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ABSTRACT 

 

EXPLORING MIDDLE SCHOOL MATHEMATICS TEACHERS’ TREATMENT 

OF RATIONAL NUMBER EXAMPLES IN THEIR CLASSROOMS: A 

MULTIPLE CASE STUDY 

 

Avcu, Ramazan 

Ph.D., Department of Elementary Education 

Supervisor: Assoc. Prof. Dr. Çiğdem HASER 

 

 

 

December 2014, 444 pages 

 

The purpose of this study was to explore middle school mathematics 

teachers’ treatment of rational number examples in their seventh grade classrooms. 

The data were collected from four middle school mathematics teachers who were 

teaching in different public schools in Aksaray during the fall semester of 2013-

2014 education year. Data were mainly based on classroom observations, post 

lessons interviews, the student textbook and the middle school mathematics 

curriculum.   

The analysis of data revealed that teachers used 704 mathematically correct 

and 14 mathematically incorrect examples during the teaching of rational number 

concepts. Among the correct examples, 361 of them were spontaneous and 343 of 

them were pre-planned. Besides, teachers used 9 non-examples and 5 counter-
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examples. More importantly, findings showed that teachers employed the following 

principles or considerations when choosing or using rational number examples: 

starting with a simple or familiar case; drawing attention to students’ difficulty, 

error or misconception; keeping unnecessary work to minimum; taking account of 

examinations; including uncommon cases; and drawing attention to relevant 

features. Finally, this study revealed teachers’ three different poor choices of 

examples as mathematically incorrect examples, examples with improper language 

or terminology, and examples that are to be avoided in the teaching of rational 

number concepts.   

 The findings of the study suggested that mathematics teachers could be 

provided information or training with different uses of examples in the mathematics 

classroom in order to enhance students’ learning experiences. The effects of national 

policies were also discussed. 

 

 

Keywords: Middle School Mathematics Teachers, Rational Number Concepts, 

Mathematical Examples, Teacher Considerations or Principles for Choosing 

Examples 
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ÖZ 

 

ORTAOKUL MATEMATİK ÖĞRETMENLERİNİN RASYONEL SAYI 

ÖRNEKLERİNİ SINIF ORTAMINDA ELE ALIŞ BİÇİMLERİNİN 

İNCELENMESİ: ÇOKLU DURUM ÇALIŞMASI 

  

 

Avcu, Ramazan 

 

Doktora, İlköğretim Bölümü 

Tez Yöneticisi: Doç. Dr. Çiğdem HASER 

 

 

Aralık 2014, 444 sayfa 

 

Bu çalışmanın amacı ortaokul matematik öğretmenlerinin rasyonel sayı 

örneklerini sınıf ortamında nasıl ele aldıklarını incelemektir. Çalışmanın verileri 

2013-2014 eğitim öğretim yılının güz döneminde Aksaray ilindeki farklı devlet 

okullarında görev yapmakta olan dört matematik öğretmeninden toplanmıştır. 

Çalışmanın veri kaynaklarını sınıf içi gözlemler, yarı yapılandırılmış görüşmeler, 

öğrenci ders kitabı ve ortaokul matematik öğretim programı oluşturmuştur.   

Toplanan verilerin analizleri öğretmenlerin rasyonel sayı kavramlarını 

öğretirken matematiksel olarak doğru olan 704 örnek, matematiksel olarak doğru 

olmayan 14 örnek kullandıklarını göstermiştir. Matematiksel olarak doğru olan 
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örneklerin 361 tanesinin spontane (anlık) örnek olarak kullanıldığı 343 tanesinin ise 

planlanmış örnek olarak kullanıldığı görülmüştür. Ayrıca, öğretmenler rasyonel sayı 

kavramlarının öğretiminde 9 örnek olmayan ve 5 karşıt örnek kullanmıştır. 

Matematik öğretmenleri rasyonel sayı örneklerini seçerken veya kullanırken altı 

farklı prensibi/hususu göz önünde bulundurmuşlardır. Bunlar, kolay ya da bilinen 

örneklerden başlama; yaygın öğrenci güçlüklerine, hatalarına ya da kavram 

yanılgılarına dikkat çekme; gereksiz iş yükünü en aza indirme; sınavları dikkate 

alma; yaygın olmayan örnekleri sınıf ortamına dâhil etme ve örneklerin kritik 

özelliklerine dikkat çekme şeklinde olmuştur. Son olarak bu çalışmada 

öğretmenlerin matematiksel olarak hatalı örnekler, kullanılan dil ve terminoloji 

açısından uygun olmayan örnekler ve pedagojik açıdan kaçınılması gereken 

örnekler şeklinde üç tür uygun olmayan örnek kullandıkları ortaya çıkmıştır.  

 Çalışmanın sonuçları matematik öğretmenlerinin matematik dersinde 

öğrencilerin öğrenmelerini zenginleştirmek için örneklerin farklı kullanımları 

hakkında bilgilendirilmelerinin ya da eğitim almalarının yerinde olabileceğini ortaya 

çıkarmıştır. Eğitim politikalarının etkileri de tartışılmıştır. 

 

 

Anahtar Kelimeler: Ortaokul Matematik Öğretmenleri, Rasyonel Sayı Kavramları, 

Matematiksel Örnekler, Öğretmenlerin Örnek Seçimlerine Yönelik Prensipleri 

 

 

 

 

 



viii 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents  

For their care, support, and encouragement 

To my wife, Seher 

For her love, patience, and understanding 

 

 

 

 

 

 

  



ix 

 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to thank several people who have 

provided their help and encouragement throughout this study.  

First and foremost, I want to express my sincere thanks to my supervisor 

Assoc. Prof. Dr. Çiğdem Haser for her close support and guidance, patience, and 

encouragement throughout my doctoral study. She always challenged me to do my 

best, and encouraged me in every step of my thesis. Thanks for her great efforts. 

 I would like to thank my dissertation committee members, Prof. Dr. Erdinç 

Çakıroğlu, Assoc. Prof. Dr. Bülent Çetinkaya, Assist. Prof. Dr. Didem Akyüz and 

Assist. Prof. Dr. Elif Yetkin Özdemir and also for Assoc. Prof. Dr. Kürşat Erbaş for 

their time, constant support, valuable comments, and feedbacks to make this study 

better.   

I really appreciate and thank to my lovely wife Seher for her love, patience, 

and great understanding. I am really sorry for all moments that I made difficult for 

you. It would not be possible for me to finish this thesis without your assistance. 

Thank you for your being in my life. In addition, I am forever grateful to my family 

for their support throughout my life. 

Last but not least, I would like to thank the middle school mathematics 

teachers who agreed to participate in this study. Without you, this study could not be 

done.  

Finally, I would like to thank TÜBİTAK and his members for supporting me 

with their scholarship program (2211-National Scholarship Programme for PhD 

Students).  

 

  



x 

 

TABLE OF CONTENTS 

 

PLAGIARISM...........................................................................................................iii 

ABSTRACT .............................................................................................................. iv 

ÖZ .............................................................................................................................. vi 

DEDICATION ........................................................................................................ viii 

ACKNOWLEDGMENTS ........................................................................................  ix 

TABLE OF CONTENTS ........................................................................................... x 

LIST OF TABLES .................................................................................................  xvi 

LIST OF FIGURES ................................................................................................  xix 

LIST OF ABBREVIATIONS ................................................................................  xxi 

CHAPTER 

1. INTRODUCTION ............................................................................................ 1 

1.1. Rational Number Concepts in Turkish School Mathematics  

Curricula............................................................................................................ 5 

1.2. Purpose of the Study and Research Questions ........................................ 8 

1.3. Definitions of Important Terms ............................................................. 10 

1.4. Significance of the Study ....................................................................... 12 

1.5. My Motivation for the Study ................................................................. 15 

2. LITERATURE REVIEW ............................................................................... 17 

2.1. What is a Mathematical Example? ........................................................ 18 

2.2. Classification of Examples .................................................................... 20 

2.2.1. Start-up examples ........................................................................... 20 

2.2.2. Reference examples ........................................................................ 21 

2.2.3. Specific examples ........................................................................... 21 

2.2.4. Particular examples ........................................................................ 22 

2.2.5. Generic examples ........................................................................... 22 

2.2.6. General examples ........................................................................... 24 

2.2.7. Boundary examples ........................................................................ 25 

2.2.8. Pivotal and bridging examples ....................................................... 25 



xi 

 

2.2.9. Pre-planned and spontaneous examples ......................................... 27 

2.2.10. Examples of and examples for mathematical concepts and 

procedures ....................................................................................... 29 

2.2.11. Counter-examples ........................................................................... 31 

2.2.12. Non-examples ................................................................................. 34 

2.3. The Notion of Example Spaces ............................................................. 35 

2.4. Learners’ Difficulties and Misconceptions about Rational Number 

Concepts ................................................................................................ 38 

2.4.1. Students’ difficulties and misconceptions about rational number 

concepts .......................................................................................... 39 

2.4.2. Pre-service and in-service teachers’ difficulties and  

misconceptions about rational number concepts ........................................ 42 

2.4.3. Why is it important to explore teachers’ treatment of rational 

number examples in their classrooms? ........................................... 45 

2.5. Related Studies on Teachers’ Treatment of Mathematical Examples ..... 46 

2.6. Summary of the Related Studies on Teachers’ Treatment of  

Mathematical Examples .................................................................................. 59 

3. METHODOLOGY ......................................................................................... 61 

3.1. Overall Research Design ....................................................................... 62 

3.2. The Selected Strategy of Inquiry ........................................................... 63  

3.3. Participants of the Study ........................................................................ 66 

3.3.1. Teacher A ......................................................................................... 68 

3.3.2. Teacher B ......................................................................................... 68 

3.3.3. Teacher C ......................................................................................... 69 

3.3.4. Teacher D ......................................................................................... 69 

3.4. The Contexts of the Study ..................................................................... 71 

3.4.1. Teacher A’s classroom ..................................................................... 78 

3.4.2. Teacher B’s classroom ..................................................................... 79 

3.4.3. Teacher C’s classroom ..................................................................... 79 

3.4.4. Teacher D’s classroom ..................................................................... 80 



xii 

 

3.5. Data Sources .......................................................................................... 81 

3.5.1. Classroom observations .................................................................... 82 

3.5.2. Post lesson interviews ...................................................................... 84 

3.6. Data Collection ...................................................................................... 87 

3.7.  Data Analysis Procedure ....................................................................... 89 

3.7.1. Theoretical frameworks used in this study for analyzing middle 

school teachers’ treatment of rational number examples in their 

classrooms ......................................................................................... 95 

3.7.1.1. Marton and Booth’s variation theory ..................................... 95 

3.7.1.2. Zodik and Zaslavsky’s (2008) dynamic framework for 

explaining teachers’ choices and generation of examples ....... 98 

3.7.1.3. Rowland et al.’s (2005) the Knowledge Quartet  

 Framework for making sense of teachers’ choice and use of 

examples ................................................................................ 103 

3.8. Trustworthiness of the Study ............................................................... 108 

3.8.1. Credibility ....................................................................................... 108 

3.8.2. Transferability ................................................................................ 110 

3.8.3. Dependability ................................................................................. 111 

3.8.4. Comfirmability ............................................................................... 113 

3.9. Researcher Role and Bias .................................................................... 113 

4. OVERALL CHARACTERISTICS OF TEACHERS’ RATIONAL 

NUMBER EXAMPLES ............................................................................. 116 

4.1.  Types of Mathematical Examples ....................................................... 117 

4.1.1.  Specific examples .......................................................................... 117 

4.1.1.1. Examples used for explaining and locating rational       

numbers on a number line ..................................................... 120 

4.1.1.2. Examples used for expressing rational numbers in        

different forms ....................................................................... 136 

4.1.1.3. Examples used for comparing and ordering rational      

numbers ................................................................................. 148 



xiii 

 

4.1.1.4. Examples used for performing addition and subtraction 

operations with rational numbers .......................................... 158 

4.1.1.5. Examples used for performing multiplication and division 

operations with rational numbers .......................................... 178 

4.1.1.6. Examples used for performing multi-step operations with 

rational numbers .................................................................... 204 

4.1.1.7. Examples used for posing and solving rational number 

problems ................................................................................ 214 

4.1.2.  Non-examples ................................................................................ 221 

4.1.3.  Counter-examples .......................................................................... 228 

4.2.  Sources of Examples ........................................................................... 234 

4.2.1.  Spontaneous examples ................................................................... 238 

4.2.2. Pre-planned examples .................................................................... 243 

4.3.  Summary of Overall Characteristics of Teachers’ Rational Number 

Examples ............................................................................................. 248 

5. TEACHERS’ CONSIDERATIONS IN CHOOSING OR USING 

EXAMPLES ............................................................................................... 253 

5.1.  Starting with a Simple or Familiar Case .............................................. 253 

5.1.1.  Considering form of rational numbers ........................................... 254 

5.1.2. Considering denominators of rational numbers .............................. 256 

5.1.3. Considering number of repeating and non-repeating digits of a 

decimal ............................................................................................ 258 

5.1.4. Considering number of terms/elements/steps when ordering    

rational numbers performing a single operation or multi-step 

operations with rational numbers .................................................... 258 

5.1.5. Considering number of terms/elements/steps when ordering    

rational numbers performing a single operation or multi-step 

operations with rational numbers .................................................... 260 

5.1.6. Recalling prior knowledge on rational number concepts ............... 261 

5.2.  Attending to Students’ Difficulties, Errors or Misconceptions ........... 267 



xiv 

 

5.2.1. Attending to students’ difficulties .................................................. 267 

5.2.2. Attending to students’ errors .......................................................... 273 

5.2.3. Attending to students’ misconceptions .......................................... 277 

5.3.  Keeping Unnecessary Work to Minimum ........................................... 282 

5.3.1. Reducing technical work by focusing on the essence .................... 282 

5.3.2. Highlighting relevant parts of examples and not going into extra 

details .............................................................................................. 288 

5.3.3. Using properties of operations to reduce workload ....................... 290 

5.4.  Taking Account of Examinations ........................................................ 294 

5.5.  Including Uncommon Cases ................................................................ 301 

5.5.1. Exceptional or special cases in the teaching of rational number 

concepts .......................................................................................... 301 

5.5.2. Under-represented cases in the teaching of rational number   

concepts .......................................................................................... 305 

5.6.  Drawing Attention to Relevant Features ............................................. 308 

5.7.  Summary of Teachers’ Considerations in Choosing or Using    

Examples ............................................................................................. 314 

6. INCORRECT OR INAPPROPRIATE EXAMPLES ................................. 320 

6.1.  Mathematically Incorrect Examples .................................................... 320 

6.2.  Pedagogically Improper Examples ...................................................... 330 

6.2.1. Examples with improper language or terminology ........................ 330 

6.2.2. To be avoided examples ................................................................. 338 

 6.2.2.1. Examples that obscure the role of variables ......................... 338 

       6.2.2.2. Examples intended to illustrate a procedure, for which  

another procedure would be more sensible .............................................. 341 

6.3.  Summary of Incorrect or Inappropriate Examples .............................. 346 

7. DISCUSSION, IMPLICATIONS AND RECOMMENDATIONS ........... 349 

7.1.  Overall Characteristics of Teachers’ Rational Number Examples ...... 350 

7.2.  Teachers’ Considerations in Choosing Rational Number Examples ... 361 



xv 

 

7.3.  Teachers’ Mathematically Incorrect or Pedagogically Inappropriate 

Rational Number Examples ................................................................. 369 

7.4.  Implications ......................................................................................... 373  

7.5.  Recommendations for Future Research ............................................... 376 

7.6.  Limitations of the Study ...................................................................... 377 

7.7.  Implications for my future career ........................................................ 379 

REFERENCES ....................................................................................................... 381 

APPENDICES 

A. OBSERVATION FORM ............................................................................ 404 

B. INTERVIEW PROTOCOL ........................................................................ 406 

C. SAMPLE CODING SHEET ...................................................................... 408 

D. CONSENT FORM ...................................................................................... 410 

E. APPROVAL OF THE ETHICS COMMITE OF METU RESEARCH 

CENTER FOR APPLIED ETHICS ........................................................... 411 

F. PERMISSION FROM AKSARAY PROVINCIAL DIRECTORATE  

FOR NATIONAL EDUCATION .................................................................... 412 

G. TURKISH SUMMARY .............................................................................. 413 

H. CURRICULUM VITAE ............................................................................ 441 

I. TEZ FOTOKOPİSİ İZİN FORMU ............................................................... 444



xvi 

 

LIST OF TABLES 

 

 

TABLES 

Table 3.1. Teachers’ demographic information for the four classrooms at the  

time of the study ....................................................................................................... 70 

Table 3.2. The learning objectives, sample activities and explanations included  

in the middle school mathematics curriculum for teaching rational numbers ......... 71 

Table 3.3. Illustrative worked-out examples and exercise examples included the 

student textbook for introducing each learning objective ........................................ 75 

Table 3.4. Timeline for data collection .................................................................... 87 

Table 3.5. Categorization of teachers’ treatment of rational number examples ...... 92 

Table 3.6. The variety of examples for teaching subtraction of rational numbers .. 97 

Table 3.7. The Knowledge Quartet Framework .................................................... 104 

Table 4.1. Number of specific examples provided by the textbook and the      

teachers  .................................................................................................................. 118 

Table 4.2. Examples included in the textbook for explaining and locating        

rational numbers on a number line ......................................................................... 121 

Table 4.3. Examples used by Teacher A for explaining and locating rational  

numbers on a number line ...................................................................................... 123 

Table 4.4. Examples used by Teacher B for explaining and locating rational  

numbers on a number line ...................................................................................... 126 

Table 4.5.  Examples used by Teacher C for explaining and locating rational 

numbers on a number line ...................................................................................... 130 

Table 4.6. Examples used by Teacher D for explaining and locating rational  

numbers on a number line ...................................................................................... 133 

Table 4.7.  Examples included in the textbook for expressing rational numbers        

in different forms .................................................................................................... 137 

Table 4.8. Examples used by Teacher A for expressing rational numbers in   

different forms ........................................................................................................ 139 



xvii 

 

Table 4.9. Examples used by Teacher B for expressing rational numbers in   

different forms ........................................................................................................ 141  

Table 4.10. A variety of repeating decimals used by Teacher B for conversion .. 143 

Table 4.11. Examples used by Teacher D for expressing rational numbers in 

different forms ........................................................................................................ 146 

Table 4.12. Examples provided by the textbook for ordering rational numbers ... 149 

Table 4.13. Examples used by Teacher A for ordering rational numbers ............. 152 

Table 4.14. Examples used by Teacher B for comparing rational numbers.......... 154 

Table 4.15. Examples used by Teacher B for ordering rational numbers ............. 155 

Table 4.16. Examples used by Teacher D for ordering rational numbers ............. 157 

Table 4.17. Examples included in the textbook for adding and subtracting rational 

numbers .................................................................................................................. 160 

Table 4.18. Examples used by Teacher A for adding and subtracting rational 

numbers .................................................................................................................. 163 

Table 4.19. Examples used by Teacher B for adding and subtracting rational 

numbers .................................................................................................................. 167 

Table 4.20. Examples used by Teacher C for adding rational numbers ................ 171 

Table 4.21. Examples used by Teacher D for adding and subtracting rational 

numbers .................................................................................................................. 174 

Table 4.22. Examples included in the textbook for multiplication and             

division of rational numbers .................................................................................. 180 

Table 4.23. Examples used by Teacher A for teaching multiplication and        

division of rational numbers .................................................................................. 186 

Table 4.24. Examples used by Teacher B for teaching multiplication and        

division of rational numbers .................................................................................. 192 

Table 4.25. Examples used by Teacher D for teaching multiplication and        

division of rational numbers .................................................................................. 199 

Table 4.26. Examples included in the textbook for teaching multi-step        

operations with rational numbers ........................................................................... 205 

Table 4.27. Examples used by Teacher A for teaching multi-step operations         

with rational numbers ............................................................................................. 207 



xviii 

 

Table 4.28. Examples used by Teacher B for teaching multi-step operations         

with rational numbers ............................................................................................. 209 

Table 4.29. Examples used by Teacher C for teaching multi-step operations         

with rational numbers ............................................................................................. 211 

Table 4.30. Examples used by Teacher D for teaching multi-step operations         

with rational numbers ............................................................................................. 212 

Table 4.31. Examples used by the textbook for teaching how to pose and solve 

rational number problems ....................................................................................... 215 

Table 4.32. Examples used by Teacher A for teaching how to solve rational    

number problems .................................................................................................... 217 

Table 4.33. Examples used by Teacher B for teaching how to solve rational    

number problems .................................................................................................... 218 

Table 4.34. Examples used by Teacher C for teaching how to solve rational    

number problems .................................................................................................... 219 

Table 4.35. Examples used by Teacher D for teaching how to solve rational     

number problems .................................................................................................... 220 

Table 4.36. The non-examples provided by the textbook and the teachers for 

teaching rational number ideas ............................................................................... 222 

Table 4.37. The number of spontaneous examples and pre-planned examples       

used by the teachers for teaching rational number objectives ................................ 235 

Table 4.38. The number of pre-planned examples used by the middle school 

mathematics teachers during the teaching of rational number concepts ................ 243 

Table 7.1. The summary of teachers’ treatment of rational number examples ..... 360 

Table 7.2. The summary of teachers’ considerations in selecting or generating 

rational number examples ...................................................................................... 367 

 

 

 

 

 

 



xix 

 

LIST OF FIGURES 

 

 

FIGURES 

Figure 2.1. A specific example of a pair of distinct rectangles with the same  

diagonal........................................................................................................... 22 

Figure 2.2. A generic example that shows 1+3+5+7 = 42. ...................................... 23 

Figure 2.3. A general example of a pair of distinct rectangles with the same  

diagonal .................................................................................................................... 24 

Figure 2.4. A spontaneous counter-example of a quadrangle with two opposite  

right angles that is not kite ....................................................................................... 28 

Figure 2.5. An example of a rectangle, and another, and another ........................... 30 

Figure 2.6. Finding 37x9 by using the grid method ................................................ 30 

Figure 3.1. Multiple case study design with single unit of analysis........................ 65 

Figure 3.2. Adapted version of multiple case study design with single unit of 

analysis ........................................................................................................... 66 

Figure 3.3. A snapshot of the Classroom A and the seating plan ........................... 78 

Figure 3.4. A snapshot of the Classroom B and the seating plan ............................ 79 

Figure 3.5. A snapshot of the Classroom C and the seating plan ............................ 80 

Figure 3.6. A snapshot of the Classroom D and the seating plan ........................... 81 

Figure 3.7. Mathematics Teaching Cycle................................................................ 98 

Figure 3.8. Mathematics Example-Related Teaching Cycle ................................... 99 

Figure 4.1. A Venn diagram used by Teacher A ................................................... 124 

Figure 4.2. A Venn diagram used by Teacher B ................................................... 127 

Figure 4.3. A subset notation used by Teacher C.................................................. 131 

Figure 4.4. A Venn diagram used by Teacher D ................................................... 134 

Figure 4.5. Textbook method for converting 7.6  into its rational number ........... 138 

Figure 4.6. An example used by Teacher C to teach the logic of conversion ....... 144 

 



xx 

 

Figure 4.7. Locating on a number line strategy for comparing rational number    

pairs ............................................................................................................... 148 

Figure 6.1. The location of 34  on the number line ............................................ 322 

Figure 6.2. The relationship between different number sets ................................. 323 

Figure 6.3. Teacher D’s location of
4

2
5

  on a number line .................................. 327 

 

 

 

 

 

  



xxi 

 

LIST OF ABBREVIATIONS 

 

 

MoNE: Ministry of National Education  

CCSSM: Common Core State Standards for Mathematics 

NCTM: National Council of Teachers of Mathematics  

 

  

 

 



1 

 

CHAPTER I 

 

INTRODUCTION 

 

Examples play a central role in mathematics education (Antonini, 2011; 

Goldenberg & Mason, 2008; Rowland, 2008; Zaslavsky & Zodik, 2007; Zaslavsky, 

2010; Zazkis & Chernoff, 2008; Zazkis & Leikin, 2007; Zazkis & Leikin, 2008; 

Zodik & Zaslavsky, 2008). Examples are intensely used in the teaching and learning 

of mathematics, in designing curriculum and in inventing (Zazkis & Chernoff, 2008). 

More specifically, they are essential for conceptualization, generalization, 

abstraction, argumentation, and analogical reasoning (Zaslavsky & Zodik, 2007). 

The importance of examples and exemplification in mathematical thinking, learning, 

and teaching is well recognized not only by mathematics educators but also by 

mathematicians and epistemologists (Antonini, Presmeg, Mariotti & Zaslavsky, 

2011). For instance, Polya (1945) explicitly suggested learners to generate examples 

in problem solving and similarly, a renowned mathematician, Halmos (1983) 

emphasized that “A good stock of examples, as large as possible, is indispensable for 

a thorough understanding of any concept, and when I want to learn something new, I 

make it my first job to build one…” (p. 63). From an epistemological standpoint, 

Lakatos (1976) claimed that the generation and analysis of examples can be regarded 

as one of the most prominent activities in the development of mathematics as a 

science. 

Examples are fundamental tools that are used for illustrating and 

communicating concepts between teachers and learners (Bills, Mason, Watson & 

Zaslavsky, 2006). In addition, they play a crucial role as a communication tool 

intrinsic to explanations and mathematical discourse (Leinhardt, 2001). As stated by 

Leinhardt, Zaslavsky and Stein (1990), constructing explanations in the course of 

teaching is a very difficult work that depends on the specific choice of examples to a 

great extent. They further noted that: 
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“Explanations consist of the orchestrations of demonstrations, analogical 

representations, and examples… A primary feature of explanations is the use 

of well-constructed examples, examples that make the point but limit the 

generalization, examples that are balanced by non- or counter-cases” (p. 6). 

Teachers may use examples in the teaching of mathematics for two different 

purposes (Rowland, Turner, Thwaites & Huckstep, 2009; Zodik & Zaslavsky, 2008). 

First, they may use an example of a concept or procedure as a particular instance of 

generality, that is to say, as an example of something (Mason & Pimm, 1984; 

Rowland et al., 2009; Watson & Mason, 2005; Zodik & Zaslavsky, 2008). Here, the 

‘something’ is typically general such as the notion of a rational number or the 

procedure for converting repeating decimals into common fractions. Hence, teachers 

customarily use examples for representing abstract mathematical concepts or 

illustrating general procedures as a pedagogical practice (Rowland, 2008). Second, 

teachers may use examples as an example for ‘something’ and examples in this case 

are usually called exercises (Rowland, 2008; Watson, Mason, 2005). Exercise 

examples are often chosen from a large number of possible examples and are 

primarily used to support retention of a procedure by repeating and to gain fluency 

with it (Rowland et al., 2009). 

In mathematics, there are other kinds of examples such as non-examples and 

counter-examples (Watson & Mason, 2005). Non-examples are related with 

conceptualization and definitions, and draw attention to critical attributes of 

mathematical concepts (Zodik & Zaslavsky, 2008). Besides, they show the 

boundaries or necessary conditions of a concept (Watson & Mason, 2005). In other 

words, they “serve to clarify boundaries” of a concept (Bills et al., 2006, p. 127). 

Thus, by their very nature, non-examples are intrinsic to concept formation (Tsamir, 

Tirosh & Levenson, 2008). Counter-examples are related with claims and their 

rebuttals (Zodik & Zaslavsky, 2008). Simply put, they show that a statement is not 

true and sharpen the distinctions between mathematical concepts (Michener, 1978).  

Bills et al. (2006) stated that in order for a mathematical example to be 

pedagogically useful, it should possess two main features as transparency and 

generalizability. Meanwhile, they described the two terms as: 

 “Transparency: making it relatively easy to direct the attention of the target 

audience to the features that make it exemplary. Generalizability: the scope 
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for generalization afforded by the example or set of examples, in terms of 

what is necessary to be an example, and what is arbitrary and changeable” 

(ibid, p.135). 

The transparency of an example, its interpretation and the features noticed by 

a learner are subjective and context dependent and thus, teachers play an important 

role in introducing a wide range of pedagogically useful examples to their students in 

order to deal with different needs and characteristics of learners (Zaslavsky, 2010).  

However, choosing examples is not a simple task and it involves numerous complex 

considerations some of which can be done beforehand with careful planning while 

some others can only be done in the course of actual classroom practice (Zodik & 

Zaslavsky, 2008). 

According to Bills and Rowland (1999) examples may not always achieve 

their intended purposes. Similarly, Mason and Pimm (1984) asserted that there may 

be a mismatch between teacher intention and what students pay attention to. This 

may, to some extent, have to do with the irrelevant information carried by examples 

in addition to their relevant attributes (Zaslavsky & Zodik, 2014). Skemp (1987) 

used the term ‘noise’ for this irrelevant information carried by the examples. Skemp 

(1971) claimed that if the noise in an example increases, then it becomes more 

difficult to form a concept. Thus, students may focus on irrelevant aspects of 

examples although teachers may try to instantiate certain mathematical ideas from 

his/her own perspective (Zaslavsky & Zodik, 2007). Hence, “the examples provided 

by a teacher ought, ideally, to be the outcome of a careful process of choice, a 

deliberate and informed selection, because some are simply better than others” 

(Rowland, 2014, p. 98). 

Inspired by Marton and Booth’s (1997) notion of ‘dimensions of variation’, 

Watson and Mason (2006) derived the notions of ‘dimensions of possible variation’ 

and ‘range of permissible change’ to gain insights into the pedagogical role of 

examples.  They assumed that discerning variations within any mathematical object 

is a starting point for making sense of it. Besides, they suggested that teachers can 

uncover the mathematical structure of any object by varying some of its features 

while keeping other features constant. Mathematical structure means “the 

identification of general properties which are instantiated in particular situations such 
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as relationships between elements” (Mason, Stephens & Watson, 2009, p. 10). As a 

consequence, learners are compelled to discern the structure and generalize because 

“learners cannot resist looking for, or imposing pattern, and hence creating 

generalizations, even if these are not expressed or recognized” (Watson and Mason, 

2006, p. 95). This suggestion is of particular importance since it can be used to 

emphasize and distinguish critical and non-critical attributes of mathematical objects.  

As mentioned before, choice and use of examples is an important and 

complex domain (Zaslavsky, 2010). Thus, teachers need to take up the challenge of 

choosing judicious examples since their choices of examples have the potential to 

support or impede mathematical learning (Zaslavsky & Zodik, 2007). In this sense, it 

can be said that teachers’ choice and use of examples influence and give shape to 

students’ learning process. Hence, in-depth exploration of the quality of 

mathematical examples employed by the teachers might give some insights into the 

quality of actual classroom practices. In addition to this, the selection and use of 

examples may present the teachers with actual classroom events that constitute 

learning opportunities for them and that would affect their future choice and use of 

examples (Zaslavsky & Zodik, 2007; Zodik & Zaslavsky, 2009).  

Teachers continuously respond to their students’ interests and inquiries as 

part of the ongoing classroom interaction and it is not possible for teachers to know 

how each student will react or respond to any situation, therefore teachers may quite 

often need to make split-second decisions in the course of lessons (Rowland et al., 

2009). The immediate actions on the part of teachers in such classroom situations 

reflect teachers’ ability to think ‘on their feet’ (Schon, 1987). While Mason and 

Spence (1999) coined the term ‘knowing-to act in the moment’ for this type of 

decision making, Rowland, Huckstep and Thwaites (2005) dealt with such in-the-

moment actions by means of the contingency dimension of the Knowledge Quartet. 

Selecting or constructing mathematics examples for teaching usually entails in-the-

moment decisions in return for classroom interactions and it is closely associated 

with teachers’ increasing awareness and ongoing reflection (Zodik & Zaslavsky, 

2008). Thus, this study sought to determine spontaneous and pre-planned examples 

generated or selected by the middle school mathematics teachers. 
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Teachers’ choices of pre-planned and spontaneous examples reflect their 

underlying considerations or principles in choosing those examples and enable them 

to become more aware of their planning and in-the moment actions (Zaslavsky & 

Zodik, 2008). Thus, the current study also sought to examine middle school 

mathematics teachers’ considerations or principles that guide them in selecting or 

constructing examples.  

Despite the fact that examples play a crucial role in the teaching and learning 

of mathematics (Zaslavsky, 2010), there are some common pitfalls in the selection of 

examples (Rowland, 2008). According to Rowland, Thwaites and Huckstep (2003) 

there are three kinds of examples that should be avoided in the teaching of 

mathematics:  

“examples that obscure the role of variables within it; examples intended to 

illustrate a particular procedure, for which another procedure would be more 

sensible; and examples for instruction (as opposed to exercise examples) 

being randomly generated, typically by dice, at a point when it would be 

preferable for the teacher to be making careful choices” (p. 245).  

In this study, not only middle school mathematics teachers’ well chosen- 

examples but also their poor choices of examples were taken into consideration. 

Zaslavsky and Zodik (2007) argued that teachers’ poor choices of examples might be 

deliberately incorporated into the classroom as part of learning so as to question 

students’ mathematical thinking. Furthermore, Zodik and Zaslavsky (2008) 

suggested that classroom events that include both good and poor examples might 

serve for teacher education programs and professional development activities. Thus, 

the findings of this study may be helpful for pre-service and in-service teachers in 

gaining practical knowledge about treatment of mathematical examples in their 

classrooms.  

1.1. Rational Number Concepts in Turkish School Mathematics Curricula 

Rational number concepts are among the most important mathematical ideas 

students encounter in their school years (Alacacı, 2009; Behr, Lesh, Post, Silver, 

1983; Behr, Wachsmuth, Post & Lesh, 1984; Yanık, 2013). They are important for 

the following reasons: from a mathematical standpoint, they form the basis of 

elementary algebraic operations; from a practical standpoint, they develop students’ 
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ability to cope with real world problems; and finally from a psychological standpoint, 

they help students develop and extend mental structures required for continuous 

intellectual development (Behr et al., 1983).  

Due to their importance, Turkish elementary and middle school mathematics 

programs (Ministry of National Education [MoNE], 2009a, 2009b) also give 

considerable emphasis on rational number concepts. In grade 1, students learn how to 

partition physical objects into two equal parts and explain the relationship between 

one half and a whole. In grade 2, students explain the relationship among one half, 

one quarter and a whole. In grade 3, students learn how to partition a whole into 

equal parts and know that each part is a unit fraction; learn proper fractions that 

include at most two digit numbers as denominators; learn how to compare and order 

at most three fractions that include at most two digit numbers as denominators and 

learn how to find unit fractions of given quantities. In grade 4, students learn how to 

obtain fractions with at most two digits numerators and denominators by using unit 

fractions; locate fractions with at most two digits numerators and denominators on a 

number line, compare fractions; order at most four fractions with same 

denominators; order at most four fractions with same numerators; find unit fractions 

of given quantities; add fractions with same denominators; subtract fractions with 

same denominators; and finally pose and solve problems related with addition and 

subtraction of fractions. In grade 5, students learn how to convert among mixed 

numbers and improper fractions; compare a whole number with a fraction; compare 

and order fractions and locate them on a number line; find equivalent fractions of a 

given fraction; find whole quantity by means of its fractional amount; explain the 

relationship between a fraction and a division operation; add fractions with same 

denominators; add a whole number and a fraction; subtract fractions with same 

denominators; subtract a fraction from a whole number; pose and solve problems 

related with addition and subtraction of fractions and finally, they learn how to find a 

fraction of another fraction (MoNE, 2009a). 

In grade 6, students learn how to compare, order and locate fractions on a 

number line; add and subtract fractions; multiply and divide fractions; estimate 

fraction operations by using a relevant strategy and finally pose and solve problems 
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related with fractions. In grade 7, students apply and extend their previous 

understandings about fraction concepts and operations to rational number concepts 

and operations. Namely, students learn how to explain and locate rational numbers 

on a number line; express rational numbers in different forms; compare and order 

rational numbers; add or subtract rational numbers; multiply or divide rational 

numbers; perform multi-step operations with rational numbers and finally pose and 

solve rational number problems (MoNE, 2009b). 

Although students are introduced rational numbers, in particular fractions, at 

all grade levels, rational numbers are infamous for the difficulty encountered not 

only by elementary school students (e.g., Bright, Behr, Post & Wachsmuth, 1988; 

Haser & Ubuz, 2003; Lesh, Behr & Post, 1987; Ni, 2001; Vamvakoussi & 

Vosniadou, 2010) but also by middle school students (e.g., Birgin & Gürbüz, 2009; 

Lamon, 2007). As Lamon (2007) expressed, rational numbers: 

“arguably hold the distinction of being the most protracted in terms of 

development, the most difficult to teach, the most mathematically complex, 

the most cognitively challenging, the most essential to success in higher 

mathematics and science, and one of the most compelling research sites” (p. 

629). 

Rational number concepts are even very challenging for elementary school 

teachers (An, Kulm, & Wu, 2004, Graeber, Tirosh, & Glover, 1989; Izsak, 2008; Ma, 

1999; Tirosh, 2000). There are many teachers who have procedural understanding of 

rational numbers (Ball, 1990a, 1990b) but many of them experience difficulties with 

fraction concepts such as equivalent fractions (Cramer & Lesh, 1988).  

The difficulties encountered by students about rational number concepts 

mainly stem from two factors: interference of natural number knowledge to rational 

numbers and problems with notation of rational numbers (Moss, 2005; Ni & Zhou, 

2005; Smith, Solomon & Carey, 2005). For instance, students misinterpret the 

symbol 
a

b
 by thinking a and b as two unrelated numbers, think that a and b are 

additively related, or think that rational numbers with large numerators and 

denominators are greater than rational numbers with small numerators and 

denominators (Lamon, 2012; Moskal & Magone, 2000; Moss, 2005; Stafylidou & 

Vosniadou, 2004).  
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To help teachers lessen the difficulties experienced by their students about 

rational numbers, Greer (1987) attempted to identify students’ common 

misconceptions about rational numbers such as ‘multiplication makes bigger, 

division makes smaller’. Moss and Case (1999) proposed a new curricular approach 

and tested it in a study involving 5th and 6th grade students. Moreover, National 

Council of Teachers of Mathematics [NCTM] (2000) emphasized using standard 

documents to develop elementary and middle school students’ rational number 

reasoning.  

Despite the emphasis on enhancing students’ rational number understanding, 

student difficulties about rational numbers still persist (Wilson, Mojica & Confrey, 

2013). Besides, many of the elementary and middle school mathematics topics 

involve rational number concepts and large scale international studies such as 

Programme for International Assessment (PISA) (OECD, 2010) and Trends in 

International Mathematics and Science Study (TIMSS) (Mullis, Martin & Foy, 2008) 

document low mathematics performance of Turkish students. Morrison (2013) 

attributed students’ poor performance in mathematics to “poor sequencing of 

examples, limited ranges of examples in the low rates of task completion within and 

across lessons and to more general slow pacing (p.97). Thus, it is significant to 

explore the quality of rational number examples used by middle school mathematics 

teachers in actual classroom practices in order to improve students’ learning.  

1.2. Purpose of the Study and Research Questions 

Teachers’ choice of examples depends on factors such as knowledge 

competency, teaching goals, teachers’ awareness of their students’ misconceptions 

and dispositions and the like (Bills et al., 2006). These factors refer explicitly to the 

domain of pedagogical content knowledge of teachers and in particular to the sub-

domain of knowledge of content and students theoretically defined by Ball, Thames 

and Phelps (2008). Knowledge about mathematics examples is a part of teachers’ 

specialized content knowledge as well (Mohamed & Sulaiman, 2010). Specialized 

content knowledge is a mathematical knowledge that is unique to teaching and is a 

subset of subject matter knowledge described by Ball et al. (2008). Briefly, teachers’ 
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examples may reflect both their mathematical and pedagogical knowledge (Zazkis & 

Leikin, 2007). More importantly, the knowledge about mathematical examples is 

acquired through teaching experience and hence can be considered craft knowledge 

(Kennedy, 2002; Leinhardt, 1990). To be more precise, teachers’ purposes for 

selecting, their design or effective treatment of examples are mostly constructed 

through their teaching experience (Rowland, 2008; Zaslavsky & Zodik, 2007). Thus, 

it can be suggested that examples are an important component of expert knowledge 

(Michener, 1978).  

A few researchers have recently concentrated on teachers’ choice and use of 

examples in mathematics classrooms (e.g., Rowland & Zazkis, 2013; Rowland, 

2008; Rowland, 2014; Watson & Mason, 2005; Zaslavsky & Zodik, 2007; Zaslavsky 

& Zodik, 2014; Zaslavsky, 2010; Zodik & Zaslavsky, 2008). Thus, the role of 

examples in the teaching of mathematics is notably absent from teacher education 

literature not only in Turkey but also in other countries almost all over the world 

(Rowland, 2008). Therefore, further studies are needed to explore the examples 

chosen or used by teachers in their actual classroom practices.  

The purpose of this study was to explore how middle school mathematics 

teachers treated rational number examples in their seventh grade classrooms. More 

specifically, this study aimed to investigate overall characteristics of teachers’ 

rational number examples, the principles or considerations used by teachers while 

choosing or using rational number examples and the potential shortcomings of the 

examples used by the teachers. Through this purpose, the following major questions 

and sub-questions were formulated: 

1. What are the overall characteristics of examples used by middle school 

mathematics teachers in the teaching of rational numbers in their seventh grade 

classrooms? 

a. What are the ideas emphasized in the rational number examples used 

by the teachers? 

b. To what extend do teachers use specific examples in the teaching of 

rational numbers? 
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c. To what extend do teachers use non-examples and counter-examples 

in the teaching of rational numbers? 

d. To what extend do teachers use pre-planned and spontaneous 

examples in the teaching of rational numbers? 

e. Which sources do teachers use while choosing pre-planned examples 

in the teaching of rational numbers? 

2. What are the underlying principles or considerations that guide middle 

school mathematics teachers in choosing or generating examples? 

3. What mathematical or pedagogical shortcomings do the examples used by 

the teachers in the teaching of rational numbers have? 

a. What are the mathematically incorrect examples used by the teachers 

during the teaching of rational numbers? 

b. What are the pedagogically improper examples used by the teachers 

during the teaching of rational numbers? 

In this study, I used the following theoretical frameworks to give a 

comprehensive explanation of how middle school mathematics teachers treat rational 

number examples in their classrooms: Marton and Booth’s (1997) variation theory; 

Zodik and Zaslavky’s (2008) dynamic framework for explaining teachers’ choices 

and generation of examples during the lesson, and finally Rowland et al.’s (2005) the 

Knowledge Quartet Framework for making sense of teachers’ choice and use of 

examples. These frameworks are explained in detail in the literature review chapter. 

1.3. Definitions of Important Terms 

The research question consists of several terms that need to be clearly 

defined. These terms are defined either constitutively or operationally in the 

following way: 

Example 

As mentioned before, Watson and Mason (2005) defined examples as 

“illustrations of concepts and principles, placeholders used instead of general 

definitions and theorems, worked examples, exercises, representatives of classes 
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used as raw material for inductive mathematical reasoning, specific contextual 

situations that can be treated as cases to motivate mathematics” (p. 3).  

In this study, I examined worked-out examples and exercise examples that 

were used by the teachers or included in the student textbook for teaching rational 

number concepts. Worked examples referred to examples that were worked through 

by the middle school mathematics teachers in the course of teaching rational number 

concepts and by the student textbook in order to explain a rational number topic. 

Exercise examples referred to examples that were worked through by the teachers 

after introducing rational number concepts so as to develop fluency and to the 

textbook examples that were left to the students for practicing a specific technique. 

Specific example 

Mason and Pimm (1984) defined specific examples as examples that are used 

to represent a whole class of an object. Edwards (2011) defined a specific example as 

“a one-off situation that may or may not be general” (p. 19). In this study, a specific 

example referred to one of the possible examples through which rational number 

concepts were expressed.  

Non-example 

Non-examples are examples used to show the boundaries or necessary 

conditions of a concept (Watson & Mason, 2005). In this study, non-examples 

referred to the examples that were used by the teachers in order to show that not all 

numbers are rational.  

Counter-example 

Counter examples are examples which demonstrate that a certain conjecture 

is invalid (Watson & Mason, 2005). In this study, counter-examples referred to the 

examples used by the teachers to demonstrate the falsity of a student conjecture 

related with a rational concept or procedure were treated as counter-examples.  

Teachers’ considerations or principles  

In this study, teachers’ considerations referred to teachers’ intentions or aims 

for selecting or using each example during the teaching of rational number concepts. 

Similarly, teachers’ principles referred to teachers’ use of pedagogical approaches 

such as pattern breaking (Watson & Mason, 2005) and structured variation (Watson 
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& Mason, 2005) when demonstrating a rational number concept or procedure by 

means of an example or a set of examples during actual classroom practices. 

Mathematical shortcoming 

In this study, mathematical shortcoming referred to the mathematical 

incorrectness of an example generated by the teachers in the course of teaching 

rational number concepts. 

Pedagogical shortcoming 

In this study, pedagogical shortcoming referred to the inappropriateness of an 

example generated by the teachers in the course of teaching rational number 

concepts. In more detail, examples that included improper language or terminology, 

examples that obscured the role of variables and examples which called for more 

sensible procedures were treated as examples that included pedagogical 

shortcomings.  

1.4. Significance of the Study 

As evidenced from earliest records to modern sources, the use of examples in 

mathematics education has a long history (Bills et al., 2006; Rowland, 2008; Sinclair, 

Watson, Zazkis & Mason, 2011) and it still continues to receive increasing attention 

in mathematics education research (Antonini et al., 2011; Bills & Watson, 2008; 

Sinclair et al., 2011). In the last ten years, a great deal of research papers have been 

published and some working groups have focused on examples (e.g., special issue of 

ZDM entitled ‘Examples in Mathematical Thinking and Learning from an 

Educational Perspective’, Volume 43, Issue 2, May 2011; special issue of 

Educational Studies in Mathematics entitled ‘The Role and Use of Examples in 

Mathematics Education’, Volume 69, Issue 2, October, 2008 and the research forum 

entitled ‘Exemplification in Mathematics Education’ at PME 30 by Bills et al., 

2006).  

Examples are used comprehensively in the acquisition of various 

mathematical domains such as proof (e.g., Alcock & Inglis, 2008; Buchbinder & 

Zaslavsky, 2011; Iannone Inglis, Mejia-Ramos, Simpson & Weber, 2011; Komatsu, 

2010; Leung & Lew, 2013; Sandefur, Mason, Stylianides & Watson, 2013; 



13 

 

Pedemonte & Buchbinder, 2011; Zazkis & Chernoff, 2008), geometry (e.g., Guo, 

Pang, Yang & Ding, 2012; Tsamir, Tirosh & Levenson, 2008; Zaslavsky, 2008; 

Zaslavsky, 2010; Zazkis & Leikin, 2008), elementary number theory (e.g., 

Goldenberg & Mason, 2008; Rowland, 2008) advanced mathematics (e.g., Antonini, 

2011; Arzarello, Ascari & Sabena, 2011; Mason, 2011; Watson & Chick, 2011), 

patterns and generalizations (e.g., Sinclair et al., 2011; Zazkis, Liljedahl & Chernoff, 

2007) and the like. Antonini et al. (2011) also emphasized the same point that 

examples pervade concept formation (Dahlberg & Housman, 1997), generalization 

from particular to general (Mason & Pimm, 1984), concept definition and concept 

image (Tall & Vinner, 1981). 

Examples serve many purposes in mathematics education. For instance, 

example generation can be used as a tool for diagnosing some components of 

students’ conceptions (Bratina, 1986). Zazkis and Leikin (2007) suggest that asking 

learners to generate examples provides a ‘window’ into their mind since the 

examples generated by them “mirror their conceptions of mathematical objects 

involved in an example generation task, their pedagogical repertoire, their difficulties 

and possible inadequacies in their perceptions” (p. 15). Goldenberg and Mason 

(2008) further claim that  

“Examples can usefully be seen as cultural mediating tools between learners 

and mathematical concepts, theorems, and techniques. They are a major 

means for ‘making contact’ with abstract ideas and a major means of 

mathematical communication, whether ‘with oneself’, or with others. 

Examples can also provide context, while the variation in examples can help 

learners distinguish essential from incidental features and, if well selected, 

the range over which that variation is permitted” (p. 184). 

Despite being essential in a classroom environment, generating examples of 

mathematical objects can be a complicated work for teachers (Bills et al., 2006; 

Zaslavsky & Peled, 1996). Besides, it entails many circumstances that should be 

considered (Antonini et al., 2011; Zodik & Zaslavsky, 2008). From this point of 

view, it can be said that teachers’ choice of examples may either promote or hinder 

students’ learning. Although teachers’ choice of examples play a substantial role in 

student learning, a large proportion of mathematics teacher education programs do 

not overtly speak to this issue and do not systematically train pre-service teachers to 

cope with examples in an educated way (Zaslavsky & Zodik, 2007). Thus, it can be 
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suggested that teachers’ ability to generate effective examples develop through their 

teaching experience and thus constitutes their craft knowledge (Kennedy 2002; 

Leinhardt 1990). In-depth exploration of teachers’ craft knowledge regarding 

treatment of examples may give us the opportunity to gain entry into their specific 

aspects of knowledge and use it as groundwork for devising professional 

development programs or courses that may foster teachers’ building up of systematic 

knowledge (Zaslavsky, 2008; Zaslavsky & Zodik, 2007). 

Despite the centrality of examples in developing conceptual understanding of 

mathematics (Watson & Mason, 2002), only a few researchers focused on teachers’ 

choice and use of examples in their classrooms (e.g., Rowland 2008; Watson & 

Mason 2005; Zodik & Zaslavsky, 2008). Besides, these researchers examined 

examples used by the teachers for teaching different mathematical concepts in a 

more superficial sense (e.g., Rowland 2014; Rowland, 2008; Zaslavsky & Zodik, 

2007; Zodik & Zaslavksy, 2008). Therefore, there is a need for studies that explore 

examples used by the teachers’ in the teaching of specific mathematical concepts in 

greater depth. Furthermore, different education systems in different countries may 

influence teachers’ choice and use of examples in their classrooms and thus, the 

quality and quantity of examples used by the teachers for teaching a specific 

mathematical concept may differ from one country to another.  

As suggested by Bills et al. (2006), there is a scarcity of research on teachers’ 

choice and use of examples related with certain mathematical concepts. Therefore, I 

want to go further in this direction and attempt to fill this gap by examining middle 

school mathematics teachers’ treatment of rational number examples in their 

classrooms in a national context. It is significant to explore teachers’ treatment of 

rational number examples for several reasons. First, rational number concepts are 

among the most important mathematical concepts students experience in their school 

years (Alacacı, 2009; Yanık, 2013). Second, although students are introduced to 

rational numbers at all grade levels; they experience difficulties in understanding 

them due to their complexity (Haser & Ubuz, 2003; Lamon, 2007; Vamvakoussi & 

Vosniadou, 2010). Thus, exploration of teachers’ choice and use of rational number 

examples might help teachers improve the quality and quantity of examples used in 
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the teaching of rational number concepts and might be particularly helpful for 

teachers in overcoming their students’ difficulties in these concepts and operations.  

Exploration of teachers’ treatment of rational number examples might be used 

in the development of a possible framework that might be used to capture middle 

school mathematics teachers’ generation and choice of rational number examples in 

their classrooms. Similarly, exploration of teachers’ considerations or principles in 

choosing or using rational number examples might be used in the development of a 

possible framework that might be used to examine middle school teachers’ principles 

or considerations in selecting or generating rational number examples in their 

classrooms. Future studies in different education systems might provide empirical 

support to the development of a possible framework for analyzing teachers’ 

considerations in choosing and using rational number examples. 

In a broader sense, it is anticipated that investigation of teachers’ treatment of 

examples might help teachers raise their awareness in choosing or using appropriate 

examples during the teaching of mathematics and consequently improve the quality 

of their teaching and foster student learning. 

1.5. My Motivation for the Study 

Before I began to explore middle school mathematics teachers’ treatment of 

examples in their own classrooms, I had participated in Special Teaching Method 

Courses implemented by a member of my own department. As I observed pre-service 

middle school mathematics teachers’ selection and use of examples for teaching 

various mathematical concepts, I noticed that some examples were generated by 

them randomly without any thinking in-advance about negative influences of 

examples in learning these mathematical concepts. Besides, the pre-service teachers 

did not seem to give enough importance to the careful selection of initial examples 

when starting to teach novel concepts that the students have not experienced before. 

In my opinion, it is important to introduce examples that recall prior knowledge of 

students before teaching a novel concept. For instance, it is crucial to introduce 

fraction or integer examples to the students before teaching rational number 

concepts. Thus, pre-service middle school mathematics teachers’ treatment of 
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examples in Special Teaching Method Courses initially prompted me to carry out a 

study in the area of exemplification. 

Another factor that encouraged me to conduct this study was the low 

mathematics performance of middle school students that were reported both in 

national high-stakes exams such as SBS or TEOG and international student 

assessment programs such as TIMSS and PISA. Based on my own experience, I 

thought that the low performance of middle school students in mathematics might be 

associated with their teachers’ way of using examples in teaching mathematical 

topics. In particular, I thought that the quality and quantity of examples used by the 

mathematics teachers might give some clues about the quality of their teaching 

practices and consequently might reflect student achievement in mathematics.  

Finally, I thought it would be crucial to convey mathematics teaching 

experiences of in-service teachers to pre-service teachers enrolled in teacher 

education programs since it takes considerable time for pre-service teachers to gain 

craft knowledge about teaching particular mathematical topics. More specifically, it 

is important to inform pre-service teachers about in-service teachers’ principles or 

considerations in selecting or using certain examples in the teaching of mathematics 

so that they will benefit from in-the-moment decisions that teachers make. In short, 

this study might play an important role in bridging between in-service teachers’ craft 

knowledge of mathematical examples and pre-service teachers’ initial teaching 

experiences.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

The goal of this study was to explore middle school mathematics teachers’ 

treatment of rational number examples in their mathematics classrooms. More 

specifically, this study aimed to answer the following research questions:  

1. What are the overall characteristics of examples used by middle school 

mathematics teachers in the teaching of rational numbers in their seventh grade 

classrooms? 

a. What are the ideas emphasized in the rational number examples used 

by the teachers? 

b. To what extend do teachers use specific examples in the teaching of 

rational numbers? 

c. To what extend do teachers use non-examples and counter-examples 

in the teaching of rational numbers? 

d. To what extend do teachers use pre-planned and spontaneous 

examples in the teaching of rational numbers? 

e. Which sources do teachers use while choosing pre-planned examples 

in the teaching of rational numbers? 

2. What are the underlying principles or considerations that guide middle 

school mathematics teachers in choosing or generating examples? 

3. What mathematical or pedagogical shortcomings do the examples used by 

the teachers in the teaching of rational numbers have? 

a. What are the mathematically incorrect examples used by the teachers 

during the teaching of rational numbers? 

b. What are the pedagogically improper examples used by the teachers 

during the teaching of rational numbers? 

In the light of these research questions, this chapter elaborated on various 

theoretical constructs related with examples and provided the theoretical frameworks 
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that were used in this study. Finally, relevant studies on teachers’ treatment of 

mathematical examples were reviewed. The following section sought to describe 

what a mathematical example is.  

2.1. What is a Mathematical Example? 

Given that examples have a wide variety of educational uses (Bills et al., 

2006), it is important to shed some light into what constitutes an example. The notion 

of ‘example’ has several different meanings. Michener (1978) described examples as 

illustrative material and underlined the dual relations among examples, results and 

concepts. That is, she emphasized that examples can be constructed from results and 

concepts and alternately they can motivate concepts and results. In her subsequent 

study, Michener (1991) pointed out that an example can be viewed as “a set of facts 

or features viewed through a certain lens” (p. 190). Mason and Pimm (1984) stressed 

the generality aspect of examples and announced that the ability to perceive the 

general by means of the particular is at the core of the exemplification. In a similar 

way, Zodik and Zaslavsky (2008) meant that “examples are a particular case of a 

larger class, from which one can reason and generalize” (p. 165). In the meantime, 

Zazkis and Leikin (2008) viewed examples as “illustrations of concepts and 

principles” (p. 131). In a recent study elaborating on the notion of personal example 

spaces, Sinclair et al. (2011) explained that “an example refers to a specific 

instantiation of a more general notion” and further described a mathematical example 

as “an instance of a mathematical class with specified properties, a worked solution 

to a problem, an instance of a theorem or method of reasoning” (p. 292).  

Similarly, Yopp (2014) referred to an example as “any mathematical object 

used to instantiate properties or concepts involved in a mathematical task” (p. 182). 

Furthermore, he attempted to be cautious about the distinction between example 

generation and example use. He broadly defined example generation as building or 

extending learners’ example space and included learner-generated examples, 

examples built by modification of pre-existing examples and examples obtained from 

other people or sources such as friends or software into example generation process. 

However, he defined example use as using an example from an example space 
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irrespective of when or how that example was obtained. As can be seen, the 

aforementioned definitions of ‘example’ have left the learners out of the picture and 

referred only to a mathematical requirement.  

Alcock and Weber (2010) described examples in a more restricted sense and 

meant that an example is “a mathematical object satisfying the definition of some 

concept” (p. 4) and they further added that  

“6 is an examples of an even number and 
2f(x)= x  is an example of a 

continuous real-valued function. The latter could, of course, be represented 

graphically rather than via a formula, and we consider such a graph to be an 

example too” (p. 4).  

Similar to Alcock and Weber (2010), Fukawa-Connelly and Newton (2014) 

regarded it pedagogically important to differentiate between examples of a concept 

and examples of a process and drew upon only concept examples and adopted the 

following definition: “a mathematical object satisfying the definition of some 

concept” (p. 325). Mills (2014) considered that for a mathematical object to be an 

example it should satisfy two properties as specificity and concreteness. She 

explained that an example first should be specific and concrete in contrast to being 

general and abstract. Besides, she added that specificity is a mathematical necessity 

and concreteness has to do with accessibility of the mathematical object to the 

learners. Finally, she defined an example as “a specific, concrete representative of a 

class of mathematical objects, where the class is defined by a set of criteria” (p. 107).  

Watson and Mason (2005) took a much broader view of what constituted an 

example and used it to represent anything from which a learner might generalize. 

Hence, an example referred to: 

“Illustrations of concepts and principles, such as a specific equation that 

illustrates linear equations or two fractions that demonstrate the equivalence 

of fractions; placeholders used instead of general definitions and theorems, 

such as using a dynamic image of an angle whose vertex is moving around 

the circumference of a circle to indicate that angles in the same segment are 

equal; questions worked through in textbooks or by teachers as a means of 

demonstrating the use of specific techniques, which are commonly called 

worked examples; questions to be worked on by students as a means of 

learning to use, apply, and gain fluency with specific techniques, which are 

usually called exercises; representatives of classes used as raw material for 

inductive mathematical reasoning, such as numbers generated by special 
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cases of a situation and then examined for patterns; specific contextual 

situations that can be treated as cases to motivate mathematics” (p. 3). 

Watson and Mason’s (2005) use of examples is learner-dependent. That is, their use 

of examples permits the learners to generate examples which may not be 

mathematically correct. Similar to Watson and Mason (2005), Bills et al. (2006) 

defined the term example as any object employed as a raw material for 

generalization; illustrating concepts and procedures; representing a larger class; 

motivating; disclosing possible variation; and finally exercising a technique.  

 Kamin (2010) stressed that examples are in part vague entities and they may 

be composed of either simple expressions or complex multi-step problems. He 

further noted that different meanings attributed to the notion of example stems from 

the fact that researchers, mathematics educators and mathematics teachers all have 

different perspectives. Finally, he explained that examples may exist as isolated 

objects or may be used to define, characterize or illustrate mathematical concepts.   

2.2. Classification of Examples 

Several researchers categorized examples with respect to their particular use 

in mathematics or in the teaching of mathematics (e.g., Mason & Pimm, 1984; 

Mason & Watson, 2005; Mischener, 1978; Peled & Zaslavsky, 1997; Rowland, 

Turner, Thwaites & Huckstep, 2009; Zazkis & Chernoff, 2008; Zodik & Zaslavsky, 

2008). The definitions and explanations of different types of mathematical examples 

are presented below. 

2.2.1. Start-up examples 

Michener (1978) analyzed acquisition of mathematical knowledge from an 

epistemological perspective and distinguished three main categories of items as 

results (traditional logical deductive elements of mathematics), examples (illustrative 

material) and concepts (mathematical definitions and heuristic notions and advice). 

She indicated that examples-space, results-space and concepts-space are three 

representation spaces for a mathematical theory and introduced start-up examples as 

one category of epistemological classes of the example-space. She defined start-up 

examples as examples that help motivate essential definitions and results and initiate 
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into a topic and stated that a start-up example should have the following properties: it 

should motivate fundamental concepts, it should be understood by itself, it should be 

projective and finally it should provide a simple and evocative picture.  

2.2.2. Reference examples 

Michener (1978) introduced reference examples as another category of 

epistemological classes of the example-space. She defined reference examples as 

examples that are illustrations of concepts, results, models, and counter examples and 

as examples that are recurrently used in the development of theories. Watson and 

Mason (2005) defined reference examples as typical cases which are to a large extent 

applicable and may be linked various concepts and results. Besides, they suggested 

using R2 to make sense of how things function in real analysis as a reference 

example. 

2.2.3. Specific examples 

Mason and Pimm (1984) defined specific examples as examples that are used 

to represent a whole class of an object. By using the same examples used by Mason 

and Pimm (1984), Edwards (2011) defined a specific example as “a one-off situation 

that may or may not be general” (p. 19). Edwards (2011) introduced “THE even 

number 6” as a specific example and further explained that “the existence of such an 

object is the important point rather than necessarily the representation of a wider 

collection of objects. In this sense counterexamples to theorems are specific” (p. 19). 

Peled and Zaslavsky (1997) categorized examples with respect to their explanatory 

power and explained that specific examples have weaker explanatory power. In a 

more recent study, Zaslavsky (2010) illustrated specific examples by the use of 

rectangle pairs as given in Figure 2.1.  
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Figure 2.1. A specific example of a pair of distinct rectangles with the same diagonal 

(Zaslavsky, 2010, p. 109). 

2.2.4. Particular examples 

 In order to clarify some of the uncertainties related with various example 

types, Mason and Pimm (1984) introduced particular examples as one category of 

examples. They explained that a lecturer might present x x  as an example of a 

continuous but non-differentiable function presented to the students and added that 

the lecturer might see this example as a generic example that indicates a whole class 

of functions (i.e., x k x C  ), but the students might concentrate on the particular 

example and see a single function instead of whole class of functions. Similarly, 

Edwards (2011) defined a particular example as “using a general example in a 

specific situation or argument” (p. 19) and introduced “2N is even, 2N + 2N = 4N so 

4N is also even” as a particular example and further indicated that “each 2N 

implicitly refers to the same number, so although N in isolation is a general example, 

when used in this context 2N is a particular example” (p.19). Finally, Edwards 

(2011) noted that the distinction between specific examples and particular examples 

is subtle.  

2.2.5. Generic examples 

Michener (1978) defined model or generic examples as examples that 

summarize assumptions about results and concepts and can be used to construct 

particular instances. She added that model examples should be flexible and 

manipulatable and should be adjusted finely to satisfy the specifics of a problem. 
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Mason and Pimm (1984) defined generic examples as “an actual example, but one 

presented in such a way as to bring out its intended role as the carrier of the general” 

(p. 287). Edwards (2011) defined general examples as “using an example to 

represent a class of examples with a similar property” (p. 19), introduced “AN even 

number such as 6” as a generic example and explained that “the example is used to 

represent other objects, but there is no intention to represent a complete class of 

objects” (p. 19). Similar to Mason and Pimm (1984), Bogomolny (2006) described a 

generic example as an actual example that is introduced in such a way that it 

uncovers the intended role as the carrier of the general. She added that general 

examples are presented by means of particular numbers but generic proof is never 

dependent on the specific properties of those numbers. Besides, Rowland (1998) 

suggested that generic examples may be used in proofs related with number theory 

theorems and added that generic examples help students better understand the 

mathematical topic when compared to the formal proofs. Rowland (2014) stressed 

that the standard procedure for verifying mathematical truths is by general proof, 

however gaining insights into such proofs might usually be attained via well-

structured arguments on the basis of generic examples. The generic example 

provided by Rowland et al. (2009) to prove the conjecture that ‘the sum of 1+3+5+… 

up to any odd number is always a square number’ is presented in Figure 2.2. 

 

Figure 2.2. A generic example that shows 1+3+5+7 = 42 (Rowland et al., 2009, p.98). 

 

As can be seen, the figure started with one circle at the top left. The second, third and 

fourth layers are shown with triangles, stars and squares respectively. In the first 

stage, there is one circle and can be represented as 1= 12. In the second stage, there is 

one circle and 3 triangles and the total number of shapes can be represented as 1+3 = 
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22. In the third stage, there is one circle, three triangles and five stars and the total 

number of shapes can be represented as 1+3+5 = 32. In the fourth stage, there is one 

circle, three triangles, five stars and seven squares and the total number of shapes can 

be represented as 1+3+5+7 = 72. Thus, the above given figure is a generic example 

since it is apparent that addition of each posterior odd number conserves the square 

array. 

2.2.6. General examples 

Mason and Pimm (1984) also distinguished between generic examples and 

general examples. They defined general examples as examples that represent whole 

class of mathematical objects. Similarly, Edwards (2011) described general examples 

“as using an example to represent an operation on a wider class” (p. 19), introduced 

“ANY even number like 6” as a general example and added that “the extent of the 

class to that the example refers to is known, or implied” (p.19). Peled and Zaslavsky 

(1997) stressed that general examples are more advantageous than specific examples 

with regards to their generality and explanatory power. In a similar way, Zaslavsky 

(2010) indicated that general examples “offer explanation and provide insight about a 

certain phenomenon as well as ideas about how to generate more examples of this 

phenomenon” (p. 108). Further, she illustrated general examples by the use of a pair 

of rectangles as given in Figure 2.3.  

 

Figure 2.3. A general example of a pair of distinct rectangles with the same diagonal 

(Zaslavsky, 2010, p. 109). 
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2.2.7. Boundary examples 

Askew and William (1995) referred to two kinds of examples as only just 

examples and very nearly examples. They defined that an example is an only just 

example if any change in that example turns it into a non-example and a nearly 

example needs one more modification in order for it to become an example. Mason 

and Watson (2001) preferred to use the notion of boundary examples instead of only 

just examples to distinguish between examples which have a certain property and 

examples which do not have that certain property. They asserted that if a learner 

cannot generate boundary examples for a technique or theorem, then they cannot 

fully appreciate or comprehend it. Moreover, they emphasized that  

“By constructing a boundary example students are forced to extend their 

example-space in order to complete the task. So one effect is that students 

become more aware of the range of possibilities from which they are 

choosing when they select an example, and this is a precursor to expressing 

generality” (p. 11).  

According to Watson and Mason (2005), boundary examples are rather 

extreme to represent the whole classes but they do display what happens at the 

‘edges’ of those classes. Besides, they emphasized that unless there is access to 

extreme examples, then there is the probability of being misled in appreciating the 

scope of the related concept. Further, they exemplified the affordances of extreme 

examples as follows:  

“not all fractions have terminating decimals; subtraction and division can 

make larger; triangles are limiting cases of trapezia, squares are also 

rectangles, trapezia and parallelograms; multiplying zero offers a counter-

example to the belief that division always undoes multiplication” (p. 100).  

2.2.8. Pivotal and bridging examples 

 Zazkis and Chernoff (2008) expressed that counter-examples may serve to 

falsify a conjecture from a mathematical standpoint, however they may not have 

enough power to convince the learner to abandon his/her previously made 

generalization. More precisely, they indicated that counter-examples may not create 

a cognitive conflict and the learner may simply dismiss or treat that counter-example 

as an exception. Thus, the researchers introduced the notions of pivotal example and 
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bridging example and noted that while a counter-example is a mathematical concept, 

pivotal or bridging examples are pedagogical concepts. They explained that pivotal 

examples serve to create a cognitive conflict while bridging examples assist in 

conflict resolution and they defined pivotal examples as examples that help learners 

achieve ‘conceptual change’ (Tirosh & Tsamir, 2004; Vosniadou & Verschaffel, 

2004). Besides, they noted that counter-examples may be determined universally and 

in advance whereas it is not possible to determine whether an example works as a 

pivotal or a bridging example for a student cannot be determined before the 

instructional implementation and that may be totally identified only after that 

implementation.  

 Zazkis and Chernoff (2008) described and analyzed two episodes to illustrate 

the notions of pivotal and bridging examples. One of the episodes was about prime 

numbers and the researchers asked Selina, a prospective elementary school teacher, 

to simplify the following expression: 
13 17

19 23




. Selina started working on the task by 

multiplying the numbers included in the numerator and denominator of the 

expression. She wrote the expression as 
221

437
 and started checking whether 221 and 

437 are both divisible by 2, 3 and 5. She realized that 221 and 437 are not divisible 

by 2, 3 and 5 and she came up with a conjecture that 437 is a prime number. 

Nonetheless, she kept checking whether 437 is divisible by 7, 13 and 17. After trying 

19, she confirmed that 19 was in the original expression and at that moment she 

admitted that 19 and 23 were prime but she concluded that “two prime numbers 

multiplied by each other are prime.” Selina’s such inference was described as 

‘intuitive tendency towards closure’ (Zazkis & Liljedahl, 2004). Just then, Selina was 

asked to identify 15 is a prime number. This strategic example invoked a cognitive 

conflict and caused Selina to question her initial ideas. She realized that 15 is not a 

prime number, despite it is equal to the multiplication of the two prime numbers as 3 

and 5. Thus, she refuted her initial conjecture that the product of two prime numbers 

is also a prime number. Previously, Zazkis and Liljedahl (2004) identified that 

students tended to determine a number’s primality by checking whether that number 

was divisible by small primes. By making reference to this study, Zazkis and 
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Chernoff (2008) pointed out that Selina’s list of small primes was limited to 2, 3 and 

5.  

After presentation of 15 as a pivotal example, 77 was introduced to Selina as 

another example to establish the strength of her belief about primality. Here, 77 

served as a bridging example for Selina since it helped her resolve the conflict about 

primality. From a mathematical standpoint, 15, 77, 221 and 437 are all similar to 

each other in terms of their prime decomposition structure. However, from a 

pedagogical standpoint, 77 is small enough to 15 since its factors are easily 

noticeable. However, it is not comprised of 2, 3 or 5, the number which Selina named 

as building blocks. The example 77 led Selina to change her initial thinking about 

primality and guided her towards the following correct conjecture: prime numbers do 

not have to be closed under multiplication. 

2.2.9. Pre-planned and spontaneous examples 

In an attempt to describe teachers’ choice of examples in and for the 

mathematics classroom, Zodik and Zaslavsky (2008) distinguished between pre-

planned and spontaneous examples. The researchers investigated the examples used 

by secondary school mathematics teachers in the classroom with regards to the 

amount of pre-planning underlying their choices. They described pre-planned 

examples as examples which teachers think in advance and intend to use them in the 

lesson and they added that pre-planned examples might appear in teachers’ planning 

notes, worksheets prepared for students, textbooks used for structuring the lesson or 

might be inferred from teacher expressions and actions. When there was not enough 

evidence for determining whether an example was pre-planned or not, the 

researchers conducted interviews with the teachers and asked them to explain how 

they got access to the examples they employed.  

If the chosen examples involved in-the-moment decision making to a certain 

extent, then the researchers considered them to be spontaneous examples. When 

deciding whether an example is spontaneous, researchers took account of time 

allocated by teachers for generating the example, teachers’ degree of certainty when 

generating the example and finally, teachers’ gestures and facial expressions when 
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generating the example. For instance, researchers determined an example to be 

spontaneous when teachers used one of the following expressions: “I’m trying to 

construct a simple example but it is not working” or “I just chose these numbers now 

without giving them more thought” or when they confirmed a student query such as 

“Are you inventing the example right now?” (p. 172).  

The researchers found out that secondary school teachers generated 

spontaneous examples mainly as a response to student queries and conjectures. 

Besides, they observed that teachers generated not only spontaneous examples but 

also spontaneous counter-examples. For instance, one of the teachers wanted to 

demonstrate that complex fractions might be equal to a number such as
1

3
 . The 

teacher started constructing the example on her feet in front of the classroom, from 

time to time she erased some parts of the example and corrected it and she continued 

this iteration until the example fit her intended purpose. Finally, she generated the 

following spontaneous example:

4 2 3 3

7 3 3

3 4

36

a b c a b

a b c


  . To give another example, one of the 

teachers generated the spontaneous counter-example in Figure 2.4 as a response to a 

student’s invalid conjecture that “if in a quadrangle there are two opposite right 

angles it is a kite” (p. 172): 

 

Figure 2.4. A spontaneous counter-example of a quadrangle with two opposite right 

angles that is not kite (Zodik & Zaslavsky, 2008, p. 172). 

 

In order to convince the student that her conjecture is invalid, the teacher constructed 

on her feet a dynamic counter-example by constructing two right angles first and 

then positioning them in a way that intersect with each other as depicted in Figure 

2.4. 



29 

 

 Mason and Spence (1999) coined the term ‘knowing to act in the moment’ for 

teachers’ ability to think ‘on their feet’. Similarly, Rowland et al. (2005) dealt with 

such in-the-moment actions by means of the contingency dimension of their 

Knowledge Quartet Framework. Rowland et al. (2009) stressed that teachers 

continuously respond to their students’ interests and inquiries as part of the ongoing 

classroom interaction and they added that it is not possible for the teacher to know 

how each student will react or respond to any situation, therefore teachers may quite 

often need to make split-second decisions in the course of mathematics lessons. 

Rowland and Zazkis (2013) also made the same point that teaching not only includes 

paying attention to pre-determined sequence of events and providing the pre-

determined curriculum but it also has to do with paying attention to “students’ 

questions, anticipating some difficulties and dealing with unexpected ones, taking 

advantage of opportunities, making connections, and extending students’ horizons 

beyond the immediate tasks” (p. 138). To conclude, the act of teaching entails the 

ability to handle unpredictable or contingent events in the classroom and this ability 

is associated with classroom events that fall outside a teacher’s own lesson image 

(Rowland & Zazkis, 2013). In his ‘theory of teaching-in-context’ Schoenfeld (1998) 

described the term lesson image as follows: 

“The teacher’s lesson image includes knowledge of his or her students and 

how they may react to parts of the planned lesson; it includes a sense of what 

students are likely to be confused about, and how the teacher might deal with 

that confusion; and more… I can tell you, before the class starts, how things 

are likely to unfold… there are many branch points and contingencies. 

However, I know what most of them are likely to be. And, there are few 

surprises” (p. 17-18).  

Schoenfeld’s (1998) description of lesson image implies that teachers with more 

teaching experience might better predict what would happen in the classroom and 

might confront with less surprising events in the course of teaching. 

2.2.10. Examples of and examples for mathematical concepts or procedures 

 By pondering how students can benefit from examples, Rowland et al. (2009) 

distinguished between different uses of examples in the teaching of mathematics. 

First, a teacher might use an example for teaching concepts and procedures as a 
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particular instance of a generality (Rowland, et al., 2003). This way of using 

examples is inductive. That is, when teaching concepts or procedures, teachers 

provide or motivate students to provide examples of ‘something’ (Mason & Pimm, 

1984; Rowland, 2008). The ‘something’ is general in character such as the notion of 

a rational number or the traditional algorithm for subtracting rational numbers and 

examples and the purpose for using examples is to represent abstract mathematical 

concepts and to exemplify general procedures (Rowland, et al., 2003). For instance, 

the rectangle example given in Figure 2.5 is an example of teaching a concept.  

 

Figure 2.5. An example of a rectangle, and another, and another (Rowland et al., 

2009, p.69) 

 

Here, the notion of a rectangle is mathematically abstract and is encapsulated by a 

definition such as ‘a shape with four sides and four right angles’ (Rowland et al., 

2009).  

Similar to the teaching of concepts, teachers teach general procedures by 

particular demonstrations of those procedures (Rowland et al, 2003). To illustrate, if 

a teacher aims to teach grid method for TU U   multiplication (i.e., a two-digit by 

one-digit multiplication) he might select a two-digit number and a one-digit number 

and then multiply them by using the grid method (Rowland, 2008). Namely, a teacher 

may demonstrate the (general) grid method by means of the particular example of 

this procedure given in Figure 2.6.  

 

Figure 2.6. Finding 37 9  by using the grid method (Rowland, 2009, p. 119) 
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However, it is worthy of note that the teacher needs to select the numbers 3, 7 and 9 

with some care and thus, the examples introduced by the teacher should preferably 

be “the outcome of a reflective process of choice, a deliberate and informed selection 

from the available options” (Rowland, 2008, p.151). Probably, it would not be 

judicious for the teacher to demonstrate, for example, 10 9  by using the grid 

method since it is more sensible to work out this example by using a mental 

calculation strategy.  

 The second use of examples in the teaching of mathematics is about 

familiarization and practice after the teaching of a new concept or procedure 

(Rowland, 2009). Examples used for this purpose are usually called exercise 

examples and rather than being inductive as in the case of concept or procedure 

examples, they are illustrative and practice-oriented (Rowland, 2008). Exercise 

examples are often chosen from a large number of examples (Rowland et al., 2003). 

For instance, after teaching the grid method for TU U   multiplication procedure by 

the aforementioned example (i.e, by 37 9 ), a teacher may well ask his/her students 

to do several more exercise examples as a group work or as a homework to promote 

retention of the procedure by repeating and to gain fluency with it (Rowland et al., 

2009). From a teacher’s point of view, an exercise example may also be used as an 

instrument for assessment and such practice might result in various types of 

awareness and understandings (Rowland et al., 2003). Besides, exercise examples do 

not need to impose too much burden on students since they may also give rise to 

different types of awareness and understandings (Rowland et al., 2009). As for 

concept or procedure examples, exercise examples need to be chosen with some care 

since teachers’ generation or selection of such examples is neither trivial nor 

arbitrary (Rowland, 2008). 

2.2.11. Counter-examples 

Michener (1978) described counter-examples as examples that show that a 

conjecture is false and that clarify the distinctions between concepts or definitions. 

Rowland et al. (2009) indicated that counter-examples promote and challenge 

students’ mathematical reasoning remarkably. Similar to Michener (1978), Rowland 
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(2014) defined a counter-example as an example that is used to show that a 

conjecture is false and explained this notion by using the following task: “How many 

ways are there of ascending a flight of stairs if you can take one or two stairs at a time? For 

three stairs, for example, there are 3 ways: 111, 12 and 21” (p. 103). As described by 

Rowland (2014), there is one way for ascending one stair, two ways for ascending 

two stairs, three ways for ascending three stairs and so on. Thus, the sequence 

proceeds in the following way: 1, 2, 3, 5, 8, 13, 21, 34, … Students may easily 

recognize the pattern in this sequence (i.e., 3 = 1+2, 5 = 3+2, 8 = 5+3, 13 = 8+5, 21 = 

13+8 and 34 =21+13) and they may generate the following conjecture: every term is 

the sum of the previous two terms. To verify the truth of this conjecture, students 

need to prove it, and to show that it is incorrect they need a counter-example. For 

instance, if the number of ways for ascending eight stairs appeared to be 35 instead 

of 34, then the conjecture “every term is the sum of the previous two” could not be 

true in general.  

Counter-examples are very often used in the teaching of mathematics 

(Bogomolny, 2006). They “can serve to sharpen distinctions and deepen 

understanding of mathematical identities” (Zodik & Zaslavsky, 2008, p. 165). 

Watson and Mason (2005) defined counter-examples as examples which demonstrate 

that a certain conjecture is invalid. Besides, they indicated that the same example 

may both be a non-example and a counter-example depending on the context. They 

illustrated that 
1

5
 is a non-example of a fraction that is a repeating decimal and a 

counter-example to the claim that all fractions with non-repeating decimals include 

even denominators.  

Counter-examples are in a very powerful position when compared to other 

examples since one counter-example may be sufficient for establishing the invalidity 

of a claim while using many examples for establishing the truth of a claim may not 

be sufficient (Bogomolny, 2006). Nevertheless, asking learners to generate counter-

examples may be extremely troublesome, particularly if the learners have not 

generated before (Watson & Mason, 2006). For instance, Zaslavsky and Ron (1998) 

investigated ninth and tenth grade students’ understanding of the role of counter-

examples in falsifying mathematical statements, their achievement in generating 
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correct counter-examples and the difficulties experienced by them when generating 

counter-examples. They found that “students often feel that a counter-example is an 

exception that does not really refute the statement in question” (p. 231). Besides, the 

students persistently believed that a counter-example is enough for falsifying a 

geometric statement than an algebraic statement. Their findings also revealed 

students’ inability to distinguish between an example that fulfil the necessary 

conditions of a counter-example and an example that does not fulfil them.  

Similarly, Mason and Klymchuk (2009) lamented that students do not attach 

much importance to counter-examples and regard them as insufficient tools for 

establishing the invalidity of a given proposition. Instead, students choose to use 

exemplary illustrations such as rough outlining, rapid calculation or draft 

arrangement to demonstrate the association among variables (Zaslavsky & Ron, 

1998). Besides, although proving true propositions are commonly shown in the 

teaching of mathematics, refuting of an invalid proposition is usually overlooked and 

thus, students fall short of training and confidence in falsifying invalid propositions 

by using counter-examples (Leung & Lew, 2013).  

Although counter-examples are not emphasized in Turkish middle school 

mathematics curriculum, Common Core State Standards for Mathematics [CCSSM] 

(2010) has recently released new mathematics standards to enhance students’ ability 

to justify mathematical conjectures and use counter-examples. More specifically, 

CCSSM (2010) expects students to 

“make conjectures and build a logical progression of statements to explore 

the truth of their conjectures, analyze situations by breaking them into cases 

and recognize and use counter-examples; justify their conclusions and 

communicate them to others and respond to the arguments of others” (p. 6-

7). 

To achieve this goal, teachers are expected to comprehend their students’ proving 

and disproving processes clearly and teacher educators are expected to improve pre-

service and in-service teachers’ ability to cope with counter-examples in the course 

of teaching (Leung & Lew, 2013).   
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2.2.12. Non-examples  

Non-examples show the boundaries or necessary conditions of a concept 

(Watson & Mason, 2005). Similar to counter-examples, they “serve to clarify 

boundaries” of a concept (Bills et al., 2006, p. 127). Non-examples play a crucial role 

in promoting high levels of concept attainment (Charles, 1980; Cohen & Carpenter, 

1980; Petty & Jansson, 1987; Tsamir et al., 2008). Besides, non-examples give 

teachers the chance to analyze their students’ thinking and are supportive for students 

in reasoning out loud (Clements, Swaminathan, Hannibal, & Sarama, 1999).   

In mathematics education, research related with non-examples mainly 

focused on acquisition of geometric concepts (e.g., Cohen & Carpenter, 1980; Petty 

& Johnson, 1987; Wilson, 1986; Tsamir et al., 2008). For instance, Tsamir et al. 

(2008) differentiated between two types of non-examples as intuitive non-examples 

and non-intuitive non-examples. The non-examples which were immediately 

identified by the students as non-examples were named as intuitive non-examples. 

The non-examples that had notable similarities with the true examples of a geometric 

concept and that were more often erroneously identified as examples of that concept 

were named as non-intuitive non-examples. The researchers indicated that not all 

non-examples encouraged the same type of reasoning. More precisely, they 

explained that intuitive non-examples (such as, square, hexagon and ellipse) 

promoted more visual reasoning whereas non-intuitive non-examples (such as, zig-

zag triangle, pentagon, open triangle and rounded triangle) promoted analytical 

thinking based on critical attributes.  

Cohen and Carpenter (1980) examined the effectiveness of non-examples in 

the acquisition of the geometric concept semi-regular polyhedra. The researchers 

stressed that a sequence of examples and non-examples is superior to a sequence of 

examples alone in concept acquisition. Besides, the introduction of non-examples in 

different order (such as, four examples first, four non-examples next versus four 

different example-non example pairs) did not have any effect on the acquisition of 

the geometric concept.  

In a similar study, Petty and Johnson (1987) pointed to the superiority of a 

rational sequence of examples and non-examples over a randomly arranged sequence 
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of examples and non-examples on sixth grade students’ acquisition of parallelogram. 

They explained that rational sequence of examples and non-examples help students 

better identify distinguish between critical and non-critical attributes of the concept 

of parallelogram. Finally, they suggested that when choosing school geometry 

textbooks, the priority should be given to textbooks that present examples and non-

examples in a rational manner.  

 Wilson (1986) suggested the use of non-examples so as to diminish the 

influence of prototype examples. Prototype examples are accepted immediately, 

intuitively, without thinking the need for any kind of justification (Tsamir et al., 

2008). However, prototype examples may lead to cognitive obstacles since they have 

“coercive impact on our interpretations and reasoning strategies” (Fischbein, 1993, p. 

233). Actually, students are inclined to consider prototypical examples as examples 

of the concept and consider other examples as non-examples of that concept 

(Hershkowitz 1989; Wilson, 1990). Watson and Mason (2005) made the same point 

that students generally identify concepts with one or two examples introduced earlier 

by their teachers and they are often left with incomplete and limited sense of the 

concept. In order to lessen the influence of prototype examples, the students might be 

introduced to non-examples with the same non-critical attributes and thus they may 

start to distinguish between critical and non-critical attributes of the concepts being 

taught (Wilson, 1986).   

2.3. The Notion of Example Spaces  

The use of examples is a fundamental and deep-seated aspect in the teaching 

of mathematics (Atkinson, Derry, Renkl & Wortham, 2000; Mason, 2006). Besides, 

examples are essential components of explanation as mentioned by Leinhardt et al. 

(1990): 

“Explanations consist of the orchestrations of demonstrations, analogical 

representations, and examples… A primary feature of explanations is the use 

of well-constructed examples, examples that make the point but limit the 

generalization, examples that are balanced by non- or counter-cases” (p. 6). 

In mathematics, an example may be an instantiation of a mathematical class 

with specific properties, a worked-out solution, an illustration of a theorem or a 
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reasoning method (Sinclair, et al., 2011). However, Watson and Mason (2005) claim 

that “one special example may not be enough to give learners an idea of the full 

extent of what is possible, and it may it indeed be misleading in its details” (p.5). 

Therefore, they developed the notion of example spaces and described it in the 

following way:  

“Think of an example space as a toolshed containing a variety of tools – 

examples that can be used to illustrate or describe or as raw material. Some 

tools are familiar and come to hand whenever the shed is opened, whereas 

others are more specialised and come to hand only when specifically sought” 

(p.61). 

This description is similar to Tall and Vinner’s (1981) construct of concept 

image. The term concept image has been described as follows: 

“We shall use the term concept image to describe the total cognitive 

structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes. It is built up over the years 

through experience of all kinds, changing as the individual meets new 

stimuli and matures” (p.152). 

An example space can be described as the set of or classes of examples that 

an individual has access to and therefore it can be regarded as a subset of concept 

image (Edwards, 2011). Similarly, Mason and Watson (2008) stressed that an 

example space constitutes an individual’s important part of his/her concept image 

and defined it as the collection of examples and non-examples which the learner have 

access to. In a more recent study, Zaslavsky and Zodik (2014) considered an example 

space “as the collection of examples one associates with a particular concept at a 

particular time or context” (p. 527) and emphasized that the notion of example 

spaces in closely linked to Vinner and Tall’s concept image (Vinner 1983; Tall & 

Vinner 1981). 

However, learners can access only to a limited number of examples at any 

specific moment and this is referred to as evoked example space (Zazkis & Leikin, 

2007) or situated (local) personal (individual) example space (Watson & Mason, 

2005), or accessible example space (Goldenberg & Mason, 2008). As Watson and 

Mason (2005) mentioned, examples in this space are not isolated from each other: 

“Example spaces are not just lists; they have an internal, idiosyncratic structure - in 

terms of how the members and classes in the space are interrelated - and it is through 
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this structure that examples are produced” (p.51). In addition, example spaces are not 

static, but rather dynamic and evolving (Goldenberg & Mason, 2008). Likewise, a 

learner’s concept image is not fixed; it might grow or change via experience and 

different parts of a learner’s concept image may develop at different times and in 

different ways (Tall & Vinner, 1981). It can be suggested that introducing students 

specific examples of a concept is part of such experience and if it is accepted that 

students’ concept image is affected by examples, then a plausible approach to 

rebuilding their image is to extend their example space from which they make 

generalizations (Zazkis et al., 2007). Similarly, Watson and Mason (2005) stress that 

the extension and exploration of example spaces are essential in learning 

mathematics: 

“Learning mathematics consists of exploring, rearranging, and extending 

example spaces and the relationships between and within them. Through 

developing familiarity with those spaces, learners can gain fluency and 

facility in associated techniques and discourse. Experiencing extensions of 

your example spaces (if sensitively guided) contributes to flexibility in 

thinking not just within mathematics but perhaps even more generally, and it 

empowers the appreciation and adoption of new concepts” (p. 6). 

Generating examples not only enriches learners’ example space in terms of its 

content but also provides opportunities for exploring its structure in terms of the 

connections among the elements of that space and in turn reveals or changes their 

sense of generality (Abdul-Rahman, 2005). To describe the structure of example 

spaces and to encourage learners distinguish varying aspects and structural aspects of 

mathematical objects, Watson and Mason (2005) extended Marton and Booth’s 

variation theory (Marton & Booth, 1997). Put another way, Watson and Mason 

(2005) introduced the notions of dimensions of possible variation and the range of 

permissible change so as to describe the structure of examples spaces.  

As mentioned before, an example space is “a set of all examples of a 

particular mathematical object or concept that an individual is consciously or 

implicitly aware, together with many associated properties the individual believes the 

examples possess, and any links the individual has drawn between examples” 

(Edwards & Alcock, 2010, p. 3). Watson and Mason (2005) also distinguished 

between several kinds of example spaces and they mentioned the following types:  
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“situated (local), personal (individual) example spaces, triggered by a task, 

cues and environment as well as by recent experience; personal potential 

example space, from which a local space is drawn, consisting of a person’s 

past experience (even though not explicitly remembered or recalled), and 

which may not be structured in ways which afford easy access; conventional 

example space, as generally understood by mathematicians and as displayed 

in textbooks, into which the teacher hopes to induct his or her students; a 

collective and situated example space, local to a classroom or other group at 

a particular time, that acts as a local conventional space” (p. 76). 

In the previous sections, the definition of an example, example types, and the 

notion of example spaces were described in detail. In the following section, learners’ 

difficulties and misconceptions about rational number concepts were described in 

some detail.  

2.4. Learners’ Difficulties and Misconceptions about Rational Number Concepts 

In mathematics, there is not an agreed upon definition about the notion of a 

rational number. For instance, Tattersall (2005) and Niven (1990) defined a rational 

number as any number that can be written in the form of 
a

b
 where a and b are 

integers and b is not equal to zero. On the other hand, Breuer (2006), Lang (2006) 

and Sierpinski (1998) defined a rational number as any number expressed in the form 

of 
a

b
 where and b are integers, 0b  , and a and b are relatively prime. Yanık 

(2013) cautioned that most mathematics textbooks do not explicitly express that 

numerators and denominators are relatively prime in rational numbers. Başkan, 

Bizim and Cangül (2006) and Çelik, Çelik, Bizim and Öztürk (2013) made the same 

point and stressed that this restriction (a and b are relatively prime numbers) is 

crucial since it is used when proving whether a given number is rational or not. 

Nevertheless, the Turkish middle school mathematics curriculum (MoNE, 2009b) 

and the school mathematics textbook prepared by Aydın and Beşer, (2013a) defined 

the notion of a rational number as: 

{Any number in the form of , , , 0}
a

a b b
b

       . As it can be seen, this 

definition also ignores the relative primeness of a and b.  
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Rational number concepts are among the most important mathematical ideas 

students encounter in their school years (Alacacı, 2009; Behr et al., 1983; Behr et al., 

1984; Yanık, 2013). Behr et al. (1983) stressed that rational numbers form the basis 

of elementary algebraic operations, they develop the ability to cope with real life 

problems, and help to develop and expand mental structures essential for students’ 

continuous intellectual development. Due to their importance, Turkish mathematics 

curricula (MoNE, 2009a, 2009b, 2011) also give substantial emphasis on rational 

number concepts. According to MoNE (2009a), elementary school students (grade 1-

5) are expected to learn and develop fluency with fraction concepts and operations. 

