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ABSTRACT 
 

 

PERFORMANCE COMPARISON OF  

POINT AND PLANE FEATURES FOR SLAM 
 

 

 

Yörük, Mücahit 

M. S., Department of Electrical and Electronics Engineering  

Supervisor: Assoc. Prof. Dr. İlkay Ulusoy Parnas 

December 2014, 163 pages 

 

Simultaneous Localization and Mapping (SLAM) is an indispensable capability for 

mobile robots that explore unknown environments. This advanced method is now 

widely employed since the development of improvements in sensor technology, such 

as 3D depth cameras. To avoid the risk of the human interaction in dangerous 

environments, various SLAM algorithms have been developed and proposed in the 

literature. The aim of this study, is to develop a landmark vector that improves the 

SLAM performance using the planar features of objects. In order to achieve this goal 

we generated a fastSLAM algorithm and two different feature extraction methods.  

The first feature extraction method is SURF, which gives responses at the edges of 

the depth images and the second feature extraction method is plane detection, which 

gives a compact representation of the environment. Throughout this thesis, four 

different landmark vectors are defined (SURF point, plane as point, plane as 

oriented point and plane as surface) and compared the effects on the SLAM. The 

advantages of using planar features are shown with both the RGBD SLAM dataset 

and the real time application. 

Keywords: 3D fastSLAM, SURF, Plane Detection, RGBD Kinect Camera 
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ÖZ 
 

 

SLAM UYGULAMASINDA NOKTA VE DÜZLEM 

ÖZELLİKLERİNİN PERFORMANS 

KARŞILAŞTIRMASI 
 

 

 

Yörük, Mücahit 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. İlkay Ulusoy Parnas 

Aralık 2014, 163 sayfa 

 

SLAM algoritmaları bilinmeyen ortamlarda çalışan robotlar için vazgeçilmezdir. 

Gelişen almaç kabiliyetleri sayesinde 3D derinlik bilgisinin alınabilmesi ile bu konu 

üzerinde geniş ölçüde çalışmalar başlamıştır. Tehlikeli ortamlarda insan 

etkileşiminden kaynaklı riskleri ortadan kaldırmak için çeşitli SLAM algoritmaları 

önerilmiştir. Bu tezin amacı düzlemsel özelliklerin kullanılarak SLAM 

algoritmasının performansını arttıracak işaret vektörlerinin oluşturulmasıdır. Bu 

amaç doğrultusunda fastSLAM algoritması uygulanmış ve iki farklı özellik çıkarma 

algoritması kullanılmıştır. İlk algoritma derinlik görüntüsünde nesnelerin sınırlarında 

cevap veren SURF algoritmasıdır. İkinci algoritma ise objeleri iyi tanımlayan 

düzlemsel özelliklerin çıkarılmasıdır. Tez boyunca dört farklı işaret vektörü 

kullanılmış ve SLAM performansına etkileri karşılaştırılmıştır. Düzlemsel 

özelliklerin kullanılmasının avantajları yayınlanmış olan bir veritabanı ile ve gerçek 

zamanlı uygulama ile gösterilmiştir. 

Anahtar Kelimeler: 3D fastSLAM, SURF, Düzlemsel Özelliklerin Çıkarılması, 3D 

Kamera  
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

1.1 Problem Definition and Motivation 

With the evolution of technology, it has become possible to use intelligent agents in 

many areas even those where there is high risk thus, intelligent agents offer an 

alternative dangerous tasks being undertaken by human beings. When carrying out 

these tasks the location and map information provides the agents with a coherent way 

to interact with surrounding objects and people. These interaction agents can 

navigate safely, identify surrounding objects and deal with unexpected situations.  

For all these applications (called tasks or missions), intelligent agents have to 

localize and if not given they have to generate the map. This kind of application may 

appear to be very easy to implement with powerful sensors (such as GPS), however, 

because of environmental conditions it is not possible to use these sensors for every 

task. In closed environments GPS does not give true information and its resolution 

for outdoor applications may not be satisfactory. On the other hand, range sensors, 

laser scanners, 3D Time of Flight ToF cameras and Microsoft Kinect sensors have 

measurement errors and intelligent agents have to take these errors into account. 

Generated algorithms to handle this kind of problem are called simultaneous 

localization and mapping (SLAM) algorithm. There are many different types of 

SLAM algorithms but the probabilistic approach which is relatively new is 

considered to be the best solution. In the probabilistic approach, the location of the 

intelligent agent (vehicle pose) and the surrounding objects (landmarks, feature 

points, sensor measurements) are defined with a probabilistic distribution function 

instead of a single point. Intelligent agents can handle sensor measurement errors, 

motion errors and algorithmic errors with the help of this probabilistic definition [1].  
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SLAM applications are convenient for use in both indoor and outdoor environments. 

For example, Minerva, an autonomous robot, is used as a tour guide in the 

Smithsonian National Museum of American History. The robot gives information to 

the visitors and navigates in the museum. During the navigation, it performs collision 

avoidance and uses path planning algorithms [2]. Also there are important SLAM 

implementations for outdoor environments. The Stanford Racing Team’s vehicle 

“Stanley” is an important example of an outdoor SLAM application. Stanley won the 

DARPA (Defense Advanced Research Projects Agency) Grand Challenge  in 2005 

competing against 195 teams. The race was conducted over 142 miles in the Mojave 

Desert [3].  

Over the last 20 years, various solutions have been proposed to resolve the SLAM 

problems encountered in indoor and outdoor environments. The sensor technology 

has the most important effect on the consistency of SLAM applications and due to 

technical limitations, researchers used sonar sensor or 2D laser scanners in earlier 

solutions [4]. Subsequently, 2D laser scanners were used with the addition of a 

mechanism to alter the sensor pitch angle and define the 3D environment [5]. Also, 

others researchers used stereo vision algorithms to determine the 3D location of 

landmarks (objects), but these stereo vision algorithms were sensitive to lightning 

conditions. Later, camera companies produced TOF cameras which give the point 

cloud data directly with 30 fps;, however, these cameras are not extensively used 

because of their high cost. Nowadays, low cost RGBD Kinect sensors are extensively 

used for indoor SLAM applications. The use of 3D point cloud data allows the 

representation of environment with compact feature vectors. 

This thesis reports on the experimental investigation into the contribution of planar 

features in an indoor SLAM. Different experiments were performed and comparisons 

were made using simulation parameters. Real datasets [6] were used in the 

experiments together with collected data from the METU Computer Vision 

laboratory.  



3 

1.2 Literature Survey 

In the literature, there are different solution methods to the SLAM problems. These 

solution methods can be grouped according to the applied algorithm and sensor type.   

1.2.1 Algorithms  

The popular Iterative Closest Point (ICP) Scan Matching method was proposed by 

Besl and McKay in 1992 [7]. The idea was to align consecutive scans (taken by 

external sensors) iteratively and to estimate the transformation matrix between these 

scans. This ICP algorithm can be used with raw or processed data. These 

registrations can be undertaken with point sets, line segments, implicit curves, 

parametric curves, triangle sets, implicit surfaces and parametric surfaces [7].  

Another implementation of ICP scan matching was proposed by Biber in 2003 [8]. 

Biber subdivided a 2D plane into cells and defined a normal distribution (mean and 

variance) to each cell that defines the probability of the measuring point [8]. For 

each cell that has at least three points, the following computation was carried out. 

 1 – Collect all 2D points          contained in a cell. 

2 – Calculate the mean    
 

 
      

3 – Calculate the Covariance matrix     
 

 
                 . 

Normal distribution        defines the probability of measuring a sample point in 

that cell. The ICP algorithm determines the corresponding normal distributions 

between consecutive scans according to normal distributions and odometer data. The 

algorithm computes the sum of probabilities for each point. According to the result 

(score) the algorithm ends the computation or continues until convergence [8].   

Another important implementation of ICP Scan Matching was proposed for 3D point 

sets. The idea was based on the human behavior. Humans look at the big picture first 

and then concentrate on the details. The Multi-Layered NDT algorithm adopts the 

same perspective as a human being to speed up the pairing process.  The algorithm 

first tries to pair with lower layer which has only 8 cells and if the pairing is not 
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satisfactory then it tries to pair with second layer that has 64 cells. In practice, using 

the first four layers is sufficient to make a good pairing between consecutive scans 

[9]. One of the 3D scans and its NDT representation for the top layer is given in 

Figure 1-1. The red points define the point cloud data, and blue shapes define the 

fitted distributions to these points for the first layer of the NDT representation. 

 

Figure 1-1 3D scan and its first layer representation with NDT [9]. 

On the other hand, other researchers used ICP algorithms at the object level for 

SLAM applications. The algorithm, detects the objects from the 3D point cloud data 

and then pairs the detected objects between consecutive scans with the ICP algorithm 

[10]. Figure 1-2 shows a sample scene and detected objects for an ICP-based SLAM 

application.   

 

Figure 1-2 Sample scene and detected objects [10]. 
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The Extended Kalman Filter (EKF) is another important SLAM method which uses 

probabilistic approach. It was published by Smith, Self and Cheeseman in 1990 [11]. 

Probabilistic approaches take into account all the expected errors in probabilistic 

manner and define landmarks or objects with a distribution. This probabilistic 

approach makes SLAM applications more robust than scan-matching based methods. 

Furthermore, probabilistic solutions are the only solution for the kidnapped robot 

problem [11]. Also, probabilistic approaches need least requirements according to 

the scan-matching based methods [1]. On the other hand, these advantages come at 

the price of computational inefficiency and approximation [1]. Different types of the 

EKF- SLAM methods were published for different environments and conditions. 

Efficient SLAM algorithms were generated for real time applications and large scale 

environments with EKF [12].  

Another important method is the fastSLAM (a factored solution to the SLAM 

problem) algorithm which uses a sampling method (particle filters) instead of 

defining the probabilistic distribution function. The fastSLAM algorithm was 

developed in response to the time limitations (computational complexity) of the EKF 

based approaches. The most important feature of this method is its robustness to 

sensor failures [13]. There are many different implementations of fastSLAM in the 

literature for different environments with different types of sensors. 

In 2007, Tanaka and Ito developed a walking aid system for a handicapped or elderly 

person. The system generated a 2D map of the environment with fastSLAM and laser 

scanners. They compared the fastSLAM algorithm with an ICP-based method, and 

explained that for slow motion both work but if the motion is not slow then the ICP 

based algorithm gives the wrong correspondences [14]. 

Arbeiter et al. proposed an algorithm to construct the 3D environment in 2010. The 

application uses a fastSLAM approach with TOF and color cameras. SURF features 

are extracted from the RGB camera and 3D correspondences are founded with ToF 

camera data. The final map only includes the raw point cloud data and the extracted 

features [15]. 

As explained above, there are 3 main types of SLAM algorithms; EKF based 

methods and Particle Filter (PF) based methods. All these methods have advantages 
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and disadvantages; so it is important to choose the most appropriate method for 

different conditions (sensor type, environment).  

1.2.2 Sensor and Feature Types 

In order to make the correct selection from the large number of different feature 

types  the data source and environmental conditions must be taken into account.  

For LIDAR data there are two main simultaneous localization and mapping 

approaches; feature extraction, and scan matching methods. Features depend on the 

environments. Lines, corners and curvatures are appropriate features for indoor 

environments. For an outdoor environment, tree features are important and they can 

be detected with a special feature detector. Tree features are not suitable for an office 

environment and corner features are not appropriate for a forest. There is no general 

purpose feature detector for varied environments [16].   

Scan matching can also be used with LIDAR data since it directly uses raw data and 

the SLAM performance does not depend on surrounding objects (lines, corners, 

trees…etc.). On the other hand, scan matching based methods tend to create dense 

pose graphs that significantly increase the computational cost [16]. 

Feature based methods are computationally less expensive than scan matching based 

methods. The computational cost of the scan matching method increases if the prior 

translational uncertainty increases. The computational complexity of the feature 

based matching is nearly independent of the initialization error [16]. If feature based 

methods are able to offer the same robustness and broad applicability to different 

environments, they would be more preferable than scan matching based methods   

[16]. 

Vision based 3D SLAM algorithms have been proposed with stereo vision, but these 

algorithms are very sensitive to the lightning conditions of the environment and the 

processing time of these methods make them useless in real time applications.   

Nowadays, working with the 3D point cloud data is very popular. Weingarten used 

3D features for feature-based SLAM in structured 3D environments. Weingarten 

extracted features directly from 3D point cloud data which was taken from Swiss 
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ranger ToF camera and these 3D planar features are used to survey the performance 

of an EKF-SLAM [17].  Hedlund worked with ToF cameras to register consecutive 

scans and generated the 3D map of environment [18]. Ying Yang and Förstner 

proposed an algorithm to extract compact features and planes from 3D point cloud 

data in 2010 testing the performance of the proposed method with synthetic and real 

data [19]. Rusu proposed a method to generate an object map of indoor environments 

using 3D point cloud data [20]. Also Turunc investigated the contribution of planar 

segments to 3D EKF-SLAM using IRSCAN (IR distance measurement based 

scanner system) [21].    

As in the research reported in this thesis other research used the Freiburg dataset and 

investigated the effect of SLAM performance with different feature types (SURF, 

SIFT, ORB, SURF+Shi Tomasi ), only using low cost Kinect sensor data [22]. One 

study compared the localization performances of filter types (EKF,PF) in an indoor 

known environment [23]. The findings showed that the PF approach gives better 

result than the EKF and the performance results of using low cost Kinect sensor in 

localization was comparable with most state-of-the-art methods [23]. In 2012, 

Hartmann et al. presented a paper about Visual SLAM using a Kinect Camera with 

Oriented FAST and Rotated BRIEF (ORB) features with the fastSLAM algorithm. 

The performance of the ORB features were investigated in a room environment with 

30 particles showing that the ORB features were better than the SIFT and SURF 

features [24]. On the other hand, some researchers preferred to use hybrid methods 

combining point (SURF) and plane features using Kinect sensor with a real time 

hand held SLAM application. They claimed that this hybrid method gives faster and 

more accurate registration than only using points [25].   

In 2013 Taguchi et al. investigated the accuracy using planes or points for a SLAM 

application. This is same idea as the investigation detailed in this thesis. This 

algorithm provides faster correspondence with plane features and compact 

representation Furthermore, an application with planar features does not suffer from 

the local minima and robot converges to the true pose [26]. 
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Figure 1-3 Performance comparison for accuracy and time [26]. 

To summarize, the researchers investigated the SLAM performance in various 

environments and conditions with different types of sensors. There are successful 

approaches to SLAM problem but none of them can be generalized to every 

condition. Currently, researchers are working on the generalized solution for the 3D 

SLAM with the compact representation of the map (objects, surfaces, planes, 

curvatures).     

1.3 Thesis Contribution 

The major contributions of this thesis are related to constructing and running a 

fastSLAM algorithm with planar features. In this study, feature extraction algorithms 

implemented and the contribution of planar features to the fastSLAM performance 

for indoor applications was investigated. The navigation environment of the robot is 

planar and the robot moves along an x and y direction and rotates around the z 

direction.  Throughout the study four different landmark vectors were used and a 

comparison was made in relation to the effect on SLAM performance. The four 

different landmark vectors are ; 

 SURF Points (x, y, z, scale, laplace ) 

 Plane as Point (x, y, z, ) 

 Plane as Oriented Point (x, y, z, nx, ny, nz) 

 Plane as Surface (x, y, z, nx, ny, nz, area ) 
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The work presented here is constructed as follows. 

The organization of the remainder of this thesis is as follows. Chapter 2 introduces 

the theoretical background information about the SLAM algorithms. In Chapter 3 

details about the navigation environment and sensors are presented. Chapter 4 

explains the feature extraction methods together with the details of plane detection 

and SURF feature extraction. The details of fastSLAM algorithm and our SLAM 

implementation are contained in Chapter 5. In Chapter 6 the results of the 

experiments  are given together with a graphical representation of simulations and 

comments on the final results.  

The principal contributions of this thesis are as follows. 

 Implementation of feature extraction (plane extraction, SURF feature 

extraction) methods.  

 The fastSLAM implementation with different landmark vectors (SURF point, 

plane as point, plane as oriented point, plane as surface) and performance 

comparison.  

 Performance comparison under the effect of below parameters.  

o Effective Particle Rate  

o Linear Velocity Error Rate 

o Angular Velocity  Error Rate 

o Particle Number  

o Re-sampling 

 Data collection from METU Computer vision laboratory with the Pioneer 2 

robot and Microsoft Kinect Sensor.  
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CHAPTER 2 
 

 

THEORETICAL BACKGROUND 
 

 

 

2.1 Localization 

Localization is the problem of determining the pose of a robot according to the 

environment and it is the main precondition for robot navigation (planning and 

motion). For a given map, it may appear easy to find the pose of a robot using sensor 

measurements however, since there are no noise free sensor readings the robot has to 

infer the pose from the sensor measurements [1]. 

The localization can be separated into three types according to the initial information 

obtained. If the robot knows the initial pose the problem is called position tracking. 

In this case, the main effort is to handle motion errors. Secondly, if the robot does not 

know where it is, this a global localization problem which includes position tracking 

and matching. In the global localization problem, the algorithm has to run through 

the entire map. The last localization type is the kidnapped robot problem. This is a 

type of global localization problem. The robot thinks that it knows the location, but it 

does not. A robot can manage a sensor failure problems if it can handle the 

kidnapped robot problem [1]. 

The localization problems can be grouped according to the environment as ; static or 

dynamic. In static environments, the only variable quantity (state) is the robot pose. 

In dynamic environments there could be other robots, objects or people which have 

location or configuration changes over time [1]. 

Another grouping is passive or active localization. In the passive approach the 

localization module only observes the robot while it moves randomly or performs 

routine tasks. However, in active approach the localization module controls the robot 

and tries to minimize the localization error [1]. 
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The last group of the localization problem concerns the number of robots. The most 

common approach is single robot localization problem in which there is no 

communication issue. However, in the multi-robot localization problem all robots 

localize themselves and share information about their location. This information 

sharing makes resolution of the localization problem easier [1]. 

2.2 Map Building and Map Types 

Mapping is the representation of the navigation environment. This map 

representation allows agents to plan their actions in order to reach the goal which can 

be anything such as; finding an object, navigating safely to anywhere place. 

However, in many cases, the agents do not have an accurate map of the environment 

and need to generate the map through the navigation. In fact, navigating around the 

environment and mapping can be the goal.  

The maps can be separated into two types according to the map information. 

Topological maps contain the free spaces of the environment and metric maps 

contain the surrounding objects and features. 

