
GUI TESTING OF ANDROID APPLICATIONS: A SYSTEMATIC MAPPING

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF INFORMATICS

INSTITUTE OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUZAFFER AYDIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN THE DEPARTMENT OF INFORMATION SYSTEMS

DECEMBER 2014

Approval of the Graduate School of Informatics

GUI TESTING OF ANDROID APPLICATIONS: A SYSTEMATİC MAPPING

Submitted by MUZAFFER AYDIN in partial fulfillment of the requirements for the

degree of Master of Science in Information Systems, Middle East Technical

University by,

Prof. Dr. Nazife BAYKAL _____________________

Director, Informatics Institute, METU

Prof. Dr. Yasemin YARDIMCI ÇETĠN _____________________

Head of Department, Information Systems, METU

Assoc. Prof. Dr. Aysu BETĠN CAN _____________________

Advisor, Information Systems, METU

Assoc. Prof. Dr. Vahid GAROUSI YUSĠFOĞLU _____________________

Co-Advisor, Software Eng., Atılım University

Examining Committee Members:

Prof. Dr. Yasemin YARDIMCI ÇETĠN _____________________

Head of Department, IS, METU

Assoc. Prof. Dr. Aysu BETĠN CAN _____________________

IS, METU

Assist. Prof. Dr. Sadık EġMELĠOĞLU _____________________

CENG, Çankaya University

Assoc. Prof. Dr. Banu GÜNEL _____________________

IS, METU

Assoc. Prof. Dr. Pınar KARAGÖZ _____________________

CENG, METU

Date: 09.12.2014

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name: MUZAFFER AYDIN

Signature

iv

ABSTRACT

GUI TESTING OF ANDROID APPLICATIONS: A SYSTEMATIC MAPPING

AYDIN, MUZAFFER

M.Sc., Department of Information Systems

Co-Advisors: Assoc. Prof. Dr. AYSU BETĠN CAN

Assoc. Prof. Dr. VAHID GAROUSI

December 2014, 78 Pages

Popularity of mobile devices is increasing rapidly all around the world. These devices

can be used on various systems which are commonly used by the society. These systems

are predicted to overtake desktop platform's popularity in the near future. Therefore the

quality of mobile applications has vital importance. High quality applications can only

be developed with good testing environments. Considering that multi-featured mobile

applications have complex user interfaces, we decided to focus on graphical user

interface (GUI) testing. We chose Android operating system (OS) as our platform which

is the most popular one.

We have conducted a systematic mapping study that reviews the literature in area of GUI

testing of Android applications. We have used goal-question-metric (GQM) paradigm.

Through our goal, we have asked three main questions and their sub-questions as our

research questions (RQs). Then, we have collected the articles related the domain since

2009 when first stable version of Android released until October 11th, 2014. We have

applied them our inclusion/exclusion criteria to bring out our final article set which

consist of 27 articles. We have prepared a classification scheme to extract data from

v

given articles. Finally, the extracted data is used to gather the results to present a general

idea of trends and maturity level of this particular area.

Keywords: Systematic mapping, Android Testing, GUI Testing

vi

ÖZ

ANDROID UYGULAMALARINDA KULLANICI ARAYÜZÜ TESTĠ:

SĠSTEMATĠK ADRESLEME

AYDIN, MUZAFFER

Yüksek Lisans, BiliĢim Sistemleri Bölümü

Tez EĢ DanıĢmanları: Doç. Dr. AYSU BETĠN CAN

 Doç. Dr. VAHID GAROUSĠ

Aralık 2014, 78 Sayfa

Dünya çapında mobil cihazların popülerliği gün geçtikçe artmaktadır. Bu cihazlar,

toplum tarafından sıkça kullanılan birçok sistemde kullanılabilmektedirler. Hatta yakın

zamanda bu sistemlerin masaüstü platformunun yerini alacağı düĢünülmektedir. Bu

yüzden, mobil uygulamaların kalitesi ciddi bir öneme sahiptir ve yüksek kalite

uygulamalar ancak yeterli test sistemlerinin mevcut olduğu ortamlarda mümkündür. Bu

yüzden, yetenekli uygulamaların karmaĢık kullanıcı arayüzlerine sahip olduğunu da göz

önünde bulundurarak, kullanıcı arayüzü test etme konusuna odaklanmaya kara verdik.

ĠĢletim sistemi olarak da Ģuanda en popüler iĢletim sistemi olan Android'i seçmeye karar

verdik.

Bu çalıĢma, Android uygulamalarında kullanıcı arayüzü testi konusunda literatürü

tarayan bir sistematik adresleme çalıĢmasıdır. Amaç-soru-ölçüm tekniğini kullanılmıĢtır.

Belirlediğimiz amaç doğrultusunda, araĢtırma sorularımız üç temel soru ve onların alt

sorularından oluĢmaktadır. Bu konu hakkında ki Android’in ilk sürümünün piyasaya

vii

sunulduğu yıl olan 2009’dan itibaren 11.11.2014 tarihine kadar yayınlamıĢ tüm

makaleleri topladıktan sonra eleme kriterlerine göre değerlendirerek, toplamda 27

makale den oluĢan bir makale kümesi oluĢturulmuĢtur. Bu makalelerden bilgi toplamak

amacıyla bir sınıflama Ģeması oluĢturulmuĢtur. Sonuç olarak, hem genel fikir bir sunmak

hem de genel akımları ve bu alanın olgunluk seviyesini ölçmek için bu bilgiler ıĢığında

ulaĢılan sonuçlar paylaĢılmıĢtır

Anahtar Kelimeler: Sistematik adresleme, Android test etme, Kullanıcı arayüzü test etme

viii

To My Fiancée

ix

ACKNOWLEDGEMENTS

I am deeply grateful to my co-advisors Assist. Prof. Dr. Aysu BETĠN CAN and Assoc.

Prof. Dr. Vahid GAROUSI who have helped during this process with patience. They

gave me invaluable suggestions throughout this study.

I am also thankful to my fiancée Seda and my parents Meliha and Sedat for their

patience and concern during this process.

My colleagues from Aselsan were also very tolerant and understanding during my study.

I am also very grateful to them.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES... xii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS ... xv

INTRODUCTION ... 1

BACKGROUND & RELATED WORK ... 3

2.1. Systematic Mapping in Software Engineering .. 3

2.2. Structure of Android Applications... 4

2.3. GUI Testing in Android ... 6

2.4. Related Work ... 6

2.4.1. Secondary Studies in Software Testing .. 6

2.4.2. Online repositories in Software Engineering ... 10

2.4.3. Secondary Studies about GUI Testing ... 11

RESEARCH METHOD ... 13

3.1. Overview ... 13

3.2. Goal and Research Questions .. 15

3.3. Article Sources and Search Keywords .. 16

3.4. Inclusion/Exclusion Criteria .. 18

3.5. Final Set of Articles and the Online Repository .. 19

3.6. Classification Scheme: The systematic map ... 19

3.7 Data Extraction .. 26

RESULTS ... 29

xi

4.1. What are the natures of Android GUI testing? (RQ 1) 29

4.1.1. Which are the testing activities applied in the primary studies? (RQ 1.1) 29

4.1.2. What are the sources of information used to derive test artifacts? (RQ 1.2) 32

4.1.3. Which are the test artifacts generated during testing process? (RQ 1.3) 32

4.1.4. Which are the testing environments used to run tests? (RQ 1.4) 34

4.1.5. How to simulate user interactions? (RQ 1.5) .. 35

4.1.6. How to verify GUI behaviors (Oracles)? (RQ 1.6) 36

4.1.7. What are the types of methods used to evaluation? (RQ 1.7) 38

4.1.8. What are the attributes of the systems under test (SUT)? (RQ 1.8) 40

4.2. What are the demographic and bibliometric aspects of the primary studies in

Android GUI testing? (RQ 2) .. 45

4.2.1. What is the articles count per year? (RQ 2.1) ... 45

4.2.2. Which are the most popular articles? Which are the mostly considerable the

venues and the authors are in terms of the article count? (RQ 2.2) 45

4.2.3. What is the article distribution over countries? (RQ 2.3) 49

4.3. What are the trends and future direction in GUI testing of Android

applications? (RQ 3).. 50

4.3.1. What are the types of articles published? (RQ 3.1)....................................... 50

4.3.2. What are the contributions provided by researchers? (RQ 3.2) 51

4.3.3. Which are the most significant testing tools? Which are 3rd party

components used by the tools? (RQ 3.3) .. 52

4.3.4. What are the testing techniques/approaches used during test process? (RQ

3.4)... 56

4.3.5. What are the future directions of current researches? (RQ 3.5) 57

DISCUSSION .. 59

CONCLUSION & FUTURE WORK .. 65

REFERENCES ... 69

References of Primary Studies ... 69

Other References .. 71

xii

LIST OF TABLES

Table 1- Secondary studies in software testing .. 7

Table 2- Online repositories in software engineering .. 11

Table 3- Maximum considered result limits for search engines 17

Table 4 - The classification scheme ... 25

Table 5- Testing Activities in Primary Studies ... 30

Table 6- Approach of Simulating User interaction over Primary Studies 36

Table 7- Approach of GUI Behavior Verification over Primary Studies 37

Table 8-Type of Evaluation Method over Primary Studies .. 39

Table 9- Articles Mostly Cited ... 46

Table 10- List of Venues... 47

Table 11- List of Most Considerable Authors .. 49

Table 12- Test Tools ... 53

Table 13- List of 3rd party Components .. 55

Table 14- Testing Tool Available to Download .. 67

xiii

LIST OF FIGURES

Figure 1 - Android Structure [4]... 4

Figure 2 - Activity Lifecycle [5] .. 5

Figure 3 - Protocol guide of the SM... 14

Figure 4- Search String .. 17

Figure 5- Type Testing Activity.. 31

Figure 6- Automation of Testing Activities .. 31

Figure 7- Source of Information to Derive Test Artifacts .. 32

Figure 8- Type of Test Artifact Generated .. 33

Figure 9 - Testing Environment ... 35

Figure 10- Android Versions over Testing Environment ... 35

Figure 11- Approach of Simulation User Interaction ... 37

Figure 12- Approach of GUI Behavior Verification (Oracle) .. 38

Figure 13- Type of Evaluation Method .. 40

Figure 14- Reported Details of SUTs ... 41

Figure 15- Sizes of SUTs over Articles .. 42

Figure 16- Screen Counts over Articles ... 43

Figure 17- Front-end Approach of SUT ... 44

Figure 18- Type of SUT ... 44

Figure 19- Articles Counts over Years ... 45

xiv

Figure 20- Article Distribution over Countries .. 50

Figure 21- Type of Research Article .. 51

Figure 22- Type of Contribution .. 52

Figure 23- 3rd Party Components .. 55

Figure 24- Techniques or Approaches Used In Researches ... 56

Figure 25- Future Plan ... 57

xv

LIST OF ABBREVIATIONS

SM Systematic Mapping

SLR Systematic Literature Review

GUI Graphical User Interface

OS Operating System

CPU Central Processing Unit

JVM Java Virtual Machine

DVM Dalvik Virtual Machine

XML Extensible Markup Language

RQ Research Question

URL Uniform Resource Locator

SDK Software Development Kit

AUT Application Under Test

API Application Programming Interface

CPA Citation Normalization Per Article

1

CHAPTER 1

INTRODUCTION

Popularity of mobile devices is increasing rapidly all around the world. These devices

can be used on various systems. While a cell phone is a mobile device, a smart-home

system can be a more complex use of the mobile devices. The variation and adaptation

capabilities of this concept makes it a better alternative to other possibilities and it seems

that overtaking the desktop platform's popularity by these novel systems will not take

too much time.

The principal explosive growth on mobile platform is caused by the evolution of

smartphones. Actually smartphone concept is not a new concept. According to [1], in

1992 IBM has announced the first smartphone (called Simon). However neither CPU

powers nor wireless network capabilities were adequate enough. With the improvements

of these technologies, sales of smartphones are improved dramatically [3]. The main

reason of this widespread usage of smartphones may be the application market concepts

of the leading mobile operating systems like Android, IOS etc. In 2013, Google Inc. has

announced that there are over 1 million applications in their market (Google Play) [9].

Apple side also declared a similar announcement after a few months later [10]. There are

so many applications provided at these markets for various purposes. Application

developers have to create multi-feature and comprehensive applications in order to come

to fore among similar applications. On the other hand, most of these applications are

typically developed by semi-professional developers or small companies that have not so

much work power. So the major drawback of these applications is their quality. Testing

processes are usually ignored or made with limited resources because of many reasons

such as budget, time, and work power. Thus, aside from some good quality applications,

the results are generally unsatisfactory.

Currently, Android is the most trendy mobile operating system in the smartphone market.

According to Strategy Analytics's latest report [1], it takes 85 percentage of global smart

phone shipment share and it is still growing. The Android operating system is built on

Linux Kernel and is currently being developed by Google. There are four layers in

Android. At the bottom, there is a hardware abstraction layer which is Linux kernel itself.

Next layer consists of a native collection of C and C++ libraries whose features are used

by upper Java libraries. On the top of this layer, there is a specialized implementation of

2

Java Virtual Machine (JVM), called Dalvik Virtual Machine (DVM). The last layer is the

Application Framework Layer which contains the applications. Android applications are

Java-based, event-driven applications supported by rich graphical user interfaces (GUIs).

The applications consist of four main components; activities, services, broadcast

receivers and content providers.

Screens of Android applications are XML-based and generally run on touch-screens.

There are lots of events that trigger the GUI different from the traditional applications

such as desktop GUI applications, web applications. This novelty makes the process of

testing android applications more complicated. The main issue is that of assessing which

testing approach-tool combination is applicable for verifying the application.

GUI testing, which is a practice of testing application with GUI events, is based on

correctness of GUI states and behaviors. This testing process also verifies the data

handling, control flows, states etc. Ease of GUI testing depends on several factors like

tools, approach, criteria. Testers need to have experience about all of the factors in order

to choose suitable one for their cases.

Since the earlier versions of Android to the latest one, researchers have proposed many

techniques or tools about Android GUI testing. Therefore we have decided to make a

systematic mapping (SM) study in order to get together the body of knowledge about

this area in a public resource. Our motivation was inferring current trends about GUI

testing approaches, tools, and techniques on Android OS. We have also intended to

identify the points that are not explored enough and propose directions for future studies

that are required in order to bridge the gap in the domain. We have aimed that our study

will be a guideline for researchers, testers, and test tool developers.

In our SM, we have used goal-question-metric (GQM) paradigm [26]. Through our goal,

we have asked three main questions and their sub-questions as our research questions

(RQs). Then we have conducted a comprehensive research in order to collect all related

articles published between 2009 when first stable version of Android released to October

11th, 2014. As a result of this research, we have gathered 59 studies. Then we have

applied our inclusion/exclusion criteria to these studies. Finally we have obtained the

final pool of article which consists of 27 studies. We have prepared a classification

scheme to extract data from given articles. We have addressed our RQs using the data

extracted from the papers. Finally, we have presented the results.

Outline of this thesis as follows. We present the background knowledge of our area and

the works related to our study in section 2. In section 3, we give a detailed definition

about our research methodology that contains our research questions,

inclusion/exclusion criteria and the article set. We demonstrate the results of our study in

Section 4. The discussion is located in Section 5. Finally the conclusion part is in

Section 6.

