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ABSTRACT 

 

HYBRID META-HEURISTIC ALGORITHMS FOR THE RESOURCE 

CONSTRAINED MULTI-PROJECT SCHEDULING PROBLEM  

 

Uysal, Furkan 

Ph. D., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Rifat Sönmez 

October 2014, 148 Pages 

 

The general resource constrained multi-project scheduling problem (RCMPSP) 

consists of simultaneous scheduling of two or more projects with common resource 

constraints, while minimizing duration of the projects. Critical Path Method and 

other scheduling methods do not consider resource conflicts and practically used 

commercial project management software packages and heuristic methods provide 

very limited solutions for the solution of the RCMPSP. Considering the practical 

importance of multi-project scheduling and the fact that resource constraints impact 

the schedules and costs significantly, achieving an adequate solution to the problem 

is crucial for the construction sector.  

In this research, we present a new hybrid algorithm which is based on genetic 

algorithm, simulated annealing, backward forward improvement heuristics. The 

performance of the algorithms is compared with the performances of the known 

heuristic procedures and commonly used software packages using test instances 

particularly developed for multi-project environment. Effectiveness of the 

developed algorithm is further improved with the application of parallel computing 

strategies with a Graphical Processing Unit (GPU). Results revealed that effective 

resource management is a vital process but it is ignored by practitioners, heuristic 

methods and current software packages. Proposed algorithm showed significant 

improvements on the state of the art algorithms.  It is also shown that parallel 

computing strategies with a GPU has high potential for meta-heuristic applications 
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specifically for construction management research area in which there is a 

significant gap in the GPU research.  

Key Words: Scheduling, Project Portfolio Management, Meta-heuristic algorithms, 

GPU 
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ÖZ 

 

KAYNAK KISITLI BİRDEN FAZLA PROJENİN ÇİZELGELENMESİ 

PROBLEMİ İÇİN ÜST-SEZGİSEL YÖNTEMLER 

 

Uysal , Furkan 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Rifat Sönmez 

Ekim 2014, 148 Sayfa 

 

Kaynak kısıtlı birden fazla projenin çizelgelenmesi problemi, iki ya da daha fazla 

projenin ortak kaynak havuzu kullanılarak çizelgelenmesi ve toplam proje süresinin 

kısaltılmasını amaçlamaktadır. Kritik yol yöntemi ve diğer çizelgeleme yöntemleri 

kaynak kısıtlarını dikkate almamakta, pratikte kullanılan yazılımlar ve yazılımların 

sezgisel yöntemleri ise probleme sınırlı çözümler sunabilmektedir. Birden fazla 

projenin çizelgelenmesi probleminin inşaat sektöründe pratik önemi ve kaynak 

kısıtlarının proje süresini ve maliyetini etkilediği düşünüldüğünde, probleme daha 

iyi çözümler bulmanın gerekliliği ortaya çıkmaktadır. 

Bu çalışmada, genetik algoritma, tavlama benzetimli algoritma ve ileri geri 

iyileştirme sezgiseli kullanılarak yeni bir melez üst-sezgisel algoritma 

geliştirilmiştir. Geliştirilen algoritma bu çalışma kapsamında oluşturulan ve birden 

fazla projenin yer aldığı test projelerinde, pratikte kullanılan yazılımların sezgisel 

yöntemleriyle ve bilinen diğer üst-sezgisel yöntemlerin sonuçlarıyla kıyaslanmıştır. 

Algoritmanın etkinliğini artırmak için paralel hesaplama stratejisi geliştirilmiş ve 

bir grafik işlem biriminde uygulaması yapılmıştır. Sonuçlar literatürdeki 

algoritmalara kıyasla belirgin ilerlemeler kaydetmiş ve paralel hesaplama 
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stratejilerinin grafik işlem birimiyle uygulamasının yapım yönetimi alanındaki 

yüksek potansiyeli gösterilmiştir.  

Anahtar Kelimeler: Çizelgeleme, Proje Portföy Yönetimi, Üst Sezgisel 

Algoritmalar, Grafik İşlem Birimi 
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CHAPTER 1 

1. INTRODUCTION 

 

Whether a project is as big as Marmaray Project which consists of 76 km long 

railway, various type of tunnels, three underground stations, 37 surface stations, 

165 bridges, 63 culverts, many yards, workshops, maintenance facilities, and 

procurement of 440 modern rolling stocks (Lykke and Belkaya, 2005) or as small 

as a single floor construction of a building, planning and scheduling is indispensable 

in order to control total project execution time and its overall cost. Even on a single 

floor construction of a building, the sequence of the activities, dependencies 

between activities and resource allocation can be complicated. Without planning 

and scheduling, project will end with a chaos; jobs execute in a randomly manner 

and it would not be possible finish the project within planned time and cost. This 

results in a significant loss for a company. 

This issue has been the focus of extensive research in project management since 

1900s. Researchers tried to define ways to plan and schedule projects by dividing 

them into manageable parts, drawing charts and developing algorithms. Since then, 

Gantt charts and the well-known critical path method (CPM) has been extensively 

used and taken for granted as good scheduling tools for small to large scale projects 

especially in the construction industry. 

The first attempt to divide a project into manageable parts was proposed with Gantt 

charts at 1900s during World War I (Meredith and Mantel, p.354, 1995). In this 

method, activities are shown according to their start and finish times on a horizontal 

table called bar charts. Taken for granted as an easy way of representing project 

plan, Gantt chart is used commonly in the construction sector. Main weakness of 

Gantt chart is its complexity in making large scale projects due to lack of 

precedence relations among activities harder to manage. 
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After 1950s, CPM has been one of the most commonly used method to model and 

control a project within its own assumptions and boundaries. In this method, critical 

paths are defined as those work orders in which if an activity is delayed whole 

project is delayed at the same time. Project is divided into manageable parts; work 

packages and activities. Activity relations are shown with arcs. Due to its visual 

aspect, a project can be portrayed as a network and it is possible to see predecessor 

and successor relations between activities. A logical framework is schematized 

through the activities and minimum time algorithm can be applied to the problem. 

PERT technique which followed CPM, was incorporated to deal with stochastic 

nature of projects. Since real life complexity brings uncertainty to activity duration 

estimates, PERT brought the ability to incorporate with this uncertainties. Using 

PERT, one can find either the probability of completing a project to a given date or 

find time duration corresponding to a probability value (Cottrell, 1999).  

However, with Gantt charts, CPM and PERT decision makers are focused on time 

aspects of a project without considering the resource limitations. This ‘time only” 

analysis, brings a main drawback since resource limitations are not considered. 

Therefore, its practicability decreases significantly. In practice, resource conflicts 

arise when two or more activities are demanding same scarce resources. Due to the 

scarcity of resources, a trade-off exits between available resources and activity 

durations. From a company level perspective, situation is magnified if there is more 

than one project. Neither Gantt chart nor CPM or PERT methods are capable of 

dealing with resource management. Therefore, a complete tool of scheduling should 

not only consider “time only” analysis of projects but also should reflect resource 

limitations. Since the late 1980s there has been a growing interest on scheduling 

algorithms that considers resource limitations.  

In scheduling where real life complexity drives us to use some models (Gantt 

Charts, CPM and PERT) and models bring drawbacks (resource management), 

resource constrained project scheduling problem (RCPSP) arises.  The objective of 

the problem is to determine a start date for each activity in such a way that 

precedence and resource constraints are satisfied, and at the same time project 
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duration is minimized. If this problem is in a corporate level where more than one 

project is managed, it is called as resource constrained multi-project problem 

(RCMPSP).  

During the last decades RCPSP has become a well-known standard problem in 

project scheduling (Hartmann and Briskorn, 2010), and has attracted numerous 

researchers from multiple areas including operation research, and construction 

management.  

While majority of projects are scheduled on a multi-project environment, most 

research on RCPSP have focused on single projects (Kurtulus and Davis, 1982; 

Krüger and Scholl, 2009; Browning and Yassine, 2010). Despite the importance of 

RCMPSP in practice, there are few studies on this problem. Therefore, there is a 

significant potential for improving the state–of–the–art algorithms. Hence, the main 

objective of this study is to develop a new efficient optimization algorithm for the 

RCMPSP to fill the gap within the literature. 

