
PERFORMANCE COMPARISON OF

POINT AND PLANE FEATURES FOR SLAM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MÜCAHİT YÖRÜK

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2014

Approval of the thesis:

PERFORMANCE COMPARISON OF

POINT AND PLANE FEATURES FOR SLAM

submitted by MÜCAHİT YÖRÜK in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. İlkay Ulusoy Parnas

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Aydan Erkmen

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. İlkay Ulusoy Parnas

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Afşar Saranlı

Electrical and Electronics Engineering Dept., METU

Salih Eren Balcı (Msc.)

ASELSAN

 02.12.2014

 Date:

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Mücahit YÖRÜK

Signature :

v

ABSTRACT

PERFORMANCE COMPARISON OF

POINT AND PLANE FEATURES FOR SLAM

Yörük, Mücahit

M. S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. İlkay Ulusoy Parnas

December 2014, 163 pages

Simultaneous Localization and Mapping (SLAM) is an indispensable capability for

mobile robots that explore unknown environments. This advanced method is now

widely employed since the development of improvements in sensor technology, such

as 3D depth cameras. To avoid the risk of the human interaction in dangerous

environments, various SLAM algorithms have been developed and proposed in the

literature. The aim of this study, is to develop a landmark vector that improves the

SLAM performance using the planar features of objects. In order to achieve this goal

we generated a fastSLAM algorithm and two different feature extraction methods.

The first feature extraction method is SURF, which gives responses at the edges of

the depth images and the second feature extraction method is plane detection, which

gives a compact representation of the environment. Throughout this thesis, four

different landmark vectors are defined (SURF point, plane as point, plane as

oriented point and plane as surface) and compared the effects on the SLAM. The

advantages of using planar features are shown with both the RGBD SLAM dataset

and the real time application.

Keywords: 3D fastSLAM, SURF, Plane Detection, RGBD Kinect Camera

vi

ÖZ

SLAM UYGULAMASINDA NOKTA VE DÜZLEM

ÖZELLİKLERİNİN PERFORMANS

KARŞILAŞTIRMASI

Yörük, Mücahit

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İlkay Ulusoy Parnas

Aralık 2014, 163 sayfa

SLAM algoritmaları bilinmeyen ortamlarda çalışan robotlar için vazgeçilmezdir.

Gelişen almaç kabiliyetleri sayesinde 3D derinlik bilgisinin alınabilmesi ile bu konu

üzerinde geniş ölçüde çalışmalar başlamıştır. Tehlikeli ortamlarda insan

etkileşiminden kaynaklı riskleri ortadan kaldırmak için çeşitli SLAM algoritmaları

önerilmiştir. Bu tezin amacı düzlemsel özelliklerin kullanılarak SLAM

algoritmasının performansını arttıracak işaret vektörlerinin oluşturulmasıdır. Bu

amaç doğrultusunda fastSLAM algoritması uygulanmış ve iki farklı özellik çıkarma

algoritması kullanılmıştır. İlk algoritma derinlik görüntüsünde nesnelerin sınırlarında

cevap veren SURF algoritmasıdır. İkinci algoritma ise objeleri iyi tanımlayan

düzlemsel özelliklerin çıkarılmasıdır. Tez boyunca dört farklı işaret vektörü

kullanılmış ve SLAM performansına etkileri karşılaştırılmıştır. Düzlemsel

özelliklerin kullanılmasının avantajları yayınlanmış olan bir veritabanı ile ve gerçek

zamanlı uygulama ile gösterilmiştir.

Anahtar Kelimeler: 3D fastSLAM, SURF, Düzlemsel Özelliklerin Çıkarılması, 3D

Kamera

vii

To my family

viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Dr. İlkay Ulusoy

Parnas for her guidance, advice, criticism, encouragement and insight throughout the

completion of the thesis.

I am indebted to all of my friends and colleagues for their support and

encouragements. I am also grateful to ASELSAN Inc. for the facilities that made my

work easier.

Finally, I am grateful to my wife for her continuous support and encouragements.

ix

TABLE OF CONTENTS

ABSTRACT ... V

ÖZ .. VI

ACKNOWLEDGEMENTS .. VIII

TABLE OF CONTENTS ... IX

LIST OF TABLES .. XIII

LIST OF FIGURES .. XIV

CHAPTERS

 1 INTRODUCTION .. 1

1.1 Problem Definition and Motivation ... 1

1.2 Literature Survey .. 3

1.2.1 Algorithms .. 3

1.2.2 Sensor and Feature Types ... 6

1.3 Thesis Contribution .. 8

 2 THEORETICAL BACKGROUND .. 11

2.1 Localization .. 11

2.2 Map Building and Map Types ... 12

2.2.1 Topological Maps.. 12

2.2.2 Metric Maps .. 13

2.3 Simultaneous Localization and Map Building (SLAM) 16

2.4 Probabilistic Approach: Bayesian Filter .. 17

2.4.1 Derivation of Bayesian Filter .. 17

2.5 Kalman Filter ... 21

2.5.1 Linear State Transition Model .. 22

2.5.2 Linear Measurement Model .. 22

x

2.5.3 Normally Gaussian Initial Belief ... 23

2.6 Extended Kalman Filter ... 23

2.7 FastSLAM (Factored Solution to SLAM) .. 25

2.7.1 Prediction of Vehicle State .. 26

2.7.2 Landmark Location Estimation and Update .. 27

2.7.3 Weight Calculation .. 28

2.7.4 Re-sampling Process ... 29

2.7.5 Rao-Blackwellization .. 30

2.7.6 Factored Representation .. 30

2.7.7 Conditional Independence ... 30

 3 DATASET AND SIMULATION ENVIRONMENT 33

3.1 RGBD SLAM Kinect Dataset .. 33

3.2 Real Time Application ... 38

 4 FEATURE EXTRACTION ... 41

4.1 Filtering Process ... 41

4.1.1 Sampling .. 41

4.1.2 Removing Background .. 43

4.1.3 Filtering the Ground Floor .. 45

4.1.4 Hierarchical Clustering (Segmentation) .. 47

4.1.5 Region Growing with Connected Component Analysis 56

4.2 Plane Feature Extraction .. 58

4.2.1 Applied Plane Feature Extraction Method .. 58

4.2.2 Plane Feature Descriptors .. 63

4.2.3 Alternative Plane Feature Extraction Methods ... 64

4.3 SURF Feature Extraction ... 67

4.3.1 Interest Point Detection ... 70

4.3.2 Non-maxima Suppression ... 71

4.3.3 SURF Feature Descriptor .. 72

 5 IMPLEMENTATION DETAILS ... 75

5.1 Data Structure ... 75

xi

5.2 Details of the Proposed Implementation .. 77

5.2.1 Initialization .. 78

5.2.2 Control Measurements .. 79

5.2.3 Prediction .. 79

5.2.4 Sensor Measurements ... 79

5.2.5 Filtering ... 80

5.2.6 Feature Extraction ... 80

5.2.7 Modeling the Sensor Measurement ... 80

5.2.8 Data Association ... 81

5.2.9 Re-sampling Process ... 83

5.2.10 Finalization Process .. 84

 6 EXPERIMENTS AND RESULTS ... 85

6.1 Experiment with fre2_360 Map ... 85

6.2 The Effect of Parameters .. 98

6.2.1 The Effect of Linear Velocity Errors .. 98

6.2.2 The Effect of Angular Velocity Errors.. 103

6.2.3 The Effect of Particle Number .. 108

6.2.4 The Effect of Effective Particle Rate .. 112

6.2.5 The Effect of Re-sampling .. 116

6.3 Experiment with the fre2_SLAM3 Map .. 119

6.4 Experiment with the Pioneer Robot ... 123

 7 CONCLUSION ... 129

7.1 Summary and Conclusion .. 129

7.2 Future Works .. 130

REFERENCES ... 133

APPENDICIES ... 139

 A. MONTE CARLO ANALYSIS .. 139

 B. INTEGRAL IMAGE .. 141

 C. SIMULATION INTERFACE (GUI) .. 143

xii

 D. CODE DETAILS .. 149

 E. INSTALLATION.. 163

xiii

LIST OF TABLES

TABLES

Table 3-1 Technical specification comparison of sensors [32]. 35

Table 3-2 List of available RGB-D SLAM sequences [34] 36

Table 3-3 Calibration Parameters for the Freiburg 2 dataset [34]. 38

Table 4-1 Segmentation Methods Time Comparison .. 57

Table 6-1 Navigation summary of the Fre2_360 map ... 88

Table 6-2 Simulation parameters for experiments using the Fre2_360 Map 90

Table 6-3 The final results of errors (Mean of 100 particles and 150 simulations) .. 91

Table 6-4 The results of the simulation (The comparison of Landmark Vectors

according to Time Consumption and Number of Landmarks) 92

Table 6-5 Comparison of the time taken for the feature extraction methods............ 93

Table 6-6 Comparison of the final performance of SLAM experiments. 96

Table 6-7 Simulation Parameters. .. 98

Table 6-8 A comparison of the final performance of SLAM experiments 102

Table 6-9 Simulation Parameters ... 103

Table 6-10 A comparison of the final performance of SLAM experiments 107

Table 6-11 Simulation Parameters ... 108

Table 6-12 Comparison of the final performance of SLAM experiments 111

Table 6-13 Simulation Parameters ... 112

Table 6-14 A comparison of the final performance of SLAM experiments 116

Table 6-15 Simulation Parameters ... 116

Table 6-16 The comparison of the final performance of SLAM experiments 118

Table 6-17 Simulation parameters for fre2_SLAM3 map 120

Table 6-18 SLAM performance results.. 120

Table 6-19 Error results for algorithm steps. ... 122

Table 6-20 The comparison of the final performance of SLAM experiments 123

Table 6-21 The final error results in the navigation of the Pioneer 2 robot. 127

Table 6-22 A comparison of the final performance of experiments. 128

xiv

 LIST OF FIGURES

FIGURES

Figure 1-1 3D scan and its first layer representation with NDT. [9] 4

Figure 1-2 Sample scene and detected objects [10]. .. 4

Figure 1-3 Performance comparison for accuracy and time [26]. 8

Figure 2-1 Layout of an indoor environment for topological mapping [27]. 12

Figure 2-2 Topological map of the indoor environment [27]. 13

Figure 2-3 Representation of the environment with occupancy grids [1]. 15

Figure 2-4 A sample map with occupancy grids [1]. ... 15

Figure 2-5 Prediction - correction sequence [31]. .. 17

Figure 2-6 Dynamic Bayesian network for SLAM [1]. ... 17

Figure 2-7 Removed edges in a graph model [1]. .. 18

Figure 2-8 Independence from the past [1]. ... 19

Figure 2-9 Independence of parent nodes [1]. .. 20

Figure 2-10 Particle representation for planar 3D SLAM. ... 26

Figure 2-11Prediction step [1].. 27

Figure 2-12 Weight representation [1]. .. 28

Figure 2-13 The re-sampling process [1]. .. 29

Figure 2-14 Before and after the re-sampling process [1]. .. 29

Figure 3-1 Microsoft Xbox Kinect Sensor with Reflection Sensors [6]. 33

Figure 3-2 Visualization of blooming effect for a CCD camera [33]. 34

Figure 3-3 Typical office environment and large industrial workspace. [34] 36

Figure 3-4 Pioneer robot with Kinect sensor [34]. ... 36

Figure 3-5 Motion analysis Raptor-E capture cameras [34]. 37

Figure 3-6 The robot system (Image was taken in the METU Lab.) 38

Figure 3-7 The robot system, computer and sensor connection 39

Figure 3-8 The robot system and map environment (Images were taken in the METU

Lab.) ... 39

xv

Figure 3-9 Sample depth and RGB image from real-time application (Edited

MATLAB images were taken in the METU Lab.) .. 40

Figure 3-10 Sample 3D point cloud from a real time application (MATLAB Image) 40

Figure 4-1 Original and sampled data [5]. ... 41

Figure 4-2 Filtering results (MATLAB Images) ... 42

Figure 4-3 Original scan data points [5]. ... 43

Figure 4-4 Data points after feature extraction filter [5]. ... 43

Figure 4-5 Poor features are suppressed. [16] .. 44

Figure 4-6 Removing the background to prevent false data association. 44

Figure 4-7 All data before background removal (MATLAB Image). 45

Figure 4-8 Green points are foreground and red points are background. (MATLAB

Image). ... 45

Figure 4-9 Filtering ground data (MATLAB Images) ... 46

Figure 4-10 Raw scan data (MATLAB Image) ... 46

Figure 4-11 Filtering ground data. (MATLAB Image) ... 47

Figure 4-12 Raw data and final data after filtering (MATLAB Image) 47

Figure 4-13 Complex 3D environment. (Depth and RGB image for scan 281 from

fre2_SLAM3) [34]. ... 48

Figure 4-14 3D view of scan 281 of fre2_SLAM3 map. (Green points are remaining

parts after red points (ground points) removed) (MATLAB image) 48

Figure 4-15 Birds eye view of 3D scan 281 (MATLAB image). 49

Figure 4-16 Randomly selected 2000 points for clustering (MATLAB image) 50

Figure 4-17 Dendogram representation of hierarchical clustering [38]. 50

Figure 4-18 Alternative representation of the hierarchical clustering [38]. 51

Figure 4-19 Dendogram of the 3D point cloud data (MATLAB Image). 52

Figure 4-20 Distribution of the cut-off value (MATLAB Image). 53

Figure 4-21 Distribution of the cut-off values (MATLAB Image). 53

Figure 4-22 Results of the clustered data (MATLAB image). 54

Figure 4-23 Removed edge point groups with angle criteria (MATLAB Image). 55

Figure 4-24 Plane candidates (MATLAB Image). .. 55

Figure 4-25 Plane candidates after the clusters with high variances were eliminated

(MATLAB Image). ... 56

xvi

Figure 4-26 Histogram of depth image (scan 281- Figure 4-13) (MATLAB Image).

 ... 57

Figure 4-27 Vehicle and 3D scan. (a) SLAM environment from external camera (b)

RGB image of scan from Kinect camera (c) 3D point cloud data from Kinect

camera (The red points have been removed, only the green points are used for the

landmark (plane) extraction). (MATLAB images) ... 58

Figure 4-28 Plane extraction algorithm. ... 59

Figure 4-29 Finding the point distance to the estimated plane. 61

Figure 4-30 Plane fitting (MATLAB Images). .. 62

Figure 4-31 RGB and depth image of scan 281 of fre2_slam3 map [34]. 62

Figure 4-32 Extracted planes of scan 281 of fre2_slam3 map (MATLAB Images). ... 63

Figure 4-33 Extracted plane feature (MATLAB Image) ... 63

Figure 4-34 An example of a curb (a) and ramp (b) [44]. .. 65

Figure 4-35 NCC-RANSAC with SR-4000 data. (a) Intensity Image (b) Extracted

planes [43]. .. 65

Figure 4-36 Comparison of the RANSAC algorithms (MATLAB Image) 66

Figure 4-37 Initial plane extraction with RANSAC (MATLAB Image). 67

Figure 4-38 Instead of iteratively reducing the image size (left), the use of integral

images allows the up-scaling of the filter at constant cost (right) [45]. 68

Figure 4-39 The 9 x 9 Gaussian second order partial derivatives in the x, y and xy

directions [46]. ... 69

Figure 4-40 The weighted 9 x 9 box filter approximation of the 9 x 9 Gaussian filters.

(+1,-1, -2 are the weights assigned to those regions and the grey regions are of

value 0) [46]... 69

Figure 4-41 Scale-octave representation [46]. ... 70

Figure 4-42 Sample convolution mask [46]. .. 71

Figure 4-43 White and black shape. ... 71

Figure 4-44 Representation of the non-maximum suppression [46]. 72

Figure 4-45 Depth Image and Extracted SURF Features (MATLAB image). 73

Figure 5-1 General fastSLAM algorithm. .. 77

Figure 5-2 Data Association. .. 81

Figure 5-3 Data association process. .. 83

xvii

Figure 6-1 External view fre2_360 map [6]. .. 85

Figure 6-2 Neglected background objects [6]. ... 86

Figure 6-3 The ground truth of the vehicle and the detected planes. (MATLAB

Image). ... 86

Figure 6-4 Distribution of the plane features. (bird’s-eye view) (MATLAB Image). . 87

Figure 6-5 The map environment throughout the data collection process [6]. (Edited

with Paint) ... 89

Figure 6-6 Translational error – the algorithm step plot for different landmark

vectors. (Values corresponding to the mean of 100 particles) (MATLAB Image). 94

Figure 6-7 Rotational error – the iteration plot for different landmark vectors. (Values

corresponding to the mean of 100 particles) (MATLAB Image). 95

Figure 6-8 Effective particle rate plot for navigation on the fre2_360 map. 96

Figure 6-9 The effect of the linear velocity error rate on translational errors

(MATLAB Image). ... 100

Figure 6-10 The effect of the linear velocity error rate on rotational errors (MATLAB

Image). ... 101

Figure 6-11 The effect of the angular velocity error rate on translational errors

(MATLAB Image) .. 105

Figure 6-12 The effect of the angular velocity error rate on rotational errors

(MATLAB Image) .. 106

Figure 6-13 Effect of particle number on translational errors (MATLAB Image) 109

Figure 6-14 Effect of particle number on rotational errors (MATLAB Image) 110

Figure 6-15 The effect of the effective particle rate on translational errors (MATLAB

Image). ... 113

Figure 6-16 The effect of the effective particle rate on rotational errors (MATLAB

Image). ... 114

Figure 6-17 The effect of re-sampling on translational errors (MATLAB Image). .. 117

Figure 6-18 The effect of re-sampling on rotational errors (MATLAB Image) 118

Figure 6-19 The environment for the FRE2_SLAM3 map [6]. 119

Figure 6-20 Translational error – algorithm step plot for different landmark vectors.

(MATLAB Image). ... 121

xviii

Figure 6-21 Rotational error – algorithm step plot for different landmark vectors.

(MATLAB Image). ... 121

Figure 6-22 The map environment and the robot (Images were taken in the METU

Lab.) ... 123

Figure 6-23 Screenshots from the RGB camera of the Kinect sensor during

navigation (Images were taken in the METU Lab.) .. 124

Figure 6-24 Sample depth and RGB image from a real-time application (Taken in the

METU Lab.) ... 124

Figure 6-25 Sample 3D point cloud from a real time application (MATLAB Image).

 ... 125

Figure 6-26 Final view of the vehicle and the detected landmarks (MATLAB Image).

 ... 125

Figure 6-27 Comparison of the translational error rates in the recorded path of a real

time application (MATLAB Image).. 126

Figure 6-28 Comparison of the rational error rates in the recorded path of a real time

application (MATLAB Image). ... 126

Figure B-1 Integral Image [45]. ... 141

Figure C-1 GUI (MATLAB Image). .. 143

Figure C-2 Input parameters – Part 1 (MATLAB Image). .. 144

Figure C-3 Input selection – Part 2 (MATLAB Image)... 145

Figure C-4 Simulation error and time results – Part 3 (MATLAB Image). 145

Figure C-5 Graphical View of Simulation Error with Time (MATLAB Image). 146

Figure C-6 Screenshot from the simulation environment (MATLAB image)........... 146

Figure C-7 Screenshot from the simulation environment (MATLAB image)........... 147

Figure D-1Vehicle Model and Start Condition .. 151

Figure D-2 Screenshot from simulation environment (MATLAB image)................ 161

1

CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Motivation

With the evolution of technology, it has become possible to use intelligent agents in

many areas even those where there is high risk thus, intelligent agents offer an

alternative dangerous tasks being undertaken by human beings. When carrying out

these tasks the location and map information provides the agents with a coherent way

to interact with surrounding objects and people. These interaction agents can

navigate safely, identify surrounding objects and deal with unexpected situations.

For all these applications (called tasks or missions), intelligent agents have to

localize and if not given they have to generate the map. This kind of application may

appear to be very easy to implement with powerful sensors (such as GPS), however,

because of environmental conditions it is not possible to use these sensors for every

task. In closed environments GPS does not give true information and its resolution

for outdoor applications may not be satisfactory. On the other hand, range sensors,

laser scanners, 3D Time of Flight ToF cameras and Microsoft Kinect sensors have

measurement errors and intelligent agents have to take these errors into account.

Generated algorithms to handle this kind of problem are called simultaneous

localization and mapping (SLAM) algorithm. There are many different types of

SLAM algorithms but the probabilistic approach which is relatively new is

considered to be the best solution. In the probabilistic approach, the location of the

intelligent agent (vehicle pose) and the surrounding objects (landmarks, feature

points, sensor measurements) are defined with a probabilistic distribution function

instead of a single point. Intelligent agents can handle sensor measurement errors,

motion errors and algorithmic errors with the help of this probabilistic definition [1].