3

CHAPTER 2

BACKGROUND & RELATED WORK

2.1. Systematic Mapping in Software Engineering

A systematic mapping study is an approach that is accepted by the software engineering

communities which focuses on the literature research in order to make a general

conclusion over primary studies in a specific domain [13, 21]. The result of this study is

generally categorizes the primary studies according to a classification scheme.

We have adapted the process of systematic mapping study from [13]. First step of this

study is specifying a goal and proper research questions (RQs). This step specifies the

scope of the study. Then a comprehensive search is conducted to collect all studies in

this scope. After that in order to eliminate the irrelevant papers, well-described inclusion

and exclusion criteria are applied to these studies. As a result, the final set of primary

studies is obtained. In order to extract data from the articles, a classification scheme is

required. This scheme is created with the aim of taking all of the articles into account.

This process may be iterative to the refinements on the scheme. When the scheme is

ready, the data is extracted from the articles. Applying a peer review on the extracted

data reduces the bias on them. The data collected from these studies is a repository that

summarizes the whole set. The SM researcher can address the RQs using the repository.

Finally, it is intended to find out unbiased, comprehensive result.

4

2.2. Structure of Android Applications

Figure 1 - Android Structure [4]

Android operating systems consists of four layers as depicted in Figure 1.Android

applications are located at the top of last layer of Android architecture (Figure 1) [4].

They work on Dalvik Virtual Machine (DVM) which is a kind of Java Virtual Machine

(JVM) especially optimized and designed for Android OS. DVM allows the use of some

basic Linux features which are essential for Java language like memory management

and multi-threading. Therefore the applications are developed using Java with extended

specific libraries from Application Framework Layer.

The main components of an Android application are activity, service, content provider

and broadcast receiver [5].

 Activity: An Activity is an application component that provides a GUI.

Interaction between the user of the application and the GUI is handled by the

activities. Activities called from the activity stack and only one of the

activities can be upfront. Each activity has a lifecycle and many states (fig 2).

If one of the activities is shut down, the activity manager pops another

activity from the activity stack.

http://developer.android.com/reference/android/app/Activity.html

5

Figure 2 - Activity Lifecycle [5]

 Service: A service is an application component that can execute long term

operations in the background. It does not have a GUI.A service can be started

by other application components and it keeps running in the background even

if the application is stopped or switched to another application. A service is

typically used to handle network operations, play music, or content provider

interactions.

 Content provider: Content providers are the standard interfaces that controls

flow of structured data between processes. Data encapsulation and data

security are provided by this component.

 Broadcast Receivers: Broadcast Receivers are the components that catch

broadcast messages from the system such as system start-up, SMS indication,

or battery warnings. A custom broadcast massage can also be fired from an

application.

http://developer.android.com/reference/android/app/Service.html

6

2.3. GUI Testing in Android

As the Android is primarily used in devices with touch screens such as smartphones or

tablets, the GUIs of applications are optimized for this use. In native android

development, the view is based on XML files and it has predefined widgets. The

developer can also create custom widgets using base classes.

There are three GUI testing tools in Android software development kit (SDK). The

primary GUI testing tool in SDK is the Android instrumentation framework. This tool

enables separate testing applications to run in same process with application under test

(AUT) if all of them have an access to a common application context.

Another testing tool is the Monkey testing tool [6]. It is capable of sending pseudo-

random user events such as tapping the screen, pressing a button or gestures to screen as

well as creating system-level events. Therefore it is useful while testing of stability of

the applications for crashes.

The last tool in the Android SDK is the Monkey Runner tool [7] which has an API in

order to create applications to manage an Android system from outside of native code.

This tools enables writing scripts e.g. python scripts which are capable to do main

functions such as installing and running an application, sending user events and gestures

taking screenshots.

All of these tools can be extendible and combinable with each other or other applications

that are created for testing purposes. There are many examples for smarter applications

which are successfully serving as comprehensive testing tools. They can be also

improved for future needs which are not covered yet.

2.4. Related Work

To the best of our knowledge, there is no systematic mapping study on Android GUI

testing domain other than this one. On the other hand, as the systematic mapping

approach is been well-accepted and popular in software engineering as well as other

secondary study approaches such as systematic literature review, or taxonomies can be

found with a minor effort. We collected and discussed some related work below.

We present the related work under 3 topics: (1) published secondary studies about

software engineering, (2) repositories, databases about software engineering, (3)

secondary studies that focuses on GUI testing.

2.4.1. Secondary Studies in Software Testing

Doğan et al. [24] give a list of secondary studies in software engineering (SE) domain in

their study which is a systematic literature review (SLR) about web application testing

(WAT). Their research, which has no starting year, presents that the secondary studies

like SMs or SLRs has an exponential-like growing curve in their counts. They have been

able to find 24 secondary studies. There have categorized them as eight SMs, five SLRs,

7

and remaining eleven studies for taxonomies, literature reviews, analysis and surveys etc.

We have searched for secondary studies in SE published up to 2014. We were able to

find 58 secondary studies on SE. 14 of these studies are SMs, 21 of them are SLSs, and

23 of them are regular surveys. We have listed and categorize them in Table 1.

(NER: Not explicitly reported, NOR: Number of references)

Table 1- Secondary studies in software testing

Type of

Secondary

Study

Secondary Study Area Year of

publication

Num. of

Primary Studies

Ref.

SM

(n=14)

Search-based testing for non-

functional system properties

2008 35 [40]

Product lines testing 2011 45 [44]

Product lines testing 2011 64 [47]

Alignment of requirements and

testing

2011 35 [42]

Testing in service-oriented

architecture (SOA)

2011 33 [41]

Automated tool support for unit

testing

2012 136 [65]

Static and dynamic quality

assurance techniques

2012 51 [72]

Testing web services 2012 150 [89]

Tools for product lines testing 2012 33 [47]

Reducing test effort 2012 144 [95]

Web application testing 2013 79 [61]

Graphical user interface (GUI)

testing

2013 136 [62]

Test-case prioritization 2013 120 [87]

https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_1
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_5
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_8
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_3
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_2
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_26
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_9

8

Testing of matlab simulink

models

2013 44 [16]

Functional Software Testing 2013 27 [20]

Knowledge management

initiatives in software testing

2014 13 [15]

Software Development

Documentation

2014 60 [33]

Software test-code engineering 2014 60 [36]

SLR

(n=21)

Model-based testing 2007 202 [70]

Automated acceptance testing 2008 8 [75]

Testing aspect-oriented programs 2008 43 [86]

Search-based testing for non-

functional system properties

2009 35 [45]

Concurrent software testing 2009 109 [93]

Unit testing for Business Process

Execution Language (BPEL)

2009 27 [46]

Integration testing of component-

based software

2010 49 [71]

Empirical investigation of

search-based test-case generation

2010 68 [49]

Human Factors in Software

Development

2010 67 [35]

Formal testing of web services 2010 37 [43]

Regression test selection

techniques

2010 27 [50]

Concurrent software testing 2011 188 [80]

Testing in adherence to the DO-

178B Standard

2011 97 [83]

https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_47
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_6
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_7
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_32
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_4
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_11

9

Benefits and limitations of

automated testing

2012 25 [76]

Empirical evaluation of cloud-

based testing

2012 38 [12]

Regression test prioritization

techniques

2012 65 [84]

Automatic test-case generation

from UML diagrams

2012 42 [85]

State-based test tools 2013 12 [73]

Ontologies in software testing 2013 18 [14]

Software product line testing 2013 23 [82]

Mutation testing for Aspect-J

programs

2013 10 [74]

Web application testing 2014 95 [24]

Automated Testing 2014 58 [34]

Testing scientific software 2014 49 [97]

Regular

survey

(n=23)

Testing finite state machines 1996 NER (NOR=153) [79]

Testing object-oriented (OO)

software

1996 140 [51]

Testing communication protocols 2002 NER (NOR=60) [67]

Empirical studies about testing

technique

2004 36 [52]

Search-based test data generation 2004 73 [53]

Combinatorial testing 2005 30 [54]

UML-based coverage criteria for

software testing

2005 NER (NOR=31) [69]

Integration testing 2007 NER (NOR=84) [90]

https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_38
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_45
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_34
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_35
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_53
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_14
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_15

10

Symbolic execution for software

testing

2009 70 [56]

SOA testing 2009 64 [55]

Testing using model checkers 2009 NER (NOR=140) [91]

Model-based GUI testing 2010 NER (NOR=42) [59]

Test-driven development of user

interfaces

2010 NER (NOR=36) [60]

Cost reduction of mutation

testing

2010 NER (NOR=28) [78]

Testing web services 2010 NER (NOR=86) [57]

Combinatorial testing 2011 90 [66]

Mutation testing 2011 390 [58]

Search-based software testing 2011 NER (NOR=58) [81]

Software testing in the cloud 2012 NER (NOR=58) [68]

Regression testing minimization,

selection and prioritization: a

survey

2012 NER (NOR=189) [96]

Testing in SOA 2013 177 [88]

Test-case generation from UML

behavioral models

2013 NER (NOR=82) [94]

Test oracles 2014 611 [64]

2.4.2. Online repositories in Software Engineering

Some of secondary studies provide online repositories that contain the data extracted

from the primary studies in their pool. These repositories are kept up to date with regular

contributions of the authors. The repository approach has many advantages for new

researchers such as providing them a reliable starting point, following latest trends, or

opportunities to interpret the data in different perspectives.

https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_17
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_20
https://mail.google.com/mail/u/0/?ui=2&ik=8d43b8ac45&view=lg&msg=14a72a30b365de55#14a72a30b365de55__ENREF_21

11

The number of repositories is too few when it is compared to the number secondary

studies. We have found seven online repositories. We have listed them in Table 2.

Table 2- Online repositories in software engineering

Topic Number of elements Ref.

Mutation Testing 424 [27]

Search based Software

Engineering

1261 [28]

Software Test-Code

Engineering

60 [19]

GUI Testing 143 [18]

Developing Scientific

Software

141 [17]

Web Application Testing 95 [23]

Testing of Web Services
1
 150 [98]

2.4.3. Secondary Studies about GUI Testing

In [21], Banerjee et al. present a systematic mapping study on the area of graphical user

interface (GUI) testing. In the study, they use goal-question-metric (GQM) paradigm

[26] and they firstly prepared five goals. These goals are generally about three main

points; (1)revealing the latest trends in GUI testing research and evaluation, (2)

demographic and bibliometric information about articles and authors, and (3) the

limitations, and directions for future studies in GUI testing area. They collect data from

several articles in order to classify the studies towards these questions. They also publish

an online repository about GUI Testing [18].

Memon et al. present a taxonomy study for GUI testing techniques [29]. This study

focuses on the classification of model-based techniques whether they are manual or

automatic. These techniques build up a model from the GUI and utilize it in order to

produce test cases. Each technique is demonstrated on a small application to compare

their strengths and weaknesses.

1
 Not currently available

12

13

CHAPTER 3

RESEARCH METHOD

We have applied the systematic mapping study to GUI testing of Android application

area. We have adapted the steps defined in [13]. These steps describe the process of SM

study in software engineering areas. As a result our research method is discussed as

following:

 Overview

 Goal and research questions (RQs)

 Article sources and search keywords

 Inclusion\Exclusion criteria of Article set

 Final set of articles and the online repository

 Classification of the articles

 Data Extraction

3.1. Overview

This SM is mainly carried out by following previous examples [15 - 16, 20] and the

general study which focuses on using mapping studies in Software engineering proposed

by Budgen et al. [13]. Although there is no similar instruction set as Kitchenham and

Charters [11], which proposes a comprehensive guideline in order to SLR researchers,

for SM studies, this guideline is also useful for us. Our method is a blend of these

sources.

Our method can be summarized as follows:

 Defining the need for the study

 Determining the goal and research questions

 Searching for the primary studies that may be relevant to the subject.

 Applying the inclusion/exclusion criteria to the primary studies.

 Defining the attributes of the classification scheme

 Data extraction from primary studies in our scope.

14

 Performing a peer review on the extracted data in order to prevent bias.

 Classification of the primary studies in the final pool.

We have firstly determined the subject of the study. The subject "GUI testing of Android

Applications" was new and unexplored area for a secondary study. The result would be

very functional for followers. Then we have specified the goal and the RQs towards this

goal. We have discussed it in section 3.2. Article selection and the elimination of the

selected articles to create result article pool is another vital step. In Sections 3.2, 3.3 and

3.4, we have discussed about whole process and the result article set. In Section 3.6 we

have defined the map construction process. The attributes of classification scheme are

also described in subsections. Finally, through this scheme, we have extracted data from

the article set in order to address our RQs. Whole process is abstracted in Figure 3.

Figure 3 - Protocol guide of the SM

15

3.2. Goal and Research Questions

According to Kitchenham and Charters [11] an SM study aims to classify and analyze

the literature on software engineering domain. SM studies are also baseline studies for

SLRs. These studies answer common questions about such as types of techniques that

are commonly used, active researchers, trendy tools or density of studies over years.

We have used the paradigm that called Goal-Question-Metric (GQM) [26] in order to

define our goal and research questions. We have mainly aimed to classify and analyze

the literature on the subject "GUI testing of Android applications" starting from 2009

when first stable version of Android (1.5 - Cupcake) was released [8]. Based on our goal,

we have defined three main RQ sets which cover all aspects of our research. Each of

these questions is further partitioned into some sub-questions in order to advance details

of the study, as described below:

 RQ 1-What are the natures of Android GUI testing?

In Android GUI testing area, there are many components concerned by

beginners or researchers who want to have more knowledge about the area.

We aimed to aggregate all of the components in these questions. For more

detailed result, we asked following sub-question:

 RQ 1.1- Which are the testing activities applied in the primary studies?

 RQ 1.2- What are the sources of information used to derive test artifacts?

 RQ 1.3- Which are the test artifacts generated during testing process?

 RQ 1.4- Which are the testing environments used to run tests? (Emulator,

Real device, or Both)

 RQ 1.5- How to simulate user interactions?

 RQ 1.6- How to verify GUI behaviors (Oracles)?

 RQ 1.7- What are the types of methods used to evaluation?

 RQ 1.8- What are the attributes of the system under test (SUT)?

 RQ 2-What are the demographic and bibliometric aspects of the primary

studies in Android GUI testing?

The demographic and bibliometric aspects of the area can help to reveal an

idea about tendency of researchers, institutions or countries on the subject.

We expand our question as following:

 RQ 2.1-What is the articles count per year?

 RQ 2.2-What are the most popular articles? Which are the mostly

considerable the venues and the authors are in terms of the article counts?

 RQ 2.3-What is the article distribution over countries?

16

 RQ 3-What are the trends and future direction in GUI testing of Android

applications?

This RQ aims to expose current trends of researchers. In the scope of this

question we also ask the tendency about future plans of researchers. The sub-

questions are listed below:

 RQ 3.1-What are the types of articles published?

 RQ 3.2-What are the contributions provided by researchers?

 RQ 3.3-Which are the most significant testing tools? Which are 3rd party

components used by the tools?

 RQ 3.4-What are the testing techniques/approaches used during test

process?

 RQ 3.5-What are the future directions of current researches?

The RQs are generally adapted from similar studies [12, 14-16, 20, 24] with accordance

of our area GUI testing of Android applications. Each set of question examines a

particular research area with its details by the sub-questions.

3.3. Article Sources and Search Keywords

We have aimed to collect all of the articles such as research papers, thesis, book chapters

and technical reports related to our subject. In order to do that, we have decided to use

seven major online academic article search engines listed below:

1. IEEE Xplore
2

2. ACM Digital Library
3

3. Google Scholar
4

4. Microsoft Academic Search
5

5. CiteSeerX
6

6. Science Direct
7

7. Scopus
8

These search engines are capable to cover the literature with strong infrastructure for

searching the sources. They are well-accepted in community and used for similar studies

often, e.g., [12, 14-16, 20, 24].