2.2.1 Topological Maps 

Topological maps can be generated by nodes and edges (links, arcs). These nodes 

and edges define free spaces. Topological maps can be modeled with graph 

representation which uses less memory usage and provides a compact representation 

of the map. Topological map representation is appropriate for large areas such as the 

roads that connect cities [27]. 

 

Figure 2-1 Layout of an indoor environment for topological mapping [27]. 
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Figure 2-2 shows the result of the topological mapping for the navigation 

environment containing tables, sofa, bed and other household items given in Figure 

2-1.     

The topological map of the indoor environment shown in Figure 2-2 contains 7 nodes 

and 6 links. The representation of the map and its generation is very easy for 

topological maps however, this simple representation has some disadvantages as 

listed below.  

 Routes described by links are not always the optimal ones. 

 Topological maps do not include any accurate geometric description of the 

environment. 

 Path planning algorithms are not appropriate for topological maps [27]. 

 

Figure 2-2 Topological map of the indoor environment [27]. 

2.2.2 Metric Maps 

Metric maps describe the navigation environment. According to the representation 

method metric maps can be divided into 2 types.  

2.2.2.1 Feature-based Maps  

Feature based maps represent the environment with global location, orientation and 

parametric features. These features are corners, edges, SURF features, SIFT features, 
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planes and any kind of object such as doors, trees or lights. In 2D and 3D SLAM 

applications the algorithms extract and integrate these features into the robot system 

with mono or stereo camera systems using the corner features to represent the 

environment. In Kalay’s work, features have been extracted from a 2D image and 

mapped to a 3D space with stereo vision [28]. Weingarten extracted features directly 

from 3D point cloud data. These 3D planar features have been used to survey the 

performance of EKF-SLAM with 3D planar features [17]. In another survey, the 

researchers represented their own general purpose feature detector for indoor and 

outdoor environments and compared their detector with corner detectors in an indoor 

environment and a tree detector in outdoor environments [16]. 

In all work presented above the features have been represented with their parameter 

set. For example, SURF features can be defined by 5 parameters (x, y, z, sigma, 

laplace) in 3D while corner point features are defined with only 3 parameters (x, y, 

z). x, y, and z represents the center of the location and these are also directly useful 

for SLAM but other parameters (sigma, laplace) also assist in corresponding 

landmarks [29]. 

Feature based maps do not show the free spaces of the environment. Instead, these 

maps are generated by  certain parameters which define the surrounding objects. 

Feature-based maps have memory advantage according to the occupancy of grid 

maps. This advantage comes with the compact representation. Feature based maps 

represent the environment with only nxm matrix (n: feature vector size, m: number of 

features (landmarks)). Especially in the 3D SLAM, this compact representation 

decreases the memory usage and the computational cost. 

On the other hand, feature based SLAM algorithms must include pre-defined robust 

feature extractors. If feature extractors are not sufficiently robust, this results in 

erroneous correspondences and the SLAM algorithm fails.  

2.2.2.2 Occupancy Grid Maps  

An occupancy grid representation was initially proposed by Elfes [30]. The 

continuous space of the environment is separated into cells in this representation. 

These cells marked as occupied, empty or unexplored [30]. 
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Figure 2-3 Representation of the environment with occupancy grids [1]. 

Figure 2-3 shows the representation of the environment with occupancy grids. Black 

color defines occupied grids, white color defines empty grids and gray color defines 

unexplored grids. Figure 2-4 shows an example of an occupancy grid map.  

 

Figure 2-4 A sample map with occupancy grids [1]. 

The supporting idea for this method is to find the most likely map for a given sensor 

and actuator data.  

                                                                     

Modeling dynamic obstacles and large uncertainty around found obstacles are two 

main disadvantages of occupancy grid maps [1]. 
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2.3 Simultaneous Localization and Map Building (SLAM) 

The SLAM problem is also known as CML (Concurrent Mapping and Localization). 

This problem arises when the agent does not know the map of the environment and 

its true pose. Generally, in real time applications, the agent does not have 

information about either and has to deal with this problem [1]. 

SLAM algorithms can be categorized according to many parameters such as  

features, environment, vehicle model, sensor model, and matching algorithm. There 

are many different approaches for different environments and setups. The simplest 

grouping should be determined according to the sensor technology.  

In the earlier research sonar sensors or 2D laser scanners were used in the SLAM 

applications because of the technical limitations. Then the researchers needed to 

define 3D world and they began to use 2D laser scanners with addition of a 

mechanism to alter the sensor pitch angle [5]. Other researchers used stereo vision to 

determine 3D location of landmarks.  

Later, the invention of the TOF cameras which directly give the 3D point cloud, 

provided an easier way to obtain 3D data from the environment but this camera is 

expensive and therefore was not extensively used. 

Nowadays, low cost RGBD Kinect sensors are very popular in robotic applications. 

In comparison with earlier solutions it is easy to use but since the resolution and 

reliability are not sufficient for SLAM applications greater than 3 meters it is only 

appropriate for indoor use. 

Some researchers use visual information (stereo vision) while some of them use 

depth data (point cloud data). The use of different types of information is in an effort 

to find a better way to define the environment around the robot. Nowadays, the low 

cost RGBD sensor (Microsoft Kinect) is available for SLAM applications and 

because of its efficiency 3D-SLAM algorithms have become the most popular 

subject for indoor environments. 
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2.4 Probabilistic Approach: Bayesian Filter  

Estimating the state of the robot and its environment using sensor data is the core of 

probabilistic robotic applications. An efficient state estimator can compute the 

current state of the robot recursively based on the previous state. This computation 

can be undertaken using a Bayesian Filter.  

In a Bayesian filter, the probability of state can be found with the help of 

measurement and control data. The Bayesian filter contains two consecutive stages. 

First, finding the prediction and then with sensor measurements updating prediction 

and find the belief. 

 

Figure 2-5 Prediction - correction sequence [31]. 

2.4.1 Derivation of Bayesian Filter 

Figure 2-6 shows the dynamic Bayesian network for SLAM applications. In the 

figure, the edges define the relationship between nodes. The state at time t (    

depends on the sensor measurements          and control data          and also the 

sensor measurements at time t        depends on the state at time t       .  

 

Figure 2-6 Dynamic Bayesian network for SLAM [1]. 
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Using Bayesian formula the conditional probability of the state vector        can be 

written as; 

 

                   
                                        

                   
                                         

 

In equation 2.2, the denominator is only a normalizing constant and then the 

following equation can be written; 

 

                                                                                                 

                             

For a given parent node    the measurement vector becomes independent from the 

previous sensor measurements and control data. Figure 2-7 shows this independence. 

The given node is colored green and the removed edges are shown in red.    

According to Figure 2-7 the conditional probability becomes; 

 

                                                                                              

 

  

Figure 2-7 Removed edges in a graph model [1]. 

 

Then equation 2.3 is simplified with equation 2.4. 
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Equation 2.5 shows the belief and it can be written in terms of the prediction 

(            ).  

 

                                                                                             

 

Calculating the belief is the second step of the Bayesian filter estimation. The first 

step is calculating the prediction. Now write    should be written according to one 

state before      to calculate prediction.  

 

                                                                                              

 

This is achieved by writing a joint probability            and summing-out 

over     .  

 

                         

    

                                                         

    

 

 

For the given parent node      and control data    the prediction of the state is 

independent from previous sensor measurements        and previous control 

data       . Figure 2-8 shows this independence. In Figure 2-8 the given nodes are 

green and removed edges are red.    

 

  

Figure 2-8 Independence from the past [1]. 

Then as shown in Figure 2-8 the first term of equation 2.8 becomes, 
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Also, the previous state vector      is independent from the current control data    

while the current state    is not known. The yellow nodes in Figure 2-9 are 

independent from each other but their equal child node is not known. If the child 

node is known, independence will be removed. However, since the vehicle state at 

time t is not known it can be found using the past state and control data. 

 

 

Figure 2-9 Independence of parent nodes [1]. 

Using independence in the second term of the prediction equation becomes:  

 

                                                                                       

 

Then final prediction equation can be written as below using equations 2.9 and 2.10: 

 

                                                                                

    

 

 

According to equation 2.11 prediction depends on the prior belief and motion 

model. 

Now the belief in terms of prediction as follows; 
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The Belief depends on the prediction ( prior belief, motion model ) and sensor 

measurements. This second step (finding belief) is the correction step. The full 

Bayesian algorithm is shown below. 

 

                                                                          

                                                    

                                                                                     

                                                                            

                                              

                                                       

Algorithm 1 Bayesian Filter algorithm [1] 

2.5 Kalman Filter  

The Kalman filter is a type of Gaussian filter which constitute the earliest tractable 

implementations of the Bayesian filter for continuous space. According to Gaussian 

techniques beliefs are represented by multivariate normal distributions. The 

probability of any state in Gaussian can be calculated by this formula: 

 

              
 
   

  
 
 
                                                   

    

The density over the state x is characterized by two parameters   (mean value) and   

(symmetric and positive semi-definite quadratic matrix). The number of elements in 

the covariance matrix depends quadratically on the number of elements in the state 

vector. Gaussians have a single maximum and are appropriate for robotic 

implementations. In robotics, the true posterior is focused around the true state with a 

small margin of uncertainty [1]. 

Kalman filters implement belief computations for continuous states and this 

computation is not appropriate for discrete or hybrid spaces. This computed belief is 

shown with the mean and covariance          at time t. 

There are 3 important preconditions for Kalman filter SLAM applications. Linear 

transition model, linear measurement model and initial Gaussian belief are these 
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three preconditions. These three properties guarantee that a distribution at any time 

will be a Gaussian. 

2.5.1 Linear State Transition Model  

A state transition model                  must be a linear function. In matrix form it 

is: 

                                                                                

 

(x: nx1 state vector, u: mx1 control vector, A: nxn matrix, B: nxm matrix,   : 

nx1matrix) 

   is a random variable which models the uncertainty introduced by the state 

transition. Its mean is zero and covariance is    . 

Then, the mean of the posterior is given by              and the covariance by  . 

 

                       
 

 
   

  
 
 
                 

   
                                    

 

If the state transition model is not linear, then the posterior becomes nonlinear 

distribution and prediction fails.  

2.5.2 Linear Measurement Model  

The measurement model          must be a linear function. In matrix form it can be 

written as: 

 

                                                                               

 

(       Matrix,       measurement noise) 

   describes the measurement noise and its mean is zero and its covariance is    . 
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Then the measurement probability is: 

 

                  
 

 
   

  
 
 
         

   
                                        

 

If the measurement model is not linear, the algorithm defines detected landmarks 

with nonlinear distributions. So, the update equations fail for the landmarks in the 

remaining process. 

2.5.3 Normally Gaussian Initial Belief  

The initial belief            must be normally Gaussian.  

 

                       
 

 
   

  
 
 
          

          
                  

 

If the initial belief is not Gaussian the posterior will not be the Gaussian even if the 

state transition model and measurement model are linear.  

2.6 Extended Kalman Filter  

The Kalman Filter is applicable to SLAM problem when the initial belief is Gaussian 

and has linear transition and measurement models. In the real world state transitions 

and sensor measurements are rarely linear and the algorithm should take into account 

these nonlinearities and this method is called as Extended Kalman Filter (EKF). 

The EKF formulation of SLAM was first introduced by Smith, Self and Cheeseman 

in 1990. The world is represented with landmarks and, covariances have been 

approximated by Gaussian distributions because of linearization [31].   

The SLAM algorithm handles these nonlinearities through the Taylor Expansion. On 

the other hand, we can find the distribution of the vehicle state with Monte Carlo 

sampling (i.e. 50000 samples) which gives more realistic approximation than 
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linearization by Taylor expansion. However, Taylor expansion is preferred because 

of the time efficiency.  

Linearization approximates the nonlinear function   to the linear function that is 

tangent to   at the mean of the Gaussian. Approximation with Taylor expansion 

causes a linearization error. The linear approximation to a function   , is found 

using  ’s value and slope. The slope comes from partial derivative. 

 

             
           

     
                                                                 

 

Both the value of   and its slope depends on the argument of  . The logical choice is 

to select the most likely value at the time of linearization. The most likely state is the 

mean value      for Gaussian distributions. So the g function is approximated by its 

value at     . The general linearization equation is given below.  

 

                                                                                 

 

In this work we applied the Taylor expansion at both the prediction and correction 

steps. The linearization formulas for the prediction step for velocity motion model 

are given in the equations below. 

 

                       
           

     

                                           

 

                                                                               

 

   is a nxn size matrix (n is dimension of state) and called the Jacobian matrix. The 

same linearization is applied at the correction step to the h function around  .  

 

              
       

   
                                                               ) 
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EKF based approaches have suffered from the performance-limiting issues of 

linearization, computational problems and Gaussian assumption [11].  

The main purpose of the EKF is not to calculate the exact posterior.  Instead, it 

focuses on efficiently estimating the approximate mean and the covariance with 

some acceptable errors.  There are many successful EKF-SLAM applications. 

2.7 FastSLAM (Factored Solution to SLAM) 

The FastSLAM algorithm uses a particle filter approach which is a type of non-

parametric filter and an alternative to Gaussian filters. Non-parametric filters 

approximate posteriors by a finite number of values instead of a fixed functional 

form. Each approximation roughly corresponds to a region in the state space. The 

quality of the approximation depends on the number of parameters used to represent 

the posterior [1]. 

FastSLAM calculates the belief update in constant time, while the EKF-SLAM 

requires quadratic time. The total operation for updating all landmark states takes 

O(M.K) time for K landmarks and M particles [13]. The EKF-SLAM approach is not 

appropriate if there are large numbers of features (i.e. 50.000) in the environment, 

but fastSLAM can handle this situation and the algorithm converges to the true state 

vector. 

The particle filter approach represents the posteriors by samples and ingredients of 

every sample are shown in Figure 2-10 for 3D SLAM. 

We have K samples for any state in time and every sample has 1 weight, 1 vehicle 

state and N landmark location estimates (μ and Σ).  
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Figure 2-10 Particle representation for planar 3D SLAM.  

 

The FastSLAM algorithm is quite easy to implement. Sampling from the motion 

model (i.e. velocity motion model or odometer motion model) and calculation of the 

importance weight is also straight-forward [13]. 

The other important properties and steps of particle filters and the fastSLAM 

algorithm are listed below. 

2.7.1 Prediction of Vehicle State  

 

An intelligent agent (robot) makes prediction for all the state vectors of a particle set 

when it obtains the control data (linear velocity and angular velocity or odometer 

data). This prediction step includes the total K (number of particle) prediction.  

In the prediction process the intelligent agent does not directly use the noisy control 

data. Instead, the agent takes samples from the Gaussian space of the control data 

and then uses this data to make predictions. Each particle represents a probabilistic 

guess of the robot path at time t and this feature is called a multi-hypotheses [13].  
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This vehicle state calculation is easy if the motion model of vehicle is known (i.e. the 

velocity motion model or odometer motion model as in EKF). 

 

Figure 2-11Prediction step [1]. 

Figure 2-11 presents the sampling approximation of the position belief for a non-

sensing robot. Without sensing there is no belief update through the navigation. All 

the particles represent different predictions [1]. 

2.7.2 Landmark Location Estimation and Update 

The FastSLAM algorithm represents conditional landmark estimates using Kalman 

Filters (EKF). Each landmark is defined with a Gaussian distribution     
   

     
   

. 

Through the navigation process the algorithm makes linearization with Taylor 

expansion as in EKF because of the nonlinearities of the sensor measurement.  

 

                                                         
   

     
   

     
   

   
   

   
   

                                                  

 

    
   

 defines the mean and     
   

 defines the covariance of landmarks at time t for     

particle [13]. For the 3D robot navigation scenario each mean   
   

is a three-element 

vector, and   
   

 is a 3x3 matrix.  
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In the update step the vehicle updates feature state vectors using sensor 

measurements. The update step is the same as the EKF update sequence. The 

algorithm updates the mean of the landmark locations and their covariances. This 

estimation and update step evaluates the pose of the landmarks for all particles (for 

every different pose estimate of vehicle) [13]. 

2.7.3 Weight Calculation  

The algorithm computes the probability of the sensor measurement    for each 

particle. If the index of the sensed landmark is n, then the probability of the sensor 

measurement can be defined as,  

 

  
   

           
   

     
   

     
   

                                          

 

  
   

 is the importance weight, which  shows how important the particle is. The 

intelligent agent computes the importance weight according to the sensor 

measurement and the expected sensor measurement. The importance weights of all 

particles are normalized and their sum is 1. These importance weights will be 

effective in the re-sampling step. Calculated weights became meaningless if there is 

not any re-sampling step. 

 

Figure 2-12 Weight representation [1].   
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In Figures 2-12, samples were taken from proposal distribution which is a Gaussian 

distribution, however, the real distribution (target) is not Gaussian and it is nonlinear. 

In Figure 2-12 the lengths of the bars represent the importance weights.  

2.7.4 Re-sampling Process 

The probability of drawing a particle concerns its normalized importance weight. 

The intuition behind this process is simple; the low weighted particles are deleted 

and systematically a successful particle is copied in place of the deleted particle. This 

property obtains information passing to the backward as indirectly [13]. 

The re-sampling process is shown Figure 2-13. M defines the total number of 

particles and first the   value is defined. The   value can be selected randomly but 

the algorithms used in this thesis are defined with formula 2.29. The aim was to 

achieve the middle of the weight value if all the weights are equal.  

 

                               
 

                      
                                                  

 

 

Figure 2-13 The re-sampling process [1]. 

According to Figure 2-13, the red particles (4
th

, 8
th

 and 10
th

) are deleted and green 

particles are copied instead of the red particles. The algorithm takes the 3
rd

, 7
th

 and 

9
th 

particles instead of the 4
th

, 8
th

 and 10
th

 particles.  

 

Figure 2-14 Before and after the re-sampling process [1]. 
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2.7.5 Rao-Blackwellization 

The joint probability distribution        is found for the arbitrary random variables 

  and  . However, if the conditional probability        can be described in closed 

form it is equally legitimate to only draw the particles from     . The algorithm 

attaches to each particle a closed form description of       . 

This trick is called as Rao-Blackwellization and it yields better results than 

sampling from the joint. fastSLAM applies this technique and samples from the path 

posterior     
   

          and represents the map          
   

          in Gaussian 

form [13]. 

2.7.6 Factored Representation 

In the fastSLAM application the problem is to find the map and vehicle pose. 

 

      
   

                                                                                   

 

The posterior can be factored as in equation 2.31. 