2

SLAM applications are convenient for use in both indoor and outdoor environments.

For example, Minerva, an autonomous robot, is used as a tour guide in the

Smithsonian National Museum of American History. The robot gives information to

the visitors and navigates in the museum. During the navigation, it performs collision

avoidance and uses path planning algorithms [2]. Also there are important SLAM

implementations for outdoor environments. The Stanford Racing Team’s vehicle

“Stanley” is an important example of an outdoor SLAM application. Stanley won the

DARPA (Defense Advanced Research Projects Agency) Grand Challenge in 2005

competing against 195 teams. The race was conducted over 142 miles in the Mojave

Desert [3].

Over the last 20 years, various solutions have been proposed to resolve the SLAM

problems encountered in indoor and outdoor environments. The sensor technology

has the most important effect on the consistency of SLAM applications and due to

technical limitations, researchers used sonar sensor or 2D laser scanners in earlier

solutions [4]. Subsequently, 2D laser scanners were used with the addition of a

mechanism to alter the sensor pitch angle and define the 3D environment [5]. Also,

others researchers used stereo vision algorithms to determine the 3D location of

landmarks (objects), but these stereo vision algorithms were sensitive to lightning

conditions. Later, camera companies produced TOF cameras which give the point

cloud data directly with 30 fps;, however, these cameras are not extensively used

because of their high cost. Nowadays, low cost RGBD Kinect sensors are extensively

used for indoor SLAM applications. The use of 3D point cloud data allows the

representation of environment with compact feature vectors.

This thesis reports on the experimental investigation into the contribution of planar

features in an indoor SLAM. Different experiments were performed and comparisons

were made using simulation parameters. Real datasets [6] were used in the

experiments together with collected data from the METU Computer Vision

laboratory.

3

1.2 Literature Survey

In the literature, there are different solution methods to the SLAM problems. These

solution methods can be grouped according to the applied algorithm and sensor type.

1.2.1 Algorithms

The popular Iterative Closest Point (ICP) Scan Matching method was proposed by

Besl and McKay in 1992 [7]. The idea was to align consecutive scans (taken by

external sensors) iteratively and to estimate the transformation matrix between these

scans. This ICP algorithm can be used with raw or processed data. These

registrations can be undertaken with point sets, line segments, implicit curves,

parametric curves, triangle sets, implicit surfaces and parametric surfaces [7].

Another implementation of ICP scan matching was proposed by Biber in 2003 [8].

Biber subdivided a 2D plane into cells and defined a normal distribution (mean and

variance) to each cell that defines the probability of the measuring point [8]. For

each cell that has at least three points, the following computation was carried out.

 1 – Collect all 2D points contained in a cell.

2 – Calculate the mean

3 – Calculate the Covariance matrix

 .

Normal distribution defines the probability of measuring a sample point in

that cell. The ICP algorithm determines the corresponding normal distributions

between consecutive scans according to normal distributions and odometer data. The

algorithm computes the sum of probabilities for each point. According to the result

(score) the algorithm ends the computation or continues until convergence [8].

Another important implementation of ICP Scan Matching was proposed for 3D point

sets. The idea was based on the human behavior. Humans look at the big picture first

and then concentrate on the details. The Multi-Layered NDT algorithm adopts the

same perspective as a human being to speed up the pairing process. The algorithm

first tries to pair with lower layer which has only 8 cells and if the pairing is not

4

satisfactory then it tries to pair with second layer that has 64 cells. In practice, using

the first four layers is sufficient to make a good pairing between consecutive scans

[9]. One of the 3D scans and its NDT representation for the top layer is given in

Figure 1-1. The red points define the point cloud data, and blue shapes define the

fitted distributions to these points for the first layer of the NDT representation.

Figure 1-1 3D scan and its first layer representation with NDT [9].

On the other hand, other researchers used ICP algorithms at the object level for

SLAM applications. The algorithm, detects the objects from the 3D point cloud data

and then pairs the detected objects between consecutive scans with the ICP algorithm

[10]. Figure 1-2 shows a sample scene and detected objects for an ICP-based SLAM

application.

Figure 1-2 Sample scene and detected objects [10].

5

The Extended Kalman Filter (EKF) is another important SLAM method which uses

probabilistic approach. It was published by Smith, Self and Cheeseman in 1990 [11].

Probabilistic approaches take into account all the expected errors in probabilistic

manner and define landmarks or objects with a distribution. This probabilistic

approach makes SLAM applications more robust than scan-matching based methods.

Furthermore, probabilistic solutions are the only solution for the kidnapped robot

problem [11]. Also, probabilistic approaches need least requirements according to

the scan-matching based methods [1]. On the other hand, these advantages come at

the price of computational inefficiency and approximation [1]. Different types of the

EKF- SLAM methods were published for different environments and conditions.

Efficient SLAM algorithms were generated for real time applications and large scale

environments with EKF [12].

Another important method is the fastSLAM (a factored solution to the SLAM

problem) algorithm which uses a sampling method (particle filters) instead of

defining the probabilistic distribution function. The fastSLAM algorithm was

developed in response to the time limitations (computational complexity) of the EKF

based approaches. The most important feature of this method is its robustness to

sensor failures [13]. There are many different implementations of fastSLAM in the

literature for different environments with different types of sensors.

In 2007, Tanaka and Ito developed a walking aid system for a handicapped or elderly

person. The system generated a 2D map of the environment with fastSLAM and laser

scanners. They compared the fastSLAM algorithm with an ICP-based method, and

explained that for slow motion both work but if the motion is not slow then the ICP

based algorithm gives the wrong correspondences [14].

Arbeiter et al. proposed an algorithm to construct the 3D environment in 2010. The

application uses a fastSLAM approach with TOF and color cameras. SURF features

are extracted from the RGB camera and 3D correspondences are founded with ToF

camera data. The final map only includes the raw point cloud data and the extracted

features [15].

As explained above, there are 3 main types of SLAM algorithms; EKF based

methods and Particle Filter (PF) based methods. All these methods have advantages

6

and disadvantages; so it is important to choose the most appropriate method for

different conditions (sensor type, environment).

1.2.2 Sensor and Feature Types

In order to make the correct selection from the large number of different feature

types the data source and environmental conditions must be taken into account.

For LIDAR data there are two main simultaneous localization and mapping

approaches; feature extraction, and scan matching methods. Features depend on the

environments. Lines, corners and curvatures are appropriate features for indoor

environments. For an outdoor environment, tree features are important and they can

be detected with a special feature detector. Tree features are not suitable for an office

environment and corner features are not appropriate for a forest. There is no general

purpose feature detector for varied environments [16].

Scan matching can also be used with LIDAR data since it directly uses raw data and

the SLAM performance does not depend on surrounding objects (lines, corners,

trees…etc.). On the other hand, scan matching based methods tend to create dense

pose graphs that significantly increase the computational cost [16].

Feature based methods are computationally less expensive than scan matching based

methods. The computational cost of the scan matching method increases if the prior

translational uncertainty increases. The computational complexity of the feature

based matching is nearly independent of the initialization error [16]. If feature based

methods are able to offer the same robustness and broad applicability to different

environments, they would be more preferable than scan matching based methods

[16].

Vision based 3D SLAM algorithms have been proposed with stereo vision, but these

algorithms are very sensitive to the lightning conditions of the environment and the

processing time of these methods make them useless in real time applications.

Nowadays, working with the 3D point cloud data is very popular. Weingarten used

3D features for feature-based SLAM in structured 3D environments. Weingarten

extracted features directly from 3D point cloud data which was taken from Swiss

7

ranger ToF camera and these 3D planar features are used to survey the performance

of an EKF-SLAM [17]. Hedlund worked with ToF cameras to register consecutive

scans and generated the 3D map of environment [18]. Ying Yang and Förstner

proposed an algorithm to extract compact features and planes from 3D point cloud

data in 2010 testing the performance of the proposed method with synthetic and real

data [19]. Rusu proposed a method to generate an object map of indoor environments

using 3D point cloud data [20]. Also Turunc investigated the contribution of planar

segments to 3D EKF-SLAM using IRSCAN (IR distance measurement based

scanner system) [21].

As in the research reported in this thesis other research used the Freiburg dataset and

investigated the effect of SLAM performance with different feature types (SURF,

SIFT, ORB, SURF+Shi Tomasi), only using low cost Kinect sensor data [22]. One

study compared the localization performances of filter types (EKF,PF) in an indoor

known environment [23]. The findings showed that the PF approach gives better

result than the EKF and the performance results of using low cost Kinect sensor in

localization was comparable with most state-of-the-art methods [23]. In 2012,

Hartmann et al. presented a paper about Visual SLAM using a Kinect Camera with

Oriented FAST and Rotated BRIEF (ORB) features with the fastSLAM algorithm.

The performance of the ORB features were investigated in a room environment with

30 particles showing that the ORB features were better than the SIFT and SURF

features [24]. On the other hand, some researchers preferred to use hybrid methods

combining point (SURF) and plane features using Kinect sensor with a real time

hand held SLAM application. They claimed that this hybrid method gives faster and

more accurate registration than only using points [25].

In 2013 Taguchi et al. investigated the accuracy using planes or points for a SLAM

application. This is same idea as the investigation detailed in this thesis. This

algorithm provides faster correspondence with plane features and compact

representation Furthermore, an application with planar features does not suffer from

the local minima and robot converges to the true pose [26].

8

Figure 1-3 Performance comparison for accuracy and time [26].

To summarize, the researchers investigated the SLAM performance in various

environments and conditions with different types of sensors. There are successful

approaches to SLAM problem but none of them can be generalized to every

condition. Currently, researchers are working on the generalized solution for the 3D

SLAM with the compact representation of the map (objects, surfaces, planes,

curvatures).

1.3 Thesis Contribution

The major contributions of this thesis are related to constructing and running a

fastSLAM algorithm with planar features. In this study, feature extraction algorithms

implemented and the contribution of planar features to the fastSLAM performance

for indoor applications was investigated. The navigation environment of the robot is

planar and the robot moves along an x and y direction and rotates around the z

direction. Throughout the study four different landmark vectors were used and a

comparison was made in relation to the effect on SLAM performance. The four

different landmark vectors are ;

 SURF Points (x, y, z, scale, laplace)

 Plane as Point (x, y, z,)

 Plane as Oriented Point (x, y, z, nx, ny, nz)

 Plane as Surface (x, y, z, nx, ny, nz, area)

9

The work presented here is constructed as follows.

The organization of the remainder of this thesis is as follows. Chapter 2 introduces

the theoretical background information about the SLAM algorithms. In Chapter 3

details about the navigation environment and sensors are presented. Chapter 4

explains the feature extraction methods together with the details of plane detection

and SURF feature extraction. The details of fastSLAM algorithm and our SLAM

implementation are contained in Chapter 5. In Chapter 6 the results of the

experiments are given together with a graphical representation of simulations and

comments on the final results.

The principal contributions of this thesis are as follows.

 Implementation of feature extraction (plane extraction, SURF feature

extraction) methods.

 The fastSLAM implementation with different landmark vectors (SURF point,

plane as point, plane as oriented point, plane as surface) and performance

comparison.

 Performance comparison under the effect of below parameters.

o Effective Particle Rate

o Linear Velocity Error Rate

o Angular Velocity Error Rate

o Particle Number

o Re-sampling

 Data collection from METU Computer vision laboratory with the Pioneer 2

robot and Microsoft Kinect Sensor.

10

11

CHAPTER 2

THEORETICAL BACKGROUND

2.1 Localization

Localization is the problem of determining the pose of a robot according to the

environment and it is the main precondition for robot navigation (planning and

motion). For a given map, it may appear easy to find the pose of a robot using sensor

measurements however, since there are no noise free sensor readings the robot has to

infer the pose from the sensor measurements [1].

The localization can be separated into three types according to the initial information

obtained. If the robot knows the initial pose the problem is called position tracking.

In this case, the main effort is to handle motion errors. Secondly, if the robot does not

know where it is, this a global localization problem which includes position tracking

and matching. In the global localization problem, the algorithm has to run through

the entire map. The last localization type is the kidnapped robot problem. This is a

type of global localization problem. The robot thinks that it knows the location, but it

does not. A robot can manage a sensor failure problems if it can handle the

kidnapped robot problem [1].

The localization problems can be grouped according to the environment as ; static or

dynamic. In static environments, the only variable quantity (state) is the robot pose.

In dynamic environments there could be other robots, objects or people which have

location or configuration changes over time [1].

Another grouping is passive or active localization. In the passive approach the

localization module only observes the robot while it moves randomly or performs

routine tasks. However, in active approach the localization module controls the robot

and tries to minimize the localization error [1].

12

The last group of the localization problem concerns the number of robots. The most

common approach is single robot localization problem in which there is no

communication issue. However, in the multi-robot localization problem all robots

localize themselves and share information about their location. This information

sharing makes resolution of the localization problem easier [1].

2.2 Map Building and Map Types

Mapping is the representation of the navigation environment. This map

representation allows agents to plan their actions in order to reach the goal which can

be anything such as; finding an object, navigating safely to anywhere place.

However, in many cases, the agents do not have an accurate map of the environment

and need to generate the map through the navigation. In fact, navigating around the

environment and mapping can be the goal.

The maps can be separated into two types according to the map information.

Topological maps contain the free spaces of the environment and metric maps

contain the surrounding objects and features.

2.2.1 Topological Maps

Topological maps can be generated by nodes and edges (links, arcs). These nodes

and edges define free spaces. Topological maps can be modeled with graph

representation which uses less memory usage and provides a compact representation

of the map. Topological map representation is appropriate for large areas such as the

roads that connect cities [27].

Figure 2-1 Layout of an indoor environment for topological mapping [27].

13

Figure 2-2 shows the result of the topological mapping for the navigation

environment containing tables, sofa, bed and other household items given in Figure

2-1.

The topological map of the indoor environment shown in Figure 2-2 contains 7 nodes

and 6 links. The representation of the map and its generation is very easy for

topological maps however, this simple representation has some disadvantages as

listed below.

 Routes described by links are not always the optimal ones.

 Topological maps do not include any accurate geometric description of the

environment.

 Path planning algorithms are not appropriate for topological maps [27].

Figure 2-2 Topological map of the indoor environment [27].

2.2.2 Metric Maps

Metric maps describe the navigation environment. According to the representation

method metric maps can be divided into 2 types.

2.2.2.1 Feature-based Maps

Feature based maps represent the environment with global location, orientation and

parametric features. These features are corners, edges, SURF features, SIFT features,

14

planes and any kind of object such as doors, trees or lights. In 2D and 3D SLAM

applications the algorithms extract and integrate these features into the robot system

with mono or stereo camera systems using the corner features to represent the

environment. In Kalay’s work, features have been extracted from a 2D image and

mapped to a 3D space with stereo vision [28]. Weingarten extracted features directly

from 3D point cloud data. These 3D planar features have been used to survey the

performance of EKF-SLAM with 3D planar features [17]. In another survey, the

researchers represented their own general purpose feature detector for indoor and

outdoor environments and compared their detector with corner detectors in an indoor

environment and a tree detector in outdoor environments [16].

In all work presented above the features have been represented with their parameter

set. For example, SURF features can be defined by 5 parameters (x, y, z, sigma,

laplace) in 3D while corner point features are defined with only 3 parameters (x, y,

z). x, y, and z represents the center of the location and these are also directly useful

for SLAM but other parameters (sigma, laplace) also assist in corresponding

landmarks [29].

Feature based maps do not show the free spaces of the environment. Instead, these

maps are generated by certain parameters which define the surrounding objects.

Feature-based maps have memory advantage according to the occupancy of grid

maps. This advantage comes with the compact representation. Feature based maps

represent the environment with only nxm matrix (n: feature vector size, m: number of

features (landmarks)). Especially in the 3D SLAM, this compact representation

decreases the memory usage and the computational cost.

On the other hand, feature based SLAM algorithms must include pre-defined robust

feature extractors. If feature extractors are not sufficiently robust, this results in

erroneous correspondences and the SLAM algorithm fails.

2.2.2.2 Occupancy Grid Maps

An occupancy grid representation was initially proposed by Elfes [30]. The

continuous space of the environment is separated into cells in this representation.

These cells marked as occupied, empty or unexplored [30].

15

Figure 2-3 Representation of the environment with occupancy grids [1].

Figure 2-3 shows the representation of the environment with occupancy grids. Black

color defines occupied grids, white color defines empty grids and gray color defines

unexplored grids. Figure 2-4 shows an example of an occupancy grid map.

Figure 2-4 A sample map with occupancy grids [1].

The supporting idea for this method is to find the most likely map for a given sensor

and actuator data.

Modeling dynamic obstacles and large uncertainty around found obstacles are two

main disadvantages of occupancy grid maps [1].

16

2.3 Simultaneous Localization and Map Building (SLAM)

The SLAM problem is also known as CML (Concurrent Mapping and Localization).

This problem arises when the agent does not know the map of the environment and

its true pose. Generally, in real time applications, the agent does not have

information about either and has to deal with this problem [1].

SLAM algorithms can be categorized according to many parameters such as

features, environment, vehicle model, sensor model, and matching algorithm. There

are many different approaches for different environments and setups. The simplest

grouping should be determined according to the sensor technology.

In the earlier research sonar sensors or 2D laser scanners were used in the SLAM

applications because of the technical limitations. Then the researchers needed to

define 3D world and they began to use 2D laser scanners with addition of a

mechanism to alter the sensor pitch angle [5]. Other researchers used stereo vision to

determine 3D location of landmarks.

Later, the invention of the TOF cameras which directly give the 3D point cloud,

provided an easier way to obtain 3D data from the environment but this camera is

expensive and therefore was not extensively used.

Nowadays, low cost RGBD Kinect sensors are very popular in robotic applications.

In comparison with earlier solutions it is easy to use but since the resolution and

reliability are not sufficient for SLAM applications greater than 3 meters it is only

appropriate for indoor use.

Some researchers use visual information (stereo vision) while some of them use

depth data (point cloud data). The use of different types of information is in an effort

to find a better way to define the environment around the robot. Nowadays, the low

cost RGBD sensor (Microsoft Kinect) is available for SLAM applications and

because of its efficiency 3D-SLAM algorithms have become the most popular

subject for indoor environments.

17

2.4 Probabilistic Approach: Bayesian Filter

Estimating the state of the robot and its environment using sensor data is the core of

probabilistic robotic applications. An efficient state estimator can compute the

current state of the robot recursively based on the previous state. This computation

can be undertaken using a Bayesian Filter.

In a Bayesian filter, the probability of state can be found with the help of

measurement and control data. The Bayesian filter contains two consecutive stages.

First, finding the prediction and then with sensor measurements updating prediction

and find the belief.

Figure 2-5 Prediction - correction sequence [31].

2.4.1 Derivation of Bayesian Filter

Figure 2-6 shows the dynamic Bayesian network for SLAM applications. In the

figure, the edges define the relationship between nodes. The state at time t (

depends on the sensor measurements and control data and also the

sensor measurements at time t depends on the state at time t .

Figure 2-6 Dynamic Bayesian network for SLAM [1].

18

Using Bayesian formula the conditional probability of the state vector can be

written as;

In equation 2.2, the denominator is only a normalizing constant and then the

following equation can be written;

For a given parent node the measurement vector becomes independent from the

previous sensor measurements and control data. Figure 2-7 shows this independence.

The given node is colored green and the removed edges are shown in red.

According to Figure 2-7 the conditional probability becomes;

Figure 2-7 Removed edges in a graph model [1].

Then equation 2.3 is simplified with equation 2.4.

19

Equation 2.5 shows the belief and it can be written in terms of the prediction

().

Calculating the belief is the second step of the Bayesian filter estimation. The first

step is calculating the prediction. Now write should be written according to one

state before to calculate prediction.

This is achieved by writing a joint probability and summing-out

over .

For the given parent node and control data the prediction of the state is

independent from previous sensor measurements and previous control

data . Figure 2-8 shows this independence. In Figure 2-8 the given nodes are

green and removed edges are red.

Figure 2-8 Independence from the past [1].

Then as shown in Figure 2-8 the first term of equation 2.8 becomes,

20

Also, the previous state vector is independent from the current control data

while the current state is not known. The yellow nodes in Figure 2-9 are

independent from each other but their equal child node is not known. If the child

node is known, independence will be removed. However, since the vehicle state at

time t is not known it can be found using the past state and control data.

Figure 2-9 Independence of parent nodes [1].

Using independence in the second term of the prediction equation becomes:

Then final prediction equation can be written as below using equations 2.9 and 2.10:

According to equation 2.11 prediction depends on the prior belief and motion

model.

Now the belief in terms of prediction as follows;

21

The Belief depends on the prediction (prior belief, motion model) and sensor

measurements. This second step (finding belief) is the correction step. The full

Bayesian algorithm is shown below.

