

PARALLEL IMPLEMENTATION OF THE FINITE ELEMENT METHOD ON

GRAPHICS PROCESSORS FOR THE SOLUTION OF INCOMPRESSIBLE

FLOWS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MAHMUT MURAT GÖÇMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

DECEMBER 2014

Approval of the thesis :

PARALLEL IMPLEMENTATION OF THE FINITE ELEMENT METHOD

ON GRAPHICS PROCESSORS FOR THE SOLUTION OF

INCOMPRESSIBLE FLOWS

submitted by MAHMUT MURAT GÖÇMEN in partial fulfillment of the

requirements for the degree of Master of Science in Mechanical Engineering

Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. R. Tuna Balkan _____________________

Head of Department, Mechanical Engineering

Assist. Prof. Dr. Cüneyt Sert _____________________

Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. İlker Tarı _____________________

Mechanical Engineering Dept., METU

Assist. Prof. Dr. Cüneyt Sert _____________________

Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Mehmet Metin Yavuz _____________________

Mechanical Engineering Dept., METU

Assist. Prof. Dr. Merve Erdal _____________________

Mechanical Engineering Dept., METU

Assist. Prof. Dr. Barbaros Çetin _____________________

Mechanical Engineering Dept., Bilkent University

Date: 04.12.2014

iv

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name: Mahmut Murat Göçmen

Signature :

v

ABSTRACT

PARALLEL IMPLEMENTATION OF THE FINITE ELEMENT METHOD ON

GRAPHICS PROCESSORS FOR THE SOLUTION OF INCOMPRESSIBLE

FLOWS

Göçmen, Mahmut Murat

M.S., Department of Mechanical Engineering

Supervisor : Assist. Prof. Dr. Cüneyt Sert

December 2014, 96 pages

In recent years clock speeds and memory bandwidths of Graphics Processing Units

(GPUs) increased dramatically compared to CPUs. Also GPU vendors developed and

freely released new programming tools to make scientific computing on GPUs

easier. With these recent developments the use of GPUs for general purpose

computing becomes a popular research field. Researchers previously demonstrated

that use of GPUs may provide tens of times of speeds-ups compared to CPU solvers

for CFD methods such as Smoothed Particle Hydrodynamics, Lattice Boltzmann and

Discontinuous Galerkin, which are known to offer very high parallelization potential.

However, studies for the utilization of GPUs for classical finite volume and

especially for finite element based CFD codes are rare in the literature.

This study involves the development of a flow solver based on the Finite Element

Method (FEM) working parallel on GPUs. CUDA (Compute Unified Device

Architecture) programming toolkit developed by NVIDIA is used for GPU

programming. Three-dimensional, laminar, incompressible, flows with possible heat

transfer effects are considered. Governing equations are discretized using 2 different

fractional step algorithms. Accuracy of the developed solver is tested using 5

vi

benchmark problems, including a microchannel flow and flow inside a tube with

conjugate heat transfer.

Each step of the fractional step algorithm is investigated in detail on the CPU and

GPU for run time performance. Speed-up tests are performed on a series of meshes

with total number of unknowns between 700,000 and 6.7 million. Parallelization on

the CPU is achieved by using Intel’s MKL library and OpenMP and on the GPU

mostly CUBLAS, CUSPARSE and CUSP libraries are used with some scratch-built

GPU kernels whenever necessary. For the largest mesh tried, GPU usage resulted in

5.79 and 1.86 times speed-ups compared to single-thread and 8-thread CPU

solutions, respectively. The use of single precision arithmetic is investigated from

accuracy and efficient points of view and it is seen that it does not degrade accuracy,

while providing almost 2 times speed-up both on the CPU and the GPU. Compared

to the explicit version, implicit fractional step algorithm turned out to be

advantageous in terms of run time for steady state problems. On the other hand,

explicit method uses less memory as expected.

Keywords: General Purpose GPU Computing, GPGPU, CUDA, Parallel Computing,

Finite Element Method, Fractional Step Method, Computational Fluid Dynamics,

Incompressible Flows

vii

ÖZ

GRAFİK KARTLARINDA PARALEL BİR BİÇİMDE ÇALIŞACAK SONLU

ELEMANLAR YÖNTEMİ TABANLI SIKIŞTIRILAMAZ AKIŞ ÇÖZÜCÜ

GELİŞTİRİLMESİ

Göçmen, Mahmut Murat

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Cüneyt Sert

Aralık 2014, 96 sayfa

Son yıllarda grafik kartlarının (GPU) performanslarının ana işlemci (CPU)

performanslarına göre çok daha hızlı artması ve bu kartların bilimsel hesaplama için

kullanılmasını kolaylaştıran programlama araçlarının geliştirilmesi ile birlikte

GPU’lar yüksek başarımlı bilimsel hesaplama ihtiyaçları için önemli bir alternatif

olmuş ve popüler araştırma konuları arasına girmiştir. Akışkanlar mekaniği alanında

çalışan araştırmacılar, paralelleştirme potansiyeli çok yüksek olan Lattice Boltzmann

ve Sürekli Olmayan Galerkin gibi metotların GPU üzerinde programlanması ile

CPU'larda çalışan kodlara göre 10'larca kata varan hız artışları elde edebilmişlerdir.

Ancak sonlu hacim ve özellikle sonlu eleman metodu tabanlı akış çözücülerinin GPU

üzerinde paralel çalıştırılması ile ilgili çalışmalar literatürde çok az sayıdadır.

Bu proje çalışması Sonlu Eleman Metodu temelli bir akış çözücüsünün GPU

üzerinde paralel çalışacak biçimde geliştirilmesini kapsamaktadır. GPU üzerinde

paralel programlama için NVIDIA firmasının 2007 yılında geliştirdiği CUDA

(Compute Unified Device Architecture) programlama aracı kullanılmış ve üç

boyutlu, laminer, sıkıştırılamayan, ısı transferi içeren akışlar çalışılmıştır.

Denklemlerin ayrıştırılmasında 2 farklı kademeli adım tekniği kullanılmıştır.

viii

Geliştirilen çözücünün doğruluğu mikro kanal akışı ve eşlenik ısı transferli boru akışı

da dahil olmak üzere 5 farklı test problemiyle denenmiştir.

Kademeli adım tekniğinin her bir aşamasının CPU ve GPU’da aldığı süreler

detaylıca incelenmiştir. Karşılaştırmalı hız testleri 700 bin ile 6.7 milyon arasında

bilinmeyen içeren ağlarda yapılmıştır. CPU’daki paralelleştirmeler Intel’in MKL

kütüphanesi ve OpenMP ile GPU’daki paralelleştirmeler ise çoğunlukla CUBLAS,

CUSPARSE ve CUSP kütüphaneleri gerektiğinde ise GPU üzerinde çalışacak

kerneller yazılarak yapılmıştır. Denenen en büyük ağ için GPU, CPU’nun 1 izleği

(thread) ve 8 izleği (8 threads) karşısında sırasıyla 5.79 kat ve 1.86 hızlı

çalışmaktadır. Kayan noktalı sayıların tek hassasiyetli depolanması durumu özel

olarak incelenmiş ve bu durumda çözüm doğruluğunda bir kötüleşme tespit

edilmemekle birlikte, hem CPU’da hem GPU’da 2 kat hızlanma kaydedilmiştir. Açık

(explicit) kademeli adım tekniği ile karşılaştırıldığında kapalı (implicit) yöntemin

zamana bağlı olmayan problemleri daha hızlı çözdüğü görülmüş, buna karşın açık

kademeli adım tekniğinin daha az hafıza kullandığı ortaya çıkmıştır.

Anahtar Kelimeler: Genel Amaçlı GPU Hesaplama, GPGPU, CUDA, Paralel

Hesaplama, Sonlu Eleman Metodu, Kademeli Adım Tekniği, Hesaplamalı

Akışkanlar Dinamiği, Sıkıştırılamaz Akışlar

ix

To my parents

x

ACKNOWLEDGMENTS

I would like to thank my thesis supervisor, Dr. Cüneyt Sert, for his guidance,

encouragement, criticism, support and insight throughout the research. Without him,

this thesis could not be as improved as it is now.

I would like to express my gratitude to my parents for their unconditional love.

Awareness of being loved no matter what you do must be the most comforting

feeling in the world.

I want to thank my company, Punto Mühendislik, for supporting me in obtaining a

Master’s degree. I also want to thank my employee at Punto Mühendislik, Dr.

Ertuğrul Başeşme, and colleagues at Punto Mühendislik, especially Hüsnü

Muhammed Enis Dönmez and Gökay Gökçe, for their contributions and

encouragements.

This thesis would not have been possible without the help and support of my dearest

friends and colleagues Kadir Ali Gürsoy and Ali Karakuş. I am also thankful to my

friends Yiğitcan Güden, Emin Oğuz İnci, Sercenk Hızal, Safa Kabakcı, Sinan

Karamahmutoğlu, Erinç Erol, Alper Çelik, Gökay Günaçar, Tufan Akba and Merve

Özdemir for their supply in various ways.

This study was supported by the TÜBİTAK. Grant No: 111M740.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF SYMBOLS AND ABBREVIATIONS ... xvi

1. INTRODUCTION ... 1

1.1 Finite Element Method (FEM) ... 2

1.2 Graphics Processing Units (GPU) .. 3

1.3 GPU Programming with CUDA .. 9

2. LITERATURE ... 15

2.1 Literature on the Use of FEM for Incompressible Flows 15

2.2 Literature on the Use of GPUs for Flow Problems 18

3. FORMULATIONS AND CODE DEVELOPMENT .. 23

3.1 Explicit Fractional Step Method .. 24

3.2 Implicit Fractional Step Method .. 29

3.3 Time Consuming Parts of the Explicit Fractional Step Solution and Their

Parallelization on the CPU and the GPU ... 31

3.4 Finite Element Formulation ... 33

3.5 Solution of the Energy Conservation Equation .. 43

4. VERIFICATION OF THE DEVELOPED SOLVER .. 45

xii

4.1 Lid Driven Cavity Flow ... 45

4.2 Bending Square Duct Flow .. 47

4.3 Hydrodynamically and Thermally Developing Flow in a Square Duct 54

4.4 Heat Transfer in a Micro Channel .. 57

4.5 Conjugate Heat Transfer in a Tube .. 59

5. PARALLEL PERFORMANCE ANALYSIS OF THE DEVELOPED SOLVER 67

5.1 Determining the Most Time Consuming Parts of the Solver 68

5.2 Multi Thread Usage for the CPU ... 70

5.3 Performance Comparisons between CPU and GPU 71

5.4 Effect of Using Single Precision on Performance and Accuracy 74

5.5 Performance Comparisons Between Explicit and Implicit Fractional Step

Formulations ... 75

5.6 Memory Usage of the Fractional Step Solver .. 77

6. SUMMARY AND CONCLUSION ... 81

REFERENCES ... 87

APPENDIX .. 95

GLOSSARY OF TERMS IN PROGRAMMING .. 95

xiii

LIST OF TABLES

TABLES

Table 1.1 Xeon E5-2670 and Tesla C2075 Specifications [4, 5, 6]. (SP: Single

Precision, DP: Double Precision, flops: Floating Point Operations Per Second) 4

Table 4.1 𝑁𝑢 Values for the Thermally Fully Developed Region of the Square Duct

Obtained with 4 Different Grids. ... 57

Table 4.2 Three Different Reynolds Numbers and the Corresponding Average and

Maximum Velocities at the Inlet of the Micro Channel. ... 59

Table 5.1 Details of the Meshes Used for Parallel Performance Analysis. 67

Table 5.2 Time Spent for Different Tasks During 1 Iteration of a Time Step.

Obtained Using One Core of the CPU. Values Are Based on a Single Iteration of

One Time Step.. 69

Table 5.3 Achieved Speed-ups by Multi-Threading with Respect to 1 Thread Usage

on the CPU. Values are Based on a Single Iteration of One Time Step. 71

Table 5.4 Achieved Speed-ups by GPU with Respect to 1 and 8 Thread Usage on the

CPU. Values Are Based on a Single Iteration of One Time Step. 73

Table 5.5 Speed-Up Values for the Total Time Spent for all Tasks. (Considering

Single Iteration of One Time Step) .. 74

Table 5.6 Speed-up Values when Single Precision is Used Compared to Double

Precision. (Considering Single Iteration of One Time Step) 75

Table 5.7 Speed-Up Values for the Total Time Spent for all Tasks When Single

Precision is Used. (Considering Single Iteration of One Time Step) 75

Table 5.8 Performance Comparisons of Implicit and Explicit Formulations on the

GPU .. 76

Table 5.9 Parameters That Determine the Memory Requirements of the Developed

Solver ... 77

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Increasing Computational Power of CPUs and GPUs over the Years [7]. . 4

Figure 1.2 Increasing Memory Bandwidth of CPUs and GPUs over the Years [7]. ... 5

Figure 1.3 Classification due to Flynn’s Taxonomy [17]. ... 7

Figure 1.4 Comparison of Intel Core i7-960 CPU and NVIDIA GTX280 GPU

Performances [21]. (SGEMM: SP General Matrix Multiply, MC: Monte Carlo,

Convol: Convolution, Solv: Constraint Solver, RC: Ray Casting, Hist: Histogram

Computation, Bilat: Bilateral Filter) .. 8

Figure 1.5 One Step of Summation Reduction [22]. .. 12

Figure 3.1 Illustration of Mesh Coloring in 2D [83]. ... 32

Figure 3.2 Flow Chart of Solver. (Blue Parts are the Ones Parallelized on the GPU)

 .. 34

Figure 3.3 An Actual, Arbitrarily Shaped Hexahedral Element and Its Corresponding

Master Element. ... 35

Figure 3.4 Hexahedral Element with 27 Velocity Nodes and 8 Pressure Nodes

(Element Type 1). ... 36

Figure 3.5 Hexahedral Element with 8 Velocity Nodes and 1 Pressure Node (Element

Type 2). .. 36

Figure 4.1 Lid Driven Cavity Flow. ... 46

Figure 4.2 Non-Uniform Distribution of 61 × 61 Velocity Nodes on the Faces of the

Lid Driven Cavity. .. 47

Figure 4.3 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD

of the Lid Driven Cavity. 𝑅𝑒 = 100. ... 48

Figure 4.4 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD

of the Lid Driven Cavity. 𝑅𝑒 = 400. ... 49

Figure 4.5 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD

of the Lid Driven Cavity. 𝑅𝑒 = 1000. ... 50

xv

Figure 4.6 The Geometry of the 90° Bending Square Duct....................................... 51

Figure 4.7 Non-Uniform Distribution of 67 × 67 Velocity Nodes on the Inlet Plane

and Bend Part of the Bending Square Duct. .. 52

Figure 4.8 (continued) Stream-wise Velocity Profiles (𝑉𝜃) at the Intersection of

𝑧 = 0.5 Plane and 𝜃 = 30°, 60° and 90° Planes of the Bending Duct. 54

Figure 4.9 Contours of Velocity in the 𝑦 Direction at Four Different Planes. 55

Figure 4.10 Geometry of the Square Duct. .. 55

Figure 4.11 Temperature Contours at the Mid Cross-Section of the Square Duct. ... 57

Figure 4.12 Geometry of the Micro Channel and Details of its Inlet Plane. 58

Figure 4.13 Nusselt Numbers Obtained for the Micro Channel Problem at Three

Different Re Values.. 60

Figure 4.14 Temperature (°𝐾) Contours at 𝑦 = 0 and 𝑧 = 0 Planes for Three

Different 𝑅𝑒 Values of the Micro Channel Problem (Axes Are Out of Scale).......... 61

Figure 4.15 A View of the Mesh Used for the Tube Flow Problem. Red Color Shows

the Solid Tube Wall. .. 62

Figure 4.16 Temperature Profiles on the Inner Wall along the Tube. 63

Figure 4.17 Axisymmetric Temperature Contours of the Tube Flow Problem. 64

Figure 4.18 (continued) Change of the Bulk Fluid Temperature along the Tube. 65

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

[𝐴] Advection Matrix

[𝐾] Viscous-Stiffness Matrix

[𝑀] Mass Matrix

[𝑀𝑑] Lumped Diagonal Mass Matrix

{𝐹} Force Vector

{𝐺} Discrete Gradient Operator

{𝐺𝑇} Discrete Divergence

{𝑃} Nodal Pressure Unknowns

{𝑈} Nodal Velocity Unknowns

BLAS Basic Linear Algebra Subprogram

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CPU Central Processing Unit

CUBLAS CUDA Basic Linear Algebra Subroutines

CUDA Compute Unified Device Architecture

CUSPARSE CUDA Sparse Matrix Library

𝑐𝑝 Specific Heat

𝐷ℎ Hydraulic Diameter

𝑓 Force Vector in FEM Formulation

𝑓 External Force Vector

FEM Finite Element Method

FLOPs Floating-Point Operations per Second

ENO Essentially Non-Oscillatory

GFEM Galerkin Finite Element Method

GPU Graphics Processing Unit

ℎ Convective Heat Transfer Coefficient

ℎ̅ Average Convective Heat Transfer Coefficient

HPC High Performance Computing

𝑖 Iteration Number

𝑘 Thermal Conductivity

𝑘𝑓𝑙𝑢𝑖𝑑 Thermal Conductivity of Fluid

𝑘𝑠𝑜𝑙𝑖𝑑 Thermal Conductivity of Solid

𝑘𝑠𝑓 Solid to Fluid Thermal Conductivity Ratio

xvii

LAPACK Linear Algebra Package

LBB Ladyzhenskaya-Babuska-Brezzi Condition

LHS Left Hand Side

�̇� Mass Flow Rate

MAGMA Matrix Algebra on GPU and Multicore Architecture

MIMD Multiple Instruction, Multiple Data

MKL Math Kernel Library

NBC Natural Boundary Condition

n Time Level

NE Number of Elements

NENp Number of Pressure Nodes

NENv Number of Velocity Nodes

NN Total Number of Unkowns

Nu Nusselt Number

OpenMP Open Multi-Processing

𝑝 Pressure

PCG Preconditioned Conjugate Gradient

Pr Prandtl Number

𝑞 Heat Flux

𝑄 Flow Rate

𝑅𝑖 Residual Function / Resulting RHS Vector

Re Reynolds Number

RHS Right Hand Side

𝑆𝑗 Shape Function

SIMD Single Instruction, Multiple Data

𝑡 Time

𝑇 Temperature

𝑇𝐿 Thermal Entrance Length

𝑇𝑚 Bulk Fluid Temperature

𝑇𝑤𝑖 Inner Wall Temperature

𝑢 Flow Velocity in x-Direction

𝑢ℎ Approximate Unknown Distribution on Each Element

𝑢𝑎𝑣𝑔 Average Velocity

𝑢𝑖𝑛𝑙𝑒𝑡 Inlet Velocity

𝑢𝑗 Unknown 𝑢 at Elemental Nodes

𝑢𝑚 Mean Velocity

𝑢𝑚𝑎𝑥 Maximum Velocity

�⃗⃗� Velocity Vector

𝑉𝜃 Streamwise Velocity

xviii

𝑣 Flow Velocity in y-Direction

𝑤 Flow Velocity in z-Direction

𝑤𝑖 Weight Function

∇ Gradient Operator

∇2 Laplacian Operator

|𝑋|2 Euclidean Norm of a Vector 𝑋

Γ Boundary Domain

𝛿𝑖𝑗 Kronecker-Delta

Δ𝑝 Pressure Drop

Δ𝑡 Time Step

𝜖 Convergence Criteria

𝜇 Dynamic Viscosity

𝜈 Kinematic Viscosity

𝜌 Density

φ Viscous Dissipation

1

CHAPTER 1

INTRODUCTION

Computational Fluid Dynamics (CFD) is a fluid mechanics practice that uses

computers for the numerical solution of conservation equations that govern fluid

flow and heat transfer problems. Navier-Stokes equations are the fundamental basis

of almost all flow problems that can be treated as continuum. Depending on the

dominance of different effects, certain simplifications can be done on the Navier-

Stokes equations to obtain parabolized Navier-Stokes equations, Stokes equations,

Euler equations, full potential equations, linearized potential equations, etc.

Historically, linearized potential equations were the ones solved initially. Two-

dimensional (2D) methods based on conformal transformations of the flow around an

airfoil to the flow around a cylinder were developed in the 1930s [1]. Over the years,

with increasing computational power and availability of robust numerical methods,

three-dimensional, transient and turbulent flows became solvable. As the problems

that can be simulated becomes more complicated serial solutions on a single

computer turn out to be insufficient. For many years researchers parallelized their

CFD codes on shared and distributed memory architectures using OpenMP, MPI,

PVM and similar libraries. On the other hand, in recent years clock speeds and

memory bandwidths of Graphics Processing Units (GPUs) have increased

dramatically compared to Central Processing Units (CPUs), making them a

promising alternative. Some of the most commonly used terms throughout this thesis

in the context of programming and hardware are explained briefly at Appendix.

In 2007 NVIDIA freely released Compute Unified Device Architecture (CUDA)

programming toolkit, which makes general purpose computing on GPUs almost as

simple as writing codes for CPUs. With the availability of CUDA, utilizing GPUs for

very demanding scientific tasks, including CFD, becomes a popular research field.

