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ABSTRACT

EXPLORING MIDDLE SCHOOL MATHEMATICS TEACHERS’ TREATMENT
OF RATIONAL NUMBER EXAMPLES IN THEIR CLASSROOMS: A
MULTIPLE CASE STUDY

Avcu, Ramazan
Ph.D., Department of Elementary Education

Supervisor: Assoc. Prof. Dr. Cigdem HASER

December 2014, 444 pages

The purpose of this study was to explore middle school mathematics
teachers’ treatment of rational number examples in their seventh grade classrooms.
The data were collected from four middle school mathematics teachers who were
teaching in different public schools in Aksaray during the fall semester of 2013-
2014 education year. Data were mainly based on classroom observations, post
lessons interviews, the student textbook and the middle school mathematics

curriculum.

The analysis of data revealed that teachers used 704 mathematically correct
and 14 mathematically incorrect examples during the teaching of rational number
concepts. Among the correct examples, 361 of them were spontaneous and 343 of

them were pre-planned. Besides, teachers used 9 non-examples and 5 counter-



examples. More importantly, findings showed that teachers employed the following
principles or considerations when choosing or using rational number examples:
starting with a simple or familiar case; drawing attention to students’ difficulty,
error or misconception; keeping unnecessary work to minimum; taking account of
examinations; including uncommon cases; and drawing attention to relevant
features. Finally, this study revealed teachers’ three different poor choices of
examples as mathematically incorrect examples, examples with improper language
or terminology, and examples that are to be avoided in the teaching of rational

number concepts.

The findings of the study suggested that mathematics teachers could be
provided information or training with different uses of examples in the mathematics
classroom in order to enhance students’ learning experiences. The effects of national

policies were also discussed.

Keywords: Middle School Mathematics Teachers, Rational Number Concepts,
Mathematical Examples, Teacher Considerations or Principles for Choosing
Examples
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ORTAOKUL MATEMATIK OGRETMENLERININ RASYONEL SAYI
ORNEKLERINI SINIF ORTAMINDA ELE ALIS BICIMLERININ
INCELENMESI: COKLU DURUM CALISMASI

Avcu, Ramazan

Doktora, [Ikégretim Boliimii

Tez Yoneticisi: Dog. Dr. Cigdem HASER

Aralik 2014, 444 sayfa

Bu calismanin amaci ortaokul matematik Ogretmenlerinin rasyonel sayi
orneklerini sinif ortaminda nasil ele aldiklarini incelemektir. Calismanin verileri
2013-2014 egitim O6gretim yilinin giiz doneminde Aksaray ilindeki farkli devlet
okullarinda gorev yapmakta olan dort matematik Ogretmeninden toplanmustir.
Calismanin veri kaynaklarmi simif i¢i gézlemler, yar1 yapilandirilmis goriigsmeler,

ogrenci ders kitab1 ve ortaokul matematik 6gretim programi olusturmustur.

Toplanan verilerin analizleri Ogretmenlerin rasyonel sayr kavramlarini
Ogretirken matematiksel olarak dogru olan 704 6rnek, matematiksel olarak dogru

olmayan 14 o6rnek kullandiklarimi gostermistir. Matematiksel olarak dogru olan

Vi



orneklerin 361 tanesinin spontane (anlik) drnek olarak kullanildigi 343 tanesinin ise
planlanmis 6rnek olarak kullanildigr goriilmiistiir. Ayrica, 6gretmenler rasyonel say1
kavramlarinin 6gretiminde 9 Ornek olmayan ve 5 karsit 6rnek kullanmustir.
Matematik 6gretmenleri rasyonel say1 orneklerini secerken veya kullanirken alti
farkli prensibi/hususu goz oniinde bulundurmusglardir. Bunlar, kolay ya da bilinen
orneklerden basglama; yaygin Ogrenci giicliiklerine, hatalarina ya da kavram
yanilgilarina dikkat ¢cekme; gereksiz is yiikiinlii en aza indirme; smavlar1 dikkate
alma; yaygin olmayan Ornekleri sinmif ortamina dahil etme ve Orneklerin kritik
Ozelliklerine dikkat ¢ekme seklinde olmustur. Son olarak bu ¢alismada
ogretmenlerin matematiksel olarak hatali 6rnekler, kullanilan dil ve terminoloji
acisindan uygun olmayan Ornekler ve pedagojik acidan kacinilmasi gereken

ornekler seklinde ii¢ tiir uygun olmayan 6rnek kullandiklar1 ortaya ¢ikmastir.

Calismanin sonuglari matematik Ogretmenlerinin matematik dersinde
ogrencilerin 6grenmelerini zenginlestirmek i¢in Orneklerin farkli kullanimlar
hakkinda bilgilendirilmelerinin ya da egitim almalarinin yerinde olabilecegini ortaya

cikarmistir. Egitim politikalariin etkileri de tartisilmistir.

Anahtar Kelimeler: Ortaokul Matematik Ogretmenleri, Rasyonel Sayr Kavramlari,

Matematiksel Ornekler, Ogretmenlerin Ornek Segimlerine Yénelik Prensipleri
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CHAPTER |

INTRODUCTION

Examples play a central role in mathematics education (Antonini, 2011;
Goldenberg & Mason, 2008; Rowland, 2008; Zaslavsky & Zodik, 2007; Zaslavsky,
2010; Zazkis & Chernoff, 2008; Zazkis & Leikin, 2007; Zazkis & Leikin, 2008;
Zodik & Zaslavsky, 2008). Examples are intensely used in the teaching and learning
of mathematics, in designing curriculum and in inventing (Zazkis & Chernoff, 2008).
More specifically, they are essential for conceptualization, generalization,
abstraction, argumentation, and analogical reasoning (Zaslavsky & Zodik, 2007).
The importance of examples and exemplification in mathematical thinking, learning,
and teaching is well recognized not only by mathematics educators but also by
mathematicians and epistemologists (Antonini, Presmeg, Mariotti & Zaslavsky,
2011). For instance, Polya (1945) explicitly suggested learners to generate examples
in problem solving and similarly, a renowned mathematician, Halmos (1983)
emphasized that “A good stock of examples, as large as possible, is indispensable for
a thorough understanding of any concept, and when | want to learn something new, I
make it my first job to build one...” (p. 63). From an epistemological standpoint,
Lakatos (1976) claimed that the generation and analysis of examples can be regarded
as one of the most prominent activities in the development of mathematics as a
science.

Examples are fundamental tools that are used for illustrating and
communicating concepts between teachers and learners (Bills, Mason, Watson &
Zaslavsky, 2006). In addition, they play a crucial role as a communication tool
intrinsic to explanations and mathematical discourse (Leinhardt, 2001). As stated by
Leinhardt, Zaslavsky and Stein (1990), constructing explanations in the course of
teaching is a very difficult work that depends on the specific choice of examples to a

great extent. They further noted that:



“Explanations consist of the orchestrations of demonstrations, analogical
representations, and examples... A primary feature of explanations is the use
of well-constructed examples, examples that make the point but limit the
generalization, examples that are balanced by non- or counter-cases” (p. 6).

Teachers may use examples in the teaching of mathematics for two different
purposes (Rowland, Turner, Thwaites & Huckstep, 2009; Zodik & Zaslavsky, 2008).
First, they may use an example of a concept or procedure as a particular instance of
generality, that is to say, as an example of something (Mason & Pimm, 1984;
Rowland et al., 2009; Watson & Mason, 2005; Zodik & Zaslavsky, 2008). Here, the
‘something’ is typically general such as the notion of a rational number or the
procedure for converting repeating decimals into common fractions. Hence, teachers
customarily use examples for representing abstract mathematical concepts or
illustrating general procedures as a pedagogical practice (Rowland, 2008). Second,
teachers may use examples as an example for ‘something’ and examples in this case
are usually called exercises (Rowland, 2008; Watson, Mason, 2005). Exercise
examples are often chosen from a large number of possible examples and are
primarily used to support retention of a procedure by repeating and to gain fluency
with it (Rowland et al., 2009).

In mathematics, there are other kinds of examples such as non-examples and
counter-examples (Watson & Mason, 2005). Non-examples are related with
conceptualization and definitions, and draw attention to critical attributes of
mathematical concepts (Zodik & Zaslavsky, 2008). Besides, they show the
boundaries or necessary conditions of a concept (Watson & Mason, 2005). In other
words, they “serve to clarify boundaries” of a concept (Bills et al., 2006, p. 127).
Thus, by their very nature, non-examples are intrinsic to concept formation (Tsamir,
Tirosh & Levenson, 2008). Counter-examples are related with claims and their
rebuttals (Zodik & Zaslavsky, 2008). Simply put, they show that a statement is not
true and sharpen the distinctions between mathematical concepts (Michener, 1978).

Bills et al. (2006) stated that in order for a mathematical example to be
pedagogically useful, it should possess two main features as transparency and
generalizability. Meanwhile, they described the two terms as:

“Transparency: making it relatively easy to direct the attention of the target
audience to the features that make it exemplary. Generalizability: the scope

2



for generalization afforded by the example or set of examples, in terms of

what is necessary to be an example, and what is arbitrary and changeable”
(ibid, p.135).

The transparency of an example, its interpretation and the features noticed by
a learner are subjective and context dependent and thus, teachers play an important
role in introducing a wide range of pedagogically useful examples to their students in
order to deal with different needs and characteristics of learners (Zaslavsky, 2010).
However, choosing examples is not a simple task and it involves numerous complex
considerations some of which can be done beforehand with careful planning while
some others can only be done in the course of actual classroom practice (Zodik &
Zaslavsky, 2008).

According to Bills and Rowland (1999) examples may not always achieve
their intended purposes. Similarly, Mason and Pimm (1984) asserted that there may
be a mismatch between teacher intention and what students pay attention to. This
may, to some extent, have to do with the irrelevant information carried by examples
in addition to their relevant attributes (Zaslavsky & Zodik, 2014). Skemp (1987)
used the term ‘noise’ for this irrelevant information carried by the examples. Skemp
(1971) claimed that if the noise in an example increases, then it becomes more
difficult to form a concept. Thus, students may focus on irrelevant aspects of
examples although teachers may try to instantiate certain mathematical ideas from
his/her own perspective (Zaslavsky & Zodik, 2007). Hence, “the examples provided
by a teacher ought, ideally, to be the outcome of a careful process of choice, a
deliberate and informed selection, because some are simply better than others”
(Rowland, 2014, p. 98).

Inspired by Marton and Booth’s (1997) notion of ‘dimensions of variation’,
Watson and Mason (2006) derived the notions of ‘dimensions of possible variation’
and ‘range of permissible change’ to gain insights into the pedagogical role of
examples. They assumed that discerning variations within any mathematical object
is a starting point for making sense of it. Besides, they suggested that teachers can
uncover the mathematical structure of any object by varying some of its features
while keeping other features constant. Mathematical structure means “the

identification of general properties which are instantiated in particular situations such



as relationships between elements” (Mason, Stephens & Watson, 2009, p. 10). As a
consequence, learners are compelled to discern the structure and generalize because
“learners cannot resist looking for, or imposing pattern, and hence creating
generalizations, even if these are not expressed or recognized” (Watson and Mason,
2006, p. 95). This suggestion is of particular importance since it can be used to
emphasize and distinguish critical and non-critical attributes of mathematical objects.

As mentioned before, choice and use of examples is an important and
complex domain (Zaslavsky, 2010). Thus, teachers need to take up the challenge of
choosing judicious examples since their choices of examples have the potential to
support or impede mathematical learning (Zaslavsky & Zodik, 2007). In this sense, it
can be said that teachers’ choice and use of examples influence and give shape to
students” learning process. Hence, in-depth exploration of the quality of
mathematical examples employed by the teachers might give some insights into the
quality of actual classroom practices. In addition to this, the selection and use of
examples may present the teachers with actual classroom events that constitute
learning opportunities for them and that would affect their future choice and use of
examples (Zaslavsky & Zodik, 2007; Zodik & Zaslavsky, 2009).

Teachers continuously respond to their students’ interests and inquiries as
part of the ongoing classroom interaction and it is not possible for teachers to know
how each student will react or respond to any situation, therefore teachers may quite
often need to make split-second decisions in the course of lessons (Rowland et al.,
2009). The immediate actions on the part of teachers in such classroom situations
reflect teachers’ ability to think ‘on their feet’ (Schon, 1987). While Mason and
Spence (1999) coined the term ‘knowing-to act in the moment’ for this type of
decision making, Rowland, Huckstep and Thwaites (2005) dealt with such in-the-
moment actions by means of the contingency dimension of the Knowledge Quartet.
Selecting or constructing mathematics examples for teaching usually entails in-the-
moment decisions in return for classroom interactions and it is closely associated
with teachers’ increasing awareness and ongoing reflection (Zodik & Zaslavsky,
2008). Thus, this study sought to determine spontaneous and pre-planned examples

generated or selected by the middle school mathematics teachers.



Teachers’ choices of pre-planned and spontaneous examples reflect their
underlying considerations or principles in choosing those examples and enable them
to become more aware of their planning and in-the moment actions (Zaslavsky &
Zodik, 2008). Thus, the current study also sought to examine middle school
mathematics teachers’ considerations or principles that guide them in selecting or
constructing examples.

Despite the fact that examples play a crucial role in the teaching and learning
of mathematics (Zaslavsky, 2010), there are some common pitfalls in the selection of
examples (Rowland, 2008). According to Rowland, Thwaites and Huckstep (2003)
there are three kinds of examples that should be avoided in the teaching of

mathematics:

“examples that obscure the role of variables within it; examples intended to
illustrate a particular procedure, for which another procedure would be more
sensible; and examples for instruction (as opposed to exercise examples)
being randomly generated, typically by dice, at a point when it would be
preferable for the teacher to be making careful choices” (p. 245).

In this study, not only middle school mathematics teachers’ well chosen-
examples but also their poor choices of examples were taken into consideration.
Zaslavsky and Zodik (2007) argued that teachers’ poor choices of examples might be
deliberately incorporated into the classroom as part of learning so as to question
students’ mathematical thinking. Furthermore, Zodik and Zaslavsky (2008)
suggested that classroom events that include both good and poor examples might
serve for teacher education programs and professional development activities. Thus,
the findings of this study may be helpful for pre-service and in-service teachers in
gaining practical knowledge about treatment of mathematical examples in their

classrooms.
1.1. Rational Number Concepts in Turkish School Mathematics Curricula

Rational number concepts are among the most important mathematical ideas
students encounter in their school years (Alacaci, 2009; Behr, Lesh, Post, Silver,
1983; Behr, Wachsmuth, Post & Lesh, 1984; Yanik, 2013). They are important for
the following reasons: from a mathematical standpoint, they form the basis of
elementary algebraic operations; from a practical standpoint, they develop students’
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ability to cope with real world problems; and finally from a psychological standpoint,
they help students develop and extend mental structures required for continuous
intellectual development (Behr et al., 1983).

Due to their importance, Turkish elementary and middle school mathematics
programs (Ministry of National Education [MoNE], 2009a, 2009b) also give
considerable emphasis on rational number concepts. In grade 1, students learn how to
partition physical objects into two equal parts and explain the relationship between
one half and a whole. In grade 2, students explain the relationship among one half,
one quarter and a whole. In grade 3, students learn how to partition a whole into
equal parts and know that each part is a unit fraction; learn proper fractions that
include at most two digit numbers as denominators; learn how to compare and order
at most three fractions that include at most two digit numbers as denominators and
learn how to find unit fractions of given quantities. In grade 4, students learn how to
obtain fractions with at most two digits numerators and denominators by using unit
fractions; locate fractions with at most two digits numerators and denominators on a
number line, compare fractions; order at most four fractions with same
denominators; order at most four fractions with same numerators; find unit fractions
of given quantities; add fractions with same denominators; subtract fractions with
same denominators; and finally pose and solve problems related with addition and
subtraction of fractions. In grade 5, students learn how to convert among mixed
numbers and improper fractions; compare a whole number with a fraction; compare
and order fractions and locate them on a number line; find equivalent fractions of a
given fraction; find whole quantity by means of its fractional amount; explain the
relationship between a fraction and a division operation; add fractions with same
denominators; add a whole number and a fraction; subtract fractions with same
denominators; subtract a fraction from a whole number; pose and solve problems
related with addition and subtraction of fractions and finally, they learn how to find a
fraction of another fraction (MoNE, 2009a).

In grade 6, students learn how to compare, order and locate fractions on a
number line; add and subtract fractions; multiply and divide fractions; estimate

fraction operations by using a relevant strategy and finally pose and solve problems



related with fractions. In grade 7, students apply and extend their previous
understandings about fraction concepts and operations to rational number concepts
and operations. Namely, students learn how to explain and locate rational numbers
on a number line; express rational numbers in different forms; compare and order
rational numbers; add or subtract rational numbers; multiply or divide rational
numbers; perform multi-step operations with rational numbers and finally pose and
solve rational number problems (MoNE, 2009b).

Although students are introduced rational numbers, in particular fractions, at
all grade levels, rational numbers are infamous for the difficulty encountered not
only by elementary school students (e.g., Bright, Behr, Post & Wachsmuth, 1988;
Haser & Ubuz, 2003; Lesh, Behr & Post, 1987; Ni, 2001; Vamvakoussi &
Vosniadou, 2010) but also by middle school students (e.g., Birgin & Giirbiiz, 2009;
Lamon, 2007). As Lamon (2007) expressed, rational numbers:

“arguably hold the distinction of being the most protracted in terms of
development, the most difficult to teach, the most mathematically complex,
the most cognitively challenging, the most essential to success in higher

mathematics and science, and one of the most compelling research sites” (p.
629).

Rational number concepts are even very challenging for elementary school
teachers (An, Kulm, & Wu, 2004, Graeber, Tirosh, & Glover, 1989; Izsak, 2008; Ma,
1999; Tirosh, 2000). There are many teachers who have procedural understanding of
rational numbers (Ball, 1990a, 1990b) but many of them experience difficulties with
fraction concepts such as equivalent fractions (Cramer & Lesh, 1988).

The difficulties encountered by students about rational number concepts
mainly stem from two factors: interference of natural number knowledge to rational
numbers and problems with notation of rational numbers (Moss, 2005; Ni & Zhou,

2005; Smith, Solomon & Carey, 2005). For instance, students misinterpret the

symbol % by thinking a and b as two unrelated numbers, think that a and b are

additively related, or think that rational numbers with large numerators and
denominators are greater than rational numbers with small numerators and
denominators (Lamon, 2012; Moskal & Magone, 2000; Moss, 2005; Stafylidou &
Vosniadou, 2004).



To help teachers lessen the difficulties experienced by their students about
rational numbers, Greer (1987) attempted to identify students’ common
misconceptions about rational numbers such as ‘multiplication makes bigger,
division makes smaller’. Moss and Case (1999) proposed a new curricular approach
and tested it in a study involving 5" and 6" grade students. Moreover, National
Council of Teachers of Mathematics [NCTM] (2000) emphasized using standard
documents to develop elementary and middle school students’ rational number
reasoning.

Despite the emphasis on enhancing students’ rational number understanding,
student difficulties about rational numbers still persist (Wilson, Mojica & Confrey,
2013). Besides, many of the elementary and middle school mathematics topics
involve rational number concepts and large scale international studies such as
Programme for International Assessment (PISA) (OECD, 2010) and Trends in
International Mathematics and Science Study (TIMSS) (Mullis, Martin & Foy, 2008)
document low mathematics performance of Turkish students. Morrison (2013)
attributed students’ poor performance in mathematics to “poor sequencing of
examples, limited ranges of examples in the low rates of task completion within and
across lessons and to more general slow pacing (p.97). Thus, it is significant to
explore the quality of rational number examples used by middle school mathematics

teachers in actual classroom practices in order to improve students’ learning.
1.2. Purpose of the Study and Research Questions

Teachers’ choice of examples depends on factors such as knowledge
competency, teaching goals, teachers’ awareness of their students’ misconceptions
and dispositions and the like (Bills et al., 2006). These factors refer explicitly to the
domain of pedagogical content knowledge of teachers and in particular to the sub-
domain of knowledge of content and students theoretically defined by Ball, Thames
and Phelps (2008). Knowledge about mathematics examples is a part of teachers’
specialized content knowledge as well (Mohamed & Sulaiman, 2010). Specialized
content knowledge is a mathematical knowledge that is unique to teaching and is a
subset of subject matter knowledge described by Ball et al. (2008). Briefly, teachers’



examples may reflect both their mathematical and pedagogical knowledge (Zazkis &
Leikin, 2007). More importantly, the knowledge about mathematical examples is
acquired through teaching experience and hence can be considered craft knowledge
(Kennedy, 2002; Leinhardt, 1990). To be more precise, teachers’ purposes for
selecting, their design or effective treatment of examples are mostly constructed
through their teaching experience (Rowland, 2008; Zaslavsky & Zodik, 2007). Thus,
it can be suggested that examples are an important component of expert knowledge
(Michener, 1978).

A few researchers have recently concentrated on teachers’ choice and use of
examples in mathematics classrooms (e.g., Rowland & Zazkis, 2013; Rowland,
2008; Rowland, 2014; Watson & Mason, 2005; Zaslavsky & Zodik, 2007; Zaslavsky
& Zodik, 2014; Zaslavsky, 2010; Zodik & Zaslavsky, 2008). Thus, the role of
examples in the teaching of mathematics is notably absent from teacher education
literature not only in Turkey but also in other countries almost all over the world
(Rowland, 2008). Therefore, further studies are needed to explore the examples
chosen or used by teachers in their actual classroom practices.

The purpose of this study was to explore how middle school mathematics
teachers treated rational number examples in their seventh grade classrooms. More
specifically, this study aimed to investigate overall characteristics of teachers’
rational number examples, the principles or considerations used by teachers while
choosing or using rational number examples and the potential shortcomings of the
examples used by the teachers. Through this purpose, the following major questions
and sub-questions were formulated:

1. What are the overall characteristics of examples used by middle school
mathematics teachers in the teaching of rational numbers in their seventh grade
classrooms?

a. What are the ideas emphasized in the rational number examples used
by the teachers?
b. To what extend do teachers use specific examples in the teaching of

rational numbers?



c. To what extend do teachers use non-examples and counter-examples
in the teaching of rational numbers?

d. To what extend do teachers use pre-planned and spontaneous
examples in the teaching of rational numbers?

e. Which sources do teachers use while choosing pre-planned examples
in the teaching of rational numbers?

2. What are the underlying principles or considerations that guide middle
school mathematics teachers in choosing or generating examples?

3. What mathematical or pedagogical shortcomings do the examples used by
the teachers in the teaching of rational numbers have?

a. What are the mathematically incorrect examples used by the teachers
during the teaching of rational numbers?

b. What are the pedagogically improper examples used by the teachers
during the teaching of rational numbers?

In this study, | used the following theoretical frameworks to give a
comprehensive explanation of how middle school mathematics teachers treat rational
number examples in their classrooms: Marton and Booth’s (1997) variation theory;
Zodik and Zaslavky’s (2008) dynamic framework for explaining teachers’ choices
and generation of examples during the lesson, and finally Rowland et al.’s (2005) the
Knowledge Quartet Framework for making sense of teachers’ choice and use of

examples. These frameworks are explained in detail in the literature review chapter.
1.3. Definitions of Important Terms

The research question consists of several terms that need to be clearly
defined. These terms are defined either constitutively or operationally in the
following way:

Example

As mentioned before, Watson and Mason (2005) defined examples as
“illustrations of concepts and principles, placeholders used instead of general

definitions and theorems, worked examples, exercises, representatives of classes
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used as raw material for inductive mathematical reasoning, specific contextual
situations that can be treated as cases to motivate mathematics” (p. 3).

In this study, | examined worked-out examples and exercise examples that
were used by the teachers or included in the student textbook for teaching rational
number concepts. Worked examples referred to examples that were worked through
by the middle school mathematics teachers in the course of teaching rational number
concepts and by the student textbook in order to explain a rational number topic.
Exercise examples referred to examples that were worked through by the teachers
after introducing rational number concepts so as to develop fluency and to the
textbook examples that were left to the students for practicing a specific technique.

Specific example

Mason and Pimm (1984) defined specific examples as examples that are used
to represent a whole class of an object. Edwards (2011) defined a specific example as
“a one-Off situation that may or may not be general” (p. 19). In this study, a specific
example referred to one of the possible examples through which rational number
concepts were expressed.

Non-example

Non-examples are examples used to show the boundaries or necessary
conditions of a concept (Watson & Mason, 2005). In this study, non-examples
referred to the examples that were used by the teachers in order to show that not all
numbers are rational.

Counter-example

Counter examples are examples which demonstrate that a certain conjecture
is invalid (Watson & Mason, 2005). In this study, counter-examples referred to the
examples used by the teachers to demonstrate the falsity of a student conjecture
related with a rational concept or procedure were treated as counter-examples.

Teachers’ considerations or principles

In this study, teachers’ considerations referred to teachers’ intentions or aims
for selecting or using each example during the teaching of rational number concepts.
Similarly, teachers’ principles referred to teachers’ use of pedagogical approaches

such as pattern breaking (Watson & Mason, 2005) and structured variation (Watson
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& Mason, 2005) when demonstrating a rational number concept or procedure by
means of an example or a set of examples during actual classroom practices.

Mathematical shortcoming

In this study, mathematical shortcoming referred to the mathematical
incorrectness of an example generated by the teachers in the course of teaching
rational number concepts.

Pedagogical shortcoming

In this study, pedagogical shortcoming referred to the inappropriateness of an
example generated by the teachers in the course of teaching rational number
concepts. In more detail, examples that included improper language or terminology,
examples that obscured the role of variables and examples which called for more
sensible procedures were treated as examples that included pedagogical

shortcomings.
1.4. Significance of the Study

As evidenced from earliest records to modern sources, the use of examples in
mathematics education has a long history (Bills et al., 2006; Rowland, 2008; Sinclair,
Watson, Zazkis & Mason, 2011) and it still continues to receive increasing attention
in mathematics education research (Antonini et al., 2011; Bills & Watson, 2008;
Sinclair et al., 2011). In the last ten years, a great deal of research papers have been
published and some working groups have focused on examples (e.g., special issue of
ZDM entitled ‘Examples in Mathematical Thinking and Learning from an
Educational Perspective’, Volume 43, Issue 2, May 2011; special issue of
Educational Studies in Mathematics entitled ‘The Role and Use of Examples in
Mathematics Education’, Volume 69, Issue 2, October, 2008 and the research forum
entitled ‘Exemplification in Mathematics Education’ at PME 30 by Bills et al.,
2006).

Examples are used comprehensively in the acquisition of various
mathematical domains such as proof (e.g., Alcock & Inglis, 2008; Buchbinder &
Zaslavsky, 2011; lannone Inglis, Mejia-Ramos, Simpson & Weber, 2011; Komatsu,
2010; Leung & Lew, 2013; Sandefur, Mason, Stylianides & Watson, 2013;
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Pedemonte & Buchbinder, 2011; Zazkis & Chernoff, 2008), geometry (e.g., Guo,
Pang, Yang & Ding, 2012; Tsamir, Tirosh & Levenson, 2008; Zaslavsky, 2008;
Zaslavsky, 2010; Zazkis & Leikin, 2008), elementary number theory (e.g.,
Goldenberg & Mason, 2008; Rowland, 2008) advanced mathematics (e.g., Antonini,
2011; Arzarello, Ascari & Sabena, 2011; Mason, 2011; Watson & Chick, 2011),
patterns and generalizations (e.g., Sinclair et al., 2011; Zazkis, Liljedahl & Chernoff,
2007) and the like. Antonini et al. (2011) also emphasized the same point that
examples pervade concept formation (Dahlberg & Housman, 1997), generalization
from particular to general (Mason & Pimm, 1984), concept definition and concept
image (Tall & Vinner, 1981).

Examples serve many purposes in mathematics education. For instance,
example generation can be used as a tool for diagnosing some components of
students’ conceptions (Bratina, 1986). Zazkis and Leikin (2007) suggest that asking
learners to generate examples provides a ‘window’ into their mind since the
examples generated by them “mirror their conceptions of mathematical objects
involved in an example generation task, their pedagogical repertoire, their difficulties
and possible inadequacies in their perceptions” (p. 15). Goldenberg and Mason

(2008) further claim that

“Examples can usefully be seen as cultural mediating tools between learners
and mathematical concepts, theorems, and techniques. They are a major
means for ‘making contact’” with abstract ideas and a major means of
mathematical communication, whether ‘with oneself’, or with others.
Examples can also provide context, while the variation in examples can help
learners distinguish essential from incidental features and, if well selected,
the range over which that variation is permitted” (p. 184).

Despite being essential in a classroom environment, generating examples of
mathematical objects can be a complicated work for teachers (Bills et al., 2006;
Zaslavsky & Peled, 1996). Besides, it entails many circumstances that should be
considered (Antonini et al., 2011; Zodik & Zaslavsky, 2008). From this point of
view, it can be said that teachers’ choice of examples may either promote or hinder
students’ learning. Although teachers’ choice of examples play a substantial role in
student learning, a large proportion of mathematics teacher education programs do
not overtly speak to this issue and do not systematically train pre-service teachers to

cope with examples in an educated way (Zaslavsky & Zodik, 2007). Thus, it can be
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suggested that teachers’ ability to generate effective examples develop through their
teaching experience and thus constitutes their craft knowledge (Kennedy 2002;
Leinhardt 1990). In-depth exploration of teachers’ craft knowledge regarding
treatment of examples may give us the opportunity to gain entry into their specific
aspects of knowledge and use it as groundwork for devising professional
development programs or courses that may foster teachers’ building up of systematic
knowledge (Zaslavsky, 2008; Zaslavsky & Zodik, 2007).

Despite the centrality of examples in developing conceptual understanding of
mathematics (Watson & Mason, 2002), only a few researchers focused on teachers’
choice and use of examples in their classrooms (e.g., Rowland 2008; Watson &
Mason 2005; Zodik & Zaslavsky, 2008). Besides, these researchers examined
examples used by the teachers for teaching different mathematical concepts in a
more superficial sense (e.g., Rowland 2014; Rowland, 2008; Zaslavsky & Zodik,
2007; Zodik & Zaslavksy, 2008). Therefore, there is a need for studies that explore
examples used by the teachers’ in the teaching of specific mathematical concepts in
greater depth. Furthermore, different education systems in different countries may
influence teachers’ choice and use of examples in their classrooms and thus, the
quality and quantity of examples used by the teachers for teaching a specific
mathematical concept may differ from one country to another.

As suggested by Bills et al. (2006), there is a scarcity of research on teachers’
choice and use of examples related with certain mathematical concepts. Therefore, |
want to go further in this direction and attempt to fill this gap by examining middle
school mathematics teachers’ treatment of rational number examples in their
classrooms in a national context. It is significant to explore teachers’ treatment of
rational number examples for several reasons. First, rational number concepts are
among the most important mathematical concepts students experience in their school
years (Alacaci, 2009; Yanik, 2013). Second, although students are introduced to
rational numbers at all grade levels; they experience difficulties in understanding
them due to their complexity (Haser & Ubuz, 2003; Lamon, 2007; Vamvakoussi &
Vosniadou, 2010). Thus, exploration of teachers’ choice and use of rational number

examples might help teachers improve the quality and quantity of examples used in
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the teaching of rational number concepts and might be particularly helpful for
teachers in overcoming their students’ difficulties in these concepts and operations.

Exploration of teachers’ treatment of rational number examples might be used
in the development of a possible framework that might be used to capture middle
school mathematics teachers’ generation and choice of rational number examples in
their classrooms. Similarly, exploration of teachers’ considerations or principles in
choosing or using rational number examples might be used in the development of a
possible framework that might be used to examine middle school teachers’ principles
or considerations in selecting or generating rational number examples in their
classrooms. Future studies in different education systems might provide empirical
support to the development of a possible framework for analyzing teachers’
considerations in choosing and using rational number examples.

In a broader sense, it is anticipated that investigation of teachers’ treatment of
examples might help teachers raise their awareness in choosing or using appropriate
examples during the teaching of mathematics and consequently improve the quality

of their teaching and foster student learning.
1.5. My Motivation for the Study

Before I began to explore middle school mathematics teachers’ treatment of
examples in their own classrooms, | had participated in Special Teaching Method
Courses implemented by a member of my own department. As | observed pre-service
middle school mathematics teachers’ selection and use of examples for teaching
various mathematical concepts, | noticed that some examples were generated by
them randomly without any thinking in-advance about negative influences of
examples in learning these mathematical concepts. Besides, the pre-service teachers
did not seem to give enough importance to the careful selection of initial examples
when starting to teach novel concepts that the students have not experienced before.
In my opinion, it is important to introduce examples that recall prior knowledge of
students before teaching a novel concept. For instance, it is crucial to introduce
fraction or integer examples to the students before teaching rational number

concepts. Thus, pre-service middle school mathematics teachers’ treatment of
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examples in Special Teaching Method Courses initially prompted me to carry out a
study in the area of exemplification.

Another factor that encouraged me to conduct this study was the low
mathematics performance of middle school students that were reported both in
national high-stakes exams such as SBS or TEOG and international student
assessment programs such as TIMSS and PISA. Based on my own experience, |
thought that the low performance of middle school students in mathematics might be
associated with their teachers’ way of using examples in teaching mathematical
topics. In particular, I thought that the quality and quantity of examples used by the
mathematics teachers might give some clues about the quality of their teaching
practices and consequently might reflect student achievement in mathematics.

Finally, | thought it would be crucial to convey mathematics teaching
experiences of in-service teachers to pre-service teachers enrolled in teacher
education programs since it takes considerable time for pre-service teachers to gain
craft knowledge about teaching particular mathematical topics. More specifically, it
is important to inform pre-service teachers about in-service teachers’ principles or
considerations in selecting or using certain examples in the teaching of mathematics
so that they will benefit from in-the-moment decisions that teachers make. In short,
this study might play an important role in bridging between in-service teachers’ craft
knowledge of mathematical examples and pre-service teachers’ initial teaching

experiences.
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CHAPTER II

LITERATURE REVIEW

The goal of this study was to explore middle school mathematics teachers’

treatment of rational number examples in their mathematics classrooms. More

specifically, this study aimed to answer the following research questions:

1. What are the overall characteristics of examples used by middle school

mathematics teachers in the teaching of rational numbers in their seventh grade

classrooms?

a.

What are the ideas emphasized in the rational number examples used
by the teachers?

To what extend do teachers use specific examples in the teaching of
rational numbers?

To what extend do teachers use non-examples and counter-examples
in the teaching of rational numbers?

To what extend do teachers use pre-planned and spontaneous
examples in the teaching of rational numbers?

Which sources do teachers use while choosing pre-planned examples

in the teaching of rational numbers?

2. What are the underlying principles or considerations that guide middle

school mathematics teachers in choosing or generating examples?

3. What mathematical or pedagogical shortcomings do the examples used by

the teachers in the teaching of rational numbers have?

a.

What are the mathematically incorrect examples used by the teachers
during the teaching of rational numbers?
What are the pedagogically improper examples used by the teachers

during the teaching of rational numbers?

In the light of these research questions, this chapter elaborated on various

theoretical constructs related with examples and provided the theoretical frameworks
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that were used in this study. Finally, relevant studies on teachers’ treatment of
mathematical examples were reviewed. The following section sought to describe

what a mathematical example is.
2.1. What is a Mathematical Example?

Given that examples have a wide variety of educational uses (Bills et al.,
2006), it is important to shed some light into what constitutes an example. The notion
of ‘example’ has several different meanings. Michener (1978) described examples as
illustrative material and underlined the dual relations among examples, results and
concepts. That is, she emphasized that examples can be constructed from results and
concepts and alternately they can motivate concepts and results. In her subsequent
study, Michener (1991) pointed out that an example can be viewed as “a set of facts
or features viewed through a certain lens” (p. 190). Mason and Pimm (1984) stressed
the generality aspect of examples and announced that the ability to perceive the
general by means of the particular is at the core of the exemplification. In a similar
way, Zodik and Zaslavsky (2008) meant that “examples are a particular case of a
larger class, from which one can reason and generalize” (p. 165). In the meantime,
Zazkis and Leikin (2008) viewed examples as “illustrations of concepts and
principles” (p. 131). In a recent study elaborating on the notion of personal example
spaces, Sinclair et al. (2011) explained that “an example refers to a specific
instantiation of a more general notion” and further described a mathematical example
as “an instance of a mathematical class with specified properties, a worked solution
to a problem, an instance of a theorem or method of reasoning” (p. 292).

Similarly, Yopp (2014) referred to an example as “any mathematical object
used to instantiate properties or concepts involved in a mathematical task” (p. 182).
Furthermore, he attempted to be cautious about the distinction between example
generation and example use. He broadly defined example generation as building or
extending learners’ example space and included learner-generated examples,
examples built by modification of pre-existing examples and examples obtained from
other people or sources such as friends or software into example generation process.

However, he defined example use as using an example from an example space
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irrespective of when or how that example was obtained. As can be seen, the
aforementioned definitions of ‘example’ have left the learners out of the picture and
referred only to a mathematical requirement.

Alcock and Weber (2010) described examples in a more restricted sense and
meant that an example is “a mathematical object satisfying the definition of some

concept” (p. 4) and they further added that

— 2 -
“6 is an examples of an even number and f(X)—X is an example of a

continuous real-valued function. The latter could, of course, be represented
graphically rather than via a formula, and we consider such a graph to be an
example too” (p. 4).

Similar to Alcock and Weber (2010), Fukawa-Connelly and Newton (2014)
regarded it pedagogically important to differentiate between examples of a concept
and examples of a process and drew upon only concept examples and adopted the
following definition: “a mathematical object satisfying the definition of some
concept” (p. 325). Mills (2014) considered that for a mathematical object to be an
example it should satisfy two properties as specificity and concreteness. She
explained that an example first should be specific and concrete in contrast to being
general and abstract. Besides, she added that specificity is a mathematical necessity
and concreteness has to do with accessibility of the mathematical object to the
learners. Finally, she defined an example as “a specific, concrete representative of a
class of mathematical objects, where the class is defined by a set of criteria” (p. 107).

Watson and Mason (2005) took a much broader view of what constituted an
example and used it to represent anything from which a learner might generalize.

Hence, an example referred to:

“Illustrations of concepts and principles, such as a specific equation that
illustrates linear equations or two fractions that demonstrate the equivalence
of fractions; placeholders used instead of general definitions and theorems,
such as using a dynamic image of an angle whose vertex is moving around
the circumference of a circle to indicate that angles in the same segment are
equal; questions worked through in textbooks or by teachers as a means of
demonstrating the use of specific techniques, which are commonly called
worked examples; questions to be worked on by students as a means of
learning to use, apply, and gain fluency with specific techniques, which are
usually called exercises; representatives of classes used as raw material for
inductive mathematical reasoning, such as numbers generated by special
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cases of a situation and then examined for patterns; specific contextual
situations that can be treated as cases to motivate mathematics” (p. 3).

Watson and Mason’s (2005) use of examples is learner-dependent. That is, their use
of examples permits the learners to generate examples which may not be
mathematically correct. Similar to Watson and Mason (2005), Bills et al. (2006)
defined the term example as any object employed as a raw material for
generalization; illustrating concepts and procedures; representing a larger class;
motivating; disclosing possible variation; and finally exercising a technique.

Kamin (2010) stressed that examples are in part vague entities and they may
be composed of either simple expressions or complex multi-step problems. He
further noted that different meanings attributed to the notion of example stems from
the fact that researchers, mathematics educators and mathematics teachers all have
different perspectives. Finally, he explained that examples may exist as isolated
objects or may be used to define, characterize or illustrate mathematical concepts.

2.2. Classification of Examples

Several researchers categorized examples with respect to their particular use
in mathematics or in the teaching of mathematics (e.g., Mason & Pimm, 1984;
Mason & Watson, 2005; Mischener, 1978; Peled & Zaslavsky, 1997; Rowland,
Turner, Thwaites & Huckstep, 2009; Zazkis & Chernoff, 2008; Zodik & Zaslavsky,
2008). The definitions and explanations of different types of mathematical examples

are presented below.
2.2.1. Start-up examples

Michener (1978) analyzed acquisition of mathematical knowledge from an
epistemological perspective and distinguished three main categories of items as
results (traditional logical deductive elements of mathematics), examples (illustrative
material) and concepts (mathematical definitions and heuristic notions and advice).
She indicated that examples-space, results-space and concepts-space are three
representation spaces for a mathematical theory and introduced start-up examples as
one category of epistemological classes of the example-space. She defined start-up
examples as examples that help motivate essential definitions and results and initiate
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into a topic and stated that a start-up example should have the following properties: it
should motivate fundamental concepts, it should be understood by itself, it should be

projective and finally it should provide a simple and evocative picture.
2.2.2. Reference examples

Michener (1978) introduced reference examples as another category of
epistemological classes of the example-space. She defined reference examples as
examples that are illustrations of concepts, results, models, and counter examples and
as examples that are recurrently used in the development of theories. Watson and
Mason (2005) defined reference examples as typical cases which are to a large extent
applicable and may be linked various concepts and results. Besides, they suggested
using R? to make sense of how things function in real analysis as a reference

example.
2.2.3. Specific examples

Mason and Pimm (1984) defined specific examples as examples that are used
to represent a whole class of an object. By using the same examples used by Mason
and Pimm (1984), Edwards (2011) defined a specific example as “a one-off situation
that may or may not be general” (p. 19). Edwards (2011) introduced “THE even
number 6” as a specific example and further explained that “the existence of such an
object is the important point rather than necessarily the representation of a wider
collection of objects. In this sense counterexamples to theorems are specific” (p. 19).
Peled and Zaslavsky (1997) categorized examples with respect to their explanatory
power and explained that specific examples have weaker explanatory power. In a
more recent study, Zaslavsky (2010) illustrated specific examples by the use of

rectangle pairs as given in Figure 2.1.
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Figure 2.1. A specific example of a pair of distinct rectangles with the same diagonal
(Zaslavsky, 2010, p. 109).

2.2.4. Particular examples

In order to clarify some of the uncertainties related with various example

types, Mason and Pimm (1984) introduced particular examples as one category of
examples. They explained that a lecturer might present x—>|X| as an example of a

continuous but non-differentiable function presented to the students and added that

the lecturer might see this example as a generic example that indicates a whole class
of functions (i.e., X —> k|x| +C), but the students might concentrate on the particular

example and see a single function instead of whole class of functions. Similarly,
Edwards (2011) defined a particular example as “using a general example in a
specific situation or argument” (p. 19) and introduced “2N is even, 2N + 2N = 4N so
4N is also even” as a particular example and further indicated that “each 2N
implicitly refers to the same number, so although N in isolation is a general example,
when used in this context 2N is a particular example” (p.19). Finally, Edwards
(2011) noted that the distinction between specific examples and particular examples

is subtle.
2.2.5. Generic examples

Michener (1978) defined model or generic examples as examples that
summarize assumptions about results and concepts and can be used to construct
particular instances. She added that model examples should be flexible and

manipulatable and should be adjusted finely to satisfy the specifics of a problem.
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Mason and Pimm (1984) defined generic examples as “an actual example, but one
presented in such a way as to bring out its intended role as the carrier of the general”
(p. 287). Edwards (2011) defined general examples as “using an example to
represent a class of examples with a similar property” (p. 19), introduced “AN even
number such as 6” as a generic example and explained that “the example is used to
represent other objects, but there is no intention to represent a complete class of
objects” (p. 19). Similar to Mason and Pimm (1984), Bogomolny (2006) described a
generic example as an actual example that is introduced in such a way that it
uncovers the intended role as the carrier of the general. She added that general
examples are presented by means of particular numbers but generic proof is never
dependent on the specific properties of those numbers. Besides, Rowland (1998)
suggested that generic examples may be used in proofs related with number theory
theorems and added that generic examples help students better understand the
mathematical topic when compared to the formal proofs. Rowland (2014) stressed
that the standard procedure for verifying mathematical truths is by general proof,
however gaining insights into such proofs might usually be attained via well-
structured arguments on the basis of generic examples. The generic example
provided by Rowland et al. (2009) to prove the conjecture that ‘the sum of 1+3+5+...

up to any odd number is always a square humber’ is presented in Figure 2.2.

Figure 2.2. A generic example that shows 1+3+5+7 = 42 (Rowland et al., 2009, p.98).

As can be seen, the figure started with one circle at the top left. The second, third and
fourth layers are shown with triangles, stars and squares respectively. In the first
stage, there is one circle and can be represented as 1= 12. In the second stage, there is

one circle and 3 triangles and the total number of shapes can be represented as 1+3 =
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22, In the third stage, there is one circle, three triangles and five stars and the total
number of shapes can be represented as 1+3+5 = 32. In the fourth stage, there is one
circle, three triangles, five stars and seven squares and the total number of shapes can
be represented as 1+3+5+7 = 72. Thus, the above given figure is a generic example
since it is apparent that addition of each posterior odd number conserves the square

array.
2.2.6. General examples

Mason and Pimm (1984) also distinguished between generic examples and
general examples. They defined general examples as examples that represent whole
class of mathematical objects. Similarly, Edwards (2011) described general examples
“as using an example to represent an operation on a wider class” (p. 19), introduced
“ANY even number like 6” as a general example and added that “the extent of the
class to that the example refers to is known, or implied” (p.19). Peled and Zaslavsky
(1997) stressed that general examples are more advantageous than specific examples
with regards to their generality and explanatory power. In a similar way, Zaslavsky
(2010) indicated that general examples “offer explanation and provide insight about a
certain phenomenon as well as ideas about how to generate more examples of this
phenomenon” (p. 108). Further, she illustrated general examples by the use of a pair

of rectangles as given in Figure 2.3.

Figure 2.3. A general example of a pair of distinct rectangles with the same diagonal
(Zaslavsky, 2010, p. 109).
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2.2.7. Boundary examples

Askew and William (1995) referred to two kinds of examples as only just
examples and very nearly examples. They defined that an example is an only just
example if any change in that example turns it into a non-example and a nearly
example needs one more modification in order for it to become an example. Mason
and Watson (2001) preferred to use the notion of boundary examples instead of only
just examples to distinguish between examples which have a certain property and
examples which do not have that certain property. They asserted that if a learner
cannot generate boundary examples for a technique or theorem, then they cannot
fully appreciate or comprehend it. Moreover, they emphasized that

“By constructing a boundary example students are forced to extend their
example-space in order to complete the task. So one effect is that students
become more aware of the range of possibilities from which they are
choosing when they select an example, and this is a precursor to expressing
generality” (p. 11).

According to Watson and Mason (2005), boundary examples are rather
extreme to represent the whole classes but they do display what happens at the
‘edges’ of those classes. Besides, they emphasized that unless there is access to
extreme examples, then there is the probability of being misled in appreciating the
scope of the related concept. Further, they exemplified the affordances of extreme

examples as follows:

“not all fractions have terminating decimals; subtraction and division can
make larger; triangles are limiting cases of trapezia, squares are also
rectangles, trapezia and parallelograms; multiplying zero offers a counter-
example to the belief that division always undoes multiplication” (p. 100).

2.2.8. Pivotal and bridging examples

Zazkis and Chernoff (2008) expressed that counter-examples may serve to
falsify a conjecture from a mathematical standpoint, however they may not have
enough power to convince the learner to abandon his/her previously made
generalization. More precisely, they indicated that counter-examples may not create
a cognitive conflict and the learner may simply dismiss or treat that counter-example

as an exception. Thus, the researchers introduced the notions of pivotal example and
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bridging example and noted that while a counter-example is a mathematical concept,
pivotal or bridging examples are pedagogical concepts. They explained that pivotal
examples serve to create a cognitive conflict while bridging examples assist in
conflict resolution and they defined pivotal examples as examples that help learners
achieve ‘conceptual change’ (Tirosh & Tsamir, 2004; Vosniadou & Verschaffel,
2004). Besides, they noted that counter-examples may be determined universally and
in advance whereas it is not possible to determine whether an example works as a
pivotal or a bridging example for a student cannot be determined before the
instructional implementation and that may be totally identified only after that
implementation.

Zazkis and Chernoff (2008) described and analyzed two episodes to illustrate
the notions of pivotal and bridging examples. One of the episodes was about prime
numbers and the researchers asked Selina, a prospective elementary school teacher,
13x17

to simplify the following expression:
9% 23

. Selina started working on the task by

multiplying the numbers included in the numerator and denominator of the

expression. She wrote the expression as % and started checking whether 221 and

437 are both divisible by 2, 3 and 5. She realized that 221 and 437 are not divisible
by 2, 3 and 5 and she came up with a conjecture that 437 is a prime number.
Nonetheless, she kept checking whether 437 is divisible by 7, 13 and 17. After trying
19, she confirmed that 19 was in the original expression and at that moment she
admitted that 19 and 23 were prime but she concluded that “two prime numbers
multiplied by each other are prime.” Selina’s such inference was described as
‘intuitive tendency towards closure’ (Zazkis & Liljedahl, 2004). Just then, Selina was
asked to identify 15 is a prime number. This strategic example invoked a cognitive
conflict and caused Selina to question her initial ideas. She realized that 15 is not a
prime number, despite it is equal to the multiplication of the two prime numbers as 3
and 5. Thus, she refuted her initial conjecture that the product of two prime numbers
is also a prime number. Previously, Zazkis and Liljedahl (2004) identified that
students tended to determine a number’s primality by checking whether that number

was divisible by small primes. By making reference to this study, Zazkis and
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Chernoff (2008) pointed out that Selina’s list of small primes was limited to 2, 3 and
5.

After presentation of 15 as a pivotal example, 77 was introduced to Selina as
another example to establish the strength of her belief about primality. Here, 77
served as a bridging example for Selina since it helped her resolve the conflict about
primality. From a mathematical standpoint, 15, 77, 221 and 437 are all similar to
each other in terms of their prime decomposition structure. However, from a
pedagogical standpoint, 77 is small enough to 15 since its factors are easily
noticeable. However, it is not comprised of 2, 3 or 5, the number which Selina named
as building blocks. The example 77 led Selina to change her initial thinking about
primality and guided her towards the following correct conjecture: prime numbers do

not have to be closed under multiplication.
2.2.9. Pre-planned and spontaneous examples

In an attempt to describe teachers’ choice of examples in and for the
mathematics classroom, Zodik and Zaslavsky (2008) distinguished between pre-
planned and spontaneous examples. The researchers investigated the examples used
by secondary school mathematics teachers in the classroom with regards to the
amount of pre-planning underlying their choices. They described pre-planned
examples as examples which teachers think in advance and intend to use them in the
lesson and they added that pre-planned examples might appear in teachers’ planning
notes, worksheets prepared for students, textbooks used for structuring the lesson or
might be inferred from teacher expressions and actions. When there was not enough
evidence for determining whether an example was pre-planned or not, the
researchers conducted interviews with the teachers and asked them to explain how
they got access to the examples they employed.

If the chosen examples involved in-the-moment decision making to a certain
extent, then the researchers considered them to be spontaneous examples. When
deciding whether an example is spontaneous, researchers took account of time
allocated by teachers for generating the example, teachers’ degree of certainty when

generating the example and finally, teachers’ gestures and facial expressions when
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generating the example. For instance, researchers determined an example to be
spontaneous when teachers used one of the following expressions: “I’m trying to
construct a simple example but it is not working” or “I just chose these numbers now
without giving them more thought” or when they confirmed a student query such as
“Are you inventing the example right now?” (p. 172).

The researchers found out that secondary school teachers generated
spontaneous examples mainly as a response to student queries and conjectures.
Besides, they observed that teachers generated not only spontaneous examples but

also spontaneous counter-examples. For instance, one of the teachers wanted to

demonstrate that complex fractions might be equal to a number such as % The

teacher started constructing the example on her feet in front of the classroom, from
time to time she erased some parts of the example and corrected it and she continued
this iteration until the example fit her intended purpose. Finally, she generated the
3a’b’c’®-4a’
36a’b’c®

teachers generated the spontaneous counter-example in Figure 2.4 as a response to a

following spontaneous example: . To give another example, one of the

student’s invalid conjecture that “if in a quadrangle there are two opposite right
angles it is a kite” (p. 172):

Figure 2.4. A spontaneous counter-example of a quadrangle with two opposite right
angles that is not kite (Zodik & Zaslavsky, 2008, p. 172).

In order to convince the student that her conjecture is invalid, the teacher constructed
on her feet a dynamic counter-example by constructing two right angles first and
then positioning them in a way that intersect with each other as depicted in Figure
2.4.
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Mason and Spence (1999) coined the term ‘knowing to act in the moment’ for
teachers’ ability to think ‘on their feet’. Similarly, Rowland et al. (2005) dealt with
such in-the-moment actions by means of the contingency dimension of their
Knowledge Quartet Framework. Rowland et al. (2009) stressed that teachers
continuously respond to their students’ interests and inquiries as part of the ongoing
classroom interaction and they added that it is not possible for the teacher to know
how each student will react or respond to any situation, therefore teachers may quite
often need to make split-second decisions in the course of mathematics lessons.
Rowland and Zazkis (2013) also made the same point that teaching not only includes
paying attention to pre-determined sequence of events and providing the pre-
determined curriculum but it also has to do with paying attention to ‘“‘students’
questions, anticipating some difficulties and dealing with unexpected ones, taking
advantage of opportunities, making connections, and extending students’ horizons
beyond the immediate tasks” (p. 138). To conclude, the act of teaching entails the
ability to handle unpredictable or contingent events in the classroom and this ability
is associated with classroom events that fall outside a teacher’s own lesson image
(Rowland & Zazkis, 2013). In his ‘theory of teaching-in-context’ Schoenfeld (1998)
described the term lesson image as follows:

“The teacher’s lesson image includes knowledge of his or her students and
how they may react to parts of the planned lesson; it includes a sense of what
students are likely to be confused about, and how the teacher might deal with
that confusion; and more... I can tell you, before the class starts, how things
are likely to unfold... there are many branch points and contingencies.
However, | know what most of them are likely to be. And, there are few
surprises” (p. 17-18).

Schoenfeld’s (1998) description of lesson image implies that teachers with more
teaching experience might better predict what would happen in the classroom and

might confront with less surprising events in the course of teaching.
2.2.10. Examples of and examples for mathematical concepts or procedures

By pondering how students can benefit from examples, Rowland et al. (2009)
distinguished between different uses of examples in the teaching of mathematics.

First, a teacher might use an example for teaching concepts and procedures as a
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particular instance of a generality (Rowland, et al., 2003). This way of using
examples is inductive. That is, when teaching concepts or procedures, teachers
provide or motivate students to provide examples of ‘something’ (Mason & Pimm,
1984; Rowland, 2008). The ‘something’ is general in character such as the notion of
a rational number or the traditional algorithm for subtracting rational numbers and
examples and the purpose for using examples is to represent abstract mathematical
concepts and to exemplify general procedures (Rowland, et al., 2003). For instance,

the rectangle example given in Figure 2.5 is an example of teaching a concept.

Figure 2.5. An example of a rectangle, and another, and another (Rowland et al.,
2009, p.69)

Here, the notion of a rectangle is mathematically abstract and is encapsulated by a
definition such as ‘a shape with four sides and four right angles’ (Rowland et al.,
2009).

Similar to the teaching of concepts, teachers teach general procedures by
particular demonstrations of those procedures (Rowland et al, 2003). To illustrate, if
a teacher aims to teach grid method for TUxU multiplication (i.e., a two-digit by
one-digit multiplication) he might select a two-digit number and a one-digit number
and then multiply them by using the grid method (Rowland, 2008). Namely, a teacher
may demonstrate the (general) grid method by means of the particular example of

this procedure given in Figure 2.6.

x| 30 7
q| 270 63 =333

Figure 2.6. Finding 37x9 by using the grid method (Rowland, 2009, p. 119)
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However, it is worthy of note that the teacher needs to select the numbers 3, 7 and 9
with some care and thus, the examples introduced by the teacher should preferably
be “the outcome of a reflective process of choice, a deliberate and informed selection
from the available options” (Rowland, 2008, p.151). Probably, it would not be
judicious for the teacher to demonstrate, for example, 10x9 by using the grid
method since it is more sensible to work out this example by using a mental
calculation strategy.

The second use of examples in the teaching of mathematics is about
familiarization and practice after the teaching of a new concept or procedure
(Rowland, 2009). Examples used for this purpose are usually called exercise
examples and rather than being inductive as in the case of concept or procedure
examples, they are illustrative and practice-oriented (Rowland, 2008). Exercise
examples are often chosen from a large number of examples (Rowland et al., 2003).
For instance, after teaching the grid method for TUxU multiplication procedure by
the aforementioned example (i.e, by 37x9), a teacher may well ask his/her students
to do several more exercise examples as a group work or as a homework to promote
retention of the procedure by repeating and to gain fluency with it (Rowland et al.,
2009). From a teacher’s point of view, an exercise example may also be used as an
instrument for assessment and such practice might result in various types of
awareness and understandings (Rowland et al., 2003). Besides, exercise examples do
not need to impose too much burden on students since they may also give rise to
different types of awareness and understandings (Rowland et al., 2009). As for
concept or procedure examples, exercise examples need to be chosen with some care

since teachers’ generation or selection of such examples is neither trivial nor

arbitrary (Rowland, 2008).
2.2.11. Counter-examples

Michener (1978) described counter-examples as examples that show that a
conjecture is false and that clarify the distinctions between concepts or definitions.
Rowland et al. (2009) indicated that counter-examples promote and challenge

students’ mathematical reasoning remarkably. Similar to Michener (1978), Rowland
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(2014) defined a counter-example as an example that is used to show that a
conjecture is false and explained this notion by using the following task: “How many
ways are there of ascending a flight of stairs if you can take one or two stairs at a time? For
three stairs, for example, there are 3 ways: 111, 12 and 21> (p. 103). As described by
Rowland (2014), there is one way for ascending one stair, two ways for ascending
two stairs, three ways for ascending three stairs and so on. Thus, the sequence
proceeds in the following way: 1, 2, 3, 5, 8, 13, 21, 34, ... Students may easily
recognize the pattern in this sequence (i.e., 3=1+2,5=3+2, 8 =5+3, 13 = 8+5, 21 =
13+8 and 34 =21+13) and they may generate the following conjecture: every term is
the sum of the previous two terms. To verify the truth of this conjecture, students
need to prove it, and to show that it is incorrect they need a counter-example. For
instance, if the number of ways for ascending eight stairs appeared to be 35 instead
of 34, then the conjecture “every term is the sum of the previous two” could not be
true in general.

Counter-examples are very often used in the teaching of mathematics
(Bogomolny, 2006). They “can serve to sharpen distinctions and deepen
understanding of mathematical identities” (Zodik & Zaslavsky, 2008, p. 165).
Watson and Mason (2005) defined counter-examples as examples which demonstrate
that a certain conjecture is invalid. Besides, they indicated that the same example

may both be a non-example and a counter-example depending on the context. They

1
illustrated that 5 is a non-example of a fraction that is a repeating decimal and a

counter-example to the claim that all fractions with non-repeating decimals include
even denominators.

Counter-examples are in a very powerful position when compared to other
examples since one counter-example may be sufficient for establishing the invalidity
of a claim while using many examples for establishing the truth of a claim may not
be sufficient (Bogomolny, 2006). Nevertheless, asking learners to generate counter-
examples may be extremely troublesome, particularly if the learners have not
generated before (Watson & Mason, 2006). For instance, Zaslavsky and Ron (1998)
investigated ninth and tenth grade students’ understanding of the role of counter-

examples in falsifying mathematical statements, their achievement in generating
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correct counter-examples and the difficulties experienced by them when generating
counter-examples. They found that “students often feel that a counter-example is an
exception that does not really refute the statement in question” (p. 231). Besides, the
students persistently believed that a counter-example is enough for falsifying a
geometric statement than an algebraic statement. Their findings also revealed
students’ inability to distinguish between an example that fulfil the necessary
conditions of a counter-example and an example that does not fulfil them.

Similarly, Mason and Klymchuk (2009) lamented that students do not attach
much importance to counter-examples and regard them as insufficient tools for
establishing the invalidity of a given proposition. Instead, students choose to use
exemplary illustrations such as rough outlining, rapid calculation or draft
arrangement to demonstrate the association among variables (Zaslavsky & Ron,
1998). Besides, although proving true propositions are commonly shown in the
teaching of mathematics, refuting of an invalid proposition is usually overlooked and
thus, students fall short of training and confidence in falsifying invalid propositions
by using counter-examples (Leung & Lew, 2013).

Although counter-examples are not emphasized in Turkish middle school
mathematics curriculum, Common Core State Standards for Mathematics [CCSSM]
(2010) has recently released new mathematics standards to enhance students’ ability
to justify mathematical conjectures and use counter-examples. More specifically,
CCSSM (2010) expects students to

“make conjectures and build a logical progression of statements to explore
the truth of their conjectures, analyze situations by breaking them into cases
and recognize and use counter-examples; justify their conclusions and
communicate them to others and respond to the arguments of others” (p. 6-
7).

To achieve this goal, teachers are expected to comprehend their students’ proving
and disproving processes clearly and teacher educators are expected to improve pre-
service and in-service teachers’ ability to cope with counter-examples in the course
of teaching (Leung & Lew, 2013).
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2.2.12. Non-examples

Non-examples show the boundaries or necessary conditions of a concept
(Watson & Mason, 2005). Similar to counter-examples, they “serve to clarify
boundaries” of a concept (Bills et al., 2006, p. 127). Non-examples play a crucial role
in promoting high levels of concept attainment (Charles, 1980; Cohen & Carpenter,
1980; Petty & Jansson, 1987; Tsamir et al., 2008). Besides, non-examples give
teachers the chance to analyze their students’ thinking and are supportive for students
in reasoning out loud (Clements, Swaminathan, Hannibal, & Sarama, 1999).

In mathematics education, research related with non-examples mainly
focused on acquisition of geometric concepts (e.g., Cohen & Carpenter, 1980; Petty
& Johnson, 1987; Wilson, 1986; Tsamir et al., 2008). For instance, Tsamir et al.
(2008) differentiated between two types of non-examples as intuitive non-examples
and non-intuitive non-examples. The non-examples which were immediately
identified by the students as non-examples were named as intuitive non-examples.
The non-examples that had notable similarities with the true examples of a geometric
concept and that were more often erroneously identified as examples of that concept
were named as non-intuitive non-examples. The researchers indicated that not all
non-examples encouraged the same type of reasoning. More precisely, they
explained that intuitive non-examples (such as, square, hexagon and ellipse)
promoted more visual reasoning whereas non-intuitive non-examples (such as, zig-
zag triangle, pentagon, open triangle and rounded triangle) promoted analytical
thinking based on critical attributes.

Cohen and Carpenter (1980) examined the effectiveness of non-examples in
the acquisition of the geometric concept semi-regular polyhedra. The researchers
stressed that a sequence of examples and non-examples is superior to a sequence of
examples alone in concept acquisition. Besides, the introduction of non-examples in
different order (such as, four examples first, four non-examples next versus four
different example-non example pairs) did not have any effect on the acquisition of
the geometric concept.

In a similar study, Petty and Johnson (1987) pointed to the superiority of a

rational sequence of examples and non-examples over a randomly arranged sequence
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of examples and non-examples on sixth grade students’ acquisition of parallelogram.
They explained that rational sequence of examples and non-examples help students
better identify distinguish between critical and non-critical attributes of the concept
of parallelogram. Finally, they suggested that when choosing school geometry
textbooks, the priority should be given to textbooks that present examples and non-
examples in a rational manner.

Wilson (1986) suggested the use of non-examples so as to diminish the
influence of prototype examples. Prototype examples are accepted immediately,
intuitively, without thinking the need for any kind of justification (Tsamir et al.,
2008). However, prototype examples may lead to cognitive obstacles since they have
“coercive impact on our interpretations and reasoning strategies” (Fischbein, 1993, p.
233). Actually, students are inclined to consider prototypical examples as examples
of the concept and consider other examples as non-examples of that concept
(Hershkowitz 1989; Wilson, 1990). Watson and Mason (2005) made the same point
that students generally identify concepts with one or two examples introduced earlier
by their teachers and they are often left with incomplete and limited sense of the
concept. In order to lessen the influence of prototype examples, the students might be
introduced to non-examples with the same non-critical attributes and thus they may
start to distinguish between critical and non-critical attributes of the concepts being
taught (Wilson, 1986).

2.3. The Notion of Example Spaces

The use of examples is a fundamental and deep-seated aspect in the teaching
of mathematics (Atkinson, Derry, Renkl & Wortham, 2000; Mason, 2006). Besides,
examples are essential components of explanation as mentioned by Leinhardt et al.
(1990):

“Explanations consist of the orchestrations of demonstrations, analogical

representations, and examples... A primary feature of explanations is the use

of well-constructed examples, examples that make the point but limit the
generalization, examples that are balanced by non- or counter-cases” (p. 6).

In mathematics, an example may be an instantiation of a mathematical class

with specific properties, a worked-out solution, an illustration of a theorem or a
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reasoning method (Sinclair, et al., 2011). However, Watson and Mason (2005) claim
that “one special example may not be enough to give learners an idea of the full
extent of what is possible, and it may it indeed be misleading in its details” (p.5).
Therefore, they developed the notion of example spaces and described it in the

following way:

“Think of an example space as a toolshed containing a variety of tools —
examples that can be used to illustrate or describe or as raw material. Some
tools are familiar and come to hand whenever the shed is opened, whereas
others are more specialised and come to hand only when specifically sought”

(p.61).
This description is similar to Tall and Vinner’s (1981) construct of concept

image. The term concept image has been described as follows:

“We shall use the term concept image to describe the total cognitive
structure that is associated with the concept, which includes all the mental
pictures and associated properties and processes. It is built up over the years
through experience of all kinds, changing as the individual meets new
stimuli and matures” (p.152).

An example space can be described as the set of or classes of examples that
an individual has access to and therefore it can be regarded as a subset of concept
image (Edwards, 2011). Similarly, Mason and Watson (2008) stressed that an
example space constitutes an individual’s important part of his/her concept image
and defined it as the collection of examples and non-examples which the learner have
access to. In a more recent study, Zaslavsky and Zodik (2014) considered an example
space “as the collection of examples one associates with a particular concept at a
particular time or context” (p. 527) and emphasized that the notion of example
spaces in closely linked to Vinner and Tall’s concept image (Vinner 1983; Tall &
Vinner 1981).

However, learners can access only to a limited number of examples at any
specific moment and this is referred to as evoked example space (Zazkis & Leikin,
2007) or situated (local) personal (individual) example space (Watson & Mason,
2005), or accessible example space (Goldenberg & Mason, 2008). As Watson and
Mason (2005) mentioned, examples in this space are not isolated from each other:
“Example spaces are not just lists; they have an internal, idiosyncratic structure - in

terms of how the members and classes in the space are interrelated - and it is through
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this structure that examples are produced” (p.51). In addition, example spaces are not
static, but rather dynamic and evolving (Goldenberg & Mason, 2008). Likewise, a
learner’s concept image is not fixed; it might grow or change via experience and
different parts of a learner’s concept image may develop at different times and in
different ways (Tall & Vinner, 1981). It can be suggested that introducing students
specific examples of a concept is part of such experience and if it is accepted that
students’ concept image is affected by examples, then a plausible approach to
rebuilding their image is to extend their example space from which they make
generalizations (Zazkis et al., 2007). Similarly, Watson and Mason (2005) stress that
the extension and exploration of example spaces are essential in learning

mathematics:

“Learning mathematics consists of exploring, rearranging, and extending
example spaces and the relationships between and within them. Through
developing familiarity with those spaces, learners can gain fluency and
facility in associated techniques and discourse. Experiencing extensions of
your example spaces (if sensitively guided) contributes to flexibility in
thinking not just within mathematics but perhaps even more generally, and it
empowers the appreciation and adoption of new concepts” (p. 6).

Generating examples not only enriches learners’ example space in terms of its
content but also provides opportunities for exploring its structure in terms of the
connections among the elements of that space and in turn reveals or changes their
sense of generality (Abdul-Rahman, 2005). To describe the structure of example
spaces and to encourage learners distinguish varying aspects and structural aspects of
mathematical objects, Watson and Mason (2005) extended Marton and Booth’s
variation theory (Marton & Booth, 1997). Put another way, Watson and Mason
(2005) introduced the notions of dimensions of possible variation and the range of
permissible change so as to describe the structure of examples spaces.

As mentioned before, an example space is “a set of all examples of a
particular mathematical object or concept that an individual is consciously or
implicitly aware, together with many associated properties the individual believes the
examples possess, and any links the individual has drawn between examples”
(Edwards & Alcock, 2010, p. 3). Watson and Mason (2005) also distinguished
between several kinds of example spaces and they mentioned the following types:
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“situated (local), personal (individual) example spaces, triggered by a task,
cues and environment as well as by recent experience; personal potential
example space, from which a local space is drawn, consisting of a person’s
past experience (even though not explicitly remembered or recalled), and
which may not be structured in ways which afford easy access; conventional
example space, as generally understood by mathematicians and as displayed
in textbooks, into which the teacher hopes to induct his or her students; a
collective and situated example space, local to a classroom or other group at
a particular time, that acts as a local conventional space” (p. 76).

In the previous sections, the definition of an example, example types, and the
notion of example spaces were described in detail. In the following section, learners’
difficulties and misconceptions about rational number concepts were described in

some detail.
2.4. Learners’ Difficulties and Misconceptions about Rational Number Concepts
In mathematics, there is not an agreed upon definition about the notion of a

rational number. For instance, Tattersall (2005) and Niven (1990) defined a rational

number as any number that can be written in the form of % where a and b are

integers and b is not equal to zero. On the other hand, Breuer (2006), Lang (2006)
and Sierpinski (1998) defined a rational number as any number expressed in the form

of % where and b are integers, b=0, and a and b are relatively prime. Yanik

(2013) cautioned that most mathematics textbooks do not explicitly express that
numerators and denominators are relatively prime in rational numbers. Baskan,
Bizim and Cangiil (2006) and Celik, Celik, Bizim and Oztiirk (2013) made the same
point and stressed that this restriction (a and b are relatively prime numbers) is
crucial since it is used when proving whether a given number is rational or not.
Nevertheless, the Turkish middle school mathematics curriculum (MoNE, 2009b)
and the school mathematics textbook prepared by Aydin and Beser, (2013a) defined

the notion of a rational number as:

Q ={Any number in the form of%,an,beZ,b;&O}. As it can be seen, this

definition also ignores the relative primeness of a and b.
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Rational number concepts are among the most important mathematical ideas
students encounter in their school years (Alacaci, 2009; Behr et al., 1983; Behr et al.,
1984; Yanik, 2013). Behr et al. (1983) stressed that rational numbers form the basis
of elementary algebraic operations, they develop the ability to cope with real life
problems, and help to develop and expand mental structures essential for students’
continuous intellectual development. Due to their importance, Turkish mathematics
curricula (MoNE, 2009a, 2009b, 2011) also give substantial emphasis on rational
number concepts. According to MoNE (2009a), elementary school students (grade 1-
5) are expected to learn and develop fluency with fraction concepts and operations.
By the way, fractions refer to non-negative rational numbers since “students begin to
study fractions long before they are introduced to the integers” Lamon (2012, p. 29).

Similarly, in middle schools (grade 6-8) sixth grade students are expected to
understand fraction concepts, procedures and operations in grade 6. In addition, they
are expected to apply and extend their previous understandings about fraction
concepts and operations to rational number concepts and operations in grade 7. More
specifically, the middle school mathematics curriculum expects seventh grade
students to learn how to explain and locate rational numbers on a number line,
express rational numbers in different forms, compare and order rational numbers, add
or subtract rational numbers, multiply or divide rational numbers, perform multi-step
operations with rational numbers, and finally pose and solve rational number
problems (MoNE, 2009b).

Ultimately, in secondary schools (grade 9-12) ninth grade students are
expected to explain the concept of rational number, perform addition, subtraction,
multiplication and division operations with rational numbers, express the properties
of addition and multiplication operations with rational numbers, order rational
numbers and locate them on the number line, demonstrate the density of rational

number set and convert rational numbers into their decimal forms (MoNE, 2011).

2.4. 1. Students’ difficulties and misconceptions about rational number concepts

Although students are introduced to rational numbers almost at all grade
levels, rational numbers are notorious for the difficulty encountered by students (e.g.,
Haser & Ubuz, 2003; Lamon, 2007; Ni, 2001; Vamvakoussi & Vosniadou, 2010).
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Similarly, Yetim and Alkan (2013) stated that student misconceptions are prevalent
in the domain of rational numbers. The differences between rational numbers and
integers and natural numbers give rise to difficulties in teaching rational number
concepts (Siegler, Thompson & Schneider, 2011; Stafylidou & Vosniadou, 2004).
One of the factors that gives rise to student difficulties in rational number concepts is
students’ interference of natural number knowledge to rational numbers (Ni & Zhou,
2005; Streefland, 1991). Similarly, Post, Wachsmuth, Lesh and Behr (1985) claim
that “children’s understanding about whole numbers often adversely affect their early
understandings about fractions. For some children, these misunderstandings persist
even after relatively intense instruction based on the use of manipulative aids” (p.33).
Van de Walle, Karp and Bay-Williams (2013) explained students’ four common
misapplications of natural number reasoning to fractions as thinking numerators and
denominators as separate entities, thinking the numerator refers to any number of
parts rather than the number of equal-sized parts, thinking that the fraction with a
larger denominator is larger than the one with a smaller denominator, and

overgeneralizing operations with natural numbers to fractions such as %+g:;.

Similarly, some other researchers pointed out that students misinterpret the symbol

% by thinking a and b as two unrelated numbers, think that a and b are additively

related, or think that rational numbers with large numerators and denominators are
greater than rational numbers with small numerators and denominators (Moskal &
Magone, 2000; Moss, 2005; Lamon, 2012; Stafylidou & Vosniadou, 2004).

Another factor that gives rise to student difficulties in rational number
concepts is problems with notation of rational numbers (Moss, 2005; Ni & Zhou,
2005; Smith, Solomon & Carey, 2005). Kilpatrick, Swafford and Findell (2001)
noted that there are many different representations and interpretations for rational

numbers and these representations and interpretations make rational numbers

difficult to understand. Accordingly, the number % has five different interpretations.

These are part-whole, measurement, division, operator, and ratio (Van de Walle, et

al., 2013). For a meaningful understanding of fractions, students need to translate
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among these representations flexibly (Yetim & Alkan, 2013). However, many
researchers reported that students have great difficulty in translating among these
representations (e.g., Haser & Ubuz, 2002; Tirosh, Tsamir & Hershkovitz, 2008).
This might be due to the emphasis placed on part-whole subconstruct by most
textbooks and schools (Clarke, Roche & Mitchell, 2008; Siebert & Gaskin, 2006).
Therefore, teachers should provide the students with the opportunity that there are
other conceptions of fractions beyond the part-whole subconstruct (Mack, 2001;
Steffe & Olive, 2010).

Not exploring fractions with different models might also explain student
difficulties or misconceptions about rational number concepts. Indeed, textbooks
most often do not use manipulatives and when they do, they are inclined to use only
region models (Hodges, Cady & Collins, 2008). Similarly, Sowder (1988) stated that
students are model poor and many of them only have circular region as their fraction
model and she added that being model poor may lead to additional problems in
developing understanding of fractions. Lesh, Post and Behr (1987) proposed a
translation model by assuming that elementary mathematical ideas can be
represented in five different ideas as real life situations, manipulatives, written
symbols, verbal symbols, and pictures. Translating within and among these
representations can be considered as key tasks (Ainsworth, Bibby & Wood, 2002)
and may help to deepen students’ conceptual understanding of fractions (Cramer,
2003). More specifically, Yetim and Alkan (2013) conducted a study to examine
seventh grade students’ common misconceptions and errors in expressing rational
numbers in different forms. They found out that students had difficulty identifying
rational numbers, linking rational numbers to decimals, representing rational
numbers, performing rational number divisions and understanding how to divide a
number by zero or the vice versa. Consequently, they suggested the use of concrete
materials and representations in overcoming student difficulties or misconceptions
about rational numbers.

Students’ difficulty in understanding rational number concepts and operations
seems to stem from the fact that students memorize the algorithms and the related

formulas rather than understanding the essence (Siap & Duru, 2004). Student
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difficulties about rational number concepts and operations can be attributed to
traditional education which forces students to rote memorization rather than to
conceptual understanding (Moseley, 2005). Van de Walle et al. (2013) supported this
idea and expressed that students struggle with fractions since “instruction does not

focus on conceptual understanding of fractions” (p. 291).

2.4. 2. Pre-service and in-service teachers’ difficulties and misconceptions about
rational number concepts

Rational number concepts are also very challenging for pre-service and in-
service teachers (An, Kulm, & Wu, 2004; Izsak, 2008; Ma, 1999; Tirosh, 2000).
More specifically, the previous research on teachers’ knowledge of fractions
converged on three main findings: (a) having difficulty in carrying out fraction
procedures, (b) having limited understanding of fraction concepts and operations,
and (c) holding misconceptions about fractions which are resistant to change (Osana
& Royea, 2011). A brief summary of these main findings are presented below.

Teachers experience difficulties when performing four operations with
fractions (Newton, 2008; Tirosh, 2000). For instance, Newton (2008) pointed out that
pre-service elementary teachers used cross multiplication algorithm when performing
multiplication of fractions and they added or subtracted across denominators when
performing addition or subtraction of fractions.

There is also considerable evidence to suggest that teachers lack
understanding of fraction concepts and operations (Ball, 1990; Ma, 1999; Simon,
1993). They have limited capacities in explaining the product of two rational
numbers or decimals (e.g., Armstrong & Bezuk, 1995; Eisenhart et al., 1993). To
illustrate, Armstrong and Bezuk (1995) introduced middle school teachers a word

problem for which calculating % of % would be relevant. The middle school

teachers realized that the problem entailed rational number multiplication. However,
they had great difficulty in explaining their thinking and understanding the relevant
unit or the whole for the given problem.

Some other researchers found out that teachers have difficulty realizing which

problems or situations entail multiplication of decimal numbers (Graeber & Tirosh,
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1988; Graeber, Tirosh & Glover, 1989). For instance, Graeber and Tirosh (1988)
found out that teachers often employed inappropriate division operations when
solving problems such as “One kilogram of detergent is used in making 15 kilograms
of soap. How much soap can be made from 0.75 kilograms of detergent?” (p. 264).
Graeber and Tirosh (1988) also found out that teachers erroneously believed that a
larger number must be always divided by a smaller one in division problems such as
“Twelve friends together bought 5 pounds of cookies. How many pounds did each
friend get if they each got the same amount?” (p. 265).

Likewise, Tirosh (2000) reported that pre-service and in-service teachers tend
to pose multiplication problems or are not able to pose correct problems for given
division operations. Moreover, Tirosh (2000) organized the literature on learners’
mistakes about fraction division into three main categories as algorithmically based
mistakes, intuitively based mistakes, and mistakes based on formal knowledge.
Algorithmically based mistakes refer to inversion of the dividend in place of the
divisor or inversion of both terms before multiplication. Intuitively based mistakes
refer to overgeneralization of properties of natural number operations to fraction
operations and to the interpretation of division solely as partitive model of division.
Finally, mistakes based on formal knowledge occur due to learners’ limited
conceptions of fractions. For instance, believing that division operation is

commutative may lead to errors such as 1+%:%because 1+% :%+1:%. Similar

to Tirosh (2000), Ball (1990a) indicated that pre-service teachers successfully

performed division operations such as 1%+% but they could not pose word

problems for such division operations.

In another study, Isik and Kar (2012) aimed to make an error analysis of the
problems posed by prospective elementary mathematics teachers about division of
fractions. They observed seven different types of errors in the problems posed by
prospective teachers as confusion in units (E1), assigning natural number meanings
to fractional numbers (E2), posing problem using ratio and proportion (E3), not
being able to establish part-whole relationships (E4), dividing to the denominator of

the divisor (E5), using multiplication operation instead of division operation (E6),
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and posing problem through inverting and multiplying the divisor fraction (E7). E1
occurred when prospective teachers did not use the units consistently for the rational
numbers included in a division operation. E2 was related with assignment of natural
number meanings to fractional numbers. E3 referred to the cases in which problems
were posed by comparing different units or by comparing two fractions with same
units. E4 occurred due to posing division problems which include quotients (the final
amount) that are larger than the dividend (initial amount). E5 occurred when
prospective teachers attempted to pose problems in a way that entailed division of
first rational number (dividend) to the denominator of the second rational number
(divisor) instead of the second rational number itself. E6 referred to the cases in
which prospective teachers posed problems that required multiplication of the
dividend fraction with the divisor fraction. Finally, E7 occurred due to posing
problems which entail inverting the divisor fraction and multiplying it by the
dividend fraction.

Finally, some researchers reported that pre-service teachers hold several
misconceptions about fraction operations (e.g., Newton, 2008; Tirosh & Graeber,
1990). For instance, Newton (2008) extensively analyzed pre-service elementary
teachers” knowledge of fraction operations including addition, subtraction,
multiplication and division. By including all four operations in her study, Newton
(2008) detected a misconception that was very common among pre-service teachers.
That is, pre-service teachers erroneously believed that having same denominators
necessitates keeping the denominator of the answer the same, while having different
denominators necessitates employing the given operation on the denominators.
Newton (2008) suggested that pre-service teachers appeared to hold a misconception
about the role of denominators unlike young students who add across numerators and
denominators due to the overgeneralization of whole number thinking to fraction
operations.

Similarly, Tirosh and Graeber (1990) explored the common misconceptions
held by pre-service teachers. That is, many of the pre-service teachers erroneously
believed that in a division operation the dividend must always be larger than the

quotient. The researchers interviewed with the pre-service teachers and found out
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that they were able to accurately perform division operations in which the divisors
are less than 1. However, they also agreed that the quotient must always be less than
the dividend. Their interviews revealed that pre-service teachers relied on whole
number thinking and their procedural understanding of division algorithm promoted
their misconception. The researchers further noted that pre-service teachers lacked
measurement interpretation of division and they tended to change procedures to keep

their misconceptions.

2.4.3. Why is it important to explore teachers’ treatment of rational number

examples in their classrooms?

To help teachers diminish the difficulties or misconceptions encountered by
students about rational numbers, Greer (1987) determined students’ common
misconceptions about rational numbers such as ‘multiplication makes bigger,
division makes smaller’. Moss and Case (1999) proposed a new curricular approach
and tested it in a study involving 5" and 6™ grade students. Moreover, NCTM (2000)
emphasized using standard documents to develop elementary and middle school
students’ rational number reasoning.

Despite the emphasis on enhancing students’ rational number understanding,
student difficulties about rational numbers still persist (Wilson et al., 2013). Besides,
many of the elementary and middle school mathematics topics involve rational
number concepts and large scale international studies such as Programme for
International Assessment (PISA) (OECD, 2010) and Trends in International
Mathematics and Science Study (TIMSS) (Mullis et al., 2008) documented low
mathematics performance of Turkish students. This low performance of Turkish
students in mathematically important topics might indicate that less attention has
been paid to rational number concepts in Turkish education system (Yetim & Alkan,
2013). Students’ low performance in rational number concepts might give some
clues about teachers’ teaching of rational numbers. Thus, it might be essential to
examine teachers’ treatment of rational number examples in their classrooms in order
to shed some light on this issue. In this study, I take an initial step in this direction
and attempt to explore the quality and quantity of examples used by middle school
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mathematics teachers in the course of teaching rational number concepts. | believe
that observing middle school mathematics teachers’ actual classroom practices would
improve not only the quality of teachers’ teaching but also students’ learning. The
findings of Morrison (2013) strengthen this belief since she attributed students’ poor
performance in mathematics to “poor sequencing of examples, limited ranges of
examples in the low rates of task completion within and across lessons and to more

general slow pacing” (p.97).
2.5. Related Studies on Teachers’ Treatment of Mathematical Examples

The review of the literature regarding teachers’ treatment of examples
revealed a few studies and among those while some dealt with pre-service teachers
(e.g., Rowland, 2014; Rowland 2008) some others chose to study with in-service
teachers (e.g., Morrison, 2013; Zaslavsky & Zodik, 2007; Zaslavsky, 2010; Zodik &
Zaslavsky, 2008). The research studies related with teachers’ treatment of examples
are reviewed in the following section.

In a recent study, Rowland (2014) examined the examples used by two pre-
service elementary teachers, why they chose those examples and whether they chose
them well. One of the pre-service teachers was in the later stages of his Postgraduate
Certificate in Education (PGCE) and he was teaching quadratic equations and finding
equivalent expressions by completing the square (CTS) in a secondary mathematics
course. The pre-service teacher used six different examples to teach CTS procedure

and all of the examples were chosen by him in-advance, since they were listed in his
lesson plan. He introduced x°+6x+8=(x+3)*—1 and worked out this example
initially and then wrote on the board the following examples for students to try CTS
on their own: (i) X* —8x+14, (iii) X* + 2x—8, (iv) X* + 6x+5, (v) X’ +3x—1 and
(vi) 2x* +4x—2. After some time, the pre-service teacher solved each example one

by one together with his students. Rowland (2014) examined these examples through
the lens of variation theory (Marton & Booth, 1997). He indicated that the

parameters a, b and c correspond to dimensions of variation in the following

quadratic function formula: ax® +bx+c. The choice of the variable ‘a’ affects the

complexity of CTS. As can be seen, all of the examples selected by the pre-service
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teacher have a=1, except for the last example. The variable ‘@’ can also take
negative values and non-integer values but the pre-service teacher preferred to delay
them to another lesson. Similarly, the choice of the variable ‘b’ remarkably
influences the complexity of CTS. Especially, when ‘b’ is selected to be even, the
complexity decreases dramatically. As can be seen, the selected examples all
included even values for the variable ‘b’. Finally, the choice of ‘c’ is another
dimension of variation and it does not influence the complexity of CTS too much, yet
the pre-service teacher included both positive and negative values of ‘c’.

Another secondary PGCE participant was reviewing simultaneous equations

and she chose to set out by the following example: 2x+3y =16;2x+5y =20. The

pre-service anticipated that the students would eliminate x by subtraction, however
she was surprised when students preferred to eliminate y since she did not know why
they did so. Later, the pre-service teacher noticed that the sign of the coefficients of y
included in the examples of her were always explicit whereas the sign of the
coefficients of x were implicit (e.g., 2x instead of +2x). Thus, she noticed that
limiting the coefficients of x to positive values might explain the choice for
eliminating y even when it is much more easy to eliminate x.