 

    
   

                  
   

                   
   

                                     ) 

 

With this factorization the problem is decomposed to K+1estimation problems. One 

problem is estimating the posterior for robot paths and K problems for estimating the 

K landmarks conditioned on the path estimate [13]. 

2.7.7 Conditional Independence 

In fastSLAM, knowledge of the robot path renders all landmark estimates 

independent. The location variables separate the individual features in the map from 

each other. If the state vector is a known variable, all the landmark estimates become 
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independent from each other. Any dependence between two landmark estimates is 

mediated through the robot path [13]. 

The algorithm estimates a robot path with particle filter (PF) and estimates landmark 

positions with EKF. EKF is applied to every landmark for each particle and all 

landmarks defined with Gaussian distribution. For M particles and K landmarks the 

problem includes the K.M EKF calculation. This EKF calculation is in dimension 3 

and does not grow as in EKF-SLAM. 
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CHAPTER 3 
 

 

DATASET AND SIMULATION ENVIRONMENT 
 

 

 

3.1 RGBD SLAM Kinect Dataset 

Part of the large RGBD SLAM dataset was used to verify the proposed ideas during 

the research. The dataset was generated by Sturm et al. with a Microsoft Xbox 

Kinect Sensor [6]. 

 

Figure 3-1 Microsoft Xbox Kinect Sensor with Reflection Sensors [6]. 

The Kinect sensor consists of a near-infrared laser, an infrared camera and a color 

camera between them. The near-infrared laser projects a refraction pattern on the 

scene and an infrared camera observes this pattern. Using block matching techniques 

it is possible to compute the disparity if the projected pattern is known. All the image 

rectification and block matching happens internally in the sensor [6]. 

The Kinect sensor has advantages and disadvantages in relation to the laser scanners. 

The  technical specifications and performances of these sensors are compared for the 

map building, localization and obstacle avoidance using only one of the 480 lines of 

the Kinect output for the 2D SLAM simulation [32]. The technical comparison of the 

sensors is given in Table 3-1. 

As shown in the Table 3-1, the SICK laser scanner gives a higher performance than 

the other two and also it is configurable (range, resolution, measurement angle) for 
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specific applications. On the other hand, the cost of the SICK laser scanner is very 

high in relation to the two scanners. Taking into these properties, the Kinect sensor 

and Hokuyo laser scanner are more comparable [32]. However, the important 

difference between Kinect and Hoyuko concerns dead zones. The Kinect sensor 

could not separate the infrared dots on close obstacles due to blooming effects [32].  

 

Figure 3-2 Visualization of blooming effect for a CCD camera [33]. 

Figure 3-2 shows the blooming effect on a CCD camera created by a high charge in 

one area which can influence the pixels next to it. In Kinect cameras this blooming 

effect makes the boundaries noisy [33]. 

Another important feature, is that accuracy is better with the Kinect sensor when the 

distance is less than 1.5 meters. Above this distance the Hokuyo laser scanners give 

better results [32]. The depth resolution of the Kinect sensor varies between 0.25 cm 

(d=0.8 m) and 4.8 cm (d=4 m). The minimum distance was fixed at 0.8/0.4 meters 

but the maximum distance is not fixed. Different authors recommend rejecting 

distances of more than 3 meters or 4.6 meters [32]. 

Kinect produces a gap in the point cloud data if camera monitors a surface that 

cannot be scanned by the infrared pattern. Also, a contrary case produces the same 

result. This is called a parallax problem and is amplified by reflective surfaces. 

However, since laser scanners combine the receiver and transmitter the parallax 

problem does not occur [32].  

Both sensors have problem in perceiving reflective surfaces, dark areas and 

transparent materials. The material of the obstacles has important effect on the 

perception of data [32]. 
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The most important disadvantage is the smaller monitoring angle of the Kinect 

sensor in terms of laser scanner systems. This small view angle limits the capabilities 

of mapping and localization. On the other hand, Kinect is more reliable in obstacle 

detection than the Hokuyo laser scanner [32].  

Table 3-1 Technical specification comparison of sensors [32]. 

 
SENSORS 

Kinect Hoyuko SICK 

Maximum range [m] 3-6 4 8-80 

Dead range [m] 0.8/0.4 0.06 0.07 

Horizontal angle [°] 57 240 100-180 

Distance resolution [mm] 2.5-48 1 1-10 

Angular resolution [°] ≈0.097 0.3515 0.25-1 

Accuracy [mm] 
±6 (1m) 

±130 (4m) 

±30 (1m) 

±120 (4m) 
±10 (10m) 

Geometry [mm] 65x290x70 50x50x70 155x156x210 

Weight [kg] 0.55 0.16 4.5 

Power voltage [V] 12 5 24 

Power consumption [W] 5 4 30 

Refresh rate [Hz] 30 10 18-75 

Output Data [kB/s] 18000 5.4 500 

Interfaces USB USB 
RS-232 

RS-422 

approx. Costs $ 150 1000 5000 

The Kinect sensor is still good choice for indoor SLAM applications with fast 3D 

data perceiving and low cost [32].  

The RGBD Kinect dataset consists of two different environments, a typical office 

(fr1) and large industrial workspace (fr2). The latter is appropriate for robot-SLAM 

applications [6].  
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Figure 3-3 Typical office environment and large industrial workspace. [34] 

 

Available robot SLAM sequences are shown in Table 3-2.  

Table 3-2 List of available RGB-D SLAM sequences [34] 

Sequence Name Duration [s] Avg. Trans. Vel. [m/s] Avg. Rot. Vel. 

[deg/s] fr2/pioneer_360 73 0.23 12.05 

fr2/pioneer_slam 156 0.26 13.38 

fr2/pioneer_slam2 116 0.19 12.21 

fr2/pioneer_slam3 112 0.16 12.34 

Table 3-2, gives the sequences and their basic information (duration, average 

angular and translational velocity). The Kinect sensor is mounted on a Pioneer 3 

robot which is controlled manually with joystick for the robot-SLAM sequences 

(Figure 3-4).  

 

  Figure 3-4 Pioneer robot with Kinect sensor [34]. 
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The ground truth of the dataset is created with 8 high speed tracking cameras 

(Raptor-E from Motion Analysis) working at 100 Hz [35]. 

 

Figure 3-5 Motion analysis Raptor-E capture cameras [34]. 

The dataset creates color (8 bit RGB- each pixel value differs between 0-255) and 

depth (16 bit monochrome-each value differs between 0-65025) images for every 

scan of the environment instead of point cloud data (Point cloud data after 

conversion is nearly 20 GB). The dataset contains a conversion algorithm to create 

point cloud data from the RGB and depth images. The frame rate of the dataset is 30 

Hz and the sensor resolution is 640 x 480.The depth images are scaled to 5000. A 

pixel value of 5000 in the depth image corresponds to a distance of 1 meter from the 

camera [34]. The sequences include the ground truth data for the vehicle state. Each 

line in the ground truth data includes a timestamp (number of seconds)          

(position of the optical center of the color camera),             (orientation of the 

optical center of color camera with respect to the motion capture system in the form 

of unit quaternions) [34]. 

Calibration is another important point to consider for Kinect cameras. The default 

calibration values are not true values for each different Kinect camera. In Table 3-3, 

      values define the focal length of the cameras,        values define the optical 

center of the cameras and    value define the correction factor of the depth values  

[34].  
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Table 3-3 Calibration Parameters for the Freiburg 2 dataset [34].  

Camera             

Color 520.9 521.0 325.1 249.7 

Infrared 580.8 581.8 308.8 253.0 

Depth    = 1.031 

In the current study, the 'freiburg2_pioner360' and 'freiburg2_pioner_slam3' 

datasets were used to verify the proposed ideas. These datasets are generated with 

one complete turn in a hall with a pioneer robot and satisfies the performance 

comparison after the loop-closing.  

3.2 Real Time Application 

The contribution of plane features for navigation (SLAM) are validated with the 

published dataset. After this validation the performance of algorithm is verified with 

a real time application with the pioneer robot and the Microsoft Kinect Sensor. 

Figure 3-6 shows the pioneer robot with a computer and a Kinect sensor. 

 

Figure 3-6 The robot system (Image was taken in the METU Lab.) 
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The computer communicates with the robot and sensor camera through different 

communication protocols. The first connection between the computer and the kinect 

sensor is through a USB cable. A RS-232 serial communication provides the second 

connection between computer and robot.  

 

Figure 3-7 The robot system, computer and sensor connection 

The computer controls the robot and satisfies the motion through the defined 

trajectory.  The computer waits at some steps and takes sensor measurements 

throughout the motion.  

 

Figure 3-8 The robot system and map environment (Images were taken  in the METU 

Lab.) 

The navigation environment of the robot is the METU EE Computer Vision 

Laboratory. The backs of the chairs (outlined in red) are used as a landmark.   
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Figure 3-9 Sample depth and RGB image from real-time application (Edited 

MATLAB images were taken in the METU Lab.) 

The original depth and RGB image are shown in Figure 3-9 and the extracted feature 

points (back of the chair) are shown in Figure 3-10.  In the point cloud data the green 

points define the plane candidates and red points are the remaining ones. 

 

Figure 3-10 Sample 3D point cloud from a real time application (MATLAB Image) 

The feature extraction methods are discussed in detail in chapter 4.  
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CHAPTER 4 
 

 

FEATURE EXTRACTION 
 

 

 

4.1 Filtering Process 

Filtering process is an important step in the 3D SLAM algorithm. Every 3D scan of 

the environment contains nearly 307200 (640x480) points. The mathematical 

calculation takes too much time with this large number of points. To reduce the 

process time there should be a filtering process. Also, raw data can include noisy or 

unnecessary points for example the background or ground. To prevent erroneous data 

associations, robust data should be used and the foreground data should be extracted 

from the background. This process is explained in the following sections. 

4.1.1 Sampling   

3D point cloud data can include thousands of points and this extremely large number 

of points increases the process time. Sampling from raw data reduces the number of 

points and the process time. This sampling process reduces computation time while 

maintaining the accuracy of measurements as shown in [5]. In the figure  4-1 it can 

be seen that the number of points was decreased from 56000 to 2300 and process 

time of 96 hours was reduced to 5 seconds while maintaining a significant level of 

accuracy [5]. 

 

Figure 4-1 Original and sampled data [5]. 
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Figure 4-2 shows the original and sampled versions of the raw data. Only 10% of 

original data can define the environment. Reducing the number of points decreases 

the computation time for the remaining algorithms.  

 

Figure 4-2 Filtering results (MATLAB Images) 

Through the sampling process there is a risk of losing the important part of the data 

however, the fastSLAM approach can handle this kind of problem.  

The algorithm used in this study undertakes random sampling but, intelligent 

selection methods also exist to protect the important part of the point cloud data as in 

Chen’s application. However, intelligent sampling comes at a computational price 

[5]. Chen uses an effective edge feature extraction method to extract the edge points 

and this reduces the redundant points [5]. The results are provided in Figures 4-3 and 

4-4.  
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Figure 4-3 Original scan data points [5].  

 

Figure 4-4 Data points after feature extraction filter [5]. 

After the removing process Chen defined the scan data with only 3 points instead of 

7. The algorithm, detects the edge of objects and according to this edge information 

removes unnecessary points from the data. This process decreases the time 

consumption to the half for remaining processes [5]. 

4.1.2 Removing Background  

All SLAM methods (feature based and scan based) suffer from data association 

errors. Incorrect sensor readings and observing the same features from different 

locations lead to errors in the resulting maps [36]. In current work, we removed 

background data and used only foreground data to prevent incorrect data 

associations. A foreground object can occlude portions of a background object and 

this results in abrupt boundaries and the suppression of those features that are close 

to these boundaries [16]. 
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Figure 4-5 Poor features are suppressed. [16]  

 

Figure 4-6 Removing the background to prevent false data association.  

In Figure 4-6 the same object (wall) can be detected as different feature according to 

the view angle because of the occlusion by foreground object.  This can result in a 

false data association and increases the final error in the SLAM application. The 

backgrounds of scenes are filtered according to the object sizes (point count) and this 

prevents false data associations. 
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Figure 4-7 All data before background removal (MATLAB Image). 

 

Figure 4-8 Green points are foreground and red points are background. (MATLAB 

Image). 

Figure 4-7 and Figure 4-8 shows the background removal sample from the 

application. The foreground is easily and clearly separated from the background. 

4.1.3 Filtering the Ground Floor  

Horizontal plane segments are not essential for planar SLAM applications and can be 

discarded to eliminate the ground effect. Ground points cannot be modeled as 

distinctive features [37].  

In the current application, in order to eliminate ground points, horizontal planes are 

detected and the points that fit these horizontal planes are filtered. These horizontal 

planes are detected according to the normal vector of randomly selected points. It is 

expected that the normal vector should be in the z direction. If the normal vector is 

not in the z direction, the algorithm iterates until it finds the normal vector that 
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defines the ground points in the z direction. In fact, all the points were not selected 

randomly. Only the first point are selected randomly and remaining points are 

selected according to the Euclidian distance to the mean of selected points iteratively.  

 

Figure 4-9 Filtering ground data (MATLAB Images) 

Figure 4-9 (a) shows 4 different point groups. In our algorithms, different point 

groups were not found for iteration. The purpose is to show the different alternatives 

that help to find the ground points. The fitted plane is shown in (b) and in (c) the 

founded normal vector can be seen.  The points that define the ground were cleared 

from the scan according to the normal vector information. 

 

Figure 4-10 Raw scan data (MATLAB Image) 
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Figure 4-11 Filtering ground data. (MATLAB Image) 

Figure 4-10 shows the raw scan data and Figure 4-11 shows the filtering. In Figure 

4-11 the red points are assigned as ground points and eliminated. The remaining 

points are shown in green.  

4.1.4 Hierarchical Clustering (Segmentation) 

Removing the background and the ground floor data can be sufficient if the 

environment is not complicated. In Figure 4-12, the red points define the eliminated 

points and green points define the remaining ones.  

 

Figure 4-12 Raw data and final data after filtering (MATLAB Image) 

The environment and the 3D scan data could be more complex. If there is more than 

one object plane fitting the process may fail. For this kind of scene, the algorithm 

splits the objects and then applies the plane fitting algorithm separately to all 

different point groups.  
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Figure 4-13 Complex 3D environment. (Depth and RGB image for scan 281 from 

fre2_SLAM3) [34]. 

Figure 4-12 shows the first process of filtering which is removing the ground. The 

red points are the removed ground floor points and green points are remaining points.  

 

Figure 4-14 3D view of scan 281 of fre2_SLAM3 map. (Green points are remaining 

parts after red points (ground points) removed) (MATLAB image) 

The algorithm can easily separate the point groups that define objects as shown in 

Figure 4-14 and Figure 4-15. The remarkable spatial distances between groups 

facilitate this easy separation.  
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Figure 4-15 Birds eye view of 3D scan 281 (MATLAB image). 

K-means clustering is a widespread clustering method but has some preconditions 

since it requires listed information. 

 A number of clusters An initial assignment of data to clusters  

 A distance measure between data          

In the current research, the robot does not know the number of clusters for any scan 

and cannot make any initial assignment. Thus, the algorithm uses unsupervised 

clustering method. The selected unsupervised clustering method is hierarchical 

clustering. The hierarchical clustering method only requires a similarity function. 

Defining the similarity function is the most important element in the hierarchical 

clustering method. In 3D space objects are well separated from each other and the 

Euclidian distance function defines the satisfactory similarity function. Also, for 

hierarchical clustering, for each 3 points (       ) in the dataset the following 

properties should be satisfied [38]. 

 Non-negativity:           

 Reflexivity:                                

 Symmetry:                 
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 Triangle inequality:                              

In the method given in this thesis these properties are satisfied and robot can safely 

use hierarchical clustering method through the navigation.  

 

Figure 4-16 Randomly selected 2000 points for clustering (MATLAB image) 

The number of points is very important for hierarchical clustering and before 

clustering, the algorithm randomly samples 2000 points from the point cloud data. 

The sampled data can be seen in Figure 4-16.  

Hierarchical clustering according to spatial distance between the groups shown in 

Figure 4-17. This visualization is called dendogram which is a tree diagram that 

illustrates the hierarchical clustering process[38]. 

 

Figure 4-17 Dendogram representation of hierarchical clustering [38]. 
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At the beginning of the clustering, at step 1 (k=1) all the points define a cluster thus 

the similarity scale is 100. After step 3 (k=3) the total number of clusters is 6 and the 

similarity decreases.  The number of clusters and the similarity are inversely 

proportional. After step 8 (k=8) the total number of cluster becomes 1 and the 

similarity decreases to 30.  

 

Figure 4-18 Alternative representation of the hierarchical clustering [38]. 

Understanding where to stop (cut-off) and criterion function are two important 

properties of hierarchical clustering. The criterion function of in this study algorithm 

is the Euclidian distance. 

Cut-off value is important in order to split different objects (plane segments). Figure 

4-19 shows the dendogram visualization of the clustering process. For CUT_OFF = 

3.0 meters, the algorithm only finds two clusters and the irrelevant point groups 

constitutes a cluster. On the other hand, selecting CUT_OFF = 0.01 results in 

hundreds of classes. The algorithm splits one object into many point groups and this 

causes erroneous feature detection and incorrect data associations.  
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Figure 4-19 Dendogram of the 3D point cloud data (MATLAB Image). 

Hierarchical clustering is very important part of the plane detection process. If 

different objects are defined as one this may result in false plane detection and 

erroneous data association. Selecting the optimal cut-off value is important to 

prevent this wrong data association. This cut-off value is selected according to visual 

check and cluster number-cut-off value graphs.  

In Figure 4-14 and Figure 4-15 there are 8 point groups. For this scene the cluster 

number-cut off value relationship was analyzed. The clustering algorithm was run 

1000 times for each cut-off value. The results are provided in Figure 4-20 and Figure 

4-21.  
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Figure 4-20 Distribution of the cut-off value (MATLAB Image). 

Figure 4-20 shows the founded cluster number for cut-off values between 0.01 and 1. 

The expected number of clusters is 8 and this was founded around 0.2. The detailed 

graph is shown in Figure 4-21. 

 

Figure 4-21 Distribution of the cut-off values (MATLAB Image). 

The optimal value is 0.205 meters and in simulations this value was used. 
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Figure 4-22 Results of the clustered data (MATLAB image). 

Not all these clusters were used to extract the plane. The aim was to find reliable 

point cloud groups which exactly define an object (plane).  

The following criteria are used to eliminate clusters.  