2

Researchers previously demonstrated that, for methods that are known to offer very

high parallelization potential such as Lattice Boltzmann Method (LBM) or

Discontinuous Galerkin Method (DGM), the use of GPUs may provide tens of times

of speeds-ups compared to CPUs. However, studies for the utilization of GPUs for

classical finite volume and especially finite element based CFD codes are rare in the

literature. This thesis study involves the development and performance tests of a flow

solver based on the Finite Element Method (FEM) working parallel on GPUs.

Present works in the literature on the use of FEM with GPU’s follow the idea of

porting codes that are initially designed for CPUs to GPUs. This is obviously not the

best approach for the full utilization of the parallel performance potential of GPUs.

Instead, in this study a CFD code is written directly for the GPU from scratch.

1.1 Finite Element Method (FEM)

Since 1960’s FEM is the most commonly used numerical technique for solving

structural mechanics problems. Actually it is better to consider FEM as a

mathematical tool for solving Partial Differential Equations, so its use should not be

limited to structural mechanics. In order to solve a differential equation by FEM, first

it is put into an equivalent weak form [2]. This is based on the weighted residual

statement (∫ 𝑤(𝑥) 𝑅(𝑥) 𝑑𝑥
Ω

= 0) of the problem which forces the integral of the

residual of the differential equation multiplied by a weight function to zero. The

residual 𝑅 makes use of approximate solution over each element (𝑢𝑒(𝑥) =

∑ 𝑢𝑗
𝑒𝑆𝑗𝑗 (𝑥)) is defined as a combination of nodal unknown values (𝑢𝑗

𝑒) and shape

functions (𝑆𝑗). After the selection of proper weight functions, the task reduces to the

solution of a linear algebraic system of equations for the nodal unknowns.

Finite Volume Method (FVM) is used more widely for fluid flow problems. Main

reason for this is the suitability of FVM to the Eulerian based conservation equations

of fluid mechanics written in integral form for a control volume. Another reason

behind the popularity of the use of FVM for CFD is its simplicity, which appeals

practicing engineers. Contrary to FEM’s complex mathematical details, FVM’s

discretization of conservation equations on control volumes is more natural and

easier to grasp for an engineer. However, from a numerical point of view it is not

easy to state a clear advantage of FVM over FEM. Due to its exceptional success at

3

structural mechanics problems, and particularly for elliptic equations, FEM had a

hard time to meet the expectations of fluid flow problems. However, this should not

be considered as a weakness of FEM. Numerical solution of fluid flow problems are

generally more demanding than structural mechanics ones, mainly due to the

existence of the advection phenomena. Nearly all of the difficulties that FEM faces

while solving fluid flows are also seen with FVM. FEM has also advantages over

FVM. For example, it is naturally applicable to unstructured meshes. Unlike FVM,

increasing the approximation order on unstructured meshes is easy. Related to this,

p-type mesh refinement that can be used to increase regional accuracy can easily be

done with FEM. Neumann type boundary conditions are naturally supported by

FEM. Because almost all structural mechanics solvers are FEM based, fluid structure

interaction problems can be solved in a single framework, when the fluid flow part is

also formulated using FEM. In summary it is possible to say that both FEM and

FVM have their own advantages and disadvantages and choosing between them is

mostly related with personal experience and level of knowledge. Literature review

for the use of FEM for fluid flow problems will be given in the next chapter.

1.2 Graphics Processing Units (GPU)

Originally GPUs were designed as pure fixed-function devices to specifically process

stages of a graphics pipeline such as vertex and pixel shaders [3]. But over the years,

they have evolved into increasingly flexible programmable processors. In a simple

way, modern GPU’s can be defined as many core chips built around an array of

streaming multiprocessors (SM). This architecture of a GPU makes it suitable for

high performance computing (HPC). As seen in Table 1.1 Tesla C2075 GPU that

was specifically produced for HPC by NVIDIA and also used in this thesis study has

448 CUDA cores and 14 SMs. Each SM has 32 CUDA cores and all CUDA cores in

a SM execute the same instruction. On the other hand Intel Xeon E5-2670 CPU

which has 8 classic CPU cores used in this study.

Not only the number of cores, but also GPU’s core clock speeds are increasing hence

their theoretical computational power is increasing even faster as shown at Fig. 1.1.

Memory access characteristics of CPUs and GPUs are also different. Because of the

requirement for very fast execution of one thread on CPUs, their memory access

4

Table 1.1 Xeon E5-2670 and Tesla C2075 Specifications [4, 5, 6]. (SP: Single

Precision, DP: Double Precision, flops: Floating Point Operations Per Second)

Device
Number

of Cores

Frequency

of Cores

Peak DP

Performance

Peak SP

Performance
Bandwidth

Xeon E5-2670 8 2.6 GHz 177 Gflops 333 Gflops 51.2 GB/s

Tesla C2075 448 1.15 GHz 515 Gflops 1030 Gflops 144 GB/s

Figure 1.1 Increasing Computational Power of CPUs and GPUs over the Years [7].

speed is very high. On the other hand, GPU is processing too many data in a highly

parallel way, where all threads are executing the same sequential code. In other

words CPUs are developed for low latency for a single throughput while GPUs are

developed for higher throughput while sacrificing latency. At the end overall

memory bandwidth values heavily favor GPUs and the bandwidth gap between CPU

and GPU is continuously increasing as it can be seen at Fig. 1.2. The following

analogy with car manufacturing [8] can be very explanatory for latency and

throughput:

5

A factory with ten assembly lines is manufacturing cars. It takes 6 hours to

manufacture a car on an assembly line. In this case, the latency is 6 hours and the

throughput is 40 cars/day (An assembly line produces 4 cars per day and there are 10

assembly lines.). If this specific factory is accepted as CPU, GPU is a factory with

400 assembly lines. But this time each of these assembly lines can produce a car in

24 hours. This second factory’s latency is 24 hours and throughput is 240 cars/day

(An assembly line produces 1 car per day and there are 240 assembly lines.).

Even though these advantages make GPUs very suitable for scientific calculations,

there were very few such studies until recently. The main reason behind this was the

necessity of using graphic processing libraries like OpenGL or Direct3D for coding

on the GPU. In other words programmers were forced to express their scientific

calculation algorithms in terms of graphical calculation algorithms, which requires a

high level of programming skill. With the help of CUDA (Compute Unified Device

Architecture), which is parallel programming toolkit developed by NVIDIA in 2007,

Figure 1.2 Increasing Memory Bandwidth of CPUs and GPUs over the Years [7].

6

today it is much easier to write general purpose codes on GPUs. After the release of

CUDA, a huge increase is observed in the number of studies utilizing GPUs for

purpose scientific computing, including Computational Fluid Dynamics. Following

the success of CUDA, similar GPU programming toolkits like OpenCL (Open

Computing Language) [9] and APP SDK (AMD OpenCL™ Accelerated Parallel

Processing) [10] appeared. OpenCL is a framework for writing programs for both

CPUs and GPUs in parallel. It supports a variety of products by different

manufacturers (AMD, NVIDIA, Intel, ARM, etc.). On the other hand, APP SDK is a

code development platform particularly for AMD products.

CUDA Toolkit comes with a C compiler (nvcc) with extra functionality compared to

a standard one. These add-ons enable functions such as data transfer between CPU

and the GPU, synchronization after asynchronous parallel processes, etc. A CUDA

code basically has two parts, standard C/C++ codes and CUDA kernels. CUDA’s C

compiler sends the standard C codes to the standard C compiler and handles the

kernels by itself. It then combines everything into a single executable. In order to

write a code that will work on a GPU, the first thing to do is to determine the parallel

programmable parts of the task at hand. After determining these parts, suitable

kernels to operate on them in parallel should be written and the data transfer between

the CPU and GPU should be established.

Not only a compiler but also other programming tools, such as a GPU debugger and

a performance analyzer comes with the CUDA Toolkit. Also it includes CUBLAS

library [11], which is GPU counterpart of BLAS (Basic Linear Algebra

Subprograms) and CUSPARSE library [12], which is used for sparse matrix

operations. As CUDA usage spreads, some third party free and commercial libraries

for scientific computations are developed as well. Examples are Tennessee

University’s MAGMA library [13], which can be used to work with dense matrices,

CUSP library [14], which provides iterative solvers for sparse matrices, CULA

library [15], which provides GPU versions of a number of standard LAPACK

functions. At different stages of the thesis study, all of these libraries were tried and

CUBLAS, CUSPARSE and CUSP libraries were used in the final version of the

developed solver.

7

According to Flynn’s taxonomy processor architectures can be classified into four

based upon their number of concurrent instruction (or control) and data streams [16].

These four different types are Single Instruction Single Data stream (SISD), Single

Instruction Multiple Data streams (SIMD), Multiple Instruction Single Data stream

(MISD) and Multiple Instruction Multiple Data streams (MIMD). GPUs are mainly

suitable for SIMD type parallelization, in which each of the concurrently executing

processors applies the same instruction on a different part of a big data set, as can be

seen from Fig. 1.3. Adding two large vectors and writing the sum on a third one is an

example of this type of work. In MIMD, processors work asynchronously on lots of

different small data sets with same instruction. Calculating the inverse of a large

number of small matrices is this kind of work. Although GPUs can be used for

MIMD type calculations in theory, libraries developed and studies conducted so far

are generally based on SIMD. For example flow solvers based on Smoothed Particle

Hydrodynamics (SPH) and Lattice Boltzmann Method (LBM) have very

parallelizable algorithms with SIMD type calculations, and researchers reported very

large speed-ups when they implemented these techniques on GPUs.

Figure 1.3 Classification due to Flynn’s Taxonomy [17].

8

As mentioned above certain algorithms are very suitable to GPU parallelization. For

example, compared to CPUs, it was possible to obtain 40, 50, 114 times speed-ups

when GPUs are used for Fast Fourier Transform (FFT) [18], Monte Carlo Method

[19], Lattice Boltzmann Method (LBM) [20], respectively. However, one must be

cautious about these speed-up values and be aware of the problems for which they

are reported. As demonstrated by Lee et al. [21] CPU and GPU performances can be

quite different for different tasks. As seen in Fig. 1.4, they studied 14 different

problems such as LBM, sparse matrix vector multiplication (SpMV), sorting, etc.,

and they obtained CPU and GPU performances that are closer to each other than the

orders of magnitude differences reported in literature. Whether the problem is

compute bounded or bandwidth bounded changes the performance of the GPU, most

of the time. They reached as much as 14.9 times speed-up for Gilbert–Johnson–

Keerthi (GJK) distance algorithm (It is used for real time collision detection used in

physics engines of video games.) and mean speed-up value for all algorithms is 2.5

times. For example SpMV is a very commonly encountered task in FEM and nearly

2 times speed-up is obtained for it. The study was conducted using Intel Core i7-960

CPU and NVIDIA GTX280 GPU, both utilized fully as much as possible. It is worth

to note that in this study one year old NVIDIA GPU was compared with a brand new

Intel CPU of the time.

Figure 1.4 Comparison of Intel Core i7-960 CPU and NVIDIA GTX280 GPU

Performances [21]. (SGEMM: SP General Matrix Multiply, MC: Monte Carlo,

Convol: Convolution, Solv: Constraint Solver, RC: Ray Casting, Hist: Histogram

Computation, Bilat: Bilateral Filter)

A
ch

ie
v
ed

 S
p
ee

d
-u

p
s

b
y
 G

P
U

 w
it

h
 R

es
p
ec

t

C
P

U

Applications

9

1.3 GPU Programming with CUDA

Even though the CUDA compiler enables a very similar coding experience with the

standard C/C++ programming, there are some differences between the codes that

work on the CPU and on the GPU. In order to understand the similarities and

differences, a simple example that adds two vectors and stores the result in a third

one is explained below.

CPU version of vector addition (no parallelization) [22]

 #include <stdio.h>

 #include <stdlib.h>

 #define N 256

 void add(int *vec1, int *vec2, int *sum) {

 int threadID = 0;

 while (threadID < N) {

 sum[threadID] = vec1[threadID] + vec2[threadID];

 threadID += 1; // There is single CPU core, so increment is one

 }

 }

 int main(void) {

 int *vec1, *vec2, *sum;

 // Allocate the memory on the CPU

 vec1 = (int*)malloc(N * sizeof(int));

 vec2 = (int*)malloc(N * sizeof(int));

 sum = (int*)malloc(N * sizeof(int));

 // Fill the vectors 'vec1' and 'vec2' on the CPU

 for (int i=0; i<N; i++) {

 vec1[i] = -i;

 vec2[i] = i * i;

 }

 // Add vec1 to vec2 and write the results to sum

 add(vec1, vec2, sum);

 // Free the memory we allocated on the CPU

 free(vec1);

 free(vec2);

 free(sum);

 return 0;

 }

The add() function is consciously written in that complex form in order to be able

to compare it with its GPU version. The usual simple way of writing it will result in

the following code;

10

 void add(int *vec1, int *vec2, int *sum) {

 for (int i=0; i<N; i++) {

 sum[i] = vec1[i] + vec2[i];

 }

 }

Using CUDA the same vector addition can be performed on a GPU in parallel by

mainly writing the GPU version of the function add() and transferring the vectors

between the GPU and the CPU.

GPU version of vector addition [22]

 #include <stdio.h>

 #include <stdlib.h>

 #define N 256

 __global__ void add(int *vec1, int *vec2, int *sum) {

 int threadID = threadIdx.x; // This thread handles the data

 // at its thread id

 if (threadID < N) {

 sum[threadID] = vec1[threadID] + vec2[threadID];

 }

 }

 int main(void) {

 int vec1[N], vec2[N], sum[N]; // Allocate the memory on the CPU

 int *dev_vec1, *dev_vec2, *dev_sum;

 // Allocate the memory on the GPU

 cudaMalloc((void**)&dev_vec1, N * sizeof(int));

 cudaMalloc((void**)&dev_vec2, N * sizeof(int));

 cudaMalloc((void**)&dev_sum, N * sizeof(int));

 // Fill the vectors 'vec1' and 'vec2' on the CPU

 for (int i=0; i<N; i++) {

 vec1[i] = -i;

 vec2[i] = i * i;

 }

 // Copy the vectors 'vec1' and 'vec2' to the GPU

 cudaMemcpy(dev_vec1, vec1, N * sizeof(int), cudaMemcpyHostToDevice);

 cudaMemcpy(dev_vec2, vec2, N * sizeof(int), cudaMemcpyHostToDevice);

 // Add vec1 to vec2 and write the results to sum

 add<<<1,N>>>(dev_vec1, dev_vec2, dev_sum);

 // Free the memory allocated on the GPU

 cudaFree(dev_vec1);

 cudaFree(dev_vec2);

 cudaFree(dev_sum);

 return 0;

 }

Implementation of the main() function is very similar in both versions. As the main

difference cudaMalloc() is used in the GPU version to allocate memory instead of

11

malloc() and at the end cudaFree() is used to free memory instead of free().

Using cudaMemcpy(), input vectors are copied to the device (GPU). Input vector

could also be filled directly in the GPU, which is not preferred here because the main

intent is to show how a particular operation, namely, the addition of two vectors, can

be performed on a graphics processor. GPU version of the main function calls the

add() function that works on the GPU using the special triple angle bracket syntax

(<<< … >>>).

GPU version of the add() function is defined using the __global__ qualifier,

making it a device kernel. Inside it parallel vector addition is performed. Although

CPU and GPU versions of the add() function look very similar, CPU code is

sequential, i.e. working with a single thread, whereas GPU code is working with N

threads simultaneously. Number of threads, N, is defined when function is called as

add<<<1,N>>>. threadIdx.x is one of the built-in variables that the CUDA

runtime defines for the user. It contains the value of the thread index for the thread

that is currently running the device code. In this sample program N threads that have

threadIdx.x values changing from 0 to N-1 are working simultaneously.

Unfortunately, it is not that simple to port every algorithm to GPU. Reduction is a

simple yet useful example to show it. Summation of the values of a vector is selected

as a reduction operation. In order to keep the discussion short only the summation

function is considered. Size of vector1 is taken as 256 for the particular example.

CPU version of vector reduction

 void sumVector(float *vector1, float *sumTotal) {

 sumTotal[0] = 0.0; // Note: sumTotal[0] is used instead of sumTotal

 // in order to be compatible with GPU code

 for (int i=0; i<256; i++) {

 sumTotal[0] += vector1[i];

 }

 }

Parallelized GPU version of vector reduction [23]

 __global__ void sumVector(float *vector1, float *sumTotal)

 {

 __shared__ float sum[256]; // Declare array in shared memory

 int threadID = threadIdx.x;

 sum[threadID] = vector1[threadID]; // Copy array to shared memory

 __syncthreads();

12

 int nTotalThreads = blockDim.x; // Total number of active threads

 while(nTotalThreads > 1)

 {

 int halfPoint = (nTotalThreads / 2); // Divide by two to obtain

 // the # of active threads

if (threadID < halfPoint) // Only the first half of the threads

 // will be active

 {

 sum[threadID] += sum[threadID + halfPoint]; // Calculate the

 // sum

 }

 __syncthreads();

 nTotalThreads = (nTotalThreads / 2); // Divide by two to be ready

 // for next reduction step

 }

 // At this point, thread zero has the sum.

 if (threadID == 0)

 {

 sumTotal[0] = sum[0];
 }

 }

The idea is that each thread adds two of the values in sum and stores the result back

to sum. Since each thread combines two entries into one, every step of the while loop

is completed with half as many entries as it started with (see Fig. 1.5). In the next

step, the same operation is done on the remaining half. When every entry in sum is

summed, program exits the while loop.

Figure 1.5 One Step of Summation Reduction [22].

13

For this example, when 256 threads per block are used, it takes 8 iterations of this

process to reduce the 256 entries in sum to a single value. One can realize that a new

function called __syncthreads() is used. This call guarantees that every thread in

the block has completed its instructions before the hardware executes the next

instruction on any thread. With the help of this synchronization, it is guaranteed that

all of the writes to the shared array sum are completed before anyone tries to read

from it.

14

15

CHAPTER 2

LITERATURE

Existing studies in the literature will be presented in two parts, the ones related with

the use of the Finite Element Method (FEM) for flow problems and the use of GPUs

for scientific computing.

2.1 Literature on the Use of FEM for Incompressible Flows

Use of FEM for the solution of flow problems goes back to 1960s when Zienkiewicz

and Gheung [24] used the technique to study potential flows. Since early 1970’s it

has been used for the solution of Navier-Stokes equations. One of the pioneering

studies is the thesis work of Hood [25], in which Navier-Stokes equations was solved

for incompressible flows. In Hood’s study the conservation of mass and momentum

equations were solved separately, known as the segregated approach. First, the

velocity was calculated by the use of assumed pressure values, followed by the

calculation of pressure by solving a Poisson equation, which was obtained by

combining conservation of mass and momentum equations. Velocities and pressures

are estimated like this iteratively until convergence occurs. In this manner, Hood’s

study was the first of its kind.

Pressure and velocity components are known to be the primate variables of the

incompressible Navier-Stokes equations. For a three-dimensional, isothermal flow

with constant fluid properties, there are a total of four scalar unknowns (pressure and

velocity components) and four scalar equations (continuity and momentum

conservation). The solution of all primitive variables by the use of a single set of

linear algebraic equation system is known as the mixed (coupled) formulation. In the

early days of CFD, mixed formulation was too costly due to its high memory

requirements. Despite this, it found use in the literature (Huyakorn et al. [26]). With

16

constant development of computer hardware mixed formulation became more and

more accessible (Zahedi et al. [27]).

In literature, it is possible to find various different versions of FEM applied to flow

problems. For incompressible flows, in order to overcome difficulties of satisfying

the continuity equation accurately, i.e. finding the correct pressure field that yields a

divergence free velocity field, people tried using alternative unknown sets, such as

the vorticity and the stream function. Although this approach resulted in successful

simulations of two-dimensional problems, it turned out to be costly in three-

dimensional problems due to the increased number of scalar unknowns (Taylor and

Hood [28], Barragy and Carey [29]). Also specification of boundary conditions

turned out to be cumbersome.

One of the methods that eliminates the problematic pressure unknown and the

challenging continuity equation is the penalty technique. It works by removing the

pressure term from the momentum equation by the help of the continuity equation

(Hughes et al. [30], Reddy [31]). This requires the definition of a penalty parameter,

which is unfortunately problem dependent. Proper selection of the penalty parameter

and the increased condition number of the resulting linear algebraic system are the

disadvantages of this method.

Similar to the use of central differencing in the Finite Difference and Finite Volume

Methods, the use of the standard Galerkin formulation in the Finite Element Method

is known to yield unphysical wiggles for the simulation of highly convective flows.

Although these wiggles can be considered as the warning of a not fine enough mesh,

researches worked a lot to find formulations that provide smooth solutions on

relatively coarse meshes. The most popular of such stabilizations is known as the

Streamline Upwind Petrov Galerkin (SUPG), which is frequently used to solve high

Reynolds number flows in acceptable tolerances without using excessively fine

meshes (Brooks and Hughes [32]). Galerkin Least Squares (GLS) and Taylor

Galerkin are among alternative stabilization techniques (Hannai et al. [33], Donea

[34]).