Finally, Rowland (2014) recommended that it is much better to have a pre-
planned sequence of examples when setting out to teach mathematical concepts or
procedures such as solving simultaneous equations by substitution method. By this
way, the teachers might introduce examples by gradually increasing their
complexities.

In a similar study, Rowland (2008) observed the teaching of twelve
prospective elementary teachers during their final school placement to determine for
which purposes they used mathematical examples in their teaching. Namely, he
examined pre-service teachers’ good and poor choices of examples. However, he
observed that pre-service teachers’ poor choice of examples were more prevalent. He
reported teachers’ good and poor choices of examples under four categories as:
variables, sequencing, representations and learning objectives.

The examples selected by pre-service teachers for the variables category
reflected their poor choice of examples. More specifically, when teaching how to add
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and subtract whole numbers, identify co-ordinates of a point and tell the time, the
examples selected by the teachers obscured the role of variables. For instance, for
teaching addition and subtraction 9+9=18 and 4-2=2 were selected as
examples, for teaching how to identify the co-ordinates (1,1) was introduced first and
finally when teaching half past, half past six was demonstrated on an analogue clock
(Note that both hour and minute hands point to 6 on the analogue clock for half past
Six).

In the sequencing category, teachers usually generated a set of examples at
once and the examples reflected both good and poor choices of teachers. The
sequences of examples were generated when practicing number bonds to 10 and
number bonds to 100. For instance, when practicing number bonds to 10, the
following numbers were selected by a teacher: 8, 5, 7, 4, 10, 8, 2, 1, 7 and 3.
According to Rowland, this is a very well chosen sequence for several reasons. First,
8 and 7 are close to 10, so they require little or no counting to reach the answer. 5
puts into play doubling strategy as a key for mental computation. The selection of 4
is more confusing and the selection of 10 is a degenerate case and it does not entail
counting but it emphasizes the idea that 0 can be added to 10. Finally, by selecting 8
and 2 successively, the teacher pointed to commutative property of addition.

In representations category, one of the teachers modelled subtraction
operation by moving a counter vertically and horizontally on a hundred grid. The
first demonstration example was selected to be 70-19. Modelling this subtraction
operation on a hundred square is a very complex work since 70 is on the right
boundary of hundred grid and after moving the counter two squares upwards, there is
not any square on the right side of 50 (i.e., 70-20+1). Thus, it is essential to move
down and then to move to the extreme left of the next row. As can be seen, the
selected example obscured the general procedure for subtracting on a hundred grid. It
is important to note that any of the numbers on the hundred grid except for 20, 30,
40, 50, 60, 70, 80, 90 and 100 would work properly as a minuend when
demonstrating subtraction of 19.

In learning objectives category, a pre-service teacher was trying to teach
distinguishing features of the concepts of translation and reflection. The teacher
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randomly selected a circle and a rectangle from a pile of shapes. However, the
teacher’s selection of shapes was not judicious since both shapes remained invariant
not only after translation and but also after reflection.

Ultimately, Rowland (2008) suggested that pre-service teachers should be
guided specifically and helped in understanding the various roles of examples in the
teaching of mathematics. Besides, they should be informed about the existence of
potential dangers or unexpected difficulties in selecting examples.

In another study, Morrison (2013) compared two foundation phase teachers’
(Zelda and Deborah teach Grade 1 and Grade 2 respectively) choice and use of
examples in the course of teaching number concepts. She analyzed the data from
lesson observations by using the analytical framework of Rowland (2008). In her
first lesson, Deborah focused on addition and in particular on counting, ordering
numbers on a number line and addition on a number line. However, she did not take
into account dimensions of possible variation and provided her students with
examples that all involve join conception of addition. Besides, she presented those
examples by using the ‘result unknown’ such as 3+5=0. She ignored taking
account of variables by not using the ‘change unknown’ and ‘start unknown’ such as
3+o=8and o+5=8respectively. Thus, the addition examples used by Deborah did
not expose the students to a variety of addition problems that they may confront. To
teach addition on a number line, Deborah generated the following sequence of
examples: (i) 2+6, (ii) 10+10, (iii) 3+5 and (iv) 10+6. Deborah’s second example was
more complex than the first one, since it included two-digit numbers whereas the
first example included one-digit numbers. However, the third example was less
challenging than the second example since children usually learn double number
facts such as 10+10 very quickly. Similarly, the fourth example is relatively easy
when compared to the second example since it entails the addition of a single digit
number to 10. Deborah chose to illustrate addition of numbers on a number line.
However, she did not use the number line in a way that provided the students greater
access to the concept or procedure being taught for several reasons. First, the range
of numbers in the examples was so small that the students did not find it necessary to

use the number line when adding. Second, the selection of well-known double (i.e.,
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10+10) also diminished the need for adding on a number line since it is very easy to
add 10 and 10. Finally, her way of demonstrating addition on a number line resulted
in a calibrated number line with an irregular scale and this made it procedurally
confusing.

Zelda took account of variables when teaching counting. The possible
dimensions of variation in her examples included the interval or size of the count (2
and 3); the direction of the count (backwards and forwards) and the start and end
points of the counting sequences (counting in 3s by starting from 3, counting in 2s by
starting from 6, and counting backwards in 2s by starting from 29). By using
variation, Zelda considered the relative complexity of examples since counting from
the first number in a counting sequence is easier than counting by starting at a
number that is far from the first number such as starting at 6 when counting in 2s.
Zelda used a random sequence of numbers when teaching how to order numbers
from 0 to 15. By using an activity, Zelda asked the students to fish the numbers out
of the pond and the following sequence was generated: 8, 7, 3, 11, 0, 13, 15, 1, 5, 6,
4,12,9, 14, 10 and 2. This sequence worked well since it helped the teacher to easily
notice the students who had difficulty identifying the symbolic forms of the numbers.
Zelda also used several well designed representations in a planned manner. For
instance, when counting back mentally from 29 in 2s, the students had great
difficulty and the teacher provided the students with a 1-100 wall chart and this
representation enhanced students’ ability to count backwards. Besides, Zelda gave
importance to making connections between representations and she established
connections between words, symbols and actions that she used to explain addition on
a number line. Ultimately, Morrison (2013) pointed to the link between a higher
content knowledge and the extent of a teacher’s example space and suggested
researchers to further explore this by using a larger sample.

In another study with secondary school teachers, Zaslavsky and Zodik (2007)
attempted to explore experienced teachers’ treatment of mathematical examples.
They analyzed five examples in terms of their strengths and weaknesses and aimed at
increasing the awareness of teachers, teacher educators and researchers to possible

consequences of particular choices. Example 1 included a gradual sequence of
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examples that might be used to facilitate the notion of invariance, Example 2 called
for sensitivity to students’ misconceptions, Example 3 called for increasing students’
awareness of overgeneralization, Example 4 called for a more general case and
Example 5 included a teacher’s poor choice of coefficients as a result of
arbitrariness.

In Example 1, a teacher wanted to introduce her students’ the area formula of
a triangle in an 8" grade pre-algebra classroom. The teacher initially provided a
rectangle and its area calculation formula. Next, she introduced a right angle that is
clearly half of the afore-given rectangle. Finally, she introduced a more general
triangle and kept the length measurements constant. The teacher seemed to use a
well-chosen set of examples for some reasons. First, the three examples were
provided in a well-connected manner. Second, some features were kept constant
while some others varied and this helped students better focus on varying elements
such as the type of figure and the link between a side and its corresponding height.
Nevertheless, there were several missed opportunities that might have influenced
students’ comprehension. First, it was not obvious whether the teacher considered the
triangle as a general triangle and she did not articulate that in the classroom. The
students may easily perceive the triangle as another right triangle that has been
turned around. Second, the teacher could have asked for more suggestions on how to
divide the base of the triangle into two parts such as 1-5, 2.5-3.5 if the length of the
base is 6 units. By this way, she could have clearly demonstrated the idea that the
area of a triangle remains invariant even if the location of the point where the height
intersects the base is changed.

In Example 2, a teacher wanted to teach the notion of slope to her students.
For this aim, she drew a figure on the board and at that time by examining the figure
one of the students claimed that ‘the first mountain is higher than the second one and
thus the first one is steeper than the second one’. As can be seen, the teachers’
drawing fostered a common student misconception, confusion of the concept of
height with the concept of slope, of which the teacher was not aware. In response to
her students’ claim, the teacher erased her first drawing and drew another figure in

which the two mountains had same heights but different slopes. The students’ remark
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helped the teacher become aware of the limitation of her initial example and led her
to modify it.

In Example 3, a teacher wanted to teach the concept of median of a triangle in
a geometry lesson. By looking through the teachers’ initial example of a median, one
of the students overgeneralized that any median is also an angle bisector. Again, the
teacher was not aware of the limitation of her initial example and after the student’s
remark, the teacher recognized that her initial example had some non-critical features
that might mislead students in concept acquisition.

In Example 4, a teacher wanted to teach the concept of kite. She first drew the
figure of a prototypical kite and then introduced its definition as a quadrilateral that
consists of two isosceles triangles sharing the same base. Next, the teacher wanted to
provide a non-example by changing the position of one of the isosceles triangles.
However, this initial non-example had particular visual inferences that the teacher
was not aware. At that moment, one of the students interfered and stated that the
teacher drew an equilateral triangle accidentally. The teacher immediately noticed
that her initial non-example was perceived as a special kite in which one of the two
isosceles triangles is an equilateral triangle. Then, the teacher drew another more
persuasive non-example that could be considered as a general non-example.

In Example 5, a teacher chose to use the quadratic equation 2x*> +4x+5=0
to teach how to use the Viete formula that has to do with the sum and products of the
roots of a quadratic equation. As the teacher set out to teach the formula, he noticed
that the choice of his quadratic equation was a poor one since it did not have real
roots (A=b*—4ac=16-4.2.5=-24<0). Thus, the students were not able to use
the Viete formula. Here, the teacher wanted to give a sense of randomness when
selecting coefficients of the quadratic equation. However, he did not notice that the
coefficients needed to be selected with some care and thus he did not check the
necessary conditions. When he became aware of the limitation of his example, he
provided another quadratic equation that he knew that there were certainly two real
roots.

Zaslavsky and Zodik (2007) suggested teachers to keep in mind that random

choice of examples may lead to visual examples that do not exist and added that
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teachers might better plan the examples they introduce so as to avoid mismatches and
misunderstandings.

In a similar study, Zaslavsky (2010) used a number of cases to examine
mathematical examples in terms of their explanatory power and the challenge of
selecting relevant ones. She discussed the following major themes that are all
associated with instructional explanations: (1) conveying generality and invariance,
(2) explaining and justifying notations and conventions, (3) establishing the status of
pupils’ conjectures and assertions, (4) connecting mathematical concepts to real-life
experiences and finally, (5) the challenge of constructing examples with given
constraints.

Case 1 had to do with introducing the area formula of a triangle by moving
from the area calculation of a rectangle, to the area calculation of a right angle and
finally to the area calculation of a more general triangle. This case was explained in
detail when reviewing the study of Zaslavsky and Zodik (2007).

Case 2 illustrated the potential power of examples in explaining and
justifying mathematical notations and conventions. A group of mathematics
educators pointed to the necessity of listing the vertices of a polygon systematically
in either clockwise direction or in anticlockwise direction to avoid ambiguity related
with the notation of it. To show that random use of choice of vertices of a quadrangle
may lead to ambiguities, the mathematics educators generated three different
quadrangles labelled as ABDCA, ACBDA and ABCDA. When these quadrangles
were presented to secondary school mathematics teachers, one of them claimed that
the three quadrangles were congruent. In response to the teacher’s claim mathematics
educators generated three distinct quadrangles with the aforementioned labels. Thus,
this case showed that without mathematical convention, ambiguities may occur and
this may hamper mathematical communication among learners.

Case 3 had to do with a group of secondary school mathematics teachers’

I . 2 . . : 1 . .. .
validation of the claim that 3 IS in the midst of 3 and %smce 2 is in the midst of 1
and 3 and 3 is in the midst of 2 and 4. This case portrayed a classroom event that

entails in-the-moment decision. The teachers generated twelve examples until they
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. 2 3 4
reached the consensus that the claim is not always true. 32 and 3 were the counter-
: . 1
examples generated by the teachers since these fractions were not between > and

g. This case foregrounded the challenge that is encountered by teachers when

choosing or generating relevant examples in contingent classroom events.

Case 4 is about an eighth grade teacher’s choice of examples when
introducing the notion of slope to her students. This case was explained in detail
when reviewing the study of Zaslavsky and Zodik (2007).

In Case 5, a group of mathematics educators were asked to generate examples
of two non-congruent rectangles that have equal-length diagonals. The mathematics

educators proposed several solution strategies. Some of them based their solutions on
Pythagoras theorem (i.e.,a2+b2 =m’+n’ a,b,mneN) and some others relied on

number theory (i.e., (ac—bd)’ +(ad +hc)’ = (ac +bd)” + (ad —bc)” a,b,c,d eN) . This
case reflected the challenge of generating examples with specific constraints and was
useful in notifying that generation of a relevant mathematical example for a given
purpose is an art or a problem solving process.

Zaslavsky (2010) considered the cases she presented as meta-examples and
concluded that teachers need to know the critical features of examples they
introduced, to be aware of the affordances of the examples generated and to have the
skills to improve and extend the examples generated by their own students.

In an attempt to characterize teachers’ choice of examples in and for the
mathematics classroom, Zodik and Zaslavsky (2008) observed both randomly and
carefully selected mathematics lessons of five experienced secondary school teachers
that have at least ten years of mathematics teaching. In all their observations, they
identified 604 teacher-generated examples and only 35 student generated examples.
Of the teacher-generated examples that were observed, 317 of them were pre-
planned and 278 of them were spontaneous. More importantly, the researchers shed
considerable light into the underlying considerations or principles used by the

teachers while selecting or generating mathematical examples. Namely, the teachers
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employed the following considerations when selecting or generating mathematical
examples: starting with a simple or familiar case, attending to students’ errors,
drawing attention to relevant features, conveying generality by random choice,
including uncommon cases and keeping unnecessary work to minimum.

The teachers started teaching concepts or procedures by simple or familiar
examples. For instance, a teacher indicated that he started teaching right triangles
with bases horizontal first and he introduced tilted right triangles later. Another
teacher indicated that he began teaching radicals by simple and familiar examples

such as+/9,+/16, /25 and so forth. Besides, some of the teachers generated sequences

of examples and they gradually increased the complexity or the difficulty level of the
examples included in those sequences. For instance, one of the teachers generated a
sequence of systems of equations in the following order: First example included
simple expressions in the numerator and it was easy to find the least common
multiple of the denominators. Second example was not as simple as the first one
since it entailed using the distributive property and finding the least common
multiple was more complex. Finally, the third example included fractions that were
represented differently and the choice of signs presented another difficulty.

Teachers usually generated mathematical examples by considering the
difficulties, errors or misconceptions they know their students make. For instance,
one of the teachers articulated that students tend to think that ‘when all the variables
get simplified in an algebraic expression, the answer will be equal to 0.” Thereby, the
4a’b’c®-3a’b’c

teacher chose to use the algebraic expression
6a’b“c?-2a’b’c

to help students notice

that it is equal to 1, not 0. Another teacher indicated that students tend to have

common misconceptions about square roots. For instance, students tend to think that
\/%:2-\/%:2-5=10 even though \/% is equal to \/%=\/25-2 =542 not 10.

The teacher also chose to introduce /25 to draw students’ attention to the fact that

J# +3 s not equal to/42 + /32 .
The teachers also deliberately attempted to diminish the noise of examples
they introduced. In other words, they tried to avoid cases that might lead to false

generalizations. For instance, to teach the Pythagorean Theorem a teacher gave two
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examples of right triangles in which the length of the perpendicular sides were 3, 4
and 6, 8 respectively. Note that, the second pair is twofold of the first pair. To break
this pattern, or in order for students not to make incorrect generalizations, the teacher
then introduced 5, 12 as another example. As can be seen, this pair is not a multiple
of the previous two pairs. Teachers also used structured variation in order to draw

students’ attention to relevant features. For instance, one of the teachers initially

introduced |x*~x/<20 and then deliberately moved to|x*+x|<20. Similarly,

another teacher presented a task that included a sequence of linear functions as

follows: f(x)=—x+5, f(x)=-2x+5, f(x)=-3x+5 and then she broke the pattern
by changing the degree of polynomial from 1 to 2 and by keeping the free term
constant as follows: f (x) =—x*+5.

The teachers attempted to convey generality by selecting or generating
examples at random. In some cases, random choices of examples were helpful but in
some other cases they misled or caused to miss the point. For instance, a teacher
wanted to teach exterior angle theorem to his students. To demonstrate that the size
of an exterior angle at a vertex of a triangle is equal to the sum of the sizes of the
interior angles at the other two vertices of the triangle (remote interior angles), the
teacher asked his students to suggest measurements for these two remote interior
angles. The students suggested 42° and 73° as the measurements. Next, the teacher
wanted them to measure the size of the exterior angle. At that time, the students
noticed that the size of the exterior angle was equal to 115° = 42°+73°. However,
random choices were sometimes not helpful for the teachers. For instance, a teacher
wanted to teach how to use Viete formula to his students

(@x® +bx+c=0, % +X, = —g, X, - X, = g) . The teacher randomly selected the

coefficients of the quadratic equation 2x*+4x+5=0. This quadratic equation did
not have real roots and the students did not have prior knowledge of complex
numbers that are not real. Thus, application of the formula by this example was
meaningless for the students. Besides, this reflected teacher’s poor choice.

Teachers also paid attention to including uncommon cases into their

classrooms. That is, cases that were rather exceptional in mathematics or cases that

56



were under-represented in the teaching of mathematics were incorporated into the
lessons. For instance, some of the teachers articulated that 0 and 1 are the only

numbers that remain invariant under rational number coefficients when teaching

square roots such as J0=0 and +1=1. Besides, one of the teachers paid attention
to introducing non-prototypical examples of a concept in addition to prototypical
ones. That is, the teacher drew on the board a concave kite instead of a convex kite
and asked the students to ponder whether the definition of a kite held for that
example.

Teachers attempted to keep unnecessary work to minimum when teaching

concepts or procedures. For instance, one of the teachers chose to use % in place of

%or% for teaching the period of a number since he considered that % had a

period that is long enough and there was no need to spend extra time on the technical

work of finding the period of %or% that is much longer. In addition to this,

teachers tried to keep unnecessary work to minimum by highlighting the appropriate
parts of examples and not going into extra details. For example, a teacher introduced
a problem to his/her students and explained how to solve that problem without
finishing all the computations.

Zodik and Zaslavsky (2008) emphasized that the wide range of episodes they
observed might provide a rich source for adapting them into teacher education
programs and they added that this might be very helpful in obtaining systematic
knowledge that promotes teachers’ theoretical and practical knowledge of treatment
of mathematical examples.

Similar to the previous study, Bills and Bills (2005) explored the initial
examples used by in-service and pre-service teachers in introducing particular
mathematical topics. More specifically, the teachers were asked to consider the
examples they might select as the first one to use in introducing the calculation of
area of a triangle, addition of fractions and solution of linear equations. Besides, the
experienced teachers were asked to articulate their pedagogical intentions in

selecting a particular example as an introductory example. When teachers were asked
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to give the initial example they would use to introduce the calculation of area of a
triangle, all but one of the in-service teachers preferred to start with a right-angled
triangle, whereas only nearly half of the pre-service teachers preferred to start with a
more general triangle that is not right-angled. The in-service teachers gave emphasis
on building up from a simple case (from a right-angled triangle) to help students
learn how to use the formula for calculating the area of any triangle.

The in-service and pre-service teachers were next asked to give the first
example they would use in introducing addition of fractions. Two thirds of the in-
service teachers preferred to start with examples that included only halves and/or
quarters such as %2 + Y5, Y4 + Y and %2 + Y4, whereas six out of ten pre-service
preferred to start with %2 + % and % + Y. The in-service teachers addressed the role
of known facts and procedures in developing understanding and again they
emphasized starting with a simple case when introducing addition of fractions.

Finally, the in-service and pre-service teachers were asked to give the first
example they would use in introducing solution of linear equations. There was a
common consensus among in-service teachers on choosing examples where the
solution is a positive whole number, where the unknown appears first and where
there is a single operation on the unknown such as x+1=3 instead of 1+x=3 or
3=x+1. However, pre-service teachers’ initial example preferences for introducing
the solution of linear equations were more varied.

Bills and Bills (2005) identified two themes that emerged from the
discussions among in-service and pre-service teachers: simple example as a first step
in developing understanding of a mathematical concept and the use of mathematical
examples to avoid confusion. However, the researchers alerted that their data
analyses was based on in-service and pre-service teachers articulations of their
possible choices of examples as initial examples rather than the data derived from

observing in-service and pre-service teachers’ actual classroom practices.

58



2.6. Summary of the Related Studies on Teachers’ Treatment of Mathematical

Examples

Rowland (2008) developed a conceptual framework for analyzing pre-service
teachers’ choice and use of examples in the course of teaching elementary
mathematics concepts such as addition and subtraction of whole numbers and
geometric transformations. This framework included four categories of uses of
examples as variables, sequencing, representations and learning objectives. Rowland
(2008) found out that the examples included under these categories mainly reflected
pre-service teachers’ poor choices. Morrison (2013) conducted a similar study by
using the same framework. However, she selected in-service teachers as the
participants of the study and focused on in-service teachers’ examples related with
number concepts. The findings of Morrison (2013) were similar to that of Rowland
(2008). That is, Morrison (2013) pointed out that in-service teachers did not take into
account dimensions of possible variation when using examples related with number
concepts. In a more recent study, Rowland (2014) focused on only the variables
category of his conceptual framework and analyzed pre-service teachers’ choice of
examples related with quadratic and simultaneous equations. Similar to his previous
study, Rowland (2014) suggested that pre-service teachers needed to better plan
examples before setting out to teach mathematical concepts or procedures in order to
introduce examples by gradually increasing their complexities.

Unlike the previous studies, Zaslavsky (2010) examined the explanatory
power of examples used by in-service teachers. She discussed the following themes
that were all related with instructional explanations: conveying generality and
invariance, explaining and justifying notations and conventions, establishing the
status of pupils’ conjectures and assertions, connecting mathematical concepts to real
life experiences and the challenge of constructing examples with given constraints.
Zaslavsky (2010) suggested that teachers needed to know the critical features of
examples they introduced, to be aware of the affordances of the examples they
generated and to have the skills to improve and extend the examples generated by
their own students. Similar to Zaslavsky (2010), Zaslavsky and Zodik (2007) focused

on examining strengths and weaknesses of examples generated by in-service
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teachers. They analyzed almost the same examples included in the study of
Zaslavsky (2010). Similar to Rowland (2014), they suggested teachers to plan their
examples to avoid mismatches and misunderstandings.

In another study, Bills and Bills (2005) examined experienced teachers’
pedagogical intentions in selecting particular examples for introducing the
calculation of area of a triangle, addition of fractions and solution of linear equations.
They found out that experienced teachers’ preferred to use simple examples as a first
step in developing understanding of a mathematical concept and to avoid confusion.
Similarly, Zodik and Zaslavksy (2008) focused on exploring experienced teachers’
considerations or principles in using mathematical examples. However, they not only
found that teachers considered to start with simple or familiar examples for
introducing mathematical concepts but also they revealed that teachers considered to
attend to students’ error, draw attention to relevant features, convey generality by
random choice, include uncommon cases, and keep unnecessary work to minimum

when using examples.
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CHAPTER 111

METHODOLOGY

The purpose of this study was to explore middle school mathematics
teachers’ treatment of rational number examples in their seventh grade classrooms.
More specifically, this study aimed to shed light on overall characteristics of
teachers’ rational number examples, the principles or considerations used by teachers
while choosing rational number examples and the mathematical and pedagogical
shortcomings of the examples used by the teachers. Through this purpose, the
following major questions and sub-questions were formulated:

1. What are the overall characteristics of examples used by middle school
mathematics teachers in the teaching of rational numbers in their seventh grade
classrooms?

a. What are the ideas emphasized in the rational number examples used
by the teachers?

b. To what extend do teachers use specific examples in the teaching of
rational numbers?

c. To what extend do teachers use non-examples and counter-examples
in the teaching of rational numbers?

d. To what extend do teachers use pre-planned and spontaneous
examples in the teaching of rational numbers?

e. Which sources do teachers use while choosing pre-planned examples
in the teaching of rational numbers?

2. What are the underlying principles or considerations that guide middle
school mathematics teachers in choosing or generating examples?

3. What mathematical or pedagogical shortcomings do the examples used by
the teachers in the teaching of rational numbers have?

a. What are the mathematically incorrect examples used by the teachers

during the teaching of rational numbers?
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b. What are the pedagogically improper examples used by the teachers
during the teaching of rational numbers?

In this chapter, (a) the overall research design and the selected strategy of
inquiry, (b) participants of the study and the contexts, (c) data collection process, (d)
data sources, and (e) data analysis procedure were described first. Next, the methods
that might be employed to ensure (f) the trustworthiness of the current research and
(g) researcher role and bias were explained. Finally, (h) the limitations of the study

were discussed.
3.1. Overall Research Design

Creswell (2009) stated that qualitative and quantitative research designs differ
from each other basically in terms of using words rather than numbers and using
open-ended questions rather than close-ended questions. He added that the
philosophical assumptions of researchers, the types of research strategies used in the
overall study and the specific methods used to conduct these strategies also provided
a more complete way to view the difference between qualitative and quantitative
research designs.

Qualitative researchers are interested in understanding people’s interpretation
of their experiences, their construction of the world and the meaning they give to
their experiences (Merriam, 2009). They tend to collect data at the site where
participants experience the problem or the phenomena under study (Creswell, 2007)
and they do not attempt to manipulate the phenomenon of interest while seeking to
understand it (Patton, 2002). Qualitative researchers collect descriptive data and the
data collected take the form of words or pictures instead of numbers (Bogdan &
Biklen, 2007). They collect data themselves and gather multiple forms of it such as
observations, interviews and documents instead of relying on a single data source
(Creswell, 2007). They tend to analyze their data inductively rather than finding
evidence to prove or disprove hypothesis held before conducting the study (Bogdan
& Biklen, 2007).

The primary focus of this study was to make a detailed description of the
examples used by middle school mathematics teachers via qualitative research
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methodologies. This study was conducted in the hope that it would add significant
findings to the literature by in depth exploration of the phenomenon of mathematical
examples. This study used open-ended research questions (how and what questions)
in order to get rich and detailed ideas about middle school mathematics teachers’
experiences of using or choosing mathematical examples in their classrooms. In
addition, the study limited its participants to four middle school mathematics
teachers since qualitative research designs produce much detailed data about a small
number of cases. To gain insights about participants’ treatment of mathematical
examples, data were collected through observations and interviews and the data
collected took the form of words or pictures after the transcription process. In this
study, rather than using statistics, the words or pictures generated by the teachers
were analyzed to describe the central phenomenon under study. Moreover, this study
described individuals and identified themes. As a result, a rich and complex picture
emerged and by using this complex picture, | tried to make an interpretation of the
meaning of the data by reflecting upon the relationship between my findings and the
previous research on examples. Finally, when reporting the findings, I reflected my
own biases, values, and assumptions and actively wrote them into the current
research study. By this way, | discussed my role or position in the research study.
There are several qualitative research methodologies addressed by
researchers. The strategy of inquiry selected for the current study was a case study.

The rationale for using this strategy is described in details in the following section.
3.2. The Selected Strategy of Inquiry

In order to investigate middle school mathematics teachers’ treatment of
rational number examples in their classrooms, qualitative case study was used.
Broadly speaking, “qualitative case study is characterized by the researcher spending
extended time on site, personally in contact with activities and operations of the case,
reflecting, and revising descriptions and meanings of what is going on” (Stake, 2005,
p.450).

Case study is used by many people in several ways to mean several things

(Merriam, 2009). Besides, the definitions of case study provided by educational
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researchers differ from each other to a certain extent. To give an example, Creswell
(2007) viewed case study as a methodology, a type of design in qualitative research,

an object of study or a product of the inquiry and defined it in the following way:

“Case study is a qualitative approach in which the investigator explores a
bounded system (a case) or multiple bounded systems (cases) over time,
through detailed, in-depth data collection involving multiple sources of
information (e.g., observations, interviews, audiovisual material, and
documents and reports), and reports a case description and case based
themes” (p. 73).

Similarly, Merriam (2009) defined qualitative case study as “an intensive,
holistic description and analysis of a bounded phenomenon such as a program, an
institution, a person, a process, or a social unit” (p. x). By this definition, Merriam
stressed the importance of the case as a single entity or a unit that has boundaries.
Stake (1995) pointed out that “case study is the study of the particularity and
complexity of a single case, coming to understand its activity within important
circumstances” (p. Xxi).

Yin (2003) distinguished case study from other methods such as experiments,
history, and survey by making a comparison of the features of the related
methodologies. In addition, he defined case study in two phases in a more technical
way when compared with the previous definitions. In the first phase, the context and
the phenomenon could be easily noticed and therefore he defined case study as “an
empirical inquiry that investigates a contemporary phenomenon within its real-life
context, especially when the boundaries between phenomenon and context are not
clearly evident” (p. 13). In the second phase, the context and the phenomenon were

not always distinguishable, and he indicated that

“case study inquiry copes with the technically distinctive situation in which
there will be many more variables of interest than data points, and as one
result relies on multiple sources of evidence, with data needing to converge
in a triangulating fashion, and as another result benefits from the prior
development of theoretical propositions to guide data collection and
analysis” (p. 13-14).

By the help of these different definitions of case study, it can be inferred that
the most significant aspect of a case study is the object of the study or the case and
its relation with its context. Thus, cases and their contexts should be carefully

defined. In addition, it can be suggested that a case is a specific, unique and bounded
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system. Merriam (2009) mentioned that boundaries of a case play an important role
in defining the case. Hence, the purpose of case study is to describe and interpret the
case within its boundaries and the context, but not to represent the world (Stake,
2005; Yin, 2003).

The current study might characterize the definitions of Creswell (2007),
Merriam (2009), Stake (2005), and Yin (2003). In this study, my aim was to “gain in-
depth understanding of the situation and meaning for those who are involved”
(Merriam, 1998, p. 19) and | specifically focused on exploring middle school
mathematics teachers’ treatment of examples in their classrooms.

Education researchers also made different categorizations for case studies
(e.g., Creswell, 2007; Merriam, 1998; Stake, 2000; Yin 2003). Yin (2003) mentioned
four types of case study designs: single-case design with single unit of analysis
(holistic), single-case design with multiple units of analysis (embedded), multiple-
case design with single unit of analysis (holistic), and multiple-case design with
multiple units of analysis (embedded). In this study, multiple-case design with single
unit of analysis was used. This design was modeled by Yin (2003) in the following

way in Figure 3.1.

CONTEXT CONTEXT
: Case Case
CONTEXT CONTEXT
Case Case

Figure 3.1. Multiple case study design with single unit of analysis (Yin, 2003, p. 40)

The context of this study was rational number instruction and the cases were
middle school mathematics teachers with different rational number teaching
experiences with the unit of analysis as middle school mathematics teachers’ rational
number examples. The context, cases and the unit of analysis could not be separated

from each other and therefore they were considered all together. The model for
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rational number instructions, middle school mathematics teachers with different
rational number teaching experiences and middle school mathematics teachers’

examples is given in Figure 3.2.

RATIONAL NUMBER
INSTRUCTION 1

RATIONAL NUMBER
INSTRUCTION 2

Middle School
Mathematics
Teacher 1

Middle School
Mathematics
Teacher2

RATIONAL NUMBER
INSTRUCTION 3

RATIONAL NUMBER
INSTRUCTION 4

Middle School
Mathematics
Teacher 3

Middle School
Mathematics
Teacher 4

Figure 3.2. Multiple case study design with single unit of analysis (Adapted from,
Yin, 2003, p. 40)

In the following section, | will give detailed information about middle school

mathematics teachers who participated in the current study.
3.3. Participants of the Study

In this section, middle school mathematics teachers who were the cases of the
current study were described. Four middle school mathematics teachers from four
different public middle schools located in the Aksaray city center participated in the
current study. All of the teachers were teaching rational number concepts to 7" grade
students during the data collection process. In the selection of the participant schools,
convenience sampling (Fraenkel, Wallen & Hyun, 2012; Gall, Gall & Borg, 2007)
was used to ensure feasibility during the data collection process to the most extent
possible and to work with teachers with different rational number teaching
experience who were teaching rational numbers and who volunteered to be a
participant. Merriam (2009) expressed that “purposeful sampling is based on the
assumption that the investigator wants to discover, understand, and gain insight and
therefore must select a sample from which the most can be learned” (p.77). In this
study, it was crucial for me to select information-rich middle school mathematics

teachers in order to get in-depth information about their treatment of rational number
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examples. Thus, rather than using probabilistic sampling, | chose to use purposive
sampling.

A variety of purposeful sampling strategies might be used to select cases for a
research study such as extreme/deviant case, typical case, maximum (maximal)
variation, homogeneous, critical, opportunistic, snowball and so forth (Creswell,
2012; Gall, Gall & Borg, 2007). In the current study, | used maximum variation
sampling. Creswell (2007) stated that this purposeful sampling strategy enables
researchers to select cases that show different perspectives on the problem, process,
or event they might portray. Thus, | was able to select middle school mathematics
teachers with different years of rational number teaching experience ranging from
two years to fourteen years. In brief, | selected the participant schools and the
participant teachers based on the following criteria:

1. Rational number teaching experience of teacher: Because my aim as a
researcher was to understand how rational number examples are treated
by different teachers, in different settings and with different rational
number teaching experience.

2. Convenience of time: Because | was also working as a research assistant
at a University, my own work schedule and that of the four teachers had
to fit with each other.

3. Convenience of location: Since | visited schools 4 days a week for about 4
months, the schools had to be close to each other and the transportation to
these four schools had to be easy.

4. Voluntary participation: Middle school mathematics teachers who were
the participants of the study were selected based on voluntariness.
Altogether, there were 17 middle school mathematics teachers in these 4
schools. However, not all teachers wanted to participate in the current
study.

This study was conducted in four different public middle schools in Aksaray

in the first semester of the 2013-2014 school year. Three male and one female middle
school mathematics teachers with different teaching experiences took part in the

study. The names of the participating teachers were changed to ensure confidentially
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and pseudonyms were used during the study. The description of each participant is
presented below according to their rational number teaching experience in

descending order.
3.3.1. Teacher A

Teacher A was 36 years old at the time of data collection and he graduated
from the mathematics department of a public university in 2000. During his
undergraduate education, he earned a non-thesis master degree in Secondary
Education Teacher Graduate Program at a different public university. Since he
graduated from mathematics department, this degree is required for being a
mathematics teacher at public schools governed by Ministry of National Education in
Turkey. He does not hold a graduate degree. Teacher A started teaching mathematics
to middle school students soon after he graduated from mathematics department. He
has 14 years of mathematics teaching experience and 14 years of rational number
teaching experience. He has been a mathematics teacher of 6", 7™, and 8" grade
middle school students for 14 years. In addition, he has been teaching 5" grade
students for the last 6 years. He has worked in 3 different cities in Turkey and at 5
different public middle schools throughout his teaching profession. Since 2005, he
has been teaching in Aksaray city and he has been teaching for 3 years in the current
school that has been observed by the researcher. In his current school, there are five
7" grade classrooms and he is teaching two of those classrooms. Besides, he was also

teaching 5%, 6™, and 8™ grade students during the implementation of this study.
3.3.2. Teacher B

Teacher B was 36 years old at the time of data collection and he graduated
from the mathematics department of a public university in 2000. After his graduation
from the mathematics department, he earned his non-thesis master degree in
Secondary Education Teacher Graduate Program at the same university. He earned
his master’s degree in the Department of Mathematics at a public university in 2003.
He is currently doing his PhD in the Department of Mathematics at a different public

university. Teacher B started his teaching profession as soon as he completed his

68



non-thesis master program. He has 11 years of mathematics teaching experience and
10 years of rational number teaching experience. He first started teaching
mathematics at a public secondary school to 9", 10", 11™, 12" grade students for one
year. For the last 10 years, he has been a teacher in Aksaray city at three different
public middle schools. More specifically, he has been teaching mathematics to 5%,
6", 7 and 8™ grade students for 2, 10, 10, and 8 years respectively. In addition, he
has been teaching for 2 years in the current school that | observed. In his current
school, there were four 7" grade classrooms and he was teaching mathematics to all
these classrooms. In addition to this, he has been conducting mathematical
applications courses for 5" grade students during that time.

3.3.3. Teacher C

Teacher C was 31 years old at the time of data collection and he graduated
from Elementary Mathematics Education Program of a Department of Elementary
Education of a public university in 2005. He does not hold a graduate degree. After
his graduation, he immediately started his profession at a public middle school in the
middle regions of Turkey. He has 9 years of mathematics teaching experience and 8
years of rational number teaching experience. In more details, he has taught
mathematics to 5™, 6™, 7", and 8" grade students for 1, 9, 8, and 7 years respectively.
He has worked in 2 different cities and in 3 different public middle schools since the
beginning of his teaching profession. He has been working in Aksaray since 2010
and has been teaching in the current observed school for 2 years. In this school, there
were four 7" grade classrooms and he was teaching mathematics to all of these
classrooms. In the meantime, he was also a mathematics teacher of 5" and 6™ grade

students.
3.3.4. Teacher D

Teacher D was 26 years old at the time of data collection and she graduated
from Elementary Mathematics Education Program of a Department of Elementary
Education of a public University in 2010. She does not hold a graduate degree.

Between years 2010 and 2012, she worked at a private studies centre (etiit merkezi)
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in Aksaray city. During this time, she also worked as a private tutor of mathematics.
Two years after her graduation, she started working at a public middle school located
in the eastern part of Turkey. She has been a teacher at this middle school for one
year and taught mathematics to 5, 6", 7", and 8" grade students during that time. In
2013, she started teaching at a public middle school located in Aksaray city and
taught mathematics for 6™, 7%, and 8" grade students. Together with private tutoring,
she has 4 years of mathematics teaching experience and 2 years of rational number
teaching experience. More precisely, she has been a mathematics teacher of 5™, 6%,
7" and 8™ grade students for 1, 3, 4, and 3 years respectively. She has worked in 2
different cities in 2 different public middle schools since the beginning of her
teaching profession. In her current school, there were four 71" grade classrooms and
she was a mathematics teacher of three of these classrooms. Apart from these, she
was also a teacher of 8" grade students.

To sum up, a brief descriptive demographic account of these four middle

school mathematics teachers are presented in Table 3.1.

Table 3.1. Teachers’ demographic information for the four classrooms at the time of

the study
Description Teacher A Teacher B Teacher C Teacher D
Gender Male Male Male Female
Age 36 36 31 26
University Public Public Public Public
Elementary | Elementary
Background Mathematics | Mathematics | Mathematics | Mathematics
Education Education
Total years in teaching 14 11 9 4
it IV IR I
Years in Aksaray 9 10 4 3
Years in current school 3 2 2 1
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3.4. The Contexts of the Study

Turkish education system is a centralized system. Thus, all teachers and
students follow the same national mathematics curricula. MoNE (2009a, 2009b,
2011) had three different official curriculum guidebooks for elementary (grades 1-5),
middle (grades 6-8) and secondary (grades 9-12) levels at the time of the study.
These guidebooks represented the intended mathematics curricula by “providing in-
depth background information about the philosophy, goals and approaches of the
curriculum, content to be covered together with some sample introductory tasks and
tips to be used in the classroom” (Ubuz, Erbas, Cetinkaya & Ozgeldi, 2010, p. 484).
At the time of the data collection of the study, the seventh grade school mathematics
curriculum (MoNE, 2009b) being implemented by the schools provided the learning
objectives, sample activities and explanations given in Table 3.2 for teachers to use

in their classrooms when teaching rational numbers.

Table 3.2. The learning objectives, sample activities and explanations included in the

middle school mathematics curriculum for teaching rational numbers (MoNE, 2009b,

p. 224-226) (Translations by the researcher)

Learning Sample Activities Explanations
Obijectives
Let students discuss why there is a need for [!] Denote rational number set

rational numbers by asking several questions to by the symbol Q and define it.

them. [!] Have students examine the
Explain and Write natural numbers and several fractions on relationships among natural
locate cards and put them in a bag. Pick up the cards numbers, integers and rational
rational randomly from the bag and locate them on the numbers.
numbers ona | number line. Next, place a symmetry mirror at Have students search the
number line the origin of the number line. Determine the history of rational numbers.

symmetries of the points on the number line and

emphasize negative numbers and absolute value

concept.

Write rational numbers on cards and put them | [!] Have students convert

in a bag. Pick up the cards randomly and find the | repeating decimals into

decimal representations of the rational numbers rational numbers.
Express written on these cards by using a calculator. ['] Demonstrate by using
rational ) Finally, classify the decimal representations of examples that a rational
numbers in the rational numbers and have students interpret | number can also be expressed
different the results. as an integer, as a natural
forms 28 8 2 - number, as a terminating or as

i 7 T —0.5 3> 0.2 a repeating decimal.
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Table 3.2. (Continued)

Learning
Obijectives

Sample Activities

Explanations

Compare and
order rational

To have students notice the difference
between a rational number and an integer, ask
them to write the integers between two integers.
This activity can be repeated by using rational
numbers. Then, the two activities can be
compared and discussed.

[I Fraction estimation strategies, common
denominator approach and conversion to
decimals can be used to compare rational
numbers.

. 1
For instance, to compare —5.2and -5= we can
4

[!] Emphasize that the
comparison strategies used for
fractions and integers may
also be used for comparing
rational numbers.

numbers . . L

convert the negative mixed number into its

decimal form as -5.25 and write as —5.2 > -5.25,

1 .
Thus, =5.2> 5= . These two rational numbers
4
can be located on the number line as follows:
515 \ —?3
S4 s3 52 s
Recall addition and subtraction of fractions ['] Have students examine the

and have students participate in activities that commutative, associative,

include addition and subtraction of rational identity and inverse property

numbers. of addition of rational

[ Have students estimate the addition of rational | numbers and have them write

numbers first, have them perform addition the algebraic representations

operation next and finally have them compare of these properties.
Perform the estimated answer and the actual answer in the | [!] Give students examples
addition and | following way: related with estimation of
subtraction . 3 6 _ addition and subtraction with
operations Let’s estimate the answer of — + 7 . The first rational numbers. Use the
with rational estimation strategies included
numbers addend is closer to  and the second addend is | in the initial part of the

3 6 1
closerto 1. Thus, — + — ~ —+1:1% . Now,

8 7 2
let’s find the actual answer:

3 6 21 48 69 13
—_t ==t —=—=1—
8 7 56 56 56 56

curriculum guidebook.
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Table 3.2. (Continued)

Learning
Obijectives

Sample Activities

Explanations

Perform
multiplication
and division
operations
with rational
numbers

Recall multiplication and division of rational
numbers and have students participate in
activities related with multiplication and division
of rational numbers.

[!] Have students examine the
influence of 0, 1 and -1 on
multiplication and division
operations.

['] Have students examine
commutative, associative and
zero property of multiplication
of rational numbers and have
them write the algebraic
representations of these
properties.

[!] Emphasize that if the
product of two rational
numbers is equal to 1, then
these two numbers are
multiplicative inverses of each
other.

['] Give students examples
related with estimation of
multiplication and division
with rational numbers. Use the
estimation strategies included
in the initial part of the
curriculum guidebook.

[1] Have students compute the
square and cube of rational
numbers.

Solve multi-
step
operations
with rational
numbers

['] Remark that the operations
that needs to be done initially
in multi-step operations are
specified by brackets or
parentheses.

[!] Emphasize that in
complex fractions the order of
operations are determined by
the main fraction bar.

Pose and
solve rational
number
problems

Ask students to read the problem very
carefully, restate the problem with their own
words, identify the givens in the problem, make a
plan for the solution of the problem, carry out the
plan, check the solution and discuss the problem.

[!'] The explanations included
in the introductory part of the
curriculum guidebook about
problem solving should be
taken into consideration.

All of the classrooms I

observed used the same mathematics textbook

prepared by Aydin and Beser (2013a). This textbook was prepared by a private

publisher in triple sets comprising student textbook, student workbook and teacher

guidebook. In Turkey, the textbooks prepared either by MoNE or by the private

publishers need to be reviewed and approved by the Turkish Board of Education
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(Talim ve Terbiye Kurulu Baskanligi-TTKB) so that they are used as official
textbooks in public schools (Ubuz et al.,, 2010). Thus, it is believed that the
mathematics textbook used by the four classrooms completely portrays the
curriculum content that needs to be learnt by the seventh grade students as it was
approved by the Board.

The teachers were observed during the unit entitled “Rasyonel Sayilarla Dans
Edelim (Let’s Dance with the Rational Numbers” in the student textbook. In this
unit, rational number concepts were introduced under two main sections. The first
section was about explaining and locating rational numbers on a number line,
expressing rational numbers in different forms and comparing and ordering rational
numbers. The second section was about performing addition and subtraction
operations with rational numbers, performing multiplication and division operations
with rational numbers, solving complex fractions using four operations and posing
and solving rational number problems. In this study, the worked-out examples and
exercises that were included in the explanatory part of the textbook and that might be
offered by the teachers while teaching rational number concepts were treated as
student textbook examples. The illustrative worked-out and exercise examples
included in the student textbook for teaching each rational number objective are

presented in Table 3.3.
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Table 3.3. Illustrative worked-out examples (WE) and exercise examples (EE)
included the student textbook for introducing each learning objective (Aydin &
Beser, 2013a, p. 47-77)

Learning Example Ilustrative examples
Obijectives type P
_26 . _ o
. - The numerator 1= a negative intezer | =26 26 — ~+
Explain and WE 5 v The denominator i 2 nesafive b —5 "5 -9
|Ocate rational e deniofnihnatoris a negam e ifite ger
numbers on a
number line 7 5 3 .
EE Locate —,——, — 2, — on the number line.
3 4 7
7 7 -
Express WE —=35 —=2333..=23
rational 2 3
numbers in Express the following numbers in different forms:
different _
EE 7
forms 1l4=..2=..—=.. 005=..
8
8 11 16 .
Let’s order — ,—, — by benchmarking to 1.
WE 10 9 16
8 11 16 8 16 11
— <1, —>1, — =1 Therefore, — <—<—
Compare and 10 9 16 10 16 9
order rational Order the following numbers from the largest to the smallest and
numbers explain your strategy for ordering.
EE 7 - 3 5 17 2 4 8
1.9;1.08;1— —4.45;-554;-55 —;—;— ——;——;——
8 8 12 24 5 11 19
Perform Let’s perform 4 + (_Ej :
addition and WE 5 3
subtraction A (_2)_4345(2) 12+(H10) 2
operations 5 3 5.3 15 15
with rational
numbers EE Perform E_(_Ej and _E+(_§)
3 2 3 2
T 3y ) (3 -
_L:. _i:=" L J’=_ﬁ=_i The multiplication
Perf L 30\ 4, 3 4 12 12 of two rational
erform _ ;
T WE COAN SN a4y -y - numbers with same
multiplication i -l -=1= = =2 = b = B j signs yields a
and division 30N 3 3 3 13 13 positive product
operations
with rational . . S .
numbers Estimate the following multiplication operations:
EE 1 1 7 1
479-3— —24— |:{ -11— 580:( 19—
18 9 8 19
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Table 3.3. (Continued)

Learning Example Illustrative examples
Objectives type P
B )5 K 1
3 \6 4 38
g % f g v %- % w3 Perform division operation
WE = — % — % + % 9 Simplify the answer
= __2 + ( ﬂ | ;l 9 Determine me numerators qfthe addends by
Solve multi- 3 3 3 means of rational number signs
Step o 2+(=100+1 _ u __) The numerators are added to each other
operations 3 3 and the denominator stays the same
with rational - - - . -
numbers Perform the following multi-step operations and explain which rule
you used in each step.
3
1_ —
5 1 1 5Y 1 (1 1
EE —=:5 - 1+ N I e 6
3 3 1 1 3/ 7\4 3
—-1 —+— 1+ 1
> 3 1+—
. 1 . .
Ahmet initially walked — of his route. After some time, he walked
3
WE 2 o
— of the remaining route and he had to walk 36 meters more to
5
Pose and finish his route. Find the total length of his route.
solve rational
number Fill in the blanks with the numbers relevant to the problem.
roblems . .
P An athlete each day runs ... times as much as the distance she runs
EE the day before. The athlete runs for ... days and finishes her
training program. If the athlete runs ... kilometers in her ... day,
then how many kilometers does she run on the last day of her
training program?

The four public middle schools that were selected as the contexts of this study

were located in Aksaray city center. The schools were close to each other and this

made it possible for the researcher to commute among them easily. The participant

schools and the participant classrooms were named as School A — Classroom A,

School B — Classroom B, School C — Classroom C, and School D — Classroom D to

protect the privacy of the middle school mathematics teachers.

Teacher A was a teacher in School A. There were 40 teachers (4 of whom

were mathematics teachers) and 811 students in this school at the time of the study.
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In addition to 24 classrooms, there was a computer laboratory but not a science and
technology laboratory or a mathematics laboratory. There was also an auditorium
and a library in this school. The students of School A had high socio-economic
status. However, this school did not have mathematics clubs for active participation
of students.

Teacher B was a teacher in School B. There were 47 teachers and 850
students in the school during the study. There were 4 mathematics teachers in this
school. There were a total of 34 classrooms and there was a science and technology
laboratory and 2 computer laboratories but not a mathematics laboratory. Besides,
there was a library but not an auditorium in this school and the students of School B
had medium socio-economic status. It is important to note that this school organized
mathematics clubs to support students’ mathematical thinking with some activities.

Teacher C was a teacher in School C. There were 35 teachers and 654
students in the school at the time of this study. Four of the teachers were
mathematics teachers in this school. There were 15 classrooms and there was a
science and technology laboratory and a computer laboratory but not a mathematics
laboratory. Moreover, there was a library and an auditorium in this school and the
students of School C had high socio-economic status. Lastly, this school also
organized mathematics clubs for fostering students’ mathematical thinking.

Teacher D was a teacher in School D. There were 31 teachers and 461
students in the school at the time of the current study. There were 5 mathematics
teachers in this school. Totally, there were 18 classrooms and there were not any
science and technology, computer and mathematics laboratories. Besides, the
students of School D had medium socio-economic status and the school did not
organize any mathematics clubs.

To summarize, School A and School B were more populated than School C
and School D. However, they were more or less similar to each other in terms of
their environments, classroom size, laboratories, equipment and so forth. Broadly,
the teachers in these schools had more than 10 years of mathematics teaching
experience. While School A, School B and School C had four mathematics teachers,

School D had five mathematics teachers. Moreover, School B and School C had
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students actively participate in mathematics clubs, but the other two schools did not
have such clubs.

In the next section, the observed classrooms of participant schools were
described at length. The observed classrooms all consisted of 7" grade students and

these classrooms were of different socio-economic level and achievement level.
3.4.1. Teacher A’s classroom

Teacher A’s class in which the study was conducted had a total of 32 students
including 18 female students and 14 male students. The classroom had a teacher
desk, student desks, a large whiteboard, a bulletin board and an overhead projector.
The teacher projected the mathematical examples on the white board when
necessary. On some of the desks, one student was sitting while on other desks there
were two students sitting. The bulletin board was used by the teacher for displaying
examination results or by students for hanging activity sheets or drawings. There
were 3 columns and 6 rows of desks in the classroom. Teacher A stated that students
in this classroom were from high socio-economic status families and their
achievement level was average. In all the classrooms, | sat at the backmost desk in
order not to interrupt the classroom during my observations. A snapshot of the
classroom environment and the seating plan is presented in Figure 3.3.

—_——

Figure 3.3. A snapshot of the Classroom A and the seating plan
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3.4.2. Teacher B’s classroom

Teacher B’s class in which the study was conducted had a total of 22 students
including 13 female students and 9 male students. The classroom had a teacher desk,
student desks, a medium sized whiteboard, a cupboard, a bulletin board, a computer,
and an overhead projector. Similar to Teacher A, Teacher B projected the
mathematical examples on the white board when necessary. The students were sitting
in pairs on all desks. The bulletin board was used for displaying drawings, term
projects, activity sheets and examination results. There were 3 columns and 5 rows of
desks in the classroom. Teacher B stated that students in this classroom were from
medium socio-economic status families, and their achievement level was high. A
snapshot of the classroom environment and the seating plan is presented in Figure
3.4.

Figure 3.4. A snapshot of the Classroom B and the seating plan
3.4.3. Teacher C’s classroom

Teacher C’s class in which the study was conducted had a total of 28 students
including 13 female students and 15 male students. The classroom had a teacher

desk, student desks, a medium sized blackboard, a cupboard, a bulletin board, and an
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overhead projector. The projector and the blackboard were not designed in such a
way to permit the teacher to project the mathematical examples on the blackboard.
Therefore, Teacher C could not use as many examples as the two previous teachers.
The students were sitting in pairs on all desks. The bulletin board was used for
displaying drawings, term projects, activity sheets and examination results. There
were 3 columns and 5 rows of desks in the classroom. Teacher C stated that students
in this classroom were from high socio-economic status families and their
achievement level was high. A snapshot of the classroom environment and the

seating plan is presented in Figure 3.5.

R

" ¢ .

B )
@ ‘ .

Figure 3.5. A snapshot of the Classroom C and the seating plan
3.4.4. Teacher D’s classroom

Teacher D’s class in which the study was conducted had a total of 29 students
including 12 female students and 17 male students. The classroom had a teacher
desk, student desks, a medium sized blackboard, a cupboard, a bulletin board, but not
an overhead projector. Similar to Teacher C, Teacher D did not have the opportunity
to project the mathematical examples on the blackboard and thus she could not use
many examples as during the teaching of rational numbers. A few students were

sitting alone on their desks but the rest of them were sitting in pairs. The bulletin
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board was used for displaying drawings, term projects, activity sheets and
examination results. There were 3 columns and 5 rows of desks in the classroom.
Teacher D stated that students in this classroom were from medium socio-economic
status families and their achievement level was average. A snapshot of the classroom
environment and the seating plan is presented in Figure 3.6.

Figure 3.6. A snapshot of the Classroom D and the seating plan

In short, the main participants of the current study were four middle school
mathematics teachers with different rational number teaching experiences and they
have taught classes of different socio-economic level and achievement level. Two of
the classrooms had high socio-economic status while the other two classrooms had
medium socio-economic status. Evenly, two classrooms had top level students in
terms of achievement and the other two classrooms had average achievement levels.
Finally, while there were roughly 30 students in each of the three classrooms, in the

fourth one there were nearly 20 students.
3.5. Data Sources

This study aimed to make an in-depth exploration of teacher’s treatment of

rational number examples in their classrooms. To get rich information from these
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middle school mathematics teachers, | employed multiple methods for data
collection. Creswell (2007) referred to this as multiple sources of information. To be
more explicit, he stated that “the data collection in case study research is typically
extensive, drawing on multiple sources of information, such as observations,
interviews, documents, and audiovisual materials” (p. 75).

By taking these into consideration, several data sources were used in this
study. Classroom observations and interviews with the participating teachers were
conducted immediately after each observation session. Besides, lesson observations
and post lesson interviews were recorded by a videotape and an audiotape
respectively. Descriptive and reflective field notes were taken throughout the study.
Finally, written materials delivered to students by teachers such as worksheets,
homework assigned to students such as textbook exercises, questions asked in the
examination and so forth were collected. However, classroom observations and
interviews with the participating teachers were the major data sources. Other data

sources were used to support findings from observations and interviews.
3.5.1. Classroom observations

| observed each middle school mathematics teacher throughout all
mathematics lessons related with rational number concepts. | observed a total of 60
mathematics lessons of four mathematics teachers. The observations were conducted
to identify examples used by the teachers during the teaching of rational numbers to
7" grade students. In more details, all teacher actions that took place in the
mathematics classroom such as their instructional explanations, their use of worked-
out problems, and the mathematical tasks they posed to students became the focus of
my observations.

After reviewing the relevant literature about teachers’ purpose, use, and
design of examples in the teaching of rational number concepts, | constructed an
observation form. Later, a mathematics education researcher reviewed the
observation questions. Finally, the supervisor of the researcher examined the
questions with respect to their clarity, and content-specificity and the necessary
revisions were done thereafter (See Appendix A). This observation form determined
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the scope of my observations and it helped me to record teacher actions that were
related with focus of this study. In light of this focus, I tried to find answers to the
following questions during all observations:

1. What type of rational number examples do teachers use in the classroom?

2. How do teachers select rational number examples during the teaching?

3. What principles or considerations guide teachers during choosing or

generating rational number examples?

4. How do teachers address rational number examples to students?

a. How do they organize rational number examples?

b. How do they convey learning objectives regarding rational
numbers?

c. To what extend do teachers provide mathematically correct or
pedagogically appropriate rational number examples?

During the observations, descriptive field notes were taken to describe the
classroom environment and to record the rational number examples used by each
teacher. In addition, reflective field notes were taken to record my personal thoughts
about the rational number examples used by the teachers during the classroom. The
field notes were used to make better sense of teachers’ rational number examples and
consequently to better analyze these examples. In the meantime, | videotaped all my
observations. By this way, | had the chance to watch video camera recordings as
many times as possible. This also gave me the opportunity to identify what aspects of
teacher actions regarding rational number examples | failed to notice during actual
observations. More importantly, the video camera recordings provided me with an
opportunity to conduct stimulated recall interviews with middle school mathematics
teachers when their actions regarding rational number examples were ambiguous.
This is explained in more detail in the interview section.

According to Creswell (2009) there are four types of observation: complete
participant, observer as participant, participant as observer and complete observer. In
the current study, | adopted a complete observer role. To achieve my role, | sat at the
back of the classroom and did not interrupt the ongoing dialogue among teachers and

their students. The video camera recorded only the teacher examples that were
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written on the board, so | also took notes about examples generated by the teachers
as a result of student query that might not be captured by video camera recordings.
Direct observation has several superiorities when compared to quantitative
data gathering techniques (Hiebert et al., 2003). First of all, | had a first-hand
experience with middle school mathematics teachers in their own classrooms. If
direct observations were not used as a procedure to gather data about teachers’
treatment of rational number examples, another possible way to gather data would be
constructing questionnaires that test teachers’ pedagogical content knowledge of
rational numbers. Indeed, Ball et al. (2005) developed a questionnaire to test
pedagogical content knowledge of teachers regarding a wide range of mathematical
concepts. This questionnaire might give some clues about teachers’ pedagogical
content knowledge to some extent. However, as emphasized by Rowland, Thwaites
and Huckstep (2009), this questionnaire might not reflect how teachers act in
practice. Therefore, in order to assess teachers in their actual practice, we need to
observe them while they are teaching. To sum up, teacher observations helped me
gather crucial information about teachers’ treatment of examples during their actual

practice.
3.5.2. Post lesson interviews

Before the implementation of the study, | was planning to conduct both pre
and post lesson interviews with the teachers to see the examples appearing in their
lesson plans. However, the teachers stated that none of them prepared lesson plans in
advance. Therefore, it was not possible for me to conduct pre-lesson interviews.
Thus, post lesson interviews became another main data source of the current study.

Each interview was conducted immediately after each observation session.
That is, | observed two mathematics lessons of two different teachers and in total
four mathematics lessons a day. Conducting the interviews just after the observation
of each two mathematics lessons was very important for this study. If the interviews
were not conducted immediately, mathematics teachers could have forgotten which
examples they used, how and why they used those examples during the teaching of

rational number concepts. As a consequence, this might have become an obstacle for
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me in gathering data in line with my research questions. Besides, it was important for
this study to determine which examples were pre-planned and which examples were
generated spontaneously. Observations alone, gave some clues about teachers’
intentions for using these examples. For instance, their utterances in the classroom,
the amount of time they spent for generating rational number examples, and their
hesitations and body expressions helped me to predict whether the examples being
used were spontaneous or not. However, without immediate interviews, it would
have been impossible for me to clearly distinguish between pre-planned or
spontaneous examples. To summarize, classroom observations and post lesson
interviews have been used complementarily to achieve the goals of this study.

Yin (2003) stated that interviews are one of the most important data sources
for case studies and he classified interviews under three headings: open ended
interviews, focused interviews, and structured interviews. In this study, each post
lesson interview was a focused interview in which | interviewed each middle school
mathematics teacher for a short period of time, approximately 10-15 minutes, to
obtain a more holistic picture of treatment of rational number examples. Focused
interviews were conducted by means of a semi-structured interview protocol
containing several open-ended questions and they were all recorded by an audio
recorder. The interview questions focused on clarifying the considerations employed
by each teacher in choosing or generating examples and on resolving questions that
arose in the mind of the researcher during the observations (See Appendix B).
Through this focus, the following interview questions were asked to the middle
school mathematics teachers:

1. Which of the examples you used during the classroom were pre-planned and
which of them were spontaneously constructed?

2. What were your purposes for using each example during the teaching of
rational number concepts?

3. What considerations did you employ while selecting or generating each
rational number example?

4. What do you think about the efficiency of each example you used during the

classroom?
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a. Are there any examples that you think that they impeded students’

understanding of rational number understanding?

b. If you were to revise your examples, which examples would you revise

and how would you revise them?
5. Have there been any instances in which you provided mathematically
incorrect or inappropriate examples and you noticed it later?

a. If yes, how would you modify them?

During post lesson-interviews | also took notes. In the meantime, | used an
audio recorder to be able to transcribe each interview session later. This also gave me
the chance to listen to each interview and make better sense of my data. The
interviews were all conducted in a silent room in the schools and | made sure that
nobody would interrupt us during the interview. | constructed the semi-structured
interview protocol questions with the help of instructional example literature and
reviewed the questions with a doctoral student in the field of mathematics education.
Also my supervisor examined the interview questions to determine whether they
matched with the focus of the study and to eliminate possible biased or leading
questions. To test the usability of the semi-structured interview protocol, | piloted it
with a middle school mathematics teacher who did not participate in this study. |
revised the interview questions in order for them to be more understandable by the
participants of my study. Pilot interviews have played an important role for this study
since they helped me to find out which questions were confusing, which questions
needed rewording and which of them produced data which would not be considered
for this study.

In addition to semi-structured post lesson interviews, | also conducted
stimulated recall interviews with the middle school mathematics teachers.
Calderhead (1981) stated that a stimulated recall interview “involves the use of
audiotapes or videotapes of skilled behavior, which are used to aid participant’s
recall of his thought processes at the time of that behaviour” (p. 212) and he added
that the stimulated recall technique might be adopted to examine teachers’ thought
processes and decision-making in the case of classroom-based research. Similarly,

Clark and Peterson (1986) pointed out that this type of interview is a method for
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investigating teachers’ ideas and beliefs about teaching and learning. Shane (2002)
expressed that “in the stimulated recall interview, most often a video of the lesson is
shown to promote reflection and insight into teacher’s thinking” (p. 142). In this
study, sometimes teachers had difficulty remembering the examples they used in the
classroom. Besides, in some cases it was very difficult for me to identify teachers’
purpose, design or use of rational number examples when they acted ambiguously. In
such cases, stimulated recall interviews proved to be very useful since | had the
chance to gain insights into teachers’ purpose for using or generating certain
examples. In this study, stimulated recall interviews were conducted by having
teachers watch the video camera recordings when they had difficulty remembering
the purpose for using a particular rational number example. The stimulated recall
interviews have been conducted twice with each middle school mathematics teacher
and each interview took about 2 hours.

Ultimately, demographic data about participant teachers, participant

classrooms and participant schools were also gathered through interviews.
3.6. Data Collection

Timeline for data collection is presented in the following table.

Table 3.4. Timeline for data collection

Date Events

Permissions from Research Center for Applied
August 2013 Ethics and Aksaray Provincial Directorate for
National Education

Participant schools, classrooms and teachers

September 2013 were determined

September 2013 — November 2013 Pilot observations and interviews
November 2013-December 2013 Actual observations and interviews
November 2013- January 2014 Post observations and interviews

Transcription of observation and interview

November 2013 - March 2014
data
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This study was conducted during the Fall semester of 2013-2014 education
year. Before collecting data, | reviewed the literature regarding mathematical
examples and | prepared and an observation form and an interview protocol. I
applied to Research Center for Applied Ethics of Middle East Technical University
to get the necessary permissions for conducting my study (see Appendix E for
approval document). After getting permission from this center, | applied to Aksaray
Provincial Directorate for National Education in order to get necessary permissions
for conducting my study in particular public middle schools located in Aksaray city
center (see Appendix F for permission document). First, | have determined 12
candidate schools in case | may not be allowed to conduct my study in the most
convenient schools. | initially visited the school principals and informed them about
my study. | explained the purpose of my study and | got in touch with the
mathematics teachers after I took school principals’ approval for data collection.
Similarly, | informed each middle school mathematics teacher about my study and
asked them if they would like to voluntarily participate in my study. All middle
school mathematics teachers that were volunteered to participate in my study signed
the Voluntary Participation Form.

One week before the start of the Fall semester of 2013-2014 education year, |
visited the schools to learn about the time table of 7*" grade classrooms. This helped
me to determine which 7" grade mathematics teachers to observe and to avoid
overlapping of lesson hours of different teachers. It was a difficult job for me since |
observed four mathematics lessons of four 7" grade middle school mathematics
teachers and in total sixteen mathematics lessons each week during the whole
semester. After | organized my own time table for lesson observations, | started
interviews and pilot observations on September 17" 2013 and they ended on
November 13" 2013. Through the pilot observations, | became familiar with
students, the classroom environment and the mathematics teachers. Pilot
observations lasted for 8 weeks and Teacher A, Teacher B, Teacher C and Teacher D
were observed for 25, 26, 24, and 19 lesson hours respectively. A total of 94 lesson

hours were devoted to pilot observations. After each two hours of observation, post-
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lesson interviews were conducted with the teachers in order to gain insights into their
treatment of examples.

On November 14", 2013 actual data collection started. In more details, all
four teachers were observed and interviewed throughout the unit of rational numbers.
Teacher A, Teacher B, Teacher C and Teacher D were observed for 18, 17, 10 and
15 lesson-hours respectively. The actual data collection ended on December 27",
2013. After the actual data collection process, | continued conducting post
observations and interviews with the teachers until the end of the fall semester.
Because, | wanted to see whether teachers attempted to change their classroom
practices after the end of actual data collection process. During the course of the
lesson observations and post-lesson interviews, | also transcribed observation and

interview data and the transcription of whole data ended in March 2014.
3.7. Data Analysis Procedure

In this study, major data consisted of videotape recordings of lesson
observations and audiotape recordings of post lesson interviews. Descriptive and
reflective field notes, written materials delivered to students by teachers such as
worksheets, homework assigned to students such as textbook exercises, and
questions asked in the examination were other data sources used to support findings
from observations and interviews. By using two different strategies that are
methodologically connected - observations and interviews - I tried to obtain a holistic
analysis of teachers’ treatment of rational number examples in mathematics
classrooms. After the end of the lesson observations and post-lesson interviews, all
videotaped and audiotaped data were transcribed verbatim. This was the first step in
data analysis and it took a long time for the researcher to transcribe all data. In all the
observations and interviews, the spoken language was Turkish. Therefore, | initially
transcribed all data in Turkish and then translated the necessary data into English for
use in the results chapter of this study. During the transcription process, | watched
the videotapes of the lessons and audiotapes of interviews for several times to engage

myself with the data. Besides, | compared the translated data and the original data in
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terms of their grammatical, syntactic and linguistic aspects to enhance the quality of
transcription process.

After transcribing all data, the next step was the identification of the themes,
sub-themes and categories used in the study. Merriam (2009) stated that data analysis
and data collection are simultaneously done in qualitative studies and added that data
analysis is a complex process comprising moving back and forth between concrete
bits of data, abstract concepts, and between inductive and deductive reasoning.
Bogdan and Biklen (2007) described data analysis process as “systematically
searching and arranging the interview transcripts, field notes and other materials that
you accumulate to enable you to come up with findings” (p. 159). In a similar way,
Creswell (2007) indicated that “data analysis in qualitative research consists of
preparing and organizing the data for analysis, then reducing the data into themes
through a process of coding and condensing the codes, and finally representing the
data in figures, tables, or a discussion” (p. 148). In particular, Yin (2003) stated that
data analysis in case studies provide intensive and holistic description of cases and
mentioned that analyzing case study data would be especially difficult since there
were no well-defined strategies and techniques.

In this study, observations and interviews were conducted with different
teachers in different settings and thus multiple cases were chosen. Creswell (2007)
suggested that “when multiple cases are chosen, a typical format is to first provide a
detailed description of each case and themes within the case called a within-case
analysis, followed by a thematic analysis across the cases, called cross-case analysis”
(p.75). Similarly, Yin (2003) suggested five analytic techniques for analyzing case
study evidence: pattern matching, explanation building, time-series analysis, logic
models, and cross-case synthesis. Yin emphasized that although the first four
techniques can be used with either single or multiple case studies, cross-case
synthesis is especially relevant if a case study consists of at least two cases. Hence,
this study analyzed the data obtained from the cases by using Yin’s (2003) analytic
technique of cross-case synthesis.

Using this technique, I first examined each case independently. That is, I first

examined the rational number examples used by one of the teachers and tried to sort
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out the examples in terms of their similarities. As | repeatedly looked into the data,
the categories started to emerge. While some categories were identified by means of
pre-existing categories on teacher-generated examples, some others emerged in the
current study. In the end, the examples were categorized according to the following
ideas: the characteristics of the examples in themselves, the principles or
considerations guiding teachers in choosing examples, and the erroneous examples
and their potential pitfalls in students’ understanding of rational number concepts.
After, examining each case independently, | compared the findings of the analysis of
each case with other three cases. For instance, if it was evident that the purpose,
design or use of certain examples recurred in the classroom of Teacher A, then this
recurrence was also searched in the classrooms of Teacher B, Teacher C and Teacher
D. After case by case examination of the purpose, design or use of examples in each
classroom, | examined all examples from four cases altogether (See Appendix C for
sample coding sheet). The categorization of teachers’ treatment of examples is

presented in Table 3.5.
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Table 3.5. Categorization of teachers’ treatment of rational number examples

Themes

Sub-Themes

Categories

Mathematically
correct examples

Types of examples

Examples

Non-examples

Counter-examples

Source of examples

Pre-planned examples from textbook

Pre-planned examples from workbook

Pre-planned examples from teachers’
guidebook

Pre-planned examples from auxiliary
books

Pre-planned examples from online
educational software

Pre-planned examples from high-
stakes examination questions

Spontaneous examples

Teachers’
considerations in
choosing examples

Starting with a simple or familiar case

Attending to student
error/difficulty/misconception

Drawing attention to relevant features

Including uncommon cases

Keeping unnecessary work to
minimum

Taking account of examinations

Mathematically
incorrect/pedagogica
Ily improper
examples

Types of errors

Incorrect example

Improper language/terminology

To be avoided examples

In my data, there were examples being indicative of either ‘a practice to be

aspired to’ or a ‘pitfall to be avoided’. Therefore, I initially classified rational number

examples as being mathematically correct or mathematically incorrect/pedagogically

inappropriate. Type of examples, source of examples, and teachers’ considerations in

choosing examples were the sub-themes of mathematically correct examples. Type

of examples was related with the characteristics of examples in themselves and this

categorization was mainly based on the work of Watson and Mason (2005). Some
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examples reflected teachers’ careful planning while some others were constructed
during the lesson as a response to an entirely new or an unfamiliar classroom
situation. This categorization of examples as pre-planned versus spontaneous
examples was drawn from Zodik and Zaslavsky (2008). In addition, pre-planned
examples were further categorized by taking account of their source. That is, pre-
planned examples were categorized as examples from textbook/workbook, examples
from auxiliary books and examples from an online content. This categorization was
solely based on classroom observations of the researcher.

Understanding middle school mathematics teachers’ considerations or
underlying principles that guided them in choosing or generating examples were an
important component of the study apart from characterizing examples in themselves.
Teachers’ considerations were categorized under six headings: Starting with a simple
or familiar case, attending to student error/difficulty/misconception, drawing
attention to relevant features, including uncommon cases, keeping unnecessary work
to minimum, and taking account of examinations. These categorizations were drawn
from the work of Zodik and Zaslavsky (2008) with minor changes. To be more
precise, the data of this study did not provide a category that suggest that middle
school mathematics teachers ‘convey generality by random choice’ while teaching
rational number concepts. This might have been due to the fact that middle school
mathematics teacher did not find it necessary to make generalizations of examples in
middle school mathematics classrooms. On the other hand, the examples used by the
teachers suggested that they took account of national exams while choosing or using
examples. Thus, the data suggested that it was essential to include the category of
‘taking account of examinations’ under teacher considerations sub-theme. As a
result, this sub-theme was based not only on the literature and but also the lesson
observations and the interviews conducted in this study. Finally, it is important to
note that the categories were not purely distinct from each other, since one instance
of the choice of example could be placed under more than one category.

Middle school mathematics teachers participated in this study occasionally
generated or selected examples that were mathematically incorrect or pedagogically

improper. These typeS of examples were also analyzed since they were considered to

93



be a potential pitfall for students’ understanding of rational number concepts. The
analysis of middle school mathematics teachers’ examples in terms of their
correctness was rather objective although they were context based. Although some
examples were entirely incorrect when evaluated from a mathematical standpoint,
some others were not totally incorrect but they caused difficulties in communicating
about the complicated topic of rational numbers. Mathematically incorrect or
pedagogically improper examples were categorized as mathematically incorrect
examples, pedagogically improper examples with improper language and
terminology and pedagogically improper examples that are to be avoided. For
instance, claiming that +/2 cannot be located on a number line is a mathematically
incorrect example.

The teachers often used the word ‘fraction’ when they intended a ‘rational
number’. Perhaps, they used these words interchangeably due to carelessness. This
type of examples may lead to difficulties in communicating about rational number
examples. Similarly, teachers’ used the expression ‘flipping’ instead of the terms
‘reciprocal’ or ‘multiplicative inverse’ when finding the multiplicative inverse of a
rational number. Cangelosi, Madrid, Cooper, Olson, and Hartter (2013) emphasized
that the colloquial use of the term ‘flipping’ might hinder students’ understanding of
the concept of multiplicative inverse. Based on the previous literature, examples of
this type were grouped under the category of examples with improper language or
terminology.

Finally, studying with middle school mathematics teachers has brought to
light some type of examples that should be better avoided. In more, details, some of
the examples provided by the participants included particular pitfalls that might be an
obstacle for students to understand the mathematical object, concept or procedure
that they confronted for the first time. This type of examples were categorized as ‘the
use of to be avoided examples’. This categorization was basically drawn from
Rowland et al. (2009) but there were also some contributions from researcher
observations and interviews.

In this study, | employed several theoretical frameworks to give a

comprehensive explanation of how middle school mathematics teachers treat rational
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number examples in their classrooms. These frameworks are explained in detail in

the following section.

3.7.1. Theoretical frameworks used in this study for analyzing middle school

teachers’ treatment of rational number examples in their classrooms

In this study, the following theoretical frameworks were used to explore
middle school mathematics teachers’ treatment of rational number examples in their
classrooms: Marton and Booth’s (1997) variation theory; Zodik and Zaslavsky’s
(2008) dynamic framework for explaining teachers’ choices and generation of
examples during the lesson and finally, Rowland et al.’s (2005) the Knowledge
Quartet Framework for making sense of teachers’ choose and use of examples. The

use of variation theory in mathematics education is explained below.
3.7.1.1. Marton and Booth’s (1997) variation theory

Learning takes place through extending awareness of what constitutes an
example (Marton & Booth 1997; Marton & Tsui, 2004). That is, discerning or
making distinctions by detecting variation is at the core of learning (Marton & Booth
1997; Marton & Trigwell, 2000). Briefly, in variation theory (Marton & Booth
1997), variation is epistemologically essential for learning to occur. Marton and his
colleagues detected differences in learning with respect to the nature and range of
variation to which learners were exposed and to seize this, they introduced the notion
of dimensions of variation (Marton & Booth 1997; Marton, Runesson & Tsui, 2004;
Marton & Tsui, 2004). The notion of dimensions of variation refers to “the different
parts of an object which can be varied and still that object remains an example of a
specified concept” (Mason & Watson, 2008, p. 195). At the level of cognition, an
example of a concept is accepted as an example only when certain features are
acknowledged as being permitted to change, while some other features remain
relatively invariant (Mason, 2006).

Different people may be aware of different dimensions (Goldenberg &
Mason, 2008). For instance, teachers and their students may be aware of different

dimensions in an example. In particular, novices may not be aware of the richness of
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all possible variation. Furthermore, the same individual may be aware of different
dimensions of variation at different times (Goldenberg & Mason, 2008; Mason,
2006; Mason & Watson, 2008). By considering all these factors, Watson and Mason
(2005) extended the notion of dimensions of variation to dimensions of possible
variation. Further, they added the notion of range of permissible change and
indicated that each dimension of possible variation has an associated range of
permissible change which might also not be shared between different individuals
such as novices and experts. Briefly, dimensions of possible variation indicate that
“different people may be aware of different things that is possible to vary” and range
of permissible change indicates that “what can vary may be perceived as varying
over different ranges by different people or at different times” (Mason, 2011, p. 195).

The notions of dimensions of possible variation and the associated range of
permissible change help learners discern what features of an object is critical and
what features of it can be changed in what ways (Goldenberg & Mason, 2008). These
two parameters are especially powerful in mathematics in that they help learners
appreciate mathematical structure (Mason et al., 2009). Mathematical structure
shows itself by means of relations among variance/invariance and
similarity/difference (Watson & Shipman, 2008). This structure might help learners
detect both critical and uncritical aspects of examples being experienced (Sun, 2011).

According to variation theory, discerning certain critical features of an object
is vital for learners owing to the fact that it is essential first to identify critical aspects
in order to learn that object (Guo et al., 2012). To discern a particular aspect/feature,
learners should experience variation in the related dimension and as a consequence,
the aspect that varies while other aspects remain invariant would easily be discerned
by those learners (Pang & Marton, 2005). More specifically, Marton et al. (2004)
identified four patterns of variation and invariance to assist in discerning critical
aspects of mathematical objects as contrast, separation, fusion and generalization.
The notion of patterns of variation and invariance can be used in the teaching of
certain mathematical concepts as well. Rowland et al. (2009) proposed the following
example to illustrate the use of variation theory in mathematics education:

“understanding of the concept of square is marked by growing
awareness of the various ways that squares can vary, and the variants
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that do not qualify as squares. These dimensions include: sides — these
must have same length, but the length can vary between different
squares; angles — these must all be right angles, and there exist
rhombuses with equal sides which are not squares; orientation —
diamonds with equal sides and angles are squares, rotated from the
conventional position on the page; other less overtly geometrical
dimensions such as colour, texture and so on, can also vary” (p. 84).

In the current study, the concept of rational numbers involves possible
variation in dimensions such as numerator, denominator, proper, improper or mixed,
being in lowest terms or not, being positive or negative and so forth. For instance,
when teaching subtraction of rational numbers, teachers should be aware of the fact
that the minuend and subtrahend can take many different values with respect to their

signs and forms. Table 3.6 illustrates how many variations there exist for the

minuend (i.e., %) and the subtrahend (i.e., %) in the following subtraction operation:

Table 3.6. The variety of examples for teaching subtraction of rational numbers

Subtrahend
Positive Negative
Proper Improper | Mixed | Proper | Improper Mixed
4 2 1 4 2
. 1_ — — - — _1_
3 5 2 3 5
5= 9 11 19
Proper 0 -—2 - 1 - =~
3 6 10 6 10
[<5] 1
= Improper 4 > 7 0 L 1 8 41
= — - 2 -— — — —
8 3 6 15 3 15
. 2 9 1 19 41 14
= Mixed 1- — - 0 = o= il
3 5 10 15 10 15 5
>
= 1 11 19 5 9
= Proper —— -1 -— -— 0 — —
2 6 10 6 10
(5]
2 4 11 8 41 5 1
® | Improper | —— - - ——= = 0 il
5% 3 6 3 15 6 15
pd
_ 12 19 41 14 9 1
Mixed - -— -— -— = = 0
5 10 15 5 10 15
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3.7.1.2. Zodik and Zaslavsky’s (2008) dynamic framework for explaining

teachers’ choices and generation of examples

Simon (1995) developed Mathematics Teaching Cycle as a model of the
relationship among teacher knowledge, thinking, decision making and classroom
activity. The Mathematics Teaching Cycle is presented in Figure 3.7.

Teacher's Hypothetical Teacher_s
knowledge of Iegrning hypothesusl
— | mathematics trajectory / c:(fn sot:iedngtz
M Teachers W
leaming goal |y
1 Teacher's theories
Toachers \ L about mathematics
knowledge of I )
mathematical L Teacher's_ plan d earmnr? -
activities and for learning and teaching
representations x 30“3"95
Teachers W Teacher's
hypothesis knowledge of
of learning student Ifearnmg
rocess W eontont

Assessment of
students'
knowledge

Figure 3.7. Mathematics Teaching Cycle (Simon, 1995, p. 137).

This model demonstrates the relationship among different teacher knowledge
domains, the hypothetical learning trajectory and the interactions with students.
According to this model, the hypothetical learning trajectory refers to a teacher’s
development of a plan for classroom activity before incorporating it into the
classroom. More precisely, the hypothetical learning trajectory affords teachers the
opportunity to put forward a reason for selecting a specific instructional design;
hence, help teachers make design decisions on the basis of their predictions about
how learning might continue in the classroom. This can be observed both in the
thinking and planning prior to the instruction or in the course of the lesson as a
spontaneous decision made in response to a student thinking (Simon, 1995). In short,

Mathematics Teaching Cycle emphasizes the relationship between teacher

98



knowledge, pre-planning and classroom interactions that involve spontaneous
actions.

In their study, Zodik and Zaslavsky (2008) used the abovementioned
constructs for exploring secondary school teachers’ choices and generation of
examples in the course of teaching mathematics. Besides, they examined underlying
principles or considerations that guided teachers in choosing or generating examples
by focusing on the mathematical knowledge they used and by foregrounding
teachers’ knowledge in-action and their accessible personal example spaces.
Encouraged by the Mathematics Teaching Cycle of Simon (1995), Zodik and
Zaslavsky (2008) proposed a dynamic framework for examining teachers’ choice and
use of examples in the course of teaching mathematics. This theoretical framework is

presented in Figure 3.8.

Teacher Knowledge Teacher Resources
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N

Figure 3.8. Mathematics Example-Related Teaching Cycle (Zodik & Zaslavsky,
2008, p. 179).
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As can be seen in Figure 3.8, examples used by a teacher during the teaching
of mathematics are located on three different components as teacher knowledge,
lesson planning and the actual lesson. The interrelationships among these
components are denoted by different arrows. Teachers’ example spaces and
textbooks are major sources for their choice and use of examples. Moreover,
textbooks are mainly used during the lesson planning phase, example spaces are used
by teachers both in the planning phase and in the actual lesson implementation phase.
Teachers have some underlying principles or considerations that guide them while
choosing and using examples and these considerations are influenced by teachers’
personal dispositions and evaluations.

The figure also demonstrates that teachers mainly work with choosing or
generating examples in the course of planning their lessons. Besides, actual lesson
implementation comprises classroom events and in-the-moment actions of teachers.
In particular, classroom events include teacher moves and interactions of and with
students. The classroom events usually call for teachers to act-in-the moment and
provide the relevant example that is needed at that moment. In the study of Zodik
and Zaslavsky (2008), spontaneous examples were generated quite immediately by
some of the teachers and this indicated their easily accessible example spaces. On the
other hand, for some other teachers it took longer to generate examples and these
examples indicated remote accessibility to those teachers’ example spaces. Such
moments were considered as learning opportunities by Zodik and Zaslavsky (2007).
Thus, as can be seen in Zodik and Zaslavsky’s (2008) Mathematics Example-Related
Teaching Cycle, teachers learn through their teaching and in particular they learn
through example generation or selection.

In this study, underlying principles or considerations that guided middle
school mathematics teachers in choosing or using rational number examples were
examined by the help of the aforementioned framework. This framework consisted
of the following six categories: starting with a simple or familiar case, attending to
students’ errors, drawing attention to relevant features, conveying generality by
random choice, including uncommon cases and keeping unnecessary work to

minimum. However, the data of the current study did not provide a category which

100



suggested that middle school mathematics ‘conveyed generality by random choice’
while teaching rational number concepts. On the other hand, the rational number
examples used by the teachers suggested ‘taking account of examinations’ as a
category distinct from the ones included in the framework of Zodik and Zaslavsky
(2008). To clarify how I determined the category of each rational number example or
sets of rational number examples, | present the following example tasks.

Starting with a simple or familiar case: Middle school mathematics teachers
often generated sequences of rational number examples and each rational number
example gradually increased in its level or complexity. For instance, to teach how to

order rational numbers, one teacher used the following sets of rational number

examples:
(9 (D, 13 11 1 1 2 2 22 236 199 1997 1998
5 5 55 35 7 2 7 13 1519 1913 17 1997 1998 1999

The first sequence is easy to order since there is no need to find the least common
multiple of the denominators. In the second sequence, the numerators of the rational
numbers are all ‘1°. Thus, this sequence may also be ordered easily by using the
same numerator algorithm. In the third sequence, the numerators of the rational
numbers are all ‘2’ and this sequence may also be ordered easily by using the same
numerator approach. However, the third sequence includes large denominators so it
might be difficult for students to order the rational numbers by using common
denominator algorithm when they do not think of using the same numerator
algorithm. The fourth sequence includes rational numbers with different numerators
and denominators. Thus, this sequence is more difficult to order when compared to
the previous three sequences. Finally, the last sequence cannot be ordered by using
common numerator or denominator approach. The students need to use a more
conceptual ordering strategy such as residual thinking. Therefore, the last sequence
can be considered the most complex ordering example when compared to the
previous sequences.

