
HYBRID META-HEURISTIC ALGORITHMS FOR THE RESOURCE

CONSTRAINED MULTI-PROJECT SCHEDULING PROBLEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNVERSITY

BY

FURKAN UYSAL

IN PARTIAL FULLFILLMENT OF THE REQIREMENTS

FOR

 THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

CIVIL ENGINEERING

OCTOBER 2014

Approval of thesis:

HYBRID META-HEURISTIC ALGORITHMS FOR THE RESOURCE

CONSTRAINED MULTI-PROJECT SCHEDULING PROBLEM

submitted by FURKAN UYSAL in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Civil Engineering Department,

Middle East Technical University by,

Prof. Dr. Gülbin Dural

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ahmet Cevdet Yalçıner

Head of Department, Civil Engineering

Assoc. Prof. Dr. Rifat Sönmez

Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Selçuk Kürşat İşleyen

Industrial Engineering Dept., Gazi University

Assoc. Prof. Dr. Rifat Sönmez

Civil Engineering Dept., METU

Prof. Dr. Talat Birgönül

Civil Engineering Dept., METU

Assist. Prof. Dr. Aslı Akçamete Güngör

Civil Engineering Dept., METU

Assist. Prof. Dr. Burak Çavdaroğlu

Industrial Engineering Dept. Işık University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name:

 Signature :

v

ABSTRACT

HYBRID META-HEURISTIC ALGORITHMS FOR THE RESOURCE

CONSTRAINED MULTI-PROJECT SCHEDULING PROBLEM

Uysal, Furkan

Ph. D., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Rifat Sönmez

October 2014, 148 Pages

The general resource constrained multi-project scheduling problem (RCMPSP)

consists of simultaneous scheduling of two or more projects with common resource

constraints, while minimizing duration of the projects. Critical Path Method and

other scheduling methods do not consider resource conflicts and practically used

commercial project management software packages and heuristic methods provide

very limited solutions for the solution of the RCMPSP. Considering the practical

importance of multi-project scheduling and the fact that resource constraints impact

the schedules and costs significantly, achieving an adequate solution to the problem

is crucial for the construction sector.

In this research, we present a new hybrid algorithm which is based on genetic

algorithm, simulated annealing, backward forward improvement heuristics. The

performance of the algorithms is compared with the performances of the known

heuristic procedures and commonly used software packages using test instances

particularly developed for multi-project environment. Effectiveness of the

developed algorithm is further improved with the application of parallel computing

strategies with a Graphical Processing Unit (GPU). Results revealed that effective

resource management is a vital process but it is ignored by practitioners, heuristic

methods and current software packages. Proposed algorithm showed significant

improvements on the state of the art algorithms. It is also shown that parallel

computing strategies with a GPU has high potential for meta-heuristic applications

vi

specifically for construction management research area in which there is a

significant gap in the GPU research.

Key Words: Scheduling, Project Portfolio Management, Meta-heuristic algorithms,

GPU

vii

ÖZ

KAYNAK KISITLI BİRDEN FAZLA PROJENİN ÇİZELGELENMESİ

PROBLEMİ İÇİN ÜST-SEZGİSEL YÖNTEMLER

Uysal , Furkan

Doktora, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Rifat Sönmez

Ekim 2014, 148 Sayfa

Kaynak kısıtlı birden fazla projenin çizelgelenmesi problemi, iki ya da daha fazla

projenin ortak kaynak havuzu kullanılarak çizelgelenmesi ve toplam proje süresinin

kısaltılmasını amaçlamaktadır. Kritik yol yöntemi ve diğer çizelgeleme yöntemleri

kaynak kısıtlarını dikkate almamakta, pratikte kullanılan yazılımlar ve yazılımların

sezgisel yöntemleri ise probleme sınırlı çözümler sunabilmektedir. Birden fazla

projenin çizelgelenmesi probleminin inşaat sektöründe pratik önemi ve kaynak

kısıtlarının proje süresini ve maliyetini etkilediği düşünüldüğünde, probleme daha

iyi çözümler bulmanın gerekliliği ortaya çıkmaktadır.

Bu çalışmada, genetik algoritma, tavlama benzetimli algoritma ve ileri geri

iyileştirme sezgiseli kullanılarak yeni bir melez üst-sezgisel algoritma

geliştirilmiştir. Geliştirilen algoritma bu çalışma kapsamında oluşturulan ve birden

fazla projenin yer aldığı test projelerinde, pratikte kullanılan yazılımların sezgisel

yöntemleriyle ve bilinen diğer üst-sezgisel yöntemlerin sonuçlarıyla kıyaslanmıştır.

Algoritmanın etkinliğini artırmak için paralel hesaplama stratejisi geliştirilmiş ve

bir grafik işlem biriminde uygulaması yapılmıştır. Sonuçlar literatürdeki

algoritmalara kıyasla belirgin ilerlemeler kaydetmiş ve paralel hesaplama

viii

stratejilerinin grafik işlem birimiyle uygulamasının yapım yönetimi alanındaki

yüksek potansiyeli gösterilmiştir.

Anahtar Kelimeler: Çizelgeleme, Proje Portföy Yönetimi, Üst Sezgisel

Algoritmalar, Grafik İşlem Birimi

ix

DEDICATION

To my wife and expected twins...

x

ACKNOWLEDGEMENTS

“Sometimes life hits you in the head with a brick. Don't lose faith. I'm convinced

that the only thing that kept me going was that I loved what I did. You've got to find

what you love. And that is as true for your work as it is for your lovers. Your work

is going to fill a large part of your life, and the only way to be truly satisfied is to

do what you believe is great work. And the only way to do great work is to love

what you do. If you haven't found it yet, keep looking. Don't settle. As with all

matters of the heart, you'll know when you find it. And, like any great relationship,

it just gets better and better as the years roll on. So keep looking until you find it.

Don't settle” (A part from speech of Steve Jobs at Stanford University

commencement, 2005).

The question “Am I doing what I loved to do?” is a challenging question that I ask

myself many times. I worked at procurement and design departments of different

companies. I have been in public sector as a senior expert for many years. I also

enrolled in Ph.D. program at year 2007. I always kept looking. Sometimes I

demoralized, sometimes I was hopeful, sometimes both! Now, it has been 10 years

since my graduation! I finally realized that making research is what I want to do.

Endless thanks to those who help me to find “what I loved to do”.

First debt of gratitude must go to my advisor. I would like to thank Assoc. Prof. Dr.

Rifat Sönmez for his constant support and guidance. It was my pleasure to work

with him. It has been nine years since I met him and he is the most tolerant person

I have ever met. He constantly provided the vision and motivation that I need to

fulfill the Ph. D. program. From my master thesis up to now, we worked together

and contributed many academic endeavors. He has been not only an academic

advisor for me but also a friend whom I can phone whenever I got stuck.

 I would like to thank Assoc. Prof. Dr. Selçuk Kürşat İşleyen for his valuable and

endless supports on mathematical modeling of the problem. He also provided critics

and directions on the subject of meta-heuristics. Industrial engineering view that he

xi

provided to me was very important. We also shared insightful discussions on my

thesis which I cannot forget.

I would like to thank to Prof. Dr. Talat Birgönül for his continuous supports from

the beginning of my academic life. It has been a great privilege for me to meet with

him.

I also want to thank Assist. Prof. Dr. Aslı Akçamete and Assist. Prof. Dr. Burak

Cavdaroğlu for taking part in my dissertation and for their further suggestions.

My family also provided valuable supports for this work. I would like to thank

specially to my wife Betül for her smiley face and motivations. She is my precious

at all time!

I have limitless thanks to my father Sadık Uysal, my mother Safiye Uysal and my

sister Hazal Uysal. Their love was my driving force.

This work is also supported by METU Scientific Research Projects (Project No:

BAP- 03-03-2010-04).

xii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ……………………………..………………………………………………..vii

ACKNOWLEDGEMENTS .. x

TABLE OF CONTENTS .. xii

LIST OF TABLES ... xvi

LIST OF FIGURES .. xviii

LIST OF ABBREVIATIONS .. xix

CHAPTERS

1. INTRODUCTION .. 1

1.1 Practical Importance of the Problem: ... 3

1.2 Prospects from the Thesis ... 4

1.3 Scope and Limitations of the Thesis ... 5

1.4 Organization of the Thesis .. 6

2. PROJECT SCHEDULING PROBLEMS AND LITERATURE REVIEW 7

2.1. Definition of the Problem .. 7

2.2. An Example Problem: How Can Activity Sequences Affect the

Duration of a Project? .. 8

2.3. Classification of RCPSP ... 11

2.3.1. Elements of a RCPSP .. 13

2.3.1.1. Activities .. 13

2.3.1.2. Resources ... 13

2.3.1.3. Objective Function ... 14

2.3.1.4. Constraints .. 14

2.3.1.5. Project Environment ... 14

2.4. Resource Constrained Single Project Scheduling Problem (RCPSP) . 16

2.4.1. Problem Definition .. 16

2.4.2. RCPSP Literature ... 18

xiii

2.4.2.1. Exact Methods ... 19

2.4.2.2. Heuristics ... 20

2.4.2.3. Meta-heuristics... 24

2.5. Resource Constrained Multi-Project Scheduling Problem (RCMPSP)

 ……………………………………………………………………….31

2.5.1. Problem Definition .. 31

2.5.2. RCMPSP Literature ... 33

2.5.2.1. Exact Methods ... 34

2.1.1.1. Heuristics ... 35

2.1.1.2. Meta-heuristics... 38

2.6. Parallel Computing Literature on Meta-heuristics.............................. 39

2.6.1. Introduction ... 39

2.6.2. Literature Review of GPU Applications 41

3. SOLUTION METHODS ... 44

3.1. Test Instances .. 44

3.2. A Mathematical Formulation of RCPSP .. 47

3.2.1. Parameters ... 47

3.2.2. Variables .. 47

3.2.3. Constraints ... 48

3.2.4. Objective Function .. 49

3.2.5. Performance of Mathematical Model .. 49

3.3. Heuristic Solutions .. 51

3.3.1. MinSlack Rule ... 51

3.3.2. SASP Rule ... 52

3.3.3. MaxTWK Rule .. 53

3.3.4. Backward Forward Heuristic ... 54

3.3.5. Performance Tests of Heuristics .. 55

3.4. Meta-heuristic Solutions ... 56

3.4.1. A Sole GA ... 57

3.4.1.1. Chromosome Coding and Decoding .. 57

3.4.1.2. Fitness Evaluation .. 58

3.4.1.3. Crossover ... 59

xiv

3.4.1.4. Mutation ... 59

3.4.1.5. Roulette Wheel Selection ... 60

3.4.1.6. Elitism .. 61

3.4.1.7. Parameter Setting ... 61

3.4.1.8. Performance of the Algorithm.. 61

3.4.2. A Sole SA .. 64

3.4.2.1. Parameter Setting ... 66

3.4.2.2. Performance of Algorithm ... 66

3.4.3. A hybrid GA-SA Algorithm .. 68

3.4.3.1. Performance of the Algorithm.. 69

3.4.4. A Backward-forward Hybrid GA-SA Algorithm 71

3.4.4.1. Crossover, Mutation and Selection .. 75

3.4.4.2. Integration of Simulated Annealing ... 76

3.4.4.3. Performance of Algorithm ... 78

3.4.5. GPU Implementation of BFHGA .. 85

3.4.5.1. Application of BFHGA on GPU .. 85

3.4.5.2. Theory .. 85

3.4.5.3. Test of the Model ... 87

4. ANALYSIS OF ALGORITHM PARAMETERS .. 91

4.1. Two Level Factorial Design ... 91

4.1.1. Theory: .. 91

4.1.2. Application .. 94

4.1.2.1. Test of J30 Sets .. 95

4.1.2.2. Test of J60 Sets .. 97

4.1.2.3. Test of J120 Results ... 99

4.1.1. Interpretation from Main Effect Plots ... 102

5. CONCLUSION .. 103

5.1. Summary and Discussion of Results ... 103

5.2. Conclusion ... 106

REFERENCES .. 108

APPENDICES ... 119

xv

A. Test Case Results ... 119

B. Code Details ... 121

C. Curriculum Vitae ... 147

xvi

LIST OF TABLES

TABLES

Table 2.1: Examples of α|β|γ schema .. 12

Table 2.2: A classification of RCPSP .. 15

Table 2.3: Example heuristics ... 20

Table 2.4: Priority rules tested by Kurtulus and Davis (1982) 35

Table 2.5: Priority rules according to ARLF and AUF ranges (Kurtulus and Davis,

1982) .. 36

Table 3.1: PSLIB project instances ... 45

Table 3.2: Multi-project test case details ... 45

Table 3.3: Number of optimum solutions and mean CPU times 49

Table 3.4: Results Comparison between the model and Kone (2011) 50

Table 3.5: Heuristics’ results on multi-project test instances 55

Table 3.6: GA versus heuristics performances .. 61

Table 3.7: GA versus MS Project heuristics comparison 63

Table 3.8: Comparison of GA results of this study with Chen and Shahandashti

(2009) .. 64

Table 3.9: GA-SA comparison .. 66

Table 3.10: Comparison of SA results of this study with Chen and Shahandashti

(2009) .. 67

Table 3.11: GA-SA comparison with sole GA and sole SA 69

Table 3.12: Comparison of GA-SA results with Chen and Shahandashti (2009) . 70

Table 3.13: Performance comparison of BFHGA ... 79

Table 3.14: Comparison of BFHGA results with Chen and Shahandashti (2009)

Test Case ... 79

Table 3.15: Comparison of BFHGA results with Chen and Shahandashti Real

Case (2009) .. 80

Table 3.16: Performance comparison based on BFHGA as upper bound 81

Table 3.17: Performance comparison of BFHGA with other methods 82

Table 3.18: Performance comparison of RESCON with BFHGA 84

xvii

Table 3.19: BFHGA performance with GPU .. 87

Table 3.20: Comparison of BFHGA on CPU and GPU.. 88

Table 3.21: CPU and GPU comparison of Chen and Shahandashti (2010) real case

 ... 89

Table 3.22: GPU and CPU Comparison for Large Projects.................................. 90

Table 4.1: Independent variables .. 94

Table 4.2: Results of F test .. 96

Table 4.3: Design matrix and results for J60 Sets ... 98

Table 4.4: Design matrix and results for J120 sets ... 100

xviii

LIST OF FIGURES

FIGURES

Figure 2.1: Two span bridge example (Toklu, 2002) .. 9

Figure 2.2: Activity on node diagram of two span bridge example 9

Figure 2.3: RCPSP and solution methods ... 18

Figure 2.4: Working mechanism of heuristics and meta-heuristics 21

Figure 2.5: A simple GA ... 24

Figure 2.6: Different type of chromosome representations 25

Figure 2.7: Crossover examples .. 26

Figure 2.8: Flow of SA algorithm ... 29

Figure 2.9: Multiple single projects vs. single project approach (Lova and Tormos,

2001) .. 33

Figure 2.10: Master-slave model of GPU application ... 42

Figure 3.1: Chromosome representation ... 58

Figure 3.2: Example problem and chromosome representation 71

Figure 3.3: Backward scheduling part 1 .. 74

Figure 3.4: Backward scheduling part 2 .. 74

Figure 3.5: Final schedule ... 75

Figure 3.6: Flow of BFHGA.. 77

Figure 3.7: Flow of GPU and CPU based algorithm ... 86

Figure 4.1: Pareto graph of J30 test results ... 95

Figure 4.2: Normal plot for J30 test results ... 96

Figure 4.3: Pareto graph of J60 test results ... 97

Figure 4.4: Normal plot for J60 test results ... 98

Figure 4.5: Pareto graph of J120 test results ... 99

Figure 4.6: Normal plot for J120 test results ... 100

Figure 4.7: Main effect plots of each test sets ... 101

file:///C:/Users/fuysal/Desktop/Tez%20Toplulaştırılmış%202292014_v1.docx%23_Toc399282889
file:///C:/Users/fuysal/Desktop/Tez%20Toplulaştırılmış%202292014_v1.docx%23_Toc399282897

xix

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

CPM Critical Path Method

FCFS First Come First Served

GAs Genetic Algorithms

GPU Graphical Processing Unit

PERT Program Evaluation and Review

Technique

PSO Particle Swarm Optimization

PSP Project Scheduling Problem

RCMPSP Resource Constrained Multi-Project

Scheduling Problem

RCPSP Resource Constrained Project

Scheduling Problem

SA Simulated Annealing

SGS Schedule Generation Schema

This page is intentionally left blank.

1

CHAPTER 1

1. INTRODUCTION

Whether a project is as big as Marmaray Project which consists of 76 km long

railway, various type of tunnels, three underground stations, 37 surface stations,

165 bridges, 63 culverts, many yards, workshops, maintenance facilities, and

procurement of 440 modern rolling stocks (Lykke and Belkaya, 2005) or as small

as a single floor construction of a building, planning and scheduling is indispensable

in order to control total project execution time and its overall cost. Even on a single

floor construction of a building, the sequence of the activities, dependencies

between activities and resource allocation can be complicated. Without planning

and scheduling, project will end with a chaos; jobs execute in a randomly manner

and it would not be possible finish the project within planned time and cost. This

results in a significant loss for a company.

This issue has been the focus of extensive research in project management since

1900s. Researchers tried to define ways to plan and schedule projects by dividing

them into manageable parts, drawing charts and developing algorithms. Since then,

Gantt charts and the well-known critical path method (CPM) has been extensively

used and taken for granted as good scheduling tools for small to large scale projects

especially in the construction industry.

The first attempt to divide a project into manageable parts was proposed with Gantt

charts at 1900s during World War I (Meredith and Mantel, p.354, 1995). In this

method, activities are shown according to their start and finish times on a horizontal

table called bar charts. Taken for granted as an easy way of representing project

plan, Gantt chart is used commonly in the construction sector. Main weakness of

Gantt chart is its complexity in making large scale projects due to lack of

precedence relations among activities harder to manage.

2

After 1950s, CPM has been one of the most commonly used method to model and

control a project within its own assumptions and boundaries. In this method, critical

paths are defined as those work orders in which if an activity is delayed whole

project is delayed at the same time. Project is divided into manageable parts; work

packages and activities. Activity relations are shown with arcs. Due to its visual

aspect, a project can be portrayed as a network and it is possible to see predecessor

and successor relations between activities. A logical framework is schematized

through the activities and minimum time algorithm can be applied to the problem.

PERT technique which followed CPM, was incorporated to deal with stochastic

nature of projects. Since real life complexity brings uncertainty to activity duration

estimates, PERT brought the ability to incorporate with this uncertainties. Using

PERT, one can find either the probability of completing a project to a given date or

find time duration corresponding to a probability value (Cottrell, 1999).

However, with Gantt charts, CPM and PERT decision makers are focused on time

aspects of a project without considering the resource limitations. This ‘time only”

analysis, brings a main drawback since resource limitations are not considered.

Therefore, its practicability decreases significantly. In practice, resource conflicts

arise when two or more activities are demanding same scarce resources. Due to the

scarcity of resources, a trade-off exits between available resources and activity

durations. From a company level perspective, situation is magnified if there is more

than one project. Neither Gantt chart nor CPM or PERT methods are capable of

dealing with resource management. Therefore, a complete tool of scheduling should

not only consider “time only” analysis of projects but also should reflect resource

limitations. Since the late 1980s there has been a growing interest on scheduling

algorithms that considers resource limitations.

In scheduling where real life complexity drives us to use some models (Gantt

Charts, CPM and PERT) and models bring drawbacks (resource management),

resource constrained project scheduling problem (RCPSP) arises. The objective of

the problem is to determine a start date for each activity in such a way that

precedence and resource constraints are satisfied, and at the same time project

3

duration is minimized. If this problem is in a corporate level where more than one

project is managed, it is called as resource constrained multi-project problem

(RCMPSP).

During the last decades RCPSP has become a well-known standard problem in

project scheduling (Hartmann and Briskorn, 2010), and has attracted numerous

researchers from multiple areas including operation research, and construction

management.

While majority of projects are scheduled on a multi-project environment, most

research on RCPSP have focused on single projects (Kurtulus and Davis, 1982;

Krüger and Scholl, 2009; Browning and Yassine, 2010). Despite the importance of

RCMPSP in practice, there are few studies on this problem. Therefore, there is a

significant potential for improving the state–of–the–art algorithms. Hence, the main

objective of this study is to develop a new efficient optimization algorithm for the

RCMPSP to fill the gap within the literature.

1.1 Practical Importance of the Problem:

In construction management practice since the size of projects are comparably

bigger than any other sector, possible delays, crew size and equipment selection,

and resource allocation process could lead to significant problems like cost overruns

or longer project durations. Project delays and delay costs affect negatively on the

profit and repetition of the company. Due to the characteristics of construction work

such as unforeseen events, risks involved, multi-dimensional partners, cultural

differences, resource demands and resources assigned to a project is rarely met. In

addition, shorter project life cycles due to time pressure, little tolerance to cost

overruns due to the market competition and high resource costs makes sector more

vulnerable to bad scheduling practices. This makes scheduling process of

construction projects more complex than any other sector. Therefore, both the effect

of costs, prestige and sustainability of company, finding effective, efficient and

good enough solutions to project scheduling problem (PSP) is very important.

4

It is generally known that today's business environment is challenging and

companies manage multiple projects which share enterprise resources (Payne,

1995; Lova and Tormos, 2001; Liberatore and Pollack-Johnson, 2003). Sharing the

resources requires corporate level optimization of available resources. Frequently

the availability of the enterprise resources is limited, and is not sufficient to

concurrently schedule the activities. In these circumstances, optimal allocation of

limited enterprise resources is crucial for minimizing the project durations and costs

to achieve project portfolio success.

Improving the solution algorithms’ performances would improve the state of the art

algorithms and current software packages. Eventually, an efficient algorithm that

will solve the real life problems within a reasonable time period would results in

better organized schedules, better resource allocation and cost reductions for

corporate level. Therefore, the need for better algorithms is a practical need and

serves a great opportunity to develop commercial software packages.

1.2 Prospects from the Thesis

Since RCPSP is an NP-hard1 problem (Blazewicz et al., 1983), RCMPSP is also

NP-hard. The complexity2 of the problem sets a boundary to the solution methods

of the problem. Therefore, it can be solved by exact methods only for small projects.

Within the RCMPSP, researches are oriented to priority based heuristics and meta-

heuristics which do not guarantee the optimal solution. Performances of the

algorithms are arguable and as the network complexity3 increases performance of

the algorithm reduces significantly (Kolish, 1999). Moreover, extensively used

popular software packages’ performances on resource allocation are arguably low

and need to be improved.

1 NP-Hard: A problem is called non-deterministic (NP) polynomial if its solution cannot be evaluated in polynomial time and

solution is not guaranteed. No known exact algorithms can be able to solve the problem for large instances and only
approximate solutions or heuristics are available (Yang, p.9, 2008).

2 Complexity: A measure of the efficiency of the algorithm. For details see (Yang, p.24, 2008)
3 Network Complexity (NC) is average number of precedence relations per activity (Kolish, 1999).

5

The main objective of this research is to develop an efficient algorithm for obtaining

optimum or near-optimum solutions to the RCMPSP. Meta-heuristics are used to

improve the current state of the art algorithms.

As an output, a sole genetic algorithm (GA), a sole simulated annealing (SA)

algorithm, a backward-forward implemented GA and finally, a hybrid backward-

forward GA-SA algorithm is developed. Developed algorithms are tested with

known test instances. Optimum solutions are also used for comparisons. Previous

results from the literature are also used in order to compare algorithm performances.

An educational software RESCON (Deblaere et al., 2011), and its tabu search

algorithm is used for base line solutions.

Computer programs are written with Microsoft Visual Studio 2010 and coded with

C and C++ programing languages. In order to test the parallel programing effects

on meta-heuristics, final algorithm is implemented with a parallel evolutionary

strategy and computed on a Graphical Processing Unit (GPU).

1.3 Scope and Limitations of the Thesis

RCPSP is stemmed from job-shop scheduling problem in operational research. Job-

shop scheduling problem has various cases so does RCPSP and RCMPSP. Basic

problem definition is used throughout the study and mathematical model of the

problem will be given in the following sections. In the scope of this research,

activity pre-emption is not allowed4. Every activity is assumed to have non-

negative durations and resource usage. All parameters are assumed to be

deterministic and portfolio has a static structure. Activity durations are assumed to

be discrete. Finish to Start (FS) activity relation is used for majority of the test

cases but model can handle other relations, too. As network complexities of each

test instance increases, computational time increase significantly. Therefore, most

of the tests were solved with time limits.

4 It is stated that duration of an activity cannot be split up.

6

1.4 Organization of the Thesis

Following chapters are organized as follows: In the second chapter project

scheduling problems are summarized and literature survey of RCPSP and RCMPSP

are given. In the third chapter, a mathematical model of the problem is illustrated.

Problem is solved also heuristics and meta-heuristics. It includes novel meta-

heuristic solution that is developed in the scope of this thesis. Details of the

algorithms and their test results are given. Fourth chapter is for experiment design

of algorithm parameters. Finally, a conclusion section is given as the last chapter.

7

CHAPTER 2

2. PROJECT SCHEDULING PROBLEMS AND LITERATURE REVIEW

2.1.Definition of the Problem

Project scheduling problems (PSP) are one of the important practical optimization

problems which are extensively studied in operations research, management

science and construction management research area. Due to the practical

importance, some methods already been incorporated and many software packages

has been developed. PSP in general consists of three different problems. These are

time-cost tradeoff analysis, resource leveling problem and resource allocation

problem. In time-cost tradeoff analysis the tradeoff between duration of an activity

and cost of that activity is examined. It is known that in order to meet deadline

requirements of a schedule if more resource is added to the project, direct cost of

an activity increases. Adding more resource decreases the activity duration. This

tradeoff should be carefully examined in order to determine the extra cost of adding

new resources. Thus, in this type of problems, normal cost and crash cost of the

project is analyzed and decision is made based on time-cost tradeoff analysis. Time-

cost tradeoff analysis may include single objectives such as minimization of the

cost or minimization of duration (Ke and Liu, 2005) or multi objective cases such

as the work of Zheng et al., (2004). Different from time cost tradeoff problem, in

resource leveling problem aim is to obtain smooth resource curve so as to minimize

resource fluctuations under fixed project duration. It is assumed to have enough

resources for the project and fluctuations in resource demand is minimized. These

fluctuations mean idle resources and extra cost to the project. Leveling is done with

shifting non critical activities within their available floats (Easa, 1989). As for

resource allocation problems, resources are assigned to activities so as to optimize

certain objectives. In this type of problems, mostly single objectives such as cost

minimization is used and in recent studies multi objective resource allocation

problem can also be found in the literature (Osman et al., 2005; Chaharsooghi and

8

Kermani, 2008). Being a special case of resource allocation problems, RCPSP can

be extensively found in the literature. RCPSP can be defined as finding an optimal

solution for the sequence of activities based on a predefined objective function

where resources are limited. RCPSP and its multi-project case are the objectives of

this research and will be examined in the following chapters in detail. Although

PSP problems are complicated problems, a minimum time algorithm is extensively

used in the literature for solution purposes. This method is called CPM.

Practically used and taken for granted as a good scheduling method, CPM can be

considered as a basic solution methodology for the scheduling problem, but

explicitly it is assumed that there is no resource constraints. Most project scheduling

software packages are capable of serving as good CPM scheduler and get visual

help to practitioners. CPM and software combinations are extensively used in the

practice. Nevertheless, the unlimited resource assumption makes this method more

vulnerable to bad scheduling practices.

In practice, there are usually limitations for a number of resources. Thus, under the

consideration of resource limitation basic PSP becomes a mathematical problem

which is more complicated than the simple model and cannot be solved with CPM

model.

2.2. An Example Problem: How Can Activity Sequences Affect the Duration

of a Project?

A scheduler has to decide activity sequences of a project under given resource

limitations. Deciding the right activity sequence is a key choice since some activity

sequences may result longer durations, some results shorter durations under same

resource limitations. Consider the example given by Toklu (2002) at Figure 2.1.

9

Figure 2.1: Two span bridge example (Toklu, 2002)

A two span bridge construction is given as an example of the importance of activity

sequences. Suppose there exists only one excavation team, one pier construction

team and one span construction team. Considering the method of construction one

can say that construction may be started with any of the pier excavation: A1, B1,

and C1. Construction either follows the same locations in order to start pier works

as soon as possible or follows other locations independent from excavation works.

For example, if excavation is selected as A1, B1 and C1, pier construction would

follow A2, B2, C2 sequences in order to start pier construction as soon as possible.

A different strategy can also be selected such as starting pier construction after all

of the excavation work is finished. That way would obviously results longer

duration than expected. Assuming the strategy that pier construction work follows

excavation work in advance, possible construction sequences are as follows.

Considering the Figure 2.2 excavation can start from anywhere at sections A, B or

C. Thus, 6 different alternatives are possible, such as A1>B1>C1, A1>C1>B1,

B1>A1>C1, B1>C1>A1, C1>A1>B1, and C1>B1>A1. Since we have one team for

Start

A1

B1

C1

A2

B2

C2

D1

D2

Finish

Figure 2.2: Activity on node diagram of two span bridge example

10

pier construction and we have a strategy that pier construction follows excavation

work in advance, possible pier construction alternatives are A2>B2>C2,

A2>C2>B2, B2>A2>C2, B2>C2>A2, C2>A2>B2, and C2>B2>A2. And also 2

different deck constructions are possible, such as D1>D2 or D2>D1. It makes

totally 6x2 different construction sequences. If we consider the pier construction

team is not dependent on excavation team, we would have 6 x 6 x 2 different

combinations.

One way of choosing minimum project duration is calculation of all alternative

sequences and selecting the best one. In our example case total of 12 or 72

construction sequence can be analyzed and minimum duration can be selected.

Bettemir and Sönmez (2014) analyzed the same example under same resource

constraints mentioned before. Microsoft Project 2010 and Primavera P6 Enterprise

Version 7.0 are used to solve the case examples. The results of Standard priority-

based heuristic of MSP 2010, and six priority-based heuristics of P6 V.7 showed

that neither software packages could be able to achieve an adequate solution to this

simple network. These findings showed that even with small networks, with

changing the activity sequences project duration can be shortened and famous

software packages are not capable of finding good enough solutions.