In the literature of the use of FEM for incompressible flows, a great number of

studies were done to overcome the Ladyzhenskaya-Babuska-Brezzi (LBB) condition,

17

which requires the storage of pressure and velocity components at different sets of

points over the elements. This is not desired because it greatly limits the elements

that can be used and makes the programming difficult. To overcome this, Rice and

Schipke [35] developed a modified Galerkin FEM that can work with velocity and

pressure stored at the same nodes. Another important similar study that combines

Finite Volume Method and FEM was done by Prakash and Patankar [36]. SUPG and

similar stabilization techniques mentioned in the previous paragraph are also known

to circumvent the LBB condition (Hughes et al. [37]).

Patankar’s SIMPLE algorithm is the most commonly used segregated solution

technique used with the Finite Volume Method. Haroutunian’s [38] remarkable work

is a successful finite element adaptation of this approach. The studies by Shaw [39]

and Du Toit [40] also used the same approach with FEM.

Unlike compressible flows, solving transient incompressible flows are not straight

forward due to the missing time derivative in the continuity equation. Fractional step

(aka splitting or projection) is a solution algorithm commonly used for solving

transient incompressible flows (Donea et al. [41], Blasco et al. [42], Guermond et al.

[43]). In this technique, solution is achieved in two stages. At the first step,

approximate velocities are calculated by the solution of the momentum equation,

without using the continuity equation. At the second step, calculated velocities are

corrected according to the mass conservation. The solver developed in this thesis is

of fractional step type.

For structural mechanics problems, low order elements are generally used in a finite

element analysis, however in literature it is possible to find studies that make use of

high-order elements for the simulation of flow problems (Volker [44]). Hierarchical

shape functions, which make mesh coarsening and refining easier compared to the

use of Lagrange type shape functions was preferred by Whitling and Jansen [45].

Characteristic Based Split (CBS) method is a relatively new FEM version conducted

by a group of scientist led by Zienkiewicz (Nithiarasu et al. [46]). Yet another

popular FEM technique in recent years is the Discontinuous Galerkin technique

which stands out especially with its nature very suitable for parallelization (Cockburn

[47]).

18

In this thesis an incompressible flow solver is developed. Therefore the above

literature summary focused on incompressible flow studies. However, FEM was also

utilized for compressible flows with success (Löhner et al. [48]). There are also

works which managed to solve both compressible and incompressible flows with a

single formulation (Hauke and Hughes [49]).

2.2 Literature on the Use of GPUs for Flow Problems

Scientific calculations with GPUs and particularly GPU usage for CFD are fairly

new topics. Nearly all studies were performed after 2000. Moreover, studies which

used CUDA programming Toolkit started after 2007, which was the year that CUDA

was introduced. Because there are very few CFD studies that combine FEM and

GPU, the ones that use GPU with different methods will also be mentioned in this

section.

First CFD applications running parallel on GPUs are real time, particle based

solutions for movie and advertisement industries (Liu et al. [50]). Creating a realistic

visualization was the main aim of these studies and accurate satisfaction of the

physical laws were of secondary importance. These particle based Lagrangian

simulations were very suitable for parallelization on the GPU. Smoothed Particle

Hydrodynamics (SPH) is another particle based method, with high parallel

performance potential and gives better results in physical regards than real time

solvers. SPH is the most frequently used CFD technique on the GPUs. Herault et al.

[51] reported that SPH runs which lasted weeks can be solved in days or hours when

GPUs are utilized.

It is possible to notice that, as far as GPU usage is concerned, compressible flow

studies are more common than incompressible flow ones. Hagen et al. [52] reported

12 times speed up when GPUs are used instead of CPUs in their finite volume based

two- and three-dimensional compressible flow solver. Brandwik and Pullan [53]

achieved 29 and 16 times speed ups for two- and three-dimensional inviscid flows,

respectively, around turbine blades. They used CUDA programing toolkit for GPU

coding. Elsen et al. [54] used CUDA to parallelize their finite difference solver for

hypersonic flows and they reached 15 to 40 times speed up compared to their code

working serial on the CPU.

19

Lattice Boltzmann Method (LBM) has an algorithm that is highly parallelizable and

used with GPUs frequently. Tölke and Krafczyk [55] used CUDA programming

toolkit with success to solve Lattice Boltzmann equations and they reached a

performance in the order of teraFLOPS. In a similar study, Riegel and Indiger [56]

solved flow around a motorcycle with LBM on a NVIDIA Tesla C1060 GPU and

reported 23 times speed-ups.

Sparse matrices and sparse matrix solvers are an important part of many CFD codes.

In literature it is possible to find studies focusing on them, such as the one performed

by Bolz et al. [57]. Sparse matrix-vector multiplication (SpMV) is an important

operation for many CFD codes. Bell and Garland [58] studied the parallel

implementation of SpMV on a GPU.

One of the few FEM based flow solver implementations on GPU was done by

Göddeke et al. [59]. They ported their flow solver named FEAST to a small GPU

cluster. According to their findings, in contrast to their earlier structural mechanics

studies, incompressible flow solver could reach lower speed up values (only 2 times).

At the time they conducted this study, double precision performance of GPUs were

rather poor, so they used single precision and discussed its effect on the accuracy. In

a similar study, Euler equations were solved using FEM on GPUs (Phillips et al.

[60]). A distinct feature of this study is the use of FORTRAN language for GPU

coding, which is not a common choice. There are also successful implementations of

Discontinuous Galerkin type FEM on GPUs (Klöckner et al. [61]).

Constructing the elemental system is a time consuming part of a FEM solver and the

process is highly parallelizable. With the help of GPUs working in single precision,

Cecka et al. [62] reached 30 times speed up compared to single core of CPU in

constructing elemental systems. In another study, global stiffness matrices weren’t

created at all and the solution was reached directly through elemental stiffness

matrices (Refsnæs [63]). Poisson equations were solved on GPUs with more than 30

million unknowns and up to 24 times speed up was observed compared to the use of

a single core of a CPU.

In another noteworthy study, Overflow’s (a code developed and used by NASA for

space research) small but time consuming SSOR solver was transferred to GPU and

20

2.5 to 3 times speed up values were reported (Jespersen [64]). As an interesting

aspect of this study, with the experience obtained while transferring the code to GPU,

CPU version of the code was also modified and experienced an increase in speed.

Corrigan et al.’s [65] study presented many interesting details about transferring a

code designed for CPU to GPU. In another important study, Malecha et al. [66]

added GPU support to OpenFOAM, which is popular freely available, open source

CFD software, and used the code to solve biological flows.

Looking at the studies between 2011 and 2014, which is the period of the current

thesis study, one can notice the dominance of FVM, LBM and SPH techniques.

Asouti et al. [67] reported 45 times speed up while solving steady and unsteady

turbulent flows on GPU compared to single core of CPU with a vertex centered finite

volume code. Lefebvre et al. [68] solved Euler equations with FVM and reported 3.5

and 2.5 times speed ups for single and double precision usage, respectively.

Niemeyer and Sung [69] used GPUs in their finite volume and finite difference codes

and reported 10 times and 8.1 times speed ups, respectively. Habich et al. [70]

developed optimization strategies for LBM on GPUs using CUDA in double

precision. They created their own performance criterion as the number of lattice cells

updated per second (FluidMLUPS/s). CPU and GPU codes reached 75

FluidMLUPS/s and 100 FluidMLUPS/s, respectively. Another LBM implementation

was done by Stumbauer et al. [71], who reported 20 times speed up while solving

The Couette-Taylor photo-bioreactor problem. Dominguez et al. [72] studied CPU

and GPU implementations of the SPH method. They compared the optimized codes

for CPU (4 cores) and two different GPUs, and reported 12.5 times and 6.1 times

speed ups.

As mentioned before general purpose scientific computations using GPUs became a

very popular research field in recent years. Not only the constantly improving

hardware, but also the software tools that made GPU programming easier contributed

to this. On the software side, the CUDA Toolkit itself renewed itself periodically.

Third party libraries like CUSP [14], MAGMA [13], CULA [15], ArrayFire [73] and

Paralution [74] also had an important role. On the hardware side, better double

precision performance and increased memory of GPU architectures like Tesla, Fermi

21

and Kepler that are specifically designed for scientific computing made the switch

from CPU to GPU easier. Realizing the potential of many-core usage for general

purpose computing, Intel recently joined the competition and started to manufacture

scientific computing oriented accelerator chips called Xeon Phi Coprocessors

(Reinder and Jeffers [75]).

As seen from the above review, studies that utilize GPUs for incompressible flows

are very rare. Also in only a few studies that use GPU, the discretization was done

using the finite volume method. The current thesis study is conducted to fill this gap

by writing a FEM based incompressible flow solver that can take advantage of GPU

parallelization as much as possible.

22

23

CHAPTER 3

FORMULATIONS AND CODE DEVELOPMENT

In this thesis study, three-dimensional, incompressible, laminar flows are solved in a

time dependent setting. For constant viscosity, these flows require the solution of the

following mass and momentum conservation equations;

𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ⋅ ∇)�⃗⃗� = −

1

𝜌
∇𝑝 +

𝜇

𝜌
∇2�⃗⃗� + 𝑓 3.1

∇ ⋅ �⃗⃗� = 0 3.2

where 𝜌 and 𝜇 are the constant and known density and dynamic viscosity, 𝑓 is a

known body force per unit mass, �⃗⃗� and 𝑝 are the unknown velocity and pressure

fields. For a three-dimensional flow these equations constitute a set of four scalar

equations with 4 scalar unknowns (3 velocity component and pressure). These

unknowns are functions of time and the three-dimensional space.

For incompressible flows, Eqn. (3.2), known as the continuity equation, is always

independent of time, even for unsteady flows. This makes it impossible to perform an

explicit time discretization, which is a common procedure for compressible flow

solutions. Also the continuity equation does not contain the pressure unknown. Not

only that but also the missing equation of state, makes the bonding between the

pressure and velocity unknowns weak for incompressible flows. Due to these, it can

be said that numerical simulation of incompressible flows are more challenging

compared to compressible ones.

In literature researchers tried many different approaches for the solution of

incompressible flows. The ones that are most frequently used with a finite element

formulation are the penalty method [30], artificial incompressibility method [76],

24

pressure correction method [77] and the fractional step method. The last one is used

in this study and its details will be given in the next section.

3.1 Explicit Fractional Step Method

This method works with time dependent equations and the solution is obtained in two

main steps. In the first step, approximate values for the velocity field are calculated

without using the mass conservation equation. In the second step, this velocity field

is updated such that conservation of mass is ensured. Due to the decoupled solution

of velocity and pressure fields, fractional step method turns out to be an efficient

technique for simulating large scale problems [78]. In literature it is possible to find a

number of different versions of this method with small differences between each.

Two such versions are considered in this study, explicit and implicit ones. The

explicit one used as the main solver is based on the work of Blasco et al. [42] and its

details will be explained below.

First Step: In this step, Eqn. (3.1) is considered to find an intermediate velocity

(�⃗⃗� 𝑛+
1

2), which is obtained using the velocity (�⃗⃗� 𝑛) and pressure (𝑝𝑛) fields of the

previous time level 𝑛. Equation that needs to be solved is given below.

�⃗⃗� 𝑛+
1
2 − �⃗⃗� 𝑛

∆𝑡
+ (�⃗⃗�𝑛 ⋅ ∇)�⃗⃗� 𝑛+

1
2 −

𝜇

𝜌
∇2�⃗⃗� 𝑛+

1
2 = −

1

𝜌
∇𝑝𝑛 + 𝑓 𝑛 3.3

Time derivative is discretized using a first order explicit Euler scheme. The

convective term, which is the second one on the left hand side of the equation is

linearized by using velocity values of time levels 𝑛 and 𝑛 +
1

2
 together. Viscous term

is included implicitly by using the intermediate velocity value in this term. On the

other hand, pressure term is treated explicitly. The unknown of Eqn. (3.3) is

intermediate velocity vector (�⃗⃗� 𝑛+1/2).

Second Step: With the help of the intermediate velocity field calculated in the first

step, velocity of the new time step (�⃗⃗� 𝑛+1) can be obtained using

�⃗⃗� 𝑛+1 − �⃗⃗� 𝑛+
1
2

∆𝑡
−

𝜇

𝜌
∇2 (�⃗⃗� 𝑛+1 − �⃗⃗� 𝑛+

1
2) +

1

𝜌
∇(𝑝𝑛+1 − 𝑝𝑛) = 0 3.4

Velocity of the new time step (�⃗⃗� 𝑛+1) have also ensure the conservation of mass.

25

∇ ⋅ �⃗⃗� 𝑛+1 = 0 3.5

As seen, nonlinear term is totally missing from Eqn. (3.4). If Eqn. (3.3) and Eqn.

(3.4) are put together we get;

�⃗⃗� 𝑛+1 − �⃗⃗� 𝑛

∆𝑡
+ (�⃗⃗�𝑛 ⋅ ∇)�⃗⃗� 𝑛+

1
2 −

𝜇

𝜌
∇2�⃗⃗� 𝑛+1 = −

1

𝜌
∇𝑝𝑛+1 + 𝑓 𝑛 3.6

which is a discretization of the momentum conservation Eqn. (3.1). Dividing the

solution into 2 steps allows alleviating the numerical difficulties related to the

saddle-point nature of the variational formulation of incompressible flows [79]. The

basic idea is to separate the nonlinear convective term and the conservation of mass,

thus decomposing the initially difficult problem into relatively easier sub problems.

Convective term is only present in the first step, where mass conservation is not

considered.

When discretized using the standard Galerkin FEM, details of which will be given in

the Section 3.4, Eqns. (3.3), (3.4) and (3.5) become

[𝑀]
{𝑈 𝑛+

1
2} − {𝑈 𝑛}

∆𝑡
+ [𝐴(𝑈𝑛)]{𝑈 𝑛+

1
2} + [𝐾]{𝑈 𝑛+

1
2} = −[𝐺][𝑃𝑛] + {𝐹 𝑛} 3.7

[𝑀]
{𝑈 𝑛+1} − {𝑈 𝑛+

1
2}

∆𝑡
+ [𝐾] ({𝑈 𝑛+1} − {𝑈 𝑛+

1
2}) + [𝐺]({𝑃𝑛+1} − {𝑃𝑛}) = 0 3.8

[𝐺]𝑇{𝑈𝑛+1} = 0 3.9

where the vectors {𝑈 𝑛+1} and {𝑃 𝑛+1} store the velocity components and the

pressures at the nodes of the finite element mesh, at the new time level 𝑛 + 1. [𝑀] is

the mass matrix, [𝐴] is the advection matrix, [𝐾] is the viscous-stiffness matrix, [𝐺]

represents the discrete gradient operator, [𝐺]𝑇 represents the discrete divergence, and

{𝐹} is the forcing term.

Unfortunately, there are difficulties in the solution of this equation set. The advection

matrix, [𝐴], of the Eqn. (3.7) depends on the velocity field and it has to be calculated

once every time step. Moreover, a new linear algebraic system needs to be solved at

each time step to get the intermediate velocity field, and the coefficient matrix of

Eqn. (3.7) is not symmetrical due to the convective term. In order to overcome this

26

difficulty Blasco et al. [42] suggested the use of an extra iterative loop in each time

step. With this approach, Eqns. (3.7), (3.8) and (3.9) can be revised as follows

[𝑀]
{𝑈

𝑖+1

 𝑛+
1
2} − {𝑈 𝑛}

∆𝑡
+ [𝐴(𝑈𝑛)]{𝑈

𝑖

 𝑛+
1
2} + [𝐾]{𝑈

𝑖

 𝑛+
1
2} = −[𝐺]{𝑃𝑛} + {𝐹 𝑛}

3.10

[𝑀]
{𝑈𝑖+1

 𝑛+1} − {𝑈
𝑖+1

 𝑛+
1
2}

∆𝑡
+ [𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2}) + [𝐺]({𝑃𝑖+1

𝑛+1} − {𝑃𝑛}) = 0 3.11

[𝐺]𝑇{𝑈𝑖+1
𝑛+1} = 0 3.12

The difference between Eqns. (3.7), (3.8), (3.9) and Eqns. (3.10), (3.11), (3.12) is the

usage of 𝑖 and 𝑖 + 1 indices, which are the iteration counters of each time step. By

using the intermediate velocity values of the previous iteration in the convective and

viscous terms, the only unknown intermediate velocity of Eqn. (3.10) appears in the

first term as {𝑈𝑖+1
 𝑛+1/2

}. Convergence in each time step can be reached in a few

(usually in the range of one to four) iterations at each time step.

Another important challenge is to solve for the velocity and pressure fields of the

new time level by using Eqn. (3.11) and (3.12) together. The reason behind the

difficulty is the lack of pressure in Eqn. (3.12). To overcome this problem, a new

equation that can be obtained by eliminating {𝑈𝑖+1
 𝑛+1} from Eqn. (3.11) and (3.12) can

be used. First Eqn. (3.11) can be used to write {𝑈𝑖+1
 𝑛+1} as follows

{𝑈𝑖+1
 𝑛+1} =

[𝑀]−1

(

[𝑀]

{𝑈
𝑖+1

 𝑛+
1
2}

∆𝑡
− [𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2}) − [𝐺]({𝑃𝑖+1

𝑛+1} − {𝑃𝑛})

)

3.13

Substituting this into Eqn. (3.12) one gets

27

[𝐺]𝑇

(

{𝑈

𝑖+1

 𝑛+
1
2}

∆𝑡
− [𝑀]−1[𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2})

− [𝑀]−1[𝐺]({𝑃𝑖+1
𝑛+1} − {𝑃𝑛})

)

= 0

3.14

Finally Eqn. (3.14) can be rearranged as follows, which can be used to solve for

{𝑃𝑖+1
𝑛+1}.

([𝐺]𝑇[𝑀]−1[𝐺])({𝑃𝑖+1
𝑛+1} − {𝑃𝑛}) =

1

∆𝑡
[𝐺]𝑇 ({𝑈

𝑖+1

 𝑛+
1
2} − ∆𝑡[𝑀]−1[𝐾] ({𝑈𝑖

 𝑛+1} − {𝑈
𝑖

 𝑛+
1
2}))

3.15

After calculating {𝑃𝑖+1
𝑛+1} using Eqn. (3.15), {𝑈𝑖+1

 𝑛+1} is calculated with using Eqn.

(3.13). This completes one iteration of a time step. Eqn. (3.16) is used to check for

the convergence of these iterations. |𝑋|2 is the Euclidean norm of a vector 𝑋.

Typically maximum 4 iterations is enough for convergence, and the number drops to

1 as the solution approaches to its steady state, if it exists.

𝑚𝑎𝑥 (
|{𝑈𝑖+1

𝑛+1} − {𝑈𝑖
𝑛+1}|

2

|{𝑈𝑖+1
𝑛+1}|

2

,
|{𝑃𝑖+1

𝑛+1} − {𝑃𝑖
𝑛+1}|

2

|{𝑃𝑖+1
𝑛+1}|

2

) ≤ 𝜖 3.16

The final difficulty in solving Eqns. (3.10), (3.13) and (3.15) is taking the inverse of

the mass matrix [𝑀]. Fortunately the lumped diagonal ([𝑀𝑑]) version of [𝑀] that is

easy to work with can be used. This simplification worked well for the steady state

problems that are solved in this study, but its effect on the accuracy of transient

problems should be investigated carefully. With the use of lumped mass matrix,

fractional step method can be summarized as the solutions of the following three

systems

System 1 ∶
[𝑀𝑑]

{𝑈
𝑖+1

 𝑛+
1
2} − {𝑈 𝑛}

∆𝑡
= {𝑅1}

3.17

28

System 2 ∶ ([𝐺]𝑇[𝑀𝑑]
−1[𝐺])({𝑃𝑖+1

𝑛+1} − {𝑃𝑛}) = {𝑅2} 3.18

System 3 ∶
 [𝑀𝑑]

{𝑈𝑖+1
 𝑛+1} − {𝑈

𝑖+1

 𝑛+
1
2}

∆𝑡
= {𝑅3}

3.19

where the right hand side vectors of these systems are given as

{𝑅1} = −[𝐴(𝑈𝑛)]{𝑈
𝑖

 𝑛+
1
2} − [𝐾]{𝑈

𝑖

 𝑛+
1
2} − [𝐺]{𝑃𝑛} + {𝐹 𝑛} 3.20

{𝑅2} =
1

∆𝑡
[𝐺]𝑇 ({𝑈

𝑖+1

 𝑛+
1
2} − ∆𝑡[𝑀

𝑑
]−1

[𝐾] ({𝑈𝑖
 𝑛+1} − {𝑈

𝑖

 𝑛+
1
2})) 3.21

{𝑅3} = −[𝐾]({𝑈𝑖
 𝑛+1} − {𝑈

𝑖

 𝑛+
1
2}) − [𝐺]({𝑃𝑖+1

𝑛+1} − {𝑃𝑛}) 3.22

The first system calculates {𝑈
𝑖+1

 𝑛+
1

2}, i.e. the intermediate velocity at the new iteration.

Calculation of {𝑅1} is costly in the sense that it requires the evaluation of a new [𝐴]

matrix for each time step (not every iteration of each time step). The actual solution

of the system is computationally cheap due to the use of the lumped mass matrix.