Search keyword selection was also an important task in order to cover an area. With

respect to this, we have used a search string consisting of three main parts. The first part

2
http://ieeexplore.ieee.org

3
http://dl.acm.org

4
http://scholar.google.com

5
http://academic.research.microsoft.com

6
http://citeseerx.ist.psu.edu

7
http://www.sciencedirect.com

8
http://www.scopus.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://scholar.google.com/
http://academic.research.microsoft.com/
http://citeseerx.ist.psu.edu/
http://www.sciencedirect.com/
http://www.sciencedirect.com/

17

was related to platform definition. We have decided to select: (1) Android, and (2)

Mobile. The second part have defined our testing domain: (3) Graphical User Interface,

(4) GUI, (5) User Interface and (6) UI. The last part of our search string was about

activity that is applied. Our selection for this part was: (7) Dynamic Analysis, (8) Model,

(9) Ripping, (10) Static Analysis, (11) Testing and (12) Verification. In order to

constitute the search string, we have put the Boolean operators between these words as

conjunctions. We have used Boolean “AND” operator to combine three main parts of

search string and Boolean “OR” operator to join the terms inside the parts. Final search

string is shown in Figure 4.

("Android" OR "Mobile") AND ("GUI" OR "Graphical User Interface" OR "UI" OR
"User Interface") AND ("Dynamic Analysis" OR "Model" OR "Ripping" OR

"Static Analysis" OR "Testing" OR "Verification")

Figure 4- Search String

Our search was mainly based on Scopus. We have applied our search string to Scopus

with additional choices which are "articles newer than 2008 (after first release date of

Android [8])" and "articles related to Computer Science". The search engine has

retrieved 798 results. We have examined titles and abstracts of these articles.

When we have applied the search string to the complementary search engines, we have

discovered that some of them such as Google Scholar or CiteSeerX retrieve too many

results. However most of these results are irrelevant to the topic. In addition, because we

have listed the article by relevance, when we have get down to the articles retrieved by

the search engines, remarkable article count was getting lower. Therefore we have

decided to put a limit to the considerable maximum result number for such search

engines. We have applied search string and we have determined a limit when we have

experienced that their relevance was becoming ignorable. In Table 3, we have presented

the limits for each search engine.

Table 3- Maximum considered result limits for search engines

Search Engine Limit of maximum considered result

count

IEEE Xplore All results

ACM Digital Library 1 - 100 results

Google Scholar 1 – 200 results

18

Microsoft Academic Search All results

CiteSeerX 1 - 200 results

Science Direct All results

Scopus All results

After the search was completed, we have eliminated the duplications and got the article

pool that contains primary studies uniquely. In addition, we have examined references of

the articles in order to find more relevant articles and provide full coverage of the

domain. At the end, we have constructed a set of articles with 63studies. Before applying

our inclusion/exclusion criteria, we have added them to our online repository. However

we could not reach full texts of 4 articles. In the end, our pool consisted of 59 articles.

3.4. Inclusion/Exclusion Criteria

The inclusion/exclusion criteria are the conditions that have to be fulfilled by the article

in order to improve reliability of our study. These criteria are determined by all

participants of our study. In the paper selection process, the participants have

systematically voted each of the articles in order to apply these criteria for deciding

whether to include or exclude the article to final pool of articles. Each researcher has

voted independently for each article in the pool. Such voting was performed to prevent

the personal bias of the researchers.

We have asked two questions as our inclusion/exclusion criteria: (1) is the article

relevant to the subject GUI testing of Android applications? (2) Does the article have a

sound experiment or validation? These criteria were applied to all papers, including

those presenting techniques, tools, or case studies/experiments. Voting mechanism was

based on counting score of the articles. These questions have been answered by the

researchers independently and individually. If the researcher have decided that the study

addresses the criterion then he/she gave 1 point, otherwise 0 point. When all researchers

have finished their voting, if article has more than three points, it was included otherwise

we have left the article out of our scope. We have not encountered that two or more

papers that describe same study (e.g. both a journal paper and a conference paper

describes same study).

To facilitate the voting mechanism, all participants need to have a connection to the

articles simultaneously. The best solution for this kind of cases is loading all the data on

the web. There are several tools which meet this requirement. We have chosen the

Google Drive System to work on. First we have uploaded all of our articles on to this

drive. Then we have created a spread sheet document as our repository and put the

references of the articles to there. Finally our repository was ready to vote the article to

include or exclude for our scope.

19

3.5. Final Set of Articles and the Online Repository

When all participants have finished their voting, 32 of 59 articles were excluded from

the final pool. Therefore our final list of articles has had 27 articles.

We have decided that publishing the repository in a public URL is useful to expose our

work. It could be a continuous study and be easily followed by researchers using the

web. Thus we have presented our online repository in a public URL [22].

3.6. Classification Scheme: The systematic map

After the final set of articles was determined, we have identified the initial attributes of

our classification scheme by using the abstracts of primary studies. Then, we have

determined the context of the research. Then we have carried out more comprehensive

research on primary studies to recognize their contributions and nature. This research

helped us to refine the attributes. The final attributes set is described in following

sections.

3.6.1. Type of Contribution

We have adapted the classification of contributions by Petersen et al [37], which are

method/technique, tool, model, metric and process. While adapting these facets to

testing context, we added “other” category to map the articles that cannot be categories

under these six groups. Finally, the type of contribution aspect has six categories:(1) Test

Method/Technique, (2) Test Tool, (3) Test Model, (4) Metric, (5) Process and (6)

Other. An article can fall in one or more categories in this aspect, e.g. an article may

both present a test tool and a new test metric.

3.6.2. Type of Research Article

We have categorized research articles by using an existing schema designed by Wieringa

et al [30]. This schema was originally created for requirement engineering paper

classification but it can be easily adopted for our domain. It is also commonly used in

similar studies. The classification can be summarized as follows:

1. Solution Proposal: These studies propose a novel solution to a problem or

present a significant extension to an existing solution. The problem is defined

clearly. The solution technique is evaluated by a small example or with a good

line of argument

2. Validation Research: These studies present preliminary empirical evidence for a

proposed solution. This kind of researches may include methods like experiments,

simulations, prototyping, and mathematical investigation/proof.

3. Evaluation Research: These studies use formal experimental methods to

evaluate novel techniques and tools implemented in practice. If the usage of the

technique is reported, novelty is not a required criterion but soundness is. The

evaluation of the technique/tool is more rigorous then a validation research.

20

4. Experience Papers: These papers are based on authors’ personnel experience

about usage of tools, application of techniques or other activities related to the

domain. It is aimed to represent lesson learned from experiences.

In the original paper [30] which is used for this categorization there were two more

categories for the papers: philosophical papers and opinion papers. However the papers

in these categories were eliminated because of our inclusion/exclusion criteria.

During the mapping, an article can be placed only one of these categories.

3.6.3. Type of Testing Activity

To collect data about type of testing activities in this domain, we have used the

categorization defined by J. Offutt et al. [31] who broke up testing into four general

types of activities. These types were test design, test automation, test execution and test

evaluation. Test design could be divided further into two types (1) Criteria Based, (2)

Human knowledge based.

The categories under this aspect are summarized as follows:

1. Test case design (Criteria Based): Designing test cases to satisfy several testing

criteria (such as coverage). This design can be automated or carried out

manually.

2. Test case design (Human Knowledge Based): Designing test cases based on

personnel knowledge of tester about testing and usage of SUT. This design can

be automated or carried out manually.

3. Test automation: Creating executable test codes where test values are embedded.

These test codes (scripts) are capable to run automatically.

4. Test execution: Executing tests on the SUT and gathering the results as an

output. Test execution can be automated or carried out manually.

5. Test evaluation: Evaluating the test outcome in order to inform the developers.

6. Other: If the article cannot be placed into above categories.

3.6.4. Source of Information to Derive Test Artifacts

Another part of repository is source of information to derive test artifacts such as test

cases. Finally we have decided on 7 parts as follows:

1. Source code (white-box): Making detailed analysis of internal code structure

and logic to derive test artifacts. The source code is needed to be available. The

tester needs to possess knowledge of the internal working of the source code.

2. Requirements (Black-Box): The test artifacts are derived without any

information of the internal logic of an application. There is no access to the

source code. Only the user interface is presented to make interactions by giving

inputs and examining outputs.

3. Requirements and Source code (gray-box): Deriving test artifacts with partial

information of the logic of internal mechanism of an application. Unlike black-

21

box approach where only user interface is presented the design documents or the

database are available. This information may help to derive better and accurate

test artifacts.

4. Logs: The logs that are automatically created while running the SUT are

considered to generate test artifacts.

5. Inferred Model (automatic): Model of the SUT that is generated automatically

is used to derive test artifacts.

6. Inferred Model (manual): Model of the SUT that is generated manually is used

to derive test artifacts.

7. Other: if none of the above is applicable.

3.6.5. Approach of GUI Behavior Verification

Because our main goal is GUI testing, we have decided to make a section about GUI

behavior verification (oracle) approaches. In this section we have classified mechanisms

to check the GUI outputs, states etc for correctness after the test execution. We have

observed that there are five main approaches described as follows:

1. Bitmap Comparison: This technique is used by the mechanism which is able

reach a state of a visual object using screen-shots, images of widgets (buttons,

text views etc.), and compare it with expected state of the object in order to

verify the execution.

2. Model-Based: Models such as Finite State Machines (FSM) are able to keep

states of user interfaces. These states consist of values of several GUI objects

which can be used for test oracles.

3. Checking Widgets via API: Each programming language that supports visual

objects has an API for management operations of widgets to change their values

or states. Same API can used to verify expected value of these objects.

4. Manual: Manually comparing of states or values of GUI objects with the

expected ones.

5. Optical character recognition (OCR): This technique is based on conversion of

images of alphanumeric characters into machine-encoded text. It is usually

applied on an image captured from user interface to get its values which are

easily confirmable.

6. Other

7. No Oracle: Some articles are enablers of GUI testing and therefore they do not

express their oracles.

3.6.6. Approach of Simulating User Interaction

Simulation of user interactions is a common approach in GUI testing especially.

Therefore we have decided to collect information about how testers simulate these

interactions on the user interface. We have detected two common approaches; coordinate

based or via capturing the widget itself. Some of studies have used them both.

These categories are summarized as follows;

22

1. Coordinate based: In this approach, user actions are simulated on the screen

according to a coordinates pair (x, y) that defines a single point on the interface.

In order to support all the user actions (such as long press, drag-drop) in Android

GUI, this technique may be represented in more comprehensive forms.

2. Capturing Widget Object: Information of a widget on the GUI is gathered in

order to perform some user events on it. These events can be executed using

widget own actions (via an API) or with external events (such as mouse or

keyboard events).

3. Both (Combined)

4. N/A: If the user interactions are not simulated on the GUI objects in the testing

process, this case will be in this category.

3.6.7. Techniques Used

In GUI testing domain, there are many well-accepted techniques which are utilized for

various purposes. Tester may possibly use one or more of these techniques during whole

testing process. Therefore we have decided to search for following techniques in studies

analyzed.

1. Symbolic execution: In this technique, firstly the SUT is examined to detect

inputs that execute each of the features of the SUT. Then symbolic values are

used instead of actual data as input values, and software variables are represented

as symbolic expressions. Thereby, the result of computation is demonstrated as a

function of the symbolic inputs.

2. Static program analysis: This technique is applied without an executing the

application. The analysis is generally realized on the source code of the SUT but

for some cases it can be applied on object code the product of compilation.

3. Concolic testing (Dynamic Symbolic Execution): This technique is a

combination of two testing approaches; symbolic execution, and concrete

execution [32].The concrete execution determines the particular inputs to be used

through symbolic execution technique in order to generate test cases. This

technique is mainly used to find bugs on the applications rather than verifying

the application's correctness.

4. GUI ripping: GUI ripping is an approach that automatically traverses the GUI

of the SUT by reaching each state of it and collecting the values of its elements

[38]. Then this collected data is used to generate test cases.

5. Model checking: The software system is modeled as finite-state machine which

controls states of the system to detect the undesirable states that can cause critical

errors such as deadlocks or crashes. It is an automatic technique that verifies

validity of system properties.

6. Model-based testing: In this approach, the model which extracted from the SUT

is utilized to demonstrate the intended activities of the system or to demonstrate

testing approaches. The model is generally used to extract test artifacts such as

test cases automatically.

7. Dynamic analysis: Dynamic analysis is a technique that tests the SUT while

system variables are dynamically changing in time. In this approach the source

23

code of the software is compiled and ready to run and test artifact may need to

reach to the source code itself to embed values.

8. Random testing: This technique is based on random and distinct input

generation to the SUT. Reactions and outputs are collected and compared with

expected ones in order to verify the system. If the software consists of faults, a

mismatch will be detected while the comparison or the inputs will cause a crash

of the system. It is a black-box approach.

9. Record-replay analysis: This is a debugging technique that is based on

repeating interactions that are recorded from the first usage of the application on

the user interface of the SUT. During the execution given inputs, passed states

and the outputs are listed as logs to define the causes of defects. It is also used

for automating test executions.

10. Other

3.6.8. Testing Environment

Toward our research question (RQ 1.7), we have decided to get information about

testing environment where the tests are run on. There are two main options to execute

the test on: (1) Real device which refers to an android device (phone or tablet) and (2)

Emulator that simulates Dalvik Virtual Machine (DVM) on popular computer operating

systems such as Windows, Linux etc. We have decided that there maybe two other

options (3) Both which stands for the cases that both real device and emulator is used

and (4) Not Reported for the articles that does not specify the testing environment

3.6.9. Type of Test Artifact Generated

During the testing process various test artifact are could be generated. On the purpose of

classifying these artifacts, we gathered these values from studies in our scope. The

artifacts we have searched for in the articles are:

1. Test Inputs: The data used to execute test cases. It is gathered from an external

such as hardware, software or human.

2. Test Requirements: The procedure of test conditions that identify which

features of the SUT is required to be validated. It doesn't specifies input values

for test cases

3. Test Oracles: The mechanism to compare the collected outputs of the SUT with

expected ones.

4. Test Driver: A tool that replaces a component of the SUT which has a role

during system execution in order to perform test procedures. Test scripts are the

most common examples.

5. Other

3.6.10. Type of Evaluation Method

We have questioned the methods which are used to evaluate the proposed approaches in

the studies. The evaluation scope is an important value to have an opinion about success

24

and quality of the approach or tool presented. We categorize the evaluation methods as

following;

1. Coverage: A criteria about calculating the percentage of the some items of the

SUT such as code blocks, braches, logic, or classes that is reached during the test

execution.

2. Mutation Testing (Fault Injection): The process of creating faulty versions of

the SUT. It is indented to determine whether the injected defects could be found

by test tool or technique.

3. Time/Performance: A criteria gather by calculating the duration of test process.

4. Detecting Real Defects: A method to evaluate applications to detect their faults.

5. Other

3.6.11. Attributes of Testing Tool Presented

Lots of tools that aim to run tests for GUIs of applications in Android platform are

presented in several studies. We thought that gathering this information may be helpful

for researcher, testers, or developers in many ways. Firstly we have decided get (1)

Number of tools that proposed in the study. Then we get (2) Name of the tool. Next

part is about (3) Third party applications/frameworks/components that are used as

building blocks while developing the tool. This data may be very helpful for especially

developers who intended to develop a testing tool. Fourth part is (4) Supported

programming language that is used to create test code such as test scripts test cases etc.