Similar results is reported with Kolisch (1997) resulting that commercial software

packages generate schedules with an average deviation of 4.3–9.8% of the optimal

solution even for small projects which has a scale of up to 30 activities. In the same

manner, Trautmann and Baumann (2009) analyzed seven different project software

packages and their heuristics. It was advised that using these popular software

packages one must be aware that possible solutions are longer than optimum

solutions. The gap between optimum solution and heuristic solutions also increases

as activity number increases and resource scarcity is tightened. As an example given

at same research: for J120 sets and RS5 0.1, average deviation of seven heuristics

5 Resource Strength is a measure of resource scarcity. RS has a minimum value of 0 and maximum

value of 1 indicating the tightest and loosest schedule respectively.

11

were about %24 where the minimum value is %17. 93 and maximum value is %39.

53.

Although it is possible to find minimum duration under all possible activity

sequences, it can only be possible for such small networks. As the network size and

resource combinations increase, it becomes impossible to analyze every sequence

combination of a schedule. As network size and resource number increases, the

combination of resource/activity increases exponentially. This phenomena is

known as the “combinatorial explosion” which imply that since the problem itself

is NP-Hard (Blazewicz et al., 1983), no polynomial time algorithm is capable of

solving the problem. Therefore, this huge amount of data cannot be calculated by

hand.

Although some exact methods do exist which guarantee the optimum solution, their

capabilities are limited (Chen et al., 2010). Due to its limited applicability to large

problem instances, some heuristics and meta-heuristics are extensively used.

2.3.Classification of RCPSP

RCPSP has been a standard problem in operations research and since 1960s

abundant amount of research has been reported. This section is devoted to its

classification efforts.

With the efforts given to the problem itself and the variations of the problem in the

literature, classification need was emerged. In 1997 a workshop was conducted at

the University of California, Riverside and a classification schema was established

(Demeulemeester and Herroelen, p: 72, 2002). Brucker et al., (1999) classified the

RCPSP along with a notation procedure. This notation is stemmed from machine

scheduling and follows α|β|γ schema which represents resource characteristics,

activities and objective functions. Further attempts accepted the works of Brucker

et al., (1999) and Herroelen et al., (1999) which are basically built upon machine

scheduling literature. Example of Herroelen et al., (1999) can be seen at Table 2.1.

12

Table 2.1: Examples of α|β|γ schema

α|β|γ schema (Herroelen et al., 1999) Definition

m,1/cpm/Cmax Resource Constrained Scheduling Problem

with Single Mode

m,1/gpr/Cmax Resource Constrained Scheduling Problem

with General Precedence Relations

Kolisch and Padman (2001) defined the elements of RCPSP as activities,

precedence relation, resources and objective functions. Objective functions are

summarized as makespan minimization, minimization of flow time of activities,

minimization of delays, net present value maximization, quality maximization, cost

minimization. Implicitly it is assumed that all data is available, deterministic and

integer valued. Network representation issues are also mentioned and summarized

as networks which are on activity on node or activity on arrow diagrams.

Yang et al., (2001) categorized RCPSP as 6 different classes. It is assumed that

commonly known objective function is makespan minimization and difference is

stemmed from the problem mode- being a single mode problem or multi-mode

problem. The six different problems are basic single-mode RCPSP, basic multi-

mode RCPSP, RCPSP problems with non-regular objective functions, stochastic

RCPSP, bin-packing-related RCPSP problems and multi-resource constrained

project scheduling problems (MRCPSP).

Hartman and Briskorn (2010) used basically machine scheduling schema and gave

about further developments of the RCPSP. Preemptive scheduling, resource

demands with varying time, set up times, multi-modes are mentioned and defined

for further models.

It is stated in this work that, although RCPSP can be categorized and represented

with α|β|γ schema well, a practical categorization must include constraints, and

13

project environment in addition to the schema. More specifically, model based

constraints can be added and the problem becomes more specific for important

practical cases. Problems can be modeled in a static environment where all jobs are

available before the scheduling starts or problems may be in a dynamic environment

where any job may enter to the scheduling process while scheduling is going on.

Within all literature so far it can be stated that, at least 5 main factors affect the

problem itself. These are; activities, resources, objective functions, constraints and

project environment. In order to define each factor and be more specific each factor

is defined in the following section.

2.3.1. Elements of a RCPSP

2.3.1.1.Activities

Activities are those jobs that can be measured in time, consume resources and have

specified start and finish dates. Problem type changes according to activity

characteristics such as;

 Activities can have two different modes: single mode and multi-mode. In

single mode an activity performs only a defined mode, which does not

change with resource excess. Nevertheless, multi-mode of an activity states

that adding more resource would decrease the duration of that activity to

some extent.

 Activity preemption is another option for activity type. In some problems it

is possible to cut an activity from a point and define it with more than one

activity.

 The duration of an activity can be deterministic and stochastic.

2.3.1.2.Resources

Resources are necessary inputs for activities. Manpower, machines and money are

some examples of resources in a construction project. In literature, resources are

categorized by its type and value (Blazewich et al., 1986). Basic distinction

14

according to its type is about the availability concept. If a resource is continuously

available through the project with the same amount every step of needed it is called

renewable, if it is consumed through the project horizon it is called nonrenewable.

Example of a renewable resource is manpower and machines, for nonrenewable

resources is capital. If the value of the resource is exact and does not change by

activity mode, it is called deterministic, otherwise it is called stochastic. Thus,

problem type can change according to resources such as;

 Type of the resources can change the problem. Resources can be renewable,

nonrenewable or both.

 Resources can be deterministic and stochastic.

2.3.1.3.Objective Function

The objective of a schedule is important to define a mathematical model for the

problem. Minimization of total project duration is very commonly used objective

function in the literature. However, in the practice one objective may not cover all

other strategic issues, and may not be valid for every project. Thus, different

objective functions are possible and sometimes one objective may conflict with

each other. Earliness/tardiness minimization, present value maximization, cost

minimization and time/cost minimization problems are examples of objectives used

in literature. The type of the problem can change according to its objective function.

2.3.1.4.Constraints

Constraints define the boundaries of the problem. Constraints can be due to the

project itself, such as deadline constraints, budget constraints and can also be due

to inside the project itself such as technological constraints or activity sequences.

Others can be mathematical constraints such as activity resource consumption, or

activity duration should be integer valued. Moreover, model specific constraints

can be added to general mathematical models so as to specifically define a case.

2.3.1.5.Project Environment

Project environment can change the characteristics of the problem. For single case,

all resources are assumed to be dedicated to a project and only one project manager

15

is assumed to be in charge of resource allocation. Nevertheless, in a multi project

environment, resources are considered as corporate resources. Therefore, resource

allocation in a top level managers’ perspective makes this problem more complex

than the single case.

Also, multi project environment characteristics may be different. Being a static

environment, all jobs are known and during scheduling no new job is added. In this

form of problems once a mathematical model is determined, it would not change

until the schedule has been completed. On the other hand, dynamic environment

can change mathematical model significantly. Therefore, project environment

should be considered in classifications. The importance of the project environment

becomes significant when some heuristics are applied to the problem. For example,

if slacks are determined considering dynamic environment, it should be updated

within a routine while in a static case slacks will not change until scheduling is over.

Table 2.2: A classification of RCPSP

DIMENSIONS PROPERTIES

Activity Single Mode Multi-mode Activity

Preemption

Deterministic Stochastic

Resource Resource

Type

Deterministic Stochastic

Objective

Functions

Minimization

of Makespan

Cost

Minimization

Earliness/tardi

ness

Minimization

Present value

Maximization

Model-

specific

Constraints Mathematical Resource Time Cost Model-

specific

Project

Environment

Single Project Multi-project Dynamic Static

All mentioned properties are summarized at Table 2.2. It can be seen that for each

factor and its different type problem type changes significantly. Therefore in the

scope of this research basic cases will be used. In order to stick into the literature

16

and to be on the side of known problem types, basic RCPSP problems is given in

the following paragraphs.

Case Example #1 “Basic Deterministic Case”: In this case, all parameters are

assumed to be deterministic and resources are assumed to be unlimited. This very

broad definition of PSP is generally used by practitioners and a minimum time

algorithm is used to solve the problem. This minimum time algorithm is called

CPM. In this method, aim is to find a schedule which is consisting of critical paths

orders. The time frame of a schedule is captured and effect of an activity delay can

be determined from the network. Resources are assumed to be unlimited but as a

final schedule resource leveling strategy is used in order to minimize resource

fluctuations.

Case example #2 “Deterministic Case with Resource Constraints”: In addition to

basic deterministic case, the resource limitation constraint is added and the problem

and it is called RCPSP. If more than one project is under consideration problem

becomes RCMPSP. Both analytical and heuristic solution attempts are available in

the literature and the model will be studied in the next sections.

Case example #3 “Multi-mode with Resource Constraints”: In this case, either

activity durations or resource limitation can vary. For multi-mode PSP, a set of

different modes is available for execution. For example, in a mode 1 worker can

work 6 days and finish the job, while if 2 workers work in the same amount of work

they can finish the job in 3 days. This type of variable crew assignment is possible.

Different from the mode of the activity, activity duration can be a random variable

which obeys a probability distribution.

From this point further, case example #2 will be analyzed in detail:

2.4.Resource Constrained Single Project Scheduling Problem (RCPSP)

2.4.1. Problem Definition

With the basic assumptions of CPM, a time order of activities can be modeled and

schedule of a project can be drawn as nodes and arrows. The unlimited resource

17

assumption is valid in this method and this assumption is not suited in majority of

the real life problems. More importantly, if resources are not meeting with the

demands of the activities, activities should be shifted to a time where resources are

adequate. Therefore, real durations under the resource limitations would be beyond

the CPM duration. Then, a question arises “how can this duration shift be

minimized?” and the problem of RCPSP arises.

RCPSP modeled in this research is aiming to find an optimal scheduling of a set of

activities within a network while precedence and resource constraints are not

violated. The precedence constraints force an activity to be started within an

imposed time frame after all of its predecessors are completed. It is a reality that

activity execution requires an amount of resource usage and some of the resources

are limited. Thus, resource constraints force an activity to consume a limited

amount of resources. Within the constraints of activities and resource limitations,

more than one schedules can be generated which would have different project

durations-some are longer while some are shorter. Therefore, the aim in RCPSP is

to find the minimum duration of a project without violating the assumptions of the

problem.

The basic RCPSP is modeled in a project network G (N, A) with a set of N nodes

and A arcs, each node representing the project activities using the activity on node

representation. Each activity j has a duration of dj, finish time Fj and resource usage

ri. The activities in the network are subject to precedence constraints which force

to start an activity only after completing its predecessor(s). It is assumed that there

are m renewable resource types, with a per period availability Rm.

The problem is mathematically modeled in this way;

 The objective is to:

 Minimize Total Project Duration

 ∑ 𝐹𝑛
𝑖 .. (2.1)

Where some constraints exist such that:

18

𝐹𝑖 < 𝐹𝑗 − 𝑑𝑗…………………………………………………..…………….(2.2)

𝑟𝑗 < 𝑅𝑚... (2.3)

𝐹𝑗 , 𝑟𝑗 , 𝑑𝑗 ≥ 0 ... (2.4)

Other than two constraints above, there is also a sign convention, which forces the

model to be solved in non-negative and integer values.

2.4.2. RCPSP Literature

The objective of RCPSP is to determine a start date for each activity in such a way

that precedence and resource constraints are satisfied, and the project duration is

minimized. As RCPSP is NP-hard in the strong case (Blazewicz et al. 1983) it can

be solved by exact methods only for small projects. Hence, many researchers have

proposed heuristic and meta-heuristic methods for RCPSP. There are basically three

solution methods to the problem (Figure 2.3) Exact methods used for finding the

optimal schedule but not appropriate to complex problem sets. Heuristics are fast

and often provide adequate solutions, but they do not usually provide high quality

solutions. Meta-heuristics are capable of finding high quality but sometimes they

are time consuming.

Figure 2.3: RCPSP and solution methods

R
C

P
S

P

Mathematical
Methods

Heuristics

Meta-heuritics

19

2.4.2.1.Exact Methods

Exact solutions include linear integer programing methods: zero-one programing

and dynamic programing, enumeration; especially branch and bound methods. Very

limited works have been done in term of exact solutions. It is proven that neither

method is computationally feasible for large-sized networks (Kim and Ellis, 2008;

Alcaraz and Maroto, 2001). Kolish et al., (1995) worked on 480 test sets with 30

activities which are soon becoming a standard test set and concluded that 428 of

them can be solved optimally with exact methods, remaining are cannot be solved

even with 1 hour of computation time. Afterwards the researchers concentrated on

52 “hard test sets”. Mingozzi et al., (1995) and their algorithm BBLB3 showed

significant improvements on the optimal solutions, but it was very slow in terms of

computational efficiency.

Pioneering work about zero-one programing approaches are focused on a linear

programming formulation of job-shop scheduling (Pritsker et al., 1969; Patterson

and Roth, 1976). Due dates, job splitting, resource, substitutability, and

concurrency and non-concurrency of job performance requirements are added to

the model and three different objective functions, namely; minimizing the total time

for all projects, minimizing the time by which all projects are completed and

minimizing total lateness or lateness penalty for all projects are researched.

Patterson and Huber (1974) used bounding techniques in conjunction with zero one

programming techniques. Rather than solving one schedule with zero-one

technique, it is intended to examine feasibility of a series of schedules. Its

advantages over simple zero-one programming techniques are compared.

An example of dynamic programming techniques is given at Carruthers and

Battersby (1966). Elmaghraby (1993) investigated the dynamic programming

technique with the assumption that there is a relationship between the amount of

the resources allocated to an activity and its duration. A dynamic programming

optimization procedure and an approximation are given for upper bound solutions.

20

In all of exact solution methods above mentioned branch and bound algorithms

(Christofides et al., 1987; Demeuelemeester and Herroelen, 1992) are very common

in the literature. Branching can be defined as dividing disjoint solution subsets into

subsets (Demeulemeester and Herroelen, p: 220, 2002). Basically, it is a divide and

conquer algorithm in which large problem set cannot be solved directly, instead it

is divided into smaller sub problems that can be conquered. Two actions are

required for the algorithm. The first action is dividing the problem into sub

problems-which is called branching; second action is giving a bound for best

solution in the subset-which is called bounding. Thus, it is a search algorithm to

find the best solution among other solutions available.

Table 2.3: Example heuristics

Heuristic Working Mechanism

Min. Slack (MinSlack) Give priority to activities those have

smaller slack

Min. Late Finish Time (LFT) Give priority to activities those have

smaller late finish time

First Come First Served (FCFS) Give priority to activities those first come

to a priority list

Most Total Successor (MTS) Give Priority to activities those have more

total successors

Greatest Resource Demand (GRD) Give Priority to activities those have

greatest resource demand

Worst Case Slack (WCS) Give Priority to activities those have worst

case slack

Christofides et al. (1987) proposed a branch and bound algorithm which is based

on the idea of disjunctive arcs for resolving conflicts when resource constraints are

not enough. Four lower bound solutions are examined. The first is a simple lower

bound based on longest path computations. The second and third bounds are derived

from a relaxed integer programming formulation of the problem. The fourth bound

21

is based on the disjunctive arcs used to model the problem as a graph. The report is

done based on the performances of randomly generated sets which involve up to 25

activities and 3 resources.

Demeuelemeester and Herroelen (1992) used a branch-and-bound procedure which

is described for scheduling the activities of a project of the PERT/CPM variety

subjects to precedence and resource constraints where the objective is to minimize

project duration. The procedure is based on a depth-first solution strategy in which

nodes in the solution tree represent the resource and precedence feasible partial

schedules. The procedure is programmed in the C and validated using a standard

set of test problems with between 7 and 50 activities requiring up to three resources.

2.4.2.2.Heuristics

Heuristics are experienced based techniques which have a subroutine applied to

problem solving strategy and generally have adequate solutions in a very short time.

Most heuristics are rules that are tailored to fit for specific types of problems. They

may be deterministic and stochastic whether the same results can be found at each

iteration or not. Some examples can be seen from Table 2.3.

Figure 2.4: Working mechanism of heuristics and meta-heuristics

Meta-
heuristic

Priority
Rule

SGS

Activities

Schedule

INPUT

OUTPUT

22

Minimum Slack Rule (MinSlack) is generally accepted as an adequate solution for

RCPSP and can be applied with First Come First Served (FCFS) rule as a tie

breaker. Heuristics are important since they offer some upper bounds for those

cannot be solved optimally.

The heuristic studies for the RCPSP date back to Kelley (1963) with a schedule

generation schema (SGS). SGS is at the hearth of heuristics and meta-heuristics as

well as it is a heuristic itself. It starts from zero to build a schedule by stepwise

improvements. There are two different SGS available in the literature. One is based

on activity increment- serial SGS and the other is based on time increment - parallel

SGS. In serial SGS, based on activity selection principle, activities are scheduled at

the earliest possible time under the resource constraints. Nevertheless, at parallel

SGS, for every time increment activities are scheduled under the resource

constraints (Kolish and Hartmann, 1999). In order to build a schedule either SGS is

used together with a priority rule or meta-heuristics. The mechanism is shown at

Figure 2.4. An ordered list is obtained with a priority or a meta-heuristic, the

schedule is configured with SGS

Davis and Patterson (1975) tested various heuristic sequencing rules on RCPSP

with the total project minimization objective function. Effectiveness of heuristics

shown by comparison to optimum solutions available. Minimum Slack Rule

performed best from eight heuristic test with eighty tree problems. It is reported

that, the performance of heuristics was relatively small as resource constraints get

tightened.

Backward forward improvement method (Li and Willis, 1992) is a special

improvement method that is based on scheduling with same SGS and heuristics, in

reverse time direction. In backward scheduling the exact duration of feasible

schedule is not known, an arbitrary completion time is selected and all precedence

relations are reversed. Finally, all activities are scheduled as late as possible

according to activity selection principle. In the same manner resulting schedule can

be scheduled in forward direction according to starting dates as early as possible

23

and final schedule generally be denser and shorter than starting schedule, at least it

has the same duration

Priority-rule-based heuristics (PR-H) use a SGS in order to build a schedule.

Priority rule is used for selecting the nominee activities from the activity set. PR-H

can be classified according to criteria it employs, i.e. network, time and resource

based rules. If PR-H generates a single solution it is called single pass method, if it

generates more than one schedules, it is called multi pass methods (Kolish and

Hartman, 1999). PR-H can be applied to get one solution at a time. As an example

of shown heuristics see Hartman et al. (2000), where Late Finish Time (LFT) and

Worst Case Slack (WCS) rule is used in experiments on test of algorithms

performances.

Some heuristics produce more than one solution and best of them can be selected.

Sampling methods (Cooper, 1976) are examples of this kind of heuristics. The

selection probability of activities from decision set is determined according to a

selection principle and the schedule is constructed upon selection probabilities.

Another method is selecting more than one heuristics in a random manner which

can be found at Storer et al., (1992).

Hartman et al., (2000) conducted an experiment on the performances of heuristic

algorithms by applying an experimental design with control parameters on test sets.

A full experiment design is applied in order to test different heuristics’

performances on standard J sets (Kolish et al., 1999). Influence of increasing

project size, network complexity, resource factor and resource straight is tested.

Worst Case Slack (WCS) and Late Finish Time (LTF) combined with parallel SGS

outperformed other priority rule based heuristics. Meta-heuristics performed better

as schedule number was increased from 1000 to 5000. It was concluded that since

meta-heuristics use knowledge exploited from different schedules, they have

superiority on priority rule based heuristics. It is stated that the selection of SGS

may be influenced by project size since serial SGS performed better in J30 sets

while parallel SGS performed better in J120 sets.

24

Kanit et al., (2009) investigated MinSlack, LFT and Maximum Remaining Path

Length (MRPL) heuristics on the scheduling of housing projects. Tests were

conducted using ten real projects. MRPL rule performed better at six projects, LFT

performed better at three projects and MinSlack rule performed better at one

project. It is suggested that MRPL rule can be used for housing projects with

resource constrained where activity numbers are high.

Figure 2.5: A simple GA

2.4.2.1.Meta-heuristics

Meta-heuristics are higher level heuristic methods which can be applied for

different type of problems without being specific for one specific type of problem.

The meta-heuristics are included variety of methods such as genetic algorithms

(GAs), simulated annealing (SA), tabu search, particle swarm optimization (PSO)

25

and ant colony optimization (ACO) which mimic a natural phenomenon in order to

find a global optimum in a large search space.

Among all meta-heuristics, GAs have a large variety of application areas. It is a

population-based and stochastic search algorithm based on evolutionary

computation principles inspired by the Darwinian principles of natural selection

(Holland, 1975). GAs finds for best solution from a pool of solutions according to

some selection and diversification mechanisms as shown at Figure 2.5. A solution

is called individuals where an individual is represented by a chromosome. Number

of solutions constitute a set which is called as a generation.

New solutions are produced depending on previous generations’ chromosomes

according to crossover and mutation operators. The best solutions are given to

higher change to survive and some of them are moved to new generations with

elitism. A fitness function is used in order to evaluate a chromosome’s performance.

What makes GAs strong compared with other algorithms is that it has the ability of

exploiting the best solution while exploring the search space effectively

(Michalewich, p. 15, 1992).

Figure 2.6: Different type of chromosome representations

In GAs different schedule representations are possible, such as random key value

activity list or priority list. In random key representation each gene represented by

a priority number, i.e. highest random key value represents highest priority to the

26

activity. Whereas in an activity list representation, a schedule is represented with

list of activities; order of an activity means it is scheduled prior to others. A priority

list representation is also available where a heuristic is used to choose activities and

chromosome representations show priority of that heuristics. At Figure 2.6 some

examples of different chromosome representations are shown.

Figure 2.7: Crossover examples

Crossover and mutations are two main methods in order to produce new solution

from existing solutions. In a crossover, from two different chromosomes, namely

mother and father, two different children are obtained. The simplest crossover

method is one point crossover where a random gene is selected as a point and the

remaining parts are exchanged by mother and father's chromosomes. Another

crossover method is two point crossovers. In this method two random points are

selected and chromosomes are divided into three sections. Middle sections are

exchanged between mother and father's chromosomes (Figure 2.7).

Apart from these two basic crossover methods, several complex methods are also

available. Parameterized uniform crossover (Dejong and Spears, 1991),

decomposition based crossover (Debels and Vanhoucke, 2007) are examples of

more improved crossover methods. The parameterized uniform crossover method

is applied on a random key vector. A random number is generated between 0 and 1

and those genes having higher than that number is exchanged between

X X X X X X X X X X X X X

X X X X X

X X X X X X X X X X X X X X

X X X X

Child 1

Child 2

Child 1

Child 2

One Point Crossover

Two Point Crossover

Mother

Father

Mother

Father

27

corresponding mother locations. Decomposition based crossover is started with

determining the weakest resource used regions in a father chromosome and best

resource used regions in a mother's chromosome. Finally, worse parts are replaced

with the better part of father chromosome.

Mutations are applied as a random change of a gene or a number of genes on a

chromosome. Along iterations chromosomes may trap into local minimums. Thus,

the solution may lead a premature convergence, which does not allow reaching of

optimum results. Mutations may lead to skip from local minimums. Generally

mutation ratio is too small since too many mutant genes may also avoid to converge

(Yang, p: 25, 2008).

Hartmann (1998) studied RCPSP with makespan minimization objective. A new

GA is proposed and it has been compared with two other GAs. Starting with the

empty job sequence list, preceding activities are selected randomly from an

unselected activity set. In addition, a known sampling method and a priority rule

are used to derive activity selection probabilities. Results were compared with two

known GAs and some heuristics.

Leu and Hwang (2001) studied RCPSP in a repetitive construction project- precast

production. It is stated that line of balance method (LOB) is not sufficiently enough

to solve scheduling problems under resource constraint. In the paper random key

representation is used along with GA. Influencing factors of the repetitive precast

production scheduling model and their impacts were examined. Results revealed

that GAs are very efficient in precast production scheduling.

Leu and Yang (1999) proposed a GA based scheduling system called GARCS. A

new crossover and mutation is shown and its effectiveness was tested on problem

instances.

Chen and Weng (2009) proposed a two-phase GA in which both the effects of time-

cost trade-off and resource scheduling are combined in order to get the best result

for RCPSP. A GA based time-cost trade-off analysis is used to select the execution

28

mode of each activity and it is followed by other GA-based resource scheduling

method.

Chen et al. (2010) proposed a hybrid algorithm called as ACOSS which combines

a local search strategy, ant colony optimization, and a scatter search in an iterative

process.

In recent years, other than RCPSP there has been an increasing interest in the

adaptation of GAs to optimization problems in construction engineering and

management. Multi-mode RCPSP (Mori and Tseng, 1997), resource leveling

(Hegazy 1999, El-Rayes and Jun 2009), planning of construction resource

utilization (Kandil and El-Rayes 2006; Kandil et al. 2010), planning of post disaster

temporary housing projects (Kandil et al. 2010), time-cost tradeoff problem (Feng

et al. 1997; Kandil and El-Rayes 2005), and time-cost-quality trade-off (Kandil and

El-Rayes 2005) are among the construction management problems in which GAs

are proposed.

Simulated annealing (SA) has fine tuning capabilities, and is usually capable of

escaping of local optima for locating a good approximation to the global optimum

(Hwang and He, 2006). But a sole SA has a low search efficiency as it maintains

one solution at a time. It was applied in the optimization problem by Kirkpatrick et

al., (1983). It mimics the annealing process of materials. The basic idea behind the

algorithm is to use a randomized search technique with accepting worse solutions

to some extent. In the early stages of the algorithm the probability of accepting

worse solutions is high. This acceptance probability is reduced in a cooling schema

where probability is:

𝑝 = 𝑒−
∆𝐸

𝑘𝑇……………………………………………………………………. (2.5)

where ∆E is the rate of change in the objective function, T is temperature and k is

Boltzmann’s constant. A flow chart of the basic SA algorithm is given at Figure

2.8.

29

Figure 2.8: Flow of SA algorithm

Boctor (1996) applied SA technique to RCPSP and tested its efficiency via

statistical methods. Results revealed that SA is capable of finding near-optimum

results. Another SA algorithm was proposed by Cho and Kim (1997) in which a

solution is represented with a priority list, and algorithm is used with a priority

scheduling method using total project duration minimization objective. Further

works generally used SA along with other meta-heuristics since SA gives one

solution at a time and it is not efficient when compared to population based

approaches. Chen and Shahandashti (2009) used SA along with GA and results

were revealed that hybrid GA-SA algorithm performed better than sole SA.

Tabu search (Glover, 1990) algorithm uses a past memory of actions and it builds

solutions based on a best neighboring solution which is obtained using a search

method and an appropriate objective function evaluation. To avoid selecting same

neighborhood and previous solutions, some selected moves are recorded as tabu

30

list. The iteration continues until a stopping criteria is met (Thomas and Salhi,

1998). Due to use of memory and record of past actions, algorithm could save

computing time and can increase the efficiency significantly (Yang, p. 92, 2008).

The mechanism of the algorithm in RCPSP works such as; an initial feasible

solution is obtained and this solution is disturbed with a move function and finally

a new solution is obtained.

Lee and Kim (1996) used random solution for initial solutions and neighborhood

generation method for new solutions. They selected activities from previous four

and next four activities randomly in neighborhood search mode. Tabu list is

obtained by defining tabu moves such as interchanging priorities of activities i and

j, if activities are interchanged recently.

Icmeli and Erenguç (1994) used tabu search algorıthm on RCPSP with discounted

cash flows. The method was tested on 50 problems derived from Patterson's data

set. Solutions were compared with upper bound results and MinSlack rule used

solutions.

Particle Swarm Optimization (PSO) is another evolutionary technique that mimics

the behaviors of birds flocking. It starts with an initial solution and looks for

solution in the search space by iterations. Unlike GAs, PSO does not use

evolutionary operators. The particles follow its paths one by one with its good

experiences. For n particles there would be n current best solutions. The aim is to

find globally best solution compared with current solutions.

 Jia and Seo (2013) proposed an improved PSO method which treats the solutions

of RCPSP as particle swarms and employs a double justification skill. It uses

operator for the particles, in association with rank-priority-based representation,

greedy random search, and serial scheduling scheme.

Ant Colony Optimization (ACO) is another meta-heuristic method that mimics the

behaviors of ants looking for best foraging paths. Ants that find foods mark it with

a chemical (pheromone) in order to be trailed by other ants. Those ants following

same route improves the chemical concentration. As more ants follow the same

31

route, the route becomes a favorable one. It gives a feedback for those ants which

start to find food sources.

Merkle et al., (2002) proposed an ACO method for RCPSP. Proposed method uses

combinations of two pheromone evaluation methods to find new solutions, these

are: a change of the influence of the heuristic on the decisions of the ants during the

run of the algorithm, and the option that an elitist ant forgets the best-found solution.

Tseng and Chen (2006) proposed a hybrid approach called ANGEL, which

combines (ACO), (GA) and a local search strategy together. In this method first,

ACO searches the solution space and generates the initial population for GA. Next,

GA is executed and the pheromone set in ACO is updated when GA obtains a better

solution. When GA terminates, ACO searches again by using a new pheromone set.

ACO and GA search alternately and cooperatively in the solution space. Finally a

local search strategy fine tunes the results of ACO and GA.

2.5.Resource Constrained Multi-Project Scheduling Problem (RCMPSP)

2.5.1. Problem Definition

The resource constrained multi-project scheduling problem (RCMPSP) is an

extension of the RCPSP and consists of simultaneous scheduling of two or more

projects with common resource constraints, while minimizing some performance

measure. It is quite often that managers deal with more than one projects in practical

cases (Browning and Yassine, 2010). Payne (1995) states that %90 of the projects

are carried out in a multi-project context. Lova et al., (2000) made a survey in

construction, textile, IT and public administration sectors about the project

environment. %84 of correspondents answered that they work in a multi-project

environment. Same survey concluded that project scheduling software programs are

not practical to manage multi-projects and they should be adapted to this need.

These survey results reveal that multi-project environment is a more practical and

common case compared with a single project for scheduling purposes.

32

The basic RCMPSP can be stated as follows: A project portfolio consisting of

projects i= 1,…, M has to be scheduled with limited portfolio resources. Each

project is composed of j= 1,…, Ji activities. The activities can start after all of its

predecessors are completed. Each activity requires rijk units of resource type k,

during every instant of its non-preemtable duration dij. The availability for each

resource k, in each time period is Rk units. At any time instant t, if the set of

precedence feasible activities requires more than Rk units for any k, then some

activities will have to be scheduled at a later time to satisfy the resource constraints.