1.1 Practical Importance of the Problem: 

In construction management practice since the size of projects are comparably 

bigger than any other sector, possible delays, crew size and equipment selection, 

and resource allocation process could lead to significant problems like cost overruns 

or longer project durations. Project delays and delay costs affect negatively on the 

profit and repetition of the company. Due to the characteristics of construction work 

such as unforeseen events, risks involved, multi-dimensional partners, cultural 

differences, resource demands and resources assigned to a project is rarely met. In 

addition, shorter project life cycles due to time pressure, little tolerance to cost 

overruns due to the market competition and high resource costs makes sector more 

vulnerable to bad scheduling practices. This makes scheduling process of 

construction projects more complex than any other sector. Therefore, both the effect 

of costs, prestige and sustainability of company, finding effective, efficient and 

good enough solutions to project scheduling problem (PSP) is very important.  
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It is generally known that today's business environment is challenging and 

companies manage multiple projects which share enterprise resources (Payne, 

1995; Lova and Tormos, 2001; Liberatore and Pollack-Johnson, 2003).  Sharing the 

resources requires corporate level optimization of available resources. Frequently 

the availability of the enterprise resources is limited, and is not sufficient to 

concurrently schedule the activities. In these circumstances, optimal allocation of 

limited enterprise resources is crucial for minimizing the project durations and costs 

to achieve project portfolio success. 

Improving the solution algorithms’ performances would improve the state of the art 

algorithms and current software packages. Eventually, an efficient algorithm that 

will solve the real life problems within a reasonable time period would results in 

better organized schedules, better resource allocation and cost reductions for 

corporate level. Therefore, the need for better algorithms is a practical need and 

serves a great opportunity to develop commercial software packages. 

1.2 Prospects from the Thesis 

Since RCPSP is an NP-hard1 problem (Blazewicz et al., 1983), RCMPSP is also 

NP-hard.  The complexity2 of the problem sets a boundary to the solution methods 

of the problem. Therefore, it can be solved by exact methods only for small projects. 

Within the RCMPSP, researches are oriented to priority based heuristics and meta-

heuristics which do not guarantee the optimal solution. Performances of the 

algorithms are arguable and as the network complexity3 increases performance of 

the algorithm reduces significantly (Kolish, 1999).  Moreover, extensively used 

popular software packages’ performances on resource allocation are arguably low 

and need to be improved. 

                                                      
1 NP-Hard: A problem is called non-deterministic (NP) polynomial if its solution cannot be evaluated in polynomial time and 

solution is not guaranteed.  No known exact algorithms can be able to solve the problem for large instances and only 
approximate solutions or heuristics are available (Yang, p.9, 2008). 

2 Complexity: A measure of the efficiency of the algorithm. For details see ( Yang, p.24, 2008) 
3 Network Complexity (NC) is average number of precedence relations per activity (Kolish, 1999).  
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The main objective of this research is to develop an efficient algorithm for obtaining 

optimum or near-optimum solutions to the RCMPSP. Meta-heuristics are used to 

improve the current state of the art algorithms.   

As an output, a sole genetic algorithm (GA), a sole simulated annealing (SA) 

algorithm, a backward-forward implemented GA and finally, a hybrid backward-

forward GA-SA algorithm is developed.  Developed algorithms are tested with 

known test instances. Optimum solutions are also used for comparisons.  Previous 

results from the literature are also used in order to compare algorithm performances. 

An educational software RESCON (Deblaere et al., 2011), and its tabu search 

algorithm is used for base line solutions.  

Computer programs are written with Microsoft Visual Studio 2010 and coded with 

C and C++ programing languages. In order to test the parallel programing effects 

on meta-heuristics, final algorithm is implemented with a parallel evolutionary 

strategy and computed on a Graphical Processing Unit (GPU).  

1.3 Scope and Limitations of the Thesis 

RCPSP is stemmed from job-shop scheduling problem in operational research. Job-

shop scheduling problem has various cases so does RCPSP and RCMPSP. Basic 

problem definition is used throughout the study and mathematical model of the 

problem will be given in the following sections. In the scope of this research, 

activity pre-emption is not allowed4.  Every activity is assumed to have non-

negative durations and resource usage. All parameters are assumed to be 

deterministic and portfolio has a static structure. Activity durations are assumed to 

be discrete.  Finish to Start (FS) activity relation is used for majority of the test 

cases but model can handle other relations, too. As network complexities of each 

test instance increases, computational time increase significantly. Therefore, most 

of the tests were solved with time limits.  

                                                      
4 It is stated that duration of an activity cannot be split up.  
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1.4 Organization of the Thesis 

Following chapters are organized as follows: In the second chapter project 

scheduling problems are summarized and literature survey of RCPSP and RCMPSP 

are given. In the third chapter, a mathematical model of the problem is illustrated. 

Problem is solved also heuristics and meta-heuristics. It includes novel meta-

heuristic solution that is developed in the scope of this thesis. Details of the 

algorithms and their test results are given. Fourth chapter is for experiment design 

of algorithm parameters. Finally, a conclusion section is given as the last chapter.  
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CHAPTER 2 

2. PROJECT SCHEDULING PROBLEMS AND LITERATURE REVIEW 

 

 

2.1.Definition of the Problem 

Project scheduling problems (PSP) are one of the important practical optimization 

problems which are extensively studied in operations research, management 

science and construction management research area. Due to the practical 

importance, some methods already been incorporated and many software packages 

has been developed.  PSP in general consists of three different problems. These are 

time-cost tradeoff analysis, resource leveling problem and resource allocation 

problem. In time-cost tradeoff analysis the tradeoff between duration of an activity 

and cost of that activity is examined. It is known that in order to meet deadline 

requirements of a schedule if more resource is added to the project, direct cost of 

an activity increases. Adding more resource decreases the activity duration.  This 

tradeoff should be carefully examined in order to determine the extra cost of adding 

new resources. Thus, in this type of problems, normal cost and crash cost of the 

project is analyzed and decision is made based on time-cost tradeoff analysis. Time-

cost tradeoff analysis may include single objectives such as minimization of the 

cost or minimization of duration (Ke and Liu, 2005) or multi objective cases such 

as the work of Zheng et al., (2004). Different from time cost tradeoff problem, in 

resource leveling problem aim is to obtain smooth resource curve so as to minimize 

resource fluctuations under fixed project duration. It is assumed to have enough 

resources for the project and fluctuations in resource demand is minimized. These 

fluctuations mean idle resources and extra cost to the project. Leveling is done with 

shifting non critical activities within their available floats (Easa, 1989). As for 

resource allocation problems, resources are assigned to activities so as to optimize 

certain objectives. In this type of problems, mostly single objectives such as cost 

minimization is used and in recent studies multi objective resource allocation 

problem can also be found in the literature (Osman et al., 2005; Chaharsooghi and 
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Kermani, 2008). Being a special case of resource allocation problems, RCPSP can 

be extensively found in the literature. RCPSP   can be defined as finding an optimal 

solution for the sequence of activities based on a predefined objective function 

where resources are limited. RCPSP and its multi-project case are the objectives of 

this research and will be examined in the following chapters in detail. Although 

PSP problems are complicated problems, a minimum time algorithm is extensively 

used in the literature for solution purposes. This method is called CPM. 

 

Practically used and taken for granted as a good scheduling method, CPM can be 

considered as a basic solution methodology for the scheduling problem, but 

explicitly it is assumed that there is no resource constraints. Most project scheduling 

software packages are capable of serving as good CPM scheduler and get visual 

help to practitioners. CPM and software combinations are extensively used in the 

practice. Nevertheless, the unlimited resource assumption makes this method more 

vulnerable to bad scheduling practices.  

 

In practice, there are usually limitations for a number of resources. Thus, under the 

consideration of resource limitation basic PSP becomes a mathematical problem 

which is more complicated than the simple model and cannot be solved with CPM 

model.  

2.2. An Example Problem: How Can Activity Sequences Affect the Duration 

of a Project?  