 The number of points should be greater than 50 and less than 1000. ( For 

2000 points ) 

 The mean point of cluster should be less than 3 m. 

 The variance should be small (less than 0.1) 

 The maximum angle between point groups and the vehicle should be 28 

degrees. 

The clustering process applied to randomly selected 2000 points because of the time 

limitations. The algorithm finds the cluster number of remaining points according to 

the Euclidian distance criteria. Every point is added to the closest clustered points’ 

cluster.  
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Figure 4-23 shows sample data removal according to the maximum angle criteria. If 

the angle of any point in the group exceeds the 28 degree algorithm this classifies 

this group as unusable. The algorithm decides that the point group is a part of the 

object and the fitting plane of this point group injects erroneous landmarks into the 

algorithm  

 

Figure 4-23 Removed edge point groups with angle criteria (MATLAB Image). 

 

Figure 4-24 Plane candidates (MATLAB Image). 

In figure 4-24, the point groups are shown after elimination according to the defined 

criteria (distance and object size). However, there is one more criterion which is that 

the point groups can be eliminated if standard deviation is very high. Figure 4-25  

shows the plane candidates after elimination.  
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Figure 4-25 Plane candidates after the clusters with high variances were eliminated 

(MATLAB Image). 

There are 3 point groups and all these point groups are candidates for the plane 

extraction algorithm. 

4.1.5 Region Growing with Connected Component Analysis  

Region growing segmentation according to connectivity is a well-known 

segmentation method for binary and grayscale images. However,  a priori knowledge 

is required concerning the intensity of the target objects [39]. In the current study, 

there was no a priori knowledge about the target objects’ intensity values since these 

values change with the motion. 

Figure 4-26 presents a histogram of the depth image of scan 281 in which the 

connected component analysis is not appropriate for the depth image. No meaningful 

intensity threshold to discriminate the objects can be found because of the ground 

floor data. The ground floor data may contain values between 0-65025. 
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Figure 4-26 Histogram of depth image (scan 281- Figure 4-13) ( MATLAB Image ). 

On the other hand there are 3D extensions of the connected component analysis 

method. A 26-connected component analysis has been used for traffic monitoring 

from the helicopter for 3D aerial data in [40]. In the current study, the connectivity 

was defined with a threshold value of 0.205 which is given in 4.1.4 for the 

hierarchical clustering cut-off. It is easy to discriminate the connected components 

with region growing according to 26-connectivity and this gives the same result with 

hierarchical clustering. On the other hand, the connected component analysis takes 

longer compared with hierarchical clustering as shown in Table 4-1. 

Table 4-1 Segmentation Methods Time Comparison 

Method Time (seconds) 

Hierarchical Clustering  0.7247 

Region Growing with Connected Component Analysis 14.3285 

Region growing with connected component analysis is more expensive than the 

hierarchical clustering method and throughout the current research hierarchical 

clustering method for object segmentation was applied.  
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4.2 Plane Feature Extraction 

4.2.1 Applied Plane Feature Extraction Method 

After removing the unnecessary data, the remaining points are candidates of the 

plane (foreground objects). Figure 4-27 includes the environment (a), RGB image (b) 

and 3D point cloud (c).  

 

Figure 4-27 Vehicle and 3D scan. (a) SLAM environment from external camera (b) 

RGB image of scan from Kinect camera (c) 3D point cloud data from Kinect camera 

(The red points have been removed, only the green points are used for the landmark 

(plane) extraction). (MATLAB images) 

The algorithm used in the current study is a process like the RANSAC algorithm, in 

fact, the proposed application is the modified RANSAC algorithm. RANdom 

SAmple Consensus (RANSAC) is a method to determine which points in a point 

cloud data satisfy a certain mathematical model (i.e. plane, curvature …).  To 

achieve this aim RANSAC randomly chooses a few points to describe the specified 
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model, for a plane this is 3. Then the point cloud data is separated to 2 classes called 

inliers and outliers. Inliers are points which lie within a certain accepted distance 

threshold, t, to specified model. The search ends with a maximum iteration count or 

having found a sufficient number of inliers [18]. 

In the application presented in this thesis the updated version of Tim Zaman’s plane 

fitting algorithm (RANSAC and LSE) [41]. The proposed algorithm does not select 

only three points to fit a plane. Instead it uses a specified percentage of the data 

(thousands of points).  

 

  

Figure 4-28 Plane extraction algorithm. 

In the LSE function the algorithm first finds the scatter matrix for all selected points. 
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  : mean of all selected points 

  : total number of selected points 

   :i
th

 point from selected point group. 

In the proposed algorithm the scatter matrix is 3x3. Then an eigenvector is computed 

that corresponds to the smallest eigenvalue required to find the normal vector of 

selected points. 

                                                                                  

  : Scatter matrix 

  : eigenvector 

  : eigenvalue 

For zero eigenvalue    : 

                                                                                       

The scatter matrix and eigenvector becomes perpendicular for a zero eigenvalue 

therefore, the eigenvector corresponding to the minimum eigenvalue is the best 

definition of normal vector.  

Now, the algorithm finds the best fitted normal vector to the selected point group. 

Then the algorithm controls the fitting performance of points to the estimated normal 

vector. For all points the following equation is calculated. 
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    : determined distance to fitted plane. 

    : estimated normal vector 

  : mean point of inliers (mean of selected half of the data) 

   : i
th

 point from the selected point group. 

 

The geometrical definition is shown in Figure 4-29.  

 

 

Figure 4-29 Finding the point distance to the estimated plane. 

In figure 4-29 the blue vector is the dot product of the mean point vector and normal 

vector. The yellow vector is the dot product of the i
th

 point vector and normal vector. 

The difference between these two vectors gives the perpendicular distance of i
th

 point 

to the estimated plane.  

After the distance calculation for all points, the algorithm checks the percentage of 

the inliers. If the distance is less than 0.1 meters, the relevant point is selected as an 

inliers. The algorithm accepts the found normal vector if the inlier points are higher 

than the 80% of the point cloud data.  

Then the algorithm finds the final estimation of normal vector according to the full 

data. Selected points are shown in Figure 4-30(b) in green and the selected inliers 

which fits the small plane are shown in Figure 4-30(c) and the final plane that fits to 

the inliers is given in Figure 4-30(d). 
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Figure 4-30 Plane fitting (MATLAB Images). 

The map environment will not always be as simple as presented in Figure 4-27. 

Generally environments will be more complex as shown in the plane extraction given 

in Figure 4-31.   

 

Figure 4-31 RGB and depth image of scan 281 of fre2_slam3 map [34]. 
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Figure 4-32 Extracted planes of scan 281 of fre2_slam3 map (MATLAB Images). 

Even though the environment is complex, the proposed algorithm finds sufficient 

plane features.    

4.2.2 Plane Feature Descriptors 

An example of a detected plane feature is given in Figure 4-33. For planar surface 

resolution with 0.05 meters, the algorithm maintains a 19 x 4 array for each of the x, 

y and z values, each providing a76 point location and a normal vector. 

 

Figure 4-33 Extracted plane feature (MATLAB Image) 
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The size of the arrays change according to the surface size and resolution of the 

plane. The robot in this study does not directly use this plane definition but it extracts 

the compact properties from this plane definition. The properties are the center point, 

normal vector and area of the plane. 

Throughout the research the plane features have been described as having 3 different 

feature descriptors. These feature descriptors are called landmark vectors in SLAM 

applications. Therefore, the plane as point landmark vector can be defined with the 

center point of plane. 

                                                                     

We can define the plane with a point feature and a normal vector. This landmark 

vector is called a plane as oriented point. 

                                                            

The plane can be defined with a point, normal vector and area information. This 

landmark vector named; plane as surface. 

                                                              

4.2.3 Alternative Plane Feature Extraction Methods 

There are different plane detection techniques in the literature. The Hough-transform 

and Random Sample Consensus (RANSAC) paradigm are the two main and common 

methods. The performance comparison for plane detection has been applied to the 

construction of roof planes using a LIDAR scanner. According to the comparison, 

the RANSAC algorithm provides higher quality in a shorter time [42]. 

There are also different plane extraction (PE) methods based on the random sample 

consensus (RANSAC). The standard RANSAC plane extraction method attempts to 

maximize the number of inliers. The disadvantage of the standard RANSAC plane 

extraction method is that it may fail when a scene contains multiple intersecting 

planar surfaces with limited sizes [43]. 
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The CC-RANSAC (Coherence Check RANSAC) plane extraction method 

successfully solves the straddling-plane problem when the scene contains simple 

steps. Figure 4-34 shows a curb and ramp. These types of features must be identified 

for safe parking [44]. 

 

Figure 4-34 An example of a curb (a) and ramp (b) [44].  

CC-RANSAC methods solve the plane extraction problem for these kinds of simple 

scenes. However, if the scene contains stairway with more than 6 steps the CC-

RANSAC algorithms may fail. To solve this problem the Normal Coherence Check 

RANSAC (NCC-RANSAC) method is proposed [43]. This method checks the 

normal coherences for all the data points of the inlier patches (on the fitted plane) 

and removes the data points whose normal directions are contradictory to that of the 

fitted plane. This process avoids erroneous plane extractions [43]. 

 

Figure 4-35 NCC-RANSAC with SR-4000 data. (a) Intensity Image (b) Extracted 

planes [43]. 
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Objects are well-separated from each other in our navigation environment; therefore, 

there is no need to use the CC-RANSAC or NCC-RANSAC methods. Instead, the 

modified version of classical RANSAC method is implemented which has the 

computational advantage over the CC-RANSAC and NCC-RANSAC methods.  

In implementation in this study the raw data was clustered using the hierarchical 

clustering method according to connectivity. This clustering step is the precondition 

for plane extraction functions. With the help of this clustering process, the modified 

version of classical RANSAC plane extraction function is satisfactory. In classical 

method the algorithm selects 3 random points and fits a plane to these selected 

points. The algorithm searches until the fitting performance exceeds the specified 

threshold. In our modified RANSAC method 1 random point and the specified 

percentage of the data were selected, according to the spatial distance to the selected 

random point. The details are presented in section 4.2.1. 

 

Figure 4-36 Comparison of the RANSAC algorithms (MATLAB Image) 

Figure 4-36 shows the comparison of the classical RANSAC method and the 

implementation in the current study. The time and the performance comparison 

changes according to the maximum iteration count.  

Maximum iteration count < 6: The proposed method satisfies good plane 

extraction performance with the higher time consumption.  



67 

Maximum iteration count ≥ 6: Both methods satisfy 100% plane extraction 

performances. However, the time consumption of the proposed method is smaller 

than the classical RANSAC method.  

  

Figure 4-37 Initial plane extraction with RANSAC (MATLAB Image). 

Classical RANSAC plane extraction may fail if the initially selected random points 

lie on wrong axis and this classical method may require high number of iterations to 

achieve the successful result. Figure 4-37 shows this kind of initial false estimation 

and the extracted plane. This kind of initial random point selection result in a large 

amount of time spent with a lower performance according to the proposed 

implementation. In the current study, the robust feature detection is important and to 

achieve this the modified version of RANSAC algorithm was used to detect the 

robust plane features.  

4.3 SURF Feature Extraction 

SURF is one of the most used rotation and scale invariant interest point detectors and 

a descriptor which helps to find matches between two images. The R(x, y,   ) 

function is the interest point criteria function and computes the response of every 

pixel in the image for different scales [45]. 
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The interest point detection algorithm considers the input image as an image stack 

(image pyramid) which is a collection of the input image in different scales. The 

algorithm can generate this image pyramid by smoothing and down-sampling the 

image. However, the SURF interest point detection algorithm increases the filter size 

and maintains a stable image size instead of down-sampling the image size. The 

integral image speeds up the interest point detection and convolution process. The 

details of the integral image are introduced in Appendix B. This process provides 

computational efficiency and avoids aliasing [45]. 

 

Figure 4-38 Instead of iteratively reducing the image size (left), the use of  integral 

images allows the up-scaling of the filter at constant cost (right) [45]. 

 

The response function          is the determinant of the scale normalized Hessian 

Matrix [45]. 

 

                                                                      

 

The scale normalized Hessian Matrix is: 

 

           
 

  

 
 
 
 
 

  

   
         

  

    
         

  

    
         

  

   
         

 
 
 
 
 

                         

 



69 

In the formula (4.11),    represents the Hessian of the k
th

 frame and    represents the 

intensity for the image stack           

The SURF feature detection algorithm uses box filters and approximates the 

determinant of the Hessian Matrix. The approximation formula is given below. 

                                                                     

Ideally, as the definition of determinant obligates, the factor in front of     should be 

1.0 rather than 0.9. However, according to the error introduced by the discretization 

approximation, 0.9 is used as an ad-hoc compensation [45]. 

In SURF, these derivatives in the Hessian determinant are approximated with 3 box 

filters. A 9 x 9 version of the box filters are given in Figure 4-39 and Figure 4-40 

[45]. 

 

Figure 4-39 The 9 x 9 Gaussian second order partial derivatives in the x, y and xy 

directions [46]. 

 

Figure 4-40 The weighted 9 x 9 box filter approximation of the 9 x 9 Gaussian filters. 

(+1,-1, -2 are the weights assigned to those regions and the grey regions are of value 

0) [46].  
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The scale-octave representation is shown in Figure 4-41.  

 

Figure 4-41 Scale-octave representation [46]. 

The algorithm searches the larger shapes at higher octaves and generates 4 different 

response layers for each octave. The first and last layers of each octave are only used 

for comparison. For example, at first octave the algorithm searches the interest points 

for the second and third response layers. The layers are shown in the circles in Figure 

4-41. Every response layer corresponds to an approximation of a  value. This  

value defines the variance of the approximated Gaussian filters. For instance, the first 

octave – 9 x 9 filter pair corresponds to   = 1.2.   

Scale information gives detail about the size of the detected SURF feature. The filter 

size, scale and the SURF feature size are directly proportional. If the scale of the 

SURF feature is around 4, this means that the SURF feature gives the highest 

response to the filter size 39 x 39. This scale property maintains the size of the SURF 

feature and prevents incorrect correspondences.  

4.3.1 Interest Point Detection 

Figure 4-42 shows the convolution of the 9 x 9 box filter for any center pixel      . 

The result of the convolution is A-3B.   
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Figure 4-42 Sample convolution mask [46]. 

A and B define the sum of the intensities of the surrounding pixel. The A and B 

values can easily be found using integral image calculation. The details of the 

integral image are given in Appendix B. The convolution responses for each filter 

size and calculation of the response are found using equation 4.12. If determined 

value reaches the defined threshold the algorithm keeps it as a SURF feature 

candidate. For each SURF feature candidate the x, y, scale and laplacian values are 

retained. The x and y defines the location of feature in image, the scale defines the 

size of the feature and the laplacian define the blob type.     

 

 Figure 4-43 White and black shape. 

For the SURF features, the determinant of the white and black shape is the same. The 

algorithm uses the sign of the laplacian (trace of the Hessian matrix) in order to 

avoid matching a white circle with a black one.  The black shapes have positive 

values and the white shapes have negative values.   

4.3.2 Non-maxima Suppression 

The algorithm runs a non-maxima suppression process after finding the SURF 

interest point candidates. Excluding the weak interest points is carried out at two 

levels. In the first level, the algorithm applies threshold test to all the interest points 
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within a layer. In this test the interest points above the threshold value are accepted. 

The higher the threshold value that is chosen, fewer but stronger interest points are 

chosen. The second level of filtering is called non-maximum suppression this is 

carried out across three layers with the center pixel in the center layer being 

compared with a total of 26 neighbors. 

 

Figure 4-44 Representation of the non-maximum suppression [46]. 

The algorithm evaluates the center pixel as a SURF feature if it has the highest 

response value among the candidates. The algorithm eliminates the center pixel from 

the interest point candidates if the response value is lower than any of its neighbors. 

4.3.3 SURF Feature Descriptor 

The SURF feature detector finds the features on 2D depth image. Then in our 

applications, the algorithm finds the 3D location of these SURF features. We use 

camera calibration and focal length values for this computation. The final SURF 

feature vector contains the 3D location of found feature, scale and laplacian 

properties of the detected points.  

The SURF feature descriptor was generated with 5 parameters and its vector 

representation is shown below.  
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The result of the interest point detection process on a sample image can be observed 

in Figure 4-45.  

 

Figure 4-45 Depth Image and Extracted SURF Features (MATLAB image). 

The SURF feature detection algorithm gives a high number of responses at the 

boundaries of the depth image. Thus, through the simulation, the algorithm has to 

handle high number of landmarks and simulation results which required a large 

amount of time. We expect that the high number of SURF features help the algorithm 

to decrease the motion error and increase the performance of SLAM. 

Also, SURF feature points do not define objects, instead they give information about 

a small area of the image. The following Chapters 5 and 6 show the comparison of 

the final error rates. Comparing SURF and planar features gives information about 

the low number of compact features that define objects and the high number of 

localized features that gives information about that small portion of image.   
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CHAPTER 5 
 

 

IMPLEMENTATION DETAILS 
 

 

 

5.1 Data Structure 

In fastSLAM all the predictions concerning the pose of the robot are sampled with 

particles taken from the Gaussian distribution of the control data. Throughout the 

navigation the robot keeps in memory 100 different estimates (particles). Each 

particle contains the state vector of the robot, particle weight and Gaussian 

estimation for each detected landmark. 

The state vector of the robot is maintained in the form: 

              

 
 

   
                                                           

In equation 5.1, x and y represent the estimation of the robot pose for one particle 

while the yaw represents the rotational information estimation around the z direction 

of the robot relative to the global coordinate system. In the implementation in this 

study z, roll and pitch were ignored because of the planar navigation environment. In 

fastSLAM, the particle weight in kept as a scalar value which defines reliability of 

the particle.  

Also, the surrounding objects are defined with a Gaussian distribution. The robot 

keeps the landmarks with the mean vector and covariance matrix. Equations 5.2 and 

5.3 show the mean vectors for each different landmark vector:  

                                                                             

                                                                        ) 
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                                                                   ) 

 

The covariance matrixes of the detected landmarks are kept in the form: 
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In the matrices given above   defines the area of the plane,   and    defines the 

laplacian and the scale of the SURF feature. 

The robot keeps the mean and covariance matrices for each detected landmark for 

every particle. In each step, the robot keeps M.N (M:number of particles, N:Number 

of detected landmarks) estimates for the surrounding objects. 

5.2 Details of the Proposed Implementation  

Figure 5-1 shows the steps of the fastSLAM algorithm used in this study.  