With these definitions, the problem of finding a precedence and resource feasible

portfolio schedule with the minimum overall project portfolio completion time (C)

can be formulated as follows (Christofides et al. 1987):

Minimize (C)……………………………………..……………………………(2.6)

Subject to:

 ∑ 𝑆𝑖,𝑗,𝑡

𝑡

= 1, i = 1, … , 𝑀, j = 1, … , 𝐽𝑖 (2.7)

∑ 𝑡(𝑆𝑖,𝑚,𝑡 − 𝑆𝑖,𝑗,𝑡) ≥ 𝑑𝑖,𝑗, (𝑗, 𝑚) ∈ 𝐻𝑖, i = 1, … , 𝑀

𝑡

 (2.8)

∑ ∑ ∑ 𝑟𝑖,𝑗,𝑘

𝑡

𝑞=𝑡−𝑑𝑖,𝑗+1

𝐽𝑖

𝑗=1

𝑀

𝑖=1

𝑆𝑖,𝑗,𝑞 ≤ 𝑅𝑘, k = 1, … , 𝐾, t = 1, … , 𝑇 (2.9)

𝑆𝑖,𝑗,𝑡 ∈ (0,1) (2.10)

Eq. 2.6 minimizes the overall project portfolio completion time (C). Eq. 2.7

indicates that every activity must start once. Eq. 2.8 presents the precedence

constraints, where Hi is the set of activity pairs with precedence relations in project

i, and Ji+1 is the dummy activity used to determine completion time of project i.

The constraints given in Eq. 2.9 satisfies the resource requirement of activities at

each time instant t does not exceed the availability Rk, for each resource k, where T

33

is an upper bound on the portfolio completion time. Finally, the constraints of Eq.

2.10 define the decision variables as binary.

Figure 2.9: Multiple single projects vs. single project approach (Lova and Tormos,

2001)

2.5.2. RCMPSP Literature

The basic RCMPSP can be solved by combining all project networks in one super-

network by adding a super-dummy start and a super-dummy end node considering

it as a single project network (Figure 2.9). Under this assumption, RCPSP solutions

would be valid and solution methods can be used. Nevertheless, the combinatorial

explosion problem would be more significant as small networks are compared.

Furthermore, that problem which can be taken as multiple single project networks,

each considered as alone would be more practical since in real life practices each

project has its own project manager, budget and accounting system, only resources

may be used from the common enterprise pool. Therefore, throughout this study

problem is taken as multiple single projects.

RCMPSP can be expanded in several ways. Activities could have multiple

duration/resource alternatives, rather than a single duration and resource

consumption option-which gives a stochastic nature to the problem (Tseng 2004).

Since resources are used from a common pool resource transfer times could be non-

zero (Kruger and Scholl 2009). Project environment may be static where all project

details are clear and set before scheduling starts or dynamic where project details

34

are changed trough execution. Although the basic RCMPSP has certain practical

limitations such as the assumption of a single duration/resource mode for activities,

or the assumption that resources can be transferred between projects without any

expense in time and cost, the majority of the research on resource constrained multi-

project scheduling have studied the basic problem. In this research, we have focused

on the basic RCMPSP since the majority of the multi-project problem instances

available in the literature include basic RCMPSPs, and commonly used project

management software such as Microsoft Project 2010 can only solve the basic

problem. It can be seen from the literature that while the majority of projects is

scheduled on a multi-project environment, most research on resource-constrained

project scheduling have focused on single projects (Kurtulus and Davis 1982;

Krüger and Scholl 2009; Browning and Yassine 2010). Therefore, in multi project

environment there exists less number of researches. Following section summarizes

the works done in the multi project environment.

2.5.2.1.Exact Methods

Since RCMPSP is a generalization of the RCPSP, it is also NP-hard (Golçalves et

al., 2008). Although exact methods were proposed in the literature, previous studies

have mainly attempted to develop efficient heuristics and meta-heuristics for the

solution of RCMPSP.

Some exact solution methods such as zero-one programming approach (Pritsker et

al., 1969) are proposed in the literature which is unable to solve large instances.

Another example of exact methods is Drexl (1991), in his work a branch and bound

algorithm together with dynamic programming model is proposed. The models and

assumptions under exact models of RCPSP are valid for RCMPSP. Since the project

sizes are larger, exact methods is not practical to use. Further attempt to solve the

problem by exact solution methods are limited with the NP-Hard characteristics of

the problem. Therefore, due to the combinatorial explosion problem many studies

focused on heuristics and meta-heuristics.

35

Table 2.4: Priority rules tested by Kurtulus and Davis (1982)

Priority Rule Explanation References

SOF Shortest Operation First Conway (1965), Patterson

(1973)

MinSlack Minimum Slack Rule Wiest (1963),

Fendley (1968)

SASP Shortest Activity From Shortest Project Kurtulus (1978)

LALP Longest Activity From Longest Project Kurtulus (1978)

MOF Maximum Operation First Kurtulus (1978)

MaxSlack Maximum Slack First Kurtulus (1978)

MinTWK Minimum Total Work Content Kurtulus (1978)

MaxTWK Maximum Total Work Content Kurtulus (1978)

FCFS First Come First Served Mize (1964)

2.1.1.1.Heuristics

Priority based heuristics, meta-heuristics, non-standard meta-heuristics and

miscellaneous heuristics are four main groups which is extensively mentioned by

Kolish and Hartman, (1999) and Browning and Yassine, (2010). The aim is to find

a near-optimum solution within a reasonable time period.

Kurtulus and Davis (1982) proposed two new categorization processes within time-

only analysis in order to measure the effects of the priority rule based heuristics

which are summarized at Table 2.4. Average Resource Load Factor (ARLF) is

defined as a measure of the peak resource requirement is in the first half of the

project or second half. Average Utilization Factor (AUF) measures tightness of the

schedule which is calculated as the ratio of the total amount required resource on

available resources. An experiment design was made where ARLF changes -3 to 3

and AUF changes 0.6 to 1.6. Totally 77 project sets were tested where sets have

activity numbers ranging 34 to 63 activities. Nine heuristic rules were tested.

36

Table 2.5: Priority rules according to ARLF and AUF ranges (Kurtulus and Davis,

1982)

 AUF Range

ARLF Range 0.6 to 0.8 0.9 to 1.6

-3.5 to -2.5 MINSLACK SASP

-2.5 to -1.5 MAXTWK SASP

-1.5 to -0.5 SASP MAXTWK

-0.5 to 0.5 MINSLACK SASP, SOF, MAXTWK

0.5 to 1.5 SASP SASP

1.5 to 2.5 MINSLACK MOF, SASP

2.5 to 3.5 MINSLACK SASP

SASP and MaxTWK rules were outperformed other seven rules with different

objective functions. An important result was concluded from the research that

artificial super-network approach which is extensively used by software packages

is an inferior approach for multiple single project approach. As summarized at

Table 2.5 a directive approach was given to researchers. From given Table

researchers and practitioner can choose the best heuristic based on ARLF and AUF

measures of test cases.

Kurtulus (1985) studied these ten priority rules along with five penalty functions,

namely: 1) assigning the highest penalty to the project requiring the greatest amount

of resources; 2) assigning the highest priority to the longest project; 3) assigning

the highest priority to the project requiring the least amount of resources; 4)

assigning the highest priority to the shortest project; and 5) random assignment.

Priority rule performances were tabulated along with penalty functions and it is

concluded that project measures ARLF and AUF along with penalty functions gives

different results on different priority rules.

Lova et al. (2000) proposed a multi-criteria heuristic method for multi project

scheduling problems. It is stated that while managing more than one project, more

flexibility is required to use scheduling tools. Heuristic method was developed in

37

order to account for two criteria, one is project splitting and other is mean project

delay. Heuristic work is given in two phases: in the first phase iterative forward-

backward process is used with mean project delay objective function. In the second

phase, results is improved with no time criteria. MaxTWK and MinLFT priority

rules were the bet rules that dominate others under different criteria.

Lova and Tormos (2001) studied the effect of the SGS – serial or parallel – and

priority rules – MinLFT, MinSLK, MaxTWK, SASP or FCFS – with two

approaches – multi-project and single-project under mean project delay objective.

A two stage iterative process is proposed where in the first stage priority is given to

a project, in the second stage activities are selected with heuristics. It is stated that

P-SGS found better results performing under mean project delay objective

functions.

Lova and Tormos (2002) further examined the two stage project selection principle

with other possibilities of selecting SGS and other multi-pass heuristics. A new

hybrid heuristic method combining random sampling and forward backward

iteration is given.

 Krüger and Scholl (2009) studied the problem under resource transfer times. In this

model resources transferred to another project is modelled. Sequence and resource

dependent transfer time constraints are added to the model which represent setup

times for activities when a resource is removed from one project and reassigned to

another. It is concluded that commonly accepted static environment assumption and

static nature of portfolio cannot represent real life problems. Resource transfer

times should be included in the models despite the models may include more

comprehensive work.

Browning and Yassine (2010) studied RCMPSP with its two lateness objectives-

project lateness and portfolio lateness. Five measures of RCMPSP characteristics

are used along with a full factorial experiment on 12,320 randomly generated

problem instances. A directive tool is given for a manager to choose which priority

rule is best under selected project network.

38

2.1.1.2.Meta-heuristics

Focusing on the main objective of this thesis it can be seen that meta-heuristic

studies are primarily aiming to solve RCPSP. Particle swarm optimization (Jarboui

et al. 2008; Wang and Qi 2009; Chen 2011; Jia and Seo, 2013), ant colony

optimization (Merkle et al. 2002; Tseng and Chen, 2006), simulated annealing (Cho

and Kim, 1997; Hwang and He, 2006), honey-bee mating optimization (Bozorg

Haddad et al. 2010; Akbari et al. 2011), hybrid GA and SA (Bettemir and Sönmez,

2014) and tabu search algorithm (İçmeli and Erenguç, 1994; Lee and Kim, 1996)

are the main studies aiming to solve RCPSP. There is also particular interest for

GAs such as (Lee and Kim 1996; Hartmann 1998; Leu and Yang 1999; Leu and

Hwang 2001; Toklu 2002; Kim and Ellis 2008; Cheng and Weng 2009; Lin et al.

2013).

Majority of the studies with extensive literature is focusing on RCPSP. Being a

more practical case, RCMPSP has not drown the attention of researches yet. Very

limited research was proposed in the literature. One of them is a sole genetic

algorithm along with a priority rule which is proposed by Kumanan et al. (2006). A

GA is used to select the sequence of projects where priority rule is used for

scheduling within projects. The proposed method outperformed other heuristics

such as FCFS and SPT.

A multi-agent systems (Confessore et al., 2007) is proposed within a decentralized

multi project problem. In the model agents are used to communicate with project

managers and portfolio manager.

Gonçalves et al., (2008) proposed a GA with random key representation. In order

to capture real practices, model were capable of integrating due dates, work in

process, and inventory. Constraints enforcing the release date concept are also

introduced.

A hybrid meta-heuristic was proposed by Chen and Shahandashti (2009) where GA

and SA approaches combined together to give better results. SA approach was

39

integrated to model in order to improve GA’s search capacity with accepting worse

solutions.

Within above aforementioned limited works, it can be said that there is a significant

research potential for RCMPSP. Meta-heuristics have high potential to solve the

RCMPSP.

2.6. Parallel Computing Literature on Meta-heuristics

2.6.1. Introduction

Different from parallel computing, serial computing is the usual computing, which

engineers have been using for 50 years. In this type of computing instructions given

to the computer is running one after another and speed of the computation relies on

the central processing unit (CPU) clock speed. Traditional computers’ CPUs follow

Moore’s Law, which describes a long-term trend in the history of computing

hardware. According to this law, the number of transistors that can be placed on an

integrated circuit has doubled approximately every two years. The trend has

continued for more than half a century and is not expected to stop (Arenas et al.,

2011). Nevertheless, physically CPUs has reached its limits. This resulted in a new

era of computing, which called parallel is computing. In parallel computing,

instructions can be run on different cores at the same time. It makes possible to

increase applications’ effectiveness.

Although as end users, we are not aware of the parallel computing era, it has already

been started and incorporated with many devices. Electronic devices, multi-core

PCs, cell phones have all had parallel computing capabilities. Due to the limits of

current processor clock speed, it is expected that parallel computing will be the new

era of computers. Therefore, possible parallel computing applications would bring

new opportunities to the engineers and end users such that faster applications,

robust calculations and low cost of computing.

Although GAs are effective in solving many optimızation problems in science,

engineering, and business applications, longer execution time to compute each

fitness value of the problem limits its performance. Due to the subroutine of the

40

algorithm, for each cycle time one fitness calculation is possible. Considering the

huge amount of data computation together with several iterations, GAs built

solutions in a considerable time. An approach to use several distributed computers

together for calculation makes it possible to speed up this computation process. One

of the main examples of this process can be seen from Kandil and El-Rayes (2006).

The main objective of Kandil and El-Rayes (2006) work is to develop a parallel

multi-objective genetic algorithm framework that is capable of distributing the

computations over a network of computers. Five research questions are examined.

These are;

 Can parallel GAs enable an efficient optimization of large-scale projects?

 What are the time savings achieved?

 How many processors are needed?

 What is the effect of parallel GA design on efficiency and effectiveness?

 Which parallel GA paradigm is more suitable for optimization large-scale

projects?

Two parallelism approach was applied namely the global parallel GA and coarse-

grained GA. In the first approach a main processors is selected in charge of all

others and other processors are used for fitness evaluation. In the second approach,

the global population is divided into sub-populations called demes that are evolved

independently. A migration process is applied where best solutions are exchanged

within clusters. Results of first approach revealed a time saving of 7.14 times for

720 activities network. In the second approach three different sized large-scale

construction project is selected that contains 180, 360 and 720 activities as test

cases. Elapsed time for 180 activities network in one processors was 4 hours and it

significantly reduced to 0.5 hours with 5 processors (8 times). Nevertheless,

computation time of 5 processors and 50 processors was almost same and it was not

possible to speed up the computations. In the similar manner, for 360 activities

network almost 8 times speed up was possible up to 5 processors and increasing the

processors beyond 5 did not decrease the computation time. One of the best results

of this study was it is shown that computational time savings are possible. Adding

41

more processors although do not increase computational time beyond 5 to 10

processors, it can increase the quality of the solutions with applied coarse-grained

model. Global parallel GA approach was found as more efficient but less effective

way of parallelism compared to coarse-grained model.

Nevertheless, these networked computers are not easy to manage, requires more

resource and they are expensive. Some researchers use different platforms in order

to search solution space more effectively. A low cost computing device which is

called a Graphical Processing Unit (GPU) is also used by researchers in order to

increase effectiveness of algorithms together with meta-heuristics.

A GPU is a device which has multiple cores on it and used for parallel computing

purposes. It can be programmed with less programing knowledge, it has low initial

and maintenance cost and ease of use together with personal computers make them

suitable for general purpose computing.

2.6.2. Literature Review of GPU Applications

Although GAs are very effective in searching solutions within a domain, crossover,

mutation and selection process requires considerable time. For every population

that has to be evaluated, fitness value should be calculated. Traditional computing

technique is the evaluation of each fitness value at each cycle time of the computer.

Fortunately, GAs are suitable for distributing the computational load to different

cores (Paz and Goldberg, 2000). At this point parallel computing technology brings

new opportunities. There are three different parallelism approaches available in the

literature. These are: master-slave model, fine-grained model and island model

(coarse-grained). With these models it is possible to design different types of GAs.

The master - slave model includes one population but fitness evaluations are

distributed among different cores (Figure 2.10). This model has many advantages:

they explore the search space as a serial GA, it is easy to implement, and it has

several significant improvements in performance (Pospichal et al., 2010). In fine-

grained model it is assumed that any individual can only mate with individuals

located on the neighboring processing nodes. Whereas island model includes more

42

than one population, each evolves independently, may have different sizes and they

may communicate within each other or not.

Application of GPUs in scheduling is very limited, although meta-heuristic

applications have large application area. Melab et al., (2012) used GPU on a branch

and bound algorithm. The focus of the application is on the bounding mechanism

of branch and bound algorithm, which is the most time consuming part of their

exploration process. An NVIDIA Tesla C2050 GPU is used for testing and

significant improvements have been achieved.

Zajicek and Sucha (2011) used GPUs for the flow shop scheduling problem. They

used a homogeneous computing strategy where all computations are done on the

GPU.

Nesmachnow and Canab´e (2011) used GPUs in order to improve the efficiency of

two scheduling heuristics. It is implemented in a heterogeneous computing system

where more than one computer is available. Experimental results demonstrated that

the parallel implementations of these two heuristics on GPU provide significant

improvements compared to the sequential implementations at large scale instances.

Other GPU applications include a parallel traveling salesman problem of Fujimoto

and Tsutsui (2011). In this implementation GA is run at m thread blocks where m

is the number of individuals, each individual is processed by n threads where n is

Master

Slave Slave Slave Slave

CPU

GPU

Figure 2.10: Master-slave model of GPU application

43

the number of cities and each thread block performs special crossover and mutation

operators at the same time.

A parallel ant colony optimization is proposed by Delevacq et al., (2013). Max–

Min Ant System (MMAS) algorithm augmented with 3-opt local search is used as

a framework for the implementation of the parallel ants and significant

improvements have been achieved in term of the efficiency of algorithms.

44

CHAPTER 3

3. SOLUTION METHODS

This chapter includes the proposed algorithms for the RCMPSP. First of all, a

mathematical formulation is given. After that, the problem is solved with four

heuristics, a sole GA, a sole SA, a hybrid GA-SA algorithm and a backward forward

hybrid GA-SA. In the last section, algorithm is tested on a Graphical Processing

Unit (GPU) through which it is intended to increase the efficiency of the algorithm.

Test instances, algorithm details and performance of each algorithm is given in

corresponding sections. Throughout the study, a new hybrid algorithm is developed.

GPU implementation of GA is also one of the first research efforts in scheduling

practices.

Mathematical model, heuristics and each meta-heuristic are tested with generated

test instances. In addition, RESCON (Deblaere et al., 2011) and MS Project

heuristics are used for comparison purposes. For small test instance RESCON can

obtain optimum results and its meta-heuristic algorithm is accepted as a successful

method in the literature. Since MS Project’s two heuristics namely standard order

and ID order heuristics are commonly used in practice, it is an important test to see

the capacity of tools available in practice and compare them with developed

algorithm.

3.1.Test Instances

Standard Kolish (Kolisch and Sprecher, 1997) test instances which are J30, J60 and

J120 sets are used for testing purposes. These test instances are extensively used in

literature and commonly accepted for comparison purposes. Percent deviation from

optimum results are given if an optimum result is available. Otherwise lower bound

(CPM based) solutions are used for comparison.

45

Proposed mathematical model is tested with only J30 and J60 problems since large

test instances cannot be solved with exact methods. Existing results are also given

and model is compared with literature findings.

Table 3.1: PSLIB project instances

Project No PSLIB Instance

1 J30_2_2

2 J30_45_8

3 J60_1_7

4 J60_48_6

5 J120_32_4

A new multi-project test instance set is developed for multi-project testing .Twenty

six test portfolios were generated using five single Kolish benchmark instances. In

order to generate multi-project test instance five projects consisted of two projects

with 30 activities, two projects with 60 activities, and one project with 120 activities

which were randomly selected from well-known instance sets J30, J60, and J120 as

shown in Table 3.1. The projects of each portfolio and enterprise resource

constraints are presented in Table 3.2.

Table 3.2: Multi-project test case details

Portfolio Projects Total Activity Resource Availability

Set 1 1_2 60 13 11 13 16

Set 2 1_3 90 13 10 12 16

Set 3 1_4 90 34 28 27 33

Set 4 1_5 150 19 14 16 22

Set 5 2_3 90 13 13 14 13

Set 6 2_4 90 34 32 29 30

Set 7 2_5 150 19 17 18 19

Set 8 3_4 120 34 30 29 30

46

Portfolio Projects Total Activity Resource Availability

Set 9 3_5 180 19 15 18 19

Set 10 4_5 180 40 34 33 36

Set 11 1_2_3 120 13 11 13 15

Set 12 1_2_4 120 27 24 23 26

Set 13 1_2_5 180 17 14 16 19

Set 14 1_3_4 150 27 22 23 26

Set 15 1_3_5 210 17 13 15 19

Set 16 1_4_5 210 31 25 25 30

Set 17 2_3_4 150 27 25 24 24

Set 18 2_3_5 210 17 15 17 17

Set 19 2_4_5 210 31 28 27 28

Set 20 3_4_5 240 31 26 26 28

Set 21 1_2_3_4 180 23 20 21 23

Set 22 1_2_3_5 240 16 13 15 17

Set 23 1_2_4_5 240 26 23 23 26

Set 24 1_3_4_5 270 26 22 22 26

Set 25 2_3_4_5 270 26 23 23 24

Set 26 1_2_3_4_5 300 24 20 21 23

For multi-project test cases Chen and Shahandashti (2009) presented two multi-

project case examples consisted of three test projects including 74 activities and

two resources, and the second portfolio (real portfolio) consisted of three real

projects including 130 activities and 11 resources. These test instances is used for

comparison of algorithms.

Table 3.2: (Continued)

47

3.2. A Mathematical Formulation of RCPSP

Since mathematical model gives insight behavior of the problem itself, a

mathematical model is given in this section. Considering the previous works

mathematical model of the problem is regenerated for this problem is as follows;

A finite set which includes activities },,2,1{ nN  and activity relations

}, :),{(NjijiA  is given. If Aji ),(that means activity j cannot start before

i is finished. In addition, resources Kk is given, the availability of resource k is

shown as kR and resource usage of activity j is defined as
kjr ,
 (

kkj Rr  ,0)

3.2.1. Parameters

),(ANG  Graph with arcs and activities

},,2,1{ nN  Activities

 },),{(NjijiA 
 Precedence set

K: Type of resource Kk ,,2,1 

:kR

Resource limits of k

r j,k : Resource usage of activity j from resource k

:ip

 Processing time of activity i

:M A large number

3.2.2. Variables

:is

i start time of task i

:ic

 Finish time of task i

:maxC

Finish time of last dummy activity,

48

:, jix
If start time of task i is smaller than finish time of task j than 1, jix ,

otherwise 0, jix . That is;



 


..,0

,1
,

wo

cs
x

ji

ji

:, jih If start time of task i is larger or equal than start time of task j 1, jih ,

otherwise 0, jih . That is:










0..

1
,

wo

ss
h

ij

ji

:, jiz
If start time of task i is between the start time and finish time of task j

1, jiz , otherwise 0, jiz . That is:










0..

1
,

wo

css
z

jij

ji

 Where binary variables jiy ,
,

jit ,
}1,0{

3.2.3. Constraints

 iij sps 

Aji ),(
 (3.1)

 iii spc 

Ni (3.2)

 icC max
Ni (3.3)

 jiji yMcs ,*

Aji ),(and ji 
 (3.4)

)1(*1 ,, jiji yMx 

Aji ),(and ji 
 (3.5)

 jiji tMss ,*1 Aji ),(and ji 
 (3.6)

)1(*1 ,, jiji tMh  Aji ),(and ji 

 (3.7)

49

2/)(,,, jijiji hxz 

),(ji

 (3.8)

1,,,  jijiji hxz

),(ji

 (3.9)

kik

j

ijkj rRzr ,,, * 

),(ki
 (3.10)

3.2.4. Objective Function

Min maxC (3.11)

Constraint 3.1 states that processing time of activity j should be greater than

processing time of activity i plus its duration. Finish time of any activity is

determined with (3.2) and (3.3) is used for determining the last task finish time,

(3.4)-(3.9) is used for determining the task ongoing in same time periods, (3.10) is

an upper limit of resources in order to restrict the total resource usage.

3.2.5. Performance of Mathematical Model

The mathematical model is used in Gurobi 5.0 solver and Python 2.7 interface.

Model is tested with J30 and J60 test instances. Total time is limited to 300 seconds

for J30 sets and 1000 seconds for j60 sets.

Table 3.3: Number of optimum solutions and mean CPU times

Problem Set Number of Problems Optimally

Solved

Mean CPU Time

(Seconds)*

30 454 14.3

60 351 19.9

*CPU time is measured with Intel I5 processor computer

All of the J30 sets is solved with this model and %94.5 of the sets are optimal

results. In case of J60 sets, only %73 is optimally solved. Mean CPU time for Intel

Core I5 computer is 14.3 and 19.9 seconds for J30 and J60 sets respectively. Results

are tabulated at Table 3.3.

50

Table 3.4: Results Comparison between the model and Kone (2011)

 Problem Set Results

(This Study)

Optimum

(Upper Bounds)

Deviation

(%)

1 J309_2 92 92 0

2 J3013_1 61 58 5.17

3 J3013_2 68 62 9.68

4 J3013_3 80 76 5.26

5 J3013_4 73 72 1.39

6 J3013_5 73 67 8.96

7 J3013_6 68 64 6.25

8 J3013_7 83 77 7.79

9 J3013_8 108 106 1.89

10 J3013_9 71 71 0

11 J3013_10 64 64 0

12 J3014_2 54 53 1.89

13 J3014_7 50 50 0

14 J3025_5 72 72 0

15 J3029_1 86 85 1.18

16 J3029_2 90 90 0

17 J3029_3 79 78 1.28

18 J3029_4 105 103 1.94

19 J3029_6 98 92 6.52

20 J3029_7 74 73 1.37

21 J3029_8 86 80 7.5

22 J3030_10 53 53 0

23 J3041_10 99 99 0

24 J3045_2 125 125 0

25 J3045_6 129 129 0

26 J3046_7 60 59 1.69

51

Test sets that cannot be solved optimally are compared with the model results of

Kone (2011) which is based on mix integer programming. Kone (2011) used 500

seconds as time limit. Totally %97 of the J30 sets is solved optimally in the model.

Furthermore, upper bound solutions are given where optimum results are not

reached.

In order to compare our models’ performance with those sets that cannot be solved

optimally, optimum results and upper bounds are used whichever is available

(Table 3.4.). On the average, our model results depicts from optimum and upper-

bounds only %2.68. Results revealed the acceptance of the mathematical model.

3.3.Heuristic Solutions

In the literature best heuristics in multi-project test cases are found as Minimum

Slack (MinSlack), Shortest Activity from Shortest Project (SASP) and Maximum

Total Work Content (MaxTWK). In order to use heuristic results as comparison,

multi-project test cases are solved with these three heuristics. Therefore, a heuristic

solver is developed in order to solve test cases with known heuristics. Basic

algorithms used in these heuristics are summarized in this section.

The developed algorithm gives opportunity to choose priority rule at the beginning

of execution. Results are summarized as ordered activity list. It is written with C++

computer language and compiled with Microsoft Visual Studio 2010.

The algorithm applied in each heuristic rule is explained in the following sections.

Test results are also tabulated and compared between each heuristics.

3.3.1. MinSlack Rule

First heuristics implemented in the solver is MinSlack rule which is defined as

“Give higher priority to activity which has minimum slack” by (Kurtulus and Davis,

1982);

52

Where

𝑆𝑙𝑎𝑐𝑘 = 𝐿𝐹𝑇 (𝑖, 𝑗) − 𝐸𝐹𝐿(𝑖, 𝑗) (3.11)

LFT denotes late finish time; EFL denotes early finish time of activity.

The algorithm applied in heuristic solver is as follows;

1. Apply CPM forward pass

2. Apply CPM backward pass

3. Calculate slack of each activity with equation 3.11

4. Select activities with zero predecessor and move to decision set D.C

5. Select activity from D.C. which have lowest slack value

6. Check resource availability;

6.1. if available: move activity to started activity set S.A.S, reduce resource

availability with consumed quantity

6.2. if not: select other activity from D.C. which have lowest slack value

7. Go to step 4

8. Continue until all activities are scheduled.

3.3.2. SASP Rule

SASP rule defined as “Give priority to shortest activity from shortest project” by

(Kurtulus and Davis, 1982);

𝑀𝑖𝑛 𝐹(𝑖, 𝑗) 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑖, 𝑗) = 𝐶𝑃𝑀(𝑖) − 𝐷(𝑖, 𝑗) (3.12)

F(i,j) denotes finish time, D(i,j) denoted duration of activity j from project i and

CPM(i) denoted CPM duration of project i

Algorithm applied in heuristic solver is as follows;

1. Apply CPM forward pass

2. Apply CPM backward pass

3. Calculate CPM(i) of each project

4. Calculate F(i,j) of each activity

5. Select activities with zero predecessor and move to decision set D.C

53

6. Select activity from D.C. which have 𝑀𝑖𝑛 𝐹(𝑖, 𝑗)

7. Check resource availability;

7.1. If available: move activity to started activity set S.A.S, reduce resource

availability with consumed quantity

7.2. If not: select other activity from D.C. which have 𝑀𝑖𝑛 𝐹(𝑖, 𝑗)

8. Go to step 5

9. Continue until all activities are scheduled.

3.3.3. MaxTWK Rule

Maximum Total Work content (MaxTWK) rule defined as “Give priority to

activities that have maximum total work content value” by (Kurtulus and Davis,

1982);

Where

𝑀𝑎𝑥 𝐺(𝑖, 𝑗) = 𝑇𝑊𝐾𝑖 + 𝐷(𝑖, 𝑗) ∗ ∑ 𝑅(𝑖, 𝑗, 𝑘)𝐾
𝑘 (3.13)

𝑇𝑊𝐾𝑖 = ∑ ∑ 𝐷(𝑖, 𝑗) ∗ 𝑅(𝑖, 𝑗, 𝑘)𝑗 ∈ 𝑆.𝐴.𝑆
𝐾
𝑘 (3.14)

Algorithm applied in heuristic solver is as follows;

1. Apply CPM forward pass

2. Apply CPM backward pass

3. Calculate G(i,j) of each activity

4. Select activities with zero predecessor and move to decision set D.C

5. Select activity from D.C. which have 𝑀𝑎𝑥 𝐺(𝑖, 𝑗)

6. Check resource availability;

6.1. if available: move activity to started activity set S.A.S, reduce resource

availability with consumed quantity

6.2. if not: select other activity from D.C. which have 𝑀𝑎𝑥 𝐺(𝑖, 𝑗)

7. Go to step 4

8. Continue until all activities are scheduled.

54

3.3.4. Backward Forward Heuristic

Backward planning is constructing a schedule from backward direction where

dummy finish activity is selected as the beginning of a schedule. An arbitrary long

duration is selected and schedule is constructed gradually until all activities are

started. The resulting start times can be adjusted by setting dummy start activities’

start time as 0. Forward planning considers a given priority list and constructs

schedule from forward direction where dummy start activity is selected as

beginning of a schedule.