A scheduler has to decide activity sequences of a project under given resource 

limitations.  Deciding the right activity sequence is a key choice since some activity 

sequences may result longer durations, some results shorter durations under same 

resource limitations.  Consider the example given by Toklu (2002) at Figure 2.1.  
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Figure 2.1: Two span bridge example (Toklu, 2002) 

A two span bridge construction is given as an example of the importance of activity 

sequences. Suppose there exists only one excavation team, one pier construction 

team and one span construction team. Considering the method of construction one 

can say that construction may be started with any of the pier excavation: A1, B1, 

and C1. Construction either follows the same locations in order to start pier works 

as soon as possible or follows other locations independent from excavation works. 

For example, if excavation is selected as A1, B1 and C1, pier construction would 

follow A2, B2, C2 sequences in order to start pier construction as soon as possible. 

A different strategy can also be selected such as starting pier construction after all 

of the excavation work is finished. That way would obviously results longer 

duration than expected. Assuming the strategy that pier construction work follows 

excavation work in advance, possible construction sequences are as follows.  

 

 

 

 

 

 

 

 

Considering the Figure 2.2 excavation can start from anywhere at sections A, B or 

C. Thus, 6 different alternatives are possible, such as A1>B1>C1, A1>C1>B1, 

B1>A1>C1, B1>C1>A1, C1>A1>B1, and C1>B1>A1. Since we have one team for 

Start 

A1 

B1 

C1 

A2 

B2 

C2 

D1 

D2 

Finish 

Figure 2.2: Activity on node diagram of two span bridge example 
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pier construction and we have a strategy that pier construction follows excavation 

work in advance, possible pier construction alternatives are A2>B2>C2, 

A2>C2>B2, B2>A2>C2, B2>C2>A2, C2>A2>B2, and C2>B2>A2. And also 2 

different deck constructions are possible, such as D1>D2 or D2>D1.  It makes 

totally 6x2 different construction sequences. If we consider the pier construction 

team is not dependent on excavation team, we would have 6 x 6 x 2 different 

combinations. 

 

One way of choosing minimum project duration is calculation of all alternative 

sequences and selecting the best one. In our example case total of 12 or 72 

construction sequence can be analyzed and minimum duration can be selected. 

Bettemir and Sönmez (2014) analyzed the same example under same resource 

constraints mentioned before. Microsoft Project 2010 and Primavera P6 Enterprise 

Version 7.0 are used to solve the case examples. The results of Standard priority-

based heuristic of MSP 2010, and six priority-based heuristics of P6 V.7 showed 

that neither software packages could be able to achieve an adequate solution to this 

simple network. These findings showed that even with small networks, with 

changing the activity sequences project duration can be shortened and famous 

software packages are not capable of finding good enough solutions. 

 

Similar results is reported with Kolisch (1997) resulting that commercial software 

packages generate schedules with an average deviation of 4.3–9.8% of the optimal 

solution even for small projects which has a scale of up to 30 activities. In the same 

manner, Trautmann and Baumann (2009) analyzed seven different project software 

packages and their heuristics. It was advised that using these popular software 

packages one must be aware that possible solutions are longer than optimum 

solutions. The gap between optimum solution and heuristic solutions also increases 

as activity number increases and resource scarcity is tightened. As an example given 

at same research: for J120 sets and RS5 0.1, average deviation of seven heuristics 

                                                      
5  Resource Strength is a measure of resource scarcity. RS has a minimum value of 0 and maximum 

value of 1 indicating the tightest and loosest schedule respectively. 
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were about %24 where the minimum value is %17. 93 and maximum value is %39. 

53. 

 

Although it is possible to find minimum duration under all possible activity 

sequences, it can only be possible for such small networks. As the network size and 

resource combinations increase, it becomes impossible to analyze every sequence 

combination of a schedule. As network size and resource number increases, the 

combination of resource/activity increases exponentially. This phenomena is 

known as the “combinatorial explosion” which imply that since the problem itself 

is NP-Hard (Blazewicz et al., 1983), no polynomial time algorithm is capable of  

solving the problem. Therefore, this huge amount of data cannot be calculated by 

hand.  

 

Although some exact methods do exist which guarantee the optimum solution, their 

capabilities are limited (Chen et al., 2010). Due to its limited applicability to large 

problem instances, some heuristics and meta-heuristics are extensively used.  

2.3.Classification of RCPSP 

 

RCPSP has been a standard problem in operations research and since 1960s 

abundant amount of research has been reported. This section is devoted to its 

classification efforts. 

 

With the efforts given to the problem itself and the variations of the problem in the 

literature, classification need was emerged. In 1997 a workshop was conducted at 

the University of California, Riverside and a classification schema was established 

(Demeulemeester and Herroelen, p: 72, 2002).  Brucker et al., (1999) classified the 

RCPSP along with a notation procedure. This notation is stemmed from machine 

scheduling and follows α|β|γ schema which represents resource characteristics, 

activities and objective functions. Further attempts accepted the works of Brucker 

et al., (1999) and Herroelen et al., (1999) which are basically built upon machine 

scheduling literature. Example of Herroelen et al., (1999) can be seen at Table 2.1. 
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Table 2.1: Examples of α|β|γ schema 

α|β|γ schema (Herroelen et al., 1999) Definition 

m,1/cpm/Cmax  Resource Constrained Scheduling Problem 

with Single Mode 

m,1/gpr/Cmax Resource Constrained Scheduling Problem 

with General Precedence Relations 

 

Kolisch and Padman (2001) defined the elements of RCPSP as activities, 

precedence relation, resources and objective functions.  Objective functions are 

summarized as makespan minimization, minimization of flow time of activities, 

minimization of delays, net present value maximization, quality maximization, cost 

minimization.  Implicitly it is assumed that all data is available, deterministic and 

integer valued. Network representation issues are also mentioned and summarized 

as networks which are on activity on node or activity on arrow diagrams.  

Yang et al., (2001) categorized RCPSP as 6 different classes. It is assumed that 

commonly known objective function is makespan minimization and difference is 

stemmed from the problem mode- being a single mode problem or multi-mode 

problem. The six different problems are basic single-mode RCPSP, basic multi-

mode RCPSP, RCPSP problems with non-regular objective functions, stochastic 

RCPSP, bin-packing-related RCPSP problems and multi-resource constrained 

project scheduling problems (MRCPSP).  

 

Hartman and Briskorn (2010) used basically machine scheduling schema and gave 

about further developments of the RCPSP. Preemptive scheduling, resource 

demands with varying time, set up times, multi-modes are mentioned and defined 

for further models.  

 

It is stated in this work that, although RCPSP can be categorized and represented 

with α|β|γ schema well, a practical categorization must include constraints, and 
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project environment in addition to the schema.  More specifically, model based 

constraints can be added and the problem becomes more specific for important 

practical cases. Problems can be modeled in a static environment where all jobs are 

available before the scheduling starts or problems may be in a dynamic environment 

where any job may enter to the scheduling process while scheduling is going on. 

Within all literature so far it can be stated that, at least 5 main factors affect the 

problem itself. These are; activities, resources, objective functions, constraints and 

project environment.  In order to define each factor and be more specific each factor 

is defined in the following section. 

  

2.3.1. Elements of a RCPSP 

2.3.1.1.Activities 

Activities are those jobs that can be measured in time, consume resources and have 

specified start and finish dates. Problem type changes according to activity 

characteristics such as; 

 Activities can have two different modes: single mode and multi-mode. In 

single mode an activity performs only a defined mode, which does not 

change with resource excess. Nevertheless, multi-mode of an activity states 

that adding more resource would decrease the duration of that activity to 

some extent.  

 Activity preemption is another option for activity type. In some problems it 

is possible to cut an activity from a point and define it with more than one 

activity. 

 The duration of an activity can be deterministic and stochastic. 

 

2.3.1.2.Resources 

Resources are necessary inputs for activities. Manpower, machines and money are 

some examples of resources in a construction project. In literature, resources are 

categorized by its type and value (Blazewich et al., 1986). Basic distinction 
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according to its type is about the availability concept. If a resource is continuously 

available through the project with the same amount every step of needed it is called 

renewable, if it is consumed through the project horizon it is called nonrenewable. 