 

Figure 5-1 General fastSLAM algorithm.  
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First, the fastSLAM algorithm initializes the simulation parameters. Then the 

algorithm runs remaining steps iteratively until the end of the navigation.  

All the main steps in the proposed algorithm are: 

 Initialization 

 Control Measurements 

 Prediction 

 Sensor Measurements 

 Filtering Process 

 Feature Extraction 

 Modeling the Sensor Measurements 

 Data Association 

 Re-sampling 

The code details concerning these steps are given in Appendix D. The simulator used 

in this study is the extended version of the code devised by Tim Bailey [47]. 

 

5.2.1 Initialization 

In this step, the proposed algorithm undertakes the first initializations. The algorithm 

initializes the fastSLAM simulation parameters, vehicle model, motion model, sensor 

model, measurement model, animation setup and particles.  

In this step, we define state vector and feature vector of robot in vehicle model 

initialization part as follows; 

              

 
 

   
                                                             

The state vector only keeps the x, y and yaw values of the robot throughout the 

navigation. The navigation environment is planar and the z, roll and pitch values are 

not kept. These are meaningless for planar environments in the simulations in this 

study.  

The vehicle is modeled as a triangle for easy visualization of simulations. The 

vehicle width and wheelbase are defined as 0.4 and 0.6 meters. These are the default 
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values and user cannot change the vehicle model in the GUI. The start condition of 

the robot is defined as [0, 0, 0]. The ground truth data for the vehicle is shifted to [0, 

0, 0 ].  

The remaining initializations and code details are given in Appendix D.    

5.2.2 Control Measurements  

The motion model in this study is defined with an odometer motion model. The robot 

obtains the odometer sensor readings and updates the state vector. In fastSLAM, the 

robot updates all particles’ state vectors. In the simulations, ground truth data is used 

to generate the odometer sensor readings. The odometer readings contain the 

           values. The main simulator finds the true odometer values and gives 

them to the robot with the additional noise. The code details are given in Appendix 

D.  

5.2.3 Prediction 

The robot runs the prediction function after obtaining the odometer readings. The 

robot runs the prediction function for each landmark (100 times), takes samples from 

the Gaussian distribution of odometer readings and adds these generated values to 

the particles’ state vector.  

  

                      
    
    

         
                                     

 

k defines the particle number and the robot runs this prediction for each particle. 

5.2.4 Sensor Measurements 

In the implementation in this study, the robot moves, makes a prediction and then 

takes sensor measurements. In this study, taken from the Microsoft Kinect Sensor the 

sensor measurements contain the depth and RGB image of the relevant scan. These 

measurements are only a 3D scan of the navigation environment. Raw sensor 
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readings do not give direct information about the landmarks. The robot runs feature 

the extraction process and models the scan data with a range bearing sensor model.         

5.2.5 Filtering 

The robot applies filtering to the raw 3D scan data before the feature extraction 

process. In the first step of filtering process, the robot generates the point cloud data 

of the obtained depth image with the help of the camera calibration data. Then the 

robot applies the filtering process to the generated point cloud data.  

The robot filters the ground floor and background of the scan. Then robot runs the 

hierarchical clustering which is a type of unsupervised learning method. According 

to the result of the clustering process, the robot filters unnecessary and noisy point 

groups. The filtering process details are given in section 4.1 and Appendix D. 

5.2.6 Feature Extraction  

After the filtering process, the robot runs feature extraction algorithms. In the current 

investigation, SURF point features and plane features are used. The details of the 

feature extraction are given in section  4.2 and  4.3.   

5.2.7 Modeling the Sensor Measurement 

The algorithm converts the obtained feature vectors using the range-bearing sensor 

model this  model contains 1 range information and 2 bearing information for 3D 

point landmark. All the sensor measurement models for each landmark vectors are 

given in the equations 5.12 to 5.15 below. 

                                                                

 

                                                                  ) 
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                                                                ) 

The sensor model differs according to the selected landmark vector. The sensor 

measurement for the plane as point landmark contains only the range and bearing 

information. All the other sensor measurement models are shown above. The code 

details are given in Appendix D.  

5.2.8 Data Association 

The robot uses the maximum likelihood estimation method for data association [6]. 

Figure 5-2 shows the one step of the SLAM process. The definitions are as follows:  

   : Defines the expected sensor readings from     (landmark-1) 

    : Defines the expected sensor readings from     (landmark-2) 

  : Defines the sensor reading. 

 

Figure 5-2 Data Association.  

According to Figure 5-2, the obtained sensor measurement belongs to the first 

landmark. However, the robot does not have any prior knowledge about this and 

calculates the probability values according to the formula below for each earlier 

detected landmark.  
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The computations are; 

                
 
 
    

  
 
 
       

 
  

                                            

 

                
 
 
    

  
 
 
       

 
  

                                            

 

If all the probability values are lower than the correspondence threshold, the 

algorithm evaluates the obtained sensor measurement as a new landmark. Otherwise 

it corresponds the measurement with the highest expected measurement.  

The robot runs this computation for each landmark type. The only difference is the 

size of the sensor measurement and covariance matrix. All the sensor measurement 

vectors for different landmark vectors are listed below. 

 

                                                                   

 

                                                                      ) 

 

                                                                      

 

                                                                ) 

The data association process is the core of our study. In section 6 the effect of 

different landmark vectors on SLAM performance were demonstrated. The data 

association performance is the main cause of the performance differences between 

experiments.  

 

 



83 

Figure 5-3 shows the data association process. 

 

Figure 5-3 Data association process. 

The code details about the association process are given in Appendix D. 

 

5.2.9 Re-sampling Process 

Re-sampling is the most important step in the fastSLAM algorithm. The robot keeps 

the landmark vectors independent from each other and at every step does not make 

any correction about unseen landmark vectors. However, this re-sampling step 
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creates backward information passing by erasing the weak particles. The details of 

the re-sampling process are given in 2.7 and Appendix D. 

5.2.10 Finalization Process 

The proposed algorithm ends the simulation when the recorded dataset and the 

navigation path ends. At the end of the navigation, the proposed simulator calculates 

the error values according to the ground truth data. The simulator generates the error- 

algorithm step graph to show the performance of SLAM. The details about the GUI 

and final result visualization are given in Appendix C. 
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CHAPTER 6 
 

 

EXPERIMENTS AND RESULTS 
 

 

 

In this chapter, the effect of certain simulation parameters on the performance of the 

fastSLAM algorithm is evaluated using the 3D point cloud dataset and the pioneer 

robot. The final results are very impressive even though the simulated error is very 

high.  

6.1 Experiment with the fre2_360 Map  

In these experiments, the results are obtained using the fre2_360 map. Different 

maps have been proposed for the robot SLAM algorithms; however, the fre2_360 

map is the simplest map for the chosen dataset.  

 

Figure 6-1 External view fre2_360 map [6]. 

The navigation environment is a closed area with columns and a chair. In the 

background, there are objects such as toys, a computer monitor and a plant, which 

are scanned by the Kinect sensor. In the simulations in the current study, the reliable 
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range is less than 3.0 meters. Therefore, objects further than 3 meters (toys, the 

monitor and the plant) are neglected and they do not affect the simulations.  

 

Figure 6-2 Neglected background objects [6]. 

In this environment, the robot detects 3 landmarks throughout the navigation. Figure 

6-3 shows the detected landmarks and the navigation path.  

 

Figure 6-3 The ground truth of the vehicle and the detected planes. (MATLAB 

Image). 
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The explanation of the drawings in Figure 6-3 is given below: 

 Green dots: Scanning steps where the robot detects a landmark. 

 Red dots: Scanning steps where the robot does not see any landmarks and 

moves only using the odometer data. 

 White areas: Bird’s-eye view of the plane. 

 Blue Vectors: Normal vectors of the planes.  

 Green triangle: The true pose of the vehicle 

The plane features are drawn according to the ground truth information. There is still 

a clear distribution as shown in Figure 6-4. This distribution is caused by errors in 

the sensor measurement, plane extraction algorithm and ground truth data. 

 

Figure 6-4 Distribution of the plane features. (bird’s-eye view) (MATLAB Image). 

Throughout the navigation, there are seven important phases as listed in Table 6-1. In 

phases 2, 4 and 6, the robot does not detect any landmarks. In these phases, the robot 

moves using only the predictions based on its control measurement. Since the 

navigation is performed without tracking any objects, there is a rapid increase in 

errors due to the miscalculation of the control measurement.  
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Table 6-1 Navigation summary of the Fre2_360 map  

 Action Running Algorithms Result 

1 Agent finds a new landmark. Prediction-Correction 
Slow increase 

in errors 

2 No visible landmark Prediction 
Rapid increase 

in errors 

3 Agent finds a new landmark. Prediction-Correction 
Slow increase 

in errors 

4 No visible landmark Prediction 
Rapid increase 

in errors 

5 Agent finds a new landmark. Prediction-Correction 
Slow increase 

in errors 

6 No visible landmark Prediction 
Rapid increase 

in errors 

7 
Agent finds a landmark that 

was detected earlier. 
Prediction-Correction 

Important 

correction 

Contrary to the other phases, in phases 1, 3, 5 and 7, the vehicle detects an object and  

runs the prediction and correction routines. In these phases of the navigation, errors 

increase slowly due to the re-sampling process. The algorithm calculates the weight 

of each particle, and performs re-sampling according to this information.  

The correction in phase 7 is different from the others. In this phase, the robot closes 

the loop and calculates the particle weights according to the information that was 

gathered in phase 1. When the weight of the weak particles decreases, the algorithm 

removes the lighter particles through re-sampling. As a result of this process, the 

error correction rate improves remarkably.  

Figure 6-5 presents the images of the environment throughout the navigation. As 

explained above, there are columns in the foreground and objects in the background. 

The sensor measurements further than 3.0 meters are not reliable for the Kinect 

sensor; therefore, the algorithm ignores these measurements and only detects the 

columns.  

In the experiments using the fre2_360 map, the robot navigates one turn in 100 

algorithm steps. Steps 1-100 constitute the first loop, 101-200 define the second loop 
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and 201-300 constitute the third loop. The robot detects three landmarks throughout 

the navigation. The first landmark is detected for the first time in step 1, and detected 

again in steps 88, 188 and 288. The robot detects the second landmark for the first 

time in step 25 and again in steps 125 and 225. The third landmark is detected first in 

step 53 and again in steps 153 and 253. Detecting the landmarks again, the robot can  

make successful corrections in the later steps. 

 

Figure 6-5 The map environment throughout the data collection process [6]. (Edited 

with Paint) 

In this study, four different experiments were carried out using the fre2_360 map. 

The only difference between the experiments concerns the landmark vector, which 

defines the features of objects in feature-based slam applications. The explanation of 

these landmark vectors is as follows;  

Surf Point: Defines the location, scale and laplacian of the detected SURF feature. 

                                                        ) 
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Plane as Point: Defines the center point of the detected plane. 

                                                                  

Plane as Oriented Point: Defines the center point and normal vector of the plane. 

                                                             ) 

Plane as Surface: Defines the center point, normal vector and area of the plane. 

                                                           

All the simulation parameters used in the experiments are listed in Table 6-2. 

 

Table 6-2 Simulation parameters for experiments using the Fre2_360 Map 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Landmark Vector 
SURF 

Point 

Plane as 

Point 

Plane as 

Oriented 

Point 

Plane as 

Surface 

Number of Particles 100 100 100 100 

Effective Particle Rate (%) 90% 90% 90% 90% 

Correspondence Threshold 0.00001 0.00001 0.00001 0.00001 

Scanning Step 10 10 10 10 

Linear Velocity Errors (%) 10% 10% 10% 10% 

Angular Velocity Errors (%) 10% 10% 10% 10% 

As stated above, the only difference between the four experiments is the landmark 

vector. The fastSLAM algorithm is performed 150 times for each landmark vector. 

The final translational and rotational errors for each experiment are given in Table 

6-3. 
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Table 6-3 The final results of errors (Mean of 100 particles and 150 simulations)  

 Landmark Vector                                               

SURF Point 0.6831 0.3292 

Plane as Point 1.6242 0.6792 

Plane as Oriented Point 0.8939 0.4872 

Plane as Surface 0.8421 0.4159 

The errors indicate the mean of the error values of all particles and simulations and 

are calculated according to the following rule: 

       
           

                               
                      

A comparison of the final error values given in Table 6-3 is as follows;  

                                                                                 

In experiment-1, the SURF points are used as the landmark vector for the SLAM 

algorithm. The SURF feature detector finds a high number of features at the edges of 

the objects, providing the best performance for the SLAM algorithm.  

Other landmarks used in the remaining three experiments help define the planar 

features (the center point, normal vector and area) of the objects. In experiment-2, 

the algorithm runs using the plane as point landmark vector, which carries the center 

point of planar surfaces. In experiment-3, the plane as oriented point landmark 

vector is used and the center point and normal vector of planar surfaces are defined. 

In experiment-4, the algorithm uses the plane as surface landmark vector, which 

contains the information about the center point, orientation and area of the plane. 

According to the final results in Table 6-3, the size of the landmark vector and final 

errors is inversely proportional in all landmark vectors and the best result is obtained 

from the plane as surface landmark vector.  
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Time consumption is another important factor for SLAM applications. In Table 6-4, 

the number of the detected landmarks and the time taken for their detection are given 

in relation to each landmark vector.  

Table 6-4 The results of the simulation (The comparison of Landmark Vectors 

according to Time Consumption and Number of Landmarks)  

Landmark Vector Landmarks Time(seconds) 

SURF Point 36 3935 

Plane as Point 3 931 

Plane as Oriented Point 3 925 

Plane as Surface 3 915 

The number of landmarks and time consumption are calculated according to the 

following rules; 

           
               

                               
                     

      
          

          
                                                

According to the results, the SURF landmark vector produces a lower error rate than 

the other landmark vectors. However, using the SURF landmark vectors results in a 

higher time consumption due to the high number of landmarks, which reached 36. 

One of the SLAM simulations using the SURF landmark vectors lasted 3935 seconds 

instead of 931 seconds, which means that defining the SURF features takes almost 4 

times (3935 / 931 = 4,22) longer than in the use of other three vectors. On the other 

hand, there were small differences between the planar features in terms of time 

consumption due to the re-sampling process. The algorithm runs the re-sampling 

process more frequently if the estimation of the robot diverges from the ground truth. 

The plane as surface landmark vector quickly converges to the true pose with the 

help of the best correspondence performance obtained from the landmark vectors. 
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The final results in terms of error and time are directly proportional to those obtained 

from the planar landmark vectors.  

                                                                      

The time difference between the SURF point and other landmark vectors is due to 

the structure of the fastSLAM algorithm. As a result of running more data 

association functions due to the high number of particles involved in the SURF point 

landmarks, the robot keeps 36 landmarks for each particle, instead of 3. The feature 

extraction time is another cause for the difference in time consumption between the 

experiments. The comparison of the time taken for the feature extraction methods is 

given in Table 6-5.  

Table 6-5  Comparison of the time taken for the feature extraction methods. 

Feature Extraction Method Time (seconds) 

Plane Feature Extraction 3.3229 

SURF Feature Extraction 7.9377 

The SURF feature extraction method takes almost two times (7.9377 / 3.3229) longer 

than the plane feature extraction method. The SURF feature is not suitable for indoor 

real-time SLAM applications due to the high time consumption.  

The performance of experiments is also analyzed throughout the navigation. Figures 

6-6 and 6-7 show the graphical representation of the translational and rotational 

errors for the three-loop navigation throughout the motion path. 

Before the loop-closure (until step 88), all the experiments have similar results. 

According to Figure 6-6 and Figure 6-7, the plane as oriented point and plane as 

surface landmark vectors cause higher errors in some areas compared with the other 

methods due to an algorithmic error that occurred in the plane detection process 

before step 88. However, the difference in the error rates is insignificant and thus, 
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can be ignored. Consequently, the type of the landmark vector does not have a 

significant impact on the performance of the SLAM before the loop-closure.  

 

Figure 6-6 Translational error – the algorithm step plot for different landmark 

vectors. (Values corresponding to the mean of 100 particles) (MATLAB Image). 

After the loop-closure, as a result of using a high number of landmarks, the SURF 

point landmark vector provides the best result and a better correction rate compared 

with the other planar landmarks. There are three landmarks on the fre2_360 map. 

The robot detects the first landmark for the first time in step 1 and again in steps 88, 

188 and 288. The second landmark is detected for the first time in step 25, and again 

in steps 125 and 225. The third landmark is detected first in step 53 and again in 

steps 153 and 253. The most important step throughout the navigation is step 88, 

where the robot detects the first landmark for the second time and closes the 

navigation path. With this loop-closure, there is a remarkable improvement in the 

correction rate. 

Figure 6-7 shows the graphical representation of rotational errors for the three-loop 

navigation throughout the motion path. 
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Figure 6-7 Rotational error – the iteration plot for different landmark vectors. (Values 

corresponding to the mean of 100 particles) (MATLAB Image). 

The rotational error plots are almost the same as translational error plots. All the 

statements that are made for translational errors are also valid for rotational errors. 

Before the loop-closure (until step 88), all the experiments give similar results in 

terms of errors. The landmark vector does not have any significant effect on the 

performance of the SLAM before the loop-closure. However, after the loop-closure, 

the SURF point landmark vector produces the best result due to the high number of 

landmarks, allowing the algorithm to define the surrounding objects with a higher 

number of properties and to provide a low rotational error for the planar landmarks. 

The root cause of this final result is the correspondence performance of different 

landmark vectors.    

In step 88, the robot detects the first landmark for the second time and closes the 

navigation path. With the loop-closure, the correction rate improves. In steps 125, 

153, 188, 225, 253 and 288, the robot detects the same landmarks again and 

decreases the errors. Also, in step 53, since the effective particle rate decreases below 
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the predefined threshold (90%), the robot runs the re-sampling process. The effective 

particle rate plot according to the algorithm steps is given in Figure 6-8.  

 

Figure 6-8 Effective particle rate plot for navigation on the fre2_360 map. 

Table 6-6 presents the final error values  of the plane as point and plane as surface 

landmark vectors and gives a comparison of their numerical performance. 

Table 6-6 Comparison of the final performance of SLAM experiments. 

Final Translational Errors Final Rotational Errors 

                ∆ 
 

      

                 ∆ 
 

      

 

1.6242 0.8421 0.7821 48% 0.6792 0.4159 0.2978 38% 

 

The differences between the landmark vectors in terms of error and correction rates 

are calculated using the following formulas; 

∆ :        -            
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where; 

       is the total number of errors obtained from the plane as point landmark 

vector, 

         is the total number of errors obtained from the plane as surface landmark 

vector, and 

 

      
 is the proportional evaluation of the decrease or increase in errors. This formula 

gives the rate of decrease in errors compared with the initial values (obtained by 

using the point landmarks). 