These two directional scheduling heuristics can be combined together and used for

compressing the schedule. Li and Willis (1992) used this method to improve

schedule by an iterative process. It has been proposed the backward and forward

pass will never make the schedule worse as time criterion is considered (Lova and

Tormos, 2002: Li and Willis, 1992).

Algorithm applied in Backward Forward (BF) heuristic is as follows;

1. Given a priority list

Backward Pass

2. Set an arbitrary duration, Dl

3. Start with dummy finish activity

4. Find activities those have 0 successor

4.1. From these activities find activity that have highest finish time

4.1.1. Check resource availability

4.1.1.1 If available schedule () activity with latest time possible

4.1.1.2. If not go to step 4.1.

5. Continue until all activities are scheduled.

6. Find start time of dummy start activity, Ds

55

7. Adjust all activities start times by subtracting Ds

 Forward Pass

9. Given backward schedule

10. Find activities those have 0 predecessor

10.1. From these activities find activity that have smallest start time

10.1.1. Check resource availability

10.1.1.1 If available schedule () activity with latest time possible

10.1.1.2. If not go to step 10.1

11. Continue until stopping criteria met

3.3.5. Performance Tests of Heuristics

Performances of heuristics are tested with created multi-project test instances. We

can categorize results in two dimensions. First one is the results of single pass

methods: MinSlack, SASP and MaxTWK. Within these methods generally

MaxTWK heuristics outperformed the others. Out of 26 test projects 16 of them

scheduled with minimum time using MaxTWK. Worse performance was from

SASP heuristic. Second dimension is a multi-pass method which is BF heuristic. It

outperformed other three single pass methods and obtained best results. Results are

tabulated at Table 3.5.

Table 3.5: Heuristics’ results on multi-project test instances

 MinSlack SASP MaxTWK BF Best

Set 1 141 169 146 128 BF

Set 2 104 112 104 104 MinSlack, MaxTWK, BF

Set 3 112 102 102 92 BF

Set 4 257 287 253 234 BF

Set 5 175 170 183 154 BF

Set 6 119 126 122 112 BF

56

 MinSlack SASP MaxTWK BF Best

Set 7 301 301 286 267 BF

Set 8 110 114 103 98 BF

Set 9 257 292 250 240 BF

Set 10 174 188 173 164 BF

Set 11 208 185 196 172 BF

Set 12 161 159 158 151 BF

Set 13 337 373 342 322 BF

Set 14 154 156 142 132 BF

Set 15 288 347 290 285 BF

Set 16 231 258 225 220 BF

Set 17 171 189 170 161 BF

Set 18 337 389 337 322 BF

Set 19 253 268 256 240 BF

Set 20 235 256 224 234 MaxTWK

Set 21 204 227 198 196 BF

Set 22 400 462 399 379 BF

Set 23 296 334 297 288 BF

Set 24 278 311 282 274 BF

Set 25 308 345 315 302 BF

Set 26 345 397 355 341 BF

3.4.Meta-heuristic Solutions

This section includes meta-heuristic solutions to the RCMPSP. A step by step new

algorithm development process is explained. Final algorithm is based on GA, SA

and BF improvement techniques along with improvements and new techniques on

crossover and mutation operators. Therefore, in order to clarify the final algorithm

each basic step is explained in this section detaily.

Table 3.5: (Continued)

57

3.4.1. A Sole GA

Algorithm development process within the meta-heuristic solutions was started

with a sole GA. To start with a GA, one has to decide the method of GA which

consists of its chromosome coding and decoding, fitness evaluation procedure,

crossover, mutation and selection. Before proceeding to details of the algorithm

mechanism is explained as follows;

1. Encode schedule into random key based chromosomes

2. Define fitness function

3. Define elitism, crossover and mutation ratio

4. Generate random initial population of chromosomes

5. Set current population

5.1. Generate new solutions via crossover and mutation

5.1.1. If better accept new solutions

5.1.2. If not reject

5.2. Select better chromosomes via selection mechanism and copy them to new

population

5.3. Protect %5 of chromosomes and copy them to new population

5.4. Replace current population with new population

6. Continue until stopping criteria met and go to step 5

3.4.1.1.Chromosome Coding and Decoding

Each chromosome consists ∑ 𝑁(𝑖)𝑀
𝑖=1 number of genes where each gene represents

the priority number of an activity. Starting from dummy start activity to dummy

finish activity each gene has a value between 0 and 1. First N1 genes represent

activities from project 1, second N2 genes represent activities from project 2 and it

continues to number of project M. General representation can be seen from Figure

3.1.

58

Figure 3.1: Chromosome representation

The order of chromosome is defined same as activity numbers, i.e. 5th gene

represents activity 4 for project 1and so on. Random keys change through GA

iterations but the order of activities does not change. Figure 3.1 shows a random

key representation of two projects where 0.62 represents dummy activity of project

1, 0.23 represents activity 1 from project 1.

Coded chromosomes are decoded with an algorithm that is designed to build

schedule with an S-SGS. Decoding algorithm is as follows;

1. Read Chromosome

2. Find the gene that has lowest random key value

3. Check precedence availability

3.1. If precedence value is equal to zero, check resource availability

3.1.1 If there is enough resource, start() activity

3.1.2. If there is not enough resource go to step 2

3.2. If precedence value is not equal to zero go to step 2

4. Continue until all activities are scheduled.

3.4.1.2.Fitness Evaluation

Fitness evaluation is particularly at the heart of a GA design and it is the most

intellectual part of it since most of the selection mechanism is based on fitness

evaluation. It is basically related with how a solution can be measured in terms of

its quality. Sometimes it can be a measure of performance of a single solution

59

output. Therefore, fitness function used in this GA is selected as the total duration

of project portfolio.

Fitness Function:

𝐶𝑚𝑎𝑥 (3.15)

Fitness calculation algorithm is as follows:

1. Read activity ordered list

2. Start activity with earliest time possible

3. Read last activity’s finish time

3.4.1.3.Crossover

 One point crossover is applied to chromosomes where crossover ratio is predefined

before the algorithm is started.

Algorithm designed for crossover is as follows;

1. Read crossover ratio

2. Select father and mother chromosome randomly from population

3. Randomly generate a number r between 1 and N, where N is the total activity

number

4. Change genes from 1 to r and r+1 to N between father and mother chromosomes

5. Continue until crossover ratio is reached.

3.4.1.4.Mutation

Mutation is necessary in any GA in order to prevent premature convergence of the

algorithm. Therefore, a standard mutation technique is applied. In this technique,

randomly selected genes are applied to change its random key value.

Algorithm designed for mutation is as follows;

60

1. Read mutation ratio

2. Randomly select chromosomes where mutation is applied.

2.1. Randomly select genes on this chromosome

2.1.1. Replace its value by a new random key number

3. Continue until mutation ratio is reached.

3.4.1.5.Roulette Wheel Selection

The idea of evolutionary computing is to give higher change to better chromosomes.

Therefore as population evolves better chromosomes should have higher chance to

live. In order to apply this principle, some kind of selection methods should be used.

In this simple GA roulette wheel selection method is used through iterations. In this

method, those schedules which are shorter have high probability of selection.

Probability of a chromosome selected calculated as:

1

𝑃(𝑖)
 𝑤ℎ𝑒𝑟𝑒 𝑃(𝑖) =

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖)
∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑗)𝑁

𝐽=1
⁄ (3.16)

As the equation implies if a solution have good fitness values, its probability value

would be higher so that probability of selected would be higher.

Algorithm designed for roulette wheel selection is as follows;

1. Find all fitness values of a population,

2. Calculate P(i) of each chromosome,

3. Sort all chromosomes in ascending form according to P(i) values where

0≤P(i)≤1

4. Create a random number where 0≤ r ≤1

5. Select chromosome that corresponds random number r

61

3.4.1.6.Elitism

Elitism is passing knowledge from population to population by protecting best

chromosomes. The amount of elitism is an important parameter. It is generally

applied up to %10 of a population. Therefore in order to keep best solutions in the

generation and in order to be inherited to the generations elitism is applied.

Algorithm designed for roulette wheel selection is as follows;

1. Find all fitness values of a population,

2. Sort all chromosomes in ascending form according to fitness value

3. Protect best %X chromosomes from crossover and mutation

3.4.1.7.Parameter Setting

For test instances 1000, 10000 and 50000 number of schedule generated and it is

used together with a crossover ratio if %80, mutation ratio of 0.003 and elitism ratio

of %5. Population size is selected as 100.

3.4.1.8.Performance of the Algorithm

Table 3.6: GA versus heuristics performances

Test # GA MinSlack SASP MaxTWK BF % Deviation

From Best

Set 1 119 141 169 146 128 7.03%

Set 2 88 104 112 104 104 15.38%

Set 3 83 112 102 102 92 9.78%

Set 4 217 257 287 253 234 7.26%

Set 5 140 175 170 183 154 9.09%

Set 6 104 119 126 122 112 7.14%

Set 7 247 301 301 286 267 7.49%

Set 8 92 110 114 103 98 6.12%

Set 9 218 257 292 250 240 9.17%

Set 10 152 174 188 173 164 7.32%

Set 11 155 208 185 196 172 9.88%

Set 12 140 161 159 158 151 7.28%

62

Test # GA MinSlack SASP MaxTWK BF % Deviation

From Best

Set 13 296 337 373 342 322 8.07%

Set 14 123 154 156 142 132 6.82%

Set 15 268 288 347 290 285 5.96%

Set 16 206 231 258 225 220 6.36%

Set 17 152 171 189 170 161 5.59%

Set 18 303 337 389 337 322 5.90%

Set 19 228 253 268 256 240 5.00%

Set 20 217 235 256 224 234 3.13%

Set 21 186 204 227 198 196 5.10%

Set 22 350 400 462 399 379 7.65%

Set 23 272 296 334 297 288 5.56%

Set 24 256 278 311 282 274 6.57%

Set 25 288 308 345 315 302 4.64%

Set 26 328 345 397 355 341 3.81%

Average 7.04%

It can be seen from table 3.6 that % difference from best heuristics, which is

calculated as a percentage of difference between GA and best heuristic, has an

average value of %7.04. That is a sole GA can find as an average %7.04 better

solutions for test cases. Moreover, this value increases for some test cases up to

%15.38. Therefore, GA outperformed all other heuristics.

Table 3.6: (Continued)

63

Table 3.7: GA versus MS Project heuristics comparison

 GA MS Project Comparison

 ID Order Standard

Order

GA-ID

Order

GA-Standard

Order

Set 1 119 143 139 16.78% 14.39%

Set 2 88 97 96 9.28% 8.33%

Set 3 83 99 94 16.16% 11.70%

Set 4 217 280 258 22.50% 15.89%

Set 5 140 169 156 17.16% 10.26%

Set 6 104 119 111 12.61% 6.31%

Set 7 247 300 294 17.67% 15.99%

Set 8 92 104 103 11.54% 10.68%

Set 9 218 274 271 20.44% 19.56%

Set 10 152 193 164 21.24% 7.32%

Set 11 155 195 200 20.51% 22.50%

Set 12 140 173 161 19.08% 13.04%

Set 13 296 352 375 15.91% 21.07%

Set 14 123 147 138 16.33% 10.87%

Set 15 268 348 364 22.99% 26.37%

Set 16 206 254 234 18.90% 11.97%

Set 17 152 173 174 12.14% 12.64%

Set 18 303 368 377 17.66% 19.63%

Set 19 228 272 251 16.18% 9.16%

Set 20 217 261 246 16.86% 11.79%

Set 21 186 210 208 11.43% 10.58%

Set 22 350 431 458 18.79% 23.58%

Set 23 272 323 313 15.79% 13.10%

Set 24 256 307 302 16.61% 15.23%

Set 25 288 340 343 15.29% 16.03%

Set 26 328 390 382 15.90% 14.14%

Average 16.76% 14.31%

64

When the results are investigated, it can be seen that GA results are far better from

MS Projects’ heuristics. This difference is %26.37 at test instance 15 and % 6.31 at

test instance 6. On the average, GA is %16.76 better than ID-Order heuristic results

and %14.31 better than standard order heuristics. Therefore, sole GA outperformed

the known software packages’ heuristics.

Table 3.8 is constructed in order to compare Chen and Shahandashti (2009) real test

case with our results. It can be seen that random key based sole GA performed better

compared with their results. Test is run 10 times and average and best results are

tabulated.

Table 3.8: Comparison of GA results of this study with Chen and Shahandashti

(2009)

Method Best Average

Genetic algorithm 547 544.1

Genetic Algorithm (this study) 537 542.7

3.4.2. A Sole SA

Simulated Annealing (SA) is a stochastic meta-heuristic algorithm inspired by the

physical process of annealing (Kirkpatrick et al., 1983; Cerny, 1985). SA has fine

tuning capabilities, and is usually capable of escaping of local optima for locating

a good approximation to the global optimum (Hwang and He, 2006).

Basic idea behind a SA algorithm is to accept worse solutions according to

metropolis criterion (Metropolis et al., 1953). Probability of accepting worse

solutions are high at the beginning and it is decreased with a chosen cooling schema.

A linear cooling schema is as follows:

𝑇𝑖+1 = 𝛼 𝑥 𝑇𝑖 (3.17)

where T is temperature, i is iteration number and 0<α<1

New solution is formed with previous solutions by changing activity orders. After

forming new solution cost function is calculated as:

65

𝛿𝐹 = 𝐹𝑖+1 − 𝐹𝑖 (3.18)

With cost function at hand, probability of new solution accepted is calculated as:

𝑃 = 𝑒
−𝛿𝐹

𝑇⁄ (3.19)

A schedule is represented with a vector consisting of random key values of activities

which are starting from dummy start activity 0 to dummy finish activity N. New

solution is generated via randomly changing vector values based on a predefined

changing ratio.

With decreasing temperature probability value also decreases and probability of

accepting worse solution decreases. For early stages of iterations probability of

accepting worse solution is higher than late stages of iteration.

Algorithm designed for SA is as follows:

1. Initiate initial temperature T0 ,final temperature Tf, max. number of iterations N and

initial schedule

2. Calculate new solution by changing random key values of a schedule

2.1. Calculate 𝛿𝐹

2.1.1. Accept new solution if 𝛿𝐹 < 0 (better solution)

2.1.2. If not

2.1.2.1. Generate a random number, r

2.1.2.2. Accept new solution if 𝑃 = 𝑒
−𝛿𝐹

𝑇⁄ > 𝑟

2.1.2.2.1. If not reject solution

2.2. Update Fi, Reduce T

2.3. Continue until T<Tf and n<N

66

3.4.2.1.Parameter Setting

Choice of parameters is crucially important in a SA algorithm. If T is selected too

high p value converge to 1 which means almost all worse solutions will be accepted.

Nevertheless, if T is selected too small p value converge to 0 which means almost

all solutions would be rejected. Iteration number is also important since too many

iterations would lead time loss, too few iterations would lead system not to converge

near optimum values. Therefore proper setting of T is important. Mostly try and

error method would help to optimize T and N parameters.

For test instances a linear cooling schema with α=0.99, Ti=4000 and Tf=0 is

selected. Total of 5000 iterations used for stopping criterion.

3.4.2.2.Performance of Algorithm

Performance of SA algorithm is tested against the results obtained with GA

algorithm. It can be seen from Table 3.9 that GA performed better in all cases except

in set 1. GA on the average performed %5.89 better. GA outperformed with %11.97

on the problem instance 16.

Table 3.9: GA-SA comparison

Set GA SA GA-SA Performance Comparison

Set 1 119 119 0.00%

Set 2 88 89 1.12%

Set 3 83 92 9.78%

Set 4 217 234 7.26%

Set 5 140 150 6.67%

Set 6 104 112 7.14%

Set 7 247 258 4.26%

Set 8 92 99 7.07%

Set 9 218 234 6.84%

Set 10 152 167 8.98%

Set 11 155 163 4.91%

Set 12 140 149 6.04%

67

Set GA SA GA-SA Performance Comparison

Set 13 296 310 4.52%

Set 14 123 139 11.51%

Set 15 268 279 3.94%

Set 16 206 234 11.97%

Set 17 152 159 4.40%

Set 18 303 330 8.18%

Set 19 228 238 4.20%

Set 20 217 234 7.26%

Set 21 186 195 4.62%

Set 22 350 369 5.15%

Set 23 272 290 6.21%

Set 24 256 273 6.23%

Set 25 288 293 1.71%

Set 26 328 339 3.24%

Average 5.89%

SA algorithm is also tested with Chen and Shahandashti (2009) real portfolio test

set and results are tabulated at Table 3.10.

Table 3.10: Comparison of SA results of this study with Chen and Shahandashti

(2009)

Method Best Average

Simulated annealing 544 547.9

Modified simulated annealing-1 540 544.3

Modified simulated annealing-2 542 555.9

Simulated annealing (this study) 546 551.3

Table 3.9: (Continued)

68

3.4.3. A hybrid GA-SA Algorithm

A sole SA has low search efficiency as it maintains only one solution at each

iteration. GA on the other hand, can contain knowledge of previous good solutions,

and is suitable for implementing search in parallel architecture. However, a sole GA

can be restrictive since it has limited fine tuning capabilities, and may suffer from

rapid population convergence to local optima (Rudolph, 1994; Leung et al., 1997).

In recent years, several skilled combinations of GA and SA were proposed to

achieve an efficient search algorithm by integrating the complementary strengths

of both methods. The results of the hybridizing mechanism GA and SA have been

promising as the hybrid algorithm is capable of escaping local optima (deficiency

of a sole GA), has fine-tuning capability (deficiency of a sole GA), can implement

search in parallel architecture (deficiency of a sole SA) and can use knowledge of

previous solutions (deficiency of a sole SA) (Wang and Zeng 2001; Chen et al.

2005; Hwang and He 2006; Han and Sun 2006; Chen and Shahandashti, 2009;

Sonmez and Bettemir, 2012).

The idea behind GA-SA hybrid algorithm is increasing GA’s fine tuning capability

via accepting worse solutions with SA principles.

1. Random key based chromosome representation is used as coding

mechanism. Fitness evaluation is the finish time of last activity,

crossover, mutation and roulette wheel selection mechanism is all same

as defined in previous chapters. %5 elitism is used in order to pass best

knowledge from population to population. Algorithm designed for GA-

SA hybrid algorithm is as follows; Initiate initial temperature T0 ,final

temperature Tf, max. number of iterations N and initial schedule

2. Encode schedule into random key based chromosomes

3. Define fitness function

4. Define elitism, crossover and mutation ratio

5. Generate random initial population of chromosomes

6. Set current population

6.1. Generate new solutions via crossover and mutation

69

6.1.1. If better accept new solutions

6.1.2. If not

6.1.2.1. Generate a random number, r

6.1.2.2. Accept new solution if 𝑃 = 𝑒
−𝛿𝐹

𝑇⁄ > 𝑟

6.2. Select better chromosomes via selection mechanism and copy them to new

population

6.3. Protect %5 of chromosomes and copy them to new population

6.4. Replace current population with new population

7. Reduce T, continue until stopping criteria met and go to step 5

3.4.3.1.Performance of the Algorithm

Performance of GA-SA algorithm is tested against the results obtained with sole

GA and sole SA algorithm. It can be seen from Table 3.11 that GA-SA performed

better in all cases. GA-SA on the average performed %3.26 better. It can be

concluded that GA and SA hybrid algorithm performs better and this performance

improvement is significant when we compared with set 5 results which is %6.06.

Table 3.11: GA-SA comparison with sole GA and sole SA

Set GA SA GA-SA GA-SA Performance

Comparison

Set 1 119 119 115 3.48%

Set 2 88 89 88 0.00%

Set 3 83 92 83 0.00%

Set 4 217 234 211 2.84%

Set 5 140 150 132 6.06%

Set 6 104 112 101 2.97%

Set 7 247 258 241 2.49%

Set 8 92 99 89 3.37%

Set 9 218 234 214 1.87%

Set 10 152 167 148 2.70%

Set 11 155 163 150 3.33%

70

Set GA SA GA-SA GA-SA Performance

Comparison

Set 12 140 149 137 2.19%

Set 13 296 310 281 5.34%

Set 14 123 139 120 2.50%

Set 15 268 279 255 5.10%

Set 16 206 234 202 1.98%

Set 17 152 159 146 4.11%

Set 18 303 330 289 4.84%

Set 19 228 238 222 2.70%

Set 20 217 234 207 4.83%

Set 21 186 195 177 5.08%

Set 22 350 369 332 5.42%

Set 23 272 290 265 2.64%

Set 24 256 273 249 2.81%

Set 25 288 293 281 2.49%

Set 26 328 339 317 3.47%

Average 3.26%

Table 3.12 summarized the result comparison of this study with the work of Chen

and Shahandashti (2009). Although the best result cannot be obtained within this

study, on the average with 10 consecutive runs there has been significant

improvement.

Table 3.12: Comparison of GA-SA results with Chen and Shahandashti (2009)

Method Best Average

Genetic algorithm/simulated annealing 525 544.0

GA-SA (this study) 527 535.4

Table 3.11: (Continued)

71

3.4.4. A Backward-forward Hybrid GA-SA Algorithm

When we examine the previous algorithms it can clearly be observed that BF

heuristic outperformed in all tests sets when compared with other heuristics. In the

same manner, although GA and SA performed solely better against heuristics, if a

hybrid combination which brings strengths of each algorithm together has been

made results behave better than GA and SA alone. BF heuristic is fast, robust and

has fine tuning capabilities compared to other heuristics. In addition, it can be

adapted to GA solutions easily. Therefore, in order to use complementary strength

of heuristics and meta-heuristics a new optimization strategy is developed. In this

method, together with GA and SA hybrid algorithm, backward- forward scheduling

iteration method is hybridize for solution of RCMPSP. The proposed backward-

forward hybrid genetic algorithm (BFHGA) is described in the following sections.

Figure 3.2: Example problem and chromosome representation

72

The first step in algorithm is backward scheduling. Backward scheduling is

constructing a schedule from backward direction where dummy finish activity is

selected as beginning of a schedule and schedule is constructed with backward

direction, from finish to start direction. An arbitrary long duration is selected as a

time buffer and schedule is constructed gradually until all activities are scheduled

to start. All precedence relations are reversed and activities are scheduled as late as

possible in the reverse time direction according to the priority list. The resulting

schedule can be adjusted easily such that the start time of the dummy start activity

equals 0 (Demeulemeester and Herroelen, p.275, 2002). The resulting start times

can be adjusted by setting dummy start activities start time as 0.

The method will be explained with an example and differences from sole GA and

sole SA will be highlighted. To start with the BFHGA, below example can be

considered.

Fig. 3.2. shows the example resource-constrained multi-project scheduling problem

and its chromosome representation consisting of two projects. The first project is

composed of five non-dummy activities, and the second project is composed of

seven non-dummy activities. There is only one common resource and the

availability of R1 in each time period is seven units. In the chromosome

representation, the first gene represents the priority of the first non-dummy activity

of project 1 (activity 1–2), the second gene represents the priority of the second

non-dummy activity of project 1 (1–3), the sixth (N1 =1) gene represents the

priority of the first non-dummy activity of project 2 (2–2), and finally the twelfth

(N1 =N2) gene represents the last non-dummy activity of project 2 (2–8)

The proposed backward-forward hybrid genetic algorithm (BFHGA) transforms

random key chromosome representation into a feasible schedule by using the

backward-forward (BF) scheduling method through the following steps:

73

1. Set the portfolio duration to an arbitrary large duration to start backward

scheduling.

2. Let nsij be the number of backward-unscheduled successors for activity j of project

i. Among the activities with nsij = 0 in the backward unscheduled activities list, select

the activity with the largest random key value.

2.1. Backward schedule the selected activity in its latest precedence and resource

feasible start time in the reverse time direction.

2.2. Decrease the nsij values of its predecessors by one, and remove the activity

from the backward unscheduled activities list.

3. Repeat step 2 until all the activities in the backward unscheduled activities are

backward scheduled. Complete backward scheduling by adjusting the schedule so

that the start time of the super-dummy start node is equal to zero.

4. Among the activities in the forward unscheduled activities list, select the activity

with the earliest start time (according to the backward schedule). In case of a tie,

select the activity with smaller activity number. If both activities have the same

activity number, select the activity with the smallest project number. Forward

schedule the selected activity in its earliest precedence and resource feasible start

time, and remove the activity from the forward unscheduled activities list.

 5. Repeat step 4 until all the activities in the forward unscheduled activities list are

forward scheduled

The projects that do not start at the same time can be solved by imposing start times

to the dummy start nodes of projects. The portfolio completion time is set as 30

days arbitrarily, to start backward scheduling. In the initial backward unscheduled

activities list, all of the non-dummy activities are included. In the backward list,

activities 1–5, 1–6, 2–6, 2–7, and 2–8 have a number of backward-unscheduled

successors (nsij) values of zero. Among these activities, 2–7 has the highest random

key value and is backward scheduled first to start at day 26 as shown in Figure 3.3.

74

Figure 3.3: Backward scheduling part 1

Once 2–7 is scheduled, the ns24 value is decreased by one to zero, and 2–7 is

removed from the backward list. Among activities 1–5, 1–6, 2–4, and 2–6, activity

1–6 has the highest random key value and is backward scheduled next to start at

day 22, which is the latest time that this activity can start without violating the

resource constraint of 7. After 1–6 is scheduled, the nsij values of 1–2, 1–3, and 1–

4 are decreased by one to zero, and 1–6 is removed from the backward list. The

remaining activities are backward scheduled to their possible latest start times

similarly (Figure 3.4).

Figure 3.4: Backward scheduling part 2

Finally, the schedule is adjusted so that the start time of the super-dummy start node

is equal to zero. The portfolio duration is obtained as 25 days as shown in figure.

3.3. The start times of activities that are obtained in backward scheduling are used

to determine the activity priorities in forward scheduling improvement. In the initial

forward unscheduled activities list, all of the non-dummy activities are included.

Activity 2–3, which has the earliest start time in backward scheduling, is scheduled

75

first to start at day 0. Once activity 2–3 is scheduled, it is re moved from the forward

unscheduled activities list. Activity 2–4 is forward scheduled second, and activity

1–5 is scheduled third. The activities 2–2 and 2–6 both have a start date of 6.

Because the activity number of 2–2 is smaller, this activity is scheduled to start at

date 0. Next, activity 2–6 is scheduled to start at date 6, which is the earliest time

that this activity can start without violating the resource constraint. The remaining

activities are scheduled to their possible earliest start times as shown in Figure 3.5,

and the portfolio duration is decreased to 24 days at the end of the forward

improvement.

Figure 3.5: Final schedule

3.4.4.1.Crossover, Mutation and Selection

The backward-forward hybrid genetic algorithm creates the initial population by

generating PS chromosomes randomly, where PS is the population size. The

random key representation of each chromosome is transformed into a feasible

schedule by the backward-forward scheduling method. The portfolio durations of

each chromosome are used for fitness evaluation. The chromosomes that will

survive in the next generation are determined by elitist selection method. The top

10% of the chromosomes are copied from the current generation into the next.

The remaining chromosomes that will survive in the next generation are determined

by the roulette wheel selection. New chromosomes are created by crossover or

mutation operators. Hartmann (1998) has shown that a two-point crossover operator

performs better than the one-point and uniform crossover operators for the RCPSP.

76

Hence, in BFHGA, two chromosomes are combined by using a two-point crossover

operator. Mutation is performed by changing a number of random keys of selected

chromosomes with new random keys.

3.4.4.2.Integration of Simulated Annealing

The SA is integrated into GA during mutation in the proposed hybrid algorithm. In

BFHGA, two types of mutations are performed. The first type of mutation is

performed after a crossover operation when there is not sufficient diversification

between a child and one of its parents. The elitist selection method adopted in

BFHGA can lead to a homogeneous population that may result in rapid population

convergence to a local optimum. Hence, the first type of mutation is performed on

a child after the crossover operation, when the mean absolute difference of random

key values of a child and one of its parents (father or mother) is smaller than a

predefined diversification value τ (Equation 3.19). The value of τ is reduced based

on a cooling scheme defined by temperature t.

Do Mutation

 While ∑ |𝑅𝐾𝑐ℎ𝑖𝑙𝑑 − 𝑅𝐾𝑝𝑎𝑟𝑒𝑛𝑡𝑠|𝑁
𝑖=0

𝑁
⁄ ≤ τ (3.19)

The second type of mutation is the regular mutation that is performed randomly

based on a predefined mutation rate. The main objective of both types of mutations

is to achieve diversification for escaping premature convergence to achieve the

global optimum or near-global optimum results.

In BFHGA, every mutation that leads to a chromosome with a better (or equal)

fitness evaluation function value is accepted. However, a mutation that leads to a

chromosome with a worse fitness evaluation function value may be accepted or

77

Generate initial

population

Perform crossover

İs

the child

diversified from its

parents?

Perform

mutation on

the child

No

Perform regular

mutation on selected

chromosomes

Yes
Accept

mutation?

Undo

mutation
No

Yes

Accept

mutation?

Yes

Undo

mutation
No

Is stopping

criterion met?

Yes

Present the best

solution

No

Decrease

temperature

Backward forward

scheduling on

mutated child

Backward forward

scheduling on

mutated children

Ellitist selection

Figure 3.6: Flow of BFHGA

78

rejected (not executed) based on a decision function (DF1). The general flow of

BFHGA can be seen at Figure 3.6 and the decision function DF1 is defined in

Equation (3.20) as follows:
























 






 

t

B
x

sf

'fsfs

u

t

B
x

sf

"fsfs

u

erifreject

erifaccept

1DF (3.20)

3.4.4.3.Performance of Algorithm

The initial comparisons include four single project RCPSP case examples. The

sources of the examples were Anagnostopoulos and Koulinas (2012),

Christodoulou (2010), Hegazy (1999), and Leu and Yang (1999) respectively. The

single project examples included between 17 and 25 activities, and one and six

resources. The optimal solutions for the first three case examples were obtained by

using RESCON (Deblaere et. al. 2011). RESCON can obtain the optimal solutions

for relatively small resource constrained project networks including finish to start

precedence relations. The fourth single project case example was not solved by

RESCON, since this example included start-to-start type of precedence relations.