Example of a renewable resource is manpower and machines, for nonrenewable 

resources is capital.  If the value of the resource is exact and does not change by 

activity mode, it is called deterministic, otherwise it is called stochastic. Thus, 

problem type can change according to resources such as; 

 Type of the resources can change the problem. Resources can be renewable, 

nonrenewable or both. 

 Resources can be deterministic and stochastic. 

2.3.1.3.Objective Function 

The objective of a schedule is important to define a mathematical model for the 

problem.  Minimization of total project duration is very commonly used objective 

function in the literature. However, in the practice one objective may not cover all 

other strategic issues, and may not be valid for every project.  Thus, different 

objective functions are possible and sometimes one objective may conflict with 

each other. Earliness/tardiness minimization, present value maximization, cost 

minimization and time/cost minimization problems are examples of objectives used 

in literature. The type of the problem can change according to its objective function.  

2.3.1.4.Constraints  

Constraints define the boundaries of the problem. Constraints can be due to the 

project itself, such as deadline constraints, budget constraints and can also be due 

to inside the project itself such as technological constraints or activity sequences. 

Others can be mathematical constraints such as activity resource consumption, or 

activity duration should be integer valued. Moreover, model specific constraints 

can be added to general mathematical models so as to specifically define a case. 

2.3.1.5.Project Environment 

Project environment can change the characteristics of the problem. For single case, 

all resources are assumed to be dedicated to a project and only one project manager 
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is assumed to be in charge of resource allocation. Nevertheless, in a multi project 

environment, resources are considered as corporate resources. Therefore, resource 

allocation in a top level managers’ perspective makes this problem more complex 

than the single case.  

Also, multi project environment characteristics may be different. Being a static 

environment, all jobs are known and during scheduling no new job is added. In this 

form of problems once a mathematical model is determined, it would not change 

until the schedule has been completed. On the other hand, dynamic environment 

can change mathematical model significantly. Therefore, project environment 

should be considered in classifications. The importance of the project environment 

becomes significant when some heuristics are applied to the problem. For example, 

if slacks are determined considering dynamic environment, it should be updated 

within a routine while in a static case slacks will not change until scheduling is over. 

Table 2.2: A classification of RCPSP 

DIMENSIONS PROPERTIES 

Activity Single Mode Multi-mode Activity  

Preemption 

Deterministic Stochastic 

Resource Resource 

Type 

Deterministic Stochastic   

Objective 

Functions 

Minimization  

of Makespan 

Cost 

Minimization 

Earliness/tardi

ness  

Minimization 

Present value  

Maximization 

Model-

specific 

Constraints Mathematical Resource Time Cost Model-

specific 

Project 

Environment 

Single Project Multi-project Dynamic Static   

 

All mentioned properties are summarized at Table 2.2. It can be seen that for each 

factor and its different type problem type changes significantly. Therefore in the 

scope of this research basic cases will be used. In order to stick into the literature 
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and to be on the side of known problem types, basic RCPSP problems is given in 

the following paragraphs. 

Case Example #1 “Basic Deterministic Case”: In this case, all parameters are 

assumed to be deterministic and resources are assumed to be unlimited. This very 

broad definition of PSP is generally used by practitioners and a minimum time 

algorithm is used to solve the problem. This minimum time algorithm is called 

CPM. In this method, aim is to find a schedule which is consisting of critical paths 

orders. The time frame of a schedule is captured and effect of an activity delay can 

be determined from the network. Resources are assumed to be unlimited but as a 

final schedule resource leveling strategy is used in order to minimize resource 

fluctuations. 

Case example #2 “Deterministic Case with Resource Constraints”: In addition to 

basic deterministic case, the resource limitation constraint is added and the problem 

and it is called RCPSP. If more than one project is under consideration problem 

becomes RCMPSP. Both analytical and heuristic solution attempts are available in 

the literature and the model will be studied in the next sections. 

Case example #3 “Multi-mode with Resource Constraints”: In this case, either 

activity durations or resource limitation can vary. For multi-mode PSP, a set of 

different modes is available for execution. For example, in a mode 1 worker can 

work 6 days and finish the job, while if 2 workers work in the same amount of work 

they can finish the job in 3 days. This type of variable crew assignment is possible. 

Different from the mode of the activity, activity duration can be a random variable 

which obeys a probability distribution. 

From this point further, case example #2 will be analyzed in detail: 

2.4.Resource Constrained Single Project Scheduling Problem (RCPSP) 

2.4.1. Problem Definition 

With the basic assumptions of CPM, a time order of activities can be modeled and 

schedule of a project can be drawn as nodes and arrows. The unlimited resource 
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assumption is valid in this method and this assumption is not suited in majority of 

the real life problems. More importantly, if resources are not meeting with the 

demands of the activities, activities should be shifted to a time where resources are 

adequate. Therefore, real durations under the resource limitations would be beyond 

the CPM duration. Then, a question arises “how can this duration shift be 

minimized?” and the problem of RCPSP arises. 

RCPSP modeled in this research is aiming to find an optimal scheduling of a set of 

activities within a network while precedence and resource constraints are not 

violated. The precedence constraints force an activity to be started within an 

imposed time frame after all of its predecessors are completed. It is a reality that 

activity execution requires an amount of resource usage and some of the resources 

are limited. Thus, resource constraints force an activity to consume a limited 

amount of resources. Within the constraints of activities and resource limitations, 

more than one schedules can be generated which would have different project 

durations-some are longer while some are shorter. Therefore, the aim in RCPSP is 

to find the minimum duration of a project without violating the assumptions of the 

problem.  

The basic RCPSP is modeled in a project network G (N, A) with a set of N nodes 

and A arcs, each node representing the project activities using the activity on node 

representation. Each activity j has a duration of dj, finish time Fj and resource usage 

ri. The activities in the network are subject to precedence constraints which force 

to start an activity only after completing its predecessor(s). It is assumed that there 

are m renewable resource types, with a per period availability Rm.  

The problem is mathematically modeled in this way; 

 The objective is to: 

 Minimize Total Project Duration  

 ∑ 𝐹𝑛
𝑖   .................................................................................................. (2.1)  

Where some constraints exist such that: 
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𝐹𝑖 < 𝐹𝑗 − 𝑑𝑗…………………………………………………..…………….(2.2)  

𝑟𝑗 < 𝑅𝑚......................................................................................................... (2.3) 

𝐹𝑗 , 𝑟𝑗 , 𝑑𝑗 ≥ 0      ........................................................................................... (2.4)  

Other than two constraints above, there is also a sign convention, which forces the 

model to be solved in non-negative and integer values.  

2.4.2. RCPSP Literature 

The objective of RCPSP is to determine a start date for each activity in such a way 

that precedence and resource constraints are satisfied, and the project duration is 

minimized.  As RCPSP is NP-hard in the strong case (Blazewicz et al. 1983) it can 

be solved by exact methods only for small projects.  Hence, many researchers have 

proposed heuristic and meta-heuristic methods for RCPSP. There are basically three 

solution methods to the problem (Figure 2.3) Exact methods used for finding the 

optimal schedule but not appropriate to complex problem sets. Heuristics are fast 

and often provide adequate solutions, but they do not usually provide high quality 

solutions. Meta-heuristics are capable of finding high quality but sometimes they 

are time consuming.  

 

Figure 2.3: RCPSP and solution methods 
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2.4.2.1.Exact Methods 

Exact solutions include linear integer programing methods: zero-one programing 

and dynamic programing, enumeration; especially branch and bound methods. Very 

limited works have been done in term of exact solutions. It is proven that neither 

method is computationally feasible for large-sized networks (Kim and Ellis, 2008; 

Alcaraz and Maroto, 2001). Kolish et al., (1995) worked on 480 test sets with 30 

activities which are soon becoming a standard test set and concluded that 428 of 

them can be solved optimally with exact methods, remaining are cannot be solved 

even with 1 hour of computation time. Afterwards the researchers concentrated on 

52 “hard test sets”. Mingozzi et al., (1995) and their algorithm BBLB3 showed 

significant improvements on the optimal solutions, but it was very slow in terms of 

computational efficiency. 