The plane as surface landmark vector, which carries more properties of the planar 

surfaces, provides a higher decrease in translational errors (48%) and rotational 

errors (38%) compared with the plane as point landmark vector, which only carries 

the center point. 

As a result, the SURF point landmark vector provides better results than the other 

three vectors in terms of translational and rotational errors. However, the 

computational cost of the SURF point landmark vector is very high since the SURF 

interest point detector gives high responses on the edges of the depth image. 

Therefore, the use of SURF point landmark vectors for real-time indoor fastSLAM 

applications is not appropriate. The SURF point landmark vectors that are ignored in 

the remaining experiments and the contribution of planar features are investigated 

using the  plane as point,  plane as oriented point  and  plane as surface  landmark 

vectors.  

According to the results, the plane as surface landmark vector outperforms the other 

planar landmark vectors.  

                                                                  

The number of features contained by the plane as surface, plane as oriented point, 

and plane as point landmark vectors are 7, 6 and 3, respectively. This shows that a 

SLAM algorithm with more features provides a better SLAM performance. 
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6.2 The Effect of Parameters  

6.2.1 The Effect of Linear Velocity Errors 

This section demonstrates the effect of linear velocity errors on the performance of 

different landmark vectors. The error rates and other simulation parameters are listed 

in Table 6-7. 

Table 6-7 Simulation Parameters. 

 Experiment 1 Experiment 2 Experiment 3 

Landmark Vector Plane as    Point 
Plane as 

Oriented Point 
Plane as Surface 

Number of Particles 100 100 100 

Effective Particle Rate (%) 90% 90% 90% 

Correspondence Threshold 0.00001 0.00001 0.00001 

Scanning Step 10 10 10 

Linear Velocity Errors (%) 3%, 7%, 15% 3%, 7%, 15% 3%, 7%, 15% 

Angular Velocity Errors (%) 10% 10% 10% 

There are nine scenarios (3x3) for three different landmark vectors and three 

different linear velocity error rates. Figure 6-9 and Figure 6-10 show the effect of the 

linear velocity error rate on the SLAM performance before and after the loop-

closure. According to these figures, the linear velocity error rate does not have any 

effect on the rotational errors before the loop-closure. So, the rotational errors are 

independent from the linear velocity errors before the loop-closure. All the 

experiments produce similar rotational error rates regardless of the rate of the 

injected linear errors. However, the linear velocity error rate has a significant effect 

on the translational error rate, which is directly proportional to the rate of the injected 

linear velocity errors. As explained above, this is valid for steps 1 to 88. In this 

interval, the planar features (normal vector and area) do not contribute to the 

performance of the SLAM simulation. In other words, the SLAM performance is 

independent from the landmark vectors before the loop-closure.  
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On the other hand, the principal effect of landmark vectors on the SLAM 

performance is prominent after the loop-closing process. Even though the error 

characteristics are very similar, there are some differences in the details.     

Figure 6-9 shows the effect of the linear velocity error rate on the translational errors. 

In step 88, the robot detects the first landmark for the second time and decreases the 

translational errors through re-sampling. Therefore, steps 88, 125, 153, 188, 225, 

253, and 288 are powerful steps due to the loop closure and the re-sampling process. 

A comparison of the translational error rates after the loop-closure is given below: 

                                                                              

                                                                              

                                                                                 

The plane as a point landmark vector provides better results (with an error rate of 

3%) than the other landmark vectors. This is due to the algorithmic errors injected to 

the system by the plane as oriented point and plane as surface landmark vectors.  

The plane as oriented point and plane as surface landmark vectors are successful 

in making corrections for the 7% and 15% error rates. The correction rate of the 

plane as point landmark vector is satisfactory for some intervals; however, the error  

rate is still higher than the rate obtained from the other landmark vectors. The 

correction rate of the plane as point landmark vector is particularly low for the 15% 

error rate. Since the robot corrects only a small percentage of the particles, and erases 

the corrected particles in the following steps, the rate of translational errors increases 

again. 
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Figure 6-10 shows the effect of the linear velocity error rate on rotational errors. In 

step 53, the robot runs the re-sampling process correcting the errors in all 

experiments. In step 88, the first landmark is detected for the second time and the 

number of rotational errors increases as a result of the re-sampling process. Steps 88, 

125, 153, 188, 225, 253, and 288 are important and effective steps since they involve 

the re-sampling process. A comparison of the rotational error rates after the loop-

closure is given below: 

                                                                  

This comparison is valid for all error rates after the loop-closure. However, the 

correction performance differs according to the rate of the injected errors. The plane 

as oriented point and plane as surface landmark vectors provide effective 

corrections even if the linear velocity error rate is 15%. The plane as point landmark 

vector provides corrections for the 7% error rate, but cannot produce satisfactory 

results when the error rate increases to 15%. 

Table 6-8 presents the final error values and of the plane as point and plane as 

surface landmark vectors and gives a comparison of their numerical performance. 

Table 6-8 A comparison of the final performance of SLAM experiments 

 Final Translational Errors Final Rotational Errors 

                ∆ 
 

      

                 ∆ 
 

      

 

E
rr

o
r 

R
a

te
 

3% 0.4085   0.4419 -0.0334 -8% 0.4007 0.3154 0.0853 21% 

7%  0.8920 0.5888 0.3032 34% 

 

0.5722 0.3420 0.2302 40% 

15% 2.8880 1.1977 1.6903 59% 0.7958 0.4981 0.2978 38% 

 

Both landmark vectors provide similar results for translational errors when the rate of 

the injected linear velocity errors is 3%. The robot follows the right path and the 

correspondence performance of the landmark vectors does not have any impact on 

the final result of the translational errors. However, the rate of the injected angular 

velocity errors is 10% for all the experiments. The plane as point landmark vector 
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does not carry any rotational information. The plane as surface landmark vector 

carries rotational information and corrects 21% of errors even if the injected linear 

velocity error rate is 3%. The rotational correction increases to 40% when the 

injected linear velocity error is higher than 7%. 

The difference between experiments arises when the injected linear velocity error 

rate increases to %15. For the %15 linear velocity error rate, the plane as point 

landmark vector cannot make correct correspondences; thus, the error correction rate 

using plane as surface landmark vector reaches 59% for translational errors and 

40% for rotational errors.  

6.2.2 The Effect of Angular Velocity Errors 

This section demonstrates the performance of different landmark vectors for different 

rates of angular velocity errors. The error rates and other simulation parameters are 

listed in Table 6-9. 

Table 6-9 Simulation Parameters 

 Experiment 1 Experiment 2 Experiment 3 

Landmark Vector Plane as    Point 
Plane as 

Oriented Point 
Plane as Surface 

Number of Particles 100 100 100 

Effective Particle Rate (%) 90 90 90 

Correspondence Threshold 0.00001 0.00001 0.00001 

Scanning Step 10 10 10 

Linear Velocity Errors (%) 10% 10% 10% 

Angular Velocity Errors (%) 3%, 7%, 15% 3%, 7%, 15% 3%, 7%, 15% 

There are nine scenarios (3x3) for three different landmark vectors and three 

different rates of angular velocity errors. Figure 6-11 and Figure 6-12 show the effect 

of the angular velocity error rate on the SLAM performance before and after the 

loop-closure.  

According to Figure 6-11 and Figure 6-12, the rate of angular velocity errors does 

not have any effect on the translational errors before the loop-closure. In other words, 
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the translational errors are independent from the angular velocity error before the 

loop-closure. All the experiments produce similar results in term of translational 

errors regardless of the rate of the injected angular velocity errors. However, the 

angular velocity errors have a significant effect on the rotational error rate, which is 

directly proportional to the rate of the injected angular velocity errors. As stated 

before, this is valid for steps 1 to 88. In this interval, the planar features (normal 

vector and area) do not contribute to the performance of the SLAM simulation, so 

the SLAM performance is independent from the landmark vectors before the loop-

closure.  

On the other hand, the landmark vectors start to affect the SLAM performance after 

the loop-closure. Even though the error characteristics are very similar, there are 

some differences in the details.     

Figure 6-11 and Figure 6-12 show the effect of the angular velocity error rate on the 

SLAM performance. In step 53, the robot runs the re-sampling process and corrects 

errors in all experiments. In step 88, the robot detects the first landmark for the 

second time and decreases the number of translational errors through re-sampling. 

Steps 88, 125, 153, 188, 225, 253, and 288 are important since they include the loop-

closure and re-sampling processes. A comparison of the error rates after the loop-

closure is as follows: 

                                                                  

This comparison is valid for all error rates after the loop-closing process. However, 

the performance differs according to the rate of the injected errors. 

For the translational errors, the plane as point landmark vector provides corrections 

for the 3% and 7% angular velocity error rates. However, when the angular velocity 

error rate increases to 15%, the plane as point landmark vector is not able to make 

successful corrections and thus the number of errors increases with motion. On the 

other hand, the plane as surface and plane as oriented point landmark vectors 

provide satisfactory corrections for all error rates and the errors do not increase with 

motion. 
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For rotational errors, the plane as a point landmark vector with the 3% angular 

velocity error rate provides similar results to those obtained from the other landmark 

vectors due to the low rate of the injected angular velocity errors.  

The plane as oriented point and plane as surface landmark vectors provide 

successful corrections for the 7% and 15% error rates. The plane as point landmark 

vector provides satisfactory results for some intervals, but the number of errors is 

still higher than those obtained from the other landmark vectors. The plane as point 

landmark vector provides the lowest correction for the 15% error rate since the robot 

corrects only a small percentage of the particles and erases the corrected particles in 

the following steps, which increases the number of errors again. 

Table 6-10 presents the final error values of the plane as point and plane as surface 

landmark vectors and gives a comparison of their numerical performance. 

Table 6-10 A comparison of the final performance of SLAM experiments 

 Final Translational Errors Final Rotational Errors 

                ∆ 
 

      

                 ∆ 
 

      

 

E
rr
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r 

R
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te
 

3% 0.8249 0.5541 0.2708 33% 0.2450 0.2127 0.0323 13% 

7% 1.3179 0.8285 0.4894 37% 

 

0.4454 0.3588 0.0866 19% 

15% 1.9245 0.9277 0.9969 52% 0.9088 0.4734 0.4354 48% 

 

Both landmark vectors give similar results in terms of rotational errors when the rate 

of the injected angular velocity errors is 3%. However, the injected linear velocity 

error rate is 10%. The plane as surface landmark vector corrects 33% of the errors 

even when the injected angular velocity error rate is 3%. 

A difference between the experiments arises when the injected angular velocity error 

rate increases to %15. The plane as point landmark vector with a 15% angular 

velocity error rate cannot make the correct correspondences; however, the correction 

rate of the plane as surface landmark vector can reach 48% for rotational and 52% 

for translational errors. 
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6.2.3 The Effect of Particle Number 

This section demonstrates the performance of different landmark vectors for different 

number of particles. The particle numbers and other simulation parameters are listed 

in Table 6-11. 

Table 6-11 Simulation Parameters 

 Experiment 1 Experiment 2 Experiment 3 

Landmark Vector Plane as    Point 
Plane as 

Oriented Point 
Plane as Surface 

Number of Particles 20, 100 20, 100 20, 100 

Effective Particle Rate (%) 90% 90% 90% 

Correspondence Threshold 0.00001 0.00001 0.00001 

Scanning Step 10 10 10 

Linear Velocity Errors (%) 10% 10% 10% 

Angular Velocity Errors (%) 10% 10% 10% 

There are six scenarios (3x2) for three different landmark vectors and two different 

particle numbers. Figure 6-13 and Figure 6-14 show the effect of each particle 

number on the SLAM performance before and after the loop closure.  

The SLAM performance is independent from the particle number before the loop-

closure. All the experiments give similar results in terms of translational and 

rotational errors for different number of particles between steps 1-88. In this interval, 

the plane as surface and plane as oriented point landmark vectors do not provide 

any extra contribution to the performance of the SLAM simulation. In step 53, the 

robot runs the re-sampling process and decreases the number of rotational errors in 

all experiments.  

The effect of landmark vectors on the SLAM performance is prominent after the 

loop-closing process. The error comparison for translational errors and rotational 

errors are the same. The final error comparison after the loop-closure is as follows: 
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This comparison is valid for both particle numbers (20, 100). The plane as point 

landmark vector provides corrections to some extent but performs worse than the 

plane as oriented point and plane as surface landmark vectors for both particle 

numbers. For 20 and 100 particles, defining the plane with more parameters gives 

successful results after the loop-closure.  

The plane as point landmark vector provides corrections for some of the particles, 

but the weights are not as high as expected. Therefore, these low weighted particles 

are eliminated after correction resulting in an increase in the errors. On the other 

hand, the plane as surface landmark vector provides successful corrections. Since 

many of the particles converge to the true pose, the robot can keep the pose error at a 

low level and thus there is no significant increase in the errors after the loop-closure.  

The plane as surface and plane as oriented point landmark vectors with 20 

particles provide similar successful results in the experiments using 100 particles. 

This result indicates the success of the particle filter approach. Even when the 

particle number is 20, the simulations converge to the true pose using the correct 

landmark vectors (plane as oriented point or plane as surface).  

Table 6-12 presents the final error values of the plane as point and plane as surface 

landmark vectors and gives a comparison of their numerical performance. 

Table 6-12 Comparison of the final performance of SLAM experiments 

 

Final Translational Errors Final Rotational Errors 

                ∆ 
 

      

                 ∆ 
 

      

 

P
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 20 1.9322 1.0090 0.9232 48% 0.8105 0.4981 0.3124 38% 

100 1.6324 0.8472 0.7852 48% 0.6938 0.4155 0.2782 40% 

According to Table 6-12, different particle numbers have a similar effect on the 

correction performance for both rotational and translational errors. So, the correction 

rate is independent from the particle number. The plane as surface landmark vector 

provides a 48% correction rate for translational errors and almost a 40% correction 

rate for rotational errors for both particle numbers. However, the number of 
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corrections differs according to the number of particles. The number of particles and 

corrections are inversely proportional.  

6.2.4 The Effect of Effective Particle Rate 

This section demonstrates the performance of different landmark vectors for different 

effective particle rates. The effective particle rates and other simulation parameters 

are listed in Table 6-13. 

Table 6-13 Simulation Parameters 

 Experiment 1 Experiment 2 Experiment 3 

Landmark Vector Plane as    Point 
Plane as 

Oriented Point 
Plane as Surface 

Number of Particles 100 100 100 

Effective Particle Rate (%) 20%, 90% 20%, 90% 20%, 90% 

Correspondence Threshold 0.00001 0.00001 0.00001 

Scanning Step 10 10 10 

Linear Velocity Errors (%) 10% 10% 10% 

Angular Velocity Errors (%) 10% 10% 10% 

There are six scenarios (3x2) for three different landmark vectors and two different 

effective particle rates. Figure 6-15 and Figure 6-16 show the effect of the effective 

particle rate on the SLAM performance before and after the loop-closure. 

The SLAM performance is independent from the effective particle rate before the 

loop-closure. All the experiments produce similar translational and rotational error 

rates for different effective particle rates between steps 1-88. In this interval, the 

plane as surface and plane as oriented point landmark vectors do not provide any 

extra contribution to the performance of the SLAM simulation. Also, in step 53, the 

robot runs the re-sampling process and decreases the number of errors in all 

experiments.  
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The effect of landmark vectors on the SLAM performance is prominent after the 

loop-closing process. The characteristics of translational and rotational errors are the 

similar for both effective particle rates. A comparison of the error rates after the 

loop-closure is given below. 

                                                                  

This comparison is valid for both effective particle rates (20%, 90%). Even though 

the plane as point landmark vector provides corrections to some extent, it performs 

worse than the plane as oriented point and plane as surface landmark vectors for 

both effective particle rates. The plane as surface and plane as oriented point 

landmark vectors provide successful corrections for the 20% and 90% effective 

particle rates after the loop-closure. The robot makes significant number of 

corrections in steps 88, 125, 153, 188, 225, 253 and 288. According to Figure 6-8, in 

these steps the effective particle rate decreases to approximately 20% and therefore, 

the effective particle rate (20% or 90%) does not have any significant effect on the 

SLAM performance. 

The plane as point landmark vector provides corrections for some of the particles 

but the weights are not as high as expected. Therefore, these low weighted particles 

are eliminated after correction, resulting in an increase in the number of errors again. 

On the other hand, the plane as surface and plane as oriented point landmark 

vectors provide successful corrections. As a result of many of the particles 

converging to the true pose, the algorithm is able to keep the error rate at a low level 

and there is no significant increase in errors after the loop-closure.  

Table 6-14 presents the final error values of the plane as point and plane as surface 

landmark vectors and gives a comparison of their numerical performance. 
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Table 6-14 A comparison of the final performance of SLAM experiments 

 

Final Translational Errors Final Rotational Errors 

                ∆ 
 

      

                 ∆ 
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20% 1.8177 0.9307 0.8870 48% 0.7729 0.4144 0.3585 46% 

90% 1.6324 0.8472 0.7852 48% 0.6938 0.4155 0.2782 40% 

According to Table 6-14, the effective particle rate has a similar effect on the 

correction rates for both rotational and translational errors. The correction rate for 

translational errors is independent from the effective particle rate. For both effective 

particle rates, the plane as surface landmark vector corrects 48% of the translational 

errors and approximately 40% of the rotational errors. However, the number of 

corrections differs according to the effective particle rate. The effective particle rate 

and the number of corrections are inversely proportional.  

6.2.5 The Effect of Re-sampling 

This section demonstrates the effect of re-sampling on the performance of different 

landmark vectors. 

Table 6-15 Simulation Parameters 

 Experiment 1 Experiment 2 Experiment 3 

Landmark Vector Plane as    Point 
Plane as 

Oriented Point 
Plane as Surface 

Number of Particles 100 100 100 

Effective Particle Rate (%) 90% 90% 90% 

Correspondence Threshold 0.00001 0.00001 0.00001 

Scanning Step 10 10 10 

Linear Velocity Errors (%) 10% 10% 10% 

Angular Velocity Errors (%) 10% 10% 10% 
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There are a total of six scenarios (3x2) for three different landmark vectors. Figure 

6-17 and Figure 6-18 show the effect of re-sampling on the SLAM performance 

before and after the loop closure.  