Algorithm 1 Bayesian Filter algorithm [1]

2.5 Kalman Filter

The Kalman filter is a type of Gaussian filter which constitute the earliest tractable

implementations of the Bayesian filter for continuous space. According to Gaussian

techniques beliefs are represented by multivariate normal distributions. The

probability of any state in Gaussian can be calculated by this formula:

The density over the state x is characterized by two parameters (mean value) and

(symmetric and positive semi-definite quadratic matrix). The number of elements in

the covariance matrix depends quadratically on the number of elements in the state

vector. Gaussians have a single maximum and are appropriate for robotic

implementations. In robotics, the true posterior is focused around the true state with a

small margin of uncertainty [1].

Kalman filters implement belief computations for continuous states and this

computation is not appropriate for discrete or hybrid spaces. This computed belief is

shown with the mean and covariance at time t.

There are 3 important preconditions for Kalman filter SLAM applications. Linear

transition model, linear measurement model and initial Gaussian belief are these

22

three preconditions. These three properties guarantee that a distribution at any time

will be a Gaussian.

2.5.1 Linear State Transition Model

A state transition model must be a linear function. In matrix form it

is:

(x: nx1 state vector, u: mx1 control vector, A: nxn matrix, B: nxm matrix, :

nx1matrix)

 is a random variable which models the uncertainty introduced by the state

transition. Its mean is zero and covariance is .

Then, the mean of the posterior is given by and the covariance by .

If the state transition model is not linear, then the posterior becomes nonlinear

distribution and prediction fails.

2.5.2 Linear Measurement Model

The measurement model must be a linear function. In matrix form it can be

written as:

(Matrix, measurement noise)

 describes the measurement noise and its mean is zero and its covariance is .

23

Then the measurement probability is:

If the measurement model is not linear, the algorithm defines detected landmarks

with nonlinear distributions. So, the update equations fail for the landmarks in the

remaining process.

2.5.3 Normally Gaussian Initial Belief

The initial belief must be normally Gaussian.

If the initial belief is not Gaussian the posterior will not be the Gaussian even if the

state transition model and measurement model are linear.

2.6 Extended Kalman Filter

The Kalman Filter is applicable to SLAM problem when the initial belief is Gaussian

and has linear transition and measurement models. In the real world state transitions

and sensor measurements are rarely linear and the algorithm should take into account

these nonlinearities and this method is called as Extended Kalman Filter (EKF).

The EKF formulation of SLAM was first introduced by Smith, Self and Cheeseman

in 1990. The world is represented with landmarks and, covariances have been

approximated by Gaussian distributions because of linearization [31].

The SLAM algorithm handles these nonlinearities through the Taylor Expansion. On

the other hand, we can find the distribution of the vehicle state with Monte Carlo

sampling (i.e. 50000 samples) which gives more realistic approximation than

24

linearization by Taylor expansion. However, Taylor expansion is preferred because

of the time efficiency.

Linearization approximates the nonlinear function to the linear function that is

tangent to at the mean of the Gaussian. Approximation with Taylor expansion

causes a linearization error. The linear approximation to a function , is found

using ’s value and slope. The slope comes from partial derivative.

Both the value of and its slope depends on the argument of . The logical choice is

to select the most likely value at the time of linearization. The most likely state is the

mean value for Gaussian distributions. So the g function is approximated by its

value at . The general linearization equation is given below.

In this work we applied the Taylor expansion at both the prediction and correction

steps. The linearization formulas for the prediction step for velocity motion model

are given in the equations below.

 is a nxn size matrix (n is dimension of state) and called the Jacobian matrix. The

same linearization is applied at the correction step to the h function around .

)

25

EKF based approaches have suffered from the performance-limiting issues of

linearization, computational problems and Gaussian assumption [11].

The main purpose of the EKF is not to calculate the exact posterior. Instead, it

focuses on efficiently estimating the approximate mean and the covariance with

some acceptable errors. There are many successful EKF-SLAM applications.

2.7 FastSLAM (Factored Solution to SLAM)

The FastSLAM algorithm uses a particle filter approach which is a type of non-

parametric filter and an alternative to Gaussian filters. Non-parametric filters

approximate posteriors by a finite number of values instead of a fixed functional

form. Each approximation roughly corresponds to a region in the state space. The

quality of the approximation depends on the number of parameters used to represent

the posterior [1].

FastSLAM calculates the belief update in constant time, while the EKF-SLAM

requires quadratic time. The total operation for updating all landmark states takes

O(M.K) time for K landmarks and M particles [13]. The EKF-SLAM approach is not

appropriate if there are large numbers of features (i.e. 50.000) in the environment,

but fastSLAM can handle this situation and the algorithm converges to the true state

vector.

The particle filter approach represents the posteriors by samples and ingredients of

every sample are shown in Figure 2-10 for 3D SLAM.

We have K samples for any state in time and every sample has 1 weight, 1 vehicle

state and N landmark location estimates (μ and Σ).

26

Figure 2-10 Particle representation for planar 3D SLAM.

The FastSLAM algorithm is quite easy to implement. Sampling from the motion

model (i.e. velocity motion model or odometer motion model) and calculation of the

importance weight is also straight-forward [13].

The other important properties and steps of particle filters and the fastSLAM

algorithm are listed below.

2.7.1 Prediction of Vehicle State

An intelligent agent (robot) makes prediction for all the state vectors of a particle set

when it obtains the control data (linear velocity and angular velocity or odometer

data). This prediction step includes the total K (number of particle) prediction.

In the prediction process the intelligent agent does not directly use the noisy control

data. Instead, the agent takes samples from the Gaussian space of the control data

and then uses this data to make predictions. Each particle represents a probabilistic

guess of the robot path at time t and this feature is called a multi-hypotheses [13].

27

This vehicle state calculation is easy if the motion model of vehicle is known (i.e. the

velocity motion model or odometer motion model as in EKF).

Figure 2-11Prediction step [1].

Figure 2-11 presents the sampling approximation of the position belief for a non-

sensing robot. Without sensing there is no belief update through the navigation. All

the particles represent different predictions [1].

2.7.2 Landmark Location Estimation and Update

The FastSLAM algorithm represents conditional landmark estimates using Kalman

Filters (EKF). Each landmark is defined with a Gaussian distribution

.

Through the navigation process the algorithm makes linearization with Taylor

expansion as in EKF because of the nonlinearities of the sensor measurement.

 defines the mean and

 defines the covariance of landmarks at time t for

particle [13]. For the 3D robot navigation scenario each mean

is a three-element

vector, and

 is a 3x3 matrix.

28

In the update step the vehicle updates feature state vectors using sensor

measurements. The update step is the same as the EKF update sequence. The

algorithm updates the mean of the landmark locations and their covariances. This

estimation and update step evaluates the pose of the landmarks for all particles (for

every different pose estimate of vehicle) [13].

2.7.3 Weight Calculation

The algorithm computes the probability of the sensor measurement for each

particle. If the index of the sensed landmark is n, then the probability of the sensor

measurement can be defined as,

 is the importance weight, which shows how important the particle is. The

intelligent agent computes the importance weight according to the sensor

measurement and the expected sensor measurement. The importance weights of all

particles are normalized and their sum is 1. These importance weights will be

effective in the re-sampling step. Calculated weights became meaningless if there is

not any re-sampling step.

Figure 2-12 Weight representation [1].

29

In Figures 2-12, samples were taken from proposal distribution which is a Gaussian

distribution, however, the real distribution (target) is not Gaussian and it is nonlinear.

In Figure 2-12 the lengths of the bars represent the importance weights.

2.7.4 Re-sampling Process

The probability of drawing a particle concerns its normalized importance weight.

The intuition behind this process is simple; the low weighted particles are deleted

and systematically a successful particle is copied in place of the deleted particle. This

property obtains information passing to the backward as indirectly [13].

The re-sampling process is shown Figure 2-13. M defines the total number of

particles and first the value is defined. The value can be selected randomly but

the algorithms used in this thesis are defined with formula 2.29. The aim was to

achieve the middle of the weight value if all the weights are equal.

Figure 2-13 The re-sampling process [1].

According to Figure 2-13, the red particles (4
th

, 8
th

 and 10
th

) are deleted and green

particles are copied instead of the red particles. The algorithm takes the 3
rd

, 7
th

 and

9
th

particles instead of the 4
th

, 8
th

 and 10
th

 particles.

Figure 2-14 Before and after the re-sampling process [1].

30

2.7.5 Rao-Blackwellization

The joint probability distribution is found for the arbitrary random variables

 and . However, if the conditional probability can be described in closed

form it is equally legitimate to only draw the particles from . The algorithm

attaches to each particle a closed form description of .

This trick is called as Rao-Blackwellization and it yields better results than

sampling from the joint. fastSLAM applies this technique and samples from the path

posterior

 and represents the map

 in Gaussian

form [13].

2.7.6 Factored Representation

In the fastSLAM application the problem is to find the map and vehicle pose.

The posterior can be factored as in equation 2.31.

)

With this factorization the problem is decomposed to K+1estimation problems. One

problem is estimating the posterior for robot paths and K problems for estimating the

K landmarks conditioned on the path estimate [13].

2.7.7 Conditional Independence

In fastSLAM, knowledge of the robot path renders all landmark estimates

independent. The location variables separate the individual features in the map from

each other. If the state vector is a known variable, all the landmark estimates become

31

independent from each other. Any dependence between two landmark estimates is

mediated through the robot path [13].

The algorithm estimates a robot path with particle filter (PF) and estimates landmark

positions with EKF. EKF is applied to every landmark for each particle and all

landmarks defined with Gaussian distribution. For M particles and K landmarks the

problem includes the K.M EKF calculation. This EKF calculation is in dimension 3

and does not grow as in EKF-SLAM.

32

33

CHAPTER 3

DATASET AND SIMULATION ENVIRONMENT

3.1 RGBD SLAM Kinect Dataset

Part of the large RGBD SLAM dataset was used to verify the proposed ideas during

the research. The dataset was generated by Sturm et al. with a Microsoft Xbox

Kinect Sensor [6].

Figure 3-1 Microsoft Xbox Kinect Sensor with Reflection Sensors [6].

The Kinect sensor consists of a near-infrared laser, an infrared camera and a color

camera between them. The near-infrared laser projects a refraction pattern on the

scene and an infrared camera observes this pattern. Using block matching techniques

it is possible to compute the disparity if the projected pattern is known. All the image

rectification and block matching happens internally in the sensor [6].

The Kinect sensor has advantages and disadvantages in relation to the laser scanners.

The technical specifications and performances of these sensors are compared for the

map building, localization and obstacle avoidance using only one of the 480 lines of

the Kinect output for the 2D SLAM simulation [32]. The technical comparison of the

sensors is given in Table 3-1.

As shown in the Table 3-1, the SICK laser scanner gives a higher performance than

the other two and also it is configurable (range, resolution, measurement angle) for

34

specific applications. On the other hand, the cost of the SICK laser scanner is very

high in relation to the two scanners. Taking into these properties, the Kinect sensor

and Hokuyo laser scanner are more comparable [32]. However, the important

difference between Kinect and Hoyuko concerns dead zones. The Kinect sensor

could not separate the infrared dots on close obstacles due to blooming effects [32].

Figure 3-2 Visualization of blooming effect for a CCD camera [33].

Figure 3-2 shows the blooming effect on a CCD camera created by a high charge in

one area which can influence the pixels next to it. In Kinect cameras this blooming

effect makes the boundaries noisy [33].

Another important feature, is that accuracy is better with the Kinect sensor when the

distance is less than 1.5 meters. Above this distance the Hokuyo laser scanners give

better results [32]. The depth resolution of the Kinect sensor varies between 0.25 cm

(d=0.8 m) and 4.8 cm (d=4 m). The minimum distance was fixed at 0.8/0.4 meters

but the maximum distance is not fixed. Different authors recommend rejecting

distances of more than 3 meters or 4.6 meters [32].

Kinect produces a gap in the point cloud data if camera monitors a surface that

cannot be scanned by the infrared pattern. Also, a contrary case produces the same

result. This is called a parallax problem and is amplified by reflective surfaces.

However, since laser scanners combine the receiver and transmitter the parallax

problem does not occur [32].

Both sensors have problem in perceiving reflective surfaces, dark areas and

transparent materials. The material of the obstacles has important effect on the

perception of data [32].

35

The most important disadvantage is the smaller monitoring angle of the Kinect

sensor in terms of laser scanner systems. This small view angle limits the capabilities

of mapping and localization. On the other hand, Kinect is more reliable in obstacle

detection than the Hokuyo laser scanner [32].

Table 3-1 Technical specification comparison of sensors [32].

SENSORS

Kinect Hoyuko SICK

Maximum range [m] 3-6 4 8-80

Dead range [m] 0.8/0.4 0.06 0.07

Horizontal angle [°] 57 240 100-180

Distance resolution [mm] 2.5-48 1 1-10

Angular resolution [°] ≈0.097 0.3515 0.25-1

Accuracy [mm]
±6 (1m)

±130 (4m)

±30 (1m)

±120 (4m)
±10 (10m)

Geometry [mm] 65x290x70 50x50x70 155x156x210

Weight [kg] 0.55 0.16 4.5

Power voltage [V] 12 5 24

Power consumption [W] 5 4 30

Refresh rate [Hz] 30 10 18-75

Output Data [kB/s] 18000 5.4 500

Interfaces USB USB
RS-232

RS-422

approx. Costs $ 150 1000 5000

The Kinect sensor is still good choice for indoor SLAM applications with fast 3D

data perceiving and low cost [32].

The RGBD Kinect dataset consists of two different environments, a typical office

(fr1) and large industrial workspace (fr2). The latter is appropriate for robot-SLAM

applications [6].

36

Figure 3-3 Typical office environment and large industrial workspace. [34]

Available robot SLAM sequences are shown in Table 3-2.

Table 3-2 List of available RGB-D SLAM sequences [34]

Sequence Name Duration [s] Avg. Trans. Vel. [m/s] Avg. Rot. Vel.

[deg/s] fr2/pioneer_360 73 0.23 12.05

fr2/pioneer_slam 156 0.26 13.38

fr2/pioneer_slam2 116 0.19 12.21

fr2/pioneer_slam3 112 0.16 12.34

Table 3-2, gives the sequences and their basic information (duration, average

angular and translational velocity). The Kinect sensor is mounted on a Pioneer 3

robot which is controlled manually with joystick for the robot-SLAM sequences

(Figure 3-4).

 Figure 3-4 Pioneer robot with Kinect sensor [34].

37

The ground truth of the dataset is created with 8 high speed tracking cameras

(Raptor-E from Motion Analysis) working at 100 Hz [35].

Figure 3-5 Motion analysis Raptor-E capture cameras [34].

The dataset creates color (8 bit RGB- each pixel value differs between 0-255) and

depth (16 bit monochrome-each value differs between 0-65025) images for every

scan of the environment instead of point cloud data (Point cloud data after

conversion is nearly 20 GB). The dataset contains a conversion algorithm to create

point cloud data from the RGB and depth images. The frame rate of the dataset is 30

Hz and the sensor resolution is 640 x 480.The depth images are scaled to 5000. A

pixel value of 5000 in the depth image corresponds to a distance of 1 meter from the

camera [34]. The sequences include the ground truth data for the vehicle state. Each

line in the ground truth data includes a timestamp (number of seconds)

(position of the optical center of the color camera), (orientation of the

optical center of color camera with respect to the motion capture system in the form

of unit quaternions) [34].

Calibration is another important point to consider for Kinect cameras. The default

calibration values are not true values for each different Kinect camera. In Table 3-3,

 values define the focal length of the cameras, values define the optical

center of the cameras and value define the correction factor of the depth values

[34].

38

Table 3-3 Calibration Parameters for the Freiburg 2 dataset [34].

Camera

Color 520.9 521.0 325.1 249.7

Infrared 580.8 581.8 308.8 253.0

Depth = 1.031

In the current study, the 'freiburg2_pioner360' and 'freiburg2_pioner_slam3'

datasets were used to verify the proposed ideas. These datasets are generated with

one complete turn in a hall with a pioneer robot and satisfies the performance

comparison after the loop-closing.

3.2 Real Time Application

The contribution of plane features for navigation (SLAM) are validated with the

published dataset. After this validation the performance of algorithm is verified with

a real time application with the pioneer robot and the Microsoft Kinect Sensor.

Figure 3-6 shows the pioneer robot with a computer and a Kinect sensor.

Figure 3-6 The robot system (Image was taken in the METU Lab.)

39

The computer communicates with the robot and sensor camera through different

communication protocols. The first connection between the computer and the kinect

sensor is through a USB cable. A RS-232 serial communication provides the second

connection between computer and robot.

Figure 3-7 The robot system, computer and sensor connection

The computer controls the robot and satisfies the motion through the defined

trajectory. The computer waits at some steps and takes sensor measurements

throughout the motion.

Figure 3-8 The robot system and map environment (Images were taken in the METU

Lab.)

The navigation environment of the robot is the METU EE Computer Vision

Laboratory. The backs of the chairs (outlined in red) are used as a landmark.

40

Figure 3-9 Sample depth and RGB image from real-time application (Edited

MATLAB images were taken in the METU Lab.)

The original depth and RGB image are shown in Figure 3-9 and the extracted feature

points (back of the chair) are shown in Figure 3-10. In the point cloud data the green

points define the plane candidates and red points are the remaining ones.

Figure 3-10 Sample 3D point cloud from a real time application (MATLAB Image)

The feature extraction methods are discussed in detail in chapter 4.

41

CHAPTER 4

FEATURE EXTRACTION

4.1 Filtering Process

Filtering process is an important step in the 3D SLAM algorithm. Every 3D scan of

the environment contains nearly 307200 (640x480) points. The mathematical

calculation takes too much time with this large number of points. To reduce the

process time there should be a filtering process. Also, raw data can include noisy or

unnecessary points for example the background or ground. To prevent erroneous data

associations, robust data should be used and the foreground data should be extracted

from the background. This process is explained in the following sections.

4.1.1 Sampling

3D point cloud data can include thousands of points and this extremely large number

of points increases the process time. Sampling from raw data reduces the number of

points and the process time. This sampling process reduces computation time while

maintaining the accuracy of measurements as shown in [5]. In the figure 4-1 it can

be seen that the number of points was decreased from 56000 to 2300 and process

time of 96 hours was reduced to 5 seconds while maintaining a significant level of

accuracy [5].

Figure 4-1 Original and sampled data [5].

42

Figure 4-2 shows the original and sampled versions of the raw data. Only 10% of

original data can define the environment. Reducing the number of points decreases

the computation time for the remaining algorithms.

Figure 4-2 Filtering results (MATLAB Images)

Through the sampling process there is a risk of losing the important part of the data

however, the fastSLAM approach can handle this kind of problem.

The algorithm used in this study undertakes random sampling but, intelligent

selection methods also exist to protect the important part of the point cloud data as in

Chen’s application. However, intelligent sampling comes at a computational price

[5]. Chen uses an effective edge feature extraction method to extract the edge points

and this reduces the redundant points [5]. The results are provided in Figures 4-3 and

4-4.

43

Figure 4-3 Original scan data points [5].

Figure 4-4 Data points after feature extraction filter [5].

After the removing process Chen defined the scan data with only 3 points instead of

7. The algorithm, detects the edge of objects and according to this edge information

removes unnecessary points from the data. This process decreases the time

consumption to the half for remaining processes [5].

4.1.2 Removing Background

All SLAM methods (feature based and scan based) suffer from data association

errors. Incorrect sensor readings and observing the same features from different

locations lead to errors in the resulting maps [36]. In current work, we removed

background data and used only foreground data to prevent incorrect data

associations. A foreground object can occlude portions of a background object and

this results in abrupt boundaries and the suppression of those features that are close

to these boundaries [16].

44

Figure 4-5 Poor features are suppressed. [16]

Figure 4-6 Removing the background to prevent false data association.

In Figure 4-6 the same object (wall) can be detected as different feature according to

the view angle because of the occlusion by foreground object. This can result in a

false data association and increases the final error in the SLAM application. The

backgrounds of scenes are filtered according to the object sizes (point count) and this

prevents false data associations.

45

Figure 4-7 All data before background removal (MATLAB Image).

Figure 4-8 Green points are foreground and red points are background. (MATLAB

Image).

Figure 4-7 and Figure 4-8 shows the background removal sample from the

application. The foreground is easily and clearly separated from the background.

4.1.3 Filtering the Ground Floor

Horizontal plane segments are not essential for planar SLAM applications and can be

discarded to eliminate the ground effect. Ground points cannot be modeled as

distinctive features [37].

