. Values Are Based on a Single Iteration of One Time Step. 

 

 Task 1a Task 1b Task 2 Task 3 

# of 

Threads 

1 

thread 

8 

threads 

1 

thread 

8 

threads 

1 

thread 

8 

threads 

 1 

thread 

8 

threads 

Mesh   

I* 
14.58 2.32 6.09 2.55 2.80 0.82 8.50 4.00 

Mesh   

II* 
14.56 2.33 5.97 2.63 4.02 1.53 7.00 3.50 

Mesh 

III* 
14.61 2.35 6.06 2.79 4.22 1.69 7.52 3.78 

BSD** 16.46 2.32 8.19 2.52 4.42 1.11 11.00 4.00 

*Lid-driven cavity meshes, see Table 5.1. 

**Bending square duct mesh. 

 

with increasing number of unknowns. For the GPU versus 8 threads of CPU case 

1.24, 1.76 and 1.86 times speed-ups are obtained for Mesh I, Mesh II and Mesh III 

of the lid-driven cavity problem, respectively. When the performances of GPU and 

single thread and 8 threads of CPU are compared, a maximum of 6.39 (BSD mesh) 

and 1.86 (Lid-driven cavity, Mesh III) times speed-ups are seen respectively.  

An important point to keep in mind is the price and power consumption of GPU and 

CPU while comparing their performances. The current retail prices of Intel Xeon E5-

2670 CPU and NVIDIA Tesla C2075 GPU are around 1750 $ and 1900 $, 

respectively.  So there is no significant difference between prices. On the other hand, 

thermal design powers of the used CPU and the GPU are 115 W [4] and 225 W [5], 

respectively. GPU needs two times more power to run compared to the CPU, which 

is a considerable difference. The power comparison becomes more dramatic 

considering that the CPU can be used alone without the GPU, but to operate a GPU 

you also need a running CPU. 
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Table 5.5 Speed-Up Values for the Total Time Spent for all Tasks. (Considering 

Single Iteration of One Time Step) 

 

Mesh No. 

CPU         

(1 thread) 

[s] 

CPU         

(8 threads) 

[s] 

GPU 

[s] 

Speed-up 

GPU vs CPU 

(1 thread) 

Speed-up 

GPU vs CPU 

(8 threads) 

I* 0.891 0.212 0.171 5.21 1.24 

II* 3.373 0.986 0.559 6.03 1.76 

III* 12.503 4.012 2.162 5.79 1.86 

BSD** 2.525 0.548 0.395 6.39 1.39 

*Lid-driven cavity meshes, see Table 5.1. 

**Bending square duct mesh. 

 

5.4 Effect of Using Single Precision on Performance and Accuracy 

For all of the runs that were presented in the previous sections floating point numbers 

are stored in double precision (DP). Considering that GPUs are originally designed 

for single precision (SP) arithmetic and their DP support is getting attention only 

recently, it is logical to compare the performances of CPUs and GPUs for the use of 

SP. Again the lid driven cavity problem is used for this purpose. The problem is 

solved for 𝑅𝑒 = 100 with the three meshes defined in Table 5.1. Steady state results 

obtained with SP are almost identical to the ones obtained previously with DP. It is 

possible to conclude that the use of SP has no undesired effect on the accuracy. 

Speed-up values obtained by using SP instead of DP are given in Table 5.6. Both the 

CPU and GPU versions of the code benefited from SP usage. For the Tasks 1b, 2 and 

3, GPU and CPU speed-ups are nearly same but for Task 1a there is a huge gap in 

speed-up values between GPU and CPU in favor of the GPU. GPU-CPU speed-up 

values for the total time spent for Tasks 1b, 2 and 3 when SP is used is given in 

Table 5.7. When compared with Table 5.5, it is seen that using SP increases the GPU 

versus CPU speed-up in favor of GPU. Now for the finest mesh GPU outperforms 8 

threads of CPU by 2.08 times. 
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Table 5.6 Speed-up Values when Single Precision is Used Compared to Double 

Precision. (Considering Single Iteration of One Time Step) 

 

 Task 1a Task 1b Task 2 Task 3 

 

CPU 

8 

threads 

GPU 

CPU  

8 

threads 

8 

threads 

CPU  

8 

threads 

GPU 

CPU  

8 

threads 

GPU 

Mesh   

I 
1.11 1.94 1.56 1.57 1.89 1.76 1.60 2.00 

Mesh   

II 
1.09 2.04 1.48 1.67 1.96 1.86 1.56 2.00 

Mesh 

III 
1.11 2.04 1.53 1.66 2.23 2.10 1.55 1.77 

 