By the way, fractions refer to non-negative rational numbers since “students begin to 

study fractions long before they are introduced to the integers” Lamon (2012, p. 29).  

Similarly, in middle schools (grade 6-8) sixth grade students are expected to 

understand fraction concepts, procedures and operations in grade 6. In addition, they 

are expected to apply and extend their previous understandings about fraction 

concepts and operations to rational number concepts and operations in grade 7. More 

specifically, the middle school mathematics curriculum expects seventh grade 

students to learn how to explain and locate rational numbers on a number line, 

express rational numbers in different forms, compare and order rational numbers, add 

or subtract rational numbers, multiply or divide rational numbers, perform multi-step 

operations with rational numbers, and finally pose and solve rational number 

problems (MoNE, 2009b). 

Ultimately, in secondary schools (grade 9-12) ninth grade students are 

expected to explain the concept of rational number, perform addition, subtraction, 

multiplication and division operations with rational numbers, express the properties 

of addition and multiplication operations with rational numbers, order rational 

numbers and locate them on the number line, demonstrate the density of rational 

number set and convert rational numbers into their decimal forms (MoNE, 2011).  

2.4. 1. Students’ difficulties and misconceptions about rational number concepts 

Although students are introduced to rational numbers almost at all grade 

levels, rational numbers are notorious for the difficulty encountered by students (e.g., 

Haser & Ubuz, 2003; Lamon, 2007; Ni, 2001; Vamvakoussi & Vosniadou, 2010). 
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Similarly, Yetim and Alkan (2013) stated that student misconceptions are prevalent 

in the domain of rational numbers. The differences between rational numbers and 

integers and natural numbers give rise to difficulties in teaching rational number 

concepts (Siegler, Thompson & Schneider, 2011; Stafylidou & Vosniadou, 2004). 

One of the factors that gives rise to student difficulties in rational number concepts is 

students’ interference of natural number knowledge to rational numbers (Ni & Zhou, 

2005; Streefland, 1991). Similarly, Post, Wachsmuth, Lesh and Behr (1985) claim 

that “children’s understanding about whole numbers often adversely affect their early 

understandings about fractions. For some children, these misunderstandings persist 

even after relatively intense instruction based on the use of manipulative aids” (p.33). 

Van de Walle, Karp and Bay-Williams (2013) explained students’ four common 

misapplications of natural number reasoning to fractions as thinking numerators and 

denominators as separate entities, thinking the numerator refers to any number of 

parts rather than the number of equal-sized parts, thinking that the fraction with a 

larger denominator is larger than the one with a smaller denominator, and 

overgeneralizing operations with natural numbers to fractions such as
1 3 4

2 5 7
   . 

Similarly, some other researchers pointed out that students misinterpret the symbol 

a

b
 by thinking a and b as two unrelated numbers, think that a and b are additively 

related, or think that rational numbers with large numerators and denominators are 

greater than rational numbers with small numerators and denominators (Moskal & 

Magone, 2000; Moss, 2005; Lamon, 2012; Stafylidou & Vosniadou, 2004).  

Another factor that gives rise to student difficulties in rational number 

concepts is problems with notation of rational numbers (Moss, 2005; Ni & Zhou, 

2005; Smith, Solomon & Carey, 2005). Kilpatrick, Swafford and Findell (2001) 

noted that there are many different representations and interpretations for rational 

numbers and these representations and interpretations make rational numbers 

difficult to understand. Accordingly, the number 
a

b
 has five different interpretations. 

These are part-whole, measurement, division, operator, and ratio (Van de Walle, et 

al., 2013). For a meaningful understanding of fractions, students need to translate 
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among these representations flexibly (Yetim & Alkan, 2013). However, many 

researchers reported that students have great difficulty in translating among these 

representations (e.g., Haser & Ubuz, 2002; Tirosh, Tsamir & Hershkovitz, 2008). 

This might be due to the emphasis placed on part-whole subconstruct by most 

textbooks and schools (Clarke, Roche & Mitchell, 2008; Siebert & Gaskin, 2006). 

Therefore, teachers should provide the students with the opportunity that there are 

other conceptions of fractions beyond the part-whole subconstruct (Mack, 2001; 

Steffe & Olive, 2010).  

Not exploring fractions with different models might also explain student 

difficulties or misconceptions about rational number concepts. Indeed, textbooks 

most often do not use manipulatives and when they do, they are inclined to use only 

region models (Hodges, Cady & Collins, 2008). Similarly, Sowder (1988) stated that 

students are model poor and many of them only have circular region as their fraction 

model and she added that being model poor may lead to additional problems in 

developing understanding of fractions. Lesh, Post and Behr (1987) proposed a 

translation model by assuming that elementary mathematical ideas can be 

represented in five different ideas as real life situations, manipulatives, written 

symbols, verbal symbols, and pictures. Translating within and among these 

representations can be considered as key tasks (Ainsworth, Bibby & Wood, 2002) 

and  may help to deepen students’ conceptual understanding of fractions (Cramer, 

2003). More specifically, Yetim and Alkan (2013) conducted a study to examine 

seventh grade students’ common misconceptions and errors in expressing rational 

numbers in different forms. They found out that students had difficulty identifying 

rational numbers, linking rational numbers to decimals, representing rational 

numbers, performing rational number divisions and understanding how to divide a 

number by zero or the vice versa. Consequently, they suggested the use of concrete 

materials and representations in overcoming student difficulties or misconceptions 

about rational numbers. 

Students’ difficulty in understanding rational number concepts and operations 

seems to stem from the fact that students memorize the algorithms and the related 

formulas rather than understanding the essence (Şiap & Duru, 2004). Student 
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difficulties about rational number concepts and operations can be attributed to 

traditional education which forces students to rote memorization rather than to 

conceptual understanding (Moseley, 2005). Van de Walle et al. (2013) supported this 

idea and expressed that students struggle with fractions since “instruction does not 

focus on conceptual understanding of fractions” (p. 291).  

2.4. 2. Pre-service and in-service teachers’ difficulties and misconceptions about 

rational number concepts 

Rational number concepts are also very challenging for pre-service and in-

service teachers (An, Kulm, & Wu, 2004; Izsak, 2008; Ma, 1999; Tirosh, 2000). 

More specifically, the previous research on teachers’ knowledge of fractions 

converged on three main findings: (a) having difficulty in carrying out fraction 

procedures, (b) having limited understanding of fraction concepts and operations, 

and (c) holding misconceptions about fractions which are resistant to change (Osana 

& Royea, 2011). A brief summary of these main findings are presented below.  

Teachers experience difficulties when performing four operations with 

fractions (Newton, 2008; Tirosh, 2000). For instance, Newton (2008) pointed out that 

pre-service elementary teachers used cross multiplication algorithm when performing 

multiplication of fractions and they added or subtracted across denominators when 

performing addition or subtraction of fractions.   

There is also considerable evidence to suggest that teachers lack 

understanding of fraction concepts and operations (Ball, 1990; Ma, 1999; Simon, 

1993). They have limited capacities in explaining the product of two rational 

numbers or decimals (e.g., Armstrong & Bezuk, 1995; Eisenhart et al., 1993). To 

illustrate, Armstrong and Bezuk (1995) introduced middle school teachers a word 

problem for which calculating 
1

3
 of 

3

4
 would be relevant. The middle school 

teachers realized that the problem entailed rational number multiplication. However, 

they had great difficulty in explaining their thinking and understanding the relevant 

unit or the whole for the given problem.  

Some other researchers found out that teachers have difficulty realizing which 

problems or situations entail multiplication of decimal numbers (Graeber & Tirosh, 
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1988; Graeber, Tirosh & Glover, 1989). For instance, Graeber and Tirosh (1988) 

found out that teachers often employed inappropriate division operations when 

solving problems such as “One kilogram of detergent is used in making 15 kilograms 

of soap. How much soap can be made from 0.75 kilograms of detergent?” (p. 264). 

Graeber and Tirosh (1988) also found out that teachers erroneously believed that a 

larger number must be always divided by a smaller one in division problems such as 

“Twelve friends together bought 5 pounds of cookies. How many pounds did each 

friend get if they each got the same amount?” (p. 265).  

Likewise, Tirosh (2000) reported that pre-service and in-service teachers tend 

to pose multiplication problems or are not able to pose correct problems for given 

division operations. Moreover, Tirosh (2000) organized the literature on learners’ 

mistakes about fraction division into three main categories as algorithmically based 

mistakes, intuitively based mistakes, and mistakes based on formal knowledge. 

Algorithmically based mistakes refer to inversion of the dividend in place of the 

divisor or inversion of both terms before multiplication. Intuitively based mistakes 

refer to overgeneralization of properties of natural number operations to fraction 

operations and to the interpretation of division solely as partitive model of division. 

Finally, mistakes based on formal knowledge occur due to learners’ limited 

conceptions of fractions. For instance, believing that division operation is 

commutative may lead to errors such as 
1 1

1
2 2

  because 
1 1 1

1 1 .
2 2 2

     Similar 

to Tirosh (2000), Ball (1990a) indicated that pre-service teachers successfully 

performed division operations such as 
3 1

1
4 2
  but they could not pose word 

problems for such division operations.  

In another study, Işık and Kar (2012) aimed to make an error analysis of the 

problems posed by prospective elementary mathematics teachers about division of 

fractions. They observed seven different types of errors in the problems posed by 

prospective teachers as confusion in units (E1), assigning natural number meanings 

to fractional numbers (E2), posing problem using ratio and proportion (E3), not 

being able to establish part-whole relationships (E4), dividing to the denominator of 

the divisor (E5), using multiplication operation instead of division operation (E6), 
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and posing problem through inverting and multiplying the divisor fraction (E7). E1 

occurred when prospective teachers did not use the units consistently for the rational 

numbers included in a division operation. E2 was related with assignment of natural 

number meanings to fractional numbers. E3 referred to the cases in which problems 

were posed by comparing different units or by comparing two fractions with same 

units. E4 occurred due to posing division problems which include quotients (the final 

amount) that are larger than the dividend (initial amount). E5 occurred when 

prospective teachers attempted to pose problems in a way that entailed division of 

first rational number (dividend) to the denominator of the second rational number 

(divisor) instead of the second rational number itself. E6 referred to the cases in 

which prospective teachers posed problems that required multiplication of the 

dividend fraction with the divisor fraction. Finally, E7 occurred due to posing 

problems which entail inverting the divisor fraction and multiplying it by the 

dividend fraction.  

Finally, some researchers reported that pre-service teachers hold several 

misconceptions about fraction operations (e.g., Newton, 2008; Tirosh & Graeber, 

1990). For instance, Newton (2008) extensively analyzed pre-service elementary 

teachers’ knowledge of fraction operations including addition, subtraction, 

multiplication and division. By including all four operations in her study, Newton 

(2008) detected a misconception that was very common among pre-service teachers. 

That is, pre-service teachers erroneously believed that having same denominators 

necessitates keeping the denominator of the answer the same, while having different 

denominators necessitates employing the given operation on the denominators. 

Newton (2008) suggested that pre-service teachers appeared to hold a misconception 

about the role of denominators unlike young students who add across numerators and 

denominators due to the overgeneralization of whole number thinking to fraction 

operations.  

Similarly, Tirosh and Graeber (1990) explored the common misconceptions 

held by pre-service teachers. That is, many of the pre-service teachers erroneously 

believed that in a division operation the dividend must always be larger than the 

quotient. The researchers interviewed with the pre-service teachers and found out 
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that they were able to accurately perform division operations in which the divisors 

are less than 1. However, they also agreed that the quotient must always be less than 

the dividend. Their interviews revealed that pre-service teachers relied on whole 

number thinking and their procedural understanding of division algorithm promoted 

their misconception. The researchers further noted that pre-service teachers lacked 

measurement interpretation of division and they tended to change procedures to keep 

their misconceptions.  

2.4.3. Why is it important to explore teachers’ treatment of rational number 

examples in their classrooms? 

To help teachers diminish the difficulties or misconceptions encountered by 

students about rational numbers, Greer (1987) determined students’ common 

misconceptions about rational numbers such as ‘multiplication makes bigger, 

division makes smaller’. Moss and Case (1999) proposed a new curricular approach 

and tested it in a study involving 5th and 6th grade students. Moreover, NCTM (2000) 

emphasized using standard documents to develop elementary and middle school 

students’ rational number reasoning.   

Despite the emphasis on enhancing students’ rational number understanding, 

student difficulties about rational numbers still persist (Wilson et al., 2013). Besides, 

many of the elementary and middle school mathematics topics involve rational 

number concepts and large scale international studies such as Programme for 

International Assessment (PISA) (OECD, 2010) and Trends in International 

Mathematics and Science Study (TIMSS) (Mullis et al., 2008) documented low 

mathematics performance of Turkish students. This low performance of Turkish 

students in mathematically important topics might indicate that less attention has 

been paid to rational number concepts in Turkish education system (Yetim & Alkan, 

2013). Students’ low performance in rational number concepts might give some 

clues about teachers’ teaching of rational numbers. Thus, it might be essential to 

examine teachers’ treatment of rational number examples in their classrooms in order 

to shed some light on this issue. In this study, I take an initial step in this direction 

and attempt to explore the quality and quantity of examples used by middle school 
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mathematics teachers in the course of teaching rational number concepts. I believe 

that observing middle school mathematics teachers’ actual classroom practices would 

improve not only the quality of teachers’ teaching but also students’ learning. The 

findings of Morrison (2013) strengthen this belief since she attributed students’ poor 

performance in mathematics to “poor sequencing of examples, limited ranges of 

examples in the low rates of task completion within and across lessons and to more 

general slow pacing” (p.97).  

2.5. Related Studies on Teachers’ Treatment of Mathematical Examples 

The review of the literature regarding teachers’ treatment of examples 

revealed a few studies and among those while some dealt with pre-service teachers 

(e.g., Rowland, 2014; Rowland 2008) some others chose to study with in-service 

teachers (e.g., Morrison, 2013; Zaslavsky & Zodik, 2007; Zaslavsky, 2010; Zodik & 

Zaslavsky, 2008). The research studies related with teachers’ treatment of examples 

are reviewed in the following section. 

In a recent study, Rowland (2014) examined the examples used by two pre-

service elementary teachers, why they chose those examples and whether they chose 

them well. One of the pre-service teachers was in the later stages of his Postgraduate 

Certificate in Education (PGCE) and he was teaching quadratic equations and finding 

equivalent expressions by completing the square (CTS) in a secondary mathematics 

course. The pre-service teacher used six different examples to teach CTS procedure 

and all of the examples were chosen by him in-advance, since they were listed in his 

lesson plan. He introduced 
2 26 8 ( 3) 1x x x      and worked out this example 

initially and then wrote on the board the following examples for students to try CTS 

on their own: 
2 2 2 2( ) 8 14, ( ) 2 8, ( ) 6 5, ( ) 3 1ii x x iii x x iv x x v x x                and

2( ) 2 4 2.vi x x    After some time, the pre-service teacher solved each example one 

by one together with his students. Rowland (2014) examined these examples through 

the lens of variation theory (Marton & Booth, 1997). He indicated that the 

parameters a, b and c correspond to dimensions of variation in the following 

quadratic function formula: 2ax bx c   . The choice of the variable ‘a’ affects the 

complexity of CTS. As can be seen, all of the examples selected by the pre-service 
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teacher have 1a  , except for the last example. The variable ‘a’ can also take 

negative values and non-integer values but the pre-service teacher preferred to delay 

them to another lesson. Similarly, the choice of the variable ‘b’ remarkably 

influences the complexity of CTS. Especially, when ‘b’ is selected to be even, the 

complexity decreases dramatically. As can be seen, the selected examples all 

included even values for the variable ‘b’. Finally, the choice of ‘c’ is another 

dimension of variation and it does not influence the complexity of CTS too much, yet 

the pre-service teacher included both positive and negative values of ‘c’.  

Another secondary PGCE participant was reviewing simultaneous equations 

and she chose to set out by the following example: 2 3 16; 2 5 20.x y x y      The 

pre-service anticipated that the students would eliminate x by subtraction, however 

she was surprised when students preferred to eliminate y since she did not know why 

they did so. Later, the pre-service teacher noticed that the sign of the coefficients of y 

included in the examples of her were always explicit whereas the sign of the 

coefficients of x were implicit (e.g., 2x instead of +2x). Thus, she noticed that 

limiting the coefficients of x to positive values might explain the choice for 

eliminating y even when it is much more easy to eliminate x.  

Finally, Rowland (2014) recommended that it is much better to have a pre-

planned sequence of examples when setting out to teach mathematical concepts or 

procedures such as solving simultaneous equations by substitution method. By this 

way, the teachers might introduce examples by gradually increasing their 

complexities.  

In a similar study, Rowland (2008) observed the teaching of twelve 

prospective elementary teachers during their final school placement to determine for 

which purposes they used mathematical examples in their teaching. Namely, he 

examined pre-service teachers’ good and poor choices of examples. However, he 

observed that pre-service teachers’ poor choice of examples were more prevalent. He 

reported teachers’ good and poor choices of examples under four categories as: 

variables, sequencing, representations and learning objectives.  

The examples selected by pre-service teachers for the variables category 

reflected their poor choice of examples. More specifically, when teaching how to add 
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and subtract whole numbers, identify co-ordinates of a point and tell the time, the 

examples selected by the teachers obscured the role of variables. For instance, for 

teaching addition and subtraction 9 9 18   and 4 2 2   were selected as 

examples, for teaching how to identify the co-ordinates (1,1) was introduced first and 

finally when teaching half past, half past six was demonstrated on an analogue clock 

(Note that both hour and minute hands point to 6 on the analogue clock for half past 

six).  

In the sequencing category, teachers usually generated a set of examples at 

once and the examples reflected both good and poor choices of teachers. The 

sequences of examples were generated when practicing number bonds to 10 and 

number bonds to 100. For instance, when practicing number bonds to 10, the 

following numbers were selected by a teacher: 8, 5, 7, 4, 10, 8, 2, 1, 7 and 3. 

According to Rowland, this is a very well chosen sequence for several reasons. First, 

8 and 7 are close to 10, so they require little or no counting to reach the answer. 5 

puts into play doubling strategy as a key for mental computation. The selection of 4 

is more confusing and the selection of 10 is a degenerate case and it does not entail 

counting but it emphasizes the idea that 0 can be added to 10.  Finally, by selecting 8 

and 2 successively, the teacher pointed to commutative property of addition.  

In representations category, one of the teachers modelled subtraction 

operation by moving a counter vertically and horizontally on a hundred grid. The 

first demonstration example was selected to be 70-19. Modelling this subtraction 

operation on a hundred square is a very complex work since 70 is on the right 

boundary of hundred grid and after moving the counter two squares upwards, there is 

not any square on the right side of 50 (i.e., 70-20+1). Thus, it is essential to move 

down and then to move to the extreme left of the next row. As can be seen, the 

selected example obscured the general procedure for subtracting on a hundred grid. It 

is important to note that any of the numbers on the hundred grid except for 20, 30, 

40, 50, 60, 70, 80, 90 and 100 would work properly as a minuend when 

demonstrating subtraction of 19. 

In learning objectives category, a pre-service teacher was trying to teach 

distinguishing features of the concepts of translation and reflection. The teacher 
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randomly selected a circle and a rectangle from a pile of shapes. However, the 

teacher’s selection of shapes was not judicious since both shapes remained invariant 

not only after translation and but also after reflection. 

Ultimately, Rowland (2008) suggested that pre-service teachers should be 

guided specifically and helped in understanding the various roles of examples in the 

teaching of mathematics. Besides, they should be informed about the existence of 

potential dangers or unexpected difficulties in selecting examples.  

In another study, Morrison (2013) compared two foundation phase teachers’ 

(Zelda and Deborah teach Grade 1 and Grade 2 respectively) choice and use of 

examples in the course of teaching number concepts. She analyzed the data from 

lesson observations by using the analytical framework of Rowland (2008). In her 

first lesson, Deborah focused on addition and in particular on counting, ordering 

numbers on a number line and addition on a number line. However, she did not take 

into account dimensions of possible variation and provided her students with 

examples that all involve join conception of addition. Besides, she presented those 

examples by using the ‘result unknown’ such as 3 5   . She ignored taking 

account of variables by not using the ‘change unknown’ and ‘start unknown’ such as 

3 and 5 respectively. Thus, the addition examples used by Deborah did 

not expose the students to a variety of addition problems that they may confront. To 

teach addition on a number line, Deborah generated the following sequence of 

examples: (i) 2+6, (ii) 10+10, (iii) 3+5 and (iv) 10+6. Deborah’s second example was 

more complex than the first one, since it included two-digit numbers whereas the 

first example included one-digit numbers. However, the third example was less 

challenging than the second example since children usually learn double number 

facts such as 10+10 very quickly. Similarly, the fourth example is relatively easy 

when compared to the second example since it entails the addition of a single digit 

number to 10. Deborah chose to illustrate addition of numbers on a number line. 

However, she did not use the number line in a way that provided the students greater 

access to the concept or procedure being taught for several reasons. First, the range 

of numbers in the examples was so small that the students did not find it necessary to 

use the number line when adding. Second, the selection of well-known double (i.e., 
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10+10) also diminished the need for adding on a number line since it is very easy to 

add 10 and 10. Finally, her way of demonstrating addition on a number line resulted 

in a calibrated number line with an irregular scale and this made it procedurally 

confusing.  

Zelda took account of variables when teaching counting. The possible 

dimensions of variation in her examples included the interval or size of the count (2 

and 3); the direction of the count (backwards and forwards) and the start and end 

points of the counting sequences (counting in 3s by starting from 3, counting in 2s by 

starting from 6, and counting backwards in 2s by starting from 29). By using 

variation, Zelda considered the relative complexity of examples since counting from 

the first number in a counting sequence is easier than counting by starting at a 

number that is far from the first number such as starting at 6 when counting in 2s. 

Zelda used a random sequence of numbers when teaching how to order numbers 

from 0 to 15. By using an activity, Zelda asked the students to fish the numbers out 

of the pond and the following sequence was generated: 8, 7, 3, 11, 0, 13, 15, 1, 5, 6, 

4, 12, 9, 14, 10 and 2. This sequence worked well since it helped the teacher to easily 

notice the students who had difficulty identifying the symbolic forms of the numbers. 

Zelda also used several well designed representations in a planned manner. For 

instance, when counting back mentally from 29 in 2s, the students had great 

difficulty and the teacher provided the students with a 1-100 wall chart and this 

representation enhanced students’ ability to count backwards. Besides, Zelda gave 

importance to making connections between representations and she established 

connections between words, symbols and actions that she used to explain addition on 

a number line.  Ultimately, Morrison (2013) pointed to the link between a higher 

content knowledge and the extent of a teacher’s example space and suggested 

researchers to further explore this by using a larger sample.  

In another study with secondary school teachers, Zaslavsky and Zodik (2007) 

attempted to explore experienced teachers’ treatment of mathematical examples. 

They analyzed five examples in terms of their strengths and weaknesses and aimed at 

increasing the awareness of teachers, teacher educators and researchers to possible 

consequences of particular choices. Example 1 included a gradual sequence of 
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examples that might be used to facilitate the notion of invariance, Example 2 called 

for sensitivity to students’ misconceptions, Example 3 called for increasing students’ 

awareness of overgeneralization, Example 4 called for a more general case and 

Example 5 included a teacher’s poor choice of coefficients as a result of 

arbitrariness.  

In Example 1, a teacher wanted to introduce her students’ the area formula of 

a triangle in an 8th grade pre-algebra classroom. The teacher initially provided a 

rectangle and its area calculation formula. Next, she introduced a right angle that is 

clearly half of the afore-given rectangle. Finally, she introduced a more general 

triangle and kept the length measurements constant. The teacher seemed to use a 

well-chosen set of examples for some reasons. First, the three examples were 

provided in a well-connected manner. Second, some features were kept constant 

while some others varied and this helped students better focus on varying elements 

such as the type of figure and the link between a side and its corresponding height. 

Nevertheless, there were several missed opportunities that might have influenced 

students’ comprehension. First, it was not obvious whether the teacher considered the 

triangle as a general triangle and she did not articulate that in the classroom. The 

students may easily perceive the triangle as another right triangle that has been 

turned around. Second, the teacher could have asked for more suggestions on how to 

divide the base of the triangle into two parts such as 1-5, 2.5-3.5 if the length of the 

base is 6 units. By this way, she could have clearly demonstrated the idea that the 

area of a triangle remains invariant even if the location of the point where the height 

intersects the base is changed.   

In Example 2, a teacher wanted to teach the notion of slope to her students. 

For this aim, she drew a figure on the board and at that time by examining the figure 

one of the students claimed that ‘the first mountain is higher than the second one and 

thus the first one is steeper than the second one’. As can be seen, the teachers’ 

drawing fostered a common student misconception, confusion of the concept of 

height with the concept of slope, of which the teacher was not aware. In response to 

her students’ claim, the teacher erased her first drawing and drew another figure in 

which the two mountains had same heights but different slopes. The students’ remark 
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helped the teacher become aware of the limitation of her initial example and led her 

to modify it.  

In Example 3, a teacher wanted to teach the concept of median of a triangle in 

a geometry lesson. By looking through the teachers’ initial example of a median, one 

of the students overgeneralized that any median is also an angle bisector. Again, the 

teacher was not aware of the limitation of her initial example and after the student’s 

remark, the teacher recognized that her initial example had some non-critical features 

that might mislead students in concept acquisition.  

In Example 4, a teacher wanted to teach the concept of kite. She first drew the 

figure of a prototypical kite and then introduced its definition as a quadrilateral that 

consists of two isosceles triangles sharing the same base. Next, the teacher wanted to 

provide a non-example by changing the position of one of the isosceles triangles. 

However, this initial non-example had particular visual inferences that the teacher 

was not aware. At that moment, one of the students interfered and stated that the 

teacher drew an equilateral triangle accidentally. The teacher immediately noticed 

that her initial non-example was perceived as a special kite in which one of the two 

isosceles triangles is an equilateral triangle. Then, the teacher drew another more 

persuasive non-example that could be considered as a general non-example.  

In Example 5, a teacher chose to use the quadratic equation 22 4 5 0x x    

to teach how to use the Viete formula that has to do with the sum and products of the 

roots of a quadratic equation. As the teacher set out to teach the formula, he noticed 

that the choice of his quadratic equation was a poor one since it did not have real 

roots
2( 4 16 4.2.5 24 0)b ac         . Thus, the students were not able to use 

the Viete formula. Here, the teacher wanted to give a sense of randomness when 

selecting coefficients of the quadratic equation. However, he did not notice that the 

coefficients needed to be selected with some care and thus he did not check the 

necessary conditions. When he became aware of the limitation of his example, he 

provided another quadratic equation that he knew that there were certainly two real 

roots.  

Zaslavsky and Zodik (2007) suggested teachers to keep in mind that random 

choice of examples may lead to visual examples that do not exist and added that 
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teachers might better plan the examples they introduce so as to avoid mismatches and 

misunderstandings.  

In a similar study, Zaslavsky (2010) used a number of cases to examine 

mathematical examples in terms of their explanatory power and the challenge of 

selecting relevant ones. She discussed the following major themes that are all 

associated  with instructional explanations: (1) conveying generality and invariance, 

(2) explaining and justifying notations and conventions, (3) establishing the status of 

pupils’ conjectures and assertions, (4) connecting mathematical concepts to real-life 

experiences and finally, (5) the challenge of constructing examples with given 

constraints. 

Case 1 had to do with introducing the area formula of a triangle by moving 

from the area calculation of a rectangle, to the area calculation of a right angle and 

finally to the area calculation of a more general triangle. This case was explained in 

detail when reviewing the study of Zaslavsky and Zodik (2007).  

Case 2 illustrated the potential power of examples in explaining and 

justifying mathematical notations and conventions. A group of mathematics 

educators pointed to the necessity of listing the vertices of a polygon systematically 

in either clockwise direction or in anticlockwise direction to avoid ambiguity related 

with the notation of it. To show that random use of choice of vertices of a quadrangle 

may lead to ambiguities, the mathematics educators generated three different 

quadrangles labelled as ABDCA, ACBDA and ABCDA. When these quadrangles 

were presented to secondary school mathematics teachers, one of them claimed that 

the three quadrangles were congruent. In response to the teacher’s claim mathematics 

educators generated three distinct quadrangles with the aforementioned labels. Thus, 

this case showed that without mathematical convention, ambiguities may occur and 

this may hamper mathematical communication among learners.   

Case 3 had to do with a group of secondary school mathematics teachers’ 

validation of the claim that 
2

3
 is in the midst of 

1

2
 and 

3

4
since 2 is in the midst of 1 

and 3 and 3 is in the midst of 2 and 4. This case portrayed a classroom event that 

entails in-the-moment decision. The teachers generated twelve examples until they 
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reached the consensus that the claim is not always true. 
2 3 4

, and
3 4 5

   were the counter-

examples generated by the teachers since these fractions were not between 
1

2
 and 

5
.

7
 This case foregrounded the challenge that is encountered by teachers when 

choosing or generating relevant examples in contingent classroom events.  

Case 4 is about an eighth grade teacher’s choice of examples when 

introducing the notion of slope to her students. This case was explained in detail 

when reviewing the study of Zaslavsky and Zodik (2007).  

In Case 5, a group of mathematics educators were asked to generate examples 

of two non-congruent rectangles that have equal-length diagonals. The mathematics 

educators proposed several solution strategies. Some of them based their solutions on 

Pythagoras theorem (i.e.,
2 2 2 2

, , ,a b m n a b m n     ) and some others relied on 

number theory (i.e.,
2 2 2 2

( ) ( ) ( ) ( ) , , , )ac bd ad bc ac bd ad bc a b c d         . This 

case reflected the challenge of generating examples with specific constraints and was 

useful in notifying that generation of a relevant mathematical example for a given 

purpose is an art or a problem solving process.  

Zaslavsky (2010) considered the cases she presented as meta-examples and 

concluded that teachers need to know the critical features of examples they 

introduced, to be aware of the affordances of the examples generated and to have the 

skills to improve and extend the examples generated by their own students. 

In an attempt to characterize teachers’ choice of examples in and for the 

mathematics classroom, Zodik and Zaslavsky (2008) observed both randomly and 

carefully selected mathematics lessons of five experienced secondary school teachers 

that have at least ten years of mathematics teaching. In all their observations, they 

identified 604 teacher-generated examples and only 35 student generated examples. 

Of the teacher-generated examples that were observed, 317 of them were pre-

planned and 278 of them were spontaneous. More importantly, the researchers shed 

considerable light into the underlying considerations or principles used by the 

teachers while selecting or generating mathematical examples.  Namely, the teachers 
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employed the following considerations when selecting or generating mathematical 

examples: starting with a simple or familiar case, attending to students’ errors, 

drawing attention to relevant features, conveying generality by random choice, 

including uncommon cases and keeping unnecessary work to minimum.  

The teachers started teaching concepts or procedures by simple or familiar 

examples. For instance, a teacher indicated that he started teaching right triangles 

with bases horizontal first and he introduced tilted right triangles later. Another 

teacher indicated that he began teaching radicals by simple and familiar examples 

such as 9, 16, 25 and so forth. Besides, some of the teachers generated sequences 

of examples and they gradually increased the complexity or the difficulty level of the 

examples included in those sequences. For instance, one of the teachers generated a 

sequence of systems of equations in the following order: First example included 

simple expressions in the numerator and it was easy to find the least common 

multiple of the denominators. Second example was not as simple as the first one 

since it entailed using the distributive property and finding the least common 

multiple was more complex. Finally, the third example included fractions that were 

represented differently and the choice of signs presented another difficulty. 

Teachers usually generated mathematical examples by considering the 

difficulties, errors or misconceptions they know their students make. For instance, 

one of the teachers articulated that students tend to think that ‘when all the variables 

get simplified in an algebraic expression, the answer will be equal to 0.” Thereby, the 

teacher chose to use the algebraic expression 
4 3 2 2 4

2 4 2 4 3

4 3

6 2

a b c a b c

a b c a b c




 to help students notice 

that it is equal to 1, not 0. Another teacher indicated that students tend to have 

common misconceptions about square roots. For instance, students tend to think that 

50 2 25 2 5 10      even though 50  is equal to 50 25 2 5 2    not 10. 

The teacher also chose to introduce 25 to draw students’ attention to the fact that 

2 24 3  is not equal to
2 24 3 . 

The teachers also deliberately attempted to diminish the noise of examples 

they introduced. In other words, they tried to avoid cases that might lead to false 

generalizations. For instance, to teach the Pythagorean Theorem a teacher gave two 
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examples of right triangles in which the length of the perpendicular sides were 3, 4 

and 6, 8 respectively. Note that, the second pair is twofold of the first pair. To break 

this pattern, or in order for students not to make incorrect generalizations, the teacher 

then introduced 5, 12 as another example. As can be seen, this pair is not a multiple 

of the previous two pairs. Teachers also used structured variation in order to draw 

students’ attention to relevant features. For instance, one of the teachers initially 

introduced 2 20x x   and then deliberately moved to 2 20x x  . Similarly, 

another teacher presented a task that included a sequence of linear functions as 

follows: ( ) 5, ( ) 2 5, ( ) 3 5f x x f x x f x x            and then she broke the pattern 

by changing the degree of polynomial from 1 to 2 and by keeping the free term 

constant as follows: 
2( ) 5f x x   .  

The teachers attempted to convey generality by selecting or generating 

examples at random. In some cases, random choices of examples were helpful but in 

some other cases they misled or caused to miss the point. For instance, a teacher 

wanted to teach exterior angle theorem to his students. To demonstrate that the size 

of an exterior angle at a vertex of a triangle is equal to the sum of the sizes of the 

interior angles at the other two vertices of the triangle (remote interior angles), the 

teacher asked his students to suggest measurements for these two remote interior 

angles. The students suggested 42° and 73° as the measurements. Next, the teacher 

wanted them to measure the size of the exterior angle. At that time, the students 

noticed that the size of the exterior angle was equal to 115° = 42°+73°. However, 

random choices were sometimes not helpful for the teachers. For instance, a teacher 

wanted to teach how to use Viete formula to his students

2

1 2 1 2( 0, , )
b c

ax bx c x x x x
a a

          . The teacher randomly selected the 

coefficients of the quadratic equation 22 4 5 0.x x    This quadratic equation did 

not have real roots and the students did not have prior knowledge of complex 

numbers that are not real. Thus, application of the formula by this example was 

meaningless for the students. Besides, this reflected teacher’s poor choice.  

Teachers also paid attention to including uncommon cases into their 

classrooms. That is, cases that were rather exceptional in mathematics or cases that 
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were under-represented in the teaching of mathematics were incorporated into the 

lessons. For instance, some of the teachers articulated that 0 and 1 are the only 

numbers that remain invariant under rational number coefficients when teaching 

square roots such as 0 0  and 1 1 . Besides, one of the teachers paid attention 

to introducing non-prototypical examples of a concept in addition to prototypical 

ones. That is, the teacher drew on the board a concave kite instead of a convex kite 

and asked the students to ponder whether the definition of a kite held for that 

example.  

Teachers attempted to keep unnecessary work to minimum when teaching 

concepts or procedures. For instance, one of the teachers chose to use 
1

7
 in place of 

1 1
or

17 19
   for teaching the period of a number since he considered that 

1

7
 had a 

period that is long enough and there was no need to spend extra time on the technical 

work of finding the period of  
1 1

or
17 19
   that is much longer. In addition to this, 

teachers tried to keep unnecessary work to minimum by highlighting the appropriate 

parts of examples and not going into extra details. For example, a teacher introduced 

a problem to his/her students and explained how to solve that problem without 

finishing all the computations.  

Zodik and Zaslavsky (2008) emphasized that the wide range of episodes they 

observed might provide a rich source for adapting them into teacher education 

programs and they added that this might be very helpful in obtaining systematic 

knowledge that promotes teachers’ theoretical and practical knowledge of treatment 

of mathematical examples.   

Similar to the previous study, Bills and Bills (2005) explored the initial 

examples used by in-service and pre-service teachers in introducing particular 

mathematical topics. More specifically, the teachers were asked to consider the 

examples they might select as the first one to use in introducing the calculation of 

area of a triangle, addition of fractions and solution of linear equations. Besides, the 

experienced teachers were asked to articulate their pedagogical intentions in 

selecting a particular example as an introductory example. When teachers were asked 



58 

 

to give the initial example they would use to introduce the calculation of area of a 

triangle, all but one of the in-service teachers preferred to start with a right-angled 

triangle, whereas only nearly half of the pre-service teachers preferred to start with a 

more general triangle that is not right-angled. The in-service teachers gave emphasis 

on building up from a simple case (from a right-angled triangle) to help students 

learn how to use the formula for calculating the area of any triangle.  

The in-service and pre-service teachers were next asked to give the first 

example they would use in introducing addition of fractions. Two thirds of the in-

service teachers preferred to start with examples that included only halves and/or 

quarters such as ½ + ½, ¼ + ¼ and ½ + ¼, whereas six out of ten pre-service 

preferred to start with ½ + ½ and ½ + ¼. The in-service teachers addressed the role 

of known facts and procedures in developing understanding and again they 

emphasized starting with a simple case when introducing addition of fractions. 

Finally, the in-service and pre-service teachers were asked to give the first 

example they would use in introducing solution of linear equations. There was a 

common consensus among in-service teachers on choosing examples where the 

solution is a positive whole number, where the unknown appears first and where 

there is a single operation on the unknown such as 1 3x    instead of 1 3x   or 

3 1.x   However, pre-service teachers’ initial example preferences for introducing 

the solution of linear equations were more varied.  

Bills and Bills (2005) identified two themes that emerged from the 

discussions among in-service and pre-service teachers: simple example as a first step 

in developing understanding of a mathematical concept and the use of mathematical 

examples to avoid confusion. However, the researchers alerted that their data 

analyses was based on in-service and pre-service teachers articulations of their 

possible choices of examples as initial examples rather than the data derived from 

observing in-service and pre-service teachers’ actual classroom practices.  
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2.6. Summary of the Related Studies on Teachers’ Treatment of Mathematical 

Examples 

Rowland (2008) developed a conceptual framework for analyzing pre-service 

teachers’ choice and use of examples in the course of teaching elementary 

mathematics concepts such as addition and subtraction of whole numbers and 

geometric transformations. This framework included four categories of uses of 

examples as variables, sequencing, representations and learning objectives. Rowland 

(2008) found out that the examples included under these categories mainly reflected 

pre-service teachers’ poor choices. Morrison (2013) conducted a similar study by 

using the same framework. However, she selected in-service teachers as the 

participants of the study and focused on in-service teachers’ examples related with 

number concepts. The findings of Morrison (2013) were similar to that of Rowland 

(2008). That is, Morrison (2013) pointed out that in-service teachers did not take into 

account dimensions of possible variation when using examples related with number 

concepts. In a more recent study, Rowland (2014) focused on only the variables 

category of his conceptual framework and analyzed pre-service teachers’ choice of 

examples related with quadratic and simultaneous equations. Similar to his previous 

study, Rowland (2014) suggested that pre-service teachers needed to better plan 

examples before setting out to teach mathematical concepts or procedures in order to 

introduce examples by gradually increasing their complexities.  

Unlike the previous studies, Zaslavsky (2010) examined the explanatory 

power of examples used by in-service teachers. She discussed the following themes 

that were all related with instructional explanations: conveying generality and 

invariance, explaining and justifying notations and conventions, establishing the 

status of pupils’ conjectures and assertions, connecting mathematical concepts to real 

life experiences and the challenge of constructing examples with given constraints. 

Zaslavsky (2010) suggested that teachers needed to know the critical features of 

examples they introduced, to be aware of the affordances of the examples they 

generated and to have the skills to improve and extend the examples generated by 

their own students. Similar to Zaslavsky (2010), Zaslavsky and Zodik (2007) focused 

on examining strengths and weaknesses of examples generated by in-service 
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teachers. They analyzed almost the same examples included in the study of 

Zaslavsky (2010). Similar to Rowland (2014), they suggested teachers to plan their 

examples to avoid mismatches and misunderstandings.  

In another study, Bills and Bills (2005) examined experienced teachers’ 

pedagogical intentions in selecting particular examples for introducing the 

calculation of area of a triangle, addition of fractions and solution of linear equations. 

They found out that experienced teachers’ preferred to use simple examples as a first 

step in developing understanding of a mathematical concept and to avoid confusion. 

Similarly, Zodik and Zaslavksy (2008) focused on exploring experienced teachers’ 

considerations or principles in using mathematical examples. However, they not only 

found that teachers considered to start with simple or familiar examples for 

introducing mathematical concepts but also they revealed that teachers considered to 

attend to students’ error, draw attention to relevant features, convey generality by 

random choice, include uncommon cases, and keep unnecessary work to minimum 

when using examples. 
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CHAPTER III 

 

METHODOLOGY 

 

The purpose of this study was to explore middle school mathematics 

teachers’ treatment of rational number examples in their seventh grade classrooms. 

More specifically, this study aimed to shed light on overall characteristics of 

teachers’ rational number examples, the principles or considerations used by teachers 

while choosing rational number examples and the mathematical and pedagogical 

shortcomings of the examples used by the teachers. Through this purpose, the 

following major questions and sub-questions were formulated: 

1. What are the overall characteristics of examples used by middle school 

mathematics teachers in the teaching of rational numbers in their seventh grade 

classrooms? 

a. What are the ideas emphasized in the rational number examples used 

by the teachers? 

b. To what extend do teachers use specific examples in the teaching of 

rational numbers? 

c. To what extend do teachers use non-examples and counter-examples 

in the teaching of rational numbers? 

d. To what extend do teachers use pre-planned and spontaneous 

examples in the teaching of rational numbers? 

e. Which sources do teachers use while choosing pre-planned examples 

in the teaching of rational numbers? 

2. What are the underlying principles or considerations that guide middle 

school mathematics teachers in choosing or generating examples? 

3. What mathematical or pedagogical shortcomings do the examples used by 

the teachers in the teaching of rational numbers have? 

a. What are the mathematically incorrect examples used by the teachers 

during the teaching of rational numbers? 
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b. What are the pedagogically improper examples used by the teachers 

during the teaching of rational numbers? 

In this chapter, (a) the overall research design and the selected strategy of 

inquiry, (b) participants of the study and the contexts, (c) data collection process, (d) 

data sources, and (e) data analysis procedure were described first. Next, the methods 

that might be employed to ensure (f) the trustworthiness of the current research and 

(g) researcher role and bias were explained. Finally, (h) the limitations of the study 

were discussed.  

3.1. Overall Research Design 

Creswell (2009) stated that qualitative and quantitative research designs differ 

from each other basically in terms of using words rather than numbers and using 

open-ended questions rather than close-ended questions. He added that the 

philosophical assumptions of researchers, the types of research strategies used in the 

overall study and the specific methods used to conduct these strategies also provided 

a more complete way to view the difference between qualitative and quantitative 

research designs.  

Qualitative researchers are interested in understanding people’s interpretation 

of their experiences, their construction of the world and the meaning they give to 

their experiences (Merriam, 2009). They tend to collect data at the site where 

participants experience the problem or the phenomena under study (Creswell, 2007) 

and they do not attempt to manipulate the phenomenon of interest while seeking to 

understand it (Patton, 2002). Qualitative researchers collect descriptive data and the 

data collected take the form of words or pictures instead of numbers (Bogdan & 

Biklen, 2007). They collect data themselves and gather multiple forms of it such as 

observations, interviews and documents instead of relying on a single data source 

(Creswell, 2007). They tend to analyze their data inductively rather than finding 

evidence to prove or disprove hypothesis held before conducting the study (Bogdan 

& Biklen, 2007). 

The primary focus of this study was to make a detailed description of the 

examples used by middle school mathematics teachers via qualitative research 
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methodologies. This study was conducted in the hope that it would add significant 

findings to the literature by in depth exploration of the phenomenon of mathematical 

examples. This study used open-ended research questions (how and what questions) 

in order to get rich and detailed ideas about middle school mathematics teachers’ 

experiences of using or choosing mathematical examples in their classrooms. In 

addition, the study limited its participants to four middle school mathematics 

teachers since qualitative research designs produce much detailed data about a small 

number of cases. To gain insights about participants’ treatment of mathematical 

examples, data were collected through observations and interviews and the data 

collected took the form of words or pictures after the transcription process. In this 

study, rather than using statistics, the words or pictures generated by the teachers 

were analyzed to describe the central phenomenon under study. Moreover, this study 

described individuals and identified themes. As a result, a rich and complex picture 

emerged and by using this complex picture, I tried to make an interpretation of the 

meaning of the data by reflecting upon the relationship between my findings and the 

previous research on examples. Finally, when reporting the findings, I reflected my 

own biases, values, and assumptions and actively wrote them into the current 

research study. By this way, I discussed my role or position in the research study. 

There are several qualitative research methodologies addressed by 

researchers. The strategy of inquiry selected for the current study was a case study. 

The rationale for using this strategy is described in details in the following section. 

3.2. The Selected Strategy of Inquiry 

In order to investigate middle school mathematics teachers’ treatment of 

rational number examples in their classrooms, qualitative case study was used. 

Broadly speaking, “qualitative case study is characterized by the researcher spending 

extended time on site, personally in contact with activities and operations of the case, 

reflecting, and revising descriptions and meanings of what is going on” (Stake, 2005, 

p.450).  

Case study is used by many people in several ways to mean several things 

(Merriam, 2009). Besides, the definitions of case study provided by educational 
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researchers differ from each other to a certain extent. To give an example, Creswell 

(2007) viewed case study as a methodology, a type of design in qualitative research, 

an object of study or a product of the inquiry and defined it in the following way: 

“Case study is a qualitative approach in which the investigator explores a 

bounded system (a case) or multiple bounded systems (cases) over time, 

through detailed, in-depth data collection involving multiple sources of 

information (e.g., observations, interviews, audiovisual material, and 

documents and reports), and reports a case description and case based 

themes” (p. 73). 

Similarly, Merriam (2009) defined qualitative case study as “an intensive, 

holistic description and analysis of a bounded phenomenon such as a program, an 

institution, a person, a process, or a social unit” (p. x). By this definition, Merriam 

stressed the importance of the case as a single entity or a unit that has boundaries. 

Stake (1995) pointed out that “case study is the study of the particularity and 

complexity of a single case, coming to understand its activity within important 

circumstances” (p. xi).  

Yin (2003) distinguished case study from other methods such as experiments, 

history, and survey by making a comparison of the features of the related 

methodologies. In addition, he defined case study in two phases in a more technical 

way when compared with the previous definitions. In the first phase, the context and 

the phenomenon could be easily noticed and therefore he defined case study as “an 

empirical inquiry that investigates a contemporary phenomenon within its real-life 

context, especially when the boundaries between phenomenon and context are not 

clearly evident” (p. 13). In the second phase, the context and the phenomenon were 

not always distinguishable, and he indicated that  

“case study inquiry copes with the technically distinctive situation in which 

there will be many more variables of interest than data points, and as one 

result relies on multiple sources of evidence, with data needing to converge 

in a triangulating fashion, and as another result benefits from the prior 

development of theoretical propositions to guide data collection and 

analysis” (p. 13-14). 

By the help of these different definitions of case study, it can be inferred that 

the most significant aspect of a case study is the object of the study or the case and 

its relation with its context. Thus, cases and their contexts should be carefully 

defined. In addition, it can be suggested that a case is a specific, unique and bounded 
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system. Merriam (2009) mentioned that boundaries of a case play an important role 

in defining the case. Hence, the purpose of case study is to describe and interpret the 

case within its boundaries and the context, but not to represent the world (Stake, 

2005; Yin, 2003). 

The current study might characterize the definitions of Creswell (2007), 

Merriam (2009), Stake (2005), and Yin (2003). In this study, my aim was to “gain in-

depth understanding of the situation and meaning for those who are involved” 

(Merriam, 1998, p. 19) and I specifically focused on exploring middle school 

mathematics teachers’ treatment of examples in their classrooms. 

Education researchers also made different categorizations for case studies 

(e.g., Creswell, 2007; Merriam, 1998; Stake, 2000; Yin 2003). Yin (2003) mentioned 

four types of case study designs: single-case design with single unit of analysis 

(holistic), single-case design with multiple units of analysis (embedded), multiple-

case design with single unit of analysis (holistic), and multiple-case design with 

multiple units of analysis (embedded). In this study, multiple-case design with single 

unit of analysis was used. This design was modeled by Yin (2003) in the following 

way in Figure 3.1. 

 
 

Figure 3.1. Multiple case study design with single unit of analysis (Yin, 2003, p. 40) 

 

The context of this study was rational number instruction and the cases were 

middle school mathematics teachers with different rational number teaching 

experiences with the unit of analysis as middle school mathematics teachers’ rational 

number examples. The context, cases and the unit of analysis could not be separated 

from each other and therefore they were considered all together. The model for 
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rational number instructions, middle school mathematics teachers with different 

rational number teaching experiences and middle school mathematics teachers’ 

examples is given in Figure 3.2.  

 

Figure 3.2. Multiple case study design with single unit of analysis (Adapted from, 

Yin, 2003, p. 40) 

 

In the following section, I will give detailed information about middle school 

mathematics teachers who participated in the current study. 

3.3. Participants of the Study 

In this section, middle school mathematics teachers who were the cases of the 

current study were described. Four middle school mathematics teachers from four 

different public middle schools located in the Aksaray city center participated in the 

current study. All of the teachers were teaching rational number concepts to 7th grade 

students during the data collection process. In the selection of the participant schools, 

convenience sampling (Fraenkel, Wallen & Hyun, 2012; Gall, Gall & Borg, 2007) 

was used to ensure feasibility during the data collection process to the most extent 

possible and to work with teachers with different rational number teaching 

experience who were teaching rational numbers and who volunteered to be a 

participant. Merriam (2009) expressed that “purposeful sampling is based on the 

assumption that the investigator wants to discover, understand, and gain insight and 

therefore must select a sample from which the most can be learned” (p.77). In this 

study, it was crucial for me to select information-rich middle school mathematics 

teachers in order to get in-depth information about their treatment of rational number 
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examples. Thus, rather than using probabilistic sampling, I chose to use purposive 

sampling.  

A variety of purposeful sampling strategies might be used to select cases for a 

research study such as extreme/deviant case, typical case, maximum (maximal) 

variation, homogeneous, critical, opportunistic, snowball and so forth (Creswell, 

2012; Gall, Gall & Borg, 2007). In the current study, I used maximum variation 

sampling. Creswell (2007) stated that this purposeful sampling strategy enables 

researchers to select cases that show different perspectives on the problem, process, 

or event they might portray. Thus, I was able to select middle school mathematics 

teachers with different years of rational number teaching experience ranging from 

two years to fourteen years. In brief, I selected the participant schools and the 

participant teachers based on the following criteria: 

1. Rational number teaching experience of teacher: Because my aim as a 

researcher was to understand how rational number examples are treated 

by different teachers, in different settings and with different rational 

number teaching experience. 

2. Convenience of time: Because I was also working as a research assistant 

at a University, my own work schedule and that of the four teachers had 

to fit with each other. 

3. Convenience of location: Since I visited schools 4 days a week for about 4 

months, the schools had to be close to each other and the transportation to 

these four schools had to be easy. 

4. Voluntary participation: Middle school mathematics teachers who were 

the participants of the study were selected based on voluntariness. 

Altogether, there were 17 middle school mathematics teachers in these 4 

schools. However, not all teachers wanted to participate in the current 

study. 

This study was conducted in four different public middle schools in Aksaray 

in the first semester of the 2013-2014 school year. Three male and one female middle 

school mathematics teachers with different teaching experiences took part in the 

study. The names of the participating teachers were changed to ensure confidentially 
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and pseudonyms were used during the study. The description of each participant is 

presented below according to their rational number teaching experience in 

descending order. 

3.3.1. Teacher A 

Teacher A was 36 years old at the time of data collection and he graduated 

from the mathematics department of a public university in 2000. During his 

undergraduate education, he earned a non-thesis master degree in Secondary 

Education Teacher Graduate Program at a different public university. Since he 

graduated from mathematics department, this degree is required for being a 

mathematics teacher at public schools governed by Ministry of National Education in 

Turkey. He does not hold a graduate degree. Teacher A started teaching mathematics 

to middle school students soon after he graduated from mathematics department. He 

has 14 years of mathematics teaching experience and 14 years of rational number 

teaching experience. He has been a mathematics teacher of 6th, 7th, and 8th grade 

middle school students for 14 years. In addition, he has been teaching 5th grade 

students for the last 6 years. He has worked in 3 different cities in Turkey and at 5 

different public middle schools throughout his teaching profession. Since 2005, he 

has been teaching in Aksaray city and he has been teaching for 3 years in the current 

school that has been observed by the researcher. In his current school, there are five 

7th grade classrooms and he is teaching two of those classrooms. Besides, he was also 

teaching 5th, 6th, and 8th grade students during the implementation of this study.  

3.3.2. Teacher B 

Teacher B was 36 years old at the time of data collection and he graduated 

from the mathematics department of a public university in 2000. After his graduation 

from the mathematics department, he earned his non-thesis master degree in 

Secondary Education Teacher Graduate Program at the same university. He earned 

his master’s degree in the Department of Mathematics at a public university in 2003. 

He is currently doing his PhD in the Department of Mathematics at a different public 

university. Teacher B started his teaching profession as soon as he completed his 
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non-thesis master program. He has 11 years of mathematics teaching experience and 

10 years of rational number teaching experience. He first started teaching 

mathematics at a public secondary school to 9th, 10th, 11th, 12th grade students for one 

year. For the last 10 years, he has been a teacher in Aksaray city at three different 

public middle schools. More specifically, he has been teaching mathematics to 5th, 

6th, 7th, and 8th grade students for 2, 10, 10, and 8 years respectively. In addition, he 

has been teaching for 2 years in the current school that I observed. In his current 

school, there were four 7th grade classrooms and he was teaching mathematics to all 

these classrooms. In addition to this, he has been conducting mathematical 

applications courses for 5th grade students during that time. 

3.3.3. Teacher C 

Teacher C was 31 years old at the time of data collection and he graduated 

from Elementary Mathematics Education Program of a Department of Elementary 

Education of a public university in 2005. He does not hold a graduate degree. After 

his graduation, he immediately started his profession at a public middle school in the 

middle regions of Turkey. He has 9 years of mathematics teaching experience and 8 

years of rational number teaching experience. In more details, he has taught 

mathematics to 5th, 6th, 7th, and 8th grade students for 1, 9, 8, and 7 years respectively. 

He has worked in 2 different cities and in 3 different public middle schools since the 

beginning of his teaching profession. He has been working in Aksaray since 2010 

and has been teaching in the current observed school for 2 years. In this school, there 

were four 7th grade classrooms and he was teaching mathematics to all of these 

classrooms. In the meantime, he was also a mathematics teacher of 5th and 6th grade 

students.  

3.3.4. Teacher D 

Teacher D was 26 years old at the time of data collection and she graduated 

from Elementary Mathematics Education Program of a Department of Elementary 

Education of a public University in 2010. She does not hold a graduate degree. 

Between years 2010 and 2012, she worked at a private studies centre (etüt merkezi) 
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in Aksaray city. During this time, she also worked as a private tutor of mathematics. 

Two years after her graduation, she started working at a public middle school located 

in the eastern part of Turkey. She has been a teacher at this middle school for one 

year and taught mathematics to 5th, 6th, 7th, and 8th grade students during that time. In 

2013, she started teaching at a public middle school located in Aksaray city and 

taught mathematics for 6th, 7th, and 8th grade students. Together with private tutoring, 

she has 4 years of mathematics teaching experience and 2 years of rational number 

teaching experience. More precisely, she has been a mathematics teacher of 5th, 6th, 

7th, and 8th grade students for 1, 3, 4, and 3 years respectively. She has worked in 2 

different cities in 2 different public middle schools since the beginning of her 

teaching profession. In her current school, there were four 7th grade classrooms and 

she was a mathematics teacher of three of these classrooms. Apart from these, she 

was also a teacher of 8th grade students.  

To sum up, a brief descriptive demographic account of these four middle 

school mathematics teachers are presented in Table 3.1. 

 

Table 3.1. Teachers’ demographic information for the four classrooms at the time of 

the study 

Description Teacher A Teacher B Teacher C Teacher D 

Gender Male Male Male Female 

Age 36 36 31 26 

University Public Public Public Public 

Background Mathematics Mathematics 

Elementary 

Mathematics 

Education 

Elementary 

Mathematics 

Education 

Total years in teaching 14 11 9 4 

Total years in the teaching of 

rational numbers 
14 10 8 2 

Years in Aksaray  9 10 4 3 

Years in current school 3 2 2 1 
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3.4. The Contexts of the Study 

Turkish education system is a centralized system. Thus, all teachers and 

students follow the same national mathematics curricula. MoNE (2009a, 2009b, 

2011) had three different official curriculum guidebooks for elementary (grades 1-5), 

middle (grades 6-8) and secondary (grades 9-12) levels at the time of the study. 

These guidebooks represented the intended mathematics curricula by “providing in-

depth background information about the philosophy, goals and approaches of the 

curriculum, content to be covered together with some sample introductory tasks and 

tips to be used in the classroom” (Ubuz, Erbaş, Çetinkaya & Özgeldi, 2010, p. 484). 

At the time of the data collection of the study, the seventh grade school mathematics 

curriculum (MoNE, 2009b) being implemented by the schools provided the learning 

objectives, sample activities and explanations given in Table 3.2 for teachers to use 

in their classrooms when teaching rational numbers. 

  

Table 3.2. The learning objectives, sample activities and explanations included in the 

middle school mathematics curriculum for teaching rational numbers (MoNE, 2009b, 

p. 224-226) (Translations by the researcher) 

Learning 

Objectives 

Sample Activities Explanations 

Explain and 

locate 

rational 

numbers on a 

number line 

 

rational numbers by asking several questions to 

them. 

Write natural numbers and several fractions on 

cards and put them in a bag. Pick up the cards 

randomly from the bag and locate them on the 

number line. Next, place a symmetry mirror at 

the origin of the number line. Determine the 

symmetries of the points on the number line and 

emphasize negative numbers and absolute value 

concept. 

[!] Denote rational number set 

by the symbol Q and define it. 

[!] Have students examine the 

relationships among natural 

numbers, integers and rational 

numbers.  

history of rational numbers. 

Express 

rational 

numbers in 

different 

forms 

in a bag. Pick up the cards randomly and find the 

decimal representations of the rational numbers 

written on these cards by using a calculator. 

Finally, classify the decimal representations of 

the rational numbers and have students interpret 

the results. 

28 8 2
7 0.5 0.2

4 16 9
        

 

[!] Have students convert 

repeating decimals into 

rational numbers.  

[!] Demonstrate by using 

examples that a rational 

number can also be expressed 

as an integer, as a natural 

number, as a terminating or as 

a repeating decimal.  
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Table 3.2. (Continued) 

Learning 

Objectives 

Sample Activities Explanations 

Compare and 

order rational 

numbers 

between a rational number and an integer, ask 

them to write the integers between two integers. 

This activity can be repeated by using rational 

numbers. Then, the two activities can be 

compared and discussed.  

denominator approach and conversion to 

decimals can be used to compare rational 

numbers.  

For instance, to compare 5.2 and 
1

5
4

  we can 

convert the negative mixed number into its 

decimal form as -5.25 and write as 5.2 > -5.25. 

Thus, 5.2 >
1

5
4

 . These two rational numbers 

can be located on the number line as follows: 

 

[!] Emphasize that the 

comparison strategies used for 

fractions and integers may 

also be used for comparing 

rational numbers.  

Perform 

addition and 

subtraction 

operations 

with rational 

numbers 

ll addition and subtraction of fractions 

and have students participate in activities that 

include addition and subtraction of rational 

numbers. 

numbers first, have them perform addition 

operation next and finally have them compare 

the estimated answer and the actual answer in the 

following way: 

Let’s estimate the answer of
3 6

8 7
 . The first 

addend is closer to 

1

2

 and the second addend is 

closer to 1. Thus,
3 6 1 1

1 1
8 7 2 2
     . Now, 

let’s find the actual answer: 

 
3 6 21 48 69 13

1
8 7 56 56 56 56
       

[!] Have students examine the 

commutative, associative, 

identity and inverse property 

of addition of rational 

numbers and have them write 

the algebraic representations 

of these properties.  

[!] Give students examples 

related with estimation of 

addition and subtraction with 

rational numbers. Use the 

estimation strategies included 

in the initial part of the 

curriculum guidebook.  
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Table 3.2. (Continued) 

Learning 

Objectives 

Sample Activities Explanations 

Perform 

multiplication 

and division 

operations 

with rational 

numbers 

 Recall multiplication and division of rational 

numbers and have students participate in 

activities related with multiplication and division 

of rational numbers. 

[!] Have students examine the 

influence of 0, 1 and -1 on 

multiplication and division 

operations.  

[!] Have students examine 

commutative, associative and 

zero property of multiplication 

of rational numbers and have 

them write the algebraic 

representations of these 

properties.   

[!] Emphasize that if the 

product of two rational 

numbers is equal to 1, then 

these two numbers are 

multiplicative inverses of each 

other.  

[!] Give students examples 

related with estimation of 

multiplication and division 

with rational numbers. Use the 

estimation strategies included 

in the initial part of the 

curriculum guidebook.   

[!] Have students compute the 

square and cube of rational 

numbers.  

Solve multi-

step 

operations 

with rational 

numbers 

 [!] Remark that the operations 

that needs to be done initially 

in multi-step operations are 

specified by brackets or 

parentheses. 

 [!] Emphasize that in 

complex fractions the order of 

operations are determined by 

the main fraction bar.    

Pose and 

solve rational 

number 

problems 

 Ask students to read the problem very 

carefully, restate the problem with their own 

words, identify the givens in the problem, make a 

plan for the solution of the problem, carry out the 

plan, check the solution and discuss the problem. 

[!] The explanations included 

in the introductory part of the 

curriculum guidebook about 

problem solving should be 

taken into consideration.  

 

All of the classrooms I observed used the same mathematics textbook 

prepared by Aydın and Beşer (2013a). This textbook was prepared by a private 

publisher in triple sets comprising student textbook, student workbook and teacher 

guidebook. In Turkey, the textbooks prepared either by MoNE or by the private 

publishers need to be reviewed and approved by the Turkish Board of Education 
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(Talim ve Terbiye Kurulu Başkanlığı-TTKB) so that they are used as official 

textbooks in public schools (Ubuz et al., 2010). Thus, it is believed that the 

mathematics textbook used by the four classrooms completely portrays the 

curriculum content that needs to be learnt by the seventh grade students as it was 

approved by the Board.  

The teachers were observed during the unit entitled “Rasyonel Sayılarla Dans 

Edelim (Let’s Dance with the Rational Numbers” in the student textbook. In this 

unit, rational number concepts were introduced under two main sections. The first 

section was about explaining and locating rational numbers on a number line, 

expressing rational numbers in different forms and comparing and ordering rational 

numbers. The second section was about performing addition and subtraction 

operations with rational numbers, performing multiplication and division operations 

with rational numbers, solving complex fractions using four operations and posing 

and solving rational number problems. In this study, the worked-out examples and 

exercises that were included in the explanatory part of the textbook and that might be 

offered by the teachers while teaching rational number concepts were treated as 

student textbook examples. The illustrative worked-out and exercise examples 

included in the student textbook for teaching each rational number objective are 

presented in Table 3.3. 
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Table 3.3. Illustrative worked-out examples (WE) and exercise examples (EE) 

included the student textbook for introducing each learning objective (Aydın & 

Beşer, 2013a, p. 47-77) 

Learning 

Objectives 

Example 

type 
Illustrative examples 

Explain and 

locate rational 

numbers on a 

number line 

WE 

 

EE Locate
7 5 3

, , 2,
3 4 7

    on the number line.  

Express 

rational 

numbers in 

different 

forms 

WE 
7 7

3.5, 2.333... 2.3
2 3
      

EE 

Express the following numbers in different forms:  

7
1.4 ... 2 ... ... 0.05 ...

8
         

Compare and 

order rational 

numbers 

WE 

Let’s order 
8 11 16

, ,
10 9 16

   by benchmarking to 1. 

8 11 16
1, 1, 1

10 9 16
      Therefore, 

8 16 11

10 16 9
   

EE 

Order the following numbers from the largest to the smallest and 

explain your strategy for ordering.  

7 3 5 17 2 4 8
1.9;1.08;1 4.45; 5.54; 5.5 ; ; ; ;

8 8 12 24 5 11 19
             

 

Perform 

addition and 

subtraction 

operations 

with rational 

numbers 

WE 

Let’s perform 
4 2

5 3
: 

 
 
 

4 2 4.3 5.( 2) 12 ( 10) 2

5 3 5.3 15 15

   
    
 
 
 

 

EE Perform 
2 3

3 2
 
 
 
 

 and 
2 3

3 2
  

 
 
 

 

Perform 

multiplication 

and division 

operations 

with rational 

numbers 

WE 

  

EE 

Estimate the following multiplication operations:  

1 1 7 1
479 3 24 : 11 580 : 19

18 9 8 19
     

     
     
     
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Table 3.3. (Continued) 

Learning 

Objectives 

Example 

type 
Illustrative examples 

Solve multi-

step 

operations 

with rational 

numbers 

WE 

 

EE 

Perform the following multi-step operations and explain which rule 

you used in each step.  

3
1

2 1 5 1 1 15
: 5 3 1 : : 6

3 1 1 13 3 7 4 3
1 1

15 3 9
1

3




       

  



    
        

  

Pose and 

solve rational 

number 

problems  

WE 

Ahmet initially walked 
1

3
 of his route. After some time, he walked 

2

5
 of the remaining route and he had to walk 36 meters more to 

finish his route. Find the total length of his route. 

EE 

Fill in the blanks with the numbers relevant to the problem.  

An athlete each day runs … times as much as the distance she runs 

the day before.  The athlete runs for … days and finishes her 

training program. If the athlete runs … kilometers in her … day, 

then how many kilometers does she run on the last day of her 

training program? 

 

The four public middle schools that were selected as the contexts of this study 

were located in Aksaray city center. The schools were close to each other and this 

made it possible for the researcher to commute among them easily. The participant 

schools and the participant classrooms were named as School A – Classroom A, 

School B – Classroom B, School C – Classroom C, and School D – Classroom D to 

protect the privacy of the middle school mathematics teachers.  

Teacher A was a teacher in School A. There were 40 teachers (4 of whom 

were mathematics teachers) and 811 students in this school at the time of the study. 
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In addition to 24 classrooms, there was a computer laboratory but not a science and 

technology laboratory or a mathematics laboratory. There was also an auditorium 

and a library in this school. The students of School A had high socio-economic 

status. However, this school did not have mathematics clubs for active participation 

of students. 

Teacher B was a teacher in School B. There were 47 teachers and 850 

students in the school during the study. There were 4 mathematics teachers in this 

school. There were a total of 34 classrooms and there was a science and technology 

laboratory and 2 computer laboratories but not a mathematics laboratory. Besides, 

there was a library but not an auditorium in this school and the students of School B 

had medium socio-economic status. It is important to note that this school organized 

mathematics clubs to support students’ mathematical thinking with some activities. 

Teacher C was a teacher in School C. There were 35 teachers and 654 

students in the school at the time of this study. Four of the teachers were 

mathematics teachers in this school. There were 15 classrooms and there was a 

science and technology laboratory and a computer laboratory but not a mathematics 

laboratory. Moreover, there was a library and an auditorium in this school and the 

students of School C had high socio-economic status. Lastly, this school also 

organized mathematics clubs for fostering students’ mathematical thinking. 

Teacher D was a teacher in School D. There were 31 teachers and 461 

students in the school at the time of the current study. There were 5 mathematics 

teachers in this school. Totally, there were 18 classrooms and there were not any 

science and technology, computer and mathematics laboratories. Besides, the 

students of School D had medium socio-economic status and the school did not 

organize any mathematics clubs. 

To summarize, School A and School B were more populated than School C 

and School D. However, they were more or less similar to each other in terms of 

their environments, classroom size, laboratories, equipment and so forth. Broadly, 

the teachers in these schools had more than 10 years of mathematics teaching 

experience. While School A, School B and School C had four mathematics teachers, 

School D had five mathematics teachers. Moreover, School B and School C had 
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students actively participate in mathematics clubs, but the other two schools did not 

have such clubs.  

In the next section, the observed classrooms of participant schools were 

described at length. The observed classrooms all consisted of 7th grade students and 

these classrooms were of different socio-economic level and achievement level. 

3.4.1. Teacher A’s classroom  

Teacher A’s class in which the study was conducted had a total of 32 students 

including 18 female students and 14 male students. The classroom had a teacher 

desk, student desks, a large whiteboard, a bulletin board and an overhead projector. 

The teacher projected the mathematical examples on the white board when 

necessary. On some of the desks, one student was sitting while on other desks there 

were two students sitting. The bulletin board was used by the teacher for displaying 

examination results or by students for hanging activity sheets or drawings. There 

were 3 columns and 6 rows of desks in the classroom. Teacher A stated that students 

in this classroom were from high socio-economic status families and their 

achievement level was average. In all the classrooms, I sat at the backmost desk in 

order not to interrupt the classroom during my observations. A snapshot of the 

classroom environment and the seating plan is presented in Figure 3.3. 

 

Figure 3.3. A snapshot of the Classroom A and the seating plan 
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3.4.2. Teacher B’s classroom 

Teacher B’s class in which the study was conducted had a total of 22 students 

including 13 female students and 9 male students. The classroom had a teacher desk, 

student desks, a medium sized whiteboard, a cupboard, a bulletin board, a computer, 

and an overhead projector. Similar to Teacher A, Teacher B projected the 

mathematical examples on the white board when necessary. The students were sitting 

in pairs on all desks. The bulletin board was used for displaying drawings, term 

projects, activity sheets and examination results. There were 3 columns and 5 rows of 

desks in the classroom. Teacher B stated that students in this classroom were from 

medium socio-economic status families, and their achievement level was high. A 

snapshot of the classroom environment and the seating plan is presented in Figure 

3.4. 

 

 

Figure 3.4. A snapshot of the Classroom B and the seating plan 

3.4.3. Teacher C’s classroom  

Teacher C’s class in which the study was conducted had a total of 28 students 

including 13 female students and 15 male students. The classroom had a teacher 

desk, student desks, a medium sized blackboard, a cupboard, a bulletin board, and an 
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overhead projector. The projector and the blackboard were not designed in such a 

way to permit the teacher to project the mathematical examples on the blackboard. 

Therefore, Teacher C could not use as many examples as the two previous teachers. 

The students were sitting in pairs on all desks. The bulletin board was used for 

displaying drawings, term projects, activity sheets and examination results. There 

were 3 columns and 5 rows of desks in the classroom. Teacher C stated that students 

in this classroom were from high socio-economic status families and their 

achievement level was high. A snapshot of the classroom environment and the 

seating plan is presented in Figure 3.5. 

 

Figure 3.5. A snapshot of the Classroom C and the seating plan 

3.4.4. Teacher D’s classroom  

Teacher D’s class in which the study was conducted had a total of 29 students 

including 12 female students and 17 male students. The classroom had a teacher 

desk, student desks, a medium sized blackboard, a cupboard, a bulletin board, but not 

an overhead projector. Similar to Teacher C, Teacher D did not have the opportunity 

to project the mathematical examples on the blackboard and thus she could not use 

many examples as during the teaching of rational numbers. A few students were 

sitting alone on their desks but the rest of them were sitting in pairs. The bulletin 
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board was used for displaying drawings, term projects, activity sheets and 

examination results. There were 3 columns and 5 rows of desks in the classroom. 

Teacher D stated that students in this classroom were from medium socio-economic 

status families and their achievement level was average. A snapshot of the classroom 

environment and the seating plan is presented in Figure 3.6. 

 

 

Figure 3.6. A snapshot of the Classroom D and the seating plan 

In short, the main participants of the current study were four middle school 

mathematics teachers with different rational number teaching experiences and they 

have taught classes of different socio-economic level and achievement level. Two of 

the classrooms had high socio-economic status while the other two classrooms had 

medium socio-economic status. Evenly, two classrooms had top level students in 

terms of achievement and the other two classrooms had average achievement levels. 

Finally, while there were roughly 30 students in each of the three classrooms, in the 

fourth one there were nearly 20 students.  

3.5. Data Sources 

This study aimed to make an in-depth exploration of teacher’s treatment of 

rational number examples in their classrooms. To get rich information from these 
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middle school mathematics teachers, I employed multiple methods for data 

collection. Creswell (2007) referred to this as multiple sources of information. To be 

more explicit, he stated that “the data collection in case study research is typically 

extensive, drawing on multiple sources of information, such as observations, 

interviews, documents, and audiovisual materials” (p. 75).  

By taking these into consideration, several data sources were used in this 

study. Classroom observations and interviews with the participating teachers were 

conducted immediately after each observation session. Besides, lesson observations 

and post lesson interviews were recorded by a videotape and an audiotape 

respectively. Descriptive and reflective field notes were taken throughout the study. 

Finally, written materials delivered to students by teachers such as worksheets, 

homework assigned to students such as textbook exercises, questions asked in the 

examination and so forth were collected. However, classroom observations and 

interviews with the participating teachers were the major data sources. Other data 

sources were used to support findings from observations and interviews. 

3.5.1. Classroom observations 

I observed each middle school mathematics teacher throughout all 

mathematics lessons related with rational number concepts. I observed a total of 60 

mathematics lessons of four mathematics teachers. The observations were conducted 

to identify examples used by the teachers during the teaching of rational numbers to 

7th grade students. In more details, all teacher actions that took place in the 

mathematics classroom such as their instructional explanations, their use of worked-

out problems, and the mathematical tasks they posed to students became the focus of 

my observations.  

After reviewing the relevant literature about teachers’ purpose, use, and 

design of examples in the teaching of rational number concepts, I constructed an 

observation form. Later, a mathematics education researcher reviewed the 

observation questions. Finally, the supervisor of the researcher examined the 

questions with respect to their clarity, and content-specificity and the necessary 

revisions were done thereafter (See Appendix A). This observation form determined 
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the scope of my observations and it helped me to record teacher actions that were 

related with focus of this study. In light of this focus, I tried to find answers to the 

following questions during all observations:  

1. What type of rational number examples do teachers use in the classroom? 

2. How do teachers select rational number examples during the teaching? 

3. What principles or considerations guide teachers during choosing or 

generating rational number examples? 

4. How do teachers address rational number examples to students? 

a. How do they organize rational number examples? 

b. How do they convey learning objectives regarding rational 

numbers? 

c. To what extend do teachers provide mathematically correct or 

pedagogically appropriate rational number examples? 

During the observations, descriptive field notes were taken to describe the 

classroom environment and to record the rational number examples used by each 

teacher. In addition, reflective field notes were taken to record my personal thoughts 

about the rational number examples used by the teachers during the classroom. The 

field notes were used to make better sense of teachers’ rational number examples and 

consequently to better analyze these examples. In the meantime, I videotaped all my 

observations. By this way, I had the chance to watch video camera recordings as 

many times as possible. This also gave me the opportunity to identify what aspects of 

teacher actions regarding rational number examples I failed to notice during actual 

observations. More importantly, the video camera recordings provided me with an 

opportunity to conduct stimulated recall interviews with middle school mathematics 

teachers when their actions regarding rational number examples were ambiguous. 

This is explained in more detail in the interview section.  

According to Creswell (2009) there are four types of observation: complete 

participant, observer as participant, participant as observer and complete observer. In 

the current study, I adopted a complete observer role. To achieve my role, I sat at the 

back of the classroom and did not interrupt the ongoing dialogue among teachers and 

their students. The video camera recorded only the teacher examples that were 
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written on the board, so I also took notes about examples generated by the teachers 

as a result of student query that might not be captured by video camera recordings.  

Direct observation has several superiorities when compared to quantitative 

data gathering techniques (Hiebert et al., 2003). First of all, I had a first-hand 

experience with middle school mathematics teachers in their own classrooms. If 

direct observations were not used as a procedure to gather data about teachers’ 

treatment of rational number examples, another possible way to gather data would be 

constructing questionnaires that test teachers’ pedagogical content knowledge of 

rational numbers. Indeed, Ball et al. (2005) developed a questionnaire to test 

pedagogical content knowledge of teachers regarding a wide range of mathematical 

concepts. This questionnaire might give some clues about teachers’ pedagogical 

content knowledge to some extent. However, as emphasized by Rowland, Thwaites 

and Huckstep (2009), this questionnaire might not reflect how teachers act in 

practice. Therefore, in order to assess teachers in their actual practice, we need to 

observe them while they are teaching. To sum up, teacher observations helped me 

gather crucial information about teachers’ treatment of examples during their actual 

practice. 

3.5.2. Post lesson interviews 

Before the implementation of the study, I was planning to conduct both pre 

and post lesson interviews with the teachers to see the examples appearing in their 

lesson plans. However, the teachers stated that none of them prepared lesson plans in 

advance. Therefore, it was not possible for me to conduct pre-lesson interviews. 

Thus, post lesson interviews became another main data source of the current study.  

Each interview was conducted immediately after each observation session. 

That is, I observed two mathematics lessons of two different teachers and in total 

four mathematics lessons a day. Conducting the interviews just after the observation 

of each two mathematics lessons was very important for this study. If the interviews 

were not conducted immediately, mathematics teachers could have forgotten which 

examples they used, how and why they used those examples during the teaching of 

rational number concepts. As a consequence, this might have become an obstacle for 
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me in gathering data in line with my research questions. Besides, it was important for 

this study to determine which examples were pre-planned and which examples were 

generated spontaneously. Observations alone, gave some clues about teachers’ 

intentions for using these examples. For instance, their utterances in the classroom, 

the amount of time they spent for generating rational number examples, and their 

hesitations and body expressions helped me to predict whether the examples being 

used were spontaneous or not. However, without immediate interviews, it would 

have been impossible for me to clearly distinguish between pre-planned or 

spontaneous examples. To summarize, classroom observations and post lesson 

interviews have been used complementarily to achieve the goals of this study. 

 Yin (2003) stated that interviews are one of the most important data sources 

for case studies and he classified interviews under three headings: open ended 

interviews, focused interviews, and structured interviews. In this study, each post 

lesson interview was a focused interview in which I interviewed each middle school 

mathematics teacher for a short period of time, approximately 10-15 minutes, to 

obtain a more holistic picture of treatment of rational number examples. Focused 

interviews were conducted by means of a semi-structured interview protocol 

containing several open-ended questions and they were all recorded by an audio 

recorder. The interview questions focused on clarifying the considerations employed 

by each teacher in choosing or generating examples and on resolving questions that 

arose in the mind of the researcher during the observations (See Appendix B). 

Through this focus, the following interview questions were asked to the middle 

school mathematics teachers: 

1. Which of the examples you used during the classroom were pre-planned and 

which of them were spontaneously constructed? 

2. What were your purposes for using each example during the teaching of 

rational number concepts? 

3. What considerations did you employ while selecting or generating each 

rational number example? 

4. What do you think about the efficiency of each example you used during the 

classroom? 
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a. Are there any examples that you think that they impeded students’ 

understanding of rational number understanding? 

b. If you were to revise your examples, which examples would you revise 

and how would you revise them? 

5. Have there been any instances in which you provided mathematically 

incorrect or inappropriate examples and you noticed it later?  

a. If yes, how would you modify them? 

During post lesson-interviews I also took notes. In the meantime, I used an 

audio recorder to be able to transcribe each interview session later. This also gave me 

the chance to listen to each interview and make better sense of my data. The 

interviews were all conducted in a silent room in the schools and I made sure that 

nobody would interrupt us during the interview. I constructed the semi-structured 

interview protocol questions with the help of instructional example literature and 

reviewed the questions with a doctoral student in the field of mathematics education. 

Also my supervisor examined the interview questions to determine whether they 

matched with the focus of the study and to eliminate possible biased or leading 

questions. To test the usability of the semi-structured interview protocol, I piloted it 

with a middle school mathematics teacher who did not participate in this study. I 

revised the interview questions in order for them to be more understandable by the 

participants of my study. Pilot interviews have played an important role for this study 

since they helped me to find out which questions were confusing, which questions 

needed rewording and which of them produced data which would not be considered 

for this study. 

In addition to semi-structured post lesson interviews, I also conducted 

stimulated recall interviews with the middle school mathematics teachers. 

Calderhead (1981) stated that a stimulated recall interview “involves the use of 

audiotapes or videotapes of skilled behavior, which are used to aid participant’s 

recall of his thought processes at the time of that behaviour” (p. 212) and he added 

that the stimulated recall technique might be adopted to examine teachers’ thought 

processes and decision-making in the case of classroom-based research. Similarly, 

Clark and Peterson (1986) pointed out that this type of interview is a method for 



87 

 

investigating teachers’ ideas and beliefs about teaching and learning. Shane (2002) 

expressed that “in the stimulated recall interview, most often a video of the lesson is 

shown to promote reflection and insight into teacher’s thinking” (p. 142). In this 

study, sometimes teachers had difficulty remembering the examples they used in the 

classroom. Besides, in some cases it was very difficult for me to identify teachers’ 

purpose, design or use of rational number examples when they acted ambiguously. In 

such cases, stimulated recall interviews proved to be very useful since I had the 

chance to gain insights into teachers’ purpose for using or generating certain 

examples. In this study, stimulated recall interviews were conducted by having 

teachers watch the video camera recordings when they had difficulty remembering 

the purpose for using a particular rational number example. The stimulated recall 

interviews have been conducted twice with each middle school mathematics teacher 

and each interview took about 2 hours.  

Ultimately, demographic data about participant teachers, participant 

classrooms and participant schools were also gathered through interviews. 

3.6. Data Collection  

Timeline for data collection is presented in the following table.  

 

Table 3.4. Timeline for data collection  

Date Events 

August 2013  

Permissions from Research Center for Applied 

Ethics and Aksaray Provincial Directorate for 

National Education 

September 2013 
Participant schools, classrooms and teachers 

were determined 

September 2013 – November 2013 Pilot observations and interviews 

November 2013-December 2013 Actual observations and interviews 

November 2013- January 2014 Post observations and interviews 

November 2013 - March 2014  
Transcription of observation and interview 

data 
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This study was conducted during the Fall semester of 2013-2014 education 

year. Before collecting data, I reviewed the literature regarding mathematical 

examples and I prepared and an observation form and an interview protocol. I 

applied to Research Center for Applied Ethics of Middle East Technical University 

to get the necessary permissions for conducting my study (see Appendix E for 

approval document). After getting permission from this center, I applied to Aksaray 

Provincial Directorate for National Education in order to get necessary permissions 

for conducting my study in particular public middle schools located in Aksaray city 

center (see Appendix F for permission document). First, I have determined 12 

candidate schools in case I may not be allowed to conduct my study in the most 

convenient schools. I initially visited the school principals and informed them about 

my study. I explained the purpose of my study and I got in touch with the 

mathematics teachers after I took school principals’ approval for data collection. 

Similarly, I informed each middle school mathematics teacher about my study and 

asked them if they would like to voluntarily participate in my study. All middle 

school mathematics teachers that were volunteered to participate in my study signed 

the Voluntary Participation Form.  

One week before the start of the Fall semester of 2013-2014 education year, I 

visited the schools to learn about the time table of 7th grade classrooms. This helped 

me to determine which 7th grade mathematics teachers to observe and to avoid 

overlapping of lesson hours of different teachers. It was a difficult job for me since I 

observed four mathematics lessons of four 7th grade middle school mathematics 

teachers and in total sixteen mathematics lessons each week during the whole 

semester. After I organized my own time table for lesson observations, I started 

interviews and pilot observations on September 17th, 2013 and they ended on 

November 13th, 2013. Through the pilot observations, I became familiar with 

students, the classroom environment and the mathematics teachers. Pilot 

observations lasted for 8 weeks and Teacher A, Teacher B, Teacher C and Teacher D 

were observed for 25, 26, 24, and 19 lesson hours respectively. A total of 94 lesson 

hours were devoted to pilot observations. After each two hours of observation, post-
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lesson interviews were conducted with the teachers in order to gain insights into their 

treatment of examples.  

On November 14th, 2013 actual data collection started. In more details, all 

four teachers were observed and interviewed throughout the unit of rational numbers. 

Teacher A, Teacher B, Teacher C and Teacher D were observed for 18, 17, 10 and 

15 lesson-hours respectively. The actual data collection ended on December 27th, 

2013. After the actual data collection process, I continued conducting post 

observations and interviews with the teachers until the end of the fall semester. 

Because, I wanted to see whether teachers attempted to change their classroom 

practices after the end of actual data collection process. During the course of the 

lesson observations and post-lesson interviews, I also transcribed observation and 

interview data and the transcription of whole data ended in March 2014. 

3.7. Data Analysis Procedure 

In this study, major data consisted of videotape recordings of lesson 

observations and audiotape recordings of post lesson interviews. Descriptive and 

reflective field notes, written materials delivered to students by teachers such as 

worksheets, homework assigned to students such as textbook exercises, and 

questions asked in the examination were other data sources used to support findings 

from observations and interviews. By using two different strategies that are 

methodologically connected - observations and interviews - I tried to obtain a holistic 

analysis of teachers’ treatment of rational number examples in mathematics 

classrooms. After the end of the lesson observations and post-lesson interviews, all 

videotaped and audiotaped data were transcribed verbatim. This was the first step in 

data analysis and it took a long time for the researcher to transcribe all data. In all the 

observations and interviews, the spoken language was Turkish. Therefore, I initially 

transcribed all data in Turkish and then translated the necessary data into English for 

use in the results chapter of this study. During the transcription process, I watched 

the videotapes of the lessons and audiotapes of interviews for several times to engage 

myself with the data. Besides, I compared the translated data and the original data in 
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terms of their grammatical, syntactic and linguistic aspects to enhance the quality of 

transcription process. 

After transcribing all data, the next step was the identification of the themes, 

sub-themes and categories used in the study. Merriam (2009) stated that data analysis 

and data collection are simultaneously done in qualitative studies and added that data 

analysis is a complex process comprising moving back and forth between concrete 

bits of data, abstract concepts, and between inductive and deductive reasoning.  

Bogdan and Biklen (2007) described data analysis process as “systematically 

searching and arranging the interview transcripts, field notes and other materials that 

you accumulate to enable you to come up with findings” (p. 159). In a similar way, 

Creswell (2007) indicated that “data analysis in qualitative research consists of 

preparing and organizing the data for analysis, then reducing the data into themes 

through a process of coding and condensing the codes, and finally representing the 

data in figures, tables, or a discussion” (p. 148). In particular, Yin (2003) stated that 

data analysis in case studies provide intensive and holistic description of cases and 

mentioned that analyzing case study data would be especially difficult since there 

were no well-defined strategies and techniques. 

In this study, observations and interviews were conducted with different 

teachers in different settings and thus multiple cases were chosen. Creswell (2007) 

suggested that “when multiple cases are chosen, a typical format is to first provide a 

detailed description of each case and themes within the case called a within-case 

analysis, followed by a thematic analysis across the cases, called cross-case analysis” 

(p.75). Similarly, Yin (2003) suggested five analytic techniques for analyzing case 

study evidence: pattern matching, explanation building, time-series analysis, logic 

models, and cross-case synthesis. Yin emphasized that although the first four 

techniques can be used with either single or multiple case studies, cross-case 

synthesis is especially relevant if a case study consists of at least two cases. Hence, 

this study analyzed the data obtained from the cases by using Yin’s (2003) analytic 

technique of cross-case synthesis. 

Using this technique, I first examined each case independently. That is, I first 

examined the rational number examples used by one of the teachers and tried to sort 
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out the examples in terms of their similarities. As I repeatedly looked into the data, 

the categories started to emerge. While some categories were identified by means of 

pre-existing categories on teacher-generated examples, some others emerged in the 

current study. In the end, the examples were categorized according to the following 

ideas: the characteristics of the examples in themselves, the principles or 

considerations guiding teachers in choosing examples, and the erroneous examples 

and their potential pitfalls in students’ understanding of rational number concepts. 

After, examining each case independently, I compared the findings of the analysis of 

each case with other three cases. For instance, if it was evident that the purpose, 

design or use of certain examples recurred in the classroom of Teacher A, then this 

recurrence was also searched in the classrooms of Teacher B, Teacher C and Teacher 

D. After case by case examination of the purpose, design or use of examples in each 

classroom, I examined all examples from four cases altogether (See Appendix C for 

sample coding sheet). The categorization of teachers’ treatment of examples is 

presented in Table 3.5.  
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Table 3.5. Categorization of teachers’ treatment of rational number examples 

Themes Sub-Themes Categories  

Mathematically 

correct examples 

Types of examples Examples 

Non-examples 

Counter-examples 

Source of examples Pre-planned examples from textbook 

Pre-planned examples from workbook 

Pre-planned examples from teachers’ 

guidebook 

Pre-planned examples from auxiliary 

books 

Pre-planned examples from online 

educational software 

Pre-planned examples from high-

stakes examination questions 

Spontaneous examples 

Teachers’ 

considerations in 

choosing examples 

Starting with a simple or familiar case 

Attending  to student 

error/difficulty/misconception 

Drawing attention to relevant features 

Including uncommon cases 

Keeping unnecessary work to 

minimum 

Taking account of examinations 

Mathematically 

incorrect/pedagogica

lly improper 

examples 

Types of errors Incorrect example 

Improper language/terminology 

To be avoided examples 

 

In my data, there were examples being indicative of either ‘a practice to be 

aspired to’ or a ‘pitfall to be avoided’. Therefore, I initially classified rational number 

examples as being mathematically correct or mathematically incorrect/pedagogically 

inappropriate. Type of examples, source of examples, and teachers’ considerations in 

choosing examples were the sub-themes of mathematically correct examples. Type 

of examples was related with the characteristics of examples in themselves and this 

categorization was mainly based on the work of Watson and Mason (2005). Some 
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examples reflected teachers’ careful planning while some others were constructed 

during the lesson as a response to an entirely new or an unfamiliar classroom 

situation. This categorization of examples as pre-planned versus spontaneous 

examples was drawn from Zodik and Zaslavsky (2008). In addition, pre-planned 

examples were further categorized by taking account of their source. That is, pre-

planned examples were categorized as examples from textbook/workbook, examples 

from auxiliary books and examples from an online content. This categorization was 

solely based on classroom observations of the researcher. 

Understanding middle school mathematics teachers’ considerations or 

underlying principles that guided them in choosing or generating examples were an 

important component of the study apart from characterizing examples in themselves. 

Teachers’ considerations were categorized under six headings: Starting with a simple 

or familiar case, attending to student error/difficulty/misconception, drawing 

attention to relevant features, including uncommon cases, keeping unnecessary work 

to minimum, and taking account of examinations. These categorizations were drawn 

from the work of Zodik and Zaslavsky (2008) with minor changes. To be more 

precise, the data of this study did not provide a category that suggest that middle 

school mathematics teachers ‘convey generality by random choice’ while teaching 

rational number concepts. This might have been due to the fact that middle school 

mathematics teacher did not find it necessary to make generalizations of examples in 

middle school mathematics classrooms. On the other hand, the examples used by the 

teachers suggested that they took account of national exams while choosing or using 

examples. Thus, the data suggested that it was essential to include the category of 

‘taking account of examinations’ under teacher considerations sub-theme. As a 

result, this sub-theme was based not only on the literature and but also the lesson 

observations and the interviews conducted in this study. Finally, it is important to 

note that the categories were not purely distinct from each other, since one instance 

of the choice of example could be placed under more than one category.  

Middle school mathematics teachers participated in this study occasionally 

generated or selected examples that were mathematically incorrect or pedagogically 

improper. These typeS of examples were also analyzed since they were considered to 
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be a potential pitfall for students’ understanding of rational number concepts. The 

analysis of middle school mathematics teachers’ examples in terms of their 

correctness was rather objective although they were context based. Although some 

examples were entirely incorrect when evaluated from a mathematical standpoint, 

some others were not totally incorrect but they caused difficulties in communicating 

about the complicated topic of rational numbers. Mathematically incorrect or 

pedagogically improper examples were categorized as mathematically incorrect 

examples, pedagogically improper examples with improper language and 

terminology and pedagogically improper examples that are to be avoided. For 

instance, claiming that √2 cannot be located on a number line is a mathematically 

incorrect example.  