Attending to students’ errors: Middle school mathematics teachers often built
examples according to the errors they knew the students made. For instance, one of

the teachers expressed that students erroneously focused on tick-marks rather than
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equal distances when locating rational numbers on a number line. She drew on the

board the following number line to illustrate how students erroneously locate g on

it:
2 P & ¥
I 1

1

o_._.-n
bt D
 J

Drawing attention to relevant features: This consideration had to do with

teachers’ deliberate attempts to decrease the irrelevant features of specific examples.

1) 1
For instance, Teacher A initially provided K = (8—2j+§ as a multi-step operation

example. Next, he omitted the parenthesis in this example and provided

L =8—%:% as a second multi-step operation example. Finally, the teacher asked

the students to think of whether the two examples were identical. By this way, the
teacher checked whether students could recognize which operations to perform first
in the two expressions.

Including uncommon cases: This consideration had to do with teachers’
attempts to use examples that were rather exceptional or special in mathematics or

examples that were under-represented in the teaching of rational numbers. For
2 0
instance, one teacher focused on [_Ej when teaching how to perform

exponentiation with rational numbers. It is important to note that for this exponential
number, the intuitive definition of exponents (i.e., repeated multiplication) does not
work. Thus, the teacher treated the case of zero exponent as a special case and

explicitly expressed the following utterances: “Raising any nonzero rational number
2 0
to the power of 0 yields 1. Thus, [_Ej is equal to 17.

Keeping unnecessary work to minimum: Teachers deliberately attempted to
keep unnecessary work to minimum by reducing technical work and focusing on the

essence, by highlighting relevant parts of examples and not going into extra details
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and by using properties of operations to reduce workload. For instance, one of the
teachers preferred to use distributive property of multiplication over addition rather

than performing several operations for solving the following task:

3 5 3 (5 4 3)
—t—t——| ==+ —|.
7 9 11 \9 7 11

Taking account of examinations: This consideration might be specific to
Turkish educational context. Teachers highlighted examples that had the potential to
appear in written examinations, practice examinations of private teaching
institutions, and high stakes examinations. Besides, they demonstrated their students
how to find the answer of multiple choice complex fraction tasks by trial and error of

the alternatives and taught shortcut methods for gaining speed in the high stakes

2
examinations. For instance, one of the teachers solved 6 =-1 by trial and

——-5
Xx-1

error of the alternatives. The alternatives were %%2 and 3 respectively. In his third

trial, the teacher substituted 3 into complex fraction and reached the correct answer

2 2 2
3-5 2

as follows: =
6 6 ¢
3-1 2

3.7.1.3. Rowland et al.’s (2005) the Knowledge Quartet framework for making

sense of teachers’ choice and use of examples

It is widely accepted that pupil achievement is dependent to a large extent on
the quality of teaching (Stronge, Ward, & Grant, 2011). Besides, mathematical
content knowledge of teachers is regarded as an important factor in the teaching and
learning of mathematics (Williams, 2008). Nevertheless, researchers identified that
teachers had limitations in their mathematical content knowledge (e.g., Ball, 1990a,
1990b; Ma, 1999). Therefore, mathematics educators around the world attempted to
develop measures or generate theories for deepening teachers’ mathematical content
knowledge (e.g., Ball, Hill, & Bass, 2005; Rowland et al., 2005). Ball et al. (2005)

developed items to test both common and specialized content knowledge of teachers.
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According to Rowland, et al. (2009), Ball et al.’s questionnaire might give some
clues about teachers’ pedagogical content knowledge but might not reflect how
teachers act in practice. Rowland et al. (2009) added that in order to assess teachers
in their actual practice, there is a need for observing those teachers while they are
teaching. By adopting this idea, Rowland et al. (2005) attempted to generate an
empirically-based conceptual framework called the Knowledge Quartet. This
framework consisted of four broad categories as foundation, transformation,
connection and contingency. More specifically, it included eighteen codes and these
codes provided Rowland et al. (2005) with considering and discussing mathematics
teaching in practice by focusing on elementary pre-service teachers’ mathematical
knowledge for teaching. Rowland et al.’s (2005) The Knowledge Quartet Framework

is shortly summarized in Table 3.7.

Table 3.7. The Knowledge Quartet Framework (Rowland et al., 2005, p. 265)

Propositional knowledge and beliefs concerning:

« the meanings and descriptions of relevant mathematical concepts, and of relationships
between them;

« the multiple factors which research has revealed to be significant in the teaching and
Foundation learning of mathematics;

« the ontological status of mathematics and the purposes of teaching it.

Contributory codes: awareness of purpose; identifying errors; overt subject knowledge;
theoretical underpinning of pedagogy; use of terminology; use of textbook; reliance on
procedures.

Knowledge-in-action as revealed in deliberation and choice in planning and teaching. The
teacher’s own meanings and descriptions are transformed and presented in ways designed
to enable students to learn it. These ways include the use of powerful analogies,
illustrations, explanations and demonstrations.

The choice of examples made by the teacher is especially visible:
Transformation | . for the optimal acquisition of mathematical concepts, procedures or essential vocabulary;
« for confronting and resolving common misconceptions;

« for the justification (by generic example) or refutation (by counter-example) of
mathematical conjectures.

Contributory codes: choice of representation; teacher demonstration; choice of examples.

Knowledge-in-action as revealed in deliberation and choice in planning and teaching.
Within a single lesson, or across a series of lessons, the teacher unifies the subject matter
and draws out coherence with respect to:

* connections between different meanings and descriptions of particular concepts or
between alternative ways of representing concepts and carrying out procedures;

« the relative complexity and cognitive demands of mathematical concepts and
procedures, by attention to sequencing of the content.

Contributory codes: making connections between procedures; making connections
between concepts; anticipation of complexity; decisions about sequencing; recognition of
conceptual appropriateness

Connection
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Table 3.7. (Continued)

Knowledge-in-interaction as revealed by the ability of the teacher to ‘think on her feet’
and respond appropriately to the contributions made by her students during a teaching
episode. On occasion this can be seen in the teacher’s willingness to deviate from her own
agenda when to develop a student’s unanticipated contribution:

Contingency « might be of special benefit to that pupil, or

* might suggest a particularly fruitful avenue of enquiry for others.

Contributory codes: responding to children’s ideas; use of opportunities; deviation from
agenda

In this study, the focus was on transformation dimension of the Knowledge
Quartet since this dimension involves teachers’ choice and use of examples in the
teaching of mathematics. In particular, the focus was on identifying middle school
mathematics teachers’ poor choice of examples that were regarded as common
pitfalls to be avoided in the selection of examples. As mentioned by Rowland (2008),
teachers learn most easily by poor choice of examples and on the contrary good
choice of examples is generally so subtle that it may not be readily noticeable by
them. Rowland et al. (2003) brought to light three types of examples that would be
avoided. Namely, they identified three types of examples that reflect prospective

elementary teachers’ poor choice:

“examples that obscure the role of variables in it; examples intended to
illustrate a particular procedure, for which another procedure would be more
sensible; examples for instruction (as opposed to exercise examples) being
randomly generated, typically by dice, at a point when it would preferable
for the teacher to be making careful choices” (p.245).

According to Marton and Booth’s (1997) notion of dimension of variation,
most of the mathematical concepts or procedures include two or more components or
variables. When selecting introductory examples for teaching a mathematical
concept or procedure, it is often judicious to keep the magnitudes of these variables
different from each other (Rowland, 2014). Selecting variables with different values
is important from a pedagogical perspective, since it helps students recognize the role
of different variables in a concept or procedure. On the other hand, selecting
variables with same values makes the distinction among the variables obscure and
this leads to the generation of an example that obscure the role of examples.
(Rowland et al., 2009). A very striking example that obscured the role of variables

was observed by Rowland (2008) in a mathematics lesson of a prospective
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elementary teacher about Cartesian co-ordinates. In more detail, before teaching how
to identify the coordinates of a specific point on a co-ordinate grid, the teacher
reminded her students that the x-axis goes first. However, the teacher initially chose
to identify the co-ordinates of the point (1,1). As can be seen, this example seems to
be completely ineffective in demonstrating the importance of the order of two
elements of the ordered pair. Hence, selecting (1,1) as the first point to mark on a co-
ordinate grid might give rive rise to the confusion between the notations (x,y) and
(V.X).

A second category of poor choices of examples occurs due to selecting
examples for an intended procedure when in fact another procedure would be more
sensible to perform for that selected example (Rowland et al., 2003). For instance, a
teacher may choose 49x4,49x8and19x4 as demonstration examples when
introducing column multiplication to her students. However, the teacher’s choice of
examples for teaching column multiplication does not seem to be well-judged since
there are more suitable calculation strategies for those examples. For instance,
49x4 would be more efficiently performed by rounding up, multiplication and
compensation as49x4 =(50—1)x4=(50x4)—4=200—-4=196. After performing
49x 4, the teacher would then introduce her students doubling strategy to find the

answer of 49x8 in an easier and more sensible way since 49x8=(49x4)x2.

Similarly, 19x4 could be more sensibly performed by the use of doubling strategy

rather than column multiplication since 19x4 =(19x2)x2.

Finally, the third category of poor choices of examples has to do with
choosing examples at random generally by using a dice. Rowland (2008) stated that
“there is something intuitively attractive about generating examples with dice,
possible because the teacher is demonstrating confidence to let go of some aspect of
the lesson, perhaps giving it a more democratic feel” (p. 158). However, it is very
dangerous to use a dice when selecting a concept or procedure example, despite it
might be a useful method for selecting exercise examples (Rowland et al., 2003). For
instance, one of the prospective elementary teachers observed by Rowland (2008)
was teaching his reception class (students at the age of 4 or 5) how to find a pair of

numbers whose sum is equal to 10. However, he asked one of his students to

106



randomly generate a number between 1 and 10 by using a dice. At that moment, the
dice generated the numbers 5, 3 and 8 respectively and the teacher wanted other
students to find their complements to 10. As it can be seen, the teacher’s example
generation is in contrast with skillful control of the examples during the teaching of a
mathematical concept. Rowland (2008) concluded that most of the prospective
elementary teachers confused between choosing examples for teaching new concepts
or procedures and choosing examples for convincing the learner about the truth of a
principle or the effectiveness of a previously taught procedure. Finally, Rowland et
al. (2009) suggested that it is often better for teachers to control (i.e., choose and use
carefully) examples that are selected for introducing new concepts or procedures and
they added that choosing examples at random is less likely to serve for the intended
pedagogical purpose.

This study used the abovementioned framework for analyzing middle school
mathematics teachers’ poor choice of rational number examples. Teachers’ poor
choices of rational number examples were correct from a mathematical standpoint
but they were inappropriate from a pedagogical standpoint. In particular, the use of
this framework revealed two different types of pedagogically improper examples as
examples that obscure the role of variables and examples intended to illustrate a
procedure, for which another procedure would be more sensible. For instance, some

of the teachers initially selected %:3.333 when teaching repeating decimals.

However, by selecting this example, the teachers made the distinction between the
non-repeating digit and the repeating digit obscure. In this example, 3 was made to
do the work of two variables. Thus, this example obscured the role of variables.
Another pedagogically improper example choice has to do with using relevant
strategies for the selected example. For instance, one teacher wanted to teach how to

order the following rational numbers: g,%%and%. Although these rational

numbers lend themselves more readily to residual thinking, the teacher preferred to
use common denominator algorithm. As can be seen, it is not sensible to use

common denominator algorithm for the selected set of rational numbers.
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3.8. Trustworthiness of the Study

Validity and reliability play an important role in designing a study, analyzing
the findings and in determining the quality of the study (Patton, 2002; Shenton,
2004). Creswell (2007) stated that the accuracy of the findings and interpreting the
data in a correct fashion are the main concerns for qualitative research studies.
However, different qualitative researchers have different views about how to
determine the quality of a qualitative research study (e.g., Creswell, 2007; Merriam,
2009; Miles & Huberman, 1994; Stake, 2005; Yin, 2003). In addition to these,
validity and reliability of qualitative studies are generally not discussed separately as
in quantitative research studies and researchers used different terminologies such as
‘rigor’, ‘credibility’ or ‘trustworthiness’ to address both validity and reliability (e.g.,
Golafshani, 2003; Lincoln & Guba, 1985; Shenton, 2004). Lincoln and Guba (1985)
used the term ‘trustworthiness’ to refer to the validity and reliability of qualitative
research studies. In this qualitative case study, | preferred to use the term
‘trustworthiness’ to address validity and reliability issues. Lincoln and Guba (1985)
used the terms credibility, transferability, dependability, and comfirmability as
equivalents for internal validity, external validity, reliability, and objectivity to
establish the trustworthiness of a qualitative study. In the following section, I try to
address the credibility, transferability, dependability, and comfirmability issues of

this study respectively.
3.8.1. Credibility

First, credibility corresponds to internal validity in quantitative research
studies. According to Merriam (2009) credibility is concerned with finding answers
to the questions “How congruent are the findings with reality? Are investigators
observing or measuring what they think they are measuring?” (p. 201). In this study,
to increase credibility, the following strategies suggested by Shenton (2004) were
used: establishing the adoption of research methods, developing an early familiarity
with the culture of participating organizations, ensuring honesty in participants, thick
description of the phenomenon under scrutiny, and examining the previous research
findings. These tactics are used in the following way:
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To establish the adoption of research methods, | explained the rationale for
using a qualitative research methodology, the reasons for using lesson observations
and post lessons interviews for gathering research data, and why these methods were
relevant for the purposes of this study. To develop an early familiarity with the
culture of participating organizations, |1 began to observe four middle school
classrooms two months before the actual data collection process. Meanwhile, | used
a video camera to record the examples that are written on the board by each middle
school mathematics teachers. To ensure honesty in participants, | observed only the
teachers who volunteered to participate in my study. There were a total of seventeen
middle school teachers in four schools but not all of them were willing to participate
in my study. Therefore, there were four participant teachers in my study. To present a
thick description of the phenomenon under study, | described the characteristics of
each participant school, participant classroom and participant teacher as much as |
could to portray the actual situations that were explored. Finally, |1 examined the
previous research findings on examples and tried to relate them with the findings of
the current study in the discussion chapter.

In addition to the suggestions of Shenton (2004), Creswell (2007) suggested
eight different strategies to establish credibility: triangulation, member checking,
using thick description, clarifying researcher bias, negative case analysis, spending
prolonged time in the field, peer debriefing, and using an external audit.

Creswell and Miller (2000) defined triangulation as ‘“a validity procedure
where researchers look for convergence among multiple and different sources of
information to form themes or categories in a study” (p. 126). In addition, Stake
(2000) pointed out that “triangulation has been generally considered as a process of
using multiple perceptions to clarify meaning, verifying the repeatability of an
observation or interpretation” (p. 443). There are four different types of triangulation
in qualitative research literature: data triangulation, investigator triangulation,
methodological triangulation, and theory triangulation (Creswell & Miller, 2000;
Creswell, 2007; Patton, 2002). In this study, data triangulation, investigator
triangulation and methodological triangulation was used to increase the credibility.

That is, there were four different cases as data source (data triangulation), a second
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coder was used for analyzing the data (investigator triangulation) and different types
of data including observations and interviews were gathered (methodological
triangulation).

In addition to triangulation, | used member checking after transcribing the
observation and interview data. I had the participants’ view and read the whole
transcription and wanted to see if there were any conflicts between their
understandings. Besides, | conducted stimulated interviews with teachers in cases
that were ambiguous. As mentioned before, I made thick and rich descriptions to
enable the researchers to decide on the applicability to other settings. | clarified
researcher bias by acknowledging and describing my entering beliefs and biases
about the current study in the following sections. This was explicitly stated in the
researcher role and bias section. To build trust and establish rapport with the
participants | spent extensive time in four classrooms. That is, | spent 16 lesson hours
a week in four classrooms during the whole fall semester. Peer debriefing is defined
as “the review of the data and research process by someone who is familiar with the
research or the phenomenon being explored” (Creswell & Miller, 2000, p.129). In
this study, | had the chance to get feedbacks from a researcher experienced in

qualitative research and teacher knowledge.
3.8.2. Transferability

Second, transferability corresponds to external validity in quantitative
research studies. Transferability is concerned with the generalizability of the findings
of a study. Nevertheless, in qualitative research studies, generalizability does not
serve the purpose of making inferences from a small sample to a wider population as
in quantitative studies. Shenton (2004) indicated that “since the findings of a
qualitative project are specific to a small number of particular environments and
individuals, it is impossible to demonstrate that the findings and conclusions are
applicable to other situations and populations” (p.69). Nonetheless, Miles and
Huberman (1994) suggested researchers to provide “thick descriptions for the readers
to assess the potential transferability and appropriateness for their own settings™ (p.

279). According to Lincoln and Guba (1985) researchers are responsible from
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making sure that adequate contextual information about the fieldwork site is
provided to the readers so that they transfer the findings to their own contexts.
Additionally, Shenton (2004) emphasized the importance of conveying the reader the
boundaries of study. Thus, the following contextual information was presented in this
study: “the number of organizations taking part in the study and where they are
based; any restrictions in the type of people who contributed data; the number of
participants involved in the fieldwork; the data collection methods that were
employed; the number and length of the data collection sessions; and the time period
over which the data was collected” (p. 69).

Furthermore, Yin (2003) stated that transferability is a main problem in case

studies. He explained this problem in the following way:
The external validity problem has been a major barrier in doing case
studies. Critics typically state that single cases offer a poor basis for
generalizing. However, such critics are implicitly contrasting the
situation to survey research, in which a sample readily generalizes to a
larger universe. This analogy to samples and universes is incorrect when
dialing with case studies. This is because survey research relies on
statistical generalization, whereas case studies rely on analytical

generalization. In analytical generalization, the investigator is striving to
generalize a particular set of results to some broader theory (p.37).

Yin (2003) suggested researchers to use theory in single case studies and to use
replication logic in multiple case studies. Since this study was a multiple case study,
| tried to address the issue of transferability by using replication logic for each case.
To be more precise, | tested the inferences that | drew for a case study by replications
of the findings in other three cases. For instance, when | found a pattern in the case
of Teacher A, | tried to figure it out in the cases of Teacher B, Teacher C and
Teacher D.

3.8.3. Dependability

Third, dependability corresponds to reliability in quantitative research studies.
Merriam (2009) explained reliability in qualitative research studies in the following
way:

Reliability refers to the extent to which research findings can be replicated.

In other words, if the study is repeated will it yield the same results?
Realistically, a qualitative study by its design and its structure cannot be
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replicated largely because human behavior is never static and the
phenomenon being studied is assumed to be in flux, multifaceted, and highly
contextual” (p.220).

Rather than using the term ‘reliability’, Lincoln and Guba (1985)
recommended discussing the ‘dependability’ or ‘consistency’ of the findings
garnered from research data. In this way, the researcher should have the outsiders
convince that the findings are consistent and dependable. Hence, according to
Lincoln and Guba (1985) reliability in a qualitative study is not concerned with
finding similar findings, but concerned with the findings that are consistent with the
gathered data.

In particular, Yin (2003) stated that the aim of reliability in case studies is to
be sure that “if a later investigator followed the same procedures as described by an
earlier investigator and conducted the same case study all over again, the later should
arrive at same findings and conclusions” (p. 37). Moreover, he added that by
addressing the issue of reliability, the researchers try to reduce the errors and biases
in their case studies. Shenton (2004) pointed out that in order for the readers to get
in-depth understanding of the methods used by a qualitative researcher, the
researcher should report “the research design and its implementation, the operational
detail of data gathering, and reflective appraisal of the project” (p. 71-72). In this
study, the issue of dependability was addressed to a certain extent by describing the
research design and its implementation and by in-depth description of data gathering
and analyzing procedures.

To establish dependability during the coding process, | and another doctoral
student in the field of mathematics education coded the data independently. The
second coder was experienced in coding qualitative data and was informed about the
purpose and research questions of the study in detail. Besides, | informed her about
the coding process before starting the actual coding and hence clarified the focal
points of data analysis. Wiersma (2000) claimed that “if two or more researchers
independently analyze the same data and arrive at similar conclusions, this is strong
evidence for internal consistency” (p. 211). After coding the research data
independently, the codings were compared to each other and about 75% agreement

was found between the two researchers. Later, | came together for several times with
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the second coder to discuss and reach an agreement on codings and categories of this
study. In each meeting session, the different opinions were further discussed and as
a result the conflicts diminished to a lesser extent. Finally, the two coders arrived at
an almost full consensus at the end of the meeting sessions and the coding process
was finished.

3.8.4. Comfirmability

Finally, comfirmability is the last criterion to establish trustworthiness in
qualitative research studies and it corresponds to objectivity in quantitative research
methodology. Patton (2002) stated that the power of scientific method comes from
objectivity and added that “objective tests gather data through instruments that, in
principle, are not dependent on human skill, perception or even presence” (p. 50).
However, he acknowledged that instruments were designed by humans and thus they
were subject to the researchers’ bias. Besides, Shenton (2004) pointed out that to
address comfirmability “steps must be taken to help ensure as far as possible that the
work’s findings are the result of the experiences and ideas of the informants, rather
than the characteristics and preferences of the researcher” (p.72). Shenton (2004)
also recommended researchers to use triangulation to increase comfirmability. In this
study, | tried to establish comfirmability by triangulating observation data and
interview data and by in-depth description of the research methodology. Likewise,
Miles and Huberman (1994) stressed that comfirmability might be addressed to a
certain extent if researchers’ acknowledge their own biases. Thus, the following

section aims at describing my role and biases as a researcher.
3.9. Researcher Role and Bias

In qualitative studies, researchers are key instruments for gathering and
analyzing data (Merriam, 2009). Therefore, subjectivity is one of the main concerns
for researchers when considering the validity of the qualitative research. For
instance, a researcher might record what she wants to see instead of recording what is
really happening and therefore she may not control her bias. Besides, a researcher’s

views and beliefs might affect his/her interpretations in a qualitative study. In a
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similar way, | might have distorted my qualitative data due to my biases. The key
strategy for understanding the researcher bias is reflexivity. Robson (2011) defined
reflexivity as “the process of researchers’ reflecting upon their actions and values
during research (e.g., in producing accounts and writing accounts), and the effects
that they may have” (p.531). In this research, I followed the suggestions of Ahern
(1999) to achieve reflective bracketing (i.e., using reflexivity to identify areas of
potential bias).

Before observing the middle school teachers with different rational number
teaching experience, | clarified my presence at the classroom and explained the
purpose of my thesis. | stated explicitly that it was not compulsory to participate in
the study and made sure which participants volunteered to participate in my study. |
also informed them that the video recordings and the interview transcripts were
going to be kept confidential. During data analysis, | did not pay attention to teacher
names in order to eliminate bias.

As | was a non-participant observer, | did not interact with the teachers or the
students during the classroom practices of teachers. | kept my presence as passive as
possible. This policy sometimes limited my observations and my ability to get more
detailed information about teachers’ intentions for choosing certain examples.
However, it also provided a natural setting for my observations. During the
classroom practices of teachers, | stayed at the end of the classroom. This vantage
point kept me out of students’ line of sight and provided me a good view of the
teachers and the students. During the first few weeks, the students that were closer to
me attempted to ask me for help and I politely replied them that they should ask for
help from their friends or the teacher. | tried to keep myself away from offering any
help or giving tips to the students about the questions asked by their teachers.

Because | am the primary means of data collection, interpretation and
analysis, it is significant to state not only my role in this study, but also my own
biases that might influence data analysis and interpretation of data. | firmly believe
that teachers should provide well-thought examples to their students when teaching
mathematical concepts. I think that this might promote students’ understanding of

mathematical concepts. Besides, teachers should provide their students with the
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opportunity to generate mathematical examples themselves. Thus, teachers need to
encourage their students to be more active in classroom practices. Besides, students
should be introduced to a wide range of examples when learning mathematical
concepts and these examples should support not only students’ procedural
understanding but also their conceptual understanding of mathematics. Besides, I
believe that the examples used by the teachers should be the outcome of their
reflective process of choices. However, when | was a middle or secondary school
student, |1 became experienced with examples that reinforced mainly mathematical
procedures or operations and the teachers did not appear to employ deliberate
considerations for choosing well-thought examples. The contradiction between what
I experienced and what | think about example generation or selection might have

provided me with the impetus for conducting this study.
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CHAPTER IV

OVERALL CHARACTERISTICS OF TEACHERS’ RATIONAL NUMBER
EXAMPLES

The purpose of this study was to explore middle school mathematics
teachers’ treatment of rational number examples in their seventh grade classrooms.
In this chapter, the focus was on describing overall characteristics of teachers’
rational number examples. Through this focus, the following research question and
sub-questions were formulated:

1. What are the overall characteristics of examples used by middle school
mathematics teachers in the teaching of rational numbers in their seventh grade
classrooms?

a. What are the ideas emphasized in the rational number examples used
by the teachers?

b. To what extend do teachers use specific examples in the teaching of
rational numbers?

c. To what extend do teachers use non-examples and counter-examples
in the teaching of rational numbers?

d. To what extend do teachers use pre-planned and spontaneous
examples in the teaching of rational numbers?

e. Which sources do teachers use while choosing pre-planned examples
in the teaching of rational numbers?

More specifically, this chapter included two sections as types of examples
and sources of examples. Types of examples were reported under three sub-sections
as specific examples, non-examples and counter examples. Next, sources of
examples were reported under two subsections as spontaneous examples and pre-
planned examples.

Mathematical examples that were generated or used by the teachers were
checked to determine whether they satisfied their intended requirements to be an
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example. Mostly, the correctness of examples were investigated by examining
whether they satisfied the definition of the concept being illustrated (i.e., concept
definition). That is, the examples used by the teachers were investigated to see
whether they match with the agreed upon mathematical definition or whether it is the
definition held merely by the teachers. In all the observations, | identified 704
mathematically correct examples out of 714 examples that were used by the teachers
in 60 hours of classroom observation. It is important to note that the examples
reported in this study refer only to the examples generated by the teachers, not by the
students. Besides, all of the observed classrooms used the same mathematics
textbook prepared by Aydin and Beser (2013a).

4. 1. Types of Mathematical Examples

In this study, the examination of mathematically correct examples showed
that they played different roles in the teaching of rational number concepts. Thus, the
examples used by the middle school teachers were categorized as specific examples,
non-examples and counter-examples. In the following section, the specific examples
provided by the four middle school mathematics teachers and by the followed
mathematics textbook were described in detail. It is important to note that in the
following sections the word ‘textbook’ shortly refers to ‘the followed mathematics

textbook.’
4.1.1. Specific examples

In this study, almost all mathematical examples generated by teachers were
classified as specific examples. Almost all worked-out examples and exercise
examples included in the explanatory part of the student textbook were also
considered to be specific examples. An example that included both the task and its
solution was considered to be a worked-out example while an example that did not
include its solution was considered to be an exercise example. The number of
specific examples included in the textbook and the number of specific examples used
by four middle school mathematics teachers with respect to the learning objectives

described by the middle school mathematics curriculum were presented in Table 4.1.
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Table 4.1. Number of specific examples provided by the student textbook and the

teachers
Number of specific examples provided by
Learning Objectives Student
Teacher A | Teacher B | Teacher C | Teacher D
Textbook
Explain and locate rational 18 29 30 82 30
numbers on a number line
Express rational numbers in 20 25 33 3 29
different forms
Compare and order rational 29 36 29 2 14
numbers
Perform addl_tlon a_nd subtraction 41 37 46 31 32
operations with rational numbers
Perform multiplication and
division operations with rational 62 54 60 4 32
numbers
Solve multi-step operations with 15 23 13 6 13
rational numbers
Pose and solve rational number 9 6 6 4 9
problems
Total 187 210 210 132 152

Note: Worked-out examples and exercise examples that were included in the
explanatory part of the textbook and that might be offered by the teachers within the
context of learning rational number concepts were counted as textbook examples.

The number of examples used by the teachers to teach rational number
concepts were quite different from each other and from the number of examples
suggested by the mathematics textbook. Overall, the number of examples used by
Teacher A and Teacher B was more than the number of examples included in the
mathematics textbook. On the contrary, the number of examples used by Teacher C
and Teacher D were less than that of suggested by the textbook.

More specifically, to ‘explain and locate rational numbers on a number line’

Teacher C used a great number of examples when compared to the number of

118




examples included in the textbook for this learning objective. Similarly, Teacher A,
Teacher B and Teacher D used more number of examples for explaining and locating
rational numbers on a number line when compared to the textbook. For teaching how
to express rational numbers in different forms, Teacher A, Teacher B and Teaching
D used more than number of examples while Teacher C used very few examples than
the ones included in the textbook. For teaching how to compare and order rational
numbers, only Teacher A used more number of examples than the ones included in
the textbook for teaching this objective. Besides, while Teacher B used the same
number of examples, Teacher D used less number of examples and Teacher C used
very few examples in comparison with textbook examples. For teaching how to add
and subtract rational numbers, Teacher B used more number of examples and the
other teachers used slightly less number of examples than the ones included in the
textbook. The number of examples used by Teacher A and Teacher B to teach
multiplication and division of rational numbers was slightly less than the number of
textbook examples. Moreover, the number of examples provided by Teacher D for
teaching this objective was slightly more than half of the number of examples
included in the textbook for teaching this concept. However, the number of examples
used by Teacher C for teaching this objective was remarkably less than that of
textbook examples. When teaching how to solve multi-step operations with rational
numbers, Teacher A used more number of examples while the other teachers used
less number of examples than the ones included in the textbook for teaching this
objective. Finally, while Teacher D used the same number of problem posing and
solving examples, the other teachers used less number of problem posing and solving
examples when compared to the ones included in the textbook.

More generally, the middle school mathematics textbook followed by the
participating classrooms abounded in examples related with rational number
operations and procedures while it included fewer problem posing and solving
examples. Similar to this, middle school mathematics teachers gave more emphasis
on rational number operations and procedures and thus they used a great number of

examples for teaching rational number operations and procedures. In contrast,
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teachers provided fewer examples for teaching how to pose and solve real life
problems regarding rational numbers.

In the following sections, the specific examples included in the middle school
mathematics curriculum and in the textbook and those that were used by the middle
school mathematics teachers to teach each learning objective were described in
detail.

4.1.1.1. Examples used for explaining and locating rational numbers on a

number line

Middle school mathematics curriculum emphasized that in order for teachers
to teach this objective they need to define rational numbers by using the symbol Q
and have students examine the relationship between integers, fractions, and rational
numbers. Besides, it was emphasized that students need to realize where rational
numbers are used in daily life situations. Finally, the curriculum suggested an
activity for locating rational numbers on a number line. In this activity, teachers were
suggested to emphasize negative rational numbers by recalling the absolute value
concept and by finding the symmetries of positive rational numbers through a
symmetry mirror that is placed on the origin of the number line.

In the mathematics textbook followed by the classrooms, the examples
related with this objective were presented under the following ideas: finding
equivalent classes of a fraction, locating equivalent fractions on a number line,
locating rational numbers on a number line, determining the positivity/negativity of
rational numbers, and finding the rational value of a point located on a number line.
Some illustrative examples included in the textbook for the aforementioned ideas
were presented in Table 4.2. It is important to note that only the examples with
different mathematical structure were used as illustrative examples. Therefore, the
number of examples provided for each idea were also presented.
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Table 4.2. Examples included in the textbook for explaining and locating rational

numbers on a number line

Number
Ideas Ilustrative examples of
examples
used
7 14 21 28 35 42
Finding equivalent 20 40 60 80 100 120 4
classes of a fraction 1 2 3
2 4 6 -

0 i -
Locating equivalent 2:
fractions on a number | ° 1 k 1
line °

0 21 1

60

Locating rational 17 1 2 5 )

=l === -
n_umbers on a number 2’3 4 3 7 8
line
Determining the 2 o 4 4 o 14 o 26 26 o
positivity/negativity | Z€&: —=-7e€R,~—eR, ——=""¢ 4
of rational numbers 5 -7 ! > S5
Finding the rational | A
value of a point -1 0 1 1
located on a humber
line

The textbook included 18 examples for explaining and locating rational
numbers on a number line. The textbook initially introduced 27—0 as an example for

the concept of fraction. Then, fractions that were equivalent to this fraction were

determined dA—lEéﬁm described as the set of fractions that
etermined an 2020 60’ 80 was described as the set of fractions tha

were equivalent to this fraction. Later, the equivalent fractions were located on three

distinct number lines that were one under the other. The number line representation

showed that the equivalent fractions located on the same point and thus zlo was

named as the identifier of the set. As a result, it was stated that each identifier of a set

consisting of equivalent fractions was a rational number. Finally, rational numbers
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were defined as numbers that can be written in the form of %, where a and b are

integers, b = 0 and the set of rational numbers was denoted by Q.

After defining rational numbers, the textbook gave examples about locating
rational numbers on a number line. The selected rational numbers included several
variations in the following dimensions: proper, improper, mixed, positive or
negative. Next, to examine positivity/negativity, a rational number with a positive
numerator and a positive denominator, a rational number with a positive numerator
and a negative denominator, a rational number with a negative numerator and a
positive denominator and a rational number with a negative numerator and a negative
denominator were presented. Finally, the textbook ended up with a worked example
asking students to find the rational value of a point located on a number line between
0and -1.

The examples used by Teacher A for explaining and locating rational
numbers on a number line were classified as follows: identifying whether a given
number is rational, locating rational numbers on a number line, finding the rational
value of a point located on a number line and examining the location of a minus sign
in a negative rational number. Some illustrative examples used by Teacher A for
these ideas were presented in Table 4.3. Note that only the examples with different
mathematical structure were used as illustrative examples. Therefore, the number of

examples provided for each idea were also presented.
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Table 4.3. Examples used by Teacher A for explaining and locating rational numbers

on a number line

negative rational number

Number
Ideas Ilustrative examples of
examples
used
Identifying whether a .2 ) i o1 )
given number is rational 0@ - 3 €@ -125eQ 012 0 #Q 72Q 17
Locating rational 3 2 12
numbers on a number - == =3=; — 6
a
Finding the rational 2 —1 0
value of a point located 2
on a number line A B . &
... 1
3 3
Examining the location 1 1 1
of aminus signin a —=——=— 4
2 2 2

Teacher A used 29 examples for explaining and locating rational numbers on

a number line. He started teaching for this objective by having students recall the

number sets learned before. That is, he defined counting numbers, natural humbers

and integers by using the listing method in the following way: N ={0,1,2,3,...,oo},

C={123..,0}, and Z={-0,-2,-1,0,+1,+2,..,0} at the beginning of the

lesson. Although the rational numbers were defined by the help of equivalent

fractions and by locating equivalent fractions on a number line in the textbook,

Teacher A did not emphasize these ideas. Instead, he directly defined rational

numbers after having students remember counting numbers, natural numbers and

a
integers. He symbolically defined rational numbers as Qz{a,beZ,and b0, B}

and he stated that any number that can be written in the form % where b is not equal
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to zero is called a rational number. After this definition, Teacher A wrote several
numbers on the board and asked the students to find out which one of them were
rational numbers. It is important to note that the teacher selected two numbers from
natural number set, two numbers from integer set and finally one number from
decimal number set. By this way, he emphasized the relationship among rational
numbers, integers, decimals and natural numbers. Finally, he drew a Venn diagram
on the board to show the relationship between counting numbers, natural numbers,

integers and rational numbers as shown in Figure 4.1.

Figure 4.1. A Venn diagram used by Teacher A

Before teaching how to locate rational numbers on a number line, Teacher A
had students remember proper fractions, improper fractions and mixed numbers.
Then, he selected a set of rational numbers in the following forms to locate on a
number line: a positive proper number, a negative proper number, a positive mixed
number and a positive improper number respectively. The students were already
familiar with locating the first rational number on the number line since they learnt
this in their previous years in the topic of fractions. Next, the teacher selected a
negative rational number whose numerator was less than its denominator. The third
example selected was between 3 and 4 and was a mixed number. Lastly, before
locating a positive improper number on the number line, the teacher converted it into
a mixed number to determine the whole and fractional parts. The form of rational
number examples selected by the teacher were similar to those included in the
textbook. That is, both Teacher A and the textbook presented examples in proper,

improper, mixed, and negative forms.
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After locating several rational numbers on a number line, Teacher A tried to
draw students’ attention to the idea that the position of minus sign does not change

the value of a rational number. To do so, he wrote —%:%:ion the board and

stressed that —%, _?1 andi2 were all the same regardless of the position of minus

sign. However, the teacher did not provide examples for inspecting the
negativity/positivity of rational numbers although there were examples of this kind in
the textbook. Besides, the teacher did not provide examples for finding the rational
value of a point located on a number line during the teaching of this objective.
However, after teaching the objective ‘comparing and ordering rational numbers’ he
provided two exercise examples of this kind from an auxiliary book.

The examples used by Teacher B for explaining and locating rational
numbers on a number line were classified as follows: identifying whether a given
number is rational, finding equivalent classes of a fraction, locating equivalent
fractions on a number line, locating rational numbers on a number line and finding
the rational value of a point located on a number line. Some illustrative examples
used by Teacher B for teaching these ideas were presented in Table 4.4. Note that
only the examples with different mathematical structure were used as illustrative
examples. Therefore, the number of examples provided for each idea were also

presented.
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Table 4.4. Examples used by Teacher B for explaining and locating rational numbers

on a number line

Number
Ideas Ilustrative examples of
examples
used
Identifying whethera | 1 103 =~ 5
given number is 2 <@ 85 <Q 8 <@ Vs e Q 6
rational
L i 1 2 3 4 5 10 -15 20
Finding equivalent —=—=—=—=.;-——=-——=———=—-—-=_, 4
classes of a fraction 2 4 6 8 2 4 6 8
Locating equivalent
fractions on a number 1
line
Locating rational
numbers on a number 11
line
1 0 i N N 2
N | |
Finding the rational A x
value of a point 8
located on a number
line o B 1 o

Teacher B used 30 examples for explaining and locating rational numbers on
a number line. He started the lesson by briefly touching upon previously learnt
number sets. He selected several numbers to exemplify counting numbers and added
0 to these numbers to define natural numbers. Next, he selected several negative
numbers to recall integers. Similar to Teacher A, Teacher B used a Venn diagram
when providing examples for counting numbers, natural numbers and integers. After
mentioning about these number sets, the teacher asked students to ponder whether
these number sets fill up the number line. During this time, the teacher drew a
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number line on the board and selected a point between 1 and 2. Then, the teacher

wrote 1% as a corresponding value of this point and asked the students to find out to

which number set it belonged. By this way, the teacher had students remember early
fraction ideas and feel the need for a new number system. The teacher introduced
rational number set as a new number system and denoted it with the symbol Q. Then
he switched back to the Venn diagram and selected several rational number examples

as shown in Figure 4.2.

Figure 4.2. A Venn diagram used by Teacher B

The rational numbers selected by Teacher B included some variations such as
being a proper number, improper number, mixed number, positive number or

negative number. However, the selections constrained rational numbers to the

numbers in the form of % since Teacher B did not select any natural number,

counting number or an integer to exemplify rational numbers.

After explaining rational numbers by the help of different number sets,
Teacher B taught students how to locate different rational numbers on a number line.
He selected a set of rational numbers in the following forms: a positive mixed
number, a negative mixed number, a positive proper number, a positive mixed
number and a negative proper number respectively. The sequence of examples used
for locating rational numbers on a number line was different from textbook examples
since Teacher B neither started locating by an already known proper fraction or nor

provided examples for improper fractions.
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In addition to defining rational number set by recalling counting numbers,

natural numbers and integers, Teacher B also used the definition that was included in
the textbook. That is, he located the fractions %% andg on three different number

lines that were one under the other and stressed that these fractions corresponded to

the same point and thus they were equivalent to each other. Then, he expressed that

these equivalent fractions form the set A=4—,—,—,—,—,...; and added that the
2 46810

simplest fraction of this set is also the identifier and the rational number denoted by
this set. Teacher B also selected a negative proper number and a negative improper
number to form sets of equivalent fractions.

To emphasize that the number of rational numbers included in rational

number set is infinite, the teacher asked students to think of the number of rational
numbers between 0 and -1. In addition, he generated —% as an example for a

rational number which is fairly close to zero. It is important to note that the teacher
selected large numbers for the numerator and the denominator to help students grasp
that there are also too many rational numbers between 0 and 1. After this, the teacher
wrote the definition of a rational number in the following way: “the simplest fraction
of a set of equivalent fractions is a rational number denoted by this set”. Besides, the

teacher denoted the rational number set with the symbol Q. However, he ignored
a
defining rational numbers by using the symbolic form Q :{a,b eZ,andb =0, E}

The teacher ended up explaining rational numbers with the mathematical statement
Q:Q‘U{O}UQ+ but did not give any specific example for determining the

positivity/negativity of rational numbers.

To teach how to locate rational numbers on a number line, Teacher B selected
rational numbers in different forms. Although the textbook initially provided a
proper fraction as a start-up example to this concept, Teacher B preferred to use a
negative rational number between -1 and 0. After this, the teacher used several more

examples to teach students how to locate a positive mixed number, a positive proper
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number and a negative mixed number. Nevertheless, Teacher B did not provide any
example for locating negative improper numbers on a number line despite there were
examples of this kind in the textbook.

In the textbook, one example was provided to illustrate finding the rational
value of a point located on a number line. Although Teacher B did not provide any
example while teaching this concept, he used several exercise examples of this kind
after teaching how to express rational numbers in different forms. The rational
numbers that corresponded to each of the specified points on the number lines were

—E, —ﬂ, §,§,Z, li,lg, and 2%. Here, the first example was between -3 and -2, the

second example was between -1 and 0, the third example was between 0 and 1, the
fourth, the fifth, the sixth and the seventh examples were between 1 and 2. Finally,
the last example was between 2 and 3.

The examples used by Teacher C for explaining and locating rational
numbers on a number line were categorized as follows: identifying whether a given
number is a rational number, an integer or a natural number, examining the location
of a minus sign in a negative rational number, determining the positivity/negativity
of rational numbers, locating rational numbers on a number line, finding equivalent
classes of a fraction, simplifying fractions and converting among mixed numbers and
improper numbers. Some illustrative examples used by Teacher C for teaching these
ideas were presented in Table 4.5. Note that only the examples with different
mathematical structure were used as illustrative examples. Therefore, the number of

examples provided for each idea were also presented.
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Table 4.5. Examples used by Teacher C for explaining and locating rational numbers

on a number line

Number
Ideas Ilustrative examples of
examples
used
1 8 1 3 99
8-eQ; -5€Q; -—eQ;-—eQ; 0€Q; —eQ; —e;
o 5 4 2 7 83
Identifying _ 10 7 1 8 1
whether a given —eQ 19¢Q; —¢Q; -8-¢Z; ——€cZ; -1eZ -~ ¢,
number is a 2 0 5 4 2
- 40
rational number, 1 10 1
an integer or a 0€Z;035¢7Z; —¢Z,1eZ; —eZ,-8—¢N;-5¢N;
natural number 2 2 5
8 1 3 10
-——e¢N;——¢N; 0eN; 035¢N; —¢N; —eN;1e N
4 2 7 2
Examining the
Io_catlon_ ofg -3 3 3
minus sign in a —_—=——=— 2
negative rational 4 4 4
number
Determining the
positivity/ -3 . .
negativity of I Q. 5_x Q 2
rational numbers
Finding equivalent 1 2 3 4 5 6
classes of a — === =——=— 6
Locating rational 1 3 8 2 3
numbers on a - —— == 1= —2— 15
number line 8 5 5 7 5
Simplifying 80 4 400 5 A
fractions 140 7 160 2
Converting among
i 1 5 1 29 16 12 2 25 1
mlxe_\dnumbers i 5 Gt 16 12 .2 5 1t 13
and improper 2 2° 4 42 5 5 6 6
numbers

Teacher C used 82 examples for explaining and locating rational numbers on

a number line. He started teaching this objective by the defining rational numbers as
numbers that can be written in the form of % , where a and b are integers, b=0. The

teacher emphasized that the denominator of a rational number cannot be zero by
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giving % as a non-example to rational numbers. The teacher continued with the

mathematical statement Q =Q~U{0} UQ" without providing any specific example

for determining the negativity/positivity of a rational number. However, he tried to
draw students’ attention to the neutrality of zero as a rational number. Next, he
mentioned about counting numbers, natural numbers and integers and stressed that
rational numbers are ‘larger’ than integers, integers are ‘larger’ than natural numbers,
and natural numbers are ‘larger’ than counting numbers. Besides, he wrote a
mathematical statement on the board as a remark to the relationship among counting
numbers, natural numbers, integers and rational numbers. As it can be seen in Figure
4.3, Teacher C used the symbol c to indicate the relationship among these number

sets.

Figure 4.3. A subset notation used by Teacher C

Teacher C provided exhaustive number of examples to help students identify
whether the given number is an element of natural number set, integer set or rational
number set or an element of all these three sets. After introducing a negative integer
as a rational number example, Teacher C emphasized that changing position of
minus sign does not alter the negativity and the value of a rational number. He wrote

the equality _73 = _% = 14 on the blackboard as an example for this idea. Similar to

the textbook, Teacher C used an example that had a minus sign both in the numerator

and the denominator (i.e.,_—i) to help students understand that it is an element of

Q. Although the teacher had students remember the concept of equivalent

fractions by providing several examples, he did not use any of these examples as an
initial step for introducing the mathematical term ‘identifier of a set” and for defining

rational number set as done in the textbook.
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After providing examples for equivalent fractions, Teacher C selected several
rational numbers in the following form to locate on a number line: a positive proper
number, a negative mixed number, a positive mixed number and a negative improper
number. The sequence of examples used by the teacher was different from the
sequence of textbook examples since textbook examples took the form of a positive
proper number, a negative proper number, a positive mixed number and a negative
improper number respectively. This difference stemmed in part from the fact that the
sequence generated by the teacher did not include a negative proper number
example. Finally, although the textbook included an example for finding the rational
value of a point located on a number line, Teacher C did not provide any example of
this kind to this students.

Apart from the examples provided during the teaching of previously
mentioned ideas, Teacher C used several exercise examples for simplifying fractions
and converting among mixed numbers and improper numbers. More specifically, the
selected fractions included large numbers in their numerators and denominators and
these fractions were either in proper or improper number form. Similarly, the
examples selected by Teacher C for conversion included both positive and negative
improper numbers.

Teacher D’s selection of examples for explaining and locating rational
numbers on a number line fell under the following categories: feeling the need for
positive and negative rational numbers, identifying whether a given number is a
rational number, examining the position of the minus sign, determining the
positivity/negativity of rational numbers, locating rational numbers on a number line
and finding the value of a rational number marked on a number line. The illustrative
examples and the total number of examples used for explaining and locating rational

numbers on a number line were presented in Table 4.6.
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Table 4.6. Examples used by Teacher D for explaining and locating rational numbers

on a number line

Number
Ideas Ilustrative examples of
examples
used
Feeling the need for | , ) )
positive and - of acake; — meters below sea level; - degrees Celsius 3
negative rational 4 3 3
numbers below zero
Identifying whether 1 2 1 3
agivennumberisa | 2e€Q; -1-€Q; ——eQ; 0€Q;, —€Q; 012 Q; —¢Q 14
rational number 4 3 4 0
Examining the
locationofaminus | -1 1 1 L
sign in a negative 2 2 2
rational number
Determining the
positivity/ -1 1 1
negativity of 5 €Q; —eQ:—e€Q 3
rational numbers
Locating rational
5 5
numbers on a - ——; =2— 3
number line 6 6 5
Finding the rational
value of a point 5
located on a
number line

Teacher D used 30 examples for explaining and locating rational numbers on
a number line. She started the lesson by having students feel the need for positive
and negative rational numbers through real-life situations. She first introduced a

fraction part model, shaded one-fourth of the fraction pie, emphasized that each piece
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is equal to each other and represented the shaded region with the fraction % In

addition, she provided temperature and altitude below sea level examples that

modelled negative rational numbers. More specifically, she asked students how to

express % degrees below 0 on a Celsius temperature scale. Similarly, the teacher

asked students to express the altitude of a swimmer that is % meters below the sea

level. Next, she indicated that integers are signed numbers and fractions may also
have signs. At this point, she introduced the term ‘rational numbers’ and stated that
rational numbers are used to express both negative and positive fractions. After that,
she recalled natural numbers and integers by using a Venn diagram as done by the

previous three teachers. This diagram is presented in Figure 4.4.

Figure 4.4. A Venn diagram used by Teacher D

Teacher D indicated that the rational number set forms the superset of integer and
natural number sets. The teacher provided several examples for rational numbers.
These rational numbers were in the following forms: a positive proper number, a
positive decimal number, the neutral number zero, a negative proper number, a
negative mixed number and a negative integer. Besides, one number was an element
of all three sets, one number was an element of integer and rational number sets and
the rest were only elements of the rational number set. After providing examples for

rational numbers, the teacher defined rational numbers as numbers that can be

written in the form of %, where a and b are integers, b=0 and denoted the set of

rational numbers by Q. To emphasize that the denominator of a rational number
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cannot be equal to zero, the teacher provided % and g successively and pointed out

that the former rational number is undefined while the latter is equal to 0. Next, to
examine the positivity/negativity of rational numbers, the following forms of
examples were used by Teacher D: a negative numerator over a positive
denominator, a negative numerator over a negative denominator, and a positive
numerator over a negative denominator. Different from textbook examples, these
examples had absolute values that were equal to each other. By this way, the teacher
hinted at the idea that the position of the minus sign does not alter the value of the
rational number. Just after introducing these examples, the teacher wrote on the

blackboard the equality _?1 = iz = —% and explicitly stated that these three different

notations of a rational number are equal to each other. Finally, Teacher D ended up
explaining rational numbers Dby introducing the symbolic expression
Q=0 u{ojuQ".

To teach how to locate rational numbers on a number line, Teacher D used a
sequence of rational numbers in the following forms: a positive proper number, a
negative proper number and a negative mixed number respectively. Before locating

the positive proper number on the number line, the teacher stated that the students

already know how to locate fractions on a number line. More specifically, she

divided the numerator of the positive proper number by its denominator, (i.e., 5%),

and showed that the positive proper number is between 0 and 1 and concluded that
all proper fractions are located between 0 and 1 on a number line. To have students

notice the effect of minus sign on the position of a rational number, Teacher D

selected —g as the next example and indicated that —% is located between 0 and -1.

By locating g and —% on a number line successively, the teacher showed that they

are equally distant from 0 on the number line. Besides, she explained that negative
rational numbers are located on the left hand side of O while positive rational
numbers are located on the right hand side. The last example used by the teacher for

locating rational numbers was a negative mixed number. While locating the mixed
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number on a number line, the teacher informed students about a common error they
tended to make and warned students to count subintervals instead of tick marks while
finding the location of a rational number on a number line. The examples used by the
teacher to teach locating were similar to those that were included in the textbook. As
mentioned before, the textbook examples included several variations in the following
dimensions: proper, improper, mixed, positive or negative. While Teacher D
illustrated how to locate a positive proper number, a negative proper number and a
negative mixed number respectively, she did not do this for the following number
forms: a positive mixed number, a positive improper number or a negative improper
number.

In addition to locating rational numbers on a number line, Teacher D
provided several examples for finding the rational value of points that are marked on
a number line. To be more precise, the teacher marked points on a number line
between -2 and -1, -1 and 0, 0 and 1 and finally between 1 and 2 and asked students
to find out the rational numbers corresponding to these points. By this way, the
teacher selected rational numbers that are in different integer intervals. In addition,
each integer interval included different number of subintervals. Thus, the

denominator of each rational number was different from each other.
4.1.1.2. Examples used for expressing rational numbers in different forms

In the middle school mathematics curriculum, teachers are suggested to teach
this objective by focusing on two main ideas. First, teachers are expected to teach
how to express a rational number as an integer, as a natural number, as a terminating
decimal number and lastly as a repeating decimal number. Second, they are expected
to teach how to convert a repeating decimal number into a rational number.

In the mathematics textbook followed by the classrooms, the examples
related with this objective included the following ideas: expressing integers as
rational numbers, expressing a rational number as an integer/repeating
decimal/terminating decimal, expressing terminating decimals as rational numbers
and converting repeating decimals into rational numbers. The illustrative examples

and the total number of examples for each category are presented in Table 4.7.
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Table 4.7. Examples included in the textbook for expressing rational numbers in

different forms

Number
Ideas Ilustrative examples of
examples
used
ingi 30 -105 +15
Expressing integers 0= 105- - 415- > 5
as rational numbers 1
Expressing a
rational number as 8 7 - 1 - 7 7
an integer/repeating | — =4; —=2.3; - — =-0.047619; — =0.875; —=3.5 5
decimal/terminating | 2 3 21 8 2
decimal
Expressing
inati 355 —8922
Effm'“al“ng ol | 355="o; —89.22= 5
ecimals as rationa 10 100
numbers
Converting
i i - 69 - 185 — 867
repeating decimals | ;5 99,5 45229, gg75 - 2F 5
into rational 9 90 990
numbers

The textbook included 20 examples for expressing rational numbers in
different forms. The textbook initially illustrated that integers can be written in the

form of rational numbers. Examples of this kind showed that each integer, either

positive or negative, can be written in the form of % where b is equal to 1.

Moreover, the textbook included examples for expressing a rational number as an

integer, repeating decimal or terminating decimal. For instance, the equality %:4

was included in the textbook for the purpose of expressing a rational number as an

integer or a natural number and similarly %:3.5 and £=0.875 exemplified that

rational numbers can be written in the form of terminating decimals. Lastly, the

equalities such as% =2.3and _Zil =—-0.047619 illustrated that rational numbers

can be written in the form of repeating decimals. Besides, the examples such as
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35.5= 3—%5 and —89.22 = % typified that terminating decimals can be written as

rational numbers in the form of 2

As another category, examples such as
76= %, 2.05=285 and 0.875= %were included in the textbook so as to explain

the method for converting a repeating decimal into a rational number. The method

included in the textbook for converting 7.6 into its rational number is provided in

Figure 4.5.

D=7,6=7,666..ise 10.D = 76,666... olur.

0.(7,666...)=76, 666...
_ (7,666 ..)= 7, 666..
10. (7,666 .. ) 1.(7,666 ...) =69, 000
(10-1). (7,666 ..) =69
9.(7,666...)=69
1 1
—-9.(7,666..)=—.69
79 )= 3
1
(7,666 ...):@:E
9 3

Figure 4.5. Textbook method for converting 7.6 into its rational number (Aydin &
Beser, 2013a, p. 49)

As it can be seen, in the first example (i.e., 7.6 ) the repeating pattern begins
immediately after the decimal point. In the second and third example, (i.e.,

205—% and 0875—% respectively) it begins one digit after the decimal

point. However, while only one digit repeats in the second example, two digits repeat
in the last example.

The examples used by Teacher A for expressing rational numbers in different
forms typified the following mathematical ideas: expressing a rational number as a
repeating decimal and converting repeating decimals into rational numbers. The
illustrative examples and the total number of examples for these two ideas are

presented in Table 4.8.

138



Table 4.8. Examples used by Teacher A for expressing rational numbers in different

forms
Number

Ideas Ilustrative examples of
examples

used

Expressing a 0 -1 2 1 _

rational number as — =33 —+—+—+ +..=012 2

a repeating decimal | 3 10 100 1000 10000

. - 2 _— 26 _— 7525-7 - 268-26

Converting 02=—;526=5—; 7525 = : 2.68 = ;

repeating decimals 9 99 999 90 19

into rational —  52714-527 — 63284632

numbers 52714 = ——; 6.3284 = ———

990 9900
Expressing
inati 2 34 546 54

terminating 02=—; 034=—7; 3546 =3——; —254=-2— 4

decimals as rational 10 100 1000 100

numbers

Teacher A used 25 examples for expressing rational numbers in different
forms. Although there were examples in the textbook for expressing integers as
rational numbers and for expressing rational numbers as integers and as terminating
decimals, the teacher did not provide any example of these kinds during the teaching
of the current objective. However, he used several examples for expressing integers
as a rational number while teaching the objective ‘explain and locate rational

numbers on a number line’. More clearly, while explaining rational numbers, he

wrote on the board several equalities such as2 = % and 0 :% to show that an integer

or a natural number can be written as a rational number.

Teacher A provided one example for teaching how to express a rational

number as a repeating decimal number. To teach that % is equal to 3.3, the teacher

performed a long division algorithm on the board. By the help of this initial example,
the teacher explained that each repeating decimal can be expressed as a rational
number.

Teacher A provided a large number of examples for converting repeating

decimals into a rational number. Meanwhile, he used two different procedures to
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teach conversion of a repeating decimal into a rational number. The teacher used
these two different procedures as a shortcut to the method included in the textbook.
The textbook method provided the underlying logic of the conversion. However,
Teacher A did not present this method to the students before teaching shortcuts. The
teacher used the first procedure for the decimals whose all digits after the decimal
point repeated. According to this procedure, repeating digits were written over the

main fraction bar as a numerator while 9’s as many as the number of repeating digits

were written under the main fraction bar as a denominator. For instance, 0.2 :%

was provided by the teacher to show the conversion of repeating decimals which

included only one repeating digit after the decimal point. Similarly, he used

5.26 =5% as an example for converting a decimal with two repeating digits after

the decimal point. Moreover, some of the examples provided by the teacher included
both non-repeating and repeating digits after the decimal point. To convert these type
of repeating decimals into a rational number, Teacher A introduced another
procedure for their students. This procedure emphasized adding 9 to the denominator
of the rational number as many as the number of repeating digits and adding O to the
denominator of the rational number as many as the number of non-repeating digits

following the decimal point. More specifically, the teacher provided 2.6§=%

52714 -527 63284 —-63 375-37

52.714 = , 6.3284 = and 3.75= as examples for

teaching this procedure. As it can be seen, the first and the last example includes one
repeating and one non-repeating digit after the decimal point, the second example
includes two repeating digits and one non-repeating digit, and the third example
includes three repeating digits and one non-repeating digit. When these examples are
compared with those of the textbook, it can be seen that Teacher A used a wider
variety and more examples to teach conversion of repeating decimals into a rational
number.

Finally, Teacher A used several examples for expressing terminating

decimals as rational numbers. The teacher used both positive and negative
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terminating decimals for expressing them as rational numbers. Besides, these
terminating decimals included one, two or three digits after the decimal point.

The examples used by Teacher B to teach how to express rational numbers in
different forms represented the following ideas: expressing integers as rational
numbers, expressing terminating decimals as rational numbers, expressing rational
numbers as repeating decimals and converting repeating decimals into rational
numbers. The illustrative examples and the total number of examples for each of

these ideas are presented in Table 4.9.

Table 4.9. Examples used by Teacher B for expressing rational numbers in different

forms
Number
Ideas Illustrative examples of
examples
used
Expressing 2 _8
integers as 2=—; -8=— 3
rational numbers 1 1
Expressing
inati 4 17
terminating 4.8:_8; _ 3:_3; 004 —— 4
decimals as 10 100 250
rational numbers
Expressing
! 5 -
rational numbers | > _ 16 2
as repeating 3
decimals
- 16-1 — 215-2 - 324-32 — 5104-5
16=——:; 215= ;324 =——; 5104 = ——;
Converting 9 99 %0 999
i — 1045-10 - 167-16 — 37145-31
(rjee‘i?;t'aqgimo 1.045=————: 0.167 = £ 31745 =~~~ 24
: 990 900 9990
rational numbers
—  7419-74
0.7419 = ———
9900

Teacher B used 33 examples for teaching how to express rational numbers in

different forms. The teacher initially provided examples such as 2 =% and —8=_T8

to illustrate that each integer, either positive or negative, can be expressed in the
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form of where b is equal to 1. Next, he provided examples such as

oo

4.8= 48 1.73= 173 -0.04 = —ziso to illustrate terminating decimals in the form of

10’ 100’
rational numbers.
Similar to Teacher A, Teacher B performed a long division algorithm on the

board to show that g=1.666... =1.6 and thus the teacher illustrated how to convert a

rational number into a repeating decimal.

Although the teacher used few examples for converting a rational number into
a repeating decimal, he used many examples for converting a repeating decimal into
a rational number. Before teaching how to convert a repeating decimal into a rational
number, the teacher introduced the textbook method for conversion that is presented
in Figure 4.5 and added that this method for conversion is long and time consuming.
Hence, he provided a shortcut procedure for converting all types of repeating
decimals including decimals with only repeating digits or those with both repeating
and non-repeating digits after the decimal point. Teacher B explained the shortcut
procedure for converting repeating decimals into a rational number by means of the
following steps: (1) write down the repeating decimal without its decimal point; (2)
subtract non-repeating part from Step 1; (3) divide the number obtained from Step 2
by the number with 9’s and 0’s: for every repeating digit write down a 9 and for
every non-repeating digit write down a 0 after 9’s.

The variety of examples used by the teacher to teach this procedure are
presented in Table 4.10.
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Table 4.10. A variety of repeating decimals used by Teacher B for conversion

r-elz-yg)ti%f The number in Examples used by the teacher
peating the denominator P y
decimal
a.b 9 1.6, 7.6, 0.7, 1.3, 2.7
a.bc 99 215, 1591, 1.29
a.bc 90 3.24, 1.17
a.bcd 999 5104, 10.394, 7.014
a.bcd 990 1.045, 0.875, 3.207, 4.114, 2.581, 4.291, 5.279
a.bcd 900 0.167, 0.764
a.bcde 9990 3.1745
a.bcde 9900 0.7419

As seen in Table 4.10, Teacher B used five examples for converting repeating
decimals with only one repeating digit. For decimals with two repeating digits, he
used three examples. For those with one repeating digit and one non-repeating digit,
the teacher used two examples. In addition to providing repeating decimals with one
or two digits after the decimal point, the teacher also presented repeating decimals
with three or four digits after the decimal point. The teacher used three examples for
illustrating the conversion of decimals with three repeating digits. The teacher gave
more emphasis on the conversion of decimals with two repeating digits and one non-
repeating digit and thus provided seven examples of this kind. For decimals with one
repeating digit and two non-repeating digits, he used two examples. Finally, he
illustrated the conversion of decimals with three repeating digits and one non-
repeating digit or with two repeating and two non-repeating digits by giving one
example for each type.

Teacher C merely provided examples for converting repeating decimals into
rational numbers during the teaching of expressing rational numbers in different
forms. He provided three different examples to teach how to convert repeating
decimals into rational numbers. Unlike previous teachers, Teacher C taught
conversion of a repeating decimal number into a rational number after teaching the

objective of ‘comparing and ordering rational number’. Initially, he wrote on the
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board the shortcut procedure that was also used by Teacher B. He introduced this
procedure to his students in the following way:

the repeating decimal without its decimal point —non repeating part
write a 9 for every repeating digit and a O for every non repeating digit after 9's

He initially used 1.3 as an example for teaching the conversion to his students. As it
can be seen, this example was a decimal with only one repeating digit after the

decimal point. The teacher wrote on the board the equality 1.§=&_1=E as an

application of the procedure for this repeating decimal. Then, the teacher explained
that he selected this example from the workbook so as to have students understand
the underlying logic of conversion as emphasized by textbook. More precisely, this
repeating decimal was included in the workbook as an exercise example and the
students were asked to fill in the blanks with relevant numbers. This example is
presented in Figure 4.6.

D=1,3333..210.D=.....
= 1,3333...

10.D - D = 12,0000...

Figure 4.6. An example used by Teacher C to teach the logic of conversion (Aydin &
Beser, 2013b, p. 34)

Next, the teacher used 3.07 as another repeating decimal with two repeating
digits after the decimal point. This time, the teacher converted this repeating decimal
into a rational number by using method depicted above. That is, the teacher used the
method included in the textbook. However, he indicated that this way of converting
is a long and complicated process. Thus, he switched back to using the shortcut

procedure that he wrote on the board at the beginning of the lesson. He converted
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307-3 _304 ond emphasized that the
99 99

307 into a rational number as 3.07 =

students need to convert ? into a mixed number to finalize the conversion.

As can be understood from the given examples, Teacher C provided only two
different types of repeating decimals in the course of teaching the objective ‘express
rational numbers in different forms’. However, he provided another different type of
repeating decimal for conversion while he was teaching the objective of ‘perform

addition and subtraction operations with rational numbers’. Namely, Teacher C

converted 24.789 into a rational number by using the shortcut procedure that he

24789 - 247 24542
990 990

As

taught at the beginning of the lesson as follows: 24.789 =

it can be seen, 24.789 is a repeating decimal with one non-repeating digit and two
repeating digits after the decimal point. Finally, the teacher asked the students to
24542

divide 24542 by 990 with a calculator to have them see that is equal to

24.789898989...

The examples generated by Teacher D to teach how to express rational
numbers in different forms represented the following mathematical ideas: expressing
integers as rational numbers, expressing terminating decimals as rational numbers,
expressing rational numbers as integers/repeating decimals/terminating decimals and
converting repeating decimals into rational numbers. The illustrative examples and

the total number of examples for each of these ideas are presented in Table 4.11.
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Table 4.11. Examples used by Teacher D for expressing rational numbers in different

forms

Number
of
examples
used

Ideas Illustrative examples

Expressing integers 3. -2
as rational numbers 1’ 1

Expressing
terminating 3 3 5 6 1256
decimals as rational 10 100 10 1000
numbers

Expressing rational
numbers as
integers, 15 3 10
terminating 5 4

decimals or
repeating decimals

Converting
repeating decimals
into rational
numbers

- 3 -
03=—;25=2— 7
9

Teacher D used 22 examples for teaching how to express rational numbers in
different forms. She initially provided examples to illustrate that integers, either
positive or negative, can be written in the form of rational numbers. While providing

these examples to students, Teacher D stressed that each integer can be written in the

form of % where b is equal to 1. At the same time, she referred to the term ‘hidden

denominator’ to emphasize the role of 1 in the above mentioned examples.
After providing examples for expressing integers as rational numbers,

Teacher D wrote on the board several equalities such as 0.3= % and—0.5= —% to

illustrate the idea that each terminating decimal can be expressed as a rational
number. During this time, she explained that while the decimal number without its
decimal point will be the numerator, 10 to the power of the number of digits in the
decimal will be the denominator of the rational number. She ended up by stressing

that some decimal numbers can be expressed as rational numbers. In doing so, she
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aimed to draw students’ attention to the fact that non-terminating repeating decimals
are examples for rational numbers while non-terminating non-repeating decimals are
non-examples for rational numbers. She provided 0.25784... and the transcendental
number & as non-examples for rational numbers and stressed that these two numbers
cannot be written in the form of rational numbers since they go on forever without
repeating.

Similar to Teacher A, Teacher D used %:3.333..;33 as a start-up

example for teaching how to convert a rational number into a repeating decimal.

Then, she immediately worked backwards to teach converting a repeating decimal

into its rational number. In other words, she converted 3.3 into its rational number by
using the shortcut procedure that was also preferred by Teacher A, Teacher B and

Teacher C as follows: 3.§=¥:%. In addition to this shortcut procedure,

Teacher D emphasized the use of a more specific procedure that could only be used

for converting decimals with a one-digit repetend as follows: 0.a = %, such that a is

a one-digit numeral. Then, Teacher D implemented this more specific procedure by
converting several repeating decimals into their rational numbers. Besides, she

extended this procedure to repeating decimals in which a whole number preceded the
decimal point and wrote on the board a new procedure as follows: ab =%, such that
a and b are both one-digit numerals. She exemplified this procedure by converting

several repeating decimals such as 2.5 and 31 into their rational numbers. It is

important to note that Teacher D converted 25 into its rational number by using
both the shortcut procedure and the more specific procedure. Subsequently, she
stressed that both procedures are applicable for the conversion of decimals with only
repeating digit after the decimal point. The teacher ended up the lesson by conveying

the idea that a.9 is equal to a+1 by means of the conversion 0.§=g=1. To

conclude, all the examples used by Teacher D for conversion were decimals with
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only one repeating digit after the decimal point, although the textbook included

decimals with both non-repeating and repeating digits.
4.1.1.3. Examples used for comparing and ordering rational numbers

The middle school mathematics curriculum suggests that the strategies used
for comparing fractions and integers can also be used for comparing rational
numbers. More specifically, the curriculum emphasizes the use of benchmarking to
0, %2 and 1 as a mental strategy for comparing rational numbers. In addition to
benchmarking, the teachers are recommended to use the following strategies while
comparing rational numbers: converting to common denominator, converting to
decimals and locating rational numbers on a number line. The curriculum provided

one example for comparing. More precisely, this example included a rational number

pair as-5.2 and —5% and this pair was compared by converting to decimals strategy

and locating on a number line strategy. By the use of the former strategy, —5% was

converted to -5.25 and was compared with -5.2 as —5.2 >-5.25 and was concluded

that —5.2>—5%. This same rational number pair was also compared by using the

locating on a number line strategy. In this strategy, learners need to locate each
rational number on a number line and then construe that the one on the leftmost side

is smaller than the other. This strategy is presented in Figure 4.7.

-5.25 \ ‘fT-
5

-5.5 -5.4 -5.3 -3,2 -3.1 5.0

2

 J

Figure 4.7. Locating on a number line strategy for comparing rational number pairs

In the mathematics textbook followed by the classrooms, the examples
selected for teaching the concept of ordering rational numbers represented the
following strategies: ordering by locating on a number line, ordering by converting to
decimals, ordering by common denominator approach, ordering by benchmarking,

ordering by equivalent fractions, and ordering by common numerator approach.
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These range of strategies employed in the textbook for ordering rational numbers and

the set of rational numbers selected for these strategies are presented in Table 4.12.

Table 4.12. Examples provided by the textbook for ordering rational numbers

Number
Illustrative of Strategy Explanation
example examples
used
-1 _3 1z 0
3 1 2 ) Locating on a 4 2 5
’ ’ number line
4 25 The one on the left is smaller so _§<_£<_E
4 2 5
29 184 371
——=-725——=-736, ——— =-7.42,
29 184 371 i 4 25 >0
i e 2 Convertingto | ;o5 736 742,
4 25" 50 decimals
29 184 371
Therefore, —-——>-—>——
4 25 50
365 Common 3 5 6
- =, = 4 denominator 3<5<6s0—<—<—
8 8 8 approach 8 8 8
8 1 16 . 8 11 16 8 16 11
—,—,— 1 Benchmarking | — <1, — >1, — =1 therefore — < — < —
10 16 10 9 16 10 16 9
24 8 52 10 33 9
253 L Equivalent | 34 12 62 12 43 12
36 4 fractions 8 9 10 2 3 5
— < — < —therefore— < — < —
12 12 12 3 4 6
-3).2 6 (-2).3 6 (-1).6 6
3 2 -1 Common 42 8 33 9 76 4
—_——,— 3 numerator
approach _—6 > _—6 > _—6 therefore_—1 > _—2 > _—3
42 9 8 7 3 4
1.9,1.08, 11;
8 5 i The students are expected to use a relevant
-4.45, -5.54, 55 strategy
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The textbook included 13 worked-out examples and 2 exercise examples in

different types for ordering rational numbers. In the first exercise example, the

students are asked to order 1.9, 1.08 and 1% by using different strategies. As it can be

seen, two of these rational numbers are in decimal form while the last one is a mixed

number. In the second exercise example, the students are asked to order
—4.45,-554and 55 by employing different strategies. As seen, the first two rational

numbers are negative terminating decimals while the last one is a positive repeating
decimal.

The explanatory part of the textbook did not include worked examples for
comparing rational number pairs. However, there were 7 exercise examples in the
textbook and these examples asked students to compare rational number pairs by
using relevant strategies. These pairs included rational numbers in different forms.
Namely, the pairs entailed the following comparisons: comparing a decimal number
with a rational number, comparing a positive number with a negative number,
comparing a repeating decimal with a non-repeating decimal and comparing an

exponential number with an integer. The first type had to do with comparing a

. . a . ) ) .
rational number in the form of 5 with a rational number in decimal form such as

%, 0.75; and —2.32, —2%. The second type of example included one positive and one

negative rational number. More specifically, the students were asked to compare -3

with %. The comparison of a terminating decimal with the repeating decimal was

of the third type and —437,-4.37 was the rational number pair selected for

illustrating this type. Finally, for the last type, -2° and -6 were selected as a rational
number pair. In this pair, the first rational number was an exponential number, while
the second rational number was a negative integer.

During the teaching of ordering rational numbers, the examples selected by
Teacher A served for the following strategies: ordering by common denominator
approach, ordering by common numerator approach, ordering by residual thinking,

ordering by benchmarking and ordering by equating the number of decimal digits by
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adding 0’s. The set of rational numbers selected by Teacher A for these strategies are
presented in Table 4.13.
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As it can be understood from Table 4.13, Teacher A provided 30 examples
related with ordering rational numbers. These examples were generated not only in
the course of teaching the concept of rational numbers but also during the provision
of exercises. Although the examples used by Teacher A for ordering rational
numbers had some similarities with the textbook, the teacher did not provide
examples that foster ordering by locating on a number line, ordering by converting to
decimals and ordering by equivalent fractions as emphasized by the mathematics
textbook. Apart from using examples that promote the use of strategies included in
the textbook, Teacher A selected rational number examples that suggested either
ordering by residual thinking or ordering by equating the number of decimal digits.

Teacher A provided fewer examples for comparing rational number pairs
when compared to the number of examples used by him for ordering rational
numbers. More specifically, Teacher A focused on the comparison of the following
rational number pairs in different forms: comparing a repeating decimal with a

terminating decimal, comparing a decimal number with a rational number in the form

of % , comparing a positive rational number with a negative rational number. Teacher

A selected the following rational number pairs to illustrate the above mentioned
. . . — 1 1

comparison ideas respectively: 2.45, 2.45; —2.32,—2§;and—3,ﬁ. In sum,

Teacher A used 6 examples for comparing rational numbers.

In contrast to the textbook, Teacher B started teaching comparison of rational
numbers rather than teaching ordering of rational numbers first. The examples used
by Teacher B for comparing rational numbers promoted the use of following
strategies: comparing by locating on a number line, comparing by benchmarking,
comparing by considering the sign of the rational number and comparing by
converting. The rational number pairs selected by Teacher B for employing these
strategies are presented in Table 4.14.
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Table 4.14. Examples used by Teacher B for comparing rational numbers

Ilustrative Number of Strategy used Explanation
example | examples used | by Teacher B
As we go leftward, the numbers become smaller.
-1 7 4 Locating on a
2 3 number line
7 15 . 7 15 7 15
-, — 3 Benchmarking | — <21and — > 1therefore — < —
9 12 9 12 9 12
Whatever the magnitude of rational numbers are, a
negative rational number is always smaller than 0
L and a positive rational number is always larger than
1 -1 ) Considering 0 P ysfarg
4’ 3 number sign '
1 -1 1
— >0, — < O therefore — > —
4 3 4 3
The two fractions are equivalent since
19 .
2—,— 1 Converting 1 2x4+1 9
4 4 2= =""""=-=
4 4 4

After using 10 examples for comparing rational numbers, Teacher B started
teaching how to order rational numbers. The examples used by the teacher for
ordering rational numbers focused on the following strategies: ordering by common
denominator approach, ordering by locating on a number line and ordering by
benchmarking. The set of rational numbers selected by Teacher B for employing

these strategies are presented in Table 4.15.

154




Table 4.15. Examples used by Teacher B for ordering rational numbers

. Number of
Ilustrative examples Strategy used Exolanation
example P by Teacher B P
used
1 20 7_105 -3_-3 -1_-5
17 .3 1 Common 3 60 4 60 5 60 12 60
— =, —,— 5 denominator (20) (15) (12) (5)
3 4 5 12 approach 3 4 4 7
-36<-20<-5<105 therefore —<—<—<—
5 3 12 4
As we go leftward, the numbers become smaller.
On the contrary, if go rightward the numbers
become larger.
>_a3|‘ar Lﬂsd}
-1 4 1 5 i b LR
222 g2 5 Locating on a R e e
7 4 6 number line R <
| T —
5 -1 1 4
Therefore, -1-<—<1—<2—
6 7 4 9
8 9 13 . 9 113 1 8 9 13 8
- —,— 2 Benchmarking | — <—,—>—, —>1 therefore, —<—<—
6 19 23 19 2 23 2 6 12 23 6

As shown in Table 4.15, 12 examples were used by Teacher B for ordering

rational numbers. When compared to textbook examples, the examples used by

Teacher B for ordering rational numbers focused on fewer strategies. For instance,

Teacher B did not provide examples for ordering by converting to decimals, ordering

by equivalent fractions and ordering by common numerator approach. Moreover,

while the textbook examples asked students to order at most three rational numbers,

Teacher B used examples that included ordering of three or four rational numbers.

Finally, the examples used by Teacher B had some similarities with those included in

the textbook for ordering rational numbers. That is, examples provided both by the

teacher and the textbook included positive rational numbers, negative rational

numbers, mixed numbers, proper numbers and improper numbers.
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Similar to the textbook, Teacher C started the lesson by teaching ordering
rational numbers. However, the teacher did not provide any specific example for
teaching comparison of rational numbers. Before providing specific examples for
ordering rational numbers, he wrote on the board a note that explains how to order
rational numbers. According to this note, students needed to equate either the
numerators or the denominators of the rational numbers in order to order them
correctly. If the rational numbers have same denominators, then the one with a larger
numerator will be larger. On the contrary, if the rational numbers have same
numerators, then the one with a smaller denominator will be larger. Finally, if the
rational numbers were negative then the ordering will be the other way round. In
accordance with this explanation, Teacher C provided only two examples for
ordering rational numbers and these examples focused on the use of common
numerator approach or common denominator approach. Teacher C provided the
following rational number sequence for ordering by using common denominator

approach: —5,0 45 2 and—%. As it can be seen, two of the rational numbers

33’1218
are negative, while three of them are positive. In addition, the neutral number 0 was

included to this set. Besides, —2andg were improper numbers while

> 2 and —% were proper numbers. However, there was not any rational number

12'18
in mixed number form in this sequence. As there were 6 rational numbers to
compare, it was difficult for students to find the common denominator mentally.
Considering this, Teacher C recalled the concept of LCM (Lowest Common
Multiple) as a way to find the common denominator of the rational numbers.

The next example used by Teacher C for ordering rational numbers included

the following number sequence: —g,—é and—%. The teacher ordered these

rational numbers by using common numerator approach. The teacher noted that it is
more difficult to order this sequence by using common denominator approach since
the denominators included big numbers when compared to the numerators. In

addition, the rational numbers in this sequence were all negative and proper form.
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Like the previous example, this example did not include rational numbers in mixed
form and there were three rational numbers to order. Moreover, the number of
examples used by Teacher C for ordering rational numbers was less than the number
of examples included in the textbook. Finally, the teacher did not provide examples
that focus on comparing by locating on a number line, comparing by converting to
decimals, comparing by benchmarking and comparing by equivalent fractions.
Teacher D merely provided examples for ordering rational numbers. During
the teaching of ordering rational numbers, the examples selected by Teacher D
served for the following strategies respectively: ordering by locating on a number
line, ordering by converting to decimals, ordering by common numerator approach
and ordering by common denominator approach. The set of rational numbers

selected by Teacher D for employing these strategies are presented in Table 4.16.

Table 4.16. Examples used by Teacher D for ordering rational numbers

. Number of
Ilustrative Strategy used .
examples Explanation
example by Teacher B
used
On the number line, rational numbers become
larger as we go rightward.
1 2 1 Locating on a
] 1_ ) _1_ 2 1
3 5 6 number line
1 1 2
Thus, -1-<=<1—
6 3 5
If the denominators of rational numbers are
multiples of 10 or if they can be easily enlarged to
10, then it is more relevant to order them by
converting to decimals
5 12 23 Converting to 5 25 12 24 23 23
55 10 2 decimals s==25 —=—=24, —=—=
2 5 10 2 10 5 10 10 10
©) (2) @)
5 12 23
25>24>23thus—>—>—
2 5 10
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Table 4.16. (Continued)

. Number of
Ilustrative Strategy used .
examples Explanation
example by Teacher B
used
First, assume that rational numbers are positive. In
c that case, the one with a smaller denominator will
7 7 7 ommon be larger since they have same numerators. Thus,
-, 6 numerator
4 29 approach | 7 7 7 7 7 7
—>—>—ad ——<——<——
2 4 9 2 4 9
First, assume that rational numbers are positive. In
that case, the one with a larger numerator will be
4 7 15 Common larger since they have same denominators. Thus,
—_—— = 4 denominator
8 8 8 approach 4 7 15 4 7 15
—<—<—and ——>——>-——
8 8 8 8 8 8

As presented in Table 4.16, 14 examples were used by Teacher D for ordering
rational numbers. When compared to textbook examples, the examples used by
Teacher D for ordering rational numbers focused on fewer strategies. For instance,
Teacher D did not provide examples for ordering by benchmarking and ordering by
equivalent fractions. Identical to the textbook examples, Teacher D asked her
students to order three rational numbers. Finally, the examples used by Teacher D
had the following dimensions of variation: being positive or negative and being a

proper, improper or mixed rational number.

4.1.1.4. Examples used for performing addition and subtraction operations with

rational numbers

In the middle school mathematics curriculum, teachers are suggested to start
teaching addition and subtraction of rational numbers by having students remember
addition and subtraction of fractions. After recalling addition and subtraction of
fractions, teachers are suggested to use activities related with addition and
subtraction of rational numbers. In addition to this, the curriculum emphasized

teaching the properties of addition of rational numbers. Namely, teachers are
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suggested to give weight to the teaching of commutative property, associative
property, identity property and inverse property of addition and also to the algebraic
representations of these properties.

Another idea that was emphasized in the curriculum was the use of estimation
techniques. The curriculum provided one specific example for the estimation of
addition with rational numbers. That is, the estimation of §+g was explained in the

following way: gis close to% so we can round it to% . Similarly, g is close to 1 so

we can round it to 1. Thus, §+gz%+1=g. Finally, the addition operation

3 §:§+4_8:21+48:@:1§ was presented to compare the estimated
8 7 56 56 56 56 56

answer with the exact answer.

In the mathematics textbook followed by the classrooms, the examples
selected for teaching addition and subtraction with rational numbers represented the
following ideas respectively: using models for the addition and subtraction of
rational numbers, adding and subtracting rational numbers with same denominators,
estimating the addition and subtraction of rational numbers, adding and subtracting
rational numbers with different denominators and properties of addition of rational
numbers. When addition and subtraction examples were examined, it was seen that
there were some structural differences in terms of sign and form of terms included in
the operations. Some illustrative examples included in the textbook for the above
mentioned ideas are presented in Table 4.17. It is important to note that only the
examples that have different structural features were used as illustrative examples.

Therefore, the number of examples for each ideas were also presented.
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Table 4.17. Examples included in the textbook for adding and subtracting rational

numbers
Ideas for adding Number of
and subtracting Illustrative examples examples used

rational numbers

1.1 2 1 i L
Y3372 B ! i
| z |
1
g4 E=1 1 | Pl |
SN g
Using models for
the addition and i 4 § & 4
subtraction of 8 B8 8 8 8 4
rational numbers 2.8 . NN W WY -
8 8 0\—/\/ 1
Pk Rl Gl S
8 8 8 8
1 1 1
4 4 4
4 0  TRIT TWT
R ———— g ]
b el sy LS e
4 4 4-74° 2

Adding and 3+£; (+Z)+(_E); (+§j_(+fj; 5.2
subtracting rational | 18 18 3 3 5 5/ 9 9

numbers with same S
denominators
Estimating the 3 £~0+1; 3i+3ﬁz3+4=7;
addition and 18 18 26 25
. 3
subtraction of 7 2 1 1
rational numbers ———=rl-—=-
10 5 2 2
1 1 7_(3)(5)4(2)
—+— 4+ |+ |+ = |, =+ =
Adding and 2 10 8 4 6/ 5 3
subtracting rational 2 3Y 1 1 1 1 13 1
numbers with ——F =y ==y == —— | 19
different 3 \2) 487 4 5 10
denominators 2 ( 1) 45 1. 1( 1)
13 L17) 5 4 9’ 11
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Table 4.17. (Continued)

Ideas for adding Number of
and subtracting Ilustrative examples examples used
rational numbers

Commutative property

(D0
(st

Identity property
Properties of
addition of rational +§+0:+§; 0+§:§; 10
numbers 4 4 4

Associative property

(A AEHEAE)

The textbook included 41 examples for adding and subtracting rational
numbers. It emphasized modeling of addition and subtraction operations before
symbolically expressing them. It provided fraction bars and number lines as two
different types of models. The examples provided for modeling addressed students’
prior knowledge on fractions. To be more precise, each example used for modeling
included terms that are both positive rational numbers. Besides, the examples
provided for modeling were only in proper form. However, there were not any
examples that modelled addition and subtraction of rational numbers which are
greater than 1.

Next, the textbook presented examples for teaching addition and subtraction
of rational numbers with same denominators. The addition examples included the
following structural properties regarding the sign of their addends: (+, +) and (+, -).
However, there were not any examples that included (-,-) as the sign of their
addends. Besides, the addends of addition examples were either in proper or
improper form but not in mixed number form. When subtraction examples were
examined, it was seen that the examples included minuends and subtrahends that

were both positive. However, there was not any example including (-,-), (-,+) or (+,-)
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as the sign of their minuends and the subtrahends respectively. In some of these
examples, the positive signs were omitted and sometimes they preceded the minuend
and the subtrahend. Finally, the minuends and subtrahends were all proper numbers.
The textbook gave considerable emphasis on estimating the answer of
addition and subtraction operations with rational numbers. By the estimation
examples, it was aimed to teach that if the numerator is much less than the half of the

denominator, then the rational number is rounded to O; if the numerator is close to

the half of the denominator, then the rational number is rounded to % and if the

numerator is close to the denominator, then the rational number is rounded to 1. The
estimation examples included terms that were all positive rational numbers. In
addition, these examples included terms that were either proper or mixed number.