The last one is stands for whether the tool is (5) Available to download. We present its

(6) URL if it is.

3.6.12. Attributes of SUT

Each evaluation for a testing approach (technique, tool etc.) requires an SUT in order to

apply the approach on it. In addition, attributes of SUTs may vary. We have chosen to

collect information about the SUT that are used in the articles. We have got following

information:

1. Number of SUTs

2. Names of SUTs

3. Size: Size of source code of SUT in terms of line of code (LOC).

4. Number of Screens: Number of user interfaces that is presented by the SUT. In

Android applications this number is equal to the number of a special type of class

“Activity” number.

5. Front-end Approach: Technology used to develop the user interface.

6. Version of Android: Android version where the evaluation is done.

7. Development Style: Real Open-Source, Academic Experimental, or Commercial

3.6.13. Future Plan

We wonder the future directions of our domain. In order to accumulate information

about this issue, we have decided reserve a part of our repository. We have collected

25

under the six headings which are; (1) Develop a new Tool, (2) Improve the Tool, (3)

Develop a new technique, (4) Improve the technique, (5) Make research more

detailed (New case studies e.g.), (6) No Future plan.

Table 4 - The classification scheme

RQ ATTRIBUTE VALUES
MULTIPLE

SELECTION

SINGLE

SELECTION
TEXT

RQ_1.1

Type of

Testing

Activity

Test-case Design (Criteria-

based), Test-case Design

(Human knowledge-based), Test

Automation, Test Execution,

Test Evaluation (oracle), Other

x

RQ_1.2

Source of

information to

derive Test

artifacts

Source Code, Requirements and

Source code (gray-box),

Requirements (Black-Box),

logs, Inferred Model

(automatic), Inferred Model

(manual), Other

x

Type of test

artifact

generated

Test input (data), Test

requirements (not input values),

Expected outputs (oracle), Test

driver (code), Other

x

RQ_1.3

Test On
Emulator, Real Device, Both,

Not Reported
 x

Android Version
 x

RQ_1.4

How to

Simulate User

Interactions

Coordinate based,

Programmatic, Both

(Combined),Not Reported

 x

Approach of

GUI

Verification

(Oracle)

Bitmap Comparison, Model

(Finite State Machine, etc),

Checking widgets via API,

Manual, OCR (Optical

Character Recognition),

computer vision, Other, No

Oracle

x

RQ_1.5

Type of the

Evaluation

Method

Coverage (code, model),

Mutation testing (fault

injection), Manual comparison

(with another result),

Time/Performance, Detecting

x

26

real faults, Other

RQ_1.6

Attributes of

the Android

Application

SUT(s)

Number of SUTs, SUT names,

Size in LOC, Number of

Screens (Activities), Front-end

approach

x

Real Open-Source, Academic

Experimental, Commercial
 x

RQ_2.(1-3)

Demographic/

bibliometric

information of

Paper

(Authors, Author Country, More

than one country, Venue, Year,

Article Type, Citations)

x

RQ_3.1

Type of Paper-

Research

Facet

Solution Proposal, Validation

Research, Evaluation Research,

Experience Papers

 x

RQ_3.2

Type of Paper-

Contribution

Facet

Test method / technique, Test

tool, Test model, Metric,

Process, Other

x

RQ_3.3

Attributes of

the Testing

Tool

Presented in

the Paper

Name, 3rd Party Components

(Frameworks, Programs),

Supported Languages, Available

for Download, URL

x

RQ_3.4
Technique

Used

Symbolic execution, Static code

analysis, Concolic testing

(Dynamic Symbolic Execution),

GUI Ripping, Model checking,

Search-based testing, Model-

based testing, Dynamic

Analysis, Crawling, Random

Testing, Record/Replay, Other

x

RQ_3.5 Future Plan

Develop a new Tool, Improve

the Tool, Develop a new

technique, Improve the

technique, Make research more

detailed (New case studies e.g.),

No Future plan

x

3.7 Data Extraction

After we determined the classification scheme, we have extracted data from primary

studies according to this scheme. The data extraction is a task that has to be objective.

Personnel bias can decrease the quality of the results deduced from this study. In order to

27

prevent this, we have used peer review technique. At least one researcher has verified

the validity of the each data extracted by the author. This process went on the web using

Google Drive System. This approach avoids the study from subjectivity.

At the end of the process, the data was collected on the repository. Before inferring final

results from this data, we have decided to present this raw data on web to the public

URL. Our online repository can be reached using the URL in [22].

28

29

CHAPTER 4

RESULTS

In this chapter we have presented the results we gathered from the systematic mapping

of the articles in our pool. We have addressed the RQs using this information.

4.1. What are the natures of Android GUI testing? (RQ 1)

This research question is investigated under six sub questions.

4.1.1. Which are the testing activities applied in the primary studies? (RQ 1.1)

To provide an answer to this RQ, we collect the data of types of testing activities. These

activities are adapted from J.Offutt’s descriptions in his lecture notes [31]. Each of these

activities can be executed individually or they can be executed sequentially. The

activities can also be considered as complete testing life cycle when all of them applied.

The categories used in this facet are described in Section 3.6.2.Figure 5 shows the

distribution of the papers to the six categories, the “other” category is used for catching

additional activities to collect the data. We observe that 92% of researchers have made

test case design (66,6% criteria-based, 26% human knowledge-based), 74% of

researchers have made test automation, 92% of researchers have made test execution,

7% % of researchers have made other testing activities.

We have also another graph (Figure 6) in order to examine whether these testing

activities done automatically or manually. For each category, we have presented the

primary studies in Table 5. According to this data, we have observed that in all the

papers, researchers have done test case design activity except [S21] and [S23]. In [21],

researchers have done a static analysis without defining a test case. In [23], Garousi et al

have measured the efficiency of Android' test suite which is publicly available. Thus

they used predefined test cases to work on.

According to Figure 6, all of the test cases created based on a criteria, were generated

automatically by the test tools and remaining test cased which were created based on

30

human knowledge are created manually by the testers. The only difference is in [S8] that,

Amafitano et al. have proposed an approach propped up the reusable event patterns to

generate test cases either manually or automatically.

The test automation activity has done in 20 studies. [S21] and [S23] were again excluded

from this category together with [S1, S4, S12, S14, S17]. This activity was not referred

in these studies.

For test execution category, the results were very similar to test case design. This activity

was used in 25 of papers in total. Only in [S1] and [S21], researchers have only defined

their technique theoretically without presenting the execution process. The test execution

process was done automatically for all of the studies. Only two of them [S9, S17] also

supported manual execution.

Test oracle was also a commonly used testing activity. It was used in 19 studies. 15 of

them used this testing activity automatically and 3 of them manually. In only one study

[S16], it was used both manually and automatically. MobiGuitar, the tool proposed in

[S16], while automatically verifying features of the SUT with assertion mechanism of

JUnit[39], it also produces a crash report which can be analyzed manually to determine

the faults.

Other than these testing activities, C. Hu et al, [S7] have made a bug categorization

study for Android OS. In addition, Rountev at al [S21] have made a novel static analysis

study on GUI code by modeling their flows, associations and relations.

Table 5- Testing Activities in Primary Studies

Type of Testing Activity References of Articles

Test Case Design Criteria-Based [S1], [S2], [S3], [S4], [S5], [S6], [S7],

[S8], [S9], [S10], [S11], [S14], [S16],

[S17], [S18], [S22], [S25], [S27]

Human Knowledge-

Based

[S12], [S13], [S15], [S19], [S20], [S24],

[S26],

Test Automation [S2], [S3], [S5], [S6], [S7], [S8], [S9],

[S10], [S11], [S13], [S15], [S16], [S18],

[S19], [S20], [S22], [S24], [S25], [S26],

[S27]

Test Execution [S2], [S3], [S5], [S6], [S7], [S8], [S9],

[S10], [S11], [S12], [S13], [S14], [S15],

[S16], [S17], [S18], [S19], [S20], [S22],

[S23], [S24], [S25], [S26], [S27]

31

Test Oracle [S2], [S3], [S7], [S9], [S10], [S11], [S12],

[S13], [S15], [S16], [S17], [S18], [S19],

[S22], [S23], [S24], [S25], [S26], [S27]

Other [S7], [S21]

Figure 5- Type Testing Activity

Figure 6- Automation of Testing Activities

32

4.1.2. What are the sources of information used to derive test artifacts? (RQ 1.2)

The sources of information that the test artifacts are derived from can vary from one

technique to another. As described in Section 3.6.4, the categories of sources used to

derive test artifacts are source code a.k.a white-box approach, test requirements and

source code a.k.a gray-box approach, only test requirements a.k.a black-box approach,

logs, inferred model (automatically or manually).

Recall that, the approach presented in an article can use more than one source to derive

the test artifacts. Figure 7 shows the distribution of the articles in our pool according to

source of information. According to these acquisitions, the most popular sources are the

models (62%). In 55% of cases the models were extracted automatically. Only in two of

the studies [S17, S18], the models were extracted manually. In 15 of 27 studies, more

than one resource was used. In six cases, source code and extracted model were used

together. There was only one study [S7] performs a log file analyses to detect potential

bugs. This study has also used source code and the model extracted automatically to

generate test cases. In [S10], Hu et al have presented a testing tool called AppDoctor

which produces bug reports that helps developers to diagnose the results to reduce false

positive bugs detected. We have evaluated this as "other" source of information to derive

test artifacts.

Figure 7- Source of Information to Derive Test Artifacts

4.1.3. Which are the test artifacts generated during testing process? (RQ 1.3)

The term test artifact is usually used to refer something produced during test process. As

described in Section 3.6.9, types of test artifacts are test inputs, test requirements, test

oracle, and test driver.

33

In this RQ, we have investigated the artifacts generated during test process described in

the primary studies. This information gives an idea about working principle of the

proposed techniques or tools.

In Figure 8, we have illustrated the generated test artifacts using the sources we

discussed above. According to this information, almost every study (24 of 27 studies)

produces a test input. The 2 of 3 studies remaining produces test requirements which do

not consist of input values. The only study which does not produce both of them is [S26].

In this study, Sadeh et al make a discussion about existing testing approaches of the GUI

code of Android applications. Finally they give a recommendation about the approaches.

In 14 studies, the test oracles were generated from the sources. Recall from Section 4.1,

the test oracle activity was performed in 19 studies. There were five more studies where

test oracle was used but not produced by the proposed approach. When examining these

studies, in three of them test oracles were applied manually and in remaining two studies,

test oracle was performed by using assertion mechanism which is based on testers'

decisions.

Test drivers are more common than test oracles as generated test artifacts. In 20 studies

these drivers were produced. The most popular framework is JUnit to write test codes. It

have been used in five studies (see also 4.12).

There were no test artifacts generated other than these categories in the primary studies.

Figure 8- Type of Test Artifact Generated

34

4.1.4. Which are the testing environments used to run tests? (RQ 1.4)

Android is an OS which is able to run on mobile devices such as smartphones or tables.

However these devices are not suitable to develop an application. Because the

developing process generally goes on desktop-like systems, another system that runs the

Android is required. While real devices are being used in some cases, emulators which

are virtual machines that run Android as their OS can also be used for other cases. Due

to the fact that development and testing processes are usually goes on parallel, these

development environments are also used for testing too.

Because our research has focused on Android OS, we have collected the data about

testing environment. In Figure 9, we have presented the percentages of testing

environments that are preferred. As explained in Section 3.6.8, there were two choices to

realize test on, an emulator or a real device. Some the researchers [S6, S10, S14, S17]

declared that the proposed technique or tool supports both of these choices. We classify

them as "Both". Moreover, some the researchers [S1, S2, S8, S12, S23, S25] does not

report what they use as an Android system. Thus we classify them as "Not Reported".

In Figure 10, we have presented a graph to illustrate distribution of Android versions

over the testing environment. Because the compatibility issue of techniques or tool, this

information could be very useful. We have pointed the version numbers in the graph and

we used "Not Reported" if there is no information about the Android version. The colors

point the testing environment which is similar with Figure 10. For example, the only

study which worked on Android version 1.5, have used an emulator as the testing

environment. In another case there was a study which worked on Android version 2.2

but its testing environment was not specified whether a real device or an emulator. The

“not reported” column also illustrates the studies where android version was not

specified, e.g. if the color is blue, the study uses an emulator without specifying Android

version or the color is green both Android version and testing environments are not

specified.

When analyzing both of Figure 9 and Figure 10, it can be easily inferred that the most

preferred environment to run tests is the emulators. The emulators were exclusively used

in almost half of the studies (in 13 studies). If we included the studies which have used

both of the systems, this number would be 17.

The second information that can be inferred from these figures is commonness of not

reported information. Generally the Android versions of testing environment were not

specified. In 27 studies, there were only 10 ten studies which have stated the Android

version.

Actually for most cases, emulator can replace real devices or vice versa as a testing

environment. However there was an interesting study [S24] that has a particular testing

setup. In this study, Kaasila et al have established a cluster of smartphones connected to

the internet. This system works as cloud testing center. The user of system uploads

his/her SUT to the system and gets the results from his account of system's web page.

This study was the only multi version system pointed in Figure 10.

35

Figure 9 - Testing Environment

Figure 10- Android Versions over Testing Environment

4.1.5. How to simulate user interactions? (RQ 1.5)

In GUI testing, the main purpose of the test is covering all functions presented by GUI

and verifying them all. GUI is used for users to interact with the program, so a tester

should simulate the user behavior to activate the GUI features. The classification scheme

was given in Section 3.6.6 in detail. According to our classification user actions can be

simulated in two ways; coordinate based approach, and by capturing the widget object.

In some of the articles we have discussed below, both of these approaches were

36

combined while simulating the user interactions. We have used this classification in

Figure 11. We have also listed the articles in Table 6.

Table 6- Approach of Simulating User interaction over Primary Studies

Approach of Simulating User

Interaction

References of Primary Studies

Coordinate Based [S4], [S5], [S7], [S14], [S15], [S19], [S20]

Capturing widget Object [S1], [S2], [S3], [S8], [S10], [S14], [S16],

[S17], [S23], [S25], [S26], [S27]

Both (Combined) [S6], [S9], [S11], [S13], [S18], [S22],

[S24]

N/A [S21]

In the studies that coordinate based approach was used (the studies which uses both the

approaches are included), the technique called record/replay (see Section 3.6.7) was

commonly used. This technique was used in six studies in total [S4, S13, S15, S20, S21,

S23] (see Section 4.13).

The trendiest way to capture widget object to make interactions on is extracting the GUI

model. All occurrences of the model extraction techniques such as crawling [S1, S2, S8],

GUI ripping crawling [S3, S8, S16, S27] (see also Section 3.6.7) were made on the

studies where user interactions were simulated by capturing the widget objects (see

Section 4.13).

The only study that did not simulate user interactions was [S21]. In this study, Rountev

et al, did not execute any test cases.

4.1.6. How to verify GUI behaviors (Oracles)? (RQ 1.6)

In GUI testing the user interaction are usually used as test input in order to evaluate the

features represented on the GUI. These inputs are processed by the SUT and it produces

an output. While these outputs can be a state change on the GUI, they also can be a value

change on a widget or a representation of a calculation result. Most of these outputs can

be stated as GUI changes. Thus, in order to validate the execution, GUI can be

monitored to compare with expected condition. This verification is carried out with GUI

oracles.