The teachers often used the word ‘fraction’ when they intended a ‘rational 

number’. Perhaps, they used these words interchangeably due to carelessness. This 

type of examples may lead to difficulties in communicating about rational number 

examples. Similarly, teachers’ used the expression ‘flipping’ instead of the terms 

‘reciprocal’ or ‘multiplicative inverse’ when finding the multiplicative inverse of a 

rational number. Cangelosi, Madrid, Cooper, Olson, and Hartter (2013) emphasized 

that the colloquial use of the term ‘flipping’ might hinder students’ understanding of 

the concept of multiplicative inverse. Based on the previous literature, examples of 

this type were grouped under the category of examples with improper language or 

terminology.  

Finally, studying with middle school mathematics teachers has brought to 

light some type of examples that should be better avoided. In more, details, some of 

the examples provided by the participants included particular pitfalls that might be an 

obstacle for students to understand the mathematical object, concept or procedure 

that they confronted for the first time. This type of examples were categorized as ‘the 

use of to be avoided examples’. This categorization was basically drawn from 

Rowland et al. (2009) but there were also some contributions from researcher 

observations and interviews. 

In this study, I employed several theoretical frameworks to give a 

comprehensive explanation of how middle school mathematics teachers treat rational 
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number examples in their classrooms. These frameworks are explained in detail in 

the following section.  

3.7.1. Theoretical frameworks used in this study for analyzing middle school 

teachers’ treatment of rational number examples in their classrooms 

In this study, the following theoretical frameworks were used to explore 

middle school mathematics teachers’ treatment of rational number examples in their 

classrooms: Marton and Booth’s (1997) variation theory; Zodik and Zaslavsky’s 

(2008) dynamic framework for explaining teachers’ choices and generation of 

examples during the lesson and finally, Rowland et al.’s (2005) the Knowledge 

Quartet Framework for making sense of teachers’ choose and use of examples. The 

use of variation theory in mathematics education is explained below.  

3.7.1.1. Marton and Booth’s (1997) variation theory  

Learning takes place through extending awareness of what constitutes an 

example (Marton & Booth 1997; Marton & Tsui, 2004). That is, discerning or 

making distinctions by detecting variation is at the core of learning (Marton & Booth 

1997; Marton & Trigwell, 2000). Briefly, in variation theory (Marton & Booth 

1997), variation is epistemologically essential for learning to occur. Marton and his 

colleagues detected differences in learning with respect to the nature and range of 

variation to which learners were exposed and to seize this, they introduced the notion 

of dimensions of variation (Marton & Booth 1997; Marton, Runesson & Tsui, 2004; 

Marton & Tsui, 2004). The notion of dimensions of variation refers to “the different 

parts of an object which can be varied and still that object remains an example of a 

specified concept” (Mason & Watson, 2008, p. 195). At the level of cognition, an 

example of a concept is accepted as an example only when certain features are 

acknowledged as being permitted to change, while some other features remain 

relatively invariant (Mason, 2006). 

Different people may be aware of different dimensions (Goldenberg & 

Mason, 2008). For instance, teachers and their students may be aware of different 

dimensions in an example. In particular, novices may not be aware of the richness of 
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all possible variation. Furthermore, the same individual may be aware of different 

dimensions of variation at different times (Goldenberg & Mason, 2008; Mason, 

2006; Mason & Watson, 2008). By considering all these factors, Watson and Mason 

(2005) extended the notion of dimensions of variation to dimensions of possible 

variation. Further, they added the notion of range of permissible change and 

indicated that each dimension of possible variation has an associated range of 

permissible change which might also not be shared between different individuals 

such as novices and experts. Briefly, dimensions of possible variation indicate that 

“different people may be aware of different things that is possible to vary” and range 

of permissible change indicates that “what can vary may be perceived as varying 

over different ranges by different people or at different times” (Mason, 2011, p. 195).  

The notions of dimensions of possible variation and the associated range of 

permissible change help learners discern what features of an object is critical and 

what features of it can be changed in what ways (Goldenberg & Mason, 2008). These 

two parameters are especially powerful in mathematics in that they help learners 

appreciate mathematical structure (Mason et al., 2009). Mathematical structure 

shows itself by means of relations among variance/invariance and 

similarity/difference (Watson & Shipman, 2008). This structure might help learners 

detect both critical and uncritical aspects of examples being experienced (Sun, 2011).  

According to variation theory, discerning certain critical features of an object 

is vital for learners owing to the fact that it is essential first to identify critical aspects 

in order to learn that object (Guo et al., 2012). To discern a particular aspect/feature, 

learners should experience variation in the related dimension and as a consequence, 

the aspect that varies while other aspects remain invariant would easily be discerned 

by those learners (Pang & Marton, 2005). More specifically, Marton et al. (2004) 

identified four patterns of variation and invariance to assist in discerning critical 

aspects of mathematical objects as contrast, separation, fusion and generalization. 

The notion of patterns of variation and invariance can be used in the teaching of 

certain mathematical concepts as well. Rowland et al. (2009) proposed the following 

example to illustrate the use of variation theory in mathematics education:  

“understanding of the concept of square is marked by growing 

awareness of the various ways that squares can vary, and the variants 
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that do not qualify as squares. These dimensions include: sides – these 

must have same length, but the length can vary between different 

squares; angles – these must all be right angles, and there exist 

rhombuses with equal sides which are not squares; orientation – 

diamonds with equal sides and angles are squares, rotated from the 

conventional position on the page; other less overtly geometrical 

dimensions such as colour, texture and so on, can also vary” (p. 84).  

In the current study, the concept of rational numbers involves possible 

variation in dimensions such as numerator, denominator, proper, improper or mixed, 

being in lowest terms or not, being positive or negative and so forth. For instance, 

when teaching subtraction of rational numbers, teachers should be aware of the fact 

that the minuend and subtrahend can take many different values with respect to their 

signs and forms. Table 3.6 illustrates how many variations there exist for the 

minuend (i.e.,
a

b
) and the subtrahend (i.e.,

c

d
) in the following subtraction operation:

a c

b d
  . 

 

Table 3.6. The variety of examples for teaching subtraction of rational numbers 

 Subtrahend 

Positive Negative 

Proper Improper Mixed Proper Improper Mixed 

1
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3
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1
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1
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  
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  

2
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  
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0 
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6
   

9
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   1 
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Improper 
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3  

5

6
  0 

1

15
   
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8
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41
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15
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15
 

14

5
  

N
eg

at
iv

e 

Proper 
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2


 

-1 
11

6
  

19

10
  0 

5

6
 

9

10
 

Improper 
4

3


 

11

6
  

8

3
  

41

15
  

5

6
  0 

1

15
 

Mixed 
2

1
5



 

19

10
  

41

15
  

14

5
  

9

10
  

1

15
   0 
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3.7.1.2. Zodik and Zaslavsky’s (2008) dynamic framework for explaining 

teachers’ choices and generation of examples 

 Simon (1995) developed Mathematics Teaching Cycle as a model of the 

relationship among teacher knowledge, thinking, decision making and classroom 

activity. The Mathematics Teaching Cycle is presented in Figure 3.7. 

 

Figure 3.7. Mathematics Teaching Cycle (Simon, 1995, p. 137). 

This model demonstrates the relationship among different teacher knowledge 

domains, the hypothetical learning trajectory and the interactions with students. 

According to this model, the hypothetical learning trajectory refers to a teacher’s 

development of a plan for classroom activity before incorporating it into the 

classroom. More precisely, the hypothetical learning trajectory affords teachers the 

opportunity to put forward a reason for selecting a specific instructional design; 

hence, help teachers make design decisions on the basis of their predictions about 

how learning might continue in the classroom. This can be observed both in the 

thinking and planning prior to the instruction or in the course of the lesson as a 

spontaneous decision made in response to a student thinking (Simon, 1995). In short, 

Mathematics Teaching Cycle emphasizes the relationship between teacher 
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knowledge, pre-planning and classroom interactions that involve spontaneous 

actions.  

In their study, Zodik and Zaslavsky (2008) used the abovementioned 

constructs for exploring secondary school teachers’ choices and generation of 

examples in the course of teaching mathematics. Besides, they examined underlying 

principles or considerations that guided teachers in choosing or generating examples 

by focusing on the mathematical knowledge they used and by foregrounding 

teachers’ knowledge in-action and their accessible personal example spaces. 

Encouraged by the Mathematics Teaching Cycle of Simon (1995), Zodik and 

Zaslavsky (2008) proposed a dynamic framework for examining teachers’ choice and 

use of examples in the course of teaching mathematics. This theoretical framework is 

presented in Figure 3.8. 

 

Figure 3.8. Mathematics Example-Related Teaching Cycle (Zodik & Zaslavsky, 

2008, p. 179). 
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As can be seen in Figure 3.8, examples used by a teacher during the teaching 

of mathematics are located on three different components as teacher knowledge, 

lesson planning and the actual lesson. The interrelationships among these 

components are denoted by different arrows. Teachers’ example spaces and 

textbooks are major sources for their choice and use of examples. Moreover, 

textbooks are mainly used during the lesson planning phase, example spaces are used 

by teachers both in the planning phase and in the actual lesson implementation phase. 

Teachers have some underlying principles or considerations that guide them while 

choosing and using examples and these considerations are influenced by teachers’ 

personal dispositions and evaluations.  

The figure also demonstrates that teachers mainly work with choosing or 

generating examples in the course of planning their lessons. Besides, actual lesson 

implementation comprises classroom events and in-the-moment actions of teachers. 

In particular, classroom events include teacher moves and interactions of and with 

students. The classroom events usually call for teachers to act-in-the moment and 

provide the relevant example that is needed at that moment. In the study of Zodik 

and Zaslavsky (2008), spontaneous examples were generated quite immediately by 

some of the teachers and this indicated their easily accessible example spaces. On the 

other hand, for some other teachers it took longer to generate examples and these 

examples indicated remote accessibility to those teachers’ example spaces. Such 

moments were considered as learning opportunities by Zodik and Zaslavsky (2007). 

Thus, as can be seen in Zodik and Zaslavsky’s (2008) Mathematics Example-Related 

Teaching Cycle, teachers learn through their teaching and in particular they learn 

through example generation or selection.  

In this study, underlying principles or considerations that guided middle 

school mathematics teachers in choosing or using rational number examples were 

examined by the help of the aforementioned framework. This framework consisted 

of the following six categories: starting with a simple or familiar case, attending to 

students’ errors, drawing attention to relevant features, conveying generality by 

random choice, including uncommon cases and keeping unnecessary work to 

minimum. However, the data of the current study did not provide a category which 
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suggested that middle school mathematics ‘conveyed generality by random choice’ 

while teaching rational number concepts. On the other hand, the rational number 

examples used by the teachers suggested ‘taking account of examinations’ as a 

category distinct from the ones included in the framework of Zodik and Zaslavsky 

(2008). To clarify how I determined the category of each rational number example or 

sets of rational number examples, I present the following example tasks.  

Starting with a simple or familiar case: Middle school mathematics teachers 

often generated sequences of rational number examples and each rational number 

example gradually increased in its level or complexity. For instance, to teach how to 

order rational numbers, one teacher used the following sets of rational number 

examples: 

( 2) ( 7) 1 3 1 1 1 1 2 2 2 2 2 3 6 1996 1997 1998
, , 0, , ; , , , , 0; , , 0, , ; , , ; , ,

5 5 5 5 3 5 7 2 7 13 15 19 19 13 17 1997 1998 1999

 
                  

The first sequence is easy to order since there is no need to find the least common 

multiple of the denominators. In the second sequence, the numerators of the rational 

numbers are all ‘1’. Thus, this sequence may also be ordered easily by using the 

same numerator algorithm. In the third sequence, the numerators of the rational 

numbers are all ‘2’ and this sequence may also be ordered easily by using the same 

numerator approach. However, the third sequence includes large denominators so it 

might be difficult for students to order the rational numbers by using common 

denominator algorithm when they do not think of using the same numerator 

algorithm. The fourth sequence includes rational numbers with different numerators 

and denominators. Thus, this sequence is more difficult to order when compared to 

the previous three sequences. Finally, the last sequence cannot be ordered by using 

common numerator or denominator approach. The students need to use a more 

conceptual ordering strategy such as residual thinking. Therefore, the last sequence 

can be considered the most complex ordering example when compared to the 

previous sequences.  

Attending to students’ errors: Middle school mathematics teachers often built 

examples according to the errors they knew the students made. For instance, one of 

the teachers expressed that students erroneously focused on tick-marks rather than 
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equal distances when locating rational numbers on a number line. She drew on the 

board the following number line to illustrate how students erroneously locate 
5

6
 on 

it: 

 

Drawing attention to relevant features: This consideration had to do with 

teachers’ deliberate attempts to decrease the irrelevant features of specific examples. 

For instance, Teacher A initially provided 
1 1

8
4 8

K
 

   
 

 as a multi-step operation 

example. Next, he omitted the parenthesis in this example and provided 

1 1
8 :

4 8
L    as a second multi-step operation example. Finally, the teacher asked 

the students to think of whether the two examples were identical. By this way, the 

teacher checked whether students could recognize which operations to perform first 

in the two expressions.    

Including uncommon cases: This consideration had to do with teachers’ 

attempts to use examples that were rather exceptional or special in mathematics or 

examples that were under-represented in the teaching of rational numbers. For 

instance, one teacher focused on 

0
2

3

 
  
 

 when teaching how to perform 

exponentiation with rational numbers. It is important to note that for this exponential 

number, the intuitive definition of exponents (i.e., repeated multiplication) does not 

work. Thus, the teacher treated the case of zero exponent as a special case and 

explicitly expressed the following utterances: “Raising any nonzero rational number 

to the power of 0 yields 1. Thus, 

0
2

3

 
  
 

 is equal to 1”.  

Keeping unnecessary work to minimum: Teachers deliberately attempted to 

keep unnecessary work to minimum by reducing technical work and focusing on the 

essence, by highlighting relevant parts of examples and not going into extra details 
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and by using properties of operations to reduce workload. For instance, one of the 

teachers preferred to use distributive property of multiplication over addition rather 

than performing several operations for solving the following task: 

3 5 3 5 4 3

7 9 11 9 7 11
.    

 
 
 

 

Taking account of examinations: This consideration might be specific to 

Turkish educational context. Teachers highlighted examples that had the potential to 

appear in written examinations, practice examinations of private teaching 

institutions, and high stakes examinations. Besides, they demonstrated their students 

how to find the answer of multiple choice complex fraction tasks by trial and error of 

the alternatives and taught shortcut methods for gaining speed in the high stakes 

examinations. For instance, one of the teachers solved 
2

1
6

5
1x

 




 by trial and 

error of the alternatives. The alternatives were 
1 1

, ,2 and 3
4 2

   respectively. In his third 

trial, the teacher substituted 3 into complex fraction and reached the correct answer 

as follows: 
2 2 2 2

1
6 6 3 5 2

5 5
3 1 2

    
 

 


. 

3.7.1.3. Rowland et al.’s (2005) the Knowledge Quartet framework for making 

sense of teachers’ choice and use of examples 

It is widely accepted that pupil achievement is dependent to a large extent on 

the quality of teaching (Stronge, Ward, & Grant, 2011). Besides, mathematical 

content knowledge of teachers is regarded as an important factor in the teaching and 

learning of mathematics (Williams, 2008). Nevertheless, researchers identified that 

teachers had limitations in their mathematical content knowledge (e.g., Ball, 1990a, 

1990b; Ma, 1999). Therefore, mathematics educators around the world attempted to 

develop measures or generate theories for deepening teachers’ mathematical content 

knowledge (e.g., Ball, Hill, & Bass, 2005; Rowland et al., 2005). Ball et al. (2005) 

developed items to test both common and specialized content knowledge of teachers. 
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According to Rowland, et al. (2009), Ball et al.’s questionnaire might give some 

clues about teachers’ pedagogical content knowledge but might not reflect how 

teachers act in practice. Rowland et al. (2009) added that in order to assess teachers 

in their actual practice, there is a need for observing those teachers while they are 

teaching. By adopting this idea, Rowland et al. (2005) attempted to generate an 

empirically-based conceptual framework called the Knowledge Quartet. This 

framework consisted of four broad categories as foundation, transformation, 

connection and contingency. More specifically, it included eighteen codes and these 

codes provided Rowland et al. (2005) with considering and discussing mathematics 

teaching in practice by focusing on elementary pre-service teachers’ mathematical 

knowledge for teaching. Rowland et al.’s (2005) The Knowledge Quartet Framework 

is shortly summarized in Table 3.7.  

 

Table 3.7. The Knowledge Quartet Framework (Rowland et al., 2005, p. 265) 

Foundation 

Propositional knowledge and beliefs concerning: 

• the meanings and descriptions of relevant mathematical concepts, and of relationships 
between them; 

• the multiple factors which research has revealed to be significant in the teaching and 
learning of mathematics; 

• the ontological status of mathematics and the purposes of teaching it. 

Contributory codes: awareness of purpose; identifying errors; overt subject knowledge; 

theoretical underpinning of pedagogy; use of terminology; use of textbook; reliance on 
procedures. 

Transformation 

Knowledge-in-action as revealed in deliberation and choice in planning and teaching. The 

teacher’s own meanings and descriptions are transformed and presented in ways designed 

to enable students to learn it. These ways include the use of powerful analogies, 
illustrations, explanations and demonstrations. 

The choice of examples made by the teacher is especially visible:  

• for the optimal acquisition of mathematical concepts, procedures or essential vocabulary; 

• for confronting and resolving common misconceptions;  

• for the justification (by generic example) or refutation (by counter-example) of  

mathematical conjectures. 

Contributory codes: choice of representation; teacher demonstration; choice of examples.  

Connection 

Knowledge-in-action as revealed in deliberation and choice in planning and teaching. 

Within a single lesson, or across a series of lessons, the teacher unifies the subject matter 
and draws out coherence with respect to: 

• connections between different meanings and descriptions of particular concepts or 
between alternative ways of representing concepts and carrying out procedures; 

• the relative complexity and cognitive demands of mathematical concepts and 
procedures, by attention to sequencing of the content. 

Contributory codes: making connections between procedures; making connections 

between concepts; anticipation of complexity; decisions about sequencing; recognition of 

conceptual appropriateness 
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Table 3.7. (Continued) 

Contingency 

Knowledge-in-interaction as revealed by the ability of the teacher to ‘think on her feet’ 

and respond appropriately to the contributions made by her students during a teaching 

episode. On occasion this can be seen in the teacher’s willingness to deviate from her own 

agenda when to develop a student’s unanticipated contribution: 

• might be of special benefit to that pupil, or  

• might suggest a particularly fruitful avenue of enquiry for others. 

Contributory codes: responding to children’s ideas; use of opportunities; deviation from 

agenda 

 

In this study, the focus was on transformation dimension of the Knowledge 

Quartet since this dimension involves teachers’ choice and use of examples in the 

teaching of mathematics. In particular, the focus was on identifying middle school 

mathematics teachers’ poor choice of examples that were regarded as common 

pitfalls to be avoided in the selection of examples. As mentioned by Rowland (2008), 

teachers learn most easily by poor choice of examples and on the contrary good 

choice of examples is generally so subtle that it may not be readily noticeable by 

them. Rowland et al. (2003) brought to light three types of examples that would be 

avoided. Namely, they identified three types of examples that reflect prospective 

elementary teachers’ poor choice:  

“examples that obscure the role of variables in it; examples intended to 

illustrate a particular procedure, for which another procedure would be more 

sensible; examples for instruction (as opposed to exercise examples) being 

randomly generated, typically by dice, at a point when it would preferable 

for the teacher to be making careful choices” (p.245). 

According to Marton and Booth’s (1997) notion of dimension of variation, 

most of the mathematical concepts or procedures include two or more components or 

variables. When selecting introductory examples for teaching a mathematical 

concept or procedure, it is often judicious to keep the magnitudes of these variables 

different from each other (Rowland, 2014). Selecting variables with different values 

is important from a pedagogical perspective, since it helps students recognize the role 

of different variables in a concept or procedure. On the other hand, selecting 

variables with same values makes the distinction among the variables obscure and 

this leads to the generation of an example that obscure the role of examples. 

(Rowland et al., 2009). A very striking example that obscured the role of variables 

was observed by Rowland (2008) in a mathematics lesson of a prospective 
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elementary teacher about Cartesian co-ordinates. In more detail, before teaching how 

to identify the coordinates of a specific point on a co-ordinate grid, the teacher 

reminded her students that the x-axis goes first. However, the teacher initially chose 

to identify the co-ordinates of the point (1,1). As can be seen, this example seems to 

be completely ineffective in demonstrating the importance of the order of two 

elements of the ordered pair. Hence, selecting (1,1) as the first point to mark on a co-

ordinate grid might give rive rise to the confusion between the notations (x,y) and 

(y,x). 

A second category of poor choices of examples occurs due to selecting 

examples for an intended procedure when in fact another procedure would be more 

sensible to perform for that selected example (Rowland et al., 2003). For instance, a 

teacher may choose 49 4, 8and     as demonstration examples when 

introducing column multiplication to her students. However, the teacher’s choice of 

examples for teaching column multiplication does not seem to be well-judged since 

there are more suitable calculation strategies for those examples. For instance, 

49 4  would be more efficiently performed by rounding up, multiplication and 

compensation as 49 4 (50 1) 4 (50 4) 4 200 4 196          . After performing

49 4  , the teacher would then introduce her students doubling strategy to find the 

answer of 49 8  in an easier and more sensible way since 49 8 (49 4) 2     . 

Similarly,   could be more sensibly performed by the use of doubling strategy 

rather than column multiplication since    .  

Finally, the third category of poor choices of examples has to do with 

choosing examples at random generally by using a dice. Rowland (2008) stated that 

“there is something intuitively attractive about generating examples with dice, 

possible because the teacher is demonstrating confidence to let go of some aspect of 

the lesson, perhaps giving it a more democratic feel” (p. 158). However, it is very 

dangerous to use a dice when selecting a concept or procedure example, despite it 

might be a useful method for selecting exercise examples (Rowland et al., 2003). For 

instance, one of the prospective elementary teachers observed by Rowland (2008) 

was teaching his reception class (students at the age of 4 or 5) how to find a pair of 

numbers whose sum is equal to 10. However, he asked one of his students to 



107 

 

randomly generate a number between 1 and 10 by using a dice. At that moment, the 

dice generated the numbers 5, 3 and 8 respectively and the teacher wanted other 

students to find their complements to 10. As it can be seen, the teacher’s example 

generation is in contrast with skillful control of the examples during the teaching of a 

mathematical concept. Rowland (2008) concluded that most of the prospective 

elementary teachers confused between choosing examples for teaching new concepts 

or procedures and choosing examples for convincing the learner about the truth of a 

principle or the effectiveness of a previously taught procedure. Finally, Rowland et 

al. (2009) suggested that it is often better for teachers to control (i.e., choose and use 

carefully) examples that are selected for introducing new concepts or procedures and 

they added that choosing examples at random is less likely to serve for the intended 

pedagogical purpose.  

This study used the abovementioned framework for analyzing middle school 

mathematics teachers’ poor choice of rational number examples. Teachers’ poor 

choices of rational number examples were correct from a mathematical standpoint 

but they were inappropriate from a pedagogical standpoint. In particular, the use of 

this framework revealed two different types of pedagogically improper examples as 

examples that obscure the role of variables and examples intended to illustrate a 

procedure, for which another procedure would be more sensible. For instance, some 

of the teachers initially selected 
10

3.333
3
  when teaching repeating decimals. 

However, by selecting this example, the teachers made the distinction between the 

non-repeating digit and the repeating digit obscure. In this example, 3 was made to 

do the work of two variables. Thus, this example obscured the role of variables. 

Another pedagogically improper example choice has to do with using relevant 

strategies for the selected example. For instance, one teacher wanted to teach how to 

order the following rational numbers:
13 11 7 5

, , and
12 10 6 4
     . Although these rational 

numbers lend themselves more readily to residual thinking, the teacher preferred to 

use common denominator algorithm. As can be seen, it is not sensible to use 

common denominator algorithm for the selected set of rational numbers.  
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3.8. Trustworthiness of the Study 

Validity and reliability play an important role in designing a study, analyzing 

the findings and in determining the quality of the study (Patton, 2002; Shenton, 

2004). Creswell (2007) stated that the accuracy of the findings and interpreting the 

data in a correct fashion are the main concerns for qualitative research studies. 

However, different qualitative researchers have different views about how to 

determine the quality of a qualitative research study (e.g., Creswell, 2007; Merriam, 

2009; Miles & Huberman, 1994; Stake, 2005; Yin, 2003). In addition to these, 

validity and reliability of qualitative studies are generally not discussed separately as 

in quantitative research studies and researchers used different terminologies such as 

‘rigor’, ‘credibility’ or ‘trustworthiness’ to address both validity and reliability (e.g., 

Golafshani, 2003; Lincoln & Guba, 1985; Shenton, 2004). Lincoln and Guba (1985) 

used the term ‘trustworthiness’ to refer to the validity and reliability of qualitative 

research studies. In this qualitative case study, I preferred to use the term 

‘trustworthiness’ to address validity and reliability issues. Lincoln and Guba (1985) 

used the terms credibility, transferability, dependability, and comfirmability as 

equivalents for internal validity, external validity, reliability, and objectivity to 

establish the trustworthiness of a qualitative study. In the following section, I try to 

address the credibility, transferability, dependability, and comfirmability issues of 

this study respectively. 

3.8.1. Credibility 

First, credibility corresponds to internal validity in quantitative research 

studies. According to Merriam (2009) credibility is concerned with finding answers 

to the questions “How congruent are the findings with reality? Are investigators 

observing or measuring what they think they are measuring?” (p. 201). In this study, 

to increase credibility, the following strategies suggested by Shenton (2004) were 

used: establishing the adoption of research methods, developing an early familiarity 

with the culture of participating organizations, ensuring honesty in participants, thick 

description of the phenomenon under scrutiny, and examining the previous research 

findings. These tactics are used in the following way: 
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To establish the adoption of research methods, I explained the rationale for 

using a qualitative research methodology, the reasons for using lesson observations 

and post lessons interviews for gathering research data, and why these methods were 

relevant for the purposes of this study. To develop an early familiarity with the 

culture of participating organizations, I began to observe four middle school 

classrooms two months before the actual data collection process. Meanwhile, I used 

a video camera to record the examples that are written on the board by each middle 

school mathematics teachers. To ensure honesty in participants, I observed only the 

teachers who volunteered to participate in my study. There were a total of seventeen 

middle school teachers in four schools but not all of them were willing to participate 

in my study. Therefore, there were four participant teachers in my study. To present a 

thick description of the phenomenon under study, I described the characteristics of 

each participant school, participant classroom and participant teacher as much as I 

could to portray the actual situations that were explored. Finally, I examined the 

previous research findings on examples and tried to relate them with the findings of 

the current study in the discussion chapter.   

In addition to the suggestions of Shenton (2004), Creswell (2007) suggested 

eight different strategies to establish credibility: triangulation, member checking, 

using thick description, clarifying researcher bias, negative case analysis, spending 

prolonged time in the field, peer debriefing, and using an external audit.  

Creswell and Miller (2000) defined triangulation as “a validity procedure 

where researchers look for convergence among multiple and different sources of 

information to form themes or categories in a study” (p. 126). In addition, Stake 

(2000) pointed out that “triangulation has been generally considered as a process of 

using multiple perceptions to clarify meaning, verifying the repeatability of an 

observation or interpretation” (p. 443). There are four different types of triangulation 

in qualitative research literature: data triangulation, investigator triangulation, 

methodological triangulation, and theory triangulation (Creswell & Miller, 2000; 

Creswell, 2007; Patton, 2002). In this study, data triangulation, investigator 

triangulation and methodological triangulation was used to increase the credibility. 

That is, there were four different cases as data source (data triangulation), a second 
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coder was used for analyzing the data (investigator triangulation) and different types 

of data including observations and interviews were gathered (methodological 

triangulation). 

In addition to triangulation, I used member checking after transcribing the 

observation and interview data. I had the participants’ view and read the whole 

transcription and wanted to see if there were any conflicts between their 

understandings. Besides, I conducted stimulated interviews with teachers in cases 

that were ambiguous. As mentioned before, I made thick and rich descriptions to 

enable the researchers to decide on the applicability to other settings. I clarified 

researcher bias by acknowledging and describing my entering beliefs and biases 

about the current study in the following sections. This was explicitly stated in the 

researcher role and bias section. To build trust and establish rapport with the 

participants I spent extensive time in four classrooms. That is, I spent 16 lesson hours 

a week in four classrooms during the whole fall semester. Peer debriefing is defined 

as “the review of the data and research process by someone who is familiar with the 

research or the phenomenon being explored” (Creswell & Miller, 2000, p.129). In 

this study, I had the chance to get feedbacks from a researcher experienced in 

qualitative research and teacher knowledge.  

3.8.2. Transferability 

Second, transferability corresponds to external validity in quantitative 

research studies. Transferability is concerned with the generalizability of the findings 

of a study. Nevertheless, in qualitative research studies, generalizability does not 

serve the purpose of making inferences from a small sample to a wider population as 

in quantitative studies. Shenton (2004) indicated that “since the findings of a 

qualitative project are specific to a small number of particular environments and 

individuals, it is impossible to demonstrate that the findings and conclusions are 

applicable to other situations and populations” (p.69). Nonetheless, Miles and 

Huberman (1994) suggested researchers to provide “thick descriptions for the readers 

to assess the potential transferability and appropriateness for their own settings” (p. 

279). According to Lincoln and Guba (1985) researchers are responsible from 
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making sure that adequate contextual information about the fieldwork site is 

provided to the readers so that they transfer the findings to their own contexts. 

Additionally, Shenton (2004) emphasized the importance of conveying the reader the 

boundaries of study. Thus, the following contextual information was presented in this 

study: “the number of organizations taking part in the study and where they are 

based; any restrictions in the type of people who contributed data; the number of 

participants involved in the fieldwork; the data collection methods that were 

employed; the number and length of the data collection sessions; and the time period 

over which the data was collected” (p. 69). 

Furthermore, Yin (2003) stated that transferability is a main problem in case 

studies. He explained this problem in the following way: 

The external validity problem has been a major barrier in doing case 

studies. Critics typically state that single cases offer a poor basis for 

generalizing. However, such critics are implicitly contrasting the 

situation to survey research, in which a sample readily generalizes to a 

larger universe. This analogy to samples and universes is incorrect when 

dialing with case studies. This is because survey research relies on 

statistical generalization, whereas case studies rely on analytical 

generalization. In analytical generalization, the investigator is striving to 

generalize a particular set of results to some broader theory (p.37). 

Yin (2003) suggested researchers to use theory in single case studies and to use 

replication logic in multiple case studies. Since this study was a multiple case study, 

I tried to address the issue of transferability by using replication logic for each case. 

To be more precise, I tested the inferences that I drew for a case study by replications 

of the findings in other three cases. For instance, when I found a pattern in the case 

of Teacher A, I tried to figure it out in the cases of Teacher B, Teacher C and 

Teacher D. 

3.8.3. Dependability 

Third, dependability corresponds to reliability in quantitative research studies. 

Merriam (2009) explained reliability in qualitative research studies in the following 

way: 

Reliability refers to the extent to which research findings can be replicated. 

In other words, if the study is repeated will it yield the same results? 

Realistically, a qualitative study by its design and its structure cannot be 
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replicated largely because human behavior is never static and the 

phenomenon being studied is assumed to be in flux, multifaceted, and highly 

contextual” (p.220).  

Rather than using the term ‘reliability’, Lincoln and Guba (1985) 

recommended discussing the ‘dependability’ or ‘consistency’ of the findings 

garnered from research data. In this way, the researcher should have the outsiders 

convince that the findings are consistent and dependable. Hence, according to 

Lincoln and Guba (1985) reliability in a qualitative study is not concerned with 

finding similar findings, but concerned with the findings that are consistent with the 

gathered data. 

In particular, Yin (2003) stated that the aim of reliability in case studies is to 

be sure that “if a later investigator followed the same procedures as described by an 

earlier investigator and conducted the same case study all over again, the later should 

arrive at same findings and conclusions” (p. 37). Moreover, he added that by 

addressing the issue of reliability, the researchers try to reduce the errors and biases 

in their case studies. Shenton (2004) pointed out that in order for the readers to get 

in-depth understanding of the methods used by a qualitative researcher, the 

researcher should report “the research design and its implementation, the operational 

detail of data gathering, and reflective appraisal of the project” (p. 71-72). In this 

study, the issue of dependability was addressed to a certain extent by describing the 

research design and its implementation and by in-depth description of data gathering 

and analyzing procedures.  

To establish dependability during the coding process, I and another doctoral 

student in the field of mathematics education coded the data independently. The 

second coder was experienced in coding qualitative data and was informed about the 

purpose and research questions of the study in detail. Besides, I informed her about 

the coding process before starting the actual coding and hence clarified the focal 

points of data analysis. Wiersma (2000) claimed that “if two or more researchers 

independently analyze the same data and arrive at similar conclusions, this is strong 

evidence for internal consistency” (p. 211). After coding the research data 

independently, the codings were compared to each other and about 75% agreement 

was found between the two researchers. Later, I came together for several times with 



113 

 

the second coder to discuss and reach an agreement on codings and categories of this 

study.  In each meeting session, the different opinions were further discussed and as 

a result the conflicts diminished to a lesser extent. Finally, the two coders arrived at 

an almost full consensus at the end of the meeting sessions and the coding process 

was finished. 

3.8.4. Comfirmability 

Finally, comfirmability is the last criterion to establish trustworthiness in 

qualitative research studies and it corresponds to objectivity in quantitative research 

methodology. Patton (2002) stated that the power of scientific method comes from 

objectivity and added that “objective tests gather data through instruments that, in 

principle, are not dependent on human skill, perception or even presence” (p. 50). 

However, he acknowledged that instruments were designed by humans and thus they 

were subject to the researchers’ bias. Besides, Shenton (2004) pointed out that to 

address comfirmability “steps must be taken to help ensure as far as possible that the 

work’s findings are the result of the experiences and ideas of the informants, rather 

than the characteristics and preferences of the researcher” (p.72). Shenton (2004) 

also recommended researchers to use triangulation to increase comfirmability. In this 

study, I tried to establish comfirmability by triangulating observation data and 

interview data and by in-depth description of the research methodology. Likewise, 

Miles and Huberman (1994) stressed that comfirmability might be addressed to a 

certain extent if researchers’ acknowledge their own biases. Thus, the following 

section aims at describing my role and biases as a researcher.  

3.9. Researcher Role and Bias 

In qualitative studies, researchers are key instruments for gathering and 

analyzing data (Merriam, 2009). Therefore, subjectivity is one of the main concerns 

for researchers when considering the validity of the qualitative research. For 

instance, a researcher might record what she wants to see instead of recording what is 

really happening and therefore she may not control her bias. Besides, a researcher’s 

views and beliefs might affect his/her interpretations in a qualitative study. In a 
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similar way, I might have distorted my qualitative data due to my biases. The key 

strategy for understanding the researcher bias is reflexivity. Robson (2011) defined 

reflexivity as “the process of researchers’ reflecting upon their actions and values 

during research (e.g., in producing accounts and writing accounts), and the effects 

that they may have” (p.531). In this research, I followed the suggestions of Ahern 

(1999) to achieve reflective bracketing (i.e., using reflexivity to identify areas of 

potential bias).  

Before observing the middle school teachers with different rational number 

teaching experience, I clarified my presence at the classroom and explained the 

purpose of my thesis. I stated explicitly that it was not compulsory to participate in 

the study and made sure which participants volunteered to participate in my study. I 

also informed them that the video recordings and the interview transcripts were 

going to be kept confidential. During data analysis, I did not pay attention to teacher 

names in order to eliminate bias. 

As I was a non-participant observer, I did not interact with the teachers or the 

students during the classroom practices of teachers. I kept my presence as passive as 

possible. This policy sometimes limited my observations and my ability to get more 

detailed information about teachers’ intentions for choosing certain examples. 

However, it also provided a natural setting for my observations. During the 

classroom practices of teachers, I stayed at the end of the classroom. This vantage 

point kept me out of students’ line of sight and provided me a good view of the 

teachers and the students. During the first few weeks, the students that were closer to 

me attempted to ask me for help and I politely replied them that they should ask for 

help from their friends or the teacher. I tried to keep myself away from offering any 

help or giving tips to the students about the questions asked by their teachers. 

Because I am the primary means of data collection, interpretation and 

analysis, it is significant to state not only my role in this study, but also my own 

biases that might influence data analysis and interpretation of data. I firmly believe 

that teachers should provide well-thought examples to their students when teaching 

mathematical concepts. I think that this might promote students’ understanding of 

mathematical concepts. Besides, teachers should provide their students with the 
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opportunity to generate mathematical examples themselves. Thus, teachers need to 

encourage their students to be more active in classroom practices. Besides, students 

should be introduced to a wide range of examples when learning mathematical 

concepts and these examples should support not only students’ procedural 

understanding but also their conceptual understanding of mathematics. Besides, I 

believe that the examples used by the teachers should be the outcome of their 

reflective process of choices. However, when I was a middle or secondary school 

student, I became experienced with examples that reinforced mainly mathematical 

procedures or operations and the teachers did not appear to employ deliberate 

considerations for choosing well-thought examples. The contradiction between what 

I experienced and what I think about example generation or selection might have 

provided me with the impetus for conducting this study. 
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CHAPTER IV 

 

OVERALL CHARACTERISTICS OF TEACHERS’ RATIONAL NUMBER 

EXAMPLES 

 

The purpose of this study was to explore middle school mathematics 

teachers’ treatment of rational number examples in their seventh grade classrooms. 

In this chapter, the focus was on describing overall characteristics of teachers’ 

rational number examples. Through this focus, the following research question and 

sub-questions were formulated: 

1. What are the overall characteristics of examples used by middle school 

mathematics teachers in the teaching of rational numbers in their seventh grade 

classrooms? 

a. What are the ideas emphasized in the rational number examples used 

by the teachers? 

b. To what extend do teachers use specific examples in the teaching of 

rational numbers? 

c. To what extend do teachers use non-examples and counter-examples 

in the teaching of rational numbers? 

d. To what extend do teachers use pre-planned and spontaneous 

examples in the teaching of rational numbers? 

e. Which sources do teachers use while choosing pre-planned examples 

in the teaching of rational numbers? 

More specifically, this chapter included two sections as types of examples 

and sources of examples. Types of examples were reported under three sub-sections 

as specific examples, non-examples and counter examples. Next, sources of 

examples were reported under two subsections as spontaneous examples and pre-

planned examples.  

Mathematical examples that were generated or used by the teachers were 

checked to determine whether they satisfied their intended requirements to be an 
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example. Mostly, the correctness of examples were investigated by examining 

whether they satisfied the definition of the concept being illustrated (i.e., concept 

definition). That is, the examples used by the teachers were investigated to see 

whether they match with the agreed upon mathematical definition or whether it is the 

definition held merely by the teachers. In all the observations, I identified 704 

mathematically correct examples out of 714 examples that were used by the teachers 

in 60 hours of classroom observation. It is important to note that the examples 

reported in this study refer only to the examples generated by the teachers, not by the 

students. Besides, all of the observed classrooms used the same mathematics 

textbook prepared by Aydın and Beşer (2013a). 

4. 1. Types of Mathematical Examples  

In this study, the examination of mathematically correct examples showed 

that they played different roles in the teaching of rational number concepts. Thus, the 

examples used by the middle school teachers were categorized as specific examples, 

non-examples and counter-examples. In the following section, the specific examples 

provided by the four middle school mathematics teachers and by the followed 

mathematics textbook were described in detail.  It is important to note that in the 

following sections the word ‘textbook’ shortly refers to ‘the followed mathematics 

textbook.’ 

4.1.1. Specific examples 

In this study, almost all mathematical examples generated by teachers were 

classified as specific examples. Almost all worked-out examples and exercise 

examples included in the explanatory part of the student textbook were also 

considered to be specific examples. An example that included both the task and its 

solution was considered to be a worked-out example while an example that did not 

include its solution was considered to be an exercise example. The number of 

specific examples included in the textbook and the number of specific examples used 

by four middle school mathematics teachers with respect to the learning objectives 

described by the middle school mathematics curriculum were presented in Table 4.1.  
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Table 4.1. Number of specific examples provided by the student textbook and the 

teachers 

Learning Objectives 

Number of specific examples provided by 

Student 

Textbook 
Teacher A Teacher B Teacher C Teacher D 

Explain and locate rational 

numbers on a number line 
18 29 30 82 30 

Express rational numbers in 

different forms 
20 25 33 3 22 

Compare and order rational 

numbers 
22 36 22 2 14 

Perform addition and subtraction 

operations with rational numbers 
41 37 46 31 32 

Perform multiplication and 

division operations with rational 

numbers 

62 54 60 4 32 

Solve multi-step operations with 

rational numbers 
15 23 13 6 13 

Pose and solve rational number 

problems  
9 6 6 4 9 

Total 187 210 210 132 152 

Note: Worked-out examples and exercise examples that were included in the 

explanatory part of the textbook and that might be offered by the teachers within the 

context of learning rational number concepts were counted as textbook examples. 

The number of examples used by the teachers to teach rational number 

concepts were quite different from each other and from the number of examples 

suggested by the mathematics textbook. Overall, the number of examples used by 

Teacher A and Teacher B was more than the number of examples included in the 

mathematics textbook. On the contrary, the number of examples used by Teacher C 

and Teacher D were less than that of suggested by the textbook.  

More specifically, to ‘explain and locate rational numbers on a number line’ 

Teacher C used a great number of examples when compared to the number of 
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examples included in the textbook for this learning objective. Similarly, Teacher A, 

Teacher B and Teacher D used more number of examples for explaining and locating 

rational numbers on a number line when compared to the textbook. For teaching how 

to express rational numbers in different forms, Teacher A, Teacher B and Teaching 

D used more than number of examples while Teacher C used very few examples than 

the ones included in the textbook. For teaching how to compare and order rational 

numbers, only Teacher A used more number of examples than the ones included in 

the textbook for teaching this objective. Besides, while Teacher B used the same 

number of examples, Teacher D used less number of examples and Teacher C used 

very few examples in comparison with textbook examples. For teaching how to add 

and subtract rational numbers, Teacher B used more number of examples and the 

other teachers used slightly less number of examples than the ones included in the 

textbook. The number of examples used by Teacher A and Teacher B to teach 

multiplication and division of rational numbers was slightly less than the number of 

textbook examples. Moreover, the number of examples provided by Teacher D for 

teaching this objective was slightly more than half of the number of examples 

included in the textbook for teaching this concept. However, the number of examples 

used by Teacher C for teaching this objective was remarkably less than that of 

textbook examples. When teaching how to solve multi-step operations with rational 

numbers, Teacher A used more number of examples while the other teachers used 

less number of examples than the ones included in the textbook for teaching this 

objective. Finally, while Teacher D used the same number of problem posing and 

solving examples, the other teachers used less number of problem posing and solving 

examples when compared to the ones included in the textbook.   

More generally, the middle school mathematics textbook followed by the 

participating classrooms abounded in examples related with rational number 

operations and procedures while it included fewer problem posing and solving 

examples. Similar to this, middle school mathematics teachers gave more emphasis 

on rational number operations and procedures and thus they used a great number of 

examples for teaching rational number operations and procedures. In contrast, 
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teachers provided fewer examples for teaching how to pose and solve real life 

problems regarding rational numbers.  

In the following sections, the specific examples included in the middle school 

mathematics curriculum and in the textbook and those that were used by the middle 

school mathematics teachers to teach each learning objective were described in 

detail.  

4.1.1.1. Examples used for explaining and locating rational numbers on a 

number line 

Middle school mathematics curriculum emphasized that in order for teachers 

to teach this objective they need to define rational numbers by using the symbol Q 

and have students examine the relationship between integers, fractions, and rational 

numbers. Besides, it was emphasized that students need to realize where rational 

numbers are used in daily life situations. Finally, the curriculum suggested an 

activity for locating rational numbers on a number line. In this activity, teachers were 

suggested to emphasize negative rational numbers by recalling the absolute value 

concept and by finding the symmetries of positive rational numbers through a 

symmetry mirror that is placed on the origin of the number line.  

In the mathematics textbook followed by the classrooms, the examples 

related with this objective were presented under the following ideas: finding 

equivalent classes of a fraction, locating equivalent fractions on a number line, 

locating rational numbers on a number line, determining the positivity/negativity of 

rational numbers, and finding the rational value of a point located on a number line. 

Some illustrative examples included in the textbook for the aforementioned ideas 

were presented in Table 4.2. It is important to note that only the examples with 

different mathematical structure were used as illustrative examples. Therefore, the 

number of examples provided for each idea were also presented.   
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Table 4.2. Examples included in the textbook for explaining and locating rational 

numbers on a number line 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Finding equivalent 

classes of a fraction 

7 14 21 28 35 42
...

20 40 60 80 100 120

1 2 3 4
...

2 4 6 8

      

        

  4 

Locating equivalent 

fractions on a number 

line 

 

1 

Locating rational 

numbers on a number 

line 

1 7 1 2 5
; ; 2

2 3 4 3 2
       8 

Determining the 

positivity/negativity 

of rational numbers  

2 4 4 14 26 26
; ; ;

5 7 7 5 5 5

   
         

 
  4 

Finding the rational 

value of a point 

located on a number 

line 

 1 

 

 The textbook included 18 examples for explaining and locating rational 

numbers on a number line. The textbook initially introduced 
7

20
 as an example for 

the concept of fraction. Then, fractions that were equivalent to this fraction were 

determined and 
7 14 21 28

, , ,
20 20 60 80

A
 

   
 

 was described as the set of fractions that 

were equivalent to this fraction. Later, the equivalent fractions were located on three 

distinct number lines that were one under the other. The number line representation 

showed that the equivalent fractions located on the same point and thus 
7

20
 was 

named as the identifier of the set. As a result, it was stated that each identifier of a set 

consisting of equivalent fractions was a rational number. Finally, rational numbers 
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were defined as numbers that can be written in the form of
a

b
 , where a and b are 

integers, 0b   and the set of rational numbers was denoted by Q. 

 After defining rational numbers, the textbook gave examples about locating 

rational numbers on a number line. The selected rational numbers included several 

variations in the following dimensions: proper, improper, mixed, positive or 

negative. Next, to examine positivity/negativity, a rational number with a positive 

numerator and a positive denominator, a rational number with a positive numerator 

and a negative denominator, a rational number with a negative numerator and a 

positive denominator and a rational number with a negative numerator and a negative 

denominator were presented. Finally, the textbook ended up with a worked example 

asking students to find the rational value of a point located on a number line between 

0 and 1.   

The examples used by Teacher A for explaining and locating rational 

numbers on a number line were classified as follows: identifying whether a given 

number is rational, locating rational numbers on a number line, finding the rational 

value of a point located on a number line and examining the location of a minus sign 

in a negative rational number. Some illustrative examples used by Teacher A for 

these ideas were presented in Table 4.3. Note that only the examples with different 

mathematical structure were used as illustrative examples. Therefore, the number of 

examples provided for each idea were also presented.  
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Table 4.3. Examples used by Teacher A for explaining and locating rational numbers 

on a number line 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Identifying whether a 

given number is rational 

2 1
0 ; ; 125 ; 0.12 ; ;

3 0
              17 

Locating rational 

numbers on a number 

line 

3 3 2 12
; ; ;

5 4 5 5
      6 

Finding the rational 

value of a point located 

on a number line 

 

 

2 

Examining the location 

of a minus sign in a 

negative rational number 

1 1 1

2 2 2


  


  4 

 

Teacher A used 29 examples for explaining and locating rational numbers on 

a number line. He started teaching for this objective by having students recall the 

number sets learned before. That is, he defined counting numbers, natural numbers 

and integers by using the listing method in the following way:  0,1,2,3,..., ,N      

 1,2,3,..., ,C    and  , 0, 1, 2,...,       at the beginning of the 

lesson. Although the rational numbers were defined by the help of equivalent 

fractions and by locating equivalent fractions on a number line in the textbook, 

Teacher A did not emphasize these ideas. Instead, he directly defined rational 

numbers after having students remember counting numbers, natural numbers and 

integers. He symbolically defined rational numbers as , , and 0,
a

a b b
b

 
      
 

 

and he stated that any number that can be written in the form 
a

b
, where b is not equal 
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to zero is called a rational number. After this definition, Teacher A wrote several 

numbers on the board and asked the students to find out which one of them were 

rational numbers. It is important to note that the teacher selected two numbers from 

natural number set, two numbers from integer set and finally one number from 

decimal number set. By this way, he emphasized the relationship among rational 

numbers, integers, decimals and natural numbers. Finally, he drew a Venn diagram 

on the board to show the relationship between counting numbers, natural numbers, 

integers and rational numbers as shown in Figure 4.1. 

 

Figure 4.1. A Venn diagram used by Teacher A 

 

Before teaching how to locate rational numbers on a number line, Teacher A 

had students remember proper fractions, improper fractions and mixed numbers. 

Then, he selected a set of rational numbers in the following forms to locate on a 

number line: a positive proper number, a negative proper number, a positive mixed 

number and a positive improper number respectively. The students were already 

familiar with locating the first rational number on the number line since they learnt 

this in their previous years in the topic of fractions. Next, the teacher selected a 

negative rational number whose numerator was less than its denominator. The third 

example selected was between 3 and 4 and was a mixed number. Lastly, before 

locating a positive improper number on the number line, the teacher converted it into 

a mixed number to determine the whole and fractional parts. The form of rational 

number examples selected by the teacher were similar to those included in the 

textbook. That is, both Teacher A and the textbook presented examples in proper, 

improper, mixed, and negative forms. 
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 After locating several rational numbers on a number line, Teacher A tried to 

draw students’ attention to the idea that the position of minus sign does not change 

the value of a rational number. To do so, he wrote 
1 1 1

2 2 2


  


on the board and 

stressed that
1 1 1

, and
2 2 2


    


were all the same regardless of the position of minus 

sign. However, the teacher did not provide examples for inspecting the 

negativity/positivity of rational numbers although there were examples of this kind in 

the textbook. Besides, the teacher did not provide examples for finding the rational 

value of a point located on a number line during the teaching of this objective. 

However, after teaching the objective ‘comparing and ordering rational numbers’ he 

provided two exercise examples of this kind from an auxiliary book. 

The examples used by Teacher B for explaining and locating rational 

numbers on a number line were classified as follows: identifying whether a given 

number is rational, finding equivalent classes of a fraction, locating equivalent 

fractions on a number line, locating rational numbers on a number line and finding 

the rational value of a point located on a number line. Some illustrative examples 

used by Teacher B for teaching these ideas were presented in Table 4.4. Note that 

only the examples with different mathematical structure were used as illustrative 

examples. Therefore, the number of examples provided for each idea were also 

presented.   
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Table 4.4. Examples used by Teacher B for explaining and locating rational numbers 

on a number line 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Identifying whether a 

given number is 

rational 

1 103 5
; ; ; 5

2 85 8
         

6 

Finding equivalent 

classes of a fraction 

1 2 3 4 5 10 15 20
... ...

2 4 6 8 2 4 6 8


              

4 

Locating equivalent 

fractions on a number 

line 

 

1 

Locating rational 

numbers on a number 

line 

435 1 3 2
; 2 ; 1

500 5 5 3
     11 

Finding the rational 

value of a point 

located on a number 

line 

  

   8 

 

  Teacher B used 30 examples for explaining and locating rational numbers on 

a number line. He started the lesson by briefly touching upon previously learnt 

number sets. He selected several numbers to exemplify counting numbers and added 

0 to these numbers to define natural numbers. Next, he selected several negative 

numbers to recall integers. Similar to Teacher A, Teacher B used a Venn diagram 

when providing examples for counting numbers, natural numbers and integers. After 

mentioning about these number sets, the teacher asked students to ponder whether 

these number sets fill up the number line. During this time, the teacher drew a 
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number line on the board and selected a point between 1 and 2. Then, the teacher 

wrote 
1

1
2

 as a corresponding value of this point and asked the students to find out to 

which number set it belonged. By this way, the teacher had students remember early 

fraction ideas and feel the need for a new number system. The teacher introduced 

rational number set as a new number system and denoted it with the symbol Q. Then 

he switched back to the Venn diagram and selected several rational number examples 

as shown in Figure 4.2.  

 

Figure 4.2. A Venn diagram used by Teacher B 

 

The rational numbers selected by Teacher B included some variations such as 

being a proper number, improper number, mixed number, positive number or 

negative number. However, the selections constrained rational numbers to the 

numbers in the form of 
a

b
 since Teacher B did not select any natural number, 

counting number or an integer to exemplify rational numbers.  

After explaining rational numbers by the help of different number sets, 

Teacher B taught students how to locate different rational numbers on a number line. 

He selected a set of rational numbers in the following forms: a positive mixed 

number, a negative mixed number, a positive proper number, a positive mixed 

number and a negative proper number respectively. The sequence of examples used 

for locating rational numbers on a number line was different from textbook examples 

since Teacher B neither started locating by an already known proper fraction or nor 

provided examples for improper fractions. 
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In addition to defining rational number set by recalling counting numbers, 

natural numbers and integers, Teacher B also used the definition that was included in 

the textbook. That is, he located the fractions 
1 2 4

, , and
2 4 8

   on three different number 

lines that were one under the other and stressed that these fractions corresponded to 

the same point and thus they were equivalent to each other. Then, he expressed that 

these equivalent fractions form the set 
1 2 3 4 5

, , , , ,...
2 4 6 8 10

A
 

  
 

 and added that the 

simplest fraction of this set is also the identifier and the rational number denoted by 

this set. Teacher B also selected a negative proper number and a negative improper 

number to form sets of equivalent fractions.  

To emphasize that the number of rational numbers included in rational 

number set is infinite, the teacher asked students to think of the number of rational 

numbers between 0 and -1. In addition, he generated 
435

500
  as an example for a 

rational number which is fairly close to zero. It is important to note that the teacher 

selected large numbers for the numerator and the denominator to help students grasp 

that there are also too many rational numbers between 0 and 1. After this, the teacher 

wrote the definition of a rational number in the following way: “the simplest fraction 

of a set of equivalent fractions is a rational number denoted by this set”. Besides, the 

teacher denoted the rational number set with the symbol Q. However, he ignored 

defining rational numbers by using the symbolic form , , and 0, .
a

a b b
b

 
      
 

 

The teacher ended up explaining rational numbers with the mathematical statement 

 0     but did not give any specific example for determining the 

positivity/negativity of rational numbers. 

To teach how to locate rational numbers on a number line, Teacher B selected 

rational numbers in different forms. Although the textbook initially provided a 

proper fraction as a start-up example to this concept, Teacher B preferred to use a 

negative rational number between -1 and 0. After this, the teacher used several more 

examples to teach students how to locate a positive mixed number, a positive proper 
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number and a negative mixed number. Nevertheless, Teacher B did not provide any 

example for locating negative improper numbers on a number line despite there were 

examples of this kind in the textbook.   

In the textbook, one example was provided to illustrate finding the rational 

value of a point located on a number line. Although Teacher B did not provide any 

example while teaching this concept, he used several exercise examples of this kind 

after teaching how to express rational numbers in different forms. The rational 

numbers that corresponded to each of the specified points on the number lines were 

5 4 6 5 7 1 8 1
, , , , , ,1 , and 2 .

2 7 7 3 4 10 9 5
       Here, the first example was between -3 and -2, the 

second example was between -1 and 0, the third example was between 0 and 1, the 

fourth, the fifth, the sixth and the seventh examples were between 1 and 2. Finally, 

the last example was between 2 and 3.  

The examples used by Teacher C for explaining and locating rational 

numbers on a number line were categorized as follows: identifying whether a given 

number is a rational number, an integer or a natural number, examining the location 

of a minus sign in a negative rational number, determining the positivity/negativity 

of rational numbers, locating rational numbers on a number line, finding equivalent 

classes of a fraction, simplifying fractions and converting among mixed numbers and 

improper numbers. Some illustrative examples used by Teacher C for teaching these 

ideas were presented in Table 4.5. Note that only the examples with different 

mathematical structure were used as illustrative examples. Therefore, the number of 

examples provided for each idea were also presented.   
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Table 4.5. Examples used by Teacher C for explaining and locating rational numbers 

on a number line 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Identifying 

whether a given 

number is a 

rational number, 

an integer or a 

natural number 

1 8 1 3 99
8 ; 5 ; ; ; 0 ; ; ;

5 4 2 7 83

10 7 1 8 1
; 19 ; ; 8 ; ; 1 ; ;

2 0 5 4 2

1 10 1
0 ; 0.35 ; ; 1 ; ; 8 ; 5 ;

2 2 5

8 1 3
; ; 0 ; 0.35 ; ;

4 2 7

             

             

              

         
10

;1
2

    

  40 

Examining the 

location of a 

minus sign in a 

negative rational 

number 

3 3 3

4 4 4


  


 2 

Determining the 

positivity/ 

negativity of 

rational numbers 

3 3
,

4 5 x

 
  

 
 2 

Finding equivalent 

classes of a 

fraction 

1 2 3 4 5 6

101 202 303 404 505 606
       6 

Locating rational 

numbers on a 

number line 

1 3 8 2 3
; ; ; 1 ;

8 5 5 7 5
       15 

Simplifying 

fractions  

80 4 400 5
;

140 7 160 2
     4 

Converting among 

mixed numbers 

and improper 

numbers 

1 5 1 29 16 12 2 25 1
2 ; ; 8; 2 ; 4

2 2 4 4 2 5 5 6 6
              13 

 

Teacher C used 82 examples for explaining and locating rational numbers on 

a number line. He started teaching this objective by the defining rational numbers as 

numbers that can be written in the form of 
a

b
, where a and b are integers, 0b  . The 

teacher emphasized that the denominator of a rational number cannot be zero by 
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giving 
7

0
 as a non-example to rational numbers. The teacher continued with the 

mathematical statement  0    without providing any specific example 

for determining the negativity/positivity of a rational number. However, he tried to 

draw students’ attention to the neutrality of zero as a rational number. Next, he 

mentioned about counting numbers, natural numbers and integers and stressed that 

rational numbers are ‘larger’ than integers, integers are ‘larger’ than natural numbers, 

and natural numbers are ‘larger’ than counting numbers. Besides, he wrote a 

mathematical statement on the board as a remark to the relationship among counting 

numbers, natural numbers, integers and rational numbers. As it can be seen in Figure 

4.3, Teacher C used the symbol  to indicate the relationship among these number 

sets.  

 

 Figure 4.3. A subset notation used by Teacher C 

 

Teacher C provided exhaustive number of examples to help students identify 

whether the given number is an element of natural number set, integer set or rational 

number set or an element of all these three sets. After introducing a negative integer 

as a rational number example, Teacher C emphasized that changing position of 

minus sign does not alter the negativity and the value of a rational number. He wrote 

the equality 
3 3 3

4 4 4


  


 on the blackboard as an example for this idea. Similar to 

the textbook, Teacher C used an example that had a minus sign both in the numerator 

and the denominator (i.e.,
3

4




) to help students understand that it is an element of

 . Although the teacher had students remember the concept of equivalent 

fractions by providing several examples, he did not use any of these examples as an 

initial step for introducing the mathematical term ‘identifier of a set’ and for defining 

rational number set as done in the textbook.  
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After providing examples for equivalent fractions, Teacher C selected several 

rational numbers in the following form to locate on a number line: a positive proper 

number, a negative mixed number, a positive mixed number and a negative improper 

number. The sequence of examples used by the teacher was different from the 

sequence of textbook examples since textbook examples took the form of a positive 

proper number, a negative proper number, a positive mixed number and a negative 

improper number respectively. This difference stemmed in part from the fact that the 

sequence generated by the teacher did not include a negative proper number 

example. Finally, although the textbook included an example for finding the rational 

value of a point located on a number line, Teacher C did not provide any example of 

this kind to this students.  

Apart from the examples provided during the teaching of previously 

mentioned ideas, Teacher C used several exercise examples for simplifying fractions 

and converting among mixed numbers and improper numbers. More specifically, the 

selected fractions included large numbers in their numerators and denominators and 

these fractions were either in proper or improper number form. Similarly, the 

examples selected by Teacher C for conversion included both positive and negative 

improper numbers. 

Teacher D’s selection of examples for explaining and locating rational 

numbers on a number line fell under the following categories: feeling the need for 

positive and negative rational numbers, identifying whether a given number is a 

rational number, examining the position of the minus sign, determining the 

positivity/negativity of rational numbers, locating rational numbers on a number line 

and finding the value of a rational number marked on a number line. The illustrative 

examples and the total number of examples used for explaining and locating rational 

numbers on a number line were presented in Table 4.6. 

  



133 

 

Table 4.6. Examples used by Teacher D for explaining and locating rational numbers 

on a number line  

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Feeling the need for 

positive and 

negative rational 

numbers 

1

4
 of a cake;  

2

3
 meters below sea level;  

2

3
 degrees Celsius 

below zero 

3 

Identifying whether 

a given number is a 

rational number 

1 2 1 3
2 ; 1 ; ; 0 ; ; 0.12 ;

4 3 4 0
                 14 

Examining the 

location of a minus 

sign in a negative 

rational number 

1 1 1

2 2 2


  


  1 

Determining the 

positivity/ 

negativity of 

rational numbers 

1 1 1
; ;

2 2 2

   
    

 
  3 

Locating rational 

numbers on a 

number line 

5 5 4
;

6 6 5
     3 

Finding the rational 

value of a point 

located on a 

number line 

 

 

6 

 

Teacher D used 30 examples for explaining and locating rational numbers on 

a number line. She started the lesson by having students feel the need for positive 

and negative rational numbers through real-life situations. She first introduced a 

fraction part model, shaded one-fourth of the fraction pie, emphasized that each piece 
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is equal to each other and represented the shaded region with the fraction
1

4
 . In 

addition, she provided temperature and altitude below sea level examples that 

modelled negative rational numbers. More specifically, she asked students how to 

express 
2

3
 degrees below 0 on a Celsius temperature scale. Similarly, the teacher 

asked students to express the altitude of a swimmer that is 
2

3
 meters below the sea 

level. Next, she indicated that integers are signed numbers and fractions may also 

have signs. At this point, she introduced the term ‘rational numbers’ and stated that 

rational numbers are used to express both negative and positive fractions. After that, 

she recalled natural numbers and integers by using a Venn diagram as done by the 

previous three teachers. This diagram is presented in Figure 4.4.  

 

Figure 4.4. A Venn diagram used by Teacher D 

 

Teacher D indicated that the rational number set forms the superset of integer and 

natural number sets. The teacher provided several examples for rational numbers. 

These rational numbers were in the following forms: a positive proper number, a 

positive decimal number, the neutral number zero, a negative proper number, a 

negative mixed number and a negative integer. Besides, one number was an element 

of all three sets, one number was an element of integer and rational number sets and 

the rest were only elements of the rational number set. After providing examples for 

rational numbers, the teacher defined rational numbers as numbers that can be 

written in the form of
a

b
 , where a and b are integers, 0b   and denoted the set of 

rational numbers by Q. To emphasize that the denominator of a rational number 
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cannot be equal to zero, the teacher provided 
3

0
 and 

0

3
 successively and pointed out 

that the former rational number is undefined while the latter is equal to 0. Next, to 

examine the positivity/negativity of rational numbers, the following forms of 

examples were used by Teacher D: a negative numerator over a positive 

denominator, a negative numerator over a negative denominator, and a positive 

numerator over a negative denominator. Different from textbook examples, these 

examples had absolute values that were equal to each other. By this way, the teacher 

hinted at the idea that the position of the minus sign does not alter the value of the 

rational number. Just after introducing these examples, the teacher wrote on the 

blackboard the equality
1 1 1

2 2 2


   


 and explicitly stated that these three different 

notations of a rational number are equal to each other. Finally, Teacher D ended up 

explaining rational numbers by introducing the symbolic expression

 0 .       

 To teach how to locate rational numbers on a number line, Teacher D used a 

sequence of rational numbers in the following forms: a positive proper number, a 

negative proper number and a negative mixed number respectively. Before locating 

the positive proper number on the number line, the teacher stated that the students 

already know how to locate fractions on a number line. More specifically, she 

divided the numerator of the positive proper number by its denominator, (i.e., 5 6 ), 

and showed that the positive proper number is between 0 and 1 and concluded that 

all proper fractions are located between 0 and 1 on a number line. To have students 

notice the effect of minus sign on the position of a rational number, Teacher D 

selected 
5

6
  as the next example and indicated that 

5

6
  is located between 0 and -1. 

By locating 
5

6
 and 

5

6
  on a number line successively, the teacher showed that they 

are equally distant from 0 on the number line. Besides, she explained that negative 

rational numbers are located on the left hand side of 0 while positive rational 

numbers are located on the right hand side. The last example used by the teacher for 

locating rational numbers was a negative mixed number. While locating the mixed 
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number on a number line, the teacher informed students about a common error they 

tended to make and warned students to count subintervals instead of tick marks while 

finding the location of a rational number on a number line. The examples used by the 

teacher to teach locating were similar to those that were included in the textbook. As 

mentioned before, the textbook examples included several variations in the following 

dimensions: proper, improper, mixed, positive or negative. While Teacher D 

illustrated how to locate a positive proper number, a negative proper number and a 

negative mixed number respectively, she did not do this for the following number 

forms: a positive mixed number, a positive improper number or a negative improper 

number. 

 In addition to locating rational numbers on a number line, Teacher D 

provided several examples for finding the rational value of points that are marked on 

a number line. To be more precise, the teacher marked points on a number line 

between -2 and -1, -1 and 0, 0 and 1 and finally between 1 and 2 and asked students 

to find out the rational numbers corresponding to these points. By this way, the 

teacher selected rational numbers that are in different integer intervals. In addition, 

each integer interval included different number of subintervals. Thus, the 

denominator of each rational number was different from each other. 

4.1.1.2. Examples used for expressing rational numbers in different forms 

In the middle school mathematics curriculum, teachers are suggested to teach 

this objective by focusing on two main ideas. First, teachers are expected to teach 

how to express a rational number as an integer, as a natural number, as a terminating 

decimal number and lastly as a repeating decimal number. Second, they are expected 

to teach how to convert a repeating decimal number into a rational number.  

In the mathematics textbook followed by the classrooms, the examples 

related with this objective included the following ideas: expressing integers as 

rational numbers, expressing a rational number as an integer/repeating 

decimal/terminating decimal, expressing terminating decimals as rational numbers 

and converting repeating decimals into rational numbers. The illustrative examples 

and the total number of examples for each category are presented in Table 4.7. 
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Table 4.7. Examples included in the textbook for expressing rational numbers in 

different forms 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Expressing integers 

as rational numbers 

30 105 15
30 ; 105 ; 15

1 1 1

 
       5 

Expressing a 

rational number as 

an integer/repeating 

decimal/terminating 

decimal 

8 7 1 7 7
4; 0.047619; 0.875; 3.5

2 3 21 8 2
            5 

Expressing 

terminating 

decimals as rational 

numbers 

355 8922
35.5 ;

10 100


      5 

Converting 

repeating decimals 

into rational 

numbers 

69 185 867
7.6 ; 2.05 ; 0.875

9 90 990
       5 

 

The textbook included 20 examples for expressing rational numbers in 

different forms. The textbook initially illustrated that integers can be written in the 

form of rational numbers. Examples of this kind showed that each integer, either 

positive or negative, can be written in the form of  
a

b
 where b is equal to 1. 

Moreover, the textbook included examples for expressing a rational number as an 

integer, repeating decimal or terminating decimal. For instance, the equality 
8

4
2
  

was included in the textbook for the purpose of expressing a rational number as an 

integer or a natural number and similarly 
7 7

3.5 and 0.875
2 8
     exemplified that 

rational numbers can be written in the form of terminating decimals. Lastly, the 

equalities such as
7 1

2.3 and 0.047619
3 21
      illustrated that rational numbers 

can be written in the form of repeating decimals. Besides, the examples such as 
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355 8922
35.5 and 89.22

10 100


     typified that terminating decimals can be written as 

rational numbers in the form of .
a

b
  

As another category, examples such as 

69 185 875
7.6 , 2.05 and 0.875

9 90 990
      were included in the textbook so as to explain 

the method for converting a repeating decimal into a rational number. The method 

included in the textbook for converting 7.6  into its rational number is provided in 

Figure 4.5.  

 

Figure 4.5. Textbook method for converting 7.6  into its rational number (Aydın & 

Beşer, 2013a, p. 49) 

 

As it can be seen, in the first example (i.e., 7.6 ) the repeating pattern begins 

immediately after the decimal point. In the second and third example, (i.e., 

185 875
2.05 and 0.875

90 990
     respectively) it begins one digit after the decimal 

point. However, while only one digit repeats in the second example, two digits repeat 

in the last example.  

The examples used by Teacher A for expressing rational numbers in different 

forms typified the following mathematical ideas: expressing a rational number as a 

repeating decimal and converting repeating decimals into rational numbers. The 

illustrative examples and the total number of examples for these two ideas are 

presented in Table 4.8. 
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Table 4.8. Examples used by Teacher A for expressing rational numbers in different 

forms 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Expressing a 

rational number as 

a repeating decimal 

10 1 2 1 2
3.3; ... 0.12

3 10 100 1000 10000
         2 

Converting 

repeating decimals 

into rational 

numbers 

2 26 7525 7 268 26
0.2 ; 5.26 5 ; 7.525 ; 2.68 ;

9 99 999 90

52714 527 63284 632
52.714 ; 6.3284

990 9900

 
       

 
  

  19 

Expressing 

terminating 

decimals as rational 

numbers 

2 34 546 54
0.2 ; 0.34 ; 3.546 3 ; 2.54 2

10 100 1000 100
          4 

 

 

Teacher A used 25 examples for expressing rational numbers in different 

forms. Although there were examples in the textbook for expressing integers as 

rational numbers and for expressing rational numbers as integers and as terminating 

decimals, the teacher did not provide any example of these kinds during the teaching 

of the current objective. However, he used several examples for expressing integers 

as a rational number while teaching the objective ‘explain and locate rational 

numbers on a number line’. More clearly, while explaining rational numbers, he 

wrote on the board several equalities such as
2 0

2 and 0
1 1

     to show that an integer 

or a natural number can be written as a rational number.  

Teacher A provided one example for teaching how to express a rational 

number as a repeating decimal number. To teach that 
10

3
 is equal to 3.3 , the teacher 

performed a long division algorithm on the board. By the help of this initial example, 

the teacher explained that each repeating decimal can be expressed as a rational 

number.  

Teacher A provided a large number of examples for converting repeating 

decimals into a rational number. Meanwhile, he used two different procedures to 
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teach conversion of a repeating decimal into a rational number. The teacher used 

these two different procedures as a shortcut to the method included in the textbook. 

The textbook method provided the underlying logic of the conversion. However, 

Teacher A did not present this method to the students before teaching shortcuts. The 

teacher used the first procedure for the decimals whose all digits after the decimal 

point repeated. According to this procedure, repeating digits were written over the 

main fraction bar as a numerator while 9’s as many as the number of repeating digits 

were written under the main fraction bar as a denominator.  For instance, 
2

0.2
9

    

was provided by the teacher to show the conversion of repeating decimals which 

included only one repeating digit after the decimal point. Similarly, he used 

26
5

99
   as an example for converting a decimal with two repeating digits after 

the decimal point. Moreover, some of the examples provided by the teacher included 

both non-repeating and repeating digits after the decimal point. To convert these type 

of repeating decimals into a rational number, Teacher A introduced another 

procedure for their students. This procedure emphasized adding 9 to the denominator 

of the rational number as many as the number of repeating digits and adding 0 to the 

denominator of the rational number as many as the number of non-repeating digits 

following the decimal point. More specifically, the teacher provided 
242

2.68 ,
90

 

52714 527
,

990


 

63284 63
6.3284

9990


  and 

375 37
3.75

90


  as examples for 

teaching this procedure. As it can be seen, the first and the last example includes one 

repeating and one non-repeating digit after the decimal point, the second example 

includes two repeating digits and one non-repeating digit, and the third example 

includes three repeating digits and one non-repeating digit. When these examples are 

compared with those of the textbook, it can be seen that Teacher A used a wider 

variety and more examples to teach conversion of repeating decimals into a rational 

number.  

Finally, Teacher A used several examples for expressing terminating 

decimals as rational numbers. The teacher used both positive and negative 
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terminating decimals for expressing them as rational numbers. Besides, these 

terminating decimals included one, two or three digits after the decimal point.  

The examples used by Teacher B to teach how to express rational numbers in 

different forms represented the following ideas: expressing integers as rational 

numbers, expressing terminating decimals as rational numbers, expressing rational 

numbers as repeating decimals and converting repeating decimals into rational 

numbers. The illustrative examples and the total number of examples for each of 

these ideas are presented in Table 4.9. 

 

Table 4.9. Examples used by Teacher B for expressing rational numbers in different 

forms 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Expressing 

integers as 

rational numbers 

2 8
2 ; 8

1 1


     3 

Expressing 

terminating 

decimals as 

rational numbers 

48 173 1
4.8 ; 1.73 ; 0.04

10 100 250
        4 

Expressing 

rational numbers 

as repeating 

decimals 

5
1.6

3
   2 

Converting 

repeating 

decimals into 

rational numbers 

16 1 215 2 324 32 5104 5
1.6 ; 2.15 ; 3.24 ; 5.104 ;

9 99 90 999

1045 10 167 16 37145 31
1.045 ; 0.167 ; 3.1745 ;

990 900 9990

7419 74
0.7419

9900

   
      

  
     




 24 

 

Teacher B used 33 examples for teaching how to express rational numbers in 

different forms. The teacher initially provided examples such as 
2 8

2 and 8
1 1


     

to illustrate that each integer, either positive or negative, can be expressed in the 
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form of 
a

b
 where b is equal to 1. Next, he provided examples such as

48 173 1
4.8 1.73 0.04

10 100 250
       to illustrate terminating decimals in the form of 

rational numbers. 

Similar to Teacher A, Teacher B performed a long division algorithm on the 

board to show that 
5

1.666... 1.6
3
   and thus the teacher illustrated how to convert a 

rational number into a repeating decimal.  

Although the teacher used few examples for converting a rational number into 

a repeating decimal, he used many examples for converting a repeating decimal into 

a rational number. Before teaching how to convert a repeating decimal into a rational 

number, the teacher introduced the textbook method for conversion that is presented 

in Figure 4.5 and added that this method for conversion is long and time consuming. 

Hence, he provided a shortcut procedure for converting all types of repeating 

decimals including decimals with only repeating digits or those with both repeating 

and non-repeating digits after the decimal point. Teacher B explained the shortcut 

procedure for converting repeating decimals into a rational number by means of the 

following steps: (1) write down the repeating decimal without its decimal point; (2) 

subtract non-repeating part from Step 1; (3) divide the number obtained from Step 2 

by the number with 9’s and 0’s: for every repeating digit write down a 9 and for 

every non-repeating digit write down a 0 after 9’s.  

The variety of examples used by the teacher to teach this procedure are 

presented in Table 4.10. 
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Table 4.10. A variety of repeating decimals used by Teacher B for conversion 

Type of 

repeating 

decimal 

The number in 

the denominator 
Examples used by the teacher 

a.b  9 1.6, 7.6, 0.7, 1.3, 2.7     

a.bc  99 2.15, 15.91, 1.29   

a.bc  90 3.24,   

a.bcd  999 5.104, 10.394, 7.014    

a.bcd  990 1.045, 0.875, 3.207, 4.114, 2.581, 4.291, 5.279        

a.bcd   900 0.167, 0.764   

 a.bcde   9990 3.1745   

a.bcde  9900 0.7419  

 

As seen in Table 4.10, Teacher B used five examples for converting repeating 

decimals with only one repeating digit. For decimals with two repeating digits, he 

used three examples. For those with one repeating digit and one non-repeating digit, 

the teacher used two examples. In addition to providing repeating decimals with one 

or two digits after the decimal point, the teacher also presented repeating decimals 

with three or four digits after the decimal point. The teacher used three examples for 

illustrating the conversion of decimals with three repeating digits. The teacher gave 

more emphasis on the conversion of decimals with two repeating digits and one non-

repeating digit and thus provided seven examples of this kind. For decimals with one 

repeating digit and two non-repeating digits, he used two examples. Finally, he 

illustrated the conversion of decimals with three repeating digits and one non-

repeating digit or with two repeating and two non-repeating digits by giving one 

example for each type.  

Teacher C merely provided examples for converting repeating decimals into 

rational numbers during the teaching of expressing rational numbers in different 

forms. He provided three different examples to teach how to convert repeating 

decimals into rational numbers. Unlike previous teachers, Teacher C taught 

conversion of a repeating decimal number into a rational number after teaching the 

objective of ‘comparing and ordering rational number’. Initially, he wrote on the 
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board the shortcut procedure that was also used by Teacher B. He introduced this 

procedure to his students in the following way: 

the repeating decimal without its decimal point non repeating part 

write a 9 for every repeating digit and a 0 for every non repeating digit after 9's

 

        
 

He initially used 1.3  as an example for teaching the conversion to his students. As it 

can be seen, this example was a decimal with only one repeating digit after the 

decimal point. The teacher wrote on the board the equality 
13 1 12

1.3
9 9


    as an 

application of the procedure for this repeating decimal. Then, the teacher explained 

that he selected this example from the workbook so as to have students understand 

the underlying logic of conversion as emphasized by textbook. More precisely, this 

repeating decimal was included in the workbook as an exercise example and the 

students were asked to fill in the blanks with relevant numbers. This example is 

presented in Figure 4.6. 

 

Figure 4.6. An example used by Teacher C to teach the logic of conversion (Aydın & 

Beşer, 2013b, p. 34) 

 

Next, the teacher used 3.07 as another repeating decimal with two repeating 

digits after the decimal point. This time, the teacher converted this repeating decimal 

into a rational number by using method depicted above. That is, the teacher used the 

method included in the textbook. However, he indicated that this way of converting 

is a long and complicated process. Thus, he switched back to using the shortcut 

procedure that he wrote on the board at the beginning of the lesson. He converted 
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3.07  into a rational number as 
307 3 304

3.07
99 99


   and emphasized that the 

students need to convert 
304

99
 into a mixed number to finalize the conversion.  

As can be understood from the given examples, Teacher C provided only two 

different types of repeating decimals in the course of teaching the objective ‘express 

rational numbers in different forms’. However, he provided another different type of 

repeating decimal for conversion while he was teaching the objective of ‘perform 

addition and subtraction operations with rational numbers’. Namely, Teacher C 

converted 24.789  into a rational number by using the shortcut procedure that he 

taught at the beginning of the lesson as follows:
24789 247 24542

24.789 .
990 990


   As 

it can be seen, 24.789  is a repeating decimal with one non-repeating digit and two 

repeating digits after the decimal point. Finally, the teacher asked the students to 

divide 24542 by 990 with a calculator to have them see that  
24542

990
 is equal to 

24.789898989… 

The examples generated by Teacher D to teach how to express rational 

numbers in different forms represented the following mathematical ideas: expressing 

integers as rational numbers, expressing terminating decimals as rational numbers, 

expressing rational numbers as integers/repeating decimals/terminating decimals and 

converting repeating decimals into rational numbers. The illustrative examples and 

the total number of examples for each of these ideas are presented in Table 4.11. 
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Table 4.11. Examples used by Teacher D for expressing rational numbers in different 

forms 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Expressing integers 

as rational numbers 

3 2
3 ; 2

1 1


     4 

Expressing 

terminating 

decimals as rational 

numbers 

3 3 5 1256
0.3 ; 0.03 ; 0.5 ; 1.256

10 100 10 1000
          6 

Expressing rational 

numbers as 

integers, 

terminating 

decimals or 

repeating decimals  

15 3 10
3; 0.75; 3.3

5 4 3
        5 

Converting 

repeating decimals 

into rational 

numbers 

3 5
0.3 ; 2.5 2

9 9
     7 

 

Teacher D used 22 examples for teaching how to express rational numbers in 

different forms. She initially provided examples to illustrate that integers, either 

positive or negative, can be written in the form of rational numbers. While providing 

these examples to students, Teacher D stressed that each integer can be written in the 

form of 
a

b
 where b is equal to 1. At the same time, she referred to the term ‘hidden 

denominator’ to emphasize the role of 1 in the above mentioned examples.  

After providing examples for expressing integers as rational numbers, 

Teacher D wrote on the board several equalities such as 
3 5

0.3 and 0.5
10 10

      to 

illustrate the idea that each terminating decimal can be expressed as a rational 

number. During this time, she explained that while the decimal number without its 

decimal point will be the numerator, 10 to the power of the number of digits in the 

decimal will be the denominator of the rational number. She ended up by stressing 

that some decimal numbers can be expressed as rational numbers. In doing so, she 
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aimed to draw students’ attention to the fact that non-terminating repeating decimals 

are examples for rational numbers while non-terminating non-repeating decimals are 

non-examples for rational numbers. She provided 0.25784… and the transcendental 

number π as non-examples for rational numbers and stressed that these two numbers 

cannot be written in the form of rational numbers since they go on forever without 

repeating.  

Similar to Teacher A, Teacher D used 
10

3.333... 3.3
3
   as a start-up 

example for teaching how to convert a rational number into a repeating decimal. 

Then, she immediately worked backwards to teach converting a repeating decimal 

into its rational number. In other words, she converted 3.3  into its rational number by 

using the shortcut procedure that was also preferred by Teacher A, Teacher B and 

Teacher C as follows: 
33 3 30

3.3 .
9 9


   In addition to this shortcut procedure, 

Teacher D emphasized the use of a more specific procedure that could only be used 

for converting decimals with a one-digit repetend as follows: 0. ,
9

a
a   such that a is 

a one-digit numeral. Then, Teacher D implemented this more specific procedure by 

converting several repeating decimals into their rational numbers. Besides, she 

extended this procedure to repeating decimals in which a whole number preceded the 

decimal point and wrote on the board a new procedure as follows: . ,
9

a
a b   such that 

a and b are both one-digit numerals. She exemplified this procedure by converting 

several repeating decimals such as 2.5  and 3.1  into their rational numbers. It is 

important to note that Teacher D converted 2.5 into its rational number by using 

both the shortcut procedure and the more specific procedure. Subsequently, she 

stressed that both procedures are applicable for the conversion of decimals with only 

repeating digit after the decimal point. The teacher ended up the lesson by conveying 

the idea that .9a  is equal to 1a   by means of the conversion
9

0.9 1
9

   . To 

conclude, all the examples used by Teacher D for conversion were decimals with 
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only one repeating digit after the decimal point, although the textbook included 

decimals with both non-repeating and repeating digits.  

4.1.1.3. Examples used for comparing and ordering rational numbers  

The middle school mathematics curriculum suggests that the strategies used 

for comparing fractions and integers can also be used for comparing rational 

numbers. More specifically, the curriculum emphasizes the use of benchmarking to 

0, ½ and 1 as a mental strategy for comparing rational numbers. In addition to 

benchmarking, the teachers are recommended to use the following strategies while 

comparing rational numbers: converting to common denominator, converting to 

decimals and locating rational numbers on a number line. The curriculum provided 

one example for comparing. More precisely, this example included a rational number 

pair as
1

5.2 and 5
4

    and this pair was compared by converting to decimals strategy 

and locating on a number line strategy. By the use of the former strategy,  
1

5
4

  was 

converted to -5.25 and was compared with -5.2 as 5.2 5.25    and was concluded 

that
1

5.2 > 5
4

   . This same rational number pair was also compared by using the 

locating on a number line strategy. In this strategy, learners need to locate each 

rational number on a number line and then construe that the one on the leftmost side 

is smaller than the other.  This strategy is presented in Figure 4.7. 

 

Figure 4.7. Locating on a number line strategy for comparing rational number pairs 

 

In the mathematics textbook followed by the classrooms, the examples 

selected for teaching the concept of ordering rational numbers represented the 

following strategies: ordering by locating on a number line, ordering by converting to 

decimals, ordering by common denominator approach, ordering by benchmarking, 

ordering by equivalent fractions, and ordering by common numerator approach. 
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These range of strategies employed in the textbook for ordering rational numbers and 

the set of rational numbers selected for these strategies are presented in Table 4.12. 

 

Table 4.12. Examples provided by the textbook for ordering rational numbers  

Illustrative 

example 

Number 

of 

examples 

used 

Strategy Explanation 

3 1 2
, ,

4 2 5
    2 

Locating on a 

number line 
The one on the left is smaller so 

3 1 2

4 2 5
       

29 184 371
- ,- , -

4 25 50
 2 

Converting to 

decimals 

29 184 371
7.25, 7.42,

4 25 50

7.25 7.36 7.42,

29 184 371
Therefore,

4 25 50

       

     

   

 

3 6 5
, ,

8 8 8
   4 

Common 

denominator 

approach 

3 5 6
3 5 6 so

8 8 8
         

8 11 16
, ,

10 9 16
 1 Benchmarking 

8 11 16 8 16 11
1, 1, 1 therefore

10 9 16 10 16 9
           

2 5 3
, ,

3 6 4
 1 

Equivalent 

fractions 

2.4 8 5.2 10 3.3 9
, ,

3.4 12 6.2 12 4.3 12

8 9 10 2 3 5
therefore

12 12 12 3 4 6

    

     



 

3 2 1
, ,

4 3 7

  
   3 

Common 

numerator 

approach 

( 3).2 6 2).3 6 1).6 6
, ,

4.2 8 3.3 9 7.6 42

6 6 6 1 2 3
therefore

42 9 8 7 3 4

     
    

     
     

 

1.9, 1.08, 
7

1
8

; 

-4.45, -5.54, -5.5  

 

2 - 
The students are expected to use a relevant 

strategy 
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The textbook included 13 worked-out examples and 2 exercise examples in 

different types for ordering rational numbers. In the first exercise example, the 

students are asked to order 1.9, 1.08 and 
7

1
8

 by using different strategies. As it can be 

seen, two of these rational numbers are in decimal form while the last one is a mixed 

number. In the second exercise example, the students are asked to order 

4.45, 5.54 and 5.5     by employing different strategies. As seen, the first two rational 

numbers are negative terminating decimals while the last one is a positive repeating 

decimal.  

 The explanatory part of the textbook did not include worked examples for 

comparing rational number pairs. However, there were 7 exercise examples in the 

textbook and these examples asked students to compare rational number pairs by 

using relevant strategies. These pairs included rational numbers in different forms. 

Namely, the pairs entailed the following comparisons: comparing a decimal number 

with a rational number, comparing a positive number with a negative number, 

comparing a repeating decimal with a non-repeating decimal and comparing an 

exponential number with an integer. The first type had to do with comparing a 

rational number in the form of 
a

b
 with a rational number in decimal form such as

3 1
, 0.75; and 2.32,

7 3
      . The second type of example included one positive and one 

negative rational number. More specifically, the students were asked to compare -3 

with
1

100
 . The comparison of a terminating decimal with the repeating decimal was 

of the third type and 4.37, 4.37   was the rational number pair selected for 

illustrating this type. Finally, for the last type, -23 and -6 were selected as a rational 

number pair. In this pair, the first rational number was an exponential number, while 

the second rational number was a negative integer.  

During the teaching of ordering rational numbers, the examples selected by 

Teacher A served for the following strategies: ordering by common denominator 

approach, ordering by common numerator approach, ordering by residual thinking, 

ordering by benchmarking and ordering by equating the number of decimal digits by 
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adding 0’s. The set of rational numbers selected by Teacher A for these strategies are 

presented in Table 4.13. 
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As it can be understood from Table 4.13, Teacher A provided 30 examples 

related with ordering rational numbers. These examples were generated not only in 

the course of teaching the concept of rational numbers but also during the provision 

of exercises. Although the examples used by Teacher A for ordering rational 

numbers had some similarities with the textbook, the teacher did not provide 

examples that foster ordering by locating on a number line, ordering by converting to 

decimals and ordering by equivalent fractions as emphasized by the mathematics 

textbook. Apart from using examples that promote the use of strategies included in 

the textbook, Teacher A selected rational number examples that suggested either 

ordering by residual thinking or ordering by equating the number of decimal digits. 

 Teacher A provided fewer examples for comparing rational number pairs 

when compared to the number of examples used by him for ordering rational 

numbers. More specifically, Teacher A focused on the comparison of the following 

rational number pairs in different forms: comparing a repeating decimal with a 

terminating decimal, comparing a decimal number with a rational number in the form 

of
a

b
 , comparing a positive rational number with a negative rational number. Teacher 

A selected the following rational number pairs to illustrate the above mentioned 

comparison ideas respectively:
1 1

2.45, 2.45; 2.32, and
3 100

        . In sum, 

Teacher A used 6 examples for comparing rational numbers.   

 In contrast to the textbook, Teacher B started teaching comparison of rational 

numbers rather than teaching ordering of rational numbers first. The examples used 

by Teacher B for comparing rational numbers promoted the use of following 

strategies: comparing by locating on a number line, comparing by benchmarking, 

comparing by considering the sign of the rational number and comparing by 

converting. The rational number pairs selected by Teacher B for employing these 

strategies are presented in Table 4.14. 
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Table 4.14. Examples used by Teacher B for comparing rational numbers 

Illustrative 

example 

Number of 

examples used 

Strategy used 

by Teacher B 

Explanation 

1 7
,

2 3

 
  4 

Locating on a 

number line 

As we go leftward, the numbers become smaller. 

 

  

7 15
,

9 12
 3 Benchmarking 

7 15 7 15
1and 1 therefore

9 12 9 12
         

1 1
,

4 3


  2 

Considering 

number sign 

Whatever the magnitude of rational numbers are, a 

negative rational number is always smaller than 0 

and a positive rational number is always larger than 

0. 

1 1 1
,

4 3 3

1
0 0 therefore

4

 
       

1 9
2 ,

4 4
 1 Converting 

The two fractions are equivalent since 

 
1 2 4 1 9

2
4 4 4

 
    

 

After using 10 examples for comparing rational numbers, Teacher B started 

teaching how to order rational numbers. The examples used by the teacher for 

ordering rational numbers focused on the following strategies: ordering by common 

denominator approach, ordering by locating on a number line and ordering by 

benchmarking. The set of rational numbers selected by Teacher B for employing 

these strategies are presented in Table 4.15. 
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Table 4.15. Examples used by Teacher B for ordering rational numbers  

Illustrative 

example 

Number of 

examples 

used 

Strategy used 

by Teacher B 
Explanation 

1 7 3 1
, , ,

3 4 5 12

  
     5 

Common 

denominator 

approach 

,
-1 -20 7 105 -3 -36 -1 -5

,     ,   
3 60 4 60 5 60 12 60

(20)           (15)          (12)             (5)

-3 -1 -1 7
-36<-20<-5<105 therefore 

5 3 12 4

 = = = =

< < <

    

-1 4 1 5
,2 ,1 ,-1

7 9 4 6
 5 

Locating on a 

number line 

As we go leftward, the numbers become smaller. 

On the contrary, if go rightward the numbers 

become larger.  

 

5 -1 1 4
- 1 1 2

6 7 4 9

Therefore,     

8 9 13
, ,

6 19 23
    2 Benchmarking 

9 1 13 1 8 9 13 8
, 1 therefore, 

19 2 23 2 6 12 23 6
         

 

As shown in Table 4.15, 12 examples were used by Teacher B for ordering 

rational numbers. When compared to textbook examples, the examples used by 

Teacher B for ordering rational numbers focused on fewer strategies. For instance, 

Teacher B did not provide examples for ordering by converting to decimals, ordering 

by equivalent fractions and ordering by common numerator approach. Moreover, 

while the textbook examples asked students to order at most three rational numbers, 

Teacher B used examples that included ordering of three or four rational numbers. 

Finally, the examples used by Teacher B had some similarities with those included in 

the textbook for ordering rational numbers. That is, examples provided both by the 

teacher and the textbook included positive rational numbers, negative rational 

numbers, mixed numbers, proper numbers and improper numbers.  
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Similar to the textbook, Teacher C started the lesson by teaching ordering 

rational numbers. However, the teacher did not provide any specific example for 

teaching comparison of rational numbers. Before providing specific examples for 

ordering rational numbers, he wrote on the board a note that explains how to order 

rational numbers. According to this note, students needed to equate either the 

numerators or the denominators of the rational numbers in order to order them 

correctly. If the rational numbers have same denominators, then the one with a larger 

numerator will be larger. On the contrary, if the rational numbers have same 

numerators, then the one with a smaller denominator will be larger. Finally, if the 

rational numbers were negative then the ordering will be the other way round. In 

accordance with this explanation, Teacher C provided only two examples for 

ordering rational numbers and these examples focused on the use of common 

numerator approach or common denominator approach. Teacher C provided the 

following rational number sequence for ordering by using common denominator 

approach: 
5 4 5 2 2

, 0, , , and .
3 3 12 18 6

        As it can be seen, two of the rational numbers 

are negative, while three of them are positive. In addition, the neutral number 0 was 

included to this set. Besides, 
5 4

and
3 3

   were improper numbers while

5 2 2
, and

12 18 6
    were proper numbers. However, there was not any rational number 

in mixed number form in this sequence. As there were 6 rational numbers to 

compare, it was difficult for students to find the common denominator mentally. 