The textbook included 19 examples for teaching the addition or subtraction of
rational numbers with different denominators. Addition examples were in the
following form in terms of the sign of their addends: (+, +) and (+, -). However, the
textbook did not provide examples with addends in the form of (-, +) and (-, -).
Besides, the addition examples involved either two addends in proper form, or one
natural number and one proper number addend. However, the addition examples did
not involve any addends in proper or mixed number form. The examination of
subtraction examples showed that they included all possible variations in terms of
their signs. That is, subtraction examples included minuends and subtrahends with
the following signs respectively: (+, +), (+, -), (-, +) and (-, -). Moreover, the
minuends and subtrahends were either in proper or improper form but not in mixed
form and there were some examples that illustrated the subtraction of a rational
number from an integer. Finally, addition and subtraction examples included two
terms and there was not any example that included three or more terms.

The textbook included a few examples for teaching commutative property of
addition of rational numbers. These examples included one negative and one positive
addend or two negative addends. Besides, all addends were proper numbers. There
were also some examples in the textbook for teaching identity property of addition of
rational numbers. In these examples, the rational number accompanying zero was
either a positive or a negative proper number. Associative property of addition of
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rational numbers was explained by examples that included negative and positive
proper numbers. However, there was not any specific example in the textbook for
finding the additive inverse of a rational number.

The examples used by Teacher A for teaching addition and subtraction of
rational numbers focused on the following mathematical ideas respectively: adding
and subtracting rational numbers with same denominators, adding and subtracting
rational numbers with different denominators, performing multi-step operations with
rational numbers and teaching properties of addition of rational numbers. Some
illustrative examples used by Teacher A for teaching these ideas are presented in
Table 4.18. Only the examples that had different structural features were used as
illustrative examples. Therefore, the number of examples for each ideas were also

presented.

Table 4.18. Examples used by Teacher A for adding and subtracting rational

numbers

Ideas for adding

and subtracting . Number of
Ilustrative examples

rational examples used
numbers
Adding and 3 2 25 33_ —5) (—2) 23 11
i —H= 2430 | — || — 271
subtracting g8 8 8 8 (8 8 ) 7 7
rational 6
numbers with (=2) (-7).(2) (3
same 3 3) g 8
denominators
2 5 5 5 3 2 1,
Addingand g+z,3E+E,5+;,—5+§, 3+g,
subtracting 3 g E 2 & 8
rational il T I | Qe S i 13
numbers with 5 21 7 3 7 5
different 3 2 2 1
denominators -t Z.s_ 232
7 3 3 8
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Table 4.18. (Continued)

Ideas for adding
and subtracting
rational

Ilustrative examples

Number of
examples used

operations with

5

numbers
N
5 2 7 (1) (-7) (-8) 21
Multi-step 31313 5 5 5 {__)

Additive inverse property
The additive inverse of 3 is (-3); the additive inverse of

3 3 3 3
— is | — — |; the additive inverse of | —— | is —
4 4 4 4

rational (-2) (+7) (-p .1 3 2) 8
numbers + et Sl Bl el I el B
3 2 6 5 7 3
—— || —— [tA=——O+| —— |+| —— |=+—
8 4 48 18 12 9
Commutative property
2 3 3 2 (-3 8 -3
243=3+2, —+—=—+—; | — |[+| = |=A+| —
5 65 5 5 5 7 5
Associative property
1 3 7 1 3 7
) (2+3)+5:2+(3+5);(—+—)+—:—+(—+—)
Properties of 2 2) 2 2 \2 2
addition of Identity property 10
rational 3 3
numbers 2+40=0+2; —+0=0+=
4 4

Teacher A used 37 examples in the teaching of addition and subtraction
operations with rational numbers. Although the textbook suggested the use of models
before symbolically expressing addition and subtraction of rational numbers, Teacher
A did not use any models. Instead, he started the lesson by providing examples for
adding and subtracting rational numbers with the same denominators. The addition
examples included two positive rational numbers as their addends. However, Teacher
A did not use any examples that included (+, -), (-, +) or (-, -) as the sign of their
addends. Moreover, the addends were either in proper or mixed number form. When
subtraction examples were examined, it was seen that there was some variability in

terms of the signs of the minuends or subtrahends. To be more precise, there were
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examples that included (+, +), (-, +) and (-,-) as the sign of the minuends and
subtrahends respectively. However, there was not any specific example that had a
positive minuend and a negative subtrahend. Finally, the subtraction examples
included terms that were either in proper, improper or mixed number form.

After providing examples for addition and subtraction of rational numbers
with same denominators, Teacher A moved on to the teaching of addition and
subtraction of rational numbers with different denominators. Examples used by
Teacher A for teaching addition of rational numbers with different denominators
included (+, +) and (-, +) but not included (+, -) and (-, -) as the sign of their addends.
Besides, the addends of the addition examples were either proper number, integer or
mixed number. However, none of the examples included addends in improper form.
Several examples were used for subtraction of rational numbers with different
denominators. When these subtraction examples were examined, it was seen that the
minuends and the subtrahends had the following signs: (+, +), (+, -), and (-, +) but
did not have (-, -). Besides, the terms of the subtraction examples were either proper
number, improper number, mixed number or integer.

Although estimating the answer of addition and subtraction operations with
rational numbers were emphasized in the middle school mathematics curriculum and
in the textbook, Teacher A ignored this idea and therefore he did not provide any
specific estimation example. However, although not included in the textbook,
Teacher A provided several examples that include multi-step operations with rational
numbers. Half of these examples included rational numbers with the same
denominators and the rest included different denominators. Moreover, the multi-step
examples included three or four terms. These examples included terms that were
either negative proper number, positive proper number, negative improper number,
positive improper number or positive mixed number. Lastly, different from the
examples included in the textbook, Teacher A provided multi-step examples that
included minus signs both in front of the fraction bar and in the numerator of the
terms to emphasize that the location of the minus sign does not alter the value of the

rational number.
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Teacher A used several examples for teaching properties of addition
operation with rational numbers. Teacher A started the teaching of each property by
using examples that checked students’ prior knowledge on properties of addition of
natural numbers. Other examples used by Teacher A for each property included
addends that were either negative proper number, positive proper number or positive
improper number. The examples used for commutative and associative property only
included rational numbers with same denominators. Moreover, none of the examples
included rational numbers in mixed number form. Unlike the textbook, Teacher A
used some examples related with inverse property. In more detail, he selected a
positive integer, a positive proper number and a negative proper number respectively
to find their additive inverses.

The examples used by Teacher B for teaching addition and subtraction of
rational numbers represented the following mathematical ideas respectively: using
models for the addition and subtraction of rational numbers, adding or subtracting
rational numbers with same denominators, finding common multiples of the
denominators of rational numbers, adding and subtracting rational numbers with
different denominators, performing multi-step operations with rational numbers; and
teaching properties of addition of rational numbers. Some illustrative examples used
by Teacher B for teaching these ideas are presented in Table 4.19. Only the examples
that have different structural features were used as illustrative examples. Therefore,

the number of examples for each ideas were also presented.
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Table 4.19. Examples used by Teacher B for adding and subtracting rational numbers

Ideas for adding and Number of
subtracting rational Ilustrative examples examples
numbers used
{ .
(g
‘ 4
| +
Using models for the s ‘ g . .
addition and 4
subtraction of 5
. 5 1 6
rational numbers (+7)+(-7)=(-7)
M (TT]
[
SED el
0,4+0,2=0,6
) -2 9 1 3 (-1 -5 3 1
Adding or — o2+ | T 5 = )
subtracting rational 5 5 4 4 7 7 4 4 12
numbers with same 9 (-4) ( ) 9) 3 21 13 4 1
i T 2 ol o ras
denominators 7 7 1) 11 9 7 7
Finding common oo o o
multiples of the T T 3
denominators 85 128
2 3 2 5 1 1 -3) 5
——+| = 1=+ | 2= |+ A= | — [+
Adding or 3 2 4 3 3 2 4 9
subtracting rational 2 - 11 1 4 5 8 3
numbers with —-+03; (——j+—;———,————,———(——); 16
different 3 4) 39 18 5 4 7 42
denominators 1 1 2 3 2 -3
9 11 3 2 3 5
Performing multi- (21) (—2) [23) l1 (—3) 5
i i — |- — |+| 2= [}1—+| — |+—
step operations with 3 5 5 2 1 3 2

rational numbers
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Table 4.19. (Continued)

Ideas for adding and Number of
subtracting rational Illustrative examples examples
numbers used

Commutative property

1 (—5) 1 (—2) 5 (—2)
—+A=|— [+— | — |+ X=—+| —
3 2 3 13 4 13

Associative property
)]
—F+— |+ ===+ A+| —— | |}
-5 9 -5\ .17 9
Teaching properties ry + B+1—1 =I5 +1§ +1—1

of addition of i 9
rational numbers Identity property

5 5 2 2

—+0=—; —+0=0+—

2 2 3 3

Inverse property

The additive inverse of —2E is ZE;
4 4

The additive inverse of i is §

3 X

Teacher B used 46 examples for teaching addition and subtraction of rational

numbers. As emphasized by the textbook, Teacher B started the lesson by modeling

the operation %—l before teaching symbolic expressions of addition and subtraction

operations with rational numbers. This subtraction operation was modeled by using
circular pieces. The minuend and the subtrahend were both positive rational
numbers, thus this example addressed students’ prior knowledge on subtraction of
fractions. In addition to this, Teacher B provided several exercise examples to his
students for finding the symbolic expressions of the given models. To be more
precise, the number line model referred to the addition of one positive and one
negative rational number, while the region model referred to the addition of two
positive rational numbers in decimal form.

After modeling the subtraction of two fractions, Teacher B started teaching
addition and subtraction of rational numbers with same denominators. The addition

examples included all variations in terms of the sign of the addends. That is, Teacher
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B used examples that included (+, +), (+, -), (-, +) and (-, -) as the sign of addends.
Moreover, the addends were in proper, improper or mixed number form. When
examples regarding subtraction of rational numbers with same denominators were
examined, it was revealed that there was some variability in terms of the signs of the
minuends and subtrahends. To put it differently, the examples selected by Teacher B
for the subtraction of rational numbers with same denominators included (+, +), (+, -)
and (-, +) but not included (-, -) as the sign of the minuends and subtrahends
respectively. Besides, the minuends and subtrahends in each subtraction example
took the form of either, proper number, improper number or mixed number.

Unlike the textbook, Teacher B provided examples for finding common
multiples of the denominators of the given rational number pairs. Teacher B included
pairs that are prime such as 8 and 5 and pairs that have a common divisor such as 8
and 12. But Teacher B did not include pairs in which one is a multiple of the other
such as 2 and 8. In the course of teaching how to find common multiples of the
denominators, the teacher suggested that it would be much easier to operate with
rational numbers if the common multiple was selected to be the smallest one. By this
way, he touched upon the concept of LCM (Least common multiples) before
teaching the addition or the subtraction of rational numbers with different
denominators.

Teacher B provided many examples for the addition and subtraction of
rational numbers with different denominators. Examples used by Teacher B for
adding rational numbers with different denominators included (+, +), (-, +) and (-, -)
as the sign of the first and second addend respectively. However, the teacher did not
provide any addition example that included a positive rational number as a first
addend and a negative rational number as a second addend. Furthermore, the addends
were either in proper, improper or mixed number form. Nevertheless, there was not
any specific example that included the addition of a rational number in the form of

% with an integer or the vice versa. When examples regarding subtraction of

rational numbers with different denominators were examined, it was revealed that

there was a great variability in terms of the signs and forms of the minuends and

subtrahends. To be more precise, examples used by Teacher B for subtraction of
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rational numbers with different denominators included (+, +), (+, -), (-, +) and (-, -)
as the sign of the first and second term respectively. In addition, the first and second
term of the subtraction operations were either in proper number, improper number,
mixed number or integer form.

When compared to Teacher A, Teacher B provided few examples that
included multi-step operations with rational numbers. These examples included
rational numbers only with different denominators. In addition, they included three
terms. The terms were either negative proper number, positive improper number or
positive mixed number. However, none of the examples included a positive proper
number, a negative improper number or a negative mixed number.

Teacher B used several examples for teaching properties of addition operation
with rational numbers. Unlike the textbook, the examples provided by Teacher B for
teaching commutative property and associative property included unknown values as
A, B and x. The teacher emphasized that by matching the same rational numbers on
both sides of the equations included in commutative and associative properties, it is
possible to find the values of A, B and x without actually computing. The examples
used for the commutative property included the addition of a positive proper number
with a negative improper number or positive improper number with a negative
proper number. Likewise, the associative property examples included the addition of
a positive proper number, a positive improper number and a negative proper number
or the addition of a negative proper number, a positive mixed number and a positive
proper number. The examples used for commutative and associative property
included rational numbers both with different and same denominators. In identity
property examples, the rational number accompanying zero was either a positive
proper number or a positive improper number. Finally, unlike Teacher A, the inverse
property examples used by Teacher B entailed finding the additive inverse of a
positive improper number and a negative mixed number.

Teacher C provided examples only for the addition of rational numbers and
did not give any specific example for the subtraction of rational numbers. The
examples used by Teacher C for teaching addition of rational numbers focused on the

following mathematical ideas respectively: using models for the addition of rational
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numbers, adding rational numbers with same denominators, adding rational numbers
with different denominators and teaching properties of addition of rational numbers.
Some illustrative examples used by Teacher C for teaching these ideas are presented
in Table 4.20. Only the examples that have different structural features were used as
illustrative examples. Therefore, the number of examples for each idea were also

presented.

Table 4.20. Examples used by Teacher C for adding rational numbers
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1 1 1 1
5 5 5 5
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0 1
1 3 _ _}
Using models for the ( 3 ) +( 5) ( )
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numbers - = S
(5] D
wrMey
64 \ 3
& ettt}
=] 5 3 0
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numbers with same -t ot 4
denominators 5 5 4 44 4
. . 2 35 7 6 8 4 2 6
Adding rational —— = — = 24— — =
numbers with 5 8 3 57 6 72 8
: 13
different 6 3 5 2 5 1
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Table 4.20. (Continued)

Ideas for adding Number of
rational numbers Illustrative examples examples
used

Commutative property

(2 -E)H)
+— |+ == |=| == |+| +—
5 7 7 5
Associative property
Teaching properties

of addition of 1 1y1 111 4

: = |+—=—4—+-
rational numbers 5 2

2 4
Identity property

1 1 3 3
2 2 5 5

Teacher C used 31 examples for teaching addition of rational numbers. As

emphasized by the textbook, Teacher C started teaching this idea by providing an

example that modeled %+g In this first example, the teacher used a region model.

In addition to the region model, Teacher C used several number line models for
adding either two positive rational numbers, two negative rational numbers or for
adding a negative rational number and a positive rational number. By the number
line models, the teacher explained that the sign of the addends showed which way to
move and the operation sign meant that the second addend is joined to the end of the
first addend.

After modeling addition of rational numbers, Teacher C moved on to teaching
addition of rational numbers with same denominators. The examples used by the
teacher for this idea included only positive addends. Nevertheless, he did not use
examples that included (-, +), (-, -) and (+, -) as the sign of their addends. Moreover,
the addition examples included addends either in proper or improper form but not in
mixed number form.

Teacher C provided many examples for teaching the addition of rational
numbers with different denominators. Examples used by Teacher C for teaching this
idea included (+, +), (-, +) and (-, -) as the sign of the first and second addend

respectively. Nonetheless, he did not use any example that included a negative
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rational number as a first addend and a positive rational number as a second addend.
Finally, the addends of the addition examples included all possible numbers in
different forms. That is, each addend was either a proper number, an improper
number, a mixed number or an integer.

Teacher C used a few examples for teaching properties of addition of rational
numbers. To be more precise, he used one example for commutative and associative
property of addition, two examples for identity property of addition. The example
used for commutative property included a positive proper number and a negative
proper number as addends of the addition operation. The example used for
associative property included three positive proper numbers as addends of addition.
In addition, the examples used for commutative property and associative property
included rational numbers with different denominators. In identity property examples
provided by Teacher C, the rational number accompanying zero was either a positive
proper number or a negative proper number. Lastly, the teacher neither mentioned
about nor provided any specific example for the inverse property of addition of
rational numbers.

The examples used by Teacher D for teaching addition and subtraction of
rational numbers focused on the following mathematical ideas: using models for the
addition and subtraction of rational numbers, adding and subtracting rational
numbers with same denominators, adding and subtracting rational numbers with
different denominators, estimating the addition of rational numbers and teaching
properties of addition of rational numbers. The examples used by Teacher D for
teaching addition and subtraction of rational numbers were all structurally different

from each other. Therefore, all of these examples are presented in Table 4.21.
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Table 4.21. Examples used by Teacher D for adding and subtracting rational

numbers

Ideas for adding
rational numbers

Examples used by Teacher D

Number
of
examples
used

Using models for
the addition and
subtraction of
rational numbers

Adding and
subtracting
rational numbers
with same
denominators

315 ( 7\ (-5) (=2 (1387 1 3
5 59 \ 9/ 9 9 4 ) 4 5 5

Adding and
subtracting
rational numbers
with different
denominators

Estimating the
addition of
rational numbers
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Table 4.21. (Continued)

Number
Ide_as for adding Examples used by Teacher D of
rational numbers examples
used

Commutative property

3 4 4 3 1 1 1
—t—=—+=; 2—+(—1—j:(—1—j+A
9 9 9 9 3 7 7

Associative property

3 [4 5) ( 3 4) 5
—— | === =+ |+
Teaching ! T [ !

properties of 1 N _1+ (.1 1 " 8
addition of 2 3 yin 2 3 6
rational numbers .

Identity property
2 2
—+0=—

11 11
Inverse property

4 4 2 9
—+(——j=0; (——j+u=0; (+—j+A=O
5 5 9 11

| o

Teacher D used 32 examples for teaching addition and subtraction of rational

numbers. As emphasized by the textbook, Teacher D started teaching addition and

subtraction of rational numbers by using a number line model for §+1 before

adding these rational numbers by using same denominators algorithm. In addition to
this, she used two different region models as exercise examples and asked her
students to find the symbolic expressions of these models. The first model illustrated
the addition of two rational numbers with same denominators while the second one
illustrated the addition of two rational numbers with different denominators. Unlike
the textbook, Teacher D taught subtraction of rational numbers after completely
teaching addition of rational numbers. That is, the teacher did not provide addition
and subtraction examples concurrently. Similar to the addition of rational numbers,
Teacher D started teaching subtraction operation with rational numbers by using a

number line model for g—g before computing it by using same denominators

algorithm. Besides, she used a region model as an exercise example and asked the
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students to find the symbolic expression of the given model. By this model, Teacher
D illustrated the subtraction of two rational numbers that have same denominators.
Each addition and subtraction model included positive rational numbers that are in
proper form. Therefore, these examples also addressed students’ prior knowledge on
addition and subtraction of fractions.

After modeling addition of rational numbers, Teacher D moved on to
teaching addition of rational numbers with same denominators. The addition
examples used by the teacher included all possible variations in terms of the sign of
the addends. In other words, the examples used by the teacher included (+, +), (+, -),
(-, +) and (+, +) as the sign of the addends. In a similar fashion, the addition
examples included all possible variations with respect to form of the addends. More
precisely, the first and the second addend of the addition operations were either in
proper number, improper number or mixed number form. In addition to these
examples, the teacher provided an example that included terminating decimals as the
first and second addend of the addition operation.

As she did in the teaching of addition of rational nhumbers, Teacher D started
teaching subtraction of rational numbers with same denominators immediately after
modeling subtraction of rational numbers. However, the examples used for teaching
subtraction of rational numbers with same denominators was relatively few when
compared to the number of examples used for addition of rational numbers with
same denominators. Besides, when subtraction examples were examined, it was seen
that there were some variations with respect to the sign of the terms. Precisely,
Teacher D used subtraction examples that included (+, +) or (-, -) as the sign of the
minuends and subtrahends respectively. However, she did not provide subtraction
examples that included positive minuends and negative subtrahends or negative
minuends and positive subtrahends. Similarly, there was some variability in the
subtraction examples in terms of the forms of the first and second terms. Namely, the
subtraction examples used either proper or improper numbers as the form of the
minuends, and proper numbers or a repeating decimal number as the form of the

subtrahends.
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Soon after teaching the addition of rational numbers with same denominators,
Teacher D started to teach properties of addition of rational numbers. The examples
provided by the teacher for teaching commutative property, associative property and
inverse property included not only terms that are rational numbers but also unknown
values. In addition, the examples used for teaching commutative property included
the addition of two positive proper numbers or the addition of a positive mixed
number and a negative mixed number. Likewise, the associative property examples
included the addition of a negative proper number and two positive proper numbers
or a positive proper number and two negative proper numbers. Although the teacher
did not teach how to add rational numbers with different denominators, the examples
used by her for teaching commutative and associative property included not only
rational numbers with same denominators but also rational numbers with different
denominators. Teacher D used only one example for teaching the identity property of
addition. In this example, the rational number accompanying zero was a positive
proper number. Finally, to teach inverse property of addition, Teacher D provided
three examples. These examples were provided in a way that emphasized the idea
that the addition of a rational number with its additive inverse is equal to zero. While
one of these examples included two rational numbers, the other two examples
included unknown values that corresponded to additive inverses.

After teaching the properties of addition of rational numbers, the teacher
moved on to teaching addition of rational numbers with different denominators. The
teacher used three different examples for this idea, and these examples included (+,
+), (-, +) and (-, -) as the sign of the first and second addend respectively. In addition,
these examples illustrated the addition of a positive integer and a positive proper
number, two negative mixed numbers or two positive proper numbers. The teacher
provided examples for the subtraction of rational numbers with different
denominators after teaching the subtraction of rational numbers with same
denominators. The subtraction examples of this kind used by Teacher D included (+,
+) and (-, +) as the sign of the minuends and subtrahends respectively. Besides, these

examples included minuends and subtrahends that were either a proper number, an
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improper number, or an integer. However, none of the terms of the subtraction
examples with different denominators was in mixed number form.

Although estimation of addition and subtraction operations with rational
numbers was emphasized in the middle school mathematics curriculum and in the
textbook, Teacher D provided only one specific estimation example. In this example,

the students were asked to estimate the addition of —zﬁ and 21%—%. Teacher D

explained that estimation is synonymous with rounding. Next, she focused on the

fractional parts of the rational numbers and indicated that & is very close to 0

while H is close to 1. Besides, she located these rational numbers on a number line

to support her idea. Eventually, she rounded —zﬁ to -2 and similarly 21% to 3.

As it can be seen, this example illustrated the estimation of addition of a negative
mixed number and a positive mixed number. However, Teacher D did not provide

any example for estimating the subtraction of rational numbers.

4.1.1.5. Examples used for performing multiplication and division operations

with rational numbers

In the middle school mathematics curriculum, teachers are suggested to start
teaching multiplication and division of rational numbers by having students
remember multiplication and division of fractions. After recalling addition and
subtraction of fractions, teachers are suggested to use activities related with
multiplication and division of rational numbers. More importantly, the curriculum
explained that middle school mathematics teachers should be careful about several
points while teaching multiplication and division of rational numbers. First, teachers
were alerted to teach special cases of multiplication and division by 0, 1 and (-1).
Second, they were informed to teach the properties of multiplication operation with
rational numbers and their algebraic notations. More specifically, they were warned
to teach distributive property of multiplication over addition and subtraction and their
algebraic notations and emphasize that product of a rational number by its
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multiplicative inverse is equal to 1. Third, they were alerted to teach estimation of
multiplication and division of rational numbers. Finally, they were notified to teach
calculation of square and cube of rational numbers.

In the mathematics textbook followed by the classrooms, the examples
selected for teaching multiplication and division of rational numbers represented the
following ideas: modeling multiplication of rational numbers, multiplication and
division of rational numbers, multiplication and division by 0, 1 and (-1), estimation
of multiplication and division of rational numbers, modeling and calculating the
square and cube of rational numbers, multi-step operations with rational numbers,
and properties of multiplication of rational numbers. When examples included in the
textbook for teaching each of these ideas were examined, it was seen that there were
some structural similarities and differences among them with respect to the sign and
form of terms included in the operations. Therefore, only the examples that have
different structural features were presented in Table 4.22. Besides, the number of

examples for each idea was also presented.
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Table 4.22. Examples included in the textbook for multiplication and division of

rational numbers

Number
Ideas Ilustrative examples exar(;fpl es
used
Modeling
multiplication of 5
rational numbers L2
4 3
+=1 ===tz -=]
3 4 5 3 3 5
Multiplication and 5 4 4 2 2 4
division of rational (+—j:(+—j; (——j:(——j; (+—j :(——j; 13
numbers 8 10 5 3 3 5
2 1 1 1) 8 6) 18
=== [ 2= ] = - | =:(14)
9 18 3 4) 3 7) 25
Multiplication and 5 -0; 5)7 s -(=1); 0: 3) U3 0
division by 0, 1 11
and (-1) 1:i; 1:(—2} (—Ej:l; (—1):(—3); (—Ej:(—l)
99 3 3 3 3
L 1 7 6 8 1 5
Estimation of —.30; —-| —— |; | 12— |-| 4—|; | 6—-603 |;
multiplicationand | 7 8\ 11 9 8 12 1
division of rational 1 4 1 1 7
numbers 3—:1—; 378:(4—); (—24—):(—11—)
11 9 9 9 8
9
22_22_4
33 33 9
Modeling and
calculating the 8
square and cube of
rational numbers
L
33 Dy
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Table 4.22. (Continued)

Number
of
examples
used

Ideas Ilustrative examples

wise | #5032 EEGE)

operations with 3
: 1 1 7

rational numbers [(_2 _) - (_1_)} ;_

3 4 24

Commutative property

(DEDE52
DB 2HE)

Associative property

e | (S -CEHI) .

rational numbers Multiplicative inverse property
233445586

34235645

23344556 612 20 30
______________________ —=1111=1

Distributive property

DG 26
A2z 2]

The textbook included 62 examples for multiplication and division of rational
numbers. The textbook emphasized modeling of multiplication of rational numbers
before introducing the traditional multiplication algorithm. It provided several
modeling examples and each model included factors that are positive rational
numbers. Actually, these examples addressed students’ prior knowledge on modeling

multiplication of fractions. Besides, the examples included factors that are in proper
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form and there was not any modeling example that included factors that are greater
than one. Although the textbook emphasized modeling of multiplication of rational
numbers, it did not provide any example for modeling the division of rational
numbers.

After the provision of modeling examples, the textbook presented examples
related with multiplication of rational numbers by using the traditional algorithm.
These examples included either two positive factors, two negative factors or one
negative and one positive factor. By presenting these examples, the textbook
emphasized that the multiplication of two positive or two negative rational numbers
will yield a positive product while the multiplication of one positive and one negative
rational number will yield a negative product. Nevertheless, the factors included in
the multiplication operations were all proper numbers.

The textbook included examples for the division of rational numbers after
presenting all ideas related with the multiplication of rational numbers. The textbook
did not provide any model for the division operation. Instead, it began with the
explanation of invert and multiply algorithm to teach the division of rational numbers
and it directly provided examples to illustrate this algorithm. Besides, when
examples related with division of rational numbers were examined, it was seen that
these examples included more variations in terms of sign and form of terms when
compared to the variability in multiplication examples. For instance, the dividends
and the divisors existing in the division examples were either positive-positive,
positive-negative, negative-positive or negative-negative with respect to their signs.
Besides, the dividends were either in proper, improper or mixed number form while
the divisors were in proper, mixed or decimal form.

The middle school mathematics curriculum and the textbook explicitly
suggested teachers to emphasize the teaching of special cases of multiplication and
division of rational numbers by 0, 1 and (-1). The textbook included several

examples for teaching multiplication of rational numbers by 0, 1 and (-1). Namely,
4
the textbook presented the multiplication of (—gj by 0, 1 and (-1) respectively and

subsequently provided the following explanations: “the multiplication of each
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rational number by O results in a product of 0, the multiplication of each rational
number by 1 is equal to the rational number itself and the multiplication of each
rational number by (-1) is equal the additive inverse of that rational number”. When
examples related with division of rational numbers by 0, 1 and (-1) or with the
division of 0, 1 and (-1) by any rational number excluding zero were examined, it
was seen that there were a lot more examples when compared to the examples related

with multiplication by 0, 1 and (-1). To be more specific, the textbook presented the

2 2
division of (—gj by 0, 1 and (-1) or the division of 0, 1 and (-1) by (—gj and

thereafter provided the following explanations: “the division of 0 by any rational
number that is different from 0 yields 0, the division of 1 by any rational number that
is different from 0 is equal to the multiplicative inverse of that rational number, the
division of (-1) by any rational number excluding 0 is equal to the additive inverse of
the multiplicative inverse of that rational number, the division of any rational number
by 0 is undefined, the division of any rational number by 1 is equal to the rational
number itself and finally the division of any rational number by (-1) is equal to the
additive inverse of that number”.

Similar to the middle school mathematics curriculum, the textbook also
emphasized estimation of multiplication and division of rational numbers. The
examples presented for the estimation of multiplication included either a proper
number, a mixed number, or an integer as the first factor. Identically, those examples
included either an integer, a proper number or a mixed number as the second factor
of the multiplication operation. Besides, except for one example, all estimation
examples regarding multiplication of rational numbers included positive factors. The
number of examples provided by the textbook for the estimation of division was
similar to the number of examples provided for the estimation of multiplication. In
more detail, estimation of division examples included dividends in the form of a
mixed number or an integer while the dividends were all in mixed number form.
Finally, all but one of the estimation of division examples included dividends and
divisors that were both positive and one example included a negative dividend and a

negative divisor.
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As emphasized by the middle school mathematics curriculum, the textbook
provided several examples for modeling and calculating the square and cube of
rational numbers. The textbook initially presented modeling examples that included
the square and cube of positive rational numbers that are less than 1. Later, it
presented examples that showed how to calculate the square and cube of rational
numbers that are either positive or negative. However, the bases of the exponents
were all in proper number form. The textbook neither provided examples that
included a base in improper number form nor a base in mixed number form.

The explanation part of the textbook did not include multi-step operations
with rational numbers. However, there were three exercise examples that were left
for the students. These examples were all structurally different from each other.
More specifically, the first example included four factors. The first and the third
factor of this example was a proper number while the second and fourth factor
included the addition of a mixed number and an integer and the subtraction of an
improper number from an integer respectively. The second example included two
factors. The first factor of this example included the addition of two positive proper
numbers while the second factor included the subtraction of a positive improper
number from a positive proper number. Finally, the third example was a multi-step
division example. In this example, the divisor included the subtraction of a negative
mixed number from another negative mixed number and the divisor was a positive
rational number in proper form.

After the provision of examples which illustrated the traditional
multiplication algorithm, the textbook included examples for the properties of
multiplication of rational numbers. The textbook initially provided examples for the
commutative property of multiplication of rational numbers. The first commutative
property example was used as a basis for justifying that the equality holds for every
rational number. The other two examples showed how commutative property of
rational numbers can be applied to mathematical problems. That is, those two
examples paved the way for solving problems easily without actually making
computations. Finally, the commutative property examples included factors in the
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form of a positive proper number, negative proper number, or negative improper
number.

The textbook provided two associative property examples. These two
examples were used as a basis for justifying that the associative property holds for
every rational number. The first example included factors in positive proper number
form while the second example included factors as two negative proper numbers and
one positive proper number. The example provided for the multiplicative inverse
property of rational numbers was not used as a basis for justification. Instead, this
example showed how multiplicative inverse property can be applied to mathematical
problems so as to solve them easily. Besides, this example merely included factors
that were positive proper numbers.

Last, the textbook presented examples for teaching the distributive property
of multiplication over addition and subtraction. Three examples were provided in the
textbook to illustrate the distributive property of multiplication over subtraction. One
of these examples was used as a basis for justifying that the product obtained by
using the distributive property is equal to the product obtained by taking account of
the order of operations. The other two examples illustrated how to apply distributive
property to mathematical problems. Two examples were included in the textbook for
teaching distributive property of multiplication over addition. The first example
showed how to distribute a negative rational number over a negative and a positive
rational number. The second example included unknown values and it illustrated
how these unknown values can be found by using distributive property without
actually computing. This example included rational numbers in positive proper
number form.

The examples used by Teacher A for teaching multiplication and division of
rational numbers represented the following ideas: modeling multiplication of rational
numbers, multiplication and division of rational numbers, calculating the square and
cube of rational numbers, multi-step operations with rational numbers, and properties
of multiplication of rational numbers. When examples used by Teacher A for
teaching multiplication and division of rational numbers were examined, it was seen

that there were some structural similarities and differences among them with respect
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to the sign and form of terms included in the operations. Therefore, only the
examples that have different structural features were presented in Table 4.23.

Besides, the number of examples for each idea was also presented.

Table 4.23. Examples used by Teacher A for teaching multiplication and division of

rational numbers

Number
Ideas Ilustrative examples of
examples
used
Modeling
multiplication of 3
rational numbers
=GR
-l === 2—.| -3— ;
57 5 7 9/ 2 5 8
o 234 -9 -3 5
Multiplicationand | —-—-— ; 0.7-—; 0.25-(-09); —-n=—;
division of rational | 3 4 ° 14 5 7 23
numbers 1
35 ( 5) 1 2 5 5 ( 2) 2
—i= |- |- =5=2==2= =} =
46\83 3 6 9\7)5
3
(2)2.( 3)2. (3 2)2‘ 3 (2)2.
Calculating the 3)’ 5) ' \s 7)° 5)°
square and cube of s . s N 11
rational numbers (_Ej . _2_ . (_E) (_Ej N
4 5 5° 5 5
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Table 4.23. (Continued)

Number
Ideas Ilustrative examples of
examples
used
2 1 1 2 1 1 1 1 3 7
—+—= (== 1= | I+= ;| == || ==
3 6 2 5 2 2 2 3)\4 5
1 3 6 2 _3 2 9
2—+1—|-|1=+1|;|3==2—|-|4———|;
2 5 7 7 4 5 10
. 3 (5 4 3
MU'“-_Step ) (—0.35)-200—(—68); —~(—+1)-—-(1——);
operations with 51\3 6 2 10
rational numbers 1 1 1 1
I+— (| 1+= || 1+— || 1+— |;
2 3 4 100
1 1 7 3 -2) 5 7
ERRIEEEES:
3 4 4 2 3 5
Multiplicative inverse property
T 19
The multiplicative inverse of —
7
Properties of
multiplication of Distributive property 7
rational numbers
2-(3+5); 2:(3-5);2(c+5)=A-7+2-0;
(2+1) 1 3 [3 6)_ 2 K 99) ( 33)}
5 10) 2 4\2 5) 99 48 24
Teacher A used 54 examples for multiplication and division of rational

numbers. Although the textbook emphasized modeling multiplication of rational

numbers, Teacher A began teaching multiplication of rational numbers by using the

traditional multiplication algorithm. In contrast, Teacher A provided several

modeling examples at the end of the multiplication of rational numbers just before

teaching division of rational numbers. In these models, Teacher A used vertical

divisions to show the first factor and horizontal divisions to show the second factor.

Meanwhile, he found the common denominator of the two factors in order to divide

the whole easily. Finally, he found the product of the multiplication operation by

counting the double shaded parts included in the whole. The examples were similar
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to those included in the textbook. Namely, each model included factors that were
positive rational numbers. In fact, these modeling examples addressed students’ prior
knowledge on modeling multiplication of fractions. Despite this, Teacher A did not
provide any modeling example that included factors that are greater than one.

As mentioned above, Teacher A began teaching multiplication of rational
numbers by introducing examples which illustrated the use of traditional
multiplication algorithm. These examples included either two positive factors, three
positive factors, two negative factors or one negative and one positive factor.
Besides, the factors included in the multiplication operations were either in proper
number, mixed number, repeating decimal or terminating decimal form. Moreover,
some other examples included unknowns as the first or the second factor of the
multiplication operation. On the whole, by using these examples the teacher
emphasized that the multiplication of two positive or two negative rational numbers
would yield a positive product while the multiplication of one positive and one
negative rational number would yield a negative product. Besides, he explicitly
uttered and wrote on the board that the product of two rational numbers with the
same signs will be positive and the product of two rational numbers with opposite
signs will be negative.

Similar to the textbook, Teacher A generated examples for the division of
rational numbers after introducing all ideas related with the multiplication of rational
numbers. However, he did not use any model for the division of rational numbers. In
place of this, he provided examples for teaching the invert and multiply algorithm for
division of rational numbers. When these examples were examined, it was seen that
they included some variations with respect to the sign and form of terms. Namely,
the sign of the dividends and divisors of the division operations were either (+, +), (-,
+), (-, +) or (-, -). Besides, the dividends were in proper or mixed number form and
the divisors were in proper, improper and mixed number form. More importantly, the
teacher emphasized the use of two different notations for expressing division of
rational numbers and provided many examples by using both notations. In the first
notation, the teacher showed the division operation by using an obelus in this

manner: %+§. In this notation, the divisor, the dividend and the quotient are all
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expressed on one line. In the second notation, the teacher showed the division

operation by placing the dividend over the divisor with a vinculum between them in
a

this way: % In this second notation, the divisor and the dividend are expressed on

d
different lines.

Although suggested by the middle school mathematics curriculum and the
textbook, Teacher A did not provide any examples for the following ideas:
multiplication and division by 0, 1 and (-1), estimation of multiplication and division
of rational numbers and modeling the square and cube of rational numbers. Despite
not using any models for the square and cube of rational numbers, Teacher A showed
how to calculate them with a broad range of examples. The examples used by the
teacher for explaining this idea included much more variability when compared to
textbook examples. To be more precise, the examples included in the textbook singly
had one rational number as a base. However, the examples provided by the teacher
included bases which had an exponent either in the numerator or in the denominator.
Besides, some of the examples had bases that included subtraction of rational
numbers. In short, the teacher covered this idea in greater depth when compared to
the examples included in the textbook.

Although the explanation part of the textbook related with multiplication and
division of rational numbers did not provide multi-step operation examples, Teacher
A allocated much time for solving multi-step operations with rational numbers.
Meanwhile, he used a large number of examples to teach this idea to their students.
These examples were very different from each other in terms of their structural
components. Most of the multi-step multiplication examples included two factors and
these factors were formed either by adding or subtracting two rational numbers.
Besides, these factors included the addition or subtraction of rational numbers that
were either proper number, improper number, integer or mixed number and all of the
rational numbers included in the subtraction and addition operations were positive
numbers. Apart from the multi-step multiplication examples with two factors, there

was one example with four factors and one example with a continuing pattern. The
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multi-step multiplication example with a continuing pattern was different in nature
from the rest of the multi-step multiplication examples since it could not be solved
without cross simplifying the numerators of the antecedent factors with the
denominators of the posterior factors.

The number of multi-step division examples provided by Teacher A was very
few when compared to the number of multi-step multiplication examples provided by
him. That is, Teacher A used only two multi-step division examples and both
examples included two terms. The first example had a dividend that included the
subtraction of two negative mixed numbers and a positive improper divisor. The
second example included division of a negative proper number by a positive proper
number, then subtraction of the absolute value of a negative improper number and
finally addition of a positive improper number. It is worthy of note that the teacher
had his students remember the order of operations before working out this example
since it entailed following the rules for the order of operations correctly.

Ultimately, although emphasized by the middle school mathematics
curriculum and the textbook, Teacher A did not allocate time for covering properties
of multiplication of rational numbers. He taught multiplicative inverse property and
distributive property of multiplication as he came across with exercise examples that
entailed the use of these properties. He provided only one example for teaching
multiplicative inverse property of rational numbers. However, while finding the
multiplicative inverse of the selected positive improper number, the teacher used the
expression ‘flip over’ although the middle school mathematics curriculum
emphasized that the two rational numbers are multiplicative inverses of each other if
their product is equal to one.

Teacher A put more emphasis on the distributive property of multiplication
over addition and subtraction. More specifically, the teacher provided three examples
for the distributive property of multiplication over addition. In the first example,
natural numbers were selected to show the distributive property. Therefore, this
example addressed students’ prior knowledge on distributive property of
multiplication of natural numbers. The second example included unknowns, and the

teacher provided this example to show that it was impossible to find the unknowns

190



without using the distributive property of multiplication over addition. Again, natural
numbers were used to generate this example. Unlike the previous two examples, the
third example was used to show that the multiplication operation is right-distributive
over addition operation. This time, the teacher selected positive proper numbers to
generate the example. Moreover, Teacher A used two examples to illustrate the
distributive property of multiplication over subtraction. In the first example, a
positive proper number was multiplied by the subtraction of a positive improper
number from another positive improper number. In the second example, a positive
proper number was multiplied by the subtraction of a negative improper number
from another negative improper number. These two examples illustrated that the
multiplication operation was left-distributive over subtraction operation. Finally,
Teacher A used these two examples to show how to apply the distributive property to
the given numerical expressions.

The examples used by Teacher B for teaching multiplication and division of
rational numbers represented the following ideas: multiplication and division of
rational numbers, multiplication by 0, 1 and (-1), calculating the square and cube of
rational numbers, multi-step operations with rational numbers, and properties of
multiplication of rational numbers. When examples used by Teacher B for teaching
the above mentioned ideas were examined, it was seen that the components included
in most of the examples were structurally different from each other. Therefore, only
the examples that have different structural components were presented in Table 4.24.
Besides, the number of examples for each ideas were also presented.
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Table 4.24. Examples used by Teacher B for teaching multiplication and division of

rational numbers

Number
of
examples
used

Ideas Ilustrative examples

(B3 ( YR
(ortend (30
| (YD Demen |
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Multiplication by A (A LA
0, Land (-1) ( 5j 0'( 5) 5 75) Y °
1 2

2, 2, 3, 4, 4. 4, _ .
Catmtaing e | (33 (4 (27 () (2213 ]
square and cube of , , , \ 19
rational numbers (1) ( 3) ( 3) _ (—1)

2)'Us) '\ 2) s

Multi-step 1 7 1 3 1 6 0_
operations with (2———]:(——); (l——):(—Jrl); —_— 3
rational numbers 3 3 2 4 2 03 6
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Table 4.24. (Continued)

Number
Ideas Ilustrative examples of
examples
used
Commutative property
SEHE
8/9 9.8
Associative property
EEHEG)
— Bl =1Il=ll—=1]=1|=
12 6 12 3 6
Identity property
(-1)1=(7)
Zero propert
Properties of Property
12

rational numbers o

multiplication of 0 (5)
8

Distributive property

4[5+3]=45+43 (%M?ﬂ
- HIH

Multiplicative inverse property

The multiplicative inverse of (;5) ; (ﬁ)
9 6

|
:

j : and 0.012

Teacher B used 60 examples for teaching multiplication and division of

rational numbers. Although the textbook emphasized modeling of multiplication of

rational numbers before teaching multiplication of rational numbers, Teacher B did

not provide any modeling example. In place of this, Teacher B started teaching

multiplication of rational numbers by using the traditional multiplication algorithm.

More specifically, the teacher initially provided the multiplication of two positive

proper numbers and thus, he recalled the multiplication of fractions. Broadly

speaking, Teacher B presented many examples for teaching the algorithm for
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multiplication of rational numbers. Besides, the multiplication examples used by
Teacher B included all possible variations in terms of the sign of the factors. The
examples with two factors included (+, +), (+, -), (-, +) or (-, -) as the sign of the first
and second factors respectively. The teacher also used a few examples with three
factors. These examples included either two negative factors and one positive factor
or three negative factors. Moreover, the multiplication examples used by the teacher
included much more variability in terms of the form of factors when compared to
multiplication examples provided by the textbook. More specifically, the factors
included in the multiplication examples were generally in proper number, improper
number and mixed number form. Integers, repeating decimals and terminating
decimals were less frequently used by the teacher as forms of factors included in the
multiplication operations.

Unlike the textbook, Teacher B generated examples for the division of
rational numbers concurrently with the multiplication of rational numbers. Similar to
the textbook, Teacher B did not provide any example for modeling division of
rational numbers. Instead of this, the teacher immediately introduced examples that
illustrated the use of invert and multiply algorithm for the division of rational
numbers. However, the number of examples used by Teacher B for the division of
rational numbers was quite few in proportion to the number of multiplication
examples. When division examples were examined, it was seen that they included
some variations with regards to the sign and form of the terms. That is, the dividends
were either in positive proper number, negative proper number, negative improper
number or integer form and the divisors were either in positive improper number,
negative improper number, positive mixed number, negative mixed number or
integer form. Similar to the textbook, Teacher A used only one notation for teaching

division of rational numbers. In this notation, the division operation was shown via

an obelus as follows: %+§. Finally, after providing several examples for teaching

multiplication and division of rational numbers, Teacher B emphasized that the
product/quotient will be negative when the terms have different signs and the

product/quotient will be positive when the terms have same signs.
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Although Teacher B provided a few examples for teaching the special cases
of multiplication by 0, 1 and (-1) at the introductory phase of the lesson, he did not
pay attention to this idea for the latter multiplication examples. In fact, the examples
related with multiplication by 0, 1 and (-1) were not generated by Teacher B himself.
That is, these examples appeared on the initial pages of the textbook and the teacher
had students examine these examples by projecting them on the board. In a similar
fashion, Teacher B did not use any division example that focused on the special cases
of division by 0, 1 and (-1).

There were several examples in the textbook that targeted modeling of the
square and cube of rational numbers, however, Teacher B immediately provided
examples for calculating the square and cube of rational numbers. To be more
precise, Teacher B initially stressed that the power of an exponential number tells
how many times the base number is multiplied by itself. Later, he recalled
calculating the even and odd powers of integers. In addition to this, he paid attention
to the distinction between the integer exponents that have a base inside the
parenthesis and those that have a base without parenthesis. After recalling integer
exponents, Teacher B provided several examples that showed how to calculate the
square and cube of rational numbers. Most of these examples included similar
structural components when compared to the examples included in the textbook for
teaching this idea. Namely, the bases of the exponents were all positive or negative
proper numbers excluding one. Different from the textbook examples, Teacher B
generated examples with mixed number bases or examples with bases raised to the
power of 4.

Teacher B did not provide any multi-step operation example during the
teaching of multiplication and division of rational numbers. However, he provided
three multi-step operation examples as he came across with them while working out
exercise examples. While the first and the second example were multi-step division
examples, the third example was a multi-step multiplication example. In the first
example, the dividend included the subtraction of a positive improper number from a
positive mixed number and the divisor was a negative proper number. In the second

example, the dividend included the subtraction of a positive proper number from a
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positive integer and the divisor included the addition of a positive proper number and
a positive integer. Finally, in the third example, the first factor included the division
of a positive integer by a repeating decimal and the second factor included the
division of a repeating decimal by a positive integer.

After Teacher B provided examples that illustrated the traditional
multiplication algorithm and the invert and multiply algorithm, he moved on to
teaching properties of multiplication of rational numbers. Initially, Teacher B
provided an example for the commutative property of multiplication of rational
numbers. This example included one negative and one positive proper number as
factors of the multiplication operation. Next, the teacher provided an example for the
associative property of multiplication of rational numbers. In this example, the left
hand side of the equality included an unknown value, and the teacher showed the
students how to find it without actually doing calculations. Besides, this example
included one factor in negative proper number form, one factor in positive improper
number form and one factor in positive proper number form. To illustrate the identity
property of multiplication of rational numbers, Teacher B demonstrated the
multiplication of a negative integer and 1. As a matter of fact, this example was
provided by one of the students in the classroom and the teacher did not attempt to
rewrite the integer as a rational number. To illustrate the zero property of
multiplication, Teacher B selected an example that included a positive proper
number as a companion to zero.

Among all properties, Teacher B put more emphasis on the teaching of
distributive property and multiplicative inverse property of rational numbers. The
teacher provided three examples for teaching the distributive property of
multiplication over addition. However, the teacher did not provide any example for
teaching the distributive property of multiplication over subtraction. The first
distributive property example used by the teacher showed how to distribute a natural
number over the addition of two natural numbers. The second example was used to
show how to distribute a negative proper number over the addition of two positive
proper numbers. The last example included an unknown value and was provided by

the teacher to show how to find the unknown value by using the distributive property
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instead of actually calculating. Finally, this example included rational numbers in
positive proper, negative proper and negative improper number form. In comparison
with the textbook and Teacher A, Teacher B used a wide variety of examples to
teach the multiplicative property of multiplication. To be more specific, Teacher B
selected rational numbers in the form of a negative proper number, a positive proper
number, a positive mixed number and a decimal number to teach the multiplicative
inverses of those rational numbers to his students.

The examples used by Teacher C for teaching multiplication and division of
rational numbers were very limited. Teacher C provided only three examples for
teaching the traditional algorithm for multiplication of rational numbers. In a similar
fashion, Teacher C used only one example to teach the division of rational numbers.
On the other hand, the teacher did not provide examples for teaching the following
ideas: modeling multiplication of rational numbers, multiplication and division by 0,
1 and (-1), estimation of multiplication and division of rational numbers, modeling
and calculating the square and cube of rational numbers, multi-step operations with
rational numbers and properties of multiplication of rational numbers.

Before introducing examples related with multiplication of rational numbers,
Teacher C explained that there is no need to find the common denominator of the
factors included in the multiplication operation. Next, the teacher verbally explained

the traditional algorithm for multiplication of rational numbers. Finally, the teacher

() m () e o
use 3 7 ) 3 7 a 3 7 espectively 10 Illustrate

multiplication of rational numbers. Although the middle school mathematics
curriculum and the textbook emphasized recalling multiplication of fractions,
Teacher C started with an example that included a positive proper number as the first
factor and a negative proper number as the second factor. In the second example, the
teacher used two negative proper numbers as factors of the multiplication operation.
In the last example, the teacher used two positive proper numbers as the factors of
the multiplication operation. It is important to note that while moving from the first
example to the second example and from the second example to the third example,

Teacher C changed only the sign of the factors while keeping their magnitudes
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invariant. Finally, the teacher emphasized that the multiplication of two positive or
two negative rational numbers yields a positive product while the multiplication of
one positive and one negative rational number gives a negative product.

Similar to the multiplication of rational numbers, Teacher C verbally
explained the invert and multiply algorithm for the division of rational numbers

before providing any example related with this idea. Then, the teacher provided

5 7
(—§j2(+§j as a specific example for the division of rational numbers. As it can be

seen, this example included a negative proper number as the dividend and a positive
proper number as the divisor of the division operation. Subsequently, the teacher
stressed that division of a negative rational number by a positive rational number
yields a negative product. However, Teacher C did not provide further examples for
the division of rational numbers and rushed to teaching the objective ‘solving multi-
step operations with rational numbers’ indicating that there is not much time for
covering all rational number ideas outlined by the middle school mathematics
curriculum.

The examples used by Teacher D for teaching multiplication and division of
rational numbers represented the following ideas: modeling multiplication of rational
numbers, multiplication and division of rational numbers, calculating the square and
cube of rational numbers and properties of multiplication of rational numbers. When
examples used by Teacher D for teaching the above mentioned ideas were examined,
it was seen that most of the examples included components that were structurally
different from each other. These examples with different structural components are
presented in Table 4.25. Additionally, the number of examples used by Teacher D

was presented to get a better picture about the variability of those examples.
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Table 4.25. Examples used by Teacher D for teaching multiplication and division of

rational numbers

Number of
Ideas Ilustrative examples examples
used
Modeling
multiplication of 4
rational numbers
4
Multiplication and 3 1 1° 1 11 1 3 4
division of rational 2—‘(——); 4-—=4—;3-—; -4.-—; 4—-(—2—); 15
numbers 4 2 2 2 8 7 5 5 i
3 6 3) 6 3 6 -1 23
=l —=|i= |- | -= ;5= 04:1=; —=
5 7 5) 7 5 7 2 5 9 03
Calculating the 1YV (1Y 1Y 1\ 1\* 1)?
square and cube of (—j ; (—) : (_—j : (__j : (__) : (__j 6
rational numbers 2 2 2 2 2 2
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Table 4.25. (Continued)

Number of
Ideas Ilustrative examples examples
used
Commutative property
1 3_3 1
25 52
Associative property
1 [1 2]_[ 1 1} 2
2153 2513
Zero property
3)
—-=1.0
Properties of 2
multiplication of 7

rational numbers

Identity property

(+3)

+= |1
2

Distributive property

4 [2 1] 42 41

713 5] 73 75
2[1 E]( zjl ( z)
314 5 3) 4 3

Multiplicative inverse property

g |lw

The multiplicative inverse of -1.2

Teacher D used 32 examples for teaching multiplication and division of
rational numbers. Although the textbook emphasized modeling multiplication of
rational numbers before introducing the multiplication algorithm, Teacher D started
her lesson by providing examples that involved the use of this algorithm and she did
not provide any model during the teaching of multiplication of rational numbers.
However, she introduced several examples of this kind just before moving on to the
teaching of division of rational numbers. More precisely, Teacher D provided her
students a few modeling examples after teaching all ideas about multiplication of
rational numbers. These examples were similar to those included in the textbook.

Namely, each model included factors that are positive proper numbers. Actually, by
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these examples the teacher recalled modeling multiplication of fractions.
Nevertheless, Teacher D did not provide any modeling example that included factors
greater than one.

As stated above, Teacher D began teaching multiplication of rational numbers
by introducing the traditional multiplication algorithm. When compared to the
number of examples included in the textbook for the multiplication of rational
numbers, the number of examples used by Teacher D for teaching this idea was
approximately the same. However, while the textbook included more examples for
the division of rational numbers, Teacher D provided more examples for the
multiplication of rational numbers. Furthermore, the examples provided for
multiplication included nearly all possible variations in terms of the sign and form of
the factors. That is, these examples included either two positive factors, two negative
factors or one negative and one positive factor and the factors were either proper

numbers, improper numbers, integers or mixed numbers. More importantly, the

teach d §1 _E._l and _§l tivel to d
eacher use 314’ 8 14 3 14 consecutively 1o draw

students’ attention to the role of the sign of factors on the sign of the product in
multiplication of rational numbers. Besides, Teacher D emphasized that the rules for
multiplication of integers are also valid for the multiplication of rational numbers and
concluded that the product of two rational numbers with same signs will be positive
while the product of two rational numbers with opposite signs will be negative.
Finally, all but one of the examples entailed students to multiply the given two

factors whereas one example checked whether students hold the misconception that

a-g is equal to aE.
c c

Similar to the textbook, Teacher D generated examples for the division of
rational numbers after introducing all ideas related with multiplication of rational
numbers. Like Teacher A, Teacher B and Teacher C, Teacher D started teaching
division of rational numbers without using any models. That is, she immediately
started with division examples that included the use of invert and multiply algorithm.
Teacher D used less number of division examples when compared to the examples
used by her for teaching multiplication of rational numbers. The division examples
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included some variability with respect to the sign and form of their terms. These
examples included dividends that were either positive proper numbers, negative
proper numbers, positive mixed numbers or positive repeating decimals. Identically,
the divisors were either positive proper numbers, negative proper numbers, positive
mixed numbers or positive repeating decimals. The examples used by Teacher D
were similar to those included in the textbook for teaching division of rational
numbers except for the ones that included repeating decimals as either a dividend or

a divisor. More importantly, as she did while teaching multiplication of rational

numbers, Teacher D introd d§§ —g'ﬁand 38 to the student
umbers, Teache introduced - | —¢ |5 z ]"| 77 ] to the students

respectively to draw their attention to the role of the sign of the dividend or the
divisor on the sign of the quotient.

Although emphasized by the textbook, Teacher D did not provide examples
for teaching the special cases of multiplication and division by 0, 1 and (-1),
estimating multiplication and division of rational numbers, solving multi-step
operations with rational numbers and modeling the square and cube of rational
numbers. While Teacher D did not provide any example for modeling the square and
cube of rational numbers, she provided examples for teaching how to calculate them.
Teacher D used examples of this kind after providing examples for the division of
rational numbers. The number of examples used by the teacher was less than the
number of examples included in the textbook for teaching the square and cube of
rational numbers. Besides, these examples included positive proper or negative
proper numbers as bases and positive or negative integers as powers of the
exponents. Thus, the examples used by Teacher D for teaching the square and cube

of rational numbers were structurally similar to those included in the textbook. More

1V (1Y (1Y 1y’
specifically, Teacher D used (Ej (E) ,[—Ej and [—Ej respectively to illustrate

the second and third power of rational numbers. In the first example, Teacher D
selected a positive base and a positive power. In the second example, the teacher kept
the base invariant and changed the power. Later, Teacher D compared the two
examples to explain the role of power on the magnitude of the exponents. In the third
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example, Teacher D selected a negative base and a positive power and in the fourth
example, the teacher kept the base invariant and changed the power. By providing
the third and the fourth examples consecutively, Teacher D stressed the role of odd
power and even power on the sign and magnitude of an exponential number with a
negative base. Different from the examples included in the textbook, Teacher D used
two examples that included negative powers. These examples were generated by the

teacher upon student inquiry. Similar to the previous examples, these examples
: 1 . o
included ) as a base and two different negative integers as powers. The teacher

pointed out that negative exponents would be covered next year and even so she
briefly explained that negative power meant finding the multiplicative inverse of the
base and then raising the multiplicative inverse of the base to the power regardless of
its minus sign.

Similar to the textbook, Teacher D provided examples for teaching the
properties of multiplication of rational numbers, after introducing examples that
illustrate the traditional multiplication algorithm. Teacher D initially provided an
example for the commutative property of multiplication of rational numbers. In this
example, the teacher selected positive proper numbers to illustrate the commutative
property. More specifically, the teacher used this example as a basis for justifying
that the commutative property holds for every rational number. Next, she used
another example to illustrate the associative property of multiplication of rational
numbers. This example included a negative proper number, and two positive proper
numbers and the teacher calculated both sides of the equality to justify that
associative property holds for every rational numbers. To teach zero property of
multiplication, Teacher D selected a negative proper number as a companion to 0 and
to teach identity property of multiplication she selected a positive proper number as a
companion to 1.

Last, Teacher D presented two examples for teaching distributive property of
multiplication over addition and subtraction. First, the teacher used an example to
teach the distributive property of multiplication over addition. By this example, the

teacher showed how to distribute a positive proper number over the addition of two
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proper numbers. Besides, this example was used as a basis for justifying that the
product obtained by using the distributive property is equal to the product obtained
by taking account of the order or operations. The other example used by Teacher D
illustrated the distributive property of multiplication over subtraction. In this second
example, the teacher showed how to distribute a negative proper number over the
subtraction of a positive proper number from another positive proper number.
Similar to the previous example, the teacher justified that the product obtained by
using the distributive property is equal to the product obtained by taking account of
the order or operations.

Although emphasized by the middle school mathematics curriculum and the
textbook, Teacher D did not provide any example for the multiplicative inverse
property in the course of teaching properties of multiplication of rational numbers,
she provided one example for this property when working out exercise examples.
Unlike the other teachers, she selected a negative decimal number to show the
multiplicative inverse of that number. However, when finding the multiplicative
inverse used the term ‘flip over’ rather than emphasizing that ‘two numbers whose

product is 1 are multiplicative inverses of one another’.

4.1.1.6. Examples used for performing multi-step operations with rational

numbers

In the middle school mathematics curriculum, teachers were suggested to use
grouping symbols such as parenthesis, brackets and so forth to determine the order of
operations included in a mathematical expression. In addition to this, the teachers
were suggested to emphasize that the order of operations in complex fractions were
determined according to the main fraction bar. However, the middle school
mathematics curriculum did not provide any specific example or activity for solving
multi-step operations with rational numbers.

In the mathematics textbook followed by the classrooms, the examples
provided for teaching multi-step operations with rational numbers were classified as
follows: solving multi-step operations that are expressed on one line, solving multi-

step operations that are expressed as complex fractions and solving multi-step
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operations that are expressed as a continuing pattern. The illustrative examples and

the total number of examples for each category are presented in Table 4. 26.

Table 4.26. Examples included in the textbook for teaching multi-step operations

with rational numbers

Number
of
examples
used

Ideas [llustrative examples

that are expressed on

1 11 1 2 51 1 5 6 6
— === === == == || 1+ = | |;
Multi-step operations | 2 4 4 3 7 7
" 1
one line -
3

2.3 13

Multi-step operations | 32 +i; 5.5 24 : 2 1
that are expressedas | 3 _2 18 3 3. 3 1.1 7
complex fractions 2 3 5 1

2+—

3

Multi-step operations 1 1 1 1
that are expressed as 4= 1+ [ = | 14— 1
a continuing pattern 2 3 4 9

The textbook included 15 examples for teaching multi-step operations with
rational numbers. The first group of multi-step operation examples included in the
textbook was formed by expressing rational numbers on one line either by using
parentheses and brackets as grouping symbols or without using grouping symbols. In
the examples with no grouping symbols, either addition, multiplication and
subtraction or subtraction, division and addition occured from left to right. These
examples entailed using the correct order of operations in order to find the values of
expressions correctly. In addition, these examples were generated mostly by using
positive proper numbers and occasionally by integers or negative proper numbers.
The textbook included more examples with grouping symbols when compared to
those with no grouping symbols. Examples with grouping symbols entailed
performing the operations within the grouping symbols first and similar to the
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examples with no grouping symbols, they were mostly formed by using positive
proper numbers and occasionally by using negative improper numbers or integers.

The second group of multi-step operation examples were complex fractions
since these kinds of examples included fractions either in the numerator, or in the
denominator or both in the numerator and in the denominator. In complex fractions,
the main fraction bar was a type of grouping symbol. Therefore, the order of
operations in complex fractions was determined by considering the position of the
main fraction bar. In this group of examples, the numerators over the main fraction
bars were in the following forms: a positive proper number plus a positive improper
number, an integer minus a positive proper number, or only an integer. Similarly, the
denominators under the main fraction bars were in the following forms: a positive
improper number minus a positive proper number, a positive proper number minus
an integer and a positive proper number plus a positive proper number. Above all,
the number of operations included in the complex fraction examples of the textbook
ranged between three and five. This might be indicative of the complexity of the
examples included in this category.

Finally, the example with a continuing pattern formed another category of
multi-step operations. This example was very different in nature from the other
multi-step operation examples, since it entailed discerning the pattern among
consecutive factors and performing cross simplifications without necessarily writing
down all factors. More specifically, each factor included the addition of one whole
with a positive proper number and the difference between the denominators of the
two consecutive proper numbers was always equal to 1.

The examples used by Teacher A for teaching multi-step operations with
rational numbers were classified as follows: multi-step operations that are expressed
on one line, multi-step operations that are expressed as complex fractions and multi-
step operations that are expressed as a continuing pattern. The illustrative examples

and the total number of examples for each category are presented in Table 4. 27.
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Table 4.27. Examples used by Teacher A for teaching multi-step operations with

rational numbers

Number
Ideas Ilustrative examples of
examples
used
2 1 21 1 1 1 1
———= |+ === 1= == 1=
3 2 3 2 5 6 7 8
2 0
3 . 2 . .
Multi-step operations _Z+2 173 ; (0.01+0.09)-(0.473+0.527);
that are expressed on 8
one line 128 111 (1 1)1 1 2 1
——————— === == 1-=-1-=;
17 13 17 13 \2 3/ 4 3 3 2
1)1 11
K=|8-——|:—,L=8-——:1— K-L="?
4) 8 4 8
O
1 1 1 0.25-0.14
3+ p 1= L2 o2 =
1 1 1 2 5 0.02
1-= 1-— 1= = —
3 1_1 6 5 0.06
Multi-step operations 2
that are expressed as 2 0.35 0.7 0.22 13
complex fractions 3- =1 + - ;
5_3 0.05 0.0035 0.0011
1 1 1 1 1 1 11111K+A
A=—+—+— K=————— L=———=—— , =7?
2 3 4 2 3 4 22222 L
Multi-step operations E_l+g_l E_E; r 2 1 2
that are expressed as 5 2 5 2 5 2 10 100 1000 10000 2
a continuing pattern There are 20 terms

Teacher A used 23 examples for teaching multi-step operations with rational
numbers. The first group of multi-step operation examples used by the teacher was
formed by expressing rational numbers on one line either by using parentheses as
grouping symbols or without using grouping symbols. The examples used by the
teacher for this group were almost similar to the ones included in the textbook.
Different from the textbook examples, Teacher A used examples that included

exponents or decimal numbers as the components of the multi-step operations. The
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teacher also used several examples with no grouping symbols. In these examples,
generally subtraction operation occurred before division or multiplication operations.
Thus, these examples required performing operations in the correct order so as to
evaluate the expressions accurately. The examples with or without grouping symbols
generally included positive proper numbers or integers, and rarely included integers.

The second group of multi-step operation examples used by Teacher A was
complex fractions. The complex fractions used by the teacher included more
variability when compared to the complex fractions included in the textbook. First,
the textbook included complex fraction examples that had either proper number,
integer, or mixed number components. However, the complex fractions used by
Teacher A also included repeating decimals and terminating decimals either in the
numerator or in the denominator. Second, some of the complex fractions used by the
teacher included an unknown value either in the numerator or in the denominator and
there was not any example of this kind in the textbook. Last, in some of the
examples, complex fractions were not explicitly expressed. Instead, these examples
entailed constructing complex fractions before calculating them. To conclude, the
complex fractions used by Teacher A were more sophisticated than the complex
fractions provided by the textbook since teacher generated examples included more
number of operations and more variety in number forms.

Finally, Teacher A used two different examples that included a continuing
pattern and these examples formed the last category of multi-step operations. In the
first example, there was a recurring subtraction operation and this example entailed
finding the number of subtraction operations rather than writing down each term to
find the answer. In the second example, a repeating decimal was expressed as an
infinite series. That is, the repeating decimal was regarded as the sum of an infinite
number of rational numbers. This example entailed expressing each rational number
as a decimal number and performing column addition to discern the repeating pattern
of digits.

The examples used by Teacher B for teaching multi-step operations with
rational numbers were classified as follows: multi-step operations that are expressed

on one line and multi-step operations that are expressed as complex fractions. The
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illustrative examples and the total number of examples for each category are
presented in Table 4.28.

Table 4.28. Examples used by Teacher B for teaching multi-step operations with

rational numbers

Number
Ideas Ilustrative examples of
examples
used
o 1) (5, 1) 1 (1 1)L
Multi-step operations 3) +Z g g a) 2
that are expressed on 3 L L1071 L 4
one line _,(74__)_3; _,_+_:__(1__j
7 3 49 9 9 10
! 3 1-—
L2 )" (1 1) 5
1 3
34— 3 \2 3 ¢ ]
1+— ~ 52
2 2 5
2 2
=1 =-1 3+ =4,
7 6
3—— —-5 4+
) . x+1 x-1 X+2
Multi-step operations
that are expressed as a 4 a 9
complex fractions a2 12 sy
1_i
3
1
2
3 1
A== B= ?then compare Aand B
4
3
4

Teacher B used 13 examples for teaching multi-step operations with rational
numbers. This number is close to the number of examples included in the textbook
for teaching multi-step operations. Unlike the textbook, the multi-step operation
examples that were expressed on one line were all formed by using parentheses as

grouping symbols. This group of examples was formed by using positive proper

209



numbers and positive integers as components of the multi-step operations and the
number of operations included in this group of examples ranged between three and
five. By using these examples, the teacher emphasized the priority of operations
within the grouping symbols and also the priority of multiplication and division
operations over addition and subtraction operations. In the meantime, he explicitly
explained the rule for the order of operations in order to evaluate the given
expressions correctly.

The second group of examples used by Teacher B was formed by expressing
multi-step operations in the form of complex fractions. This group of examples used
by the teacher included more variations in terms of their structural components when
compared to textbook examples. As mentioned before, the complex fractions
provided by the textbook included proper number or integer components in the
numerators or in the denominators. Thus, these complex fractions included
components that were all rational numbers. However, the complex fractions provided
by Teacher B included unknown values in the denominators or numerators in
addition to complex fractions that are constructed entirely by rational numbers.
Besides, the number of operations included in this group of examples provided by
the teacher ranged between four and six. Thus, complex fraction examples used by
Teacher B were more sophisticated when compared to the same type of examples
included in the textbook.

The examples used by Teacher C for teaching multi-step operations with
rational numbers were categorized as follows: multi-step operations that are
expressed on one line and multi-step operations that are expressed as complex
fractions. The illustrative examples and the total number of examples for each

category are presented in Table 4. 29.
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Table 4.29. Examples used by Teacher C for teaching multi-step operations with

rational numbers

Number
Ideas Ilustrative examples of
examples
used
Multi-step operations | 1 [1 3
that are expressedon | —:| ——— [+9 1
one line 4 12 5
1
2 N
15 4 5 3 3 7| 4
—+3 —+—+2 1-— 1 Z—g g
> +1 9 9 ; 2 ; —+ ;
. . 2 1 1 1 2 1 5
Multi-step operations 1+— ——— ———
that are expressed as 2 2 3 2 8 5
complex fractions 1 1 1
1+— || 1+— || 1+—
4 5 6
1 1 1
S
2 3 4

Teacher C used 6 examples for teaching multi-step operations with rational
numbers. The number of multi-step operation examples provided by Teacher C was
very few when compared to those included in the textbook. In addition, the teacher
used only one example to illustrate multi-step operations that are expressed on one
line. More specifically, Teacher C used a multi-step operation example that was
formed by using brackets as a grouping symbol and it included positive proper
numbers and a positive integer as components. Besides, in this example, division,
subtraction and addition examples occurred from left to right respectively. However,
the subtraction operation was within parenthesis. Therefore, this example entailed
performing subtraction operation initially. On the other hand, although the textbook
provided multi-step operation examples without grouping symbols, Teacher C did
not provide any example of this kind.

The second group of examples used by Teacher C was multi-step operations
that were in the form of complex fractions. This group of examples used by the
teacher was similar to the complex fractions provided by the textbook in terms of the
form and sign of the components. That is, the complex fractions used by the teacher
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were formed by using positive proper numbers, positive improper numbers and
positive integers. Thus, these complex fractions used by the teacher included
components that were all rational numbers. Additionally, the complex fractions used
by Teacher C were more sophisticated when compared to the textbook examples
since the number of operations included in Teacher C’s examples was greater than
the number of operations included in the textbook examples.

The examples used by Teacher D for teaching multi-step operations with
rational numbers were categorized as follows: multi-step operations that are
expressed on one line, multi-step operations that are expressed as complex fractions
and multi-step operations that are expressed as single variable polynomials. The
illustrative examples and the total number of examples for each category are
presented in Table 4. 30.

Table 4.30. Examples used by Teacher D for teaching multi-step operations with

rational numbers

Number
Ideas Ilustrative examples of
examples
used
Multi-step operations 1V 1V 1
that are expressed on (__) : (_) + = 1
one line 2 2 2
1 1
3 1 SR T
1-—— || 1+—|-1 2—-— —
2 3 2 2 2 .
2 ’ 1’ 1 1’
2.— 1+— 2+ 1+-—
3 1 1
1+-— 2+—
. . 3 2
Multi-step operations _
that are expressed as 0012 2 04 02+2 24 4 6 N 10
complex fractions 7 ; 3 X =4 T =4
03 08 002 3-07 X6 10>
8 a
10
=5
10
4—
X
——4
5
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Table 4.30. (Continued)

Number
Ideas Ilustrative examples of
examples
used
X' —x*+10
The value of for x = -2;

Multi-step operations 3
expressed as single 2
variable polynomials

5x 3 3
The valueof — —x+—x forx=—-—
3 4 4

Teacher D used 13 examples for teaching multi-step operations with rational
numbers. The total number of examples used by Teacher D was close to the number
of examples included in the textbook for teaching this idea. However, these examples
were rather unevenly distributed among three categories. More specifically, Teacher
D used only one example for illustrating multi-step operations that were expressed
on one line. This example was constructed without using any grouping symbol and it
entailed dividing the cube of a negative proper number by the square of a positive
proper number and then adding the same positive proper number. This example was
different from the textbook examples that were expressed on one line, since the
textbook examples did not include components in exponential form. Last, Teacher D
did not provide any multi-step operation example with grouping symbols although
there were examples of this kind in the textbook.

The second group of examples used by Teacher D was multi-step operations
that were in the form of complex fractions. This group of examples used by the
teacher included much more variations in proportion to the textbook examples. More
precisely, the textbook examples included positive proper numbers, positive
improper numbers and positive integers as components while the examples used by
Teacher D included terminating decimals, repeating decimals and unknown values
apart from positive proper numbers, positive improper numbers and positive integers.
Besides, the number of operations within each complex fraction used by the teacher
ranged between three and seven. Thus, the complex fractions used by Teacher D
were more sophisticated when compared to the complex fractions included in the
textbook.
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Unlike the textbook and the previous three teachers, Teacher D used two
examples which required substitution of rational numbers into single variable
polynomials. Thus, these two examples formed the last category of teaching multi-
step operations with rational numbers. When working out the first example of this
category, the teacher pointed to a possible student error. That is, she warned her
students not to forget enclosing the base (i.e., -2) in parenthesis before calculating the

square or cube of it. Similarly, the second example of this category required

enclosing the rational number (i.e., —%) in parenthesis before performing operations

in order not to a make an error. In addition, Teacher D explicitly suggested several
solution strategies that might be used to keep unnecessary work to minimum when

working out the value of the given polynomial in this second example.
4.1.1.7. Examples used for posing and solving rational number problems

According to the middle school mathematics curriculum, students were
expected to read the problems very carefully, restate the problems with their own
words, identify the givens in a problem, make a plan (deciding on the problem
solving strategy), carry out the plan, check the solution and finally discuss the
problem with the classmates. Besides, teachers were suggested to pay attention to the
explanations that are included at the introductory part of the curriculum book for
developing good problem solving skills. However, the middle school mathematics
curriculum did not provide any specific example or activity to illustrate how to pose
or solve rational number problems.

In the mathematics textbook followed by the classrooms, the examples used
for the illustration of posing and solving rational number problems were classified as
follows: solving rational number problems with same referent units, solving rational
number problems with different referent units and posing rational number problems.
The illustrative examples and the total number of examples for each idea are

presented in Table 4.31.
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Table 4.31. Examples used by the textbook for teaching how to pose and solve

rational number problems

Number
Ideas Ilustrative examples of
examples
used
) ) The ratio of the length of a side of one square to that of
Solving rational 3
number problems with | another square is — . Then, calculate the ratio of their 1

same referent units _ 4
perimeters and areas.

Ahmet initially walked ! of his route. After some time, he
3

Solving rational 5
number problems with | walked = of the remaining route and he had to walk 36 5
different referent units 5

meters more to finish his route. Find the total length of his
route.

e Dilek and Tolga dropped a rubber ball from a specific
height onto a concrete floor. Each time the ball hit the

floor, it bounced back up to a height 2 of the height
3

from which it fell.
Pose a rational number problem by using the given data.

e Pose a rational number problem by using the words
‘farm’ and ‘hoe’ and solve this problem by using the

Posing rational number problem solving steps.

problems

e An athlete each day runs ... times as much as the
distance she runs the day before. The athlete runs for ...
days and finishes her training program. If the athlete

runs ... kilometers in her ... day, then how many
kilometers does she run on the last day of her training
program?

Fill in the blanks with the numbers relevant to the problem.

The textbook included 9 examples for teaching problem posing and solving
with rational numbers. The textbook included one example that illustrated problem
solving with same referent units. In this example, the length of the one side of the

larger square corresponded to the referent whole 1 unit, while the length of the one
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side of the smaller square corresponded to % of the same referent whole. Therefore,

the numbers 1 and % both referred to the same referent unit. The examples included

in the textbook to illustrate problem solving with different referent units were more
common when compared to the examples included to illustrate problem solving with
same referent units. In the second group of rational number problems, the numbers
referred to different referent units. For instance, in the route problem presented in

Table 4.31, the numbers % and 36 referred to the same referent unit, while %

referred to a different referent unit.

In addition to providing examples regarding problem solving with rational
numbers, the textbook included three different problem posing examples. In the
rubber ball example, the givens of the problem were explained and the students were
expected to pose a problem relevant to the givens. In the farm and hoe example, only
the theme of the real life problem was explained and the students were expected to
generate the rational numbers themselves and pose a relevant problem by using the
generated numbers. Finally, in the athlete example, the whole problem was explained
without specifying the numbers and the students were expected to fill in the blanks
by using relevant rational numbers. As it can be seen, the problem posing examples
included in the textbook were all structurally different from each other.

The examples used by Teacher A for illustrating problem solving with
rational numbers were classified into two main ideas as solving rational number
problems with same referent units and solving rational number problems with
different referent units. The illustrative examples and the total number of examples

for these two ideas are presented in Table 4.32.
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Table 4.32. Examples used by Teacher A for teaching how to solve rational number

problems
Number
Ideas Ilustrative examples of
examples
used
On Monday, Ali spent 1 of his pocket money. The next
Solving rational 4
number problems with 4

; day, he spent 2 of his pocket money and he had 21 TLs
same referent units 3

left. How much pocket money did he have at the beginning?

On Monday, Ali spent 1 of his pocket money. The next
4

Solving rational 2 ) .
number problems with day, he spent E of his remaining pocket money and he had 2

different referent units 21 TLs left. How much pocket money did he have at the

beginning?

Teacher A used 6 examples for teaching problem solving with rational
numbers. Unlike the textbook, the teacher provided more examples with same

referent units when compared to the examples with different referent units. In the

pocket money example presented above, the numbers % % and 21 all referred to the

same referent unit. That is, these numbers all referred to the total amount of the
pocket money. To have students discern the difference between the problem with
same referent units and the problem with different referent units, Teacher A

completely used the same pocket money example and added the word ‘remaining’ to

the latter example. More specifically, in this latter example, the numbers % and 21

referred to the same referent unit, while % referred to a different referent unit.

Finally, although the middle school mathematics curriculum and the textbook
included problem posing examples, Teacher A did not provide any example of this
kind to his students in the course of teaching this idea or in the course of providing

exercise examples.
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Similar to the Teacher A, the examples used by Teacher B for illustrating
problem solving with rational numbers were classified into two as solving rational
number problems with same referent units and solving rational number problems
with different referent units. The illustrative examples and the total number of

examples for each idea are presented in Table 4.33.

Table 4.33. Examples used by Teacher B for teaching how to solve rational number

problems
Number
Ideas Ilustrative examples of
examples
used
. 1 . 1
Solving rational A man first travelled — of his route. Next, he travelled —
number problems with ) 10 ) ) 5 3
same referent units of his route and thus he travelled a distance of 60 kilometers

in total. Then, find the total length of his route.

1
One day, Zeynep spent — of her money. The other day, she
5

Solving rational

number problems with | spent  of her remaining money and she spent 36 TLs in 3

different referent units

total. Then, how much_ﬁaoney does she still have?
2

Teacher B used 6 examples for teaching problem solving with rational
numbers. Unlike the textbook, the examples provided by Teacher B were evenly
distributed to the two categories. In the travel example given above, the numbers

% % and 60 all referred to the same referent unit. As opposed to Teacher A,

Teacher B used different problem situations when providing examples for problem
solving with same and different referent units. Thus, it was not possible for the
students to readily notice the problem structure in two different categories. For

instance, Teacher B provided an example with different referent units in the context

of money. In this example, % and 36 referred to the same referent unit, while %

referred to a different referent unit.
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Finally, although the middle school mathematics curriculum and the textbook
included problem posing examples, Teacher B did not provide any problem posing
example to his students either in the course of teaching this idea or in the course of
providing exercise examples.

Identical to the previous two teachers, the examples provided by Teacher C
for teaching how to solve rational number problems were categorized into two as
solving rational number problems with same referent units and solving rational
number problems with different referent units. The illustrative examples and the total

number of examples for each idea are presented in Table 4.34.

Table 4.34. Examples used by Teacher C for teaching how to solve rational number

problems
Number
Ideas Ilustrative examples exarcr)wfpl es
used
Solving rational Kagan travelled g of his route and he had 350 meters left.
number problems with . . L 2
same referent units Find the total length of his route in kilometers.
. . . 1
Ali bought a book with  of his money. Next, he spent — of
. . 3
Solving rational his remaining money on cinema tickels. Finally, he bought
number problems with | s4me snacks with the quarter of the nmoney left over from the 2
different referent units | o6k and cinema tickets. After buying snacks, he had 40
TLs left. Then, how much money did he have at the
beginning?

Teacher C used quite a few examples for teaching problem solving with
rational numbers when compared to the number of examples included in the textbook
for introducing this idea. More precisely, Teacher C used 4 examples for teaching
problem solving with rational numbers. Like Teacher B, Teacher C provided same
number of examples for problems with same referent units as she provided for

problems with different referent units. In the travel example presented in Table 4.34,

the numbers % and 350 referred to the same referent unit. Teacher C used different

problem contexts for each problem solving example either with same referent units
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or with different referent units. For instance, one of the examples provided by

Teacher C was in the context of money. As given above, this example included

different referent units. Namely, in this example, % and 40 referred to the same

referent whole while % and % referred to two different referent units. Last, despite

it was articulated by the middle school mathematics curriculum and the textbook,
Teacher C did not provide any problem posing example to his students.

Same as Teacher A, Teacher B and Teacher C, the examples used by Teacher
D for teaching how to solve rational number problems were grouped under two
ideas: solving rational number problems with same referent units and solving rational
number problems with different referent units. The illustrative examples and the total

number of examples for these two ideas are presented in Table 4.35.

Table 4.35. Examples used by Teacher D for teaching how to solve rational number

problems
Number
Ideas Ilustrative examples of
examples
used
. 6 .
A man first travelled — of his route. If he had travelled 150
Solving rational 10
number problems with 2 5
same referent units meters more, then he would have travelled — of the total
3

route. Then, find the initial distance travelled by the man.

A grocer initially sold 2 of a bag of sugar. Later, he sold
3

Solving rational 1 . . .
number problems with — of the remaining sugar. Finally, the grocer weighed the 4

. . 4
different referent units rest of the sugar and realized that 12 kilograms of sugar was

left over. Then, how many kilograms of sugar did the bag
contain at the beginning?

The number of examples provided by Teacher D for teaching problem solving
with rational numbers was the same as the number of examples included in the
textbook for introducing this idea. To be more specific, Teacher D used 9 examples

for teaching problem solving with rational numbers. Teacher D provided
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approximately the same number of examples for teaching problem solving with the
same referent units when compared to the number of examples provided by her for
teaching problem solving with different referent units. Teacher D initially started
teaching problem solving with same referent units. The travel example presented in
Table 4.35 was used as a start-up example by her. In this example, the numbers

6 % and 150 all referred to the same referent whole. That is, these numbers all

referred to the total distance of the route travelled by the man. Teacher D used
different problem contexts for each example either with referent units or with

different referent units. For instance, the grocer example was provided by Teacher D

to illustrate problem solving with different referent units. In this example, % and %

referred to different referent units.

Finally, like Teacher A, Teacher B and Teacher C, Teacher D did not provide
any problem posing example to her students despite it was articulated by the middle
school mathematics curriculum and by the textbook.

4.1.2. Non-examples

The rational number examples that were categorized as non-examples were
used by the four middle school mathematics teachers to show that not all numbers
are rational. These non-examples were mostly generated by the teachers in the course
of teaching the objective ‘explain and locate rational numbers on a number line’.
The variety of non-examples included in the textbook and the non-examples used by
the four middle school mathematics teachers in the course of teaching rational
number ideas are presented in Table 4. 36.

221



Table 4.36. The non-examples provided by the textbook and the teachers for teaching

rational number ideas

Form of non-example Textbook | Teacher A | Teacher B | Teacher C | Teacher D
. . 1 25 7 3
Ratio of integers to zero - —, == - — —
00O 0 (0]
Transcendental numbers - z - - z
Radicals - - \/E - -
Infinite non-repeating ) ) ) ) 0257843
decimals

As it can be seen in Table 4.36, the mathematics textbook followed by the
four classrooms did not provide any non-example while explaining or illustrating
rational number concepts. In contrast to this, all middle school mathematics teachers
provided non-examples for rational numbers. Except for Teacher B, all teachers

provided the definition of rational numbers as numbers that can be represented as % :

where a is an integer and b is a non-zero integer. After providing this definition, the
teachers presented rational number examples that were written as a ratio of two
integers. In most cases, the examples that included zero as a numerator of the rational
number were accompanied with the non-examples that included zero as the

denominator. For instance, Teacher A made the following explanation to his

classroom to point to the difference between % and % :

Teacher A: Counting number set begins with 1 and goes to infinity.
Similarly, natural number set begins with 0 and goes to infinity. At the
beginning of this year, we learnt a new number set. We named this new
number set as integers. The set of integers are denoted as

Z={—OO,...,—2,—1,0,+1,+2,...,+00 }.Integers are formed by whole
points on a number line and start with —o and go to +oco. We said that
numbers between —oc and 0 are negative integers while numbers between 0

and +ooare positive integers. We did not say that O is negative or positive
because it is a neutral number. Besides, 0 has an additive inverse but its

multiplicative inverse is undefined. By the way, note that % is equal to 0
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A . A .
while 0 is undefined. Now, I will introduce you rational numbers as a new

number set. You choose two numbers from integer set as a and b. However,

b should be different from 0 since % is undefined. Therefore, b should not
be equal to 0. If % is undefined then it cannot be an element of rational

number set. Then, numbers in the form of % where b # 0 are elements of

rational number set.

This excerpt shows that Teacher A provided % as an example for rational
numbers. Soon after this, he provided % as a non-example for rational numbers.

Teacher A provided ratio pairs such as %and % not only in the course of explaining

and locating rational numbers but also during the teaching of other rational number
ideas. He did it from time to time to recall that ratios with zero numerators are
examples of rational number set while ratios with zero denominators are non-
examples of rational number set.

Apart from using ratio representation for providing non-examples for rational
numbers, Teacher A and Teacher D presented pi number (m), a specific
transcendental number, as another non-example for rational numbers. Teacher A
presented this number to his students while reviewing the definition of rational
number set that he taught in the previous lessons. The teaching episode of Teacher A
regarding this non-example is given below.

Teacher A: In our previous lesson, we defined rational numbers. We denoted
this set by the symbol @@ . All numbers that can be written as common

fractions were called rational numbers. We wrote a note on the board that

% is undefined while % is equal to 0. Here, we wrote -7 as a denominator

of the fraction to show that any integer can be written under the fraction bar
except for 0. We defined rational numbers in this way. Well, do you know pi
number?

Student 1: | remember it, but I do not exactly know what it is.