37

Figure 11- Approach of Simulation User Interaction

The GUI oracle data collected from primary studies has been represented in Figure 12.

We have categorized oracle approach types in six categories. The classification scheme

given in Section 3.6.5 consist of four major approaches: bitmap comparison, model,

checking widgets via API, manual and optical character recognition (OCR) that is also

known as computer vision, “other” for remaining approaches, and finally “no oracle”.

The oracle data has represented that 8 studies (30%) did not use an oracle to verify GUI

behaviors. Remaining 19 studies were distributed almost uniformly over oracle

approaches. We have demonstrated the matching of primary studies and oracle approach

in Table 7

Table 7- Approach of GUI Behavior Verification over Primary Studies

Approach of GUI Behavior Verification

(Oracle)

References of Primary Studies

Bitmap Comparison [S15], [S19]

Model-Based [S7], [S11], [S17]

Checking widgets via API [S2], [S10], [S23], [S26]

Manual [S9], [S16], [S22], [S24]

Optical Character Recognition (OCR)

a.k.a Computer Vision

[S13], [S15], [S18]

Other [S3], [S12], [S16], [S25], [S27]

38

The Bitmap comparison techniques are generally realized by taking a screenshot of

actual state, to compare it with expected image of expected state. However in [S19], Lin

et al have proposed a test tool called SPAG-C which takes a photo of the actual state

with an external camera. This image was processed to verify the GUI of the SUT. In

Model-Based verification, gathered model were used to verify GUI states [S7, S11] or

GUI elements [S17]. The studies which checked value or states of widget by using

Android API [S2, S10, S23, S26] have also simulated the user interaction by capturing

widget object. The manual oracle was usually done by analyzing the outputs of testing

process such as execution logs [S9, S24], crash reports [S16, S22], or screenshots [S24].

Using the OCR (a.k.a computer vision) technique to verify the GUI of the SUT is firstly

defined in [S13] by Chang et al. They reach the values on the widgets by using this

technique. Two more studies [S15, S18] have also used this technique. The other studies

which were not use the above techniques makes their oracle by using JUnit's assertion

mechanism [S3, S16, S25], by using graph construction algorithm [S12], or by detecting

run time crashes [S27].

Figure 12- Approach of GUI Behavior Verification (Oracle)

4.1.7. What are the types of methods used to evaluation? (RQ 1.7)

Evaluation methods are used to verify the approach/tool presented in the articles in

different ways. These methods measure capabilities of the approach/tool and present the

results in term of exact metrics.

In Figure 13, we have shown the distribution of evaluation methods used in primary

studies according to the classification scheme described in Section 3.6.10. The

39

categories of the evaluation methods as coverage evaluations, mutation testing,

comparing the techniques or the tools with other ones, time/performance evaluations,

and the evaluations based on real fault detection capabilities. We have listed these

categories and the primary studies in Table 8.

Table 8-Type of Evaluation Method over Primary Studies

Type of Evaluation Method References of Primary Studies

Coverage [S1], [S3], [S6], [S8], [S9], [S10], [S13],

[S14], [S16], [S10], [S21], [S22], [S23],

[S25], [S27]

Mutation Testing [S2], [S23]

Manual Comparison [S1], [S2], [S3], [S4], [S5], [S7], [S8],

[S9], [S11], [S14], [S15], [S16], [S17],

[S18], [S19], [S20], [S22], [S23], [S26],

[S27]

Time/Performance [S1], [S4], [S5], [S6], [S9], [S10], [S11],

[S12], [S14], [S15], [S17], [S19], [S20],

[S21], [S22], [S23], [S26]

Detecting Real Faults [S2], [S3], [S4], [S7], [S8], [S9], [S10],

[S11], [S12], [S16], [S18], [S20], [S23],

[S24], [S27]

Other [S12], [S13], [S26]

Although the mostly used evaluation method was manual comparison (74%) the usage

of other techniques such as coverage (52%), time/performance (63%) and detecting real

faults (48%) were also common. It could be inferred that these techniques are usually

used with another one. All of these techniques were used more than half of the studies

(coverage in 14 articles, manual comparison in 20 articles, time/performance in 17

articles, and detecting real faults in 13 articles) except mutation testing. Mutation testing

was used in only 2 studies [S2], [S23].

In the “other” category, Zhang et al [12] have evaluated their technique by checking the

warning produced by their tool manually. They measured the rate of the false positive

with this evaluation. Chang et al [13] have also checked the test scripts if they still work

in later versions. This evaluation was based on reusability. Sadeh et al [26] have made

evaluations on three tools in order to compare them. They have used five evaluation

criteria: ease of writing tests, ease of maintenance, error localization, relevance, and

speed.

40

Figure 13- Type of Evaluation Method

4.1.8. What are the attributes of the systems under test (SUT)? (RQ 1.8)

The specifications of tested applications, call as SUTs, could be very important while

determining whether the proposed approach is proper for another case. This information

can also give a general idea about the focus areas of researches. Thus we have decided to

collect the details of SUTs in order to represent this information to the community.

In our study, we have collected the following data about SUTs: how many SUT were

used, names of SUTs, size of SUTs in terms of line of code (LOC), screen counts of

SUTs, front-end approaches of SUTs, type of SUTs in terms of developing approaches

such as real open-source, academic experiment, and commercial purposes applications

which hide their implementations. After we applied these classifications, we have

realized that most of this information was not reported in the articles. We have presented

results in following figures (figure 14-18).

In 26 of the primary studies, SUTs were used to evaluation (In [S13] no SUT is used). In

total, 334SUTs were tested (we excluded SUTs from [S24], because the author says that

more than 20000 tests have been conducted since November 2011). In six of the studies

[S2, S11, S17, S25, S26, S27], only one SUT was used. The average number of the

SUTs is 17 SUTs per article for the articles where more than one SUT is used. The first

argument about the data collected for attributes of SUTs is that there is not too much

information reported in articles. The amount about reported information has been shown

in Figure 14.

41

Figure 14- Reported Details of SUTs

We got the size of SUT information in terms of line of codes (LOCs). This information

was reported for 31 of SUTs in only six articles (22%) [S1, S2, S8, S12, S23, S27]. The

average size value is 53370 LOCs for each article. We have presented the size

distribution over articles in Figure 15.

42

Figure 15- Sizes of SUTs over Articles

The screen counts of SUTs are valuable information for GUI testing. This information

was also reported for 58 SUTs in six studies [S1, S2, S6, S21, S22, S25]. The average

screen count value is 172 screens per article these studies that specify screen count of the

SUTs. We have shown the screen counts distribution in Figure 16.

43

Figure 16- Screen Counts over Articles

The front-end approach information was reported for 151 SUTs in 14 studies. In Figure

17, we have presented the distribution of this approach. In almost every reported SUT

which were tested in the studies, native Android is used as their front-end approach.

There was only one SUT in a study [S17] different from other. In this study, S. Methong

has used CeBIT2go as the SUT where the web based approach (HTML, CSS, and

JavaScript) is used as its GUI.

44

Figure 17- Front-end Approach of SUT

The type of SUT was the only information specified satisfactorily with the percentage of

92 (25 articles). We have presented the values of this classification in Figure 18. It is

obvious that the most preferred type is commercial. Performing the tests on real world

applications may provide to get more realistic results.

Figure 18- Type of SUT

45

4.2. What are the demographic and bibliometric aspects of the primary studies in

Android GUI testing? (RQ 2)

We have analyzed this research question under three sub questions.

4.2.1. What is the articles count per year? (RQ 2.1)

In order to address this RQ, we got the date information of articles. Recall that, because

our investigation starts from Android’s first release date, we have searched for primary

studies since 2009 up to October 11
th

, 2014. To present more comprehensive results,

while illustrating the date information we have also pointed the types of studies

published over years (Figure 19)

Figure 19- Articles Counts over Years

The article count can be considered as regular. Averages of last three years (2012 - 2014),

7 articles per years are published. The most common type of article that satisfies our

inclusion/exclusion criteria was conference paper (17 papers).

4.2.2. Which are the most popular articles? Which are the mostly

considerable the venues and the authors are in terms of the article count?

(RQ 2.2)

The articles of the studies can be reached using several search engines which are

specialized search to academic studies. We have also discussed about these search

engines in section 3.3. However this investigation can be time consuming and tough task.

46

For this reason, determining some authors or some venues to follow make this research

easier. Thus, in our study, we covered the entire domain and we have brought the

information that demonstrates most considerable articles in term of citation count
9
. We

have used this information to detect the most considerable venues and authors.

Firstly we have listed most considerable articles in term of normalized citation counts

per year. Formula of normalized citation is described below. Table 9 consists of the

article whose normalized citation is higher than five. There were 13 articles.

Table 9- Articles Mostly Cited

Articles Mostly Cited

Article Name Year

Citations

(as of

December,

2014)

Normalized

citations

Ref.

Guided GUI testing of android apps with

minimal restart and approximate learning 2013 13 6.5

[S14]

Testing Android apps through symbolic

execution 2012 25 8.33

[S25]

Targeted and depth-first exploration for

systematic testing of android apps 2013 22 11

[S22]

A GUI crawling-based technique for android

mobile application testing 2011 51 12.75

[S2]

Experiences of system-level model-based GUI
2011 52 13 [S11]

9
Citation counts are taken from http://scholar.google.com.

Normalized Citation =
Citations (as of December, 2014)

Article age

47

testing of an Android application

RERAN: timing- and touch-sensitive record

and replay for Android 2013 26 13

[S20]

A grey-box approach for automated GUI-

model generation of mobile applications 2013 31 15.5

[S1]

GUI testing using computer vision 2010 83 16.6 [S13]

Automated concolic testing of smartphone

apps 2012 60 20

[S5]

Dynodroid: An input generation system for

Android apps 2013 43 21.5

[S9]

Automating GUI testing for Android

applications 2011 87 21.75

[S7]

Using GUI ripping for automated testing of

Android applications 2012 66 22

[S27]

From the venues perspective, the distribution of articles was not very suitable to infer the

active venues in this area. There were only three venues where more than one article has

been published in this area. Thus making an inference would not be proper. We have

listed them in Table 10.

Table 10- List of Venues

Venue Name (Abbreviation) Article Count

Software, IEEE 3

ICSTW 2

OOPSLA 2

ICCET 1

FSE 1

48

CSNT 1

AST 1

ESEC/FSE 1

EuroSys 1

ICST 1

ISSTA 1

CHI 1

ICSM 1

FASE 1

IPCBEE 1

IWSEC 1

ICSE 1

CGO 1

Advances in Computers 1

MUM 1

ACM SIGSOFT Software Engineering

Notes 1

ICSECS 1

ASE 1

In Table 11, we have listed the authors who have more than one article. It can be seen

that D. Amalfitano, A. R. Fasolino, and P. Tramontana are the most productive

researchers with 5 articles in this area.

49

Table 11- List of Most Considerable Authors

Author Name Article Count

Domenico Amalfitano 5

Anna Rita Fasolino 5

PorfiroTramontana 5

TommiTakala 2

Ying-Dar Lin 2

TanzirulAzim 2

MayurNaik 2

Mika Katara 2

Chu 2

IulianNeamtiu 2

Salvatore De Camine 2

Atif M. Memon 2

4.2.3. What is the article distribution over countries? (RQ 2.3)

The articles may be published from all around the world. Counts of articles published

from one country, may show the tendency to the subject. Thus we have gathered the

counts for each country. However, we have decided that not only quantity but also

popularity is an important metric while measuring the tendency. For this reason, we have

also calculated citation normalization the citation per article (CPA) for each country. In

order to get this value, first we summed up the citation counts for each article. Then we

divided it to its age to get the average citation count over years. Finally, we have divided

the summation of citation normalization to article count of country. As a result, we have

had average citation normalization for each country. The calculation formula is given in

below. We have represented both of the information in Figure 20.

50

Figure 20- Article Distribution over Countries

It can be deduced that, the USA is the leading country for both quantity and quality

criteria. Totally, 14 articles have been published from this country and the average

citation count for each article is 12 per year. Italy is the second country in ranking. There

were five article published from this country with 8 CPA and not very surprisingly, all of

these article were written by D. Amalfitano, A. R. Fasolino, and P. Tramontana who are

the most productive researcher in this area (see 4.8). Another notable country, Finland,

also has three articles. These articles were also quite popular in the domain with 5 CPA.

Other countries have not published adequate articles yet to analyze.

4.3. What are the trends and future direction in GUI testing of Android

applications? (RQ 3)

We have examined this research question under five sub questions.

4.3.1. What are the types of articles published? (RQ 3.1)

As we have discussed in Section 3.6.2, in [30], Wieringa et al have created a

classification scheme that defines type of articles according to their manner of

approaching to the problems defined in the articles. This classification analyses the

studies in six different approaches; Solution proposal, validation research, evaluation

research, and experience papers, opinion papers, and philosophical papers. Due to the

Citation Normalization per Article (CPA) =

Article Count for the Country

Sum of Normalized Citations for all Article

from the Country (see Section 4.8)

51

inclusion/exclusion criteria of our study, there is no opinion and philosophical paper in

our pool. We have presented the results for this classification in Figure 21.

Figure 21- Type of Research Article

The percentages of articles are nearly same. The empirical studies (validation and

evaluation researches) are more than half of the article pool (59%). The researchers

usually make contributions such as techniques and tools (see 4.11).

Experience papers were based on several subjects such as suggestions of the authors

about tools or techniques [S18, S26], applying an existing tool/technique to a case [S11,

S17], or investigating the effectiveness of an existing suite [S23].

4.3.2. What are the contributions provided by researchers? (RQ 3.2)

We have decided that the distribution of the contributions of the articles could be a base

knowledge in order to infer recent trends. Recall that, in Section 3.6.1, we have defined

five types of contribution which are test method/technique, test tool, test model, metric,

and process and the “other” for remaining contributions. The data collected from

primary studies could be found in Figure 22.

52

Figure 22- Type of Contribution

In total 19 test tools and 21 test techniques were proposed as contributions to the

Android GUI testing domain. The proposed test techniques were usually implemented in

a test tools that is also novel [S1, S2, S3, S4, S5, S6, S9, S10, S12, S13, S14, S16, S19,

S20, S22, S25].

The contribution of test model, metric or process has to involve a novelty. For test

models this novelty was usually extraction approach of the model. In [S27], researchers

have presented a technique called GUI ripping that extract the GUI model using reverse

engineering. This paper was also mostly cited paper in our repository (see Section 4.8).

In the “other” contributions category there are six studies. In [S7] and [S9], researchers

have made a research to categories the bugs in Android GUI testing. [S6] defined the

difficulties while performing an automatic GUI testing. Another study [S12] have

addressed a novel problem about invalid access of a thread to main GUI thread. The last

type of contribution was case study which was provided in 2 studies [S18, S23].

4.3.3. Which are the most significant testing tools? Which are 3rd party

components used by the tools? (RQ 3.3)

The process of testing has many tasks to carry out. Performing these tasks manually

requires too much work-power, time and attention. Also, this manual approach may

decrease the quality of the verification. Therefore test tools are needed in order to apply

the testing process more successfully.

In the articles we have analyzed, the researchers have proposed or used many tools in

order to perform an testing activity. Recall that in Section 4.11 there were 19 articles that

propose a test tool. Because we aimed to collect the most significant tools, we have

listed the tools that were used or proposed in the most cited articles in our pool as

53

presented in Table 9. We have made a little description about what they are able to do in

Table12.