In the current application, in order to eliminate ground points, horizontal planes are

detected and the points that fit these horizontal planes are filtered. These horizontal

planes are detected according to the normal vector of randomly selected points. It is

expected that the normal vector should be in the z direction. If the normal vector is

not in the z direction, the algorithm iterates until it finds the normal vector that

46

defines the ground points in the z direction. In fact, all the points were not selected

randomly. Only the first point are selected randomly and remaining points are

selected according to the Euclidian distance to the mean of selected points iteratively.

Figure 4-9 Filtering ground data (MATLAB Images)

Figure 4-9 (a) shows 4 different point groups. In our algorithms, different point

groups were not found for iteration. The purpose is to show the different alternatives

that help to find the ground points. The fitted plane is shown in (b) and in (c) the

founded normal vector can be seen. The points that define the ground were cleared

from the scan according to the normal vector information.

Figure 4-10 Raw scan data (MATLAB Image)

47

Figure 4-11 Filtering ground data. (MATLAB Image)

Figure 4-10 shows the raw scan data and Figure 4-11 shows the filtering. In Figure

4-11 the red points are assigned as ground points and eliminated. The remaining

points are shown in green.

4.1.4 Hierarchical Clustering (Segmentation)

Removing the background and the ground floor data can be sufficient if the

environment is not complicated. In Figure 4-12, the red points define the eliminated

points and green points define the remaining ones.

Figure 4-12 Raw data and final data after filtering (MATLAB Image)

The environment and the 3D scan data could be more complex. If there is more than

one object plane fitting the process may fail. For this kind of scene, the algorithm

splits the objects and then applies the plane fitting algorithm separately to all

different point groups.

48

Figure 4-13 Complex 3D environment. (Depth and RGB image for scan 281 from

fre2_SLAM3) [34].

Figure 4-12 shows the first process of filtering which is removing the ground. The

red points are the removed ground floor points and green points are remaining points.

Figure 4-14 3D view of scan 281 of fre2_SLAM3 map. (Green points are remaining

parts after red points (ground points) removed) (MATLAB image)

The algorithm can easily separate the point groups that define objects as shown in

Figure 4-14 and Figure 4-15. The remarkable spatial distances between groups

facilitate this easy separation.

49

Figure 4-15 Birds eye view of 3D scan 281 (MATLAB image).

K-means clustering is a widespread clustering method but has some preconditions

since it requires listed information.

 A number of clusters An initial assignment of data to clusters

 A distance measure between data

In the current research, the robot does not know the number of clusters for any scan

and cannot make any initial assignment. Thus, the algorithm uses unsupervised

clustering method. The selected unsupervised clustering method is hierarchical

clustering. The hierarchical clustering method only requires a similarity function.

Defining the similarity function is the most important element in the hierarchical

clustering method. In 3D space objects are well separated from each other and the

Euclidian distance function defines the satisfactory similarity function. Also, for

hierarchical clustering, for each 3 points () in the dataset the following

properties should be satisfied [38].

 Non-negativity:

 Reflexivity:

 Symmetry:

50

 Triangle inequality:

In the method given in this thesis these properties are satisfied and robot can safely

use hierarchical clustering method through the navigation.

Figure 4-16 Randomly selected 2000 points for clustering (MATLAB image)

The number of points is very important for hierarchical clustering and before

clustering, the algorithm randomly samples 2000 points from the point cloud data.

The sampled data can be seen in Figure 4-16.

Hierarchical clustering according to spatial distance between the groups shown in

Figure 4-17. This visualization is called dendogram which is a tree diagram that

illustrates the hierarchical clustering process[38].

Figure 4-17 Dendogram representation of hierarchical clustering [38].

51

At the beginning of the clustering, at step 1 (k=1) all the points define a cluster thus

the similarity scale is 100. After step 3 (k=3) the total number of clusters is 6 and the

similarity decreases. The number of clusters and the similarity are inversely

proportional. After step 8 (k=8) the total number of cluster becomes 1 and the

similarity decreases to 30.

Figure 4-18 Alternative representation of the hierarchical clustering [38].

Understanding where to stop (cut-off) and criterion function are two important

properties of hierarchical clustering. The criterion function of in this study algorithm

is the Euclidian distance.

Cut-off value is important in order to split different objects (plane segments). Figure

4-19 shows the dendogram visualization of the clustering process. For CUT_OFF =

3.0 meters, the algorithm only finds two clusters and the irrelevant point groups

constitutes a cluster. On the other hand, selecting CUT_OFF = 0.01 results in

hundreds of classes. The algorithm splits one object into many point groups and this

causes erroneous feature detection and incorrect data associations.

52

Figure 4-19 Dendogram of the 3D point cloud data (MATLAB Image).

Hierarchical clustering is very important part of the plane detection process. If

different objects are defined as one this may result in false plane detection and

erroneous data association. Selecting the optimal cut-off value is important to

prevent this wrong data association. This cut-off value is selected according to visual

check and cluster number-cut-off value graphs.

In Figure 4-14 and Figure 4-15 there are 8 point groups. For this scene the cluster

number-cut off value relationship was analyzed. The clustering algorithm was run

1000 times for each cut-off value. The results are provided in Figure 4-20 and Figure

4-21.

53

Figure 4-20 Distribution of the cut-off value (MATLAB Image).

Figure 4-20 shows the founded cluster number for cut-off values between 0.01 and 1.

The expected number of clusters is 8 and this was founded around 0.2. The detailed

graph is shown in Figure 4-21.

Figure 4-21 Distribution of the cut-off values (MATLAB Image).

The optimal value is 0.205 meters and in simulations this value was used.

54

Figure 4-22 Results of the clustered data (MATLAB image).

Not all these clusters were used to extract the plane. The aim was to find reliable

point cloud groups which exactly define an object (plane).

The following criteria are used to eliminate clusters.

 The number of points should be greater than 50 and less than 1000. (For

2000 points)

 The mean point of cluster should be less than 3 m.

 The variance should be small (less than 0.1)

 The maximum angle between point groups and the vehicle should be 28

degrees.

The clustering process applied to randomly selected 2000 points because of the time

limitations. The algorithm finds the cluster number of remaining points according to

the Euclidian distance criteria. Every point is added to the closest clustered points’

cluster.

55

Figure 4-23 shows sample data removal according to the maximum angle criteria. If

the angle of any point in the group exceeds the 28 degree algorithm this classifies

this group as unusable. The algorithm decides that the point group is a part of the

object and the fitting plane of this point group injects erroneous landmarks into the

algorithm

Figure 4-23 Removed edge point groups with angle criteria (MATLAB Image).

Figure 4-24 Plane candidates (MATLAB Image).

In figure 4-24, the point groups are shown after elimination according to the defined

criteria (distance and object size). However, there is one more criterion which is that

the point groups can be eliminated if standard deviation is very high. Figure 4-25

shows the plane candidates after elimination.

56

Figure 4-25 Plane candidates after the clusters with high variances were eliminated

(MATLAB Image).

There are 3 point groups and all these point groups are candidates for the plane

extraction algorithm.

4.1.5 Region Growing with Connected Component Analysis

Region growing segmentation according to connectivity is a well-known

segmentation method for binary and grayscale images. However, a priori knowledge

is required concerning the intensity of the target objects [39]. In the current study,

there was no a priori knowledge about the target objects’ intensity values since these

values change with the motion.

Figure 4-26 presents a histogram of the depth image of scan 281 in which the

connected component analysis is not appropriate for the depth image. No meaningful

intensity threshold to discriminate the objects can be found because of the ground

floor data. The ground floor data may contain values between 0-65025.

57

Figure 4-26 Histogram of depth image (scan 281- Figure 4-13) (MATLAB Image).

On the other hand there are 3D extensions of the connected component analysis

method. A 26-connected component analysis has been used for traffic monitoring

from the helicopter for 3D aerial data in [40]. In the current study, the connectivity

was defined with a threshold value of 0.205 which is given in 4.1.4 for the

hierarchical clustering cut-off. It is easy to discriminate the connected components

with region growing according to 26-connectivity and this gives the same result with

hierarchical clustering. On the other hand, the connected component analysis takes

longer compared with hierarchical clustering as shown in Table 4-1.

Table 4-1 Segmentation Methods Time Comparison

Method Time (seconds)

Hierarchical Clustering 0.7247

Region Growing with Connected Component Analysis 14.3285

Region growing with connected component analysis is more expensive than the

hierarchical clustering method and throughout the current research hierarchical

clustering method for object segmentation was applied.

58

4.2 Plane Feature Extraction

4.2.1 Applied Plane Feature Extraction Method

After removing the unnecessary data, the remaining points are candidates of the

plane (foreground objects). Figure 4-27 includes the environment (a), RGB image (b)

and 3D point cloud (c).

Figure 4-27 Vehicle and 3D scan. (a) SLAM environment from external camera (b)

RGB image of scan from Kinect camera (c) 3D point cloud data from Kinect camera

(The red points have been removed, only the green points are used for the landmark

(plane) extraction). (MATLAB images)

The algorithm used in the current study is a process like the RANSAC algorithm, in

fact, the proposed application is the modified RANSAC algorithm. RANdom

SAmple Consensus (RANSAC) is a method to determine which points in a point

cloud data satisfy a certain mathematical model (i.e. plane, curvature …). To

achieve this aim RANSAC randomly chooses a few points to describe the specified

59

model, for a plane this is 3. Then the point cloud data is separated to 2 classes called

inliers and outliers. Inliers are points which lie within a certain accepted distance

threshold, t, to specified model. The search ends with a maximum iteration count or

having found a sufficient number of inliers [18].

In the application presented in this thesis the updated version of Tim Zaman’s plane

fitting algorithm (RANSAC and LSE) [41]. The proposed algorithm does not select

only three points to fit a plane. Instead it uses a specified percentage of the data

(thousands of points).

Figure 4-28 Plane extraction algorithm.

In the LSE function the algorithm first finds the scatter matrix for all selected points.

60

 : mean of all selected points

 : total number of selected points

 :i
th

 point from selected point group.

In the proposed algorithm the scatter matrix is 3x3. Then an eigenvector is computed

that corresponds to the smallest eigenvalue required to find the normal vector of

selected points.

 : Scatter matrix

 : eigenvector

 : eigenvalue

For zero eigenvalue :

The scatter matrix and eigenvector becomes perpendicular for a zero eigenvalue

therefore, the eigenvector corresponding to the minimum eigenvalue is the best

definition of normal vector.

Now, the algorithm finds the best fitted normal vector to the selected point group.

Then the algorithm controls the fitting performance of points to the estimated normal

vector. For all points the following equation is calculated.

61

 : determined distance to fitted plane.

 : estimated normal vector

 : mean point of inliers (mean of selected half of the data)

 : i
th

 point from the selected point group.

The geometrical definition is shown in Figure 4-29.

Figure 4-29 Finding the point distance to the estimated plane.

In figure 4-29 the blue vector is the dot product of the mean point vector and normal

vector. The yellow vector is the dot product of the i
th

 point vector and normal vector.

The difference between these two vectors gives the perpendicular distance of i
th

 point

to the estimated plane.

After the distance calculation for all points, the algorithm checks the percentage of

the inliers. If the distance is less than 0.1 meters, the relevant point is selected as an

inliers. The algorithm accepts the found normal vector if the inlier points are higher

than the 80% of the point cloud data.

Then the algorithm finds the final estimation of normal vector according to the full

data. Selected points are shown in Figure 4-30(b) in green and the selected inliers

which fits the small plane are shown in Figure 4-30(c) and the final plane that fits to

the inliers is given in Figure 4-30(d).

62

Figure 4-30 Plane fitting (MATLAB Images).

The map environment will not always be as simple as presented in Figure 4-27.

Generally environments will be more complex as shown in the plane extraction given

in Figure 4-31.

Figure 4-31 RGB and depth image of scan 281 of fre2_slam3 map [34].

63

Figure 4-32 Extracted planes of scan 281 of fre2_slam3 map (MATLAB Images).

Even though the environment is complex, the proposed algorithm finds sufficient

plane features.

4.2.2 Plane Feature Descriptors

An example of a detected plane feature is given in Figure 4-33. For planar surface

resolution with 0.05 meters, the algorithm maintains a 19 x 4 array for each of the x,

y and z values, each providing a76 point location and a normal vector.

Figure 4-33 Extracted plane feature (MATLAB Image)

64

The size of the arrays change according to the surface size and resolution of the

plane. The robot in this study does not directly use this plane definition but it extracts

the compact properties from this plane definition. The properties are the center point,

normal vector and area of the plane.

Throughout the research the plane features have been described as having 3 different

feature descriptors. These feature descriptors are called landmark vectors in SLAM

applications. Therefore, the plane as point landmark vector can be defined with the

center point of plane.

We can define the plane with a point feature and a normal vector. This landmark

vector is called a plane as oriented point.

The plane can be defined with a point, normal vector and area information. This

landmark vector named; plane as surface.

4.2.3 Alternative Plane Feature Extraction Methods

There are different plane detection techniques in the literature. The Hough-transform

and Random Sample Consensus (RANSAC) paradigm are the two main and common

methods. The performance comparison for plane detection has been applied to the

construction of roof planes using a LIDAR scanner. According to the comparison,

the RANSAC algorithm provides higher quality in a shorter time [42].

There are also different plane extraction (PE) methods based on the random sample

consensus (RANSAC). The standard RANSAC plane extraction method attempts to

maximize the number of inliers. The disadvantage of the standard RANSAC plane

extraction method is that it may fail when a scene contains multiple intersecting

planar surfaces with limited sizes [43].

65

The CC-RANSAC (Coherence Check RANSAC) plane extraction method

successfully solves the straddling-plane problem when the scene contains simple

steps. Figure 4-34 shows a curb and ramp. These types of features must be identified

for safe parking [44].

Figure 4-34 An example of a curb (a) and ramp (b) [44].

CC-RANSAC methods solve the plane extraction problem for these kinds of simple

scenes. However, if the scene contains stairway with more than 6 steps the CC-

RANSAC algorithms may fail. To solve this problem the Normal Coherence Check

RANSAC (NCC-RANSAC) method is proposed [43]. This method checks the

normal coherences for all the data points of the inlier patches (on the fitted plane)

and removes the data points whose normal directions are contradictory to that of the

fitted plane. This process avoids erroneous plane extractions [43].

Figure 4-35 NCC-RANSAC with SR-4000 data. (a) Intensity Image (b) Extracted

planes [43].

66

Objects are well-separated from each other in our navigation environment; therefore,

there is no need to use the CC-RANSAC or NCC-RANSAC methods. Instead, the

modified version of classical RANSAC method is implemented which has the

computational advantage over the CC-RANSAC and NCC-RANSAC methods.

In implementation in this study the raw data was clustered using the hierarchical

clustering method according to connectivity. This clustering step is the precondition

for plane extraction functions. With the help of this clustering process, the modified

version of classical RANSAC plane extraction function is satisfactory. In classical

method the algorithm selects 3 random points and fits a plane to these selected

points. The algorithm searches until the fitting performance exceeds the specified

threshold. In our modified RANSAC method 1 random point and the specified

percentage of the data were selected, according to the spatial distance to the selected

random point. The details are presented in section 4.2.1.

Figure 4-36 Comparison of the RANSAC algorithms (MATLAB Image)

Figure 4-36 shows the comparison of the classical RANSAC method and the

implementation in the current study. The time and the performance comparison

changes according to the maximum iteration count.

Maximum iteration count < 6: The proposed method satisfies good plane

extraction performance with the higher time consumption.

67

Maximum iteration count ≥ 6: Both methods satisfy 100% plane extraction

performances. However, the time consumption of the proposed method is smaller

than the classical RANSAC method.

Figure 4-37 Initial plane extraction with RANSAC (MATLAB Image).

Classical RANSAC plane extraction may fail if the initially selected random points

lie on wrong axis and this classical method may require high number of iterations to

achieve the successful result. Figure 4-37 shows this kind of initial false estimation

and the extracted plane. This kind of initial random point selection result in a large

amount of time spent with a lower performance according to the proposed

implementation. In the current study, the robust feature detection is important and to

achieve this the modified version of RANSAC algorithm was used to detect the

robust plane features.

4.3 SURF Feature Extraction

SURF is one of the most used rotation and scale invariant interest point detectors and

a descriptor which helps to find matches between two images. The R(x, y,)

function is the interest point criteria function and computes the response of every

pixel in the image for different scales [45].

68

The interest point detection algorithm considers the input image as an image stack

(image pyramid) which is a collection of the input image in different scales. The

algorithm can generate this image pyramid by smoothing and down-sampling the

image. However, the SURF interest point detection algorithm increases the filter size

and maintains a stable image size instead of down-sampling the image size. The

integral image speeds up the interest point detection and convolution process. The

details of the integral image are introduced in Appendix B. This process provides

computational efficiency and avoids aliasing [45].

Figure 4-38 Instead of iteratively reducing the image size (left), the use of integral

images allows the up-scaling of the filter at constant cost (right) [45].

The response function is the determinant of the scale normalized Hessian

Matrix [45].

The scale normalized Hessian Matrix is:

69

In the formula (4.11), represents the Hessian of the k
th

 frame and represents the

intensity for the image stack

The SURF feature detection algorithm uses box filters and approximates the

determinant of the Hessian Matrix. The approximation formula is given below.

Ideally, as the definition of determinant obligates, the factor in front of should be

1.0 rather than 0.9. However, according to the error introduced by the discretization

approximation, 0.9 is used as an ad-hoc compensation [45].

In SURF, these derivatives in the Hessian determinant are approximated with 3 box

filters. A 9 x 9 version of the box filters are given in Figure 4-39 and Figure 4-40

[45].

Figure 4-39 The 9 x 9 Gaussian second order partial derivatives in the x, y and xy

directions [46].

Figure 4-40 The weighted 9 x 9 box filter approximation of the 9 x 9 Gaussian filters.

(+1,-1, -2 are the weights assigned to those regions and the grey regions are of value

0) [46].

70

The scale-octave representation is shown in Figure 4-41.

Figure 4-41 Scale-octave representation [46].

The algorithm searches the larger shapes at higher octaves and generates 4 different

response layers for each octave. The first and last layers of each octave are only used

for comparison. For example, at first octave the algorithm searches the interest points

for the second and third response layers. The layers are shown in the circles in Figure

4-41. Every response layer corresponds to an approximation of a  value. This 

value defines the variance of the approximated Gaussian filters. For instance, the first

octave – 9 x 9 filter pair corresponds to  = 1.2.

Scale information gives detail about the size of the detected SURF feature. The filter

size, scale and the SURF feature size are directly proportional. If the scale of the

SURF feature is around 4, this means that the SURF feature gives the highest

response to the filter size 39 x 39. This scale property maintains the size of the SURF

feature and prevents incorrect correspondences.

4.3.1 Interest Point Detection

Figure 4-42 shows the convolution of the 9 x 9 box filter for any center pixel .

The result of the convolution is A-3B.

71

Figure 4-42 Sample convolution mask [46].

A and B define the sum of the intensities of the surrounding pixel. The A and B

values can easily be found using integral image calculation. The details of the

integral image are given in Appendix B. The convolution responses for each filter

size and calculation of the response are found using equation 4.12. If determined

value reaches the defined threshold the algorithm keeps it as a SURF feature

candidate. For each SURF feature candidate the x, y, scale and laplacian values are

retained. The x and y defines the location of feature in image, the scale defines the

size of the feature and the laplacian define the blob type.

 Figure 4-43 White and black shape.

For the SURF features, the determinant of the white and black shape is the same. The

algorithm uses the sign of the laplacian (trace of the Hessian matrix) in order to

avoid matching a white circle with a black one. The black shapes have positive

values and the white shapes have negative values.

4.3.2 Non-maxima Suppression

The algorithm runs a non-maxima suppression process after finding the SURF

interest point candidates. Excluding the weak interest points is carried out at two

levels. In the first level, the algorithm applies threshold test to all the interest points

72

within a layer. In this test the interest points above the threshold value are accepted.

The higher the threshold value that is chosen, fewer but stronger interest points are

chosen. The second level of filtering is called non-maximum suppression this is

carried out across three layers with the center pixel in the center layer being

compared with a total of 26 neighbors.

Figure 4-44 Representation of the non-maximum suppression [46].

The algorithm evaluates the center pixel as a SURF feature if it has the highest

response value among the candidates. The algorithm eliminates the center pixel from

the interest point candidates if the response value is lower than any of its neighbors.

4.3.3 SURF Feature Descriptor

The SURF feature detector finds the features on 2D depth image. Then in our

applications, the algorithm finds the 3D location of these SURF features. We use

camera calibration and focal length values for this computation. The final SURF

feature vector contains the 3D location of found feature, scale and laplacian

properties of the detected points.

The SURF feature descriptor was generated with 5 parameters and its vector

representation is shown below.