Teacher A: Pi number goes to infinity as 3.14... Today, the decimal
representation of pi has been computed to include many digits that can wrap
the circumference of the earth forty times but it is still being computed. That
is, the ratio of a circle’s circumference to its diameter goes to infinity and it
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is called the pi number. What lesson should we take from this? (At this time,
the teacher is pointing to a bottle cap that is circular) We can create this
bottle cap, but we cannot calculate the ratio of its circumference to its
diameter. That is why, I refer to this number as God’s number. To repeat
again, we can create this bottle cap, but we cannot calculate the ratio of its
circumference to its diameter exactly. This ratio proceeds as 3.14... but we
cannot express it as a common fraction. Why? Because we do not know its
end.

Student 2: That is a repeating decimal!

Teacher A: It is not a repeating decimal. It is something else. If we do not
know the final digits of the decimal number, then we cannot write it as a
common fraction. Hence, if | cannot write it as a common fraction then it is
not an element of rational number set (7 ¢ Q). | introduced you the pi

number to illustrate that there are numbers that are not examples of rational
number set. | will teach you another mathematical topic involving numbers
that are not rational next year. At that time, you will probably remember the
above mentioned anecdote.

As can be understood from the episode given above, Teacher A used pi
number as a non-example for rational numbers. Besides, he emphasized that the
decimal expansion of this number includes infinite number of digits after the decimal
point. However, although one of the students suggested that repeating decimals have
infinite number of digits after the decimal point, Teacher A did not provide
opportunities for students to distinguish infinite repeating decimals that are rational
and infinite non-repeating decimals that are irrational.

In addition to using pi number as a non-example for rational numbers,
Teacher A indicated that there is also another mathematical topic that includes
numbers which are not rational. To elucidate what this mathematical topic is, |
conducted post-lesson interviews with the teacher. He explicitly stated that radicals
will be taught the next year. Although Teacher A expressed that radicals involve
numbers that are not rational, he did not provide any specific non-example related
with radicals. Similar to Teacher A, Teacher D used the same transcendental number,
pi number, as one kind of non-example for rational numbers. Apart from this, she
used an infinite non-repeating decimal number as a non-example for rational
numbers. Teacher D provided these two different kinds of non-examples during the
teaching of expressing rational numbers in different forms. The verbatim transcripts

of this lesson episode are given below.
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Teacher D: Each integer can be rewritten as a rational number. For instance,

2= _—2,3 = §, 5= = and 17 = 7 .Thus, -2, 3, -5 and 17 are all rational
1 1 17 1

numbers. In a similar way, there some other numbers which can be

expressed as rational numbers. To give an example, -0.5, 1.25 and 0.15 can

be expressed as S 1% and% respectively. Thus, we can say that

10100
some decimal numbers are rational numbers.

Student: Teacher, what do you mean by saying ‘some decimal numbers’?

Teacher D: I mean that not all decimal numbers are rational by saying ‘some
decimal number’. To be more precise, I mean that not all numbers including
infinite number of digits after the decimal point are rational numbers. Thus,
infinite decimals can be classified into two as infinite repeating decimals and
infinite non-repeating decimals. For instance, 0.257843... is an infinite non-
repeating decimal since it does not have a regular repeating pattern. As you
can see, there are some decimals which include infinite number of digits but
not include a repeating pattern. Since these numbers do not have regular
repeating patterns, they cannot be written as common fractions. Finally,
since we cannot write them as common fractions, they cannot be accepted as
rational numbers.

As the episode given above shows, Teacher D used an infinite non-repeating
decimal representation (such as, 0.257843...) as a non-example for rational numbers.
Unlike Teacher A, Teacher B and Teacher C, Teacher D generated this non-example
as a transparent representation of an irrational number. That is, Teacher D generated
this non-example in a way that makes it possible to derive the irrationality of the
number from this representation. Apart from this, Teacher D generated another non-
example for rational numbers, the pi number, in the course of expressing repeating
decimals as common fractions upon student inquiry. This teaching episode is given
below.

Teacher D: Each repeating decimal can be expressed as a common fraction.
Thus, we can say that each repeating decimal is a rational number. In this

case, if | ask you to determine whether 0.3 and 3.3 are rational numbers, how
would you respond to me?

Student 1: They are rational numbers.

Teacher: Yeah, they are rational numbers. Because we can express these
numbers as common fractions.

Student 2: Well teacher, which numbers were not rational? Hmm, which
decimal numbers were not rational?

Teacher: | explained this a few minutes ago. Let me repeat again. Pi number
is a non-example for rational numbers since its decimal expansion does not
have a regular repeating pattern. As a matter of fact, except for terminating
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decimals and repeating decimals all decimals are irrational numbers. You
learnt terminating decimals and repeating decimals to date. You should
know that these decimals are also rational numbers.

As it is depicted in the teaching episode given above, Teacher D used another
non-example for rational numbers as a response to student inquiry. That is, like
Teacher A, she introduced a transcendental number, pi, to her students as an example
for irrational numbers. In brief, Teacher D used three different kinds of non-
examples for rational numbers. That is, she expressed these non-examples either as a
ratio of an integer to zero, as a transcendental number, or as an infinite non-repeating
decimal.

Different from the aforementioned kind of non-examples, Teacher B
generated a non-example that was represented algebraically. To put it differently,
Teacher B introduced the square root of 5 to his students as a non-example for
rational numbers during the teaching of explaining and locating rational numbers on

a number line. After locating —2%,—l ﬂ,l1 and 2% on a real number line,

2’52
Teacher B asked students to ponder whether rational numbers fill up the number line.

The dialogue between Teacher B and his students are given below.

Teacher B: Thus far, we located —2&,—%,5,1l and 2% on a number line

respectively. These rational numbers filled up some portion of the number
line. Well, my question is, do all rational numbers fill up the number line
when we totally locate them on that number line?

Student 1: Yes!
Student 2: Nooo!

Teacher B: Do they fill the number line or not? Perhaps, you could not
understand my question. How many rational numbers are there in this
number line?

Students: Infinite

Teacher B: There are infinitely many numbers in natural number set,
counting number set, integer set and in rational number set. Do all rational
numbers fill up the number line? Raise your hands if you think that rational
numbers do not fill up the number line. According to me, rational numbers
do not fill up the number line. Why? Because you can also locate some other
numbers on a number line apart from rational numbers. Who can give
examples to these other numbers? Who knows the mathematical topics that
will be taught in grade 8? Who knows radical numbers? For instance, there

are numbers such as\/g. Such numbers are not rational numbers. You will

226



learn this kind of numbers next year. We call this kind of numbers irrational
numbers or numbers that are not rational. This means that we need numbers

such as «/g in addition to rational numbers in order to fill up the number line
completely.

As it can be seen above, Teacher B used an algebraic number to give a non-

example for rational numbers. More specifically, he generated \/g as a finite opaque
representation to illustrate numbers that are not rational. On the other hand, since he
did not define rational numbers as the ratio of any integer to any non-zero integer, he
did not use any non-example that included zero in the denominator of the ratio.
Moreover, he neither used a transcendental number nor a radical in algebraic form to
illustrate non-examples of rational numbers.

To summarize, all teachers except for Teacher B generated non-examples for
rational numbers by using the zero denominator case after providing the rational
number definition as the ratio of any integer to any non-zero integer. In addition to
this, Teacher A and Teacher D provided the pi number (1) as a non-example for
rational numbers without actually writing down its decimal expansion. Thus,
provision of m without introducing of its decimal expansion leaved it opaque that
irrational numbers never settle into a permanent repeating pattern. Apart from using
the transcendental number &, Teacher D used a non-example that is represented as an
infinite non-repeating decimal. More precisely, Teacher D generated 0.257843... as a
non-example for rational numbers and this representation pointed to the requirement
for regular repeating pattern as a distinguishing feature between rational and
irrational numbers. Unlike these three different kinds of non-examples, Teacher B

generated a non-example that was in algebraic form. That is, he generated \/5 as a
non-example for rational numbers. This representation also leaved it opaque that
irrational numbers do not have a repeating pattern. Finally, while Teacher B and
Teacher D explicitly touched upon the concept of irrational number during the
provision of non-examples for rational numbers, Teacher A and Teacher D alluded to
that concept by indicating that they will teach a topic including numbers that are not

rational the next year.
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4.1.3. Counter-examples

In this section, an additional use of examples as counter-examples was
explained. Although counter-examples are important in the teaching of mathematics,
the data of this study suggested that they are less evident in middle school classroom
practice. In this study, examples that were used by the middle school mathematics
teachers to demonstrate the falsity of a student conjecture were treated as counter-
examples. As a result of the observations, in this study I could notice the use of 5
counter-examples. Three of these counter-examples were used by Teacher A while
two of them were used by Teacher D and the two teachers treated those counter-
examples logically appropriately.

All of the counter-examples were spontaneously generated by Teacher A and
Teacher D in response to their students’ contingent and invalid conjectures or
statements about rational number ideas. Teacher A generated counter-examples in
the course of teaching how to order rational numbers, teaching multiplication of
rational numbers, and during the teaching of distributive property of multiplication
over addition. Teacher D generated counter-examples in the course of teaching
multiplication of rational numbers and during the teaching of distributive property of
multiplication over addition.

The teaching episode of Teacher A related with ordering rational numbers

and the classroom situation that called for a counter-example is given below.

Teacher A: It seems that children rarely use same numerator approach when
ordering rational numbers. Remarkably, most of the ordering problems can
be easily solved by using the same numerator approach. In ordering
problems, the number ‘1’ is especially selected as the numerators of the
rational numbers. This is due to the fact that children do not think of
ordering rational numbers by using same numerator approach when the
numerators of rational numbers are selected to be ‘1°. Now, I shall give you
an example. Let’s order the following set of rational numbers:

+l +1 —1,—% and 0.For negative rational numbers, the one which is

3 5 7

closer to zero will be larger. Thus, 0 > —% > —% will be the correct ordering.
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S1: But teacher, —% is closer to zero than —l.
7

S2: That is right, teacher. —% is closer to zero.

Teacher A: Did | order reversely?
Students: Yes! Yes!

Teacher A: Is —% farther to zero than —%?

Students: Yes!

Teacher A: Then, let’s locate these two rational numbers on a number line to
see which one is closer to zero. (Teacher A located the two numbers on a
number line as follows.)

Teacher A: —% is here, —% is here. Now, tell me which one is closer to

Zero.

Students: Aha! —% is closer to zero.

Teacher A: You previously claimed that —% is closer to zero. However, as

you can see, —% is closer to zero. Is it alright?

Students: Yes!

As the above teaching episode shows, the students of Teacher A intuitively

claimed that a rational number with a smaller denominator will be closer to zero than
the one with a larger denominator. To check whether the students are persistent with
their claim, the teacher kept asking the same question. Finally, as the students
insisted on their conjecture, the teacher decided to locate the two rational numbers on
a number line to show that their claim is invalid. When the students examined the

number line representation, they were convinced that a rational number with a larger

denominator will be closer to zero than the one with a smaller denominator.
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Another counter-example was generated both by Teacher A and Teacher D in
response to their students’ invalid claim that simplification of rational numbers in
multiplication can only be done by using the criss-cross method. The teaching
episode of Teacher D related with simplification of rational numbers and the

classroom situation that called for a counter-example is given below.

Teacher D: How can we simplify rational numbers before multiplying them?
Student: We can simplify by using criss-cross method.

Teacher D: Is it the only way to simplify rational numbers?

Student: Yes.

Teacher D: How about simplifying by using top to bottom method?

Student: | do not think it will work.

Teacher D: We can use both methods for simplifying rational numbers. Let

me explain how to simplify 2.3 onthe board.
6 6
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Teacher D: To simplify E,We divide 2 by 2 and get 1. Similarly, we divide
6
6 by 2 and get 3. Thus, the simplest form of 2 is % To simplify E, we
6 6

divide both 3 and 6 by 3 and get 1 and 2 respectively. Thus, we obtain % as

the simplest form of E. Now, we multiply 1 by 1 and get 1 as the numerator
6
of the product. Similarly, we multiply 3 by 2 and get 6 as the denominator of
the product. Thus, we obtain 1 as the product of this multiplication
6

operation. Now, let’s simplify by using the criss-cross method to see whether
this method yields the same product as the above mentioned top to bottom
method.

(SN

A1

73
55

& |
o |-

Teacher D: We simplify 3 and 6 and write 1 and 2 in their place. Similarly,
we simplify 2 and 6 and write 1 and 3 in their place. Now, we multiply 1 by

1 and get 1, we multiply 2 by 3 and get 6. Thus, we obtain L as the product
6

of this multiplication operation. As you can see the product obtained by
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using the top to bottom method is equal to the product obtained by using
criss-cross method. Therefore, both methods are applicable in rational
number multiplication. Is it okay?

Student: Yes!

As the above given episode shows, one of the students of Teacher D claimed
that simplification of rational numbers before multiplication can only be done by
criss-crossing. As a response to that student’s claim, the teacher selected two rational
numbers and simplified the rational numbers by using both methods. Finally, the
teacher had students compare the products obtained from both methods to
demonstrate that both methods yield the same result and to convince that both
methods are valid.

Another counter-example about simplification was generated by Teacher A as
a response to a student’s claim that simplification of rational numbers can always be
done after multiplication. This classroom situation is described in the following

teaching episode.

Teacher A: Before multiplying rational numbers, you need to check whether
the numerators and denominators are evenly divisible by a whole number
and if yes you have to simplify them.

Student 1: Must we certainly simplify rational numbers?

Teacher A: Yes you must. As you know, TEOG (A national exam taken by
students in order to transit from primary to secondary education) consists of
multiple choice questions. In these questions, the alternatives include the
simplest form of rational numbers. Thus, you cannot find the answer of the
questions in the alternatives unless you simplify the rational numbers.

Student 2: | agree we must simplify the rational nhumbers. However, we do
not have to simplify before multiplying them. | mean, we can always
simplify after performing the multiplication operation.

Teacher A: Your friend claims that she can always simplify after finding the
product of the multiplication. Now, | will present you a very nice example
that refutes her claim. Look at this example;

1 1 1 1
(1+—)(H—j-(ﬁ—)...(b—j
2 3 4 100
In this example, we first need to add the rational numbers inside the

parenthesis. Let’s do it now.

345 101
2 3 4 100

As you can see, it is not possible to perform 3-4-5-...-101 and
2-3-4-...-100. Therefore, we must simplify before multiplying rational
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numbers. In this case, we simplify 3 by 3, 4 by 4, 5 by 5 and go on like this
until finally simplifying 100 by 100. Let me show this on the board.

As you can see, we cannot always simplify after multiplication. Thus, you
should know how to simplify before multiplication. Is this okay?

Student 2: Yes, thank you.

As this episode on simplification of rational numbers shows, Teacher A
spontaneously constructed a counter-example in order to convince the student that in
some cases simplification of rational numbers before multiplication is compulsory.

Teacher A generated one more counter-example in the course of teaching
distributive property of multiplication over addition. The classroom situation that

called for this counter-example is presented in the following episode.

Teacher A: Today, | am going to teach you how multiplication by a rational
number distributes over addition of two other rational numbers. | will
illustrate this property initially by using natural numbers. Let’s compute
2x(3+5) by using the distributive property. We multiply each addend by 2

and then add the products. Let me show it on the board.
2x(83+5)=(2x3)+(2x5)=6+10=16

We can also compute 2x(3+5) by using the order of operations rule.

According to this rule, we need to perform the operations that are inside the
parenthesis first. Thus, we can proceed as follows.

2x(3+5)=2x8=16

As you can see, the answer obtained by using the distributive property is
equal to the answer obtained by using the order of operations rule.

Student: If the results are same, why bother to learn distributive property?
According to me, we can solve all the questions by using the order of
operations rule. So, | do not think that this property is indispensable for us.

Teacher A: At first glance, what you say seems quite reasonable. However, it
is true if the given expression includes all numerical values. That is, if there
are unknowns in the expression, then you must use the distributive property
in order to find them. In order to have you better understand what | mean, |
will write an example on the board.

2><(|:|+5)=A><7+2><O

In this example, you cannot find the unknowns by the using the order of
operations rule. You must learn the distributive property in order to find the
unknowns. Is it okay?

Student: Yes it is.
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As this episode shows, Teacher A initially generated an example that
included natural numbers as components. This initial example did not convince one
of the students in the classroom of the necessity of learning distributive property. In
reply to this, the teacher spontaneously generated a counter-example to negate the
student’s claim that all mathematical problems that require the use of distributive
property can also be solved by using the order of operations rule.

Finally, Teacher D generated one more example while teaching distributive
property of multiplication over addition of rational numbers. The classroom situation

that called for this counter-example is presented in the following teaching episode.

412 1
Teacher D: Now, I will teach you how to compute, let’s say, ?{gﬁ-g} by

using the distributive property of multiplication over addition. Normally, you
would perform the addition operation inside the brackets first by taking
account of the order of operations rule. However, the distributive property
spoils the order of operations rule. That is, rather than performing the
addition operation first, we distributive the ; to both the % and the é
Then, we add the products and reach an answer. (Teacher D showed this on
the board in the following way.)

4{2 1} 42 41 8 4 40 12 52
- - |=—+ - =t — = —— = —
713 5] 73 75 21 35 105 105 105

Student: In this example, the distributive property spoils the order of
operations rule. So, | do not think we will get the same answer if we

412 1
compute ; : {5 + g} by using the order of operations rule.

Teacher D: No, in contrast to your expectation, the results will be the same.
Let me compute this expression by using the order of operations rule. Then,
we need to perform the addition operation that is inside the brackets first.
(The teacher demonstrated this rule on the board as follows.)

4{2 1} 4{10 3} 413 52
- —-+--|==—t—|=——=—
713 5] 7115 15] 7 15 102

As you see, we get 150—22 if we compute by using the order of operations rule.

Thus, we may conclude that the distributive property of multiplication over
addition and the order of operations rule always yield the same answer. Do
you still have any question?

Student: No, thanks.
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As this teaching episode reveals, one of the students claimed that computation
via distributive property will yield a different product than the one done by using the
order of operations rule since Teacher D explained that the order of operations rule is
spoiled by the distributive property. Nevertheless, the teacher demonstrated that both
ways of computation yield the same product and thus convinced the student that the

distributive property always works.
4.2. Sources of Examples

In this section, sources of examples used by middle school mathematics
teachers were described in detail. The study revealed two main kinds of teacher-
generated examples as spontaneous examples and pre-planned examples. The
examples that were actually generated by the teachers during the lesson without any
planning in advance or examples that were generated by the teachers as a response to
unexpected classroom situations were treated as spontaneous examples. In other
words, for an example to be spontaneous, there had to be some evidence that
choosing it entailed in-the moment decision making to a certain degree. On the
contrary, the examples that were taken from available resources such as textbooks,
workbooks and auxiliary books were treated as pre-planned examples. The number
of spontaneous and pre-planned examples used by the middle school mathematics

teachers with respect to each learning objective is presented in Table 4.37.
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Table 4.37. The number of spontaneous examples and pre-planned examples used by

the teachers for teaching rational number objectives

Number of spontaneous (SP) and pre-planned (PP) examples
used by

Learning Objectives Teacher A Teacher B Teacher C Teacher D

SP | PP | SP | PP | SP | PP | SP | PP

Explain and locate rational numbers

. 25 4 20 10 18 64 15 15
on a number line

Express rational numbers in different

24 1 30 3 1 2 18 4
forms

Compare and order rational numbers 12 24 13 9 2 - 2 12

Perform addition and subtraction

. . . 30 7 26 20 4 27 9 23
operations with rational numbers

Perform multiplication and division

operations with rational numbers 35 19 37 23 4 i 19 13
So!ve multi-step operations with 6 17 3 10 2 4 i 13
rational numbers

Pose and solve rational number 5 1 i 6 1 3 i 9
problems

Total 137 73 129 81 32 100 63 89

The table shows that middle school mathematics teachers altogether used 361
spontaneous examples and 343 pre-planned examples during the teaching of rational
number objectives. This suggests that more than half of the examples used by the
teachers were spontaneously generated.

In particular, Teacher A used 137 spontaneous examples and 73 pre-planned
examples to teach all rational number objectives. Similar to the overall distribution of
examples identified in this study, more than half of the examples used by Teacher A

were constructed by him spontaneously. When the number of spontaneous and pre-
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planned examples used by Teacher A for teaching each rational number objective is
examined, it can be seen that the number of spontaneous examples outweighed the
number of pre-planned examples except for two objectives. To put it another way,
while Teacher A used more number of spontaneous examples than pre-planned
examples for teaching how to explain and locate rational numbers on a number line,
express rational numbers in different forms, perform addition and subtraction
operations with rational numbers, perform multiplication and division operations
with rational numbers and pose and solve rational number problems, he used less
number of spontaneous examples than pre-planned examples during the teaching of
comparing and ordering rational numbers and solving multi-step operations with
rational numbers. Finally, it is important to note that the number of spontaneous
examples generated by Teacher A for teaching each learning objective was in sharp
contrast to the number of pre-planned examples used by him to achieve the same
goal.

Similar to Teacher A, Teacher B used 129 spontaneous examples and 73 pre-
planned examples for teaching all rational number objectives. This shows that more
than half of the examples used by Teacher B were spontaneously generated. This
trend on the part of spontaneous examples by Teacher B is in line with the overall
distribution of examples identified in this study. In particular, when examples
generated by Teacher B for each learning objective was examined it was found that
the teacher used spontaneous examples more frequently than pre-planned examples
while explaining and locating rational numbers on a number line, expressing rational
numbers in different forms, comparing and ordering rational numbers, performing
addition and subtraction operations with rational numbers and performing
multiplication and division operations with rational numbers. In contrast to this,
Teacher B used more number of pre-planned examples than spontaneous examples
while solving multi-step operations with rational numbers and posing and solving
rational number problems. Ultimately, the magnitude of the differences between the
spontaneously generated examples and pre-planned examples of Teacher B for each
learning objective were similar to that of Teacher A. That is, in each objective, either
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spontaneous examples were far more than pre-planned examples or the way other
round.

Unlike Teacher A and Teacher B, Teacher C used 32 spontaneous examples
and 100 pre-planned examples. This shows that the number of pre-planned examples
used by Teacher C is three times more than the number of spontaneous examples.
The predominance of pre-planned examples demonstrated that Teacher C drew more
on available resources while teaching rational number objectives rather than in-the-
moment generations. This trend towards pre-planned examples on the part of the
teacher was in contrast with the trend demonstrated by the whole examples identified
in this study. More specifically, the examination of the examples generated by
Teacher C for each rational number objective revealed that the teacher used far more
pre-planned examples than spontaneous examples while explaining and locating
rational numbers on a number line and performing addition and subtraction
operations with rational numbers. Yet, the number of spontaneous examples were
similar to that of pre-planned examples generated by the teacher for expressing
rational numbers in different forms, solving multi-step operations with rational
numbers and posing and solving rational number problems. Meanwhile, the number
of spontaneous and pre-planned examples generated by the teacher for teaching these
learning objectives was very few. Furthermore, Teacher C did not use any pre-
planned example while comparing and ordering rational numbers and performing
multiplication and division operations with rational numbers.

Like Teacher C, Teacher D used 63 spontaneous examples and 89 pre-
planned examples. That is, the number of pre-planned examples used by Teacher D
was slightly more than the number of spontaneous examples used for teaching all
rational number objectives. This tendency on the part of pre-planned examples is in
contrast to the tendency of the overall examples generated by four teachers.
Moreover, this tendency towards pre-planned examples shows that Teacher D drew
more on available resources like Teacher C rather than having recourse to their
accessible examples spaces. In more detail, when the examples generated by Teacher
D for teaching each rational number objective was examined, it was found that the

teacher used much more pre-planned examples than spontaneous examples while
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comparing and ordering rational numbers and performing addition and subtraction
operations with rational numbers. Besides, the teacher did not use any spontaneous
example while solving multi-step operations with rational numbers and posing and
solving rational number problems. On the other hand, the number of spontaneous
examples used by Teacher D for explaining and locating rational numbers on a
number line was identical to the number of pre-planned examples used for teaching
this objective. Likewise, the number of spontaneous examples used by the teacher for
expressing rational numbers in different forms and for performing multiplication and
division operations with rational numbers were more than the number of pre-planned
examples used for teaching these objectives.

Ultimately, when viewed from a broader perspective, it can be seen that the
middle school mathematics teachers all used more number of spontaneous examples
than pre-planned examples while performing multiplication and division operations
with rational numbers. Besides, excluding Teacher C, all teachers used more number
of spontaneous examples than pre-planned examples while explaining and locating
rational numbers on a number line and expressing rational numbers in different
forms. In contrast, they used less number of spontaneous examples than pre-planned
examples while solving multi-step operations with rational numbers. Similarly,
excluding Teacher A, all teachers used more number of pre-planned examples than
spontaneous examples while posing and solving rational number problems.

In the following parts, the underlying reasons for teachers’ use of
spontaneous examples and the available sources that were used by the teachers in

constructing the pre-planned examples were described at length.
4.2.1. Spontaneous examples

As mentioned above, examples that were generated by the middle school
mathematics teachers in the course of the lesson without any planning in advance
were treated as spontaneously generated examples. There were two main reasons for
teachers’ need to construct examples on their feet. That is, teachers generated
spontaneous examples either by themselves or as a response to their students’ claims

or queries. Teacher most often generated spontaneous examples by using their own

238



personal example spaces. In most cases, the examples were generated rather
immediately and automatically by the teachers. These examples constituted teachers’

easily accessible examples spaces. For instance, while giving examples for numbers

that are rational or not rational, Teacher A generated 8, —%, 0,-7,-125,0.12 and ©

rather immediately. Similarly, Teacher B generated many repeating decimals such as

0.7, 215, 1.045, 5104 quite easily. To give another example, Teacher C automatically

selected +%,—2§,1$,and%5 to illustrate how to locate rational numbers in

different forms on a number line. Last of all, Teacher D readily generated examples

37 15 3( 1

1
such as (—gjz 355 22(_5j —4-? to illustrate multiplication of rational

numbers in different forms.

Nevertheless, in other cases the time devoted by the teachers to generating
spontaneous examples was much longer than the time spent for generating the above
mentioned examples. More specifically, generation of some specific examples
required a number of iterations until the teachers reached the examples that met their

purpose. For instance, in the course of generating a problem solving example,

Teacher A initially invented the following story: “On Monday, Ali spent % of his

pocket money. The next day, he spent % of his pocket money and he had 26 TLs

left. How much pocket money did he have at the beginning?” After some time, the

teacher modified the story in the following way: “On Monday, Ali spent % of his

pocket money. The next day, he spent % of his pocket money and he had 20 TLs

left. How much pocket money did he have at the beginning?”” The teacher pondered
on the example for some time again and apologized that he must write 21 instead of
20 and added that he might modify the problem again to make it suitable for
representing it pictorially. Finally, the teacher generated the problem as follows: “On

Monday, Ali spent % of his pocket money. The next day, he spent % of his pocket
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money and he had 21 TLs left. How much pocket money did he have at the
beginning?” However, it took more than one minute for Teacher A to create this
example spontaneously. Thus, this spontaneous example indicated remote
accessibility to Teacher A’s personal example space.

Apart from the examples that required a number of iterations, the teachers
needed to create examples spontaneously when they realized that the examples
provided did not satisfy their intended purposes. More precisely, in some cases the
teachers had to modify their examples in the course of the lesson when they realized
that the examples provided included some limitations or mathematical flaws. For
instance, in the following episode on commutative property of addition of rational
numbers, Teacher A had to modify his example spontaneously, when he realized that

the example did not satisfy his intended purpose.

Teacher A: ... Let me immediately write another example related with
commutative property as there is some empty space in this part of the
whiteboard.

-3 -8 -3

5 7 5
Teacher A: What should you do primarily in this example to find the value
of the triangle?

Student: We need to match the numbers.

Teacher A: You have to change the negative signs into positive signs first.
Before doing anything else you have to change the negative signs into
positive signs. | am now changing negatives into positives.

D

Now, | am checking whether there is commutative property. (At this
moment, the teacher became aware of the limitation of the example) | am
very sorry but, I must change the subtraction sign on the right side of the
equality into addition sign. Namely, | must change my example. | failed to
notice this, let it be positive.

GHE

What shall we do now?

Students: We will match the numbers.
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-3 -8
Teacher A: Then, (?) matches with [?) and (7j matches with the

-8
triangle. Thus, the triangle is equal to[?J .

As can be seen in the above episode, Teacher A initially provided an example
that included subtraction operations on both sides of the equality. After some time,
the teacher realized that subtraction operation is not commutative and modified his
example by changing the subtraction sign into addition sign. Similar to spontaneous
examples generated by the teachers as a result of several iterations, examples of this
kind also took more than one minute to generate. Thus, examples of this kind also
indicated remote accessibility to teachers’ personal examples spaces.

When examples generated by the middle school mathematics teachers as a
result of their interactions with the students were examined, it was seen that there are
three different types of incidents that give rise to the generation of spontaneous
examples. In the first type, the teacher asks students a question and the students react
by asking an unexpected question to the teacher. The following episode of Teacher D
on expressing rational numbers in different forms illustrates this type of spontaneous

example generation.

Teacher D: Are 0.3 and 3.3 rational numbers?
Student 1: Yes!
Teacher D: Yes they are. Because, each repeating decimal and terminating

. . . a
decimal can be expressed as rational numbers in the form of 5

Student 2: Teacher, may | ask you a question?
Teacher D: Yes you can.
Student 2: Well, | wonder which numbers are not rational.

Teacher D: For instance, the pi number (7) is not rational. It goes on forever
as 3.14... and it does not have a regular repeating pattern. Actually, you can
think as follows. Excluding repeating decimals and terminating decimals all
decimals are irrational numbers.

As this teaching episode shows, Teacher D asked the classroom to indicate

whether 0.3 and 3.3 are rational numbers. Being evoked by this question, one of the

students in the classroom asked an unexpected question back to the teacher. At that
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moment, the teacher made a split-second decision and incorporated the student’s
question into the lesson by generating a spontaneous non-example.

Second type of incident that gave rise to the generation of spontaneous
examples occurred when students asked questions to their teachers during classroom
conversation. This type of incident is illustrated by the following episode of Teacher

B on finding the square and cube of rational numbers.
Teacher B: ...Now, I am switching to an example related with exponents.

3y o .
Let’s find the answer of (—gj . I'will ask you a question similar to this one

in your third mathematics examination. In the second examination, | asked
you to find the answer of (~6)’and (—5)°. Who knows how to find the
answers?

Student 1: Teacher | know, 6 times 6 is 36 and 36 times 6 is 216, thus the
answer is minus 216.

Teacher B: What about the other one?
Student 2; Minus 125.

Teacher B: Yes, you are right. In the same manner, we will find the square
and cube of rational numbers. What do we need to know for this? We should
know that even powers of negative numbers are positive. Let’s do it

together. 3 times 3 is 9 and 5 times 5 is 25. Therefore, the answer is +%.

Student 3: Teacher, if we select a number different from 2 as the power of
the exponent, how will we find the answer?

4 3
Teacher B: For instance, let’s find the answer of (—gj . Here, we must

know that odd power of negative numbers are negative. Similar to the
previous example, we multiply the numerators and denominators by
themselves for 3 times. Then, 4 times 4 is 16 and 16 times 4 is 64. Again, 3

64
times 3 is 9 and 9 times 3 is 27. Consequently, the answer is(—E). Is that

ok?

Student 3: Ok, thanks.

As this episode illustrates, the student interrupted the classroom conversation
and asked the teacher a question related with exponentiation. The teacher took
account of student’s query and provided a spontaneous example as a response to it.

Finally, the last type of incident that led to spontaneous example generation
occurred when teachers needed to create counter-examples in response to their
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students’ contingent and invalid conjectures or statements about rational number
ideas. These type of examples were described in detail in the aforementioned section

entitled counter-examples.
4.2.2. Pre-planned examples

As mentioned earlier, pre-planned examples constituted another main source
of examples used by the teachers in the course of the lesson. These type of examples
were checked and selected by the teachers in advance and were incorporated into the
lesson when needed. The variety of available sources used by the middle school
mathematics teachers in choosing the pre-planned examples and the number of pre-
planned examples taken from each source is provided in Table 4.38.

Table 4.38. The number of pre-planned examples used by the middle school

mathematics teachers during the teaching of rational number concepts

Number of examples used by
Sources of pre-planned examples
Teacher A Teacher B Teacher C Teacher D
Student textbook 15 22 - -
Student workbook 5 - 68 -
Teacher’s guidebook - - - 7
High-stakes examination questions 3 - - -
Online educational software - - 27 -
Auxiliary Book 1 20 - - 44
Auxiliary Book 2 3 - - -
Auxiliary Book 3 8 - - 4
Auxiliary Book 4 19 - - -
Auxiliary Book 5 - 52 - -
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Table 4.38. (Continued)

Number of examples used by
Sources of pre-planned examples
Teacher A Teacher B Teacher C Teacher D
Auxiliary Book 6 - 7 - -
Auxiliary Book 7 - - 5 -
Aucxiliary Book 8 - - - 16
Auxiliary Book 9 - - - 18
Total 73 81 100 89

As can be seen in Table 4.38, as a whole 14 different resources were used by
the middle school mathematics teachers when selecting pre-planned examples prior
to the lesson. Besides, all of the middle school classrooms used the same book set
prepared by a private publisher for the mathematics lesson. Each book set consisted
of a student textbook, a student workbook and a teacher’s guidebook. The teachers
who used the student textbook as a resource selected examples from this book as a
means for introducing or explaining a new rational number topic.

Apart from the official textbooks, the middle school mathematics teachers
used auxiliary books prepared by 9 different private publishers. In general, the
teachers used these auxiliary books for the purpose of providing exercise examples to
their students. In other words, the teachers selected examples from different auxiliary
books in order to consolidate the rational number concepts being taught or to
promote retention and develop fluency with the procedures related with rational
numbers. The selected auxiliary book examples were all multiple-choice questions
and were similar to the ones asked in the secondary school entrance examination.
This reflected a type of consideration employed by the teachers in choosing or
generating rational number examples. The resources used by each teacher for

generating pre-planned examples are explained as follows.
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Teacher A used 7 different resources when planning which examples to use in
the classroom. More specifically, he used 4 different auxiliary books for selecting
pre-planned examples. Altogether he selected 73 pre-planned examples from 7
different resources. 50 of the pre-planned examples were selected from auxiliary
books, 20 of them were selected from official books and 3 of them were selected
from high stakes examination questions (i.e., 2 examples from secondary school
entrance examination and 1 example from university entrance examination). He
mainly used the student textbook examples and the Auxiliary Book 1 and Auxiliary
Book 4 examples in the course of teaching rational number ideas. He less frequently
used student workbook examples, high stakes examination questions, Auxiliary Book
2 and Auxiliary Book 4 examples. Yet, he neither considered teacher’s guidebook
examples, nor online educational software examples while planning which examples
to use in the classroom.

Teacher B used student textbook, Auxiliary Book 5 and Auxiliary Book 6
while planning which examples to use in the course of the lesson. Altogether he used
81 pre-planned examples from 3 different sources. He selected 52 examples from
Auxiliary Book 5, 22 examples from student textbook, and finally 7 examples from
Auxiliary Book 6. Similar to Teacher A, he used student textbook examples during
the explanation part of the lessons while he used auxiliary books for providing
exercise examples. He selected pre-planned examples mostly from Auxiliary Book 5
and to a lesser extent from student textbook. Besides, he selected only a few pre-
planned examples from Auxiliary Book 6. However, he did not take into account
student workbook examples, teacher’s guidebook examples, high-stakes examination
questions and online educational software examples when planning which examples
to incorporate into the classroom.

Teacher C used 3 different resources for generating pre-planned examples.
Namely, these resources were student workbook, online educational software and
Auxiliary Book 7. In total, the teacher used 100 pre-planned examples from these
three different resources. 68 of the pre-planned examples were chosen from student
workbook, 27 of the pre-planned examples were chosen from an online educational

software and finally 5 pre-planned examples were chosen from Auxiliary Book 7.
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Teacher C relied heavily on workbook examples and incorporated them into the
lesson when compared to the number of examples selected from online educational
software and Auxiliary Book 7. Besides, he used far less auxiliary book examples
when compared to the previous two teachers. Interestingly, he did not use any
textbook example during the teaching of whole rational number ideas. Likewise, he
did not use teacher’s guidebook examples, high-stakes examination questions and
any other auxiliary book examples except for those included in Auxiliary Book 7.

Teacher D used 5 different resources for the purpose of generating pre-
planned examples. Namely, the resources used by her were teacher’s guidebook,
Auxiliary Book 1, Auxiliary Book 3, Auxiliary Book 8 and Auxiliary Book 9.
Totally, 89 pre-planned examples were selected from these 5 different resources. The
minority of the pre-planned examples were selected from teacher’s guidebook (i.e., 7
examples) while the majority of the pre-planned examples were selected from 4
different auxiliary books (i.e., 82 examples). Surprisingly, Teacher D did not
incorporate into her lessons any student textbook example, student workbook
example, online educational software example or high stakes examination question.

To summarize, while Teacher A and Teacher B incorporated student textbook
examples into the classroom while explaining rational number ideas, Teacher C and
Teacher D did not. On the other hand, Teacher A and Teacher D used student
workbook examples in the classroom while Teacher B and Teacher D did not. The
number of student workbook examples used by Teacher C during the lesson was far
too much when compared to the examples used by Teacher A. In more detail,
Teacher A used student workbook examples as exercise examples, however, Teacher
C used them both as teaching examples and exercise examples.

Teacher’s guidebook used by the four teachers included student textbook and
workbook examples and additional examples apart from these examples. In this
study teacher’s guidebook examples were treated as the additional examples to be
able to distinguish them from student and workbook examples. In this study it was
shown that none of the teachers except for Teacher D used teacher’s guidebook
examples in the course of the lesson. Nonetheless, the number of teacher’s

guidebook examples used by her was very few. Similarly, despite being very few,
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only Teacher A brought high stakes examination questions into his classroom. He
used these examples to raise his students’ awareness about the rational number
examples that might be encountered in the secondary school entrance examination.
Moreover, only Teacher C incorporated online educational software examples into
his classroom. These examples served both as teaching examples and exercise
examples. More specifically, Teacher C used the online educational software both as
a means for explaining addition and subtraction of rational numbers and for the
provision of exercise examples related with addition and subtraction of rational
numbers.

When teachers” use of auxiliary book examples were examined
comparatively, it was seen that Teacher A and Teacher D used 4 different auxiliary
books, Teacher B used 2 different auxiliary books and finally Teacher C used only
one auxiliary book. Teacher A used examples from two auxiliary books more
frequently when compared to the other auxiliary books he used. Similarly, Teacher B
used examples from one auxiliary book more predominantly, while he used the other
auxiliary book scarcely. Teacher C used only a single book as an auxiliary book and
the number of examples selected by him from this auxiliary book was very few.
Rather than using auxiliary book examples, he gave more weight to student
workbook examples in his classroom. Teacher D used examples from one auxiliary
book more frequently, from two auxiliary books moderately and from one auxiliary
book scarcely. Ultimately, two of the auxiliary books used by Teacher D were same
as that of auxiliary books used by Teacher A.

Thus far, the overall characteristics of examples used by middle school
mathematics teachers in the teaching of rational numbers were described at length.
More specifically, in the previous sections the focus was on describing the type of
examples used by the teachers in the classroom, the rational number ideas
emphasized by the teacher generated examples, the sources of examples as
spontaneous and pre-planned examples and the resources teachers resorted to while
choosing examples prior to the lesson. In the next chapter, the underlying principles
or considerations that guided middle school mathematics teachers in choosing or

generating rational number examples were described in detail.
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4.3. Summary of Overall Characteristics of Teachers’ Rational Number

Examples

The findings of this study showed that teachers used specific examples, non-
examples and counter-examples as three different types of examples. However,
almost all examples used by the teachers were specific examples. Teacher A and
Teacher B provided slightly more specific examples than the textbook. However, the
number of specific examples used by Teacher C and Teacher D was far less than the
number of specific examples included in the textbook. Besides, the number of
examples provided for teaching rational number operations was more than half of the
total number of examples not only for some of the teachers but also for the textbook.
On the other hand, very few examples were provided by the teachers and the
textbook for teaching posing and solving rational number problems.

The rational number ideas emphasized by the textbook examples were often
emphasized by teacher generated examples as well. In addition, teachers provided
examples that emphasized other rational number ideas apart from the textbook. To be
more specific, the examples provided by the textbook for explaining and locating
rational numbers on a number line involved the following rational number ideas:
finding equivalent classes of a fraction, locating equivalent fractions on a number
line, locating rational numbers on a number line, determining the
positivity/negativity of rational numbers and finding the rational value of a point
located on a number line. All teachers provided examples related with identifying
whether a given number is rational and locating rational numbers on a number line.
However, other rational number ideas about this learning objective (explaining and
locating rational number on a number line) were not emphasized by all teachers.
Apart from the rational number ideas emphasized by the textbook examples, teachers
used examples that emphasized the following ideas: identifying whether a given
number is rational, examining the location of a minus sign in a negative rational
number, simplifying rational numbers, converting among mixed and improper
numbers, and having students feel the need for positive and negative rational

numbers.
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The examples provided by the textbook for expressing rational numbers in
different forms involved the following rational number ideas: expressing integers as
rational numbers, expressing rational numbers as integers, repeating decimals or
terminating decimals, expressing terminating decimals as rational numbers, and
converting repeating decimals into rational numbers. The examples provided by the
teachers for expressing rational numbers in different forms did not involve ideas that
are different from textbook ideas. However, although all teachers provided examples
for converting repeating decimals into rational numbers, not all of them provided
examples for introducing other rational number ideas.

The examples provided by the textbook for comparing and ordering rational
numbers involved the following rational number ideas: locating on a number line,
converting to decimals, common denominator approach, benchmarking, equivalent
fractions, and common numerator approach. All teachers provided examples related
with common denominator approach. However, other rational number ideas
emphasized by the textbook for this learning objective were not emphasized by all
teachers. For instance, none of the teachers provided examples for ordering rational
numbers by using equivalent fractions. Apart from rational number ideas emphasized
by the textbook examples, teachers used examples that emphasized the following
ideas: residual thinking, equating the number of decimals by adding Os, considering
number sign, and converting to improper number. Nevertheless, the first two ideas
were emphasized only by one of the teachers and similarly the last two ideas were
emphasized by another teacher.

The examples provided by the textbook for adding and subtracting rational
numbers involved the following rational number ideas: using models for the addition
and subtraction of rational numbers, adding and subtracting rational numbers with
same denominators, estimating the addition and subtraction of rational numbers,
adding and subtracting rational numbers with different denominators and properties
of addition of rational numbers. All teachers provided examples related with adding
and subtracting rational numbers with same denominators, adding and subtracting
rational numbers with different denominators and properties of addition of rational

numbers. However, the rest of the rational number ideas about this learning objective
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were not emphasized by all teachers. For instance, only one teacher provided a single
example for teaching estimation of addition and subtraction with rational numbers.
Apart from rational number ideas emphasized by the textbook examples, teachers
used examples that emphasized the following ideas: performing multi-step operations
with rational numbers and finding common denominator of rational numbers.
However, these ideas were not emphasized by all teachers. For instance, only one
teacher provided examples for finding common denominator of rational numbers.

The examples provided by the textbook for multiplying and dividing rational
numbers involved the following rational number ideas: modeling multiplication of
rational numbers, multiplication and division of rational numbers, multiplication and
division by 0, 1 and (-1), modeling and calculating the square and cube of rational
numbers, performing multi-step operations with rational numbers, and properties of
multiplication of rational numbers. The examples provided by teachers for teaching
this learning objective did not involve ideas that are different from the ideas provided
by the textbook examples. However, although all teachers provided examples for
teaching the algorithm for multiplying and dividing rational numbers, not all teachers
provided examples for introducing the rest of the ideas. More importantly, none of
the teachers provided examples for estimating multiplication and division of rational
numbers.

The examples provided by the textbook for solving multi-step operations with
rational numbers included the following rational number ideas: solving multi-step
operations that are expressed on one line, solving multi-step operations that are
expressed as complex fractions, and solving multi-step operations that are expressed
as a continuing pattern. While all teachers provided examples related with the first
two textbook ideas, not all teachers provided examples for the third textbook idea.
Apart from rational number ideas emphasized by the textbook examples, one teacher
provided examples for solving multi-step operations that are expressed as single
variable polynomials.

The examples provided by the textbook for posing and solving rational
number problems included the following rational number ideas: solving rational

number problems with same referent units, solving rational number problems with
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different referent units, and posing rational number problems. While all teachers
provided examples for solving rational number problems with same and different
referent units, none of the teachers provided examples for posing rational number
problems. More importantly, the number of examples provided by the textbook and
the teachers for posing and solving rational number problems was rather few when
compared to the number of examples provided for other rational number objectives.

When non-examples of rational numbers provided by the teachers and the
textbook were examined, it was seen that teachers provided four different forms of
non-examples while the textbook did not provide any non-example. The teachers
provided the following forms of non-examples: ratio of integers to zero,
transcendental numbers, radicals, and infinite non-repeating decimals. Teachers more
commonly used the ratio of integer to zero representation when providing non-
examples of rational numbers. However, non-examples in the form of infinite non-
repeating decimals, the only transparent representation of irrational numbers, were
only used by one teacher.

Although counter-examples are important in the teaching of mathematics, the
findings showed that they are less evident in middle school classroom practice. In
this study, only five counter-examples were generated by two teachers to
demonstrate the falsity of students’ claims. Besides, all counter-examples were
generated by the two teachers as a response to contingent classroom situations.

This study revealed two main kinds of teacher-generated examples as
spontaneous examples and pre-planned examples. While more than half of the
examples used by Teacher A and Teacher B were spontaneously generated, the
majority of the examples used by Teacher C and Teacher D were pre-planned. When
all examples were considered altogether, it was seen that more than half of them
were spontaneously generated by the teachers.

Teachers used several different resources when choosing pre-planned rational
number examples. The resources used by the teachers were student textbook, student
workbook, teachers’ guidebook, high-stakes examination questions, online
educational software and nine different auxiliary books. In general, the teachers used

the auxiliary books for providing exercise examples to their students. The selected
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auxiliary book examples were all multiple-choice questions and were similar to the
ones asked in the secondary school entrance examination. Teacher’s guidebook
examples were used only by one teacher. Similarly, high-stakes examination
questions were used by one teacher and online educational software examples were
used by another teacher. Many different auxiliary books were used by the teachers
for selecting pre-planned examples. While two of the auxiliary books were preferred
by the same two teachers, the rest of the each auxiliary book was preferred by one

teacher.
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CHAPTER YV

TEACHERS’ CONSIDERATIONS IN CHOOSING OR USING EXAMPLES

The purpose of this study was to explore middle school mathematics
teachers’ treatment of rational number examples in their seventh grade classrooms.
In this chapter, the focus was on exploring the principles or considerations used by
teachers while choosing or generating rational number examples. Through this focus,
the following research question was formulated:

What are the underlying principles or considerations that guide middle school
mathematics teachers in choosing or generating examples?

In this chapter, middle school mathematics teachers’ considerations in
choosing or using rational number examples or the underlying principles that guided
them in choosing or using rational numbers were reported on the basis of lesson
observations and post lesson interviews. It is important to note that the considerations
or principles employed by the teachers were interconnected and they slightly
overlapped with each other. Besides, teachers used more than one consideration for
several examples. On the contrary, in some cases teachers generated a sequence of
examples and for this sequence of examples they employed the same consideration.
Therefore, in this part of the study, rather than reporting the number of examples, the
different considerations held by the teachers with respect to each category was
provided. In the following section, the incidents in which teachers started with a

simple or familiar case were described at length.
5.1. Starting with a Simple or Familiar Case

In this category, middle school mathematics teachers most often generated
sequences of examples and each example in the sequence gradually increased in its
level of complexity or difficulty. The rest of the considerations of this type were
employed when teachers generated examples that recalled students’ prior knowledge

on rational number concepts. The subcategories emerged from this category were (i)
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considering form of rational numbers, (ii) considering denominators of rational
numbers, (iii) considering number of repeating and non-repeating digits of a decimal,
(iv) considering number of terms/elements/steps when ordering rational numbers,
performing a single operation or multi-step operations with rational numbers, (v)
considering increasing complexity of multi-step operations, and of rational number
problems by changing their mathematical structure, and finally (vi) recalling prior

knowledge on rational number concepts.
5.1.1. Considering form of rational numbers

Teachers selected a sequence of rational numbers in different forms for
locating on a number line, for performing four operations and for performing

exponentiation. To illustrate, Teacher A selected g,—%,%and% respectively to

locate them on a number line. In this sequence, the first two rational numbers are in
proper form, the next rational number is in mixed form and the last rational number
is in improper form. While locating these rational numbers on a number line, the

teacher used the following expressions to explain why he chose them in that order.

Teacher A: Proper numbers are fairly easy to locate them on a number line.

gis between 0 and 1 and —%is between 0 and -1... T am skipping

improper numbers, because | do not like locating them on a number line. To
locate mixed numbers on a number line you should first have a look at the

whole part. 3% has three wholes so it is between 3 and 4... It is more

difficult to locate an improper number on a number line. That is why I

skipped locating %on a number line. To locate % on a number line you

have to partition each integer interval into 5 and then count from 1 to 12.

Other method of locating % on a number line is by converting it into a

mixed number. This way is easier than the previous way. That is why | said |
do not like locating an improper number on a number line.

Another case had to do with the form of terms in a rational number operation.

. 2 1 (-2 9 9 (4 1 3 _3 1
To illustrate, Teacher B performed ———, | — |+=, =—| — |, 2=+—, 5—+| -1-
4 4 \'5 5 7 7 4 4 4 4

respectively while teaching addition and subtraction of rational numbers. Similarly,
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54 312 (-1 7 -5 3) 5 7 3) 5 5 1
e £ 22 I 22 )
79 818 \ 4 3 13 4) 12 4 6) 4 3 2

respectively during the teaching of multiplication and division of rational numbers.
In these two sets of examples, Teacher B initially selected proper or improper
numbers and later he selected mixed numbers as terms of operations. Since the initial
examples did not require conversion into proper number numbers, these examples
were easier than the latter ones. This consideration was expressed by Teacher B as

following:

Teacher B: Let’s start multiplication and division with a few examples.
Initially, let me use proper or improper numbers but not mixed numbers.
Let’s start by using positive ones. We do not have to use parenthesis for

positive rational numbers. ..

Another example of how a teacher takes into account different form of
rational numbers was observed in a lesson in which Teacher B introduced

exponentiation of rational numbers. More precisely, the teacher provided

1) (1Y (-2Y 1Y’
(Ej (?j (?j and (1§j respectively as examples for finding the square and

cube of rational numbers. As it can be seen from this sequence, Teacher B ultimately

incorporated into the classroom an exponent with a mixed number base. Besides,

3
computation of exponents becomes more complex when proceeded from (%j to
1 2
(15) . This type of consideration was expressed by Teacher B as follows:
1 3
Teacher B: You do not have any problem with how to compute (E) .

1\’
Similarly, you do not have any problem with how to compute (?j . Here

-1 -1 1Y
you can directly multiply (?j by L?j However, computation of (l;j

is a bit more complex. What should you do to compute exponents with
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mixed number bases? You first need to convert 1% into an improper

number.

5.1.2. Considering denominators of rational numbers

Teachers initially used rational numbers with same denominators as members
of the sequence when ordering rational numbers or they initially used them during
the teaching of addition and subtraction of rational numbers. To illustrate, Teacher A
generated the following sequence of examples consecutively when teaching how to

order rational numbers:

(-2) (-=71) 13 n2 36
1) T’T’O’E’E @ 19'13'17

11 1 1 1996 1997 1998
(2) _!_1__!__10 (5) y )

35 7 2 1997 1998 1999
@) -2,-202 2

7 13 15 19

In the first sequence, there was no need to find the least common multiple
(LCM) of the denominators since all rational numbers had the same denominators.
Besides, the students were already familiar with ordering by using common
denominator approach since their primary school years. Therefore, it might be fairly
easy for students to order the rational numbers given in the first sequence. In the
second sequence, all rational numbers included 1 as a numerator and they can be
ordered by using the same numerator approach. However, as indicated by the
teacher, same numerator approach did not readily come to students’ mind when they
saw 1 as the top numbers of all rational numbers. Therefore, ordering the second
sequence of rational numbers might be more difficult for students when compared to
the first sequence. In the third sequence, rational numbers included 2 as a numerator
and they could be ordered by using the same numerator approach. However, this
sequence included larger numbers as denominators and thus it might fairly be more
difficult for students to order the given rational numbers when they did not think of
using the same numerator approach. In the fourth sequence, rational numbers
included different numerators and denominators. However, as expressed by the
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teacher, this sequence included rational numbers that had larger denominators
compared to their numerators. Thus, as done by the teacher, it was easier to find the
least common multiple of numerators instead of denominators for ordering the given
rational numbers. Yet, the students might not readily access to the use of common
numerator approach for this sequence when compared to the third sequence. In the
last sequence, rational numbers had different numerators and denominators and it
was almost impossible for students to order the rational numbers by using common
numerator or common denominator approach since all numerators and denominators
were very large numbers. Thus, the students needed to use a different approach other
than the two approaches such as residual thinking as done by Teacher A.
Consequently, ordering the rational numbers included in the last sequence was more
difficult than ordering the ones included in the fourth and in the previous sequences.
In another case, Teacher D initially selected rational numbers with same
denominators for teaching addition of rational numbers. That is, Teacher D

performed the following addition operations consecutively:

3 15 (-7 (-5 -2\ (-13 7 3 11 1 '3
—+=, =+ — |, | =+ =, | — |+ = |, 2+=,4=+=, | =+4-=
5 59 9 9 9 4 4 5 2 5 5 5

After teaching addition of rational numbers, Teacher D provided her students
with subtraction operations and similar to the addition examples, she started with the
examples that included same denominators as terms of subtraction operation. She

provided the following examples successively:

5.2 (ﬁj(ﬁj 13,31,

8 8 \ 4 4) 3 8 7 2

As it can be seen, in the two sets of addition and subtraction examples,
Teacher D principally performed addition and subtraction of rational numbers with
same denominators and then she moved on to teaching addition and subtraction of
rational numbers with different denominators. This shows how she took into

consideration the increasing level of complexity in the course of teaching addition

and subtraction operations with rational numbers.
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5.1.3. Considering number of repeating and non-repeating digits of a decimal

There was a deliberate attempt on the part of teachers to proceed from
decimals that included merely repeating digits to decimals that included both

repeating and non-repeating digits while teaching conversion of repeating decimals.
To give an example, Teacher B used 1.3, 21_5, 5.’@1, 3.24 and 1.045 consecutively
in order to convert them into their common fraction forms. As it can be seen, 1.3
includes only one repeating digit and it is fairly easy to convert it into its common
fraction form since it includes only one ‘9’ in the denominator. 215 includes two
repeating digits and conversion of it is a bit more difficult when compared to 1.3
since it requires two ‘9s’ in the denominator. 5104 includes three repeating digits
and conversion of it is more difficult when compared to 215 since it entails three
‘95’ in the denominator. Unlike the previous three repeating decimals, 3.24 includes

one repeating and one non-repeating digit. Converting 3.24 into its common fraction

form is more complex since it entails writing down one ‘9’ for the repeating digit and

one ‘0’ for the non-repeating digit after ‘9 in the denominator. Finally, 1.045

includes two repeating digits and one non-repeating digit and among all repeating

decimals 1.045 can be regarded as the most complex one since it entails writing
down two ‘9s’ and one ‘0’ after ‘Os’ in the denominator. Apart from this,

identification of minuends and subtrahends necessary for finding the numerator of

each common fraction becomes more complex when moved from 1.3 to 1.045.

5.1.4. Considering number of terms/elements/steps when ordering rational
numbers, performing a single operation or multi-step operations with rational

numbers

Teachers gradually increased either the number of terms in an operation, the
number of rational numbers selected for ordering in a sequence or the number of
steps included in multi-step operations with rational numbers. To illustrate the case

of gradually increasing the number of terms in an operation, the examples provided
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by Teacher B in the course of teaching addition of rational numbers with different

denominators are given as follows:

2 5 LU (42 -3).5 A
mi2S o5l eZ) eg(p)d

As it can be seen, the first three addition operations include two terms while
the last addition operation includes three terms. These consecutively generated
examples showed how Teacher B altered the complexity of operations by increasing
the number of terms in the final operation.

Similarly, to illustrate the case of increasing gradually the number of rational
numbers in a sequence, the examples provided by Teacher B for teaching comparing
and ordering rational numbers can be given. Namely, Teacher B initially generated
rational number pairs for comparison as follows:

15

15,3 8.
"2

11’

1,212 717 /19 -3 15

1 i_ ==, .z 2. Y 7Y
’ 4’3" 319°15°18° 4’4 5° 8

w|ﬂ
|
N

gl

-1-
2"

|~
Nlw

Later, he provided the following sequences of rational numbers consecutively for

ordering:
1,41 45 8496 17 =3-1
7974 6 8'88 8  3'4'5'12

As it can be seen, the examples provided by Teacher B for comparing included two
rational numbers while the examples provided for ordering included four different
rational numbers. This showed how the teacher applied his principle of going from
simple to more complicated by increasing the number of rational numbers included
in a sequence for comparing and ordering.

Another case occurred when Teacher A attempted to increase gradually the
number of steps included in complex fractions while teaching multi-step operations

with rational numbers as follows:

1 1 1-

© 1 @ 1 ©® 1
2 3 5
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As the abovementioned examples show, Teacher A first provided his students
with a complex fraction that can be solved in 2 steps. The next complex fraction can
be solved in 3 steps and finally the third complex fraction can be solved in 5 steps. It
appeared that Teacher A increased the number of steps in a complex fraction one or
two at a time. Consequently, this showed how Teacher A increased the complexity of
complex fractions progressively each time he provided a new complex fraction to his

students.

5.1.5. Considering increasing complexity of multi-step operations and of

rational number problems by changing their mathematical structure

Teachers considered increasing complexity of multi-step operations and of
rational number problems by changing their mathematical structure. To illustrate the
case of increasing complexity of multi-step operations, the examples used by
Teacher B for teaching multi-step operations with rational numbers are given as
follows:

2
1) (4,1 R 34— > 4
1) (2—§j7(3+—j (2) 3+1+£ (3) 4+L
2 X+2

As it can be seen, the first multi-step operation example includes terms that
are all expressed on one line and the students are already familiar with this type of
example from their early primary school years. The second multi-step operation
example is in complex fraction form and this type of example is novel to students
when compared to the previous one. Finally, the third multi-step operation example
is also in complex fraction form. However, unlike the previous two examples, this
example includes an unknown variable and thus it can be considered the most
complicated one among three examples. Some of the explicit classroom utterances
that support Teacher B’s principle of going from simple to more complicated during

the provision of abovementioned examples are given as follows:

Teacher B: The first multi-step operation is fairly easy. | do not think you
will have any trouble while solving this problem...The second multi-step
operation is in complex fraction form. We also call these fractions as stacked
fractions. This problem is a bit troublesome when compared to the previous

260



one...Look out! The first problem is very easy, the second problem is a bit
more difficult and you have great difficulty in the third problem.

Another case occurred when Teacher A attempted to generate rational
number problems from simple to more difficult by changing the mathematical
structure of each problem gradually. The rational number problems constructed by

Teacher A consecutively in the course of the lesson are provided as follows:

(1) Find % of 24. (2) On Monday, Ali spent % of his pocket money. The

next day, he spent % of his pocket money and he had 21 TLs left. How
much pocket money did he have at the beginning? (3) On Monday, Ali spent
% of his pocket money. The next day, he spent % of his remaining pocket

money and he had 21 TLs left. How much pocket money did he have at the
beginning?

As it can be seen, the first problem is devoid of real life context and it is fairly
easy to solve. The second problem is embedded in a real life context and the referent
unit is the same for all rational numbers given in this problem. That is, this problem
involves addition and subtraction of given rational numbers. Thus, the second
problem is deemed to be more difficult when compared to the first one. Finally, the
third problem was generated completely by using the same real life context of the
second problem. However, the rational numbers given in this problem all refer to
different referent units. Namely, the third problem includes multiplication of rational
numbers in addition to addition and subtraction. Thus, the third problem can be
accepted as the most complicated one among three problems. Accordingly, the three
rational number problems generated by Teacher A manifested how he applied his
principle of going from simple to more difficult by incrementally changing the

mathematical structure of each problem.
5.1.6. Recalling prior knowledge on rational number concepts

Finally, teachers considered recalling students’ prior knowledge on rational
number concepts when needed. There were many cases that prompted teachers to
check students’ prior knowledge on rational number concepts. In one case, teachers

recalled natural number set and integer set and gave examples and non-examples for
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these sets before introducing rational number set. For instance, Teacher C introduced
10 100
O,1,Eand — as examples and —1, —5,—38and 0.35 as non-examples for natural

number set. Similarly, he introduced -10, -1, 0 and 1 as examples and 0.35 and% as

non-examples for integer set.
In another case, equivalent fractions were recalled before explaining rational
number set. To give an example, Teacher B found the equivalence sets of the

l, —%and —g as a means to define rational number set.

2
Another case was about recalling proper fractions, improper fractions, mixed

fractions and locating them on a number line. For example, Teacher A provided g

as a proper fraction, 3% as a mixed fraction and % as an improper fraction and

located them on a number line respectively.
Another manifestation of a teacher’s consideration of prior knowledge was
observed when Teacher C recalled conversion among mixed fractions and improper

fractions. That is to say, Teacher C recalled how to convert Z%and 20% into

improper fractions before teaching how to convert negative numbers such as

—3%,—71 and —2% into their improper forms. Similarly, Teacher C recalled how to

4

convert %? and % into mixed fractions before teaching how to convert negative

numbers such as —%,—E —% and —% into their mixed number forms.

In another case, Teacher A recalled how to find the least common multiple of

three natural numbers. More precisely, the teacher was teaching how to order

2 l,z and he decided to order them by using common denominator algorithm. At

510 3
that moment he recalled how to find the least common multiple of 3, 5 and 10. He

explained this method step by step as follows:
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Teacher A: How can | find the least common multiple of 3, 5 and 10? | first
write these three numbers from left to right. | then draw a vertical line to the
right hand side of these numbers. Next, | check whether these numbers are
divisible by the prime number 2. | write a 2 to the right side of the line. 2
does not divide 3 and 5 so I just bring down 3 and 5 and 2 goes into 10 five
times so | write 5 underneath 10. Now, | am left with 3, 5 and 5. | have to
repeat the process. 3, 5 and 5 are not divisible by 2, so | check whether they
are divisible by the prime number 3. | see that 3 is divisible by 3. So | write
3 to the right side of the line. 3 goes into 3 one time, thus | write 1 under the
3. However, 3 does not go into 5 and 5 so I bring down the two 5’s. This
time | am left with 1, 5 and 5. Again, | have to repeat the process. The two
5’s are divisible by 5 so I write 5 to the right side of the line and then write 1
under each 5. Now, | multiply the prime numbers on the right hand side of
the vertical line to get the least common multiple. 2 times 3 times 5 is 30.
Thus, the least common multiple of 3, 5 and 10 is 30.

Other consideration of this type occurred when Teacher D recalled how to
order integers before ordering rational numbers. More precisely, before ordering

—%,—%and —1, she recalled how to order -4, -3 and -2. She first ordered the integers

as if they were positive. That is, she treated negative numbers as if they were positive
numbers and arranged them as 4>3>2 and then she reversed this arrangement as
—2>-3>-4 so as to order the negative integers. She then expressed that the same

reasoning is applicable for ordering rational numbers. Accordingly she arranged the

rational numbers as 1> % >% and reversed this arrangement as —% > —% > -1 S0 as

to order the negative counterparts.
Another example of how a teacher takes into account prior knowledge of
students was observed in a lesson in which Teacher A taught addition of rational

1 3 2
numbers. In more detail, he computed 25_[_?)+[+?j step by step and finally

reached the answer%. As this number included large numerators and denominators

the teacher wanted to simplify it. Thus, he asked the students to ponder whether 105
and 326 had a common divisor. As the students invalidly claimed that 105 and 326
were divisible by 3, the teacher felt the need to recall divisibility rules. The teacher
explained that a number was divisible by 3 if and only if the sum of its digits was
divisible by 3. Finally, he expressed that 326 was not divisible by 3 since the sum of
its digits (i.e., 11) was not divisible by 3.
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Another consideration related with prior knowledge subcategory occurred
when teachers started teaching four operations with rational numbers initially by
recalling operations with fractions. For instance, Teacher B expressed this type of

consideration by the following utterances:

Teacher B: Now, let’s start addition and subtraction of rational numbers. In
grade 5, you learnt how to perform operations with fractions. But, | am not
sure whether you did it in grade 4. Did you?

Student 1: Yes, we did.
Teacher B: Ok, we can add fractions, we can subtract fractions. Let me give

you an example from fractions. Let’s find the answer of %— % (The teacher
drew a region model of fractions to explain the subtraction operation). How

do you read 2 ?
4
Student 2: It is two-fourths.

Teacher B: We can read % as two over four or as two-fourths. Actually, it is
one-half. Similarly, we can read % as one-fourths and it is also called one-
guarter. Now, if we subtract %from% , the remaining part will correspond

to% . How did we perform this operation? Since the two fractions had same

denominators, we subtracted their numerators from each other. In fact we do

it in this way: 2 minus 1 is equal to 1. Thus, the answer is%. As | said

before, you previously learnt how to add and subtract fractions. Well, how
will you add and subtract rational numbers? Is there something new for
rational numbers?

Students: No!

Teacher B: What should you attend to when adding or subtracting rational
numbers?

Students: To their signs.

Teacher B: Yes, you should attend to the signs of terms.

Teacher B showed the same consideration when teaching multiplication and
division of rational numbers. That is, Teacher B recalled multiplication of fractions
at the initial phase of the teaching episode related with multiplication of rational

numbers. He expressed this type of consideration by the following utterances:
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Teacher B: Now, we will have a look at multiplication and division of
rational numbers. Let’s begin with multiplication of fractions. How were we
multiplying fractions?

Student 1: We multiply the numerators and write the answer to the
numerator. Then we multiply the denominators and write the answer to the
denominator.

Teacher B: Good! Now, we will have a look at the examples included in
your mathematics textbook. Initially, we will remember the multiplication

and division of fractions. Primarily, we will find the answer of%-%. If you

remember from fractions, we multiply the numerators and write the answer
to the numerator of the new fraction, similarly we multiply the denominators
and write the answer to the denominator of the new fraction. 2 times 3 is 6

and 3 times 4 is 12 and thus the result is%.

In another case, Teacher A recalled commutative property of addition of
integers before teaching the commutative property of addition of rational numbers.
Teacher A expressed this type of consideration by the following utterances:

Teacher A: You learned this property earlier in integers. How did we do it in
integers? For instance, if 2+3 is equal to 3+2 (i.e., 2+3=3+ 2) , then we

say that addition is commutative for integer set. The sum of 2+3 is equal to 5
and the sum of 3+2 is again equal to 5. Thus, addition operation is
commutative for the set of integers. Now, let’s check if addition is

commutative for rational number set. For instance, let’s see if é +§ is equal
e, —+—==+—|. E+§ is equal to 5 and E+E is again
5 5 5 5 5

equal to g . Hence, we can say that addition operation is commutative for

rational number set. Is there anything you could not understood?

Students: No!

Teacher A: Ok, now let’s move on to another example of commutative

property.

Teacher A showed the same consideration when teaching associative property
of multiplication of rational numbers. Namely, he recalled associative property of
addition of integers before teaching the associative property of addition of rational

numbers. This consideration was expressed by Teacher A as follows:

Teacher A: What discriminates associative property from commutative
property is that associative property includes three numbers whereas
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commutative property includes two numbers. If adding the first two numbers
initially and later adding the third number yields the same result with adding
the second and the third number initially and then adding the first number,
then we can say that addition operation is associative for the set of integers.
Let me give an example. Let’s see whether (2+3) +5 isequal to2+ (3+5)
. If we add 2 and 3 we get 5 and if we add 5 and 5 we get 10. Next, if we add
3 and 5 we get 8 and if we add 8 and 2 we again get 10. In this case,
(2+3)+5 isequal to2+(3+5). Thus, we can say that addition operation
is associative for the set of integers. Now, we will follow the same process
for rational numbers. Not to spend too much time for finding the common
denominator, | want to select rational numbers that have same denominators.

1 3\ 7. 1 (3 7 1 3
Let’s see whether | —+— |+— isequalto-+| —+—|. Ifwe add = and =
2 2) 2 2 \2 2 2 2

, We get 4 and if we add 4 and ’ we getl—l . Next, if we add 3 and 7 :
2 2 2 2 2 2

1 3) 7
we get 0 and if we add = and 0 , we getl—l . We can see that (— +—j +—
2 2 2 2 2 2) 2

1 (3 7
is equal tOE + (E+ EJ Thus, addition operation is associative for the set of

rational numbers.

Teacher A also showed the same consideration when teaching distributive
property of multiplication over addition of rational numbers. That is, he first showed
how to use distributive property of multiplication over addition of integers and later
he carried out the same process for rational numbers. This consideration was

expressed by Teacher A as follows:

Teacher: First, | want to teach you distributive property of multiplication
over addition by using integers. Let’s see how to find the answer of 2x (3+5)

. Keep in mind that the distributive property spoils the order of operations.
That is, if we use the order of operations, we have to perform the addition
operation first. But, if we use the distributive property, we multiply first and
then add. That is, 2 times 3 is 6 and 2 times 5 is 10 and finally 6 plus 10 is
16. Thus, the answer is 16. Why did | initially use integers instead of rational
numbers? If | primarily use rational numbers, you can get confused. Now, |
will repeat the same process by using rational numbers. Let’s compute
3 (3

6 3 3
—Xx| ———| by using the distributive property. We multiply = by = and
4 (2 SJ y g property ply 2 y 5

get%. Next, we multiply % by g and get%. Now we need to perform

E—E. We can simplify % by dividing both the numerator and the

8 20
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denominator by 2. Thus, we can rewrite the subtraction operation as % - %

Finally, the manifestation of this approach was seen when Teacher B recalled
how to find the square and cube of integers before teaching the second and third
powers of rational numbers. The following excerpt showed how Teacher B took into

account this type of consideration:

Teacher B: In this lesson, | will teach you how to find the second and third
powers of rational numbers. But, initially, let’s remember how to find the

powers of integers. To find the answer of (+3)2 we need to multiply (+3) by
itself for two times. 3 times 3 is 9 and my friend’s friend is my friend. Thus,

(+3)" = (+3)- (+3) = (+9) . Similarly, to find the answer of (-2)'we need to
multiply (-2) by itself for three times. 2 times 2 times 2 is equal to 8. My
enemy’s enemy is my friend and my friend’s enemy is my enemy. Thus,

(-2)° =(-2)-(-2)-(-2) = (-8) . Finally, to find the answer of (-4)' we need to
multiply (-4) by itself for two times. 4 times 4 is 16 and my enemy’s enemy

is my friend. Thus, (-4)" = (-4)-(-4) = (+16) . Now, 1 will give you some
examples from exponents with rational number bases. Is it okay?

Students: Okay!

The incidents in which teachers started with a simple or familiar case were
described in detail in this section. In the following section, the cases in which
teachers attended to students’ errors, misconceptions or difficulties were described

thoroughly.
5.2. Attending to Students’ Difficulties, Errors or Misconceptions

Middle school mathematics teachers often built examples according to the
difficulties they knew their students encountered with, common errors they knew
students made or the misconceptions they knew students held. Thus, subcategories
emerged from this category were (i) attending to student difficulty, (ii) attending to

student error, and finally (iii) attending to student misconception.
5.2.1. Attending to students’ difficulties

Teachers expressed that students often had difficulty in (i) understanding the

location of a minus sign in a rational number, (ii) dealing with division of a number
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by zero and division of zero by a number, (iii) understanding that distributive
property yields a valid result, (iv) performing subtraction operation with rational
numbers, (v) solving complex fractions with unknown values, (vi) ordering rational
numbers with the same numerators, (vii) simplifying rational numbers before
multiplication, (viii) performing operations including negative rational numbers
without parenthesis, and (ix) distinguishing between exponents with a power inside
the parenthesis and out outside the parenthesis.

Teachers explicitly stated in the classroom that students often had difficulty
in understanding that locating the minus sign either over, in front of or under the
main fraction bar does not alter the value of a rational number and they emphasized
that the three different representations of the negative rational number mean the same
thing. The following episode of Teacher A on teaching rational numbers with same

denominators illustrates this consideration:

(=3) (&5 [ 2 :
Teacher A: Let’s find the answer of T+T— —; . Before solving
1 -1 1

this, | want to focus to the following equality: - = > = - You often get

confused when you see this equality. This equality means that—% _?1 and

izare all equal to each other and wherever you put the minus sign, the

rational number will always be negative. You can either put it over, under or
2
in front of the fraction bar. By using this equality, we can rewrite (—;j as

(=2)

Tand aggregate the numerators over one fraction bar in this way:

(=3)+(+5)-(=2)
7
did in integers.

. Finally, we add and subtract rational numbers as we

Teachers indicated that students had difficulty in understanding that division
of a number by zero was undefined while division of zero by a number was zero. For

instance, Teacher A identified in the course of a lesson a student’s difficulty in

finding the answer of % as zero. The expressions he used to explain his

consideration is provided by the following teaching episode:
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Teacher A: What does % equal to? Who wants to tell me the answer?

Student: Zero over five is equal to five.

Teacher A: Good (!) How many times does 5 go into 0? Five times. Now
listen to me very carefully. When you were in grade 6, you learnt organelles
of a cell in science lessons. Did not you?

Students: Yes, we did.
Teacher: Then, watch me very carefully. | will draw a figure on the board to

help you see that % is equal to zero. The cells ingest foreign particles by

locally infolding their membranes and protruding their cytoplasms around
the fold until they surround the particles and engulf them by closing the
membrane.

Think as if zero is a cell and 5 is a foreign particle. As you can see, the cell
namely zero totally surrounds the particle (i.e., the number 5) as time

progresses and at last the cell engulfs the particle. Thus, % is equal to zero

while %is undefined. That is, dividing zero by a number is zero and

dividing a number by zero is undefined.

In addition to this, Teacher A expressed in the post-lesson interview that students

could not distinguish between % and%. That is, the teacher stated that students had

difficulty in understanding how many times 5 goes into O or the vice versa.

Teachers expressed their concerns that students did not easily grasp that the

result obtained by using distributive property was valid and always the same with the

result obtained by following the order of operations. The following teaching episode

of Teacher D illustrates this type of consideration:

Teacher D: Normally, you would initially perform addition and then

412 1
multiplication operation when you come across with;-{§+g] Another

way to solve this task is to distribute g over % and % .
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Student: Probably, the two methods will not yield the same result, will they?

Teacher D: Good question! At first, it seems as if the results will not be the
same and the students often have difficulty grasping that the two methods
will always yield the same result. Now, | will solve this task by using the
two methods. However, | am sure some of you will still doubt about the
validity of the distributive property (The teacher solved the task by using
both approaches in the following way).

42 1] 42 41 8 4 40+12 52

71375]773775 21 35 105 105 105

42 1] 4
— == | ==
713 5] 7

10 3 413 32
15 15} 715 105
Did the two methods yield the same result?
Students: Yes!

Teacher D: What | am trying to say is that you can distribute ; over the

rational numbers inside the parenthesis. Now, let me give you another
example about distributive property of multiplication over addition.

Teacher B drew attention to the difficulty encountered by students in
performing subtraction operation with rational numbers when compared to addition.

Some of the expressions he used to explain his approach are as follows:

Teacher B: If we know integers well, we can comfortably perform

operations with rational numbers. You quite easily add rational numbers.

However, subtracting rational numbers is rather troublesome for you.

Especially, when subtracting a negative rational number from another

negative rational number, you have some difficulties. Let’s have a look at
2 _

the following example:(—lgj—(;j. For instance, you get confused

while solving this operation, since there are several minus signs in it.
Besides, most of you have difficulty remembering the procedure learnt for
subtraction of integers. You ask me to tell which minus sign should be
replaced with a positive sign. By the way, let me explain once again. The
sign of the first term, the minuend, does not change, we change the sign of
the subtrahend. Meanwhile, the subtraction operation turns into addition
operation.

Teacher B pointed to a common student difficulty in the course of teaching
multi-step operations with rational numbers. He wrote on the board one example for

each type and expressed his consideration as follows:

Teacher B: Mainly, there are three different types of multi-step operations.
Now, | am going to write them on the board and teach you how to solve each
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of them (The teacher split the board into three parts and wrote the
following examples as the first, second and third type respectively).

CE N PR E
3 4 3+——~ 4+ ——

1
145 X+2

The first multi-step operation is fairly easy. | do not think you will have any
trouble while solving this problem...The second multi-Step operation is in
complex fraction form. We also call these fractions as stacked fractions. This
problem is a bit troublesome when compared to the previous one...Look out!
The first problem is very easy, the second problem is a bit more difficult and
you have great difficulty in the third problem.

Teacher A was teaching how to order rational numbers with same numerators.
He wrote on the board the following set of rational numbers for this purpose:

2 —E,O,Eand%. He deliberately selected large denominators for these rational

7 12° 715
numbers to encourage the use of common numerator approach. Based on his prior
experience, he knew that students tended to use common denominator approach even
though the given set of rational numbers had the same numerators. The teacher
expressed his consideration of student difficulty in ordering same numerator rational

numbers by common denominator algorithm as follows:

Teacher A: You can see that it is very difficult to find the common
denominator for these rational numbers. Why is it so difficult to find the
common denominator? Because, 7, 13, 15 and 19 are relatively prime
numbers. That is, they do not have a common factor. We can order these
rational numbers easily by using same numerator approach. Despite this,
students always tend to use common denominator approach. They do not
think of using same numerator approach although they see same numbers at
the top of the rational numbers. Each year, | ask ordering examples of his
type and always there are some students who make a great deal of effort
while finding the common denominator. So, if possible use common
numerator approach for this type of ordering tasks.

Teacher B explicitly expressed his consideration about a difficulty
encountered by students in the course of simplifying rational numbers before
multiplication. Some of the expressions used by the teacher to explain his approach

were as follows:

Teacher B: Today, | am going to teach you multiplication of rational
numbers. First, | want to multiply two positive rational numbers in proper
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form. For example, let’s find the answer of §-E. I will perform this

8 18
operation initially by using long multiplication method as depicted in your
mathematics textbook. Later, you can perform it by using short
multiplication method.

Student: Is it possible to simplify rational numbers before we multiply them?

Teacher B: You can also do in that way. But, in the previous years, the
students had more difficulty when they used that way.

Teacher A was teaching subtraction operation with rational numbers that did

not include any parenthesis. Namely, the teacher was performing the following

operation: _g_g. During this time, the teacher uttered that most of the students had

difficulty understanding operations such as -9-14. The following teaching episode

illustrates teacher consideration of this kind:

Teacher A: Well, how shall we perform this operation?
Student: We should find the least common multiple of 3 and 7.
Teacher A: Yes, we initially find the common denominator as your friend

indicated. Thus, 3.2 is equal to S 1 and we aggregate the
7 3 21 21

. -9-14
numerators over one fraction bar as follows:

. Most of you have

problems with performing operations such as the one at the top of this
fraction. As you remember, | asked you to perform operations such as
—9-14in your previous examination and most of you had trouble with
them. —9—14 s equal to -23, why? Because if you owe 9 TLs to your friend,
and 14 TLs to another friend, you owe 23 TLs to your friends in total.

Finally, Teacher A attended to a difficulty encountered by the students when
finding the square and cube of rational numbers. The teacher indicated that students
often had difficulty in distinguishing between an exponent with a power inside the
parenthesis and an exponent with a power outside the parenthesis. One of the

utterances used by the teacher to express this type of concern is given as follows:

Teacher A: Listen to me very carefully. Now, | am going to write on the
board two exponential numbers that resemble to each other on the surface
but in essence they have nothing to do with each other. Look through

-2 —2Y
( c j and (Ej for some time. In the first exponential number the power

is inside the parenthesis and in the second one the power is outside the
parenthesis. You often have difficulty in deciding which numbers are
influenced by 3 in the first and second exponential numbers. In the first
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exponential number, 3 has impact on only 2. Even, it does not have any
impact on the minus sign preceding 2. However, in the second exponential

_08
number 3 has impact on 2, 5 and on the minus sign. Thus, [ c j is equal

-2.2.2 2\, 2\ (-2)\ (-2
to and | — | isequal to| — || — || — |. Is that okay?
5 5 9) ) 5

Students: Yes!

5.2.2. Attending to students’ errors

Teachers claimed that students often make the following mathematical errors
related with rational number concepts: (i) ignorance of using parenthesis when
operating with negative rational numbers, (ii) making sign errors when adding mixed
numbers, (iii) making errors when multiplying a rational number and whole number,
(iv) using commas instead of greater-than and less-than signs when ordering rational
numbers, (v) making notation errors about mixed numbers, (vi) making errors when
finding additive inverse of a rational number, (vii) making errors due to not
following order of operations, and finally (viii) making notation errors when
performing the exponentiation of unknown variables.

Teachers articulated in the lesson that students often made errors due to the
ignorance of using parenthesis when performing operations with rational numbers.

For instance, Teacher A made up a scenario about the possible error made by the

-5 -2
students while solving the following task: A= (E) B= [?j A-B ="Teacher A’s

consideration of student errors resulting from ignorance of parenthesis is given as

follows:

Teacher A: While | was teaching integers, | warned you to use parenthesis
while substituting numbers into the given expressions. Otherwise, your
answer will be wrong. Now, | will solve this task like a student. Watch me
very carefully. Students often ignore using parenthesis and substitute A and

B in this Way:_?S—g. This was a possible student solution. Now, | will

introduce you the teacher solution. We should write %5 and _?2 in

parenthesis. We can write them in parenthesis in the following way:
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(__Sj_(__zj You may wonder why there are two minus signs. One of
8 8

them belongs to the subtraction operation and the other belongs to the
rational number itself (i.e., the sign of subtrahend). I am sure ninety percent
of the students solve this task erroneously because of ignoring the
parenthesis when substituting the numbers into the given expression. When
expressions include positive rational numbers, you do not make errors too
often but when it comes to the expressions with negative rational numbers
you make errors very often.

Teachers pointed that their students’ sign errors might originate due to not

converting mixed numbers into improper numbers before addition. For instance, this
: : . 3 1
type of consideration was expressed by Teacher B after the provision of 5Z+ —11

as follows:

Teacher B: How shall we perform this operation?

Student 1: Well, we first add the whole parts.

Teacher B: How about the fractional parts?

Student 1: We add 3 and 1 to find the numerator of the fractional part.
Teacher B: Shall we add or subtract?

Student 1: ... (No response)

Teacher B: Watch out! We first subtract the whole parts as (5-1). Similarly,

we subtract the fractional parts as (Tj and find the answer as 4 % Did

you understand this way of solution?
Students: No!

Teacher B: | do not recommend adding mixed numbers in this way. | am
sure most of you will make errors if you add them in this way. To ensure
finding a correct answer, you need to convert mixed numbers into improper
numbers before adding. On the contrary, you may certainly be mistaken.

Teachers articulated a student error made by the students while performing

operations with a rational number and a whole number. Some of the expressions used

by Teacher D after the provision of 3-% is presented below:

Teacher D: Sometimes students feel perplexed when they are asked to
multiply a whole number by a rational number. They make errors since 3 is
aligned with neither 11 nor 8. Thus, the students often multiply 3 by both the

numerator and the denominator as 3~1E1 _3i1 33 and arrive at a wrong

3.8 24
answer.
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Teacher B expressed a concern about the error made by the students in the
course of finding additive inverse of rational numbers. The classroom utterances

expressed by the teacher for this type of consideration is presented as follows:

Teacher B: Some of your friends still make errors while finding the additive

. . . . 3
inverse of a rational number. For instance, let me write —2=as an example
7

for finding the additive inverse. I am not sure whether you can find the
additive inverse correctly. You persistently make errors while finding it. | do
not know why but some of you persistently express the answer as either

—2E or 0.
7

Teacher B explicitly stated that students erroneously used commas instead of
using greater-than or less-than signs when ordering the given numbers. This

consideration is expressed by the following teacher utterances:

Teacher B: Now, let’s think of a number line. In a number line, the number
on the left is smaller than the one on the right. If you know this, you can
locate the rational numbers on the number line and after that you can easily
order them. You should absolutely use symbols for ordering. We use
symbols when ordering rational numbers. You can either order from least to
greatest or from greatest to least. To reiterate, you should certainly use
symbols. However, you should not use commas for ordering. In the previous
years, there were some students who used commas when ordering rational
numbers. If you use symbols, you end up with a correct arrangement,
otherwise it will be erroneous.

Teacher A expressed a consideration about a student error resulting from not
following mathematical conventions when expressing mixed numbers. By
convention, a mixed number needs to be expressed as a whole number and a proper

fraction. Teacher A articulated this type of student error in the course of performing

the following 0perati0n:3%+%. Some of the expressions he used to explain his

approach is presented as follows:

Teacher A: We can perform this operation in two ways. In the first way, we
can convert 3% into an improper number before adding as:
5 5 41 5 41 10 51 3
—t—=—F—=—+—=—=4—.
12 6 12 6 12 12 12 12
In the second way, we add the whole number parts and fractional parts and
add later as:
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1 10 .1
2,5 35, 10 (5,920 5 543 43
126 12 12 12 12 12 12

Student: The first way is easier.

Teacher A: You are absolutely right. | do not advise you to use the second
way. Because | am sure you will make a mistake if you use the first way. In
the previous years, the students left the operation incomplete by leaving the

mixed number in this way: 35. However, there is no such mixed number in

mathematics. Because the fractional part cannot be improper in mixed
numbers.

Teacher A paid close attention to a difficulty encountered by the students due
to not following the order of operations rule. The teacher was teaching multiplication

and division of rational numbers and expressed his consideration explicitly after the

-3 (-2) 5 7
—|——+—=+— as follows:

provision of > 3 7%

Teacher A: Who wants to explain the step-by-step solution of this task?

Student: Teacher, we will initially perform the subtraction operation in this
task, won’t we?

Teacher A: Well, you are absolutely wrong. You make the most critical error
here. Now, | circle this part of the task and specifically note down a remark
as ‘the two negatives do not make a positive”.