Pioneering work about zero-one programing approaches are focused on a linear 

programming formulation of job-shop scheduling (Pritsker et al., 1969; Patterson 

and Roth, 1976). Due dates, job splitting, resource, substitutability, and 

concurrency and non-concurrency of job performance requirements are added to 

the model and three different objective functions, namely; minimizing the total time 

for all projects, minimizing the time by which all projects are completed and 

minimizing total lateness or lateness penalty for all projects are researched. 

Patterson and Huber (1974) used bounding techniques in conjunction with zero one 

programming techniques. Rather than solving one schedule with zero-one 

technique, it is intended to examine feasibility of a series of schedules. Its 

advantages over simple zero-one programming techniques are compared.  

An example of dynamic programming techniques is given at Carruthers and 

Battersby (1966). Elmaghraby (1993) investigated the dynamic programming 

technique with the assumption that there is a relationship between the amount of 

the resources allocated to an activity and its duration. A dynamic programming 

optimization procedure and an approximation are given for upper bound solutions. 
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In all of exact solution methods above mentioned branch and bound algorithms 

(Christofides et al., 1987; Demeuelemeester and Herroelen, 1992) are very common 

in the literature. Branching can be defined as dividing disjoint solution subsets into 

subsets (Demeulemeester and Herroelen, p: 220, 2002). Basically, it is a divide and 

conquer algorithm in which large problem set cannot be solved directly, instead it 

is divided into smaller sub problems that can be conquered. Two actions are 

required for the algorithm. The first action is dividing the problem into sub 

problems-which is called branching; second action is giving a bound for best 

solution in the subset-which is called bounding. Thus, it is a search algorithm to 

find the best solution among other solutions available.  

Table 2.3: Example heuristics 

Heuristic Working Mechanism 

Min. Slack (MinSlack) Give priority to activities those have 

smaller slack 

Min. Late Finish Time (LFT) Give priority to activities those have 

smaller late finish time 

First Come First Served (FCFS) Give priority to activities those first come 

to a priority list 

Most Total Successor (MTS) Give Priority to activities those have more 

total successors 

Greatest Resource Demand (GRD) Give Priority to activities those have 

greatest resource demand 

Worst Case Slack (WCS) Give Priority to activities those have worst 

case slack 

 

Christofides et al. (1987) proposed a branch and bound algorithm which is based 

on the idea of disjunctive arcs for resolving conflicts when resource constraints are 

not enough. Four lower bound solutions are examined. The first is a simple lower 

bound based on longest path computations. The second and third bounds are derived 

from a relaxed integer programming formulation of the problem. The fourth bound 
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is based on the disjunctive arcs used to model the problem as a graph. The report is 

done based on the performances of randomly generated sets which involve up to 25 

activities and 3 resources. 

Demeuelemeester and Herroelen (1992) used a branch-and-bound procedure which 

is described for scheduling the activities of a project of the PERT/CPM variety 

subjects to precedence and resource constraints where the objective is to minimize 

project duration. The procedure is based on a depth-first solution strategy in which 

nodes in the solution tree represent the resource and precedence feasible partial 

schedules.  The procedure is programmed in the C and validated using a standard 

set of test problems with between 7 and 50 activities requiring up to three resources. 

2.4.2.2.Heuristics 

Heuristics are experienced based techniques which have a subroutine applied to 

problem solving strategy and generally have adequate solutions in a very short time. 

Most heuristics are rules that are tailored to fit for specific types of problems. They 

may be deterministic and stochastic whether the same results can be found at each 

iteration or not. Some examples can be seen from Table 2.3.  

 

Figure 2.4: Working mechanism of heuristics and meta-heuristics 
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Minimum Slack Rule (MinSlack) is generally accepted as an adequate solution for 

RCPSP and can be applied with First Come First Served (FCFS) rule as a tie 

breaker. Heuristics are important since they offer some upper bounds for those 

cannot be solved optimally. 

The heuristic studies for the RCPSP date back to Kelley (1963) with a schedule 

generation schema (SGS). SGS is at the hearth of heuristics and meta-heuristics as 

well as it is a heuristic itself. It starts from zero to build a schedule by stepwise 

improvements. There are two different SGS available in the literature. One is based 

on activity increment- serial SGS and the other is based on time increment - parallel 

SGS. In serial SGS, based on activity selection principle, activities are scheduled at 

the earliest possible time under the resource constraints. Nevertheless, at parallel 

SGS, for every time increment activities are scheduled under the resource 

constraints (Kolish and Hartmann, 1999). In order to build a schedule either SGS is 

used together with a priority rule or meta-heuristics. The mechanism is shown at 

Figure 2.4.  An ordered list is obtained with a priority or a meta-heuristic, the 

schedule is configured with SGS 

Davis and Patterson (1975) tested various heuristic sequencing rules on RCPSP 

with the total project minimization objective function. Effectiveness of heuristics 

shown by comparison to optimum solutions available. Minimum Slack Rule 

performed best from eight heuristic test with eighty tree problems.  It is reported 

that, the performance of heuristics was relatively small as resource constraints get 

tightened.  

Backward forward improvement method (Li and Willis, 1992) is a special 

improvement method that is based on scheduling with same SGS and heuristics, in 

reverse time direction. In backward scheduling the exact duration of feasible 

schedule is not known, an arbitrary completion time is selected and all precedence 

relations are reversed. Finally, all activities are scheduled as late as possible 

according to activity selection principle. In the same manner resulting schedule can 

be scheduled in forward direction according to starting dates as early as possible 
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and final schedule generally be denser and shorter than starting schedule, at least it 

has the same duration 

Priority-rule-based heuristics (PR-H) use a SGS in order to build a schedule. 

Priority rule is used for selecting the nominee activities from the activity set. PR-H 

can be classified according to criteria it employs, i.e. network, time and resource 

based rules. If PR-H generates a single solution it is called single pass method, if it 

generates more than one schedules, it is called multi pass methods (Kolish and 

Hartman, 1999).   PR-H can be applied to get one solution at a time.  As an example 

of shown heuristics see Hartman et al. (2000), where Late Finish Time (LFT) and 

Worst Case Slack (WCS) rule is used in experiments on test of algorithms 

performances.  

Some heuristics produce more than one solution and best of them can be selected. 

Sampling methods (Cooper, 1976) are examples of this kind of heuristics. The 

selection probability of activities from decision set is determined according to a 

selection principle and the schedule is constructed upon selection probabilities. 

Another method is selecting more than one heuristics in a random manner which 

can be found at Storer et al., (1992).  

Hartman et al., (2000) conducted an experiment on the performances of heuristic 

algorithms by applying an experimental design with control parameters on test sets. 

A full experiment design is applied in order to test different heuristics’ 

performances on standard J sets (Kolish et al., 1999).  Influence of increasing 

project size, network complexity, resource factor and resource straight is tested.  

Worst Case Slack (WCS) and Late Finish Time (LTF) combined with parallel SGS 

outperformed other priority rule based heuristics. Meta-heuristics performed better 

as schedule number was increased from 1000 to 5000. It was concluded that since 

meta-heuristics use knowledge exploited from different schedules, they have 

superiority on priority rule based heuristics. It is stated that the selection of SGS 

may be influenced by project size since serial SGS performed better in J30 sets 

while parallel SGS performed better in J120 sets.  
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Kanit et al., (2009) investigated MinSlack, LFT and Maximum Remaining Path 

Length (MRPL) heuristics on the scheduling of housing projects. Tests were 

conducted using ten real projects. MRPL rule performed better at six projects, LFT 

performed better at three projects and MinSlack rule performed better at one 

project. It is suggested that MRPL rule can be used for housing projects with 

resource constrained where activity numbers are high. 

 

Figure 2.5: A simple GA 

2.4.2.1.Meta-heuristics 

Meta-heuristics are higher level heuristic methods which can be applied for 

different type of problems without being specific for one specific type of problem. 