Considering this, Teacher C recalled the concept of LCM (Lowest Common 

Multiple) as a way to find the common denominator of the rational numbers.  

The next example used by Teacher C for ordering rational numbers included 

the following number sequence: 
3 2 6

, and .
9 5 12

      The teacher ordered these 

rational numbers by using common numerator approach. The teacher noted that it is 

more difficult to order this sequence by using common denominator approach since 

the denominators included big numbers when compared to the numerators. In 

addition, the rational numbers in this sequence were all negative and proper form. 
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Like the previous example, this example did not include rational numbers in mixed 

form and there were three rational numbers to order. Moreover, the number of 

examples used by Teacher C for ordering rational numbers was less than the number 

of examples included in the textbook. Finally, the teacher did not provide examples 

that focus on comparing by locating on a number line, comparing by converting to 

decimals, comparing by benchmarking and comparing by equivalent fractions.  

Teacher D merely provided examples for ordering rational numbers. During 

the teaching of ordering rational numbers, the examples selected by Teacher D 

served for the following strategies respectively: ordering by locating on a number 

line, ordering by converting to decimals, ordering by common numerator approach 

and ordering by common denominator approach. The set of rational numbers 

selected by Teacher D for employing these strategies are presented in Table 4.16. 

 

Table 4.16. Examples used by Teacher D for ordering rational numbers  

Illustrative 

example 

Number of 

examples 

used 

Strategy used 

by Teacher B 
Explanation 

1 2 1
, , 1

3 5 6
    2 

Locating on a 

number line 

On the number line, rational numbers become 

larger as we go rightward.  

 

Thus,  
1 1 2

1 1
6 3 5

    

5 12 23
, ,

2 5 10

   2 
Converting to 

decimals 

If the denominators of rational numbers are 

multiples of 10 or if they can be easily enlarged to 

10, then it is more relevant to order them by 

converting to decimals 

5 25 12 24 23 23
2.5, 2.4, 2.3

2 10 5 10 10 10

(5) (2) (1)

5 12 23
2.5 2.4 2.3 thus

2 5 10

        

 

     
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Table 4.16. (Continued) 

Illustrative 

example 

Number of 

examples 

used 

Strategy used 

by Teacher B 
Explanation 

7 7 7
, ,

4 2 9
     6 

Common 

numerator 

approach 

First, assume that rational numbers are positive. In 

that case, the one with a smaller denominator will 

be larger since they have same numerators. Thus,  

7 7 7

2 4 9
   and 

7 7 7

2 4 9
      

4 7 15
, ,

8 8 8
     4 

Common 

denominator 

approach 

First, assume that rational numbers are positive. In 

that case, the one with a larger numerator will be 

larger since they have same denominators. Thus,  

4 7 15

8 8 8
   and 

4 7 15

8 8 8
       

 

As presented in Table 4.16, 14 examples were used by Teacher D for ordering 

rational numbers. When compared to textbook examples, the examples used by 

Teacher D for ordering rational numbers focused on fewer strategies. For instance, 

Teacher D did not provide examples for ordering by benchmarking and ordering by 

equivalent fractions. Identical to the textbook examples, Teacher D asked her 

students to order three rational numbers. Finally, the examples used by Teacher D 

had the following dimensions of variation: being positive or negative and being a 

proper, improper or mixed rational number.   

4.1.1.4. Examples used for performing addition and subtraction operations with 

rational numbers 

In the middle school mathematics curriculum, teachers are suggested to start 

teaching addition and subtraction of rational numbers by having students remember 

addition and subtraction of fractions. After recalling addition and subtraction of 

fractions, teachers are suggested to use activities related with addition and 

subtraction of rational numbers. In addition to this, the curriculum emphasized 

teaching the properties of addition of rational numbers. Namely, teachers are 
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suggested to give weight to the teaching of commutative property, associative 

property, identity property and inverse property of addition and also to the algebraic 

representations of these properties.  

Another idea that was emphasized in the curriculum was the use of estimation 

techniques. The curriculum provided one specific example for the estimation of 

addition with rational numbers. That is, the estimation of 
3 6

8 7
  was explained in the 

following way: 
3

8
is close to

1

2
 so we can round it to

1

2
. Similarly, 

6

7
is close to 1 so 

we can round it to 1. Thus,
3 6 1 3

1
8 7 2 2
     . Finally, the addition operation 

3 6 21 48 21 48 69 13
1

8 7 56 56 56 56 56


       was presented to compare the estimated 

answer with the exact answer.  

In the mathematics textbook followed by the classrooms, the examples 

selected for teaching addition and subtraction with rational numbers represented the 

following ideas respectively: using models for the addition and subtraction of 

rational numbers, adding and subtracting rational numbers with same denominators, 

estimating the addition and subtraction of rational numbers, adding and subtracting 

rational numbers with different denominators and properties of addition of rational 

numbers. When addition and subtraction examples were examined, it was seen that 

there were some structural differences in terms of sign and form of terms included in 

the operations. Some illustrative examples included in the textbook for the above 

mentioned ideas are presented in Table 4.17. It is important to note that only the 

examples that have different structural features were used as illustrative examples. 

Therefore, the number of examples for each ideas were also presented.   
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Table 4.17. Examples included in the textbook for adding and subtracting rational 

numbers 

Ideas for adding 

and subtracting 

rational numbers 

Illustrative examples 

Number of 

examples used 

Using models for 

the addition and 

subtraction of 

rational numbers 

 

 

 

 

4 

Adding and 

subtracting rational 

numbers with same 

denominators 

3 17 7 2 3 4 5 2
; ;

18 18 3 3 5 5 9 9
;         
       
       
       

 

5 

Estimating the 

addition and 

subtraction of 

rational numbers  

3 17 1 24
0 1; 3 3 4 7;

18 18 26 25

7 2 1 1
1

10 5 2 2

        

   

  3 

Adding and 

subtracting rational 

numbers with 

different 

denominators 

1 1 7 3 5 4 2
; ; ;

2 10 8 4 6 5 3

2 3 1 1 1 1 13 1
;

3 2 4 8 7 4 5 10

2 1 4 5 1 1
; ; 1

13 17 5 4 9 11

;

; ; ;

;

         

         

       

     
     
     

   
     

   

   
   

   

   19 
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Table 4.17. (Continued) 

Ideas for adding 

and subtracting 

rational numbers 

Illustrative examples 

Number of 

examples used 

Properties of 

addition of rational 

numbers 

Commutative property 

2 1 1 2
;

3 4 4 3

4 2 2 5 5 2
;

7 3 3 7 7 3
x a

       

         

       
       
       

     
     
     

 

Identity property 

3 3 3 3
0 0 ;

4 4 4 4

4 4 4 4
0 0

7 7 7 7

;

;

      

      



 
  

 

   

Associative property 

2 1 1 2 1 1

3 4 2 3 4 2
          

           
                         

  

10 

 

The textbook included 41 examples for adding and subtracting rational 

numbers. It emphasized modeling of addition and subtraction operations before 

symbolically expressing them. It provided fraction bars and number lines as two 

different types of models. The examples provided for modeling addressed students’ 

prior knowledge on fractions. To be more precise, each example used for modeling 

included terms that are both positive rational numbers. Besides, the examples 

provided for modeling were only in proper form. However, there were not any 

examples that modelled addition and subtraction of rational numbers which are 

greater than 1.    

Next, the textbook presented examples for teaching addition and subtraction 

of rational numbers with same denominators. The addition examples included the 

following structural properties regarding the sign of their addends: (+, +) and (+, -). 

However, there were not any examples that included (-,-) as the sign of their 

addends. Besides, the addends of addition examples were either in proper or 

improper form but not in mixed number form. When subtraction examples were 

examined, it was seen that the examples included minuends and subtrahends that 

were both positive. However, there was not any example including (-,-), (-,+) or (+,-) 
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as the sign of their minuends and the subtrahends respectively. In some of these 

examples, the positive signs were omitted and sometimes they preceded the minuend 

and the subtrahend. Finally, the minuends and subtrahends were all proper numbers.  

The textbook gave considerable emphasis on estimating the answer of 

addition and subtraction operations with rational numbers. By the estimation 

examples, it was aimed to teach that if the numerator is much less than the half of the 

denominator, then the rational number is rounded to 0; if the numerator is close to 

the half of the denominator, then the rational number is rounded to 
1

2
 and if the 

numerator is close to the denominator, then the rational number is rounded to 1.  The 

estimation examples included terms that were all positive rational numbers. In 

addition, these examples included terms that were either proper or mixed number.  

The textbook included 19 examples for teaching the addition or subtraction of 

rational numbers with different denominators. Addition examples were in the 

following form in terms of the sign of their addends:  (+, +) and (+, -). However, the 

textbook did not provide examples with addends in the form of (-, +) and (-, -). 

Besides, the addition examples involved either two addends in proper form, or one 

natural number and one proper number addend. However, the addition examples did 

not involve any addends in proper or mixed number form. The examination of 

subtraction examples showed that they included all possible variations in terms of 

their signs. That is, subtraction examples included minuends and subtrahends with 

the following signs respectively: (+, +), (+, -), (-, +) and (-, -).  Moreover, the 

minuends and subtrahends were either in proper or improper form but not in mixed 

form and there were some examples that illustrated the subtraction of a rational 

number from an integer. Finally, addition and subtraction examples included two 

terms and there was not any example that included three or more terms. 

The textbook included a few examples for teaching commutative property of 

addition of rational numbers. These examples included one negative and one positive 

addend or two negative addends. Besides, all addends were proper numbers. There 

were also some examples in the textbook for teaching identity property of addition of 

rational numbers. In these examples, the rational number accompanying zero was 

either a positive or a negative proper number. Associative property of addition of 
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rational numbers was explained by examples that included negative and positive 

proper numbers. However, there was not any specific example in the textbook for 

finding the additive inverse of a rational number.  

The examples used by Teacher A for teaching addition and subtraction of 

rational numbers focused on the following mathematical ideas respectively: adding 

and subtracting rational numbers with same denominators, adding and subtracting 

rational numbers with different denominators, performing multi-step operations with 

rational numbers and teaching properties of addition of rational numbers. Some 

illustrative examples used by Teacher A for teaching these ideas are presented in 

Table 4.18. Only the examples that had different structural features were used as 

illustrative examples. Therefore, the number of examples for each ideas were also 

presented. 

 

Table 4.18. Examples used by Teacher A for adding and subtracting rational 

numbers 

Ideas for adding 

and subtracting 

rational 

numbers 

Illustrative examples 
Number of 

examples used 

Adding and 

subtracting 

rational 

numbers with 

same 

denominators 

   

3 2 5 3 5 2 3 1
; 3 ; 1 ;

8 8 8 8 8 8 7 7

2 27 3

3 3 8 8

;

;

 
     

 
 

   
   
   

   
   

   

  
6 

Adding and 

subtracting 

rational 

numbers with 

different 

denominators 

2 5 5 5 3 2 1
; ; ;

3 4 12 6 7 3 8

3 9 5 2 5 8
1 ;

5 21 7 3 7 5

3 2 2 1
; ;

7 3 3 8

;

; ;

        

       

      



     
      

     
  13 
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Table 4.18. (Continued) 

Ideas for adding 

and subtracting 

rational 

numbers 

Illustrative examples 
Number of 

examples used 

Multi-step 

operations with 

rational 

numbers  

         

     

2 2 3 5 22 2
;

5 5 5 5 7 7 7

1 7 85 2 7 21
;

13 13 13 5 5 5 5

;
    

      

  
      

   
   
   

 
 
 

  

   2 7 ( 1) 1 3 2
; ;

3 2 6 5 7 3

3 1 1 1 1 4
;

8 4 48 18 12 9

  
       

             

   
   
   

       
       
       

 

8 

Properties of 

addition of 

rational 

numbers 

Commutative property 

2 3 3 2 3 8 3
2 3 3 2; ;

5 5 5 5 5 7 5

 
           

     
     
     

  

Associative property 

   
1 3 7 1 3 7

2 3 5 2 3 5 ;
2 2 2 2 2 2

          
   
   
   

  

Identity property  

3 3
2 0 0 2; 0 0

4 4
         

Additive inverse property 

The additive inverse of 3 is (-3); the additive inverse of 

3

4
 is 

3

4

 
 
 

; the additive inverse of 
3

4

 
 
 

 is 
3

4
  

10 

 

 Teacher A used 37 examples in the teaching of addition and subtraction 

operations with rational numbers. Although the textbook suggested the use of models 

before symbolically expressing addition and subtraction of rational numbers, Teacher 

A did not use any models. Instead, he started the lesson by providing examples for 

adding and subtracting rational numbers with the same denominators. The addition 

examples included two positive rational numbers as their addends. However, Teacher 

A did not use any examples that included (+, -), (-, +) or (-, -) as the sign of their 

addends. Moreover, the addends were either in proper or mixed number form. When 

subtraction examples were examined, it was seen that there was some variability in 

terms of the signs of the minuends or subtrahends. To be more precise, there were 



165 

 

examples that included (+, +), (-, +) and (-,-) as the sign of the minuends and 

subtrahends respectively. However, there was not any specific example that had a 

positive minuend and a negative subtrahend. Finally, the subtraction examples 

included terms that were either in proper, improper or mixed number form.  

After providing examples for addition and subtraction of rational numbers 

with same denominators, Teacher A moved on to the teaching of addition and 

subtraction of rational numbers with different denominators. Examples used by 

Teacher A for teaching addition of rational numbers with different denominators 

included (+, +) and (-, +) but not included (+, -) and (-, -) as the sign of their addends. 

Besides, the addends of the addition examples were either proper number, integer or 

mixed number. However, none of the examples included addends in improper form. 

Several examples were used for subtraction of rational numbers with different 

denominators. When these subtraction examples were examined, it was seen that the 

minuends and the subtrahends had the following signs: (+, +), (+, -), and (-, +) but 

did not have (-, -). Besides, the terms of the subtraction examples were either proper 

number, improper number, mixed number or integer.  

Although estimating the answer of addition and subtraction operations with 

rational numbers were emphasized in the middle school mathematics curriculum and 

in the textbook, Teacher A ignored this idea and therefore he did not provide any 

specific estimation example. However, although not included in the textbook, 

Teacher A provided several examples that include multi-step operations with rational 

numbers. Half of these examples included rational numbers with the same 

denominators and the rest included different denominators. Moreover, the multi-step 

examples included three or four terms. These examples included terms that were 

either negative proper number, positive proper number, negative improper number, 

positive improper number or positive mixed number. Lastly, different from the 

examples included in the textbook, Teacher A provided multi-step examples that 

included minus signs both in front of the fraction bar and in the numerator of the 

terms to emphasize that the location of the minus sign does not alter the value of the 

rational number. 
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Teacher A used several examples for teaching properties of addition 

operation with rational numbers. Teacher A started the teaching of each property by 

using examples that checked students’ prior knowledge on properties of addition of 

natural numbers. Other examples used by Teacher A for each property included 

addends that were either negative proper number, positive proper number or positive 

improper number. The examples used for commutative and associative property only 

included rational numbers with same denominators. Moreover, none of the examples 

included rational numbers in mixed number form. Unlike the textbook, Teacher A 

used some examples related with inverse property. In more detail, he selected a 

positive integer, a positive proper number and a negative proper number respectively 

to find their additive inverses. 

The examples used by Teacher B for teaching addition and subtraction of 

rational numbers represented the following mathematical ideas respectively: using 

models for the addition and subtraction of rational numbers, adding or subtracting 

rational numbers with same denominators, finding common multiples of the 

denominators of rational numbers, adding and subtracting rational numbers with 

different denominators, performing multi-step operations with rational numbers; and 

teaching properties of addition of rational numbers. Some illustrative examples used 

by Teacher B for teaching these ideas are presented in Table 4.19. Only the examples 

that have different structural features were used as illustrative examples. Therefore, 

the number of examples for each ideas were also presented.  
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Table 4.19. Examples used by Teacher B for adding and subtracting rational numbers 

Ideas for adding and 

subtracting rational 

numbers 

Illustrative examples  

Number of 

examples 

used 

Using models for the 

addition and 

subtraction of 

rational numbers 

 

 

4 

Adding or 

subtracting rational 

numbers with same 

denominators 

2 9 1 3 1 5 3 1
; ; ; 1 ;

5 5 4 4 7 7 4 4

9 4 9 3 21 4 1
; 2 ; 1.3;

7 7 11 11 9 7 7
a

  
        


        

         
         
         

   
   
   

  12 

Finding common 

multiples of the 

denominators 

;
8 5 12 8

, ,    3 

Adding or 

subtracting rational 

numbers with 

different 

denominators 

2 3 2 5 1 1 3 5
; ; 2 1 ; ;

3 2 4 3 3 2 4 9

2 2 1 1 1 4 5 8 3
0.3; ; ; ; ;

3 4 3 9 18 5 4 7 42

1 1 2 3 2 3
1 ; ; ; 1

9 11 3 2 3 5


           

           


       

       
       
       

   
   
   

     
     
     

  16 

Performing multi-

step operations with 

rational numbers 

1 2 3 1 3 5
2 2 ;1

3 5 5 4 12 3

 
    

       
       
       

  2 
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Table 4.19. (Continued) 

Ideas for adding and 

subtracting rational 

numbers 

Illustrative examples  

Number of 

examples 

used 

Teaching properties 

of addition of 

rational numbers 

Commutative property 

1 5 1 2 5 2

3 2 3 13 4 13
;A x

  
     

     
     

     
  

Associative property 

3 5 1 3 1
;

8 4 6 8 6

5 9 5 1 9
1

6 11 6 3 11

A

B

       

 
    

      
            

      
            

  

Identity property  

5 5 2 2
0 0 0

2 2 3 3
;       

Inverse property 

The additive inverse of 
3

2
4

 is
3

2
4

; 

The additive inverse of 
4

3
is 

8

x
  

9 

 

 Teacher B used 46 examples for teaching addition and subtraction of rational 

numbers. As emphasized by the textbook, Teacher B started the lesson by modeling 

the operation 
2 1

4 4
  before teaching symbolic expressions of addition and subtraction 

operations with rational numbers. This subtraction operation was modeled by using 

circular pieces. The minuend and the subtrahend were both positive rational 

numbers, thus this example addressed students’ prior knowledge on subtraction of 

fractions. In addition to this, Teacher B provided several exercise examples to his 

students for finding the symbolic expressions of the given models. To be more 

precise, the number line model referred to the addition of one positive and one 

negative rational number, while the region model referred to the addition of two 

positive rational numbers in decimal form.  

 After modeling the subtraction of two fractions, Teacher B started teaching 

addition and subtraction of rational numbers with same denominators. The addition 

examples included all variations in terms of the sign of the addends. That is, Teacher 
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B used examples that included (+, +), (+, -), (-, +) and (-, -) as the sign of addends. 

Moreover, the addends were in proper, improper or mixed number form. When 

examples regarding subtraction of rational numbers with same denominators were 

examined, it was revealed that there was some variability in terms of the signs of the 

minuends and subtrahends. To put it differently, the examples selected by Teacher B 

for the subtraction of rational numbers with same denominators included (+, +), (+, -) 

and (-, +) but not included (-, -) as the sign of the minuends and subtrahends 

respectively. Besides, the minuends and subtrahends in each subtraction example 

took the form of either, proper number, improper number or mixed number.  

Unlike the textbook, Teacher B provided examples for finding common 

multiples of the denominators of the given rational number pairs. Teacher B included 

pairs that are prime such as 8 and 5 and pairs that have a common divisor such as 8 

and 12. But Teacher B did not include pairs in which one is a multiple of the other 

such as 2 and 8. In the course of teaching how to find common multiples of the 

denominators, the teacher suggested that it would be much easier to operate with 

rational numbers if the common multiple was selected to be the smallest one. By this 

way, he touched upon the concept of LCM (Least common multiples) before 

teaching the addition or the subtraction of rational numbers with different 

denominators.  

Teacher B provided many examples for the addition and subtraction of 

rational numbers with different denominators. Examples used by Teacher B for 

adding rational numbers with different denominators included (+, +), (-, +) and (-, -) 

as the sign of the first and second addend respectively. However, the teacher did not 

provide any addition example that included a positive rational number as a first 

addend and a negative rational number as a second addend. Furthermore, the addends 

were either in proper, improper or mixed number form. Nevertheless, there was not 

any specific example that included the addition of a rational number in the form of 

a

b
 with an integer or the vice versa. When examples regarding subtraction of 

rational numbers with different denominators were examined, it was revealed that 

there was a great variability in terms of the signs and forms of the minuends and 

subtrahends. To be more precise, examples used by Teacher B for subtraction of 
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rational numbers with different denominators included (+, +), (+, -), (-, +) and (-, -) 

as the sign of the first and second term respectively. In addition, the first and second 

term of the subtraction operations were either in proper number, improper number, 

mixed number or integer form.   

When compared to Teacher A, Teacher B provided few examples that 

included multi-step operations with rational numbers. These examples included 

rational numbers only with different denominators. In addition, they included three 

terms. The terms were either negative proper number, positive improper number or 

positive mixed number. However, none of the examples included a positive proper 

number, a negative improper number or a negative mixed number.  

Teacher B used several examples for teaching properties of addition operation 

with rational numbers. Unlike the textbook, the examples provided by Teacher B for 

teaching commutative property and associative property included unknown values as 

A, B and x. The teacher emphasized that by matching the same rational numbers on 

both sides of the equations included in commutative and associative properties, it is 

possible to find the values of A, B and x without actually computing. The examples 

used for the commutative property included the addition of a positive proper number 

with a negative improper number or positive improper number with a negative 

proper number. Likewise, the associative property examples included the addition of 

a positive proper number, a positive improper number and a negative proper number 

or the addition of a negative proper number, a positive mixed number and a positive 

proper number. The examples used for commutative and associative property 

included rational numbers both with different and same denominators. In identity 

property examples, the rational number accompanying zero was either a positive 

proper number or a positive improper number. Finally, unlike Teacher A, the inverse 

property examples used by Teacher B entailed finding the additive inverse of a 

positive improper number and a negative mixed number. 

Teacher C provided examples only for the addition of rational numbers and 

did not give any specific example for the subtraction of rational numbers. The 

examples used by Teacher C for teaching addition of rational numbers focused on the 

following mathematical ideas respectively: using models for the addition of rational 
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numbers, adding rational numbers with same denominators, adding rational numbers 

with different denominators and teaching properties of addition of rational numbers. 

Some illustrative examples used by Teacher C for teaching these ideas are presented 

in Table 4.20. Only the examples that have different structural features were used as 

illustrative examples. Therefore, the number of examples for each idea were also 

presented.  

 

Table 4.20. Examples used by Teacher C for adding rational numbers 

Using models for the 

addition of rational 

numbers 

 

10 

Adding rational 

numbers with same 

denominators 

1 3 4 6 7 7
; ;

5 5 4 4 4 4
       4 

Adding rational 

numbers with 

different 

denominators 

2 3 5 7 6 8 4 2 6
; ; ; ; ;

5 8 3 5 7 6 7 2 8

6 3 5 2 5 1
; ;

6 7 6 3 8 4

        

        
     
     
     

  13 
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Table 4.20. (Continued) 

Ideas for adding 

rational numbers Illustrative examples  

Number of 

examples 

used 

Teaching properties 

of addition of 

rational numbers 

Commutative property 

3 2 2 3

5 7 7 5
      
       
       
       

  

Associative property 

1 1 1 1 1 1

2 4 5 2 4 5
    

   
   
   

 

Identity property  

1 1 3 3
0 ; 0

2 2 5 5
      

   
   
   

  

4 

  

Teacher C used 31 examples for teaching addition of rational numbers. As 

emphasized by the textbook, Teacher C started teaching this idea by providing an 

example that modeled 
1 3

5 5
 . In this first example, the teacher used a region model. 

In addition to the region model, Teacher C used several number line models for 

adding either two positive rational numbers, two negative rational numbers or for 

adding a negative rational number and a positive rational number. By the number 

line models, the teacher explained that the sign of the addends showed which way to 

move and the operation sign meant that the second addend is joined to the end of the 

first addend.  

After modeling addition of rational numbers, Teacher C moved on to teaching 

addition of rational numbers with same denominators. The examples used by the 

teacher for this idea included only positive addends. Nevertheless, he did not use 

examples that included (-, +), (-, -) and (+, -) as the sign of their addends. Moreover, 

the addition examples included addends either in proper or improper form but not in 

mixed number form.  

Teacher C provided many examples for teaching the addition of rational 

numbers with different denominators. Examples used by Teacher C for teaching this 

idea included (+, +), (-, +) and (-, -) as the sign of the first and second addend 

respectively. Nonetheless, he did not use any example that included a negative 
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rational number as a first addend and a positive rational number as a second addend. 

Finally, the addends of the addition examples included all possible numbers in 

different forms. That is, each addend was either a proper number, an improper 

number, a mixed number or an integer.  

Teacher C used a few examples for teaching properties of addition of rational 

numbers. To be more precise, he used one example for commutative and associative 

property of addition, two examples for identity property of addition. The example 

used for commutative property included a positive proper number and a negative 

proper number as addends of the addition operation. The example used for 

associative property included three positive proper numbers as addends of addition. 

In addition, the examples used for commutative property and associative property 

included rational numbers with different denominators. In identity property examples 

provided by Teacher C, the rational number accompanying zero was either a positive 

proper number or a negative proper number. Lastly, the teacher neither mentioned 

about nor provided any specific example for the inverse property of addition of 

rational numbers.  

The examples used by Teacher D for teaching addition and subtraction of 

rational numbers focused on the following mathematical ideas: using models for the 

addition and subtraction of rational numbers, adding and subtracting rational 

numbers with same denominators, adding and subtracting rational numbers with 

different denominators, estimating the addition of rational numbers and teaching 

properties of addition of rational numbers. The examples used by Teacher D for 

teaching addition and subtraction of rational numbers were all structurally different 

from each other. Therefore, all of these examples are presented in Table 4.21.   
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Table 4.21. Examples used by Teacher D for adding and subtracting rational 

numbers 

Ideas for adding 

rational numbers 
Examples used by Teacher D 

Number 

of 

examples 

used 

Using models for 

the addition and 

subtraction of 

rational numbers 

 

 

 

5 

Adding and 

subtracting 

rational numbers 

with same 

denominators 

3 1 5 7 5 2 13 7 1 3
; ; ; ; 4 ;

5 5 9 9 9 9 4 4 5 5

5 2 35 9 3
0.7 2.5; ; 3.7;

8 8 9 4 4

  
          


       

       
       
       

   
   
   

  9 

Adding and 

subtracting 

rational numbers 

with different 

denominators 

3 1 1 1 1 1 1 3 1
2 ; ; 3 1 ; ; ; 4;

5 2 5 4 2 3 8 7 2

1 2 4
1 ; ; 0.2 0.12

7 3 5

            


     

   
   
   

 
 
 

 9 

Estimating the 

addition of 

rational numbers 

1 95
2 2

100 100
    1 

 

 

 



175 

 

Table 4.21. (Continued) 

Ideas for adding 

rational numbers 
Examples used by Teacher D 

Number 

of 

examples 

used 

Teaching 

properties of 

addition of 

rational numbers 

Commutative property 

3 4 4 3 1 1 1
; 1 1

9 9 9 9 3 7 7
         

   
   
   

  

Associative property 

3 4 5 3 4 5
;

7 7 7 7 7 7

1 1 1 1 5

2 3 2 3 6

       

        

   
   
   

       
                 

  

Identity property  

2 2
0

11 11
    

Inverse property 

4 4 2 9
0; 0; 0

5 5 9 11
           
     
     
     

  

8 

 

 Teacher D used 32 examples for teaching addition and subtraction of rational 

numbers. As emphasized by the textbook, Teacher D started teaching addition and 

subtraction of rational numbers by using a number line model for 
3 1

5 5
  before 

adding these rational numbers by using same denominators algorithm. In addition to 

this, she used two different region models as exercise examples and asked her 

students to find the symbolic expressions of these models. The first model illustrated 

the addition of two rational numbers with same denominators while the second one 

illustrated the addition of two rational numbers with different denominators. Unlike 

the textbook, Teacher D taught subtraction of rational numbers after completely 

teaching addition of rational numbers. That is, the teacher did not provide addition 

and subtraction examples concurrently. Similar to the addition of rational numbers, 

Teacher D started teaching subtraction operation with rational numbers by using a 

number line model for 
5 2

8 8
  before computing it by using same denominators 

algorithm. Besides, she used a region model as an exercise example and asked the 
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students to find the symbolic expression of the given model. By this model, Teacher 

D illustrated the subtraction of two rational numbers that have same denominators. 

Each addition and subtraction model included positive rational numbers that are in 

proper form. Therefore, these examples also addressed students’ prior knowledge on 

addition and subtraction of fractions.  

After modeling addition of rational numbers, Teacher D moved on to 

teaching addition of rational numbers with same denominators. The addition 

examples used by the teacher included all possible variations in terms of the sign of 

the addends. In other words, the examples used by the teacher included (+, +), (+, -), 

(-, +) and (+, +) as the sign of the addends. In a similar fashion, the addition 

examples included all possible variations with respect to form of the addends. More 

precisely, the first and the second addend of the addition operations were either in 

proper number, improper number or mixed number form. In addition to these 

examples, the teacher provided an example that included terminating decimals as the 

first and second addend of the addition operation.  

As she did in the teaching of addition of rational numbers, Teacher D started 

teaching subtraction of rational numbers with same denominators immediately after 

modeling subtraction of rational numbers. However, the examples used for teaching 

subtraction of rational numbers with same denominators was relatively few when 

compared to the number of examples used for addition of rational numbers with 

same denominators. Besides, when subtraction examples were examined, it was seen 

that there were some variations with respect to the sign of the terms. Precisely, 

Teacher D used subtraction examples that included (+, +) or (-, -) as the sign of the 

minuends and subtrahends respectively. However, she did not provide subtraction 

examples that included positive minuends and negative subtrahends or negative 

minuends and positive subtrahends. Similarly, there was some variability in the 

subtraction examples in terms of the forms of the first and second terms. Namely, the 

subtraction examples used either proper or improper numbers as the form of the 

minuends, and proper numbers or a repeating decimal number as the form of the 

subtrahends.  
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Soon after teaching the addition of rational numbers with same denominators, 

Teacher D started to teach properties of addition of rational numbers. The examples 

provided by the teacher for teaching commutative property, associative property and 

inverse property included not only terms that are rational numbers but also unknown 

values. In addition, the examples used for teaching commutative property included 

the addition of two positive proper numbers or the addition of a positive mixed 

number and a negative mixed number. Likewise, the associative property examples 

included the addition of a negative proper number and two positive proper numbers 

or a positive proper number and two negative proper numbers. Although the teacher 

did not teach how to add rational numbers with different denominators, the examples 

used by her for teaching commutative and associative property included not only 

rational numbers with same denominators but also rational numbers with different 

denominators. Teacher D used only one example for teaching the identity property of 

addition. In this example, the rational number accompanying zero was a positive 

proper number. Finally, to teach inverse property of addition, Teacher D provided 

three examples. These examples were provided in a way that emphasized the idea 

that the addition of a rational number with its additive inverse is equal to zero. While 

one of these examples included two rational numbers, the other two examples 

included unknown values that corresponded to additive inverses.  

After teaching the properties of addition of rational numbers, the teacher 

moved on to teaching addition of rational numbers with different denominators. The 

teacher used three different examples for this idea, and these examples included (+, 

+), (-, +) and (-, -) as the sign of the first and second addend respectively. In addition, 

these examples illustrated the addition of a positive integer and a positive proper 

number, two negative mixed numbers or two positive proper numbers. The teacher 

provided examples for the subtraction of rational numbers with different 

denominators after teaching the subtraction of rational numbers with same 

denominators. The subtraction examples of this kind used by Teacher D included (+, 

+) and (-, +) as the sign of the minuends and subtrahends respectively. Besides, these 

examples included minuends and subtrahends that were either a proper number, an 
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improper number, or an integer. However, none of the terms of the subtraction 

examples with different denominators was in mixed number form.  

Although estimation of addition and subtraction operations with rational 

numbers was emphasized in the middle school mathematics curriculum and in the 

textbook, Teacher D provided only one specific estimation example. In this example, 

the students were asked to estimate the addition of 
1

2
100

  and 
95

2 .
100

 Teacher D 

explained that estimation is synonymous with rounding. Next, she focused on the 

fractional parts of the rational numbers and indicated that 
1

100
 is very close to 0 

while 
95

100
 is close to 1. Besides, she located these rational numbers on a number line 

to support her idea. Eventually, she rounded 
1

2
100

  to -2 and similarly 
95

2
100

 to 3. 

As it can be seen, this example illustrated the estimation of addition of a negative 

mixed number and a positive mixed number. However, Teacher D did not provide 

any example for estimating the subtraction of rational numbers. 

4.1.1.5. Examples used for performing multiplication and division operations 

with rational numbers 

In the middle school mathematics curriculum, teachers are suggested to start 

teaching multiplication and division of rational numbers by having students 

remember multiplication and division of fractions. After recalling addition and 

subtraction of fractions, teachers are suggested to use activities related with 

multiplication and division of rational numbers. More importantly, the curriculum 

explained that middle school mathematics teachers should be careful about several 

points while teaching multiplication and division of rational numbers. First, teachers 

were alerted to teach special cases of multiplication and division by 0, 1 and (-1). 

Second, they were informed to teach the properties of multiplication operation with 

rational numbers and their algebraic notations. More specifically, they were warned 

to teach distributive property of multiplication over addition and subtraction and their 

algebraic notations and emphasize that product of a rational number by its 
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multiplicative inverse is equal to 1. Third, they were alerted to teach estimation of 

multiplication and division of rational numbers. Finally, they were notified to teach 

calculation of square and cube of rational numbers.  

In the mathematics textbook followed by the classrooms, the examples 

selected for teaching multiplication and division of rational numbers represented the 

following ideas: modeling multiplication of rational numbers, multiplication and 

division of rational numbers, multiplication and division by 0, 1 and (-1), estimation 

of multiplication and division of rational numbers, modeling and calculating the 

square and cube of rational numbers, multi-step operations with rational numbers, 

and properties of multiplication of rational numbers. When examples included in the 

textbook for teaching each of these ideas were examined, it was seen that there were 

some structural similarities and differences among them with respect to the sign and 

form of terms included in the operations. Therefore, only the examples that have 

different structural features were presented in Table 4.22. Besides, the number of 

examples for each idea was also presented. 
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Table 4.22. Examples included in the textbook for multiplication and division of 

rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Modeling 

multiplication of 

rational numbers 

 

5 

Multiplication and 

division of rational 

numbers 

2 3 4 2 2 4
; ;

3 4 5 3 3 5

5 4 4 2 2 4
: ; : ; : ;

8 10 5 3 3 5

2 1 1 1 8 6 18
: ; 1 : 2 ; : ; : 1

9 18 3 4 3 7 25

;          

          

       

           
           
           

           
           
           

         
         
         

 .4

  13 

Multiplication and 

division by 0, 1 

and (-1)    

4 4 4 2 2
0; 1; ( 1); 0 : ; : 0;

5 5 5 3 3

1 2 2 2 2
1: ; 1 : ; :1; 1 : ; : 1

99 3 3 3 3

            

          

         
         
         

       
       
       

  11 

Estimation of 

multiplication and 

division of rational 

numbers 

1 7 6 8 1 5
30; ; 4 ; 6 603 ;

7 8 11 9 8 12

1 4 1 1 7
3 :1 ; 378 : 4 ; 24 : 11

11 9 9 9 8

        

    

       
       
       

     
     
     

  11 

Modeling and 

calculating the 

square and cube of 

rational numbers 

 

2 3 2 3

3 2 2 2
;

4 3 5 3
    

       
       
       

  

8 
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Table 4.22. (Continued) 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step 

operations with 

rational numbers 

3 5 4 3 1 1 3 7
1 1 ; ;

5 3 6 2 2 3 4 5

1 1 7
2 1 :

3 4 24

         

  

       
               

   
       

  3 

Properties of 

multiplication of 

rational numbers 

Commutative property 

2 1 1 2 2 4 13 2
;

3 4 4 3 13 7 5 13
          
       
       
       

13


4
;

5 7

1 3 21 3 1

21 8 5 8 21



        
       
       
       

21
 

 
 
  5

 
 
 

 

Associative property 

1 3 1 1 3 1
;

2 4 3 2 4 3

2 1 1 2 1 1

3 4 2 3 4 2

     

          

   
   
   

           
                         

 

Multiplicative inverse property 

2 3 3 4 4 5 5 6

3 4 2 3 5 6 4 5

2 3 3 4 4 5 5 6 6 12 20 30
1.1.1.1 1

3 2 4 3 5 4 6 5 6 12 20 30

       

           

 

Distributive property 

3 4 4 1 3 1 1 1 5 4 2
; ; ;

4 5 7 2 4 2 2 3 4 3 5

2 4 3 2 99 33
;

3 5 20 99 48 24

x y             

       

        
                

      
            

 

11 

 

The textbook included 62 examples for multiplication and division of rational 

numbers. The textbook emphasized modeling of multiplication of rational numbers 

before introducing the traditional multiplication algorithm. It provided several 

modeling examples and each model included factors that are positive rational 

numbers. Actually, these examples addressed students’ prior knowledge on modeling 

multiplication of fractions. Besides, the examples included factors that are in proper 
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form and there was not any modeling example that included factors that are greater 

than one. Although the textbook emphasized modeling of multiplication of rational 

numbers, it did not provide any example for modeling the division of rational 

numbers.  

After the provision of modeling examples, the textbook presented examples 

related with multiplication of rational numbers by using the traditional algorithm. 

These examples included either two positive factors, two negative factors or one 

negative and one positive factor. By presenting these examples, the textbook 

emphasized that the multiplication of two positive or two negative rational numbers 

will yield a positive product while the multiplication of one positive and one negative 

rational number will yield a negative product. Nevertheless, the factors included in 

the multiplication operations were all proper numbers.  

The textbook included examples for the division of rational numbers after 

presenting all ideas related with the multiplication of rational numbers. The textbook 

did not provide any model for the division operation. Instead, it began with the 

explanation of invert and multiply algorithm to teach the division of rational numbers 

and it directly provided examples to illustrate this algorithm. Besides, when 

examples related with division of rational numbers were examined, it was seen that 

these examples included more variations in terms of sign and form of terms when 

compared to the variability in multiplication examples. For instance, the dividends 

and the divisors existing in the division examples were either positive-positive, 

positive-negative, negative-positive or negative-negative with respect to their signs. 

Besides, the dividends were either in proper, improper or mixed number form while 

the divisors were in proper, mixed or decimal form.   

The middle school mathematics curriculum and the textbook explicitly 

suggested teachers to emphasize the teaching of special cases of multiplication and 

division of rational numbers by 0, 1 and (-1).  The textbook included several 

examples for teaching multiplication of rational numbers by 0, 1 and (-1). Namely, 

the textbook presented the multiplication of 
4

5

 
 
 

 by 0, 1 and (-1) respectively and 

subsequently provided the following explanations: “the multiplication of each 
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rational number by 0 results in a product of 0, the multiplication of each rational 

number by 1 is equal to the rational number itself and the multiplication of each 

rational number by (-1) is equal the additive inverse of that rational number”. When 

examples related with division of rational numbers by 0, 1 and (-1) or with the 

division of 0, 1 and (-1) by any rational number excluding zero were examined, it 

was seen that there were a lot more examples when compared to the examples related 

with multiplication by 0, 1 and (-1). To be more specific, the textbook presented the 

division of 
2

3

 
 
 

 by 0, 1 and (-1) or the division of 0, 1 and (-1) by 
2

3

 
 
 

 and 

thereafter provided the following explanations: “the division of 0 by any rational 

number that is different from 0 yields 0, the division of 1 by any rational number that 

is different from 0 is equal to the multiplicative inverse of that rational number, the 

division of (-1) by any rational number excluding 0 is equal to the additive inverse of 

the multiplicative inverse of that rational number, the division of any rational number 

by 0 is undefined, the division of any rational number by 1 is equal to the rational 

number itself and finally the division of any rational number by (-1) is equal to the 

additive inverse of that number”. 

Similar to the middle school mathematics curriculum, the textbook also 

emphasized estimation of multiplication and division of rational numbers. The 

examples presented for the estimation of multiplication included either a proper 

number, a mixed number, or an integer as the first factor. Identically, those examples 

included either an integer, a proper number or a mixed number as the second factor 

of the multiplication operation. Besides, except for one example, all estimation 

examples regarding multiplication of rational numbers included positive factors. The 

number of examples provided by the textbook for the estimation of division was 

similar to the number of examples provided for the estimation of multiplication. In 

more detail, estimation of division examples included dividends in the form of a 

mixed number or an integer while the dividends were all in mixed number form. 

Finally, all but one of the estimation of division examples included dividends and 

divisors that were both positive and one example included a negative dividend and a 

negative divisor. 
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As emphasized by the middle school mathematics curriculum, the textbook 

provided several examples for modeling and calculating the square and cube of 

rational numbers. The textbook initially presented modeling examples that included 

the square and cube of positive rational numbers that are less than 1. Later, it 

presented examples that showed how to calculate the square and cube of rational 

numbers that are either positive or negative. However, the bases of the exponents 

were all in proper number form. The textbook neither provided examples that 

included a base in improper number form nor a base in mixed number form.  

The explanation part of the textbook did not include multi-step operations 

with rational numbers. However, there were three exercise examples that were left 

for the students. These examples were all structurally different from each other. 

More specifically, the first example included four factors. The first and the third 

factor of this example was a proper number while the second and fourth factor 

included the addition of a mixed number and an integer and the subtraction of an 

improper number from an integer respectively. The second example included two 

factors. The first factor of this example included the addition of two positive proper 

numbers while the second factor included the subtraction of a positive improper 

number from a positive proper number. Finally, the third example was a multi-step 

division example. In this example, the divisor included the subtraction of a negative 

mixed number from another negative mixed number and the divisor was a positive 

rational number in proper form.   

After the provision of examples which illustrated the traditional 

multiplication algorithm, the textbook included examples for the properties of 

multiplication of rational numbers. The textbook initially provided examples for the 

commutative property of multiplication of rational numbers. The first commutative 

property example was used as a basis for justifying that the equality holds for every 

rational number. The other two examples showed how commutative property of 

rational numbers can be applied to mathematical problems. That is, those two 

examples paved the way for solving problems easily without actually making 

computations. Finally, the commutative property examples included factors in the 
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form of a positive proper number, negative proper number, or negative improper 

number.  

The textbook provided two associative property examples. These two 

examples were used as a basis for justifying that the associative property holds for 

every rational number. The first example included factors in positive proper number 

form while the second example included factors as two negative proper numbers and 

one positive proper number. The example provided for the multiplicative inverse 

property of rational numbers was not used as a basis for justification. Instead, this 

example showed how multiplicative inverse property can be applied to mathematical 

problems so as to solve them easily. Besides, this example merely included factors 

that were positive proper numbers.  

Last, the textbook presented examples for teaching the distributive property 

of multiplication over addition and subtraction. Three examples were provided in the 

textbook to illustrate the distributive property of multiplication over subtraction. One 

of these examples was used as a basis for justifying that the product obtained by 

using the distributive property is equal to the product obtained by taking account of 

the order of operations. The other two examples illustrated how to apply distributive 

property to mathematical problems. Two examples were included in the textbook for 

teaching distributive property of multiplication over addition. The first example 

showed how to distribute a negative rational number over a negative and a positive 

rational number. The second example included unknown values and it illustrated 

how these unknown values can be found by using distributive property without 

actually computing. This example included rational numbers in positive proper 

number form.  

The examples used by Teacher A for teaching multiplication and division of 

rational numbers represented the following ideas: modeling multiplication of rational 

numbers, multiplication and division of rational numbers, calculating the square and 

cube of rational numbers, multi-step operations with rational numbers, and properties 

of multiplication of rational numbers. When examples used by Teacher A for 

teaching multiplication and division of rational numbers were examined, it was seen 

that there were some structural similarities and differences among them with respect 
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to the sign and form of terms included in the operations. Therefore, only the 

examples that have different structural features were presented in Table 4.23. 

Besides, the number of examples for each idea was also presented. 

 

Table 4.23. Examples used by Teacher A for teaching multiplication and division of 

rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Modeling 

multiplication of 

rational numbers 

 

3 

Multiplication and 

division of rational 

numbers 

3 2 1 1 2 3 4 1
; ; ; 2 3

5 7 5 7 9 2 5 8

2 3 4 9 3 5
; 0.7 ; 0.25 ( 0.9); ;

3 4 5 14 5 7

1

3 5 5 1 2 5 5 2 2: ; : ; 5 : 2 ; : ;
54 6 8 3 3 6 9 7

3

n

           

          

      

       
       
       

   
   
   

 

23 

Calculating the 

square and cube of 

rational numbers 

2 2 2 2

23 33 3

3 2

2 3 3 2 2
; ; ; 3

3 5 5 7 5

3 2 2 2 7
; ; ;

4 5 5 5 5

       


        

       
       
       

        
        
        

  11 
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Table 4.23. (Continued) 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step 

operations with 

rational numbers 

 

2 1 1 2 1 1 1 1 3 7
; 1 1 ; ;

3 6 2 5 2 2 2 3 4 5

1 3 6 2 3 2 9
2 1 1 1 ; 3 2 4 ;

2 5 7 7 4 5 10

3 5 4 3
0.35 200 ( 68); 1 1 ;

5 3 6 2

1 1
1 1

2 3

           

       

          

  

           
           
           

       
       
       

   
   
   

  
 
  

 

1 1
1 1 ;

4 100

21 1 7 3 5 7
2 1 : ; :

3 4 4 2 3 7 5

      


      

    
     

    

   
       

  
10 

Properties of 

multiplication of 

rational numbers 

Multiplicative inverse property 

The multiplicative inverse of 
19

7
  

Distributive property  

     2 3 5 ; 2 3 5 ; 2 5 7 2 ;

2 1 1 3 3 6 2 99 33
;

5 10 2 4 2 5 99 48 24
;

            

        
       

               

  

7 

 

Teacher A used 54 examples for multiplication and division of rational 

numbers. Although the textbook emphasized modeling multiplication of rational 

numbers, Teacher A began teaching multiplication of rational numbers by using the 

traditional multiplication algorithm. In contrast, Teacher A provided several 

modeling examples at the end of the multiplication of rational numbers just before 

teaching division of rational numbers. In these models, Teacher A used vertical 

divisions to show the first factor and horizontal divisions to show the second factor. 

Meanwhile, he found the common denominator of the two factors in order to divide 

the whole easily. Finally, he found the product of the multiplication operation by 

counting the double shaded parts included in the whole. The examples were similar 
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to those included in the textbook. Namely, each model included factors that were 

positive rational numbers. In fact, these modeling examples addressed students’ prior 

knowledge on modeling multiplication of fractions. Despite this, Teacher A did not 

provide any modeling example that included factors that are greater than one.  

As mentioned above, Teacher A began teaching multiplication of rational 

numbers by introducing examples which illustrated the use of traditional 

multiplication algorithm. These examples included either two positive factors, three 

positive factors, two negative factors or one negative and one positive factor. 

Besides, the factors included in the multiplication operations were either in proper 

number, mixed number, repeating decimal or terminating decimal form. Moreover, 

some other examples included unknowns as the first or the second factor of the 

multiplication operation. On the whole, by using these examples the teacher 

emphasized that the multiplication of two positive or two negative rational numbers 

would yield a positive product while the multiplication of one positive and one 

negative rational number would yield a negative product. Besides, he explicitly 

uttered and wrote on the board that the product of two rational numbers with the 

same signs will be positive and the product of two rational numbers with opposite 

signs will be negative.  

Similar to the textbook, Teacher A generated examples for the division of 

rational numbers after introducing all ideas related with the multiplication of rational 

numbers. However, he did not use any model for the division of rational numbers. In 

place of this, he provided examples for teaching the invert and multiply algorithm for 

division of rational numbers. When these examples were examined, it was seen that 

they included some variations with respect to the sign and form of terms. Namely, 

the sign of the dividends and divisors of the division operations were either (+, +), (-, 

+), (-, +) or (-, -). Besides, the dividends were in proper or mixed number form and 

the divisors were in proper, improper and mixed number form. More importantly, the 

teacher emphasized the use of two different notations for expressing division of 

rational numbers and provided many examples by using both notations.  In the first 

notation, the teacher showed the division operation by using an obelus in this 

manner: .
a c

b d
   In this notation, the divisor, the dividend and the quotient are all 
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expressed on one line. In the second notation, the teacher showed the division 

operation by placing the dividend over the divisor with a vinculum between them in 

this way: .

a

b
c

d

 In this second notation, the divisor and the dividend are expressed on 

different lines. 

Although suggested by the middle school mathematics curriculum and the 

textbook, Teacher A did not provide any examples for the following ideas: 

multiplication and division by 0, 1 and (-1), estimation of multiplication and division 

of rational numbers and modeling the square and cube of rational numbers. Despite 

not using any models for the square and cube of rational numbers, Teacher A showed 

how to calculate them with a broad range of examples. The examples used by the 

teacher for explaining this idea included much more variability when compared to 

textbook examples. To be more precise, the examples included in the textbook singly 

had one rational number as a base. However, the examples provided by the teacher 

included bases which had an exponent either in the numerator or in the denominator. 

Besides, some of the examples had bases that included subtraction of rational 

numbers. In short, the teacher covered this idea in greater depth when compared to 

the examples included in the textbook.  

Although the explanation part of the textbook related with multiplication and 

division of rational numbers did not provide multi-step operation examples, Teacher 

A allocated much time for solving multi-step operations with rational numbers. 

Meanwhile, he used a large number of examples to teach this idea to their students. 

These examples were very different from each other in terms of their structural 

components. Most of the multi-step multiplication examples included two factors and 

these factors were formed either by adding or subtracting two rational numbers. 

Besides, these factors included the addition or subtraction of rational numbers that 

were either proper number, improper number, integer or mixed number and all of the 

rational numbers included in the subtraction and addition operations were positive 

numbers. Apart from the multi-step multiplication examples with two factors, there 

was one example with four factors and one example with a continuing pattern. The 
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multi-step multiplication example with a continuing pattern was different in nature 

from the rest of the multi-step multiplication examples since it could not be solved 

without cross simplifying the numerators of the antecedent factors with the 

denominators of the posterior factors.  

The number of multi-step division examples provided by Teacher A was very 

few when compared to the number of multi-step multiplication examples provided by 

him. That is, Teacher A used only two multi-step division examples and both 

examples included two terms. The first example had a dividend that included the 

subtraction of two negative mixed numbers and a positive improper divisor. The 

second example included division of a negative proper number by a positive proper 

number, then subtraction of the absolute value of a negative improper number and 

finally addition of a positive improper number. It is worthy of note that the teacher 

had his students remember the order of operations before working out this example 

since it entailed following the rules for the order of operations correctly. 

Ultimately, although emphasized by the middle school mathematics 

curriculum and the textbook, Teacher A did not allocate time for covering properties 

of multiplication of rational numbers. He taught multiplicative inverse property and 

distributive property of multiplication as he came across with exercise examples that 

entailed the use of these properties. He provided only one example for teaching 

multiplicative inverse property of rational numbers. However, while finding the 

multiplicative inverse of the selected positive improper number, the teacher used the 

expression ‘flip over’ although the middle school mathematics curriculum 

emphasized that the two rational numbers are multiplicative inverses of each other if 

their product is equal to one.  

Teacher A put more emphasis on the distributive property of multiplication 

over addition and subtraction. More specifically, the teacher provided three examples 

for the distributive property of multiplication over addition. In the first example, 

natural numbers were selected to show the distributive property. Therefore, this 

example addressed students’ prior knowledge on distributive property of 

multiplication of natural numbers. The second example included unknowns, and the 

teacher provided this example to show that it was impossible to find the unknowns 



191 

 

without using the distributive property of multiplication over addition. Again, natural 

numbers were used to generate this example. Unlike the previous two examples, the 

third example was used to show that the multiplication operation is right-distributive 

over addition operation. This time, the teacher selected positive proper numbers to 

generate the example. Moreover, Teacher A used two examples to illustrate the 

distributive property of multiplication over subtraction. In the first example, a 

positive proper number was multiplied by the subtraction of a positive improper 

number from another positive improper number. In the second example, a positive 

proper number was multiplied by the subtraction of a negative improper number 

from another negative improper number. These two examples illustrated that the 

multiplication operation was left-distributive over subtraction operation. Finally, 

Teacher A used these two examples to show how to apply the distributive property to 

the given numerical expressions.  

The examples used by Teacher B for teaching multiplication and division of 

rational numbers represented the following ideas: multiplication and division of 

rational numbers, multiplication by 0, 1 and (-1), calculating the square and cube of 

rational numbers, multi-step operations with rational numbers, and properties of 

multiplication of rational numbers. When examples used by Teacher B for teaching 

the above mentioned ideas were examined, it was seen that the components included 

in most of the examples were structurally different from each other. Therefore, only 

the examples that have different structural components were presented in Table 4.24. 

Besides, the number of examples for each ideas were also presented. 
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Table 4.24. Examples used by Teacher B for teaching multiplication and division of 

rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multiplication and 

division of rational 

numbers 

   

   

2 3 7 3 2 4 2 5
; ; 0.6 0.6; ; 1 ;

3 4 4 9 3 5 3 7

3 3 1 11 4 2
; 3 1 ; 18 ;

8 2 2 24 5 3

5 3 1 7
1 ; ; 100 0.3 ;

13 4 4 3


             

            

  
       



           
           
           

     
     
     

       
       
       

 

 

1 1 5 27 1 5 7 3
2 5 ; ; : ; 2 ;

3 2 9 4 3 12 4 7

5 3 5 5 1 2 6
: 2 ; : ; : 2 ; :

9 6 4 3 2 9 5

  
         

  
     

           
           
           

       
       
       

  

23 

Multiplication by 

0, 1 and (-1) 
 

4 4 4
0; 1; 1

5 5 5
        
     
     
     

  3 

Calculating the 

square and cube of 

rational numbers 

         
2

2 2 3 4 4 4

3 3 3 4

1
3 ; 4 ; 2 ; 2 ; 2 ; 2 ; 1 ;

2

1 3 3 1
; ;

2 5 2 5
;

          


   

 
 
 

       
       

       

  19 

Multi-step 

operations with 

rational numbers 

1 7 1 3 1 6 0.2
2 : 1 : 1 ;

3 3 2 4 2 60.3
;     

       
       

       
  3 
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Table 4.24. (Continued) 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Properties of 

multiplication of 

rational numbers 

Commutative property 

5 2 2 5

8 9 9 8

 
  

   
   
   

  

Associative property 

6 5 6 4 5

12 6 12 3 6
B

 
    

        
                  

  

Identity property 

( 7) 1 ( 7)      

Zero property 

5
0

8

 
 
 

  

Distributive property

 
7 2 3

4. 5 3 4.5 4.3; ;
10 5 4

5 2 5 2 5 3

4 3 4 3 4 8
x

       

         

   
      

         
                 

 

Multiplicative inverse property 

The multiplicative inverse of 
5

9

 
 
 

; 
3

6

 
 
 

;  
3

4
1
 
 
 

;  and 0.012 

 

12 

 

 Teacher B used 60 examples for teaching multiplication and division of 

rational numbers. Although the textbook emphasized modeling of multiplication of 

rational numbers before teaching multiplication of rational numbers, Teacher B did 

not provide any modeling example. In place of this, Teacher B started teaching 

multiplication of rational numbers by using the traditional multiplication algorithm. 

More specifically, the teacher initially provided the multiplication of two positive 

proper numbers and thus, he recalled the multiplication of fractions. Broadly 

speaking, Teacher B presented many examples for teaching the algorithm for 
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multiplication of rational numbers. Besides, the multiplication examples used by 

Teacher B included all possible variations in terms of the sign of the factors. The 

examples with two factors included (+, +), (+, -), (-, +) or (-, -) as the sign of the first 

and second factors respectively. The teacher also used a few examples with three 

factors. These examples included either two negative factors and one positive factor 

or three negative factors. Moreover, the multiplication examples used by the teacher 

included much more variability in terms of the form of factors when compared to 

multiplication examples provided by the textbook. More specifically, the factors 

included in the multiplication examples were generally in proper number, improper 

number and mixed number form. Integers, repeating decimals and terminating 

decimals were less frequently used by the teacher as forms of factors included in the 

multiplication operations.  

Unlike the textbook, Teacher B generated examples for the division of 

rational numbers concurrently with the multiplication of rational numbers. Similar to 

the textbook, Teacher B did not provide any example for modeling division of 

rational numbers. Instead of this, the teacher immediately introduced examples that 

illustrated the use of invert and multiply algorithm for the division of rational 

numbers. However, the number of examples used by Teacher B for the division of 

rational numbers was quite few in proportion to the number of multiplication 

examples. When division examples were examined, it was seen that they included 

some variations with regards to the sign and form of the terms. That is, the dividends 

were either in positive proper number, negative proper number, negative improper 

number or integer form and the divisors were either in positive improper number, 

negative improper number, positive mixed number, negative mixed number or 

integer form. Similar to the textbook, Teacher A used only one notation for teaching 

division of rational numbers. In this notation, the division operation was shown via 

an obelus as follows: .
a c

b d
  Finally, after providing several examples for teaching 

multiplication and division of rational numbers, Teacher B emphasized that the 

product/quotient will be negative when the terms have different signs and the 

product/quotient will be positive when the terms have same signs.  
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Although Teacher B provided a few examples for teaching the special cases 

of multiplication by 0, 1 and (-1) at the introductory phase of the lesson, he did not 

pay attention to this idea for the latter multiplication examples. In fact, the examples 

related with multiplication by 0, 1 and (-1) were not generated by Teacher B himself. 

That is, these examples appeared on the initial pages of the textbook and the teacher 

had students examine these examples by projecting them on the board. In a similar 

fashion, Teacher B did not use any division example that focused on the special cases 

of division by 0, 1 and (-1).  

There were several examples in the textbook that targeted modeling of the 

square and cube of rational numbers, however, Teacher B immediately provided 

examples for calculating the square and cube of rational numbers. To be more 

precise, Teacher B initially stressed that the power of an exponential number tells 

how many times the base number is multiplied by itself. Later, he recalled 

calculating the even and odd powers of integers. In addition to this, he paid attention 

to the distinction between the integer exponents that have a base inside the 

parenthesis and those that have a base without parenthesis. After recalling integer 

exponents, Teacher B provided several examples that showed how to calculate the 

square and cube of rational numbers. Most of these examples included similar 

structural components when compared to the examples included in the textbook for 

teaching this idea.  Namely, the bases of the exponents were all positive or negative 

proper numbers excluding one. Different from the textbook examples, Teacher B 

generated examples with mixed number bases or examples with bases raised to the 

power of 4.   

Teacher B did not provide any multi-step operation example during the 

teaching of multiplication and division of rational numbers. However, he provided 

three multi-step operation examples as he came across with them while working out 

exercise examples. While the first and the second example were multi-step division 

examples, the third example was a multi-step multiplication example. In the first 

example, the dividend included the subtraction of a positive improper number from a 

positive mixed number and the divisor was a negative proper number. In the second 

example, the dividend included the subtraction of a positive proper number from a 
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positive integer and the divisor included the addition of a positive proper number and 

a positive integer. Finally, in the third example, the first factor included the division 

of a positive integer by a repeating decimal and the second factor included the 

division of a repeating decimal by a positive integer. 

After Teacher B provided examples that illustrated the traditional 

multiplication algorithm and the invert and multiply algorithm, he moved on to 

teaching properties of multiplication of rational numbers. Initially, Teacher B 

provided an example for the commutative property of multiplication of rational 

numbers. This example included one negative and one positive proper number as 

factors of the multiplication operation. Next, the teacher provided an example for the 

associative property of multiplication of rational numbers. In this example, the left 

hand side of the equality included an unknown value, and the teacher showed the 

students how to find it without actually doing calculations. Besides, this example 

included one factor in negative proper number form, one factor in positive improper 

number form and one factor in positive proper number form. To illustrate the identity 

property of multiplication of rational numbers, Teacher B demonstrated the 

multiplication of a negative integer and 1. As a matter of fact, this example was 

provided by one of the students in the classroom and the teacher did not attempt to 

rewrite the integer as a rational number. To illustrate the zero property of 

multiplication, Teacher B selected an example that included a positive proper 

number as a companion to zero.  

Among all properties, Teacher B put more emphasis on the teaching of 

distributive property and multiplicative inverse property of rational numbers. The 

teacher provided three examples for teaching the distributive property of 

multiplication over addition. However, the teacher did not provide any example for 

teaching the distributive property of multiplication over subtraction. The first 

distributive property example used by the teacher showed how to distribute a natural 

number over the addition of two natural numbers. The second example was used to 

show how to distribute a negative proper number over the addition of two positive 

proper numbers. The last example included an unknown value and was provided by 

the teacher to show how to find the unknown value by using the distributive property 
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instead of actually calculating. Finally, this example included rational numbers in 

positive proper, negative proper and negative improper number form.  In comparison 

with the textbook and Teacher A, Teacher B used a wide variety of examples to 

teach the multiplicative property of multiplication. To be more specific, Teacher B 

selected rational numbers in the form of a negative proper number, a positive proper 

number, a positive mixed number and a decimal number to teach the multiplicative 

inverses of those rational numbers to his students.  

The examples used by Teacher C for teaching multiplication and division of 

rational numbers were very limited. Teacher C provided only three examples for 

teaching the traditional algorithm for multiplication of rational numbers. In a similar 

fashion, Teacher C used only one example to teach the division of rational numbers. 

On the other hand, the teacher did not provide examples for teaching the following 

ideas: modeling multiplication of rational numbers, multiplication and division by 0, 

1 and (-1), estimation of multiplication and division of rational numbers, modeling 

and calculating the square and cube of rational numbers, multi-step operations with 

rational numbers and properties of multiplication of rational numbers.  

Before introducing examples related with multiplication of rational numbers, 

Teacher C explained that there is no need to find the common denominator of the 

factors included in the multiplication operation. Next, the teacher verbally explained 

the traditional algorithm for multiplication of rational numbers. Finally, the teacher 

used 
1 2

,
3 7

   
      
   

1 2

3 7

   
     
   

 and 
1 2

3 7

   
     
   

 respectively to illustrate 

multiplication of rational numbers. Although the middle school mathematics 

curriculum and the textbook emphasized recalling multiplication of fractions, 

Teacher C started with an example that included a positive proper number as the first 

factor and a negative proper number as the second factor. In the second example, the 

teacher used two negative proper numbers as factors of the multiplication operation. 

In the last example, the teacher used two positive proper numbers as the factors of 

the multiplication operation. It is important to note that while moving from the first 

example to the second example and from the second example to the third example, 

Teacher C changed only the sign of the factors while keeping their magnitudes 
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invariant. Finally, the teacher emphasized that the multiplication of two positive or 

two negative rational numbers yields a positive product while the multiplication of 

one positive and one negative rational number gives a negative product.  

Similar to the multiplication of rational numbers, Teacher C verbally 

explained the invert and multiply algorithm for the division of rational numbers 

before providing any example related with this idea. Then, the teacher provided 

5 7
:

9 8

   
    
   

 as a specific example for the division of rational numbers. As it can be 

seen, this example included a negative proper number as the dividend and a positive 

proper number as the divisor of the division operation. Subsequently, the teacher 

stressed that division of a negative rational number by a positive rational number 

yields a negative product. However, Teacher C did not provide further examples for 

the division of rational numbers and rushed to teaching the objective ‘solving multi-

step operations with rational numbers’ indicating that there is not much time for 

covering all rational number ideas outlined by the middle school mathematics 

curriculum.  

The examples used by Teacher D for teaching multiplication and division of 

rational numbers represented the following ideas: modeling multiplication of rational 

numbers, multiplication and division of rational numbers, calculating the square and 

cube of rational numbers and properties of multiplication of rational numbers. When 

examples used by Teacher D for teaching the above mentioned ideas were examined, 

it was seen that most of the examples included components that were structurally 

different from each other. These examples with different structural components are 

presented in Table 4.25. Additionally, the number of examples used by Teacher D 

was presented to get a better picture about the variability of those examples.  
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Table 4.25. Examples used by Teacher D for teaching multiplication and division of 

rational numbers 

Ideas  Illustrative examples 

Number of 

examples 

used 

Modeling 

multiplication of 

rational numbers 

  

 

3 2

5 3
  4 

Multiplication and 

division of rational 

numbers 

?

3 7 3 7 3 7 1 5
; ; ; ;

8 14 8 14 8 14 2 8

3 1 1 1 11 1 3 4
2 ; 4 ; 3 ; 4 ; 2 ;

4 2 2 2 8 7 5 5

3 6 3 6 3 6 1 3 1 2.3
: ; : ; : ; : ; 0.4 : ;

5 7 5 7 5 7 2 5 9 0.



          

            

        

       
       
       

   
   
   

     
     
      3

 15 

Calculating the 

square and cube of 

rational numbers 

2 3 2 3 1 2

1 1 1 1 1 1
; ; ; ; ;

2 2 2 2 2 2

 

        
           
           
           

  6 
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Table 4.25. (Continued) 

Ideas  Illustrative examples 

Number of 

examples 

used 

Properties of 

multiplication of 

rational numbers 

Commutative property 

1 3 3 1

2 5 5 2
     

Associative property 

1 1 2 1 1 2

2 5 3 2 5 3
      

   
      

  

Zero property 

1
0

2
 
 
 
 

 

Identity property 

1
1

2


 
 
 

 

Distributive property 

4 2 1 4 2 4 1
;

7 3 5 7 3 7 5

2 1 3 2 1 2 3

3 4 5 3 4 3 5

     

        

 
  

     
         

  

Multiplicative inverse property 

The multiplicative inverse of -1.2 

7 

 

Teacher D used 32 examples for teaching multiplication and division of 

rational numbers. Although the textbook emphasized modeling multiplication of 

rational numbers before introducing the multiplication algorithm, Teacher D started 

her lesson by providing examples that involved the use of this algorithm and she did 

not provide any model during the teaching of multiplication of rational numbers. 

However, she introduced several examples of this kind just before moving on to the 

teaching of division of rational numbers. More precisely, Teacher D provided her 

students a few modeling examples after teaching all ideas about multiplication of 

rational numbers. These examples were similar to those included in the textbook. 

Namely, each model included factors that are positive proper numbers. Actually, by 
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these examples the teacher recalled modeling multiplication of fractions. 

Nevertheless, Teacher D did not provide any modeling example that included factors 

greater than one.  

As stated above, Teacher D began teaching multiplication of rational numbers 

by introducing the traditional multiplication algorithm. When compared to the 

number of examples included in the textbook for the multiplication of rational 

numbers, the number of examples used by Teacher D for teaching this idea was 

approximately the same. However, while the textbook included more examples for 

the division of rational numbers, Teacher D provided more examples for the 

multiplication of rational numbers. Furthermore, the examples provided for 

multiplication included nearly all possible variations in terms of the sign and form of 

the factors. That is, these examples included either two positive factors, two negative 

factors or one negative and one positive factor and the factors were either proper 

numbers, improper numbers, integers or mixed numbers. More importantly, the 

teacher used 
3 7 3 7 3 7

; and
8 14 8 14 8 14

       
               

       
 consecutively to draw 

students’ attention to the role of the sign of factors on the sign of the product in 

multiplication of rational numbers. Besides, Teacher D emphasized that the rules for 

multiplication of integers are also valid for the multiplication of rational numbers and 

concluded that the product of two rational numbers with same signs will be positive 

while the product of two rational numbers with opposite signs will be negative. 

Finally, all but one of the examples entailed students to multiply the given two 

factors whereas one example checked whether students hold the misconception that 

b
a

c
  is equal to .

b
a

c
  

Similar to the textbook, Teacher D generated examples for the division of 

rational numbers after introducing all ideas related with multiplication of rational 

numbers. Like Teacher A, Teacher B and Teacher C, Teacher D started teaching 

division of rational numbers without using any models. That is, she immediately 

started with division examples that included the use of invert and multiply algorithm. 

Teacher D used less number of division examples when compared to the examples 

used by her for teaching multiplication of rational numbers. The division examples 
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included some variability with respect to the sign and form of their terms. These 

examples included dividends that were either positive proper numbers, negative 

proper numbers, positive mixed numbers or positive repeating decimals. Identically, 

the divisors were either positive proper numbers, negative proper numbers, positive 

mixed numbers or positive repeating decimals. The examples used by Teacher D 

were similar to those included in the textbook for teaching division of rational 

numbers except for the ones that included repeating decimals as either a dividend or 

a divisor. More importantly, as she did while teaching multiplication of rational 

numbers, Teacher D introduced 
3 6 3 6 3 6

: : and :
5 7 5 7 5 7


     

         
     

 to the students 

respectively to draw their attention to the role of the sign of the dividend or the 

divisor on the sign of the quotient.  

Although emphasized by the textbook, Teacher D did not provide examples 

for teaching the special cases of multiplication and division by 0, 1 and (-1), 

estimating multiplication and division of rational numbers, solving multi-step 

operations with rational numbers and modeling the square and cube of rational 

numbers. While Teacher D did not provide any example for modeling the square and 

cube of rational numbers, she provided examples for teaching how to calculate them. 

Teacher D used examples of this kind after providing examples for the division of 

rational numbers. The number of examples used by the teacher was less than the 

number of examples included in the textbook for teaching the square and cube of 

rational numbers. Besides, these examples included positive proper or negative 

proper numbers as bases and positive or negative integers as powers of the 

exponents. Thus, the examples used by Teacher D for teaching the square and cube 

of rational numbers were structurally similar to those included in the textbook. More 

specifically, Teacher D used 

2 3 2 3
1 1 1 1

, , and
2 2 2 2

       
          

       
 respectively to illustrate 

the second and third power of rational numbers. In the first example, Teacher D 

selected a positive base and a positive power. In the second example, the teacher kept 

the base invariant and changed the power. Later, Teacher D compared the two 

examples to explain the role of power on the magnitude of the exponents. In the third 
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example, Teacher D selected a negative base and a positive power and in the fourth 

example, the teacher kept the base invariant and changed the power. By providing 

the third and the fourth examples consecutively, Teacher D stressed the role of odd 

power and even power on the sign and magnitude of an exponential number with a 

negative base. Different from the examples included in the textbook, Teacher D used 

two examples that included negative powers. These examples were generated by the 

teacher upon student inquiry. Similar to the previous examples, these examples 

included 
1

2

 
 
 

 as a base and two different negative integers as powers. The teacher 

pointed out that negative exponents would be covered next year and even so she 

briefly explained that negative power meant finding the multiplicative inverse of the 

base and then raising the multiplicative inverse of the base to the power regardless of 

its minus sign.  

Similar to the textbook, Teacher D provided examples for teaching the 

properties of multiplication of rational numbers, after introducing examples that 

illustrate the traditional multiplication algorithm. Teacher D initially provided an 

example for the commutative property of multiplication of rational numbers. In this 

example, the teacher selected positive proper numbers to illustrate the commutative 

property. More specifically, the teacher used this example as a basis for justifying 

that the commutative property holds for every rational number. Next, she used 

another example to illustrate the associative property of multiplication of rational 

numbers. This example included a negative proper number, and two positive proper 

numbers and the teacher calculated both sides of the equality to justify that 

associative property holds for every rational numbers. To teach zero property of 

multiplication, Teacher D selected a negative proper number as a companion to 0 and 

to teach identity property of multiplication she selected a positive proper number as a 

companion to 1.  

Last, Teacher D presented two examples for teaching distributive property of 

multiplication over addition and subtraction. First, the teacher used an example to 

teach the distributive property of multiplication over addition. By this example, the 

teacher showed how to distribute a positive proper number over the addition of two 
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proper numbers. Besides, this example was used as a basis for justifying that the 

product obtained by using the distributive property is equal to the product obtained 

by taking account of the order or operations. The other example used by Teacher D 

illustrated the distributive property of multiplication over subtraction. In this second 

example, the teacher showed how to distribute a negative proper number over the 

subtraction of a positive proper number from another positive proper number. 

Similar to the previous example, the teacher justified that the product obtained by 

using the distributive property is equal to the product obtained by taking account of 

the order or operations.  

Although emphasized by the middle school mathematics curriculum and the 

textbook, Teacher D did not provide any example for the multiplicative inverse 

property in the course of teaching properties of multiplication of rational numbers, 

she provided one example for this property when working out exercise examples. 

Unlike the other teachers, she selected a negative decimal number to show the 

multiplicative inverse of that number. However, when finding the multiplicative 

inverse used the term ‘flip over’ rather than emphasizing that ‘two numbers whose 

product is 1 are multiplicative inverses of one another’. 

4.1.1.6. Examples used for performing multi-step operations with rational 

numbers 

In the middle school mathematics curriculum, teachers were suggested to use 

grouping symbols such as parenthesis, brackets and so forth to determine the order of 

operations included in a mathematical expression. In addition to this, the teachers 

were suggested to emphasize that the order of operations in complex fractions were 

determined according to the main fraction bar. However, the middle school 

mathematics curriculum did not provide any specific example or activity for solving 

multi-step operations with rational numbers.  

In the mathematics textbook followed by the classrooms, the examples 

provided for teaching multi-step operations with rational numbers were classified as 

follows: solving multi-step operations that are expressed on one line, solving multi-

step operations that are expressed as complex fractions and solving multi-step 
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operations that are expressed as a continuing pattern. The illustrative examples and 

the total number of examples for each category are presented in Table 4. 26. 

 

Table 4.26. Examples included in the textbook for teaching multi-step operations 

with rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step operations 

that are expressed on 

one line 

1 1 1 1 2 5 1 1 5 6 6
; : 1 1 ;

2 3 4 5 3 6 4 3 7 7 7

1 3 2 3 5 1 1 1
: ; 3 1 : : 6

3 4 3 2 3 7 4 3

           

       

     
           

       
               

  

7 

Multi-step operations 

that are expressed as 

complex fractions 

2 3 3
1

1 3 2 13 2 5
; : 5; 2 ;

3 2 3 1 1 118 3
1 3

12 3 5 3 9
2

3

 

      

   



  

7 

Multi-step operations 

that are expressed as 

a continuing pattern 

1 1 1 1
1 1 1 1

2 3 4 9
        

       
       
       

 1  

 

The textbook included 15 examples for teaching multi-step operations with 

rational numbers. The first group of multi-step operation examples included in the 

textbook was formed by expressing rational numbers on one line either by using 

parentheses and brackets as grouping symbols or without using grouping symbols. In 

the examples with no grouping symbols, either addition, multiplication and 

subtraction or subtraction, division and addition occured from left to right. These 

examples entailed using the correct order of operations in order to find the values of 

expressions correctly. In addition, these examples were generated mostly by using 

positive proper numbers and occasionally by integers or negative proper numbers. 

The textbook included more examples with grouping symbols when compared to 

those with no grouping symbols. Examples with grouping symbols entailed 

performing the operations within the grouping symbols first and similar to the 
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examples with no grouping symbols, they were mostly formed by using positive 

proper numbers and occasionally by using negative improper numbers or integers.  

The second group of multi-step operation examples were complex fractions 

since these kinds of examples included fractions either in the numerator, or in the 

denominator or both in the numerator and in the denominator. In complex fractions, 

the main fraction bar was a type of grouping symbol. Therefore, the order of 

operations in complex fractions was determined by considering the position of the 

main fraction bar.  In this group of examples, the numerators over the main fraction 

bars were in the following forms: a positive proper number plus a positive improper 

number, an integer minus a positive proper number, or only an integer. Similarly, the 

denominators under the main fraction bars were in the following forms: a positive 

improper number minus a positive proper number, a positive proper number minus 

an integer and a positive proper number plus a positive proper number. Above all, 

the number of operations included in the complex fraction examples of the textbook 

ranged between three and five. This might be indicative of the complexity of the 

examples included in this category.  

Finally, the example with a continuing pattern formed another category of 

multi-step operations. This example was very different in nature from the other 

multi-step operation examples, since it entailed discerning the pattern among 

consecutive factors and performing cross simplifications without necessarily writing 

down all factors. More specifically, each factor included the addition of one whole 

with a positive proper number and the difference between the denominators of the 

two consecutive proper numbers was always equal to 1. 

The examples used by Teacher A for teaching multi-step operations with 

rational numbers were classified as follows: multi-step operations that are expressed 

on one line, multi-step operations that are expressed as complex fractions and multi-

step operations that are expressed as a continuing pattern. The illustrative examples 

and the total number of examples for each category are presented in Table 4. 27. 
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Table 4.27. Examples used by Teacher A for teaching multi-step operations with 

rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step operations 

that are expressed on 

one line 

   
2 0

2 1 2 1 1 1 1 1
: ; 1 1 1 1 ;

3 2 3 2 5 6 7 8

3 2
2 : ; 0.01 0.09 0.473 0.527 ;

4 3

1 28 1 11 1 1 1 1 2 1
; : ; 1 1 ;

17 13 17 13 2 3 4 3 3 2

1 1 1
8 : , 8 :

4 8 4
K L

         

       

          

    

           
           
           

   
   
   

   
   
   

 
 
 

1
, ?

8
K L  

  8 

Multi-step operations 

that are expressed as 

complex fractions 

1 1
3

1 1 1 0.25 0.142 23 ; 1 ; ; ; ;
1 1 1 2 0.025

1 1 1
13 6 5 0.06

1
2

2 0.35 0.7 0.22
3 1; ;

1 0.05 0.0035 0.0011
5

1 1 1 1 1 1 1 1 1 1 1
, , , ?

2 3 4 2 3 4 2 2 2 2 2

x

K A
A K L

L


       

 



     




              

  
13 

Multi-step operations 

that are expressed as 

a continuing pattern  There are 20 terms

2 1 2 1 2 1 1 2 1 2
;

5 2 5 2 5 2 10 100 1000 10000
                   

2 

 

Teacher A used 23 examples for teaching multi-step operations with rational 

numbers. The first group of multi-step operation examples used by the teacher was 

formed by expressing rational numbers on one line either by using parentheses as 

grouping symbols or without using grouping symbols. The examples used by the 

teacher for this group were almost similar to the ones included in the textbook. 

Different from the textbook examples, Teacher A used examples that included 

exponents or decimal numbers as the components of the multi-step operations. The 
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teacher also used several examples with no grouping symbols. In these examples, 

generally subtraction operation occurred before division or multiplication operations. 

Thus, these examples required performing operations in the correct order so as to 

evaluate the expressions accurately. The examples with or without grouping symbols 

generally included positive proper numbers or integers, and rarely included integers.   

The second group of multi-step operation examples used by Teacher A was 

complex fractions. The complex fractions used by the teacher included more 

variability when compared to the complex fractions included in the textbook. First, 

the textbook included complex fraction examples that had either proper number, 

integer, or mixed number components. However, the complex fractions used by 

Teacher A also included repeating decimals and terminating decimals either in the 

numerator or in the denominator. Second, some of the complex fractions used by the 

teacher included an unknown value either in the numerator or in the denominator and 

there was not any example of this kind in the textbook. Last, in some of the 

examples, complex fractions were not explicitly expressed. Instead, these examples 

entailed constructing complex fractions before calculating them. To conclude, the 

complex fractions used by Teacher A were more sophisticated than the complex 

fractions provided by the textbook since teacher generated examples included more 

number of operations and more variety in number forms.  

Finally, Teacher A used two different examples that included a continuing 

pattern and these examples formed the last category of multi-step operations. In the 

first example, there was a recurring subtraction operation and this example entailed 

finding the number of subtraction operations rather than writing down each term to 

find the answer. In the second example, a repeating decimal was expressed as an 

infinite series. That is, the repeating decimal was regarded as the sum of an infinite 

number of rational numbers. This example entailed expressing each rational number 

as a decimal number and performing column addition to discern the repeating pattern 

of digits.  

The examples used by Teacher B for teaching multi-step operations with 

rational numbers were classified as follows: multi-step operations that are expressed 

on one line and multi-step operations that are expressed as complex fractions. The 
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illustrative examples and the total number of examples for each category are 

presented in Table 4.28. 

 

Table 4.28. Examples used by Teacher B for teaching multi-step operations with 

rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step operations 

that are expressed on 

one line 

1 1 1 1 1 1
2 : 3 ; ;

3 4 8 8 4 2

3 1 1 1 7 1 1
7 3; : 1

7 3 4 9 9 9 10

      

       

     
     
     

   
   
   

  4 

Multi-step operations 

that are expressed as 

complex fractions 

41
3

2 1 1 521 ; : ; ;
1 33 2 3

3 1
61 5

1
2 52

2 2 5
1; 1; 3 4;

7 6 6
3 5 4

1 1 2

4 2 12, then find ;
2 7

1
3

1

2
13

, then compare and
24

3

4

a

x x x

a a

b b

A B A B





    

 



      

  
  



    



       

 
 
 

  

9 

 

Teacher B used 13 examples for teaching multi-step operations with rational 

numbers. This number is close to the number of examples included in the textbook 

for teaching multi-step operations. Unlike the textbook, the multi-step operation 

examples that were expressed on one line were all formed by using parentheses as 

grouping symbols. This group of examples was formed by using positive proper 
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numbers and positive integers as components of the multi-step operations and the 

number of operations included in this group of examples ranged between three and 

five. By using these examples, the teacher emphasized the priority of operations 

within the grouping symbols and also the priority of multiplication and division 

operations over addition and subtraction operations. In the meantime, he explicitly 

explained the rule for the order of operations in order to evaluate the given 

expressions correctly.    

The second group of examples used by Teacher B was formed by expressing 

multi-step operations in the form of complex fractions. This group of examples used 

by the teacher included more variations in terms of their structural components when 

compared to textbook examples. As mentioned before, the complex fractions 

provided by the textbook included proper number or integer components in the 

numerators or in the denominators. Thus, these complex fractions included 

components that were all rational numbers. However, the complex fractions provided 

by Teacher B included unknown values in the denominators or numerators in 

addition to complex fractions that are constructed entirely by rational numbers. 

Besides, the number of operations included in this group of examples provided by 

the teacher ranged between four and six. Thus, complex fraction examples used by 

Teacher B were more sophisticated when compared to the same type of examples 

included in the textbook. 

The examples used by Teacher C for teaching multi-step operations with 

rational numbers were categorized as follows: multi-step operations that are 

expressed on one line and multi-step operations that are expressed as complex 

fractions. The illustrative examples and the total number of examples for each 

category are presented in Table 4. 29. 
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Table 4.29. Examples used by Teacher C for teaching multi-step operations with 

rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step operations 

that are expressed on 

one line 

1 1 3
: 9

4 2 5
 

 
  

  1 

Multi-step operations 

that are expressed as 

complex fractions 

1

3 7 415 4 5 3
:3 2 1

1 4 5 55 9 9 21; ; ;
1 1 1 1 52 2

1
2 2 3 2 8

1 1 1
1 1 1

4 5 6

1 1 1
1 1 1

2 3 4



 

   

     

  

    

    

 
  

     
     
     

     
     
     

  5 

 

Teacher C used 6 examples for teaching multi-step operations with rational 

numbers. The number of multi-step operation examples provided by Teacher C was 

very few when compared to those included in the textbook. In addition, the teacher 

used only one example to illustrate multi-step operations that are expressed on one 

line. More specifically, Teacher C used a multi-step operation example that was 

formed by using brackets as a grouping symbol and it included positive proper 

numbers and a positive integer as components. Besides, in this example, division, 

subtraction and addition examples occurred from left to right respectively. However, 

the subtraction operation was within parenthesis. Therefore, this example entailed 

performing subtraction operation initially. On the other hand, although the textbook 

provided multi-step operation examples without grouping symbols, Teacher C did 

not provide any example of this kind.  

The second group of examples used by Teacher C was multi-step operations 

that were in the form of complex fractions. This group of examples used by the 

teacher was similar to the complex fractions provided by the textbook in terms of the 

form and sign of the components. That is, the complex fractions used by the teacher 
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were formed by using positive proper numbers, positive improper numbers and 

positive integers. Thus, these complex fractions used by the teacher included 

components that were all rational numbers. Additionally, the complex fractions used 

by Teacher C were more sophisticated when compared to the textbook examples 

since the number of operations included in Teacher C’s examples was greater than 

the number of operations included in the textbook examples.  

The examples used by Teacher D for teaching multi-step operations with 

rational numbers were categorized as follows: multi-step operations that are 

expressed on one line, multi-step operations that are expressed as complex fractions 

and multi-step operations that are expressed as single variable polynomials. The 

illustrative examples and the total number of examples for each category are 

presented in Table 4. 30. 

 

Table 4.30. Examples used by Teacher D for teaching multi-step operations with 

rational numbers 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step operations 

that are expressed on 

one line 

3 2

1 1 1

2 2 2
: 

   
   

   
  1 

Multi-step operations 

that are expressed as 

complex fractions 

1 1

3 1 1 31 1 1 2
22 3 2 2; ; ; ;

2 1 1 1
2. 1 2 1

1 13 3
1 2

3 2

0.012 2 0.4 0.2 2 24 6
; ; 4; 1;

50.3 0.8 0.02 3 0.7
6 1

8

10
5

10
4

4
5

x

a

x

  

    

   

  

 


       


 







   
   
   

  
10 
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Table 4.30. (Continued) 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Multi-step operations 

expressed as single 

variable polynomials  

3 2
10

The value of for 2;
3

5 3 3
The value of for

3 4 4

x x
x

x
x x x

 
      

        

  2 

 

Teacher D used 13 examples for teaching multi-step operations with rational 

numbers. The total number of examples used by Teacher D was close to the number 

of examples included in the textbook for teaching this idea. However, these examples 

were rather unevenly distributed among three categories. More specifically, Teacher 

D used only one example for illustrating multi-step operations that were expressed 

on one line. This example was constructed without using any grouping symbol and it 

entailed dividing the cube of a negative proper number by the square of a positive 

proper number and then adding the same positive proper number. This example was 

different from the textbook examples that were expressed on one line, since the 

textbook examples did not include components in exponential form. Last, Teacher D 

did not provide any multi-step operation example with grouping symbols although 

there were examples of this kind in the textbook.  

The second group of examples used by Teacher D was multi-step operations 

that were in the form of complex fractions. This group of examples used by the 

teacher included much more variations in proportion to the textbook examples. More 

precisely, the textbook examples included positive proper numbers, positive 

improper numbers and positive integers as components while the examples used by 

Teacher D included terminating decimals, repeating decimals and unknown values 

apart from positive proper numbers, positive improper numbers and positive integers. 

Besides, the number of operations within each complex fraction used by the teacher 

ranged between three and seven. Thus, the complex fractions used by Teacher D 

were more sophisticated when compared to the complex fractions included in the 

textbook.  
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Unlike the textbook and the previous three teachers, Teacher D used two 

examples which required substitution of rational numbers into single variable 

polynomials. Thus, these two examples formed the last category of teaching multi-

step operations with rational numbers. When working out the first example of this 

category, the teacher pointed to a possible student error. That is, she warned her 

students not to forget enclosing the base (i.e., -2) in parenthesis before calculating the 

square or cube of it. Similarly, the second example of this category required 

enclosing the rational number (i.e., 
3

4
 ) in parenthesis before performing operations 

in order not to a make an error. In addition, Teacher D explicitly suggested several 

solution strategies that might be used to keep unnecessary work to minimum when 

working out the value of the given polynomial in this second example.  

4.1.1.7. Examples used for posing and solving rational number problems  

According to the middle school mathematics curriculum, students were 

expected to read the problems very carefully, restate the problems with their own 

words, identify the givens in a problem, make a plan (deciding on the problem 

solving strategy), carry out the plan, check the solution and finally discuss the 

problem with the classmates. Besides, teachers were suggested to pay attention to the 

explanations that are included at the introductory part of the curriculum book for 

developing good problem solving skills. However, the middle school mathematics 

curriculum did not provide any specific example or activity to illustrate how to pose 

or solve rational number problems.   

In the mathematics textbook followed by the classrooms, the examples used 

for the illustration of posing and solving rational number problems were classified as 

follows: solving rational number problems with same referent units, solving rational 

number problems with different referent units and posing rational number problems. 

The illustrative examples and the total number of examples for each idea are 

presented in Table 4.31. 
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Table 4.31. Examples used by the textbook for teaching how to pose and solve 

rational number problems 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Solving rational 

number problems with 

same referent units 

The ratio of the length of a side of one square to that of 

another square is
3

4
 . Then, calculate the ratio of their 

perimeters and areas.  

1 

Solving rational 

number problems with 

different referent units 

Ahmet initially walked 
1

3
 of his route. After some time, he 

walked 
2

5
 of the remaining route and he had to walk 36 

meters more to finish his route. Find the total length of his 

route.  

5 

Posing rational number 

problems 

 Dilek and Tolga dropped a rubber ball from a specific 

height onto a concrete floor. Each time the ball hit the 

floor, it bounced back up to a height 
2

3
 of the height 

from which it fell.  

Pose a rational number problem by using the given data. 

 Pose a rational number problem by using the words 

‘farm’ and ‘hoe’ and solve this problem by using the 

problem solving steps.  

 

 An athlete each day runs … times as much as the 

distance she runs the day before.  The athlete runs for … 

days and finishes her training program. If the athlete 

runs … kilometers in her … day, then how many 

kilometers does she run on the last day of her training 

program? 

Fill in the blanks with the numbers relevant to the problem.  

 

3 

 

The textbook included 9 examples for teaching problem posing and solving 

with rational numbers. The textbook included one example that illustrated problem 

solving with same referent units. In this example, the length of the one side of the 

larger square corresponded to the referent whole 1 unit, while the length of the one 
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side of the smaller square corresponded to 
3

4
 of the same referent whole. Therefore, 

the numbers 1 and 
3

4
 both referred to the same referent unit. The examples included 

in the textbook to illustrate problem solving with different referent units were more 

common when compared to the examples included to illustrate problem solving with 

same referent units. In the second group of rational number problems, the numbers 

referred to different referent units. For instance, in the route problem presented in 

Table 4.31, the numbers 
1

3
 and 36 referred to the same referent unit, while 

2

5
 

referred to a different referent unit.  

In addition to providing examples regarding problem solving with rational 

numbers, the textbook included three different problem posing examples. In the 

rubber ball example, the givens of the problem were explained and the students were 

expected to pose a problem relevant to the givens. In the farm and hoe example, only 

the theme of the real life problem was explained and the students were expected to 

generate the rational numbers themselves and pose a relevant problem by using the 

generated numbers. Finally, in the athlete example, the whole problem was explained 

without specifying the numbers and the students were expected to fill in the blanks 

by using relevant rational numbers. As it can be seen, the problem posing examples 

included in the textbook were all structurally different from each other.  

The examples used by Teacher A for illustrating problem solving with 

rational numbers were classified into two main ideas as solving rational number 

problems with same referent units and solving rational number problems with 

different referent units. The illustrative examples and the total number of examples 

for these two ideas are presented in Table 4.32. 
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Table 4.32. Examples used by Teacher A for teaching how to solve rational number 

problems 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Solving rational 

number problems with 

same referent units 

On Monday, Ali spent 
1

4
 of his pocket money. The next 

day, he spent 
2

3
 of his pocket money and he had 21 TLs 

left. How much pocket money did he have at the beginning? 

4 

Solving rational 

number problems with 

different referent units 

On Monday, Ali spent 
1

4
 of his pocket money. The next 

day, he spent 
2

3
 of his remaining pocket money and he had 

21 TLs left. How much pocket money did he have at the 

beginning? 