The second system calculates {𝑃𝑖+1
𝑛+1} by using {𝑈𝑖+1

 𝑛+1/2
} that was just calculated in

the previous step. Constructing of {𝑅2} is not costly. ([𝐺]𝑇[𝑀𝑑]
−1[𝐺]) matrix on the

left hand side of System 2 is independent of time. It can be calculated at the

beginning of the solution once and because of its symmetric and positive-definite

nature, Cholesky decomposition can be used for the solution of this system. With

Cholesky decomposition, System 2 can be efficiently solved with two triangular

matrix solutions. However, increase in the size of the resulting triangular matrices

with increasing problem size becomes a problem for the limited memory of GPUs.

To overcome this issue Conjugate Gradient (CG) type iterative techniques can be

employed. Both Cholesky decomposition and CG is used in this study.

Lastly, the third system calculates {𝑈𝑖+1
 𝑛+1} by using {𝑃𝑖+1

 𝑛+1} that was just calculated

in the previous step. Both the calculation of the right hand side vector and the

solution of the system is cheap in this case. After the solution of System 3,

convergence check is performed and either one more iteration is done or the

calculations of the next time step are started.

29

As mentioned previously, there are various different versions of the fractional step

method. The one explained above is selected mainly due to its simple algorithm. An

alternative implicit one is also investigated. Its details will be given in next section

and the advantages and disadvantages of these two formulations will be compared in

Section 5.5.

3.2 Implicit Fractional Step Method

The fractional step method described in detail in the previous section has severe

limitations on the allowable time step, due to its explicit treatment of certain terms.

This resulted in quite long total run times to complete a solution. To improve this, an

implicit fractional step formulation, which has no time step restriction due to stability

concerns, is also tried. This second formulation is based on the work of Guermond

and Quartapelle [80].

In the implicit formulation there is no intermediate velocity calculation. First the

advection-diffusion equation given in Eqn. (3.23) is solved. As seen, the velocity at

the new time step (�⃗⃗� 𝑛+1) is obtained using the velocity of the previous time step

(�⃗⃗� 𝑛) and pressures from earlier two time steps (𝑝𝑛 and 𝑝𝑛−1).

�⃗⃗� 𝑛+1 − �⃗⃗� 𝑛

∆𝑡
+ ((�⃗⃗�𝑛 ⋅ ∇)�⃗⃗� 𝑛+1 +

1

2
(∇ ⋅ �⃗⃗�𝑛)�⃗⃗�𝑛+1) −

𝜇

𝜌
∇2�⃗⃗� 𝑛+1 =

 −
1

𝜌
∇(2𝑝𝑛 − 𝑝𝑛−1) + 𝑓 𝑛

3.23

Unlike the explicit method that uses convective form for the advection term (see

Eqn. (3.3)), Eqn. (3.23) uses skew-symmetric form as suggested by Guermond and

Quartapelle [80]. In the second step, the following Poisson equation is solved for the

pressure increment (𝑝𝑛+1 − 𝑝𝑛)

 −∇2(𝑝𝑛+1 − 𝑝𝑛) = −
1

∆𝑡
∇ ⋅ �⃗⃗�𝑛+1 3.24

After introducing the Galerkin finite element discretization, Eqns. (3.23) and (3.24)

take the following forms;

30

 [𝑀]
{𝑈 𝑛+1} − {𝑈 𝑛}

∆𝑡
+ [𝐴(𝑈𝑛)]{𝑈 𝑛+1} + [𝐾]{𝑈 𝑛+1} =

 −[𝐺](2{𝑃𝑛} − {𝑃𝑛−1}) + {𝐹 𝑛}

3.25

[�̂�]({𝑃𝑛+1} − {𝑃𝑛}) = −
1

∆𝑡
[𝐺]𝑇{𝑈 𝑛+1} 3.26

where {𝑈},{𝑃}, [𝑀], [𝐴], [𝐾], [𝐺] and {𝐹} were defined in Section 3.1. The new [�̂�]

is the global stiffness matrix associated with pressure interpolation, which is a

Laplacian operator. After proper adjustments, the implicit formulation solves the

following systems at each time step. It is worth to note that, unlike the explicit

formulation, implicit one does not use any iterations in a time step.

System 1 ∶ [
1

∆𝑡
[𝑀] + [𝐴(𝑈𝑛)] + [𝐾]] {𝑈 𝑛+1} = {𝑅1} 3.27

System 2 ∶ [�̂�]({𝑃𝑛+1} − {𝑃𝑛}) = {𝑅2} 3.28

where the right hand sides vectors are

{𝑅1} =
1

∆𝑡
[𝑀]{𝑈 𝑛} − [𝐺](2{𝑃𝑛} − {𝑃𝑛−1}) + {𝐹 𝑛} 3.29

{𝑅2} = −
1

∆𝑡
[𝐺]𝑇{𝑈 𝑛+1} 3.30

Sparse linear systems need to be solved at each step to get new velocity and pressure

values. System 1 has a non-symmetric left hand side matrix, which changes at each

time level. System 2 has a symmetric left hand side matrix that does not depend on

time. Because of the non-symmetric nature of the first system matrix, Biconjugate

Gradient Stabilized (BiCGStab) solver is used to solve it. Intel MKL and CUSP

libraries are used for BiCGStab on the CPU and GPU, respectively. [�̂�] is a

symmetric matrix so Preconditioned Conjugate Gradient (PCG) is used to solve this

pressure Poisson problem. For both BiCGStab and PCG methods Jacobi

preconditioner is employed.

31

3.3 Time Consuming Parts of the Explicit Fractional Step Solution and Their

Parallelization on the CPU and the GPU

The explicit fractional step method, explained in the Section 3.1, have a number of

time consuming calculations. They can be classified under four main categories;

sparse matrix-vector operations, vector-vector operations, creating global matrices

and solving sparse systems. Sparse matrix-vector and vector-vector operations are

SIMD type operations. Creating a stiffness matrix is MIMD type work due to the

calculation of independent elemental systems and their assembly. Solving a sparse

system mostly contains SIMD type operations particularly for a symmetric, positive-

definite system. Details of these operations and how they are parallelized on the CPU

and the GPU are explained below

 Calculation of convective stiffness matrix,[𝐴(𝑈𝑛)]: This is performed once at

each time step for the construction of {𝑅1} (see Eqn. (3.20)). This process needs

the creation of a large number of small elemental stiffness matrices and their

assembly. There is no readily available GPU library that can perform this

operation as a black box. Therefore a new GPU kernel is written for it.

Parallelization of this task is not straightforward and in literature a number of

different alternatives were suggested [81, 82, 83]. These techniques were

developed with the purpose of preventing the race condition arising during the

assembly and effective utilization of GPU hardware. They differ from each other

in terms of their usage of various levels of GPU memories (registers, shared

memory and global memory), the responsible computing unit (thread, block) for

creating the elemental stiffness matrices and the way the assembly operation is

done. Some of them favor fast calculations and the others favor the use of less

memory.

In the current study the mesh coloring method, which groups the elements that do

not share a common node, is utilized for eliminating the race condition. Fig. 3.1

demonstrates an example of mesh coloring of a two-dimensional mesh consisting

of 6 quadrilateral elements. Elements of the same color have no common nodes

and therefore their stiffness matrices are created and assembled together, while

the calculations on the elements of a different color can be done in parallel

simultaneously. Because the GPU works best with blocks consisting of multiples

32

of 32 threads [22], blocks consisting of 32 threads are used for 27 node

hexahedral elements. By this way, calculations associated with each velocity

node of an element can be calculated parallel on a different thread.

As seen in Eqn. (3.20) what really is needed is the [𝐴(𝑈𝑛)]{𝑈𝑖
 𝑛+1/2

} matrix-vector

multiplication, but not the [𝐴] matrix itself. This suggests an alternative solution,

which totally eliminates the assembly of the global [𝐴] matrix. Instead matrix-

vector multiplications can be done at the element level and the resulting vectors

can be assembled. Again the mesh coloring method is utilized in order to prevent

race conditions. This alternative method is used in the final version of the code

because it has better performance and it needs less memory. Performance of these

two approaches will be compared in the Chapter 5.

CPU parallelization of this part is completed using OpenMP [84]. Mesh coloring

method is also utilized on the CPU side.

Figure 3.1 Illustration of Mesh Coloring in 2D [83].

 BLAS operations to calculate {𝑅1}, {𝑅2} and {𝑅3}: As seen in Eqns. (3.20),

(3.21) and (3.22) calculation of the right hand side vectors require sparse matrix-

vector calculations and vector-vector operations. These are all simple SIMD type

operations and they are very suitable for parallelization. GPU implementation of

these operations is mainly done with CUSPARSE and CUBLAS libraries that

come with the CUDA Toolkit, and new small GPU kernels are written when a

readily available solution cannot be found. On the CPU side these are parallelized

using Intel’s Math Kernel Library (MKL) library [85].

33

 Solution of Systems 1 and 3: As seen in Eqns. (3.17) and (3.19) due to the use of

the diagonalized mass matrix, these system solutions are simple and performed

using CUBLAS. Intel’s MKL library is used for CPU parallelization.

 Solution of System 2: As discussed in the previous section either Cholesky

factorization or CG technique is used for the solution of Eqn. (3.18). When

Cholesky factorization is used, solution of the system requires two triangular

system solutions, which are performed using Timothy Davis' CSparse library

[86] on the CPU, whereas CUSPARSE is used on the GPU. When the problem

size, hence the size of the triangular systems exceed a certain limit, GPU’s

memory becomes insufficient for Cholesky factorization. For such cases

Preconditioned Conjugate Gradient (PCG) solver is preferred, for which Intel’s

MKL is used on the CPU and CUSP library is used on the GPU.

Other than these calculations, there are some that have to be performed only once

outside the time loop, such as the calculation of time independent global systems

[𝑀], [𝑀𝑑], [𝑀𝑑]
−1, [𝐾], [𝐺], [𝐺]𝑇 , ([𝐺]𝑇[𝑀𝑑]

−1[𝐺]) and calculating the Cholesky

factorization of ([𝐺]𝑇[𝑀𝑑]
−1[𝐺]) matrix. These calculations are not parallelized.

Fig. 3.2 shows the flow chart of the developed flow solver. As seen all the time

consuming operations that lie inside the time loop are parallelized on the GPU. Step

numbers 0, 1, 2 and 3 will be used in analyzing the performance of the solver in the

Chapter 5.

3.4 Finite Element Formulation

In this study the discretized Eqns. (3.17), (3.18) and (3.19) are obtained using the

standard Galerkin Finite Element Method (GFEM). As with almost all numerical

techniques, first the problem domain is discretized into small parts, called elements.

After creating the numerical mesh by defining the elements and their nodes where

the unknowns are stored at, FEM formulation makes use of approximate solutions

over each element as given below;

𝜙ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝜙𝑗 𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑈

𝑗=1

 3.31

34

Figure 3.2 Flow Chart of Solver. (Blue Parts are the Ones Parallelized on the GPU)

Read the input file

Create sparse storage (CSR) vectors for global [𝑀] and [𝐺] matrices and
setup local to global mappings

Setup FE shape funtions

Setup Gauss Quadrature (GQ) points and weights

Define shape functions and Calculate their derivatives

Calculate Jacobian of each element

Calculate 𝑥, 𝑦, 𝑧 derivatives of shape functions for each GQ point

Initiallize and allocate sparse matrices and vectors

Calculate global 𝑀 , 𝐺 , [𝐾] matrices

Calculate [𝑀𝑑] and its inverse [𝑀𝑑]
−1 and apply BCs to [𝑀𝑑]

Calculate ([𝐺]𝑇[𝑀𝑑]
−1[𝐺]) and apply BCs

Initialize variables before the new iteration

Calculate 𝐴 ∗ {𝑈𝑖
𝑛+1/2

}

Calculate {𝑅1} and apply BC

Calculate {𝑈𝑖+1
𝑛+1/2

}

Calculate {𝑅2} and apply BC

Calculate {𝑃𝑖+1
𝑛+1} with Cholesky or PCG

Calculate {𝑅3} and apply BC

Calculate {𝑈𝑖+1
𝑛+1}

Check convergence

Get ready for the next time step

Write the final result file and exit

Ti
m

e
 L

o
o

p

It
e

ra
ti

o
n

 L
o

o
p

S
te

p
 1

S

te
p
 0

S

te
p
 2

S

te
p
 3

35

where 𝜙ℎ represents the approximate solution over an element for any scalar

unknown 𝜙, which can be a velocity component or pressure. 𝜙𝑗 are the values of the

unknown at the nodes of an element and 𝑆𝑗 are polynomial shape functions that are

defined separately at each elemental node. 𝑁𝐸𝑈 is number of nodal 𝜙 unknowns

defined over the element. The developed solver makes use of hexahedral elements

seen in Fig. 3.3. Instead of using a set of different shape functions over each actual

element, it is preferred to work with a master element (see Fig. 3.3) and only define a

single set of shape functions, which requires the construction of a geometric mapping

between the actual coordinates (𝑥, 𝑦, 𝑧) and master coordinates (𝜉, 𝜂, 𝜁).

In order to satisfy the Ladyzenskaja-Babuška-Brezzi (LBB) condition, elements that

have more velocity nodes than pressure nodes are used. Two element types are used.

The high order element with 27 velocity nodes and 8 pressure nodes, i.e. quadratic in

velocity and linear in pressure, is shown in Fig. 3.4. In total this element has

3 ∗ 27 + 8 = 89 scalar unknowns over it. The low order one with 8 velocity nodes

and 1 pressure node, i.e. linear in velocity and constant in pressure, is shown in Fig.

3.5. It has 3 ∗ 8 + 1 = 25 scalar unknowns on it. For each element type two different

shape function sets are used for velocity and pressure approximation.

Figure 3.3 An Actual, Arbitrarily Shaped Hexahedral Element and Its Corresponding

Master Element.

𝑥

𝑦

𝑧

𝜉

𝜁

6 (1,-1, 1)

3 (1, 1,-1)

2 (1,-1,-1)

5 (-1,-1, 1)

7 (1, 1, 1) 8 (-1, 1, 1)

4 (-1, 1,-1)
𝜂

36

Figure 3.4 Hexahedral Element with 27 Velocity Nodes and 8 Pressure Nodes

(Element Type 1).

Figure 3.5 Hexahedral Element with 8 Velocity Nodes and 1 Pressure Node (Element

Type 2).

After defining element types and the corresponding shape functions, discretization

procedure continues by obtaining the residual of each differential equation,

multiplying them with proper weight functions and equating their integrals over each

element to zero. Starting with writing Eqn. (3.3) in the Cartesian coordinate system;

x − Momentum ∶

𝑢𝑛+1/2 − 𝑢𝑛

∆𝑡
+ (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
)

 −
𝜇

𝜌
(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑥
− 𝑓𝑥 = 0

3.32

0 1

23

4 5

67

8

10

16

18

12 13

11 9

1415 23

1719

20

25

2224 26

21

0 1

23

4 5

67

𝑉𝑒 𝑐𝑖𝑡𝑦 𝑁 𝑑𝑒 𝑃 𝑒 𝑢 𝑒 𝑁 𝑑𝑒

1

23

4 5

67

𝑉𝑒 𝑐𝑖𝑡𝑦 𝑁 𝑑𝑒 𝑃 𝑒 𝑢 𝑒 𝑁 𝑑𝑒

0

0

37

y − Momentum ∶

𝑣𝑛+1/2 − 𝑣𝑛

∆𝑡
+ (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
)

 −
𝜇

𝜌
(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑓𝑦 = 0

3.33

z − Momentum ∶

𝑤𝑛+1/2 − 𝑤𝑛

∆𝑡
+ (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
)

 −
𝜇

𝜌
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑧
− 𝑓𝑧 = 0

3.34

where variables 𝑢0, 𝑣0, 𝑤0 are known velocity components from previous time step.

They are used in order to linearize the non-linear advection term. Residuals of the

aforementioned DEs are;

𝑅(𝑥) =
�̇�

∆𝑡
+ (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
)

 −
𝜇

𝜌
(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑥
− 𝑓𝑥

3.35

 𝑅(𝑦) =
�̇�

∆𝑡
+ (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
)

 −
𝜇

𝜌
(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑓𝑦

3.36

𝑅(𝑧) =
�̇�

∆𝑡
+ (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
)

 −
𝜇

𝜌
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) +

1

𝜌

𝜕𝑝

𝜕𝑧
− 𝑓𝑧

3.37

The (𝑢𝑛+1/2 − 𝑢𝑛), (𝑣𝑛+1/2 − 𝑣𝑛), (𝑤𝑛+1/2 − 𝑤𝑛) term are replaced with �̇�, �̇�, �̇�

for the sake of simplicity.

Weighted residual methods’ main principle is to minimize the residual in a weighted

integral logic as demonstrated below;

∫𝑤(𝑥) 𝑅(𝑥) 𝑑𝑥
Ω

= 0 3.38

 ∫𝑤(𝑦) 𝑅(𝑦) 𝑑𝑦
Ω

= 0 3.39

38

∫𝑤(𝑧) 𝑅(𝑧) 𝑑𝑧
Ω

= 0 3.40

Substituting Eqns. (3.35), (3.36) and (3.37) into Eqns. (3.38), (3.39) and (3.40);

∫ (𝑤𝑥

�̇�

∆𝑡
+𝑤𝑥 (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
) −

𝜇

𝜌
𝑤𝑥 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
)

Ω

+
1

𝜌

𝜕𝑤𝑥

𝜕𝑥
𝑝 − 𝑤𝑥𝑓𝑥) 𝑑𝑥 = 0

3.41

 ∫ (𝑤𝑦

�̇�

∆𝑡
+𝑤𝑦 (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
) −

𝜇

𝜌
𝑤𝑦 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
)

Ω

+
1

𝜌

𝜕𝑤𝑦

𝜕𝑦
𝑝 − 𝑤𝑦𝑓𝑦) 𝑑𝑦 = 0

3.42

∫ (𝑤𝑧

�̇�

∆𝑡
+𝑤𝑧 (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
) −

𝜇

𝜌
𝑤𝑧 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
)

Ω

+
1

𝜌

𝜕𝑤𝑧

𝜕𝑧
𝑝 − 𝑤𝑧𝑓𝑧) 𝑑𝑧 = 0

3.43

The equation above is known as the residual statement of the differential equation

where 𝑤𝑥, 𝑤𝑦, 𝑤𝑧 are user selected weight functions.

When a C
0
 continuous solution is utilized in the weighted residual statement, there

will be a problem in the diffusion term since its second order derivatives cannot be

computed properly. Therefore the differentiation requirements of unknown in the

weighted residual statement should be lowered which can be achieved by applying

integration by parts to the diffusion term of the equation.

∫
𝜇

𝜌
𝑤𝑥 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
)𝑑𝑥

Ω

= −(
𝜇

𝜌
∫

𝜕𝑤𝑥

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

𝜕𝑤𝑥

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑤𝑥

𝜕𝑧

𝜕𝑢

𝜕𝑧
𝑑𝑥

Ω

)

 +∫
𝜇

𝜌
𝑤𝑥 (𝑛𝑥

𝜕𝑢

𝜕𝑥
+ 𝑛𝑦

𝜕𝑢

𝜕𝑦
+ 𝑛𝑧

𝜕𝑢

𝜕𝑧
) 𝑑Γ

Γ

3.44

The last term of equation above is called boundary integral which is a by-product of

integration by parts. Boundary integral is evaluated at the boundaries (Γ) of the

problem domain (Ω), where 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are the 𝑥, 𝑦, 𝑧 component of the unit outward

normal of the boundary respectively. Boundary integrals that are the by-products of

integration by parts include the following traction terms;

39

𝑡𝑥 =
𝜇

𝜌
(𝑛𝑥

𝜕𝑢

𝜕𝑥
+ 𝑛𝑦

𝜕𝑢

𝜕𝑦
+ 𝑛𝑧

𝜕𝑢

𝜕𝑧
) 3.45

𝑡𝑦 =
𝜇

𝜌
(𝑛𝑥

𝜕𝑣

𝜕𝑥
+ 𝑛𝑦

𝜕𝑣

𝜕𝑦
+ 𝑛𝑧

𝜕𝑣

𝜕𝑧
) 3.46

𝑡𝑧 =
𝜇

𝜌
(𝑛𝑥

𝜕𝑤

𝜕𝑥
+ 𝑛𝑦

𝜕𝑤

𝜕𝑦
+ 𝑛𝑧

𝜕𝑤

𝜕𝑧
) 3.47

Applying integration by parts to the diffusion term of all the equations (Eqns. (3.41),

(3.42) and (3.43));

∫ (𝑤𝑥

�̇�

∆𝑡
+𝑤𝑥 (𝑢0

𝜕𝑢

𝜕𝑥
+ 𝑣0

𝜕𝑢

𝜕𝑦
+ 𝑤0

𝜕𝑢

𝜕𝑧
) +

𝜇

𝜌
(
𝜕𝑤𝑥

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

𝜕𝑤𝑥

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑤𝑥

𝜕𝑧

𝜕𝑢

𝜕𝑧
)) 𝑑𝑥

Ω

= ∫ (−
1

𝜌

𝜕𝑤𝑥

𝜕𝑥
𝑝) 𝑑𝑥

Ω

+∫(𝑤𝑥𝑓𝑥)𝑑𝑥
Ω

+∫𝑤𝑥𝑡𝑥𝑑Γ
Γ

3.48

∫ (𝑤𝑦

�̇�

∆𝑡
+𝑤𝑦 (𝑢0

𝜕𝑣

𝜕𝑥
+ 𝑣0

𝜕𝑣

𝜕𝑦
+ 𝑤0

𝜕𝑣

𝜕𝑧
) +

𝜇

𝜌
(
𝜕𝑤𝑦

𝜕𝑥

𝜕𝑣

𝜕𝑥
+

𝜕𝑤𝑦

𝜕𝑦

𝜕𝑣

𝜕𝑦
+

𝜕𝑤𝑦

𝜕𝑧

𝜕𝑣

𝜕𝑧
)) 𝑑𝑦

Ω

= ∫ (−
1

𝜌

𝜕𝑤𝑦

𝜕𝑦
𝑝) 𝑑𝑦

Ω

+∫(𝑤𝑦𝑓𝑦)𝑑𝑦
Ω

+∫𝑤𝑦𝑡𝑦𝑑Γ
Γ

3.49

∫ (𝑤𝑧

�̇�

∆𝑡
+𝑤𝑧 (𝑢0

𝜕𝑤

𝜕𝑥
+ 𝑣0

𝜕𝑤

𝜕𝑦
+ 𝑤0

𝜕𝑤

𝜕𝑧
) +

𝜇

𝜌
(
𝜕𝑤𝑧

𝜕𝑥

𝜕𝑤

𝜕𝑥
+

𝜕𝑤𝑧

𝜕𝑦

𝜕𝑤

𝜕𝑦
+

𝜕𝑤𝑧

𝜕𝑧

𝜕𝑤

𝜕𝑧
)) 𝑑𝑧

Ω

= ∫ (−
1

𝜌

𝜕𝑤𝑧

𝜕𝑧
𝑝) 𝑑𝑧

Ω

+∫(𝑤𝑧𝑓𝑧)𝑑𝑧
Ω

+∫𝑤𝑧𝑡𝑧𝑑Γ
Γ

3.50

The above equation is called the weak form of the problem since it has lower

differentiability requirements compared to the original weighted residual statements.