Table 5.7 Speed-Up Values for the Total Time Spent for all Tasks When Single 

Precision is Used. (Considering Single Iteration of One Time Step) 

 

Mesh No. 
CPU (8 threads) 

[s] 

GPU 

[s] 

Speed-up GPU vs 

CPU (8 threads) 

I 0.143 0.096 1.49 

II 0.614 0.298 2.06 

III 2.185 1.048 2.08 

 

 

5.5 Performance Comparisons Between Explicit and Implicit Fractional Step 

Formulations 

All the results presented in the previous section of this chapter are obtained using the 

explicit formulation version of the developed solver. But due to its severe time step 

restrictions, also an implicit version is developed. It is first tested for accuracy and 

stability when large time steps are used. It was possible to solve the lid driven cavity 

problem accurately with Mesh I of Table 5.1 with time steps in the order of unity. 
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With the explicit formulation this problem required the use of ∆𝑡 = 0.001 s. To 

compare the run time performances of the explicit and implicit formulations for 

steady state problems the following steady state convergence check is used; 

𝑚𝑖𝑛(|{𝑈 𝑛+1} − {𝑈 𝑛}|) ≤ 𝜖𝑠𝑠   5.1 

Because of the different natures of the methods, particularly about the time step 

constraints, convergence to the steady state solution is considered and different 

tolerance values are used for them. Analyses are performed using Mesh I and Mesh 

II of Table 5.1 and results of these analyses are presented in Table 5.8. Although the 

implicit solver executes a single time step much slower than the explicit one, due to 

its ability to use larger time steps it can finish the overall solution faster. The main 

reason behind the difference in the time spent for a single time step is the time spent 

for the solution of non-symmetric linear system arises from Eqn. (3.27). The implicit 

formulation also requires more memory than the explicit one because it needs to keep 

the left hand side matrix ([(1/∆𝑡)[𝑀] + [𝐴(𝑈𝑛)] + [𝐾]]) of Eqn. (3.23) in memory. 

Due to this, the lid driven cavity problem cannot be solved on the GPU with Mesh 

III, which was possible for the explicit formulation. It can be concluded that the 

implicit formulation is better for the solution of steady state problems if they can be 

fit into the memory of the available hardware. Explicit formulation can be preferred 

for transient solutions, where time step size is constrained by accuracy rather than 

stability. 

 

Table 5.8 Performance Comparisons of Implicit and Explicit Formulations on the 

GPU 

 

Mesh 

No. 
Method ∆𝑡 [s] 

# of 

Iterations 

Time for 1 

Time Step 

[s]  

Total Time 

[s] 

Mesh I 

Implicit 0.2 155 2.16 335 

Explicit 0.001 4,409 0.16 727 

Mesh II 

Implicit 0.02 433 4.51 1,954 

Explicit 0.0002 27,110 0.38 10,404 
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5.6 Memory Usage of the Fractional Step Solver 

In this part, memory usage of developed flow solver is examined. Table 5.9 

represents the main parameters that determine the memory requirement. In this table 

𝑁𝐸 is the number of elements, 𝑁𝑁𝑝 and 𝑁𝑁𝑣 are the number of pressure and 

velocity nodes inside each element respectively, 𝑁𝑁 is total number of unknowns, 

and 𝑀𝑛𝑛𝑧, 𝐺𝑛𝑛𝑧 and 𝑍𝑛𝑛𝑧 are number of non-zeros in [𝑀], [𝐺] and [𝑍] matrices, 

respectively. Number of non-zeros in [𝐴] and [𝐾] matrices are same as the number of 

non-zeros in [𝑀]. For a three-dimensional problem [𝑀], [𝐴] and [𝐾] matrices are 

formed by three identical sub-matrices and keeping only one of them in the memory 

is enough. Considering this, actual 𝑀𝑛𝑛𝑧 value is one third of the value given in 

Table 5.9. 