2 

 

Teacher A used 6 examples for teaching problem solving with rational 

numbers. Unlike the textbook, the teacher provided more examples with same 

referent units when compared to the examples with different referent units. In the 

pocket money example presented above, the numbers 
1 2

,
4 3
  and 21 all referred to the 

same referent unit. That is, these numbers all referred to the total amount of the 

pocket money. To have students discern the difference between the problem with 

same referent units and the problem with different referent units, Teacher A 

completely used the same pocket money example and added the word ‘remaining’ to 

the latter example. More specifically, in this latter example, the numbers 
1

4
 and 21 

referred to the same referent unit, while 
2

3
 referred to a different referent unit.  

Finally, although the middle school mathematics curriculum and the textbook 

included problem posing examples, Teacher A did not provide any example of this 

kind to his students in the course of teaching this idea or in the course of providing 

exercise examples.  
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Similar to the Teacher A, the examples used by Teacher B for illustrating 

problem solving with rational numbers were classified into two as solving rational 

number problems with same referent units and solving rational number problems 

with different referent units. The illustrative examples and the total number of 

examples for each idea are presented in Table 4.33. 

 

Table 4.33. Examples used by Teacher B for teaching how to solve rational number 

problems 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Solving rational 

number problems with 

same referent units 

A man first travelled 
1

10
of his route. Next, he travelled 

1

5
 

of his route and thus he travelled a distance of 60 kilometers 

in total. Then, find the total length of his route.  

3 

Solving rational 

number problems with 

different referent units 

One day, Zeynep spent 
1

5
 of her money. The other day, she 

spent 

1

2

of her remaining money and she spent 36 TLs in 

total. Then, how much money does she still have? 

 

3 

 

Teacher B used 6 examples for teaching problem solving with rational 

numbers. Unlike the textbook, the examples provided by Teacher B were evenly 

distributed to the two categories. In the travel example given above, the numbers 

1 1
,

10 5
  and 60 all referred to the same referent unit. As opposed to Teacher A, 

Teacher B used different problem situations when providing examples for problem 

solving with same and different referent units. Thus, it was not possible for the 

students to readily notice the problem structure in two different categories. For 

instance, Teacher B provided an example with different referent units in the context 

of money. In this example, 
1

5
 and 36 referred to the same referent unit, while 

1

2
 

referred to a different referent unit.  
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Finally, although the middle school mathematics curriculum and the textbook 

included problem posing examples, Teacher B did not provide any problem posing 

example to his students either in the course of teaching this idea or in the course of 

providing exercise examples.  

Identical to the previous two teachers, the examples provided by Teacher C 

for teaching how to solve rational number problems were categorized into two as 

solving rational number problems with same referent units and solving rational 

number problems with different referent units. The illustrative examples and the total 

number of examples for each idea are presented in Table 4.34. 

 

Table 4.34. Examples used by Teacher C for teaching how to solve rational number 

problems 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Solving rational 

number problems with 

same referent units 

Kağan travelled 
2

5
 of his route and he had 350 meters left. 

Find the total length of his route in kilometers. 
2 

Solving rational 

number problems with 

different referent units 

Ali bought a book with 

1

2

of his money. Next, he spent 
1

3
of 

his remaining money on cinema tickets. Finally, he bought 

some snacks with the quarter of the money left over from the 

book and cinema tickets. After buying snacks, he had 40 

TLs left. Then, how much money did he have at the 

beginning? 

2 

 

Teacher C used quite a few examples for teaching problem solving with 

rational numbers when compared to the number of examples included in the textbook 

for introducing this idea. More precisely, Teacher C used 4 examples for teaching 

problem solving with rational numbers. Like Teacher B, Teacher C provided same 

number of examples for problems with same referent units as she provided for 

problems with different referent units. In the travel example presented in Table 4.34, 

the numbers 
2

5
 and 350 referred to the same referent unit. Teacher C used different 

problem contexts for each problem solving example either with same referent units 
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or with different referent units. For instance, one of the examples provided by 

Teacher C was in the context of money. As given above, this example included 

different referent units. Namely, in this example, 
1

2
 and 40 referred to the same 

referent whole while 
1

3
 and 

1

4
 referred to two different referent units. Last, despite 

it was articulated by the middle school mathematics curriculum and the textbook, 

Teacher C did not provide any problem posing example to his students.  

Same as Teacher A, Teacher B and Teacher C, the examples used by Teacher 

D for teaching how to solve rational number problems were grouped under two 

ideas: solving rational number problems with same referent units and solving rational 

number problems with different referent units. The illustrative examples and the total 

number of examples for these two ideas are presented in Table 4.35.  

 

Table 4.35. Examples used by Teacher D for teaching how to solve rational number 

problems 

Ideas  Illustrative examples 

Number 

of 

examples 

used 

Solving rational 

number problems with 

same referent units 

A man first travelled 
6

10
of his route. If he had travelled 150 

meters more, then he would have travelled  
2

3
 of the total 

route. Then, find the initial distance travelled by the man.  

5 

Solving rational 

number problems with 

different referent units 

A grocer initially sold 
2

3
of a bag of sugar. Later, he sold 

1

4
 of the remaining sugar. Finally, the grocer weighed the 

rest of the sugar and realized that 12 kilograms of sugar was 

left over. Then, how many kilograms of sugar did the bag 

contain at the beginning? 

4 

 

The number of examples provided by Teacher D for teaching problem solving 

with rational numbers was the same as the number of examples included in the 

textbook for introducing this idea. To be more specific, Teacher D used 9 examples 

for teaching problem solving with rational numbers. Teacher D provided 
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approximately the same number of examples for teaching problem solving with the 

same referent units when compared to the number of examples provided by her for 

teaching problem solving with different referent units. Teacher D initially started 

teaching problem solving with same referent units. The travel example presented in 

Table 4.35 was used as a start-up example by her. In this example, the numbers 

6 2
,

10 3
  and 150 all referred to the same referent whole. That is, these numbers all 

referred to the total distance of the route travelled by the man. Teacher D used 

different problem contexts for each example either with referent units or with 

different referent units. For instance, the grocer example was provided by Teacher D 

to illustrate problem solving with different referent units. In this example, 
2

3
 and 

1

4
 

referred to different referent units.  

Finally, like Teacher A, Teacher B and Teacher C, Teacher D did not provide 

any problem posing example to her students despite it was articulated by the middle 

school mathematics curriculum and by the textbook.   

4.1.2. Non-examples  

The rational number examples that were categorized as non-examples were 

used by the four middle school mathematics teachers to show that not all numbers 

are rational. These non-examples were mostly generated by the teachers in the course 

of teaching the objective ‘explain and locate rational numbers on a number line’.  

The variety of non-examples included in the textbook and the non-examples used by 

the four middle school mathematics teachers in the course of teaching rational 

number ideas are presented in Table 4. 36. 
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Table 4.36. The non-examples provided by the textbook and the teachers for teaching 

rational number ideas 

Form of non-example Textbook Teacher A Teacher B Teacher C Teacher D 

Ratio of integers to zero  - 
1 2 5

,
0 0 0
   - 

7

0
  

3

0
 

Transcendental numbers -    - -   

Radicals - - 5  - - 

Infinite non-repeating 

decimals 
- - - - 0.257843… 

 

As it can be seen in Table 4.36, the mathematics textbook followed by the 

four classrooms did not provide any non-example while explaining or illustrating 

rational number concepts. In contrast to this, all middle school mathematics teachers 

provided non-examples for rational numbers. Except for Teacher B, all teachers 

provided the definition of rational numbers as numbers that can be represented as 
a

b
, 

where a is an integer and b is a non-zero integer. After providing this definition, the 

teachers presented rational number examples that were written as a ratio of two 

integers. In most cases, the examples that included zero as a numerator of the rational 

number were accompanied with the non-examples that included zero as the 

denominator. For instance, Teacher A made the following explanation to his 

classroom to point to the difference between 
0

1
 and 

1

0
 . 

Teacher A: Counting number set begins with 1 and goes to infinity. 

Similarly, natural number set begins with 0 and goes to infinity. At the 

beginning of this year, we learnt a new number set. We named this new 

number set as integers. The set of integers are denoted as 

 , ..., 2, .      Integers are formed by whole 

points on a number line and start with   and go to  . We said that 

numbers between   and 0 are negative integers while numbers between 0 

and  are positive integers. We did not say that 0 is negative or positive 

because it is a neutral number. Besides, 0 has an additive inverse but its 

multiplicative inverse is undefined. By the way, note that 
0

1
  is equal to 0 
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while 
1

0
 is undefined. Now, I will introduce you rational numbers as a new 

number set. You choose two numbers from integer set as a and b. However, 

b should be different from 0 since 
1

0
 is undefined. Therefore, b should not 

be equal to 0. If 
1

0
 is undefined then it cannot be an element of rational 

number set. Then, numbers in the form of 
a

b
 where 0b   are elements of 

rational number set.  

 This excerpt shows that Teacher A provided 
0

1
 as an example for rational 

numbers. Soon after this, he provided 
1

0
 as a non-example for rational numbers. 

Teacher A provided ratio pairs such as 
0

1
and 

1

0
 not only in the course of explaining 

and locating rational numbers but also during the teaching of other rational number 

ideas. He did it from time to time to recall that ratios with zero numerators are 

examples of rational number set while ratios with zero denominators are non-

examples of rational number set.  

Apart from using ratio representation for providing non-examples for rational 

numbers, Teacher A and Teacher D presented pi number (π), a specific 

transcendental number, as another non-example for rational numbers. Teacher A 

presented this number to his students while reviewing the definition of rational 

number set that he taught in the previous lessons. The teaching episode of Teacher A 

regarding this non-example is given below. 

Teacher A: In our previous lesson, we defined rational numbers. We denoted 

this set by the symbol . All numbers that can be written as common 

fractions were called rational numbers. We wrote a note on the board that 

2

0
 is undefined while

0

7
 is equal to 0. Here, we wrote -7 as a denominator 

of the fraction to show that any integer can be written under the fraction bar 

except for 0. We defined rational numbers in this way. Well, do you know pi 

number? 

Student 1: I remember it, but I do not exactly know what it is.  

Teacher A: Pi number goes to infinity as 3.14… Today, the decimal 

representation of pi has been computed to include many digits that can wrap 

the circumference of the earth forty times but it is still being computed. That 

is, the ratio of a circle’s circumference to its diameter goes to infinity and it 
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is called the pi number. What lesson should we take from this? (At this time, 

the teacher is pointing to a bottle cap that is circular) We can create this 

bottle cap, but we cannot calculate the ratio of its circumference to its 

diameter. That is why, I refer to this number as God’s number. To repeat 

again, we can create this bottle cap, but we cannot calculate the ratio of its 

circumference to its diameter exactly. This ratio proceeds as 3.14… but we 

cannot express it as a common fraction. Why? Because we do not know its 

end.  

Student 2: That is a repeating decimal! 

Teacher A: It is not a repeating decimal. It is something else. If we do not 

know the final digits of the decimal number, then we cannot write it as a 

common fraction. Hence, if I cannot write it as a common fraction then it is 

not an element of rational number set (  ). I introduced you the pi 

number to illustrate that there are numbers that are not examples of rational 

number set. I will teach you another mathematical topic involving numbers 

that are not rational next year. At that time, you will probably remember the 

above mentioned anecdote.  

As can be understood from the episode given above, Teacher A used pi 

number as a non-example for rational numbers. Besides, he emphasized that the 

decimal expansion of this number includes infinite number of digits after the decimal 

point. However, although one of the students suggested that repeating decimals have 

infinite number of digits after the decimal point, Teacher A did not provide 

opportunities for students to distinguish infinite repeating decimals that are rational 

and infinite non-repeating decimals that are irrational.  

In addition to using pi number as a non-example for rational numbers, 

Teacher A indicated that there is also another mathematical topic that includes 

numbers which are not rational. To elucidate what this mathematical topic is, I 

conducted post-lesson interviews with the teacher. He explicitly stated that radicals 

will be taught the next year. Although Teacher A expressed that radicals involve 

numbers that are not rational, he did not provide any specific non-example related 

with radicals. Similar to Teacher A, Teacher D used the same transcendental number, 

pi number, as one kind of non-example for rational numbers. Apart from this, she 

used an infinite non-repeating decimal number as a non-example for rational 

numbers. Teacher D provided these two different kinds of non-examples during the 

teaching of expressing rational numbers in different forms. The verbatim transcripts 

of this lesson episode are given below.  
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Teacher D: Each integer can be rewritten as a rational number. For instance, 

2 3 5 17
2 , , and

1 1 17 1

 
          .Thus, -2, 3, -5 and 17 are all rational 

numbers. In a similar way, there some other numbers which can be 

expressed as rational numbers. To give an example, -0.5, 1.25 and 0.15 can 

be expressed as  
5 125 15

, and
10 100 100

     respectively. Thus, we can say that 

some decimal numbers are rational numbers.  

Student: Teacher, what do you mean by saying ‘some decimal numbers’? 

Teacher D: I mean that not all decimal numbers are rational by saying ‘some 

decimal number’. To be more precise, I mean that not all numbers including 

infinite number of digits after the decimal point are rational numbers. Thus, 

infinite decimals can be classified into two as infinite repeating decimals and 

infinite non-repeating decimals. For instance, 0.257843… is an infinite non-

repeating decimal since it does not have a regular repeating pattern. As you 

can see, there are some decimals which include infinite number of digits but 

not include a repeating pattern. Since these numbers do not have regular 

repeating patterns, they cannot be written as common fractions. Finally, 

since we cannot write them as common fractions, they cannot be accepted as 

rational numbers. 

As the episode given above shows, Teacher D used an infinite non-repeating 

decimal representation (such as, 0.257843…) as a non-example for rational numbers. 

Unlike Teacher A, Teacher B and Teacher C, Teacher D generated this non-example 

as a transparent representation of an irrational number. That is, Teacher D generated 

this non-example in a way that makes it possible to derive the irrationality of the 

number from this representation. Apart from this, Teacher D generated another non-

example for rational numbers, the pi number, in the course of expressing repeating 

decimals as common fractions upon student inquiry. This teaching episode is given 

below. 

Teacher D: Each repeating decimal can be expressed as a common fraction. 

Thus, we can say that each repeating decimal is a rational number. In this 

case, if I ask you to determine whether 0.3 and 3.3  are rational numbers, how 

would you respond to me? 

Student 1: They are rational numbers. 

Teacher: Yeah, they are rational numbers. Because we can express these 

numbers as common fractions.  

Student 2: Well teacher, which numbers were not rational? Hmm, which 

decimal numbers were not rational? 

Teacher: I explained this a few minutes ago. Let me repeat again. Pi number 

is a non-example for rational numbers since its decimal expansion does not 

have a regular repeating pattern. As a matter of fact, except for terminating 
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decimals and repeating decimals all decimals are irrational numbers. You 

learnt terminating decimals and repeating decimals to date. You should 

know that these decimals are also rational numbers.  

As it is depicted in the teaching episode given above, Teacher D used another 

non-example for rational numbers as a response to student inquiry. That is, like 

Teacher A, she introduced a transcendental number, pi, to her students as an example 

for irrational numbers. In brief, Teacher D used three different kinds of non-

examples for rational numbers. That is, she expressed these non-examples either as a 

ratio of an integer to zero, as a transcendental number, or as an infinite non-repeating 

decimal.  

Different from the aforementioned kind of non-examples, Teacher B 

generated a non-example that was represented algebraically. To put it differently, 

Teacher B introduced the square root of 5 to his students as a non-example for 

rational numbers during the teaching of explaining and locating rational numbers on 

a number line. After locating 
1 1 4 1 2

2 , , , and 2
5 2 5 2 5

      on a real number line, 

Teacher B asked students to ponder whether rational numbers fill up the number line. 

The dialogue between Teacher B and his students are given below. 

Teacher B: Thus far, we located
1 1 4 1 2

2 , , , and 2
5 2 5 2 5

      on a number line 

respectively. These rational numbers filled up some portion of the number 

line. Well, my question is, do all rational numbers fill up the number line 

when we totally locate them on that number line? 

Student 1: Yes! 

Student 2: Nooo! 

Teacher B: Do they fill the number line or not? Perhaps, you could not 

understand my question. How many rational numbers are there in this 

number line? 

Students: Infinite 

Teacher B: There are infinitely many numbers in natural number set, 

counting number set, integer set and in rational number set. Do all rational 

numbers fill up the number line? Raise your hands if you think that rational 

numbers do not fill up the number line. According to me, rational numbers 

do not fill up the number line. Why? Because you can also locate some other 

numbers on a number line apart from rational numbers. Who can give 

examples to these other numbers? Who knows the mathematical topics that 

will be taught in grade 8? Who knows radical numbers? For instance, there 

are numbers such as 5 . Such numbers are not rational numbers. You will 
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learn this kind of numbers next year. We call this kind of numbers irrational 

numbers or numbers that are not rational. This means that we need numbers 

such as 5 in addition to rational numbers in order to fill up the number line 

completely. 

 

As it can be seen above, Teacher B used an algebraic number to give a non-

example for rational numbers. More specifically, he generated 5  as a finite opaque 

representation to illustrate numbers that are not rational. On the other hand, since he 

did not define rational numbers as the ratio of any integer to any non-zero integer, he 

did not use any non-example that included zero in the denominator of the ratio. 

Moreover, he neither used a transcendental number nor a radical in algebraic form to 

illustrate non-examples of rational numbers.   

To summarize, all teachers except for Teacher B generated non-examples for 

rational numbers by using the zero denominator case after providing the rational 

number definition as the ratio of any integer to any non-zero integer. In addition to 

this, Teacher A and Teacher D provided the pi number (π) as a non-example for 

rational numbers without actually writing down its decimal expansion. Thus, 

provision of π without introducing of its decimal expansion leaved it opaque that 

irrational numbers never settle into a permanent repeating pattern. Apart from using 

the transcendental number π, Teacher D used a non-example that is represented as an 

infinite non-repeating decimal. More precisely, Teacher D generated 0.257843… as a 

non-example for rational numbers and this representation pointed to the requirement 

for regular repeating pattern as a distinguishing feature between rational and 

irrational numbers. Unlike these three different kinds of non-examples, Teacher B 

generated a non-example that was in algebraic form. That is, he generated 5  as a 

non-example for rational numbers. This representation also leaved it opaque that 

irrational numbers do not have a repeating pattern. Finally, while Teacher B and 

Teacher D explicitly touched upon the concept of irrational number during the 

provision of non-examples for rational numbers, Teacher A and Teacher D alluded to 

that concept by indicating that they will teach a topic including numbers that are not 

rational the next year. 
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4.1.3. Counter-examples  

In this section, an additional use of examples as counter-examples was 

explained. Although counter-examples are important in the teaching of mathematics, 

the data of this study suggested that they are less evident in middle school classroom 

practice. In this study, examples that were used by the middle school mathematics 

teachers to demonstrate the falsity of a student conjecture were treated as counter-

examples. As a result of the observations, in this study I could notice the use of 5 

counter-examples. Three of these counter-examples were used by Teacher A while 

two of them were used by Teacher D and the two teachers treated those counter-

examples logically appropriately.  

All of the counter-examples were spontaneously generated by Teacher A and 

Teacher D in response to their students’ contingent and invalid conjectures or 

statements about rational number ideas. Teacher A generated counter-examples in 

the course of teaching how to order rational numbers, teaching multiplication of 

rational numbers, and during the teaching of distributive property of multiplication 

over addition. Teacher D generated counter-examples in the course of teaching 

multiplication of rational numbers and during the teaching of distributive property of 

multiplication over addition.  

The teaching episode of Teacher A related with ordering rational numbers 

and the classroom situation that called for a counter-example is given below.  

Teacher A: It seems that children rarely use same numerator approach when 

ordering rational numbers.  Remarkably, most of the ordering problems can 

be easily solved by using the same numerator approach. In ordering 

problems, the number ‘1’ is especially selected as the numerators of the 

rational numbers. This is due to the fact that children do not think of 

ordering rational numbers by using same numerator approach when the 

numerators of rational numbers are selected to be ‘1’. Now, I shall give you 

an example. Let’s order the following set of rational numbers:  

1 1 1 1
, , , and 0.

3 5 7 2
      For negative rational numbers, the one which is 

closer to zero will be larger. Thus,
1 1

0
7 2

    will be the correct ordering.  
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S1: But teacher, 
1

2
  is closer to zero than 

1

7
.  

S2: That is right, teacher. 
1

2
  is closer to zero.  

Teacher A: Did I order reversely? 

Students: Yes! Yes! 

Teacher A: Is 
1

7
  farther to zero than

1

2
 ? 

Students: Yes! 

Teacher A: Then, let’s locate these two rational numbers on a number line to 

see which one is closer to zero. (Teacher A located the two numbers on a 

number line as follows.) 

 

Teacher A: 
1

2
  is here, 

1

7
  is here. Now, tell me which one is closer to 

zero. 

Students: Aha! 
1

7
  is closer to zero.  

Teacher A: You previously claimed that 
1

2
 is closer to zero. However, as 

you can see, 
1

7
  is closer to zero. Is it alright? 

Students: Yes! 

As the above teaching episode shows, the students of Teacher A intuitively 

claimed that a rational number with a smaller denominator will be closer to zero than 

the one with a larger denominator. To check whether the students are persistent with 

their claim, the teacher kept asking the same question. Finally, as the students 

insisted on their conjecture, the teacher decided to locate the two rational numbers on 

a number line to show that their claim is invalid. When the students examined the 

number line representation, they were convinced that a rational number with a larger 

denominator will be closer to zero than the one with a smaller denominator.  
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Another counter-example was generated both by Teacher A and Teacher D in 

response to their students’ invalid claim that simplification of rational numbers in 

multiplication can only be done by using the criss-cross method. The teaching 

episode of Teacher D related with simplification of rational numbers and the 

classroom situation that called for a counter-example is given below. 

Teacher D: How can we simplify rational numbers before multiplying them? 

Student: We can simplify by using criss-cross method.  

Teacher D: Is it the only way to simplify rational numbers? 

Student: Yes. 

Teacher D: How about simplifying by using top to bottom method? 

Student: I do not think it will work. 

Teacher D: We can use both methods for simplifying rational numbers. Let 

me explain how to simplify 
2 3

6 6
  on the board. 

1 1

3 2

2 3 1 1 1

6 6 3.2 6


    

Teacher D: To simplify 
2

6
 we divide 2 by 2 and get 1. Similarly, we divide 

6 by 2 and get 3. Thus, the simplest form of 
2

6
 is 

1
.

3
 To simplify 

3

6
, we 

divide both 3 and 6 by 3 and get 1 and 2 respectively. Thus, we obtain 
1

3
 as 

the simplest form of 
3

6
.  Now, we multiply 1 by 1 and get 1 as the numerator 

of the product. Similarly, we multiply 3 by 2 and get 6 as the denominator of 

the product. Thus, we obtain 
1

6
 as the product of this multiplication 

operation. Now, let’s simplify by using the criss-cross method to see whether 

this method yields the same product as the above mentioned top to bottom 

method.  

1 1

2 3

2 3 1.1 1

6 6 2.3 6
    

Teacher D: We simplify 3 and 6 and write 1 and 2 in their place. Similarly, 

we simplify 2 and 6 and write 1 and 3 in their place. Now, we multiply 1 by 

1 and get 1, we multiply 2 by 3 and get 6. Thus, we obtain 
1

6
 as the product 

of this multiplication operation. As you can see the product obtained by 
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using the top to bottom method is equal to the product obtained by using 

criss-cross method. Therefore, both methods are applicable in rational 

number multiplication. Is it okay? 

Student: Yes! 

As the above given episode shows, one of the students of Teacher D claimed 

that simplification of rational numbers before multiplication can only be done by 

criss-crossing. As a response to that student’s claim, the teacher selected two rational 

numbers and simplified the rational numbers by using both methods. Finally, the 

teacher had students compare the products obtained from both methods to 

demonstrate that both methods yield the same result and to convince that both 

methods are valid.  

Another counter-example about simplification was generated by Teacher A as 

a response to a student’s claim that simplification of rational numbers can always be 

done after multiplication. This classroom situation is described in the following 

teaching episode.  

Teacher A: Before multiplying rational numbers, you need to check whether 

the numerators and denominators are evenly divisible by a whole number 

and if yes you have to simplify them.  

Student 1: Must we certainly simplify rational numbers? 

Teacher A: Yes you must. As you know, TEOG (A national exam taken by 

students in order to transit from primary to secondary education) consists of 

multiple choice questions. In these questions, the alternatives include the 

simplest form of rational numbers. Thus, you cannot find the answer of the 

questions in the alternatives unless you simplify the rational numbers.  

Student 2: I agree we must simplify the rational numbers. However, we do 

not have to simplify before multiplying them. I mean, we can always 

simplify after performing the multiplication operation.  

Teacher A: Your friend claims that she can always simplify after finding the 

product of the multiplication. Now, I will present you a very nice example 

that refutes her claim. Look at this example; 

1 1 1 1
1 1 1 ... 1

2 3 4 100
     

       
       
       

  

In this example, we first need to add the rational numbers inside the 

parenthesis. Let’s do it now. 

3 4 5 101

2 3 4 100
       

As you can see, it is not possible to perform 3 4 5 ... 101      and

2 3 4 ... 100    . Therefore, we must simplify before multiplying rational 



232 

 

numbers. In this case, we simplify 3 by 3, 4 by 4, 5 by 5 and go on like this 

until finally simplifying 100 by 100. Let me show this on the board. 

3 4

2


3

5


4

101

100
  

101

2
  

As you can see, we cannot always simplify after multiplication. Thus, you 

should know how to simplify before multiplication. Is this okay? 

Student 2: Yes, thank you.  

As this episode on simplification of rational numbers shows, Teacher A 

spontaneously constructed a counter-example in order to convince the student that in 

some cases simplification of rational numbers before multiplication is compulsory.  

Teacher A generated one more counter-example in the course of teaching 

distributive property of multiplication over addition. The classroom situation that 

called for this counter-example is presented in the following episode. 

Teacher A: Today, I am going to teach you how multiplication by a rational 

number distributes over addition of two other rational numbers. I will 

illustrate this property initially by using natural numbers. Let’s compute 

2 (3 5)   by using the distributive property. We multiply each addend by 2 

and then add the products. Let me show it on the board. 

2 (3 5) 2 3) (2 5) 6 10 16          

We can also compute 2 (3 5)   by using the order of operations rule. 

According to this rule, we need to perform the operations that are inside the 

parenthesis first. Thus, we can proceed as follows. 

2 (3 5) 2 8 16      

As you can see, the answer obtained by using the distributive property is 

equal to the answer obtained by using the order of operations rule.  

Student: If the results are same, why bother to learn distributive property? 

According to me, we can solve all the questions by using the order of 

operations rule. So, I do not think that this property is indispensable for us.  

Teacher A: At first glance, what you say seems quite reasonable. However, it 

is true if the given expression includes all numerical values. That is, if there 

are unknowns in the expression, then you must use the distributive property 

in order to find them. In order to have you better understand what I mean, I 

will write an example on the board. 

 2 5 7 2        

In this example, you cannot find the unknowns by the using the order of 

operations rule. You must learn the distributive property in order to find the 

unknowns. Is it okay? 

Student: Yes it is.  
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As this episode shows, Teacher A initially generated an example that 

included natural numbers as components. This initial example did not convince one 

of the students in the classroom of the necessity of learning distributive property. In 

reply to this, the teacher spontaneously generated a counter-example to negate the 

student’s claim that all mathematical problems that require the use of distributive 

property can also be solved by using the order of operations rule.  

Finally, Teacher D generated one more example while teaching distributive 

property of multiplication over addition of rational numbers. The classroom situation 

that called for this counter-example is presented in the following teaching episode.  

Teacher D: Now, I will teach you how to compute, let’s say, 
4 2 1

7 3 5


 
   

 by 

using the distributive property of multiplication over addition. Normally, you 

would perform the addition operation inside the brackets first by taking 

account of the order of operations rule. However, the distributive property 

spoils the order of operations rule. That is, rather than performing the 

addition operation first, we distributive the 
4

7
 to both the 

2

3
 and the 

1

5
.  

Then, we add the products and reach an answer. (Teacher D showed this on 

the board in the following way.) 

4 2 1 4 2 4 1 8 4 40 12 52

7 3 5 7 3 7 5 21 35 105 105 105
          
 
  

 

 Student: In this example, the distributive property spoils the order of 

operations rule. So, I do not think we will get the same answer if we 

compute 
4 2 1

7 3 5
 
 
  

 by using the order of operations rule.  

Teacher D: No, in contrast to your expectation, the results will be the same. 

Let me compute this expression by using the order of operations rule. Then, 

we need to perform the addition operation that is inside the brackets first. 

(The teacher demonstrated this rule on the board as follows.) 

4 2 1 4 10 3

7 3 5 7 15 15

4 13 52

7 15 102
      

   
      

 

As you see, we get 
52

102
 if we compute by using the order of operations rule. 

Thus, we may conclude that the distributive property of multiplication over 

addition and the order of operations rule always yield the same answer. Do 

you still have any question? 

Student: No, thanks. 
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As this teaching episode reveals, one of the students claimed that computation 

via distributive property will yield a different product than the one done by using the 

order of operations rule since Teacher D explained that the order of operations rule is 

spoiled by the distributive property. Nevertheless, the teacher demonstrated that both 

ways of computation yield the same product and thus convinced the student that the 

distributive property always works.  

4.2. Sources of Examples  

In this section, sources of examples used by middle school mathematics 

teachers were described in detail. The study revealed two main kinds of teacher-

generated examples as spontaneous examples and pre-planned examples. The 

examples that were actually generated by the teachers during the lesson without any 

planning in advance or examples that were generated by the teachers as a response to 

unexpected classroom situations were treated as spontaneous examples. In other 

words, for an example to be spontaneous, there had to be some evidence that 

choosing it entailed in-the moment decision making to a certain degree. On the 

contrary, the examples that were taken from available resources such as textbooks, 

workbooks and auxiliary books were treated as pre-planned examples. The number 

of spontaneous and pre-planned examples used by the middle school mathematics 

teachers with respect to each learning objective is presented in Table 4.37. 
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Table 4.37. The number of spontaneous examples and pre-planned examples used by 

the teachers for teaching rational number objectives 

Learning Objectives 

Number of spontaneous (SP) and pre-planned (PP) examples 

used by 

Teacher A  Teacher B Teacher C Teacher D 

SP PP SP PP SP PP SP PP 

Explain and locate rational numbers 

on a number line 
25 4 20 10 18 64 15 15 

Express rational numbers in different 

forms 
24 1 30 3 1 2 18 4 

Compare and order rational numbers 12 24 13 9 2 - 2 12 

Perform addition and subtraction 

operations with rational numbers 
30 7 26 20 4 27 9 23 

Perform multiplication and division 

operations with rational numbers 
35 19 37 23 4 - 19 13 

Solve multi-step operations with 

rational numbers 
6 17 3 10 2 4 - 13 

Pose and solve rational number 

problems  
5 1 - 6 1 3 - 9 

Total 137 73 129 81 32 100 63 89 

 

The table shows that middle school mathematics teachers altogether used 361 

spontaneous examples and 343 pre-planned examples during the teaching of rational 

number objectives. This suggests that more than half of the examples used by the 

teachers were spontaneously generated.  

In particular, Teacher A used 137 spontaneous examples and 73 pre-planned 

examples to teach all rational number objectives. Similar to the overall distribution of 

examples identified in this study, more than half of the examples used by Teacher A 

were constructed by him spontaneously. When the number of spontaneous and pre-
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planned examples used by Teacher A for teaching each rational number objective is 

examined, it can be seen that the number of spontaneous examples outweighed the 

number of pre-planned examples except for two objectives. To put it another way, 

while Teacher A used more number of spontaneous examples than pre-planned 

examples for teaching how to explain and locate rational numbers on a number line, 

express rational numbers in different forms, perform addition and subtraction 

operations with rational numbers, perform multiplication and division operations 

with rational numbers and pose and solve rational number problems, he used less 

number of spontaneous examples than pre-planned examples during the teaching of 

comparing and ordering rational numbers and solving multi-step operations with 

rational numbers. Finally, it is important to note that the number of spontaneous 

examples generated by Teacher A for teaching each learning objective was in sharp 

contrast to the number of pre-planned examples used by him to achieve the same 

goal.  

Similar to Teacher A, Teacher B used 129 spontaneous examples and 73 pre-

planned examples for teaching all rational number objectives. This shows that more 

than half of the examples used by Teacher B were spontaneously generated. This 

trend on the part of spontaneous examples by Teacher B is in line with the overall 

distribution of examples identified in this study. In particular, when examples 

generated by Teacher B for each learning objective was examined it was found that 

the teacher used spontaneous examples more frequently than pre-planned examples 

while explaining and locating rational numbers on a number line, expressing rational 

numbers in different forms, comparing and ordering rational numbers, performing 

addition and subtraction operations with rational numbers and performing 

multiplication and division operations with rational numbers. In contrast to this, 

Teacher B used more number of pre-planned examples than spontaneous examples 

while solving multi-step operations with rational numbers and posing and solving 

rational number problems. Ultimately, the magnitude of the differences between the 

spontaneously generated examples and pre-planned examples of Teacher B for each 

learning objective were similar to that of Teacher A. That is, in each objective, either 
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spontaneous examples were far more than pre-planned examples or the way other 

round.  

Unlike Teacher A and Teacher B, Teacher C used 32 spontaneous examples 

and 100 pre-planned examples. This shows that the number of pre-planned examples 

used by Teacher C is three times more than the number of spontaneous examples. 

The predominance of pre-planned examples demonstrated that Teacher C drew more 

on available resources while teaching rational number objectives rather than in-the-

moment generations. This trend towards pre-planned examples on the part of the 

teacher was in contrast with the trend demonstrated by the whole examples identified 

in this study. More specifically, the examination of the examples generated by 

Teacher C for each rational number objective revealed that the teacher used far more 

pre-planned examples than spontaneous examples while explaining and locating 

rational numbers on a number line and performing addition and subtraction 

operations with rational numbers. Yet, the number of spontaneous examples were 

similar to that of pre-planned examples generated by the teacher for expressing 

rational numbers in different forms, solving multi-step operations with rational 

numbers and posing and solving rational number problems. Meanwhile, the number 

of spontaneous and pre-planned examples generated by the teacher for teaching these 

learning objectives was very few. Furthermore, Teacher C did not use any pre-

planned example while comparing and ordering rational numbers and performing 

multiplication and division operations with rational numbers. 

Like Teacher C, Teacher D used 63 spontaneous examples and 89 pre-

planned examples. That is, the number of pre-planned examples used by Teacher D 

was slightly more than the number of spontaneous examples used for teaching all 

rational number objectives. This tendency on the part of pre-planned examples is in 

contrast to the tendency of the overall examples generated by four teachers. 

Moreover, this tendency towards pre-planned examples shows that Teacher D drew 

more on available resources like Teacher C rather than having recourse to their 

accessible examples spaces. In more detail, when the examples generated by Teacher 

D for teaching each rational number objective was examined, it was found that the 

teacher used much more pre-planned examples than spontaneous examples while 
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comparing and ordering rational numbers and performing addition and subtraction 

operations with rational numbers. Besides, the teacher did not use any spontaneous 

example while solving multi-step operations with rational numbers and posing and 

solving rational number problems. On the other hand, the number of spontaneous 

examples used by Teacher D for explaining and locating rational numbers on a 

number line was identical to the number of pre-planned examples used for teaching 

this objective. Likewise, the number of spontaneous examples used by the teacher for 

expressing rational numbers in different forms and for performing multiplication and 

division operations with rational numbers were more than the number of pre-planned 

examples used for teaching these objectives.  

Ultimately, when viewed from a broader perspective, it can be seen that the 

middle school mathematics teachers all used more number of spontaneous examples 

than pre-planned examples while performing multiplication and division operations 

with rational numbers. Besides, excluding Teacher C, all teachers used more number 

of spontaneous examples than pre-planned examples while explaining and locating 

rational numbers on a number line and expressing rational numbers in different 

forms. In contrast, they used less number of spontaneous examples than pre-planned 

examples while solving multi-step operations with rational numbers. Similarly, 

excluding Teacher A, all teachers used more number of pre-planned examples than 

spontaneous examples while posing and solving rational number problems.  

In the following parts, the underlying reasons for teachers’ use of 

spontaneous examples and the available sources that were used by the teachers in 

constructing the pre-planned examples were described at length.  

4.2.1. Spontaneous examples 

 As mentioned above, examples that were generated by the middle school 

mathematics teachers in the course of the lesson without any planning in advance 

were treated as spontaneously generated examples. There were two main reasons for 

teachers’ need to construct examples on their feet. That is, teachers generated 

spontaneous examples either by themselves or as a response to their students’ claims 

or queries. Teacher most often generated spontaneous examples by using their own 
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personal example spaces. In most cases, the examples were generated rather 

immediately and automatically by the teachers. These examples constituted teachers’ 

easily accessible examples spaces. For instance, while giving examples for numbers 

that are rational or not rational, Teacher A generated 8,
2

3
 , 0, -7, -125, 0.12 and π 

rather immediately. Similarly, Teacher B generated many repeating decimals such as 

0.7, 2.15, 1.045, 5.104    quite easily. To give another example, Teacher C automatically 

selected 
1 3 2 5

, , , and
8 5 7 3


       to illustrate how to locate rational numbers in 

different forms on a number line. Last of all, Teacher D readily generated examples 

such as  
3 7 1 5 3 1 1

, , ,
8 4 2 8 4 2 7

   
             
   

 to illustrate multiplication of rational 

numbers in different forms.  

Nevertheless, in other cases the time devoted by the teachers to generating 

spontaneous examples was much longer than the time spent for generating the above 

mentioned examples. More specifically, generation of some specific examples 

required a number of iterations until the teachers reached the examples that met their 

purpose. For instance, in the course of generating a problem solving example, 

Teacher A initially invented the following story: “On Monday, Ali spent 
1

4
 of his 

pocket money. The next day, he spent 
2

5
 of his pocket money and he had 26 TLs 

left. How much pocket money did he have at the beginning?” After some time, the 

teacher modified the story in the following way: “On Monday, Ali spent 
1

4
 of his 

pocket money. The next day, he spent 
2

3
 of his pocket money and he had 20 TLs 

left. How much pocket money did he have at the beginning?” The teacher pondered 

on the example for some time again and apologized that he must write 21 instead of 

20 and added that he might modify the problem again to make it suitable for 

representing it pictorially. Finally, the teacher generated the problem as follows: “On 

Monday, Ali spent 
1

4
 of his pocket money. The next day, he spent 

2

3
 of his pocket 
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money and he had 21 TLs left. How much pocket money did he have at the 

beginning?” However, it took more than one minute for Teacher A to create this 

example spontaneously. Thus, this spontaneous example indicated remote 

accessibility to Teacher A’s personal example space.  

Apart from the examples that required a number of iterations, the teachers 

needed to create examples spontaneously when they realized that the examples 

provided did not satisfy their intended purposes. More precisely, in some cases the 

teachers had to modify their examples in the course of the lesson when they realized 

that the examples provided included some limitations or mathematical flaws. For 

instance, in the following episode on commutative property of addition of rational 

numbers, Teacher A had to modify his example spontaneously, when he realized that 

the example did not satisfy his intended purpose.  

Teacher A: … Let me immediately write another example related with 

commutative property as there is some empty space in this part of the 

whiteboard.  

3 8 3

5 7 5

  
   

     
     
     

  

Teacher A: What should you do primarily in this example to find the value 

of the triangle? 

Student: We need to match the numbers. 

Teacher A: You have to change the negative signs into positive signs first. 

Before doing anything else you have to change the negative signs into 

positive signs. I am now changing negatives into positives.  

3 8 3

5 7 5

  
  

     
     

     
 

Now, I am checking whether there is commutative property. (At this 

moment, the teacher became aware of the limitation of the example) I am 

very sorry but, I must change the subtraction sign on the right side of the 

equality into addition sign. Namely, I must change my example. I failed to 

notice this, let it be positive.  

3 8 3

5 7 5

  
   

     
     
     

 

What shall we do now? 

Students: We will match the numbers. 
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Teacher A: Then, 
3

5

 
 
 

 matches with 
3

5

 
 
 

and 
8

7

 
 
 

 matches with the 

triangle. Thus, the triangle is equal to
8

7

 
 
 

.  

As can be seen in the above episode, Teacher A initially provided an example 

that included subtraction operations on both sides of the equality. After some time, 

the teacher realized that subtraction operation is not commutative and modified his 

example by changing the subtraction sign into addition sign. Similar to spontaneous 

examples generated by the teachers as a result of several iterations, examples of this 

kind also took more than one minute to generate. Thus, examples of this kind also 

indicated remote accessibility to teachers’ personal examples spaces.  

When examples generated by the middle school mathematics teachers as a 

result of their interactions with the students were examined, it was seen that there are 

three different types of incidents that give rise to the generation of spontaneous 

examples. In the first type, the teacher asks students a question and the students react 

by asking an unexpected question to the teacher. The following episode of Teacher D 

on expressing rational numbers in different forms illustrates this type of spontaneous 

example generation.  

Teacher D: Are 0.3 and 3.3  rational numbers? 

Student 1: Yes! 

Teacher D: Yes they are. Because, each repeating decimal and terminating 

decimal can be expressed as rational numbers in the form of
a

b
 .  

Student 2: Teacher, may I ask you a question? 

Teacher D: Yes you can. 

Student 2: Well, I wonder which numbers are not rational. 

Teacher D: For instance, the pi number (π) is not rational. It goes on forever 

as 3.14… and it does not have a regular repeating pattern. Actually, you can 

think as follows. Excluding repeating decimals and terminating decimals all 

decimals are irrational numbers. 

As this teaching episode shows, Teacher D asked the classroom to indicate 

whether 0.3 and 3.3  are rational numbers. Being evoked by this question, one of the 

students in the classroom asked an unexpected question back to the teacher. At that 
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moment, the teacher made a split-second decision and incorporated the student’s 

question into the lesson by generating a spontaneous non-example. 

Second type of incident that gave rise to the generation of spontaneous 

examples occurred when students asked questions to their teachers during classroom 

conversation. This type of incident is illustrated by the following episode of Teacher 

B on finding the square and cube of rational numbers.  

Teacher B: …Now, I am switching to an example related with exponents. 

Let’s find the answer of

2
3

5

 
 
 

. I will ask you a question similar to this one 

in your third mathematics examination. In the second examination, I asked 

you to find the answer of  
3

6 and  
3

5  .  Who knows how to find the 

answers? 

Student 1: Teacher I know, 6 times 6 is 36 and 36 times 6 is 216, thus the 

answer is minus 216. 

Teacher B: What about the other one? 

Student 2: Minus 125.  

Teacher B: Yes, you are right. In the same manner, we will find the square 

and cube of rational numbers. What do we need to know for this? We should 

know that even powers of negative numbers are positive. Let’s do it 

together. 3 times 3 is 9 and 5 times 5 is 25. Therefore, the answer is 
9

25
 . 

Student 3: Teacher, if we select a number different from 2 as the power of 

the exponent, how will we find the answer? 

Teacher B: For instance, let’s find the answer of

3
4

3

 
 
 

. Here, we must 

know that odd power of negative numbers are negative. Similar to the 

previous example, we multiply the numerators and denominators by 

themselves for 3 times. Then, 4 times 4 is 16 and 16 times 4 is 64. Again, 3 

times 3 is 9 and 9 times 3 is 27. Consequently, the answer is
64

27

 
 
 

. Is that 

ok? 

Student 3: Ok, thanks.  

As this episode illustrates, the student interrupted the classroom conversation 

and asked the teacher a question related with exponentiation. The teacher took 

account of student’s query and provided a spontaneous example as a response to it. 

Finally, the last type of incident that led to spontaneous example generation 

occurred when teachers needed to create counter-examples in response to their 
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students’ contingent and invalid conjectures or statements about rational number 

ideas. These type of examples were described in detail in the aforementioned section 

entitled counter-examples.  

4.2.2. Pre-planned examples 

As mentioned earlier, pre-planned examples constituted another main source 

of examples used by the teachers in the course of the lesson. These type of examples 

were checked and selected by the teachers in advance and were incorporated into the 

lesson when needed. The variety of available sources used by the middle school 

mathematics teachers in choosing the pre-planned examples and the number of pre-

planned examples taken from each source is provided in Table 4.38. 

 

Table 4.38. The number of pre-planned examples used by the middle school 

mathematics teachers during the teaching of rational number concepts 

Sources of pre-planned examples 

Number of examples used by 

Teacher A Teacher B Teacher C Teacher D 

Student textbook  15 22 - - 

Student workbook 5 - 68 - 

Teacher’s guidebook - - - 7 

High-stakes examination questions 3 - - - 

Online educational software - - 27 - 

Auxiliary Book 1 20 - - 44 

Auxiliary Book 2 3 - - - 

Auxiliary Book 3 8 - - 4 

Auxiliary Book 4 19 - - - 

Auxiliary Book 5 - 52 - - 



244 

 

Table 4.38. (Continued) 

Sources of pre-planned examples 

Number of examples used by 

Teacher A Teacher B Teacher C Teacher D 

Auxiliary Book 6 - 7 - - 

Auxiliary Book 7 - - 5 - 

Auxiliary Book 8 - - - 16 

Auxiliary Book 9 - - - 18 

Total 73 81 100 89 

 

As can be seen in Table 4.38, as a whole 14 different resources were used by 

the middle school mathematics teachers when selecting pre-planned examples prior 

to the lesson. Besides, all of the middle school classrooms used the same book set 

prepared by a private publisher for the mathematics lesson. Each book set consisted 

of a student textbook, a student workbook and a teacher’s guidebook. The teachers 

who used the student textbook as a resource selected examples from this book as a 

means for introducing or explaining a new rational number topic.  

Apart from the official textbooks, the middle school mathematics teachers 

used auxiliary books prepared by 9 different private publishers. In general, the 

teachers used these auxiliary books for the purpose of providing exercise examples to 

their students. In other words, the teachers selected examples from different auxiliary 

books in order to consolidate the rational number concepts being taught or to 

promote retention and develop fluency with the procedures related with rational 

numbers. The selected auxiliary book examples were all multiple-choice questions 

and were similar to the ones asked in the secondary school entrance examination. 

This reflected a type of consideration employed by the teachers in choosing or 

generating rational number examples. The resources used by each teacher for 

generating pre-planned examples are explained as follows. 
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Teacher A used 7 different resources when planning which examples to use in 

the classroom. More specifically, he used 4 different auxiliary books for selecting 

pre-planned examples. Altogether he selected 73 pre-planned examples from 7 

different resources. 50 of the pre-planned examples were selected from auxiliary 

books, 20 of them were selected from official books and 3 of them were selected 

from high stakes examination questions (i.e., 2 examples from secondary school 

entrance examination and 1 example from university entrance examination). He 

mainly used the student textbook examples and the Auxiliary Book 1 and Auxiliary 

Book 4 examples in the course of teaching rational number ideas. He less frequently 

used student workbook examples, high stakes examination questions, Auxiliary Book 

2 and Auxiliary Book 4 examples. Yet, he neither considered teacher’s guidebook 

examples, nor online educational software examples while planning which examples 

to use in the classroom.  

Teacher B used student textbook, Auxiliary Book 5 and Auxiliary Book 6 

while planning which examples to use in the course of the lesson. Altogether he used 

81 pre-planned examples from 3 different sources. He selected 52 examples from 

Auxiliary Book 5, 22 examples from student textbook, and finally 7 examples from 

Auxiliary Book 6. Similar to Teacher A, he used student textbook examples during 

the explanation part of the lessons while he used auxiliary books for providing 

exercise examples. He selected pre-planned examples mostly from Auxiliary Book 5 

and to a lesser extent from student textbook. Besides, he selected only a few pre-

planned examples from Auxiliary Book 6. However, he did not take into account 

student workbook examples, teacher’s guidebook examples, high-stakes examination 

questions and online educational software examples when planning which examples 

to incorporate into the classroom.   

Teacher C used 3 different resources for generating pre-planned examples. 

Namely, these resources were student workbook, online educational software and 

Auxiliary Book 7. In total, the teacher used 100 pre-planned examples from these 

three different resources. 68 of the pre-planned examples were chosen from student 

workbook, 27 of the pre-planned examples were chosen from an online educational 

software and finally 5 pre-planned examples were chosen from Auxiliary Book 7. 
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Teacher C relied heavily on workbook examples and incorporated them into the 

lesson when compared to the number of examples selected from online educational 

software and Auxiliary Book 7. Besides, he used far less auxiliary book examples 

when compared to the previous two teachers. Interestingly, he did not use any 

textbook example during the teaching of whole rational number ideas. Likewise, he 

did not use teacher’s guidebook examples, high-stakes examination questions and 

any other auxiliary book examples except for those included in Auxiliary Book 7.  

Teacher D used 5 different resources for the purpose of generating pre-

planned examples. Namely, the resources used by her were teacher’s guidebook, 

Auxiliary Book 1, Auxiliary Book 3, Auxiliary Book 8 and Auxiliary Book 9. 

Totally, 89 pre-planned examples were selected from these 5 different resources. The 

minority of the pre-planned examples were selected from teacher’s guidebook (i.e., 7 

examples) while the majority of the pre-planned examples were selected from 4 

different auxiliary books (i.e., 82 examples). Surprisingly, Teacher D did not 

incorporate into her lessons any student textbook example, student workbook 

example, online educational software example or high stakes examination question. 

To summarize, while Teacher A and Teacher B incorporated student textbook 

examples into the classroom while explaining rational number ideas, Teacher C and 

Teacher D did not. On the other hand, Teacher A and Teacher D used student 

workbook examples in the classroom while Teacher B and Teacher D did not. The 

number of student workbook examples used by Teacher C during the lesson was far 

too much when compared to the examples used by Teacher A. In more detail, 

Teacher A used student workbook examples as exercise examples, however, Teacher 

C used them both as teaching examples and exercise examples.  

Teacher’s guidebook used by the four teachers included student textbook and 

workbook examples and additional examples apart from these examples. In this 

study teacher’s guidebook examples were treated as the additional examples to be 

able to distinguish them from student and workbook examples. In this study it was 

shown that none of the teachers except for Teacher D used teacher’s guidebook 

examples in the course of the lesson. Nonetheless, the number of teacher’s 

guidebook examples used by her was very few. Similarly, despite being very few, 
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only Teacher A brought high stakes examination questions into his classroom. He 

used these examples to raise his students’ awareness about the rational number 

examples that might be encountered in the secondary school entrance examination. 

Moreover, only Teacher C incorporated online educational software examples into 

his classroom. These examples served both as teaching examples and exercise 

examples. More specifically, Teacher C used the online educational software both as 

a means for explaining addition and subtraction of rational numbers and for the 

provision of exercise examples related with addition and subtraction of rational 

numbers.  

When teachers’ use of auxiliary book examples were examined 

comparatively, it was seen that Teacher A and Teacher D used 4 different auxiliary 

books, Teacher B used 2 different auxiliary books and finally Teacher C used only 

one auxiliary book. Teacher A used examples from two auxiliary books more 

frequently when compared to the other auxiliary books he used. Similarly, Teacher B 

used examples from one auxiliary book more predominantly, while he used the other 

auxiliary book scarcely. Teacher C used only a single book as an auxiliary book and 

the number of examples selected by him from this auxiliary book was very few. 

Rather than using auxiliary book examples, he gave more weight to student 

workbook examples in his classroom. Teacher D used examples from one auxiliary 

book more frequently, from two auxiliary books moderately and from one auxiliary 

book scarcely. Ultimately, two of the auxiliary books used by Teacher D were same 

as that of auxiliary books used by Teacher A.  

Thus far, the overall characteristics of examples used by middle school 

mathematics teachers in the teaching of rational numbers were described at length. 

More specifically, in the previous sections the focus was on describing the type of 

examples used by the teachers in the classroom, the rational number ideas 

emphasized by the teacher generated examples, the sources of examples as 

spontaneous and pre-planned examples and the resources teachers resorted to while 

choosing examples prior to the lesson. In the next chapter, the underlying principles 

or considerations that guided middle school mathematics teachers in choosing or 

generating rational number examples were described in detail.  
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4.3. Summary of Overall Characteristics of Teachers’ Rational Number 

Examples 

The findings of this study showed that teachers used specific examples, non-

examples and counter-examples as three different types of examples. However, 

almost all examples used by the teachers were specific examples. Teacher A and 

Teacher B provided slightly more specific examples than the textbook. However, the 

number of specific examples used by Teacher C and Teacher D was far less than the 

number of specific examples included in the textbook. Besides, the number of 

examples provided for teaching rational number operations was more than half of the 

total number of examples not only for some of the teachers but also for the textbook. 

On the other hand, very few examples were provided by the teachers and the 

textbook for teaching posing and solving rational number problems. 

The rational number ideas emphasized by the textbook examples were often 

emphasized by teacher generated examples as well. In addition, teachers provided 

examples that emphasized other rational number ideas apart from the textbook. To be 

more specific, the examples provided by the textbook for explaining and locating 

rational numbers on a number line involved the following rational number ideas: 

finding equivalent classes of a fraction, locating equivalent fractions on a number 

line, locating rational numbers on a number line, determining the 

positivity/negativity of rational numbers and finding the rational value of a point 

located on a number line. All teachers provided examples related with identifying 

whether a given number is rational and locating rational numbers on a number line. 

However, other rational number ideas about this learning objective (explaining and 

locating rational number on a number line) were not emphasized by all teachers. 

Apart from the rational number ideas emphasized by the textbook examples, teachers 

used examples that emphasized the following ideas: identifying whether a given 

number is rational, examining the location of a minus sign in a negative rational 

number, simplifying rational numbers, converting among mixed and improper 

numbers, and having students feel the need for positive and negative rational 

numbers.  
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The examples provided by the textbook for expressing rational numbers in 

different forms involved the following rational number ideas: expressing integers as 

rational numbers, expressing rational numbers as integers, repeating decimals or 

terminating decimals, expressing terminating decimals as rational numbers, and 

converting repeating decimals into rational numbers. The examples provided by the 

teachers for expressing rational numbers in different forms did not involve ideas that 

are different from textbook ideas. However, although all teachers provided examples 

for converting repeating decimals into rational numbers, not all of them provided 

examples for introducing other rational number ideas.  

The examples provided by the textbook for comparing and ordering rational 

numbers involved the following rational number ideas: locating on a number line, 

converting to decimals, common denominator approach, benchmarking, equivalent 

fractions, and common numerator approach. All teachers provided examples related 

with common denominator approach. However, other rational number ideas 

emphasized by the textbook for this learning objective were not emphasized by all 

teachers. For instance, none of the teachers provided examples for ordering rational 

numbers by using equivalent fractions. Apart from rational number ideas emphasized 

by the textbook examples, teachers used examples that emphasized the following 

ideas: residual thinking, equating the number of decimals by adding 0s, considering 

number sign, and converting to improper number.  Nevertheless, the first two ideas 

were emphasized only by one of the teachers and similarly the last two ideas were 

emphasized by another teacher. 

The examples provided by the textbook for adding and subtracting rational 

numbers involved the following rational number ideas: using models for the addition 

and subtraction of rational numbers, adding and subtracting rational numbers with 

same denominators, estimating the addition and subtraction of rational numbers, 

adding and subtracting rational numbers with different denominators and properties 

of addition of rational numbers. All teachers provided examples related with adding 

and subtracting rational numbers with same denominators, adding and subtracting 

rational numbers with different denominators and properties of addition of rational 

numbers. However, the rest of the rational number ideas about this learning objective 
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were not emphasized by all teachers. For instance, only one teacher provided a single 

example for teaching estimation of addition and subtraction with rational numbers. 

Apart from rational number ideas emphasized by the textbook examples, teachers 

used examples that emphasized the following ideas: performing multi-step operations 

with rational numbers and finding common denominator of rational numbers. 

However, these ideas were not emphasized by all teachers. For instance, only one 

teacher provided examples for finding common denominator of rational numbers.  

The examples provided by the textbook for multiplying and dividing rational 

numbers involved the following rational number ideas: modeling multiplication of 

rational numbers, multiplication and division of rational numbers, multiplication and 

division by 0, 1 and (-1), modeling and calculating the square and cube of rational 

numbers, performing multi-step operations with rational numbers, and properties of 

multiplication of rational numbers. The examples provided by teachers for teaching 

this learning objective did not involve ideas that are different from the ideas provided 

by the textbook examples. However, although all teachers provided examples for 

teaching the algorithm for multiplying and dividing rational numbers, not all teachers 

provided examples for introducing the rest of the ideas. More importantly, none of 

the teachers provided examples for estimating multiplication and division of rational 

numbers. 

The examples provided by the textbook for solving multi-step operations with 

rational numbers included the following rational number ideas: solving multi-step 

operations that are expressed on one line, solving multi-step operations that are 

expressed as complex fractions, and solving multi-step operations that are expressed 

as a continuing pattern. While all teachers provided examples related with the first 

two textbook ideas, not all teachers provided examples for the third textbook idea. 

Apart from rational number ideas emphasized by the textbook examples, one teacher 

provided examples for solving multi-step operations that are expressed as single 

variable polynomials.  

The examples provided by the textbook for posing and solving rational 

number problems included the following rational number ideas: solving rational 

number problems with same referent units, solving rational number problems with 
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different referent units, and posing rational number problems. While all teachers 

provided examples for solving rational number problems with same and different 

referent units, none of the teachers provided examples for posing rational number 

problems. More importantly, the number of examples provided by the textbook and 

the teachers for posing and solving rational number problems was rather few when 

compared to the number of examples provided for other rational number objectives. 

When non-examples of rational numbers provided by the teachers and the 

textbook were examined, it was seen that teachers provided four different forms of 

non-examples while the textbook did not provide any non-example. The teachers 

provided the following forms of non-examples: ratio of integers to zero, 

transcendental numbers, radicals, and infinite non-repeating decimals. Teachers more 

commonly used the ratio of integer to zero representation when providing non-

examples of rational numbers. However, non-examples in the form of infinite non-

repeating decimals, the only transparent representation of irrational numbers, were 

only used by one teacher.  

Although counter-examples are important in the teaching of mathematics, the 

findings showed that they are less evident in middle school classroom practice. In 

this study, only five counter-examples were generated by two teachers to 

demonstrate the falsity of students’ claims. Besides, all counter-examples were 

generated by the two teachers as a response to contingent classroom situations.  

This study revealed two main kinds of teacher-generated examples as 

spontaneous examples and pre-planned examples. While more than half of the 

examples used by Teacher A and Teacher B were spontaneously generated, the 

majority of the examples used by Teacher C and Teacher D were pre-planned. When 

all examples were considered altogether, it was seen that more than half of them 

were spontaneously generated by the teachers.  

Teachers used several different resources when choosing pre-planned rational 

number examples. The resources used by the teachers were student textbook, student 

workbook, teachers’ guidebook, high-stakes examination questions, online 

educational software and nine different auxiliary books. In general, the teachers used 

the auxiliary books for providing exercise examples to their students. The selected 
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auxiliary book examples were all multiple-choice questions and were similar to the 

ones asked in the secondary school entrance examination. Teacher’s guidebook 

examples were used only by one teacher. Similarly, high-stakes examination 

questions were used by one teacher and online educational software examples were 

used by another teacher. Many different auxiliary books were used by the teachers 

for selecting pre-planned examples. While two of the auxiliary books were preferred 

by the same two teachers, the rest of the each auxiliary book was preferred by one 

teacher. 
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CHAPTER V 

 

TEACHERS’ CONSIDERATIONS IN CHOOSING OR USING EXAMPLES 

 

The purpose of this study was to explore middle school mathematics 

teachers’ treatment of rational number examples in their seventh grade classrooms. 

In this chapter, the focus was on exploring the principles or considerations used by 

teachers while choosing or generating rational number examples. Through this focus, 

the following research question was formulated: 

What are the underlying principles or considerations that guide middle school 

mathematics teachers in choosing or generating examples? 

In this chapter, middle school mathematics teachers’ considerations in 

choosing or using rational number examples or the underlying principles that guided 

them in choosing or using rational numbers were reported on the basis of lesson 

observations and post lesson interviews. It is important to note that the considerations 

or principles employed by the teachers were interconnected and they slightly 

overlapped with each other. Besides, teachers used more than one consideration for 

several examples. On the contrary, in some cases teachers generated a sequence of 

examples and for this sequence of examples they employed the same consideration. 

Therefore, in this part of the study, rather than reporting the number of examples, the 

different considerations held by the teachers with respect to each category was 

provided. In the following section, the incidents in which teachers started with a 

simple or familiar case were described at length.   

5.1. Starting with a Simple or Familiar Case 

In this category, middle school mathematics teachers most often generated 

sequences of examples and each example in the sequence gradually increased in its 

level of complexity or difficulty. The rest of the considerations of this type were 

employed when teachers generated examples that recalled students’ prior knowledge 

on rational number concepts. The subcategories emerged from this category were (i) 
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considering form of rational numbers, (ii) considering denominators of rational 

numbers, (iii) considering number of repeating and non-repeating digits of a decimal, 

(iv) considering number of terms/elements/steps when ordering rational numbers, 

performing a single operation or multi-step operations with rational numbers, (v) 

considering increasing complexity of multi-step operations, and of rational number 

problems by changing their mathematical structure, and finally (vi) recalling prior 

knowledge on rational number concepts. 

5.1.1. Considering form of rational numbers 

Teachers selected a sequence of rational numbers in different forms for 

locating on a number line, for performing four operations and for performing 

exponentiation. To illustrate, Teacher A selected 
3 3 2 12

, , and
5 4 5 5
     respectively to 

locate them on a number line. In this sequence, the first two rational numbers are in 

proper form, the next rational number is in mixed form and the last rational number 

is in improper form. While locating these rational numbers on a number line, the 

teacher used the following expressions to explain why he chose them in that order. 

Teacher A: Proper numbers are fairly easy to locate them on a number line. 

3

5
is between 0 and 1 and 

3

4
 is between 0 and -1… I am skipping 

improper numbers, because I do not like locating them on a number line. To 

locate mixed numbers on a number line you should first have a look at the 

whole part. 
2

5
  has three wholes so it is between 3 and 4… It is more 

difficult to locate an improper number on a number line. That is why I 

skipped locating 
12

5
on a number line. To locate 

12

5
 on a number line you 

have to partition each integer interval into 5 and then count from 1 to 12. 

Other method of locating 
12

5
 on a number line is by converting it into a 

mixed number. This way is easier than the previous way. That is why I said I 

do not like locating an improper number on a number line.  

Another case had to do with the form of terms in a rational number operation. 

To illustrate, Teacher B performed 
2 1 2 9 9 4 1 3 3 1

, , , , 1
4 4 5 5 7 7 4 4 4 4

 
         

     
     
     

 

respectively while teaching addition and subtraction of rational numbers. Similarly, 
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he performed 
5 4 3 12 1 7 5 3 5 7 3 5 5 1

, , , 1 , , , 2
7 9 8 18 4 3 13 4 12 4 6 4 3 2

 
                

           
           
           

 

respectively during the teaching of multiplication and division of rational numbers. 

In these two sets of examples, Teacher B initially selected proper or improper 

numbers and later he selected mixed numbers as terms of operations. Since the initial 

examples did not require conversion into proper number numbers, these examples 

were easier than the latter ones. This consideration was expressed by Teacher B as 

following: 

 Teacher B: Let’s start multiplication and division with a few examples. 

Initially, let me use proper or improper numbers but not mixed numbers. 

Let’s start by using positive ones. We do not have to use parenthesis for 

positive rational numbers… 

Another example of how a teacher takes into account different form of 

rational numbers was observed in a lesson in which Teacher B introduced 

exponentiation of rational numbers. More precisely, the teacher provided 

3 2 3 2
1 1 2 1

and 1
2 3 3 2

        
          

       
 respectively as examples for finding the square and 

cube of rational numbers. As it can be seen from this sequence, Teacher B ultimately 

incorporated into the classroom an exponent with a mixed number base. Besides, 

computation of exponents becomes more complex when proceeded from 

3
1

2

 
 
 

to

2
1

1
2

 
 
 

. This type of consideration was expressed by Teacher B as follows: 

Teacher B: You do not have any problem with how to compute

3
1

2

 
 
 

. 

Similarly, you do not have any problem with how to compute

2
1

3

 
 
 

. Here 

you can directly multiply 
1

3

 
 
 

 by
1

3

 
 
 

. However, computation of 

2
1

1
2

 
 
 

is a bit more complex. What should you do to compute exponents with 
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mixed number bases? You first need to convert  
1

1
2

 into an improper 

number.  

5.1.2. Considering denominators of rational numbers 

Teachers initially used rational numbers with same denominators as members 

of the sequence when ordering rational numbers or they initially used them during 

the teaching of addition and subtraction of rational numbers. To illustrate, Teacher A 

generated the following sequence of examples consecutively when teaching how to 

order rational numbers: 

(1) 
( 2) ( 7) 1 3

, , 0, ,
5 5 5 5

 
    

(4) 
2 3 6

, ,
19 13 17

   

(2) 
1 1 1 1

, , , ,0
3 5 7 2
     (5) 

1996 1997 1998
, ,

1997 1998 1999
   

(3) 
2 2 2 2

, , 0, ,
7 13 15 19

       
 

In the first sequence, there was no need to find the least common multiple 

(LCM) of the denominators since all rational numbers had the same denominators. 

Besides, the students were already familiar with ordering by using common 

denominator approach since their primary school years. Therefore, it might be fairly 

easy for students to order the rational numbers given in the first sequence. In the 

second sequence, all rational numbers included 1 as a numerator and they can be 

ordered by using the same numerator approach. However, as indicated by the 

teacher, same numerator approach did not readily come to students’ mind when they 

saw 1 as the top numbers of all rational numbers. Therefore, ordering the second 

sequence of rational numbers might be more difficult for students when compared to 

the first sequence. In the third sequence, rational numbers included 2 as a numerator 

and they could be ordered by using the same numerator approach. However, this 

sequence included larger numbers as denominators and thus it might fairly be more 

difficult for students to order the given rational numbers when they did not think of 

using the same numerator approach. In the fourth sequence, rational numbers 

included different numerators and denominators. However, as expressed by the 
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teacher, this sequence included rational numbers that had larger denominators 

compared to their numerators. Thus, as done by the teacher, it was easier to find the 

least common multiple of numerators instead of denominators for ordering the given 

rational numbers. Yet, the students might not readily access to the use of common 

numerator approach for this sequence when compared to the third sequence. In the 

last sequence, rational numbers had different numerators and denominators and it 

was almost impossible for students to order the rational numbers by using common 

numerator or common denominator approach since all numerators and denominators 

were very large numbers. Thus, the students needed to use a different approach other 

than the two approaches such as residual thinking as done by Teacher A. 

Consequently, ordering the rational numbers included in the last sequence was more 

difficult than ordering the ones included in the fourth and in the previous sequences. 

In another case, Teacher D initially selected rational numbers with same 

denominators for teaching addition of rational numbers. That is, Teacher D 

performed the following addition operations consecutively: 

3 1 5 7 5 2 13 7 3 1 1 1 3
, , , , 2 , , 4

5 5 9 9 9 9 4 4 5 2 5 5 5

            
                     

         
 

After teaching addition of rational numbers, Teacher D provided her students 

with subtraction operations and similar to the addition examples, she started with the 

examples that included same denominators as terms of subtraction operation. She 

provided the following examples successively: 

5 2 9 3 1 3 3 1
, , , , 4

8 8 4 4 3 8 7 2

   
            

   
 

As it can be seen, in the two sets of addition and subtraction examples, 

Teacher D principally performed addition and subtraction of rational numbers with 

same denominators and then she moved on to teaching addition and subtraction of 

rational numbers with different denominators. This shows how she took into 

consideration the increasing level of complexity in the course of teaching addition 

and subtraction operations with rational numbers.  
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5.1.3. Considering number of repeating and non-repeating digits of a decimal 

There was a deliberate attempt on the part of teachers to proceed from 

decimals that included merely repeating digits to decimals that included both 

repeating and non-repeating digits while teaching conversion of repeating decimals. 

To give an example, Teacher B used 2.15 5.104 3.24 and .045      consecutively 

in order to convert them into their common fraction forms. As it can be seen,   

includes only one repeating digit and it is fairly easy to convert it into its common 

fraction form since it includes only one ‘9’ in the denominator. 2.15  includes two 

repeating digits and conversion of it is a bit more difficult when compared to   

since it requires two ‘9s’ in the denominator. 5.104  includes three repeating digits 

and conversion of it is more difficult when compared to 2.15  since it entails three 

‘9s’ in the denominator. Unlike the previous three repeating decimals, 3.24 includes 

one repeating and one non-repeating digit. Converting 3.24  into its common fraction 

form is more complex since it entails writing down one ‘9’ for the repeating digit and 

one ‘0’ for the non-repeating digit after ‘9’ in the denominator. Finally, .045

includes two repeating digits and one non-repeating digit and among all repeating 

decimals .045  can be regarded as the most complex one since it entails writing 

down two ‘9s’ and one ‘0’ after ‘9s’ in the denominator. Apart from this, 

identification of minuends and subtrahends necessary for finding the numerator of 

each common fraction becomes more complex when moved from   to .045 . 

5.1.4. Considering number of terms/elements/steps when ordering rational 

numbers, performing a single operation or multi-step operations with rational 

numbers 

Teachers gradually increased either the number of terms in an operation, the 

number of rational numbers selected for ordering in a sequence or the number of 

steps included in multi-step operations with rational numbers. To illustrate the case 

of gradually increasing the number of terms in an operation, the examples provided 
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by Teacher B in the course of teaching addition of rational numbers with different 

denominators are given as follows:  

(1) 
2 5

1
4 3
   (2) 

1 1
2 1

3 2

   
     
   

   (3) 
3 5

4 9

 
 

 
   (4) 

1 3 5
1

4 12 3

 
  
 

  

As it can be seen, the first three addition operations include two terms while 

the last addition operation includes three terms. These consecutively generated 

examples showed how Teacher B altered the complexity of operations by increasing 

the number of terms in the final operation.  

Similarly, to illustrate the case of increasing gradually the number of rational 

numbers in a sequence, the examples provided by Teacher B for teaching comparing 

and ordering rational numbers can be given. Namely, Teacher B initially generated 

rational number pairs for comparison as follows:  

7 15 3 8 1 7 1 17 5 1 1 1 2 12 7 17 1 9 3 15
, ; , ; , ; 2 , ; , 3 ; , ; ,

9 2 4 11 2 3 5 2 3 2 4 3 3 19 15 18 4 4 5 8

       
               

  

Later, he provided the following sequences of rational numbers consecutively for 

ordering:  

1 4 1 5 3 4 9 15 1 7 3 1
,2 ,1 , ; , , , ; , , ,

7 9 4 6 8 8 8 8 3 4 5 12

     
        

As it can be seen, the examples provided by Teacher B for comparing included two 

rational numbers while the examples provided for ordering included four different 

rational numbers. This showed how the teacher applied his principle of going from 

simple to more complicated by increasing the number of rational numbers included 

in a sequence for comparing and ordering.  

 Another case occurred when Teacher A attempted to increase gradually the 

number of steps included in complex fractions while teaching multi-step operations 

with rational numbers as follows: 

(1) 

1

1
1

2


 
(2) 

1
3

1
1

3




 

(3) 

1
1

1
1

1
1

2






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As the abovementioned examples show, Teacher A first provided his students 

with a complex fraction that can be solved in 2 steps. The next complex fraction can 

be solved in 3 steps and finally the third complex fraction can be solved in 5 steps. It 

appeared that Teacher A increased the number of steps in a complex fraction one or 

two at a time. Consequently, this showed how Teacher A increased the complexity of 

complex fractions progressively each time he provided a new complex fraction to his 

students.  

5.1.5. Considering increasing complexity of multi-step operations and of 

rational number problems by changing their mathematical structure  

Teachers considered increasing complexity of multi-step operations and of 

rational number problems by changing their mathematical structure. To illustrate the 

case of increasing complexity of multi-step operations, the examples used by 

Teacher B for teaching multi-step operations with rational numbers are given as 

follows: 

(1)  
1 1

2 3
3 4

   
     

   
 (2)   

2
1

1
3

1
1

2







 

(3)  

 

5
3 4

6
4

2x

 




 

As it can be seen, the first multi-step operation example includes terms that 

are all expressed on one line and the students are already familiar with this type of 

example from their early primary school years. The second multi-step operation 

example is in complex fraction form and this type of example is novel to students 

when compared to the previous one. Finally, the third multi-step operation example 

is also in complex fraction form. However, unlike the previous two examples, this 

example includes an unknown variable and thus it can be considered the most 

complicated one among three examples. Some of the explicit classroom utterances 

that support Teacher B’s principle of going from simple to more complicated during 

the provision of abovementioned examples are given as follows:  

Teacher B: The first multi-step operation is fairly easy. I do not think you 

will have any trouble while solving this problem…The second multi-step 

operation is in complex fraction form. We also call these fractions as stacked 

fractions. This problem is a bit troublesome when compared to the previous 
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one…Look out! The first problem is very easy, the second problem is a bit 

more difficult and you have great difficulty in the third problem.  

Another case occurred when Teacher A attempted to generate rational 

number problems from simple to more difficult by changing the mathematical 

structure of each problem gradually. The rational number problems constructed by 

Teacher A consecutively in the course of the lesson are provided as follows: 

(1) Find 
3

4
 of 24. (2) On Monday, Ali spent 

1

4
 of his pocket money. The 

next day, he spent 
2

3
 of his pocket money and he had 21 TLs left. How 

much pocket money did he have at the beginning? (3) On Monday, Ali spent 

1

4
 of his pocket money. The next day, he spent 

2

3
 of his remaining pocket 

money and he had 21 TLs left. How much pocket money did he have at the 

beginning? 

 As it can be seen, the first problem is devoid of real life context and it is fairly 

easy to solve. The second problem is embedded in a real life context and the referent 

unit is the same for all rational numbers given in this problem. That is, this problem 

involves addition and subtraction of given rational numbers. Thus, the second 

problem is deemed to be more difficult when compared to the first one. Finally, the 

third problem was generated completely by using the same real life context of the 

second problem. However, the rational numbers given in this problem all refer to 

different referent units. Namely, the third problem includes multiplication of rational 

numbers in addition to addition and subtraction. Thus, the third problem can be 

accepted as the most complicated one among three problems. Accordingly, the three 

rational number problems generated by Teacher A manifested how he applied his 

principle of going from simple to more difficult by incrementally changing the 

mathematical structure of each problem.  

5.1.6. Recalling prior knowledge on rational number concepts  

Finally, teachers considered recalling students’ prior knowledge on rational 

number concepts when needed. There were many cases that prompted teachers to 

check students’ prior knowledge on rational number concepts. In one case, teachers 

recalled natural number set and integer set and gave examples and non-examples for 
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these sets before introducing rational number set. For instance, Teacher C introduced 

10 100
0,1, and

2 2
     as examples and 1, 5, 38and 0.35      as non-examples for natural 

number set. Similarly, he introduced -10, -1, 0 and 1 as examples and 
1

0.35 and
2

   as 

non-examples for integer set.  

In another case, equivalent fractions were recalled before explaining rational 

number set. To give an example, Teacher B found the equivalence sets of the

1 1 5
, and

2 2 2
    as a means to define rational number set.  

Another case was about recalling proper fractions, improper fractions, mixed 

fractions and locating them on a number line. For example, Teacher A provided 
3

5
 

as a proper fraction, 
2

3
5

 as a mixed fraction and 
12

5
 as an improper fraction and 

located them on a number line respectively.  

Another manifestation of a teacher’s consideration of prior knowledge was 

observed when Teacher C recalled conversion among mixed fractions and improper 

fractions. That is to say, Teacher C recalled how to convert 
1 8

2 and 20
2 9
    into 

improper fractions before teaching how to convert negative numbers such as 

1 1 7
3 , and 2

2 4 10
     into their improper forms. Similarly, Teacher C recalled how to 

convert 
12 23 17

, and
5 4 16

   into mixed fractions before teaching how to convert negative 

numbers such as 
7 25 100 100

, , and
3 6 3 99

      into their mixed number forms.   

In another case, Teacher A recalled how to find the least common multiple of 

three natural numbers. More precisely, the teacher was teaching how to order 

2 7 7
, ,

5 10 3
 and he decided to order them by using common denominator algorithm. At 

that moment he recalled how to find the least common multiple of 3, 5 and 10. He 

explained this method step by step as follows: 
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Teacher A: How can I find the least common multiple of 3, 5 and 10? I first 

write these three numbers from left to right. I then draw a vertical line to the 

right hand side of these numbers. Next, I check whether these numbers are 

divisible by the prime number 2.  I write a 2 to the right side of the line. 2 

does not divide 3 and 5 so I just bring down 3 and 5 and 2 goes into 10 five 

times so I write 5 underneath 10. Now, I am left with 3, 5 and 5. I have to 

repeat the process. 3, 5 and 5 are not divisible by 2, so I check whether they 

are divisible by the prime number 3. I see that 3 is divisible by 3. So I write 

3 to the right side of the line. 3 goes into 3 one time, thus I write 1 under the 

3. However, 3 does not go into 5 and 5 so I bring down the two 5’s. This 

time I am left with 1, 5 and 5. Again, I have to repeat the process. The two 

5’s are divisible by 5 so I write 5 to the right side of the line and then write 1 

under each 5. Now, I multiply the prime numbers on the right hand side of 

the vertical line to get the least common multiple. 2 times 3 times 5 is 30. 

Thus, the least common multiple of 3, 5 and 10 is 30.  

Other consideration of this type occurred when Teacher D recalled how to 

order integers before ordering rational numbers. More precisely, before ordering

1 1
, and 1

8 4
    , she recalled how to order -4, -3 and -2. She first ordered the integers 

as if they were positive. That is, she treated negative numbers as if they were positive 

numbers and arranged them as 4 3 2   and then she reversed this arrangement as 

2 3 4      so as to order the negative integers. She then expressed that the same 

reasoning is applicable for ordering rational numbers. Accordingly she arranged the 

rational numbers as 
1 1

1
4 8

   and reversed this arrangement as 
1 1

1
8 4

      so as 

to order the negative counterparts.  

Another example of how a teacher takes into account prior knowledge of 

students was observed in a lesson in which Teacher A taught addition of rational 

numbers. In more detail, he computed 
1 3 2

2
5 7 7

   
      
   

 step by step and finally 

reached the answer
326

105
. As this number included large numerators and denominators 

the teacher wanted to simplify it. Thus, he asked the students to ponder whether 105 

and 326 had a common divisor. As the students invalidly claimed that 105 and 326 

were divisible by 3, the teacher felt the need to recall divisibility rules. The teacher 

explained that a number was divisible by 3 if and only if the sum of its digits was 

divisible by 3. Finally, he expressed that 326 was not divisible by 3 since the sum of 

its digits (i.e., 11) was not divisible by 3.   
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Another consideration related with prior knowledge subcategory occurred 

when teachers started teaching four operations with rational numbers initially by 

recalling operations with fractions. For instance, Teacher B expressed this type of 

consideration by the following utterances: 

Teacher B: Now, let’s start addition and subtraction of rational numbers. In 

grade 5, you learnt how to perform operations with fractions. But, I am not 

sure whether you did it in grade 4. Did you? 

Student 1: Yes, we did. 

Teacher B: Ok, we can add fractions, we can subtract fractions. Let me give 

you an example from fractions. Let’s find the answer of 
2 1

4 4
 (The teacher 

drew a region model of fractions to explain the subtraction operation). How 

do you read
2

4
? 

Student 2: It is two-fourths. 

Teacher B: We can read 
2

4
as two over four or as two-fourths. Actually, it is 

one-half. Similarly, we can read
1

4
as one-fourths and it is also called one-

quarter. Now, if we subtract 
1

4
from

2

4
, the remaining part will correspond 

to
1

4
. How did we perform this operation? Since the two fractions had same 

denominators, we subtracted their numerators from each other. In fact we do 

it in this way: 2 minus 1 is equal to 1. Thus, the answer is
1

4
. As I said 

before, you previously learnt how to add and subtract fractions. Well, how 

will you add and subtract rational numbers? Is there something new for 

rational numbers? 

Students: No! 

Teacher B: What should you attend to when adding or subtracting rational 

numbers? 

Students: To their signs. 

Teacher B: Yes, you should attend to the signs of terms.  

Teacher B showed the same consideration when teaching multiplication and 

division of rational numbers. That is, Teacher B recalled multiplication of fractions 

at the initial phase of the teaching episode related with multiplication of rational 

numbers. He expressed this type of consideration by the following utterances: 
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Teacher B: Now, we will have a look at multiplication and division of 

rational numbers. Let’s begin with multiplication of fractions. How were we 

multiplying fractions? 

Student 1: We multiply the numerators and write the answer to the 

numerator. Then we multiply the denominators and write the answer to the 

denominator.  

Teacher B: Good! Now, we will have a look at the examples included in 

your mathematics textbook. Initially, we will remember the multiplication 

and division of fractions. Primarily, we will find the answer of
2 3

3 4
 . If you 

remember from fractions, we multiply the numerators and write the answer 

to the numerator of the new fraction, similarly we multiply the denominators 

and write the answer to the denominator of the new fraction. 2 times 3 is 6 

and 3 times 4 is 12 and thus the result is
6

12
. 

In another case, Teacher A recalled commutative property of addition of 

integers before teaching the commutative property of addition of rational numbers. 

Teacher A expressed this type of consideration by the following utterances: 

Teacher A: You learned this property earlier in integers. How did we do it in 

integers? For instance, if 2+3 is equal to 3+2 

?

i.e., 2 3 3 2
 

  
 

  , then we 

say that addition is commutative for integer set. The sum of 2+3 is equal to 5 

and the sum of 3+2 is again equal to 5. Thus, addition operation is 

commutative for the set of integers. Now, let’s check if addition is 

commutative for rational number set. For instance, let’s see if
2 3

5 5
 is equal 

to
3 2

5 5


?2 3 3 2
i.e.,

5 5 5 5
  

 
 

 
.  

2 3

5 5
  is equal to 

5

5
 and 

3 2

5 5
  is again 

equal to 
5

5
. Hence, we can say that addition operation is commutative for 

rational number set. Is there anything you could not understood? 

Students: No! 

Teacher A: Ok, now let’s move on to another example of commutative 

property. 

Teacher A showed the same consideration when teaching associative property 

of multiplication of rational numbers. Namely, he recalled associative property of 

addition of integers before teaching the associative property of addition of rational 

numbers. This consideration was expressed by Teacher A as follows: 

Teacher A: What discriminates associative property from commutative 

property is that associative property includes three numbers whereas 
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commutative property includes two numbers. If adding the first two numbers 

initially and later adding the third number yields the same result with adding 

the second and the third number initially and then adding the first number, 

then we can say that addition operation is associative for the set of integers. 

Let me give an example. Let’s see whether (2 3) 5   is equal to 2 (3 5) 

. If we add 2 and 3 we get 5 and if we add 5 and 5 we get 10. Next, if we add 

3 and 5 we get 8 and if we add 8 and 2 we again get 10.  In this case, 

2 3) 5    is equal to 2 (3 5)  . Thus, we can say that addition operation 

is associative for the set of integers. Now, we will follow the same process 

for rational numbers. Not to spend too much time for finding the common 

denominator, I want to select rational numbers that have same denominators. 

Let’s see whether 
1 3 7

2 2 2
 

 
 
 

 is equal to
7

2

1 3

2 2


 
 
 

. If we add 
1

2
and

3

2

, we get 
4

2
 and if we add 

4

2
and

7

2
 we get

11

2
. Next, if we add 

3

2
and

7

2
, 

we get 
10

2
 and if we add 

1

2
and

10

2
, we get

11

2
. We can see that 

1 3 7

2 2 2
 

 
 
 

 

is equal to
7

2

1 3

2 2


 
 
 

. Thus, addition operation is associative for the set of 

rational numbers. 

Teacher A also showed the same consideration when teaching distributive 

property of multiplication over addition of rational numbers. That is, he first showed 

how to use distributive property of multiplication over addition of integers and later 

he carried out the same process for rational numbers. This consideration was 

expressed by Teacher A as follows: 

Teacher: First, I want to teach you distributive property of multiplication 

over addition by using integers. Let’s see how to find the answer of 2 (3 5) 

. Keep in mind that the distributive property spoils the order of operations. 

That is, if we use the order of operations, we have to perform the addition 

operation first. But, if we use the distributive property, we multiply first and 

then add. That is, 2 times 3 is 6 and 2 times 5 is 10 and finally 6 plus 10 is 

16. Thus, the answer is 16. Why did I initially use integers instead of rational 

numbers? If I primarily use rational numbers, you can get confused. Now, I 

will repeat the same process by using rational numbers. Let’s compute 

3 3 6

4 2 5
 
 
 
 

 by using the distributive property. We multiply 
3

4
 by 

3

2
 and 

get
9

8
. Next, we multiply 

3

4
 by 

6

5
 and get

18

20
. Now we need to perform

9 18

8 20
 . We can simplify 

18

20
 by dividing both the numerator and the 
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denominator by 2. Thus, we can rewrite the subtraction operation as
9 9

8 10


…   

Finally, the manifestation of this approach was seen when Teacher B recalled 

how to find the square and cube of integers before teaching the second and third 

powers of rational numbers. The following excerpt showed how Teacher B took into 

account this type of consideration: 

Teacher B: In this lesson, I will teach you how to find the second and third 

powers of rational numbers. But, initially, let’s remember how to find the 

powers of integers. To find the answer of 
2

( 3)  we need to multiply ( 3) by 

itself for two times. 3 times 3 is 9 and my friend’s friend is my friend. Thus,
2

( 3) ( 3) ( 3) ( 9)       . Similarly, to find the answer of 
3

( 2) we need to 

multiply ( 2) by itself for three times. 2 times 2 times 2 is equal to 8. My 

enemy’s enemy is my friend and my friend’s enemy is my enemy. Thus,
3

( 2) ( 2) ( 2) ( 2) ( 8)         . Finally, to find the answer of 
2

( 4) we need to 

multiply ( 4) by itself for two times. 4 times 4 is 16 and my enemy’s enemy 

is my friend. Thus,
2

( 4) ( 4) ( 4) ( 16)       . Now, I will give you some 

examples from exponents with rational number bases. Is it okay? 

Students: Okay!    

The incidents in which teachers started with a simple or familiar case were 

described in detail in this section. In the following section, the cases in which 

teachers attended to students’ errors, misconceptions or difficulties were described 

thoroughly.  

5.2. Attending to Students’ Difficulties, Errors or Misconceptions  

Middle school mathematics teachers often built examples according to the 

difficulties they knew their students encountered with, common errors they knew 

students made or the misconceptions they knew students held. Thus, subcategories 

emerged from this category were (i) attending to student difficulty, (ii) attending to 

student error, and finally (iii) attending to student misconception.  

5.2.1. Attending to students’ difficulties 

Teachers expressed that students often had difficulty in (i) understanding the 

location of a minus sign in a rational number, (ii) dealing with division of a number 
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by zero and division of zero by a number, (iii) understanding that distributive 

property yields a valid result, (iv) performing subtraction operation with rational 

numbers, (v) solving complex fractions with unknown values, (vi) ordering rational 

numbers with the same numerators, (vii) simplifying rational numbers before 

multiplication, (viii) performing operations including negative rational numbers 

without parenthesis, and (ix) distinguishing between exponents with a power inside 

the parenthesis and out outside the parenthesis. 

Teachers explicitly stated in the classroom that students often had difficulty 

in understanding that locating the minus sign either over, in front of or under the 

main fraction bar does not alter the value of a rational number and they emphasized 

that the three different representations of the negative rational number mean the same 

thing. The following episode of Teacher A on teaching rational numbers with same 

denominators illustrates this consideration: 

Teacher A: Let’s find the answer of
( 3) ( 5) 2

7 7 7

 
   

 
 
 

. Before solving 

this, I want to focus to the following equality:
1 1 1

2 2 2


  


. You often get 

confused when you see this equality. This equality means that
1

2
 ,

1

2


 and 

1

2
are all equal to each other and wherever you put the minus sign, the 

rational number will always be negative. You can either put it over, under or 

in front of the fraction bar. By using this equality, we can rewrite 
2

7

 
 
 

 as 

( 2)

7


and aggregate the numerators over one fraction bar in this way:

( 3) ( 5) ( 2)

7

    
 . Finally, we add and subtract rational numbers as we 

did in integers.  

 Teachers indicated that students had difficulty in understanding that division 

of a number by zero was undefined while division of zero by a number was zero. For 

instance, Teacher A identified in the course of a lesson a student’s difficulty in 

finding the answer of 
0

5
 as zero. The expressions he used to explain his 

consideration is provided by the following teaching episode:   
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Teacher A: What does 
0

5
equal to? Who wants to tell me the answer? 

Student: Zero over five is equal to five.  

Teacher A: Good (!) How many times does 5 go into 0? Five times. Now 

listen to me very carefully. When you were in grade 6, you learnt organelles 

of a cell in science lessons. Did not you? 

Students: Yes, we did.  

Teacher: Then, watch me very carefully. I will draw a figure on the board to 

help you see that 
0

5
 is equal to zero. The cells ingest foreign particles by 

locally infolding their membranes and protruding their cytoplasms around 

the fold until they surround the particles and engulf them by closing the 

membrane.  

 

 Think as if zero is a cell and 5 is a foreign particle. As you can see, the cell 

namely zero totally surrounds the particle (i.e., the number 5) as time 

progresses and at last the cell engulfs the particle. Thus, 
0

5
 is equal to zero 

while 
5

0
is undefined. That is, dividing zero by a number is zero and 

dividing a number by zero is undefined. 

In addition to this, Teacher A expressed in the post-lesson interview that students 

could not distinguish between 
0

5
 and

5

0
. That is, the teacher stated that students had 

difficulty in understanding how many times 5 goes into 0 or the vice versa.  

Teachers expressed their concerns that students did not easily grasp that the 

result obtained by using distributive property was valid and always the same with the 

result obtained by following the order of operations. The following teaching episode 

of Teacher D illustrates this type of consideration: 

Teacher D: Normally, you would initially perform addition and then 

multiplication operation when you come across with
4 2 1

7 3 5
 
 
  

. Another 

way to solve this task is to distribute 
4

7
over 

2

3
and

1

5
.  
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Student: Probably, the two methods will not yield the same result, will they?  

Teacher D: Good question! At first, it seems as if the results will not be the 

same and the students often have difficulty grasping that the two methods 

will always yield the same result. Now, I will solve this task by using the 

two methods. However, I am sure some of you will still doubt about the 

validity of the distributive property (The teacher solved the task by using 

both approaches in the following way). 

4 2 1 4 2 4 1 8 4 40 12 52

7 3 5 7 3 7 5 21 35 105 105 105
          
 
  

  

4 2 1 4 10 3 4 13 52

7 3 5 7 15 15 7 15 105
       
   
      

  

Did the two methods yield the same result? 

Students: Yes! 

Teacher D: What I am trying to say is that you can distribute 
4

7
 over the 

rational numbers inside the parenthesis. Now, let me give you another 

example about distributive property of multiplication over addition.   

Teacher B drew attention to the difficulty encountered by students in 

performing subtraction operation with rational numbers when compared to addition. 

Some of the expressions he used to explain his approach are as follows:  

Teacher B: If we know integers well, we can comfortably perform 

operations with rational numbers. You quite easily add rational numbers. 

However, subtracting rational numbers is rather troublesome for you. 

Especially, when subtracting a negative rational number from another 

negative rational number, you have some difficulties. Let’s have a look at 

the following example:
2 3

1
9 5


 
   
   
   

. For instance, you get confused 

while solving this operation, since there are several minus signs in it. 

Besides, most of you have difficulty remembering the procedure learnt for 

subtraction of integers. You ask me to tell which minus sign should be 

replaced with a positive sign. By the way, let me explain once again. The 

sign of the first term, the minuend, does not change, we change the sign of 

the subtrahend. Meanwhile, the subtraction operation turns into addition 

operation.  

Teacher B pointed to a common student difficulty in the course of teaching 

multi-step operations with rational numbers. He wrote on the board one example for 

each type and expressed his consideration as follows:  

Teacher B: Mainly, there are three different types of multi-step operations. 

Now, I am going to write them on the board and teach you how to solve each 
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of them (The teacher split the board into three parts and wrote the 

following examples as the first, second and third type respectively). 

1 1 2 5
2 3 , , 4

1 63 4
3 4

1 2
1

2

x

     

 




   
   
   

. 

The first multi-step operation is fairly easy. I do not think you will have any 

trouble while solving this problem…The second multi-step operation is in 

complex fraction form. We also call these fractions as stacked fractions. This 

problem is a bit troublesome when compared to the previous one…Look out! 