The meta-heuristics are included variety of methods such as genetic algorithms 

(GAs), simulated annealing (SA), tabu search, particle swarm optimization (PSO) 
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and ant colony optimization (ACO) which mimic a natural phenomenon in order to 

find a global optimum in a large search space.  

Among all meta-heuristics, GAs have a large variety of application areas. It is a 

population-based and stochastic search algorithm based on evolutionary 

computation principles inspired by the Darwinian principles of natural selection 

(Holland, 1975). GAs finds for best solution from a pool of solutions according to 

some selection and diversification mechanisms as shown at Figure 2.5. A solution 

is called individuals where an individual is represented by a chromosome. Number 

of solutions constitute a set which is called as a generation.  

New solutions are produced depending on previous generations’ chromosomes 

according to crossover and mutation operators.  The best solutions are given to 

higher change to survive and some of them are moved to new generations with 

elitism. A fitness function is used in order to evaluate a chromosome’s performance. 

What makes GAs strong compared with other algorithms is that it has the ability of 

exploiting the best solution while exploring the search space effectively 

(Michalewich, p. 15, 1992).  

 

Figure 2.6: Different type of chromosome representations 

In GAs different schedule representations are possible, such as random key value 

activity list or priority list. In random key representation each gene represented by 

a priority number, i.e. highest random key value represents highest priority to the 
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activity. Whereas in an activity list representation, a schedule is represented with 

list of activities; order of an activity means it is scheduled prior to others. A priority 

list representation is also available where a heuristic is used to choose activities and 

chromosome representations show priority of that heuristics. At Figure 2.6 some 

examples of different chromosome representations are shown. 

 

Figure 2.7: Crossover examples 

Crossover and mutations are two main methods in order to produce new solution 

from existing solutions. In a crossover, from two different chromosomes, namely 

mother and father, two different children are obtained. The simplest crossover 

method is one point crossover where a random gene is selected as a point and the 

remaining parts are exchanged by mother and father's chromosomes. Another 

crossover method is two point crossovers. In this method two random points are 

selected and chromosomes are divided into three sections. Middle sections are 

exchanged between mother and father's chromosomes (Figure 2.7).  

Apart from these two basic crossover methods, several complex methods are also 

available. Parameterized uniform crossover (Dejong and Spears, 1991), 

decomposition based crossover (Debels and Vanhoucke, 2007) are examples of 

more improved crossover methods. The parameterized uniform crossover method 

is applied on a random key vector. A random number is generated between 0 and 1 

and those genes having higher than that number is exchanged between 

X X X X X X X X X X X X X

X X X X X

X X X X X X X X X X X X X X

X X X X
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corresponding mother locations. Decomposition based crossover is started with 

determining the weakest resource used regions in a father chromosome and best 

resource used regions in a mother's chromosome. Finally, worse parts are replaced 

with the better part of father chromosome. 

Mutations are applied as a random change of a gene or a number of genes on a 

chromosome. Along iterations chromosomes may trap into local minimums. Thus, 

the solution may lead a premature convergence, which does not allow reaching of 

optimum results. Mutations may lead to skip from local minimums. Generally 

mutation ratio is too small since too many mutant genes may also avoid to converge 

(Yang, p: 25, 2008).  

Hartmann (1998) studied RCPSP with makespan minimization objective. A new 

GA is proposed and it has been compared with two other GAs.  Starting with the 

empty job sequence list, preceding activities are selected randomly from an 

unselected activity set.  In addition, a known sampling method and a priority rule 

are used to derive activity selection probabilities. Results were compared with two 

known GAs and some heuristics. 

Leu and Hwang (2001) studied RCPSP in a repetitive construction project- precast 

production. It is stated that line of balance method (LOB) is not sufficiently enough 

to solve scheduling problems under resource constraint. In the paper random key 

representation is used along with GA. Influencing factors of the repetitive precast 

production scheduling model and their impacts were examined. Results revealed 

that GAs are very efficient in precast production scheduling. 

Leu and Yang (1999) proposed a GA based scheduling system called GARCS. A 

new crossover and mutation is shown and its effectiveness was tested on problem 

instances. 

Chen and Weng (2009) proposed a two-phase GA in which both the effects of time-

cost trade-off and resource scheduling are combined in order to get the best result 

for RCPSP. A GA based time-cost trade-off analysis is used to select the execution 
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mode of each activity and it is followed by other GA-based resource scheduling 

method. 

Chen et al. (2010) proposed a hybrid algorithm called as ACOSS which combines 

a local search strategy, ant colony optimization, and a scatter search in an iterative 

process. 

 

In recent years, other than RCPSP there has been an increasing interest in the 

adaptation of GAs to optimization problems in construction engineering and 

management. Multi-mode RCPSP (Mori and Tseng, 1997), resource leveling 

(Hegazy 1999, El-Rayes and Jun 2009), planning of construction resource 

utilization (Kandil and El-Rayes 2006; Kandil et al. 2010), planning of post disaster 

temporary housing projects (Kandil et al. 2010), time-cost tradeoff problem (Feng 

et al. 1997; Kandil and El-Rayes 2005), and time-cost-quality trade-off (Kandil and 

El-Rayes 2005) are among the construction management problems in which GAs 

are proposed.  

Simulated annealing (SA) has fine tuning capabilities, and is usually capable of 

escaping of local optima for locating a good approximation to the global optimum 

(Hwang and He, 2006). But a sole SA has a low search efficiency as it maintains 

one solution at a time. It was applied in the optimization problem by Kirkpatrick et 

al., (1983). It mimics the annealing process of materials. The basic idea behind the 

algorithm is to use a randomized search technique with accepting worse solutions 

to some extent. In the early stages of the algorithm the probability of accepting 

worse solutions is high. This acceptance probability is reduced in a cooling schema 

where probability is: 

𝑝 = 𝑒−
∆𝐸

𝑘𝑇……………………………………………………………………. (2.5) 

where ∆E is the rate of change in the objective function, T is temperature and k is 

Boltzmann’s constant. A flow chart of the basic SA algorithm is given at Figure 

2.8. 
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Figure 2.8: Flow of SA algorithm 

Boctor (1996) applied SA technique to RCPSP and tested its efficiency via 

statistical methods. Results revealed that SA is capable of finding near-optimum 

results. Another SA algorithm was proposed by Cho and Kim (1997) in which a 

solution is represented with a priority list, and algorithm is used with a priority 

scheduling method using total project duration minimization objective.  Further 

works generally used SA along with other meta-heuristics since SA gives one 

solution at a time and it is not efficient when compared to population based 

approaches. Chen and Shahandashti (2009) used SA along with GA and results 

were revealed that hybrid GA-SA algorithm performed better than sole SA. 

Tabu search (Glover, 1990) algorithm uses a past memory of actions and it builds 

solutions based on a best neighboring solution which is obtained using a search 

method and an appropriate objective function evaluation. To avoid selecting same 

neighborhood and previous solutions, some selected moves are recorded as tabu 
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list.   The iteration continues until a stopping criteria is met (Thomas and Salhi, 

1998). Due to use of memory and record of past actions, algorithm could save 

computing time and can increase the efficiency significantly (Yang, p. 92, 2008). 

The mechanism of the algorithm in RCPSP works such as; an initial feasible 

solution is obtained and this solution is disturbed with a move function and finally 

a new solution is obtained.  

Lee and Kim (1996) used random solution for initial solutions and neighborhood 

generation method for new solutions. They selected activities from previous four 

and next four activities randomly in neighborhood search mode.  Tabu list is 

obtained by defining tabu moves such as interchanging priorities of activities i and 

j, if activities are interchanged recently.  

Icmeli and Erenguç (1994) used tabu search algorıthm on RCPSP with discounted 

cash flows. The method was tested on 50 problems derived from Patterson's data 

set. Solutions were compared with upper bound results and MinSlack rule used 

solutions.  

Particle Swarm Optimization (PSO) is another evolutionary technique that mimics 

the behaviors of birds flocking. It starts with an initial solution and looks for 

solution in the search space by iterations. Unlike GAs, PSO does not use 

evolutionary operators. The particles follow its paths one by one with its good 

experiences.  For n particles there would be n current best solutions. The aim is to 

find globally best solution compared with current solutions. 