73

The result of the interest point detection process on a sample image can be observed

in Figure 4-45.

Figure 4-45 Depth Image and Extracted SURF Features (MATLAB image).

The SURF feature detection algorithm gives a high number of responses at the

boundaries of the depth image. Thus, through the simulation, the algorithm has to

handle high number of landmarks and simulation results which required a large

amount of time. We expect that the high number of SURF features help the algorithm

to decrease the motion error and increase the performance of SLAM.

Also, SURF feature points do not define objects, instead they give information about

a small area of the image. The following Chapters 5 and 6 show the comparison of

the final error rates. Comparing SURF and planar features gives information about

the low number of compact features that define objects and the high number of

localized features that gives information about that small portion of image.

74

75

CHAPTER 5

IMPLEMENTATION DETAILS

5.1 Data Structure

In fastSLAM all the predictions concerning the pose of the robot are sampled with

particles taken from the Gaussian distribution of the control data. Throughout the

navigation the robot keeps in memory 100 different estimates (particles). Each

particle contains the state vector of the robot, particle weight and Gaussian

estimation for each detected landmark.

The state vector of the robot is maintained in the form:

In equation 5.1, x and y represent the estimation of the robot pose for one particle

while the yaw represents the rotational information estimation around the z direction

of the robot relative to the global coordinate system. In the implementation in this

study z, roll and pitch were ignored because of the planar navigation environment. In

fastSLAM, the particle weight in kept as a scalar value which defines reliability of

the particle.

Also, the surrounding objects are defined with a Gaussian distribution. The robot

keeps the landmarks with the mean vector and covariance matrix. Equations 5.2 and

5.3 show the mean vectors for each different landmark vector:

)

76

)

The covariance matrixes of the detected landmarks are kept in the form:

 (5.7)

 (5.8)

)

77

In the matrices given above defines the area of the plane, and defines the

laplacian and the scale of the SURF feature.

The robot keeps the mean and covariance matrices for each detected landmark for

every particle. In each step, the robot keeps M.N (M:number of particles, N:Number

of detected landmarks) estimates for the surrounding objects.

5.2 Details of the Proposed Implementation

Figure 5-1 shows the steps of the fastSLAM algorithm used in this study.

Figure 5-1 General fastSLAM algorithm.

78

First, the fastSLAM algorithm initializes the simulation parameters. Then the

algorithm runs remaining steps iteratively until the end of the navigation.

All the main steps in the proposed algorithm are:

 Initialization

 Control Measurements

 Prediction

 Sensor Measurements

 Filtering Process

 Feature Extraction

 Modeling the Sensor Measurements

 Data Association

 Re-sampling

The code details concerning these steps are given in Appendix D. The simulator used

in this study is the extended version of the code devised by Tim Bailey [47].

5.2.1 Initialization

In this step, the proposed algorithm undertakes the first initializations. The algorithm

initializes the fastSLAM simulation parameters, vehicle model, motion model, sensor

model, measurement model, animation setup and particles.

In this step, we define state vector and feature vector of robot in vehicle model

initialization part as follows;

The state vector only keeps the x, y and yaw values of the robot throughout the

navigation. The navigation environment is planar and the z, roll and pitch values are

not kept. These are meaningless for planar environments in the simulations in this

study.

The vehicle is modeled as a triangle for easy visualization of simulations. The

vehicle width and wheelbase are defined as 0.4 and 0.6 meters. These are the default

79

values and user cannot change the vehicle model in the GUI. The start condition of

the robot is defined as [0, 0, 0]. The ground truth data for the vehicle is shifted to [0,

0, 0].

The remaining initializations and code details are given in Appendix D.

5.2.2 Control Measurements

The motion model in this study is defined with an odometer motion model. The robot

obtains the odometer sensor readings and updates the state vector. In fastSLAM, the

robot updates all particles’ state vectors. In the simulations, ground truth data is used

to generate the odometer sensor readings. The odometer readings contain the

 values. The main simulator finds the true odometer values and gives

them to the robot with the additional noise. The code details are given in Appendix

D.

5.2.3 Prediction

The robot runs the prediction function after obtaining the odometer readings. The

robot runs the prediction function for each landmark (100 times), takes samples from

the Gaussian distribution of odometer readings and adds these generated values to

the particles’ state vector.

k defines the particle number and the robot runs this prediction for each particle.

5.2.4 Sensor Measurements

In the implementation in this study, the robot moves, makes a prediction and then

takes sensor measurements. In this study, taken from the Microsoft Kinect Sensor the

sensor measurements contain the depth and RGB image of the relevant scan. These

measurements are only a 3D scan of the navigation environment. Raw sensor

80

readings do not give direct information about the landmarks. The robot runs feature

the extraction process and models the scan data with a range bearing sensor model.

5.2.5 Filtering

The robot applies filtering to the raw 3D scan data before the feature extraction

process. In the first step of filtering process, the robot generates the point cloud data

of the obtained depth image with the help of the camera calibration data. Then the

robot applies the filtering process to the generated point cloud data.

The robot filters the ground floor and background of the scan. Then robot runs the

hierarchical clustering which is a type of unsupervised learning method. According

to the result of the clustering process, the robot filters unnecessary and noisy point

groups. The filtering process details are given in section 4.1 and Appendix D.

5.2.6 Feature Extraction

After the filtering process, the robot runs feature extraction algorithms. In the current

investigation, SURF point features and plane features are used. The details of the

feature extraction are given in section 4.2 and 4.3.

5.2.7 Modeling the Sensor Measurement

The algorithm converts the obtained feature vectors using the range-bearing sensor

model this model contains 1 range information and 2 bearing information for 3D

point landmark. All the sensor measurement models for each landmark vectors are

given in the equations 5.12 to 5.15 below.

)

81

)

The sensor model differs according to the selected landmark vector. The sensor

measurement for the plane as point landmark contains only the range and bearing

information. All the other sensor measurement models are shown above. The code

details are given in Appendix D.

5.2.8 Data Association

The robot uses the maximum likelihood estimation method for data association [6].

Figure 5-2 shows the one step of the SLAM process. The definitions are as follows:

 : Defines the expected sensor readings from (landmark-1)

 : Defines the expected sensor readings from (landmark-2)

 : Defines the sensor reading.

Figure 5-2 Data Association.

According to Figure 5-2, the obtained sensor measurement belongs to the first

landmark. However, the robot does not have any prior knowledge about this and

calculates the probability values according to the formula below for each earlier

detected landmark.

82

The computations are;

If all the probability values are lower than the correspondence threshold, the

algorithm evaluates the obtained sensor measurement as a new landmark. Otherwise

it corresponds the measurement with the highest expected measurement.

The robot runs this computation for each landmark type. The only difference is the

size of the sensor measurement and covariance matrix. All the sensor measurement

vectors for different landmark vectors are listed below.

)

)

The data association process is the core of our study. In section 6 the effect of

different landmark vectors on SLAM performance were demonstrated. The data

association performance is the main cause of the performance differences between

experiments.

83

Figure 5-3 shows the data association process.

Figure 5-3 Data association process.

The code details about the association process are given in Appendix D.

5.2.9 Re-sampling Process

Re-sampling is the most important step in the fastSLAM algorithm. The robot keeps

the landmark vectors independent from each other and at every step does not make

any correction about unseen landmark vectors. However, this re-sampling step

84

creates backward information passing by erasing the weak particles. The details of

the re-sampling process are given in 2.7 and Appendix D.

5.2.10 Finalization Process

The proposed algorithm ends the simulation when the recorded dataset and the

navigation path ends. At the end of the navigation, the proposed simulator calculates

the error values according to the ground truth data. The simulator generates the error-

algorithm step graph to show the performance of SLAM. The details about the GUI

and final result visualization are given in Appendix C.

85

CHAPTER 6

EXPERIMENTS AND RESULTS

In this chapter, the effect of certain simulation parameters on the performance of the

fastSLAM algorithm is evaluated using the 3D point cloud dataset and the pioneer

robot. The final results are very impressive even though the simulated error is very

high.

6.1 Experiment with the fre2_360 Map

In these experiments, the results are obtained using the fre2_360 map. Different

maps have been proposed for the robot SLAM algorithms; however, the fre2_360

map is the simplest map for the chosen dataset.

Figure 6-1 External view fre2_360 map [6].

The navigation environment is a closed area with columns and a chair. In the

background, there are objects such as toys, a computer monitor and a plant, which

are scanned by the Kinect sensor. In the simulations in the current study, the reliable

86

range is less than 3.0 meters. Therefore, objects further than 3 meters (toys, the

monitor and the plant) are neglected and they do not affect the simulations.

Figure 6-2 Neglected background objects [6].

In this environment, the robot detects 3 landmarks throughout the navigation. Figure

6-3 shows the detected landmarks and the navigation path.

Figure 6-3 The ground truth of the vehicle and the detected planes. (MATLAB

Image).

87

The explanation of the drawings in Figure 6-3 is given below:

 Green dots: Scanning steps where the robot detects a landmark.

 Red dots: Scanning steps where the robot does not see any landmarks and

moves only using the odometer data.

 White areas: Bird’s-eye view of the plane.

 Blue Vectors: Normal vectors of the planes.

 Green triangle: The true pose of the vehicle

The plane features are drawn according to the ground truth information. There is still

a clear distribution as shown in Figure 6-4. This distribution is caused by errors in

the sensor measurement, plane extraction algorithm and ground truth data.

Figure 6-4 Distribution of the plane features. (bird’s-eye view) (MATLAB Image).

Throughout the navigation, there are seven important phases as listed in Table 6-1. In

phases 2, 4 and 6, the robot does not detect any landmarks. In these phases, the robot

moves using only the predictions based on its control measurement. Since the

navigation is performed without tracking any objects, there is a rapid increase in

errors due to the miscalculation of the control measurement.

88

Table 6-1 Navigation summary of the Fre2_360 map

 Action Running Algorithms Result

1 Agent finds a new landmark. Prediction-Correction
Slow increase

in errors

2 No visible landmark Prediction
Rapid increase

in errors

3 Agent finds a new landmark. Prediction-Correction
Slow increase

in errors

4 No visible landmark Prediction
Rapid increase

in errors

5 Agent finds a new landmark. Prediction-Correction
Slow increase

in errors

6 No visible landmark Prediction
Rapid increase

in errors

7
Agent finds a landmark that

was detected earlier.
Prediction-Correction

Important

correction

Contrary to the other phases, in phases 1, 3, 5 and 7, the vehicle detects an object and

runs the prediction and correction routines. In these phases of the navigation, errors

increase slowly due to the re-sampling process. The algorithm calculates the weight

of each particle, and performs re-sampling according to this information.

The correction in phase 7 is different from the others. In this phase, the robot closes

the loop and calculates the particle weights according to the information that was

gathered in phase 1. When the weight of the weak particles decreases, the algorithm

removes the lighter particles through re-sampling. As a result of this process, the

error correction rate improves remarkably.

Figure 6-5 presents the images of the environment throughout the navigation. As

explained above, there are columns in the foreground and objects in the background.

The sensor measurements further than 3.0 meters are not reliable for the Kinect

sensor; therefore, the algorithm ignores these measurements and only detects the

columns.

In the experiments using the fre2_360 map, the robot navigates one turn in 100

algorithm steps. Steps 1-100 constitute the first loop, 101-200 define the second loop

89

and 201-300 constitute the third loop. The robot detects three landmarks throughout

the navigation. The first landmark is detected for the first time in step 1, and detected

again in steps 88, 188 and 288. The robot detects the second landmark for the first

time in step 25 and again in steps 125 and 225. The third landmark is detected first in

step 53 and again in steps 153 and 253. Detecting the landmarks again, the robot can

make successful corrections in the later steps.

Figure 6-5 The map environment throughout the data collection process [6]. (Edited

with Paint)

In this study, four different experiments were carried out using the fre2_360 map.

The only difference between the experiments concerns the landmark vector, which

defines the features of objects in feature-based slam applications. The explanation of

these landmark vectors is as follows;

Surf Point: Defines the location, scale and laplacian of the detected SURF feature.

)

90

Plane as Point: Defines the center point of the detected plane.

Plane as Oriented Point: Defines the center point and normal vector of the plane.

)

Plane as Surface: Defines the center point, normal vector and area of the plane.

All the simulation parameters used in the experiments are listed in Table 6-2.

Table 6-2 Simulation parameters for experiments using the Fre2_360 Map

 Exp. 1 Exp. 2 Exp. 3 Exp. 4

Landmark Vector
SURF

Point

Plane as

Point

Plane as

Oriented

Point

Plane as

Surface

Number of Particles 100 100 100 100

Effective Particle Rate (%) 90% 90% 90% 90%

Correspondence Threshold 0.00001 0.00001 0.00001 0.00001

Scanning Step 10 10 10 10

Linear Velocity Errors (%) 10% 10% 10% 10%

Angular Velocity Errors (%) 10% 10% 10% 10%

As stated above, the only difference between the four experiments is the landmark

vector. The fastSLAM algorithm is performed 150 times for each landmark vector.

The final translational and rotational errors for each experiment are given in Table

6-3.

91

Table 6-3 The final results of errors (Mean of 100 particles and 150 simulations)

 Landmark Vector

SURF Point 0.6831 0.3292

Plane as Point 1.6242 0.6792

Plane as Oriented Point 0.8939 0.4872

Plane as Surface 0.8421 0.4159

The errors indicate the mean of the error values of all particles and simulations and

are calculated according to the following rule:

A comparison of the final error values given in Table 6-3 is as follows;

In experiment-1, the SURF points are used as the landmark vector for the SLAM

algorithm. The SURF feature detector finds a high number of features at the edges of

the objects, providing the best performance for the SLAM algorithm.

Other landmarks used in the remaining three experiments help define the planar

features (the center point, normal vector and area) of the objects. In experiment-2,

the algorithm runs using the plane as point landmark vector, which carries the center

point of planar surfaces. In experiment-3, the plane as oriented point landmark

vector is used and the center point and normal vector of planar surfaces are defined.

In experiment-4, the algorithm uses the plane as surface landmark vector, which

contains the information about the center point, orientation and area of the plane.

According to the final results in Table 6-3, the size of the landmark vector and final

errors is inversely proportional in all landmark vectors and the best result is obtained

from the plane as surface landmark vector.

92

Time consumption is another important factor for SLAM applications. In Table 6-4,

the number of the detected landmarks and the time taken for their detection are given

in relation to each landmark vector.

Table 6-4 The results of the simulation (The comparison of Landmark Vectors

according to Time Consumption and Number of Landmarks)

Landmark Vector Landmarks Time(seconds)

SURF Point 36 3935

Plane as Point 3 931

Plane as Oriented Point 3 925

Plane as Surface 3 915

The number of landmarks and time consumption are calculated according to the

following rules;

According to the results, the SURF landmark vector produces a lower error rate than

the other landmark vectors. However, using the SURF landmark vectors results in a

higher time consumption due to the high number of landmarks, which reached 36.

One of the SLAM simulations using the SURF landmark vectors lasted 3935 seconds

instead of 931 seconds, which means that defining the SURF features takes almost 4

times (3935 / 931 = 4,22) longer than in the use of other three vectors. On the other

hand, there were small differences between the planar features in terms of time

consumption due to the re-sampling process. The algorithm runs the re-sampling

process more frequently if the estimation of the robot diverges from the ground truth.

The plane as surface landmark vector quickly converges to the true pose with the

help of the best correspondence performance obtained from the landmark vectors.

93

The final results in terms of error and time are directly proportional to those obtained

from the planar landmark vectors.

The time difference between the SURF point and other landmark vectors is due to

the structure of the fastSLAM algorithm. As a result of running more data

association functions due to the high number of particles involved in the SURF point

landmarks, the robot keeps 36 landmarks for each particle, instead of 3. The feature

extraction time is another cause for the difference in time consumption between the

experiments. The comparison of the time taken for the feature extraction methods is

given in Table 6-5.

Table 6-5 Comparison of the time taken for the feature extraction methods.

Feature Extraction Method Time (seconds)

Plane Feature Extraction 3.3229

SURF Feature Extraction 7.9377

The SURF feature extraction method takes almost two times (7.9377 / 3.3229) longer

than the plane feature extraction method. The SURF feature is not suitable for indoor

real-time SLAM applications due to the high time consumption.

The performance of experiments is also analyzed throughout the navigation. Figures

6-6 and 6-7 show the graphical representation of the translational and rotational

errors for the three-loop navigation throughout the motion path.

Before the loop-closure (until step 88), all the experiments have similar results.

According to Figure 6-6 and Figure 6-7, the plane as oriented point and plane as

surface landmark vectors cause higher errors in some areas compared with the other

methods due to an algorithmic error that occurred in the plane detection process

before step 88. However, the difference in the error rates is insignificant and thus,

94

can be ignored. Consequently, the type of the landmark vector does not have a

significant impact on the performance of the SLAM before the loop-closure.

Figure 6-6 Translational error – the algorithm step plot for different landmark

vectors. (Values corresponding to the mean of 100 particles) (MATLAB Image).

After the loop-closure, as a result of using a high number of landmarks, the SURF

point landmark vector provides the best result and a better correction rate compared

with the other planar landmarks. There are three landmarks on the fre2_360 map.

The robot detects the first landmark for the first time in step 1 and again in steps 88,

188 and 288. The second landmark is detected for the first time in step 25, and again

in steps 125 and 225. The third landmark is detected first in step 53 and again in

steps 153 and 253. The most important step throughout the navigation is step 88,

where the robot detects the first landmark for the second time and closes the

navigation path. With this loop-closure, there is a remarkable improvement in the

correction rate.

Figure 6-7 shows the graphical representation of rotational errors for the three-loop

navigation throughout the motion path.

95

Figure 6-7 Rotational error – the iteration plot for different landmark vectors. (Values

corresponding to the mean of 100 particles) (MATLAB Image).

The rotational error plots are almost the same as translational error plots. All the

statements that are made for translational errors are also valid for rotational errors.

Before the loop-closure (until step 88), all the experiments give similar results in

terms of errors. The landmark vector does not have any significant effect on the

performance of the SLAM before the loop-closure. However, after the loop-closure,

the SURF point landmark vector produces the best result due to the high number of

landmarks, allowing the algorithm to define the surrounding objects with a higher

number of properties and to provide a low rotational error for the planar landmarks.

The root cause of this final result is the correspondence performance of different

landmark vectors.

In step 88, the robot detects the first landmark for the second time and closes the

navigation path. With the loop-closure, the correction rate improves. In steps 125,

153, 188, 225, 253 and 288, the robot detects the same landmarks again and

decreases the errors. Also, in step 53, since the effective particle rate decreases below

96

the predefined threshold (90%), the robot runs the re-sampling process. The effective

particle rate plot according to the algorithm steps is given in Figure 6-8.

Figure 6-8 Effective particle rate plot for navigation on the fre2_360 map.

Table 6-6 presents the final error values of the plane as point and plane as surface

landmark vectors and gives a comparison of their numerical performance.

Table 6-6 Comparison of the final performance of SLAM experiments.

Final Translational Errors Final Rotational Errors

 ∆

 ∆

1.6242 0.8421 0.7821 48% 0.6792 0.4159 0.2978 38%

The differences between the landmark vectors in terms of error and correction rates

are calculated using the following formulas;

∆ : -

97

where;

 is the total number of errors obtained from the plane as point landmark

vector,

 is the total number of errors obtained from the plane as surface landmark

vector, and

 is the proportional evaluation of the decrease or increase in errors. This formula

gives the rate of decrease in errors compared with the initial values (obtained by

using the point landmarks).

The plane as surface landmark vector, which carries more properties of the planar

surfaces, provides a higher decrease in translational errors (48%) and rotational

errors (38%) compared with the plane as point landmark vector, which only carries

the center point.

As a result, the SURF point landmark vector provides better results than the other

three vectors in terms of translational and rotational errors. However, the

computational cost of the SURF point landmark vector is very high since the SURF

interest point detector gives high responses on the edges of the depth image.

Therefore, the use of SURF point landmark vectors for real-time indoor fastSLAM

applications is not appropriate. The SURF point landmark vectors that are ignored in

the remaining experiments and the contribution of planar features are investigated

using the plane as point, plane as oriented point and plane as surface landmark

vectors.

According to the results, the plane as surface landmark vector outperforms the other

planar landmark vectors.

The number of features contained by the plane as surface, plane as oriented point,

and plane as point landmark vectors are 7, 6 and 3, respectively. This shows that a

SLAM algorithm with more features provides a better SLAM performance.

98

6.2 The Effect of Parameters

6.2.1 The Effect of Linear Velocity Errors

This section demonstrates the effect of linear velocity errors on the performance of

different landmark vectors. The error rates and other simulation parameters are listed

in Table 6-7.