As can be summarized at Table 3.13, the BFHGA algorithm was able to obtain the

optimal solutions of 54, 133, and 43 days for single-project case examples one, two,

and three, respectively. The algorithm also successfully determined the best

available solution (upper bound) 35 days for case example four. BFHGA was able

to obtain successful solutions within less than 0.5 CPU seconds for the single case

examples.

Among the previous methods, the greedy randomized adaptive search procedure

(GRASP) inspired hyper heuristic also obtained the optimal results for the first three

examples, and GA2 (Leu and Yang 1999), and GA3 (Abido and Elazouni 2010)

79

achieved a solution of 35 days for the fourth case example The ant colony

optimization (ACO) (Christodoulou 2010) was able to determine a solution of 141

days for the second case example, and GA1 (Hegazy 1999) was able to achieve a

solution of 44 days for the third case example.

Table 3.13: Performance comparison of BFHGA

Case Source Optimal BFHGA

(This Study)

Time

1 Anagnostopoulos and Koulinas (2012) 54 54 0.345

2 Christodoulou (2010) 133 133 0.028

3 Hegazy (1999) 43 43 0.432

4 Leu and Yang (1999) NA 35 0.346

Chen and Shahandashti (2009) presented two multiproject case examples to

compare performances of five meta-heuristic methods, namely, a sole genetic

algorithm, a sole simulated annealing algorithm, a hybrid genetic algorithm with

simulated annealing, an arithmetically improved modified simulated annealing

algorithm (modified simulated annealing), and a logarithmically improved

modified simulated annealing algorithm (modified simulated annealing-2).

Table 3.14: Comparison of BFHGA results with Chen and Shahandashti (2009)

Test Case

Method Best Average

Genetic algorithm 133 135.5

Simulated annealing 134 135.4

Genetic algorithm/simulated annealing 132 134.5

Modified simulated annealing-1 133 134.2

Modified simulated annealing-2 130 133.0

BFHGA (This Study)* 124 125.1

*Solution can be found at Appendix.

80

Results of BFHGA are presented along with the results of the five previous meta-

heuristics for test portfolio and real portfolio in Tables 3.14 and 3.15 respectively.

The stopping criterion for BFHGA was set as 500,000 schedules for multi-project

case examples. Results indicate that BFHGA significantly out performs state-of-

the-art meta-heuristics for project portfolio duration minimization. Among the five

previous meta-heuristics the modified simulated annealing-2 method had the best

performance for test portfolio and was able to find the best solution of 130 days,

and an average duration of 133.0 days. BFHGA obtained a best solution of 124 days

as shown in Table 3.14, and an average duration of 125.1 days with a standard

deviation of 0.6 for the test portfolio.

The best performing previous method for the real portfolio was the genetic

algorithm/simulated annealing method. The genetic algorithm/simulated annealing

method was able to find a best solution of 525 days, and an average duration of

544.0 days within 606 seconds. BFHGA achieved a best solution of 517 and an

average duration of 523.3 days with a standard deviation of 3.1. Because 3.06 GHz

is used in experiments the CPU time was adjusted for 1.83-GHz clock speed. The

average adjusted CPU time of BFHGA in 10 experiments for the real portfolio was

139 seconds. The comparisons validate the effectiveness of the proposed algorithm

for the RCMPSP.

Table 3.15: Comparison of BFHGA results with Chen and Shahandashti Real

Case (2009)

Method Best Average Time (Secs)

Genetic algorithm 547 544.1 491

Simulated annealing 544 547.9 592

Genetic algorithm/simulated annealing 525 544.0 606

Modified simulated annealing-1 540 544.3 NA

Modified simulated annealing-2 542 555.9 NA

BFHGA (This Study)** 517 523.3 139*

*Adjusted CPU time

**Solution can be found at Appendix.

81

Table 3.16: Performance comparison based on BFHGA as upper bound

%Deviation from BFHGA (1,000 Schedule)

Set MINSLK SASP MAXTWK MSP-STD BF

Set 1 20.5 44.4 24.8 18.8 9.4

Set 2 18.2 27.3 18.2 9.1 18.2

Set 3 33.3 21.4 21.4 11.9 9.5

Set 4 17.4 31.1 15.5 17.8 6.8

Set 5 25.9 22.3 31.7 12.2 10.8

Set 6 15.5 22.3 18.4 7.8 8.7

Set 7 21.9 21.9 15.8 19.0 8.1

Set 8 22.2 26.7 14.4 14.4 8.9

Set 9 17.4 33.3 14.2 23.7 9.6

Set 10 15.2 24.5 14.6 8.6 8.6

Set 11 31.6 17.1 24.1 26.6 8.9

Set 12 15.0 13.6 12.9 15.0 7.9

Set 13 15.4 27.7 17.1 28.4 10.3

Set 14 26.2 27.9 16.4 13.1 8.2

Set 15 9.1 31.4 9.8 37.9 8.0

Set 16 11.6 24.6 8.7 13.0 6.3

Set 17 14.0 26.0 13.3 16.0 7.3

Set 18 12.7 30.1 12.7 26.1 7.7

Set 19 12.9 19.6 14.3 12.1 7.1

Set 20 11.9 21.9 6.7 17.1 11.4

Set 21 12.7 25.4 9.4 14.9 8.3

Set 22 17.3 35.5 17.0 34.3 11.1

Set 23 9.6 23.7 10.0 15.9 6.7

Set 24 9.0 22.0 10.6 18.4 7.5

Set 25 8.5 21.5 10.9 20.8 6.3

Set 26 7.5 23.7 10.6 19.0 6.2

Average P.D.(%): 16.6 25.7 15.1 18.2 8.8

Average CPU (S.): 0.1 0.1 0.1 13.4 0.7

82

The results of the computational experiments for project portfolio duration

minimization are presented in Table 3.16. BFHGA obtained the best solution for all

of the 26 test portfolios. Hence, the percentage of deviation of the heuristics from

the solution obtained by BFHGA (upper bound) is used as a performance measure

in comparisons. The computational test results reveal the performance gap between

the state-of-art heuristics and the proposed BFHGA. The CPU time for BFHGA

varied between 0.2 and 1.5 s for 1,000 schedules, and the average CPU time was

0.7 s with a standard deviation (SD) of 0.3. The maximum amount of memory

(RAM) usage of BFHGA for the benchmark instances was 0.05 GB. Since BFHGA

stores only 100 solutions at a time, it requires low memory usage. The

computational comparisons confirm the effectiveness of the BFHGA

Table 3.17: Performance comparison of BFHGA with other methods

Set GA SA GA-SA BFHGA BFHGA

Performance

Comparison

Set 1 119 119 115 113 1.74%

Set 2 88 89 88 86 2.27%

Set 3 83 92 83 82 1.20%

Set 4 217 234 211 208 1.42%

Set 5 140 150 132 131 0.76%

Set 6 104 112 101 101 0.00%

Set 7 247 258 241 238 1.24%

Set 8 92 99 89 88 1.12%

Set 9 218 234 214 210 1.87%

Set 10 152 167 148 148 0.00%

Set 11 155 163 150 149 0.67%

Set 12 140 149 137 136 0.73%

Set 13 296 310 281 279 0.71%

Set 14 123 139 120 119 0.83%

83

Set GA SA GA-SA BFHGA BFHGA

Performance

Comparison

Set 15 268 279 255 253 0.78%

Set 16 206 234 202 200 0.99%

Set 17 152 159 146 146 0.00%

Set 18 303 330 289 288 0.35%

Set 19 228 238 222 218 1.80%

Set 20 217 234 207 205 0.97%

Set 21 186 195 177 177 0.00%

Set 22 350 369 332 329 0.90%

Set 23 272 290 265 262 1.13%

Set 24 256 273 249 248 0.40%

Set 25 288 293 281 278 1.07%

Set 26 328 339 317 314 0.95%

Average 0.92%

Table 3.17. shows the results of GA, SA, GA-SA and BFHGA together. As can be

seen that, although sole GA and SA results are challenging compared with ordinary

heuristics, hybrid algorithm outperforms others. Hybrid algorithm with BF

improvement and GA-SA hybrid and ımproved crossover methods further

improved the algorithm’s performances. Final algorithm has on average %0.92

better results compared with GA-SA hybrid one.

Table 3.17 : (Continued)

84

Table 3.18: Performance comparison of RESCON with BFHGA

Test Set BFHGA RESCON

Results

 %Deviation from best solution

 Time Result Tabu Search Best BFHGA TABU

Set 1 1,4 113 115 113 0.00% 1.77%

Set 2 2,2 86 88 86 0.00% 2.33%

Set 3 2,2 82 84 82 0.00% 2.44%

Set 4 4,6 208 213 208 0.00% 2.40%

Set 5 2,3 131 133 131 0.00% 1.53%

Set 6 2,3 101 102 101 0.00% 0.99%

Set 7 4,8 238 242 238 0.00% 1.68%

Set 8 3,2 88 90 88 0.00% 2.27%

Set 9 5,9 210 217 210 0.00% 3.33%

Set 10 5,8 148 146 146 1.37% 0.00%

Set 11 3,4 149 152 149 0.00% 2.01%

Set 12 3,5 136 138 136 0.00% 1.47%

Set 13 6,2 279 284 279 0.00% 1.79%

Set 14 4,5 119 122 119 0.00% 2.52%

Set 15 7,5 253 259 253 0.00% 2.37%

Set 16 7,4 200 201 200 0.00% 0.50%

Set 17 4,6 146 148 146 0.00% 1.37%

Set 18 7,8 288 300 288 0.00% 4.17%

Set 19 7,6 218 219 218 0.00% 0.46%

Set 20 9,0 205 208 205 0.00% 1.46%

Set 21 6,0 177 180 177 0.00% 1.69%

Set 22 9,4 329 332 329 0.00% 0.91%

Set 23 9,4 262 267 262 0.00% 1.91%

Set 24 10,9 248 251 248 0.00% 1.21%

Set 25 11,0 278 281 278 0.00% 1.08%

Set 26 13,2 314 319 314 0.00% 1.59%

Avr. 1.74%

85

Another result comparison is made with RESCON results and BFHGA (Table

3.18). The results are compared with the RESCON’s tabu search algorithm by

running them exactly same time on the same computer. Out of 26 test cases BFHGA

found 25 test case better than tabu search algorithm. On the average BFHGA is

found %1.74 better than tabu search algorithm. This result revealed again the

improved performance of final algorithm.

Algorithm performance is also tested with optimum results of J30 test sets. 462 of

all 480 J30 sets are solved optimally within 13 seconds. 18 of them could not be

solved optimally but as an average of 480 sets, BFHGA depicts from optimum

results only %0.06.

3.4.5. GPU Implementation of BFHGA

3.4.5.1.Application of BFHGA on GPU

As far as the literature is concerned, GPU application with RCMPSP will be the

first work. A master-slave model with homogeneous computing strategy is selected

as its implementation is easy and have higher effectiveness compared to coarse-

grained models (Kandil and El-Rayes, 2006).

The model works with N population sizes where N is also the block number. CUDA

(Computer Unified Device Architecture) is selected as framework, the C language

is selected as programing language and a GPU of Tesla C 2050 is used together

with I7 Core CPU.

3.4.5.2.Theory

In this part of the research the master-slave model implemented in this research is

given. In master-slave computation model, a CPU is in the heading position and

GPU cores work as slaves. Due to the high computational effort, fitness evaluation

is directed to slaves and master CPU is responsible for crossover, selection and

mutation operators as well as controlling the whole iteration process. In this model

as N increases, thread number increases and parallelism increases. The efficiency

of the algorithm is expected to increase as thread number increases. Consider the

Figure 3.7 where a parallel GA is schematized. In traditional computing, after

86

random population is produced each individual’s performance is evaluated by the

fitness function. After that, known fitness values are used for selection. Crossover

and mutations are done in regular ways. Nevertheless, in parallel computing

strategy a population of size N is randomly generated and each individual’s fitness

value is evaluated by one block. This makes possible to compute N fitness value at

each cycle time of CPU. Due to hardware limitations N has a limit and after that

limit device cannot be able to evaluate all of the fitness values. Therefore, the model

implemented in this work is based on the application of fitness evaluations on

GPU’s blocks.

Figure 3.7: Flow of GPU and CPU based algorithm

87

3.4.5.3.Test of the Model

Model is tested on the 26 projects test case. Total computation time of each case is

measured on a CPU and same test problem is solved with a time limitation of same

as CPU computation time. Results are tabulated at Table 3.19. Out of 26 test cases

9 of them are further improved with GPU application. Test case 7 has an

improvement of %1.68. As an average, %0.68 improvement was possible

considering total 26 cases.

Table 3.19: BFHGA performance with GPU

Set BFHGA GPU Performance

Comparison

Set 1 113 113 0.00%

Set 2 86 86 0.00%

Set 3 82 82 0.00%

Set 4 208 208 0.00%

Set 5 131 131 0.00%

Set 6 101 101 0.00%

Set 7 238 234 1.68%

Set 8 88 87 1.14%

Set 9 210 210 0.00%

Set 10 148 148 0.00%

Set 11 149 149 0.00%

Set 12 136 135 0.74%

Set 13 279 279 0.00%

Set 14 119 119 0.00%

Set 15 253 253 0.00%

Set 16 200 198 1.00%

Set 17 146 144 1.37%

Set 18 288 288 0.00%

Set 19 218 217 0.46%

Set 20 205 205 0.00%

Set 21 177 176 0.56%

Set 22 329 329 0.00%

Set 23 262 261 0.38%

Set 24 248 248 0.00%

Set 25 278 278 0.00%

Set 26 314 312 0.64%

Average 0.31%

88

The performance of GPU implemented BFHGA is also tested on multi-project test

instances of Vanquez et al., (2013). There are 26 test portfolios, which are

originated from known single project test instances. First fourteen instances are

created by single projects taken from the Kolish instances and their resource

constraints remain unchanged. Seven instances 20 × 3 are generated by Browning

and Yassine’s (2010) random generator. Five instances were generated by Vanquez

et al., (2013) each have 10 projects with 10 activities. Table 3.20 is constructed

with their work, BFHGA and GPU implemented BFHGA. All comparisons are

made on 100.000 schedule generation. The GPU is run exactly the same clock speed

of the BFHGA run on the CPU. Therefore, the comparison is made based on percent

deviations from best solution. Test case 3 is ignored since the data of this test case

is corrupted on the internet site. Therefore, 25 test cases are solved.

Table 3.20: Comparison of BFHGA on CPU and GPU

Vanquez et. al

(2013)

BFHGA With

CPU

BFHGA

With GPU

CPU GPU

Test

Case

Result Result Time Result %Dev from Best

1 113 111 8.8 110 0.88% 0.00%

2 228 229 17.8 228 0.44% 0.00%

3 314 314 63.4 314 0.00% 0.00%

4 117 114 15.4 112 1.71% 0.00%

5 276 268 30.4 266 0.72% 0.00%

6 356 348 47.7 346 0.56% 0.00%

7 149 148 51.1 146 1.34% 0.00%

8 90 88 22.4 88 0.00% 0.00%

9 390 388 53.2 386 0.51% 0.00%

10 698 690 86.7 689 0.14% 0.00%

11 114 114 87.1 114 0.00% 0.00%

12 181 178 37.1 176 1.10% 0.00%

13 511 506 85.6 505 0.20% 0.00%

14 1332 1332 100.2 1332 0.00% 0.00%

15 1326 1326 100.1 1326 0.00% 0.00%

16 1226 1226 100.1 1226 0.00% 0.00%

17 1220 1220 100.1 1220 0.00% 0.00%

18 1186 1186 100.1 1186 0.00% 0.00%

19 29 29 7.7 29 0.00% 0.00%

89

Vanquez et. al

(2013)

BFHGA With

CPU

BFHGA

With GPU

CPU GPU

Test

Case

Result Result Time Result %Dev from Best

20 30 30 7.9 29 3.33% 0.00%

21 29 29 7.8 29 0.00% 0.00%

22 29 29 8.1 29 0.00% 0.00%

23 31 31 8.1 31 0.00% 0.00%

24 29 29 7.9 29 0.00% 0.00%

25 50 50 8.1 50 0.00% 0.00%

Avr. 0.44% 0.00%

BGHGA implemented on GPU showed a significant improvement in Vanquez et

al., (2013) results. If we look closely to the Table 3.20. It can clearly be seen that at

an average %0.65 improvement has been succeeded with CPU. If we compare CPU

based BFHGA with GPU, it can be seen that for some test cases GPU results are

better such as %3.3, totally on average GPU results are better than CPU results as

%0.4. As a conclusion it can be said that larger problem instances can be solved

with GPU and efficiency of the algorithm increases compared to CPU based

algorithm.

Table 3.21: CPU and GPU comparison of Chen and Shahandashti (2010) real case

Method (500.000 Schedule) Best Average

BFHGA (This study) 517 523.3

BFHGA Implemented on GPU (This Study) 515 522.4

BGHGA implemented on the GPU is also run with Chen and Shahandashti (2010)

real portfolio case and the best result ever is obtained. Results are tabulated at Table

3.21.

Table 3.20: (Continued)

90

Table 3.22: GPU and CPU Comparison for Large Projects

Test Case # of

 Activities

CPU GPU Computational

Time

(seconds)

1
0

0
0

 S
ch

ed
u

le
 Test 1 500 1866 1859 3.4

Test 2 1000 2057 2048 1.1

Test 3 1500 1820 1815 6.9

1
0

0
0

0

S
ch

ed
u

le

Test 1 500 1851 1840 36.6

Test 2 1000 2039 2027 11.5

Test 3 1500 1809 1805 60.1

One of the key questions of GPUs performance is how they contribute to the

efficiency of the algorithm as far as the large projects are considered. For this reason

a test that contains large projects is conducted. For this reason a test set is created

with 500, 1000 and 1500 activities and that contains 1, 2 and 3 projects respectively.

Test sets are solved with 1000 and 10000 schedule generation limits and their

results are compared with GPU results with same computational time limits. Results

are tabulated at Table 3.22. For every test set GPU found better solutions compared

to CPU results. This revealed the effectiveness of the GPU application.

91

CHAPTER 4

4. ANALYSIS OF ALGORITHM PARAMETERS

Meta-heuristics’ power comes from the iteration process and the capability to

search the domain effectively. Although stochastic nature of the meta-heuristics

gives an extra power to explore the domain extensively, validity of the algorithm is

also important. In order to analyze the behavior of the algorithm with various

parameters, it is important to analyze their effects. Analyzing the effects of

parameters and design them in order to optimize meta-heuristics’ parameters is not

only an ad hoc process but also requires some statistics. Some conventions are used

extensively such as high population size and low mutation rate etc. Thus, there is

not an exact solution to optimize the parameters and fine tune them.

In this chapter it is intended to make an experiment design in order to obtain as

much information as possible on the parameters and its effects on algorithm

performance. Since boundary of the parameters can be set as minimum and

maximum, two level factorial design procedures is selected. Main advantage of

factorial design is the ability to understand parameter effects solely and

simultaneously with the minimum and maximum parameter settings.

4.1.Two Level Factorial Design

4.1.1. Theory:

Aim of a factorial design is to measure systematically the output and to test the

validity of the experiment. Parameters are changed in a systematical way and the

response of the algorithm is measured. The lower level of an input parameter is

usually indicated with a `-' sign; the higher level with a `+' sign.

Basic case of a factorial design is to measure the effect of one variable. If one

variable and its effect is considered the model becomes a linear model as follows;

Assuming the output of a model with Y and parameter with X;

92

𝑌 = 𝛽0 + 𝛽1𝑋 (4.1)

Effect of a parameter is defined as the difference in the average response between

the high and low levels of a factor.

The main effect of X is modelled in this way;

𝐸 (𝑋) = 𝑌𝑋+ − 𝑌𝑋− (4.2)

Variance of N observations can be modelled such as;

𝑉𝑎𝑟 (𝑋) =
4

𝑁
𝜎2 (4.3)

As more parameters are considered the model becomes more complex. If more than

one parameter is considered both the effects of each variable and their interactions

should be taken into account and experiment number increases exponentially such

that if there is 2 level and k dependent variable there should be 2k number of

experiments in order to make a factorial design.

2k factorial design is used extensively in the early stages of an experiment where

the effects of dependent variables are investigated. Since two level of factor is

considered, response is assumed to be linear over the range (Montgomery D.C.,

p.233, 2012).

For two level and two variables, interaction is defined as one-half of the difference

between the effect of parameter X1 at the high level of X2 and the effect of X1 at the

low level of X2.

The effect of two dependent variables is modelled in this way;

𝐸(𝑋1, 𝑋2) =
1

2
[(𝑌𝑥1+

− 𝑌𝑥1−
)

𝑋2+

− (𝑌𝑥1+
− 𝑌𝑥1−

)
𝑋2−

] (4.4)

where inside double brackets is called contrast of treatment (Montgomery D.C.,

p.244, 2012).

93

If we consider more than two variables, it is necessary to use design matrix which

makes easier to measure the variable effects. To measure the effect of any factor,

matrix can be used according to signs designated at the each cell M[i] [j] .

For example:

Effect of variable A and AB is calculated easily considering design matrix such as:

𝐴 =
1

8
[𝑎 − 𝑇 − 𝑏 + 𝑎𝑏 − 𝑐 + 𝑎𝑐 − 𝑏𝑐 + 𝑎𝑏𝑐 − 𝑑 + 𝑎𝑑 − 𝑏𝑑 + 𝑎𝑏𝑑 − 𝑐𝑑 + 𝑎𝑐𝑑

− 𝑏𝑐𝑑 + 𝑎𝑏𝑐𝑑]

𝐴𝐵 =
1

8
[𝑇 − 𝑎 − 𝑏 + 𝑎𝑏 + 𝑐 − 𝑎𝑐 − 𝑏𝑐 + 𝑎𝑏𝑐 + 𝑑 − 𝑎𝑑 − 𝑏𝑑 + 𝑎𝑏𝑑 + 𝑐𝑑

− 𝑎𝑐𝑑 − 𝑏𝑐𝑑 + 𝑎𝑏𝑐𝑑]

Sum of square of any factor is calculated as:

𝑆𝑆𝑖𝑗 =
1

2𝑘 (𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑗)
2
 (4.5)

Mean square error is calculated as:

𝑀𝑆𝐸𝑖𝑗 =
𝑆𝑆𝑖𝑗

𝐷𝑜𝑓𝑖𝑗
 (4.6)

Finally F value is calculated as:

𝐹 =
𝑀𝑆𝐸𝑖𝑗

𝑀𝑆𝐸𝑒𝑟𝑟𝑜𝑟
 (4.7)

A half normal graph is obtained using the experiment results. Cumulative

distribution of observed effects can be used for interpretation of each variable. If a

half normal plot paper is used only probability for each test and their effects are

drawn. Otherwise if plot paper is not available effects are converted to z values.

Main factors can easily be determined since they exist as outliers. All effects lie

along trend line are negligible whereas outliers have significant effects.

94

4.1.2. Application

As a methodology, developed BFHGA ıs tested with four selected. These are

population size, mutation rate, crossover and temperature. Pareto of interactions

and normal probability graph is also obtained in order to see the effect of

parameters. At last, an F test is conducted.

During this computations J sets (Kolish, 1999) is used. Library contains different

problem sets for different types of resource constrained project scheduling problem

as well as optimal and heuristic solutions. Instances are generated with a software

named as ProGen (Kolish et al., 1995). J sets consists of totally 480 test cases for

30 and 60 activity sets, 600 test cases for 120 activity sets. In experiments along

each ten case of J sets first network example is selected which in turn gives 48 test

sets for J30 and J60, 600 test sets for J120. Each experiment is done separately and

repeated two times.

Table 4.1: Independent variables

 Low

Level

-1

High

Level

+1

A POPULATION_SIZE 50 200

B MUTATION_RATE 0 0.01

C CROSS_OVER__NUM 30% 90%

D TEMPERATURE 0 4000

For J30 and J60 test case optimum results are used as references. Nevertheless,

lower bound solutions are used for J120 since there is no optimum result.

Independent variables are selected as population size, mutation rate, crossover

number and temperature (Table 4.1.)

Dependent variable is calculated as;

95

𝑌 =
(∑

[𝐹𝑖−𝐹𝑜]

𝐹𝑜

𝑗
𝑖)

𝑗
 𝑥100 (4.8)

where;

Fo is the optimum solution if it is available or lower-bound solution,

i= {0, 1, 2, 3….j},

J≤48 for J30 and J60,

J≤60 for J120.

4.1.2.1.Test of J30 Sets

J30 sets are run up to 50000 schedule and mean computation time for repeated to

experiment is 2.8 sec. When the results of experiment are examined it can easily be

seen that two factor namely C and A have relatively higher effects than others

(Figure 4.1). Mean value of effects is 5.6. C has a value of 23.87 which is far away

from double mean. When the Pareto Graph is examined, other factors such as B and

D have less effects than main factors. In addition, interaction effects are getting

smaller as factors are added.

Figure 4.1: Pareto graph of J30 test results

When we examine the results of half normal plot (Figure 4.2), it can easily be seen

that factor C is a possible outlier. Therefore, the effect of factor C is significantly

high. Other factors accumulate on a trend line. Whether the effect of C is significant

statistically F test results must be analyzed.

0

5

10

15

20

25

30

Pareto Graph

96

Figure 4.2: Normal plot for J30 test results

Table 4.2: Results of F test

Variable DoF Sum of Squares Mean Square Error F Value Test Result

A 1,0 682,2 682,2 2,67 accept

B 1,0 96,6 96,6 0,38 accept

C 1,0 2279,2 2279,2 8,91 reject

D 1,0 43,5 43,5 0,17 accept

AB 1,0 29,7 29,7 0,12 accept

AC 1,0 62,9 62,9 0,25 accept

AD 1,0 5,7 5,7 0,02 accept

BC 1,0 13,1 13,1 0,05 accept

BD 1,0 277,6 277,6 1,09 accept

CD 1,0 193,8 193,8 0,76 accept

ABC 1,0 0,2 0,2 0,00 accept

ABD 1,0 384,7 384,7 1,50 accept

ACD 1,0 5,2 5,2 0,02 accept

BCD 1,0 7,4 7,4 0,03 accept

ABCD 1,0 11,2 11,2 0,04 accept

Error 16,0 4093,2 255,8

Model 31,0 8186,4 264,1

97

Final results can be obtained from F test results. From Table 4.2 it can be seen that

15 factors have degree of freedom 1. Calculating sum of squares and mean square

errors from Equation 4.7, F values can be computed. (1/16) degree of freedom

table can be used since error term has 16 degrees of freedom. With these values it

can be said that only factor C is rejected, which means effect of factor C is

significant.

4.1.2.2. Test of J60 Sets

J60 sets are run up to 50000 schedule and mean computation time for repeated to

experiment is 8.3 sec. When the results of experiment are examined it can easily be

seen that two factors A and C have relatively higher effects than others. Mean value

of effects is 3.6. A has a value of 16.76 which is far away from double mean. When

the Pareto Graph is examined (Figure 4.3), other factors such as B and D have less

effects than main factors. In addition, interaction effects are getting smaller as

factors are added. ABC interaction is significant than other interaction effects.

When we examine the results of half normal plot (Figure 4.4), it can easily be seen

that factors A and C are outliers. Therefore, the effect of factor A and C is

significantly high. Other factors accumulate on a trend line. Whether the effect of

A and C are significant statistically F test results must be analyzed.

Figure 4.3: Pareto graph of J60 test results

0

5

10

15

20

Pareto Graph

98

Figure 4.4: Normal plot for J60 test results

Table 4.3: Design matrix and results for J60 Sets

 DoF Sum of Squares Mean Square Error F Value Test Result

A 1.0 1124.3 1124.3 4.63 reject

B 1.0 0.7 0.7 0.00 accept

C 1.0 516.3 516.3 2.13 accept

D 1.0 3.2 3.2 0.01 accept

AB 1.0 57.0 57.0 0.23 accept

AC 1.0 11.8 11.8 0.05 accept

AD 1.0 19.5 19.5 0.08 accept

BC 1.0 28.4 28.4 0.12 accept

BD 1.0 1.5 1.5 0.01 accept

CD 1.0 8.3 8.3 0.03 accept

ABC 1.0 83.1 83.1 0.34 accept

ABD 1.0 10.8 10.8 0.04 accept

ACD 1.0 0.0 0.0 0.00 accept

BCD 1.0 65.9 65.9 0.27 accept

ABCD 1.0 11.4 11.4 0.05 accept

Error 16.0 3884.0 242.8

Model 31.0 7768.0 250.6

99

Final results can be obtained from F test results. From Table 4.3 it can be seen that

15 factors have degree of freedom 1. Calculating sum of squares and mean square

errors from Equation 4.7, F values can be computed. (1/16) degree of freedom table

can be used since error term has 16 degrees of freedom.

4.1.2.3.Test of J120 Results

J120 sets are run up to 50000 schedule and mean computation time for repeated to

experiment is 18.8 sec. When the results of experiment are examined it can easily

be seen that two factors A and C have relatively higher effects than others (Figure

4.5). Mean value of effects is 8.3. A has a value of 41.2 which is far away from

double mean. When the Pareto Graph is examined, other factors such as B and D

have less effects than main factors. In addition, interaction effects are getting

smaller as factors are added. BCD interaction is significant than other interaction

effects.

When we examine the results of half normal plot (Figure 4.6), it can easily be seen

that factors A, C, AD and B are outliers. Therefore, the effect of these factors may

be significantly high and other factors accumulate on a trend line. Whether the

effect of these factors is significant statistically F test results must be analyzed.

Figure 4.5: Pareto graph of J120 test results

0

10

20

30

40

50

Pareto Graph

100

Figure 4.6: Normal plot for J120 test results

Table 4.4: Design matrix and results for J120 sets

 DoF Sum of Squares Mean Square Error F Value Test Result

A 1.0 6816.3 6816.3 5.33 reject

B 1.0 170.7 170.7 0.13 accept

C 1.0 1772.1 1772.1 1.39 accept

D 1.0 178.9 178.9 0.14 accept

AB 1.0 301.3 301.3 0.24 accept

AC 1.0 172.3 172.3 0.13 accept

AD 1.0 25.6 25.6 0.02 accept

BC 1.0 349.2 349.2 0.27 accept

BD 1.0 244.7 244.7 0.19 accept

CD 1.0 57.4 57.4 0.04 accept

ABC 1.0 30.2 30.2 0.02 accept

ABD 1.0 0.0 0.0 0.00 accept

ACD 1.0 1.5 1.5 0.00 accept

BCD 1.0 68.8 68.8 0.05 accept

ABCD 1.0 43.0 43.0 0.03 accept

Error 16.0 20464.0 1279.0

Model 31.0 30696.0 990.2

101

Final results can be obtained from F test results. From Table 4.4 it can be seen that

15 factors have degree of freedom 1. Calculating sum of squares and mean square

errors from Equation 4.7, F values can be computed. (1/16) degree of freedom table

can be used since error term has 16 degrees of freedom. With these values it can be

said that only factor A is rejected which means effect of factor A is significant.