 

Figure 6-17 The effect of re-sampling on translational errors (MATLAB Image).      

The plane as point, plane as oriented point and plane as surface landmark vectors 

do not make any corrections without re-sampling. The re-sampling process replaces 

the low weighted particles with copies of high weighted particles. Without the re-

sampling process, the particle weights and their contribution to the SLAM problem is 

not meaningful, neither are the  correction and data association steps; so the robot 

moves using only its predictions.  

On the other hand, with the re-sampling process, all the landmark vectors provide 

corrections in steps 53, 88, 125, 153, 188, 225, 253, and 288.  

Re-sampling is the most important part of fastSLAM algorithms. The re-sampling 

step replaces the light-weighted particles with the copies of stronger particles. The 

robot applies this re-sampling process according to the particle weights. These 
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weights determine the extent to which the particles converge to the obtained 

measurement. 

 

Figure 6-18 The effect of re-sampling on rotational errors (MATLAB Image) 

Table 6-16 presents the final error values of the plane as point and plane as surface 

landmark vectors and gives a comparison of their numerical performance. 

Table 6-16 The comparison of the final performance of SLAM experiments 

 
Final Translational Errors Final Rotational Errors 
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1.6324 0.8472 0.7852 48% 0.6938 0.4155 0.2782 40% 
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According to Table 6-16, the plane as surface and plane as point landmark vectors 

do not provide any corrections without re-sampling. The final errors are independent 

from the landmark vector. On the other hand, the plane as surface landmark vector 

corrects 48% of the translational errors and 40% of the rotational errors after the re-

sampling process. 

6.3 Experiment with the fre2_SLAM3 Map 

The fre2_SLAM3 map is more complex than the fre2_360 map. Figure 6-19 shows 

the navigation environment for the fre2_SLAM3 map. There are toys and other 

background objects in the navigation environment, but the robot filters these objects 

and detects only the columns and other planar surfaces. 

 

Figure 6-19 The environment for the FRE2_SLAM3 map [6]. 
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The simulation parameters are listed in Table 6-17. 

Table 6-17 Simulation parameters for fre2_SLAM3 map 

 Experiment 1 Experiment 2 Experiment 3 

Landmark Vector Plane as Point 
Plane as 

Oriented Point 
Plane as Surface 

Number of Particles 100 100 100 

Effective Particle Rate (%) 90% 90% 90% 

Correspondence Threshold 0.00001 0.00001 0.00001 

Scanning Step 10 10 10 

Linear Velocity Errors (%) 10% 10% 10% 

Angular Velocity Errors (%) 10% 10% 10% 

The final results of the three-loop navigation are given in Table 6-18. 

Table 6-18 SLAM performance results 

Landmark Vector                                               

Plane as Point 2.4289 0.6129 

Plane as Oriented Point 0.8686 0.3075 

Plane as Surface 0.7488 0.2403 

A comparison of the performance of landmark vectors for translational and rotational 

errors is given below. 

                                                                  

The results obtained from the plane as surface and plane as oriented point 

landmark vectors are similar and both lower than the result from the plane as point 

landmark vector. These results validate the results obtained from the earlier 

experiments in sections 6.1 and 6.2. The high dimensional landmark vector, plane as 

surface, provides a better result than the other landmark vectors.  



121 

Figure 6-20 and Figure 6-21 present the algorithm steps for different landmark 

vectors in terms of translational and rotational errors, respectively.  

 

Figure 6-20 Translational error – algorithm step plot for different landmark vectors. 

(MATLAB Image). 

 

Figure 6-21 Rotational error – algorithm step plot for different landmark vectors. 

(MATLAB Image). 
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According to Figure 6-20 and Figure 6-21, in step 180, the robot closes the loop and 

decreases the number of translational and rotational errors for the plane as surface 

and plane as oriented point landmarks. The plane as point landmark vector 

provides corrections for translational and rotational errors at the first loop-closing (in 

step 180). In step 380, corrections are still made for some of the rotational errors. 

However, the robot can no longer follow the right path after the second loop and thus  

in step 580, no correction is performed. On the other hand, the robot can follow the 

right path when using the plane as oriented point or plane as surface landmark 

vectors. 

Table 6-19 shows the error results for the loop-closing steps. 

Table 6-19 Error results for algorithm steps 

 Plane as Point Plane as Surface 

                           

Step 180 0.9152  0.2468 0.8246 0.2681 

Step 380 1.6540 0.4131 0.6622 0.1930 

Step 580 2.3818 0.5948 0.7947 0.2316 

Step 600 2.4289 0.6129 0.7488 0.2403 

Using the plane as surface landmark vector, translational errors are kept below 0.8 

meters and rotational errors are maintained below 0.25 radian, after the steps 180, 

380 and 580. On the other hand, the plane as point landmark vector does not provide 

any significant corrections in the loop closing steps. Both translational and rotational 

errors increase with  motion. In the final step, translational and rotational errors reach 

2.5 meters and 0.6 radian, respectively.  

Table 6-20 shows a comparison of the performance of the plane as surface and 

plane as point landmark vectors. 

 



123 

Table 6-20 The comparison of the final performance of SLAM experiments 

Final Translational Errors Final Rotational Errors 

                ∆ 
 

      

                 ∆ 
 

      

 

2.4289 0.7488 1.6801 69% 0.6129 0.2403 0.3726 60% 

The plane as surface landmark vector corrects 69% more translational errors and 

60% more rotational errors than the plane as point landmark vector. These 

correction rates clearly show the contribution of the plane as surface landmark 

vector to the SLAM performance. 

6.4 Experiment with the Pioneer Robot  

This section presents the comparison of different landmark vectors using a real-time 

application. In this part of the research, the plane as point, plane as oriented point 

and plane as surface landmark vectors are investigated. The navigation environment 

is the METU Computer Vision Laboratory and a pioneer 2 robot with a Kinect 

sensor is used.  

Figure 6-22 shows the pioneer robot, navigation environment, and the marked 

ground, which provides the ground truth measurements at interval steps.  

 

Figure 6-22 The map environment and the robot (Images were taken in the METU 

Lab.) 
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The navigation environment is noisy and crowded but the filtering process eliminates 

the unnecessary objects such as books and tables. After the filtering process, the only 

remaining points are the backs of the chairs. The navigation environment is shown in 

Figure 6-22 and Figure 6-23.  

 

Figure 6-23 Screenshots from the RGB camera of the Kinect sensor during 

navigation (Images were taken in the METU Lab.) 

The original depth and RGB image for the first scan are shown in Figure 6-24. The 

target objects are outlined in red.  

 

Figure 6-24 Sample depth and RGB image from a real-time application (Taken in the 

METU Lab.) 
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Figure 6-25 shows the extracted feature points after the filtering and clustering 

process (back of the chair) in green.  

 

Figure 6-25 Sample 3D point cloud from a real time application (MATLAB Image). 

The plane fit algorithms are applied to the green points, and SLAM algorithms are 

performed using these extracted features. Figure 6-26 shows the visual result of one-

turn navigation.  

 

Figure 6-26 Final view of the vehicle and the detected landmarks (MATLAB Image). 

The white dots indicate the determined path with the blue dots showing the ground 

truth and the green dots defining the found path (mean of a hundred particles). The 
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blue triangle shows the position after the commanded motion, the green triangle 

shows the real position of the vehicle after motion, and the red triangle indicates the 

final position of the particle with the maximum weight as found by the SLAM 

algorithm. A comparison of the results for translational and rotational errors is given 

in Figure 6-27 and Figure 6-28, respectively. 

 

Figure 6-27 Comparison of the translational error rates in the recorded path of a real 

time application (MATLAB Image). 

 

Figure 6-28 Comparison of the rational error rates in the recorded path of a real time 

application (MATLAB Image). 
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The robot completes one turn in 75 algorithm steps and detects 5 different landmarks 

throughout the navigation. The first landmark is detected in step 72 for the second 

time and the loop is closed. 147 and 222 are the other loop-closing steps. The robot 

also closes the loops 8 times in other interval steps (such as 81, 90) between 72 and 

225. In these loop-closing steps, there is no significant error correction due to the low 

rates of translational and rotational errors. In the majority of the navigation, the robot 

runs the prediction and correction sequences together. There is not much space 

between the objects, and after the loop-closure, errors do not increase as a result of 

tracking the landmarks that were detected earlier. In the experiments using the 

fre2_360 map there is much more space between the landmarks and therefore, the 

errors increase due to the lack of the correction sequence. As a result, a significant 

error correction was observed at the interval loop-closing steps (125, 153, 225, and 

253).    

In the real time application used in this study, the robot always finds the right  path in 

all experiments involving different landmark vectors. All landmark vectors provide 

corrections in loop-closing steps, but the plane as surface landmark vector performs 

better due to its high correspondence performance. 

Table 6-21 shows the final error results for the SLAM application performed in the 

computer vision laboratory. 

Table 6-21 The final error results in the navigation of the Pioneer 2 robot. 

Landmark Vector                                               

Plane as Point 0.5899 0.2899 

Plane as Oriented Point 0.3083 0.1410 

Plane as Surface 0.2394 0.1250 

A comparison of the performance of landmark vectors for translational and rotational 

errors is given below. 
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The plane as surface and plane as oriented point landmark vectors provide similar 

results that were both lower than the result obtained from the plane as point 

landmark vector. These results validate the results obtained from the earlier 

experiments in sections 6.1, 6.2 and 6.3. The high dimensional landmark vector, 

plane as surface, performs better than the other landmark vectors.  

Table 6-22 presents the final error values of the plane as point and plane as surface 

landmark vectors and gives a comparison of their performance in terms of 

translational and rotational errors. 

Table 6-22 A comparison of the final performance of experiments. 

Final Translational Errors Final Rotational Errors 

                ∆ 
 

      

                 ∆ 
 

      

 

0.5899 0.2394 0.3505 60% 0.2899 0.1250 0.1649 56% 

According to the results, the real time application validates the thesis in this research. 

Using more compact landmark vectors results in a better correction performance 

compared with the other landmarks. The correction rate obtained from the plane as 

surface landmark vector is 60% higher for translational errors and 56% higher for 

rotational errors when compared with the results of the plane as point landmark 

vector. These correction rates clearly show the contribution of the plane as surface 

landmark vector to the SLAM performance. Defining the surrounding objects with 

surface properties provides a better correspondence and increases the SLAM 

performance.  
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CHAPTER 7 
 

 

CONCLUSION 
 

 

 

7.1 Summary and Conclusion 

This thesis presents the contribution of planar features to the fastSLAM algorithm for 

indoor environments which were determined using two different feature detection 

methods (SURF feature detection and plane feature detection) and four different 

landmark vectors (SURF points, plane as point, plane as oriented point and plane as 

surface). 

An accurate algorithm of SLAM is implemented by utilizing a particle filter. The 

performance of the SLAM is analyzed for different landmark vectors and different 

map environments.  

The SURF feature detection algorithm gives a high number of responses at the edge 

of the depth images. A SLAM application with this high number of SURF features is 

more successful than the other applications. On the other hand, this high number of 

SURF features results in very high time consumption and makes SURF features 

useless for real time indoor applications.  

Also, the map environment and navigation have an important effect on the 

performance of the SLAM algorithm. According to all the results, it was found that 

there are two different phases in simulations.  

 Before the loop-closing  

 After the loop-closing. 

Before the loop closing, the approach proposed in this study does not guarantee a 

decrease in the number of errors due to the algorithmic errors injected to the system 

through the detection of the planar features. However, after the loop closing the 

proposed landmark vectors satisfy significant error correction and the error rate 
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decreases compared with the number of errors that occur in the other method. Planar 

features may inject an error to the simulation because of the structure of plane 

detection algorithms, non-planar surfaces and sensor measurement errors. Planar 

features provide successful correction, despite these algorithmic errors. 

Also, the proposed method tested under the effect of different simulation parameters 

and results supported our thesis. These simulation parameters are linear velocity 

error rate, angular velocity error rate, particle number and effective particle rate. 

These simulations were undertaken with the SLAM_360 map and comments on the 

results are given with their graphical representation.  

Chapter 6 gives detailed information that shows that the proposed method is capable 

of better localization and mapping in shorter time as long as planar features are 

detected correctly. 

7.2 Future Works 

The important idea behind the proposed method is to define the 3D environment with 

compact landmark vectors. Therefore, new features, such as width and height 

information, can be added to the planar landmark vectors. 

In the filtering step, the defined percentage of the data selected randomly, to speed 

up the algorithm. Randomly selection may result with the important data loss. The 

probabilistic SLAM approach can handle this situation generally however, an 

intelligent selection method may improve the performance of proposed method.  

In the clustering step, the object size is defined according to the map environment 

and the Kinect camera resolution. For different map and sensor camera the 

simulations carried out in this study may fail. If the camera resolution is higher than 

the Kinect camera this may result in defining an object as a background. The 

algorithm should select the object size dynamically to handle this kind of problem 

and for generalized solution to every environment and camera type.  

Throughout the research, the algorithm uses Kinect Camera data and because of the 

sensor lacking certain capabilities the proposed method is validated only for indoor 
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environments. Therefore, the proposed ideas can be validated using laser scanner in 

outdoor environments. 

Also, in the method proposed in this thesis planar surfaces were detected and the 

non-planar ones were neglected according to the standard deviation and the fitting 

performance criteria. The proposed method may be unsatisfactory if the environment 

is constituted by non-planar surfaces. Therefore, instead of defining surrounding 

objects according to their planar features, defining the curvature properties or objects 

themselves may give better results.  
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APPENDIX A 
 

 

MONTE CARLO ANALYSIS 
 

 

 

The Monte Carlo simulation in its simplest form is a random number generator that 

is useful for estimation. The algorithm selects random values from user-predefined 

probability distribution and simulates the model [48].  

Scientists, engineers, statisticians, business analysts, and others use computers to 

create the models of systems (any system) and to simulate reality by making 

predictions. These complex computations became possible with fast computers. 

These simulations account for randomness and future uncertainties through hundreds 

and even thousands of different scenarios (simulations). The Monte Carlo Analysis is 

compiling all these simulations’ results and making decision about the behavior of 

system [48]. 

In this thesis different SLAM methods are compared according to the Monte Carlo 

analysis.  

The behaviors of algorithms are compared according to the changing values of linear 

velocity and angular velocity. In all simulations the linear velocity and angular 

velocity sampled from ground truth data.  

In the current study the experiments are compared under different parameter 

conditions and the results are evaluated. 

 Linear Velocity Error Rate (3%, 7%, 15% ) 

 Angular Velocity Error Rate (3%, 7%, 15% ) 

 Particle Number ( 20, 100) 

 Effective Particle Rate (20%, 90%) 

 Re-sampling (With Re-sampling , Without Re-sampling) 
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APPENDIX B 
  

 

INTEGRAL IMAGE 
 

 

 

The motivation behind creating an integral image is its simplicity in calculating the 

sum of all intensity values inside a rectangular region in the original image. This 

simplicity allows the fast computation of box filter convolutions. 

The integral image    of an image   is defined below. 

                   

 

   

 

   

                                                

In other words, the intensity value at any location x, y in the integral image         

is the sum of all intensity values of all pixels inside the rectangular region with the 

top left corner         and bottom right corner       on the original image       . 

 

Figure B-1 Integral Image [45]. 

Calculating the sum of intensities of any rectangular area in original image takes only 

3 additions. 
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APPENDIX C 
 

 

SIMULATION INTERFACE (GUI) 
 

 

 

A Graphical User Interface (GUI)was used to generate the SLAM simulation or 

control the robot in real time.  

 

Figure C-1 GUI (MATLAB Image). 

The aim of the GUI is to evaluate the performance of SLAM for one turn according 

to given input parameters. In Figure C-1, there are 4 main parts in the GUI. Parts 1 

and 2 are concerned with input parameters and parts 3 and 4 are about the final 

results.  

In part 1 there are simulation parameters which, together with their default values are 

listed below. 

 FastSLAM sample (particle) number: Default is 100 particles.   

 Effective particle rate: Default is 90%. 
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 Correspondence threshold: Default is 0.00001.  

 Scan step: Default is 10. 

 Linear velocity variance: Default is 5%.  

 Angular velocity variance: Default is 3%. 

 

Figure C-2  Input parameters – Part 1 (MATLAB Image). 

In part 2 there are selections regarding the simulation. Some are indispensable for the 

simulation. On the other hand, for debugging purposes a user could deselect or 

change the default values.    

 Show Simulation Step by Step : Yes 

 Re-sampling : Yes 

 Background Filtering: Yes 

 Ground Filtering: Yes 

 Decrease Data: Yes (Default is 50%) 

 Application (Simulation/Real Time) 

 Map : (FRE2_360 / FRE2_SLAM1/ FRE2_SLAM2 / FRE2_SLAM3) 

 Process: (Move with Correction (SLAM) / Move with Prediction (Debug) / 

Move with Odometer(Debug)) 

 Feature Type: (PLANE / SURF) 
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 Landmark Vector: (Plane as Point / Plane as Oriented Point / Plane as 

Surface / SURF Point ) 

These parameters and selections are detailed in Appendix D. 

 

Figure C-3 Input selection – Part 2 (MATLAB Image). 

In part 3 there are simulation results. These results are concerned with the errors and 

time consumption. 

 Final Position Error (For x, y and yaw): Error at the end of the simulation. 

 Total Position Error (For x, y and yaw): Cumulative error for every scan. 

 Total Time: Total time consumption for simulation. 

 

Figure C-4 Simulation error and time results – Part 3 (MATLAB Image). 

In part 4 there a graphical view of simulation errors according to time (scan step)is 

given. In graph there are error values for x, y, yaw, total rotational and total 
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translational according to time. The total number of features and current states 

(seeing feature or not) also can be seen in the graph for evaluation purposes. 

 

Figure C-5 Graphical View of Simulation Error with Time (MATLAB Image). 

If the user selects the “Show Simulation Step by Step” the simulation steps are 

displayed in another screen. In figures C-6 and C-7, the found plane features, normal 

vectors, ground truth trajectory and predicted trajectory are shown. 

 

Figure C-6 Screenshot from the simulation environment (MATLAB image). 
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Figure C-7 Screenshot from the simulation environment (MATLAB image). 

The key properties of the visual environment are.  

 Red dots : Particles 

 Blue dots: Ground truth odometer data. 

 Green dots: Noisy odometer data 

 Green triangle: True pose of vehicle 

 Red triangle: Maximum weighted pose for vehicle. 

 White areas: Founded planes from 3D data 

 Blue Vectors: Normal Vector for founded planes. 