Table 6-7 Simulation Parameters.

 Experiment 1 Experiment 2 Experiment 3

Landmark Vector Plane as Point
Plane as

Oriented Point
Plane as Surface

Number of Particles 100 100 100

Effective Particle Rate (%) 90% 90% 90%

Correspondence Threshold 0.00001 0.00001 0.00001

Scanning Step 10 10 10

Linear Velocity Errors (%) 3%, 7%, 15% 3%, 7%, 15% 3%, 7%, 15%

Angular Velocity Errors (%) 10% 10% 10%

There are nine scenarios (3x3) for three different landmark vectors and three

different linear velocity error rates. Figure 6-9 and Figure 6-10 show the effect of the

linear velocity error rate on the SLAM performance before and after the loop-

closure. According to these figures, the linear velocity error rate does not have any

effect on the rotational errors before the loop-closure. So, the rotational errors are

independent from the linear velocity errors before the loop-closure. All the

experiments produce similar rotational error rates regardless of the rate of the

injected linear errors. However, the linear velocity error rate has a significant effect

on the translational error rate, which is directly proportional to the rate of the injected

linear velocity errors. As explained above, this is valid for steps 1 to 88. In this

interval, the planar features (normal vector and area) do not contribute to the

performance of the SLAM simulation. In other words, the SLAM performance is

independent from the landmark vectors before the loop-closure.

99

On the other hand, the principal effect of landmark vectors on the SLAM

performance is prominent after the loop-closing process. Even though the error

characteristics are very similar, there are some differences in the details.

Figure 6-9 shows the effect of the linear velocity error rate on the translational errors.

In step 88, the robot detects the first landmark for the second time and decreases the

translational errors through re-sampling. Therefore, steps 88, 125, 153, 188, 225,

253, and 288 are powerful steps due to the loop closure and the re-sampling process.

A comparison of the translational error rates after the loop-closure is given below:

The plane as a point landmark vector provides better results (with an error rate of

3%) than the other landmark vectors. This is due to the algorithmic errors injected to

the system by the plane as oriented point and plane as surface landmark vectors.

The plane as oriented point and plane as surface landmark vectors are successful

in making corrections for the 7% and 15% error rates. The correction rate of the

plane as point landmark vector is satisfactory for some intervals; however, the error

rate is still higher than the rate obtained from the other landmark vectors. The

correction rate of the plane as point landmark vector is particularly low for the 15%

error rate. Since the robot corrects only a small percentage of the particles, and erases

the corrected particles in the following steps, the rate of translational errors increases

again.

100

F
ig

u
re

 6
-9

 T
h
e

ef
fe

ct
 o

f
th

e
li

n
ea

r
v
el

o
ci

ty
 e

rr
o
r

ra
te

 o
n
 t

ra
n

sl
at

io
n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

.

101

F
ig

u
re

 6
-1

0
 T

h
e

ef
fe

ct
 o

f
th

e
li

n
ea

r
v
el

o
ci

ty
 e

rr
o
r

ra
te

 o
n
 r

o
ta

ti
o
n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

.

102

Figure 6-10 shows the effect of the linear velocity error rate on rotational errors. In

step 53, the robot runs the re-sampling process correcting the errors in all

experiments. In step 88, the first landmark is detected for the second time and the

number of rotational errors increases as a result of the re-sampling process. Steps 88,

125, 153, 188, 225, 253, and 288 are important and effective steps since they involve

the re-sampling process. A comparison of the rotational error rates after the loop-

closure is given below:

This comparison is valid for all error rates after the loop-closure. However, the

correction performance differs according to the rate of the injected errors. The plane

as oriented point and plane as surface landmark vectors provide effective

corrections even if the linear velocity error rate is 15%. The plane as point landmark

vector provides corrections for the 7% error rate, but cannot produce satisfactory

results when the error rate increases to 15%.

Table 6-8 presents the final error values and of the plane as point and plane as

surface landmark vectors and gives a comparison of their numerical performance.

Table 6-8 A comparison of the final performance of SLAM experiments

 Final Translational Errors Final Rotational Errors

 ∆

 ∆

E
rr

o
r

R
a

te

3% 0.4085 0.4419 -0.0334 -8% 0.4007 0.3154 0.0853 21%

7% 0.8920 0.5888 0.3032 34%

0.5722 0.3420 0.2302 40%

15% 2.8880 1.1977 1.6903 59% 0.7958 0.4981 0.2978 38%

Both landmark vectors provide similar results for translational errors when the rate of

the injected linear velocity errors is 3%. The robot follows the right path and the

correspondence performance of the landmark vectors does not have any impact on

the final result of the translational errors. However, the rate of the injected angular

velocity errors is 10% for all the experiments. The plane as point landmark vector

103

does not carry any rotational information. The plane as surface landmark vector

carries rotational information and corrects 21% of errors even if the injected linear

velocity error rate is 3%. The rotational correction increases to 40% when the

injected linear velocity error is higher than 7%.

The difference between experiments arises when the injected linear velocity error

rate increases to %15. For the %15 linear velocity error rate, the plane as point

landmark vector cannot make correct correspondences; thus, the error correction rate

using plane as surface landmark vector reaches 59% for translational errors and

40% for rotational errors.

6.2.2 The Effect of Angular Velocity Errors

This section demonstrates the performance of different landmark vectors for different

rates of angular velocity errors. The error rates and other simulation parameters are

listed in Table 6-9.

Table 6-9 Simulation Parameters

 Experiment 1 Experiment 2 Experiment 3

Landmark Vector Plane as Point
Plane as

Oriented Point
Plane as Surface

Number of Particles 100 100 100

Effective Particle Rate (%) 90 90 90

Correspondence Threshold 0.00001 0.00001 0.00001

Scanning Step 10 10 10

Linear Velocity Errors (%) 10% 10% 10%

Angular Velocity Errors (%) 3%, 7%, 15% 3%, 7%, 15% 3%, 7%, 15%

There are nine scenarios (3x3) for three different landmark vectors and three

different rates of angular velocity errors. Figure 6-11 and Figure 6-12 show the effect

of the angular velocity error rate on the SLAM performance before and after the

loop-closure.

According to Figure 6-11 and Figure 6-12, the rate of angular velocity errors does

not have any effect on the translational errors before the loop-closure. In other words,

104

the translational errors are independent from the angular velocity error before the

loop-closure. All the experiments produce similar results in term of translational

errors regardless of the rate of the injected angular velocity errors. However, the

angular velocity errors have a significant effect on the rotational error rate, which is

directly proportional to the rate of the injected angular velocity errors. As stated

before, this is valid for steps 1 to 88. In this interval, the planar features (normal

vector and area) do not contribute to the performance of the SLAM simulation, so

the SLAM performance is independent from the landmark vectors before the loop-

closure.

On the other hand, the landmark vectors start to affect the SLAM performance after

the loop-closure. Even though the error characteristics are very similar, there are

some differences in the details.

Figure 6-11 and Figure 6-12 show the effect of the angular velocity error rate on the

SLAM performance. In step 53, the robot runs the re-sampling process and corrects

errors in all experiments. In step 88, the robot detects the first landmark for the

second time and decreases the number of translational errors through re-sampling.

Steps 88, 125, 153, 188, 225, 253, and 288 are important since they include the loop-

closure and re-sampling processes. A comparison of the error rates after the loop-

closure is as follows:

This comparison is valid for all error rates after the loop-closing process. However,

the performance differs according to the rate of the injected errors.

For the translational errors, the plane as point landmark vector provides corrections

for the 3% and 7% angular velocity error rates. However, when the angular velocity

error rate increases to 15%, the plane as point landmark vector is not able to make

successful corrections and thus the number of errors increases with motion. On the

other hand, the plane as surface and plane as oriented point landmark vectors

provide satisfactory corrections for all error rates and the errors do not increase with

motion.

105

F
ig

u
re

 6
-1

1
 T

h
e

ef
fe

ct
 o

f
th

e
an

g
u
la

r
v
el

o
ci

ty
 e

rr
o

r
ra

te
 o

n
 t

ra
n
sl

at
io

n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

106

F
ig

u
re

 6
-1

2
 T

h
e

ef
fe

ct
 o

f
th

e
an

g
u
la

r
v
el

o
ci

ty
 e

rr
o

r
ra

te
 o

n
 r

o
ta

ti
o
n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

107

For rotational errors, the plane as a point landmark vector with the 3% angular

velocity error rate provides similar results to those obtained from the other landmark

vectors due to the low rate of the injected angular velocity errors.

The plane as oriented point and plane as surface landmark vectors provide

successful corrections for the 7% and 15% error rates. The plane as point landmark

vector provides satisfactory results for some intervals, but the number of errors is

still higher than those obtained from the other landmark vectors. The plane as point

landmark vector provides the lowest correction for the 15% error rate since the robot

corrects only a small percentage of the particles and erases the corrected particles in

the following steps, which increases the number of errors again.

Table 6-10 presents the final error values of the plane as point and plane as surface

landmark vectors and gives a comparison of their numerical performance.

Table 6-10 A comparison of the final performance of SLAM experiments

 Final Translational Errors Final Rotational Errors

 ∆

 ∆

E
rr

o
r

R
a

te

3% 0.8249 0.5541 0.2708 33% 0.2450 0.2127 0.0323 13%

7% 1.3179 0.8285 0.4894 37%

0.4454 0.3588 0.0866 19%

15% 1.9245 0.9277 0.9969 52% 0.9088 0.4734 0.4354 48%

Both landmark vectors give similar results in terms of rotational errors when the rate

of the injected angular velocity errors is 3%. However, the injected linear velocity

error rate is 10%. The plane as surface landmark vector corrects 33% of the errors

even when the injected angular velocity error rate is 3%.

A difference between the experiments arises when the injected angular velocity error

rate increases to %15. The plane as point landmark vector with a 15% angular

velocity error rate cannot make the correct correspondences; however, the correction

rate of the plane as surface landmark vector can reach 48% for rotational and 52%

for translational errors.

108

6.2.3 The Effect of Particle Number

This section demonstrates the performance of different landmark vectors for different

number of particles. The particle numbers and other simulation parameters are listed

in Table 6-11.

Table 6-11 Simulation Parameters

 Experiment 1 Experiment 2 Experiment 3

Landmark Vector Plane as Point
Plane as

Oriented Point
Plane as Surface

Number of Particles 20, 100 20, 100 20, 100

Effective Particle Rate (%) 90% 90% 90%

Correspondence Threshold 0.00001 0.00001 0.00001

Scanning Step 10 10 10

Linear Velocity Errors (%) 10% 10% 10%

Angular Velocity Errors (%) 10% 10% 10%

There are six scenarios (3x2) for three different landmark vectors and two different

particle numbers. Figure 6-13 and Figure 6-14 show the effect of each particle

number on the SLAM performance before and after the loop closure.

The SLAM performance is independent from the particle number before the loop-

closure. All the experiments give similar results in terms of translational and

rotational errors for different number of particles between steps 1-88. In this interval,

the plane as surface and plane as oriented point landmark vectors do not provide

any extra contribution to the performance of the SLAM simulation. In step 53, the

robot runs the re-sampling process and decreases the number of rotational errors in

all experiments.

The effect of landmark vectors on the SLAM performance is prominent after the

loop-closing process. The error comparison for translational errors and rotational

errors are the same. The final error comparison after the loop-closure is as follows:

109

F
ig

u
re

 6
-1

3
 E

ff
ec

t
o
f

p
ar

ti
cl

e
n
u
m

b
er

 o
n
 t

ra
n
sl

at
io

n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

110

F
ig

u
re

 6
-1

4
 E

ff
ec

t
o
f

p
ar

ti
cl

e
n
u
m

b
er

 o
n
 r

o
ta

ti
o
n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

111

This comparison is valid for both particle numbers (20, 100). The plane as point

landmark vector provides corrections to some extent but performs worse than the

plane as oriented point and plane as surface landmark vectors for both particle

numbers. For 20 and 100 particles, defining the plane with more parameters gives

successful results after the loop-closure.

The plane as point landmark vector provides corrections for some of the particles,

but the weights are not as high as expected. Therefore, these low weighted particles

are eliminated after correction resulting in an increase in the errors. On the other

hand, the plane as surface landmark vector provides successful corrections. Since

many of the particles converge to the true pose, the robot can keep the pose error at a

low level and thus there is no significant increase in the errors after the loop-closure.

The plane as surface and plane as oriented point landmark vectors with 20

particles provide similar successful results in the experiments using 100 particles.

This result indicates the success of the particle filter approach. Even when the

particle number is 20, the simulations converge to the true pose using the correct

landmark vectors (plane as oriented point or plane as surface).

Table 6-12 presents the final error values of the plane as point and plane as surface

landmark vectors and gives a comparison of their numerical performance.

Table 6-12 Comparison of the final performance of SLAM experiments

Final Translational Errors Final Rotational Errors

 ∆

 ∆

P
a

rt
ic

le
 20 1.9322 1.0090 0.9232 48% 0.8105 0.4981 0.3124 38%

100 1.6324 0.8472 0.7852 48% 0.6938 0.4155 0.2782 40%

According to Table 6-12, different particle numbers have a similar effect on the

correction performance for both rotational and translational errors. So, the correction

rate is independent from the particle number. The plane as surface landmark vector

provides a 48% correction rate for translational errors and almost a 40% correction

rate for rotational errors for both particle numbers. However, the number of

112

corrections differs according to the number of particles. The number of particles and

corrections are inversely proportional.

6.2.4 The Effect of Effective Particle Rate

This section demonstrates the performance of different landmark vectors for different

effective particle rates. The effective particle rates and other simulation parameters

are listed in Table 6-13.

Table 6-13 Simulation Parameters

 Experiment 1 Experiment 2 Experiment 3

Landmark Vector Plane as Point
Plane as

Oriented Point
Plane as Surface

Number of Particles 100 100 100

Effective Particle Rate (%) 20%, 90% 20%, 90% 20%, 90%

Correspondence Threshold 0.00001 0.00001 0.00001

Scanning Step 10 10 10

Linear Velocity Errors (%) 10% 10% 10%

Angular Velocity Errors (%) 10% 10% 10%

There are six scenarios (3x2) for three different landmark vectors and two different

effective particle rates. Figure 6-15 and Figure 6-16 show the effect of the effective

particle rate on the SLAM performance before and after the loop-closure.

The SLAM performance is independent from the effective particle rate before the

loop-closure. All the experiments produce similar translational and rotational error

rates for different effective particle rates between steps 1-88. In this interval, the

plane as surface and plane as oriented point landmark vectors do not provide any

extra contribution to the performance of the SLAM simulation. Also, in step 53, the

robot runs the re-sampling process and decreases the number of errors in all

experiments.

113

F
ig

u
re

 6
-1

5
 T

h
e

ef
fe

ct
 o

f
th

e
ef

fe
ct

iv
e

p
ar

ti
cl

e
ra

te
 o

n
 t

ra
n
sl

at
io

n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

.

114

F
ig

u
re

 6
-1

6
 T

h
e

ef
fe

ct
 o

f
th

e
ef

fe
ct

iv
e

p
ar

ti
cl

e
ra

te
 o

n
 r

o
ta

ti
o
n
al

 e
rr

o
rs

 (
M

A
T

L
A

B
 I

m
a
g
e)

.

115

The effect of landmark vectors on the SLAM performance is prominent after the

loop-closing process. The characteristics of translational and rotational errors are the

similar for both effective particle rates. A comparison of the error rates after the

loop-closure is given below.

This comparison is valid for both effective particle rates (20%, 90%). Even though

the plane as point landmark vector provides corrections to some extent, it performs

worse than the plane as oriented point and plane as surface landmark vectors for

both effective particle rates. The plane as surface and plane as oriented point

landmark vectors provide successful corrections for the 20% and 90% effective

particle rates after the loop-closure. The robot makes significant number of

corrections in steps 88, 125, 153, 188, 225, 253 and 288. According to Figure 6-8, in

these steps the effective particle rate decreases to approximately 20% and therefore,

the effective particle rate (20% or 90%) does not have any significant effect on the

SLAM performance.

The plane as point landmark vector provides corrections for some of the particles

but the weights are not as high as expected. Therefore, these low weighted particles

are eliminated after correction, resulting in an increase in the number of errors again.

On the other hand, the plane as surface and plane as oriented point landmark

vectors provide successful corrections. As a result of many of the particles

converging to the true pose, the algorithm is able to keep the error rate at a low level

and there is no significant increase in errors after the loop-closure.

Table 6-14 presents the final error values of the plane as point and plane as surface

landmark vectors and gives a comparison of their numerical performance.

116

Table 6-14 A comparison of the final performance of SLAM experiments

Final Translational Errors Final Rotational Errors

 ∆

 ∆

E
ff

.
 P

a
rt

ic
le

R
a

te

20% 1.8177 0.9307 0.8870 48% 0.7729 0.4144 0.3585 46%

90% 1.6324 0.8472 0.7852 48% 0.6938 0.4155 0.2782 40%

According to Table 6-14, the effective particle rate has a similar effect on the

correction rates for both rotational and translational errors. The correction rate for

translational errors is independent from the effective particle rate. For both effective

particle rates, the plane as surface landmark vector corrects 48% of the translational

errors and approximately 40% of the rotational errors. However, the number of

corrections differs according to the effective particle rate. The effective particle rate

and the number of corrections are inversely proportional.

6.2.5 The Effect of Re-sampling

This section demonstrates the effect of re-sampling on the performance of different

landmark vectors.

Table 6-15 Simulation Parameters

 Experiment 1 Experiment 2 Experiment 3

Landmark Vector Plane as Point
Plane as

Oriented Point
Plane as Surface

Number of Particles 100 100 100

Effective Particle Rate (%) 90% 90% 90%

Correspondence Threshold 0.00001 0.00001 0.00001

Scanning Step 10 10 10

Linear Velocity Errors (%) 10% 10% 10%

Angular Velocity Errors (%) 10% 10% 10%

117

There are a total of six scenarios (3x2) for three different landmark vectors. Figure

6-17 and Figure 6-18 show the effect of re-sampling on the SLAM performance

before and after the loop closure.

Figure 6-17 The effect of re-sampling on translational errors (MATLAB Image).

The plane as point, plane as oriented point and plane as surface landmark vectors

do not make any corrections without re-sampling. The re-sampling process replaces

the low weighted particles with copies of high weighted particles. Without the re-

sampling process, the particle weights and their contribution to the SLAM problem is

not meaningful, neither are the correction and data association steps; so the robot

moves using only its predictions.

On the other hand, with the re-sampling process, all the landmark vectors provide

corrections in steps 53, 88, 125, 153, 188, 225, 253, and 288.

Re-sampling is the most important part of fastSLAM algorithms. The re-sampling

step replaces the light-weighted particles with the copies of stronger particles. The

robot applies this re-sampling process according to the particle weights. These

118

weights determine the extent to which the particles converge to the obtained

measurement.

Figure 6-18 The effect of re-sampling on rotational errors (MATLAB Image)

Table 6-16 presents the final error values of the plane as point and plane as surface

landmark vectors and gives a comparison of their numerical performance.

Table 6-16 The comparison of the final performance of SLAM experiments

Final Translational Errors Final Rotational Errors

 ∆

 ∆

W
it

h
o

u
t

R
es

.

1.9441 1.9436 0.0005 0.03% 1.0180 1.0192 -0.0012 -0.12%

W
it

h

R
es

.

1.6324 0.8472 0.7852 48% 0.6938 0.4155 0.2782 40%

119

According to Table 6-16, the plane as surface and plane as point landmark vectors

do not provide any corrections without re-sampling. The final errors are independent

from the landmark vector. On the other hand, the plane as surface landmark vector

corrects 48% of the translational errors and 40% of the rotational errors after the re-

sampling process.

6.3 Experiment with the fre2_SLAM3 Map

The fre2_SLAM3 map is more complex than the fre2_360 map. Figure 6-19 shows

the navigation environment for the fre2_SLAM3 map. There are toys and other

background objects in the navigation environment, but the robot filters these objects

and detects only the columns and other planar surfaces.

Figure 6-19 The environment for the FRE2_SLAM3 map [6].

120

The simulation parameters are listed in Table 6-17.

Table 6-17 Simulation parameters for fre2_SLAM3 map

 Experiment 1 Experiment 2 Experiment 3

Landmark Vector Plane as Point
Plane as

Oriented Point
Plane as Surface

Number of Particles 100 100 100

Effective Particle Rate (%) 90% 90% 90%

Correspondence Threshold 0.00001 0.00001 0.00001

Scanning Step 10 10 10

Linear Velocity Errors (%) 10% 10% 10%

Angular Velocity Errors (%) 10% 10% 10%

The final results of the three-loop navigation are given in Table 6-18.