Therefore other factors` effects are not statistically significant.

Figure 4.7: Main effect plots of each test sets

0

20

40

60

80

Min Max

J30 Sets

A

B

C

D

140

150

160

170

180

Min Max

J60 Sets

A

B

C

D

800

820

840

860

880

900

Min Max

J120 Sets

A

B

C

D

102

4.1.1. Interpretation from Main Effect Plots

A rough estimation of effects can also be seen from main effect plots. Main effect

of a factor is calculated when it is minimum while the others are maximum and

maximum while others are minimum. When the Figure 4.7 is considered effect of

A and C are looks similar. Increasing A and C would increase the effects

significantly. Whereas factors B and D behave different for each test case. For test

case J30, if B increases result would be incresing on the other hand for test case

J60 and J120 result would be decreasing with incresing value of B. As for factor

D, if it increases for J30 tests effects would be increasing, for J60 tests effects would

not change significantly and for J120 sets effects would be decreasing. It can be

concluded that for every test sets different parameter combinations should be used

in order to gain maximum benefit from the algorithm. It is also worth saying that

high population size, low mutation number, low crossover ratio would contribute

higher effects. Temperature parameter is not that significant but, rather it has fine

tuning capability.

103

CHAPTER 5

5. CONCLUSION

5.1. Summary and Discussion of Results

Effective resource management is vital in project management since idle resources

or excess resources increase the cost of the projects. Due to the challenging market

conditions and competition between companies, resource management process

becomes more important since cost overruns would result profit loss of the

company. This situation is well known in the construction sector but, practically

used techniques such as CPM does not cover resource management related issues.

Moreover, practically used software packages are neither capable of dealing with

multiple projects and its resources, nor have sufficient performances.

Resource allocation process which is extensively worked in operations research and

project management literature gives some directions to the practitioners through

heuristic methods, available software packages and developed algorithms.

However, majority of the existing research has focused on single projects. The

performances of these methods and software packages can be argued. Fast and

robust algorithms should be developed and this gap gives opportunities to the

researchers. Therefore, in this research it is aimed to obtain optimum or near

optimum solutions to the RCMPSP via meta-heuristics. For this purpose, a new

meta-heuristic algorithm was developed and its performance is tested with known

test instances. Developed algorithm is based on GA, SA and backward forward

heuristics through with improvements on mutations, crossover and selection

methods. Moreover, in order to increase the effectiveness of the algorithm parallel

computing strategy is applied to the algorithm and it is used with a GPU. The results

revealed the effectiveness of the algorithm.

Research has four main phases. In the first phase, a linear-integer model is

developed and it is tested with the previous test results. Also, it is shown that for

networks larger than 60 activities, linear-integer models are not capable of solving

the problem. It has been shown that software packages used extensively in the

104

practice have very low resource management capabilities. The second phase is the

algorithm development processes. It includes GA, SA, hybridization process and

new novel contributions to the algorithm. In order to clarify the development

process each part of the algorithm is summarized in corresponding sections. Third

phase is the performance measurement of the algorithms. Heuristics and known test

results are used for comparison purposes. Last phase is the parallel computing

application of final algorithm.

As a summary, the developed mathematical model is tested with optimum results

or upper bound solutions available in the literature. Standard Kolish (Kolisch and

Sprecher, 1997) test instance are used. Total time is limited to 300 seconds for J30

sets and 1000 seconds for j60 sets. J30 sets are completely solved with this model

and %94.5 of the results are optimum. %73 of J60 sets are solved optimally within

time and mean CPU time for Intel Core I5 computer is 14.3 and 19.9 seconds for

J30 and J60 sets respectively. J120 test sets cannot be solved within reasonable time

limits. Those sets cannot be solved optimally compared with upper bound solutions

and on the average, our model results depict from optimum and upper-bounds only

%2. 68. Most important conclusion of the model is the limitation of the

mathematical models for larger sets which is compatible with literature findings.

In order to test algorithms’ performances a heuristic solver was developed. In this

solver Minimum Slack (MinSlack), Shortest Activity from Shortest Project (SASP)

and Maximum Total Work Content (MaxTWK) heuristics are used. Also BF

heuristic is applied for each problem and results are compared within heuristics and

with meta-heuristics in further sections. BF heuristics outperformed other

heuristics.

A sole GA is developed with random key based chromosome representation. This

representation has been seldom used in the literature. Nevertheless, it has various

opportunities such as the fast crossover capability and compatibility with coding

techniques. It has been shown that even a sole GA is better %3.6 from best

heuristics with an average value of %7.04. In some test cases this value increases

up to %15.38. Developed GA is tested with MS Project’s heuristics. Test results

105

showed that in some test cases sole GA is better %26.37 with an average of %16.76.

Therefore, sole GA outperformed the known software packages’ heuristics.

A sole SA with the idea of worse solutions can also be accepted to some extend is

applied. The probability of accepting worse solutions is high at the beginning and

it is decreased according to a linear cooling schema. Results are compared with GA

results. It has been revealed that GA solutions performed better in all cases. GA on

the average performed %5.6 better. Since GA explores a large space compared to

SA, the results verified the effectiveness of GA.

A sole SA has a low search efficiency as it maintains only one solution at each

iteration. GA on the other hand, can contain knowledge of previous good solutions

and have high search capacity. An intelligent hybrid algorithm which has better

sides of each algorithm would perform better results. Therefore, a GA and SA

hybrid algorithm is developed and tested with sole GA and sole SA results. Results

revealed that the hybrid algorithm performance is better than sole algorithms and it

has an average performance improvement of % %3.26.

Based on the findings of previous algorithms and the results revealed by hybrid

algorithm, it can be said that if complementary strengths of algorithms can be put

together and work coherently results would improve. Within these findings a novel

approach was developed to problem solving strategy. A new method together with

GA and SA hybrid algorithm, backward- forward scheduling iteration method is

hybridized for solution of RCMPSP. Initial comparisons with Anagnostopoulos and

Koulinas (2012), Christodoulou (2010), Hegazy (1999), and Leu and Yang (1999)

revealed best results available in the literature. Furthermore, results of Chen and

Shahandashti (2009) used as performance comparison and the method applied in

the work was able to find 525 days, and an average duration of 544.0 days within

606 s. BFHGA achieved a best solution of 517 and an average duration of 523.3

days. The results of the algorithm showed significant performance improvements

on literature findings. Another significant improvement has been achieved for

comparisons of RESCON results with final algorithm. Out of 26 test cases BFHGA

found 25 test cases better than tabu search. On the average BFHGA is found %1.74

better than tabu search algorithm.

106

It is known in the literature that although GAs are effective in solving many

optimization problems, longer execution time to compute each fitness value of the

problem limits its performance. Due to the subroutine of the algorithm, for each

cycle time one fitness calculation is possible. In order to increase the effectiveness

of the algorithm developed novel BFHGA is rearranged to work with parallel

computing strategy. In order to apply the algorithm with a parallel computing

strategy, firstly the fitness calculation process which is the most time consuming

part is recoded to work compatibly with a GPU. Parallel computing strategies are

effective for large problem instances due to the fact that the time to communicate

between CPU and GPU is high for small test instances. Therefore, a multi-project

test instance of Vanquez et al. (2013) is used for comparison purposes. Results

revealed that both BFHGA and GPU based BFHGA performs better %0.4 and %1.1

respectively. Algorithm performance was further tested with generated 26 portfolio

projects. Out of 26 test cases 9 of them are further improved with GPU application.

As an average, %0.68 improvement was possible. The performance of a GPU for

large scale projects was tested with 500, 1000 and 1500 activities networks. Results

revealed the effectiveness of GPU application. This research is the first research in

the literature on the application of meta-heuristics with a GPU in the scheduling

practices. The most important conclusion of GPU based BFHGA is the high

potential of parallel computing strategies on meta-heuristic algorithms and

improved effectiveness on solution quality.

In compliance with the literature, it is shown that the most important factors in

BFHGA are the population size and crossover ratio. Other tested factors also affect

the behavior of the algorithm, but rather have fine tuning capabilities.

5.2.Conclusion

Throughout the study basic resource allocation problem with its multi-project case

definition is used. Basic definition includes deterministic durations and resource

usage. Due to the necessity compliance with standard Kolish instances, only finish

to start activity relations are considered in the majority of the instances.

107

In the problem, it is assumed that each resource is renewable and there are no

resource transfer times between projects. All comparisons are made to the literature

are compared with same CPU time units.

Project portfolio duration minimization is used as the objective function of this

study. In this objective function each project assumed to have the same importance

to the company and have an equal chance to use each resource. This may bring

some limitations in practice since companies may have projects with different

priorities and different concerns.

Although the developed algorithm has shown significant improvements it cannot

be used easily by the practitioner with the current interface. Therefore, algorithm

can either be integrated into a known project management software or can be

developed in order to work as an individual scheduling tool. This situation needs

further improvements.

Project portfolio duration minimization is commonly used in the literature for

optimal scheduling of multiple construction projects with common limited

resources. However, this objective function has limitations in practice, as it is based

on the assumption that resources can be transferred between projects without any

expense in time and cost. In addition, stochastic durations can be added to the model

and model can be regenerated. Hence, models, instance sets, and approaches,

including resource transfer times and costs, models including stochastic durations

are appear to be promising areas for future research.

Parallel computing technologies bring many new opportunities to the researchers.

Being the low cost parallel computing opportunity, GPUs have a vast amount of

application areas in construction management practice of meta-heuristics to 4D

modelling. Therefore, new algorithms with different parallel computing strategies

may increase the effectiveness of the current algorithms.

108

REFERENCES

Abido, M.A., and Elazouni, A.M. (2010). “Precedence-Preserving GAs Operators

for Scheduling Problems with Activities’ Start Times Encoding”. Journal of

Computing in Civil Engineering, 24(4), 345–356.

Akbari, R., Zeighami, V., and Ziarati, K. (2011). “Artificial bee colony for resource

constrained project scheduling problem.” International Journal of Industrial

Engineering and Computation, 2, 45–60.

Alcaraz, J., and Maroto, C. (2001). “Precedence-preserving GAs operators for

scheduling problems with activities’ start times encoding” Journal of

Computing Eng., 10.1061/ASCE CP.1943-5487.0000039, 345-356.

Anagnostopoulos, K. and Koulinas, G. (2012). “Resource-Constrained Critical Path

Scheduling by a GRASP-Based Hyperheuristic”, Journal of Computing in

Civil Engineering, 26(2), 204-213.

Arenas M.G., Mora A.M., Romero G. and Castilli P.A. (2011). “GPU computation

in bio inspired algorithms: a review”, Advances in Computational

Intelligence Lecture Notes in Computer Science Volume 6691, 433-440.

Bettemir O. H. and Sonmez R. (2014). “Hybrid genetic algorithm with simulated

annealing for resource-constrained project scheduling”, Journal of

Management in Engineering, Online copy is available through

10.1061/(ASCE)ME.1943-5479.0000323

Blazewich, J., Cellary, W., Slowinski, R. and Weglarz, J. (1986). “Scheduling

under resourceconstraints - Deterministic models”, Baltzer, Basel.

Blazewicz, J., Lenstra, J., and Rinnooy Kan, A.H.G. (1983). “Scheduling subject to

resource constraints: classification and complexity”, Discrete Applied

Mathematics, Volume 5, 11–24.

Boctor, F. F. (1996) “Resource constrained project scheduling by simulated

annealing” International Journal of Production Research Volume 34, Issue 8.

Bozorg Haddad, O., Mirmomeni, M., Zarezadeh Mehrizi, M., and Marino, M. A.

(2010). “Finding the shortest path with honey-bee mating optimization

algorithm in project management problems with constrained/unconstrained

resources.” Computational Optimization and Applications, 47(1), 8 97–128.

Browning, T. R., and Yassine, A. A. (2010). “Resource-constrained multi-project

scheduling: priority rule performance revisited”, International Journal of

Production Economics, Volume 126, 212–228.

http://link.springer.com/book/10.1007/978-3-642-21501-8
http://link.springer.com/book/10.1007/978-3-642-21501-8
http://link.springer.com/bookseries/558
http://www.tandfonline.com/loi/tprs20?open=34#vol_34
http://www.tandfonline.com/toc/tprs20/34/8

109

Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E., (1999). “Resource

constrained project scheduling: Notation, classification, models and

methods”, European Journal of Operational Research, Volume 112, 3-41.

Carruthers J.A. and Battersby A. (1966). “Advances in Critical Path Methods”,

Operational Research Quarterly, Volume 17(4), 359-380.

Cerny, V. (1985). “A thermodynamical approach to the travelling salesman

problem: An efficient simulation algorithm.” Journal of optimization theory

and applications, Volume 45(1), 41–51.

Chaharsoogni, S.K. and Kermani A.H.M. (2008). “An effective ant colony

optimization algorithm for multi-objective resource allocation problem”,

Applied Mathematics and Computation, Volume 200, 167-177.

Chen, D., Lee, C.Y. and Park, C. H. (2005). “Hybrid genetic algorithm and

simulated annealing (HGASA) in global function optimization”, Proceedings

of the 17th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’ 05), 129 – 133.

Chen, P. and Weng, H. (2009). ”A two-phase GA model for resource-constrained

project scheduling”, Automation in Construction, Volume 18, 485–498.

Chen, P. H., and Shahandashti, S.M. (2009). “Hybrid of genetic algorithm and

simulated annealing for multiple project scheduling with multiple resource

constraints”. Automation in Construction, 18, 434–443.

Chen, R.M. (2011). “Particle swarm optimization with justification and designed

mechanism for resource constraint project scheduling problem”, Expert

System with Applications, 38(6), 7102-7111.

Chen, W., Shi, Y., Teng, H., Lan, X., and Hu, L. (2010). “An efficient hybrid

algorithm for resource-constrained project scheduling”, Information Sciences

Vol. 180, 1031–1039.

Cho, J. H. and Kim, Y. D. (1997). “A simulated annealing algorithm for resource

constrained project scheduling problems”, The Journal of the Operational

Research Society, Volume 48 (7), 736-744.

Christodoulou, S. (2010). “Scheduling Resource-Constrained Projects with Ant

Colony Optimization Artificial Agents”. Journal of Computing in Civil

Engineering, 24(1), 45–55.

Christofides, N., Alvarez-Valdes, R., and Tamarit, J. M. (1987). “Project

scheduling with resource constraints: A branch and bound approach”,

European Journal of Operational Research, volume 29(3), 262-273.

http://www.jstor.org/action/showPublication?journalCode=joperresesoci
http://www.jstor.org/action/showPublication?journalCode=joperresesoci

110

Confessore, G., Giordani, S.,and Rismondo,S. (2007). “A market-based multi-agent

system model for decentralized multi-project scheduling. Annals of

Operations Research 150(1), 115–135.

Conway, R. W., (1965). "priority dispatching and job lateness in a job shop,"

Journal of Industrial Engineering, Vol. 16(4), 228-237.

Cooper, D.F. (1976). “Heuristics for scheduling resource-constrained projects: An

experimental investigation”, Management Science, 22, 1186-1194.

Cottrell, W., D. (1999). ”Simplified program evaluation and review technique

(PERT).” Journal of Construction Engineering and Management, 125(1), 16–

22.

Davis E.W. and Patterson J.H., (1975). “A comparison of heuristic and optimum

solutions in resource-constrained project scheduling”, Management Science,

Volume 21(8), 944-955.

Debels, D., and Vanhoucke, M. (2007). “A Decomposition-Based Genetic

Algorithm for the Resource-Constrained Project-Scheduling Problem”,

Journal of Operations Research, Volume 55(3), 457-469.

Deblaere F. and Demeulemeester E. (2011). “RESCON: An educational project

scheduling software”, Computer Applications in Engineering Education”,

Volume 19(2), 327–336.

DeJong, K., and Spears, W. (1991). “On the virtues of parameterized uniform

crossover”, Proceedings of the Fourth International Conference on Genetic

Algorithms, Morgan Kaufman, San Mateo, CA, 230–236.

Delevacq A., Delisle P.,Gravel M. and Kracejki M. (2013). “Parallel ant colony

optimization on graphics processing units”, Journal of Parallel and

Distributed Computing, Volume 73(1), 52–61.

Demeulemeester E., Herroelen W. (1992). "A branch and bound procedure for the

multiple resource-constrained project scheduling problem", Management

Science, Volume 38(12), 1803-1818.

Demeulemeester, E., and Herroelen, W. (2002). “Project scheduling: a research

handbook”, International Series in Operations Research & Management

Science, Boston: Kluwer Academic.

Dorndorf, U., and Pesch, E. (1995). “Evolution based learning in a job shop

scheduling enviroment”, Computers and Operations Research Volume 22,

25-40.

http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315

111

Drexl, A., (1991) “Scheduling of project networks by job assignment”,

Management Science, Volume 37 (12), 1590–1602.

Easa S. M. (1989). “Resource Leveling in Construction by Optimization”, Journal

of Construction Engineering and Management, Volume 115(2), 302–316.

Eiben, A.E., Hinterding, R., Michalewicz, Z. (1999). “Parameter control in

evolutionary algorithms”, IEEE Transactions on Evolutionary Computing

3(2), 124–141.

Elmaghraby S.E. (1993). “Resource allocation via dynamic programming in

activity networks”, European Journal of Operational Research, Volume

64(2), 199-215.

El-Rayes, K. and Jun, D., (2009). “Optimizing Resource Leveling in Construction

Projects”, Journal of Construction Engineering and Management, Volume

35(11), 1172–1180.

Fendley, L.G. (1968). "Toward the development of a complete multiproject

scheduling system," J. Induist. Engineering, Vol.19(10), 505-515.

Feng, C. W., Liu, L., and Burns, S.A. (1997). “Using genetic algorithms to solve

construction time-cost trade-off problems”, Journal of Computing in Civil

Engineering, Volume 11(3), 184-189.

Fujimoto N. and Tsutsui S. (2011). ”A highly-parallel TSP solver for a GPU

computing platform”, Numerical Methods and Applications Lecture Notes in

Computer Science, Volume 6046, 264-271.

Glover, F. (1990). “Artificial intelligence, heuristic frameworks and tabu search”,

Managerial and Decision Economics, Volume 11(19), 365–375.

Golçalves J.F., Mendes J.J., Resende M.G.C. (2008). “A genetic algorithm for the

resource-constraint multi project scheduling problem”, European Journal of

Operational Research 189(3), 1171-1190.

Han, M., Li, P. and Sun, J. (2006). “The algorithm for berth scheduling problem by

the hybrid optimization strategy GASA”. ICARCV 06 9th International

Conference on control automation robotics and vision, 1 – 4.

Hartman, S. and Briskorn, D. (2010). “A survey of variants and extensions of the

resource-constrained project scheduling problem”, European Journal of

Operational Research, Volume 207, 1-14.

Hartmann, S. (1998). “A competitive genetic algorithm for resource-constrained

project scheduling”, Naval Research Logistics, Vol. 45 (1998), 733-750.

http://link.springer.com/book/10.1007/978-3-642-18466-6
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

112

Hartmann, S. and Kolisch. R., (2000). “Experimental evaluation of state-of-the-art

heuristics for the RCPSP”, European Journal of Operational Research

Volume 127, 394-407.

Hegazy, T. (1999). “Optimization of resource allocation and leveling using genetic

algorithms”, Journal of Construction Engineering and Management, Volume

125(3), 167-175.

Herroelen, W., Demeulemeester, E., Reyck, B. D. (1999). “A classification scheme

for project scheduling”, International Series in Operations Research and

Management Science, Volume 14, 1-26.

Holland, J. H. (1975). “Adaptation in natural and artificial systems”, University of

Michigan Press, Ann Habor, MI.

Hwang, S. F. and He, R.S. (2006). ”Improving real-parameter genetic algorithm

with simulated annealing for engineering problem”, Advance Engineering

Software, 37(6), 406-418.

Icmeli, O., and Erenguç, S. S. (1994). “A tabu search procedure for the resource

constrained project scheduling problem with discounted cash flows”

Computers & Operations Research, Volume 21(8), 841–853.

J.R. Meredith, S.J. Mantel Jr. (1995). “Project Management” John Wiley & Sons,

New York.

Jarboui, B., Damak, N., Siarrry, P., and Rebai, A. (2008). “A combinatorial particle

swarm optimization for solving multi-mode resource constrained project

scheduling problems”, Applied Mathematical Computation, 195(1), 299-308.

Jia, Q., and Seo, Y. (2013). “An improved particle swarm optimization for the

resource-constrained project scheduling problem”, The International Journal

of Advanced Manufacturing Technology, Volume 67 (9-12), 2627-2638.

Kandil, A., and El-Rayes, K. (2005). “Time-Cost-Quality Trade-Off Analysis for

Highway Construction”, Journal of Construction Engineering and

Management, Volume 131(4), 477-486.

Kandil, A., and El-Rayes, K. (2006).” Parallel Genetic Algorithms for Optimizing

Resource Utilization in Large-Scale Construction Projects”, Journal of

Construction Engineering and Management, Volume 132(5), 491–498.

Kandil, A., El-Rayes, K., and El-Anwar, Q. (2010). “Optimization research:

Enhancing the robustness of large-scale multi-objective optimization in

construction”, Journal of Construction Engineering and Management, Special

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548/21/8
http://link.springer.com/journal/170
http://link.springer.com/journal/170

113

Issue: Research Methodologies in Construction Engineering and

Management, 17–25.

Kanit, R., Gunduz, and M.,Ozkan, O. (2009). “Investigating the effectiveness of

certain priority rules on resource scheduling of housing estate projects”,

Journal of Construction Engineering and Management, Volume 135(7), 609-

613.

Ke, H., and Liu, B. (2005). “Project scheduling problem with stochastic activity

duration times”, Applied Mathematics and Computation, Volume 168, 342-

353.

Kelley, J.E. (1963). “The Critical path method: resource planning and scheduling”

Industrial scheduling, J.F.: Muth and G.L. Thompson, eds., Prentice Hall,

Englewood Cliffs, NJ, 347-365.

Kim J. L., and Ellis R. D. (2008). “Permutation-based elitist genetic algorithm for

optimization of large-sized resource-constrained project scheduling”, Journal

of Construction Engineering and Management, 134(11), 904–913.

Kirkpatrick, S. Gelatt, C.D., and Vecchi, M.P. (1983). “Optimization by simulated

annealing”, Science, Volume 220(4598), 671-680.

Kolisch, R. (1997) ‘‘Resource allocation capabilities of commercial project

management systems resource management boosts up the german stock

exchange,’’ Technical Report, Manuskripte aus den Instituten für

Betriebswirtschaftslehre, University of Kiel, Germany.

Kolisch, R., Schwindt, C. und Sprecher, A. (1999). “Benchmark instances for

project scheduling problems”, Kluwer; Weglarz, J. (Hrsg.): Handbook on

recent advances in project scheduling, 197-212.

Kolisch, R., Schwindt, C., and Sprecher, A. (1999). “Benchmark Instances for

Project Scheduling Problems”, International Series in Operations Research &

Management Science, Volume 14, 197-212.

Kolish, R. (1999). “Resource Allocation Capabilities of Commercial Project

Management Software Packages”, Institute for Operations Research and the

Management Science, Volume 29:4, 19-31.

Kolish, R. and Hartmann, S. (1999). “Heuristic algorithms for the resource-

constrained project scheduling problem: classification and computational

analysis”, International Series in Operations Research & Management

Science Volume 14, 147-178.

http://link.springer.com/search?facet-author=%22Rainer+Kolisch%22
http://link.springer.com/bookseries/6161
http://link.springer.com/bookseries/6161

114

Kolish, R. and Padman, R. (2001). “An integrated survey of project scheduling

Technical Report 463, Manuskripte aus den Instituten für

Betriebswiirtchaftslehre der Universitat Kiel.

Kolish, R., and Sprecher, A. (1997). “PSPLIB - A project scheduling problem

library: OR Software - ORSEP Operations Research Software Exchange

Program”, Volume 96(1), 205–216.

Kolish, R., Sprecher, A. and A. Drexl (1995). “Characterization and generation of

a general class of resource constrained project scheduling problems”,

Management Science, 41, 1693-1703.

Koné O., Artigues C., Lopez P., Mongeau M. (2011). “Event-based MILP models

for resource constrained project scheduling problems”, Computers &

Operations Research, Volume 38(1), 3-13.

Kruger, D. and Scholl, A. (2009). “A heuristic solution framework for the resource

constrained (multi-) project scheduling problem with sequence-dependent

transfer times”. European Journal of Operational Research, Volume197, 492–

508.

Kumanan S., Jose G. J., Raja K. (2006). “Multi project scheduling using a heuristic

and a genetic algorithm”, International Journal of Manufacture Technology

31 (360-366).

Kurtulus I. and Davis E.W. (1982). “Multi-project scheduling: categorization of

heuristic rules performance”. Management Science, Volume 28(2), 161- 172.

Kurtulus, I. (1978). "An analysis of scheduling rules for multi-project scheduling,"

Unpublished Ph.D. Thesis, University of North Carolina.

Kurtulus, I. (1985). “Multi project scheduling: analysis of scheduling strategies

under unequal delay penalties”, Journal of Operations Management, 5(3),

291–307.

Lee, J. K., and Kim, Y. D. (1996). “Search heuristics for resource constrained

project scheduling”, Journal of Operational Research Society, Volume 47(5),

678-689.

Leu, S. S., and Hwang, S. T. (2001). “A GA based model for maximizing precast

plant production under resource constraints”, Engineering Optimization,

Volume 33(5), 619-642.

Leu, S. S., and Yang, C. H. (1999). “A genetic algorithm based resource constrained

construction scheduling system”, Construction Engineering and Economics,

volume 17(6), 767-776.

http://www.sciencedirect.com/science/journal/03772217/96/1

115

Leung, Y., Gao, Y. and Xu, Z. B. (1997). “Degree of population diversity-a

perspective on premature convergence in genetic algorithms and its Markov-

chain analysis”, IEEE Transactions on Neural Networks, 8(5), 1165 – 1176.

Li K., and Willis R. (1992). “An iterative scheduling technique for resource-

constrained project scheduling”, European Journal of Operational Research

56, 370–379.

Liberatore, M.J., and Pollack-Johnson, B. (2003). “Factors influencing the usage

and selection of project management software”. IEEE Transactions on

Engineering Management, 50(2), 164–174.

Lin, D., Lee, C. K. M., and Ho, W. (2013). “Multi-level genetic algorithm for the

resource-constrained re-entrant scheduling problem in the flow shop”

Engineering Applications of Artificial Intelligence, 26(4), 1282–1290.

Lova, A., and Tormos, P. (2001). “Analysis of scheduling schemes and heuristic

rules performance in resource-constrained multi-project scheduling”, Annals

of Operations Research, Volume 102, 263–286.

Lova, A., and Tormos, P. (2002). “Combining random sampling and backward–

forward heuristics for resource-constrained multi-project scheduling”.

Proceedings of the 8th International Workshop on Project Management and

Scheduling, Valencia, Spain, 244–248.

Lova, A., Maroto, C., Tormos, P., (2000). “A multicriteria heuristic method to

improve resource allocation in multiproject scheduling” , European Journal

of Operational Research 127, 408–424.

Lykke S. and Balkaya H. (2005). “Marmaray project: the project and its

management”, Tunneling and Underground Space Technology Volume 20

(6), 600–603.

Melab, N., Chakroun, I., Mezmaz, M., Tuyttens, D. (2012). “A GPU-accelerated

branch-and-bound algorithm for the flow-shop scheduling problem”, Cluster

Computing (CLUSTER), 2012 IEEE International Conference on, Issue

Date: 24-28 Sept.

Meredith, J. R. and Mantel J. M. (1995). “Project management: a managerial

approach”, John Wiley and Sons, Michigan University.

Merkle, D., Middendorf, M., and Schmeck H. (2002). “Ant colony optimization for

resource-constrained project scheduling” IEEE Transactions on Evolutionary

Computation, Volume 6(4), 333-346.

http://www.sciencedirect.com/science/journal/08867798
http://www.sciencedirect.com/science/journal/08867798/20/6
http://www.sciencedirect.com/science/journal/08867798/20/6
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6336636
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6336636
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6337766
http://www.google.com.tr/search?hl=tr&tbo=p&tbm=bks&q=inauthor:%22Jack+R.+Meredith%22&source=gbs_metadata_r&cad=7

116

Metropolis, N., Rosenbluth, A.W. Rosenbluth, M.N., Teller, A.H., Teller, E.

(1953). Equation of state calculations by fast computing machines, Journal of

Chemical Physics 21 (6), 1087-1092.

Michalewich, Z., (1992). “Genetic algorithms + data structures = evolution

programs”, 1st Edition, Sprinkler Series Artificial Intelligence, New York.

Mingozzi, A., V. Maniezzo, R. Ricciardelli and L. Bianco (1995). “An exact

algorithm for project scheduling with resource constraints based on a new

mathematical formulation, Revised Technical Report, University of Bologna.

Mize, H.H. (1964). "A heuristic scheduling model for multi-project organizations,"

Unpublished Ph.D. Thesis, Purdue University.

Mongomery, D.C., (2012). “Design and analysis of experiments”, 8th Edition, John

Wiley & Sons.

Mori, M., and Tseng, C. C., (1997). “A genetic algorithm for multi-mode resource

constrained project scheduling problem”, European Journal of Operational

Research, Volume 100(1), 134–141.

Nesmachnow S., and Canabé M. (2011). “GPU implementations of scheduling

heuristics for heterogeneous computing environments”, XVII Congreso

Argentino de Ciencias de la Computación, Red de Universidades con

Carreras en Informática (RedUNCI), 292-301.

Osman, M.S., Abo-Sinna, M.A., Mousa, A.A., (2005). “An effective genetic

algorithm approach to multi-objective resource allocation problem”, Applied

Mathematics and Computation, Volume 163, 755-768.