Students: Why?

Teacher A: Because you have to perform the division operation first
according to the order of operations rule.

Finally, Teacher D took into account a possible student error that might occur
due to using bad notation when performing the exponentiation of unknown variables.
The teacher chose to use the following example to express her consideration: find the

X' — x> +10
value of T where x =—2. The convention among mathematicians is to

perform x*> and x° by writing -2 inside the parenthesis as (-2)° and (-2)°
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respectively. In the following excerpt, Teacher D manifested her consideration about

the error students made when they did not follow the aforementioned convention:

Teacher D: In this task, you have to substitute -2 into the given single
variable expression. You should pay attention to using parenthesis when
substituting -2. All you need to do is use parenthesis. Do not forget this! Let
me repeat once more. If an expression includes unknown variables such as
x® and x*and if you are asked to substitute a negative number into this
expression, you should always put the number in parenthesis while
performing exponentiation. If you do not perform in this way, then you will
certainly make an error. Namely, you cannot perform the exponentiations as

x® = —2%and x* = —2?. Is that okay?
Students: Yes!

5.2.3. Attending to students’ misconceptions

Teachers explicitly uttered that students held the following misconceptions
about rational number concepts: (i) counting tick-marks rather than counting equal
parts of the line segment when locating a rational number on a number line, (ii) over-
generalizing location of positive rational numbers to negative rational numbers, (iii)
over-generalizing multiplication and division of rational number algorithms to
addition and subtraction of rational numbers, (iv) under-generalizing simplification
of rational number multiplication, (v) misapplying multiplication to mixed numbers,
(vi) ordering decimals by treating the digits after the decimal points as separate
numbers, (vii) performing exponentiation by adding base and power, (viii)
performing exponentiation by multiplying base and power, and (ix) believing that a
larger number must always be divided by a smaller number.

Teachers expressed that students erroneously focused on tick-marks rather

than equal distances when locating rational numbers on a number line. For instance,
Teacher D expressed this type of consideration while teaching the location of % ona

number line as follows:

Teacher D: When locating rational numbers on a number line, the most
salient error you make is counting tick-marks rather than counting equal

parts of the line segment. For instance, if |1 ask you to locate g on a

number line, never do in the following way:
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Instead of this, divide the line segment between 0 and 1 into 6 equal parts.
Next, count five equal parts by beginning from 0 and mark the end of the

fifth equal part as g in this way:

Teachers explicitly uttered in the classroom that students over-generalized location
of positive rational numbers to negative rational numbers. To illustrate, Teacher C used the
following expressions to explain this type of consideration:

Teacher C: | give considerable emphasis on location of rational numbers on

a number line. Students make a lot of mistakes when they try to locate

rational numbers on a number line. For instance, when locating a negative

rational number they act as if it is a positive rational number. That is, they
usually start counting from left to right as they do when locating a positive

: . 1
rational number on a number line. Let’s say, we want to locate —— on a
8

number line. The student divides the segment between 0 and -1 into eight
equal parts. The student needs to start counting the equal parts from 0.
However, the students start counting the equal parts from -1 and locate the
negative rational number as follows:

1 2 3 4 3 7 &

- 1 ]
-1 T 0
1

g

Since the students start counting from the opposite direction, they find the

location of —% rather than finding the location of —%.

Teachers articulated in the classroom that students tended to over-generalize
multiplication and division of rational number algorithms to algorithms for adding
and subtracting rational numbers. The classroom utterances expressed by Teacher A

for this type of consideration is given below:
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Student: Can | ask you a question?
Teacher A: Yes, you can.

Student: If rational numbers have same numerators and different
denominators, can we directly add the numerators?

Teacher A: No, you cannot. Thanks, for your question, you touched upon a
good point. When | teach children multiplication and division of rational
numbers, they forget how to add and subtract rational numbers. That is, they
start to add and subtract rational numbers as if they are multiplying or

dividing. For example, when asked to find the answer of g—g they

perform the subtraction operation in this way: g—g = -8 =%. After

707-7
you learn multiplication and division of rational numbers, never add and
subtract rational numbers in this way.

Teachers explicitly stated in the classroom that students under-generalized
simplification of rational number multiplication by thinking that simplification can
only be done by criss-crossing. The classroom utterances expressed by Teacher A for

this type of consideration is given below:

Teacher A: Let’s find the answer of (0.25)-(—0.5_9). We first convert

9
decimals into rational numbers in this way: ﬁ(?) Now we have to
check whether we can simplify rational numbers. 9 divided by 9 is equal to

1.
Student: But, you simplified top to bottom!

Teacher A: In the previous lesson, | emphasized that we can simplify not
only by criss-crossing but also by using top to bottom method. However, |
still see that there are students who think that they can only simplify rational
numbers by criss-crossing. As | stated in the previous lesson, the order of
numbers in the numerators and in the denominators is of no importance.
What is important is that the numbers that are to be simplified should be at
different positions of the main fraction bar. That is, one of them should be
over the main fraction bar, the other one should be under the main fraction
bar.

Teachers explicitly stated in the classroom that students misinterpreted the
meaning of mixed numbers and applied their understanding of whole number
multiplication to mixed numbers. The classroom utterances expressed by Teacher D

for this type of consideration is given below:

Teacher D: Let’s check if 4% is equal to 4% or not.
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Students: They are equal! They are equal!

Teacher D: Never think in that way. 4% means that we need to multiply 4

by E. Thus, 4-1 is equal toﬂ.1:4_’1:f:2. On the other hand, 4l isa
2 2 12 12 2 2

mixed number and it is actually equal to 4+%. Now, if we convert 4%

into a rational number, we get 4%: 4X§+1:% As you can see 2 ;tg

and thus 4-% is not equal to4%. By asking this problem, | wanted to see

whether you can distinguish between mixed numbers and multiplication of a

whole number by a rational number. Please, do not confuse them! 4.%

denotes a multiplication operation, whereas 4%denotes an addition

operation.

Teacher A articulated in the classroom that some students ordered decimals
by treating the digits after the decimal points as separate numbers. The classroom
utterances expressed by Teacher A for this type of consideration is given below:

Teacher A: Never forget this: if you are ordering decimals that have unequal
number of digits after the decimal point, first equate the number of digits
after the decimal point. How can you equate the number of digits? You can
equate them by adding zeros to the end of the digits. Let me give an
example. If you are asked to compare 2.545 and 2.55 you cannot say that
2.545 is larger than 2.55. Because you cannot simply say that 545 > 55 so
2.545>2.55. Then, what should you do? You should first equate the number
of digits after the decimal points. 2.545 has three digits after the decimal
point and 2.55 has two digits after the decimal point. Therefore, we can write
2.55 as 2.550. Now we can compare the decimal numbers. 550 is larger than
545 so0 2.550 is larger than 2.545 and finally 2.55 is larger than 2.545.

Teacher B explicitly stated in the classroom that students erroneously added
the base with the power when asked to perform exponentiation of whole numbers.
The classroom utterances expressed by Teacher B for this type of consideration is

given below:

Teacher B: Well, what does exponentiation mean? It means that we need to
MULTIPLY a number with itself as many as the power. | especially wrote
“MULTIPLY” by capital letters, since some students erroneously add base
and power when performing exponentiations. For instance, let’s perform
(+3)%, (-2)* and (—4)” respectively. I want to write “multiply” next to each
power in order for you not to make mistakes in this way:
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Teacher A articulated in the classroom that students erroneously multiplied
the numerator and the denominator of a rational number by the power when asked to
perform exponentiation of rational numbers. The classroom utterances expressed by

Teacher A for this type of consideration is given below:

2
Teacher A: How do you find the answer of Gj ? In the previous

years, there were some students who performed exponentiation by
multiplying the exponent by the numerator and the denominator in this

2
way: (Ej _>x2 =%. If you do in this way, your answer will be

4 4x2

5\’ . L
wrong. (Zj means that you have to multiply % with itself for two

. 5Y.
times. Thus, (—j is equal t02x2 -2
4 4 4 16

Finally, Teacher D articulated in the classroom that students erroneously had
the conception that a larger number must always be divided by a smaller number.
Teacher D used the following example for this purpose: “120 bottles of milk with
same capacity were evenly filled with 40 liters of milk and there remained 10 liters
of milk. Then find the capacity of each milk bottle.” The following explanations of
Teacher D while solving this task manifested how she took into account student

misconception related with whole number thinking:

Teacher D: If 10 liters of milk remain after filling up all milk bottles then it
means that 120 bottles have a total capacity of 30 liters. Now, listen to me
very carefully. Most of the students think that they should divide 120 by 30
to find the capacity of each milk. But never forget that there is no rationale
for always dividing a larger number by a smaller one. In some cases, you
may have to divide a smaller number by a larger one. In this example, you
need to divide 30 by 120. Why? Because you have 30 liters of milk and you
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need to distribute them evenly among 120 bottles. You fill each bottle one
by one until running out of all of the milk.

In this section, the cases in which teachers attended to student difficulty, error
or misconception were described at length. In the following section, the cases in

which teachers kept unnecessary work to minimum were described thoroughly.
5.3. Keeping Unnecessary Work to Minimum

Middle school mathematics teachers deliberately attempted to keep
unnecessary work to minimum during the provision of rational number examples.
Thus, subcategories emerged from this category were (i) reducing technical work by
focusing on the essence, (ii) highlighting relevant parts of examples and not going

into extra details, and finally (iii) using properties of operations to reduce workload.
5.3.1. Reducing technical work by focusing on the essence

Teachers provided rational number examples in the following way to reduce
technical work and focus on the essence: (i) the choice of rational numbers to
illustrate repeating decimals, (ii) adding or subtracting whole parts and fractional
parts separately when adding or subtracting mixed fractions, (iii) simplifying rational
numbers in the course of performing operations, (iv) drawing only the relevant part
of a number line when locating rational numbers on it, (v) the choice of relevant
strategy when ordering rational numbers, (vi) using LCM method instead of
multiplying denominators when finding the common denominator of rational
numbers, (vii) not trying to enlarge rational numbers by 1, (viii) using shortcuts for
adding and subtracting a whole number and a rational number, (ix) using subtraction
formula instead of equating denominators during the subtraction of rational numbers,
(x) the choice of same denominator rational numbers when illustrating associative
property of addition, (xi) using backwards strategy instead of equating denominators
when dealing with complex fractions with unknown values, and (xii) rearranging
algebraic expressions for an easier computation.

Teachers attempted to select rational numbers that help students easily notice

the repeating pattern when the numerator was divided by the denominator of the
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rational number. For instance, Teacher D chose % to show that it is a repeating

decimal. After dividing 10 by 3, the teacher expressed % as 3.33333... As it can be

seen, only 3 repeats in this decimal and it thus is easy to notice the repeating block in

this decimal. The teacher articulated that she deliberately selected % since other
rational numbers such as % needed more technical work to notice that repeating
pattern. Indeed to recognize that the repeating block of % is 142857, the teacher

needs to do extra work for column division of% )

Teachers took into consideration a shortcut method for adding mixed
fractions and suggested their students to add or subtract whole parts and fractional
parts separately in order to arrive at the answer in a quicker and shorter way. Some of
the expressions used by Teacher D to explain this approach are given as follows:

Teacher D: There are two methods for computing 1% + 42 . The first method

requires converting mixed fractions into improper numbers as follows:

1l+4§=§+%=2—56. In the second method we need to add whole parts

5 5 5
and fractional parts of the mixed numbers separately in this way:

1 3 13 4 4 29
1—+4—:(1+4)+(—+—j=5+—:5—:—,
5 5 5 5 5 5 5

Student: The second method is longer.
Teacher D: This is true if you select small mixed numbers. However, if you

select large mixed numbers such as 104§+99§, then the second way is

quite shorter. In this example, it is troublesome to multiply the whole
number parts by the denominators and there is the risk of making errors
while multiplying them. However, if we use the second method we can
easily arrive at the answer in this way:

2 3 2:3 5
10424992 = (104+99) + 252 _ 2032 .
8 8 8 8

Teachers recommended students not to simplify rational numbers as a last

step since they considered that it was superfluous to work with large numbers after
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multiplication. For instance, Teacher D uttered the following expressions related

with this consideration after the provision of %—i+% as follows:

0.8

Teacher D: We enlarge the first, second and third term by 1000, 10 and 100

respectively. Thus, we obtain%-%ﬂ'-f. It is more convenient to

simplify rational numbers now. Because, if you simplify them at the end,
you will have to strive for simplifying rational numbers that include very
large numerators and denominators. The simplified form of this expression is

! —E—% and now we can equate the denominators. The least common

25 2
multiple of 1, 2 and 25 is 50 so we can rewrite the expression as

2 125 + 1000 . Finally, this is equal t087—7 .
50 50

50 50

Teacher A deliberately attempted to draw only the relevant part of a number

line when locating rational numbers on it. That is, when locating g on a number line

Teacher A drew the interval between 0 and 1. Similarly, when locating 3% and 12

on a number line, he drew the interval between 0 and 4. The explicit classroom

utterances employed by Teacher A for this consideration is provided below:

Teacher A: You may wonder why | only drew the interval between 0 and 1
when locating g on a number line. This is due to the fact that proper

fractions are always between 0 and 1. Thus, there is no need to draw a very

long number line... 32 is a positive rational number so there is no need to

draw the negative part of the number line... % is a positive rational

number, so | will draw the interval between 0 and 4.

Teacher B generated a set of rational numbers with large denominators and
suggested his students to use benchmark strategies rather than common denominator
approach in order not to make an excessive effort for ordering. This consideration
was explicitly expressed by the utterances of Teacher B as follows:

Teacher B: How do you orderg , 1§1 and 16,

17
Students: By using common denominator approach.
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Teacher B: That is possible. However, you will have to deal with very large
numbers if you use common denominator approach. 7, 11 and 17 are prime
numbers and thus the least common multiple of these numbers is a very large
number. Instead of using this approach, you can use benchmark strategies.

Let me explain this: §is less than % and 8 is greater than é . Besides,
7 11

—g is the smallest one since it is negative. Thus, we should order the

; .16 3 8
rational numbers as follows: _ﬁ <—<—

1
Teacher B chose to use % +§ to help students realize that adding by finding

the LCM of the denominators required less technical move when compared to adding
by enlarging the first term by the denominator of the second term and the second

term by the denominator of the first term. He expressed this consideration explicitly
as follows:

Teacher B: How do you equate the denominators of —and = ?
12 8

Student 1. We multiply 12 by 8 and 8 by 12. Thus, both denominators take
the value of 96.

Teacher B: That is true, but the denominators can take a smaller value. How?
We should find the least common multiple of 12 and 8. The LCM of 12 and

8 is 24. Thus, we should enlarge 2 by 2 and Eby 3. The more you enlarge
12 8

the rational numbers with smaller numbers, the less you spend time on
finding the answer.

Teacher A indicated that it was unnecessary to enlarge a rational number by 1

when performing the following addition operation: (_32) + (+27) - (_61) . The classroom

utterances of Teacher A for this type of consideration is provided below:

Teacher A: We initially need to adjust the signs. Thus, we rearrange the
(2, (7, 6D
3 2 6
denominators of the rational numbers. The least common multiple of 3, 2

expression  as

Next, we need to equate the

and 6 is 6. Thus, we should enlarge % by 2, % by 3 and % by

nothing. Please, do not waste your time by enlarging % by l...
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Teacher D considered using shortcuts when adding and subtracting a whole

number and a rational number. Teacher D expressed this consideration explicitly

after the provision of 2+% as follows:

Teacher D: There are two ways of adding 2 and g . In the first way, we add

them by using common denominator approach as follows:

2+§=E+§=E+§=§. This way is quite time consuming and
5 1 5 5 5 5

lengthy. | suggest you to use the second way. In the second method, you

multiply the whole number by the denominator of the rational number and

then add the numerator of the rational number as follows:

3 2x5+3 13

2+5 c < Instead of wasting time by using common
denominator approach, you can use the second method to find the answer
quicker.

Teacher A considered the use of subtraction formula as a shorter and quicker
approach to subtracting rational numbers instead of using common denominator
approach. The teacher did not write on the board the following formula

%—5 = % but verbally explained how to apply it as follows:

Teacher A: | want to teach you a shortcut method for performing%-%.

Listen to me very carefully, 1 am teaching you how to subtract rational
numbers without actually finding the common denominator. We multiply the

first numerator by the second denominator and we get2x2 =4 Then, we
multiply the first denominator by the second numerator and get5x1=5.
Next, we subtract 5 from 4 and find the numerator of the answer as -1.
Finally, we multiply the first denominator by the second denominator and

get 5x2=10 as the denominator of the answer. Thus, é—% is equal to —%

Teacher A chose to use the same denominator rational numbers when
teaching associative property of addition of rational numbers. The teacher implied
that it would bring extra work to select rational numbers with different denominators
for teaching this property. Teacher A expressed this type of consideration as follows:

Teacher A: Previously, we checked whether associative property of addition

holds for integers. Now, we do the same thing for rational numbers. | want to
select same denominator rational numbers since | do not want to spend time
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for the extra work of equating denominators. Let’s see whether the following
equality holds:

(1 3) 771 (3 7)
—+—=|+===+| =+
2 2) 2 2 \2 2
4 371 10
—t —=— —_
2 2 2

2
7 11

2 2

The left hand side of the equation is equal to the right hand side of it. Then,
we can say that associative property of addition holds for rational number
set.

Teacher A was teaching how to operate with complex fractions that included

2
unknown values. The teacher used the following example: 3——1=1 and alerted

5-—
X

students to the use of backwards strategy rather than using common denominator
approach for solving it. The following utterances of Teacher A demonstrate how he
took into account reducing technical work while solving aforementioned type of
complex fractions:

Teacher A: A normal student would not attempt to use common denominator
approach for solving this task. Only an inattentive and mistaken student
would use this approach. We can solve this task with less time and effort by
using backwards strategy. Otherwise, it would be so hard to arrive at the
answer.

Finally, Teacher D pointed to rearranging algebraic expressions for an easier

computation. In more detail, the teacher was teaching multi-step operations with

rational numbers and she calculated the value of 5—X—x+gx for x=—§ by using

two ways. After the explanation of the second way, the teacher suggested her
students to use the second way for an easier computation. The explicit classroom

utterances employed by Teacher D for this type of consideration is given below:
Teacher D: We can solve this example in two ways. In the first way, we

3
5(]] 3) 3( 3
substitute x into polynomial as foIIows:——(——jJr—-(——).
3 4) 4 4

However, this way imposes more operational burden on you. To reduce this
operational burden you can use the second way. In the second way, you need
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to rearrange the polynomial as g X— x+%- x and then substitute x into this

| mial. W do it in thi —5 (——3j ( —3j+—3 ( —Sj
olynomial. We can do It in this way: —- ol | = . As you

can see, the second multi-step operation is simpler to calculate. If you do in
this way, you will have to work less to calculate it.

5.3.2. Highlighting relevant parts of examples and not going into extra details

Teachers considered highlighting relevant parts of examples and not going
into extra details in the following ways: (i) emphasizing important parts of an
example and not finishing up all the calculations, (ii) not seeing it essential to
perform simplifications in the course of teaching a concept, (iii) not seeing it
essential to perform conversions in the course of teaching a concept and finally (iv)
not seeing it essential to equate denominators when symbolically expressing the area
model of multiplication of rational numbers.

Teachers emphasized important parts of the examples they used and did not
find it necessary to finish up all the calculations. For instance, Teacher C provided

{3_7]4
4 5|5

1
E+?+5 as a multi-step operation example, however he highlighted only

2 8
the important points of this example and did not finish up the calculation. The
explicit classroom utterances employed by Teacher C for this type of consideration is
presented below:

Teacher C: Let me explain briefly how to perform this multi-step operation.

3 714
Listen to me very carefully. You will first perform [Z—g}g and find a

rational number. Next, you will perform %—Z and find another rational
number. Later, you will divide the former rational number to the latter
rational number. After this, you will add  to the rational number you

obtained as a result of division. Finally, you will ddd 5 and arrive at the
answer. 2

Teachers did not find it necessary to perform simplifications in the course of
teaching a concept. For instance, Teacher D expressed this type of concern when she
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started teaching division of rational numbers via the following example:§+g. Some

of the expressions she used to explain her approach are as follows:

Teacher D: To perform division operation with rational numbers, you need
to write down the first rational number without making any modification,
and reverse the second rational number. Then, you need to multiply the

rational numbers as follows:§+§ =§><Z = % In this example, we could

7 5 6
have simplified the rational numbers. However, we do not need such work
for the time being. Here, knowing how to perform division operation is of
prior importance. The rest is extra detail.

Teacher B was teaching the procedure for expressing repeating decimals as
rational numbers. The teacher provided the following example for this purpose:

12:9_1:%. As can be seen, the teacher leaved the rational number in

improper form and did not find it essential to convert it into a mixed number. The

1.29 =

following teaching episode shows how Teacher B took into account this type of

consideration:

Student 1: Shall we convert % into a mixed number?

Teacher B: No, there is no need to convert it into a mixed number.

Student 2: Won’t we convert it into mixed number?

Teacher B: No, leave it in that form. Do not spend your time for conversion.

Finally, Teacher D was teaching how to express symbolically the area model
of multiplication of rational numbers. The teacher did not find it necessary to equate
the denominators of the symbolic expression. This consideration was expressed by

Teacher D as follows:

Teacher D: How do you express the following area model symbolically?

Student: The first shaded region refers to%, the second shaded region refers

tol. Now, we should add E and E as foIIows:lJr1 :§+
3 2 3 2 3 6

ol
oo
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Teacher D: | see that many of you enlarged % by 3 and % by 2 to equate the
denominators of the rational numbers. However, you do not need to do such

work. It is enough to leave the symbolic expression as % +% _3 .

6

5.3.3. Using properties of operations to reduce workload

Teachers attempted to use properties of rational number operations to
diminish the workload in the following ways: (i) using commutative property of
addition operation rather than adding, (ii) using associative property of addition
operation rather than adding, (iii) using distributive property of multiplication over

addition rather than performing the operation, (iv) using the fact that 1 b

al/b a

a/b
without actually making computations, (v) using the fact that #ﬂ without

a a
actually making computations, (vi) using the fact that BJ{_EJZO without

actually making computations, and finally (vii) enlarging decimal numerators and
decimal denominators by multiples of 10 instead of converting into rational numbers
when performing multi-step operations.

Teachers deliberately used commutative property of addition rather than
performing several operations for solving a mathematical task. By this way, the
teachers intended to reduce operational workload needed to solve that task. For

instance, Teacher A considered this type of consideration after the provision of

(3

Teacher A: Using commutative property of addition for finding A in this
task, will make your work easier and will help you save time. If you do not

8 3
use commutative property, you need to subtract (—;j from (—g) and then

3
again subtract (—5) to findA. That is to say, performing addition and

subtraction operations for finding4, will make you spend too much time for
this task.
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Teachers chose to use associative property of addition rather than performing
a number of operations for solving a mathematical task. By this way, the teachers
intended to reduce operational workload needed to solve that task. For instance,

Teacher B considered this type of consideration after the provision of

A e

Teacher B: You can easily solve this task by using associative property of
addition of rational numbers. Never attempt to add or subtract rational
numbers to find A. If you add or subtract rational numbers, you will certainly
waste your time. Besides, there is the risk of making a mistake when

performing operations. Thus, let’s find A by using associative property.

N0 o|w

1 1
matches with the other g (_E) matches with the other (—gj and

. . 5
matches with A. Thus, A is equal to Z

Teachers preferred to use distributive property of multiplication over addition
rather than performing several operations for solving a mathematical task. By this
way, the teachers attempted to keep the operational workload to minimum. For

instance, Teacher D considered this type of consideration after the provision of

3 5 3 (5 4 3
—+—+——| =———=+— as follows:
79 11 (9 7 11

Teacher D: To solve this task, you should carry out the following steps:

First, you should distributive the minus sign to g; and 1—31respectively.

Why do we distribute? Otherwise, it would impose too much operational
burden on you. As you see, some of the rational numbers have same
magnitudes but have opposite signs. In such tasks, use distributive property
instead of customarily performing operations. Let me repeat again. Please,
do not dare to use common denominator approach for solving this task.

Teachers were teaching complex fractions and they chose to use
multiplicative inverse property of rational numbers as a fast solution technique for
complex fraction tasks. To be more precise, they used the following equality

LZE without actually making computations when solving complex fraction

al/b a
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tasks. For instance, Teacher B expressed this type of consideration after the provision

of 1—% as follows:

3+§
2

Teacher B: Now, tell me what happens when you divide 1 by any rational
number?

Student: The rational number becomes upside down.

Teacher B: Yes, the number becomes upside down. For instance, in this
example, 2 and 3 swap places. In a division operation, if the dividend is 1
and if the divisor is any rational number, the quotient will always be

e . 1 . 2
multiplicative inverse of the divisor. Thus, 3 is equal to — and you can
2
always use this principle and you do not need to perform division operation
for such situations.

a/b
Teacher D was teaching complex fractions and she chose to use # =l asa

fast solution technique for complex fraction tasks. Some of the expressions used by

. 02+2
Teacher D after the provision of 307 as follows:

Teacher D: In this example, there are repeating decimals. First, we need to

convert them into rational numbers. 0.2 can be expressed as g and 0.7 can

be expressed as g Now, we can perform the operations in this way:

2 20
02+2 "% o . . Ny _
“re_9  _ 9  What will be the answer if you divide a rational
9 9

number by the same rational number? The result will be 1.

Student: Well, won’t we invert and multiply when performing division
operation?

Teacher: It makes no difference. Let’s do it that way:

20 20 20 %

1
: = X =-=1. As you can see, the result is 1. Therefore, if
9 9 § 2 1 Y

you divide a rational number by the same rational number, the result will
always be 1. Keep this in your minds and do not waste your time by the
lengthy process of performing division operations for such cases. Is that
okay?
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Students: Yes!

Teacher D was teaching how to perform exponentiation of rational numbers
and she considered the use of additive inverse property of rational numbers to reduce
operational burdens. In other words, rather than actually making computations, the

a a
teacher used the following equality E+(_Ej =0 during the solution of multi-step

operation examples. Some of the expressions used by the teacher after the provision

3 2
of (—lj +(lj +1 is given below:
2 2 2

Teacher D: In this example, we should initially find the square and cube of
rational numbers. Remember how we performed exponentiation with
rational numbers. We can find the powers of numerators and denominators

) 2 1 111

separately for faster solution in thisway: ———~+ 5>+ - =——+—+_. Next,
2 2° 2 8 4 2
L . 1 1 1 4 1 .
we perform division operation as —=+==—-=x—=—=. Finally, we
8 4 8 1 2

should add —% and%. Actually, you do not need to perform addition

operation. Why? Because addition of a rational number and its additive
inverse will always be equal to 0. Then the answer is 0.

Ultimately, Teacher A was teaching multi-step operations whose terms
included decimal numerators and denominators. The teacher considered that the
easiest way to perform such multi-step operations was enlarging decimal numerators
and denominators by multiples of 10. This consideration was manifested by Teacher

0.35 0.7 0.22
+

- as follows:
0.05 0.0035 0.0011

A after the provision of

Teacher A: It is not easy to work with decimal terms so we need to enlarge
the numerators or denominators by multiples of 10 and get rid of decimal
numbers. We enlarge the first term by 100, the second term by 10000 and
the third term by 10000 and obtain the following expression:

35 + 7000 _ 2200 . Now, let’s perform division operations. The first term is

5 35 11
equal to 7, the second term is equal to 200 and the third term is also equal to
200. Finally 7+200-200 is equal to 7. Thus, the answer is 7. As you can see,
this way is quite easy. There is another way of solving this task, but I do not
suggest that way. Because it entails a lengthy process such as converting
decimals into rational numbers, finding common denominators and so forth.
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After all, you can solve this task by using the second way as follows:
35 7 22

100, 10 100 |
5 ' 35 11

100 10000 10000
In this section, the cases in which teachers kept unnecessary work to
minimum were described at length. In the following section, the cases in which

teachers took account of examinations were described in detail.
5.4. Taking Account of Examinations

Middle school mathematics teachers considered examinations during the
provision of rational number examples. They manifested this type of consideration in
the following cases: (i) highlighting examples that have the potential to appear in
written examinations, (ii) highlighting examples that have the potential to appear in
practice examinations of private teaching institutions, (iii) highlighting examples that
have the potential to appear in high stakes examinations, (iv) explaining the method
of scoring for potential written examination questions, (v) incorporating the solution
of high-stakes examination examples into the classroom; (vi) expressing the answer
of multiple choice questions in their simplest forms in order to find it in the
alternatives, (vii) finding the answer of multiple choice complex fraction tasks by
trial and error of the alternatives and finally (viii) teaching shortcut methods for
gaining speed in the high stakes examinations.

Teachers informed their students about the important rational number
concepts and highlighted the examples that had the potential to appear in written

examinations. Teacher A expressed the following utterances after providing —g—g

as a subtraction example: “The students have difficulty in performing operations with
no parenthesis. However, I am planning to ask such tasks in your written exam”.
Teacher B expressed this type of consideration while providing examples related
with locating a rational number on a number line, converting repeating decimals into
rational numbers, ordering rational numbers, teaching properties of rational number

operations, teaching multi-step rational number operations, and exponentiation of
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2 3
rational numbers. For instance, after providing (—gj and (—gj as examples for

exponentiation Teacher B expressed the following utterances: “I will ask you
questions of this kind in your written exam. For instance, | will ask one group of the
students to find the square of the rational number and ask another group to find the
cube of the rational number”. Teacher C expressed this type of consideration after

providing the following set of rational numbers for ordering: —2,0 452 2

'3'12'18" 6
He expressed this approach by utterances such as: “Next Friday, you will take your
second written exam. You will absolutely come across with at least one ordering
question. Without a doubt, every year | ask ordering questions to the seventh
graders”. Teacher D expressed this type of consideration while providing examples
related with locating rational numbers on a number line, expressing rational numbers
in different forms, ordering rational numbers, adding rational numbers, modelling of
multiplication of rational numbers and performing multi-step rational number

operations. For instance, after asking students to find the value of 5—3)(—x+%x for

X= —% , she expressed the following utterances: “Let me inform you that I will ask a

question like this one in your written exam”.

Apart from written examinations, teachers highlighted rational number
examples that had the potential to come up in practice examinations of private
teaching institutions (known as dershane). Teacher B expressed this type of
consideration during the provision of examples related with locating a rational

number on a number line, adding and subtracting rational numbers and performing

8 3
complex fraction operations. For instance, he provided _?_(_Ej as a subtraction

example and stated his consideration as follows:

Teacher B: You often come up with these types of questions in practice
examinations of private teaching institutions and you often get confused
while solving it. | often denote operation sign larger when compared to the
number sign. However, the computers cannot do the same. Namely, the two
signs are of the same size in computer print-outs.
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Student: You are right teacher, we always mix them up in the practice
examinations.

Teacher C articulated this type of consideration during the provision of examples
related with explanation and location of rational numbers on a number line. To
illustrate, Teacher C was teaching the definition of rational numbers to his students,
when he expressed that the rationality of 0 might come up in practice examinations

as follows:
Teacher C: Rational numbers include positive rational numbers, negative
rational numbers and 0. Zero has a special case, it is neither negative nor
positive. Although it does not have any sign, it is a rational number. Please,

keep in your mind that practice examinations include questions related with
the rationality of 0.

In addition to practice examinations, Teacher A highlighted the examples that
had the potential to appear in high stakes examinations such as SBS (Secondary
School Entrance Examination for middle school students in Turkey). This
consideration was manifested by Teacher A when working out examples related with
explanation and location of rational numbers, expressing rational numbers in
different forms, comparing and ordering rational numbers, and multiplication of
rational numbers. The explicit classroom utterances expressed by the teacher for this

type of consideration is given below:

Teacher A: Between 2009 and 2013, three questions have been asked in SBS
examinations about number sets. Namely, three questions about number sets
have been asked in the last five years. Why? Because, students in general do
not pay much attention to number sets... Proper fractions are always
between 0 and 1 and negative proper fractions are always between -1 and 0.
So far, two questions have been asked in SBS examinations about location of
proper fractions. Do not forget this. Let me repeat again, location of proper
fractions do appear in SBS examinations. This is due to the fact that proper

fractions are the most special ones among fractions... Please note that 59 is

equal to 6. Why? Because we converts9into a rational number as 5% and

this mixed number can be expressed a55+§ =5+1=6. Thus, a9is equal to

a+l. This was a question similar to the one that came up in SBS
examination in the past years... How can we order the following fractions:

E,Eandg? The first fraction requires % to make 1, the second fraction

4 6

requires % to make 1 and the last fraction requires %to make 1. Thus,
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%>1 >% and %< §<g There are definitely ordering questions of this

6

kind in SBS examination... Let’s write a mathematical statement based on
the given area model for multiplication of rational numbers. In modelling
examples, the double shaded region refers to the product of the
multiplication operation. According to me, modelling of multiplication is a
very important concept. However, interestingly, there appeared not a single
guestion about modelling of rational number multiplication in SBS
examinations till now.

Some of the middle school teachers not only highlighted examples that had
the potential to appear in written examinations but also pointed to their method of

scoring potential written examination questions. Teacher B expressed this type of

consideration in the course of ordering —%, 23, 1% and —1% as follows:

Teacher B: I gave you four rational numbers. Let’s order them.
Student: Shall we order from least to greatest?

Teacher B: Yes, we may order from least to greatest. If | ask you a question
like this in your written examination, you should immediately write the
smallest one, then a larger one, again a larger one and finally the largest one.
If you order in this way, you get full points. You get full points as long as
you correctly order the given rational numbers. If you write one of the
rational numbers in the wrong order, you cannot get any points from that
guestion. Since this is an open-ended question, | want you to order all
rational numbers correctly. For instance, if you order three of them correctly
and one of them incorrectly, | cannot accept your answer. Therefore, please
do not make a mistake while ordering rational numbers.

Teacher D expressed this type of consideration while teaching how to locate —-2— on

a number line as follows:

Teacher D: When partitioning the line segment between -2 and -3, please
pay attention to counting the intervals rather than counting the tick-marks. If
you count the tick-marks, you will be mistaken. If you make such a mistake
in your written exam, | will not accept your answers. | am telling this to you
again and again in order for you not to make mistakes when locating. Please
be careful! Count the intervals rather than the tick-marks. In this example,
there are 6 tick-marks and 5 equal intervals between -2 and -3. Suppose you
located the number correctly by counting tick-marks, | again do not accept
your answer. Why? Because, you should have located the number by
counting the equal intervals rather than tick-marks.

In addition to verbally expressing the rational number examples that might
appear in written/practice/high stakes examinations, Teacher A attempted to

incorporate several SBS and OSS (University Entrance Examination for secondary
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school students in Turkey) examples into the classroom. The teacher explicitly

uttered that he would like to present several high stakes examination examples after

he finished ordering 3, ’ and 7 as follows:
510 3

Teacher A: In the previous lesson, we ordered rational numbers that included
different numerators and denominators. Now, it is time to have a look at SBS
and OSS questions that have been asked in the previous years (The teacher
sketched the following examples on the board by copying from a booklet).

w| = PO

Look at these examples. The one on the left have been asked in SBS in 2010
to seventh grade students. In this example, you are asked to determine the

point that corresponds to%. The example on the right have been asked in

SBS in 2008 to seventh grade students. In this example, you are asked to
determine the number that correspond to point C. Now, let me work out

these examples... Now, it is time to order 1996 1997 and 1998 This

) 19971998 1999
question was asked in OSS in 1996. I took this examination and ordered
them in that examination. Now it is your turn...

Another way teachers took account of examination was seen in their attempts
to express the answer of multiple choice questions in their simplest forms in order to
find it in the alternatives. Teacher A manifested this concern when working out
examples related with expressing rational numbers in different forms, ordering
rational numbers, multiplying rational numbers, teaching distributive property of
multiplication over addition and modelling multiplication of rational numbers. For

instance, Teacher A expressed this type of consideration after the provision of

g+11 follows:
ct1g ) 2 follows:

Teacher A: We distributive % over % and % in this way:

11111 4 1

5
—t— +—=—+—=—"_If you leave the answer asi,you
5 % 102 5 20 20 20 20 20
cannot find it in the alternatives. Then, what should you do?

Students: We should simplify it!

Teacher A: By which number should I simplify it?
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Students: Five!

Teacher A: We simplify it by 5 as 25 S :% . This time, the answer is in its

simplest form. Now, you can find it in the alternatives.
Teacher B manifested this type of consideration in course of expressing

rational numbers in different forms and multiplying and dividing rational numbers.

For example, he employed this type of consideration after converting 1.045 into a

rational number as:

Teacher B: We convert this repeating decimal into a rational number as:
— 1045-10 1035

1.045=
990 990

Student: Do we have to find the simplest form of %?

Teacher B: Normally, | do not expect you to simplify it. However, in

practice examinations or in high stakes examinations, you cannot find 1035

990
in the alternatives. In these examinations, the alternatives are given in their
simplest forms. Thus, you need to simplify it if you participate in such
examinations.

Another case in which teachers took account of examinations occurred when
teachers attempted to find the answers of multiple choice complex fraction tasks by
trial and error of the alternatives. Teachers used two different methods to solve such
tasks. In the first method, teachers used working backwards strategy. In the second

method, they substituted each alternative into the given complex fraction task, in

order to find the correct answer. After the presentation of 6—% =4 as a complex
6——
X

fraction example, Teacher A initially found the answer by working backwards. Next,
he explicitly expressed the following utterances: “There is another method for
finding the answer if the given task is a multiple choice question. That is, you can try

each alternative in the given complex fraction task to find the correct answer”.

Similarly, Teacher B introduced 62 =-1 as a complex fraction example and
—-5
X—1

initially solved the task by using working backwards strategy. Next, he solved this
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task by trial and error of the alternatives. The alternatives were %,%,Zand?a

respectively. Some of the expressions he used to explain his approach were:

Teacher B: In addition to using working backward strategy, we can find the
answer by trying each alternative. Let’s try 2 first. If we substitute 2 into X,
we find the answer as 2. This is not the correct answer. So, let’s try 3 now. If
we substitute 3 into x, we find the answer as -1. This is the correct answer.
You can use this method in practice examinations or in high stakes
examinations.

One final consideration of this type was seen in teachers’ attempts to teach
shortcut methods to their students for gaining speed in the high stakes examinations.

Teacher A manifested this concern when working out multi-step operation examples.

For instance, after working out 1— he used the following statements:

Teacher A: | worked out the first two multi-step operation examples by
using a long way. Now, | am switching to a fast solution technique. In this
technique, you circle each step and write the answer next to each circle as
follows:

My aim for teaching this technique is to have you save time during
examinations. Do not waste your time by writing each step again and again
as you proceed towards the result.

Teacher C manifested this concern in the course of expressing rational numbers in
different forms and adding and subtracting rational numbers. For instance, he

suggested performing 1+% as 1Xj+1:% rather than using the common

denominator approach. Finally, Teacher D taught shortcut methods to their students
for gaining speed in the high stakes examinations in the course of expressing rational
numbers in different forms, adding and subtracting rational numbers, performing

exponentiation of rational numbers and performing multi-step operations with
300



0012 2 , 04 454 multi-

0.3 08 0.02

rational numbers. For instance, after the provision of

step operation example, Teacher D explicitly uttered the following expressions:

Teacher D: Normally, you would solve this task by converting decimal
numbers into rational numbers and then performing division operations.
However, this is a lengthy process. Instead of this, you can enlarge the terms
by multiples of 10 and get rid of decimal numbers. You need to gain speed
for high stakes examinations. Therefore, you had better use this method
when solving these kinds of tasks.

5.5. Including Uncommon Cases

This consideration had to do with middle school mathematics teachers’
attempts to choose examples that are rather exceptional or special in mathematics or
examples that are under-represented in the teaching of rational number concepts.
Thus, subcategories emerged from this category were entitled as (i) exceptional or
special cases in the teaching of rational number concepts and (ii) under-represented

cases in the teaching of rational number concepts.
5.5.1. Exceptional or special cases in the teaching of rational number concepts

Middle school mathematics teachers chose to use the following exceptional or
special cases in the teaching of rational number concepts: (i) multiplying any rational
number by 0 yields 0O, (ii) multiplying any rational number by 1 yields the rational
number itself, (iii) dividing any rational number by 0 is undefined, (iv) dividing any
rational number by 1 yields the rational number itself, (v) dividing O by any rational
number excluding 0 yields 0, (vi) dividing 1 by any rational number excluding 0
yields the multiplicative inverse of that rational number, (vii) dividing -1 by any
rational number excluding 0 yields the additive inverse of the multiplicative inverse
of that rational number, (viii) raising any nonzero rational number to the power of 0
yields 1, and finally, (ix) raising 1 to any rational number power yields 1.

Teachers pointed to the zero property of multiplication in the course of
teaching properties of rational number multiplication. For instance, during the
teaching of rational number multiplication, Teacher B initially had students review

the examples included in the textbook. Teacher B paid attention to the following
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4
example: (—gj-o and explained that multiplying any rational number by 0 yields 0.

In addition, while teaching properties of multiplication of rational numbers he chose

to use O-g as an example for zero property of multiplication. The explicit classroom

utterances expressed by Teacher B for this consideration were provided below:

Teacher B: What is absorbing element in multiplication?
Students: Zero!

Teacher B: Yes, absorbing element is 0 in multiplication. If you multiply any
rational number either from the left side or from the right side by 0, the

answer will be 0. Let me give you an example. 0-2 is equal to 0. Why?

Because 0 is the absorbing element in multiplication of rational numbers.

While teaching properties of rational number multiplication, some of the
teachers pointed out that multiplying any rational number by 1 yields the rational
number itself and they recalled 1 as identity property of multiplication operation. For

1 1
instance, after the provision of(+§j'1=§, Teacher D articulated the following

consideration:

Teacher D: Identity element is an element which does not influence the
product of multiplication. What is that element? That is 1. If you multiply
any rational number by 1 you get the same rational number as a product. If

you multiply % by 1, you will again get % Thus, 1 is the identity element

of multiplication of rational numbers.

Apart from teaching the special cases of multiplication of any rational number
by 0 or 1, the teachers indicated awareness to teaching the special cases of division

of any rational number by 0 or 1. For example, Teacher D defined rational numbers

as numbers that can be written in the form % where b is not equal to zero and

provided g as a non-example for rational numbers. During this time, Teacher D

expressed that division of any rational number by 0 will always be undefined. In

another example, Teacher D pointed to the special case of division of any rational
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l+E
a

number by 1. Namely, she provided =1 as a complex fraction example and

while working out this example, she focused on the division of any rational number
by 1. Her consideration of this special case is given as follows:

Teacher D: Here, 1+E is equal to 6, thus i is equal to 5. You divide 5 by
a a

such a number that the result will be equal to 5. What is this number?
Student 1: One!
Student 2: Zero!

Teacher D: No! % is undefined. Please, do not forget that division of any

rational number by 1 will be equal to the rational number itself. Thus, a is
equal to 1.

A number of teachers also paid attention to teaching the following special
cases: dividing 0 by any rational number excluding 0 yields 0 and dividing 1 by any
rational number excluding 0 yields the multiplicative inverse of that rational number.

To give an example, in the course of teaching multi-step operations with rational

1

1 7
numbers, Teacher B provided (2§—§j+(—5j as an example to this idea and

subsequently expressed the following consideration:

Teacher B: If we convert 2% into an improper number, we getg. Next, we

subtract % from % and get zero. Now, we should divide 0 by—%. If we divide

0 by any rational number, the result will be 0. Namely, in a division
operation, if 0 is a dividend, then the answer will always be 0. In contrast, if
0 is a divisor in a division operation, then the answer will be undefined.

Moreover, Teacher B provided 1—% as another multi-step operation example

3+ ——+
1+1
2

and in the course of working out this example, he paid attention to the special case of
division of 1 by any rational number excluding 0. Some of the expressions he used to

explain his consideration is presented as follows:
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Teacher B: This complex fraction is a bit messy. There are five operations in
this multi-step operation. We proceed from bottom to top in such multi-step

operations. 1+% is equal to g Now, if we divide 1 by any rational number,
what happens to that rational number?

Student: It becomes upside down.

Teacher: You are right, the number becomes upside down. Thus, 2 and 3
swap places. In a division operation, if the dividend is 1 and the divisor is
any rational number, then the quotient will always be equal to the flipped

1 2
over version of that rational number. Thus, 3 is equal to 3 You do not

2
need to perform any operation for this. However, note that this is true only in
cases where the dividend is equal to 1.

In another classroom event, Teacher A drew students’ attention to following
special case: division of -1 by any rational number excluding O yields the additive
inverse of the multiplicative inverse of that rational number. Teacher A selected

12
(_1)+(_ﬁj from the student textbook and thereafter expressed his consideration in

the classroom as: “I chose to use this example to have you notice that division of -1
by any rational number except for O will be equal to the additive inverse of the
multiplicative inverse of that rational number.”

Another manifestation of this approach occurred when Teacher A was
teaching exponentiation of rational numbers. More specifically, Teacher A used

0

2 0
(—%JFZJ +(—§j as a multi-step operation example and focused on (—gj s

important to note that for this exponential number, the intuitive definition of
exponents (i.e., repeated multiplication) does not work. Thus, the teacher treated the
case of zero exponent as a special case and explicitly expressed the following

utterances: “Raising any nonzero rational number to the power of 0 yields 1. Thus,
2 0
(—gj is equal to 17.

Finally, Teacher A considered another consideration about exponentiation of
rational numbers. That is, while teaching how to find the square and cube of rational

numbers, the teacher asked the students to find the answer of 1. The teacher chose
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to use this example to point to the special status of 1 as the number that is invariant
under rational number powers. He used the following expressions to explain this type
of consideration: “No matter how many times 1 is multiplied by itself, the answer
will always be equal to zero. Thus, raising 1 to any rational number power always

yields 17.
5.5.2. Under-represented cases in the teaching of rational number concepts

Middle school mathematics teachers included the following under-
represented cases into the teaching of rational number concepts: (i) emphasizing
rationality of O, (ii) including O into the sequence of rational numbers when ordering,
(i) adding/subtracting/multiplying/dividing more than two rational numbers, (vi)
incorporating equivalent pairs into comparison of rational numbers, (v) incorporating
into the classroom ordering examples that entail the use of residual thinking and
finally, (vi) estimating the addition/subtraction/multiplication/division of rational
numbers.

Teachers provided their students with the definition of rational number set,
represented it symbolically as Q=Q" U{O} wQ"and pointed to the rationality of 0.

For instance, the consideration employed by Teacher A about the rationality of O is

presented by the following teaching episode:

Teacher A: Is 0 a rational number?
Student: No!

Teacher A: Why?

Student: ... (No answer)

Teacher A: You often cannot understand that O is a rational number. This is
probably due to the fact that you confuse neutrality of 0 with rationality of it.

Have a look at this: Q =Q* U {0} U Q™. This means that rational numbers

include positive rational numbers, negative rational numbers and 0. Note that
0 is a rational number but it is neutral.

In another case, some of the teachers deliberately included O into the
sequence of rational numbers when teaching how to order them. For example,
Teacher A used a large number of examples for ordering and

o+3. . 1 1 1o 22262 2 \ere among these
5'5" 3 5

7' 2 7' 13’ '15'19



examples. Some of the utterances used by Teacher A for this type of consideration

while ordering Q (] ,0, E E is presented below:

5 5

Teacher A: For positive rational numbers, the one with a larger numerator
will be larger. In contrast, the one with a smaller numerator will be larger for
negative rational numbers.

Student: Teacher, what are we going to do with 0?

Teacher A: That is easy. Zero is the last thing to consider. | included it into
this sequence in order for you to recognize that it is in middle of negative
and positive rational numbers. You will better understand when | order them.

é and gare positive numbers so, %<§. Next, D and (5) are negative

5 5
numbers, therefore(_—57)<%. We ordered the positive and negative

rational numbers separately. Now, we locate 0 in the middle of the positive
=7 (2

and negative numbers in this way: ~—~ c <T O<%<§. Why do we

locate zero in the middle? Because it is a neutral number.
Another way teachers tried to include under-represented cases into the
teaching of rational number concepts was seen in their efforts to

add/subtract/multiply/divide more than two rational numbers. For instance, Teacher

1 3) 5
B provided 1Z+[_Ej+§ as an addition operation with three terms and similarly

-1 1
he provided (3)(25]-(—5) as a multiplication operation with three terms. Some

of the expressions he used to explain the addition example were:
Teacher B: In this example, we will add three rational numbers together.
You can add them, won’t you?
Students: ... (No answer)

Teacher B: In the previous examples, we added two rational numbers. Now,
we will add three rational numbers. | hope you will not have any trouble
with adding these numbers. More precisely, we can add not only three
rational numbers but also as many rational numbers as we wish.

Other consideration of this type was manifested when Teacher B incorporated
an equivalent pair into the classroom when teaching comparison of rational numbers.

More precisely, Teacher B used several examples related with comparison of rational
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19
numbers and after the provision of (ZZZJ he explicitly expressed his

consideration by the following utterances:

Teacher B: We need to convert 2% into an improper number before

2x4+1_9 Thus, >Lis
4 4 4

comparison. We convert it in this wayzzl=
4

equal to % (i.e., 2% =%). I deliberately chose to use this example. | wanted

to see who would recognize the equality. So this means that we do not
always use greater than (>) or less than sign (<) for comparison. Sometimes,

the rational numbers may be equal to each other. As you can see, 2% is the
mixed number form of %

Another manifestation of this approach was seen in Teacher A’s attempt to
incorporate into the classroom ordering examples that entailed the use of more
conceptual strategies such as residual thinking. For instance, Teacher A used

1996 1997 1998

, , as an example for ordering by residual thinking. Then, he explained
1997 1998 1999

how to order the rational numbers in this way:

Teacher A: All rational numbers are very close to 1. However, the first

rational number requires ﬁ to make the whole, the second rational

number requires ﬁ to make the whole and the third fraction requires

L to make the whole. ! > L > !
1999 1997 1998 1999
1996 - 1997 - 1998

1997 1998 1999

therefore,

It is important to note that algorithmic approaches such as common denominator
approach or common numerator approach do not work in the solution of this
example.

Finally, Teacher D incorporated into the classroom an example that is often
overlooked by the teachers. That is, Teacher D asked her students to estimate the

addition of —2% and 2% rather than asking them to find the exact answer.
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Then, she explained why she chose to present this example when teaching addition
of rational numbers. She wrote on the board the aforementioned estimation example
and asked her students whether they could recall the notion of rounding and use it for
working out this example.

In this section, the incidents in which teachers included uncommon cases
were described in detail. In the following section, the cases in which teachers drew

attention to relevant features were described thoroughly.
5.6. Drawing Attention to Relevant Features

This consideration had to do with teachers’ deliberate attempts to decrease the
‘noise’ of specific examples. In this study, the irrelevant information carried by the
specific examples of middle school mathematics teachers were regarded as noise.
The teachers applied some principles in order to prevent students from focusing on
irrelevant features of specific examples and to enable them to see the general through
the particular. These principles were as follows: (i) locating a positive rational
number first, its additive inverse second and then comparing the two locations, (ii)
arranging positive rational numbers first, their additive inverses second and then
comparing the two arrangements, (iii) performing operations with rational numbers
by keeping the magnitude of terms constant and varying one sign at a time, (iv)
performing exponentiation by writing the power inside the parenthesis first, by
writing the power outside the parenthesis second and then comparing the two results,
(v) working out a complex fraction example first, rearranging the same complex
fraction by changing the location of the main fraction bar and working out the new
complex fraction second, and then comparing the two results, (vi) breaking the
pattern when teaching the procedure for converting repeating decimals into rational
numbers, (vii) performing a multi-step operation with parenthesis first, omitting the
parenthesis of the same multi-step operation and performing second, and then
comparing the two results, and finally (viii) solving a rational number problem first,
solving another version of the same rational number problem second and then

comparing the two rational number problems.
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Some of the teachers tried to draw students’ attention to relevant features
when locating rational numbers on a number line. They initially located a positive
rational number on a number line, then they only changed the sign of the rational
number into negative and then located it on same the number line. Finally, they

compared the locations of the two rational numbers on the number line. For example,

Teacher C initially located g on a number line, then he located —g on a number line

and finally compared the locations of g and 3 on the same number line. The

following teaching episode illustrates how Teacher C took into account this type of

consideration:

3 . L .
Teacher C: To locate E on a number line, to which integer interval should I

look for?

Students: Between 0 and 1.

3 . .
Teacher C: Yes, we should locate E between 0 and 1. Thus, we first divide
the interval between 0 and 1 into 5 equal pieces and mark the end of the third
. 3 3 . .
piece as E . To locate _E on a number line, we have to look for the interval

between -1 and 0. Again, we divide the interval between -1 and O into 5
equal pieces but start counting from -1 and mark the end of the third piece as

3 . .
_E' Now, let’s draw a number line and locate the rational numbers on it as

follows:

Teacher C: Here, we located two rational numbers that have same
numerators and denominators but their signs are opposite of each other. | do
not know whether you noticed, but as you can see the two rational numbers

have equal distances from 0. However, while —g is located on the left side

of 0, g is located on the right side of it.
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Some of the teachers attempted to draw students’ attention to relevant
features while ordering rational numbers. To do so, they first provided examples
related with ordering positive rational numbers. In their next examples, the teachers
changed the sign of the rational numbers into negative and then ordered the negative
rational numbers. Finally, they compared the two examples to expose the
mathematical structure entailed in ordering positive and negative rational numbers.

For instance, Teacher D first provided %,%andg and ordered these positive

rational numbers asg < % <g. In her latter example, she kept the magnitudes of the

rational numbers constant and only changed their signs into negative as

—Z,—Zand—z. Next, she ordered them as-z>—z>—z. Finally, she drew
4 2 9 9 4 2
students’ attention to the difference between Z<Z<g and 7 >—Z > 7 and

concluded that ordering negative versions of same rational numbers would reverse
the order.

Other consideration of this type occurred when teachers provided examples
related with addition/subtraction/multiplication/division of rational numbers. That is,
when performing such operations, the teachers kept the magnitude of terms constant
and varied only one of their signs at a time. To give an example, Teacher C provided
the following multiplication examples consecutively to employ this kind of

consideration:

(L2 B8

As it can be seen, the first multiplication example includes factors that are both
positive. In the second example, the teacher kept the first factor entirely constant
(i.e., its magnitude and sign), and kept the magnitude of the second factor constant
but changed its sign into negative. When proceeded from the second example to the
third example, the teacher kept the magnitude and sign of the second factor constant,
kept the magnitude of the first factor constant and changed its sign into negative.

Finally, the teacher compared the products and expressed the following:
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Teacher C: As you see, all multiplication operations have products with
same magnitudes. Besides, the rules for multiplying integers are also
applicable for rational numbers. That is, when we have a look at the first
example we can say that multiplication of two positive rational numbers
yields a positive rational number product. In the second example we can see
that multiplication of one positive and one negative rational number yields a
negative rational number product. Finally, in the third example, the
multiplication of two negative rational numbers yield a positive rational
number product.

Another manifestation of this approach was seen in teachers’ attempts to
perform exponentiations by writing the power inside the parenthesis first, by writing
the power outside the parenthesis second and finally comparing the similarities and
differences of the two exponents. For instance, by using -2, 5 and 3, Teacher A

3
generated (%j as the first exponent, by using the same numbers later he generated

3
[—?Zj as the second exponent. The only difference between the two exponents is the

position of the power 3 with respect to the parenthesis. Thus, the teacher tried to
expose the mathematical structure of exponents by varying the positon of power and
keeping other features invariant. Teacher A worked out the two exponents side by
side and manifested his consideration via the following utterances:

3

2V
c j and (Ej for some time. In the first

Teacher A: Look through (

exponential number the power is inside the parenthesis and in the second one
the power is outside the parenthesis. In the first exponential number, 3 has
impact on only 2. Even, it does not have any impact on the minus sign
preceding 2. However, in the second exponential number 3 has impact on 2,

. . -2°) . -2.2.2 8
5 and on the minus sign. Thus, c is equal to T = _E and

2\ -2\ (-2) (-2 8 _
— |isequal to] — || — |'| — |=| ——|. As you can see the first
5 ) ) 5 125

8
exponential number is equal to (_Ej while the second one is equal to

8
(_E) The results are different from each other. Is that okay?

Students: Yes!
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Another example of how teachers draw students’ attention to relevant features
of examples was observed when teachers were teaching multi-step operations that are
expressed as complex fractions. More specifically, the teachers provided two
complex fraction examples that were formed by using same numbers but the

locations of main fraction bars included in these two examples were different from

1
Z 1
each other. For instance, Teacher B provided % and > simultaneously and wanted
3
4

students to determine whether they are equal to each other or not. He expressed this

type of consideration as follows:

Teacher B: They look similar to each other. However, in fact, they have
nothing to do with each other since the positions of main fraction bars are
different from each other. The first complex fraction can be rearranged as

1
(E +3j +4 and similarly the second complex fraction can be rearranged as

1+(2+Zj. Thus, we solve the first and second complex fractions as:

1
(_+3j+4:(lx£J+ :l+4=1><l=i.
2 2 3 6 6 4 24

1+(2+§j:1+(2xij:1+§:1x§:g.
4 3 3 8 8

One of them is equal t02—14, the other one is equal tog. As you can see, the

two complex fractions are visually similar to each other, however they are in
no way connected to each other.

In another case, Teacher B attempted to draw attention to relevant features by
breaking the pattern of examples used for teaching the procedure for converting
repeating decimals into rational numbers. Namely, Teacher B used the following

sequence of examples to teach the procedure for converting repeating decimals into
rational numbers: 0.7, 1.3, 215, 1591, 3.24, 1.17, 1.045 and 3.207. As can it be
seen, the first two examples include only one repeating digit and hence their common
fraction forms entail only one 9 in the denominator. After these two examples,

Teacher B broke the pattern by giving two examples that included two 9’s in their
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common fraction forms. He again broke the pattern by converting 3.24 and 1.17
into rational numbers since these two examples included one 9 and one 0 in the
denominators of their rational number forms. Finally, he broke another pattern by
providing the last two examples. Because the rational number forms of these two
examples included two 9’s and one 0 in their denominators. The teacher deliberately
used this sequence of examples and changed the type of repeating decimals after
each two examples in order to prevent students from noticing irrelevant patterns and
making invalid generalizations about the procedure for conversion.

In another case, Teacher A tried to draw students’ attention to relevant
features in the course of teaching multi-step operations with rational numbers. In

1) 1
more detail, Teacher A initially provided K =(8—Z)+§ as a multi-step operation

example. Next, he omitted the parenthesis in this example and provided

L =8—%:% as a second multi-step operation example. Finally, the teacher asked

the students to think of whether the two examples were identical. By this way, the
teacher checked whether students could recognize which operations to perform first
in the two expressions. Some of the expressions used by Teacher A to explain his

approach were presented in the following teaching episode:

Teacher A: Is K identical to L?
Student 1: Yes, they are identical.
Student 2: No, they are not!
Student 3: Yes, they are!

Student 4: They are not!

Teacher A: Thank you for all of you, but they are not identical to each other.
Because, we first perform division in L whereas we first perform subtraction
in K. The first example can be worked out in this way:

K:(8—l)+1:(4X8_1)x§:§x§:62_
4)°8 \ 4 )1 471

Let me move on to the solution of next example as:
11 11 1

L=8-—+—-= —(—+—j:8—(—x§j:8—2:6_
4 8 4 8 4 1

313



K absolutely has nothing to do with L. Those who said K and L are identical
should examine the board very carefully. K is equal to 62, L is equal to 6.
Thus, they are not equal to each other.

In the final case, Teacher A attempted to draw students’ attention to the
relevant features during the provision of rational number problems. That is, Teacher

A provided the following two rational numbers consecutively:

(1) On Monday, Ali spent 1 of his pocket money. The next day, he spent
4
2 of his pocket money and he had 21 TLs left. How much pocket money
3
did he have at the beginning? (2) On Monday, Ali spent 1 of his pocket
4

money. The next day, he spent 2 of his remaining pocket money and he

had 21 TLs left. How much pocke? money did he have at the beginning?
As it can be seen, to have students discern the difference between the two problems
Teacher A completely used the same context and the numbers. However, he added
the word ‘remaining’ to the latter example. Some of the expressions he used to

explain his consideration are presented as follows:

Teacher A: Now, | will explain the difference between two problems to you.

In the first problem, Ali spenti of his pocket money first and 2 of his
4 3

pocket money later. In this problem, Ali spent the two amounts of money
separately, but he spent those amounts over the same amount of pocket

money. In the second problem, Ali spenti of his pocket money first and
4

next he spent 2 of his remaining pocket money. In the second problem,
3

you perform your operations over the remaining pocket money. There is a
crucial difference between the two problems. In the first problem, you can
directly add the numbers to find the total spent money. However, in the
second problem you cannot find the total spent money by directly adding
two rational numbers.

5.7. Summary of Teachers’ Considerations in Choosing or Using Examples

In this chapter, the focus was on exploring the principles or considerations
used by teachers while choosing or generating rational number examples. Through
this purpose, the examples that manifested the following teacher considerations were

brought to light: starting with a simple or familiar case, attention to students’
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difficulty, error or misconception, keeping unnecessary work to minimum, taking
account of examinations, including uncommon cases, and drawing attention to
relevant features.

Teachers manifested their attempts to start with a simple or familiar case
through considering form of rational numbers, denominators of rational numbers,
number of repeating and non-repeating digits of a decimal, number of
terms/elements/steps when ordering rational numbers and when performing a single
operation or multi-step operations with rational numbers, increasing complexity of
multi-step operations and of rational number problems by changing their
mathematical structure; and finally by recalling prior knowledge on rational number
concepts. In more detail, teachers selected a sequence of rational numbers in
different forms for locating on a number line, for performing four operations or for
performing exponentiation by considering their increasing complexities. Teachers
initially used rational numbers with same denominators as members of the sequence
when ordering rational numbers or when adding or subtracting rational numbers.
Teachers considered increasing complexity in converting repeating decimals into
rational numbers by proceeding from decimals that included merely repeating digits
to decimals that included both repeating and non-repeating digits. Besides, teachers
gradually increased either the number of terms in an operation, the number of
rational numbers selected for ordering in a sequence or the number of steps included
in multi-step operations with rational numbers. Teacher considered increasing
complexity of multi-step operations by changing their mathematical structure.
Teachers often used multi-step operation examples with terms that are expressed on
one line first, complex fractions without unknown values second and complex
fractions with unknown values last. Similarly, teachers often attempted to generate
rational number problems from simple to more difficult by changing the
mathematical structure of each problem gradually. Finally, teachers considered
increasing complexity by recalling prior knowledge on rational number concepts
such as recalling natural number set and integer set first before introducing rational
number set and recalling four operations with fractions before introducing four

operations with rational numbers.
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Teachers considered their students’ difficulties, errors or misconceptions
when providing rational number examples. Teachers expressed that students often
had difficulty in understanding the location of a minus sign in a rational number,
subtraction operation with rational numbers, complex fractions with unknown values,
ordering rational numbers with the same numerators, dealing with division of a
number by zero and division of zero by a number, simplification of rational numbers
before multiplication, performing operations including negative rational numbers
without parenthesis, understanding that distributive property yields a valid result and
finally distinguishing between exponents with a power inside the parenthesis and out
outside the parenthesis. Besides, teachers articulated that students often make the
following mathematical errors related with rational number concepts: using commas
instead of greater-than and less-than signs when ordering rational numbers, ignoring
parenthesis when operating with negative rational numbers, making sign errors when
adding mixed numbers, making notation errors about mixed numbers, making errors
when multiplying a rational number and whole number, making errors when finding
additive inverse of a rational number, making errors due to not following order of
operations, and making notation errors when performing the exponentiation of
unknown variables. Finally, teachers explicitly uttered that students held the
following misconceptions about rational number concepts: counting tick-marks
rather than counting equal parts of the line segment when locating a rational number
on a number line, over-generalizing location of positive rational numbers to negative
rational numbers, ordering decimals by treating the digits after the decimal points as
separate numbers, over-generalizing multiplication and division of rational number
algorithms to addition and subtraction of rational numbers, under-generalizing
simplification of rational number multiplication, misapplication of multiplication to
mixed numbers, exponentiation by adding base and power, exponentiation by
multiplying base and power, and believing that a larger number must always be
divided by a smaller number.

Teachers considered keeping unnecessary work to minimum by reducing
technical work and focusing on the essence, highlighting relevant parts of examples

and not going into extra details and by using properties of operations. Teachers
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reduced technical work and focused on the essence in the following ways: drawing
only the relevant part of number line when locating rational number on it, choosing
certain rational numbers to illustrate repeating decimals, choosing relevant strategy
when ordering rational numbers, using LCM method instead of multiplying
denominators when finding the common denominator of rational numbers, not trying
to enlarge rational numbers by 1, using shortcuts for adding and subtracting a whole
number and a rational number, adding or subtracting whole parts and fractional parts
separately when adding or subtracting mixed fractions, using subtraction formula
instead of equating denominators during the subtraction of rational numbers,
choosing same denominator rational numbers when illustrating associative property
of addition, simplifying rational numbers in the course of performing operations,
using backwards strategy instead of equating denominators when dealing with
complex fractions with unknown values and rearranging algebraic expressions for an
easier computation. Similarly, teachers highlighted relevant parts of examples and
did not go into extra details in the following ways: emphasizing important parts of an
example and not finishing up all the calculations, not seeing it essential to perform
simplifications in the course of teaching a concept, not seeing it essential to perform
conversions in the course of teaching a concept, not seeing it essential to equate
denominators when symbolically expressing the area model of multiplication of
rational numbers. Finally, teachers reduced workload by using properties of rational
number operations as follows: using commutative property of addition operation
rather than adding, using associative property of addition operation rather than
adding, using distributive property of multiplication over addition rather than
performing the operation, using the facts that 1/(a/b)=b/a, (a/b)/(a/b)=1,
(a/b)+(-a/b)=0 without actually making computations and enlarging decimal
numerators and decimal denominators by multiples of 10 instead of converting into
rational numbers when performing multi-step operations.

Another manifestation of teacher consideration occurred when teachers took
account of examinations when using rational number examples. They manifested this
type considerations in the following cases: highlighting examples that have the

potential to appear in written examinations, highlighting examples that have the
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potential to appear in practice examinations of private teaching institutions,
highlighting examples that have the potential to appear in high stakes examinations,
explaining the method of scoring for potential written examination questions,
incorporating the solution of high-stakes examination examples into the classroom,
expressing the answer of multiple choice questions in their simplest forms in order to
find it in the alternatives, finding the answer of multiple choice complex fraction
tasks by trial and error of the alternatives and teaching shortcut methods for gaining
speed in the high stakes examinations.

Teachers also considered incorporation of uncommon cases into their
classrooms either by introducing exceptional or special cases or by introducing
under-represented cases. They chose to use the following exceptional or special cases
in the teaching of rational number concepts: multiplying any rational number by 0
yields 0, multiplying any rational number by 1 yields the rational number itself,
dividing any rational number by 0 is undefined, dividing any rational number by 1
yields the rational number itself, dividing O by any rational number excluding 0
yields 0, dividing 1 by any rational number excluding 0 yields the multiplicative
inverse of that rational number, dividing -1 by any rational number excluding 0
yields the additive inverse of the multiplicative inverse of that rational number,
raising any nonzero rational number to the power of 0 yields 1, and raising 1 to any
rational number power yields 1. Besides, the teachers included the following under-
represented cases into the teaching of rational number concepts: emphasizing
rationality of O, including O into the sequence of rational numbers when ordering,
adding/subtracting/multiplying/dividing more than two rational numbers,
incorporating equivalent pairs into comparison of rational numbers, incorporating
into the classroom ordering examples that entail the use of residual thinking, and
estimating the addition, subtraction, multiplication and division of rational numbers.

Ultimately, teachers considered drawing attention to relevant features of
rational number concepts by deliberately attempting to reduce irrelevant information
carried by specific examples. The teachers applied the following principles to reduce
the noise of specific examples: locating a positive rational number first, its additive

inverse second and then comparing the two locations, arranging positive rational
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numbers first, their additive inverses second and then comparing the two
arrangements, performing operations with rational numbers by keeping the
magnitude of terms constant and varying one sign at a time, performing
exponentiation without writing the power inside the parenthesis first, by writing the
power outside the parenthesis second and then comparing the two results, working
out a complex fraction example first, rearranging the same complex fraction by
changing the location of the main fraction bar and working out the new complex
fraction second, and then comparing the two results, breaking the pattern when
teaching the procedure for converting repeating decimals into rational numbers,
performing a multi-step operation with parenthesis first, omitting the parenthesis of
the same multi-step operation and performing second, and then comparing the two
results, and solving a rational number problem first, solving another version of the
same rational number problem second and then comparing the two rational number

problems.
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CHAPTER VI

INCORRECT OR INAPPROPRIATE EXAMPLES

The purpose of this study was to explore middle school mathematics
teachers’ treatment of rational number examples in their seventh grade classrooms.
In this chapter, the focus was on identifying mathematically incorrect or
pedagogically inappropriate rational number examples used by the middle school
mathematics teachers. In other words, the focus was on identifying mathematical or
pedagogical shortcomings that might be carried by the rational number examples
used by the teachers. Through this focus, the following research question was
formulated:

1. What mathematical or pedagogical shortcomings do the examples used by
the teachers in the teaching of rational numbers have?

a. What are the mathematically incorrect examples used by the teachers
during the teaching of rational numbers?

b. What are the pedagogically improper examples used by the teachers
during the teaching of rational numbers?

More specifically, this chapter was divided into two sections as
mathematically incorrect examples and pedagogically improper examples. In the
following section mathematically incorrect examples generated by the middle school
mathematics teachers were described.

6.1. Mathematically incorrect examples

This section examined middle school mathematics teachers’ rational number
examples in terms of their mathematical correctness. In this study, some of the
examples generated by the teachers were incorrect when evaluated from a
mathematical standpoint. However, in some cases the examples provided by them
were correct but the instructional explanations related with those examples were not

entirely correct. Thus, when determining mathematical correctness of rational
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number examples, the instructional explanations provided for those examples were
also taken into consideration.

Mathematically incorrect examples or explanations provided by the teachers
in the course of teaching rational number concepts were discussed through the
following cases: (1) explaining that irrational numbers cannot be located on a
number line, (2) explaining that rational number set is a subset of irrational number
set, (3) explaining that irrational number set includes less number of elements than
rational number set, (4) explaining that all numbers in the fraction form are rational
numbers, (5) working out an example incorrectly due to the misapplication of
absolute value concept, (6) not partitioning the number line into equal distances
when locating rational numbers on it, (7) using commutative property of addition
when exemplifying associative property of addition, (8) seeing conversion of
repeating decimals into rational numbers as being synonymous with rounding, (9)
under-generalizing the addition of mixed numbers, and finally (10) using a correct
ordering strategy but misnaming it as another strategy.

Teacher A introduced the notion of a rational number and wrote on the

a
whiteboard its definition as Q = {B aeZ,beZ,b= 0}. He wanted to illustrate the

numbers that satisfy this definition and he generated —g and % as examples for

rational number set. Later, he moved on to explaining what pi number (w) is and
incorrectly explained that irrational numbers cannot be located on a number line as

follows:

Teacher A: Pi number goes to infinity as 3.14... Today, the decimal
representation of pi has been computed to include many digits that can wrap
the circumference of the earth forty times but it is still being computed. That
is, the ratio of a circle’s circumference to its diameter goes to infinity and it
is called the pi number... This ratio proceeds as 3.14... but we cannot
express it as a common fraction. Why? Because we do not know its end.

Student: That is a repeating decimal!

Teacher A: It is not a repeating decimal. It is something else. If we do not
know the final digits of the decimal number, then we cannot write it as a
common fraction or locate it on a number line. I introduced you the pi
number to illustrate that there are numbers that are not examples of rational
number set.
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In contrast to Teacher A’s claim, pi number in particular and irrational numbers in
general can be located on a number line. More importantly, eight grade mathematics
curriculum points to the relationship between irrational numbers and radicals and
exemplifies how to locate an irrational number on a number line with the help of

Pythagorean Theorem. An activity included in the middle school mathematics

curriculum for finding the location of \/3_4 is presented in Figure 6.1.
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Figure 6.1. The location of \/3_4 on the number line (MoNE, 2009b, p.301).

Teacher A could have made a more powerful and correct explanation if he had
emphasized that all rational and irrational numbers can be represented by points on a
number line and thus the number line is called the real number line.

After introducing rational number set, Teacher C pointed to the relationship

between number sets by introducing CcNcZc Q. At that time, one of the

students wanted to learn the superset of rational number set. The teacher responded
incorrectly and explained that irrational number set is the superset of rational number

set. Teacher C’s explanations are provided in the following episode:

Teacher C: You first learnt how to count at school. You started with 1, 2, 3,
and kept going. When you were at grade 5, you learnt a new number set as
natural number set. You added the number O to the counting numbers and
got the natural numbers. Natural numbers are denoted by the symbol N . Did
you remember?

Students: Yes!
Teacher C: What is the next larger set?

Students: Integer set!
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Teacher C: Yes you are right. Integers are denoted by Z . Now, what is the
next larger set?

Students: Rational numbers!

Teacher C: Okay, rational numbers are denoted by Q. You do not need to

learn the number set that is larger than rational numbers. Therefore, it is
enough for you to know these number sets.

Student 1: Are complex numbers the next larger set?

Teacher C: No, irrational number set is the next larger set. You do not need
to learn irrational numbers now. | will teach it to you when you are at grade
8. We will denote irrational numbers by the symbol Q'. Again, you do not
have to learn it know.

Rational number set is not a subset of irrational number set. The two number
sets are disjoint sets and reel number set is the union of these two disjoint sets. The
middle school mathematics curriculum suggests teachers to give emphasis on the
relationship among different number sets. A sample activity included in the middle
school mathematics curriculum for demonstrating the relationship between reel

numbers and rational numbers is presented in Figure 6.2

Reel Numbers
Rational Numbers
Integers Irrational
= Numbers

Natuvral Numbers

Figure 6.2. The relationship between different number sets (MoNE, 2009b, p.300).

Teacher D was teaching the procedure for converting repeating decimals into

rational numbers. After providing 3.§=¥=%, she explained that repeating

decimals such as 33 are all rational numbers. One of the students interrupted and
asked the teacher to give examples for numbers that are not rational. As a response to
the student query, the teacher incorrectly explained that there are few irrational

numbers. The following episode illustrates this incorrect explanation.

Teacher D: We first write the number without its decimal point as 33. Then,
we subtract the repeating part from 33 and find 33-3=30. This number is the
numerator of the decimal number. Now, we check how many digits repeat in
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33. We write 9 to the denominator as many as the number of repeating
digits and write 0 after 9 as many as non-repeating digits. As you see, only
one digit repeats. Thus, we write 9 as the denominator of the rational
number.

Student: Can you please explain ones more?

Teacher D: Do not worry, | will write the formula on the board. As a
priority, you should understand that all repeating decimals or terminating
decimals are actually rational numbers. Therefore, if | ask you to determine

whether 3.3and 0.3 are rational numbers, how would you respond?
Student: Yes, they are rational numbers.

Teacher D: Yes, because you can express terminating decimals and repeating
decimals as rational numbers.

Student: Well teacher, which numbers are not rational?

Teacher D: | previously mentioned that pi number is not rational. It has
infinitely many digits but does not have a regular repeating pattern. Actually
you can think in this way: Excluding repeating decimals and terminating
decimals all numbers are irrational. However, irrational numbers are very
rare.

In another case, Teacher D wanted to explain rational numbers and their
properties. She initially recalled fractions, natural numbers and integers and gave

examples for these number types. Then, she introduced rational numbers and

provided —%and—l% as examples for rational numbers. Finally, she defined

rational numbers as numbers that can be written in the form of %. Note that the

teacher incorrectly defined rational numbers due to not restricting a and b to integers.

The following is an excerpt of Teacher D’s explanation of rational numbers:

Teacher D: Remember number sets. For instance, do you remember natural
number set? It starts with 0,1,2,3 and goes to infinity. Well, which numbers
are included in integer set? It includes natural numbers and their negatives.
This means that natural number set is a subset of integer set. In a similar
way, rational number set is a superset of natural number set and integer set.

Student 1: Well, which number set is a superset of all number sets?

Teacher D: Reel number set. You will learn it at grade 8. |1 want to say one
more thing about rational numbers. You previously learnt fractions. For

instance, — is a fraction. In fact, it is a number isn’t it? Fractions are also
4

. 1 . . .
rational numbers. So — is a rational number. Negative numbers such as
4
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—%and—l%are also rational numbers. So they are all rational numbers,
okay?
Students: Okay!

Teacher D: Actually, we can say that all numbers written in the form of %

are rational numbers. What does % mean? Both a and b will take numerical

values. However, b cannot be zero. You already know from fractions that the

. . 3
denominator cannot be equal to zero. For instance, what does 0 mean?

Student: Undefined!
Teacher D: You are right, it is undefined. Thus, all numbers in the form of

a . .
™ are rational numbers unless b is equal to zero.

For a more precise definition, the teacher should have restricted a and b to integer

_ 7 <5 sin64 In(10)
values. Since —,— and

23 4 are all rational numbers in the sense that

they are written in the form of % . However, these numbers are actually all irrational

numbers.
Other incorrect example was manifested when Teacher A was teaching how

to order rational numbers. He wanted to order —%, —i, —g, —% and% on a number

4 4

line and find the furthest distance between the two points on the number line.
However, he initially arrived at an incorrect answer due to the misapplication of
absolute value concept. Fortunately, he recognized his mistake and arrived at the
correct answer by using a strategy that do not require the use of absolute value
concept straight-forwardly. The following teaching episode illustrates Teacher A’s
incorrect example generation due to misapplication of absolute value concept:

Teacher A: We first need to find the two points that are furthest to each

other. Namely, we need to find the largest and the smallest rational numbers

first. What is the largest number?

Students: % is the largest!

Teacher A: Okay, then which one is the smallest?

325



Student 1: —% must be the smallest one.

Teacher A: Then, we need to find the difference between absolute values of
the two rational numbers. Don’t we?

Students: ... (No answer)

Teacher A:  Thus, we find the answer in this way:

ol |1 9 1 8

——|=|=|==——=—=2.1 want to solve this example by locating the
4 14 4 4 4

rational numbers on a number line. Because, | do not believe that | solved it
correctly. So let me draw a number line and locate the rational numbers on it
immediately:

The answer is % not 2. Where did I make an error? Let’s think about

elevators. In an apartment, if you move from the 3" floor to the -5 floor,
you first move from the 3rd floor to the ground floor and from the ground
floor to the -5™ floor. Thus we need to perform addition when finding the
distance between these two points not subtraction. Thus, the answer is
‘—g + l‘=E+E=E=2.5 not 2.

4 14 4 4 4

In this example, the teacher erroneously believed that

9‘ H 9 1 ™
3222 The
4| |4 4 4

persistence of the teachers’ error became apparent when he followed the same

reasoning in another example asking to find the distance between _4 and —%. The

teacher again misapplied the absolute value concept and proceeded as

4
3.

4 1 4 1
__H__‘ = (_—j—(——) . However, he
3 3 3 3

was not able to be aware of his mistake about the application of the absolute value

This time he reached a correct answer since

concept since he obtained the correct answer by chance.
Teacher D consistently generated ‘non-existing’ examples during the teaching

of how to locate rational numbers on a number line. Namely, in four out of six
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examples, she did not partition the number line into equal intervals when locating

rational numbers. For instance, when locating —zg she partitioned the number line

as given in Figure 6.3:

Figure 6.3. Teacher D’s location of —2% on a number line

As it can be seen, the distance between 0 and -1 or -1 and -2 is not equal to the
distance between -2 and -3. None of the students remarked in the classroom that the
distances between the integer points were not equal to each other. Thus, the teacher
did not have the chance to modify her example. In reality, such an example does not
exist and from a mathematical perspective it is problematic.

In another case, Teacher C was teaching associative property of addition of
rational numbers. He generated an example to illustrate this property. However, the
example was incorrect since he both changed the order of rational numbers and the
grouping (i.e., change the position of the parenthesis) although this property does not
permit changing the order of numbers. In other words, to demonstrate associative
property of rational numbers, Teacher C also used commutative property of addition.

He explained this property as follows:

Teacher C: Rational numbers are associative under addition. Let’s show

whether associative property holds for %+%+% or not. We will not add

these three numbers to each other. We will use them to demonstrate
associative property. We group the numbers two by two, first add the two
numbers and then add the number that is outside the group. If we get the
same answer for each grouping, then we say that associative property holds

for1+£+1. We first group 1and1 as[1+1}+1. Next, we group

2 45 2 4 2 4 5
1andla{l+l}+1. Finally, we group landlas{l+l}-l. If we
2 5 |2 5] 4 ’ 45 |4 5] 2
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perform addition operations for each grouping, we obtain the same results.
That is,

1 171 (|1 1,1 (|1 11
e el et e e B R e R
[2 4} 5 [2 5} 4 [4 5} 2

Thus, we can say that rational numbers are associative under addition
operation.

As it can be seen, Teacher C both changed the order and grouping of

1 1)1
%,%and% by writing {EJE}FZ into the expression. In order for this example to be

t, the teach dst it l+1 +l l+ 1+l
rr rn r ol e el eei o Bl sl
correct, the teacher needs to express it as > 5721

Teacher D used 0.§=§=1 as a specific example for illustrating how to

convert repeating decimals into rational numbers. However, she also focused on an
irrelevant feature of this example and incorrectly explained that conversion of
repeating decimals into rational numbers are synonymous with the notion of

rounding. For this specific example, the teacher’s claim appears to be true since

0.9=0.999...=1. However, this is a misleading example because the teacher’s claim
is not true for all repeating decimals. In short, it is incorrect to make a generalization
that conversion is synonymous to rounding by focusing on an irrelevant feature of a
particular example. The following excerpt illustrates Teacher D’s incorrect
explanation about conversion of repeating decimals into rational numbers:

Teacher D: Normally, what does 09 mean to you? In fact, 09 goes on in

this way: 0.999...To which integer is 0.999... closer to? It is closer to 1.

Thus, in fact conversion is synonymous to rounding. In other words, you

round to the nearest integer value when converting the repeating decimal
into a rational number. Did you understand what | mean?

Students: Yes!
Teacher D: Then, let me teach you how to order rational numbers.

As the above given excerpt shows, Teacher D focused on an irrelevant feature
of 09 and incorrectly explained that conversion of repeating decimals is

synonymous to rounding. However, rounding repeating decimals such as 1.5 to their

nearest integers leads to big round-off errors.
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Teacher D made another incorrect explanation when teaching addition of
- . . 1 1
mixed numbers. In more detail, she provided _3Z + —15 as an example for

addition of rational numbers and incorrectly stated that whole parts and fractional
parts of the mixed numbers cannot be added separately unless they have the same
denominators. Thus, she under-generalized adding whole parts and fractional parts
separately to mixed numbers with the same denominators. The following excerpt

illustrates Teacher D’s incorrect explanation about addition of mixed numbers:

1 1
Teacher D: Now, we will add (_3Zjand(_15j together. We cannot add

whole parts and fractional parts of these mixed numbers separately since
they have different denominators. We can add whole parts and fractional
parts separately on condition that mixed numbers have same denominators.
Thus, we have to convert mixed numbers into improper rational humbers

1
before adding them. We convert (_3Zj into an improper rational number

1 3x4+1 13 o 1)
as| 3— |=— :_Z' Similarly, we convert —15 into an

4 4

1x2+1 3
- 5 :_E' Now can perform

) MR

In contrast to teacher’s explanation, it is possible to add whole parts and

1
improper rational number as(—1§j=

fractional parts separately when adding mixed fractions. It can be performed in this

way: (—3%j+(—1%j = —(3%+13 = {(3+1)+G+%ﬂ = —[4+ﬂ = —%. Thus,

expecting students to use a specific strategy for adding mixed numbers might hamper
students’ ability to develop their own strategies for adding.

Finally, another incorrect explanation was provided by Teacher A when
ordering rational numbers. More precisely, Teacher A ordered several sets of rational
numbers by using residual thinking. However, he referred to the ordering strategy as

benchmarking to 1 rather than residual thinking. Thus, the teacher provided the
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examples correctly by residual thinking strategy however, he misnamed it as

benchmark strategy. The following teaching episode illustrates this case:

Teacher A: Now, we will order %,gandg by benchmarking to 1. Here, all

rational numbers are very close to 1. For the first rational number, we divide
the whole into 4 equal parts and take 3 of them. For the second rational
number, we divide the whole into 6 equal parts and take 5 of them. For the
third rational number, we divide the whole into 8 equal parts and take 7 of
them. As you see, there is only one part left for each of three rational
numbers. However, the leftover parts do not have equal sizes. Here are the
pictorial representations of these three rational numbers:

Note that the three wholes have same sizes. Now, the largest leftover part is
in the first whole. The leftover part in the second whole is medium sized and
the leftover part in the third whole is the smallest. Then, in which whole the
largest part is taken? In the third whole the largest part is taken. Next in the
second whole and next in the first whole. Thus, we order the rational

3 5 7
numbersas — <= <—.
4 6 8

As can be seen, the teacher provided a relevant example for ordering rational
numbers by residual thinking strategy. Thus, he was able to use his knowledge of the
specific teaching strategies to address ordering rational numbers. However, he could

not distinguish between benchmarking strategy and residual thinking strategy.
6.2. Pedagogically Improper Examples

This section examined middle school mathematics teachers’ pedagogically
incorrect examples under two main subsections as examples with improper language
or terminology and to be avoided examples. Teachers’ rational number examples that

included improper language or terminology are explained in the following section.
6.2.1. Examples with improper language or terminology

This section examined middle school mathematics teachers’ use of language

or terminology for introducing rational number examples. In this study, some of the
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examples generated by the teachers were correct when evaluated from a
mathematical standpoint. However, they were not appropriate from a pedagogical
standpoint since they included the use of inappropriate language or terminology.
Examples that included the use of improper language or terminology were
described through the following cases: (1) the careless use of the word fraction when
rational number is intended, (2) the use of informal language such as opposite, flip
and upside down for teaching additive or multiplicative inverses of rational numbers,
(3) ill-advised reading of rational numbers, and finally (4) the incorrect use of
mathematical symbols in the course of working out rational number examples.
Fractions are non-negative rational numbers. Students start to learn fractions
long before they learn integers. Thus, numerators and denominators of fractions are
conventionally restricted to whole numbers. Besides, fractions are only a subset of
rational number set (Lamon, 2012). However, teachers commonly and carelessly
used the word fraction when they intended rational numbers. For instance, Teacher A
was teaching how to locate rational numbers on a number line. He first provided
examples related with location of proper fractions. Later, he moved on to location of
negative rational numbers. He carelessly used the word ‘negative proper fractions’
when locating negative rational numbers into the number line. The following excerpt
illustrates Teacher A’s improper use of the word ‘fraction’ instead of the expression

‘negative rational number’:
Teacher A: Listen to me very carefully. Proper fractions are very special
among all fraction types. There are three reasons for this. First, they are only
between 0 and 1 on a number line. They never exist in any other part of the
number line. Second, proper fractions are commonly used when solving
probability problems. In probability, the answers are between 0 and 1.