Table 12- Test Tools

Name of Test Tool Description Reference

A2T2

 Able to detect java run time crashes

 Has a crawler component which

responsible of extracting the model.

 It produces a crash report

 Simulates user interactions

 Generates test cases automatically

 Executes test cases

 Makes Oracle via API

[S2]

ACTEve

 Used concolic testing

 Simulates user interactions

 Generates test cases automatically

 Executes test cases

 No Oracle

[S5]

AndroidRipper

 Use GUI ripping to extract a model

 Produces a crash report

 Generates test cases automatically

 Executes test cases

 Oracle can be done manually by using the

crash report

[S3]

Automatic Android

App Explorer (A3E)

 Uses RERAN to perform record/replay

action

 Uses a strategy named Depth-first

Exploration to simulate user actions and to

get model of the SUT.

 Generates test cases automatically

 Executes test cases

 No Oracle

[S22]

Dynodroid Generates random inputs to the SUT, then

observes the reactions and enhance the

input for next time by using this value

 Generates test cases automatically

 Executes test cases both automatically or

manually

 Manual oracle with emulator logs.

[S9]

54

ORBIT

 Uses a crawler to extract model of the

SUT.

 Uses static analysis to support the crawler

 Generates test cases automatically

 No execution

 No Oracle

[S1]

RERAN

 Uses record/replay technique

 Manual test case design

 Automatic execution of test cases

 No oracle

[S20]

Sikuli Test

 Manual test case design

 Automatic generation of test cases

 Uses OCR to verify test cases

[S13]

SwiftHand

 Uses active learning to extract the model

as finite state machine

 Automatic generation of test cases

 Automatic execution of test cases

 No oracle

[S14]

These tools generally use 3rd party component such executables, frameworks, libraries

while they are functioning. A tool can use more than component at once. Even, some of

developers use another tool as an external program for its functionalities to avoid

developing it from scratch. Thus this information would be valuable for testers, users,

and especially developers.

In Figure 23, we have demonstrated the trendiest third party components which are used

in the primary studies. We have demonstrated the components used by more than one

tool in this figure. The complete list of components is given in Table 13. It is observed

that JUnit and Robotium Framework are the most trendy third party components which

were used in five projects for the testing tools.

55

Figure 23- 3rd Party Components

Table 13- List of 3rd party Components

1. AndroidRipper 12. chimpchat

23. Robotium

Framework

2. Android Driver 13. EmguCV

24. SCanDroid

framework

3. Android

Instrumentation

Framework 14. EMMA
25. Selenium 2.0

4. Android Screencast 15. JUnit
26. Skuli

5. Android Sensor

Framework

16. Microsoft

WCF

27. Soot Analysis

Framework

6. Android's Send Event

Tool 17. MobileTest
28. Soot Framework

7. Apache CXF

Framework 18. Modisco
29. SPAG

8. asmdex 19. Monkey

30. Symbolic

Pathfinder

9. A-Tool by Symbio

20. Monkey

Runner
31. TEMA Toolset

56

10. ATS4 AppModel 21. RERAN
32. Troyd Tool

11. axml 22. Robolectric

33. WALA static-

analysis

4.3.4. What are the testing techniques/approaches used during test process?

(RQ 3.4)

Determining commonly used techniques or approaches is an important task. A valuable

knowledge is gathered as a result of this task. We believe that testers, tool designers, and

even developers may use this knowledge for various purposes.

In Figure 24, we have demonstrated result of the data extraction according to our

classification. In our classification scheme, we have included 12 techniques and put the

“Other” category as 13
th

 choice. Researchers could use multiple techniques in their

studies. The techniques included in this scheme were defined in Section 3.6.7.

Figure 24- Techniques or Approaches Used In Researches

According to Figure 24, the mostly used technique is model-based testing [S3, S4, S6,

S7, S10, S11, S12, S14, S16, S17, S18, S22, S25]. The GUI ripping technique was used

in four articles [S3, S7, S15, S27]. All of these articles used a tool called AndroidRipper

(see section 4.12) as a testing tool or a third party component. This tool has been

proposed by Amalfitano et al who are of the most productive researchers in this area (see

Table 11) in an article [S27] which is the most popular article in our pool (see Table 9).

The model checking and search-based testing techniques were not used in any of the

studies. Two of the studies use techniques that fell into the “other” category. W. Choi et

al [S14] have used the active learning to extract the model of the application.

Additionally in [S26], Sadeh et al have used the code refactoring.

57

4.3.5. What are the future directions of current researches? (RQ 3.5)

In most of the articles, researchers have declared their road map for future studies. These

plans can be used to foresee the future trends, needs or points that are not addressed

adequately yet. Therefore, we have presented future plans of researches of the primary

studies with a classification scheme. In this scheme, we have gathered the plans under

five main headings. As discussed in Section (3.6.13), the headings were; developing a

new tool, improving the current tool, developing a new technique, improving the current

technique, and making the research in more detailed manner. The researchers may aim to

realize more than one goal in the future. The last heading was “no future plan”.

Figure 25- Future Plan

When analyzing the results, most of articles (19 of 27) plans were specified as future

work. Most of these plans were on improving the actual test tool or the technique (in 16

studies when intersections were eliminated). In only one study [S8], the authors aimed to

develop a new testing tool while improving existing one which is called Extended

Ripper and making the research more detailed. Also A. Jääskeläinen et al [S18] intended

to improve current condition of their tool and technique. However, they have suggested

developing static tools to debug the models because of existing model debugging

approach's slowness. Finally, developing a new technique was also set as a future goal in

only one study [S2]. In this study, D. Amalfitano et al have aimed to investigate and

develop more convenient techniques to improve the efficiency of the current test suites.

58

59

CHAPTER 5

DISCUSSION

The results are discussed in this section. We have summed up the inferences and trends

for each RQ. We have also presented implications for our target audience who are

researchers, testers, and test tool developers.

RQ 1.1 - The testing activities applied in the primary studies: In this section, the

results show that 66,6% of articles are criteria-based test case design, while 26% of

articles are human knowledge-based. There are only 2 studies [S21, S23] which do not

use test case design. 74% of researchers have made test automation, 92% of articles have

made test execution, and 7% of articles have made other testing activities which are bug

categorization [S7] and a novel static analysis study on GUI code by modeling their

flows, associations and relations [S21]. Test case design and test execution are

performed at almost every study. Usage of the others activities, such as test automation

and test oracle is quite common.

RQ 1.2 - The sources of information used to derive test artifacts: The categories of

sources used to derive test artifacts are automatically inferred models (55%), only test

requirements (40%), source code (37%), both test requirements and source code together

(11%), manually inferred models (7%). and logs (3%). Although it seems that the most

common resources to derive test artifacts are using models, the models are not used

individually. In 15 of 27 studies, more than one resource is used to create test artifacts.

40% of these cases, source code and extracted model are used together.

RQ 1.3 - The test artifacts derived: The most frequent test artifacts generated during

test process is test input (88%). Test driver (74%), test oracle (55%) and test

requirements (7%) follows it. There is no other test artifact generated other than these

categories.

60

RQ 1.4 - The testing environment used to run tests: In the test process of Android

applications, there have to be a system that runs Android OS. This system can be a real

device like phone or tablet, or an emulator, specifying this information in the studies is

important. In 22% of articles, this information is not specified. In the studies that specify

the testing environment, emulator is used frequently (48%). While 14% of researchers

using only real devices as their testing environment, in the remaining articles both the

systems are used (14%).

The Android version the tests run on is also valuable information. However this

information is not declared frequently. In 62% of studies the Android version is not

specified. Android version 1.5 is used as the running platform as once [S4], version 2.1

is used as twice [S1,S23]. The counts of Android version declared in the studies are one

for v1.5 [S4], two for v2.1[S11, S23], one for v.2.2 [S2], two for v2.3[S9, S19], one for

2.3.3 [S8], one for 2.3.4 [S20], and one for 4.1.2 [S14]. There is only one study [S24]

that works on multi Android versions.

RQ 1.5 - Ways of simulation of user interactions and (oracles): The user interaction

is generally performed by capturing widget objects on the GUI (44%). The trendiest way

to capture widget object to simulate user interactions is using the extracted the GUI

model [S1, S2, S3, S8, S16, S27]. The second way to simulate user interactions on the

GUI is coordinate based technique (26%). In 26% studies these techniques are used

together. In the studies that coordinate based approach is used (the studies which uses

both the approaches are included), the record/replay technique is commonly used

[S4,S13,S15,S20,S21,S23]. There is only one article [S21] that does not simulate user

interactions.

RQ 1.6 - The GUI oracle techniques: The oracle mechanism, which determines

whether a test has passed or failed, is realized most frequently by checking widgets via

API (15% of the studies) and manually (15% of the studies).Model-based (11%) oracles

and Optical Character Recognition (OCR) a.k.a Computer Vision (11%) are the next

frequent techniques. Bitmap Comparison is used in 7% of the studies as oracles.

Besides, there are five articles which verify the GUI behaviors other than these ways.

These studies makes their oracle by using JUnit's assertion mechanism [S3, S16, S25],

by using graph construction algorithm [S12], or by detecting run time crashes [S27].

RQ 1.7 - The types of evaluation methods: The most common evaluation method is

manual comparison (74%). The followers are the usage of other techniques such as

coverage (52%), time/performance (63%) and detecting real faults (48%). We have

observed that these techniques are usually used together. All of these techniques are used

more than half of the studies except mutation testing. Mutation testing is used in only 2

studies [S2, S23].

RQ 1.8 - The attributes of the system under test (SUT): In 96% of the articles (except

[S13]), one or more SUT is used to evaluation. While only one SUT is used in six

studies [S2,S11,S17,S25,S26,S27], in remaining 19 articles, 328 SUTs are tested in total

(we have excluded applications from [S24], because the author says that more than

61

20000 tests have been conducted since November 2011). The average of the SUTs is 17

SUTs per article for these articles.

We have observed that the details of the SUTs are not adequately reported. The

percentages of the reported value are: 22% for size in LOC, 22% for number of screens,

52% for front-end approach, 93% for type (real open-source, academic experimental and

commercial). The average value of the size of the SUT, in terms of LOC, is 53370 for

each article which reports this information. The average screen counts are 172 for each

article where the information also is reported. 90 percent of the reported front-end

approaches of the SUTs are native android. In only one article web approach is used [17].

Most of the reported SUTs are commercial applications (64%). 24% of these SUTs are

real open-source and remaining SUTs are academic experimental (12%).

RQ 2.1- Articles counts per year: The article counts over years seem uniform except

2009. While the averages of last three years (2012 - 2014) are 7 articles per year, there is

no articles published in 2009. The most common type of article that satisfies our

inclusion/exclusion criteria is conference paper (17 papers) which is also distributed

uniformly over years.

RQ 2.2- The most popular articles and the mostly considerable the venues and the

authors: We have listed the articles which are cited more than for 5 times per year. We

got 12 articles (44%). We also listed the venues according to their article counts. There

are only 3 venues which has published more than one article in this area. Thus making

an inference will not be proper. Finally, we specified the authors in terms of article

counts. Domenico Amalfitano, Anna Rita Fasolino, and Porfiro Tramontana are the most

productive authors with five articles. They also worked together in all of these articles.

RQ 2.3- The article distribution over countries: USA is the leading country with 14

articles. The average citation count for each article is 12 citations per year. Italy is the

second country in ranking. There are five articles published from this country. The

average citation count for each article is 8 citations per year.

RQ 3.1- The types of articles published: 33% for the evaluation researches, 25% for

the validation researches, 22% for the solution proposals, and 18% experience papers.

The validation and evaluation researches can be considered as empirical studies (59%).

This trend shows that authors not only propose a solution in this area but also evaluate

their proposals in detailed experiments.

RQ 3.2- The contributions provided by researchers: We have classified the

contributions which of the articles as: test methods/techniques (77%), test tools (70%),

test model (37%), metric (18%), process (22%). The contributions other than these

categories are proposed in six studies [S7, S9, S12, S18, S23]. The contributions are;

bug categorizations for Android GUI testing [S7, S9], defining the difficulties while

performing an automatic GUI testing [S6], addressing a novel problem about invalid

access of a thread to main GUI thread [S12], and two case studies which [S18, S23].

62

RQ 3.3 - The most significant testing tools and the trendiest third party components

used by the tools: In order to list the most considerable testing tools, we have

investigated the mostly cited articles we have listed before. The mostly cited articles list

consists of 12 articles. However 3 of them do not propose or use a tool to demonstrate.

Therefore we have listed 9 tools as the most significant: A2T2, ACTEve, AndroidRipper,

Automatic Android App Explorer (A3E), Dynodroid, ORBIT, RERAN, Sikuli Test, and

SwiftHand.

We have broken down the third party components used by the testing tools. The most

popular components were Robotium Framework and JUnit which were used in 5 tools.

RQ 3.4 – The testing techniques/approaches have been used: We have made a

classification about techniques which consist of 9 techniques which are used in the

articles: Model-based testing (48%), Dynamic analysis (29%), Random testing (22%),

Record-replay analysis (22%), Static program analysis (18%), GUI ripping (15%),

Symbolic execution (7%), Concolic testing (Dynamic Symbolic Execution) (3%),

Model checking (0%), Search-based testing (0%). In a study, more than one technique

can be used. The first significant observation from this section is that the most popular

approach is model-based testing in this area. In contrast, search-based testing and model

checking are not used in any of the articles.

RQ 3.5 - The future directions: Most of researchers (70%) have plans for future works.

84 percent of these plans (16 of 19) are on improving the actual test tool or the technique

exclusively. In only one study [S8], the authors aim to develop a new testing tool. And

also D. Amalfitano et al [S2] are the only researchers that intend to develop new

techniques in order to improve the efficiency of the current test suites.

Implications from Researchers' Perspective

In this study, we have presented the information which can be used by the researchers to

make inferences about our area. Using our study, a researcher can follow the trends

about article types, contributions provided, testing activities and future directions of

current studies. 27 studies are included in this SM. This count is less than expected for

this 5-year-period (from 2009 to 2014). More researchers should make studies on this

area. The most common article type is conference paper. Therefore, more mature articles

such as journals are also required. In contribution facet, most of the researchers have

proposed test methods and they also have implemented these methods into testing tools.

These tools are used for evaluations so we suggest researchers to resume this approach.

Testing activities are similar for most of the studies. Test case design (in most of cases,

criteria based test case design has been preferred rather than human knowledge-based

test case design), test automation, and test execution were applied in almost all of the

studies. However test oracle was not very common. Therefore, researcher should pay

more attention to the test oracle activities. For future studies, almost all of the

researchers have declared the future goals about their topics. For that reason, in future,

the studies will be examined further. This also can enhance the actual maturity level of

the domain. On the other hand, in most of the studies, the version of Android where the

63

testing process was performed was not declared. This lack of knowledge should be

resolved for future studies.

We also demonstrated the evaluation techniques of the proposed testing tools or

techniques and attributes of SUTs used in current studies. In primary studies, common

evaluation techniques were manual comparison, coverage, time/performance, detecting

real faults. On the other hand, mutation testing was used rarely. In most of cases more

than one evaluation techniques were used. It is also useful information for researchers

while determining the evaluation approaches of their studies.

The most popular articles, we presented, can be used to work on follow up studies in

order to make the research deeper. In addition we have observed the most productive

researchers who are Domenico Amalfitano, Anna Rita Fasolino, and Porfiro Tramontana

from Italy. A researcher, who wants work on this domain, can also follow these

researchers. On the other hand, because the articles were distributed uniformly over

venues, we couldn’t determine the venues worth to follow.