Among many sparse storage schemes, compressed row storage (CSR) [94] is used 

for the storage of the global matrices both on the CPU and the GPU. In addition to its 

efficient memory handling, it is supported by Intel MKL, CUSP, CUSPARSE, 

 

Table 5.9 Parameters That Determine the Memory Requirements of the Developed 

Solver 

 

 Mesh I Mesh II Mesh III 

NE 27,000 85,184 262,144 

NNp 29,791 91,125 274,625 

NNv 226,981 704,969 2,146,689 

NN 710,734 2,206,032 6,714,692 

Mnnz 41,992,563 131,960,931 405,017,091 

Gnnz 10,328,853 32,381,583 99,228,483 

Znnz 1,668,870 5,297,292 16,368,192 
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CUBLAS and Csparse libraries. CSR scheme consists of 3 arrays as shown below for 

a sample 4x4 matrix 

A = [

2 5 0 0
3 1 2 0
0 0 4 0
0 0 5 3

] 

𝑣𝑎 = [2 5 3 1 2 4 5 3] 

𝑐  = [0 1 0 1 2 2 2 3] 

  𝑤𝑆𝑡𝑎 𝑡 = [0 2 5 6 8] 

 

𝑣𝑎  array stores the non-zero values of the matrix in a row-by-row order. 𝑐   array 

stores the column indices of these non-zero values.   𝑤𝑆𝑡𝑎 𝑡  array is the list of 

non-zero value indices where each row of [𝐴] starts. With the CSR scheme, memory 

requirement for storing a (𝑁 × 𝑁) matrix is (𝑁𝑁 + 1 + 𝑁𝑁𝑍) integers and 𝑁𝑁𝑍 

floating points, where 𝑁𝑁𝑍 is the number of non-zeros. Because the 𝑐   and 

  𝑤𝑆𝑡𝑎 𝑡  arrays are same for [𝑀], [𝐴] and [𝐾] matrices, only one set of 𝑐   and 

  𝑤𝑆𝑡𝑎 𝑡  arrays are kept in memory for them. 

There are many other large vectors that must be kept in memory in order to solve the 

systems in Eqns. (3.17-3.22). However, compared to global matrices memory 

requirements of these vectors are very small. Moreover, there are vectors that keep 

elemental to global node mapping information, which is used during the assembly 

process. These mapping vectors only contain integers but they grow quickly with the 

problem size so they also need attention. Lastly the vector that stores derivatives of 

the shape functions with respect to 𝑥, 𝑦 and 𝑧 at all Gauss Quadrature points 

(integrals are computed using 8 point Gauss Quadrature) of all elements are stored in 

memory. These derivatives could be calculated whenever they are needed, but 

because [𝐴] matrix is calculated every time step, calculating these derivatives again 

and again could be an inefficient process. Another idea is to take advantage of 

geometrically similar (both in size and orientation) elements and storing shape 

function derivatives only once for them, which is not utilized in this study.  After all 

these details memory requirement of the largest mesh, Mesh III in Table 5.9, is 

almost 6 GB. 

An important point about Table 5.9 is that it presents the values for hexahedral 

elements with second order velocity and first order pressure interpolation. This 

element, which can be seen in Figure 3.4, has 27 velocity nodes and 8 pressure 
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nodes. Table 5.9 needs to be modified when a different element type is used, such as 

the one that uses linear interpolation for both pressure and velocity. Another 

important parameter that affects memory usage is the precision of floating-point 

numbers. The 6 GB value given in the previous paragraph is based on double 

precision usage. If instead single precision is used, memory requirement drops by 

almost a factor of two. 
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CHAPTER 6  

SUMMARY AND CONCLUSION 

Computational power is one of the most important limiting factors in the 

development and use of CFD. For many years, scientists parallelized their CFD 

codes on computers with shared and distributed memory architectures using tools 

such as OpenMP, MPI and PVM. For many decades the only computing power had 

been the standard Central Processing Units (CPUs). Over the last two decades the 

major development in the CPU technology was about their inherent parallelization 

features. First, single core CPUs gained hyper-threading support, followed by multi-

core CPUs. Nowadays standard PCs come with 4, 6 or 8 core CPUs. In the last 

decade another concept known as many-core computing is introduced to the high 

performance computing community. GPUs become a major driving force behind this 

new wave due to their hardware supporting 100s of cores that can work with 1000s 

of parallel running threads. With the release of CUDA Toolkit by NVIDIA on 2007, 

general purpose computing on GPUs became a very appealing parallelization 

alternative for the scientific codes including CFD solvers. Today Top500 

supercomputer list [95] includes many computers with GPU support. GPU 

computing community is very active with specialized conferences, free and 

commercial third party linear algebra libraries, increasing number of commercial 

codes with GPU support, etc. 