However, they can also be 0 and 1. Third, when we square proper fractions,
the result is smaller than the original proper fraction. For instance, the square

of % is equal to % and % is smaller than% . As you see, proper fractions

are really very important. Let’s get back to our topic. Proper fractions are

between 0 and 1. Thus, if I ask you to locate a proper fraction such asg on

a number line, you will focus on the interval between 0 and 1. If I ask you to

. . 3 . .
locate a negative fraction such as —— on a number line, you will focus on
4

the interval between -1 and 0. Do not forget this. The location of proper
fractions have been asked in SBS for two times so far.

331



As the above given excerpt shows, Teacher A provided —% as a negative

fraction example. Instead of saying negative fraction, it would be more appropriate to
say negative rational number for such examples.
Similarly, Teacher B was teaching how to compare rational numbers. He

wrote on the upper part of the board two comparison examples as g,%andl§ 8

4’11
Next, he wrote on the lower part of the board two other comparison examples as

—%,—Zand—zl,—%. Upon a student’s remark, Teacher B indicated that

5
examples in the upper part of the board are fraction examples, while he indicated that
examples in the lower part are rational number examples. Thus, Teacher B treated
fractions and rational numbers as separate entities from each other. However, as
mentioned before, fractions are a subset of rational number set. Thus, it would be

better to introduce g,%andl%l% as examples for positive rational numbers or

fractions, and to introduce —%, —gand —21,—% as examples for negative rational

numbers.
In another case, teachers used an informal language such as ‘opposite’, ‘flip’,
or ‘swap places’ when teaching how to find additive or multiplicative inverses of

rational numbers. For instance, Teacher A asked one of the students to find the

multiplicative inverse of % after teaching multiplication of rational numbers.

Teacher A’s use of the colloquial term ‘flip’ is illustrated by the following teaching
episode:
Teacher A: What is the multiplicative inverse of g?

Student: ... (No answer)
Teacher A: Why don’t you say ‘we flip it over’?

Student: ... (No answer)

Teacher A: Flip gover!
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Student: It isl.
19
Teacher A: Thank you. To find the multiplicative inverse of a rational
number we flip it over.
Teacher A’s use of the language in such a way has the potential to hinder the
development of students’ rational number understanding. Although the middle
school mathematics curriculum suggested teachers to emphasize that if the

multiplication of two rational numbers is equal to 1, then the rational numbers are

multiplicative inverses of each other (i.e., =1, %:to,%;to), Teacher A

ac
b d
preferred to flip over the rational number to find its multiplicative inverse. Instead of

this, it would be more appropriate for the teacher to provide %-% =1 in order to

have students understand the notion of multiplicative inverse conceptually.

Teacher B asked his students to perform %—% when teaching division of

rational numbers. Teacher B’s use of the colloquial term ‘swap places’ during the
teaching of rational number division is illustrated by the following excerpt:

Teacher B: How did we perform division of fractions last year? Let me
recall. The first fraction remains the same, division becomes multiplication

and the second fraction flips over. That is, 7 and 4 swap places and % turns

into 4 . Thus we multiplyi by 4 in this way: S .4 E.
7 12 7 12 7 84

Teacher B used the following approach for division of fractions: Just change the
division sign to multiplication, flip over the second fraction and multiply. This
approach to division of fractions might provide students with easy access to
procedural understanding but not to relational understanding. Instead of this, it would
be more appropriate for the teacher to explain why the division sign is changed into
multiplication and why the second fraction is flipped over. Thus, the teacher might
explain that division of fractions means multiplying the dividend by the
multiplicative inverse of the divisor and might provide the following symbolic

c a

expression:2.¢_a 1 _a
b d bc¢ bc
d
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Teacher D was teaching how to calculate the square and cube of rational
numbers. One of the students asked how to calculate exponents with negative
powers. At that moment, Teacher D used the colloquial term ‘flip over’ and
explained that the base needs to be flipped over before raising to the desired power.
Teacher B’s use of the colloquial term ‘flip over’ during the teaching of rational

number exponentiation is illustrated by the following excerpt:

-2
Student: Teacher, how do we calculate (gj ?

Teacher D: Let me explain what we should do when we come up with a

negative power. In this example, you first flip over g and then raise the

new fraction to the second power.
Teacher D’s approach for calculating negative powers of rational numbers also
reflects a procedural understanding. Thus, it would provide more relational
understanding to students to emphasize that a negative power represents the
multiplicative inverse of the base.

Teacher B was teaching additive inverse property of rational numbers. He

chose to use —2% for teaching how to find the additive inverse. Teacher B used the

colloquial term ‘opposite’ and explained that if the rational number is positive then
its opposite is negative or if the rational number is negative then its opposite is
positive. Teacher B’s use of the colloquial term ‘opposite’ during the teaching of

rational number exponentiation is illustrated by the following episode:

Teacher B: Let’s find the opposites of rational numbers. For instance, tell me

the opposite of—zi.
Student: Shall we first convert it into an improper number?

Teacher B: No, you do not need to convert. Tell me the opposite of—2%.

Student: Its opposite will be + 2%

Teacher B: Good! If the rational number is positive, its opposite will be
negative and if the rational number is negative its opposite will be positive.

Thus, the opposite of —zgwill be + 2%.
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Teacher B’s use of the colloquial term ‘opposite’ might help students gain intuition
and provide easy access to procedural understanding, however it might hinder
students’ conceptual understanding of the additive inverse property. More
importantly, the teachers’ explanation for finding the additive inverse property as “if
the rational number is positive, its opposite will be negative and if the rational
number is negative its opposite will be positive” may not help the students notice the
structure inherent in rational numbers that are additive inverses of each other. That is,
although the middle school middle school mathematics curriculum suggested
teachers to emphasize that adding rational numbers that are additive inverses of each

a a
other yields O (i.e., [EJJ{_EJ =0), Teacher B did not make any explanation in this

3) a
way. Thus, it would be more appropriate for the teacher to provide [—ZZjJrB:O

while teaching additive inverse property of rational numbers.

Another case in which teachers used improper language was observed when
they read fractions or rational numbers in an ill-advised manner. For instance,
Teacher B started teaching addition and subtraction of rational numbers by initially
introducing an example related with fractions. Meanwhile, he recalled how to read
fractions. This case is illustrated by the teaching episode of Teacher B as follows:

Teacher B: Last year we performed operations with fractions, didn’t we?
Student: Yes, we did.

Teacher B: We can add and subtract fractions. Let me give an example
related with subtraction of fractions.

[

With which fraction do we represent the shaded area?
Student: Two fourths.

Teacher B: Two fourths or two over four. We may also read it as one over
two. Now, if we subtract one over four from two over four, then the left over
part corresponds to one over four.
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As it can be seen, Teacher B used the expression ‘over’ to describe % Using such

fraction language is somewhat problematic for students since it may obscure the
relationship of the parts to the whole and the actions used to operate on fractions.
Teachers generated another example with inappropriate language or
terminology when they attempted to read rational numbers as fractions. For instance,
Teacher B was teaching addition of mixed numbers. After converting mixed numbers
into improper rational numbers, he read those rational numbers loudly. However, he
used an inappropriate language for reading them. This is illustrated by the teaching

episode of Teacher B as follows:

3 1
Teacher B: How do you perform 5Z+ (—12}7

Student: We first subtract 1 from 5 and then add % and %

Teacher B: You will certainly make mistakes if you add whole parts and
fractional parts separately. Just to be on the safe side, add the mixed numbers

o . 3.
after you convert them into improper rational numbers. Thus, 5Z is equal to

1 5
? and (_1Zj is equal to (—Zj . Now we can add twenty three fourths

and negative five fourths to each other...
: : : S .
As this teaching episode shows, Teacher B read n incorrectly as
“negative five fourths.” Since rational numbers are also ratios, it would be more
, 5 : :
precise to read ) as ‘negative five to four’ or ‘negative five for four’ (Lamon,

2012).
Finally, teachers presented to their students worked-out examples that

included the use of incorrect mathematical symbols. For instance, when teaching

addition of Biand E, Teacher A used implication sign instead of equal sign and he

did not use equal sign between the expressions he wrote as he proceeded towards the
answer. This is illustrated by excerpt given below:
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Teacher A: ...Another way to add mixed numbers is to add the whole parts
first and fractional parts second. We can add the given mixed fractions in
this way:

However, | do not suggest you to use this way. Because you certainly make
errors when you choose this way.

As can be seen, Teacher A used an implication sign as a stand-in for the equal sign
and left equal sign unused in circumstances that called for it. Here, an equal sign

would have been the correct symbol to represent the relationship between 3%+%

and (3+0)5+1O.
12

Similarly, Teacher D was explaining rational numbers and she exemplified

positive and negative rational numbers by means of +%and—%. However, she

incorrectly used equal sign (=) instead of ‘is an element of” symbol (e) when

demonstrating+% as an element of positive rational number set and —% as an

element of negative rational number set. This is illustrated by the excerpt given

below:

Teacher D: Rational numbers that are smaller than zero form negative
rational number set. It is denoted by the symbol Q™. Rational humbers that
are larger than zero form positive rational number set and it is denoted by the
symbol Q". Now, the following examples can be given for these two
number sets:
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Thus, rational number set is the union of negative rational number set,
positive rational number set and zero. We can symbolically express rational

number setas Q=0Q" U{O} uQ".
6.2.2. To be avoided examples

In-depth exploration of middle school mathematics teachers’ choice and use
of examples brought to light some examples which should be better avoided in the
teaching of rational number concepts. In more detail, some of the examples provided
by the teachers included particular pitfalls that might be an obstacle for students to
understand the mathematical object, concept or procedure that they confronted for
the first time. This type of examples were referred to as ‘to be avoided examples’ or
teachers’ poor choice of examples. In this study, two types of middle school
mathematics teachers’ poor choice of examples were identified. These were
examples that ‘obscure the role of variables’ and ‘examples intended to illustrate a
particular procedure, for which another procedure would be more sensible.” The first

type of teachers’ poor choice of examples are presented in the following section.
6.2.2.1. Examples that obscure the role of variables

As mentioned in the literature review section, Marton and Booth’s (1997)
theory of ‘dimensions of variation’ deals with the idea that most mathematical
concepts and procedures and every example of these concepts and processes
comprises two or more components or variables. According to this theory, people
learn from discerning variation and what varies in people’s experience influence
what they learn. Thus, the teachers are expected to consider dimensions of variation
when providing their students examples about mathematical concepts or procedures.

Particularly, when students encounter with a novel mathematical concept or
procedure for the first time, it is helpful to use variables that take different values.
This is considered important since it helps learners to distinguish between different
variables and the different roles they undertake. For instance, if a teacher wants to
teach subtraction of natural numbers to their students, he/she must avoid providing
‘6-3=3 in her very first example. This is due to the fact that in a subtraction

operation there are three different variables as minuend, subtrahend and difference
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and by selecting same values for the subtrahend and the difference the teacher makes
it impossible for the students to distinguish between those two variables. In essence,
one value (3, here) is being made to do the work of two variables in subtraction
operation. Adjusting this example slightly (e.g., 7-4=3) would resolve the quandary
and elucidate the roles of minuend, subtrahend and difference in the subtraction
operation.

Examples that obscured the role of the variables were described through the
following cases in this study: (1) obscuring the role of repeating and non-repeating
digit in the teaching of repeating decimal concept, (2) obscuring the role of
subtrahend and difference in teaching the modelling of subtraction of rational
numbers, and (3) obscuring the role of interval number and rational number
magnitude when locating on a number line.

Before teaching the procedure for converting repeating decimals into rational
numbers teachers explained the concept of repeating decimals by using a specific
example. Teacher A, Teacher B and Teacher D selected the following examples

respectively:%:3.333...:33, =1.333...=13,—=3.333...=33. The examples

3

used by Teacher A and Teacher D did not reflect a deliberate and informed selection

wlo

while the example used by Teacher B reflected a well-chosen example. In a repeating

decimal in the form of a.B, there are two variables as a non-repeating digit (i.e., a)
and a repeating digit (i.e., b). However, by selecting %:3.333..;33, the teachers

made the distinction between non-repeating digit and repeating digit obscure. In this
example, 3 was made to do the work of two variables. Thus, the students may
hesitate over which 3 to put the vinculum. The point is that by selecting a slightly

different example from % such as%,%and%l, it is possible to clarify the role of

non-repeating and repeating digits. For instance, %:3.666..;3.(_5 includes 3 as a

non-repeating digit and 6 as a repeating digit. Thus, this example would help students

distinguish between repeating and non-repeating digits.
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Another case occurred when teachers began to teach subtraction of rational
numbers. In their first examples, teachers used same rational numbers as subtrahends
and differences. For instance, Teacher D obscured the role of subtrahend and

difference when modelling of subtraction of rational numbers and selected them to

be equal to% . The following is an excerpt of the teacher explanation:

Teacher D: In this lesson | am going to teach you how to subtract rational
numbers. | will first show you how to express the following area model
symbolically.

The fraction representing the first region is minuend, the fraction
representing the second shaded region is subtrahend, and the fraction
representing the third shaded region is difference. In the first whole, 4 parts

are shaded so the minuend is equal tog. In the second whole, 2 parts are
shaded so the subtrahend is %and in the third whole, again 2 parts are shaded

so the difference isg. Thus, the model can be symbolically expressed as

4 2 2

5 5 5
As the above given excerpt shows, the modelling example chosen by Teacher

D obscured the role of variables since same number of parts were shaded both in the

second and third whole. In this example Ewas made to do the work of both

subtrahend and difference. The teacher would resolve this quandary by shading one
or three parts in the second whole.

In another case, Teacher A selected an example that obscured the role of
interval number and rational number magnitude when locating on a number line.

Teacher A’s teaching episode related with this case is presented below.

Teacher A: Find the rational number that corresponds to point C in the
following number line.

B c

- re Py -

8
"
3

1
3
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Student 1: Is it + %?

Students: + 1
3

Teacher A: This is a very good number pattern problem. This pattern

proceeds as -4, -3, -2, -1, 0, 1,... Thus, point C corresponds to%. Well, what

if there was no such pattern?
Students: How?

Teacher A: If there was not any pattern, to find the unit distance you would

first find the distance between points A and B and then divide the obtained

distance by the number of intervals between A and B. Then, the unit distance
4‘ 1

. 3 3
isequal to———— =
3

w |w | w

1
= 5 Each decrement is equal to%. Thus, point C

corresponds to%.

Student 2: Teacher, %is already equal to one whole, why did we again divide

it by 3?

Teacher A: g refers to the distance between A and B and 3 refers to the

number of intervals between A and B. Do you understand?

Students: No!
As it can be seen, the rational number corresponding to the distance between A and

B includes 3 as a numerator and a denominator. Besides, there are 3 equal intervals
between A and B. Since all of these numbers were selected to be 3, this example
obscured the role of variables. Moreover, the decrement between consecutive points

and the corresponding value of point C are equal to % Thus, this may also obscure

the role of variables. To resolve this quandary, the teacher would change the
denominators of point A and point B by another number such as 5.

6.2.2.2. Examples intended to illustrate a procedure, for which another

procedure would be more sensible

Mathematics teachers often use examples in the course of teaching a general
procedure by a particular demonstration of that procedure. These procedures include
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the use of several strategies or algorithms. In particular, the teaching of rational
number topics entails the use of strategies for comparing and ordering rational
numbers, written calculation algorithms for adding, subtracting, multiplying or
dividing rational numbers and the use of estimation strategies for adding, subtracting,
multiplying or dividing rational numbers. In ordering strategies, estimation
strategies, and written calculation algorithms there exists a number of options.
However, a rational number example that is selected to demonstrate a particular
strategy or algorithm should be relevant for that strategy or algorithm. More
precisely, the example selected to illustrate a particular procedure should not call for
another more sensible procedure. Otherwise, the students may believe that there is no
point in learning that particular procedure.

In this study, there were several instances in which teachers provided
examples to illustrate a particular procedure, but the examples called for other
procedures that are more sensible. These examples were described through the
following cases: (1) not using relevant examples when illustrating the procedure for
converting repeating decimals, (2) not using relevant examples when teaching
particular strategies for comparing and ordering rational numbers, and finally (3) not
using relevant examples when teaching a particular written algorithm for adding
rational numbers.

There are two different procedures for converting repeating decimals into

rational numbers. The first procedure has to do with repeating decimals that include
only repeating digits after the decimal point such as 2.7, 315, 4.245 and 5.3478. For

these kinds of repeating decimals, it is more sensible to use the following conversion

bc — bcd —— bcde

procedures: ab = aE, abc=a—, abcd =a——, abcde=a . As it can be seen,
9 99 999 9999

this procedure entails writing the decimal digit as the numerator of the rational
number and writing down a 9 for every repeating digit as the denominator of the
rational number. The second procedure has to do with repeating decimals that

include both repeating and nonrepeating digits after the decimal point such as
2.05, 4.358 and 3.125. For these kinds of repeating decimals, it is more appropriate

to use the second procedure. This procedure is composed of the following steps: (1)
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write down the repeating decimal without its decimal point; (2) subtract non-
repeating part from Step 1; (3) divide the number obtained from Step 2 by the
number with 9°s and 0’s: for every repeating digit write down a 9 and for every non-

repeating digit write down a 0 after 9’s. Thus, the following conversion procedures

might be derived by means of the aforementioned steps: a.bézab;gab,
abeg = dbcd —abe o4 bog - abed —ab
990

Teacher A sensibly used the first procedure as a means for converting
repeating decimals that include only repeating digits. For instance, he chose to use

the following examples of this kind:0.§=§,2.§=2§and 5.%=5%. In a similar

fashion, he used the second procedure appropriately for converting repeating

decimals with repeating and non-repeating digits. Some of the examples selected by

him to illustrate the second procedure were: 2.68 = y 52.714 = W
and 6.328_4:M. However, other teachers used the second procedure for

all types of repeating decimals. Although there is no need to deploy the second
procedure for repeating decimals with only repeating digits, the teachers did not
avoid using it. In such instances, the students quite reasonably might think that there

IS no point in learning a method for which there seems to be no need. For instance,

Teacher B initially selected 0.7, 1.3, 215, 5104, 3.24 and 1.045 as examples for

teaching the second procedure. Demonstrating the second procedure by using 0.7
seems quite problematic for some reasons. First, it does not include any non-
repeating digits. Second, it includes O before the decimal point and thus the first step
of the second procedure (i.e, write down the repeating decimal without its decimal
point) makes little sense to the children since they do not come up with a number in

the form of 07 during their mathematics lessons. In addition, there is no need to use
the second procedure for the latter two examples (i.e., 1.3, 215) since they also do

not have non-repeating digits. Finally, for the last three examples, it is sensible to use
the second procedure since these examples include both repeating and non-repeating
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digits. Similar to Teacher B, Teacher C only introduced the second procedure to their
students. He selected 1.3, 3.07 and 24.789 as examples for teaching this procedure.

As it can be seen, it is not relevant to use the second procedure for the first two
examples. However, it is more appropriate to use it for the last example. Finally,

Teacher D merely introduced the second procedure to their students as well and
selected 0.3, 05, 08,09 and 25 as examples for demonstrating this procedure.

Nevertheless, these examples include only one repeating digit. Hence, it would be
more sensible to use the first procedure for these kinds of examples.

There are several strategies for comparing and ordering rational numbers. In
this study, the following strategies were used by the middle school mathematics
teachers in the course of comparing and ordering rational numbers: finding common
denominator of rational numbers, finding common numerator of rational numbers,
benchmarking, residual thinking, locating rational numbers on a number line and
converting rational numbers into decimal numbers. Nonetheless, it is important to
know which ordering strategy is more relevant to use for a given set of rational
numbers. This is due to the fact that while some set of rational numbers easily lend
themselves to a certain strategy, the other set of rational numbers might be more
efficiently ordered by another strategy. Thus, teachers play an important role in
choosing an appropriate strategy for a given set of rational nhumbers or in choosing
relevant examples for using a specific comparison or ordering strategy.

In this study, middle school mathematics teachers selected certain set of
rational numbers and ordered them by using specific strategies. However, in some
cases the selected set of rational numbers lent themselves more readily to other
strategies which were not used by the teachers. For instance, Teacher B selected an
ordering example from an auxiliary book and the example included the following

rational numbers for ordering: g , i—l ’ and 2. The teacher suggested his students to

06
order these rational numbers by using common denominator algorithm. However, as
can be seen, each rational number includes a numerator that is one more than its

denominator. Then, if each rational number is rearranged as g :1+i 11 :1+i

12' 10 10’
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%=1+% and%=1+%, it becomes apparent that the use of residual thinking or

common numerator algorithm would be more sensible when compared to the use of
common denominator algorithm.
To give another example, Teacher D selected the following rational numbers

for ordering: % lgand —1%. However, she intended to order these rational numbers

by locating the rational numbers on a number line. For the given set of rational

numbers, there is no need to employ such strategy since they can be easily ordered

when their magnitudes and directions are taken into consideration. That is, —1% IS
smaller from 0 while %and 1% are larger than 0. Thus, —1% is the smallest rational

number. In addition, 1% is larger from 1 and %is smaller from 1. Thus, 1% is the

largest rational number. Consequently, the rational numbers can be easily ordered as

follows: —1%<%<1§. In another example, Teacher D selected the following

rational numbers: %,gandg. However, she ordered these rational numbers by first

using a common denominator algorithm and then converting them to decimals as

follows: §:@:1_5<§:@:1_6<Z:@
2 100 5 100

=1.75. A more sensible strategy for
ordering the given set of rational numbers would be common denominator algorithm.
By using this strategy the rational numbers can be more easily ordered as follows:

3 .30 8 32 7 35

2 20 5 20 4 20

There are two different methods for adding mixed numbers. In the first
method, the mixed numbers are converted into improper rational numbers before
performing the addition algorithm. This first method is more plausible when the
numerators and denominators of the mixed numbers are selected to be small
numbers. In the second method, there is no need to convert mixed numbers into
improper rational numbers before the addition algorithm. That is, the second method
entails adding whole parts and fractional parts of mixed numbers separately. The
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second method is more plausible when the numerators and denominators of the
mixed numbers are selected to be large numbers. In this study, Teacher D wanted to
demonstrate the second method of adding mixed numbers to their students. However,
she selected an example that could be more sensibly worked out by using the first
method. The teaching episode of Teacher D illustrates this case as follows:

Teacher D: Write the following example on your notebooks: 1%+ 4%. Here,

I am going to teach you a shortcut procedure for adding mixed numbers.
Normally, you used to convert rational numbers into improper rational

numbers before adding them in this way: 1%+4§=g+§=%.

However, you can also perform this operation by adding whole parts and
fractional parts of the mixed numbers separately as:

1 1 4 4 2
1—+4§:(1+4)+[—+§j:5+—=5—=—9.
5 5 5 5 5 5 5

Student: But, teacher this way is longer than the first way. We performed
more operations!

Teacher D: For this example you are right. However, as the denominators
and numerators of the mixed numbers become larger, the second method
will be shorter. | am telling the second method in order for you not to make
errors. If you use the first method for adding mixed numbers with large
denominators and numerators there is the risk of making errors when
multiplying numbers.

As remarked by one of the students, the example selected by Teacher D with
the intention of demonstrating the second method was more relevant to the first
method. To resolve this quandary, the teacher would select and introduce examples

such as 102%+215%. As it can be seen, it is more sensible to use the second

method for working out this example and the first method is a bit risky since there is
the risk of making errors when computing the following expressions: 102x19+11
and 215x19+14.

6.4. Summary of Incorrect or Inappropriate Examples

In this chapter, the focus was on identifying mathematically incorrect or
pedagogically inappropriate rational number examples used by teachers. More

specifically, teachers’ mathematically incorrect or pedagogical inappropriate
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examples were reported under three main sections as mathematically incorrect
examples, examples with improper language or terminology and to be avoided
rational number examples.

Teachers provided the following mathematically incorrect examples or
explanations in the course of teaching rational number concepts: explaining that
irrational numbers cannot be located on a number line, explaining that rational
number set is a subset of irrational number set, explaining that irrational number set
includes less number of elements than rational number set, explaining that all
numbers in the fraction form are rational numbers, working out an example
incorrectly due to the misapplication of absolute value concept, not partitioning the
number line into equal distances when locating rational numbers on it, using
commutative property of addition when exemplifying associative property of
addition, seeing conversion of repeating decimals into rational numbers as being
synonymous with rounding, under-generalizing the addition of mixed numbers, and
finally using a correct ordering strategy but misnaming it as another strategy.

Some of the examples generated by the teachers were correct when evaluated
from a mathematical standpoint. However, they were not appropriate from a
pedagogical standpoint since they included the use of inappropriate language or
terminology. Examples of this type occurred due to careless use of the word fraction
when rational number is intended, the use of informal language such as opposite, flip
and upside down for teaching additive or multiplicative inverses of rational numbers,
ill-advised reading of rational numbers, and finally the incorrect use of mathematical
symbols in the course of working out rational number examples.

Finally, exploration of teachers’ choice and use of examples brought to light
several examples which would be better avoided in the teaching of rational number
concepts. These examples included particular pitfalls that might be an obstacle for
students to understand the mathematical concept or procedure that they confronted
for the first time. Thus, to be avoided examples reflected teachers’ poor choice of
examples in the teaching of rational number concepts or procedures. In more detail,
two types of middle school mathematics teachers’ poor choice of examples were

identified. These were, examples that obscured the role of variables and examples
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intended to illustrate a particular procedure, for which another procedure would be
more sensible. In this study, examples that obscured the role of the variables were
described through the following cases: obscuring the role of repeating and non-
repeating digit in the teaching of repeating decimal concept, obscuring the role of
subtrahend and difference in teaching the modelling of subtraction of rational
numbers, and obscuring the role of interval number and rational number magnitude
when locating on a number line. Furthermore, there were several instances in which
teachers provided examples to illustrate a particular procedure, but the examples
called for another procedure that is more sensible. These types of examples occurred
in the following cases: not using relevant examples when illustrating the procedure
for converting repeating decimals, not using relevant examples when teaching
particular strategies for comparing and ordering rational numbers, and finally not
using relevant examples when teaching a particular written algorithm for adding

rational numbers.
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CHAPTER VII

DISCUSSION, IMPLICATIONS AND RECOMMENDATIONS

The current study explored middle school mathematics teachers’ treatment of
rational number examples in their seventh grade classrooms. The findings of the study
were reported under three main chapters based on the research questions. In the first
chapter, the focus was on describing overall characteristics of teachers’ rational number
examples. Through this focus the rational number ideas that were emphasized by the
teacher generated examples, the type of teacher generated examples, the way teachers
chose rational number examples, and the resources used by the teachers when choosing
rational number examples were described at length. In the second chapter, the focus was
on exploring the principles or considerations used by teachers while choosing or
generating rational number examples. Through this purpose, the examples that
manifested the following teacher considerations were brought to light: starting with a
simple or familiar case, drawing attention to students’ difficulty, error or misconception,
keeping unnecessary work to minimum, taking account of examinations, including
uncommon cases, and finally drawing attention to relevant features. In the third chapter,
the focus was on identifying mathematically incorrect or pedagogically inappropriate
rational number examples used by the teachers.

In this chapter, discussion of the research findings were presented first. Next,
implications and recommendations for future research studies were presented. The
research findings were discussed under three main sections by depending upon the
research questions. In these sections, findings about overall characteristics of teachers’
rational number examples, findings regarding teachers’ considerations in choosing
examples, and findings regarding teachers’ mathematically incorrect or pedagogically

inappropriate examples were discussed respectively. Finally, two empirically based
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conceptual frameworks that might be used to examine middle school teachers’ choice of

examples and considerations for choosing these examples were proposed.
7.1. Overall Characteristics of Teachers’ Rational Number Examples

This study revealed that although middle school mathematics teachers used three
different types of examples as specific examples, non-examples and counter-examples,
they mainly used specific examples for teaching rational number concepts or procedures.
As emphasized by Zazkis (2005), it is difficult to think learning mathematics without
considering specific examples. Specific examples are important because they help in
understanding general (Feynman, 1985). In this study, the quality and quantity of
teachers’ rational number examples were explored in comparison with the specific
examples included in the followed mathematics textbook. When the number of specific
examples provided by the teachers were examined, it was seen that teachers with greater
years of rational number teaching experience exposed their students to a more number
and variety of rational number examples. This finding provides insights into teachers’
craft knowledge. Kennedy (2002) was particularly interested in the nature of knowledge
emanating from the experience of teaching and referred to it as craft knowledge. This
knowledge type is kinesthetic and develops from repeated experiences through working
with a specific material and is learned from experience and guidance from a master, but
not learned by reading books (Kennedy, 1999). Craft knowledge is one form of
professional expertise and it is not a technical skill or an ability to conduct critical
analysis; but rather, it represents the building of situated, learner-oriented pedagogical
knowledge focusing on procedures and content through purposeful action (Kennedy,
1987).

On the other hand, very few examples were provided by the teachers and the
textbook for posing and solving rational number problems when compared to examples
provided for teaching four operations with rational numbers. This reflects the emphasis
given by the middle school mathematics curriculum on rational number operations or

procedures. More specifically, MoNE (2009b) suggests teachers to allocate three lesson
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hours for teaching problem posing and solving with rational numbers, whereas it
suggests teachers to allocate nine lesson hours for teaching operations and procedures
with rational numbers. Since more than half of the examples used by middle school
mathematics teachers were related with rational number operations, it is natural to
expect teachers to be proficient with algorithms for performing rational number
operations. Indeed, lzsak, Orrill, Cohen and Brown (2010) pointed out that most of the
teachers can multiply or divide rational numbers but many of them have limited capacity
to reason about products and quotients when they are included in problem contexts.
Similarly, several other studies found out that pre-service and in-service teachers lack
performance when explaining multiplication and division of rational numbers
(Armstrong & Bezuk, 1995; Tirosh, 2000). Middle school mathematics curriculum
might play an important role for teachers in deciding which examples to select or how
many examples to use in teaching mathematics topics. Thus, it is significant to revise the
middle school mathematics curriculum by increasing the number of lessons devoted to
problem posing and solving with rational numbers or by integrating problem solving
approach into other learning objectives related with rational numbers. By this way, the
number of examples used by teachers for teaching rational number operations and
problems would be more balanced.

The teachers in this study relied to some extent on the mathematics textbook and
the middle school mathematics curriculum when teaching rational nhumber ideas. The
rational number ideas such as problem posing and estimation were emphasized by the
textbook examples but were ignored by the teachers. On the other hand, teachers
sometimes provided examples that emphasized other rational number ideas apart from
the textbook such as identifying whether a given number is rational or not and ordering
rational numbers by using residual thinking strategy. This way of teaching was
sometimes beneficial to students’ understanding of rational numbers and sometimes led
students to incomplete understandings about rational number concepts.

One advantage of not strictly relying on textbooks was related with having

students identify whether a given number is rational or not. When specific examples
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provided by the textbook for explaining and locating rational numbers on a number line
were examined, it was seen that there was not any example related with identifying
whether a given number is rational or not. However, all teachers gave particular
importance to teaching this idea. In more detail, teachers asked students to determine
whether negative and positive integers, mixed, proper and improper numbers, decimal
numbers or radical numbers, pi number and ratio of a number to zero are examples of
rational numbers. Providing students with different types and forms of rational number
examples is important since it may help students enrich their understanding of rational
number concept (Zazkis, 2005).

Another advantage was seen in teachers’ attempts to draw students’ attention to
location of minus sign. Although examples reflecting this idea did not appear in the
textbook, teachers’ paid attention to using such examples probably based on their
previous teaching experiences.

One final advantage was seen in a teacher’s attempt to incorporate into the
classroom ordering and comparing examples that entailed using conceptual strategies
such as residual thinking. Examples that require the use of residual thinking strategy
were not provided by the textbook. The term residual refers to the amount needed to
make a whole. Clarke and Roche (2009) indicated that residual thinking is a specific
strategy that is unlikely to be taught by the teachers and they further argued that
providing students with such strategies has the potential to promote student performance
and understand relative size of relevant parts in fractions. Similarly, Post and Cramer
(2002) claimed that the use of residual thinking helps students successfully compare
fraction pairs. As discussed by Clarke and Roche (2009), residual thinking is a strategy
that seems to be used by students exhibiting a more conceptual understanding of the size
of the fractions. However, the use of this strategy did not seem to be commonly used by
the teachers in middle school classrooms. This study revealed that only one of the
teachers used ordering examples that entailed residual thinking, supporting Clarke and

Roche’s (2009) argument about teachers’ use of this strategy.
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As mentioned before, teachers sometimes ignored the ideas emphasized by the
textbook examples when teaching rational number concepts and this led students to an
incomplete understanding of rational number concepts. To illustrate, none of the
teachers provided students with examples related with estimation of multiplication and
division with rational numbers although the middle school mathematics curriculum
placed considerable emphasis on this notion. Van de Walle, Karp and Bay-Williams
(2013) stressed that the aim of estimation is being able to obtain a rough result that will
function for the situation and give a sense of rationality. They further added that the
ability to estimate is worthwhile in daily life since in many circumstances there is no
need to know the exact answer. Clarke and Roche (2009) suggested teachers to provide
their students with greater opportunities and approximation since they aid in developing
number sense. National Council of Teachers of Mathematics [NCTM] (2000)
emphasized that “teachers should help students learn how to decide when an exact
answer or an estimate would be more appropriate, how to choose the computational
methods that would be best to use, and how to evaluate the reasonableness of answers to
computations” (p. 220). In this study, none of the teachers attempted to provide
estimation examples to their students and thus, they did not help student learn these
complex considerations. Siegler and Booth (2005) argued that students are better at
obtaining exact results than estimating results and they find it difficult to do
computational estimation. The students of the participating teachers might also
encounter similar difficulties about estimation since teachers omitted using estimation
examples in their classrooms. Based on this conjecture, it could be implied that in-
service teachers should be provided the opportunity to participate in professional
development activities that emphasize the role of estimation on deeper and meaningful
understanding of mathematics. Similarly, it could be implied that teacher education
programs should provide systematic learning opportunities to pre-service teachers about
which computational strategies would work best and how to judge the rationality of

answers to computations.
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Examples related with posing rational number problems are provided by the
textbook and are explicitly emphasized in the middle school mathematics curriculum.
However, although teachers provided a few problem solving examples, they ignored
providing examples related with problem posing. Despite the fact that problem posing
have been accepted as an important part of scientific work among mathematics
education researchers and mathematics educators (Stoyanova, 2003), emphasis has been
primarily put on problem solving rather than problem solving (Cankoy, 2014). The
emphasis placed on problem solving rather than problem posing is also true for the
middle school mathematics curriculum released by MoNE (2009b). Mathematical
problem posing can be defined as creation of a novel problem or reformulation of a
previously existing problem (Silver, 1993). Problem posing can also be regarded as a
process ending up with a problem that needs to be solved (Dillon, 1982). In the last
twenty years, mathematics education researchers and educators have particularly began
to notice the potential and significance of problem posing in the teaching and learning of
mathematics (e.g., Chang, 2007; Lowrie, 2002; Silver, 1995). Therefore, there have been
many educational attempts to include problem posing activities into mathematics lessons
(Knott, 2010; Stoyanova, 2003). Similarly, NCTM (2000) emphasized the need for
providing students with essential knowledge about gaining experience, becoming aware
and constructing their own problems and added that problem posing is at the centre of
doing mathematics. Thus, middle school mathematics teachers are expected to integrate
rational number problem posing examples into their classrooms and become aware of
the fact that students’ problem posing experiences might help them promote
mathematical thinking and understanding mathematical concepts in a deeper sense
(Mestre, 2002).

As mentioned before, middle school mathematics teachers used non-examples of
rational numbers in addition to specific examples. Non-examples show the boundaries or
necessary conditions of a concept (Watson & Mason, 2005). Shortly, they “serve to
clarify boundaries” of a concept (Bills et al., 2006, p. 127). Non-examples play a crucial

role in promoting high levels of concept attainment (Charles, 1980; Cohen & Carpenter,
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1980; Cook, 1981; Petty & Johnson, 1987; Tsamir et al., 2008). Besides, non-examples
give teachers the chance to analyze their students’ thinking and are supportive for

students in reasoning out loud (Clements et al., 1999). In this study, teachers, in general,

used four different forms of non-examples as ratio of an integer to zero (e.g., %),

transcendental number (e.g., w), radical (e.g., \/g), and infinite non-repeating decimal
(e.g., 0.257843...). This seems to be an advantage on the part of students since the
followed mathematics textbook of the classrooms did not provide any non-example for
rational numbers. However, as stressed by Sirotic and Zazkis (2007), teachers missed the

pedagogical opportunity to open students’ minds at least to a variety of irrational number
examples (i.e., non-examples of rational numbers) beyond radicals such as ~/2 and

transcendental numbers such as m. Besides, Sirotic and Zazkis (2007) indicated that J2
and m are generic examples for irrational numbers and prospective secondary
mathematics teachers might not be aware of the existence of irrational numbers beyond
pi number, Euler’s number and some commonly used square roots. Similarly, Zazkis and

Leikin (2007) reported that pre-service teachers’ personal example space of irrational

numbers is limited to = and~/2 . Thus, the middle school mathematics teachers in this
study might also have limited example spaces about irrationality. Nevertheless, the
maxim ‘absence of evidence is not evidence of absence’ might not apply to our
understanding of teachers’ examples spaces (Zazkis & Leikin 2007). Thus, teachers’
major use of square roots or the transcendental number m might not mean that their

examples spaces of irrational numbers are limited to these numbers. It might simply

mean that teachers had access to © and /2 as non-examples for rational numbers in that
situation and at that time. The collection of examples that the middle school
mathematics teachers had access to at that moment referred to teachers’ accessible
examples that are dependent on many factors such as the context, the trigger and the
state of teachers (Goldenberg & Mason, 2008). After all, middle school mathematics
teachers can provide their students genuine opportunities by exposing them to non-

examples apart from the generic ones such as sin68° and Inl5. Thus, mathematics
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educators play an important role in extending pre-service and in-service teachers
examples spaces about non-examples of rational numbers. More importantly, merely one
teacher preferred to use infinite non-repeating decimal representation (such as,
0.257843...) as a non-example for rational numbers. Zazkis and Sirotic (2010) suggested
that only infinite non-repeating decimal representations are transparent representations
of irrational numbers while other forms are opaque representations for irrational
numbers. That is, only infinite non-repeating decimal representations of irrational
numbers can make it possible for the students to derive the irrationality of numbers.
Thus, teachers need to pay more attention to transparent representations when providing
non-examples for rational numbers.

Apart from non-examples, teachers also used counter-examples in the teaching of
rational number ideas. Similar to non-examples, counter-examples “can serve to sharpen
distinctions and deepen understanding of mathematical identities” (Zodik & Zaslavsky,
2008, p. 165). Counter-examples are in a very powerful position when compared to
other examples since one counter-example may be sufficient for establishing the
invalidity of a claim while using many examples for establishing the truth of a claim
may not be sufficient (Bogomolny, 2006). However, although counter-examples are
important in the teaching of mathematics, the findings showed that they are less evident
in middle school classroom practice. In this study, all of the counter-examples were
generated by the teachers as a response to contingent classroom situations such as
students’ invalid conjectures or students’ queries. However, only five counter-examples
were generated by the teachers to demonstrate falsity of students’ claims. This finding is
in line with the findings of previous studies. For instance, Rowland et al. (2009)
indicated that counter-examples are important mathematical ideas but their data
suggested that they were less evident in primary classroom practice. Similarly, Zodik
and Zaslavsky (2008) found out that secondary school mathematics teachers altogether
used eighteen counter-examples during 54 lesson hours. This might be due to middle
school mathematics teachers’ views that mathematics they teach entails less higher-order

thinking skills and less attention might have been given by the teachers to the use of
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counter-examples for disproving mathematical conjectures. Indeed, Zodik and Zaslavsky
(2008) found that none of the teachers participated in their study pre-planned to
intentionally use a counter-example in the lesson. Similarly, none of the middle school
mathematics teachers participated in this study made a deliberate attempt to plan which
counter-examples to use in the classroom. Teachers’ scarce use of counter-examples
might also have stemmed from the fact that the observed classes were rather teacher-
centered where middle school mathematics teachers were more engaged in example
generation process and the students were less active when compared to a student-
centered classroom.

This study revealed two main sources of teacher-generated examples as
spontaneous examples and pre-planned examples. The examples that were actually
generated by the teachers during the lesson without any planning in advance or examples
that were generated by the teachers as a response to unexpected classroom situations
were treated as spontaneous examples. In other words, for an example to be
spontaneous, there had to be some evidence that choosing it entailed in-the moment
decision making to a certain degree. On the contrary, the examples that were taken from
available resources such as textbooks, workbooks and auxiliary books were treated as
pre-planned examples. Middle school mathematics teachers altogether used 361
spontaneous examples and 343 pre-planned examples during the teaching of rational
numbers. This suggests that more than half of the examples used by the teachers were
spontaneously generated, although the numbers are close. Teachers in Zodik and
Zaslavsky’s (2008) study also used close numbers of spontaneous and pre-planned
examples, where the number of pre-planned examples was more. It was very difficult to
clearly differentiate between pre-planned and spontaneous examples during the research.
However, I believe that this distinction would be helpful in making sense of teachers’
choice or use of examples.

The magnitude of the difference between teachers’ spontaneous and pre-planned
examples cannot say much unless there is access to their underlying principles or

considerations that lead them to choose or generate rational number examples. Yet, it
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was possible to observe some tendencies on the part of teachers in terms of generating or
selecting spontaneous and pre-planned examples. A closer examination of the number of
examples showed that teachers with higher years of rational number teaching experience
seemed to use more spontaneous examples than pre-planned examples, whereas teachers
with less years of rational number teaching experience appeared to use more pre-planned
examples than spontaneous examples. This might be because spontaneous examples tend
to depend more on teachers’ accessible example spaces (Watson & Mason, 2005). Thus,
the increase in teachers’ rational number teaching experience might have played an
important role in generating spontaneous examples that are more immediate and
automatic. In contrast, the decrease in teachers’ rational number teaching experience
might have led teachers to generate spontaneous examples after much longer time as a
result of analytical thinking and self-monitoring (Zodik & Zaslavsky, 2008).

Teachers’ mathematics background might also explain their tendency to
generate more spontaneous examples than pre-planned examples. Namely, the teachers
with mathematics background in the study generated more spontaneous examples while
the teachers with elementary mathematics teacher education background used more pre-
planned examples in the teaching of rational number ideas. Thus, teachers’ way of
selecting examples might be associated with their subject matter knowledge to some
extent (Shulman, 1986). According to Rowland et al. (2009) subject matter knowledge
consists of substantive and syntactic knowledge. They indicated that substantive
knowledge refers to “the facts, concepts and processes of mathematics and the links
between them” while syntactic knowledge refers to “knowing how mathematical truths
are established” (p. 20-21). Therefore, in-service and pre-service middle school
mathematics teachers may need to make greater efforts to consolidate their substantive
and syntactic knowledge necessary for generation of rational number examples.

Teachers used several resources when choosing pre-planned rational number
examples. The resources used were student textbook, student workbook, teachers’
guidebook, high-stakes examination questions, online educational software and a wide

variety of auxiliary books. In general, the teachers used auxiliary books for providing
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exercise examples to their students. Teachers mainly selected multiple choice question
examples from auxiliary books, high-stakes examinations (SBS and OSS questions), and
from online educational software. Their recourse to several resources that mainly
included multiple choice questions reflected their consideration of Secondary School
Entrance Examination (known as TEOG) taken by middle school students. Their use of
many different auxiliary books also reflected their consideration of providing students
with a wide variety of rational number examples and extending their examples spaces
about rational number concepts. Thus, this may explain teachers’ provision of examples
that involve rational number ideas distinct from the ones included in the student
textbook.

In this study, teachers’ rational number examples were examined in greater
depth. This exploration is summarized in Table 7.1 below. This table might be used in
the development of a possible framework that might be used to capture middle school
mathematics teachers’ generation and choice of rational number examples in their
classrooms. Future studies in different education systems might enhance this table and
provide empirical support to the development of a possible conceptual framework for

analyzing teachers’ treatment of rational numbers.
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Table 7.1. The summary of teachers’ treatment of rational number examples

Explaining and locating rational numbers on a
number line

Explaining rational numbers

Examples that demonstrate;

o the need for positive and negative rational numbers

e equivalent classes of a fraction

e location of equivalent fractions on a number line

e whether a given number is rational

o the positivity and negative of a rational number

o the location of a minus sign in a negative rational
number

« simplification of rational numbers

e conversion among mixed and improper numbers

Locating rational numbers on a number line

Examples that demonstrate;

e |ocation of a rational number on a number line

e finding the rational value of a point located on a
number line

Comparing and ordering rational numbers
Comparing rational numbers
Examples that demonstrate comparing;

e by locating on a number line

¢ by benchmarking

e by considering rational number sign

e by converting a mixed number into an improper
number

Ordering rational numbers

Examples that demonstrate ordering;

e by locating on a number line

e by converting rational numbers into decimal numbers
¢ by common denominator algorithm

¢ by common numerator algorithm

¢ by benchmarking

e by equivalent fractions

e by residual thinking

e by equating the number of decimal digits by adding 0s

Expressing rational numbers in different forms
Examples that demonstrate;

e expression of integers as rational numbers

e expression of rational numbers as integers

eexpression of rational numbers as terminating
decimals

e expression of
decimals

® expression
numbers

e conversion
numbers

rational numbers as repeating

of terminating decimals as rational
rational

of repeating decimals into

Adding and subtracting rational numbers
Examples that demonstrate;

eusing models for the addition and subtraction of
rational numbers

efinding common multiples of the denominators of
rational numbers

eadding and subtracting rational numbers with same
denominators

eestimating the addition and subtraction of rational
numbers

e adding and subtracting rational numbers with different
denominators

e properties of addition of rational numbers

o multi-step operations with rational numbers

Multiplying and dividing rational numbers
Examples that demonstrate;

e modeling multiplication of rational numbers

o multiplication and division of rational numbers

o multiplication and division by 0, 1 and (-1)

e estimation of multiplication and division of rational
numbers

e modeling and calculating the square and cube of
rational numbers

e performing multi-step operations with
numbers

e properties of multiplication of rational numbers

rational

Performing multi-step operations with rational

numbers

Examples that demonstrate solution of multi-step
operations that are expressed;

e on one line

e as complex fractions

e as a continuing pattern

e as single variable polynomials

Posing and solving rational number problems

e solving rational number problems with same referent
units

e solving rational
referent units

 posing rational number problems

number problems with different
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7.2. Teachers’ Considerations in Choosing Rational Number Examples

The selection of examples in the teaching of mathematics is extremely
complicated and involves a wide variety of considerations (Zaslavsky & Lavie, 2005).
The certain choice of examples may either promote or hinder students’ understanding,
thus teachers need to select examples with some care (Zaslavsky & Zodik, 2007).
However, neither professional development programs nor teacher education programs in
Turkey do not overtly address this issue and do not provide pre-service and in-service
teachers with systematic knowledge about treatment of mathematical examples. Thus, it
can be suggested that the skills necessary for powerful treatment of examples are crafted
mainly by means of teachers’ own teaching experiences (Leinhardt, 1990). Kennedy
(2002) coined the term craft knowledge for the knowledge that emanated from the

experience of teaching and summarized its role in teaching as follows:

“Craft knowledge derives mainly from experience, but can derive from
numerous other sources such as newspapers and magazines, advice from
colleagues and friends, etc.; craft knowledge mainly helps teachers address
concerns about student willingness to participate and orderly task progress;
acquisition of craft knowledge is motivated largely by dissatisfaction with
events and a desire to not repeat the same mistakes again;...” (p. 362).

It follows that much can be learnt from the experience of middle school mathematics
teachers. Hence, inspired by the work of Zodik and Zaslavsky (2008), this study
attempted to explore the principles or considerations used by middle school mathematics
teachers while choosing or generating rational number examples. Through this purpose,
the rational number examples that manifested the following teacher considerations were
brought to light: starting with a simple or familiar case, drawing attention to students’
difficulty, error or misconception, keeping unnecessary work to minimum, taking
account of examinations, including uncommon cases, and finally drawing attention to
relevant features. The experienced secondary school mathematics teachers observed by
Zodik and Zaslavsky (2008) taught several different mathematical concepts to their
students and employed the same considerations with one exception. This exception was

teachers’ consideration of examinations in Turkish middle school classrooms.
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The middle school mathematics teachers attempted to start with simple or
familiar cases when teaching rational number concepts. In the study of Zodik and
Zaslavsky (2008), teachers considered sequences of examples and constructed these
examples by gradually increasing their complexity or difficulty levels. The same
consideration was also employed by the middle school mathematics teachers when
teaching ordering or adding/subtracting rational numbers. Namely, teachers first
provided rational numbers with same denominators and then rational numbers with
different denominators while ordering or adding/subtracting rational numbers. Similarly,
Bills and Bills (2005) found that the experienced teachers in their study chose to use
simple examples as a first stage in developing students’ understanding of mathematical
procedures. It is natural for teachers to start with simple examples when introducing
mathematical concepts or procedures. Because experienced teachers might certainly be
aware that it is not reasonable for students to understand complex examples before
encountering simpler ones.

Middle school mathematics teachers also drew students’ attention to common
difficulties, errors or misconceptions held by them about rational number concepts. For
instance, when locating rational numbers on a number line, teachers explicitly warned
their students to count equal parts of the line segment instead of counting tick-marks.
This type of consideration is strongly related with teachers’ pedagogical content
knowledge (Shulman, 1986) and in particular with their knowledge of content and
students (Ball et al., 2008). According to Shulman (1986), pedagogical content
knowledge includes “the conceptions and preconceptions that students of different ages
and backgrounds bring with them to the learning of those most frequently taught topics
and lessons” (p.9). Similarly, Ball et al. (2008) described knowledge of content and
students as “knowledge that combines knowing about students and knowing about
mathematics” (p. 401). More precisely, knowledge of content and students is the
knowledge of how students learn specific topics, the knowledge of the likely
misconceptions students have or which topics might be problematic for students to
understand and why (Hill, Ball & Schilling, 2008). This showed that teachers’
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consideration of their students’ errors reflected not only their subject matter knowledge
but also their pedagogical content knowledge.

Middle school mathematics teachers deliberately attempted to keep unnecessary
work to minimum during the provision of rational number examples by reducing
technical work and focusing on the essence, highlighting relevant parts of examples and
not going into extra details, and by using properties of operations. For instance, teachers’
specific choice of examples for illustrating repeating decimals manifested their attempts
to keep unnecessary work to minimum. That is, teachers chose repeating decimals in
which the repeating blocks were fairly easy to be noticed by the students. This case also
occurred when secondary school mathematics teachers in the study of Zodik and
Zaslavsky (2008) attempted to illustrate the period of rational numbers by selecting
examples that had periods long enough to be noticed by the students. It is thought that
this consideration helped teachers teach rational number concepts in a shorter period of
time and helped the students learn the key components of the concepts rather than being
bogged down with unnecessary work.

Teachers also considered incorporation of uncommon cases into their classrooms
either by introducing exceptional or special cases or by introducing under-represented
cases. It is believed that teachers’ inclusion of uncommon cases to their teaching helped
students to gain a complete understanding of rational number concepts. Teachers’ this
type of consideration might be explained by the emphasis placed by the middle school
mathematics curriculum on the teaching of rational number concepts by using special
cases such as having students notice the influence of 0, 1 and -1 in multiplication and
division operations. The use of non-prototypical examples as uncommon cases was not
evident in this study. However, Zodik and Zaslavsky (2008) indicated that secondary
school teachers manifested this type of consideration in their study. It was a missed
opportunity for middle school mathematics teachers not to incorporate non-prototypical
examples related to rational number concepts into their classrooms. Actually, students
are inclined to consider prototypical examples as examples of the concept and consider

other examples as non-examples of that concept (Hershkowitz, 1989; Wilson, 1990).
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Watson and Mason (2005) made the same point that students generally identify concepts
with one or two examples introduced earlier by their teachers and they are often left with
incomplete and limited sense of the concept. Thus, in order to lessen the influence of
prototype examples, the students might have also been introduced to non-prototypical
ones.

Another manifestation of teacher consideration had to do with drawing attention
to relevant features of rational number concepts by deliberately attempting to reduce
irrelevant information carried by specific examples. Skemp (1971) referred to the
irrelevant information carried by examples as noise and he point out that if the noise of
an example increases, then it becomes more difficult for students to form the concept
demonstrated by that example. Thus, middle school mathematics teachers attempted to
diminish the noise of the rational number examples by using pattern breaking strategy
(Watson & Mason, 2005) and by using the structured variation principle (Watson &
Mason, 2006). The findings are concurrent with those of Zodik and Zaslavsky (2008)
although the examples provided by the middle school mathematics teachers and the
secondary school mathematics teachers served for teaching different mathematical
concepts. For instance, the middle school mathematics teachers in this study used pattern
breaking strategy when teaching the procedure for converting repeating decimals into
rational numbers whereas secondary school teachers in the study of Zodik and Zaslavsky
(2008) used that strategy to teach Pythagorean Theorem to their students. In a similar
way, the teachers in this study used the structured variation principle to teach four
operations with rational numbers whereas the teachers of Zodik and Zaslavsky (2008)
used it for teaching inequalities and linear functions. In this study, the use of pattern
breaking strategy and structured variation principle as pedagogical strategies were seen
to be beneficial for students’ understanding of rational number concepts. Watson and
Mason (2006) supported this practice of teachers and explained the role of structured

variation as follows:

“Our conclusions after 3 years of work in a range of natural settings are that
control of dimensions of variation and ranges of change is a powerful design
strategy for producing exercises that encourage learners to engage with
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mathematical structure, to generalize and to conceptualize even when doing
apparently mundane questions. This power is easily recognized by teachers,
teacher educators and other professionals in mathematics education” (p. 108).

Ultimately, teachers took account of examinations when using rational number
examples. This consideration was not adopted by teachers participated in other studies
such as Zodik and Zaslavsky (2008). This consideration might be specific to Turkish
educational context. In Turkey, middle school students compete with each other to study
in well-qualified secondary schools. To enter these well-qualified secondary schools,
students need to have high grade point averages in 6%, 7" and 8™ grade levels. Besides,
they have to take several national examinations called TEOG (Transition from Primary
to Secondary Education Examination) in grade 8. Therefore, middle school mathematics
teachers spend considerable efforts to help their students enter well-qualified secondary
schools and consequently select their examples to serve for their intended purpose. That
is, teachers bring to the classroom or generate in the classroom examples that are similar
to the questions included in the examinations. Besides, they strive for incorporating
high-stakes examination questions that were asked in the previous years into the
classroom hoping that similar questions might be asked in the future examinations.
These examinations include questions that are all in multiple-choice format. Therefore,
teachers help students develop strategies for solving multiple choice questions. As
mentioned before, teachers used many different auxiliary books that mainly included
multiple choice questions. While solving these multiple-choice questions in the
classroom, teachers attempted to give clues to their students about how to find the
answer of each question by trial and error of the alternatives. In addition, the teachers
aimed to teach shortcut methods to their students for gaining speed in the high stakes
examinations.

In this study, teachers’ considerations in choosing and using rational number
examples were examined in greater depth. This exploration is summarized in Table 7.2
below. This table might be used in the development of a possible framework that might
be used to examine middle school mathematics teachers’ principles or considerations in

selecting or generating rational number examples in their classrooms. Future studies in
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different education systems might enhance this table and provide empirical support to
the development of a possible conceptual framework for analyzing teachers’

considerations in choosing and using rational number examples.
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7.3. Teachers’ Mathematically Incorrect or Pedagogically Inappropriate

Rational Number Examples

Another focus of this study was to identify mathematically incorrect or
pedagogically inappropriate rational number examples used by the middle school
mathematics teachers. The findings revealed that teachers used three poor choices of
rational number examples. These were mathematically incorrect examples, examples
with improper language or terminology, and examples that are to be avoided in the
teaching of rational number concepts.

One type of mathematical incorrectness was related with one participant
teacher’s consistent generation of non-existing number line examples. That is, in
most of her number lines, she did not partition them into equal intervals. Although
the teacher generated number lines were incorrect from a mathematical standpoint, it
was unlikely that the teacher lacked the subject matter knowledge about location of
rational numbers on a number line. It seems that the teacher did not give sufficient
importance to accurately generating number lines. Meanwhile, she might not have
been aware that her inaccurate number lines might mislead students’ concept
formation about number lines. This finding is in parallel with the findings of
Zaslavsky and Zodik (2007). They also reported that teachers generated examples
that included specific visual entailments or examples that did not actually exist.
Similarly, Zodik and Zaslavsky (2008) pointed out that secondary school
mathematics teachers generated non-existing examples and considered them as one
type of mathematical incorrectness. More importantly, there is the possibility that the
participating teacher in this study might have generated such non-existing humber

lines deliberately. For instance, when the teacher asked the students to locate —zg,

she drew the interval between -2 and -3 longer than the intervals between other
consecutive integers. She might have acted in this way to have students locate the
given rational number more readily. However, she appeared to be unaware of the
possible mismatch between her intentions and what their students would actually

attend to.
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Another mathematical incorrectness had to do with teachers’ incorrect
explanations about irrational numbers. More specifically, teachers articulated the
following incorrect explanations about irrational numbers: irrational numbers cannot
be located on a number line, irrational number set is a superset of rational number
set, and irrational number set includes less number of elements than rational number
set. Teachers’ erroneous knowledge about irrational numbers was also reported by
other studies (e.g., Fischbein, Jehiam & Cohen, 1995; Giiven, Cekmez & Karatas,
2011; Sirotic & Zaskis, 2007). For instance, Sirotic and Zaskis (2007) asked pre-

service secondary school students to find the exact location of \/§ on a number line

and some of the participants did not believe that it was possible to find the exact

location of \/g . Sirotic and Zaskis (2007) inferred that “one may find this difficult to
believe if one has never seen an irrational point located on the number line,
especially considering the fact that the number line is everywhere dense with rational
numbers” (p. 478). This might also be true for the middle school mathematics
teachers that participated in this study. That is, middle school mathematics teachers
in this study might be lacking of the subject matter knowledge necessary for
understanding irrational numbers. Indeed, it is reported that many in-service teachers
could not even distinguish between rational numbers and irrational numbers (Arcavi,
Bruckheimer & Ben-Zvi, 1987). Therefore, in order to promote pre-service and in-
service teachers’ understanding of irrational numbers, some modifications to the
content courses that cover irrational numbers seems indispensable (Giiven et al.,
2011).

Some of the examples generated by the teachers were correct when evaluated
from a mathematical standpoint. However, they were not appropriate from a
pedagogical standpoint since they included the use of inappropriate language or
terminology. Examples of this type occurred due to careless use of the word fraction
when rational number is intended, the use of informal language such as opposite, flip
and upside down for teaching additive or multiplicative inverses of rational numbers,
ill-advised reading of fractions, and finally the incorrect use of mathematical

symbols in the course of working out rational number examples.
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Lamon (2012) claimed that many people carelessly use the word fraction
when they intend to mean rational number. She further claimed that the use of such
inappropriate terminology may lead to extra difficulties in communicating about the
complex topics of fractions and rational numbers. Thus, it is believed that middle
school mathematics teachers need to use mathematical terminology more carefully in
order to avoid confusion or miscommunication among students and teachers.
Teachers in this study also used inappropriate language when reading fractions.
However, the language used for labelling fractions might impede students’

understanding (Clarke & Roche, 2009). For instance, participant teachers often read

fractions like % as ‘two out of five.” Reading fractions in this way may not help

students notice the relative size in fractions. On the other hand, students more likely

to grasp relative size and arrive at correct solutions when they read fractions like %

as ‘two-fifths’. Van de Walle et al. (2013) also argued that fractions should be read in

a way that supports students’ understanding and further stated that reading % as

‘two-tenth’ rather than ‘two out of ten’ would provide students with the opportunity
to see the connections between decimals and fractions. It seems that the middle
school teachers in this study were not aware of the danger that may occur as a result
of using improper language when reading or saying fractions.

Another salient informal language use occurred when teachers used words
like ‘opposite’, ‘flip’ or ‘upside down’ when teaching additive or multiplicative
inverses of rational numbers. The ambiguity that is intrinsic to spoken language has
the potential to interrupt learners’ mathematical understanding (Matz, 1980). Thus,
teachers’ use of the informal term ‘opposite’ instead of additive inverse or ‘flip’
instead of multiplicative inverse has the potential to impede students’ conceptual
understanding of rational number concepts (Cangelosi et al., 2013). This implies that
language and notation may play a crucial role in fostering learners’ conceptual
understanding. Thus, although middle school mathematics teachers seemed reckless
about language and terminology when teaching additive and multiplicative inverses,

this might be a potential obstacle for students’ further mathematical development.
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Moreover, not using proper terminology is likely to cause difficulty for students in
understanding the nature of additive and multiplicative inverses (Cangelosi et al.,
2013).

Finally, exploration of teachers’ choice and use of examples brought to light
several examples which would be better avoided in the teaching of rational number
concepts. These examples included particular pitfalls that might be an obstacle for
students to understand the mathematical concept or procedure that they confronted
for the first time. In more detail, middle school mathematics teachers used two
different types of to be avoided examples. These were, examples that obscured the
role of variables and examples intended to illustrate a particular procedure, for which
another procedure would be more sensible.

In this study, the rational number examples selected by the middle school
mathematics teachers obscured the role of the variables in the following cases:
selecting same values for the repeating and non-repeating digits when illustrating
repeating decimal concept, selecting same values for the subtrahend and difference
when teaching the modelling of subtraction of rational numbers, and obscuring the
role of interval number and rational number magnitude when locating on a number
line. These findings were similar with the previous studies (e.g., Rowland et al.,
2003; Rowland et al., 2009; Rowland, 2008). Rowland et al. (2003) reported that pre-
service teachers’ following choice of examples obscured the role of variables: to start
teaching half past with half past six with analogue clocks, to start teaching co-
ordinates of points by (1,1), and to start teaching adding by 9+9. Similarly, Rowland
(2008) observed that a pre-service teacher’s first example for teaching subtraction
was 4-2=2 and this example obscured the role of variables since the pre-service
teacher selected same values for subtrahend and difference. As these results suggests,
some of the examples selected by the middle school mathematics teachers were
somewhat similar to the ones selected by the pre-service teachers. Rowland (2008)
concluded that “novice teachers need specific guidance and help in appreciating the
different roles of examples in mathematics teaching, and the existence of some

common pitfalls in the selection of examples” (p. 161). In a similar fashion, middle
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school mathematics teachers may also need some guidance for judicious selection of
examples.

Another type of to be avoided examples occurred in cases where teachers
provided examples to illustrate a particular procedure, but the examples called for
another procedure that is more sensible. Middle school mathematics teachers used
these types of to be avoided examples in the following cases: not using relevant
examples when illustrating the procedure for converting repeating decimals, not
using relevant examples when teaching particular strategies for comparing and
ordering rational numbers, and not using relevant examples when teaching a
particular written algorithm for adding rational numbers. These findings also
concurred with the findings of previous studies (e.g., Rowland et al., 2003; Rowland
et al., 2009; Rowland, 2008). Rowland et al. (2003) reported that pre-service
teachers’ used the following examples to teach particular procedures but the
examples called for other more sensible procedures: selecting 11-10 for teaching

counting on strategy and selecting 49x4,49x8 and 19x4 for teaching column

multiplication. It can be concluded that performing these computations by taking
account of teachers’ intended strategies disregards the idea of selecting sensible

strategies.
7.4. Implications

Based on the findings of the current study and with respect to the current
related literature, this section presented possible implications for pre-service and in-
service teachers, mathematics education researchers, mathematics teacher educators,
textbook authors, and curriculum developers.

Studies have shown that specific choice and use of mathematical examples
may promote or hinder learners’ understanding. Thus, it confronts mathematics
teachers with a challenge, and provoking numerous considerations to be weighed.
Nevertheless, mathematics teacher education programs in Turkey do not overtly
speak to this issue and do not provide systematical training for pre-service teachers to
enable them select or generate thoughtful mathematical examples for their students.
For this reason, courses that help pre-service teachers gain not only theoretical but
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also practical knowledge about examples should be designed. More precisely, these
courses should help pre-service teachers know what a mathematical example is,
notice the role and power of examples in teaching mathematics, and develop skills in
constructing good mathematical examples not only for the teaching of rational
number concepts but also for other concepts in school mathematics. By this way, pre-
service teachers may develop awareness about good and poor choice of examples.
Besides, other pedagogical content knowledge courses in mathematics education
program should give more weight to well-thought example selection or generation.
In these courses, pre-service teachers might be provided the opportunity to watch
video recordings of experienced and novice teachers’ teaching episodes and to
contemplate on experienced and novice teachers’ good and poor choices of
examples. Rowland (2008) suggested that pre-service teachers notice and learn more
efficiently from poor examples when compared to good ones. He further added that
pre-service teachers notice and learn from poor examples more efficiently since good
examples are so subtle that they are not visible to the novice observers. Based on this
suggestion, exemplification courses might be designed in a way that give more
chance to pre-service teachers’ exploration of and reflection on poor examples as
well as constructing effective ones.

Similarly, in-service teachers’ awareness of choosing examples can be
enhanced by activities organized by teacher training programs. This would especially
valuable for novice in-service teachers since such teacher training activities would
make it possible to convey experienced teachers’ craft knowledge regarding
treatment of examples to the novice ones. This study in particular focused on
identifying considerations employed by teachers in selecting rational number
examples. Thus, it is expected that these considerations might help teachers improve
their own teaching practices. In addition, these considerations might be adapted to
the teaching of other mathematical topics.

The findings of this study might also contribute to mathematics education
researchers who are interested in the area of exemplification and especially in
teachers’ treatment of examples. More importantly, this study attempted to fill the

void in mathematics education literature by exploring teachers’ treatment of rational
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number examples which have not been addressed before. Eventually, two different
sets of summaries explaining overall characteristics of rational number examples and
teacher considerations in selecting these rational number examples were developed.
It is expected that these summaries might help mathematics education researchers
design their own research studies and subsequently analyze their own research
findings.

This study might also help mathematics teacher educators to increase the
quality of pedagogical content knowledge courses in mathematics education. Turkish
pre-service teachers attend practice teaching courses when they become seniors.
Practice teaching courses provide pre-service teachers the opportunity to participate
actively in educational activities in a selected cooperating school. Thus, the
summaries developed in this study would be particularly useful for mathematics
teacher educators in evaluating pre-service teachers’ teaching of rational number
concepts in particular and other mathematical concepts in general.

Textbook examples play an important role in teaching practices of
mathematics teachers. Thus, it is important to include well-constructed examples in
mathematics textbooks to help students develop more sophisticated understanding of
mathematics. At this point, textbook authors should take an active role in preparing
textbooks that include carefully selected examples. However, as indicated by Watson
and Mason (2006) textbooks generally offer examples with random variation. Thus,
textbook authors are expected to be more aware about the pedagogical role of
examples. For instance, by considering structured variation principle, they may
construct examples in which the dimensions of variation are carefully controlled.
That is, they may construct sequences of examples by selecting one variable to be
held constant and change other variables systematically when moving from one
example to another. Hence, they may help students pay attention to relevant features
of examples and help to reduce the noise carried by specific examples.

Finally, this study is expected to inform curriculum developers about the
potential role of examples in the teaching of mathematics. Consequently, this study is
expected to help them revise and create examples that are included school

mathematics curriculum in accordance with pedagogical principles such as pattern
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breaking and structured variation, and with teacher considerations such as including
uncommon cases or drawing attention to relevant features in order to better expose

mathematical structure of examples to the students.
7.5. Recommendations for Future Research

The current study explored middle school mathematics teachers’ treatment of
rational number examples in their seventh grade classrooms. More specifically,
overall characteristics of rational number examples used by teachers, the
considerations employed by them in choosing or generating rational number
examples, and the mathematically incorrect or pedagogically inappropriate examples
used by them in teaching of rational number concepts were examined in-depth. In
the view of findings, some recommendations are offered for future research studies
in the following paragraphs.

This study was carried out with middle school mathematics teachers whose
rational number teaching experience varied between 2 to 14 years. A further research
with middle school mathematics teachers who are in their early years of teaching
might be conducted to see how their treatment of examples evolves as they teach.
Besides, pre-service mathematics teachers’ treatment of examples might be explored
to compare and contrast their selection of examples with in-service mathematics
teachers. Even, mathematics teacher educators’ treatment of examples might be
explored to see how well they select examples during the teaching of pre-service
teachers. This is very important since only “well prepared mathematics teacher
educators are available to furnish opportunities for teachers to develop in ways that
will enable them to enhance the recommended changes” (Zaslavsky & Leikin, 2004,
p. 5).

In this study, all of the participating middle school teachers taught seventh
grade students. A further research might be conducted with teachers who teach either
elementary school students (between 1% grade and 4™ grade), middle school students
(between 5™ grade and 8™ grade) and secondary school students (between 9" grade
and 12" grade) to see how teachers’ treatment of examples change with respect to

students’ grade levels in certain content areas in mathematics.
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This study focused on middle school mathematics teachers’ rational number
examples as the unit of analysis. Teachers’ treatment of examples related with other
topics of school mathematics might be explored to see how their example choices
and considerations for their choices of examples differ with respect to the nature of
mathematical concept.

In order to investigate middle school mathematics teachers’ treatment of
rational number examples in their classrooms, qualitative case study was employed.
Further quantitative research studies might be used to examine pre-service and in-
service mathematics teachers’ treatment of not only rational number examples but
also their examples related with other mathematical concepts. In particular, studies
might be conducted to examine whether there ‘good’ examples and ‘poor’ examples
result in significant differences in students’ achievement. By means of these
quantitative research studies, researchers might have the chance to generalize their
findings to a broader context possessing similar characteristics.

Finally, the results of this study were limited to the data that were gathered
from four public middle schools located in the Aksaray city centre. A further
research may be conducted to investigate private school teachers’ treatment of
examples in their classrooms. This might give some clues to the researchers about
the possible influences of different schools on the quality and quantity of examples

being selected by the teachers.
7.6. Limitations of the Study

The limitations that should be considered while interpreting the findings of
this study are explained below.

The number of middle school mathematics teachers | observed was limited to
four teachers in this study. Moreover, the results of this data were limited to the data
gathered from public middle schools that were at the center of Aksaray and private
school mathematics classrooms were not observed in this study. Therefore, findings
should be evaluated by considering the specified classrooms and school contexts.

In addition, I observed each classroom as a complete observer. My existence

in the classrooms might have influenced teachers’ and students’ actions or behaviors.
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For instance, teachers might have made greater effort to teach rational number
concepts due to my existence. To reduce this influence, | started conducting pilot
observations and interviews with the teachers eight weeks before the actual data
collection process and I videotaped teachers’ classroom practices during this time
period. Besides, | continued conducting post observations and interviews with the
teachers after the actual data collection process until the end of the fall semester. By
this way, | wanted to make sure that teachers did not attempt to change their
classroom practices after the end of the actual data collection process.

The data of this study were limited to the lesson observations and to the
questions included in the observation form. Before the implementation of the study, |
was planning to conduct both pre and post lesson interviews with the teachers to see
the examples appearing in their lesson plans. However, none of the teachers prepared
lesson plans in advance. Therefore, it was not possible for me to conduct pre-lesson
interviews. Thus, interview data were limited to the post lesson interviews and to the
questions included in the interview protocol. Finally, the data obtained from student
textbook were limited to the worked-out examples and exercise examples that were
included in the explanatory part of the textbook for introducing rational number
concepts.

According to Watson and Mason’s (2005) example definition, representations
can be also be regarded as mathematical examples. However, representations used by
the teachers were not examined in this study. Thus, examples used by the teachers
were limited to worked-out examples and exercise examples of teachers and the
student textbook.

The rational number teaching experience of participant teachers, ranged
between 2 and 14 years. Therefore, teachers with more than 14 years of rational
number teaching experience or teachers that have just started teaching rational
numbers were not observed in this study. Besides, the teachers that participated in
this study taught only to 7" grade students. Therefore, teachers’ treatment of
mathematical examples was limited to 7" grade level. Likewise, the participants of
this study were middle school mathematics teachers and primary school teachers or

secondary school mathematics teachers were not observed in this study.
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7.7. Implications for my future career

As a mathematics education researcher, this study had crucial impact on my
own practice. At the beginning of this study, I could only speak in a general way
about the importance of examples. But now, | am able to give a more analytical
account of teachers’ treatment of examples in the teaching and learning of
mathematics.

Conducting research on this topic provided me with ideas about my future
teaching. When | become faculty member, the first thing that I will do will be to
observe pre-service middle school mathematics teachers’ teaching practices in their
school practice courses. More specifically, | will have pre-service teachers prepare
lessons plans and will have them include their best examples in these lesson plans for
teaching specific mathematical concepts in the selected cooperating middle schools.
Besides, | will examine how they act in the moment when they come up with
contingent classroom situations and the examples they select or use to handle these
situations. By this way, | will monitor their improvement in selecting or using
powerful instructional examples when teaching mathematical concepts to their
students during a semester period. Meanwhile, | will discuss the potential pitfalls
included in the examples of pre-service middle school mathematics teachers when
they join teacher training courses related with school practice. At the end of the
school practice courses, | hope the pre-service middle school mathematics teachers
will become more aware of the role of careful selection or use of examples in the
teaching of mathematics.

Apart from examining pre-service teachers’ choice and use of mathematical
examples in their school practice courses, | will give more weight to their treatment
of examples during courses about teaching methods. | think this will play an
important role in increasing the quality of pedagogical content knowledge courses in
mathematics education.

| am also planning to carry out projects about in-service middle school
mathematics teachers’ treatment of examples in their own classrooms. More
specifically, | am planning to devise professional development activities and have in-

service middle school mathematics teachers participate in these activities and discuss
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the examples used by them in teaching particular mathematical topics. By this way, |
anticipate that the teachers will be provided the opportunity to develop their
experiences about exemplification in the teaching of mathematics.

Ultimately, after | gain sufficient experience about pre-service and in-service
mathematics teachers’ treatment of examples in their actual classroom practices, I am
planning to write mathematics textbooks for middle school students. These textbooks
will be prepared in accordance with the pedagogical principals existing in the
exemplification literatute and thus they will better expose the mathematical structure

inherent in the examples to the students.
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APPENDICES

APPENDIX A

OBSERVATION FORM

Gozlemin Amaci: Bu gozlemin amaci ortaokul matematik Ogretmeninin ders
esnasinda kullanmis oldugu 6rnekleri nasil ele aldigini ortaya koymaktir.
flgili Gozlem Sorular::
1. Ortaokul matematik Ogretmenleri ders anlatimi sirasinda matematiksel
ornekleri nasil ele almaktadirlar?

a. Ogretmenler smifta ne tiir 5rneklerden yararlanmaktadirlar? (6rnekler,
ornek olmayanlar, karsit 6rnekler, vb.)

b. Ogretmenler ornekleri nasil se¢mektedirler? (planlayarak/ders
esnasinda anlik olarak)

c. Ogretmenler 6rnekleri hangi amaglar igin segmektedirler? (konuya ilgi
¢ekmek i¢in, konu anlatimi i¢in, alistirma yapmak igin, vb.)

d. Ogretmenler drnekleri hangi amaglar i¢in kullanmaktadirlar? (Hangi
durumlarda secilen Ornekler kullanilan Orneklerden farklilik
gostermistir?)

2. Ogretmenler derste kullanmis olduklar1 &rnekleri  6grencilere nasil
sunmaktadirlar?

a. Ogretmenler  &rnek  kullanirken  ne  tiir  gdsterimlerden
faydalanmaktadirlar?

b. Ogretmenler oOrnekte kullandiklart  sekil/sayi/uzunluklar1  nasil
se¢mektedirler?

c. Ogretmenlerin vermis olduklari 6rnekler sonrasinda &grenciler
kavramlar1 nasil algilamaktadir? (Asirt genellestirme ya da asir
Ozellestirmeye neden olan 6rnekler var mi?)

d. Ogretmenler art arda verdikleri orneklerde nasil bir siralama ve

organizasyon vardir?
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e. Ogretmenler oOrnekleri matematiksel olarak ne derece dogru
kullanmaktadirlar?
3. Ogretmenlerin 6rnek segimlerinde uyguladiklari belirli kurallar ya da
prensipler var m1? Varsa nasil?
a. Basit ve bilinen bir 6rnekle basliyor mu?
b. Ogrencilerin hatalarin1 dikkate aliyor mu?
c. Kavramlarin gerekli 6zelliklerine dikkat ¢cekiyor mu?
d. Rastgele sayi/sekil/uzunluk kullanarak genellestirmeler yapiyor mu?
€. Yaygin olmayan durumlar1 6rneklerine dahil ediyor mu?

f.  Gereksiz is yiikiiniin en aza indiriyor mu?
Veri Toplama

Ortaokul matematik 6gretmeninin ders esnasinda kullanmis oldugu ornekleri nasil
ele aldigmi ortaya koymak amaciyla farkli devlet okullarinda goérev yapan dort
yedinci simif matematik 6gretmeninin dersleri bir egitim 6gretim donemi boyunca
gozlemlenecektir. Gozlem siirecinde asagida belirlenen boyutlara odaklanilacaktir.
Gozlem boyunca yukarida belirtilen gézlem sorulartyla ilgili her sey tanimlayici
notlar alinarak kaydedilecektir. Gerektigi durumlarda tanimlayici notlardan ayri
olarak yoruma veya ¢ikarima dayali notlar alinacaktir. Bu notlara ek olarak smif i¢i

diyaloglar ses kayit cihazi ile kaydedilecektir.
Gozlemin Boyutlar::

Ortam: Sinifin fiziksel durumu, teknolojik destek, ara¢ gerecler.

Ogretmenin kullandigi 6rnekler: Sozel olarak ifade edilenler, tahtaya

yazilanlar, yazili kaynaklardan alinanlar.

Orneklerin icerigi: Secilen sayilar, uzunluklar, objeler, gdsterimler,
materyaller.

Ogretmenin drnek secimi: Ogretmenin ¢ozdiigii rnekler, 6grencinin

¢ozdligl ornekler, 6dev olarak birakilanlar.

Siif ici diyaloglar: Ornekler iizerinden gegen dgretmen-6grenci, dgrenci-

ogrenci diyaloglari.
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APPENDIX B

INTERVIEW PROTOCOL

Tarih: Saat: Yer: Katilimer:

GIRIS

Merhaba, benim adim Ramazan Avcu. Orta Dogu Teknik Universitesi Egitim
Fakiiltesi [lkdgretim Boliimiinde doktora ogrencisiyim. Bu calismanin amaci
ortaokul matematik 6gretmenlerinin derslerinde kullandiklar1 6rnekleri incelemektir.
Derslerinizi gozledikten sonra kullanmis oldugunuz o&rneklerle ilgili birtakim
sorulara cevap aramak amaciyla ders sonlarinda sizle goriisme yapmak istiyorum.
Gorlismeler esnasinda herhangi bir nedenden 6tiirii kendinizi rahatsiz hissederseniz
goriismeyi sona erdirmede serbestsiniz. Her bir miilakat yaklasik 20-30 dakika
stirecektir. Sizin i¢in bir sorun teskil etmiyorsa goriismeleri kayit etmek istiyorum.

Katiliminiz i¢in simdiden ¢ok tesekkiir ederim.

SORULAR

1.  Derste kullanmis oldugunuz Orneklerden hangilerini 6nceden planladiniz,
hangilerini ders anlatim1 esnasinda olusturdunuz?

2. Dersteki her bir 6rnegi ne amagla kullandiniz?

3. Derste kullanacagimiz 6rnekleri secerken veya ornek olustururken neleri goz
ontinde bulundurdunuz?

4.  Ornekleri segerken kendinize 6zgii prensipleriniz ya da temel kurallariniz var
mi1?
e Varsa ornek verir misiniz?

5. Dersten once planlamis oldugunuz oOrnekleri ders esnasinda kullanmadiginiz

oldu mu?
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e Kullanmadiysaniz buna neler sebep oldu?
6. Kendi ¢ozdiigiiniiz sorulara ve 6grencilerin ¢ézmesini istediginiz sorulara karar
verirken neleri goz oniinde bulundurdunuz? Ornek verir misiniz?
7. Derste kullanmis oldugunuz 6rneklerin etkililigi hakkinda ne diisiiniiyorsunuz?
e Derste kullanmis oldugunuz Orneklerden dersin anlagilmasini olumsuz
etkiledigini diislindligiiniiz 6rnekler var mi1?
e  Varsa hangileri olumsuz etkiledi? Neden?
8. Orneklerde degisiklik yapmak isteseniz, neleri, nasil degistirirsiniz?
9. Ders esnasinda kullandiginiz 6rneklerden matematiksel olarak hatali ya da eksik
oldugunu fark ettiginiz oldu mu?

) Varsa bunu nasil duzeltirsiniz/diizelttiniz?
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APPENDIX C

SAMPLE CODING SHEET

GEREKSIZ iS YUKUNU EN AZA INDIRME

A B | c| b
Teknik is yiikiinii azaltma
Devirli ondalik sayilarin 6gretilmesinde devreden 4 1
kismin daha az adimda goriilebilmesi i¢in uygun
sayinin se¢imi
r.s. da toplama isleminin birlesme 6zelligini 14
Ogretirken paydalari esit r.s. in se¢imi
r.s. siralanmasinda payda esitlemeye gerek kalmadan 4,5
benchmark kullanilmasi
r.s. siralanmasinda paylar esitken payda esitleme ile 6
ugrasmama
r.s. siralanmasinda paylar farkli paydalar farkl 7,8,9
oldugu durumda hangisini esitlemen kolaysa onu
esitlemek
Payda esitlerken 1 ile genisletileni 1 ile ¢arpmama 10,15
durumu
Payda esitlerken EKOK un kullanilmasi, paydalari 6,7,8,19
birbiriyle ¢arpmak yerine
islem yaparken sadelestirerek devam etmek kolaylik 17 16, 17 2 45,6,9,
saglar 20,21
Bir tam sayi ile bir rasyonel sayinin toplanmasinda ve | 11,12,15,16, 12,14,15,16
cikarilmasinda payda esitleme yerine kisa yol 18,19,21,22,
kullanilmasi (¢arp- ¢ikar, carp-topla) 23.24.25.26,

28,31,32,34,

35
iki bilesik kesir toplanirken tamlarin kendi aralarinda 33 9 13
kesirli kisimlarin da kendi aralarinda toplanmasi-
¢ikarilmasi
Say1 dogrusunu yetecek kadar kisa gizme 1,2,3
Merdivenli islemlerde bilinmeyen x varsa payda 27
esitlemek yerine geriye dogru ¢alisma stratejisinin
kullanilmasi
Uzun uzun payda esitleme yerine ¢ikarmaya yonelik 29
formiil kullanma
Cebirsel ifadelerin kolay ¢6ziim i¢in yeniden 8

diizenlenmesi
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Kavramin oziine odaklanma

Onemli kismi vurgulayip islemin hepsini tamamlamama 5 13 10
Sadelestirmeye gerek yok boyle kalsin 17
Tama ¢evirmene gerek yok bdyle kalsin

Bilesik kesre ¢cevirmene gerek yok 14

Modellenen toplama islemi sembolik hali istendiginde payda 11
esitligine gerek yok

Rasyonel sayilarda kuvvet alirken pay ve paydanin ayr1 ayr1 18,19
kuvvetini alirsan hiz kazanirsin.

islem ozelliklerinin kullanilmas:

Islem yapmadan degisme 6zelligi kullanilarak sorunun ¢oziilmesi 13 10 2
Islem yapmadan birlesme 6zelligi kullanilarak sorunun ¢éziilmesi 11 3
Islem yapmadan dagilma 6zelligini kullanarak sadelesecek 12,15,20 1
durumlar yaratma, uzun uzun hesaplamadan

Islem yapmadan 1/(a/b)=b/a nin kullanilmas1 24,25 18

Islem yapmadan (a/b) : (a/b) = 1 nin kullanilmas1 7
Islem yapmadan (a/b) + (-a/b) = 0 nin kullanilmasi 19
Ortak paranteze alma dzelligini kullanarak islemi kolaylastirma 30

Ondalik sayilarla iglemlerde rasyonel hale getirmek yerine saymin | 36,37,38

10 un katlari ile genisletilerek islemin kolaylastiriimasi
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APPENDIX D

CONSENT FORM

Bu calisma, ODTU Egitim Fakiiltesi ilkogretim Boliimiinde doktora yapmakta olan
Ramazan AVCU tarafindan Tirkiye’de yiiriitiilen bir doktora tez ¢aligmasidir. Bu ¢alisma,
ortaokul matematik Ogretmenlerinin ders anlatimi esnasinda kullanmig olduklar1 ornekleri
derinlemesine incelemeyi amaglamaktadir. Caligmaya katilimda gonilliiliik esastir. Katilimimiz
arastirmacinin ders esnasinda sizi gézlemlemesiyle ve ders sonrasinda sizle miilakat yapmasiyla
saglanacaktir. Gozlem ve miilakatlar 2013-2014 egitim 6gretim yili boyunca devam edecektir.
Gozlem ve miilakat yoluyla elde edilen veriler tamamuyla gizli tutulacak ve sadece arastirmacilar
tarafindan degerlendirilecektir; elde edilecek bilgiler bilimsel yayimlarda kullanilacaktir.