In the simulation environment there are 2 main choices; simulation with dataset and 

real time application. 

For the first choice the algorithm uses the sensor measurements and the vehicle’s 

ground truth pose data. These sensor measurements and the ground truth information 

are taken from the RGBD SLAM dataset. The algorithm simulates the odometer 
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motion model, injects noise into the calculated odometer data and evaluates the 

performance of algorithm in relation to these injected noises. 

The second choice is about controlling the robot in real time and evaluating the 

difference between determined path and calculated path using sensor measurements 

(point, plane, surf). This time there is no ground truth data. The commanded motion 

data is erroneous because of motion errors and thus,  the algorithm tries to decrease 

the error rate using sequential sensor measurements.  

On the other hand for the real time application the robot does not have a path 

planning algorithm. It moves according to given path with some errors.  

The required programs and installation process are given in Appendix E. 
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APPENDIX D  
 

 

CODE DETAILS 
 

 

 

Initialization                                                                                         

The program initializes the simulation and vehicle parameters at the beginning of the 

fastSLAM application. These parameters are as follows. 

FastSLAM Simulation Parameters 

CNF.NPARTICLES = inPr.nOfParticles;  

The user can define the number of particles for simulation or real time 

application. The default value is 100.  

CNF.NEFFECTIVE = (inPr.n_effect/100)*CNF.NPARTICLES; 

The user can define the effective particle rate in terms of percentage. The 

default value is 90. The algorithm runs the re-sampling algorithm when the 

effective particle number is under the defined value.  

CNF.SWITCH_RESAMPLE = inPr.sw_resample;   

The user can select running re-sampling function. Re-sampling is an 

important and indispensable function for fast-SLAM applications. As a 

default, it is selected and user can uncheck this selection for debugging 

purposes.  

CNF.STEP_SIZE = inPr.stepSize; 

The user can select the simulation step size from GUI. The default value is 10 

for the simulation and 1 for the real time application. For example; one of the 

datasets has 1209 RGBD data (depth image and RGB image) for 72 seconds 

of motion. Setting a step size 1 is the ideal case but this results in a high 

computational cost. In the real time application, the vehicle moves, stops, 
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takes sensor data, evaluates it and then moves again. The value is 

meaningless for real time applications. 

inPr.showSteps  

If the user checks the selection box, the algorithm shows the navigation and 

map. 

inPr.corrProp 

The user can select different landmark vectors. The algorithm corresponds the 

sensor measurements according to the selected landmark vectors. There are 4 

different landmark vectors. 

 Plane as point 

 Plane as oriented point 

 Plane as surface 

 Surf points 

inPr.per_dec 

The user can select the percentage of the raw data. The algorithm removes the 

selected percentage of data randomly. This reduction accelerates the 

simulation.  

inPr.simID 

The user can select the simulation with the RGBD SLAM Dataset or the real 

time application with the Pioneer robot and Kinect sensor. 

inPr.mapID 

The user selects the map for simulation. This selection is meaningless for the 

real time application. 

inPr.ground_f 

In the applications presented in this work, the filtering ground floor points are 

important but for debugging purposes the user can select an alternative case. 

CNF.BACKGROUND_FILTER_THRESHOLD=3;  
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The algorithm filters the point group if the mean is further than the given 

threshold. Background filtering threshold is in meters. 

CNF.GROUND_FILTER_THRESHOLD = 0.2;  

The algorithm fits plane to the ground floor data and filters points closer than 

0.2 meters to the plane. 

CNF.NUMBER_OF_SAMPLE_GROUND_POINT = 2000;   

2000 points is sufficient to define the planar surface for ground floor. 

CNF.DATA_ASSOCIATION_TRESHOLD = inPr.tresh/inPr.stepSize;  

The user defined threshold is valid if the user defined step size equals to 1, 

otherwise its value calculated with the formula above. 

Vehicle Model and Motion Noise Parameters  

CNF.VEHICLE_MODEL = [ 0.0        -0.6      -0.6   ;    % WHEELBASE  

                                                 0.0         0.2      -0.2   ;     % WIDTH 

                                                 0.0         0.0       0.0   ]; 

 

 

 Figure D-1Vehicle Model and Start Condition  

 

The vehicle is modeled as a triangle for the easy visualization of simulations. 

The vehicle width and wheelbase is defined as 0.4 and 0.6 meters. These are 

default values and user cannot change the vehicle model from the GUI. The 

start condition of the robot defined as [0, 0, 0 ].  
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MAX_TRANSFORMATION = 0.05*inPr.stepSize;         % meters 

MAX_ROTATION = (3*inPr.stepSize)/180*pi;                % degree 

The maximum motion at one step is defined as 0.05 meters for one step and it 

is scaled to step size for the application. It is the same for the rotational 

velocity. Its value is defined as 3 degree and scaled to step size.   

 

perTr =inPr.perV;       % Error rate for linear velocity 

perRot = inPr.perW;   % Error rate for angular velocity 

Algorithm injects these error rates to the extracted data from ground truth.  

  

sigmaTr = MAX_TRANSFORMATION * perTr/100;    %Trans. variance.  

sigmaRot = MAX_ROTATION * perRot / 100;       %Rot. variance.  

 

CNF.Q = [sigmaTr^2                 0         ; 

                         0                  sigmaRot^2]; 

 

The variances of motion are defined with error rates and the allowed 

maximum velocities. 

Sensor Model and Measurement Noise Parameters  

  _R = 0.2;                 % Variance value for range value – 0.2 meters 

  _B = 5*(pi/180);     % Variance value for bearing value – 5 degree 

  _NV = 0.1;              % Variance value for normal vector value – 0.1 

  _AREA = 0.5;        % Variance value for area of plane value – 0.5 m
2
 

  _SCALE = 0.1;      % Variance value for surf feature scale  - 0.1 

 

In the application there is no any range bearing sensor but the found values 

are modeled as the range bearing sensor. The algorithm calculates the range 

of point, bearing values, normal vector, plane area or surf point scale. The 

found variance values are listed above.  
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The sensor measurement noise variance matrix differs according to selected 

feature type. Two are given below.  

  For plane as point: 

CNF.R= [ _R^2         0              0    ; 

                   0            _B^2         0     ; 

                   0                0          _B^2      ]; 

 

For plane as surface:   

CNF.R= [ _R^2      0             0           0            0              0              0; 

                    0         _B^2        0           0            0              0              0; 

                    0             0         _B^2      0            0              0              0; 

                    0             0            0       _NV^2     0              0              0; 

                    0             0            0           0        _NV^2       0              0; 

                    0             0            0           0             0         _NV^2       0; 

                    0             0            0           0             0              0        _AREA^2]; 

 

SLAM Animation Setup  

setup_animations() function prepares all the animation environment. In this 

study animation environment generated as 20 x 20 x 20 cubical space. The 

visualization parameters about the vehicle and the landmarks are initialized. 

Initialization of Particles  

initialise_particles() function generates the start condition of all particles. At 

the start condition all particles contain the same data.  

p(i).w= 1/np;                       %Particle weight 

p(i).xv= [0;0;0;0;0;0];        %Predicted vehicle pose 

p(i).xf= []; p(i).Pf= [];        %Founded landmarks and their covariance 

p(i).count = [];                    %Count number for every detected landmark 
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Reading Ground Truth and Scan List for Simulations  

depth_scan_list = readDepthScanList(inPr.mapID);  

This list keeps the name of the depth images sequentially. Using this list the 

algorithm obtains the proper depth image for selected scan. 

    

ground_truth = readGroundTruth(inPr.mapID); 

ground_truth = setStartZero(ground_truth); 

 

The algorithm obtains the ground truth data for the vehicle pose and shifts 

this ground truth data to the start condition (0, 0, 0).  

Getting True value of Odometer Data  

xtrue = calculateXtrue(depth_scan_list(scan_counter).id, ground_truth); 

noisyOdometryData = calculateOdometryData(xtrue,xtrue_past,CNF.Q,1);  

preFromOdometry = preFromOdometry+noisyOdometryData;  

 

For example,  for the first map there are 1209 scan steps. On the other hand 

the ground truth data has 21823 data lines. The scanning and ground truth 

frequencies are different and the proposed algorithm has to match the 

appropriate ground truth for relevant scan data. This correspondence is 

undertaken using the time stamps of the ground truth data and scan steps.   

 

For example, for the depth scan image “1311876800.398210.png” the 

algorithm uses the ground truth data marked in red and the   closest one is 

selected. 

 

1311876800.3849 -1.8198 -0.7560 0.5685 0.1558 0.7219 -0.6603 -0.1361 

1311876800.3883 -1.8198 -0.7560 0.5685 0.1559 0.7219 -0.6603 -0.1360 

1311876800.3916 -1.8199 -0.7562 0.5686 0.1556 0.7215 -0.6609 -0.1358 

1311876800.3950 -1.8199 -0.7562 0.5686 0.1555 0.7215 -0.6609 -0.1357 

1311876800.3983 -1.8199 -0.7560 0.5686 0.1559 0.7218 -0.6604 -0.1360 

1311876800.4017 -1.8199 -0.7560 0.5686 0.1559 0.7218 -0.6604 -0.1360 
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1311876800.4050 -1.8198 -0.7560 0.5686 0.1558 0.7219 -0.6604 -0.1360 

1311876800.4083 -1.8199 -0.7562 0.5685 0.1555 0.7215 -0.6610 -0.1358 

 

In fact, some small errors occurred in this process. For time stamp 

1311876800.398210 the pose data is matched with 1311876800.3983. This 

error is very small, and negligible so fastSLAM algorithm can handle this 

issue. 

Prediction Step  

for i=1:CNF.NPARTICLES 

         particles(i)= predict(particles(i), noisyOdometryData, CNF.Q ); 

end 

 

The algorithm runs this predict() function for each particle. The input 

parameters for predict function are noisy odometer data, odometer data noise 

variance and relevant particle.  

In the predict function the algorithm takes samples from the Gaussian space 

of odometer data with normrnd() function.  

 

odometryData(1,1) =  normrnd( odometryData(1,1),sqrt(Q(1,1)));  

… 

 

Filtering Process  

[ last_data_filtered last_data_filtered_wback]= getFilteredScan(CNF 

,depth_scan_list, scan_counter,inPr); 

 

This function eliminates the unnecessary point groups and extracts the 

important part of data that can be defined as plane.  

Image Data to 3D Point Cloud Data Conversion  

data = convertTo3D(dImageFiltered,rgbImage); 
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This function generates the 3D point cloud data using camera focal length 

and camera calibration data. The calibration parameters given below are 

taken from the RGBD-SLAM dataset.   

focalLengthX = 520.9; 

focalLengthY = 521.0; 

centerX = 325.1; 

centerY = 249.7; 

scalingFactor = 5000.0; 

 

The default camera calibration data values are listed below.  

 

 focalLengthX = 525.0; 

 focalLengthY = 525.0; 

 centerX = 319.5; 

 centerY = 239.5; 

 scalingFactor = 5000.0;  

 

The algorithm undertakes this calculation for all points on the image data. 

There are nearly (640x480) 307200 points on the image.   

 

Z = double( depth(v,u)) / scalingFactor; 

X = (u - centerX) * Z / focalLengthX; 

Y = (v - centerY) * Z / focalLengthY; 

 

All these extracted 3D points are rotated to the vehicles coordinate frame.  

 

R_toMap = [ 0  0  1;  

                     -1  0  0;  

                      0 -1  0]; 

data(1:3,:) = R_toMap* data(1:3,:); 
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Filtering Ground Points  

[n_est ro_est] = findGroundNormal(data_filtered,… 

 

This function finds the ground normal and with this normal value the 

algorithm fits plane to the ground data. This process is applicable for the 

simulations and run-time applications in the current study because the 

navigation area is planar. 

  

data_filtered = removeGroundEffect(data,n_est,ro_est,CNF); 

selectedPoints = find(distanceToPlane>t);     

 

The algorithm finds the distance between the points and plane. According to 

the defined threshold “CNF.GROUND_FILTER_THRESHOLD” the 

algorithm removes the points if the distance is smaller than the specified 

threshold. 

 

Filtering Background and Unnecessary Points  

 

[data_filtered backgroundData] = removeBackgroundEffect(data,CNF); 

The algorithm removes the background data and the other point groups that 

are not suitable for defining a plane. The algorithm selects 2000 points 

randomly from the point cloud data and classifies the points groups according 

the Euclidian distance to each other with hierarchical clustering 

(unsupervised clustering method). The stopping criteria is important for 

hierarchical clustering and is defined as 0.205  meters. 

 

CUTOFF =0.205;      %Stopping criteria for hierarchical clustering. 

Then the algorithm removes the point groups if the group size is below 50 

and over 1500.   
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noisyPoints = find(sizeList<50); 

If group size is smaller than 50 the algorithm evaluates this point group as 

noise.  

noisyPoints = find(sizeList>1500); 

If this higher than 1500, this means that it covers the 75% of the scene and 

possibly the group constitutes a background.  

 

noisyPoints= find(meanList>CNF.BACKGROUND_FILTER_THRESH); 

On the other hand, if the mean of a group is far from the specified threshold 

the algorithm removes that group, because the data is unreliable and possibly 

part of the background. 

 

noisyPoints = find( mAngleList>28 );   

If the angle of any point in group exceeds 28 degrees the algorithm classifies 

this group as unusable. The algorithm decides that the point group is a part of 

the object and the fitting plane of this point group injects erroneous 

landmarks into the algorithm.  

 

data_filtered(iL).Cov(1,1)>0.1  || data_filtered(iL).Cov(2,2)>0.1 || 

data_filtered(iL).Cov(3,3)>0.1 

Now the algorithm has the point groups selected from 2000 points and to 

better define the plane the neighboring points (ungrouped ones) are added to 

this groups. The algorithm calculates the standard deviations of all the 

clusters and if they are higher than the specified threshold the algorithm 

removes relevant cluster.  

 

Finally, the found clusters became suitable for plane feature extraction. 

Feature Extraction  

The feature extraction algorithm is selectable according to the given 

parameters from GUI.  
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Plane Feature Extraction 

The plane extraction algorithm runs, if the selected landmark type is plane as 

point, plane as oriented point or plane as surface.  

 

last_data_planes = extractPlanes(last_data_filtered,CNF); 

 

extractPlanes() function extracts the plane feature parameters. The details of 

the plane feature extraction process is given in Section 4.2. 

SURF Feature Extraction 

The SURF feature extraction algorithm runs, if the selected landmark type is 

SURF point.  

[iPoints  index]= surf_findSurfFeatures(image); 

 

Surf_findSurfFeatures() function extracts the surf feature points. The details 

of the SURF feature extraction process is given in Section 4.3. 

 

Range-Bearing of the Sensor Modelling 

z = slam_get_features(last_data_planes); 

slam_get_features() function extracts the sensor measurement from the plane 

features. The algorithm fills the z value for the selected landmark type.    

 

z(1:3,i) = xyzToRangeBearing(z_3D(i));         % center point of plane 

z(4:6,i)= z_3D(i).n;                                            % normal vector of plane 

z(7,i) = z_3D(i).A;                                              % area of plane 

 

The sensor measurement vector contains; range, bearing, normal vector and 

area information.  

 

z = surf_findInterestPointMeas(iPoints,image); 
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On the other hand the surf_findInterestPointMeas() function finds the sensor 

measurement data which contains range, bearing, scale and laplacian.  

 

z(1:3,counter) = xyzToRangeBearing(point);    % location of surf point 

z(4,counter)= iPoints(i).scale;                              % scale of surf point 

z(5,counter)= iPoints(i).laplacian;                       % laplacian 

  Data Association 

[particles(i)] = slam_dataAssociateUnknown(…) 

slam_dataAssociateUnkonwn() function makes the data association. The 

robot directly adds the new landmark if it is the first landmark vector. 

 

particle = slam_addFeature(particle, z, R, corrProp); 

 

Otherwise runs the association process for the detected landmark and the 

algorithm tries to understand whether the feature is new or old.  If it is new 

the algorithm goes to the slam_addFeature() function and adds the detected 

landmark vector. If the sensor measurement is from an earlier detected 

landmark, the algorithm updates the landmark properties. These landmark 

properties are the landmark vector, landmark covariance, weight and count.  

 

Visualization of Parameters 

plotPlanes(last_data_planes,xtrue,z); 

This plotPlanes() function handles all the steps that help to plot the plane. 

 

do_plot(h, particles, xtrue, VEH); 

do_plot() function plots particles, true state of vehicle and the prediction of 

vehicle state for the maximum weighted particle.  
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 Figure D-2 Screenshot from simulation environment (MATLAB image)  

In figure D-2 the gray area defines the plane, red points define the particles 

for landmark vector and the arrow defines the normal vector for the 

maximum weighted particle. Also green triangle is the true state of vehicle 

and red triangle is the prediction for maximum weighted particle. 

 

Re-sampling Step 

[particles]= slam_resampleParticles(…) 

 

The re-sampling process is the most important part of the fastSLAM 

applications. If the effective number of particles decreases under the defined 

threshold, the algorithm runs re-sampling process.    

 

ws= sum(w);          % Total of all weights 

w= w/ws;                % Normalized weight vector. 

 



162 

Firstly, the algorithm normalizes the weight values and sends these values to  

the re-sampling function. 

  

[keep, Neff] = stratifiedResample(w); 

 

stratifiedResample() function finds the effective particle number and if it is 

under the specified threshold keeps the high weighted samples and removes 

the low weighted ones. So the high weighted samples are copied by the 

function. The stronger particles survive and weak ones disappear through the 

fastSLAM process.  

Finalization of Simulation  

 If there is any other scan step, the algorithm computes the true value of the 

 odometer  data. Otherwise it ends the simulation. After finalization the 

 algorithm computes  the time consumption and error values. The it  

 draws the error-time graph of simulation. 
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APPENDIX E 
 

 

 INSTALLATION 
 

 

 

To run the simulation and real time applications the user should install the following 

programs.  

1. Matlab 2012a for the simulation environment. 

2. KinectSDK-v1.0-beta2-x64 _ 1.0.0.12 for the Kinect Camera. 

3. MobileSim-0.5.0.exe and ARIA-2.7.5.2.exe to control the pioneer robot in 

real time. 

In addition The dataset path in configParameters() function for each map should be 

defined  as follows. 

CNF.DEFAULT_DATA_PATH = 'D:\DATA\FRE2_360\'; 

 

The COM1 serial RS-232 port should be defined to communicate with the computer 

and the  Pioneer 2 robot. Finally, the communication cable should be cross cable.  
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