Patterson J.H., Huber W.D. (1974). "A horizon-varying, zero-one approach to

project scheduling", Management Science, Volume 20, 990-998.

Patterson J.H., Roth G.W. (1976). "Scheduling a project under multiple resource

constraints: a zero- one programming approach", AIIE Transactions, 8, 449-

455.

Patterson, J. H. (1973). "Alternative methods of project scheduling with limited

resources," Naval Res. Logist. Quart. Vol. 20(4), 767-784.

Payne, J. H. (1995). “Management of multiple simultaneous projects: A state-of-

the-art review” International Journal of Project Management, 13(3), 163–168.

Paz E. and Goldberg D. (2000). “Efficient parallel genetic algorithms: theory and

practice”Computer Methods in Applied Mechanics and Engineering Volume

186, Issues 2–4, 221–238.

http://www.sciencedirect.com/science/journal/00457825
http://www.sciencedirect.com/science/journal/00457825/186/2
http://www.sciencedirect.com/science/journal/00457825/186/2

117

Pospichal P., Jaros J. and Schwarz J. (2010). “Parallel genetic algorithm on the

CUDA architecture”, Applications of Evolutionary Computation Lecture

Notes in Computer Science Volume 6024, 442-451

Pritsker A. A. B., Watters L. J., Wolfe P. M., (1969). “Multi-project scheduling

with limited resources: a zero-one programming approach.” Management

Science, Volume 16, 93–107.

Rudolph, G., (1994). “Convergence analysis of canonical genetic algorithms”,

IEEE Transactions on Neural Networks, Volume 5(1), 96-101.

Sonmez R., and Bettemir O. H. (2012). “A hybrid genetic algorithm for the discrete

time–cost trade-off problem”, Expert System with Applications, Volume

38(13), 11428-11434.

Storer, R.H., Wu, S.D., Vaccari, R. (1992). “New search spaces for sequencing

problems with application to job shop scheduling”, Management Science,

Volume 38, 1495-1509.

Thomas, P. R., and Salhi, S. (1998). “A Tabu Search Approach for the Resource

Constrained Project Scheduling Problem”, Journal of Heuristics, Volume

4(2), 123-139.

Toklu, Y.,C. (2002). “Application of genetic algorithms to construction scheduling

with or without resource constraints” Canadian Journal of Civil Engineering,

2002, 29(3): 421-429, 10.1139/l02-034.

Trautmann, N.and Baumann, P. (2009). “Resource-allocation capabilities of

commercial project management software: An experimental analysis”,

International Conference on Computers & Industrial Engineering,

Troyes,1143-1148.

Tseng, C. C., (2004). “Multiple projects scheduling with multiple modes: a genetic

algorithm”, Proceedings of the 1st ORSTW Conference on Technology and

Management, Taipei, 18–28.

Tseng, L. and Chen, S. (2006). “A hybrid meta-heuristic for the resource-

constrained project scheduling problem”, European Journal of Operational

Research Volume 175(2), 707–721.

Valls, V., Ballestin, F., Quintanilla S. (2008). “A hybrid genetic algorithm for the

resource-constrained project scheduling problem”, European Journal of

Operations Research, Volume 185(2), 495-508.

http://link.springer.com/book/10.1007/978-3-642-12239-2
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

118

Vanquez E. P., Calvo, M. P., and Ordonez P. M. (2013). “Learning process on

priority rules to solve the RCMPSP”, Journal of Intelligent Manufacturing,

Available through online copy, DOI: 10.1007/s10845-013-0767-5.

Wang, L. and Zheng, D.Z. (2001). “An effective hybrid optimization strategy for

job-shop scheduling problems”, Computers & Operations Research, Volume

28, 585 – 596.

Wang, Q., and Qi, J. (2009). “Improved particle swarm optimization for resource

constrained project scheduling problem”, Advance Intelligent Soft

Computing, 28(6), 49-57.

Wiest, J. D., (1963). "The scheduling of large projects with limited resources,"

Ph.D. Thesis, Carnegie Institute of Technology.

Yang B., Geunes J., and O’Brien W.J. (2001). “Resource constrained project

scheduling: past work and new directions”, Research Report of University of

Florida, 2001-6.

Yang X. (2008). “Nature inspired meta-heuristic algorithms”, Luniver Press, United

Kingdom.

Zajicek T. and Sucha P. (2011). “Accelerating a flow shop scheduling algorithm

on the GPU” 10th Workshop on Models and Algorithms for Planning and

Scheduling Problems, Nymburk, Czech Republic.

Zheng, D.X.M., Ng, S.T., Kumaraswamy M.M. (2004). “Applying a genetic

algorithm based multi-objective approach for cost-time optimization”,

Journal of Construction Engineering and Management, Volume 130(2), 168-

176.

119

APPENDICES

A. Test Case Results

Results of Multi Project Test Case of Chen and Shahandashti (2010)

Test Project 1 Test Project 2 Test Project 3

Activity Start Finish Activity Start Finish Activity Start Finish

1-2 22 32 1-2 0 7 1-2 8 10

1-3 32 34 1-3 0 10 1-3 0 3

2-3 34 39 2-5 7 8 2-5 25 29

2-4 34 35 2-6 7 10 3-4 14 23

3-5 39 45 2-8 14 20 3-7 3 7

4-5 45 46 3-4 10 14 4-6 46 55

4-7 79 84 3-5 10 14 4-7 25 34

5-6 53 59 4-7 21 22 5-11 35 39

5-9 91 97 4-9 14 23 6-8 55 63

6-8 59 69 5-9 14 21 7-9 53 59

7-9 101 102 6-9 10 14 7-10 59 60

7-10 84 88 7-10 32 35 7-11 41 47

8-11 80 83 8-11 20 25 8-13 69 79

8-12 84 91 9-10 23 31 9-13 83 90

9-12 102 109 9-12 43 47 9-12 69 79

10-13 90 91 10-12 35 43 10-12 61 69

11-14 91 98 11-12 31 41 11-12 49 59

12-14 109 113 12-13 47 49 11-16 60 61

13-15 113 121 12-14 47 53 12-14 79 83

14-15 116 121 13-15 71 80 12-15 98 101

15-16 121 124 14-15 63 71 13-14 97 105

 15-16 103 105 14-18 110 116

 15-17 99 103 15-17 102 104

 16-18 105 110 16-17 91 99

 17-19 106 109 17-18 105 106

 18-19 110 120 18-19 121 124

 19-20 120 124

120

Result of Multi Project Real Test Case of Chen and Shahandashti (2010)

Real Project 1 Real Project 2 Real Project 3

Activity Start Finish Activity Start Finish Activity Start Finish

1 0 1 1 0 1 1 0 0

2 23 29 2 22 23 2 0 25

3 45 62 3 27 29 3 0 11

4 45 54 4 23 24 4 25 46

5 79 93 5 25 27 5 1 22

6 62 76 6 11 16 6 16 31

7 62 66 7 23 23 7 46 55

8 124 142 8 54 58 8 31 45

9 94 108 9 87 108 9 31 41

10 142 147 10 108 115 10 55 67

11 148 158 11 142 148 11 45 55

12 148 159 12 159 180 12 67 79

13 148 160 13 199 213 13 67 77

14 160 166 14 213 313 14 77 87

15 180 181 15 254 282 15 94 108

16 181 193 16 213 343 16 77 84

17 193 199 17 336 350 17 108 115

18 215 226 18 282 326 18 108 115

19 226 232 19 223 343 19 108 120

20 232 244 20 350 364 20 108 108

21 244 254 21 335 365 21 159 169

22 254 262 22 384 510 22 120 134

23 313 335 23 364 368 23 87 94

24 326 336 24 370 384 24 134 148

25 336 342 25 370 400 25 169 179

26 326 336 26 368 368 26 115 124

27 365 370 27 368 388 27 134 141

28 388 398 28 414 442 28 148 162

29 444 464 29 368 408 29 199 215

30 464 479 30 370 410 30 179 189

31 449 464 31 412 472 31 141 147

32 456 463 32 414 444 32 254 257

33 464 474 33 398 412 33 167 179

34 479 492 34 442 472 34 262 267

35 443 464 35 442 456 35 189 199

36 456 456 36 410 410 36 267 274

37 463 471 37 472 479 37 274 281

38 492 509 38 472 510 38 400 414

39 471 481 39 456 466 39 413 414

40 494 504 40 479 479

41 481 505 41 479 482

42 504 515 42 510 510

43 505 505 43 456 471

44 491 515 44 482 489

45 515 517 45 482 486

 46 488 489

121

B. Code Details

#define WINDOWS 1
#define CUDA 0
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if WINDOWS
#include <conio.h>
#endif

#if WINDOWS
#include <limits.h>
#endif
#include <math.h>
#include <time.h>
#define DEBUG 0
#define TRUE 1
#define FALSE 0

int numOfActivities;
int numOfResources;
int *maxAvailableResources;
#define MAX_DURATION 1000
#define ELITISM_NUM 4
#define POPULATION_SIZE 100
#define MUTATION_RATE 0.003
#define CROSS_OVER__NUM 80
#define TEMPERATURE 1000
#define XOVERDIFF 0.05
#define DIVERSIFICATION_IMPROVEMENT_RATE 0.20
#define LOWER_BOUNDARY_XOVER_IMPROMENT_RATE (0.05 * numOfActivities)
int rouletteWheelSelectionNum = (int) (POPULATION_SIZE
 - (CROSS_OVER__NUM + ELITISM_NUM));

typedef struct Activity {
 int nofPre; //number of predecessors
 int noOfPreConst; //constant number of predecessor
 int noOfSucConst;
 int nofSuc;
 int *precedessor; //precedence array
 int *successor; //successor array
 int duration;
 int *maxResourceUse; //resource usage if an activity
 int starttime; //start time of an activity
 int finishtime; //finish time of an activity
 int id; //global id of an activity
 double priority;
} Activity, PActivity;

#define MAX_RESOURCE_NUM 4
#define MAX_ACTIVITY_NUM 100
#define BLOCK_SIZE 128
int *d_maxAvailableResources_org;
int *d_maxAvailableResources;
int * d_nofSuc_org;
int * d_nofSuc;

122

void quickSortRK(Activity **list, int left, int right);
#define cuCheck(stmt) do { \
 cudaError_t err = stmt; \
 if (err != cudaSuccess) { \
 printf("cuda error: %d :%s \n",(int)
stmt,cudaGetErrorString(stmt)); \
 exit(EXIT_FAILURE) ;
\
 } \
} while(0);

typedef struct {
 int nofPre; //number of predecessors
 int noOfPreConst; //constant number of predecessor
 int noOfSucConst;
 int nofSuc;
 int *precedessor; //precedence array
 int *successor; //successor array
 int duration;
 int *maxResourceUse; //resource usage if an activity
 int starttime; //start time of an activity
 int finishtime; //finish time of an activity
 int id; //global id of an activity
 double priority;
 void Activity_CUDA(Activity const & activity){
 this->nofPre = activity.nofPre;
 this->noOfPreConst = activity.noOfPreConst;
 this->noOfSucConst = activity.noOfSucConst;
 this->nofSuc = activity.nofSuc;
 this->duration = activity.duration;
 this->starttime = activity.starttime;
 this->finishtime = activity.finishtime;
 this->id = activity.id;
 this->priority = activity.priority;

 if (precedessor != NULL){
 cuCheck(cudaFree(precedessor));
 }
 if (successor != NULL){
 cuCheck(cudaFree(successor));
 }
 if (maxResourceUse != NULL){
 cuCheck(cudaFree(maxResourceUse));
 }

 if (noOfPreConst > 0 && activity.precedessor != NULL){
 cuCheck(cudaMalloc((void**) & precedessor, noOfPreConst
* sizeof(int)));
 cuCheck(cudaMemcpy(precedessor, activity.precedessor,
noOfPreConst * sizeof(int), cudaMemcpyHostToDevice));
 }

 if (noOfSucConst > 0 && activity.successor != NULL){
 cuCheck(cudaMalloc((void**) & successor, noOfSucConst *
sizeof(int)));
 cuCheck(cudaMemcpy(successor, activity.successor,
noOfSucConst * sizeof(int), cudaMemcpyHostToDevice));
 }

123

 if (numOfResources > 0 && activity.maxResourceUse != NULL){
 cuCheck(cudaMalloc((void**) & maxResourceUse,
numOfResources * sizeof(int)));
 cuCheck(cudaMemcpy(maxResourceUse,
activity.maxResourceUse, numOfResources * sizeof(int),
cudaMemcpyHostToDevice));
 }
 }
 void Activity_CUDA(void) {
 nofPre = 0;
 noOfPreConst = 0;
 noOfSucConst = 0;
 nofSuc = 0;
 precedessor = NULL;
 successor = NULL;
 duration = 0;
 maxResourceUse = NULL;
 starttime = 0;
 finishtime = 0;
 id = 0;
 priority = 0;
 }
 void free() {
 if (precedessor != NULL){
 cuCheck(cudaFree(precedessor));
 }
 if (successor != NULL){
 cuCheck(cudaFree(successor));
 }
 if (maxResourceUse != NULL){
 cuCheck(cudaFree(maxResourceUse));
 }
 }
 void set(Activity const & activity){
 this->nofPre = activity.nofPre;
 this->noOfPreConst = activity.noOfPreConst;
 this->noOfSucConst = activity.noOfSucConst;
 this->nofSuc = activity.nofSuc;
 this->duration = activity.duration;
 this->starttime = activity.starttime;
 this->finishtime = activity.finishtime;
 this->id = activity.id;
 this->priority = activity.priority;

 if (precedessor != NULL){
 cuCheck(cudaFree(precedessor));
 }
 if (successor != NULL){
 cuCheck(cudaFree(successor));
 }
 if (maxResourceUse != NULL){
 cuCheck(cudaFree(maxResourceUse));
 }
 if (noOfPreConst > 0 && activity.precedessor != NULL){
 cuCheck(cudaMalloc((void**) & precedessor, noOfPreConst
* sizeof(int)));
 cuCheck(cudaMemcpy(precedessor, activity.precedessor,
noOfPreConst * sizeof(int), cudaMemcpyHostToDevice));
 }

124

 if (noOfSucConst > 0 && activity.successor != NULL){
 cuCheck(cudaMalloc((void**) & successor, noOfSucConst *
sizeof(int)));
 cuCheck(cudaMemcpy(successor, activity.successor,
noOfSucConst * sizeof(int), cudaMemcpyHostToDevice));
 }

 if (numOfResources > 0 && activity.maxResourceUse != NULL){
 cuCheck(cudaMalloc((void**) & maxResourceUse,
numOfResources * sizeof(int)));
 cuCheck(cudaMemcpy(maxResourceUse,
activity.maxResourceUse, numOfResources * sizeof(int),
cudaMemcpyHostToDevice));
 }

 }
} Activity_CUDA;

typedef struct {
// Declare pointer that point to device memory
 int * id;
 double * priority;
 int * starttime;
 int * finishtime;
 int * duration;

 int * id_buff;
 double * priority_buff;
 int * starttime_buff;
 int * finishtime_buff;
 int * duration_buff;
// Declare host pointer
 int * h_id;
 double * h_priority;
 int * h_starttime;
 int * h_finishtime;
 int * h_duration;

 int numOfActivity;
 void ActivityManager(){
 id = starttime = finishtime = duration = NULL;
 priority = NULL;
 h_id = h_starttime = h_finishtime = h_duration = NULL;
 h_priority = NULL;
 }
 void ActivityManager(int numOfAct) {
 int size = POPULATION_SIZE * numOfAct;

 numOfActivity = numOfAct;
 cuCheck(cudaHostAlloc((void**)&h_id, sizeof(int) * size,0));
 cuCheck(cudaHostAlloc((void**)&h_priority, sizeof(double) *
size,0));
 cuCheck(cudaHostAlloc((void**)&h_starttime, sizeof(int) *
size,0));
 cuCheck(cudaHostAlloc((void**)&h_finishtime, sizeof(int) *
size,0));
 }
 void initializeDeviceMemory(){
 int size = numOfActivity * (POPULATION_SIZE);

125

 cuCheck(cudaMalloc((void**) & id, size * sizeof(int)));
 cuCheck(cudaMalloc((void**) & starttime, size * sizeof(int)));
 cuCheck(cudaMalloc((void**) & finishtime, size *
sizeof(int)));

 cuCheck(cudaMalloc((void**) & priority, size *
sizeof(double)));

 cuCheck(cudaMalloc((void**) & id_buff, size * sizeof(int)));
 cuCheck(cudaMalloc((void**) & starttime_buff, size *
sizeof(int)));
 cuCheck(cudaMalloc((void**) & finishtime_buff, size *
sizeof(int)));

 cuCheck(cudaMalloc((void**) & priority_buff, size *
sizeof(double)));
 }

 void transferDataFromHostToDevice(){
 int size = numOfActivity * (POPULATION_SIZE);

 cuCheck(cudaMemcpy(id, h_id, size * sizeof(int),
cudaMemcpyHostToDevice));
 cuCheck(cudaMemcpy(starttime, h_starttime, size * sizeof(int),
cudaMemcpyHostToDevice));
 cuCheck(cudaMemcpy(finishtime, h_finishtime, size *
sizeof(int), cudaMemcpyHostToDevice));

 cuCheck(cudaMemcpy(priority, h_priority, size *
sizeof(double), cudaMemcpyHostToDevice));

 }
 void transferDataFromDeviceToHost(){
 int size = numOfActivity * (POPULATION_SIZE);

 cuCheck(cudaMemcpy(h_id, id,size * sizeof(int),
cudaMemcpyDeviceToHost));
 cuCheck(cudaMemcpy(h_starttime,starttime, size *
sizeof(int), cudaMemcpyDeviceToHost));
 cuCheck(cudaMemcpy(h_finishtime,finishtime, size *
sizeof(int), cudaMemcpyDeviceToHost));

 cuCheck(cudaMemcpy(h_priority,priority ,size *
sizeof(double), cudaMemcpyDeviceToHost));

 }
 void set(Activity *** list){

 for (int i = ELITISM_NUM ; i < POPULATION_SIZE ; i ++) {
 quickSortRK(list[i], 0, numOfActivities - 1);
 }
 for (int i = 0; i < numOfActivity; i++) {
 for (int j = 0 ; j < POPULATION_SIZE; j++){
 int index = i * POPULATION_SIZE + j;
 h_id[index] = list[j][i]->id;
 h_priority[index] = list[j][i]->priority;
 h_starttime[index] = list[j][i]->starttime;
 h_finishtime[index] = list[j][i]->finishtime;

126

 }
 }

 }
 void set_back(Activity *** list){

 for (int i = 0; i < numOfActivity; i++) {
 for (int j = 0 ; j < POPULATION_SIZE; j++){
 int index = i * POPULATION_SIZE + j;

 list[j][i]->id = h_id[index] ;
 list[j][i]->priority = h_priority[index] ;
 list[j][i]->starttime = h_starttime[index] ;
 list[j][i]->finishtime = h_finishtime[index];

 }
 }

 }
 void set_temp(Activity ** list,int i){

 for (int j = 0 ; j < numOfActivity ; j++){
 int index = j * POPULATION_SIZE + i;
 h_id[index] = list[j]->id;
 h_priority[index] = list[j]->priority;
 h_starttime[index] = list[j]->starttime;
 h_finishtime[index] = list[j]->finishtime;

 }

 }
}ActivityManager;

__global__ void solveSchedule_kernel1(int numOfResources, Activity_CUDA *
temp, ActivityManager am, int *d_maxAvailableResources, int * nofSuc){

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx < POPULATION_SIZE - ELITISM_NUM){
 idx = idx + ELITISM_NUM;

 for (int i = am.numOfActivity - 1; i >= 0;) {
 for (int j = am.numOfActivity - 1; j >= 0; j--) {
 int jpos = j * POPULATION_SIZE + idx;
 if (nofSuc[am.id[jpos] * POPULATION_SIZE + idx]
== 0) {

 am.id_buff[i * POPULATION_SIZE + idx] =
am.id[jpos];
 am.priority_buff[i * POPULATION_SIZE +
idx] = am.priority[jpos];
 i-- ;
 nofSuc[am.id[jpos] * POPULATION_SIZE +
idx]--;

 for (int k = 0; k <
temp[am.id[jpos]].noOfPreConst; k++) {

127

 int preId =
temp[am.id[jpos]].precedessor[k];
 nofSuc[preId * POPULATION_SIZE +
idx]--;
 }
 }
 }
 }

 int successerStartTime = MAX_DURATION;

 int dpos = (am.numOfActivity - 1) * POPULATION_SIZE + idx;
 am.finishtime_buff[dpos] = MAX_DURATION;
 am.starttime_buff[dpos]= MAX_DURATION;

 for (int i = am.numOfActivity - 1; i >= 0; i--) {
 successerStartTime = MAX_DURATION;
 int index = am.id_buff[i * POPULATION_SIZE +idx];

 for (int k = 0; k < temp[index].noOfSucConst; k++) {
 int successorId = temp[index].successor[k];
 int spos = temp[successorId].id *
POPULATION_SIZE + idx;
 if (successerStartTime > am.starttime[spos])
 successerStartTime = am.starttime[spos];
 }
 int pos = index * POPULATION_SIZE + idx;
 am.finishtime[pos] = successerStartTime;

 for (int n = 0; n < numOfResources; n++) {
 for (int j = am.finishtime[pos]; j >
am.finishtime[pos] - temp[index].duration;
 j--) {
 if (d_maxAvailableResources[n *
(MAX_DURATION +1) * POPULATION_SIZE + j * POPULATION_SIZE + idx] <
temp[index].maxResourceUse[n]) {
 am.finishtime[pos] = j - 1;
 n = -1;
 break;
 }
 }
 }

 am.starttime[pos] = am.finishtime[pos] -
temp[index].duration;

 am.starttime_buff[i * POPULATION_SIZE + idx] =
am.starttime[pos];
 am.finishtime_buff[i * POPULATION_SIZE + idx] =
am.finishtime[pos];

 for (int e = 0; e < numOfResources; e++) {
 for (int k = 0; k < temp[index].duration; k++) {
 d_maxAvailableResources[e * (MAX_DURATION
+1) * POPULATION_SIZE + (am.finishtime[index * POPULATION_SIZE + idx] - k)
* POPULATION_SIZE + idx]
 -=
temp[index].maxResourceUse[e];
 }

128

 }
 }

 for (int i = 0; i < am.numOfActivity; i++) {

 int starttime = INT_MAX;
 int s_id;
 for (int j = 0; j < am.numOfActivity; j++) {
 if (starttime > am.starttime_buff[j *
POPULATION_SIZE + idx]) {
 s_id = j;
 starttime = am.starttime_buff[j *
POPULATION_SIZE +idx];
 }

 }
 int dpos = i * POPULATION_SIZE + idx;
 int spos = s_id * POPULATION_SIZE + idx;
 am.id[dpos] = am.id_buff[spos];
 am.starttime[dpos] = starttime;
 am.finishtime[dpos] = am.finishtime_buff[spos];
 am.priority[dpos] = am.priority_buff[spos];
 am.starttime_buff[spos] = INT_MAX;
 }

 }// end if idx <

}

__global__ void solveSchedule_kernel2(int numOfResources, Activity_CUDA *
temp, ActivityManager am, int *d_maxAvailableResources, int * nofSuc){

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx < POPULATION_SIZE - ELITISM_NUM){
 idx = idx + ELITISM_NUM;

 for (int i = 0; i < am.numOfActivity; i++) {
 am.starttime_buff[i * POPULATION_SIZE + idx] = 0;
 am.finishtime_buff[i * POPULATION_SIZE + idx] = 0;
 }

 for (int i = 0; i < am.numOfActivity; i++) {

 int index = am.id[i * POPULATION_SIZE + idx];
 int pos = index * POPULATION_SIZE + idx;
 for (int k = 0; k < temp[index].noOfPreConst; k++) {
 int curPreId = temp[index].precedessor[k];

 if (am.starttime_buff[pos] <
am.finishtime_buff[curPreId * POPULATION_SIZE +idx]) {
 am.starttime_buff[pos] =
am.finishtime_buff[curPreId * POPULATION_SIZE +idx];
 }
 }

 for (int n = 0; n < numOfResources; n++) {

129

 for (int j = am.starttime_buff[pos]; j <
am.starttime_buff[pos] + temp[index].duration; j++) {
 if (d_maxAvailableResources[n *
(MAX_DURATION +1) * POPULATION_SIZE + j * POPULATION_SIZE + idx] <
temp[index].maxResourceUse[n]) {
 am.starttime_buff[pos] = j + 1;
 n = -1;
 break;
 }
 }
 }

 am.finishtime_buff[pos] = am.starttime_buff[pos] +
temp[index].duration;

 am.starttime[i * POPULATION_SIZE + idx] =
am.starttime_buff[pos];
 am.finishtime[i * POPULATION_SIZE + idx] =
am.finishtime_buff[pos];

 for (int e = 0; e < numOfResources; e++) {
 for (int k = 0; k < temp[index].duration; k++) {
 d_maxAvailableResources[e * (MAX_DURATION
+1) * POPULATION_SIZE + (am.starttime_buff[pos] + k) * POPULATION_SIZE +
idx]
 -=
temp[index].maxResourceUse[e];
 }
 }

 }

 }// end if idx <

}
Activity ***geneticAlgoritm_CUDA(Activity ***list, double *preTemp,
 double *premotherXoverRate, double *coolingRateXover,
 double *coolingRate);

ActivityManager * activityManager;
Activity ***solutionListBeforeGeneticAlgoritm_CUDA;

Activity_CUDA * dev_temp;

Activity** temp;

int** availabilityMatrix;
int numSchedules = 500000;

Activity **earlyStartLeftScheduling(Activity **solution);

double getRandomNumber() {
 return (rand() % 10000) / (double) 10000;
}

Activity *createActivityPriority() {
 Activity *act = (Activity *) malloc(sizeof(Activity));
 act->priority = getRandomNumber();
 return act;

130

}

void freeMemoryOfActivity(Activity *other) {
 free(other->maxResourceUse);
 free(other->precedessor);
 free(other->successor);

}

void createAvailabilityMatrix() {
 int k;
 availabilityMatrix = (int**) malloc(sizeof(int *) * numOfResources);
 for (k = 0; k < numOfResources; k++) {
 availabilityMatrix[k] = (int *) malloc(sizeof(int) *
MAX_DURATION);
 }
}

void initializeAvailabilityMatrix() {
 int i, k;
 for (k = 0; k < numOfResources; k++) {
 for (i = 0; i < MAX_DURATION; i++) {
 availabilityMatrix[k][i] = maxAvailableResources[k];
 }
 }

}

Activity *createActivity(Activity *other) {
 Activity *act = (Activity *) malloc(sizeof(Activity));
 act->duration = other->duration;
 act->starttime = other->starttime;
 act->finishtime = other->finishtime;
 act->id = other->id;
 act->priority = other->priority;
 return act;
}

void calculateScheduleFromLeft(Activity **solution, int
**availabilityMatrix) {
 int i, k, n, e, j, curPreId;
 Activity *cur, *pre;
 int startTime;

 for (i = 0; i < numOfActivities; i++) {
 temp[i]->starttime = 0;
 temp[i]->finishtime = 0;
 }

 for (i = 0; i < numOfActivities; i++) {

 cur = temp[solution[i]->id];

 for (k = 0; k < cur->noOfPreConst; k++) {
 curPreId = cur->precedessor[k];
 pre = temp[curPreId];

 if (cur->starttime < pre->finishtime) {
 cur->starttime = pre->finishtime;

131

 }
 }

 for (n = 0; n < numOfResources; n++) {
 for (j = cur->starttime; j < cur->starttime + cur-
>duration; j++) {
 if (availabilityMatrix[n][j] < cur-
>maxResourceUse[n]) {
 cur->starttime = j + 1;
 n = -1;
 break;
 }
 }
 }

 cur->finishtime = cur->starttime + cur->duration;
 startTime = cur->starttime;

 solution[i]->starttime = cur->starttime;
 solution[i]->finishtime = cur->finishtime;

 for (e = 0; e < numOfResources; e++) {
 for (k = 0; k < cur->duration; k++) {
 availabilityMatrix[e][startTime + k] -= cur-
>maxResourceUse[e];
 }
 }

 }

 if (DEBUG) {
 for (i = 0; i < numOfResources; i++) {
 for (j = 0; j < numOfActivities; j++) {
 if (availabilityMatrix[i][j] < 0) {
 printf("as");
 }
 }
 }
 }
}

Activity **scheduleFromLeft(Activity **list) {
 int k, i, j;
 Activity **scheduledChromose = (Activity**) malloc(
 sizeof(Activity *) * numOfActivities);
 for (j = 0; j < numOfActivities; j++) {
 temp[j]->nofPre = temp[j]->noOfPreConst;
 }

 if (DEBUG) {
 for (j = 0; j < numOfActivities; j++)
 printf("%d %d, ", temp[j]->id, temp[j]->noOfPreConst);
 printf("\n");
 }

 for (i = 0; i < numOfActivities;) {
 for (j = numOfActivities - 1; j >= 0; j--) {
 if (temp[list[j]->id]->nofPre == 0) {

132

 scheduledChromose[i++] =
createActivity(list[j]);

 temp[list[j]->id]->nofPre--;
 for (k = 0; k < temp[list[j]->id]->noOfSucConst;
k++) {
 int succesorId = temp[list[j]->id]-
>successor[k];
 temp[succesorId]->nofPre--;
 }
 }
 }
 }

 return scheduledChromose;

}

void quickSortRK(Activity **list, int left, int right) {
 int x = left, y = right;
 Activity *tmp;
 double pivot = list[(left + right) / 2]->priority;

 while (x <= y) {
 while (list[x]->priority < pivot)
 x++;
 while (list[y]->priority > pivot)
 y--;
 if (x <= y) {
 tmp = list[x];
 list[x] = list[y];
 list[y] = tmp;
 x++;
 y--;
 }
 }

 if (left < y)
 quickSortRK(list, left, y);
 if (x < right)
 quickSortRK(list, x, right);