Aragtirmaci gozlem yaparken sinif ortamina herhangi bir miidahalede bulunmayacaktir.
Bu sebeple 6grencilerle iletisiminizi engelleyecek herhangi bir olumsuz durum s6z konusu
olmayacaktir. Miilakatlar, gozlem swrasinda kullanmis oldugunuz Orneklere yonelik
aragtirmacinin zihninde olusan sorulara 151k tutmasi amaciyla yapilacaktir. Gézlem ve miilakatlar
kisisel rahatsizlik verecek hi¢gbir duruma neden olmayacaktir. Ancak, katilim sirasinda herhangi
bir nedenden otiirii kendinizi rahatsiz hissederseniz miilakat ya da gozlemi sona erdirmede
serbestsiniz. Boyle bir durumda gézlem ve miilakatlar1 yapan aragtirmaciya ¢alismaya devam
etmek istemediginizi sOylemeniz yeterli olacaktir. Go6zlem ve miilakatlar sonrasinda, bu
caligmayla ilgili sorularimz cevaplanacaktir. Bu g¢alismaya katildigimiz i¢in simdiden tesekkiir
ederiz. Calisma hakkinda daha fazla bilgi almak i¢in Ramazan AVCU (Aksaray Universitesi,
Egitim Fakiiltesi [lkdgretim Boliimii Matematik Egitimi Anabilim Dali; Tel: 0 382 288 22 33; E-
posta: ramazan.avcu@metu.edu.tr) ya da 6gretim tiyelerinden Yrd. Dog. Dr. Cigdem HASER
(ODTU Egitim Fakiiltesi, Ilkdgretim Boliimii No: 105; Tel: 0 312 210 64 15; E-posta:

chaser@metu.edu.tr) ile iletisim kurabilirsiniz.

Bu calismaya tamamen goniillii olarak katilyyorum ve istedigim zaman yarida kesip
ctkabilecegimi biliyorum. Verdigim bilgilerin bilimsel amach yayimlarda kullanilmasint kabul

ediyorum. (Formu doldurup imzaladiktan sonra uygulayiciya geri veriniz).

Ad1 Soyadi Tarih Imza
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APPENDIX E

APPROVAL OF THE ETHICS COMMITE OF METU RESEARCH CENTER
FOR APPLIED ETHICS
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APPENDIX F

\..U""“n" T
4 h 3 AKSARAY VALILiGi
Kﬁ J }° il Milli Egitim Miidiirliigii
Say1 :85705372/44/1365950 14/06/2013

Konu: Bilimsel Aragtitma.

VALILIK MAKAMINA

flgi: a)Milli Egitim Bakanhg Yenilik ve Egitim Teknolojileri Genel Miidiirliigiiniin 07/03/2012
tarih ve 3616 sayili yazisi. (2012/13 Nolu Genelgesi)

b)Aksaray Universitesi Egitim Fakiiltesi arastirma Gorevlisi Ramazan AVCU' nun 03.06.2013
tarihli dilekgesi.

Aksaray Universitesi Egitim Fakiiltesi Arastirma Gorevlisi Ramazan AVCU, Aksaray Il
merkezindeki okullarda gorev yapan farkli deneyimlere sahip matematik &gretmenlerinin ders
anlatimi  sirasinda  kullanmis olduklart  6rnekleri, bilimsel arastrma kapsaminda incelemek
istemektedir. Cahit Zarifoglu Ortaokulu,23 Nisan Ortaokulu ve Piri Mehmet Pasa Ortaokulu
matematik 6gretmenleri ve okul yonetimi, video-kamera kayit sistemiyle yapilmak istenen Bilimsel
Arastirmanin okullarinda yapilabilecegi hususunda yazili olarak muvafakat etmektedirler.

Ilgi (a) genelgede “Arastirma Gnerisi ve veri toplama araglari Anayasa, Milli Egitim Temel
Kanunu ve Tiirk Milli Egitiminin genel amaglarina uygun olacak; milli ve manevi degerlere aykiri,
kisilik haklarmni ihlal eden; cinsiyet, din, dil, rk gibi farkliliklari istismar eden, insan Haklari Evrensel
Beyannamesi ve uluslar arasi baglayicihigi olan diger belgelerce su¢ kabul edilen hususlari igeren,
kisisel ve ailevi mahremiyeti ifsaeden soru, ifade, resim ve simgeler yer almayacaktir. Veri toplama
araglarinda kisi, kurum ve kuruluglarin reklamini veya tamtimini yapan ifade ve ogeler
bulunmayacaktir.” denilmektedir.

Bu nedenle; ilgi (b) dilekgeyle Bilimsel Arastirma yapma isteginde bulunan Ramazan
AVCU'nun, Aksaray [l merkezindeki okullarda gorev yapan farkli deneyimlere sahip matematik
Ogretmenlerinin ders anlatimi sirasinda kullanmis olduklari rnekleri, video kamera kayit sistemiyle
bilimsel arastirma kapsaminda inceleme istefi, yukarida belirtilen okullarimizin matematik
ogretmenleri ile okul yonetimleri kabul etmis ise de; uygulamanin video kamera kayit sistemi ile
yapilmasi halinde, 6grenci ve dgrenci velileri iizerinde olumsuz diisiince ve davranis bigimleri ortaya
¢ikarabilecegi konusunda Miidiirliigiimiiziin ¢ekinceleri bulunmaktadir. Bu nedenle; Ramazan
AVCU'nun yukarida belirtilen bilimsel aragtirmasini video ve kamera cihazlari kullanmaksizin egitim
ogretim faaliyetlerini aksatmamak kaydiyla yapmasi Miidiirliigiimiizce uygun goriilmektedir.

Makamlarinizca da uygun goriildiigii takdirde, olurlarinizi arz ederim.

Liitfiye DENERI
I Milli Egitim Miidiirii

OLUR
14/06/2013
Kubilay ANT
Vali a.
Vali Yardimeisi

Bu belge, 5070 sayili Elektronik imza Kanununun 5 inci maddesi geregince giivenli elektronik imza ile imzalanmigtir

Yeni Sanayi Mah. 2/E 90 Bul No:47 Ek Valilik 3 Nolu Hizmet Binas1 68100-AKSARAY Ayrintih bilgiigin: H'YALCIN
Elektronik Ag: http://aksaray.meb.gov.tr Tel: 0(382) 213 68 40
e-posta: aksaraymem@meb.gov.tr Faks: 0382213 68 14

412



APPENDIX G
TURKISH SUMMARY

ORTAOKUL MATEMATIK OGRETMENLERININ RASYONEL SAYI
ORNEKLERINI SINIF ORTAMINDA ELE ALIS BICIMLERININ
INCELENMESIi: COKLU DURUM CALISMASI

Ornekler matematik egitiminde dnemli bir rol oynamaktadir. (Rowland, 2008;
Zazkis ve Leikin, 2008; Zodik ve Zaslavsky, 2008). Ornekler &zellikle
kavramsallastirmada, genellestirmede, soyutlamada, argiimantasyon ve analojik akil

yiirlitme siirecinde dnemli bir yere sahiptir (Zaslavsky ve Zodik, 2007).

Ornekler matematik egitiminde iki farkli amacla kullanilmaktadir (Rowland,
Turner, Thwaites ve Huckstep, 2009; Zodik ve Zaslavsky, 2008). Ilk olarak, drnekler
matematiksel bir kavrami ya da yontemi Orneklendirmede kullanilirlar (Mason ve
Pimm, 1984; Rowland vd., 2009; Watson ve Mason, 2005; Zodik ve Zaslavsky,
2008). ikinci olarak ise matematiksel bir kavramin ya da yontemin pekistirilmesinde
kullanilirlar (Rowland vd., 2009; Rowland, 2008; Watson, Mason, 2005). Ornek
olmayanlar ve karsit ornekler, matematik egitimindeki diger 6rnek tiirleri arasinda
yer almaktadir (Watson ve Mason, 2005). Ornek olmayan ornekler,
kavramsallagtirma ve tanimlarla ilgilidir ve matematiksel kavramlarin kritik
Ozniteliklerine dikkat c¢ekerler (Zodik ve Zaslavsky, 2008). Karsit Ornekler
matematiksel iddialarla ve bu iddialarin ¢iiriitiilmesi ile ilgilidir (Zodik ve Zaslavsky,
2008). Kisacasi, karsit Ornekler matematiksel bir ifadenin dogru olmadigim
gostermede ve matematiksel kavramlar arasindaki ayirt edici Ozelliklerin

netlestirilmesinde 6nemli bir rol oynamaktadirlar.

Bills ve digerleri (2006), matematiksel bir 6rnegin pedagojik olarak yararli
olabilmesi i¢in ‘seffaflik’ ve ‘genellestirilebilirlik’ seklinde iki temel 6zellige sahip
olmas1 gerektigini belirtmislerdir. Bir Ornegin seffafligi bireyin O6rnegin nasil
yorumlandigina ve Ornegin Gzelliklerini nasil algiladigina baghdir ve dolayisiyla
baglam bagimlidir. Ogretmenler, dgrencilerine pedagojik olarak yararli olan gok

sayida ornegin temin edilmesinde onemli bir rol oynamaktadirlar (Zaslavsky, 2010).
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Fakat uygun ornek sec¢imi kolay bir is degildir ve dnceden planlanmast miimkiin
olmayan karmasik bir¢ok diisiincenin goz 6niinde bulundurulmasini gerektirir (Zodik
ve Zaslavsky, 2008). Rowland’e (2014) gore, ornekler dikkatli bir se¢im siirecinin
tirtinii olmalidir ve bilingli bir se¢im yapmay1 gerektirmelidirler. Ciinkii bir drnek
digerine gore daha iyi veya uygun olabilir. Ayrica, 6rnek se¢imi Ogrencilerin
O0grenmelerini hem olumlu hem de olumsuz olarak etkileyebilir (Zaslavsky ve Zodik,
2007). Bu baglamda, 6gretmenlerin 6rnek se¢iminin ve kullanimiin 6grencilerin

Ogrenme stirecine sekil verebilecegi sdylenebilir.

Orneklerin secilmesi ya da olusturulmasi dgretmenlerin genelde anlik kararlar
vermesini gerektirir. (Zodik ve Zaslavsky, 2008). Bu diisiinceden yola ¢ikarak, bu
aragtirmada ortaokul matematik Ogretmenlerinin rasyonel sayr kavramlarinin
Ogretiminde kullandiklar1 anlik ve planli Orneklerin belirlenmesi amaglanmistir.
Ogretmenlerin anlik ve planl 6rnek segiminde kullandiklar prensipler ya da goz
oniinde bulundurduklar1 diisiinceler, onlarin planlama silirecinde veya anlik
eylemlerinde daha bilingli olmalarini saglamaktadir (Zaslavsky ve Zodik, 2008). Bu
nedenle bu caligmanin diger bir amaci, ortaokul matematik 6gretmenlerinin 6rnek
secerken veya kullanirken g6z oniinde bulundurduklar1 prensipleri veya diisiinceleri

belirlemek olmustur.

Ornekler, matematigin 6gretilmesinde veya dgrenilmesinde énemli bir yere
sahip olmalarina ragmen (Zaslavsky, 2010), 6rnek secimi bazi1 giigliikklere ya da
sikintilara neden olabilmektedir (Rowland, 2008). Matematik Ogretiminde
Ogretmenlerin su li¢ tiir 0rnekten kaginmalar1 gerekmektedir: degiskenlerin roliinii
anlasilmaz hale getiren Ornekler, matematiksel bir yontemin &gretilmesinde
kullanilan fakat bagka bir yontemin 6gretilmesi i¢in daha uygun olan ornekler ve
dikkatli se¢cim yapmay1 gerektirdigi halde genelde zar atilarak rasgele secilen
orneklerdir (Rowland, Thwaites ve Huckstep, 2003). Bu c¢alismada ortaokul
matematik ogretmenlerinin hem iyi ornek se¢imleri hem de kotii ornek secimleri
incelenmistir. Ogretmenler kotii rnekleri simf ortamina dahil ederek dgrencilerin bu
ornekleri sorgulamalarini saglayarak onlarin matematiksel diisiincelerinin gelisimine
olumlu etkide bulunabilir (Zaslavsky ve Zodik, 2007). Buna ek olarak, 6gretmenlerin

iyi ve koti oOrnek kullanimlarimi igeren sinif i¢i durumlar Ogretmen egitimi
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programlarinda ve mesleki gelisim etkinliklerinin diizenlenmesinde etkili bir sekilde
kullanilabilir (Zodik ve Zaslavsky, 2008). Bu nedenle, bu c¢alismanin bulgulari
O0gretmen adaylarimin smif ortaminda matematiksel ornekleri nasil ele almalar

gerektigi konusunda pratik anlamda bilgi sahibi olmalarina yardimci olabilir.
1.1. flkokul ve Ortaokul Matematiginde Rasyonel Say1 Kavramlar

Rasyonel say1 kavramlar1 okul yillarinda 6grencilerin karsilasmis olduklari en
onemli matematiksel kavramlar arasinda yer almaktadir (Alacaci, 2009; Behr, Lesh,
Post ve Silver, 1983; Behr, Wachsmuth, Post ve Lesh, 1984; Yanik, 2013). Bu
oneminden dolayr iilkemizde rasyonel sayr kavramlarina ilkokul birinci siniftan

ortaokul sekizinci sinifa kadar her 6grenim seviyesinde yer verilmektedir.

Ogrenciler, rasyonel say1 kavramlar1 ile tim smif seviyelerinde
karsilagmalarina ragmen, bu kavramlarin anlasilmasinda ilkokul 6grencilerinin yani
sira (Haser ve Ubuz, 2003; Lesh, Behr ve Post, 1987; Ni, 2001) ortaokul
ogrencilerinin oldukga giicliik ¢ektigi siklikla dile getirilmektedir (Birgin ve Glirbiiz,
2009; Lamon, 2007). Rasyonel sayr kavramlarmmin anlasilmast ilkokul
ogretmenlerine bile zor gelmektedir (Graeber, Tirosh ve Glover, 1989; lIzsak, 2008;
Tirosh, 2000). Ball (1990a, 1990b), birgok O6gretmenin rasyonel sayilarla ilgili
yalnizca iglemsel bilgiye sahip olugunu belirtmistir. Ni ve Zhou (2005) dgrencilerin
rasyonel sayilarla ilgili yasadiklar1 giigliikleri iki temel etkene baglamistir. Birincisi,
dogal say1 bilgisinin rasyonel sayilara genellenmesiyle ilgilidir. ikincisi ise rasyonel

sayilarin gosteriminde yasanan problemlerle iliskilidir.

Ogrencilerin rasyonel sayilarla ilgili giigliiklerini azaltmak igin Greer (1987)
ogrencilerin rasyonel sayilarla ilgili yaygin kavram yamilgilarini ortaya ¢ikarmus,
Moss ve Case (1999) yeni bir program gelistirmis ve Amerikan Ulusal Matematik
Ogretmenleri Konseyi (2000) stardartlastirilmis dokiiman kullanmani1 énemi {izerinde
durmustur. Ogrencilerin rasyonel say1 kavramlarini anlamalarini artirmak igin bir¢ok
calisma yapilmis olmasina ragmen oOgrenci giicliikleri hala devam etmektedir
(Wilson, Mojica ve Confrey, 2013). Morrison (2013) ogrencilerin basari
diisiikliigiinti 6rneklerin 1yi siralanmamasindan, yeterli ¢esitlilikte olmayan ve diisiik

biligsel beceri gerektiren drneklerin kullanimindan kaynaklandigin1 vurgulamistir. Bu
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nedenle, 6gretmenlerin smif ortaminda kullandiklar1 rasyonel sayir oOrneklerinin
niteliginin incelenmesi 6grencilerin  6grenmelerini  artirmada 6nemli bir rol

oynayabilir.
1.2. Arastirmanin Amaci ve Arastirma Sorulari

Bu calismanin amaci matematik Ogretmenlerinin yedinci siif ortaminda
rasyonel say1 drneklerini nasil ele aldiklarmi incelemektir. Ozel olarak bu ¢alismada
ogretmenlerin kullandiklar1 rasyonel say1 orneklerinin karakteristik ozelliklerine,
Ogretmenlerin bu 6rnekleri kullanirken g6z onilinde bulundurduklar1 prensiplere ve
kullanilan 6rneklerde yer alan olasi hata veya yetersizliklere odaklanilmistir. Bu

amagla bu caligmada asagidaki arastirma sorularina cevap aranmaistir:

1. Ortaokul matematik 6gretmenlerinin yedinci sinif ortaminda kullandiklar

rasyonel say1 0rneklerinin karakteristik 6zellikleri nelerdir?

a. Ogretmenler tarafindan kullanilan rasyonel sayr rnekleri hangi fikirleri

vurgulamaktadir?

b. Opretmenler rasyonel sayr oOgretiminde ne oranda &zel Ornek

kullanmaktadir?

c. Ogretmenler rasyonel say1 dgretiminde ne oranda 6rnek olmayan ve karsit-

ornek kullanmaktadir?

d. Ogretmenler rasyonel sayr 6gretiminde ne oranda planli érnek ve anlik

ornek kullanmaktadir?
e. Ogretmenler rasyonel say1 dgretiminde hangi kaynaklari kullanmaktadir?

2. Ogretmenler 6rnek secerken veya olustururken hangi prensipleri veya

diisiinceleri goz 6niinde bulundurmaktadir?

3. Ogretmenlerin rasyonel sayr ogretiminde kullandiklari ornekler hangi

matematiksel veya pedagojik yetersizlikler icermektedir?

a. Ogretmenler rasyonel sayr dgretiminde matematiksel olarak hatali hangi

ornekleri kullanmaktadirlar?

b. Ogretmenlerin rasyonel say1 dgretiminde pedagojik olarak uygun olmayan

hangi 6rnekleri kullanmaktadirlar?
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1.3. Cahsmanin Onemi

Matematik egitiminde 6rnek kullanimi uzun bir gegmise sahiptir (Bills vd.,
2006; Rowland, 2008) ve matematik egitimi arastirmalarinda giderek artan bir ilgiye
sahiptir (Antonini vd., 2011; Bills ve Watson, 2008). Son on yilda matematiksel
orneklerle ilgili bircok aragtirma makalesi yaymlanmistir ve birka¢ ¢alisma grubu
matematiksel Ornekler iizerine odaklanmistir. Ornek kullanimi smif ortaminda
gerekli bir sey olmasina ragmen ogretmenler i¢in karmasik bir is olabilir (Bills vd.,
2006; Zaslavsky ve Peled, 1996). Buna ek olarak, dérnek kullanimi bir¢ok kosulu goz
oniinde bulundurmay1 gerektirir. (Antonini vd., 2011; Zodik ve Zaslavsky, 2008). Bu
acidan bakildiginda, Ogretmenlerin Ornek se¢imi Ogrencilerin d6grenmelerini hem
destekleyebilir hem de engelleyebilir. Ogretmenlerin 6rnek kullanimi 6grencilerin
O0grenmeleri lizerinde Onemli bir role sahip olmasina ragmen, matematik
Ogretmenligi programlart bu konuya agik bir sekilde yer vermemektedir ve 6gretmen
adaylarinin  6rnekleri nasil kullanacaklarina iliskin herhangi bir 6gretim
yapilmamaktadir (Zaslavsky ve Zodik, 2007). Bu sebeple, 6gretmenlerin 6rnekleri
etkili bir sekilde kullanmalar1 matematik 6gretim deneyimleri neticesinde gelisim
saglar ve bu bilgiye mesleki beceri bilgisi adi verilir (Kennedy 2002; Leinhardt
1990). Ogretmenlerin &rnek kullanimlarma yonelik mesleki beceri bilgilerinin
incelenmesi, onlarin matematiksel bilgileri hakkinda ipucu verir ve 6gretmenlerin
sistematik bilgilerinin artirilmasina imkan sunan mesleki gelisim programlariin ya
da kurslarinin tasarlanmasina zemin hazirlayabilir (Zaslavsky, 2008; Zaslavsky ve

Zodik, 2007).

Kavramsal 6grenmede ornek kullanimi merkezi bir konumda bulunmasina
ragmen (Watson ve Mason, 2002), 6gretmenlerin siif ortaminda kullandiklar ya da
sectikleri matematiksel 6rnekleri inceleyen ¢ok az ¢alisma bulunmaktadir (Rowland
2008; Zodik ve Zaslavsky, 2008). Ayrica, ulasilabilir alanyazinda 6gretmenlerin
ornekleri smif ortaminda nasil ele aldiklariyla ilgili Tirkiye’de gergeklestirilmis
caligmalara rastlanmamistir. Bu sebeple, bu c¢alismada ortaokul matematik
Ogretmenlerinin rasyonel sayr Orneklerini nasil ele aldiklar1 ulusal bir baglamda

incelenecektir.
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Kisacas1 bu caligma, O0gretmenlerin rasyonel sayilari nasil ele aldiklarim
incelemeye yardimer olacak bir kavramsal ¢ergcevenin gelisimine On ayak olabilir.
Ayrica, bu calisma Ogretmenlerin matematik 6gretimi esnasinda Ornekleri nasil
sececeklerine yonelik bir farkindalik kazanmalarini saglayabilir. Bu farkindalik
sayesinde Ogretimin niteliginin artmast ve Ogrencilerin 6grenmelerinin tesvik

edilmesi beklenmektedir.
ALANYAZIN TARAMASI
2.1. Matematiksel Ornek Nedir?

Ornek kavrammn farkli anlamlari bulunmaktadir. Zodik ve Zaslavsky
(2008), ornek kavramini daha genis bir sinifin 6zel bir durumu olarak tanimlamistir
ve Ornekler araciligiyla akil yiiriitme ve genelleme yapilacagini belirtmislerdir. Ayni
sekilde, Zazkis ve Leikin (2008) orneklerin matematiksel kavram ve kurallarin
aciklanmasinda kullanildigini belirtmistir. Diger bir ¢aligmada Sinclair ve digerleri
(2011), ornek vermeyi daha genel bir kavrami daha 6zel bir durumla resmetme
olarak nitelendirmistir. Benzer sekilde 6rnek kavramini Yopp (2014) matematiksel
bir gorevle ilgili 6zelliklerin ya da kavramlarin gosterilmesinde kullanilan herhangi
bir matematiksel nesne olarak tanimlamistir. Watson ve Mason (2005) o6rnek
kavramin1 daha genis bir perspektiften ele almis ve 6grencilerin 6rnekleri herhangi
bir seyi temsil etmek i¢in kullanabilecegini ve bu nesneden yola ¢ikarak genelleme

yapabileceklerini belirtmistir.
2.2. Matematilsel Ornek Tiirleri

Birka¢ arastirmaci matematigin Ogretilmesinde kullanilan ornekleri goz
onilinde bulundurarak bu 6rnekleri siniflandirma yoluna gitmistir. Michener (1978)
ornekleri dort farkli gruba ayirmistir. Bunlar baslangi¢ ornekleri, referans 6rnekleri,
genel ornekler ve karsit 6rneklerdir. Benzer sekilde Mason ve Pimm (1984) 6rnekleri
dort sinifa ayirmistir. Bunlar ‘specific’, ‘particular’, ‘generic’ ve ‘general’
orneklerdir. Peled ve Zaslavsky (1997) Ornekleri bir kavrami ya da kural
aciklayabilme giiglerine gore ii¢ sinifa ayirmistir. Bunlar 6zel ornekler, yar1 genel

ornekler ve genel Orneklerdir. Askew ve William (1995) ‘only just’ ornekler ve
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‘very nearly’ ornekler olmak iizere iki tiir 6rnekten bahsetmistir. Mason ve Watson
(2011) ‘only just’ 6rneginin yerine u¢ 6rnek kavraminmi kullanmayi tercih etmistir.
Mason ve Watson (2011) u¢ Ornek iiretemeyen Ogrencilerin ilgili teknik ya da
teoremi tamamiyla anlayamayacagindan s6z etmistir. Zazkis ve Chernoff (2008)
karsit-orneklerin matematiksel olarak bir c¢ikarimi ciirlitmeye yaradigini fakat
Ogrencilerin yanlis ¢ikarimlarindan vazge¢melerinde derecede karsit-6rneklerin
yeterli ikna edici rol oynamayabileceginden bahsetmistir. Bu nedenle matematiksel
bir kavram olan karsit-6rnekler yerine pedagojik kavramlar olan merkezi drnekler ve
kopriiyelici orneklerden séz etmistir. Ayrica, Zazkis ve Chernoff (2008) merkezi
orneklerin bilissel catismada ise yaradigini, koprileyici Orneklerin ise bilissel
catigmanin ¢Oziimiinde ise yaradigimi ifade etmistir. Zodik ve Zaslavsky (2008)
Ogretmenlerin bir kavrami ya da kurali 6gretirken kullandiklar1 6rneklerin ya anlik
olarak sinif ortaminda tiretildigini ya da derse gelmeden dnce dgretmenler tarafindan
onceden planlandigini belirtmistir. Yani, Zodik ve Zaslavsky (2008) kullanilma veya
iiretilme zamanina gore Ornekleri planli 6rnekler ve anlik 6rnekler seklinde ikiye
ayirmistir. Son olarak Rowland, Turner, Thwaites ve Huckstep (2009) 6rnekleri
kavram veya kural 6rnekleri ve alistirma 6rnekleri seklinde ikiye ayirmistir. Kavram
veya kural 6rnekleri bir kavramin veya kuralin 6gretilmesinde kullanilirken aligtirma
ornekleri kavram veya konunun tekrarmi saglamak amaciyla kullanilmaktadir.
Rowland ve digerlerine (2009) gore orneklerin iki farkli kullanimi1 daha mevcuttur.
Bunlar karsit érnekler ve genel 6rneklerdir. Arastirmacilara gore karsit 6rnekler bir
ifadenin yanlis oldugunu gostermede kullanilirken genel 6rnekler konuya aciklik
getirmeyi amaglayan, bir sinif nesnenin ayirt edici bir 6zelligi lizerinde yapilan

islemler yoluyla bir iddianin dogruluk sebeplerini agiga ¢ikaran drneklerdir.
2.3. Ornekler Uzay1 (Example Space) Kavram

Watson ve Mason’in (2005) iddia ettigine gore tek bir ornek bir fikrin
ogrenciler tarafindan tamamen anlagilmasinda yeterli olmayabilir ve &grencilerin
yanlis genellemeler yapmalarina neden olabilir. Bu diigiinceden yola ¢ikarak Watson
ve Mason (2005) oOrnekler uzayr kavramini ortaya atmiglardir. Arastirmacilar,

ornekler uzaymi su sekilde izah etmislerdir: “Ornekler uzaym bircok arag gereg
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iceren alet edevat dolab1 olarak diisiiniin. Baz1 ara¢ geregler daha bilindiktir ve dolap
acildiginda hemen ele gelecek tiirdendir. Ote yandan, diger ara¢ gerecler daha

geridedir ele gelmeleri 6zel ugras gerektirir” (s. 61).

Ornekler uzayr kavrami Tall ve Vinner’m (1981) kavram imgesi olarak
adlandirdig1 biligsel yapi ile yakindan ilgilidir. Kavram imgesi, bir kavramla ilgili
biligsel yapinin tamamidir ki bu zihinde o kavramla ilgili biitiin resimleri, 6zellikleri
ve iglemleri kapsar (Tall ve Vinner, 1981). Edwards (2011) 6rnekler uzayini bireyin
ulasabilecegi ornekler sinifi ya da kiimesi olarak tanimlamistir ve drnekler uzayimnin
kavram imgesi kavraminin bir alt kiimesi olarak diisiiniilebilecegini belirtmistir.
Benzer sekilde, Mason ve Watson (2008) ornekler uzaymnin bireyin kavram
imgesinin énemli bir kismin1 olusturdugunu ifade etmis ve drnekler uzayini bireyin
ulasabildigi orneklerin ve 6rnek olmayanlarin tiimii olarak tanimlamistir. Zaslavsky
ve Zodik (2014) 6rnekler uzaymi “bireyin belirli bir kavramla belirli bir zaman ve
baglamda iligkilendirdigi 6rnekler biitiini” (p. 527) olarak tanimlamistir ve drnekler
uzaymin Tall ve Vinner’in kavram imgesi yapisiyla yakindan iligkili oldugunu

belirtmistir.

2.4. Ogretmenlerin Siif Ortaminda Matematiksel Ornekleri Ele Al

Bicimlerini inceleyen Cahismalar

Rowland (2008), 6gretmen adaylarinin sinif ortaminda kullandiklar1 6rnekleri
incelemek amaciyla kavramsal bir cerceve ortaya atmistir. Bu calismada dogal
sayillarin toplanmasi1 ve ¢ikarilmasi, geometrik doniisiimler gibi ilkdgretim
diizeyindeki matematik konularina yonelik Ornekler incelenmistir. Rowland’in
(2008) kavramsal cercevesi dort kategoriden olusmaktadir. Bunlar, degiskenler,
siralama, gosterimler ve kazamimlardir. Rowland (2008) calismasinda ¢ogunlukla
Ogretmen adaylarinin kullandiklart uygun olmayan 6rnekler iizerine yogunlasmustir.

Morrison (2013), Rowland’in (2008) kavramsal ¢ercevesini kullanarak benzer
bir caligma yapmistir. Yalniz, Rowland’dan (2008) farkli olarak, Morrison (2013)
caligmasinda iki okul Oncesi Ogretmeninin sayr kavramlarimin &gretiminde

kullandiklar1 6rnekleri incelemistir. Morrison (2013) calismasinda Rowland’in
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(2008) calismastyla benzer sonuglar elde etmistir. Daha agikcasi, Morrison (2013)
okul 6ncesi 6gretmenlerinin ornek ¢esitliliginin boyutuna dikkat etmediklerini ortaya

koymustur.

Rowland (2014) yakin zamanda yapmis oldugu c¢alismasinda 2008 yilinda
gelistirdigi kavramsal g¢ergevenin sadece degiskenler boyutuna odaklanmistir ve
ogretmen adaylarinin ikinci dereceden bir bilinmeyenli denklemlerin ve birinci
dereceden iki bilinmeyenli denklemlerin 6gretiminde kullandiklar1 orneklerin ne
oranda uygun oldugunu aragtirmistir. Rowland (2014), 2008 yilinda yapmis oldugu
calismaya benzer sekilde 0gretmen adaylariin matematiksel kavram ve kurallari
Ogretmeye baslamadan Once kullanacagi Ornekleri planlamalarini tavsiye etmistir.
Buna ek olarak, planli 6rneklerin 6gretmenlere ornekleri basitten karmasiga dogru

sunma imkani verecegini belirtmistir.

Onceki calismalardan farkli olarak Zaslavsky (2010), dgretmenlerin smif
ortaminda kullanmis olduklar1 6rneklerin aciklayict giiciinii incelemistir. Zaslavsky
(2010) orneklerin 6gretimsel agiklamalariyla ilgili olarak su temalara deginmistir:
genellemenin ve degismezligin aktarilmasi, notasyonlarin ve konvensiyonlarin
dogrulanmasi, Ogrencilerin ¢ikarimlarinin ve iddialarinin dogrulugunun veya
yanlighginin ortaya konmasi, matematiksel kavramlarin gilindelik hayatla
iliskilendirilmesi ve istenilen kisitlilikta 6rneklerin iretilmesidir. Zaslavsky (2010)
yaptig1 arastirmanin sonucunda 6gretmenlerin 6grencilere sundugu 6rneklerin kritik
ozelliklerini bilmeleri gerektigini ve oOgrenciler tarafindan iretilen Ornekleri
gelistirecek yeteneklere sahip olmalarmi gerektigini belirtmistir. Zaslavsky’nin
(2010) calismasina benzer sekilde, Zaslavsky ve Zodik (2007) 6gretmenlerin sinif
icinde kullandiklar1 6rneklerin giiclii ve zayif yonlerine odaklanmigtir. Zaslavsky ve
Zodik’in (2007) incelemis oldugu ornekler, Zaslavsky’nin (2010) calismasindaki
orneklerle biiylik oranda benzerlik gostermistir. Zaslavsky ve Zodik (2007),
Rowland’e (2014) benzer sekilde 6gretmenlerin sinif ortaminda kullanacagi drnekleri

planlamalarini tavsiye etmistir.

Diger bir arastirmada Bills ve Bills (2005), deneyimli 6gretmenlerin
ticgeninin alanini, kesirlerin toplanmasin1 ve dogrusal denklemlerin ¢oziilmesini

ogretirken kullandiklar1 6rneklerde pedagojik olarak neyi hedeflediklerini ortaya
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koymaya calismistir. Bills ve Bills (2005) matematiksel bir kavramin anlagilmasin
saglamak icin ve karisikligi engellemek i¢in deneyimli 6gretmenlerin ilk olarak basit
ornekleri tercih ettiklerini ortaya koymustur. Benzer sekilde Zodik ve Zaslavsky
(2008), deneyimli lise matematik Ogretmenlerinin matematiksel 6rnek se¢iminde
kullandig1 pedagojik prensiplerini ve diisiincelerini arastirmistir. Zodik ve Zaslavsky
(2008) calismasinda Ogretmenlerin 6rnek segerken veya kullanirken su prensipleri
kullandiklarii belirtmistir: kolay ve bilinen O6rneklerle baslama, 6grenci hatalarina
dikkat etme, 6rneklerin kritik 6zelliklerini 6n plana ¢ikarma, rasgele ornek segerek
genellemelere ulasmay1 saglama, yaygin olmayan 6rnekleri sinif ortamina dahil etme

ve gereksiz ig yliklinii en aza indirmedir.
YONTEM
3.1. Arastirmanin Deseni

Ortaokul matematik Ogretmenlerin yedinci sinif ortaminda kullandiklar
rasyonel sayt oOrneklerinin incelendigi bu arastirmada nitel arastirma yontemi
kullanilmistir. Daha 6zel olarak bu ¢alismada durum calismasi deseni kullanilmustir.
Yin (2003) dort tiir durum ¢alismasi deseninden sz etmistir. Bunlar biitiinciil tek
durum deseni, biitiinciil ¢oklu durum deseni, i¢ ige gegmis tek durum deseni ve ig ige
gecmis ¢oklu durum desenidir. Bu calismada durum calismasi tiirlerinden biitiinctil

¢oklu durum deseni kullanilmistir.
3.2. Cahismanin Katilhmcilari

Bu calismaya Aksaray i1l merkezindeki farkli devlet okullarinda goérev
yapmakta olan dort ortaokul matematik Ogretmeni katilmistir. Veri toplama
stirecinde her bir 6gretmen yedinci sinif dgrencilerine rasyonel sayr kavramlarini
ogretmistir.  Katilimc1  okullarin  secilmesinde uygun ornekleme yontemi
kullanilmistir (Fraenkel, Wallen ve Hyun, 2012). Bu ¢alismada zengin veri toplamak
onemli bir husus oldugu icin ¢aligmanin katilimcilar1 amagh 6rnekleme yontemi
kullanilarak belirlenmigtir. Rasyonel sayilarin 6gretilmesinde Ozellikle farkli
deneyimlere sahip olan dgretmenler katilimci olarak belirlendigi i¢in bu calismada

amacli ornekleme yontemlerinden maksimum ¢esitlilik 6rneklemesi kullanilmistir
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(Creswell, 2012). Calismanin katilimcilarina ait demografik veriler Tablo 3.1°de

verilmistir.

Tablo 3.1. Calismanin katilimcilarina ait demografik veriler

Aciklama Ogretmen A | Ogretmen B | Ogretmen C | Ogretmen D
Cinsiyet Erkek Erkek Erkek Kadin
Yas 36 36 31 26
Universite Devlet Devlet Devlet Devlet
. . [kogretim [kdgretim
Mezuniyet M%Fe.maj[.'k M%Fe.maj[.'k Matematik Matematik
bolimii bolimii . U Ay .
Ogretmenligi | Ogretmenligi
Ogretmenlik deneyim yil1 14 11 9 4
Rasyqnel sayilar 6gretiminde 14 10 8 2
deneyim y1li
Aksaray ilindeki deneyim y1li 9 10 4 3
Bulundugu okuldaki deneyim yil1i 3 2 2 1

3.3. Veri Toplama Araclar

Bu caligma ortaokul matematik Ogretmenlerinin rasyonel sayi Orneklerini
nasil ele aldiklarini derinlemesine arastirmayr amaglamistir. Bu 6gretmenlerden
zengin veri elde edebilmek amaciyla ‘coklu veri toplama araglar’’ kullanilmistir
(Creswell, 2007). Calismanin temel verilerini smif i¢i gozlemler ve gozlem sonrasi
Ogretmenlerle yapilan goriismeler olusturmustur. Sinif i¢i gézlemler video kamera ile
goriismeler ses kayit cihaz ile kayit edilmistir. Ayrica ders gozlemleri ve gorlismeler
esnasinda alan notlart tutulmustur. Son olarak, Ogretmenlerin rasyonel say1
kavramlarimin Ogretimi esnasinda Ogrencilerine dagittiklar1 yazili materyaller

(6rnegin ¢aligma yapraklari), 6devler ve rasyonel say1 kavramlari ile ilgili 6grencilere

yoneltilen yazili sorulari ¢alismanin ikincil veri kaynaklarini olusturmustur.
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3.4. Veri Toplama Siireci

Calisma verilerinin toplanmasina yonelik zaman c¢izelgesi Tablo 3.2°de

verilmistir.

Tablo 3.2. Veri toplama siirecine yonelik zaman ¢izelgesi

Tarih Siirecler

5 ODTU Uygulamal Etik Aragtirma Merkezinden etik
Agustos 2013 onayinin ve Aksaray Valiligi I1 Milli Egitim
Miidiirligiinden ¢aligma izninin alinmast

Eylil 2013 Katilimer okul, sinif ve 6gretmenlerin belirlenmesi
Eyliil 2013 — Kasim 2013 Veri toplama 6ncesi gozlem ve goriismeler

Kasim 2013 — Aralik 2013 Veri toplama siirecinde gozlem ve goriismeler
Kasim 2013- Ocak 2014 Veri toplama sonrasinda gézlem ve gériismeler
Kasim 2013 - Mart 2014 Gozlem ve goriisme verilerinin transkript edilmesi

3.5. Verilerin analizi

Bu calismada gozlem ve goriismeler farkli 6gretmenlerle farkli ortamlarda
yirlitilmistlir. Dolayistyla ¢oklu durumlar seg¢ilmistir. Creswell (2007) bir
aragtirmada birden fazla duruma odaklanildiginda oncelikle her bir durumun ve
temanin ayrintili bir sekilde betimlenmesini Oonermistir ve buna durum-i¢i analiz
ismini vermistir. Creswell (2007) durum-i¢i analiz sonrasinda durumlar arasi tematik
analiz yapilmasin1 Onermis ve buna karsilastirmali durum analizi adin1 vermistir.
Benzer sekilde Yin (2003) durum g¢alismalarinin analiz edilmesinde kullanilan bes
analitik teknikten bahsetmistir. Bunlar oriintli eslestirme, aciklama olusturma, zaman
serisi analizi, mantik modelleri ve karsilastirmali durum sentezidir. Yin (2003) ilk
dort teknigin tekli veya coklu durum calismalarinda kullanilabilecegini fakat
karsilastirmali durum sentezinin iki veya ikiden fazla durum igeren c¢alismalarda
Ozellikle kullanilmas1 gerektigini belirtmistir. Bundan dolayi, bu ¢alismanin verileri

karsilagtirmali durum sentezi teknigi kullanilarak analiz edilmistir.

Karsilagtirmali durum sentezi teknigi kullanilarak oncelikle her bir durum
birbirinden bagimsiz bir sekilde analiz edilmistir. Diger bir deyisle, her bir
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Ogretmenin  kullanmis oldugu rasyonel say1 Ornekleri kendi iclerinde
siniflandirilmistir. Veriler tekrar tekrar incelendikge, her bir 6gretmenin rasyonel say1
orneklerini kullanimlarina yonelik kategoriler belirginlesmeye baslamistir. Bazi
kategoriler, alanyazinda yer alan kategoriler yardimiyla belirlenmistir. Bazilar1 ise bu
calisma sonucunda ortaya ¢ikmistir. Her bir 6gretmenin kullandigi 6rnekler ayr1 ayri
incelendikten sonra, Orneklerin diger Ogretmenler tarafindan da kullanilip
kullanilmadigr  belirlenerek kodlama islemi yapilmistir. Analiz sonrasinda
ogretmenlerin kullandiklar1 rasyonel say1 ornekleri su fikirlere gore kategorilere
ayrilmigtir:  Orneklerin  genel Ozellikleri, Ogretmenlerin  O6rnek  se¢iminde
benimsedikleri prensipler, 6gretmenlerin orneklerinde bulunan matematiksel ve
pedagojik yetersizlikler. Ogretmenlerin rasyonel say1 drneklerini ele alis bicimlerine

yonelik siniflandirma Tablo 3.3’te verilmistir.
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Tablo 3.3. Ogretmenlerin rasyonel say1 Orneklerini ele alis bigimlerine iliskin

smiflandirma
Tema Alt temalar Kategoriler
Matematiksel olarak Ornek tiirii Ozel 6rnekler

dogru olan 6rnekler Ornek olmayanlar

Karsit-6rnekler

Orneklerin kaynag1 Ogrenci ders kitabindan planli 6rnekler

Ogrenci calisma kitabindan planl &rnekler

Ogretmen kilavuz kitabindan planl drnekler

Yardime1 kaynaklardan planli 6rnekler

Cevirim igi egitim yazilimindan planl
ornekler

0SS, SBS sinav sorularinin olugturdugu
planlt 6rnekler

Anlik ornekler

Ogretmenlerin dikkat Kolay ya da bilinen 6rneklerle 6gretime
ettikleri hususlar ya da baslama

benimsedikleri prensipler Ogrencilerin giigliiklerine/hatalarina/kavram

yanilgilarina dikkat etme

Orneklerin kritik 6zelliklerini 6n plana
¢ikarma

Yaygin olmayan (alisilmadik) érnekleri sinif
ortamina dahil etme

Gereksiz is yiikiinii en aza indirme

Sinavlar1 goz 6niinde bulundurma

Matematiksel olarak Hata tiirii Matematikse olarak yanlis olan 6rnekler

dogru olmayan 6rnekler
/pedagojik olarak uygun
olmayan ornekler

Pedagojik olarak uygun olmayan dil ya da
terminoloji bulunduran érnekler

Pedagojik olarak kaginilmasi gereken
ornekler

Bu calismada ortaokul matematik Ogretmenlerinin kullanmis olduklar
incelemek amaciyla su kavramsal cerceveler kullanilmistir: Marton ve Booth’un
(1997) varyasyon teorisi, Zodik and Zaslavsky’nin (2008) Ogretmenlerin ders
esnasinda sectikleri ve olusturduklar1 ornekleri agiklayan dinamik cergevesi ve
O0gretmen adaylarinin 6rnek se¢imini ve kullanimini degerlendirmek amaciyla

Rowland ve digerlerinin (2005) gelistirdigi Dortlii Bilgi Modeli kullanilmustir.
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3.5.1. Marton ve Booth’un (1997) varyasyon teorisi

Ogrenme neyin 6rnek oldugunun farkinda olunmasiyla gerceklesir (Marton
ve Booth, 1997). Bu teorinin merkezinde 6grenmenin varyasyonun saptanmasiyla
oldugu goriisii bulunmaktadir (Marton ve Trigwell, 2000). Biligsel olarak bir
kavrama ait 6rnek ancak bazi 6zelliklerinin degisebildiginin bazilarnin ise invaryant

kaldiginin kabul edilmesi neticesinde 6rnek olabilir (Mason, 2006).

Farkl1 kisiler bir 6rnegin farkli boyutlarindan haberdar olabilirler (Goldenberg
ve Mason, 2008). Ornegin, bir dgretmen bir drnegin farkli boyutlarindan haberdar
olabilir. Ozel olarak, meslege yeni baglayan 6gretmenler bir kavramin degisebilecek
ozelliklerinin tiimii hakkinda bilgi sahibi olmayabilirler. Ayrica, bir birey herhangi
bir 6rnegin farkli zamanlarda farkli boyutlarina odaklanabilir (Goldenberg ve
Mason, 2008; Mason, 2006). Tiim bu faktdrleri géz 6niinde bulundurarak Watson ve
Mason (2005) olas1 varyasyon boyutlar1 ve izin verilebilir degisim cesitliligi
kavramlarmi ortaya atmustir. Kisacasi, ‘olasi varyasyon boyutlarr® kavrami farkli
kisilerin degisme ihtimali olan farkli seylerden haberdar olmasi ile ilgiliyken ‘izin
verilebilir degisim ¢esitliligi’ kavrami ise farkli kisilerin farkli zamanlarda degisen
seyin farkli araliklarda oldugunu algilamasi ile ilgilidir (Mason, 2011). Bu kavramlar
ogrencilerin matematiksel bir nesnenin hangi Ozelliklerinin kritik oldugunu
anlamalarina yardimci olur (Goldenberg ve Mason, 2008). Bu iki parametre 6zellikle
matematikte ¢ok etkilidir ¢iinkii bu kavramlar sayesinde ogrenciler matematiksel
yapinn farkina varirlar (Mason vd., 2009). Matematiksel yap1 varyans/invaryans ile
benzerlik/farklilik arasindaki iligki ile araciligi ile ortaya ¢ikar (Watson ve Shipman,
2008). Bu yap1 deneyim edilen orneklerin kritik olan ve olmayan yonlerinin fark
edilmesine yardimci olur (Sun, 2011). Varyasyon teorisine gore, bir nesnenin belirli
bazi1 kritik Ozelliklerinin bilinmesi Ogrenciler agisindan c¢ok biiyilk 0nem tasir.
Ciinkii, bir nesneyi 6grenebilmek i¢in Oncelikle o nesnenin kritik 6zelliklerinin
bilinmesi gerekmektedir (Guo vd., 2012). Belirli bir 6zelligin 6grenilebilmesi igin
Ogrencilerin ilgili boyuttaki varyasyonu deneyim edinmeleri gerekir ve bir 6zellik
degisirken sabit kalan diger oOzelliklerin Ogrenciler tarafindan kolayca fark

edilebilmesi gerekir (Pang ve Marton, 2005).
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3.5.2. Zodik ve Zaslavsky’nin (2008) 6gretmenlerin ders esnasinda sectikleri ve

olusturduklar: 6rnekleri aciklayan dinamik cercevesi

Simon (1995) Ogretmenlerin bilgisi, diisiinmesi, karar vermesi ve smif
etkinlikleri arasindaki iliskiyi ortaya koymak amaciyla Matematik Ogretim Déngiisii
adin1 verdigi bir model gelistirmistir. Zodik ve Zaslavsky (2008) bu modeli
kullanarak lise Ogretmenlerinin matematik Ogretimi sirasinda sectikleri ve
kullandiklar1 6rnekleri derinlemesine incelemeyi hedeflemistir. Zodik ve Zaslavsky
(2008) ayrica Ogretmenlerin Ornek sec¢iminde dikkat ettikleri hususlar1 veya
benimsedikleri prensipleri belirlemeyi amaclamiglardir. Bu amacla Zodik ve
Zaslavsky (2008) Ogretmenlerin matematiksel bilgilerine, &gretim esnasinda
matematiksel bilgiyi ve ulasilabilir kisisel Ornekler uzayini nasil kullandiklarina
odaklanmislardir. Zodik ve Zaslavsky (2008), Simon’un (1995) Matematik Ogretim
Dongiisii  modelinden hareketle Ogretmenlerin ders esnasinda segtikleri ve
olusturduklart Ornekleri aciklayan dinamik bir g¢erceve ortaya atmistir ve bu
cergeveye Matematiksel Ornek Ilintili Ogretim Déngiisii admi vermistir. Bu
cergeveye gore matematik Ogretimi esnasinda Ogretmenler tarafindan kullanilan
ornekler 6gretmen bilgisi, ders planlama ve ders ortami seklinde ii¢ bilesen altinda
toplanmistir. Bu bilesenler aras1 karsilikli iligkiler farkli oklarla gosterilmistir.
Ornekler uzay: ve ders kitaplar1 dgretmenlerin 6rnek se¢iminde kullandiklar baslica
kaynaklar arasindadir. Ayrica, ders kitaplart ¢ogunlukla ders planlama sathasinda
kullanilirken, 6rnekler uzayr hem ders planlama safhasinda hem de ders ortaminda
ogretim yapilirken kullanilmaktadir. Ogretmenlerin 6rnek se¢iminde ve kullaniminda
kendilerini yonlendiren birtakim prensipler ve hususlar vardir. Bu prensipler veya
hususlar 6gretmenlerin kisisel egilimlerinden ve degerlendirmelerinden biiyiik

oranda etkilenmektedir.

Bu cerceveye gore dgretmenler ders planlama safhasinda ¢ogunlukla 6rnek
segme veya Ornek iiretme ile mesgul olmaktadirlar. Ayrica ders isleme sathasi sinif
i¢ci olaylar ve O0gretmenlerin anlik eylemlerinden olusmaktadir. Daha 6zel olarak,
smif i¢i olaylar Ogretmenlerin eylemlerini ve &grencilerle olan etkilesimlerini
icermektedir. Smif i¢i olaylar genelde d6gretmenlerin anlik eylemlerde bulunmalarini
ve o esnada gerekli olan uygun Ornekleri temin etmelerini gerektirir. Zodik ve
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Zaslavsky (2008) anlik o6rneklerin bazi 6gretmenler tarafindan aninda iiretildigini ve
bunun kolay ulasilabilir 6rnekler uzayini belirttigini ifade etmistir. Ote yandan, bazi
anlik orneklerin iiretilmesi 6gretmenlerin oldukca fazla zamanini almistir ve bu tiirde
ornekler 6gretmenlerin uzak ulasilabilir 6rnekler uzayina karsilik gelmistir. Zodik ve
Zaslavsky (2007), 6gretmenlerin uzak ulasilabilir 6rnekler uzayindan yararlanarak
ornek {rettikleri durumlart 6grenme firsati olarak nitelendirmistir. Kisacasi,
ogretmenler kendi 6gretimlerinden Ogrenirler ve 6zel olarak da ornek iiretme ya da

ornek se¢me yoluyla 6grenme deneyimi elde ederler.
3.5.3. Rowland, Turner, Thwaites ve Huckstep’in (2005) dortlii bilgi modeli

Rowland ve digerleri (2005), Ball, Hill ve Bass (2005) tarafindan gelistirilen
O0lcme araclarinin 6gretmenlerin pedagojik alan bilgileri hakkinda ipuclar
verebilecegini fakat 6gretmenlerin sinif ortaminda nasil bir 6gretim sergilediklerini
yansitmayacagini belirtmistir. Rowland ve digerleri (2005) 6gretmenlerin nasil bir
Ogretim  sergilediklerini  degerlendirebilmek i¢in onlart  simif ortaminda
gbzlemlenmelerinin gerektigini belirtmistir. Bu diisiinceden yola ¢ikarak Rowland ve
digerleri (2005) Dortlii Bilgi Modeli adint verdikleri bir kavramsal cergeve
gelistirmislerdir. Dortlii Bilgi Modeli dort birimden olusmaktadir. Bunlar temel bilgi,
dontisiim bilgisi, iliski kurma bilgisi ve beklenmeyen olaylar bilgisidir. Bu ¢alismada
Dortlii Bilgi Modelinin  doniisiim birimine odaklanilmistir. Cilinkii bu  birim
Ogretmenlerin matematik 6gretiminde segtigi ve kullandig1 6rnekleri analiz etmeye
yardimc1 olmaktadir. Daha 6zel olarak bu calismada doniisiim birimi araciligiyla
ortaokul matematik Ogretmenlerinin rasyonel sayilar1 Ogretirken kullandiklar
orneklerden matematiksel veya pedagojik acidan sikintili olanlari belirlenmeye
calisilmigtir. Rowland’a (2008) gore dgretmenler kotii 6rneklerden iyi drneklere gore
daha kolay ogrendiklerini belirtmistir. Rowland ve digerleri (2003) kavram veya
kural Ogretimi sirasinda Ogretmenlerin  kagcinmasi gereken {i¢ tir Ornekten
bahsetmistir. Bunlar, degiskenlerin roliinii belirsizlestiren 6rnekler, daha uygun
strateji kullanimini gerektiren 6rnekler ve zar atarak rasgele tiretilen 6rnekler yerine

dikkatli se¢im yapmay1 gerektiren Orneklerdir. Bu arastirmada bu {i¢ tiir 6rnegin
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ortaokul ~matematik Ogretmenleri tarafindan kullanilip kullamilmadigi da

arastirilmistir.
BULGULAR

Bu aragtirmanin bulgulart 6gretmenlerin  kullandiklar1 rasyonel say1
orneklerinin genel Ozellikleri, 6gretmenlerin rasyonel sayr drneklerini kullanirken
dikkat ettigi hususlar ve 6gretmenlerin matematiksel olarak hatali veya pedagojik
olarak uygun olmayan rasyonel sayr ornekleri basliklari altinda ii¢ ayr1 boliimde

incelenmistir.
4.1. Ogretmenlerin Kullandiklar1 Rasyonel Say1 Orneklerinin Genel Ozellikleri

Bu arastirmanin bulgular1 ortaokul matematik 6gretmenlerinin rasyonel say1
kavramlarimin o6gretiminde 6zel ornekler, ornek olmayanlar ve karsit Ornekler
seklinde {i¢ tiir drnek kullandiklarmi gostermistir. Ogretmen A ve Ogretmen B
ogrenci ders kitabina nazaran daha fazla 6zel 6rnek kullamirken Ogretmen C ve
Ogretmen D 6grenci ders kitabina gore daha az 6zel 6rnek kullanmistir. Ayrica, ders
kitabinda rasyonel say1 islemleriyle ilgili 6rnek sayisinin rasyonel sayilarla ilgili
biitiin Orneklerin yarisindan fazla oldugu ortaya cikmistir. Benzer sekilde,
Ogretmenlerin de rasyonel say1 islemlerine yonelik kullandiklar1 Ornekler
kullandiklar1 tiim rasyonel sayr érneklerinin yarisindan fazla olmustur. Ote yandan,
hem Ogretmenler hem de Ogrenci ders kitabi rasyonel sayr problemlerinin

kurulmasina ve ¢oziilmesine yonelik ¢ok az sayida 6rnege yer vermislerdir.

Ders kitabinda yer alan Ornekler tarafindan vurgulanan rasyonel sayi
fikirlerini genelde oOgretmenlerin kullandigi 6rnekler de vurgulanmistir. Ayrica,
ogretmenler ders kitabindaki ornekler tarafindan vurgulanan rasyonel say1 fikirleri
disinda farkli fikirleri vurgulayan rasyonel say1 drnekleri de kullanmiglardir. Ozel
olarak, rasyonel sayilarin agiklanmasi ve say1 dogrusu lizerinde gosterilmesiyle ilgili
ders kitabinda yer alan 6rnekler su fikirleri vurgulamistir: bir kesrin denklik sinifinin
bulunmasi, denk kesirlerin say1 dogrusu iizerinde gosterilmesi, rasyonel sayilarin
pozitif veya negatif olma durumlarinin belirlenmesi ve say1 dogrusu iizerinde yer

alan bir noktaya karsilik gelen rasyonel saymnin belirlenmesi. Tim &gretmenler
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rasyonel sayilarin sayr dogrusu lizerinde gosterilmesi ile ilgili Ornekler
kullanmislardir. Fakat bu kazanimin 6gretilmesinde kullanilan diger rasyonel sayi
fikirleri tiim 6gretmenler tarafindan vurgulanmamustir. Ders kitabindaki orneklerin
icerdigi fikirler disinda 6gretmenler tarafindan kullanilan 6rnekler su fikirleri de
icermistir: negatif bir rasyonel sayida eksi isaretinin konumunun incelenmesi,
rasyonel sayilarin sadelestirilmesi, bilesik ve tam sayili rasyonel sayilarin birbirine
cevrilmesi ve pozitif ve negatif rasyonel sayilarin ihtiyaglarinin 6grencilere

hissettirilmesi.

Ders kitabinin rasyonel sayilarin farkli bicimlerde gosterilmesine yonelik
sundugu ornekler su rasyonel say1 fikirlerini igermistir: tam sayilarin rasyonel say1
olarak gosterilmesi, rasyonel sayilarin tam sayi, devirli ondalik say1 ve devirsiz
ondalik say1 olarak gosterilmesi, devirsiz ondalik sayilarin rasyonel sayir olarak
gosterilmesi ve devirli ondalik sayilarin rasyonel hale getirilmesi. Ogretmenlerin
rasyonel sayilarin farkli bicimlerde gosterilmesine yonelik sunduklari 6rneklerin
icerdigi fikirler ders kitabindaki Orneklerin igerdigi fikirlerle birebir Ortlismiistiir.
Fakat tiim Ogretmenler devirli ondalik sayilarin rasyonel hale getirilmesiyle ilgili
ornekler kullanirken bu kazanima yonelik diger fikirleri igeren Orneklerin tlimiinii

kullanmamuislardir.

Ders kitabinin rasyonel sayilarin karsilastirilmasi ve siralanmasina yonelik
sundugu Ornekler su rasyonel sayi fikirlerini igermistir: rasyonel sayilarin sayi
dogrusu tizerinde gosterilmesi, rasyonel sayinin ondalik sayiya ¢evrilmesi, ortak
payda algoritmasiin kullanilmasi, ortak pay algoritmasinin kullanilmasi, referans
noktas1 kullanimi ve denk kesirler yardimiyla siralama. Tiim 6gretmenler ortak payda
algoritmas1 yardimiyla rasyonel sayilarin siralanmasina yonelik ornekler vermistir.
Fakat bu kazanimla 1ilgili ders kitabinda bulunan diger rasyonel say: fikirlerine
yonelik oOrneklere benzer Ornekler tim Ogretmenler tarafindan kullanilmamustir.
Mesela, hi¢bir 6gretmen denk kesirler yardimiyla rasyonel sayilarin siralanmasina
yonelik 6rnek kullanmamustir. Ayrica, ders kitabinda yer alan 6rneklerden farkl
olarak Ogretmenler su fikirleri iceren rasyonel sayr oOrnekleri kullanmiglardir:
artakalan miktar diisiinerek siralama, ondalik sayilarin virgiilden sonraki kisimlarina

0 ekleyerek siralama, rasyonel sayilarin isaretlerini géz Oniinde bulundurarak
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karsilagtirma ve bilesik rasyonel sayiya cevirerek karsilastirma. Bununla birlikte,
yukarida belirtilen ilk iki fikir sadece bir 6gretmen tarafindan vurgulanirken son iki

fikir de baska bir 6gretmen tarafindan vurgulanmistir.

Ders kitabinin rasyonel sayilarin toplanmasi ve c¢ikarilmasma yonelik
sundugu ornekler su rasyonel say1 fikirlerini icermistir: rasyonel sayilarda toplama-
cikarma islemlerinin modellenmesi, paydalari ayni olan rasyonel sayilarin
toplanmasi-gikarilmasi, rasyonel sayilarda toplama-gikarma iglemlerinin sonucunun
tahmin edilmesi, paydalar1 farkli rasyonel sayilarin toplanmasi-gikarilmasi ve
rasyonel sayilarda toplama igleminin 6zellikleri. Tiim 6gretmenler su fikirlerle ilgili
ornekleri kullanmiglardir: paydalar1 ayni1 olan rasyonel sayilarin toplanmasi-
cikarilmasi paydalar1 farkli rasyonel sayilarin toplanmasi-¢ikarilmasi ve rasyonel
sayilarda toplama isleminin &zellikleri. Fakat bu kazanimla ilgili diger fikirler tim
ogretmenler tarafindan vurgulanmamistir. Mesela, yalnizca bir 6gretmen rasyonel
sayilarda toplama-cikarma islemlerinin sonucunun tahmin edilmesiyle ilgili tek bir
ornek kullanmistir. Ogretmenler ders kitabinda yer alan 6rneklerin disinda su fikirleri
iceren Ornekler kullanmislardir: rasyonel sayilarla ¢cok adimli islemler yapma ve
rasyonel sayilarin ortak paydalarinin bulunmasi. Fakat bu fikirler tiim 6gretmenler
tarafindan vurgulanmamustir. Ornegin, sadece bir dgretmen rasyonel sayilarmn ortak

paydalarinin bulunmasiyla ilgili 6rnekler ¢ozmiistiir.

Ders kitabinin rasyonel sayilarin garpilmasi-boliinmesine yonelik sundugu
ornekler su fikirleri igermistir: rasyonel sayilarda ¢arpma isleminin modellenmesi,
rasyonel sayilarin ¢arpilmasi-boliinmesi, 0, 1 ve (-1) ile garpma-b6lme, rasyonel
sayilarin karesinin ve kiipiiniin modellenmesi ve hesaplanmasi, rasyonel sayilarla cok
adimli islemler ve rasyonel sayilarda carpma isleminin 6zellikleri. Ogretmenlerin bu
kazanim i¢in kullanmis oldugu oOrnekler ders kitabinda yer alan Orneklerle
ortiismiistiir ve dgretmen farkl fikirlerin yer aldigi drnekler kullanmamislardir. Ote
yandan, tiim 0gretmenler rasyonel sayilarda ¢arpma-bdlme islemleri ile ilgili 6rnek
kullanirken, diger fikirleri igeren Ornekler tiim Ogretmenler tarafindan
kullanilmamistir. Daha da 6nemlisi, hi¢gbir 6gretmen rasyonel sayilarda carpma-
bolme islemlerinin  sonuglarinin  tahmin  edilmesiyle 1ilgili  6rneklerden

yararlanmamugtir.
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Ders kitabinin rasyonel sayilarda ¢ok adimli islemlerle ilgili sundugu 6rnekler
su rasyonel say1 fikirlerini icermistir: bilesenleri ayni satirda bulunan ¢ok adimlhi
islemler, merdiven bi¢iminde ifade edilmis ¢ok adimli islemler ve igerisinde Oriintii
bulunduran ¢ok adimli islemler. Tiim ogretmenler ilk iki fikre yonelik o6rnek
kullanirken tigiincii fikirle ilgili 6rnekleri tiimii kullanilmamistir. Son olarak, bir
Oogretmen ders kitabinda yer alan c¢ok adimli islem Orneklerine ek olarak tek

degiskenli polinom bi¢iminde ifade edilmis rasyonel say1 6rnekleri kullanmaistir.

Ders kitabinin rasyonel sayilarda problem ¢6zme ve kurma ile ilgili sundugu
ornekler su rasyonel sayi fikirlerini igermistir: ayni birim lizerinden islem yapmay1
gerektiren rasyonel sayr problemlerinin ¢ozlimii, farkli birimler iizerinden islem
yapmay1 gerektiren rasyonel sayir problemlerinin ¢6ziimii ve rasyonel sayi
problemlerinin kurulmasi. Tiim 6gretmenler ilk iki fikre yonelik 6rnekler kullanirken
hicbir 0gretmen rasyonel sayir problemlerinin kurulmasina yonelik 6rnek
kullanmamistir. Daha da 6nemlisi, ders kitabinda yer alan ve dgretmenler tarafindan
kullanilan bu kazanimla ilgili 6rneklerin sayisi diger rasyonel sayr kazanimlari igin

sunulan veya kullanilan 6rnek sayisindan ¢ok daha az olmustur.

Rasyonel sayilarin 6gretiminde kullanilan 6rnek olmayanlar incelendiginde
ogretmenlerin dort farkh tiirde 6rnek olmayan kullandig1 ve ders kitabinda rasyonel
sayilarla ilgili herhangi bir 6rnek olmayana yer vermedigi goriilmiistiir. Ogretmenler
bir tam sayinin sifira orani bi¢iminde, askin say1 bi¢ciminde, koklii say1 biciminde ve
devirsiz sonlu olmayan ondalik say1 bi¢ciminde Ornek olmayanlar kullanmistir.
Ogretmenler genelde bir tam saymnim sifira oran1 bigimindeki 6rnek olmayanlari
kullanmislardir. Fakat bunlardan yalnizca devirsiz sonlu olmayan ondalik sayilar
irrasyonel sayilart saydam olarak temsil ederler. Buna ragmen bu gosterim tiirii

sadece bir 6gretmen tarafindan kullanilmistir.

Bu aragtirmada Karsit-6rneklere ortaokul sinif uygulamalarinda ¢ok fazla yer
verilmedigi goriilmiistiir. Ayrica, bu arastirmada ogretmenlerin yalnizca bes karsit-
ornek kullandigi goriilmiistiir. Bu oOrneklerin  hepsi 6grencilerin iddialarinin
yanlighgint gostermek igin diretilmistir ve her biri beklenmedik olaylari

orneklemektedir.
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Bu calismada 6rneklerin tiretilme zamanlaria gore anlik ve planlanmis 6rnek
seklinde iki tiir 6rnekten bahsedilebilir. Ogretmen A ve Ogretmen B’nin drneklerinin
yarisindan fazlasi anlik olarak iiretilirken Ogretmen C ve Ogretmen D tarafindan
iiretilen 6rneklerin ¢ogu planlh drnek olmustur. Ogretmenler tarafindan kullanilan
ornekler genel olarak degerlendirildiginde yaridan fazlasinin anlik olarak {iretildigi
goriilmiistiir.

Ogretmenler planli drnekleri secerken gesitli kaynaklara bagvurmuslardir.
Bunlar 6grenci ders kitabi, 6grenci ¢alisma kitabi, 6gretmen kilavuz kitabi, ¢ikmis
sinav sorulari, ¢evirim i¢i egitim yazilimi ve yardimci kaynaklar olmustur. Genel
olarak yardimci kaynaklar alistirma sorularinin ¢6ziimiinde kullanilmistir. Yardime1
kaynak oOrnekleri ¢oktan segmeli soru tiirlinde olmustur ve sinav sorularna benzer
tiirde sorulardir. Ogretmen kilavuz kitab1 6rnekleri sadece bir 6gretmen tarafindan
kullanilmistir ve bunlar ders/calisma kitabinda yer almayan orneklerdir. Benzer
sekilde, ¢cikmis sinav sorular1 ve ¢evirim i¢i egitim yazilimi birer 6gretmen tarafindan
kullanilmistir. ki yardimer kaynak iki 6gretmen tarafindan ortak olarak kullanilirken

geriye kalan yardimci kaynaklar farkli 6gretmenler tarafindan kullanilmistir.
4.2. Ogretmenlerin Ornek Kullamirken Dikkat Ettigi Hususlar

Bu arastirmada 6gretmenler rasyonel say1 6rneklerini kullanirken su hususlara
dikkat etmislerdir: kolay ve bilinen Orneklerle 6gretime baslama, 6grencilerin
hatalarina/giigliiklerine/kavram yanilgilarina dikkat etme, gereksiz is yiikiinii en aza
indirme, sinavlar1 goz oniinde bulundurma, yaygin olmayan drneklere yer verme ve

orneklerin kritik 6zelliklerini 6n plana ¢ikarma.

Ogretmenler su durumlarda kolay veya bilinen rasyonel sayr ornekleri ile
ogretime baglamistir: siralama ve dort islem yaparken rasyonel sayilarin formatinin
g6z Oniinde bulundurulmasi, siralama ve toplama c¢ikarma yaparken rasyonel
sayilarin paydalarinin géz oniinde bulundurulmasi, devirli ondalik sayida devreden
ve devretmeyen kisimlarin g6z Oniinde bulundurulmasi, rasyonel sayilarin
siralanmasinda terim sayisinin géz Oniinde bulundurulmasi, rasyonel sayilarla dort
islem yaparken eleman sayisinin gz oniinde bulundurulmasi, ¢cok adimli iglemlerde

adim sayismnin g6z Oniinde bulundurulmasi, rasyonel sayr problemlerinde
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matematiksel yapinin degistirilerek problemin giderek giiclestirilmesi ve son olarak
rasyonel say1 kavramlarmin 6gretilmesinden 6nce bu kavramlarla ilgili 6n bilgilerin

hatirlatilmasi.

Ogretmenler rasyonel sayilarin Ogretiminde ogrencilerin  giicliiklerine,
hatalarma ve kavram yanilgilaria dikkat etmislerdir. Ogretmenler 6grencilerin su
durumlarda giicliik ¢ektigini dile getirmiglerdir: rasyonel sayida eksinin konumunun
anlasilmasi, negatif rasyonel sayilarda c¢ikarma isleminin yapilmasi, ¢ok adimli
islemlerde bilinmeyen degerli 6rneklerin ¢oziilmesi, sifirin bir tam sayiya ve bir tam
sayinin sifira boliinmesiyle elde edilen sonuglarin ayirt edilmesi, ¢arpma isleminden
once sadelestirme isleminin yapilmasi, negatif rasyonel sayilarin parantez icine
alinmadig1 6rneklerin ¢dziimii, dagilma 6zelliginin her zaman dogru sonug verdigini
anlama ve slii rasyonel sayilarda kuvvetin parantez i¢inde ve disinda olmasinin
sonucu nasil etkiledigini anlama. Ogretmenler grencilerin su durumlarda hata
yaptiklarini dile getirmislerdir: siralamada biiyiiktiir/kiicliktiir sembolii yerine virgiil
kullanma, negatif rasyonel sayilarla igslem yaparken parantezlerin ihmal edilmesi, tam
say1l1 rasyonel sayilar1 toplarken isaret hatalarinin yapilmasi, bir rasyonel sayiyla bir
tam say1y1 toplarken hata yapilmasi, rasyonel sayinin toplamaya gore tersini bulurken
hata yapilmasi, ¢cok adimli islemlerde islem 6nceligine uyulmamasindan dolay1 hatali
sonu¢ bulma, bilinmeyen degerlerin bulundugu iislii rasyonel sayilarda notasyon
hatasinin yapilmasi. Son olarak, 6gretmenler 6grencilerin su tip kavram yanilgilarina
sahip olduklarini dile getirmislerdir: rasyonel sayilar1 sayr dogrusunda gosterirken
aralik yerine c¢entiklerin sayilmasi, negatif rasyonel sayilarin pozitif rasyonel
sayilarda oldugu gibi say1 dogrunda gdsterilmesi, ondalik sayilar1 siralarken sadece
virgiilden sonraki kisimlarin karsilastirilmasi, rasyonel sayilarda toplama/¢ikarma
islemlerinin ¢arpma/bolme gibi yapilmasi, sadelestirme isleminin sadece g¢apraz
olarak yapilacaginin diisiiniilmesi, dogal sayilarda ¢arpma isleminin tam sayili
rasyonel sayilara yanlis uygulanmasi, islii saymin degerini bulurken taban ve
kuvvetin toplanmasi/carpilmas: ve her zaman biiyiikk bir saymin kii¢ciik bir sayiya
boliinebilecegi diisiincesi.

Ogretmenler gereksiz is yiikiinii teknik is yiikiinii azaltip isin Oziine

odaklanarak, orneklerin yalnizca Onemli kisimlari tizerinde durarak ve islem
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ozelliklerini kullanarak en aza indirmislerdir. Ogretmenler su durumlarda teknik is
yiikiinii azaltip isin 6ziine odaklanmistir: sayr dogrusunun sadece gerekli kismini
cizme, devirli ondalik sayilara 6rnek verirken periyodu kisa olan rasyonel sayilarin
secilmesi, siralama yaparken uygun stratejinin secilmesi, bir rasyonel sayiyla tam
sayinin toplanmasinda/gikarilmasinda kisa yol tercih edilmesi, ¢ikarma islemi
yaparken payda esitlemek yerine formiil kullanma, birlesme 6zelligini paydalar1 ayn
olan rasyonel sayilarla anlatma, i¢inde bilinmeyen bulunan ¢ok adimli islemleri
geriye dogru gitme stratejisi ile ¢ozme. Benzer sekilde, 6gretmenler su durumlarda
orneklerin 6nemli kisimlari iizerinde durmus ve ekstra detaylara girmemistir: bir
ornegin 6nemli kismin1 vurgulama ve islemi tamamlamama, bir kavrami 6gretirken
sadelestirmeyi ve say1 formlarini birbirine ¢cevirmeyi gerekli gormeme ve bir toplama
modelini sembolik olarak ifade ederken terimlerin paydalarinin esitlenmesini gerekli
gormeme. Son olarak, oOgretmenler su durumlarda islemlerin 6zelliklerini
kullanmiglardir: toplama yerine toplama isleminin degisme veya birlesme 6zelligini
kullanma, islem yapmak yerine dagilma Ozelligini kullanma, uzun uzun islem
yapmak yerine 1/(a/b)=b/a, (a/b)/(a/b)=1 ve (a/b)+(-a/b)=0
Ozelliklerini kullanma ve pay ve paydadaki ondalik sayilari rasyonel hale getirmek

yerine bu sayilar1 virgiilden kurtarma.

Ogretmenlerin rasyonel sayilar1 6gretirken dikkat ettigi bir diger husus
sinavlar1 géz 6niinde bulundurmak olmustur. Ogretmenler su durumlarda smavlarla
ilgili diigiincelerini dile getirmiglerdir: yazili/deneme/TEOG smavlarinda ¢ikabilecek
ornekleri agikca dile getirme, sinifta ¢ikmis sinav sorular1 ¢6zme, bulunan sonuglar
en sade haline getirme, coktan seg¢meli sorularin ¢oziimlerini deneme yanilma

yoluyla ¢6zme ve sinavlarda hiz kazanmak i¢in kisa yollara bagvurma.

Ogretmenler smiflarina yaygin olmayan ornekler getirmeyi de gbz Oniinde
bulundurmuslardir. Ogretmenler bu diisiincelerini istisnai/6zel durumlar ve az temsil
edilen Ornekleri smifa getirerek gerceklestirmislerdir. Ogretmenler istisnai/ozel
durumlar i¢in su 6rnekleri kullanmiglardir: bir rasyonel sayimnin 0’la ¢arpimi 0°dir, bir
rasyonel saymin 1’le ¢arpimi yine o saymin kendisine esittir, 0’in 0’dan farkli bir
rasyonel saytya boliimii yine 0°dir, 1’in 0’dan farkli bir rasyonel sayiya boliimii o

rasyonel saymin ¢arpmaya gore tersine esittir, -1’in 0’dan farkli bir rasyonel sayiya
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bolimii o rasyonel sayinin carpmaya gore tersinin toplamaya gore tersine esittir,
0’dan farkli bir rasyonel saymin sifirinct kuvveti 1’e esittir, 1’in rasyonel {isli
kuvvetleri yine 1’e esittir. Ogretmenler az temsil edilen durumlar igin su drnekleri
kullanmiglardir: 0’in rasyonel oldugunu vurgulama, rasyonel sayilarda siralamaya
0’1 dahil edilmesi, ikiden fazla rasyonel sayinin toplanmasi, ¢ikarilmasi, ¢arpilmast,
boliinmesi, karsilastirma Orneklerine esit rasyonel sayilarin dahil edilmesi ve

rasyonel sayilarda islem sonucglarinin tahmin edilmesine yonelik 6rnek kullanimi.

Son olarak, 6gretmenler 6rneklerin kritik 6zelliklerini 6n plana ¢ikarmayr goz
oniinde bulundurmuslardir. Bu diisiinceyi su sekilde gerceklestirmislerdir: dnce
pozitif rasyonel sayinin, sonra ayni saymin negatifinin say1 dogrusuna yerlestirilmesi
ve iki rasyonel saymnin konumunun karsilastirilmasi, rasyonel sayilarin
biiyiikliiklerini sabit tutarak ve her seferinde birinin isaretini degistirerek dort islemin
yapilmasi, parantez bulunmayan bir iislii rasyonel saymin hesaplanmasi, ayni sayimin
parantezli halinin hesaplanmasi ve sonuglarin karsilastirilmasi, ayni ¢ok adimli
islemin parantezli ve parantezsiz hallerinin hesaplanip karsilastirilmasi, devirli
ondalik sayilarin rasyonel hale getirilmesini anlatirken Oriintiiniin kirilmasi, bir
rasyonel say1 probleminin ¢dziilmesi, ayn1 baglam ve sayilarin bulundugu ikinci bir

problemin ¢6ziilmesi ve her ikisinin karsilastirilmasi.
4.3. Ogretmenlerin Hatah veya Uygun Olmayan Ornekleri

Ogretmenler su durumlarda matematiksel olarak hatali  Srnekleri
kullanmislardir: irrasyonel sayilar say1r dogru dogrusunda gosterilemez, rasyonel say1
kiimesi irrasyonel say1 kiimesinin alt kiimesidir, rasyonel say1 kiimesi irrasyonel say1
kiimesinden daha yogundur, kesir formatindaki tiim sayilar rasyoneldir, mutlak deger
kavramimin yanlis uygulanmasindan dolayr yanlis sonuca ulasilmasi, rasyonel
sayilar1 say1 dogrusunda gosterirken araliklari esit ¢izmeme, toplama isleminin
birlesme o6zelligini anlatirken degisme Ozelliginin kullanilmasi, devirli ondalik
sayilarin rasyonel hale getirilmesinin yuvarlama ile aymi oldugunu diisiinme ve

siralamay1 dogru yapma fakat kullanilan stratejinin adin1 yanlis bilme.

Ogretmenlerin pedagojik olarak uygun olmayan &rnekleri ii¢ baslik altinda

toplanmistir. Bunlar uygun olmayan dil ve terminoloji igeren drnekler, degiskenlerin
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roliinii belirsizlestiren 6rnekler ve bagka bir strateji kullaniminin daha uygun oldugu
orneklerdir. Ogretmenler su durumlarda uygun olmayan dil ve terminoloji igeren
ornekler kullanmistir: rasyonel sayir yerine kesir kelimesini kullanmak, rasyonel
sayilarin toplama ve carpmaya gore tersini bulurken ‘ters gevir’, ‘takla attir’ gibi
giindelik dil kullanimi, rasyonel sayilarin yanlis okunmasi ve islemlerde sembollerin
yanlis kullanilmasi. Ogretmenler su durumlarda degiskenlerin roliinii belirsizlestiren
ornekler kullanmiglardir: devirli ondalik sayr kavraminmi Ogretirken devreden ve
devretmeyen basamaklarin roliinii belirsizlestirme, ¢ikarma islemini modellerken
cikan ve farkin rollinii belirsizlestirme ve rasyonel sayilart sayr dogrusuna
yerlestirirken aralik sayisinin - ve rasyonel saymin biyikliginin roliinii
belirsizlestirme. Son olarak, Ogretmenler su durumlarda baska bir strateji
kullaniminin daha uygun olabilecegi 6rnekler kullanmistir: devirli ondalik sayilarin
rasyonel hale getirilmesinde kullanilan 6rnegin segilen stratejiye uygun olmamasi,
rasyonel sayilarin siralarken uygun stratejinin kullanilmamasi ve rasyonel sayilarda

toplama igleminin 6gretilmesinde uygun algoritmanin kullanilmamasi.

TARTISMA
5.1. Kullanilan Orneklerin Genel Ozellikleri

Ogretmenler tarafindan kullanilan 6rnekler incelendiginde rasyonel sayi
Ogretim deneyimi daha fazla olan 6gretmenlerin 6grencilerine daha fazla sayida ve
daha cesitli Ornekler sunduklari goriilmiistiir. Bu bulgu Ogretmenlerin 6gretim
deneyim bilgisine 151k tutmaktadir. Kennedy’e (1987) gore bu bilgi tiirii teknik bir
beceriyi degil, amaclh eylemlerle kural ve igerige odaklanan pedagojik alan bilgisini

temsil etmektedir.

Ogretmenler ve ders kitabi tarafindan 6grencilere rasyonel sayilarla problem
¢ozme ve kurmayla ilgili ¢ok az 6rnek sunulmustur. Bu, ortaokul matematik 6gretim
programinin rasyonel sayi islemlerine ve kurallarina daha fazla agirlik verdigini
gostermektedir. Bu nedenle, ortaokul matematik 6gretim programinin 6gretmenlerin
problem c¢ozmeye ve kurmaya daha fazla zaman ayiracak sekilde yeniden

diizenlenmesi yerinde olacaktir.
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Ogretmenler ders kitabinda yer almayan drnekler de vermislerdir. Bu tiirden
orneklerin kullanimi bazi durumlarda Ogrencilerin rasyonel sayilar1 anlamalarina
yardime1 olmus, bazi durumlarda ise olumsuz etkide bulunmustur. Verilen saymnin
rasyonel olup olmadigiyla ilgili ornekler, 6grencilerin dikkatini eksi igaretinin
konumuna ¢eken Ornekler ve rasyonel sayilarin artakalan miktar goéz Oniinde
bulundurularak siralanmasma yonelik ornekler o6gretmenleri ders kitabina gore
avantajli duruma getirmistir. Ote yandan, ders kitabinda yer alan bazi 6rnek tiirlerinin
kullanilmas1 6grencilerin rasyonel sayilar1 yeterli diizeyde anlamamalarina neden
olmustur. Ornegin dgretmenler rasyonel sayilarda carpma/bdlme islemlerinin tahmin
edilmesine yonelik 6rnek kullanmamistir. Benzer sekilde, rasyonel sayilarda problem
kurmayla ilgili ornekler ders kitabinda ve ortaokul matematik programinda
vurgulanmasina ragmen Ogretmenler bu tiirden 6rnek kullanmamiglardir. NCTM
(2000) problem kurmanin matematik yapabilmede merkezi rol oynadigini
belirtmistir. Bu nedenle matematik Ogretmenlerinin rasyonel sayilarla problem

kurmaya yonelik ornekleri sinif ortamina dahil etmeleri beklenmektedir.
5.2. Ogretmenlerin Ornek Seciminde Dikkat Ettikleri Hususlar

Ogretmenler rasyonel sayilar1 Ogretirken oOncelikle kolay ve alisilmis
ornekleri kullanmiglardir. Bu bulgu Zodik ve Zaslavsky’nin (2008) bulgular: ile
benzerlik gostermektedir. Benzer sekilde, Bills ve Bills (2005) 6grencilerin
matematiksel kurallar1 anlayabilmeleri i¢in deneyimli 6gretmenlerin basit drneklerle
ogretime basladiklarni belirtmistir. Ogretmenler 6grencilerin yaygm hatalarina,
giicliiklerine ve kavram yanilgilarina da dikkat ¢ekmislerdir. Bu husus, 6gretmenlerin
pedagojik alan bilgileri ile yakindan iliskilidir (Shulman, 1986). Ogrenci hatalaria
odaklanma 6gretmenlerin sadece konu alani bilgisini degil ayn1 zamanda pedagojik
alan bilgisini de yansitmaktadir. Ogretmenler teknik is yiikiinii azaltarak, drneklerin
onemli kisimlar1 lizerinde durarak ve islem Ozelliklerini kullanarak gereksiz is
yiikiinii en aza indirmislerdir. Bu hususa Zodik ve Zaslavsky’nin (2008) ¢alismasinda
yer alan Ogretmenler de dikkate etmislerdir. Ogretmenler istisnai/dzel/yaygin
olmayan ornekler kullanarak alisilmadik 6rnekleri sinifa dahil etmeyi goz Oniinde

bulundurmuslardir. Bu tiirden hususlar ortaokul matematik 6gretimi programinin
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rasyonel sayilarin Ogretilmesinde vurguladigt 6zel durumlarla agiklanabilir.
Ogretmenlerin dikkat ettigi bir diger husus orneklerin kritik dzelliklerine dikkat
cekme olmustur. Skemp (1971) 6rneklerin tagidigr kritik olmayan bilgiye ‘giiriiltii’
adin1 vermistir. Bu calismada 6gretmenler riintii kirma stratejisini ve yapilandirilmig
varyasyon prensibi kullanarak Orneklerdeki giiriiltiiyli azaltmiglardir. Son olarak,
Ogretmenler rasyonel sayilar1 Ogretirken sinavlarda c¢ikan ornekleri goz Oniinde
bulundurmuslardir. Bu husus Tiirk egitim sistemine 6zgili olabilir. Ciinkii Tiirkiye’de
kaliteli egitim verilen liselerde 6grenim gorebilmek i¢in &grencilerin TEOG

siavlarinda basarili olmalar1 gerekmektedir.
5.3. Hatah veya Pedagojik Olarak Uygun Olmayan Ornekler

Ogretmenler ii¢ tiir zayif 6rnek kullanmistir: hatali 6rnekler, uygun olmayan
dil ve terminoloji iceren Ornekler ve kacinilmasi gereken Ornekler. Gergekte var
olmayan say1 dogrularinin ¢izimiyle ilgili 6rnekler ve irrasyonel sayilarla ilgili bazi
ornekler 6gretmenlerin kullandig1 baslica hatali 6rnekler arasinda yer almistir. Bu
tiirden 6rneklerin kullanimi 6gretmenlerin irrasyonel sayilarla ilgili alan bilgilerinin

yetersizligine isaret edebilir.

Pedagojik olarak uygun olmayan dil ve terminoloji i¢eren 6rnekler 6gretmen-
ogrenci iletisiminde giigliiklere neden olabilir (Lamon, 2012). Ayrica, matematiksel
kavramlarin 6gretilmesinde giinliik hayat dilinin kullanilmas1 kavramsal 6grenmeye
olumsuz etkide bulunabilir (Cangelosi vd., 2013). Ozellikle, rasyonel sayilarin
toplama/carpma islemlerine gore tersi ogretilirken 6gretmenler uygun matematiksel

dil ve terminoloji kullanmaya 6zen gostermelidirler.

Son olarak Ogretmenler iki tiir kaginilmast gereken ornek kullanmiglardir:
degiskenlerin roliinii belirsizlestiren Ornekler ve daha uygun strateji kullanim
gerektiren Ornekler. Rowland (2008) Ogretmen adaylarmin bilingli  6rnek
secebilmeleri icin yonlendirilmeleri gerektigini dile getirmistir. Benzer sekilde bu
calismadaki Ogretmenlerin Orneklerin olas1 tehlikeleriyle ilgili bilinglendirilmeleri

gerekmektedir.
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