Table 6-18 SLAM performance results

Landmark Vector

Plane as Point 2.4289 0.6129

Plane as Oriented Point 0.8686 0.3075

Plane as Surface 0.7488 0.2403

A comparison of the performance of landmark vectors for translational and rotational

errors is given below.

The results obtained from the plane as surface and plane as oriented point

landmark vectors are similar and both lower than the result from the plane as point

landmark vector. These results validate the results obtained from the earlier

experiments in sections 6.1 and 6.2. The high dimensional landmark vector, plane as

surface, provides a better result than the other landmark vectors.

121

Figure 6-20 and Figure 6-21 present the algorithm steps for different landmark

vectors in terms of translational and rotational errors, respectively.

Figure 6-20 Translational error – algorithm step plot for different landmark vectors.

(MATLAB Image).

Figure 6-21 Rotational error – algorithm step plot for different landmark vectors.

(MATLAB Image).

122

According to Figure 6-20 and Figure 6-21, in step 180, the robot closes the loop and

decreases the number of translational and rotational errors for the plane as surface

and plane as oriented point landmarks. The plane as point landmark vector

provides corrections for translational and rotational errors at the first loop-closing (in

step 180). In step 380, corrections are still made for some of the rotational errors.

However, the robot can no longer follow the right path after the second loop and thus

in step 580, no correction is performed. On the other hand, the robot can follow the

right path when using the plane as oriented point or plane as surface landmark

vectors.

Table 6-19 shows the error results for the loop-closing steps.

Table 6-19 Error results for algorithm steps

 Plane as Point Plane as Surface

Step 180 0.9152 0.2468 0.8246 0.2681

Step 380 1.6540 0.4131 0.6622 0.1930

Step 580 2.3818 0.5948 0.7947 0.2316

Step 600 2.4289 0.6129 0.7488 0.2403

Using the plane as surface landmark vector, translational errors are kept below 0.8

meters and rotational errors are maintained below 0.25 radian, after the steps 180,

380 and 580. On the other hand, the plane as point landmark vector does not provide

any significant corrections in the loop closing steps. Both translational and rotational

errors increase with motion. In the final step, translational and rotational errors reach

2.5 meters and 0.6 radian, respectively.

Table 6-20 shows a comparison of the performance of the plane as surface and

plane as point landmark vectors.

123

Table 6-20 The comparison of the final performance of SLAM experiments

Final Translational Errors Final Rotational Errors

 ∆

 ∆

2.4289 0.7488 1.6801 69% 0.6129 0.2403 0.3726 60%

The plane as surface landmark vector corrects 69% more translational errors and

60% more rotational errors than the plane as point landmark vector. These

correction rates clearly show the contribution of the plane as surface landmark

vector to the SLAM performance.

6.4 Experiment with the Pioneer Robot

This section presents the comparison of different landmark vectors using a real-time

application. In this part of the research, the plane as point, plane as oriented point

and plane as surface landmark vectors are investigated. The navigation environment

is the METU Computer Vision Laboratory and a pioneer 2 robot with a Kinect

sensor is used.

Figure 6-22 shows the pioneer robot, navigation environment, and the marked

ground, which provides the ground truth measurements at interval steps.

Figure 6-22 The map environment and the robot (Images were taken in the METU

Lab.)

124

The navigation environment is noisy and crowded but the filtering process eliminates

the unnecessary objects such as books and tables. After the filtering process, the only

remaining points are the backs of the chairs. The navigation environment is shown in

Figure 6-22 and Figure 6-23.

Figure 6-23 Screenshots from the RGB camera of the Kinect sensor during

navigation (Images were taken in the METU Lab.)

The original depth and RGB image for the first scan are shown in Figure 6-24. The

target objects are outlined in red.

Figure 6-24 Sample depth and RGB image from a real-time application (Taken in the

METU Lab.)

125

Figure 6-25 shows the extracted feature points after the filtering and clustering

process (back of the chair) in green.

Figure 6-25 Sample 3D point cloud from a real time application (MATLAB Image).

The plane fit algorithms are applied to the green points, and SLAM algorithms are

performed using these extracted features. Figure 6-26 shows the visual result of one-

turn navigation.

Figure 6-26 Final view of the vehicle and the detected landmarks (MATLAB Image).

The white dots indicate the determined path with the blue dots showing the ground

truth and the green dots defining the found path (mean of a hundred particles). The

126

blue triangle shows the position after the commanded motion, the green triangle

shows the real position of the vehicle after motion, and the red triangle indicates the

final position of the particle with the maximum weight as found by the SLAM

algorithm. A comparison of the results for translational and rotational errors is given

in Figure 6-27 and Figure 6-28, respectively.

Figure 6-27 Comparison of the translational error rates in the recorded path of a real

time application (MATLAB Image).

Figure 6-28 Comparison of the rational error rates in the recorded path of a real time

application (MATLAB Image).

127

The robot completes one turn in 75 algorithm steps and detects 5 different landmarks

throughout the navigation. The first landmark is detected in step 72 for the second

time and the loop is closed. 147 and 222 are the other loop-closing steps. The robot

also closes the loops 8 times in other interval steps (such as 81, 90) between 72 and

225. In these loop-closing steps, there is no significant error correction due to the low

rates of translational and rotational errors. In the majority of the navigation, the robot

runs the prediction and correction sequences together. There is not much space

between the objects, and after the loop-closure, errors do not increase as a result of

tracking the landmarks that were detected earlier. In the experiments using the

fre2_360 map there is much more space between the landmarks and therefore, the

errors increase due to the lack of the correction sequence. As a result, a significant

error correction was observed at the interval loop-closing steps (125, 153, 225, and

253).

In the real time application used in this study, the robot always finds the right path in

all experiments involving different landmark vectors. All landmark vectors provide

corrections in loop-closing steps, but the plane as surface landmark vector performs

better due to its high correspondence performance.

Table 6-21 shows the final error results for the SLAM application performed in the

computer vision laboratory.

Table 6-21 The final error results in the navigation of the Pioneer 2 robot.

Landmark Vector

Plane as Point 0.5899 0.2899

Plane as Oriented Point 0.3083 0.1410

Plane as Surface 0.2394 0.1250

A comparison of the performance of landmark vectors for translational and rotational

errors is given below.

128

The plane as surface and plane as oriented point landmark vectors provide similar

results that were both lower than the result obtained from the plane as point

landmark vector. These results validate the results obtained from the earlier

experiments in sections 6.1, 6.2 and 6.3. The high dimensional landmark vector,

plane as surface, performs better than the other landmark vectors.

Table 6-22 presents the final error values of the plane as point and plane as surface

landmark vectors and gives a comparison of their performance in terms of

translational and rotational errors.

Table 6-22 A comparison of the final performance of experiments.

Final Translational Errors Final Rotational Errors

 ∆

 ∆

0.5899 0.2394 0.3505 60% 0.2899 0.1250 0.1649 56%

According to the results, the real time application validates the thesis in this research.

Using more compact landmark vectors results in a better correction performance

compared with the other landmarks. The correction rate obtained from the plane as

surface landmark vector is 60% higher for translational errors and 56% higher for

rotational errors when compared with the results of the plane as point landmark

vector. These correction rates clearly show the contribution of the plane as surface

landmark vector to the SLAM performance. Defining the surrounding objects with

surface properties provides a better correspondence and increases the SLAM

performance.

129

CHAPTER 7

CONCLUSION

7.1 Summary and Conclusion

This thesis presents the contribution of planar features to the fastSLAM algorithm for

indoor environments which were determined using two different feature detection

methods (SURF feature detection and plane feature detection) and four different

landmark vectors (SURF points, plane as point, plane as oriented point and plane as

surface).

An accurate algorithm of SLAM is implemented by utilizing a particle filter. The

performance of the SLAM is analyzed for different landmark vectors and different

map environments.

The SURF feature detection algorithm gives a high number of responses at the edge

of the depth images. A SLAM application with this high number of SURF features is

more successful than the other applications. On the other hand, this high number of

SURF features results in very high time consumption and makes SURF features

useless for real time indoor applications.

Also, the map environment and navigation have an important effect on the

performance of the SLAM algorithm. According to all the results, it was found that

there are two different phases in simulations.

 Before the loop-closing

 After the loop-closing.

Before the loop closing, the approach proposed in this study does not guarantee a

decrease in the number of errors due to the algorithmic errors injected to the system

through the detection of the planar features. However, after the loop closing the

proposed landmark vectors satisfy significant error correction and the error rate

130

decreases compared with the number of errors that occur in the other method. Planar

features may inject an error to the simulation because of the structure of plane

detection algorithms, non-planar surfaces and sensor measurement errors. Planar

features provide successful correction, despite these algorithmic errors.

Also, the proposed method tested under the effect of different simulation parameters

and results supported our thesis. These simulation parameters are linear velocity

error rate, angular velocity error rate, particle number and effective particle rate.

These simulations were undertaken with the SLAM_360 map and comments on the

results are given with their graphical representation.

Chapter 6 gives detailed information that shows that the proposed method is capable

of better localization and mapping in shorter time as long as planar features are

detected correctly.

7.2 Future Works

The important idea behind the proposed method is to define the 3D environment with

compact landmark vectors. Therefore, new features, such as width and height

information, can be added to the planar landmark vectors.

In the filtering step, the defined percentage of the data selected randomly, to speed

up the algorithm. Randomly selection may result with the important data loss. The

probabilistic SLAM approach can handle this situation generally however, an

intelligent selection method may improve the performance of proposed method.

In the clustering step, the object size is defined according to the map environment

and the Kinect camera resolution. For different map and sensor camera the

simulations carried out in this study may fail. If the camera resolution is higher than

the Kinect camera this may result in defining an object as a background. The

algorithm should select the object size dynamically to handle this kind of problem

and for generalized solution to every environment and camera type.

Throughout the research, the algorithm uses Kinect Camera data and because of the

sensor lacking certain capabilities the proposed method is validated only for indoor

131

environments. Therefore, the proposed ideas can be validated using laser scanner in

outdoor environments.

Also, in the method proposed in this thesis planar surfaces were detected and the

non-planar ones were neglected according to the standard deviation and the fitting

performance criteria. The proposed method may be unsatisfactory if the environment

is constituted by non-planar surfaces. Therefore, instead of defining surrounding

objects according to their planar features, defining the curvature properties or objects

themselves may give better results.

132

133

REFERENCES

[1] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic Robotics.

Cambridge, Massachusetts: The MIT Press, 2005.

[2] S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox,

D., Haehnel, D., Rosenberg, C., Roy, N., Schulte, J., Schulz, D. Thrun,

"Probabilistic algorithms and the interactive museum tour-guide robot Minerva,"

in Journal of Robotics Research, 2000.

[3] Sebastian Thrun et al., "Stanley: The Robot that Won the DARPA Grand

Challenge," in Journal of Field Robotics, 2006.

[4] Andreas Nüchter, 3D Robotic Mapping The Simultaneous Localization and

Mapping Problem with Six Degrees of Freedom.: Springer, 2009.

[5] N.J. Chen and J.S. Chen, "3D Scenes Registration using a 2D Laser Range

Finder," IEEE International Conference on Automation and Logistics, pp. 457-

463, August 2010.

[6] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A Benchmark

for the Evaluation of RGB-D SLAM Systems," Proc. of the International

Conference on Intelligent Robot Systems (IROS), October 2012.

[7] Paul J. Besl and Neil D. McKay, "A Method for Registration of 3-D Shapes,"

IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 239-256,

February 1992.

[8] Peter Biber, "The Normal Distributions Transform: A New Approach to Laser

Scan Matching ," in Intl. Conference on Intelligent Robots and Systems, Las

Vegas, Nevada, 2003, pp. 2743-2748.

[9] Cihan Ulaş and Hakan Temeltaş, "A 3D Scan Matching Method Based On

Multi-Layered Normal Distribution Transform," in International Federation of

Automatic Control (IFAC), Milano, 2011, pp. 11602-11607.

[10] Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat, Paul H. J.

134

Kelly, and Andrew J. Davison, "SLAM++: Simultaneous Localisation and

Mapping at the Level of Objects," in IEEE Conference on Computer Vision and

Pattern Recognition, 2013.

[11] R Smith, M Self, and P Cheeseman, "Estimating uncertain spatial relationships

in robotics," Springer-Verlag, pp. 167-193, 1990.

[12] J Guivant and E Nebot, "Optimization of the simultaneous localization and map-

building algorithm for real time implementation," IEEE Transactions on

Robotics and Automation, pp. 242-257, 2001.

[13] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit,

"FastSLAM: A Factored Solution to the Simultaneous Localization and

Mapping Problem," AAAI, 2002.

[14] Masahiro Tanaka and Minoru Ito, "Experimental Results for Walking

Navigation System Using FastSLAM," in International Conference on Control,

Automation and Systems, Seoul, Korea, 2007.

[15] Georg Arbeiter, Jan Fischer, and Alexander Verl, "3D Environment

Reconstruction for Mobile Robots using fast-SLAM and Feature Extraction," in

Robotics (ISR), 2010 41st International Symposium on and 2010 6th German

Conference on Robotics (ROBOTIK) , 2010.

[16] Yangming Li and Edwin B. Olson, "Extracting General Purpose Fetures from

LIDAR data," ICRA, pp. 1388-1393, 2010.

[17] Jan Weingarten, Feature Based 3D SLAM. Lausanne, 2006.

[18] Tobias Hedlund, Registration of multiple ToF camera point clouds. Sweden,

2010.

[19] Michael Ying Yang and Wolfgang Förstner, "Plane Detection in Point Cloud

Data," 2010.

[20] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and

Michael Beetz, "Towards 3D Point cloud based object maps for household

environments," Robotics and Autonomous Systems, pp. 927-941, August 2008.

[21] Çağrı Turunç, An implementation of 3D SLAM with Planar Segments, 2012.

135

[22] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, and Wolfram

Burgard, "3-D Mapping With an RGB-D Camera," IEEE TRANSACTIONS ON

ROBOTICS, 2013.

[23] N Ganganath and H Leung, "Mobile Robot Localization using odometry and

Kinect Sensor," IEEE, pp. 91-94, 2012.

[24] Jan Hartmann, Dariush Forouher, Marek Litza, Jan Helge Klüssendorff, and

Erik Maehle, "Real-Time Visual SLAM Using FastSLAM and the Microsoft

Kinect Camera," in Proceedings of Robotik, 2012.

[25] Yuichi Taguchi, Yong-Dian Jian, Srikumar Ramalingam, and Chen Feng,

"SLAM Using Both Points and Planes for Hand-Held 3D Sensors," in IEEE

International Symposium on Mixed and Augmented Reality, Atlanta, Georgia,

2012.

[26] Yuichi Taguchi, Yong-Dian Jian, Srikumar Ramalingam, and Chen Feng,

"Point-Plane SLAM for Hand-Held 3D Sensors," in International Conference

on Robotics and Automation, Karlsruhe,Germany, 2013.

[27] H. Cheong, S. Park, and S.- K. Park, "Topological Map Building and

Exploration Based on Concave Nodes," In Proc. of the Int. Conf. on Control,

Automation and Systems, pp. 1115-1120, 2008.

[28] A. Kalay, An Implementation of Mono And Stereo Slam System Utilizing

Efficient Map Management Strategy, 2008, Ms. Thesis.

[29] Tim Bailey, Mobile Robot Localisation and Mapping in Extensive Outdoor

Environments, 2002.

[30] A. Elfes, Using Occupancy Grids: A Probabilistic Framework for Robot

Perception and Navigation. Pensylvania: Carnegie Mellon University, 1989.

[31] Greg Welch and Gary Bishop, An Introduction to the Kalman Filter., 2006.

[32] Sebastian Zug, Felix Penzlin, Andre Dietrich, Tran Tuan Nguyen, and Sven

Albert, "Are laser scanners replaceable by Kinect sensors in robotic

applications?," in Robotic and Sensor Environments, 2012.

[33] (2014, Oct.) Dallmeier Electronic GmbH & Co.KG. [Online].

http://www.youtube.com/watch?v=-DoTgQbALU0

http://www.youtube.com/watch?v=-DoTgQbALU0

136

[34] (2014, Oct.) RGB-D SLAM Dataset. [Online].

http://vision.in.tum.de/data/datasets/rgbd-dataset.

[35] (2014, Oct.) Raptor-E Digital RealTime System. [Online].

http://www.motionanalysis.com/html/industrial/raptore.html

[36] John Folkesson and Henrik Christensen, "Graphical SLAM - A Self Correcting

Map," ICRA, pp. 383-390, 2004.

[37] Cihan Ulaş and Hakan Temeltaş, "A Fast and Robust Scan Matching Algorithm

Based on ML-NDT and Feature Extraction," in International Conference on

mechatronics and Automation, Beijing, 2011, pp. 1751-1756.

[38] Richard O. Duda, Peter O. Hart, and David G. Stork, Pattern Classification.,

2000.

[39] Rafael C. Gonzales and Richard E. Woods, Digital Image Processing, 3rd ed.:

Peorsan Prentice Hall, 2008.

[40] Matthieu Molinier, Tuomas Hame, and Heikki Ahola, "3D Connected

Component Analysis for Traffic monitoring in Image Sequences Acquired from

a Helicopter," in SCIA, Berlin, 2005, pp. 141-150.

[41] Tim Zaman. (2014, Oct.) Tim Zaman Project Reference. [Online].

www.timzaman.nl

[42] F. Tarsha Kurdi, T. Landes, and P. Grussenmeyer, "Hough-Transform and

Extended Ransac Algorithm for Automatic Detection of 3D Building Roof

Planes From Lidar Data," IAPRS, pp. 407-412, September 2007.

[43] Xiangfei Qian and Cang Ye, "NCC-RANSAC: A Fast Plane Extraction Method

for 3-D Range Data Segmentation," in IEEE Transactions on Cybernetics, 2014.

[44] O. Gallo, R. Manduchi, and A. Rafii, "“CC-RRANSAC: Fitting planes in the

presence of multiple surfaces in range data," in ELSEVIER, 2010, pp. 403-410.

[45] Herbert Bay, Andreas Ess, Tinne Tuytalears, and Luc Van Gool, "SURF:

Speeded Up Robust Features," Computer Vision and Image Understanding

(CVIU), vol. 110, pp. 346-359, 2008.

http://vision.in.tum.de/data/datasets/rgbd-dataset.
http://www.motionanalysis.com/html/industrial/raptore.html
www.timzaman.nl

137

[46] Duy Nguyen Ta, Wei Chao Chen, Natasha Genfald, and Kari Pulli, "SURFTrac:

Efficient Tracking and Continuous Object Recognition using Local Feature

Descriptors," CVPR, pp. 2937-3944, 2009.

[47] Tim Bailey. (2014, Oct.) Open SLAM. [Online]. https://openslam.org/bailey-

slam.html

[48] Johnathan Mun, Modeling Risk : Applying Monte Carlo Simulation, Real

Options Analysis, Forecasting, and Optimization Techniques (2nd Edition).

Hoboken, NJ, USA: Wiley, 2010.

https://openslam.org/bailey-slam.html
https://openslam.org/bailey-slam.html

138

139

APPENDIX A

MONTE CARLO ANALYSIS

The Monte Carlo simulation in its simplest form is a random number generator that

is useful for estimation. The algorithm selects random values from user-predefined

probability distribution and simulates the model [48].

Scientists, engineers, statisticians, business analysts, and others use computers to

create the models of systems (any system) and to simulate reality by making

predictions. These complex computations became possible with fast computers.

These simulations account for randomness and future uncertainties through hundreds

and even thousands of different scenarios (simulations). The Monte Carlo Analysis is

compiling all these simulations’ results and making decision about the behavior of

system [48].

In this thesis different SLAM methods are compared according to the Monte Carlo

analysis.

The behaviors of algorithms are compared according to the changing values of linear

velocity and angular velocity. In all simulations the linear velocity and angular

velocity sampled from ground truth data.

In the current study the experiments are compared under different parameter

conditions and the results are evaluated.

 Linear Velocity Error Rate (3%, 7%, 15%)

 Angular Velocity Error Rate (3%, 7%, 15%)

 Particle Number (20, 100)

 Effective Particle Rate (20%, 90%)

 Re-sampling (With Re-sampling , Without Re-sampling)

140

141

APPENDIX B

INTEGRAL IMAGE

The motivation behind creating an integral image is its simplicity in calculating the

sum of all intensity values inside a rectangular region in the original image. This

simplicity allows the fast computation of box filter convolutions.

The integral image of an image is defined below.

In other words, the intensity value at any location x, y in the integral image

is the sum of all intensity values of all pixels inside the rectangular region with the

top left corner and bottom right corner on the original image .

Figure B-1 Integral Image [45].

Calculating the sum of intensities of any rectangular area in original image takes only

3 additions.