}

Activity **findRightSolution(Activity **list) {
 int j, i, k, preId;
 Activity **scheduledChromose = (Activity**) malloc(
 sizeof(Activity *) * numOfActivities);
 for (j = 0; j < numOfActivities; j++) {
 temp[j]->nofSuc = temp[j]->noOfSucConst;
 }

 for (i = numOfActivities - 1; i >= 0;) {
 for (j = numOfActivities - 1; j >= 0; j--) {
 if (temp[list[j]->id]->nofSuc == 0) {

 if (DEBUG) {
 printf("%d ", list[j]->id);
 }

133

 scheduledChromose[i--] =
createActivity(list[j]);
 temp[list[j]->id]->nofSuc--;

 for (k = 0; k < temp[list[j]->id]->noOfPreConst;
k++) {
 preId = temp[list[j]->id]->precedessor[k];
 temp[preId]->nofSuc--;
 }
 }
 }
 }
 return scheduledChromose;
}

void calculateRightSchedule(Activity **solution, int **availabilityMatrix)
{

 int successerStartTime = MAX_DURATION;
 Activity *cur;
 int i, k, e, n, j, finishtime;
 int successorId;
 Activity *suc;

 solution[numOfActivities - 1]->finishtime = MAX_DURATION;
 solution[numOfActivities - 1]->starttime = MAX_DURATION;

 for (i = numOfActivities - 1; i >= 0; i--) {
 successerStartTime = MAX_DURATION;
 cur = temp[solution[i]->id];

 for (k = 0; k < cur->noOfSucConst; k++) {
 successorId = cur->successor[k];
 suc = temp[successorId];
 if (successerStartTime > suc->starttime)
 successerStartTime = suc->starttime;
 }

 cur->finishtime = successerStartTime;

 for (n = 0; n < numOfResources; n++) {
 for (j = cur->finishtime; j > cur->finishtime - cur-
>duration;
 j--) {
 if (availabilityMatrix[n][j] < cur-
>maxResourceUse[n]) {
 cur->finishtime = j - 1;
 n = -1;
 break;
 }
 }
 }

 cur->starttime = cur->finishtime - cur->duration;
 finishtime = cur->finishtime;

 solution[i]->starttime = cur->starttime;
 solution[i]->finishtime = cur->finishtime;

 for (e = 0; e < numOfResources; e++) {

134

 for (k = 0; k < cur->duration; k++) {
 availabilityMatrix[e][finishtime - k] -= cur-
>maxResourceUse[e];
 }
 }
 }
}

Activity **earlyStartLeftScheduling(Activity **solution) {

 Activity **earlyLeftStartInputChromosome = (Activity**) malloc(
 sizeof(Activity *) * numOfActivities);
 Activity *activityWithSmallestStartTime = (Activity *) malloc(
 sizeof(Activity));
 int i, j;
 for (i = 0; i < numOfActivities; i++) {

 activityWithSmallestStartTime->starttime = INT_MAX;

 for (j = 0; j < numOfActivities; j++) {
 if (activityWithSmallestStartTime->starttime
 > solution[j]->starttime) {
 activityWithSmallestStartTime = solution[j];
 }

 }

 earlyLeftStartInputChromosome[i] = createActivity(
 activityWithSmallestStartTime);
 //activityWithSmallestStartTime->starttime = INT_MAX;
 }

 //free(activityWithSmallestStartTime);
 return earlyLeftStartInputChromosome;

}

void quickSortWithStartTimes(Activity **list, int left, int right) {
 int x = left, y = right;
 Activity *tmp;
 double pivot = list[(left + right) / 2]->starttime;

 while (x <= y) {
 while (list[x]->starttime < pivot)
 x++;
 while (list[y]->starttime > pivot)
 y--;
 if (x <= y) {
 tmp = list[x];
 list[x] = list[y];
 list[y] = tmp;
 x++;
 y--;
 }
 }

 if (left < y)
 quickSortWithStartTimes(list, left, y);
 if (x < right)
 quickSortWithStartTimes(list, x, right);

135

}

void swapPriority(Activity *mother, Activity *father) { //swap function. it
is used for xover
 double temp = mother->priority;
 mother->priority = father->priority;
 father->priority = temp;
}

Activity **solveSchedule(Activity **list) {
 int i;
 Activity **scheduled;
 Activity **earlyStartLeftScheduled;

 quickSortRK(list, 0, numOfActivities - 1);
 initializeAvailabilityMatrix();
 scheduled = findRightSolution(list);
 calculateRightSchedule(scheduled, availabilityMatrix);

 earlyStartLeftScheduled = earlyStartLeftScheduling(scheduled);
 initializeAvailabilityMatrix();
 calculateScheduleFromLeft(earlyStartLeftScheduled,
availabilityMatrix);

 for (i = 0; i < numOfActivities; i++) {
 free(scheduled[i]);
 }

 free(scheduled);
 numSchedules--;
 return earlyStartLeftScheduled;
}

Activity **readFile(char *fileName) {
 int i = 0, j, k;
 Activity **activityList;
 int *numOfPres;
 FILE *fd = fopen(fileName, "r");
 if (fd == NULL) {
 printf("unable to open file %s\n", fileName);
 exit(1);
 }

 fscanf(fd, "%d%d", &numOfActivities, &numOfResources);

 if (DEBUG)
 printf("%d %d\n", numOfActivities, numOfResources);

 maxAvailableResources = (int*) malloc(sizeof(int) * numOfResources);
 for (i = 0; i < numOfResources; i++) {
 fscanf(fd, "%d", &maxAvailableResources[i]);

 if (DEBUG) {
 printf("%d ", maxAvailableResources[i]);
 }
 }

 //printf("\n");

136

 activityList = (Activity **) malloc(sizeof(Activity *) *
(numOfActivities));
 numOfPres = (int *) malloc(sizeof(int) * numOfActivities);
 for (k = 0; k < numOfActivities; k++) {
 numOfPres[k] = 0;
 }

 for (k = 0; k < numOfActivities; k++) {

 Activity *activity = createActivityPriority();

 activity->id = k;
 activity->maxResourceUse = (int*) malloc(sizeof(int) *
numOfResources);

 fscanf(fd, "%d", &(activity->duration));

 if (DEBUG) {
 printf("%d ", activity->duration);
 }

 for (j = 0; j < numOfResources; j++) {
 fscanf(fd, "%d", &(activity->maxResourceUse[j]));
 if (DEBUG)
 printf("%d ", activity->maxResourceUse[j]);
 }

 fscanf(fd, "%d", &(activity->noOfSucConst));
 activity->nofSuc = activity->noOfSucConst;
 if (DEBUG)
 printf("%d ", activity->noOfSucConst);

 activity->successor = (int *) malloc(
 sizeof(int) * activity->noOfSucConst);

 for (i = 0; i < activity->noOfSucConst; i++) {
 fscanf(fd, "%d", &(activity->successor[i]));

 activity->successor[i]--;

 numOfPres[activity->successor[i]]++;
 if (DEBUG) {
 printf("%d ", activity->successor[i]);
 }
 }

 //printf("---%d\n", 12);

 if (DEBUG)
 printf("\n");

 activityList[k] = activity;
 }

 fclose(fd);

137

 for (k = 0; k < numOfActivities; k++) {

 Activity *runner = activityList[k];
 runner->noOfPreConst = numOfPres[k];
 runner->precedessor = (int*) malloc(sizeof(int) * runner-
>noOfPreConst);
 runner->nofPre = 0;
 for (i = 0; i < numOfActivities; i++) {
 Activity * cur = activityList[i];
 for (j = 0; j < cur->noOfSucConst; j++) {
 if (cur->successor[j] == runner->id) {
 runner->precedessor[runner->nofPre] = cur-
>id;
 runner->nofPre++;
 }
 }
 }

 runner->noOfPreConst = runner->nofPre;
 if (DEBUG) {
 printf("\n%d %d %d \n", runner->id, runner->nofPre,
 runner->noOfPreConst);
 for (i = 0; i < runner->nofPre; i++)
 printf("%d ", runner->precedessor[i]);
 printf("\n");
 }
 }

 return activityList;
}

void crossOver(Activity ***solutionListBeforeGeneticAlgoritm, int motherId,
 int fatherId, int *curIndex,
 Activity ***solutionListAfterGeneticAlgoritm, double
motherXoverRate) {
 int firstLocation = (rand() % (numOfActivities));
 int secondLocation = (rand() % (numOfActivities));
 int i;
 double diffSum;
 Activity **motherRow = (Activity **) malloc(
 sizeof(Activity*) * numOfActivities); //new chromosome
 Activity **fatherRow = (Activity **) malloc(
 sizeof(Activity*) * numOfActivities); //new chromosome
 Activity **mother = solutionListBeforeGeneticAlgoritm[motherId];
 Activity **father = solutionListBeforeGeneticAlgoritm[fatherId];
 int *choosenLocations = (int*) malloc(sizeof(int) * numOfActivities);
 double averageDiffSum;
 for (i = 0; i < numOfActivities; i++) {
 motherRow[i] = createActivity(mother[i]);
 fatherRow[i] = createActivity(father[i]);
 }

 diffSum = 0;
 for (i = 0; i < numOfActivities; i++) {
 diffSum += abs((motherRow[i]->priority - fatherRow[i]-
>priority));
 }

 //cout<< "diffsum " << diffSum << "\t" << "motherXoverRate "<<
motherXoverRate << endl;

138

 for (i = 0; i < numOfActivities; i++)
 choosenLocations[i] = 0;

 averageDiffSum = diffSum / numOfActivities;
 if (averageDiffSum <= XOVERDIFF) {
 for (i = 0; i < (int) (motherXoverRate);) {
 int location = (rand() % numOfActivities);
 if (choosenLocations[location] == 0) {
 motherRow[location]->priority =
getRandomNumber();
 choosenLocations[location] = 1;
 i++;
 }
 }
 }

 if (firstLocation > secondLocation) {
 int temp = firstLocation;
 firstLocation = secondLocation;
 secondLocation = temp;

 } else if (firstLocation == secondLocation) {

 for (i = firstLocation; i < numOfActivities; i++)
 swapPriority(fatherRow[i], motherRow[i]);

 } else {

 for (i = firstLocation; i <= secondLocation; i++) {
 swapPriority(fatherRow[i], motherRow[i]);
 }
 }

 solutionListAfterGeneticAlgoritm[(*curIndex)++] = motherRow;
 solutionListAfterGeneticAlgoritm[(*curIndex)++] = fatherRow;

 free(choosenLocations);

}

Activity **copyChromosome(Activity **other) {
 Activity **chromosome = (Activity **) malloc(
 sizeof(Activity *) * numOfActivities);
 int i;
 for (i = 0; i < numOfActivities; i++)
 chromosome[i] = createActivity(other[i]);
 return chromosome;

}

void mutation(Activity ***solutionListAfterGeneticAlgoritm,
 double currentTemp) {
 int mutationIndex;
 int mutationGeneNum, i, finishTimeBeforeMutation,
finishTimeAfterMutation;
 Activity **chromozomeBeforeMutation;
 Activity **mutationRow;
 Activity **chromozomeAfterMutation;

139

 do {
 mutationIndex = (rand() % POPULATION_SIZE);
 } while (mutationIndex < ELITISM_NUM);

 chromozomeBeforeMutation = solveSchedule(
 solutionListAfterGeneticAlgoritm[mutationIndex]);
 finishTimeBeforeMutation =
 chromozomeBeforeMutation[numOfActivities - 1]-
>finishtime;

 mutationRow = solutionListAfterGeneticAlgoritm[mutationIndex];

 mutationGeneNum = (int) ceil(
 POPULATION_SIZE * (numOfActivities) * MUTATION_RATE);
 for (i = 0; i < mutationGeneNum; i++) {
 int geneLocation = (rand() % (numOfActivities));
 double priority = getRandomNumber();
 mutationRow[geneLocation]->priority = priority;
 }

 chromozomeAfterMutation = solveSchedule(mutationRow); //chromozome
has been resolved.
 finishTimeAfterMutation =
 chromozomeAfterMutation[numOfActivities - 1]-
>finishtime;

 if (finishTimeAfterMutation >= finishTimeBeforeMutation) {
 int delta = finishTimeAfterMutation -
finishTimeBeforeMutation;
 double power = -(delta / (currentTemp));
 double acceptancePro = exp(power);
 double pro = getRandomNumber();
 if (acceptancePro > pro) {
 //rejected

 for (i = 0; i < numOfActivities; i++) {
 free(mutationRow[i]);
 }
 free(mutationRow);

 solutionListAfterGeneticAlgoritm[mutationIndex] =
 chromozomeBeforeMutation;

 } else {
 //accepted

 for (i = 0; i < numOfActivities; i++) {
 free(chromozomeBeforeMutation[i]);
 }
 free(chromozomeBeforeMutation);

 }
 }

 for (i = 0; i < numOfActivities; i++) {
 free(chromozomeAfterMutation[i]);
 }

 free(chromozomeAfterMutation);

140

}

void crossOverWrapper(Activity ***solutionListBeforeGeneticAlgorithm,
 Activity ***solutionListAfterGeneticAlgorithm, double
motherXoverRate,
 int *elitIndex) {
 int i;
 for (i = 0; i < CROSS_OVER__NUM / 2; i++) {
 int motherIndex = (rand() % POPULATION_SIZE);
 int fatherIndex = (rand() % POPULATION_SIZE);
 if (motherIndex == fatherIndex) {
 i--;
 continue;
 }
 crossOver(solutionListBeforeGeneticAlgorithm, motherIndex,
fatherIndex,
 elitIndex, solutionListAfterGeneticAlgorithm,
motherXoverRate);
 }
}

void elitism(int *elitIndex, Activity ***solutionListAfterGeneticAlgoritm,
 Activity ***solutionListBeforeGeneticAlgoritm) {
 // cout << solutionListBeforeGeneticAlgoritm[0]-
>solution[TOTAL_ACTIVITY - 1]->finishtime << "\n";
 for (; *elitIndex < ELITISM_NUM; (*elitIndex)++) {
 solutionListAfterGeneticAlgoritm[(*elitIndex)] =
copyChromosome(

 solutionListBeforeGeneticAlgoritm[(*elitIndex)]);
 }

}

void quickSortsolutionList1(Activity ***list, int left, int right) {
 int x = left, y = right;
 Activity **tmp;
 double pivot = list[(left + right) / 2][numOfActivities - 1]-
>finishtime;

 while (x <= y) {
 while (list[x][numOfActivities - 1]->finishtime < pivot)
 x++;
 while (list[y][numOfActivities - 1]->finishtime > pivot)
 y--;
 if (x <= y) {
 tmp = list[x];
 list[x] = list[y];
 list[y] = tmp;
 x++;
 y--;
 }
 }

 if (left < y)
 quickSortsolutionList1(list, left, y);
 if (x < right)
 quickSortsolutionList1(list, x, right);
}

141

void rouletteWheelSelection(int *elitIndex,
 Activity ***solutionListAfterGeneticAlgoritm,
 Activity ***solutionListBeforeGeneticAlgoritm) {

 double selectionProbability[POPULATION_SIZE];
 double sum = 0;
 int i, k, j;
 double probabilitySum = 0;
 for (i = 0; i < POPULATION_SIZE; i++) {
 sum +=

 solutionListBeforeGeneticAlgoritm[i][numOfActivities - 1]-
>finishtime;
 }

 for (i = 0; i < POPULATION_SIZE; i++)
 selectionProbability[i] =
 sum
 /
solutionListBeforeGeneticAlgoritm[i][numOfActivities
 - 1]->finishtime;

 for (i = 0; i < POPULATION_SIZE; i++)
 probabilitySum += selectionProbability[i];

 selectionProbability[0] /= probabilitySum;
 for (i = 1; i < POPULATION_SIZE; i++)
 selectionProbability[i] = selectionProbability[i] /
probabilitySum
 + selectionProbability[i - 1];

 for (k = 0; k < rouletteWheelSelectionNum; k++) {
 double randNum = getRandomNumber();

 for (j = 0; j < POPULATION_SIZE; j++) {
 if (randNum < selectionProbability[j]) {
 solutionListAfterGeneticAlgoritm[(*elitIndex)] =
copyChromosome(

 solutionListBeforeGeneticAlgoritm[j]);
 (*elitIndex)++;
 break;
 }
 }
 }
}

Activity ***geneticAlgoritm(Activity ***list, double *preTemp,
 double *premotherXoverRate, double *coolingRateXover,
 double *coolingRate) {
 int elitIndex = 0, i, j;
 Activity ***solutionListBeforeGeneticAlgoritm = (Activity***) malloc(
 sizeof(Activity**) * POPULATION_SIZE); //Solution list
is stored before GA starts
 Activity ***solutionListAfterGeneticAlgoritm = (Activity***) malloc(
 sizeof(Activity**) * POPULATION_SIZE); //Solution list
is stored after GA

 *preTemp = *preTemp * *coolingRate;

142

 if (LOWER_BOUNDARY_XOVER_IMPROMENT_RATE < *premotherXoverRate)
 *premotherXoverRate = *premotherXoverRate * *coolingRateXover;

 for (i = 0; i < ELITISM_NUM; i++) {
 solutionListBeforeGeneticAlgoritm[i] =
copyChromosome(list[i]);
 }

 for (i = ELITISM_NUM; i < POPULATION_SIZE; i++) {
 solutionListBeforeGeneticAlgoritm[i] = solveSchedule(list[i]);
 }

 quickSortsolutionList1(solutionListBeforeGeneticAlgoritm, 0,
 POPULATION_SIZE - 1);

 elitism(&elitIndex, solutionListAfterGeneticAlgoritm,
 solutionListBeforeGeneticAlgoritm); //elitism
 crossOverWrapper(solutionListBeforeGeneticAlgoritm,
 solutionListAfterGeneticAlgoritm, *premotherXoverRate,
&elitIndex); //crossover
 rouletteWheelSelection(&elitIndex, solutionListAfterGeneticAlgoritm,
 solutionListBeforeGeneticAlgoritm); //rouletwheel
selection

 mutation(solutionListAfterGeneticAlgoritm, *preTemp); //mutation

 for (i = 0; i < POPULATION_SIZE; i++) {
 for (j = 0; j < numOfActivities; j++) {
 free(solutionListBeforeGeneticAlgoritm[i][j]);
 free(list[i][j]);
 }
 free(solutionListBeforeGeneticAlgoritm[i]);
 free(list[i]);

 }

 free(solutionListBeforeGeneticAlgoritm);
 free(list);

 return solutionListAfterGeneticAlgoritm;

}

Activity ***firstIteration(char *fileName, double *preTemp, double
*coolingRate,
 double *coolingRateXover, double *premotherXoverRate) {
 int elitIndex = 0, i, j;
 Activity ***solutionListBeforeGeneticAlgoritm = (Activity***) malloc(
 sizeof(Activity**) * POPULATION_SIZE); //Solution list
is stored before GA starts
 Activity ***solutionListAfterGeneticAlgoritm = (Activity***) malloc(
 sizeof(Activity**) * POPULATION_SIZE); //Solution list
is stored after GA

 *preTemp = *preTemp * (*coolingRate);
 *premotherXoverRate = numOfActivities * (*coolingRateXover)
 * DIVERSIFICATION_IMPROVEMENT_RATE;

 for (i = 0; i < POPULATION_SIZE; i++) {
 Activity** list = readFile(fileName);

143

 solutionListBeforeGeneticAlgoritm[i] = solveSchedule(list);

 for (j = 0; j < numOfActivities; j++) {
 free(list[j]);
 }
 free(list);
 }

 quickSortsolutionList1(solutionListBeforeGeneticAlgoritm, 0,
 POPULATION_SIZE - 1);

 elitism(&elitIndex, solutionListAfterGeneticAlgoritm,
 solutionListBeforeGeneticAlgoritm); //elitism
 crossOverWrapper(solutionListBeforeGeneticAlgoritm,
 solutionListAfterGeneticAlgoritm, *premotherXoverRate,
&elitIndex); //crossover
 rouletteWheelSelection(&elitIndex, solutionListAfterGeneticAlgoritm,
 solutionListBeforeGeneticAlgoritm); //rouletwheel
selection

 mutation(solutionListAfterGeneticAlgoritm, *preTemp); //mutation

 return solutionListAfterGeneticAlgoritm;
}

void solveProblemSet(char *fileName) {
 int i, j;
 double preTemp = TEMPERATURE;
 double coolingRate = 0.97;
 double coolingRateXover = 0.97;
 double premotherXoverRate;
 Activity ***firstGeneration;
 clock_t startTime;
 FILE *fd = fopen("out.txt", "w");
 temp = readFile(fileName);

 srand(time(NULL));
 //srand(0);
 createAvailabilityMatrix();

 firstGeneration = firstIteration(fileName, &preTemp, &coolingRate,
 &coolingRateXover, &premotherXoverRate);

 startTime = clock();
#if CUDA
 Activity_CUDA * h_temp = new Activity_CUDA[numOfActivities];
 for (int i = 0 ; i < numOfActivities ; i++){
 h_temp[i].Activity_CUDA();
 h_temp[i].set(*temp[i]);
 }
 cuCheck(cudaMalloc((void**)& dev_temp, numOfActivities *
sizeof(Activity_CUDA)));
 cuCheck(cudaMemcpy(dev_temp, h_temp, numOfActivities *
sizeof(Activity_CUDA),
 cudaMemcpyHostToDevice));

 activityManager = (ActivityManager*) malloc(sizeof(ActivityManager));
 activityManager->ActivityManager(numOfActivities);
 activityManager->initializeDeviceMemory();

144

 int * h_maxAvailableResources;
 int size = numOfResources * (MAX_DURATION +1) * POPULATION_SIZE;
 h_maxAvailableResources = (int *) malloc(sizeof(int) * size);

 for (int k = 0; k < numOfResources; k++) {
 for (i = 0; i <= MAX_DURATION; i++) {
 for (int p = 0 ; p < POPULATION_SIZE ; p++)
 h_maxAvailableResources[k * (MAX_DURATION + 1)
* POPULATION_SIZE + i* POPULATION_SIZE + p] =
 maxAvailableResources[k];
 }
 }
 cuCheck(cudaMalloc((void**) & d_maxAvailableResources_org, size *
sizeof(int)));
 cuCheck(cudaMalloc((void**) & d_maxAvailableResources, size *
sizeof(int)));
 cuCheck(cudaMemcpy(d_maxAvailableResources_org,
h_maxAvailableResources,size * sizeof(int), cudaMemcpyHostToDevice));

 int * h_nofSuc;
 h_nofSuc = (int *) malloc(sizeof(int) * numOfActivities *
POPULATION_SIZE);
 for (int i = 0 ; i < numOfActivities ; i++)
 for (int p = 0 ; p < POPULATION_SIZE ; p++){
 h_nofSuc[i * POPULATION_SIZE + p] = temp[i]-
>noOfSucConst;
 }

 cuCheck(cudaMalloc((void**) & d_nofSuc, numOfActivities *
POPULATION_SIZE * sizeof(int)));
 cuCheck(cudaMalloc((void**) & d_nofSuc_org, numOfActivities *
POPULATION_SIZE * sizeof(int)));
 cuCheck(cudaMemcpy(d_nofSuc_org, h_nofSuc,numOfActivities *
POPULATION_SIZE * sizeof(int), cudaMemcpyHostToDevice));

#endif

 for (; numSchedules >= 0;) {
 //printf("%d\n", numSchedules);
#if CUDA
 firstGeneration = geneticAlgoritm_CUDA(firstGeneration,
&preTemp,&premotherXoverRate, &coolingRateXover, &coolingRate);
#else
 firstGeneration = geneticAlgoritm(firstGeneration, &preTemp,
 &premotherXoverRate, &coolingRateXover,
&coolingRate);
#endif
 }

#if CUDA

 for (int i = 0; i < numOfActivities; i++){
 h_temp[i].free();
 }
 free(h_temp);
 cuCheck(cudaFree(dev_temp));

 free(h_maxAvailableResources);
 free(h_nofSuc);

145

 cuCheck(cudaFree(d_maxAvailableResources));
 cuCheck(cudaFree(d_maxAvailableResources_org));
 cuCheck(cudaFree(d_nofSuc));
 cuCheck(cudaFree(d_nofSuc_org));

#endif

 printf("%s %d %f \n", fileName,
 firstGeneration[0][numOfActivities - 1]->finishtime,
 ((double) (clock() - startTime)) / CLOCKS_PER_SEC);

 for (i = 0; i < POPULATION_SIZE; i++) {
 for (j = 0; j < numOfActivities; j++) {
 fprintf(fd, "%d %d %d\n", firstGeneration[i][j]->id +
1,firstGeneration[i][j]->starttime, firstGeneration[i][j]->finishtime);
 }
 fprintf(fd, "\n***%c***\n", ' ');
 }

}

int main(int argc, char **argv) {
 solveProblemSet("in.txt");

#if WINDOWS
 printf("Finished\n");
 _getch();
#endif
 return 0;
}

Activity ***geneticAlgoritm_CUDA(Activity ***list, double *preTemp,
 double *premotherXoverRate, double *coolingRateXover,
 double *coolingRate) {
 int elitIndex = 0, i, j;

 Activity ***solutionListAfterGeneticAlgoritm = (Activity***) malloc(
 sizeof(Activity**) * POPULATION_SIZE); //Solution list
is stored

 *preTemp = *preTemp * *coolingRate;
 if (LOWER_BOUNDARY_XOVER_IMPROMENT_RATE < *premotherXoverRate)
 *premotherXoverRate = *premotherXoverRate * *coolingRateXover;

 activityManager->set(list);

 activityManager->transferDataFromHostToDevice();
 //** Kernel Launch section
 cuCheck(cudaMemcpy(d_maxAvailableResources,
d_maxAvailableResources_org, numOfResources *
 (MAX_DURATION +1) * POPULATION_SIZE *
sizeof(int),cudaMemcpyDeviceToDevice));
 cuCheck(cudaMemcpy(d_nofSuc, d_nofSuc_org, numOfActivities *
 POPULATION_SIZE *
sizeof(int),cudaMemcpyDeviceToDevice));

146

 solveSchedule_kernel1<<< (POPULATION_SIZE - ELITISM_NUM -1)/
BLOCK_SIZE + 1, BLOCK_SIZE>>>(numOfResources,
 dev_temp, *activityManager,
d_maxAvailableResources,d_nofSuc);
 cuCheck(cudaMemcpy(d_maxAvailableResources,
d_maxAvailableResources_org, numOfResources *
 (MAX_DURATION +1) * POPULATION_SIZE *
sizeof(int),cudaMemcpyDeviceToDevice));

 solveSchedule_kernel2<<< (POPULATION_SIZE - ELITISM_NUM -1)/
BLOCK_SIZE + 1, BLOCK_SIZE>>>(numOfResources,
 dev_temp, *activityManager,
d_maxAvailableResources,d_nofSuc);

 //** End Kernel Launch section
 activityManager->transferDataFromDeviceToHost();
 activityManager->set_back(list);

 numSchedules -= POPULATION_SIZE - ELITISM_NUM;

 quickSortsolutionList1(list, 0,
 POPULATION_SIZE - 1);

 elitism(&elitIndex, solutionListAfterGeneticAlgoritm,
 list); //elitism
 crossOverWrapper(list,
 solutionListAfterGeneticAlgoritm, *premotherXoverRate,
&elitIndex); //crossover
 rouletteWheelSelection(&elitIndex, solutionListAfterGeneticAlgoritm,
 list); //rouletwheel selection

 mutation(solutionListAfterGeneticAlgoritm, *preTemp); //mutation

 for (i = 0; i < POPULATION_SIZE; i++) {
 for (j = 0; j < numOfActivities; j++) {
 free(list[i][j]);
 }
 free(list[i]);
 }
 free(list);

 return solutionListAfterGeneticAlgoritm;

}

147

C. Curriculum Vitae

Furkan UYSAL

Kalkınma Bakanlığı

Ar-Ge ve Girişimcilik Dairesi

E-postal : furkan.uysal@kalkinma.gov.tr

Ilgi Alanları

 C ve C++ programlama ve yazilim geliştirme,

 Proje yönetimi

 Bilim, teknoloji ve yenilik alanında politika oluşturma

 Hibe programlarının yönetimi

 Teknoloji yönetimi

Eğitim

2007-2014 Orta Doğu Teknik Üniversitesi

 İnşaat Mühendisliği Bölümü

 Doktora Derecesi

2004-2007 Orta Doğu Teknik Üniversitesi

 İnşaat Mühendisliği Bölümü

 Yüksek Lisans Derecesi

2000 -2004 Orta Doğu Teknik Üniversitesi

 İnşaat Mühendisliği Bölümü

 Lisans Derecesi

İş Deneyimi

2012-2014 Kalkınma Bakanlığı Ar-Ge ve Girişimcilik Dairesi

 Uzman

Bilim, teknoloji ve yenilik politikaları çalışmaları, Kamu Ar-

Ge yatırımlarının değerlendirilmesi,

Araştırma altyapılarına yönelik mevzuat hazırlama

çalışmaları

148

2006-2012 Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

 Uzman

Türkiye araştırma alanının oluşturulması (TARAL),Ulusal

hibe programlarının tasarımı, mevzuatının oluşturulması,

Araştırma projelerinin değerlendirme süreçlerinin

yönetilmesi

2004-2006 Apeas İnş., Arı Proje, Temelsu Ltd. Şti.

 Teklif Mühendisi, Betonarme Tasarım Mühendisi

Başlıca Makale ve Projeler

Sertifikalar

Portland Eyalet Üniversitesi ve Portland Teknoloji Enstitüsü Teknoloji Yönetimi

Sertifikası, 2008

Kore Bilim, Teknoloji ve Gelecek Planlama Bakanlığı, INNOPOLIS Vakfı Bilim

Teknoloji Politikaları Eğitimi Sertifikası, Daejeon, Güney Kore, 2014

Sonmez R & Uysal F., (2014), A Backward-Forward Hybrid Genetic

Algorithm for Resource Constrained Multi-Project Scheduling Problem, ASCE

Journal of Computing in Civil Engineering, Doi: 10.1061/(ASCE)CP.1943-

5487.0000382

Sonmez R.& Uysal F., (2008),Geographic Information System-based

Visualization System for Planning and Monitoring of Repetitive Construction

Projects, Canadian Journal of Civil Engineering, Volume 35(11), 1342-1346

Sonmez R. & Uysal F., (2008), Planning of Linear Construction Projects Using

Geographic Information Systems, Fifth International Conference on

Construction in the 21st Century (CITC-V), İstanbul

Birden fazla projenin melez genetik algoritmalar ile çizelgelenmesi, Orta Doğu

Teknik Üniversitesi BAP Projesi (2012-2014)

Boru hattı projeleri için Coğrafi Bilgi Sistemleri (CBS) temelli planlama ve

izleme sistemi tasarımı, Orta Doğu Teknik Üniversitesi BAP Projesi (2006-

2007)

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000382
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000382