This study is also a comprehensive literature review. It provides a well-defined set of

studies which satisfy specific criteria. Therefore it helps the researchers while studying

on subjects related to our area.

Implications from Testers' Perspective

Target audience of our study also consists of testers (a.k.a test engineers) who bridge the

gap between quality control (QC) and quality assurance (QA). In this study, we have

examined the testing process of GUI in many ways such as testing activities, derived test

artifacts and their sources, preferred testing environments, approaches of user interaction

simulations, and approaches of GUI oracles. Model based test was the most preferred

testing technique for Android GUI testing. Therefore model generation techniques are

also common such as crawling and GUI ripping. Test artifacts were usually derived from

(manually or automatically) inferred models of the SUTs. In most cases not only one but

also complementary sources were used such sources codes or requirements of the SUTs.

Usual test artifacts were test inputs, test drivers and test oracles. For testing

environments, emulators were used more than real devices. In some studies both of these

systems were used. This may enhance the reliability of the evaluation. The user

interaction was generally performed by capturing widget objects on the GUI. The most

common way to capture widget object to simulate user interactions is using the extracted

the GUI model. The oracle approaches, was performed frequently by checking widgets

via API and manually. Model-based oracles and Optical Character Recognition (OCR)

were also used in some of the studies. This information could be beneficial for the testers.

We have also presented the mostly preferred techniques with appropriate tools which can

be used by the testers in GUI testing activities in Android applications. We have listed

the most significant tools which were A2T2, ACTEve, AndroidRipper, Automatic

Android App Explorer (A3E), Dynodroid, ORBIT, RERAN, Sikuli Test, and SwiftHand.

These tools have been used for test processes such as test cases generation, test

execution and test oracle.

64

Implications from Test Tool Developers' Perspective

Test tool developers are also in our target audience. In our study, we provided the mostly

preferred test tools used in our domain. The implementation details of proposed testing

tools are usually given in the related studies. These details often consist of development

steps, preferred development languages, components, and evaluation techniques. This

information can be guideline for developers. Although it is not gathered in this study, it

can be reached by examining the related studies. We have also listed the abilities of the

tool used in the most popular articles.

We have presented the third party components used in tool development as building

blocks. The most popular components were Robotium Framework, JUnit, Android

instrumentation framework, monkey tool, and monkey runner tool. Each component

performs a specific task. Therefore these components can be placed in another tool in

order to avoid developing the part which performs similar task from scratch.

65

CHAPTER 6

CONCLUSION & FUTURE WORK

Mobile devices are becoming popular day by day. With the smart phone concept,

because their abilities and capacities are increased, new and more capable applications

are developed every day. However the development process of these applications

contains many challenges in several ways. One of these ways is that the operating

systems that are used to run smart phones are new platforms. Thus, there are not too

many experienced developers in the industry. Another challenge is the novelties of the

user interface approaches. More attractive and capable screens could be presented in the

application. Accordingly, the UI design became more complicated task.

Android is the most popular OS in mobile domain. This success of Android increases the

number of applications that run on Android. Because there are over 1 million

applications in the Google Play since 2013, any positive effect in the Android

application testing process can effect countless application. Therefore we decided to

focus on the Android OS.

Due to the challenges of development process of Android applications, the applications

could be more error-prone. Therefore, testing process is very important task for mobile

applications. In order to set light to this issue, we decided make an SM study that is a

well accepted study in software engineering to make an investigation on the GUI testing

of Android applications area to present an outline and find out the conditions of the

researches such as amounts, types, frequencies, results. We have applied this technique

to all of the related studies that are collected with a literature review from 2009 to

November 11
th

, 2014.

In our SM study, we followed steps defined in [13] to apply SM studies to software

engineering areas. Towards these steps, first we defined our goal and corresponding

research questions (RQ). Main goal was classifying and analyzing the literature on the

subject GUI testing of Android applications area to specify to the type of researches,

results of their studies and their tendency. Given these purposes we defined our RQs.

We asked three main RQs to define major titles and detailed sub-questions to get

66

information in specified manners. Shortly our main RQs are about: (1) nature about

Android GUI testing, (2) demographic and bibliometric aspects of the empirical studies

in Android GUI testing, (3) the trends and future direction in GUI testing of Android

application. We divided our first main RQ into 8 sub-questions. They are related

following issues respectively: (RQ 1.1) testing activities applied, (RQ 1.2) sources of

information used to derive test artifacts and (RQ 1.3) test artifacts generated during

testing process, (RQ 1.4) Android systems used to run tests, (RQ 1.5) user interactions

simulation approach and (RQ 1.6) verification of GUI behaviors approaches, (RQ 1.7)

types of evaluation methods, and (RQ 1.8) attributes of the system under test (SUT). We

have described three sub-questions to our second RQ. The sub-questions are about

respectively: (RQ 2.1) articles count per year, (RQ 2.2) venues and authors are mostly

considerable in terms of the article and citation counts, (RQ 2.3) the article distribution

over countries. The subjects of sub-questions of our last RQ are: (RQ 3.1) types of

articles published and 3rd party components used by these tools, (RQ 3.2) contributions

provided by researchers, (RQ 3.3) testing tools are used or proposed, (RQ 3.4)

techniques/approaches have been used, (RQ 3.5) future directions of current researches.

In this study, there are 27 articles published related to our domain between 2009 and

November 11
th

, 2014. The article count is less than expected for this 5-year-period.

Although most of these articles propose tools or techniques, it can be said that the

maturity level of this area is not very high. The studies presented in the articles are rarely

improved with the follow-up studies. There are 5 articles [S2, S3, S8, S16, S27] which

can be considered as follow-up studies for each other. One of these studies [S27]

proposes a tool called AndroidRipper which is also a well-accepted testing tool in this

area. Another base study is done by Chang et al [S13]. The tool called Sikuli is used as a

third-party component for the tools proposed in two articles [17, 19]. The study done by

Gomez et al [S20] was also an inspirational work for an article [S22]. Azim et al [S22]

use the tool called RERAN in their testing tool. There should be more follow-up studies

to improve the maturity level of this area.

The model-based technique is the most preferred testing technique in this domain. In 13

studies [S3, S4, S6, S7, S10, S11, S12, S14, S16, S17, S18, S22, S25], the model of the

SUT is extracted. However the technique is used to extract the model can vary. Most

popular extraction techniques are: (1) GUI Ripping used in four articles [S3, S8, S16,

S27] and (2) Crawling used in three articles [S1, S2, S5]. Note that in some articles [S1,

S2, S27], although the model is extracted, researchers does not finish the testing process.

Therefore there may not be a model-based testing.

All of the articles but one [S23], propose or use testing tools. However, not all of them

are available to download. Only the tools used in 12 of articles are able to be reached on

the web. We have listed these tools on Table 14. Note that AndroidRipper is used in two

studies [S3, S27] so we have listed 11 testing tools.

67

Table 14- Testing Tool Available to Download

Tool Name URL

AndroidRipper https://github.com/reverse-

unina/AndroidRipper

ACTEve https://code.google.com/p/acteve/

Dynodroid http://pag.gatech.edu/dynodroid

GUIErrorDetector http://guierrordetector.googlecode.com

Sikuli http://www.sikuli.org/

SwiftHand https://github.com/wtchoi/SwiftHand

TEMA http://tema.cs.tut.fi/

RERAN http://www.androidreran.com/

Automatic Android App Explorer (A3E) http://spruce.cs.ucr.edu/a3e/

Testdroid http://testdroid.com/

Robolectric http://robolectric.org/

The SUTs are usually used to evaluate techniques or tools. Therefore the specifications

of the SUTs are important while deciding the suitability of these tools/techniques.

However the details of SUTs are not reported adequately (see Figure 14). Likewise, the

Android version is rarely specified too (see Figure 10). Researchers should pay more

attention on the reporting issue.

The articles can be published from any country the world. However, it can be easily

deduced that, the there are two dominating countries in this area: USA and Italy. From

both of the countries, 19 articles (14 from USA, 6 from Italy) are published. This takes

70 percent of the article pool. Rest of the articles is published from 7 different countries.

We have collected the future plans information from each article to determine the future

directions of the area. According to information, the mostly declared future plan is

improving the actual tool proposed (48%). Only in the 29 percent of the articles, the

future plan is not declared. Therefore, this area seems to be more attraction center for the

researchers with improving participation in future.

For future work, we want to keep our repository [22] up to date. We will search for new

articles periodically to involve them to our study. Thereby, the trends and novelties can

68

be followed more precisely. In addition, a SLR study can be conducted as a follow-up

complementary study based on this study. This SLR study will continue to work on the

focus of our SM study with a further thought.

69

REFERENCES

References of Primary Studies

[S1] Wei Yang, Mukul R. Prasad, Tao Xie. (2013). A grey-box approach for

automated GUI-model generation of mobile applications. FASE.

[S2] Domenico Amalfitano, Anna Rita Fasolino, Porfiro Tramontana. (2011). A GUI

crawling-based technique for android mobile application testing. ICSTW.

[S3] Domenico Amalfitano, Anna Rita Fasolino, Porfiro Tramontana, Salvatore De

Camine, Gennaro Imparato. (2012). A toolset for GUI testing of Android

applications. ICSM.

[S4] Zhifang Liu, Xiaopeng Gao, Xiang Long. (2010). Adaptive Random Testing of

Mobile Application. ICCET.

[S5] Saswat Anand, Mayur Naik, Hongseok Yang. (2012). Automated concolic testing

of smartphone apps. FSE.

[S6] Peng Wang, Bin Liang, Wei You, Jingzhe Li, Wenchang Shi. (2014). Automatic

Android GUI Traversal with High Coverage. CSNT.

[S7] Cuixiong Hu, Lulian Neamtiu. (2011). Automating GUI testing for Android

applications. AST.

[S8] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Nicola

Amatucci. (2013). Considering Context Events in Event-Based Testing of Mobile

Applications. ICSTW.

[S9] Aravind Machiry, Rohan Tahiliani, Mayur Naik. (2013). Dynodroid: An input

generation system for Android apps. ESEC/FSE.

[S10] Gang Hu, Xinhao Yuan, Junfeng Yang, Yang Tang. (2014). Efficiently,

effectively detecting mobile app bugs with AppDoctor. EuroSys.

[S11] Tommi Takala, Mika Katara. (2011). Experiences of system-level model-based

GUI testing of an Android application. ICST.

70

[S12] Sai Zhang, Hao Lü, Michael D. Ernst. (2012). Finding errors in multithreaded

GUI applications. ISSTA.

[S13] Tsung-Hsiang Chang, Tom Yeh, Robert C. Miller. (2010). GUI testing using

computer vision. CHI.

[S14] Wontae Choi, George Necula, Koushik Sen. (2013). Guided GUI testing of

android apps with minimal restart and approximate learning. OOPSLA.

[S15] Ying-Dar Lin, Chu, E.T.-H., Shang-Che Yu, Yuan-Cheng Lai. (2014). Improving

the Accuracy of Automated GUI Testing for Embedded Systems. Software, IEEE .

[S16] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung

Ta, Atif M. Memon. (2014). MobiGUITAR -- A Tool for Automated Model-

Based Testing of Mobile Apps. Software, IEEE .

[S17] Methong, S. (2012). Model-based Automated GUI Testing For Android Web

Application Frameworks. IPCBEE .

[S18] Antti Jääskeläinen, Tommi Takala, Mika Katara. (2012). Model-based GUI

testing of Android applications. IWSEC.

[S19] Ying-Dar Lin, Rojas, J.F., Chu, E.T.-H., Yuan-Cheng Lai. (2014). On the

accuracy, efficiency, and reusability of automated test oracles for android devices.

Software, IEEE .

[S20] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, Todd Millstein. (2013).

RERAN: timing- and touch-sensitive record and replay for Android. ICSE.

[S21] Atanas Rountev, Dacong Yan. (2014). Static Reference Analysis for GUI Objects

in Android Software. CGO.

[S22] Tanzirul Azim, Iulian Neamtiu. (2013). Targeted and depth-first exploration for

systematic testing of android apps. OOPSLA.

[S23] Vahid Garousi, Riley Kotchorek, Michael Smith. (2013). Test Cost-Effectiveness

and Defect Density: A Case Study on the Android Platform. In Advances in

Computers.

[S24] Jouko Kaasila, Denzil Ferreira, Vassilis Kostakos, Timo Ojala. (2012).

TestDroid:Automated Remote UI testing on Android. MUM.

[S25] Nariman Mirzaei, Sam Malek, Corina S. Păsăreanu, Naeem Esfahani, Riyadh

Mahmood. (2012). Testing Android apps through symbolic execution. ACM

SIGSOFT Software Engineering Notes .

71

[S26] Ben Sadeh, Kjetil Ørbekk, Magnus M. Eide, Njaal C. A. Gjerde, Trygve A.

Tønnesland, Sundar Gopalakrishnan. (2011). Towards Unit Testing of User

Interface Code for Android Mobile Applications. ICSECS.

[S27] Domenico Amalfitano, Anna Rita Fasolino, Porfiro Tramontana, Salvatore De

Camine, Atif M. Memon. (2012). Using GUI ripping for automated testing of

Android applications. ASE.

Other References

[1] Last accessed November 25, 2014, from Strategy Analytics, Android Hits Record

85 Percent Share of Global Smartphone Shipments in Q2 2014:

http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=9

921

[2] Last accessed November25, 2014, from

http://www.qrcodescanning.com/smartphonehist.html

[3] Last accessed November 25, 2014, from

http://www.statista.com/statistics/263401/global-apple-iphone-sales-since-3rd-

quarter-2007/

[4] Last accessed November 25, 2014, from

http://www.tutorialspoint.com/android/android_architecture.htm

[5] Last accessed November 25, 2014, from

http://developer.android.com/guide/components/index.html

[6] Last accessed November 25, 2014, from

http://developer.android.com/tools/help/monkey.html

[7] Last accessed November 25, 2014, from

http://developer.android.com/tools/help/monkeyrunner_concepts.html

[8] (2009, April 27). Last accessed August 22, 2014, from http://android-

developers.blogspot.com.tr/2009/04/android-15-is-here.html

[9] (2013, July 24). Last accessed 8 2014, 22, from

http://www.androidguys.com/2013/07/24/sundar-pichai-there-are-now-more-

than-1-million-android-apps/

[10] (2013, October 22). Last accessed August 22, 2014, from

http://www.theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-

in-the-app-store

[11] B. Kitchenham, S. C. (2007). Guidelines for Performing Systematic Literature

Reviews in Software engineering. Evidence-Based Software Engineering .

72

[12] Changjiang Jia, Y. T. (2013). Using the 5W+1H Model in Reporting Systematic

Literature Review: A Case Study on Software Testing for Cloud Computing.

Quality Software (QSIC).

[13] David Budgen, M. T. (2008). Using Mapping Studies in Software Engineering.

Psychology of Programming Interest Group , (pp. 195-204).

[14] Érica F. Souza1, R. A. (2013). Ontologies in Software Testing: A Systematic

Literature Review. CEUR Workshop, (pp. 71-82).

[15] Érica Ferreira de Souzaa, R. d. (2014). Knowledge management initiatives in

software testing: A mapping study. Information and Software Technology .

[16] Frank Elberzhager, A. R. (2013). Analysis and testing of matlabsimulink models:

a systematic mapping study. International Workshop on Joining AcadeMiA and

Industry Contributions to testing Automation, (pp. 29-34). New York.