Researchers previously demonstrated that compared to CPUs, GPUs can provide tens 

of times of speed-ups. Of course these claims are very dependent on the algorithm 

being parallelized. For the case of CFD, it is possible to see publications that report 

up to 100 times speeds-ups with the utilization of GPUs. These very high 

performance gains are usually limited to methods that have a very high 

parallelization potential such as Smoothed Particle Hydrodynamics (SPH), Lattice 
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Boltzmann Method (LBM) or Discontinuous Galerkin (DG). Also in the literature it 

is possible to find many unfair GPU-CPU comparisons and one needs to be very 

cautious with very high speed-ups [21]. Other than SPH, LBM or DG based works 

most CFD codes that are ported to GPUs are compressible solvers. There are very 

limited number of incompressible flow studies on the GPU and similarly there are 

very limited number of FEM based solvers ported to the GPU. This forms the 

motivation behind the current work, in which a finite element based incompressible 

flow solver is developed to work parallel on the GPU. 

Three dimensional, unsteady, laminar flows with possible heat transfer affects are 

solved using two different fractional step formulations based on the classical 

Galerkin finite element formulation. Two different versions of the solvers are 

written, one working on the CPU and the other working on the GPU. Different from 

many of the studies available in the literature GPU version is not written as a 

modification of the CPU version, but it is written from scratch. First the CPU version 

is used for verification purposes using 5 benchmark problems, including one 

microchannel duct flow and a tube flow with conjugate heat transfer. After verifying 

the accuracy of the code, speed tests are performed using the lid driven cavity 

benchmark problem with three different grids. Coarse grid had about 700,000 total 

pressure and velocity unknowns. The number was about 2.2 million for the medium 

grid and about 6.7 million for the fine grid. 

First the most time consuming parts of the code are detected and the scaling of the 

amount of time spent on these parts to the total number of unknowns is studied. Next, 

multi core performance of the CPU version of the code is tested. Parallelization on 

the CPU is mainly achieved by the use of Intel’s MKL library and sometimes using 

OpenMP pragma’s. Speed-ups obtained for the major time consuming tasks that are 

calculated repetitively inside the time loop are studied separately. Overall it was seen 

that even Intel’s own MKL library on an Intel CPU could not make use of the full 

potential of the available cores and for most of the tasks 8-thread usage resulted in 

the lowest run times, although the machine used can utilize up to 32 threads. 

Parallelization on the GPU is mainly done by the use of CUBLAS and CUSPARSE 

libraries that come with the CUDA Toolkit and the CUSP library, which is a freely 
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available third party library developed by NVIDIA employees. For certain non-

standard tasks new GPU kernels are written from scratch. For all three grids 

mentioned above, it was possible to obtain a speed-up by the use of GPU compared 

to the use of 8-cores on the CPU. For the largest grid that had more than 6.7 million 

unknowns, GPU usage resulted in 5.79 and 1.86 times speed-ups compared to single-

thread and 8-thread CPU solutions. These values are similar with results of Göddeke 

et al.’s study [59], which is one of the a few studies that uses GPUs for finite element 

based incompressible flow solutions. 

Considering the fact that especially early generation GPUs have very poor double 

precision support, the developed solver is transferred to single precision accuracy 

both on the CPU and the GPU. First the effect of this conversion on the accuracy of 

the solution is tested with a benchmark solution and no difference is seen in the 

results obtained by single and double precision. Then the run times of single and 

double precision codes are compared on the CPU and the GPU. It is seen that 

switching from double to single precision resulted in performance increases on both 

platforms. When compared to double precision, it is seen that using single precision 

increases the GPU versus CPU speed-up in favor of GPU. For the finest mesh GPU 

outperforms 8 threads of CPU by 2.08 times, which was 1.86 times for double 

precision. With further accuracy tests for single precision using different problems, 

double precision usage may completely be dropped. Other than 2 times speed-up 

memory usage also drops significantly when single precision accuracy is used. 

The fractional step method used throughout the study was based on an explicit time 

integration scheme, which puts severe limitations on the allowable time step. This 

resulted in quite long total run times to complete a solution. To improve this, an 

implicit fractional step formulation, which has no time step restriction due to stability 

concerns, is tried towards the end of the study. The implicit scheme can make use of 

much larger time steps compared to the explicit version but it requires the solution of 

a non-symmetric linear algebraic system. However solving a non-symmetric system 

is costly, using much larger time steps leads to less iteration numbers hence implicit 

solver converges faster than explicit one. On the other hand the implicit solver 

suffered from higher memory requirement, which especially became an issue 

considering the limited global memory of the GPUs. 
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During the study an appreciable amount of time is spent for learning the basics of 

GPU architecture and CUDA programming. The learning curve sometimes turned 

out to be quite steep. A major disadvantage was the very rapid development of GPU 

hardware and parallel to that very frequent releases of the CUDA Toolkit. In the 

three year time span of this study NVIDIA made several major architectural changes 

to their GPUs. Also they released 3 major Toolkit versions, together with several 

minor ones. At times it was very difficult to keep track of the updates and make 

advantage of the new tools. Many times, the reference books and other online 

resources used for learning GPU hardware internals and CUDA programming lack 

the most recent information. 