The first problem is very easy, the second problem is a bit more difficult and 

you have great difficulty in the third problem.  

Teacher A was teaching how to order rational numbers with same numerators. 

He wrote on the board the following set of rational numbers for this purpose:

2 2 2 2
, , 0, and

7 12 15 19
    . He deliberately selected large denominators for these rational 

numbers to encourage the use of common numerator approach. Based on his prior 

experience, he knew that students tended to use common denominator approach even 

though the given set of rational numbers had the same numerators. The teacher 

expressed his consideration of student difficulty in ordering same numerator rational 

numbers by common denominator algorithm as follows:  

Teacher A:  You can see that it is very difficult to find the common 

denominator for these rational numbers. Why is it so difficult to find the 

common denominator? Because, 7, 13, 15 and 19 are relatively prime 

numbers. That is, they do not have a common factor. We can order these 

rational numbers easily by using same numerator approach. Despite this, 

students always tend to use common denominator approach. They do not 

think of using same numerator approach although they see same numbers at 

the top of the rational numbers. Each year, I ask ordering examples of his 

type and always there are some students who make a great deal of effort 

while finding the common denominator. So, if possible use common 

numerator approach for this type of ordering tasks. 

Teacher B explicitly expressed his consideration about a difficulty 

encountered by students in the course of simplifying rational numbers before 

multiplication. Some of the expressions used by the teacher to explain his approach 

were as follows:  

Teacher B: Today, I am going to teach you multiplication of rational 

numbers. First, I want to multiply two positive rational numbers in proper 
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form. For example, let’s find the answer of 
3 12

8 18
 . I will perform this 

operation initially by using long multiplication method as depicted in your 

mathematics textbook. Later, you can perform it by using short 

multiplication method. 

Student: Is it possible to simplify rational numbers before we multiply them? 

Teacher B: You can also do in that way. But, in the previous years, the 

students had more difficulty when they used that way.  

Teacher A was teaching subtraction operation with rational numbers that did 

not include any parenthesis. Namely, the teacher was performing the following 

operation:
3 2

7 3
  . During this time, the teacher uttered that most of the students had 

difficulty understanding operations such as -9-14. The following teaching episode 

illustrates teacher consideration of this kind: 

Teacher A: Well, how shall we perform this operation? 

Student: We should find the least common multiple of 3 and 7. 

Teacher A: Yes, we initially find the common denominator as your friend 

indicated. Thus, 
3 2

7 3
   is equal to 

9 14

21 21
   and we aggregate the 

numerators over one fraction bar as follows: 
9 14

21

 
. Most of you have 

problems with performing operations such as the one at the top of this 

fraction. As you remember, I asked you to perform operations such as 

9 14  in your previous examination and most of you had trouble with 

them. 9 14  is equal to -23, why? Because if you owe 9 TLs to your friend, 

and 14 TLs to another friend, you owe 23 TLs to your friends in total.  

Finally, Teacher A attended to a difficulty encountered by the students when 

finding the square and cube of rational numbers. The teacher indicated that students 

often had difficulty in distinguishing between an exponent with a power inside the 

parenthesis and an exponent with a power outside the parenthesis. One of the 

utterances used by the teacher to express this type of concern is given as follows: 

Teacher A: Listen to me very carefully. Now, I am going to write on the 

board two exponential numbers that resemble to each other on the surface 

but in essence they have nothing to do with each other. Look through 
3

2

5

 
 
 

 and 

3
2

5

 
 
 

for some time. In the first exponential number the power 

is inside the parenthesis and in the second one the power is outside the 

parenthesis. You often have difficulty in deciding which numbers are 

influenced by 3 in the first and second exponential numbers. In the first 
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exponential number, 3 has impact on only 2. Even, it does not have any 

impact on the minus sign preceding 2. However, in the second exponential 

number 3 has impact on 2, 5 and on the minus sign. Thus, 

3
2

5

 
 
 

 is equal 

to 
2.2.2

5

 
 
 

 and 

3
2

5

 
 
 

is equal to
2 2 2

5 5 5

       
      

     
. Is that okay? 

Students: Yes! 

5.2.2. Attending to students’ errors 

Teachers claimed that students often make the following mathematical errors 

related with rational number concepts: (i) ignorance of using parenthesis when 

operating with negative rational numbers, (ii) making sign errors when adding mixed 

numbers,  (iii) making errors when multiplying a rational number and whole number,  

(iv) using commas instead of greater-than and less-than signs when ordering rational 

numbers, (v) making notation errors about mixed numbers,  (vi) making errors when 

finding additive inverse of a rational number, (vii) making errors due to not 

following order of operations, and finally (viii) making notation errors when 

performing the exponentiation of unknown variables. 

Teachers articulated in the lesson that students often made errors due to the 

ignorance of using parenthesis when performing operations with rational numbers. 

For instance, Teacher A made up a scenario about the possible error made by the 

students while solving the following task: 
5 2

, , - ?
8 8

A B A B
 

    
   
   
   

Teacher A’s 

consideration of student errors resulting from ignorance of parenthesis is given as 

follows: 

Teacher A:  While I was teaching integers, I warned you to use parenthesis 

while substituting numbers into the given expressions. Otherwise, your 

answer will be wrong. Now, I will solve this task like a student. Watch me 

very carefully. Students often ignore using parenthesis and substitute A and 

B in this way:
5 2

8 8


 . This was a possible student solution. Now, I will 

introduce you the teacher solution. We should write 
5

8


 and 

2

8


 in 

parenthesis. We can write them in parenthesis in the following way:
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5 2

8 8

 


   
   
   

. You may wonder why there are two minus signs. One of 

them belongs to the subtraction operation and the other belongs to the 

rational number itself (i.e., the sign of subtrahend). I am sure ninety percent 

of the students solve this task erroneously because of ignoring the 

parenthesis when substituting the numbers into the given expression. When 

expressions include positive rational numbers, you do not make errors too 

often but when it comes to the expressions with negative rational numbers 

you make errors very often. 

Teachers pointed that their students’ sign errors might originate due to not 

converting mixed numbers into improper numbers before addition.  For instance, this 

type of consideration was expressed by Teacher B after the provision of 
3 1

5 1
4 4
 
 
 
 

 

as follows: 

Teacher B: How shall we perform this operation? 

Student 1: Well, we first add the whole parts. 

Teacher B: How about the fractional parts? 

Student 1: We add 3 and 1 to find the numerator of the fractional part. 

Teacher B: Shall we add or subtract? 

Student 1: … (No response) 

Teacher B: Watch out! We first subtract the whole parts as (5-1). Similarly, 

we subtract the fractional parts as 
3 1

4

 
 
 

  and find the answer as
2

4
4

. Did 

you understand this way of solution? 

Students: No! 

Teacher B: I do not recommend adding mixed numbers in this way. I am 

sure most of you will make errors if you add them in this way. To ensure 

finding a correct answer, you need to convert mixed numbers into improper 

numbers before adding. On the contrary, you may certainly be mistaken.  

Teachers articulated a student error made by the students while performing 

operations with a rational number and a whole number. Some of the expressions used 

by Teacher D after the provision of 
11

3
8

  is presented below:  

Teacher D: Sometimes students feel perplexed when they are asked to 

multiply a whole number by a rational number. They make errors since 3 is 

aligned with neither 11 nor 8. Thus, the students often multiply 3 by both the 

numerator and the denominator as 
11 3 11 33

3
8 3.8 24


    and arrive at a wrong 

answer.  
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Teacher B expressed a concern about the error made by the students in the 

course of finding additive inverse of rational numbers. The classroom utterances 

expressed by the teacher for this type of consideration is presented as follows:  

Teacher B: Some of your friends still make errors while finding the additive 

inverse of a rational number. For instance, let me write 
3

2
7

 as an example 

for finding the additive inverse. I am not sure whether you can find the 

additive inverse correctly. You persistently make errors while finding it. I do 

not know why but some of you persistently express the answer as either 

3
2

7
  or 0.      

Teacher B explicitly stated that students erroneously used commas instead of 

using greater-than or less-than signs when ordering the given numbers. This 

consideration is expressed by the following teacher utterances:  

Teacher B: Now, let’s think of a number line. In a number line, the number 

on the left is smaller than the one on the right. If you know this, you can 

locate the rational numbers on the number line and after that you can easily 

order them. You should absolutely use symbols for ordering. We use 

symbols when ordering rational numbers. You can either order from least to 

greatest or from greatest to least. To reiterate, you should certainly use 

symbols. However, you should not use commas for ordering. In the previous 

years, there were some students who used commas when ordering rational 

numbers. If you use symbols, you end up with a correct arrangement, 

otherwise it will be erroneous.    

Teacher A expressed a consideration about a student error resulting from not 

following mathematical conventions when expressing mixed numbers. By 

convention, a mixed number needs to be expressed as a whole number and a proper 

fraction. Teacher A articulated this type of student error in the course of performing 

the following operation:
5 5

3
12 6

 . Some of the expressions he used to explain his 

approach is presented as follows: 

Teacher A: We can perform this operation in two ways. In the first way, we 

can convert 
5

3
12

into an improper number before adding as: 

5 5 41 5 41 10 51 3
3 4

12 6 12 6 12 12 12 12
       .  

In the second way, we add the whole number parts and fractional parts and 

add later as:   
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5 5 5 10 5 10 15 3 3
3 3 (3 0) 3 3 1 4

12 6 12 12 12 12 12 12


           

Student: The first way is easier.  

Teacher A: You are absolutely right. I do not advise you to use the second 

way. Because I am sure you will make a mistake if you use the first way. In 

the previous years, the students left the operation incomplete by leaving the 

mixed number in this way:
15

3
12

. However, there is no such mixed number in 

mathematics. Because the fractional part cannot be improper in mixed 

numbers.  

Teacher A paid close attention to a difficulty encountered by the students due 

to not following the order of operations rule. The teacher was teaching multiplication 

and division of rational numbers and expressed his consideration explicitly after the 

provision of 
3 ( 2) 5 7

2 3 7 5

 
    as follows: 

Teacher A: Who wants to explain the step-by-step solution of this task? 

Student: Teacher, we will initially perform the subtraction operation in this 

task, won’t we? 

Teacher A: Well, you are absolutely wrong. You make the most critical error 

here. Now, I circle this part of the task and specifically note down a remark 

as ‘the two negatives do not make a positive”. 

  

Students: Why? 

Teacher A: Because you have to perform the division operation first 

according to the order of operations rule.  

Finally, Teacher D took into account a possible student error that might occur 

due to using bad notation when performing the exponentiation of unknown variables. 

The teacher chose to use the following example to express her consideration: find the 

value of 

3 2
10

3

x x 
 where 2x   . The convention among mathematicians is to 

perform 2x  and 3x  by writing -2 inside the parenthesis as 
2( 2)  and 

3( 2)
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respectively. In the following excerpt, Teacher D manifested her consideration about 

the error students made when they did not follow the aforementioned convention: 

Teacher D: In this task, you have to substitute -2 into the given single 

variable expression. You should pay attention to using parenthesis when 

substituting -2. All you need to do is use parenthesis. Do not forget this! Let 

me repeat once more. If an expression includes unknown variables such as 
3 2 and x x and if you are asked to substitute a negative number into this 

expression, you should always put the number in parenthesis while 

performing exponentiation. If you do not perform in this way, then you will 

certainly make an error. Namely, you cannot perform the exponentiations as 
3 3

2x   and 2 2
2x   . Is that okay? 

Students: Yes! 

5.2.3. Attending to students’ misconceptions 

Teachers explicitly uttered that students held the following misconceptions 

about rational number concepts: (i) counting tick-marks rather than counting equal 

parts of the line segment when locating a rational number on a number line, (ii) over-

generalizing location of positive rational numbers to negative rational numbers, (iii) 

over-generalizing multiplication and division of rational number algorithms to 

addition and subtraction of rational numbers, (iv) under-generalizing simplification 

of rational number multiplication, (v) misapplying multiplication to mixed numbers, 

(vi) ordering decimals by treating the digits after the decimal points as separate 

numbers, (vii) performing exponentiation by adding base and power, (viii) 

performing exponentiation by multiplying base and power, and (ix) believing that a 

larger number must always be divided by a smaller number.  

Teachers expressed that students erroneously focused on tick-marks rather 

than equal distances when locating rational numbers on a number line. For instance, 

Teacher D expressed this type of consideration while teaching the location of 
5

6
 on a 

number line as follows: 

Teacher D:  When locating rational numbers on a number line, the most 

salient error you make is counting tick-marks rather than counting equal 

parts of the line segment. For instance, if I ask you to locate 
5

6
 on a 

number line, never do in the following way: 
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Instead of this, divide the line segment between 0 and 1 into 6 equal parts. 

Next, count five equal parts by beginning from 0 and mark the end of the 

fifth equal part as 
5

6
 in this way: 

 

Teachers explicitly uttered in the classroom that students over-generalized location 

of positive rational numbers to negative rational numbers. To illustrate, Teacher C used the 

following expressions to explain this type of consideration:  

Teacher C: I give considerable emphasis on location of rational numbers on 

a number line. Students make a lot of mistakes when they try to locate 

rational numbers on a number line. For instance, when locating a negative 

rational number they act as if it is a positive rational number. That is, they 

usually start counting from left to right as they do when locating a positive 

rational number on a number line. Let’s say, we want to locate 
1

8
  on a 

number line. The student divides the segment between 0 and -1 into eight 

equal parts. The student needs to start counting the equal parts from 0. 

However, the students start counting the equal parts from -1 and locate the 

negative rational number as follows: 

 

Since the students start counting from the opposite direction, they find the 

location of 
7

8
  rather than finding the location of

1

8
 .  

Teachers articulated in the classroom that students tended to over-generalize 

multiplication and division of rational number algorithms to algorithms for adding 

and subtracting rational numbers. The classroom utterances expressed by Teacher A 

for this type of consideration is given below:  
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Student: Can I ask you a question? 

Teacher A: Yes, you can.  

Student: If rational numbers have same numerators and different 

denominators, can we directly add the numerators? 

Teacher A: No, you cannot. Thanks, for your question, you touched upon a 

good point. When I teach children multiplication and division of rational 

numbers, they forget how to add and subtract rational numbers. That is, they 

start to add and subtract rational numbers as if they are multiplying or 

dividing. For example, when asked to find the answer of 
17 8

7 7
 , they 

perform the subtraction operation in this way: 
17 8 17 8 9

7 7 7 7 0


  


. After 

you learn multiplication and division of rational numbers, never add and 

subtract rational numbers in this way.  

Teachers explicitly stated in the classroom that students under-generalized 

simplification of rational number multiplication by thinking that simplification can 

only be done by criss-crossing. The classroom utterances expressed by Teacher A for 

this type of consideration is given below:  

Teacher A: Let’s find the answer of (0.25) ( 0.9)   . We first convert 

decimals into rational numbers in this way:
25 9

100 9
 
 

  
 

. Now we have to 

check whether we can simplify rational numbers. 9 divided by 9 is equal to 

1.  

Student: But, you simplified top to bottom!  

Teacher A: In the previous lesson, I emphasized that we can simplify not 

only by criss-crossing but also by using top to bottom method. However, I 

still see that there are students who think that they can only simplify rational 

numbers by criss-crossing. As I stated in the previous lesson, the order of 

numbers in the numerators and in the denominators is of no importance. 

What is important is that the numbers that are to be simplified should be at 

different positions of the main fraction bar. That is, one of them should be 

over the main fraction bar, the other one should be under the main fraction 

bar.  

Teachers explicitly stated in the classroom that students misinterpreted the 

meaning of mixed numbers and applied their understanding of whole number 

multiplication to mixed numbers. The classroom utterances expressed by Teacher D 

for this type of consideration is given below:  

Teacher D: Let’s check if 
1

4
2
   is equal to 

1
4

2
 or not.  
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Students: They are equal! They are equal! 

Teacher D: Never think in that way. 
1

4
2
  means that we need to multiply 4 

by 
1

2
. Thus, 

1
4

2
  is equal to

4 1 4 1 4
2

1 2 1.2 2


    . On the other hand, 

1
4

2
 is a 

mixed number and it is actually equal to 
1

4
2

 . Now, if we convert 
1

4
2

into a rational number, we get
1 4 2 1 9

4
2 2 2

 
   . As you can see 

9
2

2
   

and thus 
1

4
2
  is not equal to

1
4

2
. By asking this problem, I wanted to see 

whether you can distinguish between mixed numbers and multiplication of a 

whole number by a rational number. Please, do not confuse them! 
1

4
2
 

denotes a multiplication operation, whereas 
1

4
2

denotes an addition 

operation.  

Teacher A articulated in the classroom that some students ordered decimals 

by treating the digits after the decimal points as separate numbers. The classroom 

utterances expressed by Teacher A for this type of consideration is given below:  

Teacher A: Never forget this: if you are ordering decimals that have unequal 

number of digits after the decimal point, first equate the number of digits 

after the decimal point. How can you equate the number of digits? You can 

equate them by adding zeros to the end of the digits. Let me give an 

example. If you are asked to compare 2.545 and 2.55 you cannot say that 

2.545 is larger than 2.55. Because you cannot simply say that 545 > 55 so 

2.545>2.55. Then, what should you do? You should first equate the number 

of digits after the decimal points. 2.545 has three digits after the decimal 

point and 2.55 has two digits after the decimal point. Therefore, we can write 

2.55 as 2.550. Now we can compare the decimal numbers. 550 is larger than 

545 so 2.550 is larger than 2.545 and finally 2.55 is larger than 2.545. 

Teacher B explicitly stated in the classroom that students erroneously added 

the base with the power when asked to perform exponentiation of whole numbers. 

The classroom utterances expressed by Teacher B for this type of consideration is 

given below:  

Teacher B: Well, what does exponentiation mean? It means that we need to 

MULTIPLY a number with itself as many as the power. I especially wrote 

“MULTIPLY” by capital letters, since some students erroneously add base 

and power when performing exponentiations. For instance, let’s perform 
2 3 2

( 3) , ( 2) and ( 4)       respectively. I want to write “multiply” next to each 

power in order for you not to make mistakes in this way:   
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Teacher A articulated in the classroom that students erroneously multiplied 

the numerator and the denominator of a rational number by the power when asked to 

perform exponentiation of rational numbers. The classroom utterances expressed by 

Teacher A for this type of consideration is given below:  

Teacher A: How do you find the answer of

2
5

4

 
 
 

? In the previous 

years, there were some students who performed exponentiation by 

multiplying the exponent by the numerator and the denominator in this 

way:

2
5 5 2 10

4 4 2 8


  



 
 
 

. If you do in this way, your answer will be 

wrong.

2
5

4

 
 
 

means that you have to multiply 
5

4
 with itself for two 

times. Thus, 

2
5

4

 
 
 

is equal to
5 5 25

4 4 16
  . 

Finally, Teacher D articulated in the classroom that students erroneously had 

the conception that a larger number must always be divided by a smaller number. 

Teacher D used the following example for this purpose: “120 bottles of milk with 

same capacity were evenly filled with 40 liters of milk and there remained 10 liters 

of milk. Then find the capacity of each milk bottle.” The following explanations of 

Teacher D while solving this task manifested how she took into account student 

misconception related with whole number thinking:  

Teacher D: If 10 liters of milk remain after filling up all milk bottles then it 

means that 120 bottles have a total capacity of 30 liters. Now, listen to me 

very carefully. Most of the students think that they should divide 120 by 30 

to find the capacity of each milk. But never forget that there is no rationale 

for always dividing a larger number by a smaller one. In some cases, you 

may have to divide a smaller number by a larger one. In this example, you 

need to divide 30 by 120. Why? Because you have 30 liters of milk and you 
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need to distribute them evenly among 120 bottles. You fill each bottle one 

by one until running out of all of the milk.  

In this section, the cases in which teachers attended to student difficulty, error 

or misconception were described at length. In the following section, the cases in 

which teachers kept unnecessary work to minimum were described thoroughly.  

5.3. Keeping Unnecessary Work to Minimum 

Middle school mathematics teachers deliberately attempted to keep 

unnecessary work to minimum during the provision of rational number examples. 

Thus, subcategories emerged from this category were (i) reducing technical work by 

focusing on the essence, (ii) highlighting relevant parts of examples and not going 

into extra details, and finally (iii) using properties of operations to reduce workload.   

5.3.1. Reducing technical work by focusing on the essence 

Teachers provided rational number examples in the following way to reduce 

technical work and focus on the essence: (i) the choice of rational numbers to 

illustrate repeating decimals, (ii) adding or subtracting whole parts and fractional 

parts separately when adding or subtracting mixed fractions, (iii) simplifying rational 

numbers in the course of performing operations, (iv) drawing only the relevant part 

of a number line when locating rational numbers on it, (v) the choice of relevant 

strategy when ordering rational numbers, (vi) using LCM method instead of 

multiplying denominators when finding the common denominator of rational 

numbers, (vii) not trying to enlarge rational numbers by 1, (viii) using shortcuts for 

adding and subtracting a whole number and a rational number, (ix) using subtraction 

formula instead of equating denominators during the subtraction of rational numbers, 

(x) the choice of same denominator rational numbers when illustrating associative 

property of addition, (xi) using backwards strategy instead of equating denominators 

when dealing with complex fractions with unknown values, and (xii) rearranging 

algebraic expressions for an easier computation.   

Teachers attempted to select rational numbers that help students easily notice 

the repeating pattern when the numerator was divided by the denominator of the 
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rational number. For instance, Teacher D chose 
10

3
 to show that it is a repeating 

decimal. After dividing 10 by 3, the teacher expressed 
10

3
 as 3.33333… As it can be 

seen, only 3 repeats in this decimal and it thus is easy to notice the repeating block in 

this decimal. The teacher articulated that she deliberately selected 
10

3
 since other 

rational numbers such as 
1

7
 needed more technical work to notice that repeating 

pattern. Indeed to recognize that the repeating block of 
1

7
 is 142857, the teacher 

needs to do extra work for column division of
1

7
.  

Teachers took into consideration a shortcut method for adding mixed 

fractions and suggested their students to add or subtract whole parts and fractional 

parts separately in order to arrive at the answer in a quicker and shorter way. Some of 

the expressions used by Teacher D to explain this approach are given as follows: 

Teacher D: There are two methods for computing
1 3

1 4
5 5

  . The first method 

requires converting mixed fractions into improper numbers as follows:

1 3
1 4

5 5

6 21 26

5 5 5
     . In the second method we need to add whole parts 

and fractional parts of the mixed numbers separately in this way:

1 3 1 3 4 4 29
1 4 (1 4) 5 5

5 5 5 5 5 5 5
         

 
 
 

.  

Student: The second method is longer.  

Teacher D: This is true if you select small mixed numbers. However, if you 

select large mixed numbers such as
2 3

104 99
8 8

  , then the second way is 

quite shorter. In this example, it is troublesome to multiply the whole 

number parts by the denominators and there is the risk of making errors 

while multiplying them. However, if we use the second method we can 

easily arrive at the answer in this way: 

2 3
104 99

8 8

2 3 5
(104 99) 203

8 8
 


    . 

Teachers recommended students not to simplify rational numbers as a last 

step since they considered that it was superfluous to work with large numbers after 
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multiplication. For instance, Teacher D uttered the following expressions related 

with this consideration after the provision of 
0.012 2 0.4

0.3 0.8 0.02
   as follows:  

Teacher D: We enlarge the first, second and third term by 1000, 10 and 100 

respectively. Thus, we obtain
12 20 40

300 8 2
  . It is more convenient to 

simplify rational numbers now. Because, if you simplify them at the end, 

you will have to strive for simplifying rational numbers that include very 

large numerators and denominators. The simplified form of this expression is 

1 5 20

25 2 1
   and now we can equate the denominators. The least common 

multiple of 1, 2 and 25 is 50 so we can rewrite the expression as

2 125 1000

50 50 50
  . Finally, this is equal to

877

50
.   

Teacher A deliberately attempted to draw only the relevant part of a number 

line when locating rational numbers on it. That is, when locating 
3

5
 on a number line 

Teacher A drew the interval between 0 and 1. Similarly, when locating 
2

3
5
  and 

12

5
 

on a number line, he drew the interval between 0 and 4. The explicit classroom 

utterances employed by Teacher A for this consideration is provided below: 

Teacher A: You may wonder why I only drew the interval between 0 and 1 

when locating 
3

5
 on a number line. This is due to the fact that proper 

fractions are always between 0 and 1. Thus, there is no need to draw a very 

long number line… 
2

3
5
 is a positive rational number so there is no need to 

draw the negative part of the number line… 
12

5
 is a positive rational 

number, so I will draw the interval between 0 and 4. 

Teacher B generated a set of rational numbers with large denominators and 

suggested his students to use benchmark strategies rather than common denominator 

approach in order not to make an excessive effort for ordering. This consideration 

was explicitly expressed by the utterances of Teacher B as follows: 

Teacher B: How do you order
3 8 16

, and
7 11 17
   ? 

Students: By using common denominator approach. 
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Teacher B: That is possible. However, you will have to deal with very large 

numbers if you use common denominator approach. 7, 11 and 17 are prime 

numbers and thus the least common multiple of these numbers is a very large 

number. Instead of using this approach, you can use benchmark strategies. 

Let me explain this: 
3

7
is less than

1

2
  and 

8

11
 is greater than

1

2
  . Besides, 

16

17
  is the smallest one since it is negative. Thus, we should order the 

rational numbers as follows:
16 3 8

17 7 11
    .  

Teacher B chose to use 
12 8

  to help students realize that adding by finding 

the LCM of the denominators required less technical move when compared to adding 

by enlarging the first term by the denominator of the second term and the second 

term by the denominator of the first term. He expressed this consideration explicitly 

as follows: 

Teacher B: How do you equate the denominators of
12 8

and  ? 

Student 1: We multiply 12 by 8 and 8 by 12. Thus, both denominators take 

the value of 96. 

Teacher B: That is true, but the denominators can take a smaller value. How? 

We should find the least common multiple of 12 and 8. The LCM of 12 and 

8 is 24. Thus, we should enlarge 
12

 by 2 and 
8

by 3. The more you enlarge 

the rational numbers with smaller numbers, the less you spend time on 

finding the answer.  

Teacher A indicated that it was unnecessary to enlarge a rational number by 1 

when performing the following addition operation:
( 2) ( 7) ( 1)

3 2 6

  
  . The classroom 

utterances of Teacher A for this type of consideration is provided below: 

Teacher A: We initially need to adjust the signs. Thus, we rearrange the 

expression as
( 2) ( 7) ( 1)

3 2 6

  
  . Next, we need to equate the 

denominators of the rational numbers. The least common multiple of 3, 2 

and 6 is 6. Thus, we should enlarge 
( 2)

3


 by 2, 

( 7)

2


 by 3 and 

( 1)

6


 by 

nothing. Please, do not waste your time by enlarging 
( 1)

6


 by 1… 
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Teacher D considered using shortcuts when adding and subtracting a whole 

number and a rational number. Teacher D expressed this consideration explicitly 

after the provision of 
3

2
5

  as follows: 

Teacher D:  There are two ways of adding 2 and
3

5
 .  In the first way, we add 

them by using common denominator approach as follows:

3 2 3 10 3 13
2

5 1 5 5 5 5
      . This way is quite time consuming and 

lengthy. I suggest you to use the second way. In the second method, you 

multiply the whole number by the denominator of the rational number and 

then add the numerator of the rational number as follows:

3 2 5 3 13
2

5 5 5

 
    . Instead of wasting time by using common 

denominator approach, you can use the second method to find the answer 

quicker.  

Teacher A considered the use of subtraction formula as a shorter and quicker 

approach to subtracting rational numbers instead of using common denominator 

approach. The teacher did not write on the board the following formula

a c a d b c

b d bd

  
   but verbally explained how to apply it as follows: 

Teacher A: I want to teach you a shortcut method for performing
2 1

5 2
 . 

Listen to me very carefully, I am teaching you how to subtract rational 

numbers without actually finding the common denominator. We multiply the 

first numerator by the second denominator and we get 2 2 4  . Then, we 

multiply the first denominator by the second numerator and get 5 1 5  . 

Next, we subtract 5 from 4 and find the numerator of the answer as -1. 

Finally, we multiply the first denominator by the second denominator and 

get 5 2 10   as the denominator of the answer. Thus, 
2 1

5 2
  is equal to

1

10


. 

Teacher A chose to use the same denominator rational numbers when 

teaching associative property of addition of rational numbers. The teacher implied 

that it would bring extra work to select rational numbers with different denominators 

for teaching this property. Teacher A expressed this type of consideration as follows: 

Teacher A: Previously, we checked whether associative property of addition 

holds for integers. Now, we do the same thing for rational numbers. I want to 

select same denominator rational numbers since I do not want to spend time 
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for the extra work of equating denominators. Let’s see whether the following 

equality holds: 

 

?

?

1 3 7 1 3 7

2 2 2 2 2 2

4 3 1 10

2 2 2 2

7 11

2 2

    

   

 

   
   
   



 

The left hand side of the equation is equal to the right hand side of it. Then, 

we can say that associative property of addition holds for rational number 

set.  

Teacher A was teaching how to operate with complex fractions that included 

unknown values. The teacher used the following example: 
2

3 1
1

5
x

 



 and alerted 

students to the use of backwards strategy rather than using common denominator 

approach for solving it. The following utterances of Teacher A demonstrate how he 

took into account reducing technical work while solving aforementioned type of 

complex fractions: 

Teacher A: A normal student would not attempt to use common denominator 

approach for solving this task. Only an inattentive and mistaken student 

would use this approach. We can solve this task with less time and effort by 

using backwards strategy. Otherwise, it would be so hard to arrive at the 

answer.  

Finally, Teacher D pointed to rearranging algebraic expressions for an easier 

computation. In more detail, the teacher was teaching multi-step operations with 

rational numbers and she calculated the value of 
5 3

3 4

x
x x   for 

3

4
x    by using 

two ways. After the explanation of the second way, the teacher suggested her 

students to use the second way for an easier computation. The explicit classroom 

utterances employed by Teacher D for this type of consideration is given below:  

Teacher D: We can solve this example in two ways. In the first way, we 

substitute x into polynomial as follows:

3
5

3 3 34

3 4 4 4

 

    

 
 

    
   
   

. 

However, this way imposes more operational burden on you. To reduce this 

operational burden you can use the second way. In the second way, you need 
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to rearrange the polynomial as 
5 3

3 4
x x x     and then substitute x into this 

polynomial. We can do it in this way:
5 3 3 3

3 4 4 4

3

4
     

     
     

    
. As you 

can see, the second multi-step operation is simpler to calculate. If you do in 

this way, you will have to work less to calculate it.  

5.3.2. Highlighting relevant parts of examples and not going into extra details 

 Teachers considered highlighting relevant parts of examples and not going 

into extra details in the following ways: (i) emphasizing important parts of an 

example and not finishing up all the calculations, (ii) not seeing it essential to 

perform simplifications in the course of teaching a concept, (iii) not seeing it 

essential to perform conversions in the course of teaching a concept and finally (iv) 

not seeing it essential to equate denominators when symbolically expressing the area 

model of multiplication of rational numbers. 

Teachers emphasized important parts of the examples they used and did not 

find it necessary to finish up all the calculations. For instance, Teacher C provided 

3 7 4
:

1 4 5 5
5

1 52

2 8



 



 
  

 as a multi-step operation example, however he highlighted only 

the important points of this example and did not finish up the calculation. The 

explicit classroom utterances employed by Teacher C for this type of consideration is 

presented below: 

Teacher C: Let me explain briefly how to perform this multi-step operation. 

Listen to me very carefully. You will first perform 
3 7 4

:
4 5 5


 
  

 and find a 

rational number. Next, you will perform 
1 5

2 8
  and find another rational 

number. Later, you will divide the former rational number to the latter 

rational number. After this, you will add 

1

2

 to the rational number you 

obtained as a result of division. Finally, you will add 5 and arrive at the 

answer.  

Teachers did not find it necessary to perform simplifications in the course of 

teaching a concept. For instance, Teacher D expressed this type of concern when she 
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started teaching division of rational numbers via the following example:
3 6

5 7
.  Some 

of the expressions she used to explain her approach are as follows:   

Teacher D: To perform division operation with rational numbers, you need 

to write down the first rational number without making any modification, 

and reverse the second rational number. Then, you need to multiply the 

rational numbers as follows:
3 6 3 7 21

5 7 5 6 30
    . In this example, we could 

have simplified the rational numbers. However, we do not need such work 

for the time being. Here, knowing how to perform division operation is of 

prior importance. The rest is extra detail.   

Teacher B was teaching the procedure for expressing repeating decimals as 

rational numbers. The teacher provided the following example for this purpose:

129 1 128
1.29

99 99


  . As can be seen, the teacher leaved the rational number in 

improper form and did not find it essential to convert it into a mixed number. The 

following teaching episode shows how Teacher B took into account this type of 

consideration:  

Student 1: Shall we convert 
128

99
into a mixed number? 

Teacher B: No, there is no need to convert it into a mixed number. 

Student 2: Won’t we convert it into mixed number? 

Teacher B: No, leave it in that form. Do not spend your time for conversion. 

Finally, Teacher D was teaching how to express symbolically the area model 

of multiplication of rational numbers. The teacher did not find it necessary to equate 

the denominators of the symbolic expression. This consideration was expressed by 

Teacher D as follows:  

Teacher D: How do you express the following area model symbolically? 

  

Student: The first shaded region refers to
1

2
, the second shaded region refers 

to
1

3
. Now, we should add 

1

2
 and 

1

3
 as follows:

1 1 3 2 5

2 3 6 6 6
    . 
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Teacher D: I see that many of you enlarged 
1

2
 by 3 and 

1

3
 by 2 to equate the 

denominators of the rational numbers. However, you do not need to do such 

work. It is enough to leave the symbolic expression as
1 1 5

2 3 6
  . 

5.3.3. Using properties of operations to reduce workload 

Teachers attempted to use properties of rational number operations to 

diminish the workload in the following ways: (i) using commutative property of 

addition operation rather than adding, (ii) using associative property of addition 

operation rather than adding, (iii) using distributive property of multiplication over 

addition rather than performing the operation, (iv) using the fact that 
1

/

b

a b a
  

without actually making computations, (v) using the fact that 1
a b

a b
  without 

actually making computations, (vi) using the fact that 0
a a

b b

 
   
 

 without 

actually making computations, and finally (vii) enlarging decimal numerators and 

decimal denominators by multiples of 10  instead of converting into rational numbers 

when performing multi-step operations.  

Teachers deliberately used commutative property of addition rather than 

performing several operations for solving a mathematical task. By this way, the 

teachers intended to reduce operational workload needed to solve that task. For 

instance, Teacher A considered this type of consideration after the provision of 

3 8 3
( )

5 7 5
      
     
     
     

 as follows:  

Teacher A: Using commutative property of addition for finding   in this 

task, will make your work easier and will help you save time. If you do not 

use commutative property, you need to subtract 
8

7

 
 
 

 from 
3

5

 
 
 

 and then 

again subtract 
3

5

 
 
 

 to find . That is to say, performing addition and 

subtraction operations for finding , will make you spend too much time for 

this task.  
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Teachers chose to use associative property of addition rather than performing 

a number of operations for solving a mathematical task. By this way, the teachers 

intended to reduce operational workload needed to solve that task. For instance, 

Teacher B considered this type of consideration after the provision of 

3 5 1 3 1

8 4 6 8 6
A      
      

           
 as follows: 

Teacher B: You can easily solve this task by using associative property of 

addition of rational numbers. Never attempt to add or subtract rational 

numbers to find A. If you add or subtract rational numbers, you will certainly 

waste your time. Besides, there is the risk of making a mistake when 

performing operations. Thus, let’s find A by using associative property. 
3

8
  

matches with the other 
3

8
, 

1

6

 
 
 

 matches with the other 
1

6

 
 
 

 and 
5

4
 

matches with A. Thus, A is equal to 
5

4
. 

Teachers preferred to use distributive property of multiplication over addition 

rather than performing several operations for solving a mathematical task. By this 

way, the teachers attempted to keep the operational workload to minimum. For 

instance, Teacher D considered this type of consideration after the provision of 

3 5 3 5 4 3

7 9 11 9 7 11
    

 
 
 

 as follows: 

Teacher D: To solve this task, you should carry out the following steps: 

First, you should distributive the minus sign to 
5

9
,

4

7
 and 

3

11
respectively. 

Why do we distribute? Otherwise, it would impose too much operational 

burden on you. As you see, some of the rational numbers have same 

magnitudes but have opposite signs. In such tasks, use distributive property 

instead of customarily performing operations. Let me repeat again. Please, 

do not dare to use common denominator approach for solving this task.    

Teachers were teaching complex fractions and they chose to use 

multiplicative inverse property of rational numbers as a fast solution technique for 

complex fraction tasks. To be more precise, they used the following equality 

1

/

b

a b a
  without actually making computations when solving complex fraction 
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tasks. For instance, Teacher B expressed this type of consideration after the provision 

of 
2

1
1

3
3

2





as follows:  

Teacher B: Now, tell me what happens when you divide 1 by any rational 

number?   

Student: The rational number becomes upside down.  

Teacher B: Yes, the number becomes upside down. For instance, in this 

example, 2 and 3 swap places. In a division operation, if the dividend is 1 

and if the divisor is any rational number, the quotient will always be 

multiplicative inverse of the divisor. Thus, 
1

3

2

 is equal to 
2

3
 and you can 

always use this principle and you do not need to perform division operation 

for such situations.  

Teacher D was teaching complex fractions and she chose to use 1
a b

a b
  as a 

fast solution technique for complex fraction tasks. Some of the expressions used by 

Teacher D after the provision of  
0.2 2

3 0.7




 as follows:  

Teacher D: In this example, there are repeating decimals. First, we need to 

convert them into rational numbers. 0.2  can be expressed as 
2

9
 and 0.7  can 

be expressed as 
7

9
. Now, we can perform the operations in this way:

2 20
2

0.2 2 9 9
7 203 0.7

3
9 9




 




. What will be the answer if you divide a rational 

number by the same rational number? The result will be 1.  

Student: Well, won’t we invert and multiply when performing division 

operation? 

Teacher: It makes no difference. Let’s do it that way: 

20 20 20

9 9
 

9

9


20

1
1

1
  . As you can see, the result is 1. Therefore, if 

you divide a rational number by the same rational number, the result will 

always be 1. Keep this in your minds and do not waste your time by the 

lengthy process of performing division operations for such cases. Is that 

okay? 
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Students: Yes! 

Teacher D was teaching how to perform exponentiation of rational numbers 

and she considered the use of additive inverse property of rational numbers to reduce 

operational burdens. In other words, rather than actually making computations, the 

teacher used the following equality 0
a a

b b

 
   
 

 during the solution of multi-step 

operation examples. Some of the expressions used by the teacher after the provision 

of 

3 2
1 1 1

2 2 2
  
   
   
   

 is given below: 

Teacher D: In this example, we should initially find the square and cube of 

rational numbers. Remember how we performed exponentiation with 

rational numbers. We can find the powers of numerators and denominators 

separately for faster solution in this way:

3 2

3 2

( 1) 1 1 1 1 1

2 2 2 8 4 2


      . Next, 

we perform division operation as
1 1 1 4 1

8 4 8 1 2
       . Finally, we 

should add 
1

2
  and

1

2
. Actually, you do not need to perform addition 

operation. Why? Because addition of a rational number and its additive 

inverse will always be equal to 0. Then the answer is 0.   

Ultimately, Teacher A was teaching multi-step operations whose terms 

included decimal numerators and denominators. The teacher considered that the 

easiest way to perform such multi-step operations was enlarging decimal numerators 

and denominators by multiples of 10. This consideration was manifested by Teacher 

A after the provision of 
0.35 0.7 0.22

-
0.05 0.0035 0.0011

  as follows:  

Teacher A: It is not easy to work with decimal terms so we need to enlarge 

the numerators or denominators by multiples of 10 and get rid of decimal 

numbers. We enlarge the first term by 100, the second term by 10000 and 

the third term by 10000 and obtain the following expression:

35 7000 2200

5 35 11
  . Now, let’s perform division operations. The first term is 

equal to 7, the second term is equal to 200 and the third term is also equal to 

200. Finally 7+200-200 is equal to 7. Thus, the answer is 7. As you can see, 

this way is quite easy. There is another way of solving this task, but I do not 

suggest that way. Because it entails a lengthy process such as converting 

decimals into rational numbers, finding common denominators and so forth. 
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After all, you can solve this task by using the second way as follows:

35 7 22

100 10 100
5 35 11

100 10000 10000

  .  

In this section, the cases in which teachers kept unnecessary work to 

minimum were described at length. In the following section, the cases in which 

teachers took account of examinations were described in detail.  

5.4. Taking Account of Examinations 

Middle school mathematics teachers considered examinations during the 

provision of rational number examples. They manifested this type of consideration in 

the following cases: (i) highlighting examples that have the potential to appear in 

written examinations, (ii) highlighting examples that have the potential to appear in 

practice examinations of private teaching institutions, (iii) highlighting examples that 

have the potential to appear in high stakes examinations, (iv) explaining the method 

of scoring for potential written examination questions, (v) incorporating the solution 

of high-stakes examination examples into the classroom; (vi) expressing the answer 

of multiple choice questions in their simplest forms in order to find it in the 

alternatives, (vii) finding the answer of multiple choice complex fraction tasks by 

trial and error of the alternatives and finally (viii) teaching shortcut methods for 

gaining speed in the high stakes examinations. 

Teachers informed their students about the important rational number 

concepts and highlighted the examples that had the potential to appear in written 

examinations. Teacher A expressed the following utterances after providing 
3 2

7 3
   

as a subtraction example: “The students have difficulty in performing operations with 

no parenthesis. However, I am planning to ask such tasks in your written exam”. 

Teacher B expressed this type of consideration while providing examples related 

with locating a rational number on a number line, converting repeating decimals into 

rational numbers, ordering rational numbers, teaching properties of rational number 

operations, teaching multi-step rational number operations, and exponentiation of 
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rational numbers. For instance, after providing 

2
3

5

 
 
 

and 

3
3

2

 
 
 

 as examples for 

exponentiation Teacher B expressed the following utterances: “I will ask you 

questions of this kind in your written exam. For instance, I will ask one group of the 

students to find the square of the rational number and ask another group to find the 

cube of the rational number”. Teacher C expressed this type of consideration after 

providing the following set of rational numbers for ordering:
5 4 5 2 2

,0, , , ,
3 3 12 18 6

   . 

He expressed this approach by utterances such as: “Next Friday, you will take your 

second written exam. You will absolutely come across with at least one ordering 

question. Without a doubt, every year I ask ordering questions to the seventh 

graders”. Teacher D expressed this type of consideration while providing examples 

related with locating rational numbers on a number line, expressing rational numbers 

in different forms, ordering rational numbers, adding rational numbers, modelling of 

multiplication of rational numbers and performing multi-step rational number 

operations. For instance, after asking students to find the value of  
5 3

3 4

x
x x    for

3

4
x   , she expressed the following utterances: “Let me inform you that I will ask a 

question like this one in your written exam”.   

Apart from written examinations, teachers highlighted rational number 

examples that had the potential to come up in practice examinations of private 

teaching institutions (known as dershane). Teacher B expressed this type of 

consideration during the provision of examples related with locating a rational 

number on a number line, adding and subtracting rational numbers and performing 

complex fraction operations. For instance, he provided 
8 3

7 42

 
   

 
 as a subtraction 

example and stated his consideration as follows:  

Teacher B: You often come up with these types of questions in practice 

examinations of private teaching institutions and you often get confused 

while solving it. I often denote operation sign larger when compared to the 

number sign. However, the computers cannot do the same. Namely, the two 

signs are of the same size in computer print-outs.   
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Student: You are right teacher, we always mix them up in the practice 

examinations.  

Teacher C articulated this type of consideration during the provision of examples 

related with explanation and location of rational numbers on a number line. To 

illustrate, Teacher C was teaching the definition of rational numbers to his students, 

when he expressed that the rationality of 0 might come up in practice examinations 

as follows:  

Teacher C: Rational numbers include positive rational numbers, negative 

rational numbers and 0. Zero has a special case, it is neither negative nor 

positive. Although it does not have any sign, it is a rational number. Please, 

keep in your mind that practice examinations include questions related with 

the rationality of 0. 

In addition to practice examinations, Teacher A highlighted the examples that 

had the potential to appear in high stakes examinations such as SBS (Secondary 

School Entrance Examination for middle school students in Turkey). This 

consideration was manifested by Teacher A when working out examples related with 

explanation and location of rational numbers, expressing rational numbers in 

different forms, comparing and ordering rational numbers, and multiplication of 

rational numbers. The explicit classroom utterances expressed by the teacher for this 

type of consideration is given below:  

Teacher A: Between 2009 and 2013, three questions have been asked in SBS 

examinations about number sets. Namely, three questions about number sets 

have been asked in the last five years. Why? Because, students in general do 

not pay much attention to number sets… Proper fractions are always 

between 0 and 1 and negative proper fractions are always between -1 and 0. 

So far, two questions have been asked in SBS examinations about location of 

proper fractions. Do not forget this. Let me repeat again, location of proper 

fractions do appear in SBS examinations. This is due to the fact that proper 

fractions are the most special ones among fractions... Please note that 5.9  is 

equal to 6. Why? Because we convert 5.9 into a rational number as 
9

5
9

 and 

this mixed number can be expressed as
9

5 5 1 6
9

    . Thus, .9a is equal to 

a+1. This was a question similar to the one that came up in SBS 

examination in the past years… How can we order the following fractions:

3 5 7
, and ?

4 6 8
    The first fraction requires 

1

4
 to make 1, the second fraction 

requires 
1

6
 to make 1 and the last fraction requires 

1

8
to make 1. Thus, 
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1 1 1

4 6 8
   and

3 5 7

4 6 8
  . There are definitely ordering questions of this 

kind in SBS examination… Let’s write a mathematical statement based on 

the given area model for multiplication of rational numbers. In modelling 

examples, the double shaded region refers to the product of the 

multiplication operation. According to me, modelling of multiplication is a 

very important concept. However, interestingly, there appeared not a single 

question about modelling of rational number multiplication in SBS 

examinations till now.  

Some of the middle school teachers not only highlighted examples that had 

the potential to appear in written examinations but also pointed to their method of 

scoring potential written examination questions. Teacher B expressed this type of 

consideration in the course of ordering 
1 4 1 5

, , and
7 9 4 6

      as follows: 

Teacher B: I gave you four rational numbers. Let’s order them.  

Student: Shall we order from least to greatest? 

Teacher B: Yes, we may order from least to greatest. If I ask you a question 

like this in your written examination, you should immediately write the 

smallest one, then a larger one, again a larger one and finally the largest one. 

If you order in this way, you get full points. You get full points as long as 

you correctly order the given rational numbers. If you write one of the 

rational numbers in the wrong order, you cannot get any points from that 

question. Since this is an open-ended question, I want you to order all 

rational numbers correctly. For instance, if you order three of them correctly 

and one of them incorrectly, I cannot accept your answer. Therefore, please 

do not make a mistake while ordering rational numbers.    

Teacher D expressed this type of consideration while teaching how to locate 
4

2
5

  on 

a number line as follows: 

Teacher D: When partitioning the line segment between -2 and -3, please 

pay attention to counting the intervals rather than counting the tick-marks.  If 

you count the tick-marks, you will be mistaken. If you make such a mistake 

in your written exam, I will not accept your answers. I am telling this to you 

again and again in order for you not to make mistakes when locating. Please 

be careful! Count the intervals rather than the tick-marks. In this example, 

there are 6 tick-marks and 5 equal intervals between -2 and -3. Suppose you 

located the number correctly by counting tick-marks, I again do not accept 

your answer. Why? Because, you should have located the number by 

counting the equal intervals rather than tick-marks.   

  In addition to verbally expressing the rational number examples that might 

appear in written/practice/high stakes examinations, Teacher A attempted to 

incorporate several SBS and ÖSS (University Entrance Examination for secondary 
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school students in Turkey) examples into the classroom. The teacher explicitly 

uttered that he would like to present several high stakes examination examples after 

he finished ordering 
2 7 7

, and
5 10 3
    as follows: 

Teacher A: In the previous lesson, we ordered rational numbers that included 

different numerators and denominators. Now, it is time to have a look at SBS 

and ÖSS questions that have been asked in the previous years (The teacher 

sketched the following examples on the board by copying from a booklet).  

 

Look at these examples. The one on the left have been asked in SBS in 2010 

to seventh grade students. In this example, you are asked to determine the 

point that corresponds to
21

4
.  The example on the right have been asked in 

SBS in 2008 to seventh grade students. In this example, you are asked to 

determine the number that correspond to point C. Now, let me work out 

these examples… Now, it is time to order
1996 1997 1998

, and 
1997 1998 1999

  . This 

question was asked in ÖSS in 1996. I took this examination and ordered 

them in that examination. Now it is your turn…   

Another way teachers took account of examination was seen in their attempts 

to express the answer of multiple choice questions in their simplest forms in order to 

find it in the alternatives. Teacher A manifested this concern when working out 

examples related with expressing rational numbers in different forms, ordering 

rational numbers, multiplying rational numbers, teaching distributive property of 

multiplication over addition and modelling multiplication of rational numbers. For 

instance, Teacher A expressed this type of consideration after the provision of 

2 1 1

5 10 2

 
  

 
 as follows: 

Teacher A: We distributive 
1

2
 over 

2

5
 and 

1

10
 in this way:

2 1

5 2


1 1 1 1 4 1 5

10 2 5 20 20 20 20
       . If you leave the answer as

5

20
, you 

cannot find it in the alternatives. Then, what should you do? 

Students: We should simplify it! 

Teacher A: By which number should I simplify it? 
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Students: Five! 

Teacher A: We simplify it by 5 as 
5 : 5 1

20 : 5 4
 . This time, the answer is in its 

simplest form. Now, you can find it in the alternatives.   

Teacher B manifested this type of consideration in course of expressing 

rational numbers in different forms and multiplying and dividing rational numbers. 

For example, he employed this type of consideration after converting 1.045  into a 

rational number as:  

Teacher B: We convert this repeating decimal into a rational number as:

1045 10 1035
1.045

990 990


  . 

Student: Do we have to find the simplest form of 
1035

990
? 

Teacher B: Normally, I do not expect you to simplify it. However, in 

practice examinations or in high stakes examinations, you cannot find 
1035

990
 

in the alternatives. In these examinations, the alternatives are given in their 

simplest forms. Thus, you need to simplify it if you participate in such 

examinations.  

Another case in which teachers took account of examinations occurred when 

teachers attempted to find the answers of multiple choice complex fraction tasks by 

trial and error of the alternatives. Teachers used two different methods to solve such 

tasks. In the first method, teachers used working backwards strategy. In the second 

method, they substituted each alternative into the given complex fraction task, in 

order to find the correct answer. After the presentation of 
8

6 4
4

6
x

 



 as a complex 

fraction example, Teacher A initially found the answer by working backwards. Next, 

he explicitly expressed the following utterances: “There is another method for 

finding the answer if the given task is a multiple choice question. That is, you can try 

each alternative in the given complex fraction task to find the correct answer”. 

Similarly, Teacher B introduced 
2

1
6

5
1x

 




 as a complex fraction example and 

initially solved the task by using working backwards strategy. Next, he solved this 
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task by trial and error of the alternatives. The alternatives were 
1 1

, ,2 and 3
4 2

 

respectively. Some of the expressions he used to explain his approach were: 

Teacher B: In addition to using working backward strategy, we can find the 

answer by trying each alternative. Let’s try 2 first. If we substitute 2 into x, 

we find the answer as 2. This is not the correct answer. So, let’s try 3 now. If 

we substitute 3 into x, we find the answer as -1. This is the correct answer. 

You can use this method in practice examinations or in high stakes 

examinations.  

One final consideration of this type was seen in teachers’ attempts to teach 

shortcut methods to their students for gaining speed in the high stakes examinations. 

Teacher A manifested this concern when working out multi-step operation examples. 

For instance, after working out 
1

1
1

1
1

1
2







 he used the following statements:  

Teacher A: I worked out the first two multi-step operation examples by 

using a long way. Now, I am switching to a fast solution technique. In this 

technique, you circle each step and write the answer next to each circle as 

follows:  

 

My aim for teaching this technique is to have you save time during 

examinations. Do not waste your time by writing each step again and again 

as you proceed towards the result.   

Teacher C manifested this concern in the course of expressing rational numbers in 

different forms and adding and subtracting rational numbers. For instance, he 

suggested performing 
1

1
4

  as 
1 4 1 5

4 4

 
  rather than using the common 

denominator approach. Finally, Teacher D taught shortcut methods to their students 

for gaining speed in the high stakes examinations in the course of expressing rational 

numbers in different forms, adding and subtracting rational numbers, performing 

exponentiation of rational numbers and performing multi-step operations with 



301 

 

rational numbers. For instance, after the provision of 
0.012 2 0.4

0.3 0.8 0.02
   as a multi-

step operation example, Teacher D explicitly uttered the following expressions: 

Teacher D: Normally, you would solve this task by converting decimal 

numbers into rational numbers and then performing division operations. 

However, this is a lengthy process. Instead of this, you can enlarge the terms 

by multiples of 10 and get rid of decimal numbers. You need to gain speed 

for high stakes examinations. Therefore, you had better use this method 

when solving these kinds of tasks. 

5.5. Including Uncommon Cases 

This consideration had to do with middle school mathematics teachers’ 

attempts to choose examples that are rather exceptional or special in mathematics or 

examples that are under-represented in the teaching of rational number concepts. 

Thus, subcategories emerged from this category were entitled as (i) exceptional or 

special cases in the teaching of rational number concepts and (ii) under-represented 

cases in the teaching of rational number concepts.   

5.5.1. Exceptional or special cases in the teaching of rational number concepts 

Middle school mathematics teachers chose to use the following exceptional or 

special cases in the teaching of rational number concepts: (i) multiplying any rational 

number by 0 yields 0, (ii) multiplying any rational number by 1 yields the rational 

number itself, (iii) dividing any rational number by 0 is undefined, (iv) dividing any 

rational number by 1 yields the rational number itself, (v) dividing 0 by any rational 

number excluding 0 yields 0, (vi) dividing 1 by any rational number excluding 0 

yields the multiplicative inverse of that rational number, (vii) dividing -1 by any 

rational number excluding 0 yields the additive inverse of the multiplicative inverse 

of that rational number, (viii) raising any nonzero rational number to the power of 0 

yields 1, and finally, (ix) raising  1 to any rational number power yields 1. 

Teachers pointed to the zero property of multiplication in the course of 

teaching properties of rational number multiplication. For instance, during the 

teaching of rational number multiplication, Teacher B initially had students review 

the examples included in the textbook. Teacher B paid attention to the following 
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example: 
4

0
5

 
  
 

 and explained that multiplying any rational number by 0 yields 0. 

In addition, while teaching properties of multiplication of rational numbers he chose 

to use 
5

0
8
  as an example for zero property of multiplication. The explicit classroom 

utterances expressed by Teacher B for this consideration were provided below: 

Teacher B: What is absorbing element in multiplication? 

Students: Zero! 

Teacher B: Yes, absorbing element is 0 in multiplication. If you multiply any 

rational number either from the left side or from the right side by 0, the 

answer will be 0. Let me give you an example. 
5

0
8
  is equal to 0. Why? 

Because 0 is the absorbing element in multiplication of rational numbers.  

While teaching properties of rational number multiplication, some of the 

teachers pointed out that multiplying any rational number by 1 yields the rational 

number itself and they recalled 1 as identity property of multiplication operation. For 

instance, after the provision of
1 1

1
2 2

 
   
 

, Teacher D articulated the following 

consideration:  

Teacher D: Identity element is an element which does not influence the 

product of multiplication. What is that element? That is 1. If you multiply 

any rational number by 1 you get the same rational number as a product. If 

you multiply 
1

2
 by 1, you will again get 

1

2
. Thus, 1 is the identity element 

of multiplication of rational numbers.  

Apart from teaching the special cases of multiplication of any rational number 

by 0 or 1, the teachers indicated awareness to teaching the special cases of division 

of any rational number by 0 or 1. For example, Teacher D defined rational numbers 

as numbers that can be written in the form 
a

b
, where b is not equal to zero and 

provided 
7

0
 as a non-example for rational numbers. During this time, Teacher D 

expressed that division of any rational number by 0 will always be undefined. In 

another example, Teacher D pointed to the special case of division of any rational 
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number by 1. Namely, she provided 
6

1
5

1
a





 as a complex fraction example and 

while working out this example, she focused on the division of any rational number 

by 1. Her consideration of this special case is given as follows: 

Teacher D: Here, 
5

1
a

  is equal to 6, thus 
5

a
 is equal to 5. You divide 5 by 

such a number that the result will be equal to 5. What is this number? 

Student 1: One! 

Student 2: Zero! 

Teacher D: No! 
5

0
 is undefined. Please, do not forget that division of any 

rational number by 1 will be equal to the rational number itself. Thus, a is 

equal to 1.  

A number of teachers also paid attention to teaching the following special 

cases: dividing 0 by any rational number excluding 0 yields 0 and dividing 1 by any 

rational number excluding 0 yields the multiplicative inverse of that rational number. 

To give an example, in the course of teaching multi-step operations with rational 

numbers, Teacher B provided 
1 7 1

2
3 3 2

   
     

   
 as an example to this idea and 

subsequently expressed the following consideration:  

Teacher B: If we convert 
1

2
3

 into an improper number, we get
7

3
. Next, we 

subtract 
7

3
 from 

7

3
 and get zero. Now, we should divide 0 by

1

2
 . If we divide 

0 by any rational number, the result will be 0. Namely, in a division 

operation, if 0 is a dividend, then the answer will always be 0. In contrast, if 

0 is a divisor in a division operation, then the answer will be undefined. 

Moreover, Teacher B provided 
2

1
1

3
1

1
2







 as another multi-step operation example 

and in the course of working out this example, he paid attention to the special case of 

division of 1 by any rational number excluding 0. Some of the expressions he used to 

explain his consideration is presented as follows:  
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Teacher B: This complex fraction is a bit messy. There are five operations in 

this multi-step operation. We proceed from bottom to top in such multi-step 

operations. 
1

1
2

 is equal to 
3

2
. Now, if we divide 1 by any rational number, 

what happens to that rational number?  

Student: It becomes upside down.  

Teacher: You are right, the number becomes upside down. Thus, 2 and 3 

swap places. In a division operation, if the dividend is 1 and the divisor is 

any rational number, then the quotient will always be equal to the flipped 

over version of that rational number. Thus, 
1

3

2

 is equal to 
2

3
. You do not 

need to perform any operation for this. However, note that this is true only in 

cases where the dividend is equal to 1.  

In another classroom event, Teacher A drew students’ attention to following 

special case: division of -1 by any rational number excluding 0 yields the additive 

inverse of the multiplicative inverse of that rational number. Teacher A selected 

 
12

1
17

 
   

 
 from the student textbook and thereafter expressed his consideration in 

the classroom as: “I chose to use this example to have you notice that division of -1 

by any rational number except for 0 will be equal to the additive inverse of the 

multiplicative inverse of that rational number.” 

Another manifestation of this approach occurred when Teacher A was 

teaching exponentiation of rational numbers. More specifically, Teacher A used 

2 0
3 2

2
4 3

   
      
   

 as a multi-step operation example and focused on

0
2

3

 
  
 

. It is 

important to note that for this exponential number, the intuitive definition of 

exponents (i.e., repeated multiplication) does not work. Thus, the teacher treated the 

case of zero exponent as a special case and explicitly expressed the following 

utterances: “Raising any nonzero rational number to the power of 0 yields 1. Thus, 

0
2

3

 
  
 

 is equal to 1”.  

Finally, Teacher A considered another consideration about exponentiation of 

rational numbers. That is, while teaching how to find the square and cube of rational 

numbers, the teacher asked the students to find the answer of 20141 . The teacher chose 
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to use this example to point to the special status of 1 as the number that is invariant 

under rational number powers. He used the following expressions to explain this type 

of consideration: “No matter how many times 1 is multiplied by itself, the answer 

will always be equal to zero. Thus, raising 1 to any rational number power always 

yields 1”.  

5.5.2. Under-represented cases in the teaching of rational number concepts 

Middle school mathematics teachers included the following under-

represented cases into the teaching of rational number concepts: (i) emphasizing 

rationality of 0, (ii) including 0 into the sequence of rational numbers when ordering, 

(iii) adding/subtracting/multiplying/dividing more than two rational numbers, (vi) 

incorporating equivalent pairs into comparison of rational numbers, (v) incorporating 

into the classroom ordering examples that entail the use of residual thinking and 

finally, (vi) estimating the addition/subtraction/multiplication/division of rational 

numbers. 

Teachers provided their students with the definition of rational number set, 

represented it symbolically as  0     and pointed to the rationality of 0. 

For instance, the consideration employed by Teacher A about the rationality of 0 is 

presented by the following teaching episode:  

Teacher A: Is 0 a rational number? 

Student: No! 

Teacher A: Why? 

Student: … (No answer) 

Teacher A: You often cannot understand that 0 is a rational number. This is 

probably due to the fact that you confuse neutrality of 0 with rationality of it. 

Have a look at this:  0     . This means that rational numbers 

include positive rational numbers, negative rational numbers and 0. Note that 

0 is a rational number but it is neutral.  

In another case, some of the teachers deliberately included 0 into the 

sequence of rational numbers when teaching how to order them. For example, 

Teacher A used a large number of examples for ordering and 

( 2) ( 7) 1 3 1 1 1 1
, , 0, , ; , , , , 0;

5 5 5 5 3 5 7 2

 
        

2 2 2 2
, , 0, ,

7 13 15 19
      were among these 
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examples. Some of the utterances used by Teacher A for this type of consideration 

while ordering 
( 2) ( 7) 1 3

, , 0, ,
5 5 5 5

 
     is presented below:  

Teacher A: For positive rational numbers, the one with a larger numerator 

will be larger. In contrast, the one with a smaller numerator will be larger for 

negative rational numbers.  

Student: Teacher, what are we going to do with 0? 

Teacher A:  That is easy. Zero is the last thing to consider. I included it into 

this sequence in order for you to recognize that it is in middle of negative 

and positive rational numbers. You will better understand when I order them. 

1

5
 and 

3

5
are positive numbers so, 

1 3

5 5
 . Next, 

( 7)

5


and 

( 2)

5


 are negative 

numbers, therefore
( 7) ( 2)

5 5

 
 . We ordered the positive and negative 

rational numbers separately. Now, we locate 0 in the middle of the positive 

and negative numbers in this way:
( 7) ( 2) 1 3

5 5 5 5
0

 
    . Why do we 

locate zero in the middle? Because it is a neutral number.  

 Another way teachers tried to include under-represented cases into the 

teaching of rational number concepts was seen in their efforts to 

add/subtract/multiply/divide more than two rational numbers. For instance, Teacher 

B provided 
1 3 5

1
4 12 3

 
   
 

 as an addition operation with three terms and similarly 

he provided 
1 1

2 ( 5)
3 2

   
     

   
 as a multiplication operation with three terms. Some 

of the expressions he used to explain the addition example were: 

Teacher B: In this example, we will add three rational numbers together. 

You can add them, won’t you?  

Students: … (No answer) 

Teacher B: In the previous examples, we added two rational numbers. Now, 

we will add three rational numbers. I hope you will not have any trouble 

with adding these numbers. More precisely, we can add not only three 

rational numbers but also as many rational numbers as we wish.  

Other consideration of this type was manifested when Teacher B incorporated 

an equivalent pair into the classroom when teaching comparison of rational numbers. 

More precisely, Teacher B used several examples related with comparison of rational 
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numbers and after the provision of
1 9

2 ,
4 4

 
 
 

, he explicitly expressed his 

consideration by the following utterances:  

Teacher B: We need to convert 
1

2
4

 into an improper number before 

comparison. We convert it in this way:
1 2 4 1 9

2
4 4 4

 
  . Thus, 

1

4
 is 

equal to 
9

4
 (i.e.,

1 9

4 4
  ). I deliberately chose to use this example. I wanted 

to see who would recognize the equality. So this means that we do not 

always use greater than (>) or less than sign (<) for comparison. Sometimes, 

the rational numbers may be equal to each other. As you can see, 
1

4
  is the 

mixed number form of
9

4
 .  

Another manifestation of this approach was seen in Teacher A’s attempt to 

incorporate into the classroom ordering examples that entailed the use of more 

conceptual strategies such as residual thinking. For instance, Teacher A used 

1996 1997 1998
, ,

1997 1998 1999
 as an example for ordering by residual thinking. Then, he explained 

how to order the rational numbers in this way:  

Teacher A: All rational numbers are very close to 1. However, the first 

rational number requires 
1

1997
 to make the whole, the second rational 

number requires 
1

1998
 to make the whole and the third fraction requires  

1

1999
 to make the whole. 

1 1 1

1997 1998 1999
   therefore, 

1996 1997 1998

1997 1998 1999
  . 

It is important to note that algorithmic approaches such as common denominator 

approach or common numerator approach do not work in the solution of this 

example.  

Finally, Teacher D incorporated into the classroom an example that is often 

overlooked by the teachers. That is, Teacher D asked her students to estimate the 

addition of 
1

2
100

  and 
95

2
100

 rather than asking them to find the exact answer.  
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Then, she explained why she chose to present this example when teaching addition 

of rational numbers. She wrote on the board the aforementioned estimation example 

and asked her students whether they could recall the notion of rounding and use it for 

working out this example.  

In this section, the incidents in which teachers included uncommon cases 

were described in detail. In the following section, the cases in which teachers drew 

attention to relevant features were described thoroughly.  

5.6. Drawing Attention to Relevant Features 

This consideration had to do with teachers’ deliberate attempts to decrease the 

‘noise’ of specific examples. In this study, the irrelevant information carried by the 

specific examples of middle school mathematics teachers were regarded as noise. 

The teachers applied some principles in order to prevent students from focusing on 

irrelevant features of specific examples and to enable them to see the general through 

the particular. These principles were as follows: (i) locating a positive rational 

number first, its additive inverse second and then comparing the two locations, (ii) 

arranging positive rational numbers first, their additive inverses second and then 

comparing the two arrangements, (iii) performing operations with rational numbers 

by keeping the magnitude of terms constant and varying one sign at a time, (iv) 

performing exponentiation by writing the power inside the parenthesis first, by 

writing the power outside the parenthesis second and then comparing the two results, 

(v) working out a complex fraction example first, rearranging the same complex 

fraction by changing the location of the main fraction bar and working out the new 

complex fraction second, and then comparing the two results, (vi) breaking the 

pattern when teaching the procedure for converting repeating decimals into rational 

numbers, (vii) performing a multi-step operation with parenthesis first, omitting the 

parenthesis of the same multi-step operation and performing second, and then 

comparing the two results, and finally (viii) solving a rational number problem first, 

solving another version of the same rational number problem second and then 

comparing the two rational number problems.  
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Some of the teachers tried to draw students’ attention to relevant features 

when locating rational numbers on a number line. They initially located a positive 

rational number on a number line, then they only changed the sign of the rational 

number into negative and then located it on same the number line. Finally, they 

compared the locations of the two rational numbers on the number line. For example, 

Teacher C initially located 
3

5
 on a number line, then he located 

3

5
  on a number line 

and finally compared the locations of 
3

5
 and 

3

5
  on the same number line. The 

following teaching episode illustrates how Teacher C took into account this type of 

consideration:  

Teacher C: To locate 
3

5
 on a number line, to which integer interval should I 

look for?  

Students: Between 0 and 1. 

Teacher C: Yes, we should locate 
3

5
 between 0 and 1. Thus, we first divide 

the interval between 0 and 1 into 5 equal pieces and mark the end of the third 

piece as 
3

5
. To locate 

3

5
  on a number line, we have to look for the interval 

between -1 and 0. Again, we divide the interval between -1 and 0 into 5 

equal pieces but start counting from -1 and mark the end of the third piece as

3

5
 . Now, let’s draw a number line and locate the rational numbers on it as 

follows: 

 

Teacher C: Here, we located two rational numbers that have same 

numerators and denominators but their signs are opposite of each other. I do 

not know whether you noticed, but as you can see the two rational numbers 

have equal distances from 0. However, while 
3

5
  is located on the left side 

of 0, 
3

5
 is located on the right side of it. 
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Some of the teachers attempted to draw students’ attention to relevant 

features while ordering rational numbers. To do so, they first provided examples 

related with ordering positive rational numbers. In their next examples, the teachers 

changed the sign of the rational numbers into negative and then ordered the negative 

rational numbers. Finally, they compared the two examples to expose the 

mathematical structure entailed in ordering positive and negative rational numbers. 

For instance, Teacher D first provided 
7 7 7

, and
4 2 9

   and ordered these positive 

rational numbers as
7 7 7

9 4 2
  . In her latter example, she kept the magnitudes of the 

rational numbers constant and only changed their signs into negative as

7 7 7
, and

4 2 9
    . Next, she ordered them as

7 7 7

9 4 2
     . Finally, she drew 

students’ attention to the difference between 
7 7 7

9 4 2
   and 

7 7 7

9 4 2
      and 

concluded that ordering negative versions of same rational numbers would reverse 

the order.   

Other consideration of this type occurred when teachers provided examples 

related with addition/subtraction/multiplication/division of rational numbers. That is, 

when performing such operations, the teachers kept the magnitude of terms constant 

and varied only one of their signs at a time. To give an example, Teacher C provided 

the following multiplication examples consecutively to employ this kind of 

consideration: 

(1) 
1 2 2

3 7 21

     
         
     

(2) 
1 2 2

3 7 21

     
         
     

(3) 
1 2 2

3 7 21

     
         
     

 

As it can be seen, the first multiplication example includes factors that are both 

positive. In the second example, the teacher kept the first factor entirely constant 

(i.e., its magnitude and sign), and kept the magnitude of the second factor constant 

but changed its sign into negative. When proceeded from the second example to the 

third example, the teacher kept the magnitude and sign of the second factor constant, 

kept the magnitude of the first factor constant and changed its sign into negative. 

Finally, the teacher compared the products and expressed the following: 
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Teacher C: As you see, all multiplication operations have products with 

same magnitudes. Besides, the rules for multiplying integers are also 

applicable for rational numbers. That is, when we have a look at the first 

example we can say that multiplication of two positive rational numbers 

yields a positive rational number product. In the second example we can see 

that multiplication of one positive and one negative rational number yields a 

negative rational number product. Finally, in the third example, the 

multiplication of two negative rational numbers yield a positive rational 

number product.  

Another manifestation of this approach was seen in teachers’ attempts to 

perform exponentiations by writing the power inside the parenthesis first, by writing 

the power outside the parenthesis second and finally comparing the similarities and 

differences of the two exponents. For instance, by using -2, 5 and 3, Teacher A 

generated 
32

5

 
 
 

as the first exponent, by using the same numbers later he generated 

3
2

5

 
 
 

 as the second exponent. The only difference between the two exponents is the 

position of the power 3 with respect to the parenthesis. Thus, the teacher tried to 

expose the mathematical structure of exponents by varying the positon of power and 

keeping other features invariant. Teacher A worked out the two exponents side by 

side and manifested his consideration via the following utterances: 

Teacher A: Look through 

3
2

5

 
 
 

 and 

3
2

5

 
 
 

for some time. In the first 

exponential number the power is inside the parenthesis and in the second one 

the power is outside the parenthesis. In the first exponential number, 3 has 

impact on only 2. Even, it does not have any impact on the minus sign 

preceding 2. However, in the second exponential number 3 has impact on 2, 

5 and on the minus sign. Thus, 

3
2

5

 
 
 

 is equal to 
2.2.2 8

5 5


 

   
   
   

 and 

3
2

5

 
 
 

is equal to
2 2 2 8

5 5 5 125

  
   

       
       
       

. As you can see the first 

exponential number is equal to 
8

5

 
 
 

 while the second one is equal to

8

125

 
 
 

. The results are different from each other. Is that okay? 

Students: Yes! 
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Another example of how teachers draw students’ attention to relevant features 

of examples was observed when teachers were teaching multi-step operations that are 

expressed as complex fractions. More specifically, the teachers provided two 

complex fraction examples that were formed by using same numbers but the 

locations of main fraction bars included in these two examples were different from 

each other. For instance, Teacher B provided 

1

2
3

4
 and 

1

2

3

4

 simultaneously and wanted 

students to determine whether they are equal to each other or not. He expressed this 

type of consideration as follows:  

Teacher B: They look similar to each other. However, in fact, they have 

nothing to do with each other since the positions of main fraction bars are 

different from each other. The first complex fraction can be rearranged as 

1
3 4

2
 

 
 
 

 and similarly the second complex fraction can be rearranged as

3
1 2

4
 
 
 
 

. Thus, we solve the first and second complex fractions as: 

1 1 1 1 1 1 1
3 4 4 4 ,

2 2 3 6 6 4 24

3 4 8 3 3
1 2 1 2 1 1 .

4 3 3 8 8

          

         

   
   
   

   
   
   

  

One of them is equal to
1

24
, the other one is equal to

3

8
. As you can see, the 

two complex fractions are visually similar to each other, however they are in 

no way connected to each other.  

In another case, Teacher B attempted to draw attention to relevant features by 

breaking the pattern of examples used for teaching the procedure for converting 

repeating decimals into rational numbers. Namely, Teacher B used the following 

sequence of examples to teach the procedure for converting repeating decimals into 

rational numbers: 0.7, 1.3, 2.15, 15.91, 3.24, 1.17, 1.045 and 3.207.          As can it be 

seen, the first two examples include only one repeating digit and hence their common 

fraction forms entail only one 9 in the denominator. After these two examples, 

Teacher B broke the pattern by giving two examples that included two 9’s in their 
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common fraction forms. He again broke the pattern by converting 3.24 and 1.17   

into rational numbers since these two examples included one 9 and one 0 in the 

denominators of their rational number forms. Finally, he broke another pattern by 

providing the last two examples. Because the rational number forms of these two 

examples included two 9’s and one 0 in their denominators. The teacher deliberately 

used this sequence of examples and changed the type of repeating decimals after 

each two examples in order to prevent students from noticing irrelevant patterns and 

making invalid generalizations about the procedure for conversion.  

In another case, Teacher A tried to draw students’ attention to relevant 

features in the course of teaching multi-step operations with rational numbers. In 

more detail, Teacher A initially provided 
1 1

8
4 8

K
 

   
 

 as a multi-step operation 

example. Next, he omitted the parenthesis in this example and provided 

1 1
8 :

4 8
L    as a second multi-step operation example. Finally, the teacher asked 

the students to think of whether the two examples were identical. By this way, the 

teacher checked whether students could recognize which operations to perform first 

in the two expressions. Some of the expressions used by Teacher A to explain his 

approach were presented in the following teaching episode: 

Teacher A: Is K identical to L? 

Student 1: Yes, they are identical. 

Student 2: No, they are not! 

Student 3: Yes, they are! 

Student 4: They are not! 

Teacher A: Thank you for all of you, but they are not identical to each other. 

Because, we first perform division in L whereas we first perform subtraction 

in K.  The first example can be worked out in this way: 

 
1 1 4 8 1 8 31 8

8 62
4 8 4 1 4 1

K
 

       
   
   
   

.  

Let me move on to the solution of next example as:  

1 1 1 1 1 8
8 8 8 8 2 6

4 8 4 8 4 1
L            

   
   
   

. 
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K absolutely has nothing to do with L. Those who said K and L are identical 

should examine the board very carefully. K is equal to 62, L is equal to 6. 

Thus, they are not equal to each other.  

In the final case, Teacher A attempted to draw students’ attention to the 

relevant features during the provision of rational number problems. That is, Teacher 

A provided the following two rational numbers consecutively:  

(1) On Monday, Ali spent 
1

4
 of his pocket money. The next day, he spent 

2

3
 of his pocket money and he had 21 TLs left. How much pocket money 

did he have at the beginning? (2) On Monday, Ali spent 
1

4
 of his pocket 

money. The next day, he spent 
2

3
 of his remaining pocket money and he 

had 21 TLs left. How much pocket money did he have at the beginning? 

As it can be seen, to have students discern the difference between the two problems 

Teacher A completely used the same context and the numbers. However, he added 

the word ‘remaining’ to the latter example. Some of the expressions he used to 

explain his consideration are presented as follows:  

Teacher A: Now, I will explain the difference between two problems to you. 

In the first problem, Ali spent
1

4
of his pocket money first and 

2

3
of his 

pocket money later. In this problem, Ali spent the two amounts of money 

separately, but he spent those amounts over the same amount of pocket 

money. In the second problem, Ali spent
1

4
of his pocket money first and 

next he spent 
2

3
 of his remaining pocket money. In the second problem, 

you perform your operations over the remaining pocket money. There is a 

crucial difference between the two problems.  In the first problem, you can 

directly add the numbers to find the total spent money. However, in the 

second problem you cannot find the total spent money by directly adding 

two rational numbers.  

5.7. Summary of Teachers’ Considerations in Choosing or Using Examples 

In this chapter, the focus was on exploring the principles or considerations 

used by teachers while choosing or generating rational number examples. Through 

this purpose, the examples that manifested the following teacher considerations were 

brought to light: starting with a simple or familiar case, attention to students’ 
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difficulty, error or misconception, keeping unnecessary work to minimum, taking 

account of examinations, including uncommon cases, and drawing attention to 

relevant features. 

Teachers manifested their attempts to start with a simple or familiar case 

through considering form of rational numbers, denominators of rational numbers, 

number of repeating and non-repeating digits of a decimal, number of 

terms/elements/steps when ordering rational numbers and when performing a single 

operation or multi-step operations with rational numbers, increasing complexity of 

multi-step operations and of rational number problems by changing their 

mathematical structure; and finally by recalling prior knowledge on rational number 

concepts. In more detail, teachers selected a sequence of rational numbers in 

different forms for locating on a number line, for performing four operations or for 

performing exponentiation by considering their increasing complexities. Teachers 

initially used rational numbers with same denominators as members of the sequence 

when ordering rational numbers or when adding or subtracting rational numbers. 

Teachers considered increasing complexity in converting repeating decimals into 

rational numbers by proceeding from decimals that included merely repeating digits 

to decimals that included both repeating and non-repeating digits. Besides, teachers 

gradually increased either the number of terms in an operation, the number of 

rational numbers selected for ordering in a sequence or the number of steps included 

in multi-step operations with rational numbers. Teacher considered increasing 

complexity of multi-step operations by changing their mathematical structure. 

Teachers often used multi-step operation examples with terms that are expressed on 

one line first, complex fractions without unknown values second and complex 

fractions with unknown values last. Similarly, teachers often attempted to generate 

rational number problems from simple to more difficult by changing the 

mathematical structure of each problem gradually. Finally, teachers considered 

increasing complexity by recalling prior knowledge on rational number concepts 

such as recalling natural number set and integer set first before introducing rational 

number set and recalling four operations with fractions before introducing four 

operations with rational numbers. 
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Teachers considered their students’ difficulties, errors or misconceptions 

when providing rational number examples. Teachers expressed that students often 

had difficulty in understanding the location of a minus sign in a rational number, 

subtraction operation with rational numbers, complex fractions with unknown values, 

ordering rational numbers with the same numerators, dealing with division of a 

number by zero and division of zero by a number, simplification of rational numbers 

before multiplication, performing operations including negative rational numbers 

without parenthesis, understanding that distributive property yields a valid result and 

finally distinguishing between exponents with a power inside the parenthesis and out 

outside the parenthesis. Besides, teachers articulated that students often make the 

following mathematical errors related with rational number concepts: using commas 

instead of greater-than and less-than signs when ordering rational numbers, ignoring 

parenthesis when operating with negative rational numbers, making sign errors when 

adding mixed numbers, making notation errors about mixed numbers, making errors 

when multiplying a rational number and whole number, making errors when finding 

additive inverse of a rational number, making errors due to not following order of 

operations, and making notation errors when performing the exponentiation of 

unknown variables. Finally, teachers explicitly uttered that students held the 

following misconceptions about rational number concepts: counting tick-marks 

rather than counting equal parts of the line segment when locating a rational number 

on a number line, over-generalizing location of positive rational numbers to negative 

rational numbers, ordering decimals by treating the digits after the decimal points as 

separate numbers, over-generalizing multiplication and division of rational number 

algorithms to addition and subtraction of rational numbers, under-generalizing 

simplification of rational number multiplication, misapplication of multiplication to 

mixed numbers, exponentiation by adding base and power, exponentiation by 

multiplying base and power, and believing that a larger number must always be 

divided by a smaller number.  

Teachers considered keeping unnecessary work to minimum by reducing 

technical work and focusing on the essence, highlighting relevant parts of examples 

and not going into extra details and by using properties of operations. Teachers 
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reduced technical work and focused on the essence in the following ways: drawing 

only the relevant part of number line when locating rational number on it, choosing 

certain rational numbers to illustrate repeating decimals, choosing relevant strategy 

when ordering rational numbers, using LCM method instead of multiplying 

denominators when finding the common denominator of rational numbers, not trying 

to enlarge rational numbers by 1, using shortcuts for adding and subtracting a whole 

number and a rational number, adding or subtracting whole parts and fractional parts 

separately when adding or subtracting mixed fractions, using subtraction formula 

instead of equating denominators during the subtraction of rational numbers, 

choosing same denominator rational numbers when illustrating associative property 

of addition, simplifying rational numbers in the course of performing operations, 

using backwards strategy instead of equating denominators when dealing with 

complex fractions with unknown values and rearranging algebraic expressions for an 

easier computation. Similarly, teachers highlighted relevant parts of examples and 

did not go into extra details in the following ways: emphasizing important parts of an 

example and not finishing up all the calculations, not seeing it essential to perform 

simplifications in the course of teaching a concept, not seeing it essential to perform 

conversions in the course of teaching a concept, not seeing it essential to equate 

denominators when symbolically expressing the area model of multiplication of 

rational numbers. Finally, teachers reduced workload by using properties of rational 

number operations as follows: using commutative property of addition operation 

rather than adding, using associative property of addition operation rather than 

adding, using distributive property of multiplication over addition rather than 

performing the operation, using the facts that 1/ ( / ) / ,a b b a ( / ) / ( / ) 1a b a b   , 

( / ) ( / ) 0a b a b    without actually making computations and enlarging decimal 

numerators and decimal denominators by multiples of 10 instead of converting into 

rational numbers when performing multi-step operations. 

Another manifestation of teacher consideration occurred when teachers took 

account of examinations when using rational number examples. They manifested this 

type considerations in the following cases: highlighting examples that have the 

potential to appear in written examinations, highlighting examples that have the 
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potential to appear in practice examinations of private teaching institutions, 

highlighting examples that have the potential to appear in high stakes examinations, 

explaining the method of scoring for potential written examination questions, 

incorporating the solution of high-stakes examination examples into the classroom, 

expressing the answer of multiple choice questions in their simplest forms in order to 

find it in the alternatives, finding the answer of multiple choice complex fraction 

tasks by trial and error of the alternatives and teaching shortcut methods for gaining 

speed in the high stakes examinations. 

Teachers also considered incorporation of uncommon cases into their 

classrooms either by introducing exceptional or special cases or by introducing 

under-represented cases. They chose to use the following exceptional or special cases 

in the teaching of rational number concepts: multiplying any rational number by 0 

yields 0, multiplying any rational number by 1 yields the rational number itself, 

dividing any rational number by 0 is undefined, dividing any rational number by 1 

yields the rational number itself, dividing 0 by any rational number excluding 0 

yields 0, dividing 1 by any rational number excluding 0 yields the multiplicative 

inverse of that rational number, dividing -1 by any rational number excluding 0 

yields the additive inverse of the multiplicative inverse of that rational number, 

raising any nonzero rational number to the power of 0 yields 1, and raising  1 to any 

rational number power yields 1. Besides, the teachers included the following under-

represented cases into the teaching of rational number concepts: emphasizing 

rationality of 0, including 0 into the sequence of rational numbers when ordering, 

adding/subtracting/multiplying/dividing more than two rational numbers, 

incorporating equivalent pairs into comparison of rational numbers, incorporating 

into the classroom ordering examples that entail the use of residual thinking, and 

estimating the addition, subtraction, multiplication and division of rational numbers. 

Ultimately, teachers considered drawing attention to relevant features of 

rational number concepts by deliberately attempting to reduce irrelevant information 

carried by specific examples. The teachers applied the following principles to reduce 

the noise of specific examples: locating a positive rational number first, its additive 

inverse second and then comparing the two locations, arranging positive rational 
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numbers first, their additive inverses second and then comparing the two 

arrangements, performing operations with rational numbers by keeping the 

magnitude of terms constant and varying one sign at a time, performing 

exponentiation without writing the power inside the parenthesis first, by writing the 

power outside the parenthesis second and then comparing the two results, working 

out a complex fraction example first, rearranging the same complex fraction by 

changing the location of the main fraction bar and working out the new complex 

fraction second, and then comparing the two results, breaking the pattern when 

teaching the procedure for converting repeating decimals into rational numbers, 

performing a multi-step operation with parenthesis first, omitting the parenthesis of 

the same multi-step operation and performing second, and then comparing the two 

results, and solving a rational number problem first, solving another version of the 

same rational number problem second and then comparing the two rational number 

problems.  
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CHAPTER VI 

 

INCORRECT OR INAPPROPRIATE EXAMPLES 

 

The purpose of this study was to explore middle school mathematics 

teachers’ treatment of rational number examples in their seventh grade classrooms. 

In this chapter, the focus was on identifying mathematically incorrect or 

pedagogically inappropriate rational number examples used by the middle school 

mathematics teachers. In other words, the focus was on identifying mathematical or 

pedagogical shortcomings that might be carried by the rational number examples 

used by the teachers. Through this focus, the following research question was 

formulated:  

1. What mathematical or pedagogical shortcomings do the examples used by 

the teachers in the teaching of rational numbers have? 

a. What are the mathematically incorrect examples used by the teachers 

during the teaching of rational numbers? 

b. What are the pedagogically improper examples used by the teachers 

during the teaching of rational numbers? 

More specifically, this chapter was divided into two sections as 

mathematically incorrect examples and pedagogically improper examples. In the 

following section mathematically incorrect examples generated by the middle school 

mathematics teachers were described.  

6.1. Mathematically incorrect examples  

This section examined middle school mathematics teachers’ rational number 

examples in terms of their mathematical correctness. In this study, some of the 

examples generated by the teachers were incorrect when evaluated from a 

mathematical standpoint. However, in some cases the examples provided by them 

were correct but the instructional explanations related with those examples were not 

entirely correct. Thus, when determining mathematical correctness of rational 
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number examples, the instructional explanations provided for those examples were 

also taken into consideration.  

Mathematically incorrect examples or explanations provided by the teachers 

in the course of teaching rational number concepts were discussed through the 

following cases: (1) explaining that irrational numbers cannot be located on a 

number line, (2) explaining that rational number set is a subset of irrational number 

set, (3) explaining that irrational number set includes less number of elements than 

rational number set, (4) explaining that all numbers in the fraction form are rational 

numbers, (5) working out an example incorrectly due to the misapplication of 

absolute value concept, (6) not partitioning the number line into equal distances 

when locating rational numbers on it, (7) using commutative property of addition 

when exemplifying associative property of addition, (8) seeing conversion of 

repeating decimals into rational numbers as being synonymous with rounding, (9) 

under-generalizing the addition of mixed numbers, and finally (10) using a correct 

ordering strategy but misnaming it as another strategy.  

Teacher A introduced the notion of a rational number and wrote on the 

whiteboard its definition as , , , 0
a

a b b
b

 
        

 
. He wanted to illustrate the 

numbers that satisfy this definition and he generated 
0

7
  and 

3

1
 as examples for 

rational number set. Later, he moved on to explaining what pi number (π) is and 

incorrectly explained that irrational numbers cannot be located on a number line as 

follows:  

Teacher A: Pi number goes to infinity as 3.14… Today, the decimal 

representation of pi has been computed to include many digits that can wrap 

the circumference of the earth forty times but it is still being computed. That 

is, the ratio of a circle’s circumference to its diameter goes to infinity and it 

is called the pi number… This ratio proceeds as 3.14… but we cannot 

express it as a common fraction. Why? Because we do not know its end.  

Student: That is a repeating decimal! 

Teacher A: It is not a repeating decimal. It is something else. If we do not 

know the final digits of the decimal number, then we cannot write it as a 

common fraction or locate it on a number line. I introduced you the pi 

number to illustrate that there are numbers that are not examples of rational 

number set. 
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In contrast to Teacher A’s claim, pi number in particular and irrational numbers in 

general can be located on a number line. More importantly, eight grade mathematics 

curriculum points to the relationship between irrational numbers and radicals and 

exemplifies how to locate an irrational number on a number line with the help of 

Pythagorean Theorem. An activity included in the middle school mathematics 

curriculum for finding the location of 34  is presented in Figure 6.1.  

 

Figure 6.1. The location of 34  on the number line (MoNE, 2009b, p.301). 

 

Teacher A could have made a more powerful and correct explanation if he had 

emphasized that all rational and irrational numbers can be represented by points on a 

number line and thus the number line is called the real number line.  

 After introducing rational number set, Teacher C pointed to the relationship 

between number sets by introducing C    .  At that time, one of the 

students wanted to learn the superset of rational number set. The teacher responded 

incorrectly and explained that irrational number set is the superset of rational number 

set. Teacher C’s explanations are provided in the following episode: 

Teacher C: You first learnt how to count at school. You started with 1, 2, 3, 

and kept going. When you were at grade 5, you learnt a new number set as 

natural number set. You added the number 0 to the counting numbers and 

got the natural numbers. Natural numbers are denoted by the symbol . Did 

you remember? 

Students: Yes! 

Teacher C: What is the next larger set? 

Students: Integer set! 
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Teacher C: Yes you are right. Integers are denoted by  . Now, what is the 

next larger set? 

Students: Rational numbers! 

Teacher C: Okay, rational numbers are denoted by  . You do not need to 

learn the number set that is larger than rational numbers. Therefore, it is 

enough for you to know these number sets.  

Student 1: Are complex numbers the next larger set? 

Teacher C: No, irrational number set is the next larger set. You do not need 

to learn irrational numbers now. I will teach it to you when you are at grade 

8. We will denote irrational numbers by the symbol ' . Again, you do not 

have to learn it know.  

Rational number set is not a subset of irrational number set. The two number 

sets are disjoint sets and reel number set is the union of these two disjoint sets. The 

middle school mathematics curriculum suggests teachers to give emphasis on the 

relationship among different number sets. A sample activity included in the middle 

school mathematics curriculum for demonstrating the relationship between reel 

numbers and rational numbers is presented in Figure 6.2 

  

Figure 6.2. The relationship between different number sets (MoNE, 2009b, p.300). 

 

 Teacher D was teaching the procedure for converting repeating decimals into 

rational numbers. After providing
33 3 30

3.3
9 9


   , she explained that repeating 

decimals such as 3.3  are all rational numbers. One of the students interrupted and 

asked the teacher to give examples for numbers that are not rational. As a response to 

the student query, the teacher incorrectly explained that there are few irrational 

numbers. The following episode illustrates this incorrect explanation.  

Teacher D: We first write the number without its decimal point as 33. Then, 

we subtract the repeating part from 33 and find 33-3=30. This number is the 

numerator of the decimal number. Now, we check how many digits repeat in
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3.3 . We write 9 to the denominator as many as the number of repeating 

digits and write 0 after 9 as many as non-repeating digits. As you see, only 

one digit repeats. Thus, we write 9 as the denominator of the rational 

number.  

Student: Can you please explain ones more? 

Teacher D: Do not worry, I will write the formula on the board. As a 

priority, you should understand that all repeating decimals or terminating 

decimals are actually rational numbers. Therefore, if I ask you to determine 

whether 3.3and 0.3 are rational numbers, how would you respond? 

Student: Yes, they are rational numbers. 

Teacher D: Yes, because you can express terminating decimals and repeating 

decimals as rational numbers.  

Student: Well teacher, which numbers are not rational? 

Teacher D: I previously mentioned that pi number is not rational. It has 

infinitely many digits but does not have a regular repeating pattern. Actually 

you can think in this way: Excluding repeating decimals and terminating 

decimals all numbers are irrational. However, irrational numbers are very 

rare.  