[17] Garousi, V. Online Paper Repository for Developing Scientific Software: A

Systematic Mapping. Last accessed August 22, 2014, from

http://softqual.ucalgary.ca/projects/2012/SM_CSE/

[18] Garousi, V. Online Paper Repository for GUI Testing. Last accessed August 22,

2014, from http://www.softqual.ucalgary.ca/projects/2012/GUI_SM/

[19] Garousi, V. Software Test-Code Engineering: A Systematic Mapping. Last

accessed August 22, 2014, from

http://www.softqual.ucalgary.ca/projects/SM/STCE

[20] Gilmar Ferreira Arantes, P. d.-J. (2013). Functional Software Testing: A

Systematic Mapping Study. IARIA, (pp. 11-17). Venice.

[21] Ishan Banerjeea, Bao Nguyena, Vahid Garousi, Atif Memon. (2013). Graphical

user interface (GUI) testing: Systematic mapping and repository. Information

and Software Technology , 1679-1694.

[22] Muzaffer Aydın, A. B.-C., V. GarousiOnline Paper Repository for GUI Testing of

Android Applications: A Systematic Mapping.Last accessed November 25, 2014,

from http://tinyurl.com/k8x8que

[23] S. Dogan, A. B.-C., V. GarousiOnline SLR Data for Web Application Testing

(WAT). Last accessed August 22, 2014, from http://goo.gl/VayAr

[24] Serdar Doğan, A. B.-C., V. Garousi (2014). Web application testing: A systematic

literature review. Journal of Systems and Software , 174-201.

[25] Upulee Kanewala, J. M. (2014). Testing scientific software: A systematic

literature review. Information and Software Technology , 1219–1232.

73

[26] V. Basili, G. C. (1994). Chapter Goal Question Metric Approach. In

Encyclopedia of Software Engineering (pp. 528-532). John Wiley & Sons Inc.

[27] Y. Jia, M. H. Mutation Testing Paper Repository. Last accessed August 22, 2014,

from http://www.dcs.kcl.ac.uk/pg/jiayue/repository

[28] Zhang, Y. Repository of Publications on Search based Software Engineering.

Last accessed August 22, 2014, from

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

[29] Atif M. Memon, Bao N. Nguyen B. N. (2010). Advances in Automated Model-

Based System Testing of Software Applicaitions with a GUI Front-End. Advance

in Computers, 121-162

[30] R. Wieringa, N. Maiden, N. Mead. (2005). Requirements engineering paper

classification and evaluation criteria: a proposal and a discussion. Requirements

Engineering , 102-107 .

[31] J. Offutt, P. Ammann. (2008). Introduction to Software Testing. Cambridge:

Cambridge University Press.

[32] Koushik Sen, Darko Marinov, Gul Agha. (2005). CUTE: A Concolic Unit Testing

Engine for C. ACM SIGSOFT Software Engineering Notes, (pp. 263-272). New

York.

[33] J Zhi, V Garousi-Yusifoğlu, B Sun, G Garousi. (2014). Cost, Benefits and

Quality of Software Development Documentation: A Systematic Mapping.

Journal of Systems and Software .

[34] Muneer, I. (2014). Systematic Review on Automated Testing (Types, Effort and

ROI).

[35] Pirzadeh, L. (2010). Human Factors in Software Development: A Systematic

Literature Review.

[36] VG Yusifoğlu, Y Amannejad, AB Can. (2014). Software test-code engineering: A

systematic mapping. Information and Software.

[37] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson. (2008). Systematic mapping

papers in software engineering. International Conference on Evaluation and

Assessment in Software Engineering .

[38] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. (2003). GUI Ripping:

Reverse Engineering of Graphical User Interfaces for Testing. The 10th Working

Conference on Reverse Engineering.

[39] Last accessed November 25, 2014, from http://junit.org/

74

[40] W. Afzal, R. Torkar, and R. Feldt, "A systematic mapping study on non-

functional search-based software testing," in International Conference on

Software Engineering and Knowledge Engineering, 2008, pp. 488-493.

[41] M. Palacios, J. García-Fanjul, and J. Tuya, "Testing in service oriented

architectures with dynamic binding: A mapping study," Information and Software

Technology, vol. 53, pp. 171-189, 2011.

[42] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, "Alignment of requirements

specification and testing: A systematic mapping study," in Proceedings of the

IEEE Fourth International Conference on Software Testing, Verification and

ValidationWorkshops, 2011, pp. 476 - 485.

[43] A. T. Endo and A. d. S. Simao, "A systematic review on formal testing

approaches for web services," in Brazilian Workshop on Systematic and

Automated Software Testing, International Conference on Testing Software and

Systems, 2010, p. 89.

[44] P. A. d. M. S. Neto, I. d. C. Machado, J. D. McGregord, E. S. d. Almeida, and S.

R. d. L. Meira, "A systematic mapping study of software product lines

testing," Information and Software Technology, vol. 53, pp. 407 - 423, 2011.

[45] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of search-based testing

for non-functional system properties," Information and Software Technology, vol.

51, pp. 957 - 976, 2009.

[46] Z. Zakaria, R. Atan, A. A. A. Ghani, and N. F. M. Sani, "Unit testing approaches

for BPEL: a systematic review," in Proceedings of the Asia-Pacific Software

Engineering Conference, 2009, pp. 316 - 322.

[47] E. Engström and P. Runeson, "Software product line testing - a systematic

mapping study," Journal of Information and Software Technology, vol. 53, pp. 2 -

13, 2011.

[48] C. R. L. Neto, P. A. d. M. S. Neto, E. S. d. Almeida, and S. R. d. L. Meira, "A

mapping study on software product lines testing tools," in Proceedings of

International Conference on Software Engineering and Knowledge Engineering,

2012.

[49] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A systematic

review of the application and empirical investigation of searchbased test case

generation," IEEE Transactions on Software Engineering, vol. 36, pp. 742 - 762,

2010.

[50] E. Engström, P. Runeson, and M. Skoglund, "A systematic review on regression

test selection techniques," Journal of Information and SoftwareTechnology, vol.

53, pp. 14 - 30, 2010.

75

[51] R. V. Binder, "Testing object-oriented software: a survey," in Proceedings of the

Tools-23: Technology of Object-Oriented Languages and Systems, 1996, p. 374.

[52] N. Juristo, A. M. Moreno, and S. Vegas, "Reviewing 25 years of testing

technique experiments," Empirical Software Engineering, vol. 9, pp. 7 - 44, 2004.

[53] P. McMinn, "Search-based software test data generation: a survey," Software

Testing, Verification & Reliability, vol. 14, pp. 105 - 156, 2004.

[54] M. Grindal, J. Offutt, and S. F. Andler, "Combination testing strategies: A

survey," Software Testing, Verification, and Reliability, vol. 15, 2005.

[55] G. Canfora and M. D. Penta, "Service-oriented architectures testing: a survey,"

in International Summer Schools on Software Engineering, 2009, pp. 78 –105.

[56] C. S. Păsăreanu and W. Visser, "A survey of new trends in symbolic execution

for software testing and analysis," International Journal on Software Tools for

Technology Transfer, vol. 11, pp. 339 - 353, 2009.

[57] M. Bozkurt, M. Harman, and Y. Hassoun, "Testing web services: a survey,"

Technical Report TR-10-01, Department of Computer Science, King’s College

London2010.

[58] Y. Jia and M. Harman, "An analysis and survey of the development of mutation

testing," IEEE Transactions of Software Engineering, vol. 37, pp. 649 – 678,

2011.

[59] A. M. Memon and B. N. Nguyen, "Advances in automated model-based system

testing of software applications with a GUI front-end," Advances in

Computers, vol. 80, pp. 121–162, 2010.

[60] T. D. Hellmann, A. Hosseini-Khayat, and F. Maurer, "Agile Interaction Design

and Test-Driven Development of User Interfaces - A Literature Review," in Agile

Software Development: Current Research and Future Directions, 2010.

[61] V. Garousi, A. Mesbah, A. Betin-Can, and S. Mirshokraie, "A Systematic

Mapping Study of Web Application Testing," Elsevier Journal of Information and

Software Technology, vol. 55, pp. 1374–1396, 2013.

[62] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, "Graphical User Interface

(GUI) Testing: Systematic Mapping and Repository," Information and Software

Technology, vol. 55, pp. 1679–1694, 2013.

[63] V. G. Yusifoğlu, Y. Amannejad, and A. Betin-Can, "Software Test-Code

Engineering: A Systematic Mapping," Journal of Information and Software

Technology, In Press, 2014.

76

[64] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, "A comprehensive Survey of

Trends in Oracles for Software Testing," In Press, IEEE Transactions on

Software Engineering, 2014.

[65] I. Singh, "A Mapping Study of Automation Support Tools for Unit Testing," MSc

thesis, Mälardalens University, Sweden, 2012.

[66] C. Nie and H. Leung, "A survey of combinatorial testing," ACM Computing

Surveys (CSUR), vol. 43, 2011.

[67] R. Lai, "A survey of communication protocol testing," Journal of Systems and

Software, vol. 62, pp. 21–46, 2002.

[68] K. Inçki, I. Ari, and H. Sozer, "A Survey of Software Testing in the Cloud,"

in IEEE International Conference on Software Security and Reliability

Companion 2012, pp. 18 - 23.

[69] J. A. McQuillan and J. F. Power, "A survey of UML-based coverage criteria for

software testing," Technical Report, NUIM-CS-TR-2005-08, National University

of Ireland, Ireland, 2005.

[70] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, "A Survey on

Model-based Testing Approaches- A systematic review," in Proceedings of the

ACM International Workshop on Empirical Assessment of Eoftware Engineering

languages and technologies, 2007.

[71] S. P. Shashank, P. Chakka, and D. V. Kumar, "A Systematic Literature Survey of

Integration Testing in Component-Based Software Engineering," in International

Conference on Computer and Communication Technology, 2010, pp. 562 - 568.

[72] F. Elberzhager, J. Münch, and V. T. N. Nha, "A systematic mapping study on the

combination of static and dynamic quality assurance techniques," Information

and Software Technology, vol. 54, pp. 1-15, 2012.

[73] M. Shafique and Y. Labiche, "A systematic review of state-based test

tools," International Journal on Software Tools for Technology Transfer 2013.

[74] P. K. Singh, O. P. Sangwan, and A. Sharma, "A systematic review on fault-based

mutation testing techniques and tools for Aspect-J programs," in IEEE

International Advance Computing Conference, 2013, pp. 1455 - 1461.

[75] B. Haugset and G. K. Hanssen, "Automated Acceptance Testing-A Literature

Review and an Industrial Case Study," in Agile Conference, 2008, pp. 27 - 38.

[76] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mantyla, "Benefits and

limitations of automated software testing- Systematic literature review and

practitioner survey," in International Workshop on Automation of Software Test,

2012, pp. 36 - 42.

77

[77] P. I. Chana and A. Rana, "Empirical evaluation of cloud-based testing

techniques- a systematic review," ACM SIGSOFT Software Engineering

Notes, vol. 37, pp. 1-9 2012.

[78] M. P. Usaola and P. R. Mateo, "Mutation Testing Cost Reduction Techniques: A

Survey," IEEE Software, vol. 27, pp. 80 - 86, 2010.

[79] D. Lee and M. Yannakakis, "Principles and methods of testing finite state

machines-a survey," Proceedings of the IEEE, vol. 84, pp. 1090 - 1123, 1996.

[80] S. R. S. Souza, M. A. S. Brito, R. A. Silva, P. S. L. Souza, and E. Zaluska,

"Research in concurrent software testing- a systematic review," in Proceedings of

the Workshop on Parallel and Distributed Systems: Testing, Analysis, and

Debugging, 2011.

[81] P. McMinn, "Search-based software testing: Past, present and future," in IEEE

International Conference on Software Testing, Verification and Validation

Workshops, 2011, pp. 153 - 163.

[82] B. P. Lamancha, M. Polo, and M. Piattini, "Systematic Review on Software

Product Line Testing," in International Joint Conference on Software

Technologies, 2013, pp. 58-71.

[83] J. R. Barbosa, M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi,

"Software Testing in Critical Embedded Systems- a Systematic Review of

Adherence to the DO-178B Standard," inInternational Conference on Advances

in System Testing and Validation Lifecycle 2011, pp. 126-130.

[84] Y. Singh, A. Kaur, B. Suri, and S. Singhal, "Systematic Literature Review on

Regression Test Prioritization Techniques," SOURCEInformatica vol. 36, 2012.

[85] A. Kaur and V. Vig, "Systematic Review of Automatic Test Case Generation by

UML Diagrams," International Journal of Engineering Research &

Technology, vol. 1, 2012.

[86] M. Amar and K. Shabbir, "Systematic Review on Testing Aspect-oriented

Programs: Challenges, Techniques and Their Effectiveness," Master Thesis,

Blekinge Institute of Technology. Sweden,2008.

[87] Ç. Çatal and D. Mishra, "Test Case Prioritization: A systematic mapping Study

" Software Quality Journal, vol. 21, pp. 445-478, 2013.

[88] M. Bozkurt, M. Harman, and Y. Hassoun, "Testing and Verification In Service-

Oriented Architecture-A Survey," Journal of Software Testing, Verification and

Reliability, vol. 23, pp. 261-313, 2013.

78

[89] A. Sharma, T. D. Hellmann, and F. Maurer, "Testing of Web Services – A

Systematic Mapping," in Proceedings of the IEEE World Congress on

SERVICES, 2012, pp. 346-352.

[90] M. J.-u. Rehman, F. Jabeen, A. Bertolino, and A. Polini, "Testing software

components for integration: a survey of issues and techniques," Software Testing,

Verification & Reliability, vol. 17, pp. 95-133 2007.

[91] G. Fraser, F. Wotawa, and P. E. Ammann, "Testing with model checkers: a

survey," Software Testing, Verification and Reliability, vol. 19, pp. 215–261,

2009.

[92] S. Doğan, A. Betin-Can, and V. Garousi, "Web application testing: A systematic

literature reviewr," Journal of Systems and Software vol. 91, pp. 174–201, 2014.

[93] M. A. A. Mamun and A. Khanam, "Concurrent Software Testing- A Systematic

Review and an Evaluation of Static Analysis Tools," Master Thesis, Blekinge

Institute of Technology. Sweden,2009.

[94] M. Shirole and R. Kumar, "UML behavioral model based test case generation: a

survey," ACM SIGSOFT Software Engineering Notes, vol. 38, pp. 1-13, 2013.

[95] F. Elberzhager, A. Rosbach, J. Munch, and R. Eschbach, "Reducing test effort: A

systematic mapping study on existing approaches," Inf. Softw. Technol., vol. 54,

pp. 1092-1106, 2012.

[96] S. Yoo and M. Harman, "Regression testing minimization, selection and

prioritization: a survey," Softw. Test. Verif. Reliab., vol. 22, pp. 67-120, 2012.

[97] U. Kanewala and J. M. Bieman, "Testing scientific software: A systematic

literature review," Information and Software Technology, vol. 56, pp. 1219-1232,

10// 2014.

[98] http://pages.cpsc.ucalgary.ca/~absharma/

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : AYDIN

Adı : Muzaffer

Bölümü : BiliĢim Sistemleri

TEZİN ADI (Ġngilizce) : GUI Testing of Android Applications: A Systematic Mapping

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamından kaynak gösterilmek Ģartıyla fotokopi alınabilir.

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir bölümünden

kaynak gösterilmek Ģartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz.

TEZİN KÜTÜPHANEYE TESLİM TARİHİ : 07.01.2015