By transferring a given DE into the weak form one can use C
0
 continuous solution

and also natural boundary conditions (NBC) will automatically be included into the

formulation. This is a unique property of FEM.

C
0
 continuous approximate solutions for velocity and pressure unknowns take the

following form;

𝑢ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝑢𝑗 𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑁𝑣

𝑗=1

 3.51

𝑣ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝑣𝑗 𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑁𝑣

𝑗=1

 3.52

40

𝑤ℎ(𝑥, 𝑦, 𝑧) = ∑ 𝑤𝑗 𝑆𝑗(𝑥, 𝑦, 𝑧)

𝑁𝐸𝑁𝑣

𝑗=1

 3.53

𝑝ℎ(𝑥, 𝑦) = ∑ 𝑝𝑗 �̂�𝑗(𝑥, 𝑦)

𝑁𝐸𝑁𝑝

𝑗=1

 3.54

where NENv and NENp are the number of velocity and pressure nodes over an

element. Because NENv and NENp are different for the used elements, different

shape fuctions are used for velocity and pressure components and they are denoted as

𝑆 and �̂�.

Substituting 𝑢ℎ, 𝑣ℎ, 𝑤ℎ, 𝑝ℎ into the elemental weak forms (Eqns. (3.48), (3.49) and

(3.50));

∑ (∫ (𝑤𝑥

�̇�𝑗 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (𝑤𝑥 (𝑢0𝑢𝑖

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0𝑢𝑖

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0𝑢𝑖

𝜕𝑆𝑗

𝜕𝑧
)) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑤𝑥

𝜕𝑥
𝑢𝑖

𝜕𝑆𝑗

𝑑𝑥
+

𝜕𝑤𝑥

𝜕𝑦
𝑢𝑖

𝜕𝑆𝑗

𝑑𝑦
+

𝜕𝑤𝑥

𝜕𝑧
𝑢𝑖

𝜕𝑆𝑗

𝑑𝑧
))𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌

𝜕𝑤𝑥

𝜕𝑥
 �̂�𝑗) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑤𝑥𝑓𝑥)𝑑Ω
Ω

+∫ 𝑤𝑥𝑡𝑥𝑑Γ
Γ𝑒

3.55

∑ (∫ (𝑤𝑦

�̇�𝑗 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (𝑤𝑦 (𝑢0𝑣𝑖

𝑑𝑆𝑗

𝑑𝑥
+ 𝑣0𝑣𝑖

𝑑𝑆𝑗

𝑑𝑦
+ 𝑤0𝑣𝑖

𝑑𝑆𝑗

𝑑𝑧
)) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑤𝑦

𝜕𝑥
𝑣𝑖

𝜕𝑆𝑗

𝑑𝑥
+

𝜕𝑤𝑦

𝜕𝑦
𝑣𝑖

𝜕𝑆𝑗

𝑑𝑦
+

𝜕𝑤𝑦

𝜕𝑧
𝑣𝑖

𝜕𝑆𝑗

𝑑𝑧
))𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌

𝜕𝑤𝑦

𝜕𝑦
 �̂�𝑗)𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑤𝑦𝑓𝑦)𝑑Ω
Ω

+∫ 𝑤𝑦𝑡𝑦𝑑Γ
Γ𝑒

3.56

∑ (∫ (𝑤𝑧

�̇�𝑗 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (𝑤𝑧 (𝑢0𝑤𝑖

𝜕𝑆𝑗

𝑑𝑥
+ 𝑣0𝑤𝑖

𝜕𝑆𝑗

𝑑𝑦
+ 𝑤0𝑤𝑖

𝜕𝑆𝑗

𝑑𝑧
)) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑤𝑧

𝜕𝑥
𝑤𝑖

𝜕𝑆𝑗

𝑑𝑥
+

𝜕𝑤𝑧

𝜕𝑦
𝑤𝑖

𝜕𝑆𝑗

𝑑𝑦
+

𝜕𝑤𝑧

𝜕𝑧
𝑤𝑖

𝜕𝑆𝑗

𝑑𝑧
))𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌

𝜕𝑤𝑧

𝜕𝑧
 �̂�𝑗) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑤𝑧𝑓𝑧)𝑑Ω
Ω

+∫ 𝑤𝑧𝑡𝑧𝑑Γ
Γ𝑒

3.57

41

Galerkin FEM (GFEM) is the most common variation of FEM, which is also utilized

in the present study. The weight functions are selected to be the same as shape

functions at GFEM, it can be demonstrated as;

𝑤(𝑥) = 𝑆𝑖(𝑥) 3.58

With using GFEM, Eqns. (3.55), (3.56) and (3.57) are transformed into these

equations below;

∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

�̇�𝑗 + ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
)) 𝑑Ω

Ω𝑒
) 𝑢𝑗

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒
) 𝑢𝑗

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑥

) 𝑑Ω
Ω𝑒

) 𝑝𝑗

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑆𝑖𝑓𝑥)𝑑Ω
Ω

+∫ 𝑆𝑖𝑡𝑥𝑑Γ
Γ𝑒

3.59

∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

�̇�𝑗 + ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
)) 𝑑Ω

Ω𝑒
) 𝑣𝑗

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒
) 𝑣𝑗

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑦

) 𝑑Ω
Ω𝑒

)𝑝𝑗

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑆𝑖𝑓𝑦)𝑑Ω
Ω

+∫ 𝑆𝑖𝑡𝑦𝑑Γ
Γ𝑒

3.60

∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒
)

𝑁𝐸𝑁𝑣

𝑗=1

�̇�𝑗 + ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
)) 𝑑Ω

Ω𝑒
)𝑤𝑗

𝑁𝐸𝑁𝑣

𝑗=1

+ ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒
)𝑤𝑗

𝑁𝐸𝑁𝑣

𝑗=1

= ∑ (∫ (−
1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑧

) 𝑑Ω
Ω𝑒

) 𝑝𝑗

𝑁𝐸𝑁𝑝

𝑗=1

+∫(𝑆𝑖𝑓𝑧)𝑑Ω
Ω

+∫ 𝑆𝑖𝑡𝑧𝑑Γ
Γ𝑒

3.61

It can be seen that other than pressure gradient and body force terms all terms are

same for x, y, z momentum equations. The compact matrix notation may help

simplifying the Eqns. (3.59), (3.60) and (3.61);

[𝑀]𝑒
{𝑈 𝑛+

1
2}𝑒 − {𝑈 𝑛}𝑒

∆𝑡
+ [𝐴(𝑈𝑛)]𝑒{𝑈 𝑛+

1
2}𝑒 + [𝐾]𝑒{𝑈 𝑛+

1
2}𝑒

= −[𝐺]𝑥
𝑒[𝑃𝑛]𝑒 + {𝐹𝑛}𝑥

𝑒

3.62

42

[𝑀]𝑒
{𝑈 𝑛+

1
2}𝑒 − {𝑈 𝑛}𝑒

∆𝑡
+ [𝐴(𝑈𝑛)]𝑒{𝑈 𝑛+

1
2}𝑒 + [𝐾]𝑒{𝑈 𝑛+

1
2}𝑒

= −[𝐺]𝑦
𝑒 [𝑃𝑛]𝑒 + {𝐹𝑛}𝑦

𝑒

3.63

[𝑀]𝑒
{𝑈 𝑛+

1
2}𝑒 − {𝑈 𝑛}𝑒

∆𝑡
+ [𝐴(𝑈𝑛)]𝑒{𝑈 𝑛+

1
2}𝑒 + [𝐾]𝑒{𝑈 𝑛+

1
2}𝑒

= −[𝐺]𝑧
𝑒[𝑃𝑛]𝑒 + {𝐹𝑛}𝑧

𝑒

3.64

where;

[𝑀]𝑒 = ∑ (∫ (𝑆𝑖
 𝑆𝑗

∆𝑡
) 𝑑Ω

Ω𝑒

)

𝑁𝐸𝑁𝑣

𝑗=1

 3.65

[𝐴(𝑈𝑛)]𝑒 = ∑ (∫ (𝑆𝑖 (𝑢0

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣0

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤0

𝜕𝑆𝑗

𝜕𝑧
)) 𝑑Ω

Ω𝑒

)

𝑁𝐸𝑁𝑣

𝑗=1

 3.66

[𝐾]𝑒 = ∑ (∫ (
𝜇

𝜌
(
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
))𝑑Ω

Ω𝑒

)

𝑁𝐸𝑁𝑣

𝑗=1

 3.67

[𝐺]𝑥
𝑒 = ∑ (∫ (−

1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑥

) 𝑑Ω
Ω𝑒

)

𝑁𝐸𝑁𝑝

𝑗=1

 3.68

[𝐺]𝑦
𝑒 = ∑ (∫ (−

1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑦

) 𝑑Ω
Ω𝑒

)

𝑁𝐸𝑁𝑝

𝑗=1

 3.69

[𝐺]𝑧
𝑒 = ∑ (∫ (−

1

𝜌
�̂�𝑗

𝜕𝑆𝑖
𝜕𝑧

) 𝑑Ω
Ω𝑒

)

𝑁𝐸𝑁𝑝

𝑗=1

 3.70

{𝐹𝑛}𝑥,𝑦,𝑧
𝑒 = ∫(𝑆𝑖𝑓𝑥,𝑦,𝑧)𝑑Ω

Ω

+∫ 𝑆𝑖𝑡𝑥,𝑦,𝑧𝑑Γ
Γ𝑒

 3.71

The global versions of these stiffness matrices are nothing but assembled version of

their elemental counterparts. Size of the global stiffness matrices, [𝑀], [𝐴(𝑈)] and

[𝐾] are NNxNN; [𝐺] are NNxNNp; {𝐹} are NNx1, where NN is number of nodes

(velocity nodes), NNp is number of pressure nodes.

Galerkin FEM discretization of Eqn. (3.4) and Eqn. (3.5) are very similar to do Eqn.

(3.3).

43

3.5 Solution of the Energy Conservation Equation

Galerkin FEM discretization of the continuity and the momentum equations are

given in the previous section. For non-isothermal problems that include heat transfer

effects also the energy equation needs to be solved. In this study only steady state

non-isothermal problems are solved and the dependency of fluid properties with

temperature is not considered. For such cases, the energy conservation equation

becomes decoupled from the continuity and momentum conservation equations and

it can be solved by itself after obtaining the velocity field. The equation that needs to

be solved to get the temperature field in an incompressible flow is given as

𝜌𝑐𝑝(�⃗⃗� ⋅ ∇)𝑇 = 𝑘∇2𝑇 + Φ 3.72

where 𝜌, 𝑐𝑝 and 𝑘 are the constant viscosity, specific heat and conductivity of the

fluid, respectively. Velocity vector �⃗⃗� of Eqn. (3.72) is considered to be known. Φ is

the viscous dissipation term, which is negligibly small in many practical applications

and it is also neglected in the current study for simplicity.

The developed solver supports conjugate heat transfer problems where heat transfer

takes place over both fluid and solid regions. For such cases, each element is labeled

to be either a fluid element or a solid element and for the ones corresponding to the

solid regions velocity vector is set to zero. All fluid and solid elements are then

assembled to form a single linear algebraic system, the solution of which gives the

temperature field of the whole problem domain.

Nodal temperature unknowns are stored at the same points as the velocity unknowns.

Galerkin FEM discretization of the energy conservation equation results in the

following elemental system

[𝐾𝑒]{𝑇𝑒} = {𝐵𝑒} 3.73

where the elemental coefficient matrix is given by

𝐾𝑖𝑗
𝑒 = ∫ [𝜌𝑐𝑝𝑆𝑖 (𝑢

𝜕𝑆𝑗

𝜕𝑥
+ 𝑣

𝜕𝑆𝑗

𝜕𝑦
+ 𝑤

𝜕𝑆𝑗

𝜕𝑧
)

Ωe

+ 𝑘 (
𝜕𝑆𝑖
𝜕𝑥

𝜕𝑆𝑗

𝜕𝑥
+

𝜕𝑆𝑖
𝜕𝑦

𝜕𝑆𝑗

𝜕𝑦
+

𝜕𝑆𝑖
𝜕𝑧

𝜕𝑆𝑗

𝜕𝑧
)] 𝑑Ω

3.74

44

and the elemental boundary integral vector is

𝐵𝑖
𝑒 = ∫ 𝑆𝑖 (

𝜕𝑇

𝜕𝑥
𝑛𝑥 +

𝜕𝑇

𝜕𝑦
𝑛𝑦 +

𝜕𝑇

𝜕𝑧
𝑛𝑧)𝑑Γ

Γe

 3.75

For a steady state problem solution of the energy equation takes a negligibly small

time compared to the solution of the continuity and the momentum equations.

Therefore, no effort is spent to parallelize it.

45

CHAPTER 4

VERIFICATION OF THE DEVELOPED SOLVER

The developed solver is tested for accuracy using 5 problems that either have known

analytical solutions or previously studied numerically or experimentally. The first

benchmark problem is selected to be the flow inside a lid driven cavity. The problem

is studied at three different Reynolds numbers and the results are compared with

available numerical results in the literature. The second test problem is the flow

inside a square duct with a 90
o
 bend. This one is more challenging than the first one

in terms of the three dimensionality of the created flow structures. The results are

again compared with an existing numerical study. As the third problem

hydrodynamically and thermally developing flow inside a square duct is solved and

analytically known fully developed Nusselt number is used to check the correctness

of the solution. Fourth problem considered is again for a duct flow, but this time the

cross section dimensions are in the order of microns. The results are compared with

the available experimental values. The final test is selected to be a conjugate heat

transfer problem, for which the problem geometry is a pipe.

4.1 Lid Driven Cavity Flow

This is one the most frequently used benchmark problems to verify newly developed

incompressible flow solvers. It is appealing due to its simple geometry that is

suitable for a structured mesh and all Dirichlet boundary conditions. Problem domain

is a 1 × 1 × 1 sized cube as seen in Fig. 4.1. Top face (𝑧 = 1) of the cube, which is

known as its lid, is pulled in the 𝑥 direction with a speed of 1.0, while other faces are

kept stationary. No slip boundary condition is applied on all 6 faces. Due to the lack

of inflow/outflow boundaries, the uniqueness of the pressure field is controlled by

specifying 0 pressure, at the center of the bottom wall (point A of Fig. 4.1). Density

of the fluid is taken to be 1.0 and the computations are performed for Reynolds

46

numbers of 100, 400 and 1000. The desired 𝑅𝑒 values are obtained by using

dynamic viscosity values of 0.01, 0.0025 and 0.001.

The results are compared with Yang et al.’s [87] numerical study, which used an

implicit weighted ENO scheme on a non-uniform grid of 33 × 33 × 33 nodes. A

similar non-uniform, structured mesh with 27000 (30 × 30 × 30) elements is used

in this study. The elements used are the high order ones (see Fig. 4.2), which results

in 313 = 29,791 pressure nodes and 612 = 226,981 velocity nodes. Total solved

number of unknowns is calculated as 710,734. Fig. 4.2 shows the distribution of the

velocity nodes on the faces of the cube.

For all three Reynolds numbers, time step is used as 10−3. Presented results show the

steady state solution, which is determined by the continuous checking of the

variations of the unknowns at selected monitoring points. Fig. 4.3 shows the velocity

component in the 𝑥 direction along line AB of Fig. 4.1 for 𝑅𝑒 = 100. Similarly it

shows the velocity component in the 𝑧 direction along line CD of Fig. 4.1. Fig. 4.4

and Fig. 4.5 are similar plots for 𝑅𝑒 = 400 and 𝑅𝑒 = 1000, respectively. As seen in

these figures, current results show good agreement with those of the reference study.

Figure 4.1 Lid Driven Cavity Flow.

47

Figure 4.2 Non-Uniform Distribution of 61 × 61 Velocity Nodes on the Faces of the

Lid Driven Cavity.

4.2 Bending Square Duct Flow

The second benchmark test is the flow inside a square duct with a 90° bend. Results

obtained are compared with those presented by Yang et al. [87], which is the study

already used as the reference for the first test case. Problem geometry can be seen in

Fig. 4.6. The duct has two straight sections of length 5 units each, with a square

cross-sectional area of 1×1 units. These straight sections have a 90° bend between

them, with an inner radius (𝑖) of 1.8 and outer radius (𝑜) of 2.8. Fully developed

inflow velocity profile prescribed at the inlet boundary is given by Eqn. (4.1), which

corresponds to a maximum centerline velocity of 2.25 and average velocity of 1.0.

Pressure at the midpoint of the exit plane is set to zero. Density of the fluid is taken

as 1.0 and by using a dynamic viscosity of 0.0012658, the required Reynolds number

of 790 is obtained.

𝑢𝑖𝑛𝑙𝑒𝑡 = 36(𝑦 − 𝑦2)(𝑧 − 𝑧2) 4.1

48

Figure 4.3 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD

of the Lid Driven Cavity. 𝑅𝑒 = 100.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

z

Yang et al. [87]

Current Work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x

w

Yang et al. [87]

Current Work

49

Figure 4.4 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD

of the Lid Driven Cavity. 𝑅𝑒 = 400.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

z

Yang et al. [87]

Current Work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x

w

Yang et al. [87]

Current Work

50

Figure 4.5 Velocity Components in the 𝑥 and 𝑧 Directions Along Lines AB and CD

of the Lid Driven Cavity. 𝑅𝑒 = 1000.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

z

Yang et al. [87]

Current Work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

w

Yang et al. [87]

Current Work

51

The results of the bending square duct problem are obtained with a non-uniform,

structured mesh of 53,361 (49 × 33 × 33) elements, which is very similar to the

one used by Yang et al. [87]. As seen in Fig. 4.7 elements are finer near the duct

walls. Also the elements are concentrated near the bending part. Element type 1 with

8 pressure nodes and 27 velocity nodes are used, resulting in a total of 57,800

pressure and 444,441 velocity nodes. Total number of unknowns for this problem is

1,391,123.

Figure 4.6 The Geometry of the 90° Bending Square Duct.

The stream-wise velocity profiles along three different lines at 𝑧 = 0.5 plane of the

bending part of the duct are shown in Fig 4.8. Location of 𝜃 = 30°, 60° and 90°

planes that are referred in Fig. 4.8 can be seen in Fig. 4.6. Results obtained are in

general agreement with the reference study, with small deviations. Contours of the

velocity component in the 𝑦 direction at four different planes after the bending part

are shown in Fig. 4.9. The secondary flow, which is known to develop in bending

ducts can clearly be seen.

52

Figure 4.7 Non-Uniform Distribution of 67 × 67 Velocity Nodes on the Inlet Plane

and Bend Part of the Bending Square Duct.

y

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

2

2.5

3

53

Figure 4.8 Stream-wise Velocity Profiles (𝑉𝜃) at the Intersection of 𝑧 = 0.5 Plane

and 𝜃 = 30°, 60° and 90° Planes of the Bending Duct.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(r-r
i
)/(r

o
-r

i
)

V

=30°

Yang et al. [87]

Current Work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(r-r
i
)/(r

o
-r

i
)

V

=60°

Yang et al. [87]

Current Work

54

Figure 4.8 (continued) Stream-wise Velocity Profiles (𝑉𝜃) at the Intersection of

𝑧 = 0.5 Plane and 𝜃 = 30°, 60° and 90° Planes of the Bending Duct.