 Jia and Seo (2013) proposed an improved PSO method which treats the solutions 

of RCPSP as particle swarms and employs a double justification skill. It uses 

operator for the particles, in association with rank-priority-based representation, 

greedy random search, and serial scheduling scheme. 

Ant Colony Optimization (ACO) is another meta-heuristic method that mimics the 

behaviors of ants looking for best foraging paths. Ants that find foods mark it with 

a chemical (pheromone) in order to be trailed by other ants. Those ants following 

same route improves the chemical concentration. As more ants follow the same 
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route, the route becomes a favorable one. It gives a feedback for those ants which 

start to find food sources. 

Merkle et al., (2002) proposed an ACO method for RCPSP. Proposed method uses 

combinations of two pheromone evaluation methods to find new solutions, these 

are: a change of the influence of the heuristic on the decisions of the ants during the 

run of the algorithm, and the option that an elitist ant forgets the best-found solution. 

 

Tseng and Chen (2006) proposed a hybrid approach called ANGEL, which 

combines (ACO), (GA) and a local search strategy together. In this method first, 

ACO searches the solution space and generates the initial population for GA. Next, 

GA is executed and the pheromone set in ACO is updated when GA obtains a better 

solution. When GA terminates, ACO searches again by using a new pheromone set. 

ACO and GA search alternately and cooperatively in the solution space. Finally a 

local search strategy fine tunes the results of ACO and GA. 

2.5.Resource Constrained Multi-Project Scheduling Problem (RCMPSP) 

2.5.1. Problem Definition 

The resource constrained multi-project scheduling problem (RCMPSP) is an 

extension of the RCPSP and consists of simultaneous scheduling of two or more 

projects with common resource constraints, while minimizing some performance 

measure. It is quite often that managers deal with more than one projects in practical 

cases (Browning and Yassine, 2010). Payne (1995) states that %90 of the projects 

are carried out in a multi-project context. Lova et al., (2000) made a survey in 

construction, textile, IT and public administration sectors about the project 

environment. %84 of correspondents answered that they work in a multi-project 

environment. Same survey concluded that project scheduling software programs are 

not practical to manage multi-projects and they should be adapted to this need. 

These survey results reveal that multi-project environment is a more practical and 

common case compared with a single project for scheduling purposes.  
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The basic RCMPSP can be stated as follows:  A project portfolio consisting of 

projects i= 1,…, M  has to be scheduled with limited portfolio resources.  Each 

project is composed of j= 1,…, Ji activities.  The activities can start after all of its 

predecessors are completed.  Each activity requires rijk units of resource type k, 

during every instant of its non-preemtable duration dij. The availability for each 

resource k, in each time period is Rk units. At any time instant t, if the set of 

precedence feasible activities requires more than Rk units for any k, then some 

activities will have to be scheduled at a later time to satisfy the resource constraints.  

With these definitions, the problem of finding a precedence and resource feasible 

portfolio schedule with the minimum overall project portfolio completion time (C) 

can be formulated as follows (Christofides et al. 1987): 

Minimize (C)……………………………………..……………………………(2.6)                                                                 

Subject to: 

 ∑ 𝑆𝑖,𝑗,𝑡

𝑡

= 1,   i =  1, … , 𝑀,    j   =  1, … , 𝐽𝑖                                                                          (2.7) 

∑ 𝑡(𝑆𝑖,𝑚,𝑡 −  𝑆𝑖,𝑗,𝑡) ≥  𝑑𝑖,𝑗,    (𝑗, 𝑚)  ∈ 𝐻𝑖,    i =  1, … , 𝑀 

𝑡

                                   (2.8) 

∑ ∑   ∑ 𝑟𝑖,𝑗,𝑘

𝑡

𝑞=𝑡−𝑑𝑖,𝑗+1

𝐽𝑖

𝑗=1

𝑀

𝑖=1

𝑆𝑖,𝑗,𝑞  ≤  𝑅𝑘,   k =  1, … , 𝐾,    t =  1, … , 𝑇                       (2.9) 

𝑆𝑖,𝑗,𝑡 ∈ (0,1)                                                                                                                  (2.10) 

Eq. 2.6 minimizes the overall project portfolio completion time (C).   Eq. 2.7 

indicates that every activity must start once.  Eq. 2.8 presents the precedence 

constraints, where Hi is the set of activity pairs with precedence relations in project 

i, and Ji+1 is the dummy activity used to determine completion time of project i.  

The constraints given in Eq. 2.9 satisfies the resource requirement of activities at 

each time instant t does not exceed the availability Rk, for each resource k, where T 
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is an upper bound on the portfolio completion time.  Finally, the constraints of Eq. 

2.10 define the decision variables as binary.  

 

Figure 2.9: Multiple single projects vs. single project approach (Lova and Tormos, 

2001) 

2.5.2. RCMPSP Literature 

The basic RCMPSP can be solved by combining all project networks in one super-

network by adding a super-dummy start and a super-dummy end node considering 

it as a single project network (Figure 2.9).  Under this assumption, RCPSP solutions 

would be valid and solution methods can be used. Nevertheless, the combinatorial 

explosion problem would be more significant as small networks are compared.  

Furthermore, that problem which can be taken as multiple single project networks, 

each considered as alone would be more practical since in real life practices each 

project has its own project manager, budget and accounting system, only resources 

may be used from the common enterprise pool. Therefore, throughout this study 

problem is taken as multiple single projects.  

RCMPSP can be expanded in several ways. Activities could have multiple 

duration/resource alternatives, rather than a single duration and resource 

consumption option-which gives a stochastic nature to the problem (Tseng 2004).   

Since resources are used from a common pool resource transfer times could be non-

zero (Kruger and Scholl 2009).  Project environment may be static where all project 

details are clear and set before scheduling starts or dynamic where project details 
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are changed trough execution. Although the basic RCMPSP has certain practical 

limitations such as the assumption of a single duration/resource mode for activities, 

or the assumption that resources can be transferred between projects without any 

expense in time and cost, the majority of the research on resource constrained multi-

project scheduling have studied the basic problem. In this research, we have focused 

on the basic RCMPSP since the majority of the multi-project problem instances 

available in the literature include basic RCMPSPs, and commonly used project 

management software such as Microsoft Project 2010 can only solve the basic 

problem.  It can be seen from the literature that while the majority of projects is 

scheduled on a multi-project environment, most research on resource-constrained 

project scheduling have focused on single projects (Kurtulus and Davis 1982; 

Krüger and Scholl 2009; Browning and Yassine 2010). Therefore, in multi project 

environment there exists less number of researches. Following section summarizes 

the works done in the multi project environment. 

2.5.2.1.Exact Methods 

Since RCMPSP is a generalization of the RCPSP, it is also NP-hard (Golçalves et 

al., 2008). Although exact methods were proposed in the literature, previous studies 

have mainly attempted to develop efficient heuristics and meta-heuristics for the 

solution of RCMPSP.   

Some exact solution methods such as zero-one programming approach (Pritsker et 

al., 1969) are proposed in the literature which is unable to solve large instances. 

Another example of exact methods is Drexl (1991), in his work a branch and bound 

algorithm together with dynamic programming model is proposed.  The models and 

assumptions under exact models of RCPSP are valid for RCMPSP. Since the project 

sizes are larger, exact methods is not practical to use. Further attempt to solve the 

problem by exact solution methods are limited with the NP-Hard characteristics of 

the problem. Therefore, due to the combinatorial explosion problem many studies 

focused on heuristics and meta-heuristics. 
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Table 2.4: Priority rules tested by Kurtulus and Davis (1982) 

Priority Rule Explanation References 

SOF Shortest Operation First Conway (1965), Patterson 

(1973) 

MinSlack Minimum Slack Rule Wiest (1963),  

Fendley (1968) 

SASP Shortest Activity From Shortest Project Kurtulus (1978) 

LALP Longest Activity From Longest Project Kurtulus (1978) 

MOF Maximum Operation First Kurtulus (1978) 

MaxSlack Maximum Slack First Kurtulus (1978) 

MinTWK Minimum Total Work Content Kurtulus (1978) 

MaxTWK Maximum Total Work Content Kurtulus (1978) 

FCFS First Come First Served Mize (1964) 

 

2.1.1.1.Heuristics 

Priority based heuristics, meta-heuristics, non-standard meta-heuristics and 

miscellaneous heuristics are four main groups which is extensively mentioned by 

Kolish and Hartman, (1999) and Browning and Yassine, (2010). The aim is to find 

a near-optimum solution within a reasonable time period. 