Another important observation is about the lack of supporting linear algebra libraries 

on the GPU side. BLAS and LAPACK libraries are essential tools for CFD codes.  It 

is not logical to self-code the vector and matrix operations provided by these 

libraries. They have highly optimized sequential and parallel versions. Of equal 

importance are the linear algebra libraries that work with sparse matrices. Intel’s 

MKL library used in this study for computations on the CPU is a popular 

implementation of these libraries. It has been developed for many years and comes 

with an excellent documentation. On the GPU side CUBLAS replaces BLAS and 

CUSPARSE provides some essential sparse matrix support. But they are not as 

developed as their CPU counterparts. For example they have no multi-GPU support 

and today CUDA programming on multiple GPUs is still a challenge. Other than 

CUBLAS and CUSAPRSE it is not easy to find freely available linear algebra 

libraries for GPUs. CUSP library was very critical for this study, but it is a work of a 

few researches and has no documentation. Support is available only through a 

discussion list. 

This work will be concluded with a list of possible future work ideas to improve the 

developed solver. 

 Although the available workstation had two GPUs only one of them was 

used. The code will benefit a lot by the use of multiple GPUs, especially if 

the doubling of the global GPU memory is considered. With more memory 

many alternative solution ideas will be implementable, such as the use of 
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direct Cholesky factorization instead of the iterative PCG technique for the 

solution of the pressure equation. 

 Although two different fractional step techniques are tested, the search for a 

more efficient one should continue. This will be critical especially for 

problems that require long time integration. 

 More efficient preconditioners such as algebraic multi-grid or incomplete 

Cholesky should be used with the Conjugate Gradient solver. 

 Making the solver completely matrix-free without any assembly of the global 

matrices can be very effective when the limited GPU memories are 

considered. 

 The developed solver can make use of only hexahedral elements. Support for 

tetrahedral and other types of elements will be useful for the solution of 

problems on complex geometries. Each different type of element comes with 

its own parallel performance details due to the different number of unknowns 

on them and the sparsity pattern of the resulting global systems. 

 The main limitation behind the solution of more realistic real-life problems is 

turbulence modeling. The code will benefit a lot from the implementation of a 

possibly RANS type, turbulence model. 

 

During this study the developed solver is kept at the following code repository and 

future updates can be followed there. 

https://code.google.com/p/cfd-with-cuda 
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APPENDIX 

GLOSSARY OF TERMS IN PROGRAMMING 

Term Explanation [3, 7, 22, 96] 

CPU A computer unit that the logical, arithmetical, input/output 

and control operations of the system takes place according 

to instructions of a computer program. 

GPU A computer unit that specialized in rapidly manipulating 

graphics intended for output to a display. Also their highly 

parallel structure makes them effective for algorithms where 

processing of large chunks of data is performed in parallel.   

Processor Core/Core Units that read and execute program instructions. 

Host The CPU 

Device The GPU 

Kernel A subroutine executed on the CUDA device. 

Thread Smallest sequence of programmed instructions. 

Thread Block/Block A set of threads which have a common shared memory, and 

thread synchronization primitives. 

Register Fastest memory on the GPU. Exclusive to a single thread.  

Shared Memory Slower than registers, faster than global memory. Can be 

shared among threads of the same block. 

Global Memory Slowest but largest memory on GPU. Accessible to all 

threads. 

Race Condition Arises when more than one thread attempt to access the 

same memory location at the same time and at least one 

access is a write. Causes uncertainty about the final 

condition/value on the memory. 

Throughput The amount of output (data) that can be produced in a given 

period of time. 

Latency The time, the device (CPU or GPU) waits to obtain the data 

from memory. 

Cache A small on-die storage that stores data from earlier requests 

so that future requests for that data can be served faster 
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(Because getting data from external memory is way slower.)    

Bandwidth The amount of data that can be transmitted in a fixed 

amount of time.  

Speed-up A metric for relative performance improvement when 

executing a task. (In this thesis study speed-up values are 

given according to execution time) 

 