4.3 Hydrodynamically and Thermally Developing Flow in a Square Duct

Problem domain, shown in Fig. 4.10, is a duct of 1 × 1 square cross-section, with a

length of 10 units. Uniform velocity of magnitude 1.0 is specified at the inlet.

Pressure is set to zero at the mid-point of the exit plane. Temperature of the incoming

fluid is taken as 1 and wall temperatures are fixed at zero. To study the case of

𝑅𝑒 = 100 and 𝑃 = 1, dynamic viscosity, specific heat and thermal conductivity of

the fluid are taken as 1 and its density is selected to be 0.01.

To check the solution’s correctness, analytically known Nusselt number (𝑁𝑢) value

of 2.98 given for the thermally fully developed region of the duct is used [88].

Nusselt number is defined as

𝑁𝑢 =
ℎ𝐷ℎ

𝑘
 4.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(r-r
i
)/(r

o
-r

i
)

V

=90°

Yang et al. [87]

Current Work

55

Figure 4.9 Contours of Velocity in the 𝑦 Direction at Four Different Planes.

Figure 4.10 Geometry of the Square Duct.

𝑦 = 4

𝑦 = 3

𝑦 = 2

𝑦 = 1

1

1

10

56

where ℎ is the convective heat transfer coefficient and 𝐷ℎ is the hydraulic diameter

of the duct, which is 1 for the problem being solved. ℎ is needed in order to calculate

𝑁𝑢. Average heat transfer coefficient (ℎ̅) between two cross sections (𝑥1, 𝑥2) can be

calculated using [89]

𝑇𝑠 − 𝑇𝑚(𝑥2)

𝑇𝑠 − 𝑇𝑚(𝑥1)
= exp (−

𝑃(𝑥2 − 𝑥1)

�̇�𝑐𝑝
ℎ̅) 4.3

where �̇� is the mass flow rate, 𝑃 is the perimeter of the duct, 𝑇𝑠 is the constant wall

temperature and 𝑇𝑚 is the bulk fluid temperature defined as

𝑇𝑚 =
1

𝑄
∫𝑢 𝑇 𝑑A

A

 4.4

where 𝑢 is velocity component in the stream-wise direction and 𝑄 is volumetric flow

rate.

Because the analytically calculated 𝑁𝑢 values are valid for the thermally fully

developed region, 𝑥1 and 𝑥2 of Eqn. (4.3) have to be selected in this region. The

following thermal entrance length (𝐿𝑇) estimation can be used for this purpose;

𝐿𝑇 = 0.05(𝑅𝑒)(𝐷ℎ)(𝑃) 4.5

which gives the value of 5 for the problem being studied. Accordingly 𝑥1 and 𝑥2

values are selected as 7 and 9, respectively. After obtaining the velocity and

temperature fields using the developed solver, 𝑇𝑚(𝑥1) and 𝑇𝑚(𝑥2) are calculated

using Eqn. (4.4) and these values are used in Eqn. (4.3) to find ℎ̅. Finally, Nusselt

number of the thermally fully developed region is obtained using Eqn. (4.2). These

are repeated for 4 different meshes and the 𝑁𝑢 values obtained are shown in Table

4.1.

As seen from Table 4.1 calculated Nu values approach to the analytical value of 2.98

[88] as the mesh gets finer. For the 25 × 25 × 100 grid, exact value is obtained. As

an additional result temperature contours at the mid cross-section of the duct is given

in Fig. 4.11.

57

Table 4.1 𝑁𝑢 Values for the Thermally Fully Developed Region of the Square Duct

Obtained with 4 Different Grids.

Grid 𝑁𝑢

10 × 10 × 40 2.997

15 × 15 × 60 2.988

20 × 20 × 80 2.987

25 × 25 × 100 2.980

Figure 4.11 Temperature Contours at the Mid Cross-Section of the Square Duct.

4.4 Heat Transfer in a Micro Channel

This problem is based on the work of Lee and Garimella, which includes both

numerical and experimental results [90]. Problem geometry that can be seen in Fig.

4.12 is a rectangular channel with dimensions of 25.4 mm × 194 μm × 884 μm.

Similar to the reference numerical study, fully developed velocity profile is provided

at the inlet section, geometric details of which are given in Fig. 4.12. Eqn. (4.7),

58

suggested by Natarajan and Lakshmanan [91], is used to calculate the inlet velocity

profile.

Figure 4.12 Geometry of the Micro Channel and Details of its Inlet Plane.

𝑢 = 𝑢𝑚𝑎𝑥 [1 − (
𝑦

𝑏
)

𝑛

] [1 − (
𝑧

𝑎
)

𝑛

]

𝑢𝑚𝑎𝑥 = 𝑢𝑎𝑣𝑔 (
𝑚 + 1

𝑚
) (

𝑛 + 1

𝑛
)

𝛼 =
𝑏

𝑎
,𝑚 = 1.7 + 0.5𝛼−1.4, 𝑛 = {

2 for 𝛼 ≤ 1/3

2 + 0.3 (𝛼 −
1

3
) for 𝛼 ≥ 1/3

4.7

Simulations are done for three different Reynolds numbers, based on the hydraulic

diameter of the duct, which is 318 μm. Used 𝑅𝑒 values, as well as the corresponding

average and maximum inlet velocities are given in Table 4.2. The working fluid is

water and its properties at 300 °𝐾 are used as 𝜌 = 997 𝑘𝑔 𝑚3⁄ , 𝜇 = 10−3 𝑃𝑎 ,

𝑐𝑝 = 4181 𝐽 (𝑘𝑔𝐾)⁄ and 𝑘 = 0.61𝑊 (𝑚𝐾)⁄ . Temperature at the inlet is taken to be

constant as 295 °𝐾 and wall temperatures are assigned as 350 °𝐾.

59

Table 4.2 Three Different Reynolds Numbers and the Corresponding Average and

Maximum Velocities at the Inlet of the Micro Channel.

𝑅𝑒 𝑢𝑎𝑣𝑔 [m/s] 𝑢𝑚𝑎𝑥 [m/s]

500 1.577 2.748

750 2.365 4.123

1000 3.154 6.184

For the numerical simulations of the reference study, commercial CFD software

Fluent was used and only one quarter of the whole problem domain is solved.

Unfortunately this simplification was not possible for the developed solver due to its

lack of support for the symmetry boundary condition. For the whole domain a mesh

with 50 × 16 × 40 = 32,000 elements is used. Similar to the previous problems the

mesh is structured and non-uniform, getting finer close to the walls. Using the first

element type total number of unknowns turned out to be 952,107.

Average Nusselt numbers of the duct are calculated as explained in the previous

section. Results obtained for three different Reynolds numbers are illustrated in Fig.

4.13 and compared with the experimental and numerical results of Lee and Garimella

[90]. As seen in the figure the current results are close to the numerical results of the

reference, but considerable deviation is seen between the numerical and experimental

results due to the simplifications on the boundaries.

For the 𝑅𝑒 values investigated, temperature contours at 𝑦 = 0 and 𝑧 = 0 planes are

shown in Fig. 4.14. As seen, temperature gradients near the walls are getting sharper

as 𝑅𝑒 increases, making it harder to resolve these regions accurately.

4.5 Conjugate Heat Transfer in a Tube

As the last test problem, conjugate heat transfer on a thick walled tube with constant

outer wall temperature is considered. Numerical solution of Zhang et al. [92] is used

for comparison. Inner radius of the tube is 1.0 and its wall thickness is 0.84. For

𝑅𝑒 = 50, for which the solution is obtained, hydrodynamically fully developed flow

occurs at 0.05(𝑅𝑒)(𝐷) = 5. Tube length is selected as 25, which is 5 times the

60

Figure 4.13 Nusselt Numbers Obtained for the Micro Channel Problem at Three

Different Re Values.

entrance length. Unit velocity is defined at the inlet of the tube and zero pressure is

defined at the center of the outlet plane. In order to simulate 𝑅𝑒 = 50 case, density

and dynamic viscosity are taken as 1 and 0.04, respectively. Inlet temperature is

taken as 0 and wall temperatures are fixed at 1. For the solid parts temperature

gradient in the axial direction is taken as zero at the inlet and outlet planes.

Simulations areperformed for 𝑃 = 1, which is obtained by using 𝑐𝑝 = 1 and

𝑘𝑓𝑙𝑢𝑖𝑑 = 0.04.

Solutions are obtained for two different conductivity values for the tube material,

𝑘𝑠𝑜𝑙𝑖𝑑 = 0.04 and 𝑘𝑠𝑜𝑙𝑖𝑑 = 1. These values correspond to 𝑘𝑠𝑓 = 𝑘𝑠𝑜𝑙𝑖𝑑/𝑘𝑓𝑙𝑢𝑖𝑑 ratio

of 1 and 25, respectively.

Unfortunately, the details of the mesh used in the reference study are not shared.

Details of the mesh used in this study are shown in Fig. 4.15. It contains 21,000 fluid

elements and 160,00 solid elements. Using the first element type, 173,821 pressure

and 521,463 velocity unknowns are solved for the flow analysis part. Energy

equation had 303,101 temperature unknowns.

61

Figure 4.14 Temperature (°𝐾) Contours at 𝑦 = 0 and 𝑧 = 0 Planes for Three

Different 𝑅𝑒 Values of the Micro Channel Problem (Axes Are Out of Scale).

In Fig. 4.16, temperature profiles on the inner wall (𝑇𝑤𝑖) along the tube is presented

for 𝑘𝑠𝑓 = 1 and 𝑘𝑠𝑓 = 25. For 𝑘𝑠𝑓 = 25, high thermal conductivity of the solid

causes very rapid increase of 𝑇𝑤𝑖, as expected. Both results show good agreement

with the reference results, which are obtained with the finite volume method where

discretization of the convective term is done with the SGSD scheme and the

SIMPLEC algorithm is utilized for velocity-pressure coupling. In Fig. 4.17 some

oscillations are seen at the solid-fluid interface for 𝑘𝑠𝑓 = 25 case. The reason behind

this is thought to be the large difference between the solid and fluid conductivity

values, which may require a very carefully crafted mesh close to the interface for

𝑧 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 500 𝑦 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 500

𝑧 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 750 𝑦 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 750

𝑧 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 1000 𝑦 = 0 𝑝 𝑎𝑛𝑒, 𝑅𝑒 = 1000

62

accurate capturing of the heat flow. Fig. 4.17 shows the axisymmetric temperature

contours. The oscillations for 𝑘𝑠𝑓 = 25 can also be seen in this figure.

Finally, variation of bulk fluid temperature (𝑇𝑓𝑏) along the tube is shown in Fig. 4.18.

For 𝑘𝑠𝑓 = 25, 𝑇𝑓𝑏 increases rapidly along the tube and almost reaches to the

specified outer wall temperature at the exit. On the other hand, variation of 𝑇𝑓𝑏 is

more linear for 𝑘𝑠𝑓 = 1. Results are in a good agreement with the reference results.

Oscillations seen in other figures are not present in this figure because 𝑇𝑓𝑏 is an

integral parameter with inherent smoothing in it.

Figure 4.15 A View of the Mesh Used for the Tube Flow Problem. Red Color Shows

the Solid Tube Wall.

y

z

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

63

Figure 4.16 Temperature Profiles on the Inner Wall along the Tube.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

x

T
w

i

k
sf

=1

Zhang et al. [92]

Current Work

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

x

T
w

i

k
sf

=25

Zhang et al. [92]

Current Work

64

Figure 4.17 Axisymmetric Temperature Contours of the Tube Flow Problem.

Figure 4.18 Change of the Bulk Fluid Temperature along the Tube.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

T
fb

k
sf

=1

Zhang et al. [92]

Current Work

𝑘𝑠𝑓 = 25

𝑘𝑠𝑓 = 1

65

Figure 4.18 (continued) Change of the Bulk Fluid Temperature along the Tube.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

T
fb

k
sf

=25

Zhang et al. [92]

Current Work

66

67

CHAPTER 5

PARALLEL PERFORMANCE ANALYSIS OF THE

DEVELOPED SOLVER

For parallel performance analysis of the developed solver, lid driven cavity problem

that was used before as a benchmark problem is used. Unless otherwise mentioned,

results presented in these sections are obtained using the explicit version of the

solver. Three different meshes with details given in Table 5.1 are created to represent

a small, medium and large size problem. Elements used are of type 1, with 27

velocity nodes and 8 pressure nodes. These three meshes will help to identify how

the time consumed by different parts of the flow solver scales with the problem size.

Considering the 𝑁𝑁 values given in the last column of the table, the Mesh II is 3.1

times larger than Mesh I, whereas Mesh III is 3.0 times larger than Mesh II. The

closeness of these ratios is important in analyzing the importance of problem size on

run time performance. Similar ratios can be calculated by using the values of the

other columns of Table 5.1, too.

Table 5.1 Details of the Meshes Used for Parallel Performance Analysis.

Mesh

No.

Number of

Elements (𝑁𝐸)

Number of

Pressure Nodes

(𝑁𝑁𝑝)

Number of

Velocity Nodes

(𝑁𝑁𝑣)

Total Number

of Unknowns

(𝑁𝑁)

I
30 × 30 × 30
= 27,000

31 × 31 × 31
= 29,791

61 × 61 × 61
= 226,981

𝑁𝑁𝑝 + 3𝑁𝑁𝑣
= 710,734

II
44 × 44 × 44
= 85,184

45 × 45 × 45
= 91,125

89 × 89 × 89
= 704,969

𝑁𝑁𝑝 + 3𝑁𝑁𝑣
= 2,206,032

III
64 × 64 × 64
= 262,144

65 × 65 × 65
= 274,625

129 × 129 × 129
= 2,146,689

𝑁𝑁𝑝 + 3𝑁𝑁𝑣
= 6,714,692

68

5.1 Determining the Most Time Consuming Parts of the Solver

Before making any parallelization or optimization on the code, time consumed by

different parts of it are examined. This is done with a code that works serially on a

single core of the CPU, which is Intel Xeon E5-2670. At this point it is good to

remember the following major tasks performed by the code, which were previously

mentioned in Chapter 3.

Task 0: Major calculations that are done only once outside the time loop.

Includes the calculation of the global matrices

[𝑀], [𝑀𝑑], [𝑀𝑑]
−1, [𝐾], [𝐺], [𝐺]𝑇 and calculating [𝑍] = [𝐺]𝑇[𝑀𝑑]

−1[𝐺].

Task 1a: Calculating the resulting vector from [𝐴(𝑈𝑛)]{𝑈
𝑖

 𝑛+
1

2} multiplication at

the element level, which is used to calculate {𝑅1} of Eqn. (3.18).

Task 1b: Calculating {𝑅1} of Eqn. (3.18) and solving this equation to get {𝑈
𝑖+1

 𝑛+
1

2}.

Task 2: Calculating {𝑅2} of Eqn. (3.19) and solving this equation to get {𝑃𝑖+1
𝑛+1}.

Task 3: Calculating {𝑅3} of Eqn. (3.20) and solving this equation to get {𝑈
𝑖+1

 𝑛+
1

2}.

Task 1 contains two different types of operations namely MIMD type elemental level

matrix vector multiplications and SIMD type sparse matrix vector operations. Due to

this difference Task 1 is divided into two as Tasks 1a and 1b. Maximum number of

iterations per time step is selected as 5. Eqn. (3.16) with a tolerance value of 10−3 is

used to check the convergence of the iterations. At the beginning of a typical run,

usually 3-4 iterations are seen to be enough for convergence and the number drops to

1 as the solution converges to steady state.

Although both Cholesky decomposition and Jacobi Preconditioned Conjugate

Gradient (PCG) are used for Task 2, only the results obtained with PCG will be

presented for brevity. Compared to PCG, Cholesky decomposition has the major

drawback of high memory usage, which becomes especially critical when GPUs are

used. On the other hand, being an iterative method, PCG presented a minor issue in

performance comparisons of different implementations on the CPU (in MKL) and

the GPU (in CUSP) due to their use of different converge criteria.

69

Table 5.2 Time Spent for Different Tasks During 1 Iteration of a Time Step.

Obtained Using One Core of the CPU. Values Are Based on a Single Iteration of

One Time Step.

Mesh

No.

Task 1a Task 1b Task 2 Task 3

Time

[s]

Ratio

to

Mesh I

Time

[s]

Ratio

to

Mesh I

Time

[s]

Ratio

to

Mesh I

Time

[s]

Ratio

to

Mesh I

I 0.452 − 0.067 − 0.355 − 0.017 −

II 1.427 3.2 0.209 3.1 1.681 4.7 0.056 3.3

III 4.382 9.7 0.654 9.8 7.294 20.5 0.173 10.2

Time spent for different tasks in one iteration of a single time step are presented in

Table 5.2. Presented times are averaged values obtained during the initial few time

steps of a solution. The values are wall clock times that are calculated by high

accuracy timers inside the code. Task 0 is not shown in this table because it is only

executed once per solution so it takes a negligible amount of time compared to other

tasks. Determining time consumption of the PCG solver used in Task 2 needs special

care because of the iterative nature of the process and the dependency of the time

spent by it on the selected tolerance criteria. PCG convergence tolerances are

selected based on the accuracy and efficiency observations made during the

verification runs of Chapter 4.

Results given in Table 5.2 can be summarized as follows;

 For the case of a single iteration per time step, the most time consuming task

is 1a for small meshes. As the mesh gets finer, Task 2 becomes more

dominant. It should be noted that one iteration per time step is the best case

scenario for a simulation.

 Task 3 is the least time consuming part among others. Time spent for Task 1b

is also small, but not negligible compared to Task 1a and Task 2.

70

 As the mesh is refined, time spent for Tasks 1a, 1b and 3 increase almost

linearly with the total number of unknowns (see 𝑁𝑁 of Table 5.1). For

example, time spent for Task 1a for Mesh II and Mesh III are 3.2 and 9.7

times those spent for Mesh I, whereas the number of total unknowns for

Mesh II and Mesh III are 3.1 and 9.45 times that of Mesh I, respectively. But

the time spent for Task 2 increases at a higher rate as the mesh is refined,

which means that Task 2 becomes more and more critical as the problem size

increases.

 To sum up, Tasks 1a and 2 stand out when run time is considered. Task 1b

should also be watched carefully.

5.2 Multi Thread Usage for the CPU

The workstation used in this study has two Intel Xeon E5-2670 processors, each

having 8 cores (16 threads). For the CPU version of the code, this multi core

environment is taken advantage of by the use of Intel’s MKL library and OpenMP,

which have multi-threading support. MKL is used for all matrix-vector operations

and the PCG solver. Task 1a cannot be performed in parallel with an already

available library. A special OpenMP code is written for it from scratch. The speed-up

values obtained for different tasks on different meshes by using multiple threads are

shown in Table 5.3.

When Table 5.3 is examined, it is seen that using 8 threads gives the best results for

almost all tasks, even though the computer used has 32 threads on 2 CPUs. For Tasks

1b and 3, even the difference between using 4 and 8 threads is very small. Although

the saturation at the performance after 8 threads seems rather unexpected, similar

results were also reported in a study by Venetis et al. [93]. In their FEM based study,

a similar Intel Xeon E5-2658 processor was used.

According to Table 5.3, Task 1a seems to benefit the most from multi-threading and

Task 3 seems to benefits the least.

71

Table 5.3 Achieved Speed-ups by Multi-Threading with Respect to 1 Thread Usage

on the CPU. Values are Based on a Single Iteration of One Time Step.

 Task 1a Task 1b Task 2 Task 3

of

Threads
2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Mesh

I
1.9 3.4 6.3 3.5 1.3 1.8 2.4 2.3 1.6 2.5 3.4 2.7 1.3 1.9 2.1 1.9

Mesh

II
1.8 3.5 6.3 3.5 1.2 2.2 2.3 2.0 1.4 2.3 2.6 2.3 1.2 2.0 2.0 1.8

Mesh

III
1.9 3.5 6.2 3.5 1.5 2.2 2.2 2.2 1.7 2.3 2.5 2.3 1.4 2.0 2.0 2.0

5.3 Performance Comparisons between CPU and GPU

All four main time consuming parts of the code that are executed repetitively inside

the time loop are migrated to the GPU. Parallel coding on the GPU is mostly done

using freely available libraries CUBLAS, CUSPARSE and CUSP, and new parallel

GPU kernels are coded when needed, such as the parallelization of Task 1a. Graphics

card used is a single NVIDIA Tesla C2075. After the observation made in the

previous section, GPU performance is compared with the performance of the CPU

with 1 and 8 threads. In this section, in addition to three lid-driven cavity meshes,

performance results for a bending square duct (shown as BSD in Table 5.4 and Table

5.5) mesh is also examined. This mesh has 53,361 elements and 1,391,123

unknowns, which locates it between Mesh I and Mesh II in terms of number of

unknowns.