In another case, Teacher D wanted to explain rational numbers and their 

properties. She initially recalled fractions, natural numbers and integers and gave 

examples for these number types. Then, she introduced rational numbers and 

provided 
2 1

and
3 4

    as examples for rational numbers. Finally, she defined 

rational numbers as numbers that can be written in the form of
a

b
 . Note that the 

teacher incorrectly defined rational numbers due to not restricting a and b to integers. 

The following is an excerpt of Teacher D’s explanation of rational numbers: 

Teacher D: Remember number sets. For instance, do you remember natural 

number set? It starts with 0,1,2,3 and goes to infinity. Well, which numbers 

are included in integer set? It includes natural numbers and their negatives. 

This means that natural number set is a subset of integer set. In a similar 

way, rational number set is a superset of natural number set and integer set.  

Student 1: Well, which number set is a superset of all number sets? 

Teacher D: Reel number set. You will learn it at grade 8. I want to say one 

more thing about rational numbers. You previously learnt fractions. For 

instance, 
1

4
is a fraction. In fact, it is a number isn’t it? Fractions are also 

rational numbers. So 
1

4
 is a rational number. Negative numbers such as 
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2 1
and

3 4
   are also rational numbers. So they are all rational numbers, 

okay? 

Students: Okay! 

Teacher D: Actually, we can say that all numbers written in the form of 
a

b

are rational numbers. What does 
a

b
 mean? Both a and b will take numerical 

values. However, b cannot be zero. You already know from fractions that the 

denominator cannot be equal to zero. For instance, what does 
3

0
 mean? 

Student: Undefined! 

Teacher D: You are right, it is undefined. Thus, all numbers in the form of 

a

b
 are rational numbers unless b is equal to zero.  

For a more precise definition, the teacher should have restricted a and b to integer 

values. Since 
5 sin 64 ln(10)

, , and
2 3 4 7


    are all rational numbers in the sense that 

they are written in the form of
a

b
 . However, these numbers are actually all irrational 

numbers.  

Other incorrect example was manifested when Teacher A was teaching how 

to order rational numbers. He wanted to order 
3 1 9 5 1

, , , and
4 4 4 4 4

       on a number 

line and find the furthest distance between the two points on the number line. 

However, he initially arrived at an incorrect answer due to the misapplication of 

absolute value concept. Fortunately, he recognized his mistake and arrived at the 

correct answer by using a strategy that do not require the use of absolute value 

concept straight-forwardly. The following teaching episode illustrates Teacher A’s 

incorrect example generation due to misapplication of absolute value concept:  

Teacher A: We first need to find the two points that are furthest to each 

other. Namely, we need to find the largest and the smallest rational numbers 

first. What is the largest number? 

Students: 
1

4
 is the largest! 

Teacher A: Okay, then which one is the smallest? 
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Student 1: 
9

4
 must be the smallest one. 

Teacher A: Then, we need to find the difference between absolute values of 

the two rational numbers. Don’t we? 

Students: … (No answer) 

Teacher A: Thus, we find the answer in this way: 

9 1 9 1 8
2.

4 4 4 4 4
      I want to solve this example by locating the 

rational numbers on a number line. Because, I do not believe that I solved it 

correctly. So let me draw a number line and locate the rational numbers on it 

immediately: 

 

The answer is 
10

4
 not 2. Where did I make an error? Let’s think about 

elevators. In an apartment, if you move from the 3rd floor to the -5th floor, 

you first move from the 3rd floor to the ground floor and from the ground 

floor to the -5th floor. Thus we need to perform addition when finding the 

distance between these two points not subtraction. Thus, the answer is 

9 1 9 1 10
2.5

4 4 4 4 4
       not 2.  

In this example, the teacher erroneously believed that
9 1

4 4

9 1

4 4
     . The 

persistence of the teachers’ error became apparent when he followed the same 

reasoning in another example asking to find the distance between 
4

3
  and

1

3
 .  The 

teacher again misapplied the absolute value concept and proceeded as
4 1

3 3
   . 

This time he reached a correct answer since
4 1 4 1

3 3 3 3
      

   
    

   
. However, he 

was not able to be aware of his mistake about the application of the absolute value 

concept since he obtained the correct answer by chance.  

 Teacher D consistently generated ‘non-existing’ examples during the teaching 

of how to locate rational numbers on a number line. Namely, in four out of six 
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examples, she did not partition the number line into equal intervals when locating 

rational numbers. For instance, when locating 
4

2
5

  she partitioned the number line 

as given in Figure 6.3:   

 

Figure 6.3. Teacher D’s location of 
4

2
5

  on a number line 

As it can be seen, the distance between 0 and -1 or -1 and -2 is not equal to the 

distance between -2 and -3. None of the students remarked in the classroom that the 

distances between the integer points were not equal to each other. Thus, the teacher 

did not have the chance to modify her example. In reality, such an example does not 

exist and from a mathematical perspective it is problematic.  

 In another case, Teacher C was teaching associative property of addition of 

rational numbers. He generated an example to illustrate this property. However, the 

example was incorrect since he both changed the order of rational numbers and the 

grouping (i.e., change the position of the parenthesis) although this property does not 

permit changing the order of numbers. In other words, to demonstrate associative 

property of rational numbers, Teacher C also used commutative property of addition. 

He explained this property as follows: 

Teacher C: Rational numbers are associative under addition. Let’s show 

whether associative property holds for 
1 1 1

2 4 5
   or not. We will not add 

these three numbers to each other. We will use them to demonstrate 

associative property. We group the numbers two by two, first add the two 

numbers and then add the number that is outside the group. If we get the 

same answer for each grouping, then we say that associative property holds 

for
1 1 1

2 4 5
  . We first group 

1 1
and

2 4
   as

1 1 1

2 4 5
 

 
  

. Next, we group 

1 1

2 5
and as

1 1

2 5

1

4
 

 
  

. Finally, we group 
1 1

and
4 5

as
1 1 1

4 5 2
 

 
  

. If we 
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perform addition operations for each grouping, we obtain the same results. 

That is, 

 
1 1 1 1 1 1 1 1 1

2 4 5 2 5 4 4 5 2
       

     
          

 

Thus, we can say that rational numbers are associative under addition 

operation. 

As it can be seen, Teacher C both changed the order and grouping of 

1 1 1
, and

2 4 5
 by writing 

1 1 1

2 5 4

 
  

 
 into the expression. In order for this example to be 

correct, the teacher needs to express it as
1 1 1 1 1 1

2 4 5 2 4 5

   
       

   
.  

Teacher D used 
9

0.9 1
9

   as a specific example for illustrating how to 

convert repeating decimals into rational numbers. However, she also focused on an 

irrelevant feature of this example and incorrectly explained that conversion of 

repeating decimals into rational numbers are synonymous with the notion of 

rounding. For this specific example, the teacher’s claim appears to be true since

0.9 0.999... 1  . However, this is a misleading example because the teacher’s claim 

is not true for all repeating decimals. In short, it is incorrect to make a generalization 

that conversion is synonymous to rounding by focusing on an irrelevant feature of a 

particular example. The following excerpt illustrates Teacher D’s incorrect 

explanation about conversion of repeating decimals into rational numbers: 

Teacher D: Normally, what does 0.9  mean to you? In fact, 0.9  goes on in 

this way: 0.999…To which integer is 0.999… closer to? It is closer to 1. 

Thus, in fact conversion is synonymous to rounding. In other words, you 

round to the nearest integer value when converting the repeating decimal 

into a rational number. Did you understand what I mean? 

Students: Yes! 

Teacher D: Then, let me teach you how to order rational numbers.  

As the above given excerpt shows, Teacher D focused on an irrelevant feature 

of 0.9 and incorrectly explained that conversion of repeating decimals is 

synonymous to rounding. However, rounding repeating decimals such as 1.5  to their 

nearest integers leads to big round-off errors.  
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Teacher D made another incorrect explanation when teaching addition of 

mixed numbers. In more detail, she provided 
1 1

3 1
4 2

   
     
   

 as an example for 

addition of rational numbers and incorrectly stated that whole parts and fractional 

parts of the mixed numbers cannot be added separately unless they have the same 

denominators. Thus, she under-generalized adding whole parts and fractional parts 

separately to mixed numbers with the same denominators. The following excerpt 

illustrates Teacher D’s incorrect explanation about addition of mixed numbers:  

Teacher D: Now, we will add 
1 1

3 and 1
4 2

 
   
   
   

 together. We cannot add 

whole parts and fractional parts of these mixed numbers separately since 

they have different denominators. We can add whole parts and fractional 

parts separately on condition that mixed numbers have same denominators. 

Thus, we have to convert mixed numbers into improper rational numbers 

before adding them. We convert 
1

3
4


 
 
 

 into an improper rational number 

as
1 3 4 1 13

3
4 4 4

 
    
 
 
 

. Similarly, we convert 
1

1
2


 
 
 

 into an 

improper rational number as
1 1 2 1 3

1
2 2 2

 
    
 
 
 

. Now can perform

13 3

4 2
  
   
   
   

 as 
13 3 13 6 19

4 2 4 4 4
        
         
         
         

. 

In contrast to teacher’s explanation, it is possible to add whole parts and 

fractional parts separately when adding mixed fractions. It can be performed in this 

way:  
1 1 1 1 1 1 3 19

3 1 3 1 3 1 4
4 2 4 2 4 2 4 4

          
                         
          

. Thus, 

expecting students to use a specific strategy for adding mixed numbers might hamper 

students’ ability to develop their own strategies for adding.  

Finally, another incorrect explanation was provided by Teacher A when 

ordering rational numbers. More precisely, Teacher A ordered several sets of rational 

numbers by using residual thinking. However, he referred to the ordering strategy as 

benchmarking to 1 rather than residual thinking. Thus, the teacher provided the 
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examples correctly by residual thinking strategy however, he misnamed it as 

benchmark strategy. The following teaching episode illustrates this case: 

Teacher A: Now, we will order 
3 5 7

, and
4 6 8
    by benchmarking to 1. Here, all 

rational numbers are very close to 1. For the first rational number, we divide 

the whole into 4 equal parts and take 3 of them. For the second rational 

number, we divide the whole into 6 equal parts and take 5 of them. For the 

third rational number, we divide the whole into 8 equal parts and take 7 of 

them. As you see, there is only one part left for each of three rational 

numbers. However, the leftover parts do not have equal sizes. Here are the 

pictorial representations of these three rational numbers: 

 

Note that the three wholes have same sizes. Now, the largest leftover part is 

in the first whole. The leftover part in the second whole is medium sized and 

the leftover part in the third whole is the smallest. Then, in which whole the 

largest part is taken? In the third whole the largest part is taken. Next in the 

second whole and next in the first whole. Thus, we order the rational 

numbers as
3 5 7

4 6 8
  . 

As can be seen, the teacher provided a relevant example for ordering rational 

numbers by residual thinking strategy. Thus, he was able to use his knowledge of the 

specific teaching strategies to address ordering rational numbers. However, he could 

not distinguish between benchmarking strategy and residual thinking strategy.  

6.2. Pedagogically Improper Examples 

This section examined middle school mathematics teachers’ pedagogically 

incorrect examples under two main subsections as examples with improper language 

or terminology and to be avoided examples. Teachers’ rational number examples that 

included improper language or terminology are explained in the following section. 

6.2.1. Examples with improper language or terminology 

This section examined middle school mathematics teachers’ use of language 

or terminology for introducing rational number examples. In this study, some of the 
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examples generated by the teachers were correct when evaluated from a 

mathematical standpoint. However, they were not appropriate from a pedagogical 

standpoint since they included the use of inappropriate language or terminology. 

Examples that included the use of improper language or terminology were 

described through the following cases: (1) the careless use of the word fraction when 

rational number is intended, (2) the use of informal language such as opposite, flip 

and upside down for teaching additive or multiplicative inverses of rational numbers, 

(3) ill-advised reading of rational numbers, and finally (4) the incorrect use of 

mathematical symbols in the course of working out rational number examples.  

Fractions are non-negative rational numbers. Students start to learn fractions 

long before they learn integers. Thus, numerators and denominators of fractions are 

conventionally restricted to whole numbers. Besides, fractions are only a subset of 

rational number set (Lamon, 2012). However, teachers commonly and carelessly 

used the word fraction when they intended rational numbers. For instance, Teacher A 

was teaching how to locate rational numbers on a number line. He first provided 

examples related with location of proper fractions. Later, he moved on to location of 

negative rational numbers. He carelessly used the word ‘negative proper fractions’ 

when locating negative rational numbers into the number line. The following excerpt 

illustrates Teacher A’s improper use of the word ‘fraction’ instead of the expression 

‘negative rational number’: 

Teacher A: Listen to me very carefully. Proper fractions are very special 

among all fraction types. There are three reasons for this. First, they are only 

between 0 and 1 on a number line. They never exist in any other part of the 

number line. Second, proper fractions are commonly used when solving 

probability problems. In probability, the answers are between 0 and 1. 

However, they can also be 0 and 1. Third, when we square proper fractions, 

the result is smaller than the original proper fraction. For instance, the square 

of 
1

2
 is equal to 

1

4
 and 

1

4
 is smaller than

1

2
. As you see, proper fractions 

are really very important. Let’s get back to our topic. Proper fractions are 

between 0 and 1. Thus, if I ask you to locate a proper fraction such as
3

5
 on 

a number line, you will focus on the interval between 0 and 1. If I ask you to 

locate a negative fraction such as 
3

4
  on a number line, you will focus on 

the interval between -1 and 0. Do not forget this. The location of proper 

fractions have been asked in SBS for two times so far.  
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As the above given excerpt shows, Teacher A provided 
3

4
  as a negative 

fraction example. Instead of saying negative fraction, it would be more appropriate to 

say negative rational number for such examples.  

Similarly, Teacher B was teaching how to compare rational numbers. He 

wrote on the upper part of the board two comparison examples as
7 15 3 8

, and ,
9 2 4 11
     . 

Next, he wrote on the lower part of the board two other comparison examples as

1 7 1 17
, and ,

2 3 5 2
      . Upon a student’s remark, Teacher B indicated that 

examples in the upper part of the board are fraction examples, while he indicated that 

examples in the lower part are rational number examples. Thus, Teacher B treated 

fractions and rational numbers as separate entities from each other. However, as 

mentioned before, fractions are a subset of rational number set. Thus, it would be 

better to introduce 
7 15 3 8

, and ,
9 2 4 11
     as examples for positive rational numbers or 

fractions, and to introduce 
1 7 1 17

, and ,
2 3 5 2

       as examples for negative rational 

numbers.  

In another case, teachers used an informal language such as ‘opposite’, ‘flip’, 

or ‘swap places’ when teaching how to find additive or multiplicative inverses of 

rational numbers. For instance, Teacher A asked one of the students to find the 

multiplicative inverse of 
19

7
 after teaching multiplication of rational numbers. 

Teacher A’s use of the colloquial term ‘flip’ is illustrated by the following teaching 

episode: 

Teacher A: What is the multiplicative inverse of
19

7
 ? 

Student: … (No answer) 

Teacher A: Why don’t you say ‘we flip it over’? 

Student: … (No answer) 

Teacher A: Flip 
19

7
over! 
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Student: It is
7

19
. 

Teacher A: Thank you. To find the multiplicative inverse of a rational 

number we flip it over.  

Teacher A’s use of the language in such a way has the potential to hinder the 

development of students’ rational number understanding. Although the middle 

school mathematics curriculum suggested teachers to emphasize that if the 

multiplication of two rational numbers is equal to 1, then the rational numbers are 

multiplicative inverses of each other (i.e., 1
a c

b d
  , 0, 0

a c

b d
   ), Teacher A 

preferred to flip over the rational number to find its multiplicative inverse. Instead of 

this, it would be more appropriate for the teacher to provide 
19

1
7

a

b
   in order to 

have students understand the notion of multiplicative inverse conceptually. 

Teacher B asked his students to perform 
5 7

12 4
  when teaching division of 

rational numbers. Teacher B’s use of the colloquial term ‘swap places’ during the 

teaching of rational number division is illustrated by the following excerpt: 

Teacher B: How did we perform division of fractions last year? Let me 

recall. The first fraction remains the same, division becomes multiplication 

and the second fraction flips over. That is, 7 and 4 swap places and 
7

4
 turns 

into
4

7
. Thus we multiply

5

12
 by 

4

7
in this way:

5 4 20

12 7 84
    .  

Teacher B used the following approach for division of fractions: Just change the 

division sign to multiplication, flip over the second fraction and multiply. This 

approach to division of fractions might provide students with easy access to 

procedural understanding but not to relational understanding. Instead of this, it would 

be more appropriate for the teacher to explain why the division sign is changed into 

multiplication and why the second fraction is flipped over. Thus, the teacher might 

explain that division of fractions means multiplying the dividend by the 

multiplicative inverse of the divisor and might provide the following symbolic 

expression: 1a c a a d

cb d b b c

d

     .  
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 Teacher D was teaching how to calculate the square and cube of rational 

numbers. One of the students asked how to calculate exponents with negative 

powers. At that moment, Teacher D used the colloquial term ‘flip over’ and 

explained that the base needs to be flipped over before raising to the desired power. 

Teacher B’s use of the colloquial term ‘flip over’ during the teaching of rational 

number exponentiation is illustrated by the following excerpt: 

Student: Teacher, how do we calculate 

2
4

?
5



 
 
 

 

Teacher D: Let me explain what we should do when we come up with a 

negative power. In this example, you first flip over 
4

5
 and then raise the 

new fraction to the second power.  

Teacher D’s approach for calculating negative powers of rational numbers also 

reflects a procedural understanding. Thus, it would provide more relational 

understanding to students to emphasize that a negative power represents the 

multiplicative inverse of the base.  

 Teacher B was teaching additive inverse property of rational numbers. He 

chose to use 
3

2
4

  for teaching how to find the additive inverse. Teacher B used the 

colloquial term ‘opposite’ and explained that if the rational number is positive then 

its opposite is negative or if the rational number is negative then its opposite is 

positive. Teacher B’s use of the colloquial term ‘opposite’ during the teaching of 

rational number exponentiation is illustrated by the following episode: 

Teacher B: Let’s find the opposites of rational numbers. For instance, tell me 

the opposite of
3

2
4

 . 

Student: Shall we first convert it into an improper number? 

Teacher B: No, you do not need to convert. Tell me the opposite of
3

2
4

 .  

Student: Its opposite will be
3

2
4

 . 

Teacher B: Good! If the rational number is positive, its opposite will be 

negative and if the rational number is negative its opposite will be positive. 

Thus, the opposite of 
3

2
4

 will be
3

2
4

 .  
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Teacher B’s use of the colloquial term ‘opposite’ might help students gain intuition 

and provide easy access to procedural understanding, however it might hinder 

students’ conceptual understanding of the additive inverse property. More 

importantly, the teachers’ explanation for finding the additive inverse property as “if 

the rational number is positive, its opposite will be negative and if the rational 

number is negative its opposite will be positive” may not help the students notice the 

structure inherent in rational numbers that are additive inverses of each other. That is, 

although the middle school middle school mathematics curriculum suggested 

teachers to emphasize that adding rational numbers that are additive inverses of each 

other yields 0 (i.e., 0
a a

b b

   
     

   
), Teacher B did not make any explanation in this 

way. Thus, it would be more appropriate for the teacher to provide 
3

2 0
4

a

b

 
   
 

 

while teaching additive inverse property of rational numbers.  

 Another case in which teachers used improper language was observed when 

they read fractions or rational numbers in an ill-advised manner. For instance, 

Teacher B started teaching addition and subtraction of rational numbers by initially 

introducing an example related with fractions. Meanwhile, he recalled how to read 

fractions. This case is illustrated by the teaching episode of Teacher B as follows:  

Teacher B: Last year we performed operations with fractions, didn’t we? 

Student: Yes, we did.  

Teacher B: We can add and subtract fractions. Let me give an example 

related with subtraction of fractions.  

 

With which fraction do we represent the shaded area? 

Student: Two fourths. 

Teacher B: Two fourths or two over four. We may also read it as one over 

two. Now, if we subtract one over four from two over four, then the left over 

part corresponds to one over four. 
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As it can be seen, Teacher B used the expression ‘over’ to describe
2

4
 . Using such 

fraction language is somewhat problematic for students since it may obscure the 

relationship of the parts to the whole and the actions used to operate on fractions.  

 Teachers generated another example with inappropriate language or 

terminology when they attempted to read rational numbers as fractions. For instance, 

Teacher B was teaching addition of mixed numbers. After converting mixed numbers 

into improper rational numbers, he read those rational numbers loudly. However, he 

used an inappropriate language for reading them. This is illustrated by the teaching 

episode of Teacher B as follows: 

Teacher B: How do you perform
3 1

5 1
4 4

  
 
 
 

? 

Student: We first subtract 1 from 5 and then add 
3

4
 and 

1

4
.  

Teacher B: You will certainly make mistakes if you add whole parts and 

fractional parts separately. Just to be on the safe side, add the mixed numbers 

after you convert them into improper rational numbers. Thus, 
3

5
4

is equal to 

23

4
 and 

1
1

4

 
 
 

 is equal to
5

4

 
 
 

. Now we can add twenty three fourths 

and negative five fourths to each other…  

As this teaching episode shows, Teacher B read
5

4

 
  
 

 incorrectly as 

“negative five fourths.” Since rational numbers are also ratios, it would be more 

precise to read 
5

4

 
  
 

 as ‘negative five to four’ or ‘negative five for four’ (Lamon, 

2012). 

Finally, teachers presented to their students worked-out examples that 

included the use of incorrect mathematical symbols. For instance, when teaching 

addition of
5 5

3 and
12 6

 , Teacher A used implication sign instead of equal sign and he 

did not use equal sign between the expressions he wrote as he proceeded towards the 

answer. This is illustrated by excerpt given below: 
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Teacher A: …Another way to add mixed numbers is to add the whole parts 

first and fractional parts second. We can add the given mixed fractions in 

this way:  

 

However, I do not suggest you to use this way. Because you certainly make 

errors when you choose this way.  

As can be seen, Teacher A used an implication sign as a stand-in for the equal sign 

and left equal sign unused in circumstances that called for it. Here, an equal sign 

would have been the correct symbol to represent the relationship between 
5 5

3
12 6

  

and 
5 10

(3 0)
12


 .  

Similarly, Teacher D was explaining rational numbers and she exemplified 

positive and negative rational numbers by means of
1 1

and
2 2

   . However, she 

incorrectly used equal sign (=) instead of ‘is an element of’ symbol () when 

demonstrating
1

2
  as an element of positive rational number set and 

1

2
  as an 

element of negative rational number set. This is illustrated by the excerpt given 

below: 

Teacher D: Rational numbers that are smaller than zero form negative 

rational number set. It is denoted by the symbol


 . Rational numbers that 

are larger than zero form positive rational number set and it is denoted by the 

symbol


 . Now, the following examples can be given for these two 

number sets:  
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Thus, rational number set is the union of negative rational number set, 

positive rational number set and zero. We can symbolically express rational 

number set as  0     . 

6.2.2. To be avoided examples 

In-depth exploration of middle school mathematics teachers’ choice and use 

of examples brought to light some examples which should be better avoided in the 

teaching of rational number concepts. In more detail, some of the examples provided 

by the teachers included particular pitfalls that might be an obstacle for students to 

understand the mathematical object, concept or procedure that they confronted for 

the first time. This type of examples were referred to as ‘to be avoided examples’ or 

teachers’ poor choice of examples. In this study, two types of middle school 

mathematics teachers’ poor choice of examples were identified. These were 

examples that ‘obscure the role of variables’ and ‘examples intended to illustrate a 

particular procedure, for which another procedure would be more sensible.’ The first 

type of teachers’ poor choice of examples are presented in the following section.   

6.2.2.1. Examples that obscure the role of variables 

As mentioned in the literature review section, Marton and Booth’s (1997) 

theory of ‘dimensions of variation’ deals with the idea that most mathematical 

concepts and procedures and every example of these concepts and processes 

comprises two or more components or variables. According to this theory, people 

learn from discerning variation and what varies in people’s experience influence 

what they learn. Thus, the teachers are expected to consider dimensions of variation 

when providing their students examples about mathematical concepts or procedures. 

Particularly, when students encounter with a novel mathematical concept or 

procedure for the first time, it is helpful to use variables that take different values. 

This is considered important since it helps learners to distinguish between different 

variables and the different roles they undertake. For instance, if a teacher wants to 

teach subtraction of natural numbers to their students, he/she must avoid providing 

‘6-3=3’ in her very first example. This is due to the fact that in a subtraction 

operation there are three different variables as minuend, subtrahend and difference 
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and by selecting same values for the subtrahend and the difference the teacher makes 

it impossible for the students to distinguish between those two variables. In essence, 

one value (3, here) is being made to do the work of two variables in subtraction 

operation. Adjusting this example slightly (e.g., 7-4=3) would resolve the quandary 

and elucidate the roles of minuend, subtrahend and difference in the subtraction 

operation.  

Examples that obscured the role of the variables were described through the 

following cases in this study: (1) obscuring the role of repeating and non-repeating 

digit in the teaching of repeating decimal concept, (2) obscuring the role of 

subtrahend and difference in teaching the modelling of subtraction of rational 

numbers, and (3) obscuring the role of interval number and rational number 

magnitude when locating on a number line.  

Before teaching the procedure for converting repeating decimals into rational 

numbers teachers explained the concept of repeating decimals by using a specific 

example. Teacher A, Teacher B and Teacher D selected the following examples 

respectively:
10 5 10

3.333... 3.3, 1.333... 1.3, 3.333... 3.3
3 3 3
        . The examples 

used by Teacher A and Teacher D did not reflect a deliberate and informed selection 

while the example used by Teacher B reflected a well-chosen example. In a repeating 

decimal in the form of . ,a b there are two variables as a non-repeating digit (i.e., a) 

and a repeating digit (i.e., b). However, by selecting
10

3.333... 3.3
3
   , the teachers 

made the distinction between non-repeating digit and repeating digit obscure. In this 

example, 3 was made to do the work of two variables. Thus, the students may 

hesitate over which 3 to put the vinculum. The point is that by selecting a slightly 

different example from 
10

3
 such as

7 8 11
, and

3 3 3
   , it is possible to clarify the role of 

non-repeating and repeating digits. For instance, 
11

3.666... 3.6
3
   includes 3 as a 

non-repeating digit and 6 as a repeating digit. Thus, this example would help students 

distinguish between repeating and non-repeating digits.  
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Another case occurred when teachers began to teach subtraction of rational 

numbers. In their first examples, teachers used same rational numbers as subtrahends 

and differences. For instance, Teacher D obscured the role of subtrahend and 

difference when modelling of subtraction of rational numbers and selected them to 

be equal to
2

5
. The following is an excerpt of the teacher explanation: 

Teacher D: In this lesson I am going to teach you how to subtract rational 

numbers. I will first show you how to express the following area model 

symbolically. 

 

The fraction representing the first region is minuend, the fraction 

representing the second shaded region is subtrahend, and the fraction 

representing the third shaded region is difference. In the first whole, 4 parts 

are shaded so the minuend is equal to
4

5
. In the second whole, 2 parts are 

shaded so the subtrahend is 
2

5
and in the third whole, again 2 parts are shaded 

so the difference is
2

5
. Thus, the model can be symbolically expressed as

4 2 2

5 5 5
.   

As the above given excerpt shows, the modelling example chosen by Teacher 

D obscured the role of variables since same number of parts were shaded both in the 

second and third whole. In this example 
2

5
was made to do the work of both 

subtrahend and difference. The teacher would resolve this quandary by shading one 

or three parts in the second whole.  

In another case, Teacher A selected an example that obscured the role of 

interval number and rational number magnitude when locating on a number line. 

Teacher A’s teaching episode related with this case is presented below.  

Teacher A: Find the rational number that corresponds to point C in the 

following number line. 
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Student 1: Is it
1

3
 ? 

Students: 
1

3
   

Teacher A: This is a very good number pattern problem. This pattern 

proceeds as -4, -3, -2, -1, 0, 1,… Thus, point C corresponds to
1

3
. Well, what 

if there was no such pattern? 

Students: How? 

Teacher A: If there was not any pattern, to find the unit distance you would 

first find the distance between points A and B and then divide the obtained 

distance by the number of intervals between A and B. Then, the unit distance 

is equal to

4 1 3

13 3 3

3 3 3

  

  . Each decrement is equal to
1

3
. Thus, point C 

corresponds to
1

3
.  

Student 2: Teacher, 
3

3
is already equal to one whole, why did we again divide 

it by 3? 

Teacher A: 
3

3
 refers to the distance between A and B and 3 refers to the 

number of intervals between A and B. Do you understand? 

Students: No! 

As it can be seen, the rational number corresponding to the distance between A and 

B includes 3 as a numerator and a denominator. Besides, there are 3 equal intervals 

between A and B. Since all of these numbers were selected to be 3, this example 

obscured the role of variables. Moreover, the decrement between consecutive points 

and the corresponding value of point C are equal to
1

3
 . Thus, this may also obscure 

the role of variables. To resolve this quandary, the teacher would change the 

denominators of point A and point B by another number such as 5.  

6.2.2.2. Examples intended to illustrate a procedure, for which another 

procedure would be more sensible 

Mathematics teachers often use examples in the course of teaching a general 

procedure by a particular demonstration of that procedure. These procedures include 
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the use of several strategies or algorithms. In particular, the teaching of rational 

number topics entails the use of strategies for comparing and ordering rational 

numbers, written calculation algorithms for adding, subtracting, multiplying or 

dividing rational numbers and the use of estimation strategies for adding, subtracting, 

multiplying or dividing rational numbers. In ordering strategies, estimation 

strategies, and written calculation algorithms there exists a number of options. 

However, a rational number example that is selected to demonstrate a particular 

strategy or algorithm should be relevant for that strategy or algorithm. More 

precisely, the example selected to illustrate a particular procedure should not call for 

another more sensible procedure. Otherwise, the students may believe that there is no 

point in learning that particular procedure.  

In this study, there were several instances in which teachers provided 

examples to illustrate a particular procedure, but the examples called for other 

procedures that are more sensible. These examples were described through the 

following cases: (1) not using relevant examples when illustrating the procedure for 

converting repeating decimals, (2) not using relevant examples when teaching 

particular strategies for comparing and ordering rational numbers, and finally (3) not 

using relevant examples when teaching a particular written algorithm for adding 

rational numbers.  

There are two different procedures for converting repeating decimals into 

rational numbers. The first procedure has to do with repeating decimals that include 

only repeating digits after the decimal point such as 2.7, 3.15, 4.245 and 5.3478.     For 

these kinds of repeating decimals, it is more sensible to use the following conversion 

procedures: . , . , . , .
9 99 999 9999

b bc bcd bcde
a b a a bc a a bcd a a bcde a        . As it can be seen, 

this procedure entails writing the decimal digit as the numerator of the rational 

number and writing down a 9 for every repeating digit as the denominator of the 

rational number. The second procedure has to do with repeating decimals that 

include both repeating and nonrepeating digits after the decimal point such as

2.05, 4.358 and 3.125.    For these kinds of repeating decimals, it is more appropriate 

to use the second procedure. This procedure is composed of the following steps: (1) 
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write down the repeating decimal without its decimal point; (2) subtract non-

repeating part from Step 1; (3) divide the number obtained from Step 2 by the 

number with 9’s and 0’s: for every repeating digit write down a 9 and for every non-

repeating digit write down a 0 after 9’s. Thus, the following conversion procedures 

might be derived by means of the aforementioned steps: . ,
90

abc ab
a bc




.
900

abcd abc
a bcd


  and .

990

abcd ab
a bcd


 .  

Teacher A sensibly used the first procedure as a means for converting 

repeating decimals that include only repeating digits. For instance, he chose to use 

the following examples of this kind:
2 3 26

0.2 , 2 and 5.26 5
9 9 99

      . In a similar 

fashion, he used the second procedure appropriately for converting repeating 

decimals with repeating and non-repeating digits. Some of the examples selected by 

him to illustrate the second procedure were:
268 26

2.68
90


 , 

52714 527
52.714

990


  

and 
63284 632

6.3284
9900


 . However, other teachers used the second procedure for 

all types of repeating decimals. Although there is no need to deploy the second 

procedure for repeating decimals with only repeating digits, the teachers did not 

avoid using it. In such instances, the students quite reasonably might think that there 

is no point in learning a method for which there seems to be no need. For instance, 

Teacher B initially selected 0.7, 1.3, 2.15, 5.104, 3.24 and 1.045       as examples for 

teaching the second procedure. Demonstrating the second procedure by using 0.7  

seems quite problematic for some reasons. First, it does not include any non-

repeating digits. Second, it includes 0 before the decimal point and thus the first step 

of the second procedure (i.e, write down the repeating decimal without its decimal 

point) makes little sense to the children since they do not come up with a number in 

the form of 07 during their mathematics lessons. In addition, there is no need to use 

the second procedure for the latter two examples (i.e., 1.3, 2.15  ) since they also do 

not have non-repeating digits. Finally, for the last three examples, it is sensible to use 

the second procedure since these examples include both repeating and non-repeating 
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digits. Similar to Teacher B, Teacher C only introduced the second procedure to their 

students. He selected 1.3, 3.07 and 24.789    as examples for teaching this procedure. 

As it can be seen, it is not relevant to use the second procedure for the first two 

examples. However, it is more appropriate to use it for the last example. Finally, 

Teacher D merely introduced the second procedure to their students as well and 

selected 0.3, 0.5, 0.8, 0.9 and 2.5      as examples for demonstrating this procedure. 

Nevertheless, these examples include only one repeating digit. Hence, it would be 

more sensible to use the first procedure for these kinds of examples.  

There are several strategies for comparing and ordering rational numbers. In 

this study, the following strategies were used by the middle school mathematics 

teachers in the course of comparing and ordering rational numbers: finding common 

denominator of rational numbers, finding common numerator of rational numbers, 

benchmarking, residual thinking, locating rational numbers on a number line and 

converting rational numbers into decimal numbers. Nonetheless, it is important to 

know which ordering strategy is more relevant to use for a given set of rational 

numbers. This is due to the fact that while some set of rational numbers easily lend 

themselves to a certain strategy, the other set of rational numbers might be more 

efficiently ordered by another strategy. Thus, teachers play an important role in 

choosing an appropriate strategy for a given set of rational numbers or in choosing 

relevant examples for using a specific comparison or ordering strategy.  

In this study, middle school mathematics teachers selected certain set of 

rational numbers and ordered them by using specific strategies. However, in some 

cases the selected set of rational numbers lent themselves more readily to other 

strategies which were not used by the teachers. For instance, Teacher B selected an 

ordering example from an auxiliary book and the example included the following 

rational numbers for ordering:
13 11 7 5

, , and
12 10 6 4
     . The teacher suggested his students to 

order these rational numbers by using common denominator algorithm. However, as 

can be seen, each rational number includes a numerator that is one more than its 

denominator. Then, if each rational number is rearranged as 
13 1

1 ,
12 12

 
11 1

1
10 10

  , 
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7 1

6 6
  and

5 1
1

4 4
  , it becomes apparent that the use of residual thinking or 

common numerator algorithm would be more sensible when compared to the use of 

common denominator algorithm.  

To give another example, Teacher D selected the following rational numbers 

for ordering:
1 2 1

, and
3 5 6
    . However, she intended to order these rational numbers 

by locating the rational numbers on a number line. For the given set of rational 

numbers, there is no need to employ such strategy since they can be easily ordered 

when their magnitudes and directions are taken into consideration. That is, 
1

6
  is 

smaller from 0 while 
1 2

and
3 5
   are larger than 0. Thus, 

1

6
  is the smallest rational 

number. In addition, 
2

5
  is larger from 1 and 

1

3
is smaller from 1. Thus, 

2

5
  is the 

largest rational number. Consequently, the rational numbers can be easily ordered as 

follows:
1 1 2

6 3 5
    . In another example, Teacher D selected the following 

rational numbers:
7 3 8

, and
4 2 5
   . However, she ordered these rational numbers by first 

using a common denominator algorithm and then converting them to decimals as 

follows: 
3 150 8 160 7 175

1.5 1.6 1.75
2 100 5 100 4 100
        . A more sensible strategy for 

ordering the given set of rational numbers would be common denominator algorithm. 

By using this strategy the rational numbers can be more easily ordered as follows:

3 30 8 32 7 35

2 20 5 20 4 20
     .  

There are two different methods for adding mixed numbers. In the first 

method, the mixed numbers are converted into improper rational numbers before 

performing the addition algorithm. This first method is more plausible when the 

numerators and denominators of the mixed numbers are selected to be small 

numbers. In the second method, there is no need to convert mixed numbers into 

improper rational numbers before the addition algorithm. That is, the second method 

entails adding whole parts and fractional parts of mixed numbers separately. The 
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second method is more plausible when the numerators and denominators of the 

mixed numbers are selected to be large numbers. In this study, Teacher D wanted to 

demonstrate the second method of adding mixed numbers to their students. However, 

she selected an example that could be more sensibly worked out by using the first 

method. The teaching episode of Teacher D illustrates this case as follows:  

Teacher D: Write the following example on your notebooks: 
1 3

1 4
5 5

.  Here, 

I am going to teach you a shortcut procedure for adding mixed numbers. 

Normally, you used to convert rational numbers into improper rational 

numbers before adding them in this way:
1 3 6 23 29

1 4
5 5 5 5 5

     . 

However, you can also perform this operation by adding whole parts and 

fractional parts of the mixed numbers separately as: 

 
1 3 1 3 4 4 29

1 4 (1 4) 5 5
5 5 5 5 5 5 5
        

 
 
 

.  

Student: But, teacher this way is longer than the first way. We performed 

more operations! 

Teacher D: For this example you are right. However, as the denominators 

and numerators of the mixed numbers become larger, the second method 

will be shorter. I am telling the second method in order for you not to make 

errors. If you use the first method for adding mixed numbers with large 

denominators and numerators there is the risk of making errors when 

multiplying numbers.  

As remarked by one of the students, the example selected by Teacher D with 

the intention of demonstrating the second method was more relevant to the first 

method. To resolve this quandary, the teacher would select and introduce examples 

such as
11 14

102 215
19 19

  . As it can be seen, it is more sensible to use the second 

method for working out this example and the first method is a bit risky since there is 

the risk of making errors when computing the following expressions: 102 19 11   

and 215 19+14 .  

6.4. Summary of Incorrect or Inappropriate Examples  

 In this chapter, the focus was on identifying mathematically incorrect or 

pedagogically inappropriate rational number examples used by teachers. More 

specifically, teachers’ mathematically incorrect or pedagogical inappropriate 
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examples were reported under three main sections as mathematically incorrect 

examples, examples with improper language or terminology and to be avoided 

rational number examples.  

Teachers provided the following mathematically incorrect examples or 

explanations in the course of teaching rational number concepts: explaining that 

irrational numbers cannot be located on a number line, explaining that rational 

number set is a subset of irrational number set, explaining that irrational number set 

includes less number of elements than rational number set, explaining that all 

numbers in the fraction form are rational numbers, working out an example 

incorrectly due to the misapplication of absolute value concept, not partitioning the 

number line into equal distances when locating rational numbers on it, using 

commutative property of addition when exemplifying associative property of 

addition, seeing conversion of repeating decimals into rational numbers as being 

synonymous with rounding, under-generalizing the addition of mixed numbers, and 

finally using a correct ordering strategy but misnaming it as another strategy.  

Some of the examples generated by the teachers were correct when evaluated 

from a mathematical standpoint. However, they were not appropriate from a 

pedagogical standpoint since they included the use of inappropriate language or 

terminology. Examples of this type occurred due to careless use of the word fraction 

when rational number is intended, the use of informal language such as opposite, flip 

and upside down for teaching additive or multiplicative inverses of rational numbers, 

ill-advised reading of rational numbers, and finally the incorrect use of mathematical 

symbols in the course of working out rational number examples.  

Finally, exploration of teachers’ choice and use of examples brought to light 

several examples which would be better avoided in the teaching of rational number 

concepts. These examples included particular pitfalls that might be an obstacle for 

students to understand the mathematical concept or procedure that they confronted 

for the first time. Thus, to be avoided examples reflected teachers’ poor choice of 

examples in the teaching of rational number concepts or procedures. In more detail, 

two types of middle school mathematics teachers’ poor choice of examples were 

identified. These were, examples that obscured the role of variables and examples 
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intended to illustrate a particular procedure, for which another procedure would be 

more sensible. In this study, examples that obscured the role of the variables were 

described through the following cases: obscuring the role of repeating and non-

repeating digit in the teaching of repeating decimal concept, obscuring the role of 

subtrahend and difference in teaching the modelling of subtraction of rational 

numbers, and obscuring the role of interval number and rational number magnitude 

when locating on a number line. Furthermore, there were several instances in which 

teachers provided examples to illustrate a particular procedure, but the examples 

called for another procedure that is more sensible. These types of examples occurred 

in the following cases: not using relevant examples when illustrating the procedure 

for converting repeating decimals, not using relevant examples when teaching 

particular strategies for comparing and ordering rational numbers, and finally not 

using relevant examples when teaching a particular written algorithm for adding 

rational numbers.  



349 

 

CHAPTER VII 

 

DISCUSSION, IMPLICATIONS AND RECOMMENDATIONS 

 

The current study explored middle school mathematics teachers’ treatment of 

rational number examples in their seventh grade classrooms. The findings of the study 

were reported under three main chapters based on the research questions. In the first 

chapter, the focus was on describing overall characteristics of teachers’ rational number 

examples. Through this focus the rational number ideas that were emphasized by the 

teacher generated examples, the type of teacher generated examples, the way teachers 

chose rational number examples, and the resources used by the teachers when choosing 

rational number examples were described at length. In the second chapter, the focus was 

on exploring the principles or considerations used by teachers while choosing or 

generating rational number examples. Through this purpose, the examples that 

manifested the following teacher considerations were brought to light: starting with a 

simple or familiar case, drawing attention to students’ difficulty, error or misconception, 

keeping unnecessary work to minimum, taking account of examinations, including 

uncommon cases, and finally drawing attention to relevant features. In the third chapter, 

the focus was on identifying mathematically incorrect or pedagogically inappropriate 

rational number examples used by the teachers.  

In this chapter, discussion of the research findings were presented first. Next, 

implications and recommendations for future research studies were presented. The 

research findings were discussed under three main sections by depending upon the 

research questions. In these sections, findings about overall characteristics of teachers’ 

rational number examples, findings regarding teachers’ considerations in choosing 

examples, and findings regarding teachers’ mathematically incorrect or pedagogically 

inappropriate examples were discussed respectively. Finally, two empirically based 



350 

 

conceptual frameworks that might be used to examine middle school teachers’ choice of 

examples and considerations for choosing these examples were proposed.  

7.1. Overall Characteristics of Teachers’ Rational Number Examples 

This study revealed that although middle school mathematics teachers used three 

different types of examples as specific examples, non-examples and counter-examples, 

they mainly used specific examples for teaching rational number concepts or procedures. 

As emphasized by Zazkis (2005), it is difficult to think learning mathematics without 

considering specific examples. Specific examples are important because they help in 

understanding general (Feynman, 1985). In this study, the quality and quantity of 

teachers’ rational number examples were explored in comparison with the specific 

examples included in the followed mathematics textbook. When the number of specific 

examples provided by the teachers were examined, it was seen that teachers with greater 

years of rational number teaching experience exposed their students to a more number 

and variety of rational number examples. This finding provides insights into teachers’ 

craft knowledge. Kennedy (2002) was particularly interested in the nature of knowledge 

emanating from the experience of teaching and referred to it as craft knowledge. This 

knowledge type is kinesthetic and develops from repeated experiences through working 

with a specific material and is learned from experience and guidance from a master, but 

not learned by reading books (Kennedy, 1999). Craft knowledge is one form of 

professional expertise and it is not a technical skill or an ability to conduct critical 

analysis; but rather, it represents the building of situated, learner-oriented pedagogical 

knowledge focusing on procedures and content through purposeful action (Kennedy, 

1987).   

On the other hand, very few examples were provided by the teachers and the 

textbook for posing and solving rational number problems when compared to examples 

provided for teaching four operations with rational numbers. This reflects the emphasis 

given by the middle school mathematics curriculum on rational number operations or 

procedures. More specifically, MoNE (2009b) suggests teachers to allocate three lesson 
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hours for teaching problem posing and solving with rational numbers, whereas it 

suggests teachers to allocate nine lesson hours for teaching operations and procedures 

with rational numbers. Since more than half of the examples used by middle school 

mathematics teachers were related with rational number operations, it is natural to 

expect teachers to be proficient with algorithms for performing rational number 

operations. Indeed, Izsak, Orrill, Cohen and Brown (2010) pointed out that most of the 

teachers can multiply or divide rational numbers but many of them have limited capacity 

to reason about products and quotients when they are included in problem contexts. 

Similarly, several other studies found out that pre-service and in-service teachers lack 

performance when explaining multiplication and division of rational numbers 

(Armstrong & Bezuk, 1995; Tirosh, 2000). Middle school mathematics curriculum 

might play an important role for teachers in deciding which examples to select or how 

many examples to use in teaching mathematics topics. Thus, it is significant to revise the 

middle school mathematics curriculum by increasing the number of lessons devoted to 

problem posing and solving with rational numbers or by integrating problem solving 

approach into other learning objectives related with rational numbers. By this way, the 

number of examples used by teachers for teaching rational number operations and 

problems would be more balanced.  

The teachers in this study relied to some extent on the mathematics textbook and 

the middle school mathematics curriculum when teaching rational number ideas. The 

rational number ideas such as problem posing and estimation were emphasized by the 

textbook examples but were ignored by the teachers. On the other hand, teachers 

sometimes provided examples that emphasized other rational number ideas apart from 

the textbook such as identifying whether a given number is rational or not and ordering 

rational numbers by using residual thinking strategy. This way of teaching was 

sometimes beneficial to students’ understanding of rational numbers and sometimes led 

students to incomplete understandings about rational number concepts.  

One advantage of not strictly relying on textbooks was related with having 

students identify whether a given number is rational or not. When specific examples 
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provided by the textbook for explaining and locating rational numbers on a number line 

were examined, it was seen that there was not any example related with identifying 

whether a given number is rational or not. However, all teachers gave particular 

importance to teaching this idea. In more detail, teachers asked students to determine 

whether negative and positive integers, mixed, proper and improper numbers, decimal 

numbers or radical numbers, pi number and ratio of a number to zero are examples of 

rational numbers. Providing students with different types and forms of rational number 

examples is important since it may help students enrich their understanding of rational 

number concept (Zazkis, 2005).  

Another advantage was seen in teachers’ attempts to draw students’ attention to 

location of minus sign. Although examples reflecting this idea did not appear in the 

textbook, teachers’ paid attention to using such examples probably based on their 

previous teaching experiences.  

One final advantage was seen in a teacher’s attempt to incorporate into the 

classroom ordering and comparing examples that entailed using conceptual strategies 

such as residual thinking. Examples that require the use of residual thinking strategy 

were not provided by the textbook. The term residual refers to the amount needed to 

make a whole. Clarke and Roche (2009) indicated that residual thinking is a specific 

strategy that is unlikely to be taught by the teachers and they further argued that 

providing students with such strategies has the potential to promote student performance 

and understand relative size of relevant parts in fractions. Similarly, Post and Cramer 

(2002) claimed that the use of residual thinking helps students successfully compare 

fraction pairs. As discussed by Clarke and Roche (2009), residual thinking is a strategy 

that seems to be used by students exhibiting a more conceptual understanding of the size 

of the fractions. However, the use of this strategy did not seem to be commonly used by 

the teachers in middle school classrooms. This study revealed that only one of the 

teachers used ordering examples that entailed residual thinking, supporting Clarke and 

Roche’s (2009) argument about teachers’ use of this strategy.  
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 As mentioned before, teachers sometimes ignored the ideas emphasized by the 

textbook examples when teaching rational number concepts and this led students to an 

incomplete understanding of rational number concepts. To illustrate, none of the 

teachers provided students with examples related with estimation of multiplication and 

division with rational numbers although the middle school mathematics curriculum 

placed considerable emphasis on this notion. Van de Walle, Karp and Bay-Williams 

(2013) stressed that the aim of estimation is being able to obtain a rough result that will 

function for the situation and give a sense of rationality. They further added that the 

ability to estimate is worthwhile in daily life since in many circumstances there is no 

need to know the exact answer. Clarke and Roche (2009) suggested teachers to provide 

their students with greater opportunities and approximation since they aid in developing 

number sense. National Council of Teachers of Mathematics [NCTM] (2000) 

emphasized that “teachers should help students learn how to decide when an exact 

answer or an estimate would be more appropriate, how to choose the computational 

methods that would be best to use, and how to evaluate the reasonableness of answers to 

computations” (p. 220). In this study, none of the teachers attempted to provide 

estimation examples to their students and thus, they did not help student learn these 

complex considerations. Siegler and Booth (2005) argued that students are better at 

obtaining exact results than estimating results and they find it difficult to do 

computational estimation. The students of the participating teachers might also 

encounter similar difficulties about estimation since teachers omitted using estimation 

examples in their classrooms. Based on this conjecture, it could be implied that in-

service teachers should be provided the opportunity to participate in professional 

development activities that emphasize the role of estimation on deeper and meaningful 

understanding of mathematics. Similarly, it could be implied that teacher education 

programs should provide systematic learning opportunities to pre-service teachers about 

which computational strategies would work best and how to judge the rationality of 

answers to computations.  
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 Examples related with posing rational number problems are provided by the 

textbook and are explicitly emphasized in the middle school mathematics curriculum. 

However, although teachers provided a few problem solving examples, they ignored 

providing examples related with problem posing. Despite the fact that problem posing 

have been accepted as an important part of scientific work among mathematics 

education researchers and mathematics educators (Stoyanova, 2003), emphasis has been 

primarily put on problem solving rather than problem solving (Cankoy, 2014). The 

emphasis placed on problem solving rather than problem posing is also true for the 

middle school mathematics curriculum released by MoNE (2009b). Mathematical 

problem posing can be defined as creation of a novel problem or reformulation of a 

previously existing problem (Silver, 1993). Problem posing can also be regarded as a 

process ending up with a problem that needs to be solved (Dillon, 1982). In the last 

twenty years, mathematics education researchers and educators have particularly began 

to notice the potential and significance of problem posing in the teaching and learning of 

mathematics (e.g., Chang, 2007; Lowrie, 2002; Silver, 1995). Therefore, there have been 

many educational attempts to include problem posing activities into mathematics lessons 

(Knott, 2010; Stoyanova, 2003). Similarly, NCTM (2000) emphasized the need for 

providing students with essential knowledge about gaining experience, becoming aware 

and constructing their own problems and added that problem posing is at the centre of 

doing mathematics. Thus, middle school mathematics teachers are expected to integrate 

rational number problem posing examples into their classrooms and become aware of 

the fact that students’ problem posing experiences might help them promote 

mathematical thinking and understanding mathematical concepts in a deeper sense 

(Mestre, 2002).  

 As mentioned before, middle school mathematics teachers used non-examples of 

rational numbers in addition to specific examples. Non-examples show the boundaries or 

necessary conditions of a concept (Watson & Mason, 2005). Shortly, they “serve to 

clarify boundaries” of a concept (Bills et al., 2006, p. 127). Non-examples play a crucial 

role in promoting high levels of concept attainment (Charles, 1980; Cohen & Carpenter, 
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1980; Cook, 1981; Petty & Johnson, 1987; Tsamir et al., 2008). Besides, non-examples 

give teachers the chance to analyze their students’ thinking and are supportive for 

students in reasoning out loud (Clements et al., 1999). In this study, teachers, in general, 

used four different forms of non-examples as ratio of an integer to zero (e.g.,
2

0
 ), 

transcendental number (e.g., π), radical (e.g., 5 ), and infinite non-repeating decimal 

(e.g., 0.257843…). This seems to be an advantage on the part of students since the 

followed mathematics textbook of the classrooms did not provide any non-example for 

rational numbers. However, as stressed by Sirotic and Zazkis (2007), teachers missed the 

pedagogical opportunity to open students’ minds at least to a variety of irrational number 

examples (i.e., non-examples of rational numbers) beyond radicals such as 2 and 

transcendental numbers such as π. Besides, Sirotic and Zazkis (2007) indicated that 2

and π are generic examples for irrational numbers and prospective secondary 

mathematics teachers might not be aware of the existence of irrational numbers beyond 

pi number, Euler’s number and some commonly used square roots. Similarly, Zazkis and 

Leikin (2007) reported that pre-service teachers’ personal example space of irrational 

numbers is limited to π and 2 . Thus, the middle school mathematics teachers in this 

study might also have limited example spaces about irrationality. Nevertheless, the 

maxim ‘absence of evidence is not evidence of absence’ might not apply to our 

understanding of teachers’ examples spaces (Zazkis & Leikin 2007). Thus, teachers’ 

major use of square roots or the transcendental number π might not mean that their 

examples spaces of irrational numbers are limited to these numbers. It might simply 

mean that teachers had access to π and 2 as non-examples for rational numbers in that 

situation and at that time. The collection of examples that the middle school 

mathematics teachers had access to at that moment referred to teachers’ accessible 

examples that are dependent on many factors such as the context, the trigger and the 

state of teachers (Goldenberg & Mason, 2008). After all, middle school mathematics 

teachers can provide their students genuine opportunities by exposing them to non-

examples apart from the generic ones such as sin68° and ln15. Thus, mathematics 
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educators play an important role in extending pre-service and in-service teachers 

examples spaces about non-examples of rational numbers. More importantly, merely one 

teacher preferred to use infinite non-repeating decimal representation (such as, 

0.257843…) as a non-example for rational numbers. Zazkis and Sirotic (2010) suggested 

that only infinite non-repeating decimal representations are transparent representations 

of irrational numbers while other forms are opaque representations for irrational 

numbers. That is, only infinite non-repeating decimal representations of irrational 

numbers can make it possible for the students to derive the irrationality of numbers. 

Thus, teachers need to pay more attention to transparent representations when providing 

non-examples for rational numbers.  

Apart from non-examples, teachers also used counter-examples in the teaching of 

rational number ideas. Similar to non-examples, counter-examples “can serve to sharpen 

distinctions and deepen understanding of mathematical identities” (Zodik & Zaslavsky, 

2008, p. 165). Counter-examples are in a very powerful position when compared to 

other examples since one counter-example may be sufficient for establishing the 

invalidity of a claim while using many examples for establishing the truth of a claim 

may not be sufficient (Bogomolny, 2006). However, although counter-examples are 

important in the teaching of mathematics, the findings showed that they are less evident 

in middle school classroom practice. In this study, all of the counter-examples were 

generated by the teachers as a response to contingent classroom situations such as 

students’ invalid conjectures or students’ queries. However, only five counter-examples 

were generated by the teachers to demonstrate falsity of students’ claims. This finding is 

in line with the findings of previous studies. For instance, Rowland et al. (2009) 

indicated that counter-examples are important mathematical ideas but their data 

suggested that they were less evident in primary classroom practice. Similarly, Zodik 

and Zaslavsky (2008) found out that secondary school mathematics teachers altogether 

used eighteen counter-examples during 54 lesson hours. This might be due to middle 

school mathematics teachers’ views that mathematics they teach entails less higher-order 

thinking skills and less attention might have been given by the teachers to the use of 
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counter-examples for disproving mathematical conjectures. Indeed, Zodik and Zaslavsky 

(2008) found that none of the teachers participated in their study pre-planned to 

intentionally use a counter-example in the lesson. Similarly, none of the middle school 

mathematics teachers participated in this study made a deliberate attempt to plan which 

counter-examples to use in the classroom. Teachers’ scarce use of counter-examples 

might also have stemmed from the fact that the observed classes were rather teacher-

centered where middle school mathematics teachers were more engaged in example 

generation process and the students were less active when compared to a student-

centered classroom.  

This study revealed two main sources of teacher-generated examples as 

spontaneous examples and pre-planned examples. The examples that were actually 

generated by the teachers during the lesson without any planning in advance or examples 

that were generated by the teachers as a response to unexpected classroom situations 

were treated as spontaneous examples. In other words, for an example to be 

spontaneous, there had to be some evidence that choosing it entailed in-the moment 

decision making to a certain degree. On the contrary, the examples that were taken from 

available resources such as textbooks, workbooks and auxiliary books were treated as 

pre-planned examples. Middle school mathematics teachers altogether used 361 

spontaneous examples and 343 pre-planned examples during the teaching of rational 

numbers. This suggests that more than half of the examples used by the teachers were 

spontaneously generated, although the numbers are close. Teachers in Zodik and 

Zaslavsky’s (2008) study also used close numbers of spontaneous and pre-planned 

examples, where the number of pre-planned examples was more. It was very difficult to 

clearly differentiate between pre-planned and spontaneous examples during the research. 

However, I believe that this distinction would be helpful in making sense of teachers’ 

choice or use of examples.  

The magnitude of the difference between teachers’ spontaneous and pre-planned 

examples cannot say much unless there is access to their underlying principles or 

considerations that lead them to choose or generate rational number examples. Yet, it 
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was possible to observe some tendencies on the part of teachers in terms of generating or 

selecting spontaneous and pre-planned examples. A closer examination of the number of 

examples showed that teachers with higher years of rational number teaching experience 

seemed to use more spontaneous examples than pre-planned examples, whereas teachers 

with less years of rational number teaching experience appeared to use more pre-planned 

examples than spontaneous examples. This might be because spontaneous examples tend 

to depend more on teachers’ accessible example spaces (Watson & Mason, 2005). Thus, 

the increase in teachers’ rational number teaching experience might have played an 

important role in generating spontaneous examples that are more immediate and 

automatic. In contrast, the decrease in teachers’ rational number teaching experience 

might have led teachers to generate spontaneous examples after much longer time as a 

result of analytical thinking and self-monitoring (Zodik & Zaslavsky, 2008). 

 Teachers’ mathematics background might also explain their tendency to 

generate more spontaneous examples than pre-planned examples. Namely, the teachers 

with mathematics background in the study generated more spontaneous examples while 

the teachers with elementary mathematics teacher education background used more pre-

planned examples in the teaching of rational number ideas. Thus, teachers’ way of 

selecting examples might be associated with their subject matter knowledge to some 

extent (Shulman, 1986). According to Rowland et al. (2009) subject matter knowledge 

consists of substantive and syntactic knowledge. They indicated that substantive 

knowledge refers to “the facts, concepts and processes of mathematics and the links 

between them” while syntactic knowledge refers to “knowing how mathematical truths 

are established” (p. 20-21). Therefore, in-service and pre-service middle school 

mathematics teachers may need to make greater efforts to consolidate their substantive 

and syntactic knowledge necessary for generation of rational number examples.  

Teachers used several resources when choosing pre-planned rational number 

examples. The resources used were student textbook, student workbook, teachers’ 

guidebook, high-stakes examination questions, online educational software and a wide 

variety of auxiliary books. In general, the teachers used auxiliary books for providing 
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exercise examples to their students. Teachers mainly selected multiple choice question 

examples from auxiliary books, high-stakes examinations (SBS and ÖSS questions), and 

from online educational software. Their recourse to several resources that mainly 

included multiple choice questions reflected their consideration of Secondary School 

Entrance Examination (known as TEOG) taken by middle school students. Their use of 

many different auxiliary books also reflected their consideration of providing students 

with a wide variety of rational number examples and extending their examples spaces 

about rational number concepts. Thus, this may explain teachers’ provision of examples 

that involve rational number ideas distinct from the ones included in the student 

textbook.  

In this study, teachers’ rational number examples were examined in greater 

depth. This exploration is summarized in Table 7.1 below. This table might be used in 

the development of a possible framework that might be used to capture middle school 

mathematics teachers’ generation and choice of rational number examples in their 

classrooms. Future studies in different education systems might enhance this table and 

provide empirical support to the development of a possible conceptual framework for 

analyzing teachers’ treatment of rational numbers. 
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Table 7.1. The summary of teachers’ treatment of rational number examples 

Explaining and locating rational numbers on a 

number line 

Explaining rational numbers 

Examples that demonstrate;  

 the need for positive and negative rational numbers 

 equivalent classes of a fraction 

 location of equivalent fractions on a number line 

 whether a given number is rational 

 the positivity and negative of a rational number 

 the location of a minus sign in a negative rational 

number 

 simplification of rational numbers 

 conversion among mixed and improper numbers 

Locating rational numbers on a number line 

Examples that demonstrate; 

 location of a rational number on a number line 

 finding the rational value of a point located on a 

number line 

Comparing and ordering rational numbers 

Comparing rational numbers 

Examples that demonstrate comparing; 

 by locating on a number line 

 by benchmarking 

 by considering rational number sign 

 by converting a mixed number into an improper 

number 

Ordering rational numbers 

Examples that demonstrate ordering; 

 by locating on a number line 

 by converting rational numbers into decimal numbers 

 by common denominator algorithm 

 by common numerator algorithm 

 by benchmarking 

 by equivalent fractions 

 by residual thinking 

 by equating the number of decimal digits by adding 0s 

Expressing rational numbers in different forms 

Examples that demonstrate; 

 expression of integers as rational numbers 

 expression of  rational numbers as integers 

 expression of  rational numbers as terminating 

decimals 

 expression of  rational numbers as repeating 

decimals 

 expression of terminating decimals as rational 

numbers 

 conversion of repeating decimals into rational 

numbers 

Adding and subtracting rational numbers 

Examples that demonstrate; 

 using models for the addition and subtraction of 

rational numbers 

 finding common multiples of the denominators of 

rational numbers 

 adding and subtracting rational numbers with same 

denominators 

 estimating the addition and subtraction of rational 

numbers 

 adding and subtracting rational numbers with different 

denominators 

 properties of addition of rational numbers 

 multi-step operations with rational numbers 

Multiplying and dividing rational numbers 

Examples that demonstrate; 

 modeling multiplication of rational numbers 

 multiplication and division of rational numbers 

 multiplication and division by 0, 1 and (-1) 

 estimation of multiplication and division of rational 

numbers 

 modeling and calculating the square and cube of 

rational numbers 

 performing multi-step operations with rational 

numbers 

 properties of multiplication of rational numbers 

Performing multi-step operations with rational 

numbers 

Examples that demonstrate solution of multi-step 

operations that are expressed; 

 on one line 

 as complex fractions 

 as a continuing pattern 

 as single variable polynomials 

Posing and solving rational number problems 

 solving rational number problems with same referent 

units 

 solving rational number problems with different 

referent units 

 posing rational number problems 
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7.2. Teachers’ Considerations in Choosing Rational Number Examples 

The selection of examples in the teaching of mathematics is extremely 

complicated and involves a wide variety of considerations (Zaslavsky & Lavie, 2005). 

The certain choice of examples may either promote or hinder students’ understanding, 

thus teachers need to select examples with some care (Zaslavsky & Zodik, 2007). 

However, neither professional development programs nor teacher education programs in 

Turkey do not overtly address this issue and do not provide pre-service and in-service 

teachers with systematic knowledge about treatment of mathematical examples. Thus, it 

can be suggested that the skills necessary for powerful treatment of examples are crafted 

mainly by means of teachers’ own teaching experiences (Leinhardt, 1990). Kennedy 

(2002) coined the term craft knowledge for the knowledge that emanated from the 

experience of teaching and summarized its role in teaching as follows:  

“Craft knowledge derives mainly from experience, but can derive from 

numerous other sources such as newspapers and magazines, advice from 

colleagues and friends, etc.; craft knowledge mainly helps teachers address 

concerns about student willingness to participate and orderly task progress; 

acquisition of craft knowledge is motivated largely by dissatisfaction with 

events and a desire to not repeat the same mistakes again;…” (p. 362). 

It follows that much can be learnt from the experience of middle school mathematics 

teachers. Hence, inspired by the work of Zodik and Zaslavsky (2008), this study 

attempted to explore the principles or considerations used by middle school mathematics 

teachers while choosing or generating rational number examples. Through this purpose, 

the rational number examples that manifested the following teacher considerations were 

brought to light: starting with a simple or familiar case, drawing attention to students’ 

difficulty, error or misconception, keeping unnecessary work to minimum, taking 

account of examinations, including uncommon cases, and finally drawing attention to 

relevant features. The experienced secondary school mathematics teachers observed by 

Zodik and Zaslavsky (2008) taught several different mathematical concepts to their 

students and employed the same considerations with one exception. This exception was 

teachers’ consideration of examinations in Turkish middle school classrooms.  
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 The middle school mathematics teachers attempted to start with simple or 

familiar cases when teaching rational number concepts. In the study of Zodik and 

Zaslavsky (2008), teachers considered sequences of examples and constructed these 

examples by gradually increasing their complexity or difficulty levels. The same 

consideration was also employed by the middle school mathematics teachers when 

teaching ordering or adding/subtracting rational numbers. Namely, teachers first 

provided rational numbers with same denominators and then rational numbers with 

different denominators while ordering or adding/subtracting rational numbers. Similarly, 

Bills and Bills (2005) found that the experienced teachers in their study chose to use 

simple examples as a first stage in developing students’ understanding of mathematical 

procedures. It is natural for teachers to start with simple examples when introducing 

mathematical concepts or procedures. Because experienced teachers might certainly be 

aware that it is not reasonable for students to understand complex examples before 

encountering simpler ones.  

 Middle school mathematics teachers also drew students’ attention to common 

difficulties, errors or misconceptions held by them about rational number concepts. For 

instance, when locating rational numbers on a number line, teachers explicitly warned 

their students to count equal parts of the line segment instead of counting tick-marks. 

This type of consideration is strongly related with teachers’ pedagogical content 

knowledge (Shulman, 1986) and in particular with their knowledge of content and 

students (Ball et al., 2008). According to Shulman (1986), pedagogical content 

knowledge includes “the conceptions and preconceptions that students of different ages 

and backgrounds bring with them to the learning of those most frequently taught topics 

and lessons” (p.9). Similarly, Ball et al. (2008) described knowledge of content and 

students as “knowledge that combines knowing about students and knowing about 

mathematics” (p. 401). More precisely, knowledge of content and students is the 

knowledge of how students learn specific topics, the knowledge of the likely 

misconceptions students have or which topics might be problematic for students to 

understand and why (Hill, Ball & Schilling, 2008). This showed that teachers’ 
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consideration of their students’ errors reflected not only their subject matter knowledge 

but also their pedagogical content knowledge.  

  Middle school mathematics teachers deliberately attempted to keep unnecessary 

work to minimum during the provision of rational number examples by reducing 

technical work and focusing on the essence, highlighting relevant parts of examples and 

not going into extra details, and by using properties of operations. For instance, teachers’ 

specific choice of examples for illustrating repeating decimals manifested their attempts 

to keep unnecessary work to minimum. That is, teachers chose repeating decimals in 

which the repeating blocks were fairly easy to be noticed by the students. This case also 

occurred when secondary school mathematics teachers in the study of Zodik and 

Zaslavsky (2008) attempted to illustrate the period of rational numbers by selecting 

examples that had periods long enough to be noticed by the students. It is thought that 

this consideration helped teachers teach rational number concepts in a shorter period of 

time and helped the students learn the key components of the concepts rather than being 

bogged down with unnecessary work.  

Teachers also considered incorporation of uncommon cases into their classrooms 

either by introducing exceptional or special cases or by introducing under-represented 

cases. It is believed that teachers’ inclusion of uncommon cases to their teaching helped 

students to gain a complete understanding of rational number concepts. Teachers’ this 

type of consideration might be explained by the emphasis placed by the middle school 

mathematics curriculum on the teaching of rational number concepts by using special 

cases such as having students notice the influence of 0, 1 and -1 in multiplication and 

division operations. The use of non-prototypical examples as uncommon cases was not 

evident in this study. However, Zodik and Zaslavsky (2008) indicated that secondary 

school teachers manifested this type of consideration in their study. It was a missed 

opportunity for middle school mathematics teachers not to incorporate non-prototypical 

examples related to rational number concepts into their classrooms. Actually, students 

are inclined to consider prototypical examples as examples of the concept and consider 

other examples as non-examples of that concept (Hershkowitz, 1989; Wilson, 1990). 
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Watson and Mason (2005) made the same point that students generally identify concepts 

with one or two examples introduced earlier by their teachers and they are often left with 

incomplete and limited sense of the concept. Thus, in order to lessen the influence of 

prototype examples, the students might have also been introduced to non-prototypical 

ones.   

Another manifestation of teacher consideration had to do with drawing attention 

to relevant features of rational number concepts by deliberately attempting to reduce 

irrelevant information carried by specific examples. Skemp (1971) referred to the 

irrelevant information carried by examples as noise and he point out that if the noise of 

an example increases, then it becomes more difficult for students to form the concept 

demonstrated by that example. Thus, middle school mathematics teachers attempted to 

diminish the noise of the rational number examples by using pattern breaking strategy 

(Watson & Mason, 2005) and by using the structured variation principle (Watson & 

Mason, 2006). The findings are concurrent with those of Zodik and Zaslavsky (2008) 

although the examples provided by the middle school mathematics teachers and the 

secondary school mathematics teachers served for teaching different mathematical 

concepts. For instance, the middle school mathematics teachers in this study used pattern 

breaking strategy when teaching the procedure for converting repeating decimals into 

rational numbers whereas secondary school teachers in the study of Zodik and Zaslavsky 

(2008) used that strategy to teach Pythagorean Theorem to their students. In a similar 

way, the teachers in this study used the structured variation principle to teach four 

operations with rational numbers whereas the teachers of Zodik and Zaslavsky (2008) 

used it for teaching inequalities and linear functions. In this study, the use of pattern 

breaking strategy and structured variation principle as pedagogical strategies were seen 

to be beneficial for students’ understanding of rational number concepts. Watson and 

Mason (2006) supported this practice of teachers and explained the role of structured 

variation as follows:  

“Our conclusions after 3 years of work in a range of natural settings are that 

control of dimensions of variation and ranges of change is a powerful design 

strategy for producing exercises that encourage learners to engage with 
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mathematical structure, to generalize and to conceptualize even when doing 

apparently mundane questions. This power is easily recognized by teachers, 

teacher educators and other professionals in mathematics education” (p. 108). 

Ultimately, teachers took account of examinations when using rational number 

examples. This consideration was not adopted by teachers participated in other studies 

such as Zodik and Zaslavsky (2008). This consideration might be specific to Turkish 

educational context. In Turkey, middle school students compete with each other to study 

in well-qualified secondary schools. To enter these well-qualified secondary schools, 

students need to have high grade point averages in 6th, 7th and 8th grade levels. Besides, 

they have to take several national examinations called TEOG (Transition from Primary 

to Secondary Education Examination) in grade 8. Therefore, middle school mathematics 

teachers spend considerable efforts to help their students enter well-qualified secondary 

schools and consequently select their examples to serve for their intended purpose. That 

is, teachers bring to the classroom or generate in the classroom examples that are similar 

to the questions included in the examinations. Besides, they strive for incorporating 

high-stakes examination questions that were asked in the previous years into the 

classroom hoping that similar questions might be asked in the future examinations. 

These examinations include questions that are all in multiple-choice format. Therefore, 

teachers help students develop strategies for solving multiple choice questions. As 

mentioned before, teachers used many different auxiliary books that mainly included 

multiple choice questions. While solving these multiple-choice questions in the 

classroom, teachers attempted to give clues to their students about how to find the 

answer of each question by trial and error of the alternatives. In addition, the teachers 

aimed to teach shortcut methods to their students for gaining speed in the high stakes 

examinations.  

In this study, teachers’ considerations in choosing and using rational number 

examples were examined in greater depth. This exploration is summarized in Table 7.2 

below. This table might be used in the development of a possible framework that might 

be used to examine middle school mathematics teachers’ principles or considerations in 

selecting or generating rational number examples in their classrooms. Future studies in 
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different education systems might enhance this table and provide empirical support to 

the development of a possible conceptual framework for analyzing teachers’ 

considerations in choosing and using rational number examples.  
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7.3. Teachers’ Mathematically Incorrect or Pedagogically Inappropriate 

Rational Number Examples  

Another focus of this study was to identify mathematically incorrect or 

pedagogically inappropriate rational number examples used by the middle school 

mathematics teachers. The findings revealed that teachers used three poor choices of 

rational number examples. These were mathematically incorrect examples, examples 

with improper language or terminology, and examples that are to be avoided in the 

teaching of rational number concepts.   

One type of mathematical incorrectness was related with one participant 

teacher’s consistent generation of non-existing number line examples. That is, in 

most of her number lines, she did not partition them into equal intervals. Although 

the teacher generated number lines were incorrect from a mathematical standpoint, it 

was unlikely that the teacher lacked the subject matter knowledge about location of 

rational numbers on a number line. It seems that the teacher did not give sufficient 

importance to accurately generating number lines. Meanwhile, she might not have 

been aware that her inaccurate number lines might mislead students’ concept 

formation about number lines. This finding is in parallel with the findings of 

Zaslavsky and Zodik (2007). They also reported that teachers generated examples 

that included specific visual entailments or examples that did not actually exist. 

Similarly, Zodik and Zaslavsky (2008) pointed out that secondary school 

mathematics teachers generated non-existing examples and considered them as one 

type of mathematical incorrectness. More importantly, there is the possibility that the 

participating teacher in this study might have generated such non-existing number 

lines deliberately. For instance, when the teacher asked the students to locate
4

2
5

 , 

she drew the interval between -2 and -3 longer than the intervals between other 

consecutive integers. She might have acted in this way to have students locate the 

given rational number more readily. However, she appeared to be unaware of the 

possible mismatch between her intentions and what their students would actually 

attend to.  
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Another mathematical incorrectness had to do with teachers’ incorrect 

explanations about irrational numbers. More specifically, teachers articulated the 

following incorrect explanations about irrational numbers: irrational numbers cannot 

be located on a number line, irrational number set is a superset of rational number 

set, and irrational number set includes less number of elements than rational number 

set. Teachers’ erroneous knowledge about irrational numbers was also reported by 

other studies (e.g., Fischbein, Jehiam & Cohen, 1995; Güven, Çekmez & Karataş, 

2011; Sirotic & Zaskis, 2007). For instance, Sirotic and Zaskis (2007) asked pre-

service secondary school students to find the exact location of 5  on a number line 

and some of the participants did not believe that it was possible to find the exact 

location of 5 . Sirotic and Zaskis (2007) inferred that “one may find this difficult to 

believe if one has never seen an irrational point located on the number line, 

especially considering the fact that the number line is everywhere dense with rational 

numbers” (p. 478). This might also be true for the middle school mathematics 

teachers that participated in this study. That is, middle school mathematics teachers 

in this study might be lacking of the subject matter knowledge necessary for 

understanding irrational numbers. Indeed, it is reported that many in-service teachers 

could not even distinguish between rational numbers and irrational numbers (Arcavi, 

Bruckheimer & Ben-Zvi, 1987). Therefore, in order to promote pre-service and in-

service teachers’ understanding of irrational numbers, some modifications to the 

content courses that cover irrational numbers seems indispensable (Güven et al., 

2011).  

Some of the examples generated by the teachers were correct when evaluated 

from a mathematical standpoint. However, they were not appropriate from a 

pedagogical standpoint since they included the use of inappropriate language or 

terminology. Examples of this type occurred due to careless use of the word fraction 

when rational number is intended, the use of informal language such as opposite, flip 

and upside down for teaching additive or multiplicative inverses of rational numbers, 

ill-advised reading of fractions, and finally the incorrect use of mathematical 

symbols in the course of working out rational number examples.  
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Lamon (2012) claimed that many people carelessly use the word fraction 

when they intend to mean rational number. She further claimed that the use of such 

inappropriate terminology may lead to extra difficulties in communicating about the 

complex topics of fractions and rational numbers. Thus, it is believed that middle 

school mathematics teachers need to use mathematical terminology more carefully in 

order to avoid confusion or miscommunication among students and teachers. 

Teachers in this study also used inappropriate language when reading fractions. 

However, the language used for labelling fractions might impede students’ 

understanding (Clarke & Roche, 2009). For instance, participant teachers often read 

fractions like 
2

5
 as ‘two out of five.’ Reading fractions in this way may not help 

students notice the relative size in fractions. On the other hand, students more likely 

to grasp relative size and arrive at correct solutions when they read fractions like 
2

5
 

as ‘two-fifths’. Van de Walle et al. (2013) also argued that fractions should be read in 

a way that supports students’ understanding and further stated that reading 
2

10
 as 

‘two-tenth’ rather than ‘two out of ten’ would provide students with the opportunity 

to see the connections between decimals and fractions. It seems that the middle 

school teachers in this study were not aware of the danger that may occur as a result 

of using improper language when reading or saying fractions.  

Another salient informal language use occurred when teachers used words 

like ‘opposite’, ‘flip’ or ‘upside down’ when teaching additive or multiplicative 

inverses of rational numbers. The ambiguity that is intrinsic to spoken language has 

the potential to interrupt learners’ mathematical understanding (Matz, 1980). Thus, 

teachers’ use of the informal term ‘opposite’ instead of additive inverse or ‘flip’ 

instead of multiplicative inverse has the potential to impede students’ conceptual 

understanding of rational number concepts (Cangelosi et al., 2013). This implies that 

language and notation may play a crucial role in fostering learners’ conceptual 

understanding. Thus, although middle school mathematics teachers seemed reckless 

about language and terminology when teaching additive and multiplicative inverses, 

this might be a potential obstacle for students’ further mathematical development. 
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Moreover, not using proper terminology is likely to cause difficulty for students in 

understanding the nature of additive and multiplicative inverses (Cangelosi et al., 

2013).  

Finally, exploration of teachers’ choice and use of examples brought to light 

several examples which would be better avoided in the teaching of rational number 

concepts. These examples included particular pitfalls that might be an obstacle for 

students to understand the mathematical concept or procedure that they confronted 

for the first time. In more detail, middle school mathematics teachers used two 

different types of to be avoided examples. These were, examples that obscured the 

role of variables and examples intended to illustrate a particular procedure, for which 

another procedure would be more sensible.  

In this study, the rational number examples selected by the middle school 

mathematics teachers obscured the role of the variables in the following cases: 

selecting same values for the repeating and non-repeating digits when illustrating 

repeating decimal concept, selecting same values for the subtrahend and difference 

when teaching the modelling of subtraction of rational numbers, and obscuring the 

role of interval number and rational number magnitude when locating on a number 

line. These findings were similar with the previous studies (e.g., Rowland et al., 

2003; Rowland et al., 2009; Rowland, 2008). Rowland et al. (2003) reported that pre-

service teachers’ following choice of examples obscured the role of variables: to start 

teaching half past with half past six with analogue clocks, to start teaching co-

ordinates of points by (1,1), and to start teaching adding by 9+9. Similarly, Rowland 

(2008) observed that a pre-service teacher’s first example for teaching subtraction 

was 4-2=2 and this example obscured the role of variables since the pre-service 

teacher selected same values for subtrahend and difference. As these results suggests, 

some of the examples selected by the middle school mathematics teachers were 

somewhat similar to the ones selected by the pre-service teachers. Rowland (2008) 

concluded that “novice teachers need specific guidance and help in appreciating the 

different roles of examples in mathematics teaching, and the existence of some 

common pitfalls in the selection of examples” (p. 161). In a similar fashion, middle 
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school mathematics teachers may also need some guidance for judicious selection of 

examples.  

Another type of to be avoided examples occurred in cases where teachers 

provided examples to illustrate a particular procedure, but the examples called for 

another procedure that is more sensible. Middle school mathematics teachers used 

these types of to be avoided examples in the following cases: not using relevant 

examples when illustrating the procedure for converting repeating decimals, not 

using relevant examples when teaching particular strategies for comparing and 

ordering rational numbers, and not using relevant examples when teaching a 

particular written algorithm for adding rational numbers. These findings also 

concurred with the findings of previous studies (e.g., Rowland et al., 2003; Rowland 

et al., 2009; Rowland, 2008). Rowland et al. (2003) reported that pre-service 

teachers’ used the following examples to teach particular procedures but the 

examples called for other more sensible procedures: selecting 11-10 for teaching 

counting on strategy and selecting 49 4, and    for teaching column 

multiplication. It can be concluded that performing these computations by taking 

account of teachers’ intended strategies disregards the idea of selecting sensible 

strategies. 

7.4. Implications 

 Based on the findings of the current study and with respect to the current 

related literature, this section presented possible implications for pre-service and in-

service teachers, mathematics education researchers, mathematics teacher educators, 

textbook authors, and curriculum developers.  

Studies have shown that specific choice and use of mathematical examples 

may promote or hinder learners’ understanding. Thus, it confronts mathematics 

teachers with a challenge, and provoking numerous considerations to be weighed. 

Nevertheless, mathematics teacher education programs in Turkey do not overtly 

speak to this issue and do not provide systematical training for pre-service teachers to 

enable them select or generate thoughtful mathematical examples for their students. 

For this reason, courses that help pre-service teachers gain not only theoretical but 
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also practical knowledge about examples should be designed. More precisely, these 

courses should help pre-service teachers know what a mathematical example is, 

notice the role and power of examples in teaching mathematics, and develop skills in 

constructing good mathematical examples not only for the teaching of rational 

number concepts but also for other concepts in school mathematics. By this way, pre-

service teachers may develop awareness about good and poor choice of examples. 

Besides, other pedagogical content knowledge courses in mathematics education 

program should give more weight to well-thought example selection or generation. 

In these courses, pre-service teachers might be provided the opportunity to watch 

video recordings of experienced and novice teachers’ teaching episodes and to 

contemplate on experienced and novice teachers’ good and poor choices of 

examples. Rowland (2008) suggested that pre-service teachers notice and learn more 

efficiently from poor examples when compared to good ones. He further added that 

pre-service teachers notice and learn from poor examples more efficiently since good 

examples are so subtle that they are not visible to the novice observers. Based on this 

suggestion, exemplification courses might be designed in a way that give more 

chance to pre-service teachers’ exploration of and reflection on poor examples as 

well as constructing effective ones. 

Similarly, in-service teachers’ awareness of choosing examples can be 

enhanced by activities organized by teacher training programs. This would especially 

valuable for novice in-service teachers since such teacher training activities would 

make it possible to convey experienced teachers’ craft knowledge regarding 

treatment of examples to the novice ones. This study in particular focused on 

identifying considerations employed by teachers in selecting rational number 

examples. Thus, it is expected that these considerations might help teachers improve 

their own teaching practices. In addition, these considerations might be adapted to 

the teaching of other mathematical topics.   

The findings of this study might also contribute to mathematics education 

researchers who are interested in the area of exemplification and especially in 

teachers’ treatment of examples. More importantly, this study attempted to fill the 

void in mathematics education literature by exploring teachers’ treatment of rational 
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number examples which have not been addressed before. Eventually, two different 

sets of summaries explaining overall characteristics of rational number examples and 

teacher considerations in selecting these rational number examples were developed. 

It is expected that these summaries might help mathematics education researchers 

design their own research studies and subsequently analyze their own research 

findings.  

This study might also help mathematics teacher educators to increase the 

quality of pedagogical content knowledge courses in mathematics education. Turkish 

pre-service teachers attend practice teaching courses when they become seniors. 

Practice teaching courses provide pre-service teachers the opportunity to participate 

actively in educational activities in a selected cooperating school. Thus, the 

summaries developed in this study would be particularly useful for mathematics 

teacher educators in evaluating pre-service teachers’ teaching of rational number 

concepts in particular and other mathematical concepts in general.  

Textbook examples play an important role in teaching practices of 

mathematics teachers. Thus, it is important to include well-constructed examples in 

mathematics textbooks to help students develop more sophisticated understanding of 

mathematics. At this point, textbook authors should take an active role in preparing 

textbooks that include carefully selected examples. However, as indicated by Watson 

and Mason (2006) textbooks generally offer examples with random variation. Thus, 

textbook authors are expected to be more aware about the pedagogical role of 

examples. For instance, by considering structured variation principle, they may 

construct examples in which the dimensions of variation are carefully controlled. 

That is, they may construct sequences of examples by selecting one variable to be 

held constant and change other variables systematically when moving from one 

example to another. Hence, they may help students pay attention to relevant features 

of examples and help to reduce the noise carried by specific examples.   

Finally, this study is expected to inform curriculum developers about the 

potential role of examples in the teaching of mathematics. Consequently, this study is 

expected to help them revise and create examples that are included school 

mathematics curriculum in accordance with pedagogical principles such as pattern 
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breaking and structured variation, and with teacher considerations such as including 

uncommon cases or drawing attention to relevant features in order to better expose 

mathematical structure of examples to the students.  

7.5. Recommendations for Future Research 

The current study explored middle school mathematics teachers’ treatment of 

rational number examples in their seventh grade classrooms. More specifically, 

overall characteristics of rational number examples used by teachers, the 

considerations employed by them in choosing or generating rational number 

examples, and the mathematically incorrect or pedagogically inappropriate examples 

used by them in teaching of rational number concepts were examined in-depth.  In 

the view of findings, some recommendations are offered for future research studies 

in the following paragraphs.  

This study was carried out with middle school mathematics teachers whose 

rational number teaching experience varied between 2 to 14 years. A further research 

with middle school mathematics teachers who are in their early years of teaching 

might be conducted to see how their treatment of examples evolves as they teach. 

Besides, pre-service mathematics teachers’ treatment of examples might be explored 

to compare and contrast their selection of examples with in-service mathematics 

teachers. Even, mathematics teacher educators’ treatment of examples might be 

explored to see how well they select examples during the teaching of pre-service 

teachers. This is very important since only “well prepared mathematics teacher 

educators are available to furnish opportunities for teachers to develop in ways that 

will enable them to enhance the recommended changes” (Zaslavsky & Leikin, 2004, 

p. 5).  

In this study, all of the participating middle school teachers taught seventh 

grade students. A further research might be conducted with teachers who teach either 

elementary school students (between 1st grade and 4th grade), middle school students 

(between 5th grade and 8th grade) and secondary school students (between 9th grade 

and 12th grade) to see how teachers’ treatment of examples change with respect to 

students’ grade levels in certain content areas in mathematics.  
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This study focused on middle school mathematics teachers’ rational number 

examples as the unit of analysis. Teachers’ treatment of examples related with other 

topics of school mathematics might be explored to see how their example choices 

and considerations for their choices of examples differ with respect to the nature of 

mathematical concept.  

In order to investigate middle school mathematics teachers’ treatment of 

rational number examples in their classrooms, qualitative case study was employed. 

Further quantitative research studies might be used to examine pre-service and in-

service mathematics teachers’ treatment of not only rational number examples but 

also their examples related with other mathematical concepts. In particular, studies 

might be conducted to examine whether there ‘good’ examples and ‘poor’ examples 

result in significant differences in students’ achievement. By means of these 

quantitative research studies, researchers might have the chance to generalize their 

findings to a broader context possessing similar characteristics.  

Finally, the results of this study were limited to the data that were gathered 

from four public middle schools located in the Aksaray city centre. A further 

research may be conducted to investigate private school teachers’ treatment of 

examples in their classrooms. This might give some clues to the researchers about 

the possible influences of different schools on the quality and quantity of examples 

being selected by the teachers.  

7.6. Limitations of the Study 

The limitations that should be considered while interpreting the findings of 

this study are explained below. 

The number of middle school mathematics teachers I observed was limited to 

four teachers in this study. Moreover, the results of this data were limited to the data 

gathered from public middle schools that were at the center of Aksaray and private 

school mathematics classrooms were not observed in this study. Therefore, findings 

should be evaluated by considering the specified classrooms and school contexts.  

In addition, I observed each classroom as a complete observer. My existence 

in the classrooms might have influenced teachers’ and students’ actions or behaviors. 
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For instance, teachers might have made greater effort to teach rational number 

concepts due to my existence. To reduce this influence, I started conducting pilot 

observations and interviews with the teachers eight weeks before the actual data 

collection process and I videotaped teachers’ classroom practices during this time 

period. Besides, I continued conducting post observations and interviews with the 

teachers after the actual data collection process until the end of the fall semester. By 

this way, I wanted to make sure that teachers did not attempt to change their 

classroom practices after the end of the actual data collection process. 

The data of this study were limited to the lesson observations and to the 

questions included in the observation form. Before the implementation of the study, I 

was planning to conduct both pre and post lesson interviews with the teachers to see 

the examples appearing in their lesson plans. However, none of the teachers prepared 

lesson plans in advance. Therefore, it was not possible for me to conduct pre-lesson 

interviews. Thus, interview data were limited to the post lesson interviews and to the 

questions included in the interview protocol. Finally, the data obtained from student 

textbook were limited to the worked-out examples and exercise examples that were 

included in the explanatory part of the textbook for introducing rational number 

concepts.   

According to Watson and Mason’s (2005) example definition, representations 

can be also be regarded as mathematical examples. However, representations used by 

the teachers were not examined in this study. Thus, examples used by the teachers 

were limited to worked-out examples and exercise examples of teachers and the 

student textbook.  

The rational number teaching experience of participant teachers, ranged 

between 2 and 14 years. Therefore, teachers with more than 14 years of rational 

number teaching experience or teachers that have just started teaching rational 

numbers were not observed in this study. Besides, the teachers that participated in 

this study taught only to 7th grade students. Therefore, teachers’ treatment of 

mathematical examples was limited to 7th grade level. Likewise, the participants of 

this study were middle school mathematics teachers and primary school teachers or 

secondary school mathematics teachers were not observed in this study. 
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7.7. Implications for my future career 

 As a mathematics education researcher, this study had crucial impact on my 

own practice. At the beginning of this study, I could only speak in a general way 

about the importance of examples. But now, I am able to give a more analytical 

account of teachers’ treatment of examples in the teaching and learning of 

mathematics.  

 Conducting research on this topic provided me with ideas about my future 

teaching. When I become faculty member, the first thing that I will do will be to 

observe pre-service middle school mathematics teachers’ teaching practices in their 

school practice courses. More specifically, I will have pre-service teachers prepare 

lessons plans and will have them include their best examples in these lesson plans for 

teaching specific mathematical concepts in the selected cooperating middle schools. 

Besides, I will examine how they act in the moment when they come up with 

contingent classroom situations and the examples they select or use to handle these 

situations. By this way, I will monitor their improvement in selecting or using 

powerful instructional examples when teaching mathematical concepts to their 

students during a semester period. Meanwhile, I will discuss the potential pitfalls 

included in the examples of pre-service middle school mathematics teachers when 

they join teacher training courses related with school practice. At the end of the 

school practice courses, I hope the pre-service middle school mathematics teachers 

will become more aware of the role of careful selection or use of examples in the 

teaching of mathematics.  

 Apart from examining pre-service teachers’ choice and use of mathematical 

examples in their school practice courses, I will give more weight to their treatment 

of examples during courses about teaching methods. I think this will play an 

important role in increasing the quality of pedagogical content knowledge courses in 

mathematics education. 

 I am also planning to carry out projects about in-service middle school 

mathematics teachers’ treatment of examples in their own classrooms. More 

specifically, I am planning to devise professional development activities and have in-

service middle school mathematics teachers participate in these activities and discuss 
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the examples used by them in teaching particular mathematical topics. By this way, I 

anticipate that the teachers will be provided the opportunity to develop their 

experiences about exemplification in the teaching of mathematics. 

Ultimately, after I gain sufficient experience about pre-service and in-service 

mathematics teachers’ treatment of examples in their actual classroom practices, I am 

planning to write mathematics textbooks for middle school students. These textbooks 

will be prepared in accordance with the pedagogical principals existing in the 

exemplification literatute and thus they will better expose the mathematical structure 

inherent in the examples to the students. 
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APPENDICES 

 

 

APPENDIX A 

 

 

OBSERVATION FORM 

 

Gözlemin Amacı: Bu gözlemin amacı ortaokul matematik öğretmeninin ders 

esnasında kullanmış olduğu örnekleri nasıl ele aldığını ortaya koymaktır.  

İlgili Gözlem Soruları: 

1. Ortaokul matematik öğretmenleri ders anlatımı sırasında matematiksel 

örnekleri nasıl ele almaktadırlar? 

a. Öğretmenler sınıfta ne tür örneklerden yararlanmaktadırlar? (örnekler, 

örnek olmayanlar, karşıt örnekler, vb.) 

b. Öğretmenler örnekleri nasıl seçmektedirler? (planlayarak/ders 

esnasında anlık olarak) 

c. Öğretmenler örnekleri hangi amaçlar için seçmektedirler? (konuya ilgi 

çekmek için, konu anlatımı için, alıştırma yapmak için, vb.) 

d. Öğretmenler örnekleri hangi amaçlar için kullanmaktadırlar? (Hangi 

durumlarda seçilen örnekler kullanılan örneklerden farklılık 

göstermiştir?) 