142

143

APPENDIX C

SIMULATION INTERFACE (GUI)

A Graphical User Interface (GUI)was used to generate the SLAM simulation or

control the robot in real time.

Figure C-1 GUI (MATLAB Image).

The aim of the GUI is to evaluate the performance of SLAM for one turn according

to given input parameters. In Figure C-1, there are 4 main parts in the GUI. Parts 1

and 2 are concerned with input parameters and parts 3 and 4 are about the final

results.

In part 1 there are simulation parameters which, together with their default values are

listed below.

 FastSLAM sample (particle) number: Default is 100 particles.

 Effective particle rate: Default is 90%.

144

 Correspondence threshold: Default is 0.00001.

 Scan step: Default is 10.

 Linear velocity variance: Default is 5%.

 Angular velocity variance: Default is 3%.

Figure C-2 Input parameters – Part 1 (MATLAB Image).

In part 2 there are selections regarding the simulation. Some are indispensable for the

simulation. On the other hand, for debugging purposes a user could deselect or

change the default values.

 Show Simulation Step by Step : Yes

 Re-sampling : Yes

 Background Filtering: Yes

 Ground Filtering: Yes

 Decrease Data: Yes (Default is 50%)

 Application (Simulation/Real Time)

 Map : (FRE2_360 / FRE2_SLAM1/ FRE2_SLAM2 / FRE2_SLAM3)

 Process: (Move with Correction (SLAM) / Move with Prediction (Debug) /

Move with Odometer(Debug))

 Feature Type: (PLANE / SURF)

145

 Landmark Vector: (Plane as Point / Plane as Oriented Point / Plane as

Surface / SURF Point)

These parameters and selections are detailed in Appendix D.

Figure C-3 Input selection – Part 2 (MATLAB Image).

In part 3 there are simulation results. These results are concerned with the errors and

time consumption.

 Final Position Error (For x, y and yaw): Error at the end of the simulation.

 Total Position Error (For x, y and yaw): Cumulative error for every scan.

 Total Time: Total time consumption for simulation.

Figure C-4 Simulation error and time results – Part 3 (MATLAB Image).

In part 4 there a graphical view of simulation errors according to time (scan step)is

given. In graph there are error values for x, y, yaw, total rotational and total

146

translational according to time. The total number of features and current states

(seeing feature or not) also can be seen in the graph for evaluation purposes.

Figure C-5 Graphical View of Simulation Error with Time (MATLAB Image).

If the user selects the “Show Simulation Step by Step” the simulation steps are

displayed in another screen. In figures C-6 and C-7, the found plane features, normal

vectors, ground truth trajectory and predicted trajectory are shown.

Figure C-6 Screenshot from the simulation environment (MATLAB image).

147

Figure C-7 Screenshot from the simulation environment (MATLAB image).

The key properties of the visual environment are.

 Red dots : Particles

 Blue dots: Ground truth odometer data.

 Green dots: Noisy odometer data

 Green triangle: True pose of vehicle

 Red triangle: Maximum weighted pose for vehicle.

 White areas: Founded planes from 3D data

 Blue Vectors: Normal Vector for founded planes.

In the simulation environment there are 2 main choices; simulation with dataset and

real time application.

For the first choice the algorithm uses the sensor measurements and the vehicle’s

ground truth pose data. These sensor measurements and the ground truth information

are taken from the RGBD SLAM dataset. The algorithm simulates the odometer

148

motion model, injects noise into the calculated odometer data and evaluates the

performance of algorithm in relation to these injected noises.

The second choice is about controlling the robot in real time and evaluating the

difference between determined path and calculated path using sensor measurements

(point, plane, surf). This time there is no ground truth data. The commanded motion

data is erroneous because of motion errors and thus, the algorithm tries to decrease

the error rate using sequential sensor measurements.

On the other hand for the real time application the robot does not have a path

planning algorithm. It moves according to given path with some errors.

The required programs and installation process are given in Appendix E.

149

APPENDIX D

CODE DETAILS

Initialization

The program initializes the simulation and vehicle parameters at the beginning of the

fastSLAM application. These parameters are as follows.

FastSLAM Simulation Parameters

CNF.NPARTICLES = inPr.nOfParticles;

The user can define the number of particles for simulation or real time

application. The default value is 100.

CNF.NEFFECTIVE = (inPr.n_effect/100)*CNF.NPARTICLES;

The user can define the effective particle rate in terms of percentage. The

default value is 90. The algorithm runs the re-sampling algorithm when the

effective particle number is under the defined value.

CNF.SWITCH_RESAMPLE = inPr.sw_resample;

The user can select running re-sampling function. Re-sampling is an

important and indispensable function for fast-SLAM applications. As a

default, it is selected and user can uncheck this selection for debugging

purposes.

CNF.STEP_SIZE = inPr.stepSize;

The user can select the simulation step size from GUI. The default value is 10

for the simulation and 1 for the real time application. For example; one of the

datasets has 1209 RGBD data (depth image and RGB image) for 72 seconds

of motion. Setting a step size 1 is the ideal case but this results in a high

computational cost. In the real time application, the vehicle moves, stops,

150

takes sensor data, evaluates it and then moves again. The value is

meaningless for real time applications.

inPr.showSteps

If the user checks the selection box, the algorithm shows the navigation and

map.

inPr.corrProp

The user can select different landmark vectors. The algorithm corresponds the

sensor measurements according to the selected landmark vectors. There are 4

different landmark vectors.

 Plane as point

 Plane as oriented point

 Plane as surface

 Surf points

inPr.per_dec

The user can select the percentage of the raw data. The algorithm removes the

selected percentage of data randomly. This reduction accelerates the

simulation.

inPr.simID

The user can select the simulation with the RGBD SLAM Dataset or the real

time application with the Pioneer robot and Kinect sensor.

inPr.mapID

The user selects the map for simulation. This selection is meaningless for the

real time application.

inPr.ground_f

In the applications presented in this work, the filtering ground floor points are

important but for debugging purposes the user can select an alternative case.

CNF.BACKGROUND_FILTER_THRESHOLD=3;

151

The algorithm filters the point group if the mean is further than the given

threshold. Background filtering threshold is in meters.

CNF.GROUND_FILTER_THRESHOLD = 0.2;

The algorithm fits plane to the ground floor data and filters points closer than

0.2 meters to the plane.

CNF.NUMBER_OF_SAMPLE_GROUND_POINT = 2000;

2000 points is sufficient to define the planar surface for ground floor.

CNF.DATA_ASSOCIATION_TRESHOLD = inPr.tresh/inPr.stepSize;

The user defined threshold is valid if the user defined step size equals to 1,

otherwise its value calculated with the formula above.

Vehicle Model and Motion Noise Parameters

CNF.VEHICLE_MODEL = [0.0 -0.6 -0.6 ; % WHEELBASE

 0.0 0.2 -0.2 ; % WIDTH

 0.0 0.0 0.0];

 Figure D-1Vehicle Model and Start Condition

The vehicle is modeled as a triangle for the easy visualization of simulations.

The vehicle width and wheelbase is defined as 0.4 and 0.6 meters. These are

default values and user cannot change the vehicle model from the GUI. The

start condition of the robot defined as [0, 0, 0].

152

MAX_TRANSFORMATION = 0.05*inPr.stepSize; % meters

MAX_ROTATION = (3*inPr.stepSize)/180*pi; % degree

The maximum motion at one step is defined as 0.05 meters for one step and it

is scaled to step size for the application. It is the same for the rotational

velocity. Its value is defined as 3 degree and scaled to step size.

perTr =inPr.perV; % Error rate for linear velocity

perRot = inPr.perW; % Error rate for angular velocity

Algorithm injects these error rates to the extracted data from ground truth.

sigmaTr = MAX_TRANSFORMATION * perTr/100; %Trans. variance.

sigmaRot = MAX_ROTATION * perRot / 100; %Rot. variance.

CNF.Q = [sigmaTr^2 0 ;

 0 sigmaRot^2];

The variances of motion are defined with error rates and the allowed

maximum velocities.

Sensor Model and Measurement Noise Parameters

 _R = 0.2; % Variance value for range value – 0.2 meters

 _B = 5*(pi/180); % Variance value for bearing value – 5 degree

 _NV = 0.1; % Variance value for normal vector value – 0.1

 _AREA = 0.5; % Variance value for area of plane value – 0.5 m
2

 _SCALE = 0.1; % Variance value for surf feature scale - 0.1

In the application there is no any range bearing sensor but the found values

are modeled as the range bearing sensor. The algorithm calculates the range

of point, bearing values, normal vector, plane area or surf point scale. The

found variance values are listed above.

153

The sensor measurement noise variance matrix differs according to selected

feature type. Two are given below.

 For plane as point:

CNF.R= [_R^2 0 0 ;

 0 _B^2 0 ;

 0 0 _B^2];

For plane as surface:

CNF.R= [_R^2 0 0 0 0 0 0;

 0 _B^2 0 0 0 0 0;

 0 0 _B^2 0 0 0 0;

 0 0 0 _NV^2 0 0 0;

 0 0 0 0 _NV^2 0 0;

 0 0 0 0 0 _NV^2 0;

 0 0 0 0 0 0 _AREA^2];

SLAM Animation Setup

setup_animations() function prepares all the animation environment. In this

study animation environment generated as 20 x 20 x 20 cubical space. The

visualization parameters about the vehicle and the landmarks are initialized.

Initialization of Particles

initialise_particles() function generates the start condition of all particles. At

the start condition all particles contain the same data.

p(i).w= 1/np; %Particle weight

p(i).xv= [0;0;0;0;0;0]; %Predicted vehicle pose

p(i).xf= []; p(i).Pf= []; %Founded landmarks and their covariance

p(i).count = []; %Count number for every detected landmark

154

Reading Ground Truth and Scan List for Simulations

depth_scan_list = readDepthScanList(inPr.mapID);

This list keeps the name of the depth images sequentially. Using this list the

algorithm obtains the proper depth image for selected scan.

ground_truth = readGroundTruth(inPr.mapID);

ground_truth = setStartZero(ground_truth);

The algorithm obtains the ground truth data for the vehicle pose and shifts

this ground truth data to the start condition (0, 0, 0).

Getting True value of Odometer Data

xtrue = calculateXtrue(depth_scan_list(scan_counter).id, ground_truth);

noisyOdometryData = calculateOdometryData(xtrue,xtrue_past,CNF.Q,1);

preFromOdometry = preFromOdometry+noisyOdometryData;

For example, for the first map there are 1209 scan steps. On the other hand

the ground truth data has 21823 data lines. The scanning and ground truth

frequencies are different and the proposed algorithm has to match the

appropriate ground truth for relevant scan data. This correspondence is

undertaken using the time stamps of the ground truth data and scan steps.

For example, for the depth scan image “1311876800.398210.png” the

algorithm uses the ground truth data marked in red and the closest one is

selected.

1311876800.3849 -1.8198 -0.7560 0.5685 0.1558 0.7219 -0.6603 -0.1361

1311876800.3883 -1.8198 -0.7560 0.5685 0.1559 0.7219 -0.6603 -0.1360

1311876800.3916 -1.8199 -0.7562 0.5686 0.1556 0.7215 -0.6609 -0.1358

1311876800.3950 -1.8199 -0.7562 0.5686 0.1555 0.7215 -0.6609 -0.1357

1311876800.3983 -1.8199 -0.7560 0.5686 0.1559 0.7218 -0.6604 -0.1360

1311876800.4017 -1.8199 -0.7560 0.5686 0.1559 0.7218 -0.6604 -0.1360

155

1311876800.4050 -1.8198 -0.7560 0.5686 0.1558 0.7219 -0.6604 -0.1360

1311876800.4083 -1.8199 -0.7562 0.5685 0.1555 0.7215 -0.6610 -0.1358

In fact, some small errors occurred in this process. For time stamp

1311876800.398210 the pose data is matched with 1311876800.3983. This

error is very small, and negligible so fastSLAM algorithm can handle this

issue.

Prediction Step

for i=1:CNF.NPARTICLES

 particles(i)= predict(particles(i), noisyOdometryData, CNF.Q);

end

The algorithm runs this predict() function for each particle. The input

parameters for predict function are noisy odometer data, odometer data noise

variance and relevant particle.

In the predict function the algorithm takes samples from the Gaussian space

of odometer data with normrnd() function.

odometryData(1,1) = normrnd(odometryData(1,1),sqrt(Q(1,1)));

…

Filtering Process

[last_data_filtered last_data_filtered_wback]= getFilteredScan(CNF

,depth_scan_list, scan_counter,inPr);

This function eliminates the unnecessary point groups and extracts the

important part of data that can be defined as plane.

Image Data to 3D Point Cloud Data Conversion

data = convertTo3D(dImageFiltered,rgbImage);

156

This function generates the 3D point cloud data using camera focal length

and camera calibration data. The calibration parameters given below are

taken from the RGBD-SLAM dataset.

focalLengthX = 520.9;

focalLengthY = 521.0;

centerX = 325.1;

centerY = 249.7;

scalingFactor = 5000.0;

The default camera calibration data values are listed below.

 focalLengthX = 525.0;

 focalLengthY = 525.0;

 centerX = 319.5;

 centerY = 239.5;

 scalingFactor = 5000.0;

The algorithm undertakes this calculation for all points on the image data.

There are nearly (640x480) 307200 points on the image.

Z = double(depth(v,u)) / scalingFactor;

X = (u - centerX) * Z / focalLengthX;

Y = (v - centerY) * Z / focalLengthY;

All these extracted 3D points are rotated to the vehicles coordinate frame.

R_toMap = [0 0 1;

 -1 0 0;

 0 -1 0];

data(1:3,:) = R_toMap* data(1:3,:);

157

Filtering Ground Points

[n_est ro_est] = findGroundNormal(data_filtered,…

This function finds the ground normal and with this normal value the

algorithm fits plane to the ground data. This process is applicable for the

simulations and run-time applications in the current study because the

navigation area is planar.

data_filtered = removeGroundEffect(data,n_est,ro_est,CNF);

selectedPoints = find(distanceToPlane>t);

The algorithm finds the distance between the points and plane. According to

the defined threshold “CNF.GROUND_FILTER_THRESHOLD” the

algorithm removes the points if the distance is smaller than the specified

threshold.

Filtering Background and Unnecessary Points

[data_filtered backgroundData] = removeBackgroundEffect(data,CNF);

The algorithm removes the background data and the other point groups that

are not suitable for defining a plane. The algorithm selects 2000 points

randomly from the point cloud data and classifies the points groups according

the Euclidian distance to each other with hierarchical clustering

(unsupervised clustering method). The stopping criteria is important for

hierarchical clustering and is defined as 0.205 meters.

CUTOFF =0.205; %Stopping criteria for hierarchical clustering.

Then the algorithm removes the point groups if the group size is below 50

and over 1500.

158

noisyPoints = find(sizeList<50);

If group size is smaller than 50 the algorithm evaluates this point group as

noise.

noisyPoints = find(sizeList>1500);

If this higher than 1500, this means that it covers the 75% of the scene and

possibly the group constitutes a background.

noisyPoints= find(meanList>CNF.BACKGROUND_FILTER_THRESH);

On the other hand, if the mean of a group is far from the specified threshold

the algorithm removes that group, because the data is unreliable and possibly

part of the background.

noisyPoints = find(mAngleList>28);

If the angle of any point in group exceeds 28 degrees the algorithm classifies

this group as unusable. The algorithm decides that the point group is a part of

the object and the fitting plane of this point group injects erroneous

landmarks into the algorithm.

data_filtered(iL).Cov(1,1)>0.1 || data_filtered(iL).Cov(2,2)>0.1 ||

data_filtered(iL).Cov(3,3)>0.1

Now the algorithm has the point groups selected from 2000 points and to

better define the plane the neighboring points (ungrouped ones) are added to

this groups. The algorithm calculates the standard deviations of all the

clusters and if they are higher than the specified threshold the algorithm

removes relevant cluster.

Finally, the found clusters became suitable for plane feature extraction.

Feature Extraction

The feature extraction algorithm is selectable according to the given

parameters from GUI.

159

Plane Feature Extraction

The plane extraction algorithm runs, if the selected landmark type is plane as

point, plane as oriented point or plane as surface.

last_data_planes = extractPlanes(last_data_filtered,CNF);

extractPlanes() function extracts the plane feature parameters. The details of

the plane feature extraction process is given in Section 4.2.

SURF Feature Extraction

The SURF feature extraction algorithm runs, if the selected landmark type is

SURF point.

[iPoints index]= surf_findSurfFeatures(image);

Surf_findSurfFeatures() function extracts the surf feature points. The details

of the SURF feature extraction process is given in Section 4.3.

Range-Bearing of the Sensor Modelling

z = slam_get_features(last_data_planes);

slam_get_features() function extracts the sensor measurement from the plane

features. The algorithm fills the z value for the selected landmark type.

z(1:3,i) = xyzToRangeBearing(z_3D(i)); % center point of plane

z(4:6,i)= z_3D(i).n; % normal vector of plane

z(7,i) = z_3D(i).A; % area of plane

The sensor measurement vector contains; range, bearing, normal vector and

area information.

z = surf_findInterestPointMeas(iPoints,image);

160

On the other hand the surf_findInterestPointMeas() function finds the sensor

measurement data which contains range, bearing, scale and laplacian.

z(1:3,counter) = xyzToRangeBearing(point); % location of surf point

z(4,counter)= iPoints(i).scale; % scale of surf point

z(5,counter)= iPoints(i).laplacian; % laplacian

 Data Association

[particles(i)] = slam_dataAssociateUnknown(…)

slam_dataAssociateUnkonwn() function makes the data association. The

robot directly adds the new landmark if it is the first landmark vector.

particle = slam_addFeature(particle, z, R, corrProp);

Otherwise runs the association process for the detected landmark and the

algorithm tries to understand whether the feature is new or old. If it is new

the algorithm goes to the slam_addFeature() function and adds the detected

landmark vector. If the sensor measurement is from an earlier detected

landmark, the algorithm updates the landmark properties. These landmark

properties are the landmark vector, landmark covariance, weight and count.

Visualization of Parameters

plotPlanes(last_data_planes,xtrue,z);

This plotPlanes() function handles all the steps that help to plot the plane.

do_plot(h, particles, xtrue, VEH);

do_plot() function plots particles, true state of vehicle and the prediction of

vehicle state for the maximum weighted particle.

161

 Figure D-2 Screenshot from simulation environment (MATLAB image)

In figure D-2 the gray area defines the plane, red points define the particles

for landmark vector and the arrow defines the normal vector for the

maximum weighted particle. Also green triangle is the true state of vehicle

and red triangle is the prediction for maximum weighted particle.

Re-sampling Step

[particles]= slam_resampleParticles(…)

The re-sampling process is the most important part of the fastSLAM

applications. If the effective number of particles decreases under the defined

threshold, the algorithm runs re-sampling process.

ws= sum(w); % Total of all weights

w= w/ws; % Normalized weight vector.

162

Firstly, the algorithm normalizes the weight values and sends these values to

the re-sampling function.

[keep, Neff] = stratifiedResample(w);

stratifiedResample() function finds the effective particle number and if it is

under the specified threshold keeps the high weighted samples and removes

the low weighted ones. So the high weighted samples are copied by the

function. The stronger particles survive and weak ones disappear through the

fastSLAM process.

Finalization of Simulation

 If there is any other scan step, the algorithm computes the true value of the

 odometer data. Otherwise it ends the simulation. After finalization the

 algorithm computes the time consumption and error values. The it

 draws the error-time graph of simulation.

163

APPENDIX E

 INSTALLATION

To run the simulation and real time applications the user should install the following

programs.

1. Matlab 2012a for the simulation environment.

2. KinectSDK-v1.0-beta2-x64 _ 1.0.0.12 for the Kinect Camera.

3. MobileSim-0.5.0.exe and ARIA-2.7.5.2.exe to control the pioneer robot in

real time.

In addition The dataset path in configParameters() function for each map should be

defined as follows.

CNF.DEFAULT_DATA_PATH = 'D:\DATA\FRE2_360\';

The COM1 serial RS-232 port should be defined to communicate with the computer

and the Pioneer 2 robot. Finally, the communication cable should be cross cable.

	1_p1-9_ye2
	2_p10-12_yeni
	3_p13-14
	4_p15-18_yeni
	51_m_1
	51_m_1d
	52_m_2
	52_m_2d_yeni
	53_m_3
	53_m_3d
	54_m_4
	54_m_4d
	55_m_5
	55_m_5d
	56_m_6
	56_m_6d_yeni
	57_m_7
	57_m_7d
	60_r_1
	60_r_1d
	61_app_AB
	62_app_C
	62_app_C_d
	63_app_D
	63_app_D_d
	64_app_E