Two different algorithms are tried for Task 1a as explained in Section 3.3. Results

obtained by the one that calculates [𝐴]{𝑈} multiplication at the element level without

creating the global [𝐴] are presented because it is more memory efficient and faster

than the one that first assembles the global [𝐴] and then multiplies it with {𝑈}. It is

important to note that the latter algorithm calculates elemental [𝐴] matrices and

72

assembles them into the global [𝐴] only once per time step, but due to GPU memory

limitations the former one calculates the elemental [𝐴] matrices at each iteration

inside a time step. The former one is still faster because it bypasses the assembly of

[𝐴] and iteration number per time step decreases to 1 as the solution approaches to

steady state. Moreover at CPU performance analyses, it is seen that making the

multiplication elemental level is also beneficial for CPU hence at both CPU and GPU

this approach is chosen. For an unsteady problem, this selection needs

reconsideration.

Speed-ups obtained by the GPU with respect to 1 and 8 thread usage on the CPU are

shown in Table 5.4. Values larger than 1 indicate faster operation on the GPU

compared to the CPU. When the performances of GPU and single thread CPU are

compared, a maximum of 16.5 times speed-up is seen, which is obtained for Task 1a

on the finest mesh. Although in the literature GPU-CPU performance comparisons

are usually done for a single thread CPU usage, this is not a fair comparison. When 8

thread CPU usage is considered, speeds-up values decrease and the maximum speed-

up is now 4.0, which is seen for Task 3 on Mesh I.

For the finest mesh, GPU vs. 8-thread CPU speed-ups for Tasks 1a, 1b, 2 and 3 are

2.35, 2.79, 1.69 and 3.78, respectively. As seen in the previous sections, Task 2

becomes the most critical part of the code as the mesh gets finer and from that

perspective 1.69 times speed up on the finest mesh suggests that there may be room

for improvement. PCG solver of the CUSP library is used for Task 2 on the GPU. As

an alternative PCG can be coded by using the CUSPARSE library or another third

party library can be tried. Another important point here is the possible differences in

the residual calculations and the convergence checks of MKL’s and CUSP’s PCG

implementations. In that case providing the same tolerance value for both might not

result in a fair comparison. This issue needs further control and clarification. The

good news is though, that there is an overall trend of increase in speed-up values as

the problem size increases.

Time consumption and speed-up values of all tasks together are shown in Table 5.5.

It is seen that GPU outperforms 8 threads of CPU for all three lid-driven cavity

meshes and bending square duct mesh. Moreover performance of GPU increases

73

Table 5.4 Achieved Speed-ups by GPU with Respect to 1 and 8 Thread Usage on the

CPU. Values Are Based on a Single Iteration of One Time Step.

 Task 1a Task 1b Task 2 Task 3

of

Threads

1

thread

8

threads

1

thread

8

threads

1

thread

8

threads

 1

thread

8

threads

Mesh

I*
14.58 2.32 6.09 2.55 2.80 0.82 8.50 4.00

Mesh

II*
14.56 2.33 5.97 2.63 4.02 1.53 7.00 3.50

Mesh

III*
14.61 2.35 6.06 2.79 4.22 1.69 7.52 3.78

BSD** 16.46 2.32 8.19 2.52 4.42 1.11 11.00 4.00

*Lid-driven cavity meshes, see Table 5.1.

**Bending square duct mesh.

with increasing number of unknowns. For the GPU versus 8 threads of CPU case

1.24, 1.76 and 1.86 times speed-ups are obtained for Mesh I, Mesh II and Mesh III

of the lid-driven cavity problem, respectively. When the performances of GPU and

single thread and 8 threads of CPU are compared, a maximum of 6.39 (BSD mesh)

and 1.86 (Lid-driven cavity, Mesh III) times speed-ups are seen respectively.

An important point to keep in mind is the price and power consumption of GPU and

CPU while comparing their performances. The current retail prices of Intel Xeon E5-

2670 CPU and NVIDIA Tesla C2075 GPU are around 1750 $ and 1900 $,

respectively. So there is no significant difference between prices. On the other hand,

thermal design powers of the used CPU and the GPU are 115 W [4] and 225 W [5],

respectively. GPU needs two times more power to run compared to the CPU, which

is a considerable difference. The power comparison becomes more dramatic

considering that the CPU can be used alone without the GPU, but to operate a GPU

you also need a running CPU.

74

Table 5.5 Speed-Up Values for the Total Time Spent for all Tasks. (Considering

Single Iteration of One Time Step)

Mesh No.

CPU

(1 thread)

[s]

CPU

(8 threads)

[s]

GPU

[s]

Speed-up

GPU vs CPU

(1 thread)

Speed-up

GPU vs CPU

(8 threads)

I* 0.891 0.212 0.171 5.21 1.24

II* 3.373 0.986 0.559 6.03 1.76

III* 12.503 4.012 2.162 5.79 1.86

BSD** 2.525 0.548 0.395 6.39 1.39

*Lid-driven cavity meshes, see Table 5.1.

**Bending square duct mesh.

5.4 Effect of Using Single Precision on Performance and Accuracy

For all of the runs that were presented in the previous sections floating point numbers

are stored in double precision (DP). Considering that GPUs are originally designed

for single precision (SP) arithmetic and their DP support is getting attention only

recently, it is logical to compare the performances of CPUs and GPUs for the use of

SP. Again the lid driven cavity problem is used for this purpose. The problem is

solved for 𝑅𝑒 = 100 with the three meshes defined in Table 5.1. Steady state results

obtained with SP are almost identical to the ones obtained previously with DP. It is

possible to conclude that the use of SP has no undesired effect on the accuracy.

Speed-up values obtained by using SP instead of DP are given in Table 5.6. Both the

CPU and GPU versions of the code benefited from SP usage. For the Tasks 1b, 2 and

3, GPU and CPU speed-ups are nearly same but for Task 1a there is a huge gap in

speed-up values between GPU and CPU in favor of the GPU. GPU-CPU speed-up

values for the total time spent for Tasks 1b, 2 and 3 when SP is used is given in

Table 5.7. When compared with Table 5.5, it is seen that using SP increases the GPU

versus CPU speed-up in favor of GPU. Now for the finest mesh GPU outperforms 8

threads of CPU by 2.08 times.

75

Table 5.6 Speed-up Values when Single Precision is Used Compared to Double

Precision. (Considering Single Iteration of One Time Step)

 Task 1a Task 1b Task 2 Task 3

CPU

8

threads

GPU

CPU

8

threads

8

threads

CPU

8

threads

GPU

CPU

8

threads

GPU

Mesh

I
1.11 1.94 1.56 1.57 1.89 1.76 1.60 2.00

Mesh

II
1.09 2.04 1.48 1.67 1.96 1.86 1.56 2.00

Mesh

III
1.11 2.04 1.53 1.66 2.23 2.10 1.55 1.77

Table 5.7 Speed-Up Values for the Total Time Spent for all Tasks When Single

Precision is Used. (Considering Single Iteration of One Time Step)

Mesh No.
CPU (8 threads)

[s]

GPU

[s]

Speed-up GPU vs

CPU (8 threads)

I 0.143 0.096 1.49

II 0.614 0.298 2.06

III 2.185 1.048 2.08

5.5 Performance Comparisons Between Explicit and Implicit Fractional Step

Formulations

All the results presented in the previous section of this chapter are obtained using the

explicit formulation version of the developed solver. But due to its severe time step

restrictions, also an implicit version is developed. It is first tested for accuracy and

stability when large time steps are used. It was possible to solve the lid driven cavity

problem accurately with Mesh I of Table 5.1 with time steps in the order of unity.

76

With the explicit formulation this problem required the use of ∆𝑡 = 0.001 s. To

compare the run time performances of the explicit and implicit formulations for

steady state problems the following steady state convergence check is used;

𝑚𝑖𝑛(|{𝑈 𝑛+1} − {𝑈 𝑛}|) ≤ 𝜖𝑠𝑠 5.1

Because of the different natures of the methods, particularly about the time step

constraints, convergence to the steady state solution is considered and different

tolerance values are used for them. Analyses are performed using Mesh I and Mesh

II of Table 5.1 and results of these analyses are presented in Table 5.8. Although the

implicit solver executes a single time step much slower than the explicit one, due to

its ability to use larger time steps it can finish the overall solution faster. The main

reason behind the difference in the time spent for a single time step is the time spent

for the solution of non-symmetric linear system arises from Eqn. (3.27). The implicit

formulation also requires more memory than the explicit one because it needs to keep

the left hand side matrix ([(1/∆𝑡)[𝑀] + [𝐴(𝑈𝑛)] + [𝐾]]) of Eqn. (3.23) in memory.

Due to this, the lid driven cavity problem cannot be solved on the GPU with Mesh

III, which was possible for the explicit formulation. It can be concluded that the

implicit formulation is better for the solution of steady state problems if they can be

fit into the memory of the available hardware. Explicit formulation can be preferred

for transient solutions, where time step size is constrained by accuracy rather than

stability.

Table 5.8 Performance Comparisons of Implicit and Explicit Formulations on the

GPU

Mesh

No.
Method ∆𝑡 [s]

of

Iterations

Time for 1

Time Step

[s]

Total Time

[s]

Mesh I

Implicit 0.2 155 2.16 335

Explicit 0.001 4,409 0.16 727

Mesh II

Implicit 0.02 433 4.51 1,954

Explicit 0.0002 27,110 0.38 10,404

77

5.6 Memory Usage of the Fractional Step Solver

In this part, memory usage of developed flow solver is examined. Table 5.9

represents the main parameters that determine the memory requirement. In this table

𝑁𝐸 is the number of elements, 𝑁𝑁𝑝 and 𝑁𝑁𝑣 are the number of pressure and

velocity nodes inside each element respectively, 𝑁𝑁 is total number of unknowns,

and 𝑀𝑛𝑛𝑧, 𝐺𝑛𝑛𝑧 and 𝑍𝑛𝑛𝑧 are number of non-zeros in [𝑀], [𝐺] and [𝑍] matrices,

respectively. Number of non-zeros in [𝐴] and [𝐾] matrices are same as the number of

non-zeros in [𝑀]. For a three-dimensional problem [𝑀], [𝐴] and [𝐾] matrices are

formed by three identical sub-matrices and keeping only one of them in the memory

is enough. Considering this, actual 𝑀𝑛𝑛𝑧 value is one third of the value given in

Table 5.9.

Among many sparse storage schemes, compressed row storage (CSR) [94] is used

for the storage of the global matrices both on the CPU and the GPU. In addition to its

efficient memory handling, it is supported by Intel MKL, CUSP, CUSPARSE,

Table 5.9 Parameters That Determine the Memory Requirements of the Developed

Solver

 Mesh I Mesh II Mesh III

NE 27,000 85,184 262,144

NNp 29,791 91,125 274,625

NNv 226,981 704,969 2,146,689

NN 710,734 2,206,032 6,714,692

Mnnz 41,992,563 131,960,931 405,017,091

Gnnz 10,328,853 32,381,583 99,228,483

Znnz 1,668,870 5,297,292 16,368,192

78

CUBLAS and Csparse libraries. CSR scheme consists of 3 arrays as shown below for

a sample 4x4 matrix

A = [

2 5 0 0
3 1 2 0
0 0 4 0
0 0 5 3

]

𝑣𝑎 = [2 5 3 1 2 4 5 3]

𝑐 = [0 1 0 1 2 2 2 3]

 𝑤𝑆𝑡𝑎 𝑡 = [0 2 5 6 8]

𝑣𝑎 array stores the non-zero values of the matrix in a row-by-row order. 𝑐 array

stores the column indices of these non-zero values. 𝑤𝑆𝑡𝑎 𝑡 array is the list of

non-zero value indices where each row of [𝐴] starts. With the CSR scheme, memory

requirement for storing a (𝑁 × 𝑁) matrix is (𝑁𝑁 + 1 + 𝑁𝑁𝑍) integers and 𝑁𝑁𝑍

floating points, where 𝑁𝑁𝑍 is the number of non-zeros. Because the 𝑐 and

 𝑤𝑆𝑡𝑎 𝑡 arrays are same for [𝑀], [𝐴] and [𝐾] matrices, only one set of 𝑐 and

 𝑤𝑆𝑡𝑎 𝑡 arrays are kept in memory for them.

There are many other large vectors that must be kept in memory in order to solve the

systems in Eqns. (3.17-3.22). However, compared to global matrices memory

requirements of these vectors are very small. Moreover, there are vectors that keep

elemental to global node mapping information, which is used during the assembly

process. These mapping vectors only contain integers but they grow quickly with the

problem size so they also need attention. Lastly the vector that stores derivatives of

the shape functions with respect to 𝑥, 𝑦 and 𝑧 at all Gauss Quadrature points

(integrals are computed using 8 point Gauss Quadrature) of all elements are stored in

memory. These derivatives could be calculated whenever they are needed, but

because [𝐴] matrix is calculated every time step, calculating these derivatives again

and again could be an inefficient process. Another idea is to take advantage of

geometrically similar (both in size and orientation) elements and storing shape

function derivatives only once for them, which is not utilized in this study. After all

these details memory requirement of the largest mesh, Mesh III in Table 5.9, is

almost 6 GB.

An important point about Table 5.9 is that it presents the values for hexahedral

elements with second order velocity and first order pressure interpolation. This

element, which can be seen in Figure 3.4, has 27 velocity nodes and 8 pressure

79

nodes. Table 5.9 needs to be modified when a different element type is used, such as

the one that uses linear interpolation for both pressure and velocity. Another

important parameter that affects memory usage is the precision of floating-point

numbers. The 6 GB value given in the previous paragraph is based on double

precision usage. If instead single precision is used, memory requirement drops by

almost a factor of two.

80

81

CHAPTER 6

SUMMARY AND CONCLUSION

Computational power is one of the most important limiting factors in the

development and use of CFD. For many years, scientists parallelized their CFD

codes on computers with shared and distributed memory architectures using tools

such as OpenMP, MPI and PVM. For many decades the only computing power had

been the standard Central Processing Units (CPUs). Over the last two decades the

major development in the CPU technology was about their inherent parallelization

features. First, single core CPUs gained hyper-threading support, followed by multi-

core CPUs. Nowadays standard PCs come with 4, 6 or 8 core CPUs. In the last

decade another concept known as many-core computing is introduced to the high

performance computing community. GPUs become a major driving force behind this

new wave due to their hardware supporting 100s of cores that can work with 1000s

of parallel running threads. With the release of CUDA Toolkit by NVIDIA on 2007,

general purpose computing on GPUs became a very appealing parallelization

alternative for the scientific codes including CFD solvers. Today Top500

supercomputer list [95] includes many computers with GPU support. GPU

computing community is very active with specialized conferences, free and

commercial third party linear algebra libraries, increasing number of commercial

codes with GPU support, etc.

Researchers previously demonstrated that compared to CPUs, GPUs can provide tens

of times of speed-ups. Of course these claims are very dependent on the algorithm

being parallelized. For the case of CFD, it is possible to see publications that report

up to 100 times speeds-ups with the utilization of GPUs. These very high

performance gains are usually limited to methods that have a very high

parallelization potential such as Smoothed Particle Hydrodynamics (SPH), Lattice

82

Boltzmann Method (LBM) or Discontinuous Galerkin (DG). Also in the literature it

is possible to find many unfair GPU-CPU comparisons and one needs to be very

cautious with very high speed-ups [21]. Other than SPH, LBM or DG based works

most CFD codes that are ported to GPUs are compressible solvers. There are very

limited number of incompressible flow studies on the GPU and similarly there are

very limited number of FEM based solvers ported to the GPU. This forms the

motivation behind the current work, in which a finite element based incompressible

flow solver is developed to work parallel on the GPU.

Three dimensional, unsteady, laminar flows with possible heat transfer affects are

solved using two different fractional step formulations based on the classical

Galerkin finite element formulation. Two different versions of the solvers are

written, one working on the CPU and the other working on the GPU. Different from

many of the studies available in the literature GPU version is not written as a

modification of the CPU version, but it is written from scratch. First the CPU version

is used for verification purposes using 5 benchmark problems, including one

microchannel duct flow and a tube flow with conjugate heat transfer. After verifying

the accuracy of the code, speed tests are performed using the lid driven cavity

benchmark problem with three different grids. Coarse grid had about 700,000 total

pressure and velocity unknowns. The number was about 2.2 million for the medium

grid and about 6.7 million for the fine grid.

First the most time consuming parts of the code are detected and the scaling of the

amount of time spent on these parts to the total number of unknowns is studied. Next,

multi core performance of the CPU version of the code is tested. Parallelization on

the CPU is mainly achieved by the use of Intel’s MKL library and sometimes using

OpenMP pragma’s. Speed-ups obtained for the major time consuming tasks that are

calculated repetitively inside the time loop are studied separately. Overall it was seen

that even Intel’s own MKL library on an Intel CPU could not make use of the full

potential of the available cores and for most of the tasks 8-thread usage resulted in

the lowest run times, although the machine used can utilize up to 32 threads.

Parallelization on the GPU is mainly done by the use of CUBLAS and CUSPARSE

libraries that come with the CUDA Toolkit and the CUSP library, which is a freely

83

available third party library developed by NVIDIA employees. For certain non-

standard tasks new GPU kernels are written from scratch. For all three grids

mentioned above, it was possible to obtain a speed-up by the use of GPU compared

to the use of 8-cores on the CPU. For the largest grid that had more than 6.7 million

unknowns, GPU usage resulted in 5.79 and 1.86 times speed-ups compared to single-

thread and 8-thread CPU solutions. These values are similar with results of Göddeke

et al.’s study [59], which is one of the a few studies that uses GPUs for finite element

based incompressible flow solutions.

Considering the fact that especially early generation GPUs have very poor double

precision support, the developed solver is transferred to single precision accuracy

both on the CPU and the GPU. First the effect of this conversion on the accuracy of

the solution is tested with a benchmark solution and no difference is seen in the

results obtained by single and double precision. Then the run times of single and

double precision codes are compared on the CPU and the GPU. It is seen that

switching from double to single precision resulted in performance increases on both

platforms. When compared to double precision, it is seen that using single precision

increases the GPU versus CPU speed-up in favor of GPU. For the finest mesh GPU

outperforms 8 threads of CPU by 2.08 times, which was 1.86 times for double

precision. With further accuracy tests for single precision using different problems,

double precision usage may completely be dropped. Other than 2 times speed-up

memory usage also drops significantly when single precision accuracy is used.

The fractional step method used throughout the study was based on an explicit time

integration scheme, which puts severe limitations on the allowable time step. This

resulted in quite long total run times to complete a solution. To improve this, an

implicit fractional step formulation, which has no time step restriction due to stability

concerns, is tried towards the end of the study. The implicit scheme can make use of

much larger time steps compared to the explicit version but it requires the solution of

a non-symmetric linear algebraic system. However solving a non-symmetric system

is costly, using much larger time steps leads to less iteration numbers hence implicit

solver converges faster than explicit one. On the other hand the implicit solver

suffered from higher memory requirement, which especially became an issue

considering the limited global memory of the GPUs.

84

During the study an appreciable amount of time is spent for learning the basics of

GPU architecture and CUDA programming. The learning curve sometimes turned

out to be quite steep. A major disadvantage was the very rapid development of GPU

hardware and parallel to that very frequent releases of the CUDA Toolkit. In the

three year time span of this study NVIDIA made several major architectural changes

to their GPUs. Also they released 3 major Toolkit versions, together with several

minor ones. At times it was very difficult to keep track of the updates and make

advantage of the new tools. Many times, the reference books and other online

resources used for learning GPU hardware internals and CUDA programming lack

the most recent information.

Another important observation is about the lack of supporting linear algebra libraries

on the GPU side. BLAS and LAPACK libraries are essential tools for CFD codes. It

is not logical to self-code the vector and matrix operations provided by these

libraries. They have highly optimized sequential and parallel versions. Of equal

importance are the linear algebra libraries that work with sparse matrices. Intel’s

MKL library used in this study for computations on the CPU is a popular

implementation of these libraries. It has been developed for many years and comes

with an excellent documentation. On the GPU side CUBLAS replaces BLAS and

CUSPARSE provides some essential sparse matrix support. But they are not as

developed as their CPU counterparts. For example they have no multi-GPU support

and today CUDA programming on multiple GPUs is still a challenge. Other than

CUBLAS and CUSAPRSE it is not easy to find freely available linear algebra

libraries for GPUs. CUSP library was very critical for this study, but it is a work of a

few researches and has no documentation. Support is available only through a

discussion list.

This work will be concluded with a list of possible future work ideas to improve the

developed solver.

 Although the available workstation had two GPUs only one of them was

used. The code will benefit a lot by the use of multiple GPUs, especially if

the doubling of the global GPU memory is considered. With more memory

many alternative solution ideas will be implementable, such as the use of

85

direct Cholesky factorization instead of the iterative PCG technique for the

solution of the pressure equation.

 Although two different fractional step techniques are tested, the search for a

more efficient one should continue. This will be critical especially for

problems that require long time integration.

 More efficient preconditioners such as algebraic multi-grid or incomplete

Cholesky should be used with the Conjugate Gradient solver.

 Making the solver completely matrix-free without any assembly of the global

matrices can be very effective when the limited GPU memories are

considered.

 The developed solver can make use of only hexahedral elements. Support for

tetrahedral and other types of elements will be useful for the solution of

problems on complex geometries. Each different type of element comes with

its own parallel performance details due to the different number of unknowns

on them and the sparsity pattern of the resulting global systems.