2. Öğretmenler derste kullanmış oldukları örnekleri öğrencilere nasıl 

sunmaktadırlar? 

a. Öğretmenler örnek kullanırken ne tür gösterimlerden 

faydalanmaktadırlar? 

b. Öğretmenler örnekte kullandıkları şekil/sayı/uzunlukları nasıl 

seçmektedirler? 

c. Öğretmenlerin vermiş oldukları örnekler sonrasında öğrenciler 

kavramları nasıl algılamaktadır? (Aşırı genelleştirme ya da aşırı 

özelleştirmeye neden olan örnekler var mı?) 

d. Öğretmenler art arda verdikleri örneklerde nasıl bir sıralama ve 

organizasyon vardır?  
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e. Öğretmenler örnekleri matematiksel olarak ne derece doğru 

kullanmaktadırlar? 

3. Öğretmenlerin örnek seçimlerinde uyguladıkları belirli kurallar ya da 

prensipler var mı? Varsa nasıl?  

a. Basit ve bilinen bir örnekle başlıyor mu? 

b. Öğrencilerin hatalarını dikkate alıyor mu? 

c. Kavramların gerekli özelliklerine dikkat çekiyor mu? 

d. Rastgele sayı/şekil/uzunluk kullanarak genelleştirmeler yapıyor mu? 

e. Yaygın olmayan durumları örneklerine dâhil ediyor mu? 

f. Gereksiz iş yükünün en aza indiriyor mu? 

Veri Toplama 

Ortaokul matematik öğretmeninin ders esnasında kullanmış olduğu örnekleri nasıl 

ele aldığını ortaya koymak amacıyla farklı devlet okullarında görev yapan dört 

yedinci sınıf matematik öğretmeninin dersleri bir eğitim öğretim dönemi boyunca 

gözlemlenecektir. Gözlem sürecinde aşağıda belirlenen boyutlara odaklanılacaktır. 

Gözlem boyunca yukarıda belirtilen gözlem sorularıyla ilgili her şey tanımlayıcı 

notlar alınarak kaydedilecektir. Gerektiği durumlarda tanımlayıcı notlardan ayrı 

olarak yoruma veya çıkarıma dayalı notlar alınacaktır. Bu notlara ek olarak sınıf içi 

diyaloglar ses kayıt cihazı ile kaydedilecektir.     

Gözlemin Boyutları: 

Ortam: Sınıfın fiziksel durumu, teknolojik destek, araç gereçler.  

Öğretmenin kullandığı örnekler: Sözel olarak ifade edilenler, tahtaya 

yazılanlar, yazılı kaynaklardan alınanlar.  

Örneklerin içeriği: Seçilen sayılar, uzunluklar, objeler, gösterimler, 

materyaller.  

Öğretmenin örnek seçimi: Öğretmenin çözdüğü örnekler, öğrencinin 

çözdüğü örnekler, ödev olarak bırakılanlar.  

Sınıf içi diyaloglar: Örnekler üzerinden geçen öğretmen-öğrenci, öğrenci-

öğrenci diyalogları. 
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APPENDIX B 

 

INTERVIEW PROTOCOL 

 

 

Tarih:     Saat:             Yer:   Katılımcı:     

 

GİRİŞ 

 Merhaba, benim adım Ramazan Avcu. Orta Doğu Teknik Üniversitesi Eğitim 

Fakültesi İlköğretim Bölümünde doktora öğrencisiyim. Bu çalışmanın amacı 

ortaokul matematik öğretmenlerinin derslerinde kullandıkları örnekleri incelemektir. 

Derslerinizi gözledikten sonra kullanmış olduğunuz örneklerle ilgili birtakım 

sorulara cevap aramak amacıyla ders sonlarında sizle görüşme yapmak istiyorum. 

Görüşmeler esnasında herhangi bir nedenden ötürü kendinizi rahatsız hissederseniz 

görüşmeyi sona erdirmede serbestsiniz. Her bir mülakat yaklaşık 20-30 dakika 

sürecektir. Sizin için bir sorun teşkil etmiyorsa görüşmeleri kayıt etmek istiyorum. 

Katılımınız için şimdiden çok teşekkür ederim. 

 

SORULAR 

 

 

1. Derste kullanmış olduğunuz örneklerden hangilerini önceden planladınız, 

hangilerini ders anlatımı esnasında oluşturdunuz? 

2. Dersteki her bir örneği ne amaçla kullandınız? 

3. Derste kullanacağınız örnekleri seçerken veya örnek oluştururken neleri göz 

önünde bulundurdunuz? 

4. Örnekleri seçerken kendinize özgü prensipleriniz ya da temel kurallarınız var 

mı? 

 Varsa örnek verir misiniz? 

5. Dersten önce planlamış olduğunuz örnekleri ders esnasında kullanmadığınız 

oldu mu? 



407 

 

 Kullanmadıysanız buna neler sebep oldu? 

6.  Kendi çözdüğünüz sorulara ve öğrencilerin çözmesini istediğiniz sorulara karar 

verirken neleri göz önünde bulundurdunuz? Örnek verir misiniz? 

7.  Derste kullanmış olduğunuz örneklerin etkililiği hakkında ne düşünüyorsunuz? 

 Derste kullanmış olduğunuz örneklerden dersin anlaşılmasını olumsuz 

etkilediğini düşündüğünüz örnekler var mı? 

 Varsa hangileri olumsuz etkiledi? Neden? 

8. Örneklerde değişiklik yapmak isteseniz, neleri, nasıl değiştirirsiniz? 

9. Ders esnasında kullandığınız örneklerden matematiksel olarak hatalı ya da eksik 

olduğunu fark ettiğiniz oldu mu? 

 Varsa bunu nasıl düzeltirsiniz/düzelttiniz? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



408 

 

APPENDIX C 

 

SAMPLE CODING SHEET 

 

 

 

GEREKSİZ İŞ YÜKÜNÜ EN AZA İNDİRME 

 A B C D 

Teknik iş yükünü azaltma 

Devirli ondalık sayıların öğretilmesinde devreden 

kısmın daha az adımda görülebilmesi için uygun 

sayının seçimi 

4 1   

r.s. da toplama işleminin birleşme özelliğini 

öğretirken paydaları eşit r.s. ın seçimi 

14    

r.s. sıralanmasında payda eşitlemeye gerek kalmadan 

benchmark kullanılması 

 4,5   

r.s. sıralanmasında paylar eşitken payda eşitleme ile 

uğraşmama  

6    

r.s. sıralanmasında paylar farklı paydalar farklı 

olduğu durumda hangisini eşitlemen kolaysa onu 

eşitlemek 

7,8,9    

Payda eşitlerken 1 ile genişletileni 1 ile çarpmama 

durumu 

10,15    

Payda eşitlerken EKOK un kullanılması, paydaları 

birbiriyle çarpmak yerine  

 6,7,8,19   

İşlem yaparken sadeleştirerek devam etmek kolaylık 

sağlar 

17 16, 17 2 4,5,6,9, 

20,21 

Bir tam sayı ile bir rasyonel sayının toplanmasında ve 

çıkarılmasında payda eşitleme yerine kısa yol 

kullanılması (çarp- çıkar, çarp-topla) 

11,12,15,16, 

18,19,21,22, 

23,24,25,26, 

28,31,32,34, 

35 

  12,14,15,16 

İki bileşik kesir toplanırken tamların kendi aralarında 

kesirli kısımların da kendi aralarında toplanması-

çıkarılması 

33 9  13 

Sayı doğrusunu yetecek kadar kısa çizme  1,2,3    

Merdivenli işlemlerde bilinmeyen x varsa payda 

eşitlemek yerine geriye doğru çalışma stratejisinin 

kullanılması 

27    

Uzun uzun payda eşitleme yerine çıkarmaya yönelik 

formül kullanma 

29    

Cebirsel ifadelerin kolay çözüm için yeniden 

düzenlenmesi  

   8 
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Kavramın özüne odaklanma 

Önemli kısmı vurgulayıp işlemin hepsini tamamlamama  5 13 1 10 

Sadeleştirmeye gerek yok böyle kalsın  2  17 

Tama çevirmene gerek yok böyle kalsın  3   

Bileşik kesre çevirmene gerek yok  14   

Modellenen toplama işlemi sembolik hali istendiğinde payda 

eşitliğine gerek yok  

   11 

Rasyonel sayılarda kuvvet alırken pay ve paydanın ayrı ayrı 

kuvvetini alırsan hız kazanırsın. 

   18,19 

     

İşlem özelliklerinin kullanılması  

İşlem yapmadan değişme özelliği kullanılarak sorunun çözülmesi  13 10  2 

İşlem yapmadan birleşme özelliği kullanılarak sorunun çözülmesi  11  3 

İşlem yapmadan dağılma özelliğini kullanarak sadeleşecek 

durumlar yaratma, uzun uzun hesaplamadan  

 12,15,20  1 

İşlem yapmadan 1/(a/b)=b/a nın kullanılması  24,25 18   

İşlem yapmadan (a/b) : (a/b) = 1 nın kullanılması    7 

İşlem yapmadan (a/b) + (-a/b) = 0 nın kullanılması    19 

Ortak paranteze alma özelliğini kullanarak işlemi kolaylaştırma 30    

Ondalık sayılarla işlemlerde rasyonel hale getirmek yerine sayının 

10 un katları ile genişletilerek işlemin kolaylaştırılması 

36,37,38    
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APPENDIX D 

 

CONSENT FORM 

 

Bu çalışma, ODTÜ Eğitim Fakültesi İlköğretim Bölümünde doktora yapmakta olan 

Ramazan AVCU tarafından Türkiye’de yürütülen bir doktora tez çalışmasıdır.  Bu çalışma, 

ortaokul matematik öğretmenlerinin ders anlatımı esnasında kullanmış oldukları örnekleri 

derinlemesine incelemeyi amaçlamaktadır. Çalışmaya katılımda gönüllülük esastır.  Katılımınız 

araştırmacının ders esnasında sizi gözlemlemesiyle ve ders sonrasında sizle mülakat yapmasıyla 

sağlanacaktır. Gözlem ve mülakatlar 2013-2014 eğitim öğretim yılı boyunca devam edecektir. 

Gözlem ve mülakat yoluyla elde edilen veriler tamamıyla gizli tutulacak ve sadece araştırmacılar 

tarafından değerlendirilecektir; elde edilecek bilgiler bilimsel yayımlarda kullanılacaktır. 

Araştırmacı gözlem yaparken sınıf ortamına herhangi bir müdahalede bulunmayacaktır. 

Bu sebeple öğrencilerle iletişiminizi engelleyecek herhangi bir olumsuz durum söz konusu 

olmayacaktır. Mülakatlar, gözlem sırasında kullanmış olduğunuz örneklere yönelik 

araştırmacının zihninde oluşan sorulara ışık tutması amacıyla yapılacaktır. Gözlem ve mülakatlar 

kişisel rahatsızlık verecek hiçbir duruma neden olmayacaktır. Ancak, katılım sırasında herhangi 

bir nedenden ötürü kendinizi rahatsız hissederseniz mülakat ya da gözlemi sona erdirmede 

serbestsiniz. Böyle bir durumda gözlem ve mülakatları yapan araştırmacıya çalışmaya devam 

etmek istemediğinizi söylemeniz yeterli olacaktır. Gözlem ve mülakatlar sonrasında, bu 

çalışmayla ilgili sorularınız cevaplanacaktır. Bu çalışmaya katıldığınız için şimdiden teşekkür 

ederiz. Çalışma hakkında daha fazla bilgi almak için Ramazan AVCU (Aksaray Üniversitesi, 

Eğitim Fakültesi İlköğretim Bölümü Matematik Eğitimi Anabilim Dalı; Tel: 0 382 288 22 33; E-

posta: ramazan.avcu@metu.edu.tr) ya da öğretim üyelerinden Yrd. Doç. Dr. Çiğdem HASER 

(ODTÜ Eğitim Fakültesi, İlköğretim Bölümü No: 105; Tel: 0 312 210 64 15; E-posta: 

chaser@metu.edu.tr) ile iletişim kurabilirsiniz. 

Bu çalışmaya tamamen gönüllü olarak katılıyorum ve istediğim zaman yarıda kesip 

çıkabileceğimi biliyorum. Verdiğim bilgilerin bilimsel amaçlı yayımlarda kullanılmasını kabul 

ediyorum. (Formu doldurup imzaladıktan sonra uygulayıcıya geri veriniz). 

 

Adı Soyadı   Tarih   İmza     

                ----/----/----- 
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APPENDIX E 

 

APPROVAL OF THE ETHICS COMMITE OF METU RESEARCH CENTER 

FOR APPLIED ETHICS 
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APPENDIX F 
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APPENDIX G 

 

TURKISH SUMMARY 

 

ORTAOKUL MATEMATİK ÖĞRETMENLERİNİN RASYONEL SAYI 

ÖRNEKLERİNİ SINIF ORTAMINDA ELE ALIŞ BİÇİMLERİNİN 

İNCELENMESİ: ÇOKLU DURUM ÇALIŞMASI 

 

Örnekler matematik eğitiminde önemli bir rol oynamaktadır. (Rowland, 2008; 

Zazkis ve Leikin, 2008; Zodik ve Zaslavsky, 2008). Örnekler özellikle 

kavramsallaştırmada, genelleştirmede, soyutlamada, argümantasyon ve analojik akıl 

yürütme sürecinde önemli bir yere sahiptir (Zaslavsky ve Zodik, 2007).  

Örnekler matematik eğitiminde iki farklı amaçla kullanılmaktadır (Rowland, 

Turner, Thwaites ve Huckstep, 2009; Zodik ve Zaslavsky, 2008). İlk olarak, örnekler 

matematiksel bir kavramı ya da yöntemi örneklendirmede kullanılırlar (Mason ve 

Pimm, 1984; Rowland vd., 2009; Watson ve Mason, 2005; Zodik ve Zaslavsky, 

2008). İkinci olarak ise matematiksel bir kavramın ya da yöntemin pekiştirilmesinde 

kullanılırlar (Rowland vd., 2009; Rowland, 2008; Watson, Mason, 2005). Örnek 

olmayanlar ve karşıt örnekler, matematik eğitimindeki diğer örnek türleri arasında 

yer almaktadır (Watson ve Mason, 2005). Örnek olmayan örnekler, 

kavramsallaştırma ve tanımlarla ilgilidir ve matematiksel kavramların kritik 

özniteliklerine dikkat çekerler (Zodik ve Zaslavsky, 2008). Karşıt örnekler 

matematiksel iddialarla ve bu iddiaların çürütülmesi ile ilgilidir (Zodik ve Zaslavsky, 

2008). Kısacası, karşıt örnekler matematiksel bir ifadenin doğru olmadığını 

göstermede ve matematiksel kavramlar arasındaki ayırt edici özelliklerin 

netleştirilmesinde önemli bir rol oynamaktadırlar.  

Bills ve diğerleri (2006), matematiksel bir örneğin pedagojik olarak yararlı 

olabilmesi için ‘şeffaflık’ ve ‘genelleştirilebilirlik’ şeklinde iki temel özelliğe sahip 

olması gerektiğini belirtmişlerdir. Bir örneğin şeffaflığı bireyin örneğin nasıl 

yorumlandığına ve örneğin özelliklerini nasıl algıladığına bağlıdır ve dolayısıyla 

bağlam bağımlıdır. Öğretmenler, öğrencilerine pedagojik olarak yararlı olan çok 

sayıda örneğin temin edilmesinde önemli bir rol oynamaktadırlar (Zaslavsky, 2010). 
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Fakat uygun örnek seçimi kolay bir iş değildir ve önceden planlanması mümkün 

olmayan karmaşık birçok düşüncenin göz önünde bulundurulmasını gerektirir (Zodik 

ve Zaslavsky, 2008). Rowland’e (2014) göre, örnekler dikkatli bir seçim sürecinin 

ürünü olmalıdır ve bilinçli bir seçim yapmayı gerektirmelidirler. Çünkü bir örnek 

diğerine göre daha iyi veya uygun olabilir. Ayrıca, örnek seçimi öğrencilerin 

öğrenmelerini hem olumlu hem de olumsuz olarak etkileyebilir (Zaslavsky ve Zodik, 

2007). Bu bağlamda, öğretmenlerin örnek seçiminin ve kullanımının öğrencilerin 

öğrenme sürecine şekil verebileceği söylenebilir.  

Örneklerin seçilmesi ya da oluşturulması öğretmenlerin genelde anlık kararlar 

vermesini gerektirir. (Zodik ve Zaslavsky, 2008). Bu düşünceden yola çıkarak, bu 

araştırmada ortaokul matematik öğretmenlerinin rasyonel sayı kavramlarının 

öğretiminde kullandıkları anlık ve planlı örneklerin belirlenmesi amaçlanmıştır. 

Öğretmenlerin anlık ve planlı örnek seçiminde kullandıkları prensipler ya da göz 

önünde bulundurdukları düşünceler, onların planlama sürecinde veya anlık 

eylemlerinde daha bilinçli olmalarını sağlamaktadır (Zaslavsky ve Zodik, 2008). Bu 

nedenle bu çalışmanın diğer bir amacı, ortaokul matematik öğretmenlerinin örnek 

seçerken veya kullanırken göz önünde bulundurdukları prensipleri veya düşünceleri 

belirlemek olmuştur.   

Örnekler, matematiğin öğretilmesinde veya öğrenilmesinde önemli bir yere 

sahip olmalarına rağmen (Zaslavsky, 2010), örnek seçimi bazı güçlüklere ya da 

sıkıntılara neden olabilmektedir (Rowland, 2008). Matematik öğretiminde 

öğretmenlerin şu üç tür örnekten kaçınmaları gerekmektedir: değişkenlerin rolünü 

anlaşılmaz hale getiren örnekler, matematiksel bir yöntemin öğretilmesinde 

kullanılan fakat başka bir yöntemin öğretilmesi için daha uygun olan örnekler ve 

dikkatli seçim yapmayı gerektirdiği halde genelde zar atılarak rasgele seçilen 

örneklerdir (Rowland, Thwaites ve Huckstep, 2003). Bu çalışmada ortaokul 

matematik öğretmenlerinin hem iyi örnek seçimleri hem de kötü örnek seçimleri 

incelenmiştir. Öğretmenler kötü örnekleri sınıf ortamına dâhil ederek öğrencilerin bu 

örnekleri sorgulamalarını sağlayarak onların matematiksel düşüncelerinin gelişimine 

olumlu etkide bulunabilir (Zaslavsky ve Zodik, 2007). Buna ek olarak, öğretmenlerin 

iyi ve kötü örnek kullanımlarını içeren sınıf içi durumlar öğretmen eğitimi 
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programlarında ve mesleki gelişim etkinliklerinin düzenlenmesinde etkili bir şekilde 

kullanılabilir (Zodik ve Zaslavsky, 2008). Bu nedenle, bu çalışmanın bulguları 

öğretmen adaylarının sınıf ortamında matematiksel örnekleri nasıl ele almaları 

gerektiği konusunda pratik anlamda bilgi sahibi olmalarına yardımcı olabilir.  

1.1. İlkokul ve Ortaokul Matematiğinde Rasyonel Sayı Kavramları  

Rasyonel sayı kavramları okul yıllarında öğrencilerin karşılaşmış oldukları en 

önemli matematiksel kavramlar arasında yer almaktadır (Alacacı, 2009; Behr, Lesh, 

Post ve Silver, 1983; Behr, Wachsmuth, Post ve Lesh, 1984; Yanık, 2013). Bu 

öneminden dolayı ülkemizde rasyonel sayı kavramlarına ilkokul birinci sınıftan 

ortaokul sekizinci sınıfa kadar her öğrenim seviyesinde yer verilmektedir.  

Öğrenciler, rasyonel sayı kavramları ile tüm sınıf seviyelerinde 

karşılaşmalarına rağmen, bu kavramların anlaşılmasında ilkokul öğrencilerinin yanı 

sıra (Haser ve Ubuz, 2003; Lesh, Behr ve Post, 1987; Ni, 2001) ortaokul 

öğrencilerinin oldukça güçlük çektiği sıklıkla dile getirilmektedir (Birgin ve Gürbüz, 

2009; Lamon, 2007). Rasyonel sayı kavramlarının anlaşılması ilkokul 

öğretmenlerine bile zor gelmektedir (Graeber, Tirosh ve Glover, 1989; Izsak, 2008; 

Tirosh, 2000). Ball (1990a, 1990b), birçok öğretmenin rasyonel sayılarla ilgili 

yalnızca işlemsel bilgiye sahip oluğunu belirtmiştir. Ni ve Zhou (2005) öğrencilerin 

rasyonel sayılarla ilgili yaşadıkları güçlükleri iki temel etkene bağlamıştır. Birincisi, 

doğal sayı bilgisinin rasyonel sayılara genellenmesiyle ilgilidir. İkincisi ise rasyonel 

sayıların gösteriminde yaşanan problemlerle ilişkilidir.  

Öğrencilerin rasyonel sayılarla ilgili güçlüklerini azaltmak için Greer (1987) 

öğrencilerin rasyonel sayılarla ilgili yaygın kavram yanılgılarını ortaya çıkarmış, 

Moss ve Case (1999) yeni bir program geliştirmiş ve Amerikan Ulusal Matematik 

Öğretmenleri Konseyi (2000) stardartlaştırılmış döküman kullanmanı önemi üzerinde 

durmuştur. Öğrencilerin rasyonel sayı kavramlarını anlamalarını artırmak için birçok 

çalışma yapılmış olmasına rağmen öğrenci güçlükleri hala devam etmektedir 

(Wilson, Mojica ve Confrey, 2013). Morrison (2013) öğrencilerin başarı 

düşüklüğünü örneklerin iyi sıralanmamasından, yeterli çeşitlilikte olmayan ve düşük 

bilişsel beceri gerektiren örneklerin kullanımından kaynaklandığını vurgulamıştır. Bu 
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nedenle, öğretmenlerin sınıf ortamında kullandıkları rasyonel sayı örneklerinin 

niteliğinin incelenmesi öğrencilerin öğrenmelerini artırmada önemli bir rol 

oynayabilir.  

1.2. Araştırmanın Amacı ve Araştırma Soruları 

Bu çalışmanın amacı matematik öğretmenlerinin yedinci sınıf ortamında 

rasyonel sayı örneklerini nasıl ele aldıklarını incelemektir. Özel olarak bu çalışmada 

öğretmenlerin kullandıkları rasyonel sayı örneklerinin karakteristik özelliklerine, 

öğretmenlerin bu örnekleri kullanırken göz önünde bulundurdukları prensiplere ve 

kullanılan örneklerde yer alan olası hata veya yetersizliklere odaklanılmıştır. Bu 

amaçla bu çalışmada aşağıdaki araştırma sorularına cevap aranmıştır: 

1. Ortaokul matematik öğretmenlerinin yedinci sınıf ortamında kullandıkları 

rasyonel sayı örneklerinin karakteristik özellikleri nelerdir? 

a. Öğretmenler tarafından kullanılan rasyonel sayı örnekleri hangi fikirleri 

vurgulamaktadır? 

b. Öğretmenler rasyonel sayı öğretiminde ne oranda özel örnek 

kullanmaktadır? 

c. Öğretmenler rasyonel sayı öğretiminde ne oranda örnek olmayan ve karşıt-

örnek kullanmaktadır? 

d. Öğretmenler rasyonel sayı öğretiminde ne oranda planlı örnek ve anlık 

örnek kullanmaktadır? 

e. Öğretmenler rasyonel sayı öğretiminde hangi kaynakları kullanmaktadır? 

2. Öğretmenler örnek seçerken veya oluştururken hangi prensipleri veya 

düşünceleri göz önünde bulundurmaktadır? 

3. Öğretmenlerin rasyonel sayı öğretiminde kullandıkları örnekler hangi 

matematiksel veya pedagojik yetersizlikler içermektedir? 

a. Öğretmenler rasyonel sayı öğretiminde matematiksel olarak hatalı hangi 

örnekleri kullanmaktadırlar?  

b. Öğretmenlerin rasyonel sayı öğretiminde pedagojik olarak uygun olmayan 

hangi örnekleri kullanmaktadırlar? 
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1.3. Çalışmanın Önemi 

Matematik eğitiminde örnek kullanımı uzun bir geçmişe sahiptir (Bills vd., 

2006; Rowland, 2008)  ve matematik eğitimi araştırmalarında giderek artan bir ilgiye 

sahiptir (Antonini vd., 2011; Bills ve Watson, 2008). Son on yılda matematiksel 

örneklerle ilgili birçok araştırma makalesi yayınlanmıştır ve birkaç çalışma grubu 

matematiksel örnekler üzerine odaklanmıştır. Örnek kullanımı sınıf ortamında 

gerekli bir şey olmasına rağmen öğretmenler için karmaşık bir iş olabilir (Bills vd., 

2006; Zaslavsky ve Peled, 1996). Buna ek olarak, örnek kullanımı birçok koşulu göz 

önünde bulundurmayı gerektirir. (Antonini vd., 2011; Zodik ve Zaslavsky, 2008). Bu 

açıdan bakıldığında, öğretmenlerin örnek seçimi öğrencilerin öğrenmelerini hem 

destekleyebilir hem de engelleyebilir. Öğretmenlerin örnek kullanımı öğrencilerin 

öğrenmeleri üzerinde önemli bir role sahip olmasına rağmen, matematik 

öğretmenliği programları bu konuya açık bir şekilde yer vermemektedir ve öğretmen 

adaylarının örnekleri nasıl kullanacaklarına ilişkin herhangi bir öğretim 

yapılmamaktadır (Zaslavsky ve Zodik, 2007). Bu sebeple, öğretmenlerin örnekleri 

etkili bir şekilde kullanmaları matematik öğretim deneyimleri neticesinde gelişim 

sağlar ve bu bilgiye mesleki beceri bilgisi adı verilir (Kennedy 2002; Leinhardt 

1990). Öğretmenlerin örnek kullanımlarına yönelik mesleki beceri bilgilerinin 

incelenmesi, onların matematiksel bilgileri hakkında ipucu verir ve öğretmenlerin 

sistematik bilgilerinin artırılmasına imkân sunan mesleki gelişim programlarının ya 

da kurslarının tasarlanmasına zemin hazırlayabilir (Zaslavsky, 2008; Zaslavsky ve 

Zodik, 2007). 

Kavramsal öğrenmede örnek kullanımı merkezi bir konumda bulunmasına 

rağmen (Watson ve Mason, 2002), öğretmenlerin sınıf ortamında kullandıkları ya da 

seçtikleri matematiksel örnekleri inceleyen çok az çalışma bulunmaktadır (Rowland 

2008; Zodik ve Zaslavsky, 2008). Ayrıca, ulaşılabilir alanyazında öğretmenlerin 

örnekleri sınıf ortamında nasıl ele aldıklarıyla ilgili Türkiye’de gerçekleştirilmiş 

çalışmalara rastlanmamıştır. Bu sebeple, bu çalışmada ortaokul matematik 

öğretmenlerinin rasyonel sayı örneklerini nasıl ele aldıkları ulusal bir bağlamda 

incelenecektir.  



418 

 

Kısacası bu çalışma, öğretmenlerin rasyonel sayıları nasıl ele aldıklarını 

incelemeye yardımcı olacak bir kavramsal çerçevenin gelişimine ön ayak olabilir. 

Ayrıca, bu çalışma öğretmenlerin matematik öğretimi esnasında örnekleri nasıl 

seçeceklerine yönelik bir farkındalık kazanmalarını sağlayabilir. Bu farkındalık 

sayesinde öğretimin niteliğinin artması ve öğrencilerin öğrenmelerinin teşvik 

edilmesi beklenmektedir. 

ALANYAZIN TARAMASI 

2.1. Matematiksel Örnek Nedir? 

Örnek kavramının farklı anlamları bulunmaktadır. Zodik ve Zaslavsky 

(2008), örnek kavramını daha geniş bir sınıfın özel bir durumu olarak tanımlamıştır 

ve örnekler aracılığıyla akıl yürütme ve genelleme yapılacağını belirtmişlerdir. Aynı 

şekilde, Zazkis ve Leikin (2008) örneklerin matematiksel kavram ve kuralların 

açıklanmasında kullanıldığını belirtmiştir. Diğer bir çalışmada Sinclair ve diğerleri 

(2011), örnek vermeyi daha genel bir kavramı daha özel bir durumla resmetme 

olarak nitelendirmiştir. Benzer şekilde örnek kavramını Yopp (2014) matematiksel 

bir görevle ilgili özelliklerin ya da kavramların gösterilmesinde kullanılan herhangi 

bir matematiksel nesne olarak tanımlamıştır. Watson ve Mason (2005) örnek 

kavramını daha geniş bir perspektiften ele almış ve öğrencilerin örnekleri herhangi 

bir şeyi temsil etmek için kullanabileceğini ve bu nesneden yola çıkarak genelleme 

yapabileceklerini belirtmiştir.  

2.2. Matematilsel Örnek Türleri 

Birkaç araştırmacı matematiğin öğretilmesinde kullanılan örnekleri göz 

önünde bulundurarak bu örnekleri sınıflandırma yoluna gitmiştir. Michener (1978) 

örnekleri dört farklı gruba ayırmıştır. Bunlar başlangıç örnekleri, referans örnekleri, 

genel örnekler ve karşıt örneklerdir. Benzer şekilde Mason ve Pimm (1984) örnekleri 

dört sınıfa ayırmıştır. Bunlar ‘specific’, ‘particular’, ‘generic’ ve ‘general’ 

örneklerdir. Peled ve Zaslavsky (1997) örnekleri bir kavramı ya da kuralı 

açıklayabilme güçlerine göre üç sınıfa ayırmıştır. Bunlar özel örnekler, yarı genel 

örnekler  ve genel örneklerdir. Askew ve William (1995) ‘only just’ örnekler ve 
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‘very nearly’ örnekler olmak üzere iki tür örnekten bahsetmiştir. Mason ve Watson 

(2011) ‘only just’ örneğinin yerine uç örnek kavramını kullanmayı tercih etmiştir. 

Mason ve Watson (2011) uç örnek üretemeyen öğrencilerin ilgili teknik ya da 

teoremi tamamıyla anlayamayacağından söz etmiştir. Zazkis ve Chernoff (2008) 

karşıt-örneklerin matematiksel olarak bir çıkarımı çürütmeye yaradığını fakat 

öğrencilerin yanlış çıkarımlarından vazgeçmelerinde derecede karşıt-örneklerin 

yeterli ikna edici rol oynamayabileceğinden bahsetmiştir. Bu nedenle matematiksel 

bir kavram olan karşıt-örnekler yerine pedagojik kavramlar olan merkezi örnekler ve 

köprüyelici örneklerden söz etmiştir. Ayrıca, Zazkis ve Chernoff (2008) merkezi 

örneklerin bilişsel çatışmada işe yaradığını, köprüleyici örneklerin ise bilişsel 

çatışmanın çözümünde işe yaradığını ifade etmiştir.  Zodik ve Zaslavsky (2008) 

öğretmenlerin bir kavramı ya da kuralı öğretirken kullandıkları örneklerin ya anlık 

olarak sınıf ortamında üretildiğini ya da derse gelmeden önce öğretmenler tarafından 

önceden planlandığını belirtmiştir. Yani, Zodik ve Zaslavsky (2008) kullanılma veya 

üretilme zamanına göre örnekleri planlı örnekler ve anlık örnekler şeklinde ikiye 

ayırmıştır. Son olarak Rowland, Turner, Thwaites ve Huckstep (2009) örnekleri 

kavram veya kural örnekleri ve alıştırma örnekleri şeklinde ikiye ayırmıştır. Kavram 

veya kural örnekleri bir kavramın veya kuralın öğretilmesinde kullanılırken alıştırma 

örnekleri kavram veya konunun tekrarını sağlamak amacıyla kullanılmaktadır. 

Rowland ve diğerlerine (2009) göre örneklerin iki farklı kullanımı daha mevcuttur. 

Bunlar karşıt örnekler ve genel örneklerdir. Araştırmacılara göre karşıt örnekler bir 

ifadenin yanlış olduğunu göstermede kullanılırken genel örnekler konuya açıklık 

getirmeyi amaçlayan, bir sınıf nesnenin ayırt edici bir özelliği üzerinde yapılan 

işlemler yoluyla bir iddianın doğruluk sebeplerini açığa çıkaran örneklerdir.  

2.3. Örnekler Uzayı (Example Space) Kavramı   

Watson ve Mason’ın (2005) iddia ettiğine göre tek bir örnek bir fikrin 

öğrenciler tarafından tamamen anlaşılmasında yeterli olmayabilir ve öğrencilerin 

yanlış genellemeler yapmalarına neden olabilir. Bu düşünceden yola çıkarak Watson 

ve Mason (2005) örnekler uzayı kavramını ortaya atmışlardır. Araştırmacılar, 

örnekler uzayını şu şekilde izah etmişlerdir: “Örnekler uzayını birçok araç gereç 
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içeren alet edevat dolabı olarak düşünün. Bazı araç gereçler daha bilindiktir ve dolap 

açıldığında hemen ele gelecek türdendir. Öte yandan, diğer araç gereçler daha 

geridedir ele gelmeleri özel uğraş gerektirir” (s. 61).  

 

Örnekler uzayı kavramı Tall ve Vinner’ın (1981) kavram imgesi olarak 

adlandırdığı bilişsel yapı ile yakından ilgilidir. Kavram imgesi, bir kavramla ilgili 

bilişsel yapının tamamıdır ki bu zihinde o kavramla ilgili bütün resimleri, özellikleri 

ve işlemleri kapsar (Tall ve Vinner, 1981). Edwards (2011) örnekler uzayını bireyin 

ulaşabileceği örnekler sınıfı ya da kümesi olarak tanımlamıştır ve örnekler uzayının 

kavram imgesi kavramının bir alt kümesi olarak düşünülebileceğini belirtmiştir. 

Benzer şekilde, Mason ve Watson (2008) örnekler uzayının bireyin kavram 

imgesinin önemli bir kısmını oluşturduğunu ifade etmiş ve örnekler uzayını bireyin 

ulaşabildiği örneklerin ve örnek olmayanların tümü olarak tanımlamıştır. Zaslavsky 

ve Zodik (2014) örnekler uzayını “bireyin belirli bir kavramla belirli bir zaman ve 

bağlamda ilişkilendirdiği örnekler bütünü” (p. 527) olarak tanımlamıştır ve örnekler 

uzayının Tall ve Vinner’ın kavram imgesi yapısıyla yakından ilişkili olduğunu 

belirtmiştir.  

2.4. Öğretmenlerin Sınıf Ortamında Matematiksel Örnekleri Ele Alış 

Biçimlerini İnceleyen Çalışmalar 

Rowland (2008), öğretmen adaylarının sınıf ortamında kullandıkları örnekleri 

incelemek amacıyla kavramsal bir çerçeve ortaya atmıştır. Bu çalışmada doğal 

sayıların toplanması ve çıkarılması, geometrik dönüşümler gibi ilköğretim 

düzeyindeki matematik konularına yönelik örnekler incelenmiştir. Rowland’ın 

(2008) kavramsal çerçevesi dört kategoriden oluşmaktadır. Bunlar, değişkenler, 

sıralama, gösterimler ve kazanımlardır. Rowland (2008) çalışmasında çoğunlukla 

öğretmen adaylarının kullandıkları uygun olmayan örnekler üzerine yoğunlaşmıştır.  

Morrison (2013), Rowland’in (2008) kavramsal çerçevesini kullanarak benzer 

bir çalışma yapmıştır. Yalnız, Rowland’dan (2008) farklı olarak, Morrison (2013)    

çalışmasında iki okul öncesi öğretmeninin sayı kavramlarının öğretiminde 

kullandıkları örnekleri incelemiştir. Morrison (2013) çalışmasında Rowland’ın 
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(2008) çalışmasıyla benzer sonuçlar elde etmiştir. Daha açıkçası, Morrison (2013) 

okul öncesi öğretmenlerinin örnek çeşitliliğinin boyutuna dikkat etmediklerini ortaya 

koymuştur.  

Rowland (2014) yakın zamanda yapmış olduğu çalışmasında 2008 yılında 

geliştirdiği kavramsal çerçevenin sadece değişkenler boyutuna odaklanmıştır ve 

öğretmen adaylarının ikinci dereceden bir bilinmeyenli denklemlerin ve birinci 

dereceden iki bilinmeyenli denklemlerin öğretiminde kullandıkları örneklerin ne 

oranda uygun olduğunu araştırmıştır. Rowland (2014), 2008 yılında yapmış olduğu 

çalışmaya benzer şekilde öğretmen adaylarının matematiksel kavram ve kuralları 

öğretmeye başlamadan önce kullanacağı örnekleri planlamalarını tavsiye etmiştir. 

Buna ek olarak, planlı örneklerin öğretmenlere örnekleri basitten karmaşığa doğru 

sunma imkânı vereceğini belirtmiştir.  

Önceki çalışmalardan farklı olarak Zaslavsky (2010), öğretmenlerin sınıf 

ortamında kullanmış oldukları örneklerin açıklayıcı gücünü incelemiştir. Zaslavsky 

(2010) örneklerin öğretimsel açıklamalarıyla ilgili olarak şu temalara değinmiştir: 

genellemenin ve değişmezliğin aktarılması, notasyonların ve konvensiyonların 

doğrulanması, öğrencilerin çıkarımlarının ve iddialarının doğruluğunun veya 

yanlışlığının ortaya konması, matematiksel kavramların gündelik hayatla 

ilişkilendirilmesi ve istenilen kısıtlılıkta örneklerin üretilmesidir. Zaslavsky (2010) 

yaptığı araştırmanın sonucunda öğretmenlerin öğrencilere sunduğu örneklerin kritik 

özelliklerini bilmeleri gerektiğini ve öğrenciler tarafından üretilen örnekleri 

geliştirecek yeteneklere sahip olmalarını gerektiğini belirtmiştir. Zaslavsky’nin 

(2010) çalışmasına benzer şekilde, Zaslavsky ve Zodik (2007) öğretmenlerin sınıf 

içinde kullandıkları örneklerin güçlü ve zayıf yönlerine odaklanmıştır. Zaslavsky ve 

Zodik’in (2007) incelemiş olduğu örnekler, Zaslavsky’nin (2010) çalışmasındaki 

örneklerle büyük oranda benzerlik göstermiştir. Zaslavsky ve Zodik (2007), 

Rowland’e (2014) benzer şekilde öğretmenlerin sınıf ortamında kullanacağı örnekleri 

planlamalarını tavsiye etmiştir.  

Diğer bir araştırmada Bills ve Bills (2005), deneyimli öğretmenlerin 

üçgeninin alanını, kesirlerin toplanmasını ve doğrusal denklemlerin çözülmesini 

öğretirken kullandıkları örneklerde pedagojik olarak neyi hedeflediklerini ortaya 
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koymaya çalışmıştır. Bills ve Bills (2005) matematiksel bir kavramın anlaşılmasını 

sağlamak için ve karışıklığı engellemek için deneyimli öğretmenlerin ilk olarak basit 

örnekleri tercih ettiklerini ortaya koymuştur. Benzer şekilde Zodik ve Zaslavsky 

(2008), deneyimli lise matematik öğretmenlerinin matematiksel örnek seçiminde 

kullandığı pedagojik prensiplerini ve düşüncelerini araştırmıştır. Zodik ve Zaslavsky 

(2008) çalışmasında öğretmenlerin örnek seçerken veya kullanırken şu prensipleri 

kullandıklarını belirtmiştir: kolay ve bilinen örneklerle başlama, öğrenci hatalarına 

dikkat etme, örneklerin kritik özelliklerini ön plana çıkarma, rasgele örnek seçerek 

genellemelere ulaşmayı sağlama, yaygın olmayan örnekleri sınıf ortamına dâhil etme 

ve gereksiz iş yükünü en aza indirmedir.  

YÖNTEM 

3.1. Araştırmanın Deseni 

Ortaokul matematik öğretmenlerin yedinci sınıf ortamında kullandıkları 

rasyonel sayı örneklerinin incelendiği bu araştırmada nitel araştırma yöntemi 

kullanılmıştır. Daha özel olarak bu çalışmada durum çalışması deseni kullanılmıştır. 

Yin (2003) dört tür durum çalışması deseninden söz etmiştir. Bunlar bütüncül tek 

durum deseni, bütüncül çoklu durum deseni, iç içe geçmiş tek durum deseni ve iç içe 

geçmiş çoklu durum desenidir. Bu çalışmada durum çalışması türlerinden bütüncül 

çoklu durum deseni kullanılmıştır.  

3.2. Çalışmanın Katılımcıları 

Bu çalışmaya Aksaray il merkezindeki farklı devlet okullarında görev 

yapmakta olan dört ortaokul matematik öğretmeni katılmıştır. Veri toplama 

sürecinde her bir öğretmen yedinci sınıf öğrencilerine rasyonel sayı kavramlarını 

öğretmiştir. Katılımcı okulların seçilmesinde uygun örnekleme yöntemi 

kullanılmıştır (Fraenkel, Wallen ve Hyun, 2012). Bu çalışmada zengin veri toplamak 

önemli bir husus olduğu için çalışmanın katılımcıları amaçlı örnekleme yöntemi 

kullanılarak belirlenmiştir. Rasyonel sayıların öğretilmesinde özellikle farklı 

deneyimlere sahip olan öğretmenler katılımcı olarak belirlendiği için bu çalışmada 

amaçlı örnekleme yöntemlerinden maksimum çeşitlilik örneklemesi kullanılmıştır 
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(Creswell, 2012). Çalışmanın katılımcılarına ait demografik veriler Tablo 3.1’de 

verilmiştir.  

 

Tablo 3.1. Çalışmanın katılımcılarına ait demografik veriler 

Açıklama Öğretmen A Öğretmen B Öğretmen C Öğretmen D 

Cinsiyet Erkek Erkek Erkek Kadın 

Yaş 36 36 31 26 

Üniversite Devlet Devlet Devlet Devlet 

Mezuniyet 
Matematik 

bölümü 

Matematik 

bölümü 

İlköğretim 

Matematik 

Öğretmenliği 

İlköğretim 

Matematik 

Öğretmenliği 

Öğretmenlik deneyim yılı 14 11 9 4 

Rasyonel sayılar öğretiminde 

deneyim yılı 
14 10 8 2 

Aksaray ilindeki deneyim yılı  9 10 4 3 

Bulunduğu okuldaki deneyim yılı 3 2 2 1 

 

3.3. Veri Toplama Araçları 

 Bu çalışma ortaokul matematik öğretmenlerinin rasyonel sayı örneklerini 

nasıl ele aldıklarını derinlemesine araştırmayı amaçlamıştır. Bu öğretmenlerden 

zengin veri elde edebilmek amacıyla ‘çoklu veri toplama araçları’ kullanılmıştır 

(Creswell, 2007). Çalışmanın temel verilerini sınıf içi gözlemler ve gözlem sonrası 

öğretmenlerle yapılan görüşmeler oluşturmuştur. Sınıf içi gözlemler video kamera ile 

görüşmeler ses kayıt cihazı ile kayıt edilmiştir. Ayrıca ders gözlemleri ve görüşmeler 

esnasında alan notları tutulmuştur. Son olarak, öğretmenlerin rasyonel sayı 

kavramlarının öğretimi esnasında öğrencilerine dağıttıkları yazılı materyaller 

(örneğin çalışma yaprakları), ödevler ve rasyonel sayı kavramları ile ilgili öğrencilere 

yöneltilen yazılı soruları çalışmanın ikincil veri kaynaklarını oluşturmuştur.  
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3.4. Veri Toplama Süreci  

 Çalışma verilerinin toplanmasına yönelik zaman çizelgesi Tablo 3.2’de 

verilmiştir.  

 

Tablo 3.2. Veri toplama sürecine yönelik zaman çizelgesi 

Tarih  Süreçler 

Ağustos 2013  
ODTÜ Uygulamalı Etik Araştırma Merkezinden etik 

onayının ve Aksaray Valiliği İl Milli Eğitim 

Müdürlüğünden çalışma izninin alınması 

Eylül 2013 Katılımcı okul, sınıf ve öğretmenlerin belirlenmesi  

Eylül 2013 – Kasım 2013 Veri toplama öncesi gözlem ve görüşmeler 

Kasım 2013 – Aralık 2013 Veri toplama sürecinde gözlem ve görüşmeler  

Kasım 2013- Ocak 2014 Veri toplama sonrasında gözlem ve görüşmeler 

Kasım 2013 - Mart 2014  Gözlem ve görüşme verilerinin transkript edilmesi 

 

3.5. Verilerin analizi 

 Bu çalışmada gözlem ve görüşmeler farklı öğretmenlerle farklı ortamlarda 

yürütülmüştür. Dolayısıyla çoklu durumlar seçilmiştir. Creswell (2007) bir 

araştırmada birden fazla duruma odaklanıldığında öncelikle her bir durumun ve 

temanın ayrıntılı bir şekilde betimlenmesini önermiştir ve buna durum-içi analiz 

ismini vermiştir. Creswell (2007) durum-içi analiz sonrasında durumlar arası tematik 

analiz yapılmasını önermiş ve buna karşılaştırmalı durum analizi adını vermiştir. 

Benzer şekilde Yin (2003) durum çalışmalarının analiz edilmesinde kullanılan beş 

analitik teknikten bahsetmiştir. Bunlar örüntü eşleştirme, açıklama oluşturma, zaman 

serisi analizi, mantık modelleri ve karşılaştırmalı durum sentezidir. Yin (2003) ilk 

dört tekniğin tekli veya çoklu durum çalışmalarında kullanılabileceğini fakat 

karşılaştırmalı durum sentezinin iki veya ikiden fazla durum içeren çalışmalarda 

özellikle kullanılması gerektiğini belirtmiştir. Bundan dolayı, bu çalışmanın verileri 

karşılaştırmalı durum sentezi tekniği kullanılarak analiz edilmiştir.  

 Karşılaştırmalı durum sentezi tekniği kullanılarak öncelikle her bir durum 

birbirinden bağımsız bir şekilde analiz edilmiştir. Diğer bir deyişle, her bir 
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öğretmenin kullanmış olduğu rasyonel sayı örnekleri kendi içlerinde 

sınıflandırılmıştır. Veriler tekrar tekrar incelendikçe, her bir öğretmenin rasyonel sayı 

örneklerini kullanımlarına yönelik kategoriler belirginleşmeye başlamıştır. Bazı 

kategoriler, alanyazında yer alan kategoriler yardımıyla belirlenmiştir. Bazıları ise bu 

çalışma sonucunda ortaya çıkmıştır. Her bir öğretmenin kullandığı örnekler ayrı ayrı 

incelendikten sonra, örneklerin diğer öğretmenler tarafından da kullanılıp 

kullanılmadığı belirlenerek kodlama işlemi yapılmıştır. Analiz sonrasında 

öğretmenlerin kullandıkları rasyonel sayı örnekleri şu fikirlere göre kategorilere 

ayrılmıştır: örneklerin genel özellikleri, öğretmenlerin örnek seçiminde 

benimsedikleri prensipler, öğretmenlerin örneklerinde bulunan matematiksel ve 

pedagojik yetersizlikler. Öğretmenlerin rasyonel sayı örneklerini ele alış biçimlerine 

yönelik sınıflandırma Tablo 3.3’te verilmiştir.  
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Tablo 3.3. Öğretmenlerin rasyonel sayı örneklerini ele alış biçimlerine ilişkin 

sınıflandırma 

Tema Alt temalar Kategoriler  

Matematiksel olarak 

doğru olan örnekler 

Örnek türü Özel örnekler 

Örnek olmayanlar 

Karşıt-örnekler 

Örneklerin kaynağı Öğrenci ders kitabından planlı örnekler 

Öğrenci çalışma kitabından planlı örnekler 

Öğretmen kılavuz kitabından planlı örnekler 

Yardımcı kaynaklardan planlı örnekler 

Çevirim içi eğitim yazılımından planlı 

örnekler 

ÖSS, SBS sınav sorularının oluşturduğu 

planlı örnekler 

Anlık örnekler 

Öğretmenlerin dikkat 

ettikleri hususlar ya da 

benimsedikleri prensipler 

Kolay ya da bilinen örneklerle öğretime 

başlama 

Öğrencilerin güçlüklerine/hatalarına/kavram 

yanılgılarına dikkat etme 

Örneklerin kritik özelliklerini ön plana 

çıkarma 

Yaygın olmayan (alışılmadık) örnekleri sınıf 

ortamına dâhil etme 

Gereksiz iş yükünü en aza indirme 

Sınavları göz önünde bulundurma 

Matematiksel olarak 

doğru olmayan örnekler 

/pedagojik olarak uygun 

olmayan örnekler 

Hata türü Matematikse olarak yanlış olan örnekler 

Pedagojik olarak uygun olmayan dil ya da 

terminoloji bulunduran örnekler 

Pedagojik olarak kaçınılması gereken 

örnekler 

 

Bu çalışmada ortaokul matematik öğretmenlerinin kullanmış oldukları 

incelemek amacıyla şu kavramsal çerçeveler kullanılmıştır: Marton ve Booth’un 

(1997) varyasyon teorisi, Zodik and Zaslavsky’nin (2008) öğretmenlerin ders 

esnasında seçtikleri ve oluşturdukları örnekleri açıklayan dinamik çerçevesi ve 

öğretmen adaylarının örnek seçimini ve kullanımını değerlendirmek amacıyla 

Rowland ve diğerlerinin (2005) geliştirdiği Dörtlü Bilgi Modeli kullanılmıştır.  
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3.5.1. Marton ve Booth’un (1997) varyasyon teorisi 

Öğrenme neyin örnek olduğunun farkında olunmasıyla gerçekleşir (Marton 

ve Booth, 1997). Bu teorinin merkezinde öğrenmenin varyasyonun saptanmasıyla 

olduğu görüşü bulunmaktadır (Marton ve Trigwell, 2000). Bilişsel olarak bir 

kavrama ait örnek ancak bazı özelliklerinin değişebildiğinin bazılarının ise invaryant 

kaldığının kabul edilmesi neticesinde örnek olabilir (Mason, 2006). 

Farklı kişiler bir örneğin farklı boyutlarından haberdar olabilirler (Goldenberg 

ve Mason, 2008). Örneğin, bir öğretmen bir örneğin farklı boyutlarından haberdar 

olabilir. Özel olarak, mesleğe yeni başlayan öğretmenler bir kavramın değişebilecek 

özelliklerinin tümü hakkında bilgi sahibi olmayabilirler. Ayrıca, bir birey herhangi 

bir örneğin farklı zamanlarda farklı boyutlarına odaklanabilir  (Goldenberg ve 

Mason, 2008; Mason, 2006). Tüm bu faktörleri göz önünde bulundurarak Watson ve 

Mason (2005) olası varyasyon boyutları ve izin verilebilir değişim çeşitliliği 

kavramlarını ortaya atmıştır. Kısacası, ‘olası varyasyon boyutları’ kavramı farklı 

kişilerin değişme ihtimali olan farklı şeylerden haberdar olması ile ilgiliyken ‘izin 

verilebilir değişim çeşitliliği’ kavramı ise farklı kişilerin farklı zamanlarda değişen 

şeyin farklı aralıklarda olduğunu algılaması ile ilgilidir (Mason, 2011). Bu kavramlar 

öğrencilerin matematiksel bir nesnenin hangi özelliklerinin kritik olduğunu 

anlamalarına yardımcı olur (Goldenberg ve Mason, 2008). Bu iki parametre özellikle 

matematikte çok etkilidir çünkü bu kavramlar sayesinde öğrenciler matematiksel 

yapının farkına varırlar (Mason vd., 2009). Matematiksel yapı varyans/invaryans ile 

benzerlik/farklılık arasındaki ilişki ile aracılığı ile ortaya çıkar (Watson ve Shipman, 

2008). Bu yapı deneyim edilen örneklerin kritik olan ve olmayan yönlerinin fark 

edilmesine yardımcı olur (Sun, 2011). Varyasyon teorisine göre, bir nesnenin belirli 

bazı kritik özelliklerinin bilinmesi öğrenciler açısından çok büyük önem taşır. 

Çünkü, bir nesneyi öğrenebilmek için öncelikle o nesnenin kritik özelliklerinin 

bilinmesi gerekmektedir (Guo vd., 2012). Belirli bir özelliğin öğrenilebilmesi için 

öğrencilerin ilgili boyuttaki varyasyonu deneyim edinmeleri gerekir ve bir özellik 

değişirken sabit kalan diğer özelliklerin öğrenciler tarafından kolayca fark 

edilebilmesi gerekir (Pang ve Marton, 2005).  
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3.5.2. Zodik ve Zaslavsky’nin (2008) öğretmenlerin ders esnasında seçtikleri ve 

oluşturdukları örnekleri açıklayan dinamik çerçevesi 

 Simon (1995) öğretmenlerin bilgisi, düşünmesi, karar vermesi ve sınıf 

etkinlikleri arasındaki ilişkiyi ortaya koymak amacıyla Matematik Öğretim Döngüsü 

adını verdiği bir model geliştirmiştir. Zodik ve Zaslavsky (2008) bu modeli 

kullanarak lise öğretmenlerinin matematik öğretimi sırasında seçtikleri ve 

kullandıkları örnekleri derinlemesine incelemeyi hedeflemiştir. Zodik ve Zaslavsky 

(2008) ayrıca öğretmenlerin örnek seçiminde dikkat ettikleri hususları veya 

benimsedikleri prensipleri belirlemeyi amaçlamışlardır. Bu amaçla Zodik ve 

Zaslavsky (2008) öğretmenlerin matematiksel bilgilerine, öğretim esnasında 

matematiksel bilgiyi ve ulaşılabilir kişisel örnekler uzayını nasıl kullandıklarına 

odaklanmışlardır. Zodik ve Zaslavsky (2008), Simon’un (1995) Matematik Öğretim 

Döngüsü modelinden hareketle öğretmenlerin ders esnasında seçtikleri ve 

oluşturdukları örnekleri açıklayan dinamik bir çerçeve ortaya atmıştır ve bu 

çerçeveye Matematiksel Örnek İlintili Öğretim Döngüsü adını vermiştir. Bu 

çerçeveye göre matematik öğretimi esnasında öğretmenler tarafından kullanılan 

örnekler öğretmen bilgisi, ders planlama ve ders ortamı şeklinde üç bileşen altında 

toplanmıştır. Bu bileşenler arası karşılıklı ilişkiler farklı oklarla gösterilmiştir. 

Örnekler uzayı ve ders kitapları öğretmenlerin örnek seçiminde kullandıkları başlıca 

kaynaklar arasındadır. Ayrıca, ders kitapları çoğunlukla ders planlama safhasında 

kullanılırken, örnekler uzayı hem ders planlama safhasında hem de ders ortamında 

öğretim yapılırken kullanılmaktadır. Öğretmenlerin örnek seçiminde ve kullanımında 

kendilerini yönlendiren birtakım prensipler ve hususlar vardır. Bu prensipler veya 

hususlar öğretmenlerin kişisel eğilimlerinden ve değerlendirmelerinden büyük 

oranda etkilenmektedir.  

Bu çerçeveye göre öğretmenler ders planlama safhasında çoğunlukla örnek 

seçme veya örnek üretme ile meşgul olmaktadırlar. Ayrıca ders işleme safhası sınıf 

içi olaylar ve öğretmenlerin anlık eylemlerinden oluşmaktadır. Daha özel olarak, 

sınıf içi olaylar öğretmenlerin eylemlerini ve öğrencilerle olan etkileşimlerini 

içermektedir. Sınıf içi olaylar genelde öğretmenlerin anlık eylemlerde bulunmalarını 

ve o esnada gerekli olan uygun örnekleri temin etmelerini gerektirir. Zodik ve 
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Zaslavsky (2008) anlık örneklerin bazı öğretmenler tarafından anında üretildiğini ve 

bunun kolay ulaşılabilir örnekler uzayını belirttiğini ifade etmiştir. Öte yandan, bazı 

anlık örneklerin üretilmesi öğretmenlerin oldukça fazla zamanını almıştır ve bu türde 

örnekler öğretmenlerin uzak ulaşılabilir örnekler uzayına karşılık gelmiştir. Zodik ve 

Zaslavsky (2007), öğretmenlerin uzak ulaşılabilir örnekler uzayından yararlanarak 

örnek ürettikleri durumları öğrenme fırsatı olarak nitelendirmiştir. Kısacası, 

öğretmenler kendi öğretimlerinden öğrenirler ve özel olarak da örnek üretme ya da 

örnek seçme yoluyla öğrenme deneyimi elde ederler.  

3.5.3. Rowland, Turner, Thwaites ve Huckstep’in (2005) dörtlü bilgi modeli 

Rowland ve diğerleri (2005), Ball, Hill ve Bass (2005) tarafından geliştirilen 

ölçme araçlarının öğretmenlerin pedagojik alan bilgileri hakkında ipuçları 

verebileceğini fakat öğretmenlerin sınıf ortamında nasıl bir öğretim sergilediklerini 

yansıtmayacağını belirtmiştir. Rowland ve diğerleri (2005) öğretmenlerin nasıl bir 

öğretim sergilediklerini değerlendirebilmek için onları sınıf ortamında 

gözlemlenmelerinin gerektiğini belirtmiştir. Bu düşünceden yola çıkarak Rowland ve 

diğerleri (2005) Dörtlü Bilgi Modeli adını verdikleri bir kavramsal çerçeve 

geliştirmişlerdir. Dörtlü Bilgi Modeli dört birimden oluşmaktadır. Bunlar temel bilgi, 

dönüşüm bilgisi, ilişki kurma bilgisi ve beklenmeyen olaylar bilgisidir. Bu çalışmada 

Dörtlü Bilgi Modelinin dönüşüm birimine odaklanılmıştır. Çünkü bu birim 

öğretmenlerin matematik öğretiminde seçtiği ve kullandığı örnekleri analiz etmeye 

yardımcı olmaktadır. Daha özel olarak bu çalışmada dönüşüm birimi aracılığıyla 

ortaokul matematik öğretmenlerinin rasyonel sayıları öğretirken kullandıkları 

örneklerden matematiksel veya pedagojik açıdan sıkıntılı olanları belirlenmeye 

çalışılmıştır. Rowland’a (2008) göre öğretmenler kötü örneklerden iyi örneklere göre 

daha kolay öğrendiklerini belirtmiştir. Rowland ve diğerleri (2003) kavram veya 

kural öğretimi sırasında öğretmenlerin kaçınması gereken üç tür örnekten 

bahsetmiştir. Bunlar, değişkenlerin rolünü belirsizleştiren örnekler, daha uygun 

strateji kullanımını gerektiren örnekler ve zar atarak rasgele üretilen örnekler yerine 

dikkatli seçim yapmayı gerektiren örneklerdir. Bu araştırmada bu üç tür örneğin 
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ortaokul matematik öğretmenleri tarafından kullanılıp kullanılmadığı da 

araştırılmıştır.  

BULGULAR 

Bu araştırmanın bulguları öğretmenlerin kullandıkları rasyonel sayı 

örneklerinin genel özellikleri, öğretmenlerin rasyonel sayı örneklerini kullanırken 

dikkat ettiği hususlar ve öğretmenlerin matematiksel olarak hatalı veya pedagojik 

olarak uygun olmayan rasyonel sayı örnekleri başlıkları altında üç ayrı bölümde 

incelenmiştir.  

4.1. Öğretmenlerin Kullandıkları Rasyonel Sayı Örneklerinin Genel Özellikleri 

Bu araştırmanın bulguları ortaokul matematik öğretmenlerinin rasyonel sayı 

kavramlarının öğretiminde özel örnekler, örnek olmayanlar ve karşıt örnekler 

şeklinde üç tür örnek kullandıklarını göstermiştir. Öğretmen A ve Öğretmen B 

öğrenci ders kitabına nazaran daha fazla özel örnek kullanırken Öğretmen C ve 

Öğretmen D öğrenci ders kitabına göre daha az özel örnek kullanmıştır. Ayrıca, ders 

kitabında rasyonel sayı işlemleriyle ilgili örnek sayısının rasyonel sayılarla ilgili 

bütün örneklerin yarısından fazla olduğu ortaya çıkmıştır. Benzer şekilde, 

öğretmenlerin de rasyonel sayı işlemlerine yönelik kullandıkları örnekler 

kullandıkları tüm rasyonel sayı örneklerinin yarısından fazla olmuştur. Öte yandan, 

hem öğretmenler hem de öğrenci ders kitabı rasyonel sayı problemlerinin 

kurulmasına ve çözülmesine yönelik çok az sayıda örneğe yer vermişlerdir. 

Ders kitabında yer alan örnekler tarafından vurgulanan rasyonel sayı 

fikirlerini genelde öğretmenlerin kullandığı örnekler de vurgulanmıştır. Ayrıca, 

öğretmenler ders kitabındaki örnekler tarafından vurgulanan rasyonel sayı fikirleri 

dışında farklı fikirleri vurgulayan rasyonel sayı örnekleri de kullanmışlardır. Özel 

olarak, rasyonel sayıların açıklanması ve sayı doğrusu üzerinde gösterilmesiyle ilgili 

ders kitabında yer alan örnekler şu fikirleri vurgulamıştır: bir kesrin denklik sınıfının 

bulunması, denk kesirlerin sayı doğrusu üzerinde gösterilmesi, rasyonel sayıların 

pozitif veya negatif olma durumlarının belirlenmesi ve sayı doğrusu üzerinde yer 

alan bir noktaya karşılık gelen rasyonel sayının belirlenmesi. Tüm öğretmenler 
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rasyonel sayıların sayı doğrusu üzerinde gösterilmesi ile ilgili örnekler 

kullanmışlardır. Fakat bu kazanımın öğretilmesinde kullanılan diğer rasyonel sayı 

fikirleri tüm öğretmenler tarafından vurgulanmamıştır. Ders kitabındaki örneklerin 

içerdiği fikirler dışında öğretmenler tarafından kullanılan örnekler şu fikirleri de 

içermiştir: negatif bir rasyonel sayıda eksi işaretinin konumunun incelenmesi, 

rasyonel sayıların sadeleştirilmesi, bileşik ve tam sayılı rasyonel sayıların birbirine 

çevrilmesi ve pozitif ve negatif rasyonel sayıların ihtiyaçlarının öğrencilere 

hissettirilmesi.  

Ders kitabının rasyonel sayıların farklı biçimlerde gösterilmesine yönelik 

sunduğu örnekler şu rasyonel sayı fikirlerini içermiştir: tam sayıların rasyonel sayı 

olarak gösterilmesi, rasyonel sayıların tam sayı, devirli ondalık sayı ve devirsiz 

ondalık sayı olarak gösterilmesi, devirsiz ondalık sayıların rasyonel sayı olarak 

gösterilmesi ve devirli ondalık sayıların rasyonel hale getirilmesi. Öğretmenlerin 

rasyonel sayıların farklı biçimlerde gösterilmesine yönelik sundukları örneklerin 

içerdiği fikirler ders kitabındaki örneklerin içerdiği fikirlerle birebir örtüşmüştür. 

Fakat tüm öğretmenler devirli ondalık sayıların rasyonel hale getirilmesiyle ilgili 

örnekler kullanırken bu kazanıma yönelik diğer fikirleri içeren örneklerin tümünü 

kullanmamışlardır. 

Ders kitabının rasyonel sayıların karşılaştırılması ve sıralanmasına yönelik 

sunduğu örnekler şu rasyonel sayı fikirlerini içermiştir: rasyonel sayıların sayı 

doğrusu üzerinde gösterilmesi, rasyonel sayının ondalık sayıya çevrilmesi, ortak 

payda algoritmasının kullanılması, ortak pay algoritmasının kullanılması, referans 

noktası kullanımı ve denk kesirler yardımıyla sıralama. Tüm öğretmenler ortak payda 

algoritması yardımıyla rasyonel sayıların sıralanmasına yönelik örnekler vermiştir. 

Fakat bu kazanımla ilgili ders kitabında bulunan diğer rasyonel sayı fikirlerine 

yönelik örneklere benzer örnekler tüm öğretmenler tarafından kullanılmamıştır. 

Mesela, hiçbir öğretmen denk kesirler yardımıyla rasyonel sayıların sıralanmasına 

yönelik örnek kullanmamıştır. Ayrıca, ders kitabında yer alan örneklerden farklı 

olarak öğretmenler şu fikirleri içeren rasyonel sayı örnekleri kullanmışlardır: 

artakalan miktarı düşünerek sıralama, ondalık sayıların virgülden sonraki kısımlarına 

0 ekleyerek sıralama, rasyonel sayıların işaretlerini göz önünde bulundurarak 
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karşılaştırma ve bileşik rasyonel sayıya çevirerek karşılaştırma. Bununla birlikte, 

yukarıda belirtilen ilk iki fikir sadece bir öğretmen tarafından vurgulanırken son iki 

fikir de başka bir öğretmen tarafından vurgulanmıştır.  

Ders kitabının rasyonel sayıların toplanması ve çıkarılmasına yönelik 

sunduğu örnekler şu rasyonel sayı fikirlerini içermiştir: rasyonel sayılarda toplama-

çıkarma işlemlerinin modellenmesi, paydaları aynı olan rasyonel sayıların 

toplanması-çıkarılması, rasyonel sayılarda toplama-çıkarma işlemlerinin sonucunun 

tahmin edilmesi, paydaları farklı rasyonel sayıların toplanması-çıkarılması ve 

rasyonel sayılarda toplama işleminin özellikleri. Tüm öğretmenler şu fikirlerle ilgili 

örnekleri kullanmışlardır: paydaları aynı olan rasyonel sayıların toplanması-

çıkarılması paydaları farklı rasyonel sayıların toplanması-çıkarılması ve rasyonel 

sayılarda toplama işleminin özellikleri. Fakat bu kazanımla ilgili diğer fikirler tüm 

öğretmenler tarafından vurgulanmamıştır. Mesela, yalnızca bir öğretmen rasyonel 

sayılarda toplama-çıkarma işlemlerinin sonucunun tahmin edilmesiyle ilgili tek bir 

örnek kullanmıştır. Öğretmenler ders kitabında yer alan örneklerin dışında şu fikirleri 

içeren örnekler kullanmışlardır: rasyonel sayılarla çok adımlı işlemler yapma ve 

rasyonel sayıların ortak paydalarının bulunması. Fakat bu fikirler tüm öğretmenler 

tarafından vurgulanmamıştır. Örneğin, sadece bir öğretmen rasyonel sayıların ortak 

paydalarının bulunmasıyla ilgili örnekler çözmüştür.  

Ders kitabının rasyonel sayıların çarpılması-bölünmesine yönelik sunduğu 

örnekler şu fikirleri içermiştir: rasyonel sayılarda çarpma işleminin modellenmesi, 

rasyonel sayıların çarpılması-bölünmesi, 0, 1 ve (-1) ile çarpma-bölme, rasyonel 

sayıların karesinin ve küpünün modellenmesi ve hesaplanması, rasyonel sayılarla çok 

adımlı işlemler ve rasyonel sayılarda çarpma işleminin özellikleri. Öğretmenlerin bu 

kazanım için kullanmış olduğu örnekler ders kitabında yer alan örneklerle 

örtüşmüştür ve öğretmen farklı fikirlerin yer aldığı örnekler kullanmamışlardır. Öte 

yandan, tüm öğretmenler rasyonel sayılarda çarpma-bölme işlemleri ile ilgili örnek 

kullanırken, diğer fikirleri içeren örnekler tüm öğretmenler tarafından 

kullanılmamıştır. Daha da önemlisi, hiçbir öğretmen rasyonel sayılarda çarpma-

bölme işlemlerinin sonuçlarının tahmin edilmesiyle ilgili örneklerden 

yararlanmamıştır.  
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Ders kitabının rasyonel sayılarda çok adımlı işlemlerle ilgili sunduğu örnekler 

şu rasyonel sayı fikirlerini içermiştir: bileşenleri aynı satırda bulunan çok adımlı 

işlemler, merdiven biçiminde ifade edilmiş çok adımlı işlemler ve içerisinde örüntü 

bulunduran çok adımlı işlemler. Tüm öğretmenler ilk iki fikre yönelik örnek 

kullanırken üçüncü fikirle ilgili örnekleri tümü kullanılmamıştır. Son olarak, bir 

öğretmen ders kitabında yer alan çok adımlı işlem örneklerine ek olarak tek 

değişkenli polinom biçiminde ifade edilmiş rasyonel sayı örnekleri kullanmıştır.  

Ders kitabının rasyonel sayılarda problem çözme ve kurma ile ilgili sunduğu 

örnekler şu rasyonel sayı fikirlerini içermiştir: aynı birim üzerinden işlem yapmayı 

gerektiren rasyonel sayı problemlerinin çözümü, farklı birimler üzerinden işlem 

yapmayı gerektiren rasyonel sayı problemlerinin çözümü ve rasyonel sayı 

problemlerinin kurulması. Tüm öğretmenler ilk iki fikre yönelik örnekler kullanırken 

hiçbir öğretmen rasyonel sayı problemlerinin kurulmasına yönelik örnek 

kullanmamıştır. Daha da önemlisi, ders kitabında yer alan ve öğretmenler tarafından 

kullanılan bu kazanımla ilgili örneklerin sayısı diğer rasyonel sayı kazanımları için 

sunulan veya kullanılan örnek sayısından çok daha az olmuştur.  

Rasyonel sayıların öğretiminde kullanılan örnek olmayanlar incelendiğinde 

öğretmenlerin dört farklı türde örnek olmayan kullandığı ve ders kitabında rasyonel 

sayılarla ilgili herhangi bir örnek olmayana yer vermediği görülmüştür. Öğretmenler 

bir tam sayının sıfıra oranı biçiminde, aşkın sayı biçiminde, köklü sayı biçiminde ve 

devirsiz sonlu olmayan ondalık sayı biçiminde örnek olmayanlar kullanmıştır. 

Öğretmenler genelde bir tam sayının sıfıra oranı biçimindeki örnek olmayanları 

kullanmışlardır. Fakat bunlardan yalnızca devirsiz sonlu olmayan ondalık sayılar 

irrasyonel sayıları saydam olarak temsil ederler. Buna rağmen bu gösterim türü 

sadece bir öğretmen tarafından kullanılmıştır. 

Bu araştırmada karşıt-örneklere ortaokul sınıf uygulamalarında çok fazla yer 

verilmediği görülmüştür. Ayrıca, bu araştırmada öğretmenlerin yalnızca beş karşıt-

örnek kullandığı görülmüştür. Bu örneklerin hepsi öğrencilerin iddialarının 

yanlışlığını göstermek için üretilmiştir ve her biri beklenmedik olayları 

örneklemektedir.  
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Bu çalışmada örneklerin üretilme zamanlarına göre anlık ve planlanmış örnek 

şeklinde iki tür örnekten bahsedilebilir. Öğretmen A ve Öğretmen B’nin örneklerinin 

yarısından fazlası anlık olarak üretilirken Öğretmen C ve Öğretmen D tarafından 

üretilen örneklerin çoğu planlı örnek olmuştur. Öğretmenler tarafından kullanılan 

örnekler genel olarak değerlendirildiğinde yarıdan fazlasının anlık olarak üretildiği 

görülmüştür.  

Öğretmenler planlı örnekleri seçerken çeşitli kaynaklara başvurmuşlardır. 

Bunlar öğrenci ders kitabı, öğrenci çalışma kitabı, öğretmen kılavuz kitabı, çıkmış 

sınav soruları, çevirim içi eğitim yazılımı ve yardımcı kaynaklar olmuştur. Genel 

olarak yardımcı kaynaklar alıştırma sorularının çözümünde kullanılmıştır. Yardımcı 

kaynak örnekleri çoktan seçmeli soru türünde olmuştur ve sınav sorularına benzer 

türde sorulardır. Öğretmen kılavuz kitabı örnekleri sadece bir öğretmen tarafından 

kullanılmıştır ve bunlar ders/çalışma kitabında yer almayan örneklerdir. Benzer 

şekilde, çıkmış sınav soruları ve çevirim içi eğitim yazılımı birer öğretmen tarafından 

kullanılmıştır. İki yardımcı kaynak iki öğretmen tarafından ortak olarak kullanılırken 

geriye kalan yardımcı kaynaklar farklı öğretmenler tarafından kullanılmıştır. 

4.2. Öğretmenlerin Örnek Kullanırken Dikkat Ettiği Hususlar 

Bu araştırmada öğretmenler rasyonel sayı örneklerini kullanırken şu hususlara 

dikkat etmişlerdir: kolay ve bilinen örneklerle öğretime başlama, öğrencilerin 

hatalarına/güçlüklerine/kavram yanılgılarına dikkat etme, gereksiz iş yükünü en aza 

indirme, sınavları göz önünde bulundurma, yaygın olmayan örneklere yer verme ve 

örneklerin kritik özelliklerini ön plana çıkarma.  

Öğretmenler şu durumlarda kolay veya bilinen rasyonel sayı örnekleri ile 

öğretime başlamıştır: sıralama ve dört işlem yaparken rasyonel sayıların formatının 

göz önünde bulundurulması, sıralama ve toplama çıkarma yaparken rasyonel 

sayıların paydalarının göz önünde bulundurulması, devirli ondalık sayıda devreden 

ve devretmeyen kısımların göz önünde bulundurulması, rasyonel sayıların 

sıralanmasında terim sayısının göz önünde bulundurulması, rasyonel sayılarla dört 

işlem yaparken eleman sayısının göz önünde bulundurulması, çok adımlı işlemlerde 

adım sayısının göz önünde bulundurulması, rasyonel sayı problemlerinde 
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matematiksel yapının değiştirilerek problemin giderek güçleştirilmesi ve son olarak 

rasyonel sayı kavramlarının öğretilmesinden önce bu kavramlarla ilgili ön bilgilerin 

hatırlatılması.  

Öğretmenler rasyonel sayıların öğretiminde öğrencilerin güçlüklerine, 

hatalarına ve kavram yanılgılarına dikkat etmişlerdir. Öğretmenler öğrencilerin şu 

durumlarda güçlük çektiğini dile getirmişlerdir: rasyonel sayıda eksinin konumunun 

anlaşılması, negatif rasyonel sayılarda çıkarma işleminin yapılması, çok adımlı 

işlemlerde bilinmeyen değerli örneklerin çözülmesi, sıfırın bir tam sayıya ve bir tam 

sayının sıfıra bölünmesiyle elde edilen sonuçların ayırt edilmesi, çarpma işleminden 

önce sadeleştirme işleminin yapılması, negatif rasyonel sayıların parantez içine 

alınmadığı örneklerin çözümü, dağılma özelliğinin her zaman doğru sonuç verdiğini 

anlama ve üslü rasyonel sayılarda kuvvetin parantez içinde ve dışında olmasının 

sonucu nasıl etkilediğini anlama. Öğretmenler öğrencilerin şu durumlarda hata 

yaptıklarını dile getirmişlerdir: sıralamada büyüktür/küçüktür sembolü yerine virgül 

kullanma, negatif rasyonel sayılarla işlem yaparken parantezlerin ihmal edilmesi, tam 

sayılı rasyonel sayıları toplarken işaret hatalarının yapılması, bir rasyonel sayıyla bir 

tam sayıyı toplarken hata yapılması, rasyonel sayının toplamaya göre tersini bulurken 

hata yapılması, çok adımlı işlemlerde işlem önceliğine uyulmamasından dolayı hatalı 

sonuç bulma, bilinmeyen değerlerin bulunduğu üslü rasyonel sayılarda notasyon 

hatasının yapılması. Son olarak, öğretmenler öğrencilerin şu tip kavram yanılgılarına 

sahip olduklarını dile getirmişlerdir: rasyonel sayıları sayı doğrusunda gösterirken 

aralık yerine çentiklerin sayılması, negatif rasyonel sayıların pozitif rasyonel 

sayılarda olduğu gibi sayı doğrunda gösterilmesi, ondalık sayıları sıralarken sadece 

virgülden sonraki kısımların karşılaştırılması, rasyonel sayılarda toplama/çıkarma 

işlemlerinin çarpma/bölme gibi yapılması, sadeleştirme işleminin sadece çapraz 

olarak yapılacağının düşünülmesi, doğal sayılarda çarpma işleminin tam sayılı 

rasyonel sayılara yanlış uygulanması, üslü sayının değerini bulurken taban ve 

kuvvetin toplanması/çarpılması ve her zaman büyük bir sayının küçük bir sayıya 

bölünebileceği düşüncesi.  

Öğretmenler gereksiz iş yükünü teknik iş yükünü azaltıp işin özüne 

odaklanarak, örneklerin yalnızca önemli kısımları üzerinde durarak ve işlem 
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özelliklerini kullanarak en aza indirmişlerdir. Öğretmenler şu durumlarda teknik iş 

yükünü azaltıp işin özüne odaklanmıştır: sayı doğrusunun sadece gerekli kısmını 

çizme, devirli ondalık sayılara örnek verirken periyodu kısa olan rasyonel sayıların 

seçilmesi, sıralama yaparken uygun stratejinin seçilmesi, bir rasyonel sayıyla tam 

sayının toplanmasında/çıkarılmasında kısa yol tercih edilmesi, çıkarma işlemi 

yaparken payda eşitlemek yerine formül kullanma, birleşme özelliğini paydaları aynı 

olan rasyonel sayılarla anlatma, içinde bilinmeyen bulunan çok adımlı işlemleri 

geriye doğru gitme stratejisi ile çözme. Benzer şekilde, öğretmenler şu durumlarda 

örneklerin önemli kısımları üzerinde durmuş ve ekstra detaylara girmemiştir: bir 

örneğin önemli kısmını vurgulama ve işlemi tamamlamama, bir kavramı öğretirken 

sadeleştirmeyi ve sayı formlarını birbirine çevirmeyi gerekli görmeme ve bir toplama 

modelini sembolik olarak ifade ederken terimlerin paydalarının eşitlenmesini gerekli 

görmeme. Son olarak, öğretmenler şu durumlarda işlemlerin özelliklerini 

kullanmışlardır: toplama yerine toplama işleminin değişme veya birleşme özelliğini 

kullanma, işlem yapmak yerine dağılma özelliğini kullanma, uzun uzun işlem 

yapmak yerine 1/ ( / ) / ,a b b a  ( / ) / ( / ) 1a b a b   ve ( / ) ( / ) 0a b a b   

özelliklerini kullanma ve pay ve paydadaki ondalık sayıları rasyonel hale getirmek 

yerine bu sayıları virgülden kurtarma. 

Öğretmenlerin rasyonel sayıları öğretirken dikkat ettiği bir diğer husus 

sınavları göz önünde bulundurmak olmuştur. Öğretmenler şu durumlarda sınavlarla 

ilgili düşüncelerini dile getirmişlerdir: yazılı/deneme/TEOG sınavlarında çıkabilecek 

örnekleri açıkça dile getirme, sınıfta çıkmış sınav soruları çözme, bulunan sonuçları 

en sade haline getirme, çoktan seçmeli soruların çözümlerini deneme yanılma 

yoluyla çözme ve sınavlarda hız kazanmak için kısa yollara başvurma.  

Öğretmenler sınıflarına yaygın olmayan örnekler getirmeyi de göz önünde 

bulundurmuşlardır. Öğretmenler bu düşüncelerini istisnai/özel durumları ve az temsil 

edilen örnekleri sınıfa getirerek gerçekleştirmişlerdir. Öğretmenler istisnai/özel 

durumlar için şu örnekleri kullanmışlardır: bir rasyonel sayının 0’la çarpımı 0’dır, bir 

rasyonel sayının 1’le çarpımı yine o sayının kendisine eşittir, 0’ın 0’dan farklı bir 

rasyonel sayıya bölümü yine 0’dır, 1’in 0’dan farklı bir rasyonel sayıya bölümü o 

rasyonel sayının çarpmaya göre tersine eşittir, -1’in 0’dan farklı bir rasyonel sayıya 
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bölümü o rasyonel sayının çarpmaya göre tersinin toplamaya göre tersine eşittir, 

0’dan farklı bir rasyonel sayının sıfırıncı kuvveti 1’e eşittir, 1’in rasyonel üslü 

kuvvetleri yine 1’e eşittir. Öğretmenler az temsil edilen durumlar için şu örnekleri 

kullanmışlardır: 0’ın rasyonel olduğunu vurgulama, rasyonel sayılarda sıralamaya 

0’ın dâhil edilmesi, ikiden fazla rasyonel sayının toplanması, çıkarılması, çarpılması, 

bölünmesi, karşılaştırma örneklerine eşit rasyonel sayıların dahil edilmesi ve 

rasyonel sayılarda işlem sonuçlarının tahmin edilmesine yönelik örnek kullanımı.  

Son olarak, öğretmenler örneklerin kritik özelliklerini ön plana çıkarmayı göz 

önünde bulundurmuşlardır. Bu düşünceyi şu şekilde gerçekleştirmişlerdir: önce 

pozitif rasyonel sayının, sonra aynı sayının negatifinin sayı doğrusuna yerleştirilmesi 

ve iki rasyonel sayının konumunun karşılaştırılması, rasyonel sayıların 

büyüklüklerini sabit tutarak ve her seferinde birinin işaretini değiştirerek dört işlemin 

yapılması, parantez bulunmayan bir üslü rasyonel sayının hesaplanması, aynı sayının 

parantezli halinin hesaplanması ve sonuçların karşılaştırılması, aynı çok adımlı 

işlemin parantezli ve parantezsiz hallerinin hesaplanıp karşılaştırılması, devirli 

ondalık sayıların rasyonel hale getirilmesini anlatırken örüntünün kırılması, bir 

rasyonel sayı probleminin çözülmesi, aynı bağlam ve sayıların bulunduğu ikinci bir 

problemin çözülmesi ve her ikisinin karşılaştırılması.  

4.3. Öğretmenlerin Hatalı veya Uygun Olmayan Örnekleri 

Öğretmenler şu durumlarda matematiksel olarak hatalı örnekleri 

kullanmışlardır: irrasyonel sayılar sayı doğru doğrusunda gösterilemez, rasyonel sayı 

kümesi irrasyonel sayı kümesinin alt kümesidir, rasyonel sayı kümesi irrasyonel sayı 

kümesinden daha yoğundur, kesir formatındaki tüm sayılar rasyoneldir, mutlak değer 

kavramının yanlış uygulanmasından dolayı yanlış sonuca ulaşılması, rasyonel 

sayıları sayı doğrusunda gösterirken aralıkları eşit çizmeme, toplama işleminin 

birleşme özelliğini anlatırken değişme özelliğinin kullanılması, devirli ondalık 

sayıların rasyonel hale getirilmesinin yuvarlama ile aynı olduğunu düşünme ve 

sıralamayı doğru yapma fakat kullanılan stratejinin adını yanlış bilme. 

Öğretmenlerin pedagojik olarak uygun olmayan örnekleri üç başlık altında 

toplanmıştır. Bunlar uygun olmayan dil ve terminoloji içeren örnekler, değişkenlerin 
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rolünü belirsizleştiren örnekler ve başka bir strateji kullanımının daha uygun olduğu 

örneklerdir. Öğretmenler şu durumlarda uygun olmayan dil ve terminoloji içeren 

örnekler kullanmıştır: rasyonel sayı yerine kesir kelimesini kullanmak, rasyonel 

sayıların toplama ve çarpmaya göre tersini bulurken ‘ters çevir’, ‘takla attır’ gibi 

gündelik dil kullanımı, rasyonel sayıların yanlış okunması ve işlemlerde sembollerin 

yanlış kullanılması.  Öğretmenler şu durumlarda değişkenlerin rolünü belirsizleştiren 

örnekler kullanmışlardır: devirli ondalık sayı kavramını öğretirken devreden ve 

devretmeyen basamakların rolünü belirsizleştirme, çıkarma işlemini modellerken 

çıkan ve farkın rolünü belirsizleştirme ve rasyonel sayıları sayı doğrusuna 

yerleştirirken aralık sayısının ve rasyonel sayının büyüklüğünün rolünü 

belirsizleştirme. Son olarak, öğretmenler şu durumlarda başka bir strateji 

kullanımının daha uygun olabileceği örnekler kullanmıştır: devirli ondalık sayıların 

rasyonel hale getirilmesinde kullanılan örneğin seçilen stratejiye uygun olmaması, 

rasyonel sayıların sıralarken uygun stratejinin kullanılmaması ve rasyonel sayılarda 

toplama işleminin öğretilmesinde uygun algoritmanın kullanılmaması.  

 

TARTIŞMA 

5.1. Kullanılan Örneklerin Genel Özellikleri 

Öğretmenler tarafından kullanılan örnekler incelendiğinde rasyonel sayı 

öğretim deneyimi daha fazla olan öğretmenlerin öğrencilerine daha fazla sayıda ve 

daha çeşitli örnekler sundukları görülmüştür. Bu bulgu öğretmenlerin öğretim 

deneyim bilgisine ışık tutmaktadır. Kennedy’e (1987) göre bu bilgi türü teknik bir 

beceriyi değil, amaçlı eylemlerle kural ve içeriğe odaklanan pedagojik alan bilgisini 

temsil etmektedir.  

Öğretmenler ve ders kitabı tarafından öğrencilere rasyonel sayılarla problem 

çözme ve kurmayla ilgili çok az örnek sunulmuştur. Bu, ortaokul matematik öğretim 

programının rasyonel sayı işlemlerine ve kurallarına daha fazla ağırlık verdiğini 

göstermektedir. Bu nedenle, ortaokul matematik öğretim programının öğretmenlerin 

problem çözmeye ve kurmaya daha fazla zaman ayıracak şekilde yeniden 

düzenlenmesi yerinde olacaktır.  
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Öğretmenler ders kitabında yer almayan örnekler de vermişlerdir. Bu türden 

örneklerin kullanımı bazı durumlarda öğrencilerin rasyonel sayıları anlamalarına 

yardımcı olmuş, bazı durumlarda ise olumsuz etkide bulunmuştur. Verilen sayının 

rasyonel olup olmadığıyla ilgili örnekler, öğrencilerin dikkatini eksi işaretinin 

konumuna çeken örnekler ve rasyonel sayıların artakalan miktar göz önünde 

bulundurularak sıralanmasına yönelik örnekler öğretmenleri ders kitabına göre 

avantajlı duruma getirmiştir. Öte yandan, ders kitabında yer alan bazı örnek türlerinin 

kullanılması öğrencilerin rasyonel sayıları yeterli düzeyde anlamamalarına neden 

olmuştur. Örneğin öğretmenler rasyonel sayılarda çarpma/bölme işlemlerinin tahmin 

edilmesine yönelik örnek kullanmamıştır. Benzer şekilde, rasyonel sayılarda problem 

kurmayla ilgili örnekler ders kitabında ve ortaokul matematik programında 

vurgulanmasına rağmen öğretmenler bu türden örnek kullanmamışlardır. NCTM 

(2000) problem kurmanın matematik yapabilmede merkezi rol oynadığını 

belirtmiştir. Bu nedenle matematik öğretmenlerinin rasyonel sayılarla problem 

kurmaya yönelik örnekleri sınıf ortamına dâhil etmeleri beklenmektedir.  

5.2. Öğretmenlerin Örnek Seçiminde Dikkat Ettikleri Hususlar 

 Öğretmenler rasyonel sayıları öğretirken öncelikle kolay ve alışılmış 

örnekleri kullanmışlardır. Bu bulgu Zodik ve Zaslavsky’nin (2008) bulguları ile 

benzerlik göstermektedir. Benzer şekilde, Bills ve Bills (2005) öğrencilerin 

matematiksel kuralları anlayabilmeleri için deneyimli öğretmenlerin basit örneklerle 

öğretime başladıklarını belirtmiştir. Öğretmenler öğrencilerin yaygın hatalarına, 

güçlüklerine ve kavram yanılgılarına da dikkat çekmişlerdir. Bu husus, öğretmenlerin 

pedagojik alan bilgileri ile yakından ilişkilidir (Shulman, 1986). Öğrenci hatalarına 

odaklanma öğretmenlerin sadece konu alanı bilgisini değil aynı zamanda pedagojik 

alan bilgisini de yansıtmaktadır. Öğretmenler teknik iş yükünü azaltarak, örneklerin 

önemli kısımları üzerinde durarak ve işlem özelliklerini kullanarak gereksiz iş 

yükünü en aza indirmişlerdir. Bu hususa Zodik ve Zaslavsky’nin (2008) çalışmasında 

yer alan öğretmenler de dikkate etmişlerdir. Öğretmenler istisnai/özel/yaygın 

olmayan örnekler kullanarak alışılmadık örnekleri sınıfa dâhil etmeyi göz önünde 

bulundurmuşlardır. Bu türden hususlar ortaokul matematik öğretimi programının 
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rasyonel sayıların öğretilmesinde vurguladığı özel durumlarla açıklanabilir. 

Öğretmenlerin dikkat ettiği bir diğer husus örneklerin kritik özelliklerine dikkat 

çekme olmuştur. Skemp (1971) örneklerin taşıdığı kritik olmayan bilgiye ‘gürültü’ 

adını vermiştir. Bu çalışmada öğretmenler örüntü kırma stratejisini ve yapılandırılmış 

varyasyon prensibi kullanarak örneklerdeki gürültüyü azaltmışlardır. Son olarak, 

öğretmenler rasyonel sayıları öğretirken sınavlarda çıkan örnekleri göz önünde 

bulundurmuşlardır. Bu husus Türk eğitim sistemine özgü olabilir. Çünkü Türkiye’de 

kaliteli eğitim verilen liselerde öğrenim görebilmek için öğrencilerin TEOG 

sınavlarında başarılı olmaları gerekmektedir.  

5.3. Hatalı veya Pedagojik Olarak Uygun Olmayan Örnekler 

 Öğretmenler üç tür zayıf örnek kullanmıştır: hatalı örnekler, uygun olmayan 

dil ve terminoloji içeren örnekler ve kaçınılması gereken örnekler. Gerçekte var 

olmayan sayı doğrularının çizimiyle ilgili örnekler ve irrasyonel sayılarla ilgili bazı 

örnekler öğretmenlerin kullandığı başlıca hatalı örnekler arasında yer almıştır. Bu 

türden örneklerin kullanımı öğretmenlerin irrasyonel sayılarla ilgili alan bilgilerinin 

yetersizliğine işaret edebilir.  

Pedagojik olarak uygun olmayan dil ve terminoloji içeren örnekler öğretmen-

öğrenci iletişiminde güçlüklere neden olabilir (Lamon, 2012). Ayrıca, matematiksel 

kavramların öğretilmesinde günlük hayat dilinin kullanılması kavramsal öğrenmeye 

olumsuz etkide bulunabilir (Cangelosi vd., 2013). Özellikle, rasyonel sayıların 

toplama/çarpma işlemlerine göre tersi öğretilirken öğretmenler uygun matematiksel 

dil ve terminoloji kullanmaya özen göstermelidirler.  

Son olarak öğretmenler iki tür kaçınılması gereken örnek kullanmışlardır: 

değişkenlerin rolünü belirsizleştiren örnekler ve daha uygun strateji kullanımı 

gerektiren örnekler. Rowland (2008) öğretmen adaylarının bilinçli örnek 

seçebilmeleri için yönlendirilmeleri gerektiğini dile getirmiştir. Benzer şekilde bu 

çalışmadaki öğretmenlerin örneklerin olası tehlikeleriyle ilgili bilinçlendirilmeleri 

gerekmektedir.  
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APPENDIX I 

 

TEZ FOTOKOPİSİ İZİN FORMU  

                                     

 

ENSTİTÜ 

 

Fen Bilimleri Enstitüsü  

 

Sosyal Bilimler Enstitüsü    

 

Uygulamalı Matematik Enstitüsü     

 

Enformatik Enstitüsü 

 

Deniz Bilimleri Enstitüsü       

 

YAZARIN 

 

Soyadı:  Avcu 

Adı:   Ramazan 

Bölümü:  İlköğretim 

 

TEZİN ADI (İngilizce) : Exploring middle school mathematics teachers’ 

treatment of rational number examples in their 

classrooms: A multiple case study 

 

 

TEZİN TÜRÜ:  Yüksek Lisans                                        Doktora   

 

 

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir. 

 

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir 

bölümünden kaynak gösterilmek şartıyla fotokopi alınabilir. 

 

3. Tezimden bir (1)  yıl süreyle fotokopi alınamaz. 

 

 

 

TEZİN KÜTÜPHANEYE TESLİM TARİHİ:  