 The main limitation behind the solution of more realistic real-life problems is

turbulence modeling. The code will benefit a lot from the implementation of a

possibly RANS type, turbulence model.

During this study the developed solver is kept at the following code repository and

future updates can be followed there.

https://code.google.com/p/cfd-with-cuda

86

87

REFERENCES

[1] Milne-Thomson, L.M., 1973, “Theoretical Aerodynamics”, Dover Publications.

[2] Reddy, J.N., 1993, “An Introduction to the Finite Element Method”, McGraw-

Hill, New York.

[3] Tatourian, A., 2013, “NVIDIA GPU Architecture & CUDA Programming

Environment”, http://tatourian.com/2013/09/03/nvidia-gpu-architecture-cuda-

programming-environment/, last visited on July 2014.

[4] 2014, “Intel® Xeon® Processor E5-2670 (20M Cache, 2.60 GHz, 8.00 GT/s

Intel® QPI)”, http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-

20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI, last visited on August 2014

[5] 2014, “NVIDIA® TESLA™ C2075 COMPANION PROCESSOR”,

http://www.nvidia.com.tr/docs/IO/43395/NV-DS-Tesla-C2075.pdf, last visited on

August 2014.

[6] 2014, “Intel® Xeon Phi™ Product Family, Peak Theoretical Performance”,

http://www.intel.my/content/www/my/en/benchmarks/server/xeon-phi/xeon-phi-

theoretical-maximums.html, last visited on November 2014.

[7] 2014, “CUDA C Programming Guide”, http://docs.nvidia.com/cuda/cuda-c-

programming-guide/#axzz38TBxSZKv, last visited on July 2014.

[8] Ramirez, S., 2010, “Understanding Latency versus Throughput”,

http://community.cadence.com/cadence_blogs_8/b/sd/archive/2010/09/13/understand

ing-latency-vs-throughput, last visited on November 2014.

[9] 2014, “The Open Standard for Parallel Programming of Heterogeneous Systems”,

https://www.khronos.org/opencl/, last visited on November 2014.

[10] 2014, “APP SDK – A Complete Development Platform”,

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-

processing-app-sdk/, last visited on November 2014.

[11] 2014, “cuBLAS”, http://docs.nvidia.com/cuda/cublas/, last visited on November

2014.

[12] 2014, “cuSPARSE”, http://docs.nvidia.com/cuda/cusparse/, last visited on

November 2014.

88

[13] 2014, “Matrix Algebra on GPU and Multicore Architectures”,

http://icl.cs.utk.edu/magma/, last visited on November 2014.

[14] Bell, N., Garland, M., 2014, “Cusp: Generic Parallel Algorithms for Sparse

Matrix and Graph Computations”, http://cusplibrary.github.io/, last visited on

November 2014.

[15] 2014, “CULA | Tools”, http://www.culatools.com/, last visited on November

2014.

[16] Flynn, M., 1972, “Some Computer Organizations and Their Effectiveness.”

Computers, IEEE Transactions on, 100 (9), 948-960.

[17] 2014, “Flynn's Taxonomy”, http://en.wikipedia.org/wiki/Flynn's_taxonomy, last

visited on July 2014.

[18] Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J., “High

Performance Discrete Fourier Transforms on Graphics Processors”, Proceedings of

the 2008 ACM/IEEE Conference on Supercomputing, 1–12.

[19] Bennemann, C., Beinker, M., Egloff, D., Gauckler, M., 2008, “Teraflops for

Games and Derivative Pricing”, Wilmott Magazine, 36, 50-54.

[20] Tolke, J., Krafczyk, M., 2008, “TeraFLOP Computing on a Desktop PC with

GPUs for 3D CFD”, In International Journal of Computational Fluid Dynamics, 22,

443–456.

[21] Lee, Victor W., et al., 2010, "Debunking the 100X GPU vs. CPU Myth: an

Evaluation of Throughput Computing on CPU and GPU." ACM SIGARCH

Computer Architecture News, 38-3.

[22] Sanders, J., Kandrot, E., 2010, “CUDA by Example An Introduction to General-

Purpose GPU Programming ”, Addison-Wesley, Upper Saddle River, NJ.

[23] 2009, “CUDA – Tutorial 3 – Thread Communication”,

http://supercomputingblog.com/cuda/cuda-tutorial-3-thread-communication/, last

visited on November 2014.

[24] Zienkiewicz, O.C., Cheung, Y.K., 1965, “Finite Elements in the Solution of

Field Problems”, The Engineer, 220, 507-510.

[25] Hood, P., 1970, “A Finite Element Solution of the Navier-Stokes Equations for

Incompressible Contained Flow”, M.Sc. Thesis, Wales University, Swansea, United

Kingdom.

[26] Huyakorn, P.S., Taylor, C., Lee, R.L., Gresho, P.M., 1978, “A Comparison of

Various Mixed-Interpolation Finite Elements in the Velocity-Pressure Formulation

of the Navier-Stokes Equations”, Comput. & Fluids, 6, 25-35.

89

[27] Zahedi, S., Kronbichler, M., Kreiss, G., 2012, “Spurious Currents in Finite

Element Based Level Set Methods for Two‐Phase Flow.”, Int. J. for Numer. Methods

in Fluids, 69, 1433-1456.

[28] Taylor, C., Hood, P., 1973, “A Numerical Solution of the Navier-Stokes

Equations Using the Finite Element Technique”, Comput. & Fluids, 1, 73-100.

[29] Barragy, E., Carey, G.F., 1997, “Stream Function-Vorticity Driven Cavity

Solution Using p Finite Elements.”, Comput. & Fluids, 26, 453-468.

[30] Hughes, T.J.R., Liu, W.K., Brooks, A., 1979, “Finite Element Analysis of

Incompressible Viscous Flow by the Penalty Function Formulation”, J. Comput.

Phys., 30, 1-60.

[31] Reddy, J.N., 1982, “On Penalty Function Methods in the Finite‐Element

Analysis of Flow Problems.”, Int. J. for Numer. Methods in Fluids, 2, 151-171.

[32] Brooks, A.N., Hughes, T.J.R., 1982, “Streamline Upwind/Petrov-Galerkin

Formulations for Convection Dominated Flows with Particular Emphasis on the

Incompressible Navier-Stokes Equations”, Comp. Meth. Applied Mech. Engrg, 32,

199-259.

[33] Hannai, S.K., Stanislas, M., Dupont, P., 1995, “Incompressible Navier-Stokes

Computations Using SUPG and GLS Formulations – A Comparison Study”,

Comput. Methods Appl. Mech. Engrg. 124, 153-170.

[34] Donea, J., 1984, “A Taylor-Galerkin Method for Convection Transport

Problem”, Int. J. Numer. Methods in Fluids, 4, 1043-1063.

[35] Rice, J.G., Schipke, R.J., 1986, “An Equal Order Velocity-Pressure Formulation

That Does Not Exhibit Spurious Pressure Modes”, Comput. Methods Appl. Mech.

Engrg., 58, 135-149.

[36] Prakash, C., Patankar, S.V., 1985, “A Control Volume-Based Finite-Element

Method for Solving the Navier-Stokes Equations Using Equal-Order Velocity-

Pressure Interpolation”, Numer. Heat Transfer, 8 (3), 259-280.

[37] Hughes, T.J., Franca, L.P., Balestra, M., 1986, “A New Finite Element

Formulation for Computational Fluid Dynamics: V. Circumventing the Babuška-

Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem

Accommodating Equal-Order Interpolations.”, Comput. Methods Appl. Mech.

Engrg., 59, 85-99.

[38] Haroutunian, V., Engelman, M.S., Hasbani, I., 1993, “Segregated Finite

Element Algorithms for the Numerical Solution of Large-Scale Flow Problems”, Int.

J. Numer. Methods Fluids, 17, 323-348.

90

[39] Shaw, C.T., “Using a Segregated Finite Element Scheme to Solve the

Incompressible Navier‐Stokes Equations.”, Int. J. Numer. Methods Fluids, 12, 81-92.

[40] Du Toit, C.G., “Finite Element Solution of the Navier-Stokes Equations for

Incompressible Flow Using a Segregated Algorithm.”, Comput. Methods Appl.

Mech. Engrg, 30, 53-73.

[41] Donea, J., Giuliani, S., Laval, H., Quartepelle, L., 1982, “Finite Element

Solution of Unsteady Navier-Stokes Equations by a Fractional Step Method”,

Comput. Methods Appl. Mech. Engrg, 30, 53-73.

[42] Blasco, J., Codina, R., Huerta, A., 1998, “A Fractional-Step Method for the

Incompressible Navier-Stokes Equations Related to a Predictor-Multi Corrector

Algorithm”, Int. J. Numer. Methods in Fluids, 28, 1391-1419.

[43] Guermond, J.L., Minev, P., Shen, J., 2006, “An Overview of Projection

Methods for Incompressible Flows”, Comput. Methods Appl. Mech. Engrg., 195,

6011-6045.

[44] Volker, J., 2002, “Higher Order Finite Element Methods and Multigrid Solvers

in a Benchmark Problem for the 3D Navier–Stokes Equations”, Int. J. for Numer.

Methods in Fluids, 40, 775-798.

[45] Whitling, C.H., Jansen, K.E., 2001, “A Stabilized Finite Element Method for the

Incompressible Navier-Stokes Equations Using a Hierarchical Basis”, Int. J. Numer.

Methods in Fluids, 35, 93-116.

[46] Nithiarasu, P., Mathur, J.S., Weatherill, N.P., Morgan K., 2004. “Three

Dimensional Incompressible Flow Calculations Using the Characteristic Based Split

(CBS) Scheme”, Int. J. for Numer. Methods Fluids, (44), 1207-1229.

[47] Cockburn, B., 2003, “Discontinuous Galerkin Methods”, ZAMM - Journal of

Applied Mathematics and Mechanics, 83 (11), 731-754.

[48] Löhner, R.K., Morgan, J., Peraire, J., Zienkiewicz, O.C., 1985, “Finite Element

Methods for High Speed Flows”, AIAA-85-1531-CP.

[49] Hauke, G., Hughes, T. J. R., “A Unified Approach to Compressible and

Incompressible Flows.”, Comput. Methods Appl. Mech. Engrg., 113, 389-395.

[50] Liu, Y., Liu, X., Wu, E., 2004, “Real-time 3D Fluid Simulation on GPU with

Complex Obstacles”, Proc. Pacific Graphics, 247–256.

[51] Herault, A., Bilotta, G., Dalrymple, R.A., 2010, “SPH on GPU with CUDA”, J.

Hydraulic Research, (48) Extra Issue, pp. 74–79.

91

[52] Hagen, T.R., Lie, K.A., Natvig, J.R., 2006, “Solving the Euler Equations on

Graphics Processing Units”, Proc. 6th Int. Conf. Comput. Sci., Vol. 3994 of Lecture

Notes in Computer Science, 220–227, Springer.

[53] Brandvik, T., Pullan, G., 2007, “Acceleration of a Two-Dimensional Euler Flow

Solver Using Commodity Graphics Hardware”, Proc. Inst. Mech. Engineers Part C –

J. Mech. Eng. Sci., 221 (12), 1745-1748.

[54] Elsen, E., LeGresley, P., Darve, E., 2008, “Large Calculation of the flow Over a

Hypersonic Vehicle Using a GPU”, J. Comp. Phys., 227, 10148-10161.

[55] Tölke, J., Krafczyk, M., 2008, “TeraFLOP Computing on a Desktop PC with

GPUs for 3D CFD”, Int. J. Comput. Fluid Dynamics, 22 (7), 443-456.

[56] Riegel, E., Indiger, T., Adams, N.A., 2009, “Numerical Simulation of Fluid

Flow on Complex Geometries using Lattice-Boltzmann Method and CUDA-Enabled

GPUs”, SIGGRAPH, New Orleans, Lousiana.

[57] Bolz, J., Farmer, I., Grinspun, E., Schroder, P., 2003, “Sparse Matrix Solvers on

the GPU: Conjugate Gradients and Multigrid”, ACM Trans. Graph. (Proceedings of

ACM SIGGRAPH) 22 (3), 917-924.

[58] Bell, N., Garland, M., 2009, “Implementing Sparse Matrix-Vector

Multiplication on Throughput-Oriented Processors.”, Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, ACM, 18.

[59] Göddeke, D., Buijssen, S.H.M., Wobker, H., Turek, S., 2009, “GPU

Acceleration of an Unmodified Parallel Finite Element Navier-Stokes Solver”,

Proceedings of the 2009 Int. Conf. on High Performance Computing and Simulation,

HPCS 2009 - 5191718, 12-21.

[60] Phillips, E.H., Zhang, Y., Davis, R.L., Owens, J.D., 2009, “Rapid Aerodynamic

Performance Prediction on a Cluster of Graphics Processing Units”, Proc. 47th

AIAA Aerospace Sciences Meeting, AIAA 2009-565.

[61] Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.S., 2009, “Nodal

Discontinuous Galerkin Methods on Graphics Processors”, J. Comp. Phys., 228 (21),

7863-7882.

[62] Cecka, C., Lew, A.J., Darve, E., 2011, “Assembly of Finite Element Methods on

Graphics processors”, Int. J. Numer. Meth. Engrg., 85 (5), 640-669.

[63] Refsnæs, R.H., 2010, “Matrix-Free Conjugate Gradient Methods for Finite

Element Simulationson GPUs”, M.Sc. Thesis, Department of Mathematical Sciences,

Norwegian University of Science and Technology, Trondheim, Norway.

[64] Jespersen, D.C., 2009, “Acceleration of a CFD Code with a GPU”, NAS

Technical Report NAS-09-003.

92

[65] Corrigan, A., Camelli, F., Löhner, R., Mut, F., 2010, “Porting of an Edge-Based

CFD Solver to GPUs”, 48th AIAA Aerospace Sciences Meeting, Orlando FL.

[66] Malecha, Z., Miroslaw, L., Tomczak, T., Koza, Z., Matyka, M., Tarnawski, W.,

Szczerba, D., 2011, “GPU-based Simulation of 3D Blood Flow in Abdominal Aorta

Using OpenFOAM”, Archives of Mechanics, 62, 137-161.

[67] Asouti, V.G., Trompoukis, X.S., Kampolis, I.C., Giannakoglou, K.C., 2011,

“Unsteady CFD Computations Using Vertex-Centered Finite Volumes for

Unstructured Grids on Graphics Processing Units”, Int. J. Numer. Meth. Engrg., 67,

232-246.

[68] Lefebvre, M., Guillen, P., Le Gouez, J.M., Basdevant, C., 2012, “Optimizing 2D

and 3D Structured Euler CFD Solvers on Graphical Processing Units”, Computers &

Fluids, 70, 136-147.

[69] Niemeyer, K.E., Sung, C.J., 2014, “Recent Progress and Challenges in

Exploiting Graphics Processors in Computational Fluid Dynamics”, The Journal of

Supercomputing, 67, 528-584.

[70] Habich, J., Zeiser, T., Hager, G., Wellein, G., 2011, “Performance Analysis and

Optimization Strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs

Using CUDA”, Advances in Engineering Software, 42, 266-272.

[71] Štumbauer, V., Petera, K., Štys, D., 2013, “The Lattice Boltzmann Method in

Bioreactor Design and Simulation”, Mathematical and Computer Modelling, 57,

1913-1918.

[72] Domínguez, J.M., Crespo, A.J.C., Gómez-Gesteira, M., 2013, “Optimization

Strategies for CPU and GPU Implementations of a Smoothed Particle

Hydrodynamics Method”, Computer Physics Communications, 184, 617-627.

[73] 2014, “ArrayFire”, http://arrayfire.com/, last visited on December 2014.

[74] 2014, “PARALUTION”, http://www.paralution.com/, last visited on December

2014.

[75] Reinder, J., Jeffers, J., 2013, “Intel Xeon Phi Coprocessor High Performance

Programming”, Morgan Kaufmann.

[76] Nithiarasu, P., 2003, "An Efficient Artificial Compressibility (AC) Scheme

Based on the Characteristic Based Split (CBS) Method for Incompressible Flows."

International Journal for Numerical Methods in Engineering, 1815-1845.

[77] Van Kan, J. J. I. M., 1986, "A Second-Order Accurate Pressure-Correction

Scheme for Viscous Incompressible Flow", SIAM Journal on Scientific and

Statistical Computing 7.3, 870-891.

93

[78] Guermond, J. L., Minev, P., Shen, J., 2006, "An Overview of Projection

Methods for Incompressible Flows", Computer Methods in Applied Mechanics and

Engineering, 6011-6045.

[79] Donea, J., Huerta, A., 2003, “Finite Element Methods for Flow Problems”, John

Wiley & Sons.

[80] Guermond, J-L., Quartapelle, L., 1997, "Calculation of Incompressible Viscous

Flows by an Unconditionally Stable Projection FEM", Journal of Computational

Physics, 12-33.

[81] Cecka, C., Adrian, J. L., Darve, E., 2011, "Assembly of Finite Element Methods

on Graphics Processors", International Journal for Numerical Methods in

Engineering, 640-669.

[82] Markall, G. R., et al., 2011, "Finite Element Assembly Strategies on Multi-and

Many-Core Architectures", International Journal for Numerical Methods in Fluids, 1-

8.

[83] Komatitsch, D., Michéa, D., Erlebacher, G., 2009, "Porting a High-Order Finite-

Element Earthquake Modeling Application to NVIDIA Graphics Cards Using

CUDA", Journal of Parallel and Distributed Computing, 451-460.

[84] 2014, “The OpenMP® API Specification for Parallel Programming”,

http://openmp.org/, last visited on December 2014.

[85] 2014, “Intel® Math Kernel Library”, https://software.intel.com/en-us/intel-mkl,

last visited on November 2014.

[86] Davis, T. A., 2006, “Direct Methods for Sparse Linear Systems”, SIAM, Part of

the SIAM Book Series on the Fundamentals of Algorithms, Philadelphia.

[87] Yang, J.-Y., Yang, S.-C., Chen, Y.-N., Hsu, C.-A, 1998, “Implicit Weighted

ENO Schemes for the Three-Dimensional Incompressible Navier–Stokes Equations”,

J. Comput. Physics, 146, 464-487.

[88] Kays, W.M., Crawford, M.E., 1980, “Convective Heat and Mass Transfer”,

McGraw-Hill Book Company, New York.

[89] Incropera, F.P., DeWitt, D.P., 1996, “Fundamentals of Heat and Mass

Transfer”, John Wiley & Sons, New York.

[90] Lee, P.-S., Garimella, S. V., Liu, D., 2005, “Investigation of Heat Transfer in

Rectangular Microchannels”, Int. J. Heat Mass Transfer, 43, 1688-1704.

94

[91] Natarajan, N. M., Lakshmanan, S. M., 1972, “Laminar Flow in Rectangular

Ducts: Predictions of Velocity Profiles and Friction Factor”, Indian J. Technol., 10,

435-438.

[92] Zhang, S.X., He, Y.L., Lauriat, G., Tao, W.Q., 2010, “Numerical Studies of

Simultaneously Developing Laminar Flow and Heat Transfer in Microtubes with

Thick Wall and Constant Outside Wall Temperature”, Int. J. Heat and Mass Transfer,

53, 3977-3989.

[93] Venetis, I. E., Goumas, G., Geveler, M., Ribbrock, D., 2014, “Porting

FEASTFLOW to the Intel Xeon Phi: Lessons Learned”, Partnership for Advanced

Computing in Europe (PRACE), 139.

[94] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., 2000, Templates

for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM,

Philadelphia.

[95] 2014, “Top 500 The List”, http://www.top500.org/lists/2014/11/, last visited on

November 2014.

[96] Farber, R., 2011, “CUDA Application Design and Development”, Elsevier.

95

APPENDIX

GLOSSARY OF TERMS IN PROGRAMMING

Term Explanation [3, 7, 22, 96]

CPU A computer unit that the logical, arithmetical, input/output

and control operations of the system takes place according

to instructions of a computer program.

GPU A computer unit that specialized in rapidly manipulating

graphics intended for output to a display. Also their highly

parallel structure makes them effective for algorithms where

processing of large chunks of data is performed in parallel.

Processor Core/Core Units that read and execute program instructions.

Host The CPU

Device The GPU

Kernel A subroutine executed on the CUDA device.

Thread Smallest sequence of programmed instructions.

Thread Block/Block A set of threads which have a common shared memory, and

thread synchronization primitives.

Register Fastest memory on the GPU. Exclusive to a single thread.

Shared Memory Slower than registers, faster than global memory. Can be

shared among threads of the same block.

Global Memory Slowest but largest memory on GPU. Accessible to all

threads.

Race Condition Arises when more than one thread attempt to access the

same memory location at the same time and at least one

access is a write. Causes uncertainty about the final

condition/value on the memory.

Throughput The amount of output (data) that can be produced in a given

period of time.

Latency The time, the device (CPU or GPU) waits to obtain the data

from memory.

Cache A small on-die storage that stores data from earlier requests

so that future requests for that data can be served faster

96

(Because getting data from external memory is way slower.)

Bandwidth The amount of data that can be transmitted in a fixed

amount of time.

Speed-up A metric for relative performance improvement when

executing a task. (In this thesis study speed-up values are

given according to execution time)