Kurtulus and Davis (1982) proposed two new categorization processes within time-

only analysis in order to measure the effects of the priority rule based heuristics 

which are summarized at Table 2.4. Average Resource Load Factor (ARLF) is 

defined as a measure of the peak resource requirement is in the first half of the 

project or second half. Average Utilization Factor (AUF) measures tightness of the 

schedule which is calculated as the ratio of the total amount required resource on 

available resources. An experiment design was made where ARLF changes -3 to 3 

and AUF changes 0.6 to 1.6. Totally 77 project sets were tested where sets have 

activity numbers ranging 34 to 63 activities. Nine heuristic rules were tested.  
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Table 2.5: Priority rules according to ARLF and AUF ranges (Kurtulus and Davis, 

1982) 

 AUF Range 

ARLF Range 0.6 to 0.8 0.9 to 1.6 

-3.5 to -2.5 MINSLACK SASP 

-2.5 to -1.5 MAXTWK SASP 

-1.5 to -0.5 SASP MAXTWK 

-0.5 to 0.5 MINSLACK SASP, SOF, MAXTWK 

0.5 to 1.5 SASP SASP 

1.5 to 2.5 MINSLACK MOF, SASP 

2.5 to 3.5 MINSLACK SASP 

 

SASP and MaxTWK rules were outperformed other seven rules with different 

objective functions. An important result was concluded from the research that 

artificial super-network approach which is extensively used by software packages 

is an inferior approach for multiple single project approach. As summarized at 

Table 2.5 a directive approach was given to researchers. From given Table 

researchers and practitioner can choose the best heuristic based on ARLF and AUF 

measures of test cases.  

Kurtulus (1985) studied these ten priority rules along with five penalty functions, 

namely: 1) assigning the highest penalty to the project requiring the greatest amount 

of resources; 2) assigning the highest priority to the longest project; 3) assigning 

the highest priority to the project requiring the least amount of resources; 4) 

assigning the highest priority to the shortest project; and 5) random assignment. 

Priority rule performances were tabulated along with penalty functions and it is 

concluded that project measures ARLF and AUF along with penalty functions gives 

different results on different priority rules. 

Lova et al. (2000) proposed a multi-criteria heuristic method for multi project 

scheduling problems. It is stated that while managing more than one project, more 

flexibility is required to use scheduling tools. Heuristic method was developed in 
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order to account for two criteria, one is project splitting and other is mean project 

delay.  Heuristic work is given in two phases: in the first phase iterative forward-

backward process is used with mean project delay objective function. In the second 

phase, results is improved with no time criteria. MaxTWK and MinLFT priority 

rules were the bet rules that dominate others under different criteria.  

Lova and Tormos (2001) studied the effect of the SGS – serial or parallel – and 

priority rules – MinLFT, MinSLK, MaxTWK, SASP or FCFS – with two 

approaches – multi-project and single-project under mean project delay objective. 

A two stage iterative process is proposed where in the first stage priority is given to 

a project, in the second stage activities are selected with heuristics. It is stated that 

P-SGS found better results performing under mean project delay objective 

functions. 

Lova and Tormos (2002) further examined the two stage project selection principle 

with other possibilities of selecting SGS and other multi-pass heuristics. A new 

hybrid heuristic method combining random sampling and forward backward 

iteration is given. 

 Krüger and Scholl (2009) studied the problem under resource transfer times. In this 

model resources transferred to another project is modelled. Sequence and resource 

dependent transfer time constraints are added to the model which represent setup 

times for activities when a resource is removed from one project and reassigned to 

another. It is concluded that commonly accepted static environment assumption and 

static nature of portfolio cannot represent real life problems. Resource transfer 

times should be included in the models despite the models may include more 

comprehensive work. 

Browning and Yassine (2010) studied RCMPSP with its two lateness objectives- 

project lateness and portfolio lateness.  Five measures of RCMPSP characteristics 

are used along with a full factorial experiment on 12,320 randomly generated 

problem instances.  A directive tool is given for a manager to choose which priority 

rule is best under selected project network. 
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2.1.1.2.Meta-heuristics 

Focusing on the main objective of this thesis it can be seen that meta-heuristic 

studies are primarily aiming to solve RCPSP. Particle swarm optimization  (Jarboui 

et al. 2008; Wang and Qi 2009; Chen 2011; Jia and Seo, 2013), ant colony 

optimization (Merkle et al. 2002; Tseng and Chen, 2006), simulated annealing (Cho 

and Kim, 1997; Hwang and He, 2006), honey-bee mating optimization (Bozorg 

Haddad et al. 2010; Akbari et al. 2011), hybrid GA and SA (Bettemir and Sönmez, 

2014) and  tabu search algorithm (İçmeli and Erenguç, 1994; Lee and Kim, 1996) 

are the main studies aiming to solve RCPSP. There is also particular interest for 

GAs such as (Lee and Kim 1996; Hartmann 1998; Leu and Yang 1999; Leu and 

Hwang 2001; Toklu 2002; Kim and Ellis 2008; Cheng and Weng 2009; Lin et al. 

2013). 

Majority of the studies with extensive literature is focusing on RCPSP. Being a 

more practical case, RCMPSP has not drown the attention of researches yet. Very 

limited research was proposed in the literature. One of them is a sole genetic 

algorithm along with a priority rule which is proposed by Kumanan et al. (2006). A 

GA is used to select the sequence of projects where priority rule is used for 

scheduling within projects.  The proposed method outperformed other heuristics 

such as FCFS and SPT.  

A multi-agent systems (Confessore et al., 2007) is proposed within a decentralized 

multi project problem. In the model agents are used to communicate with project 

managers and portfolio manager.  

Gonçalves et al., (2008) proposed a GA with random key representation. In order 

to capture real practices, model were capable of integrating due dates, work in 

process, and inventory. Constraints enforcing the release date concept are also 

introduced. 

A hybrid meta-heuristic was proposed by Chen and Shahandashti (2009) where GA 

and SA approaches combined together to give better results. SA approach was 
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integrated to model in order to improve GA’s search capacity with accepting worse 

solutions.  

Within above aforementioned limited works, it can be said that there is a significant 

research potential for RCMPSP. Meta-heuristics have high potential to solve the 

RCMPSP. 

2.6. Parallel Computing Literature on Meta-heuristics 

2.6.1. Introduction  

Different from parallel computing, serial computing is the usual computing, which 

engineers have been using for 50 years. In this type of computing instructions given 

to the computer is running one after another and speed of the computation relies on 

the central processing unit (CPU) clock speed. Traditional computers’ CPUs follow 

Moore’s Law, which describes a long-term trend in the history of computing 

hardware. According to this law, the number of transistors that can be placed on an 

integrated circuit has doubled approximately every two years. The trend has 

continued for more than half a century and is not expected to stop (Arenas et al., 

2011). Nevertheless, physically CPUs has reached its limits. This resulted in a new 

era of computing, which called parallel is computing. In parallel computing, 

instructions can be run on different cores at the same time. It makes possible to 

increase applications’ effectiveness. 

Although as end users, we are not aware of the parallel computing era, it has already 

been started and incorporated with many devices. Electronic devices, multi-core 

PCs, cell phones have all had parallel computing capabilities. Due to the limits of 

current processor clock speed, it is expected that parallel computing will be the new 

era of computers. Therefore, possible parallel computing applications would bring 

new opportunities to the engineers and end users such that faster applications, 

robust calculations and low cost of computing. 

Although GAs  are effective in solving many optimızation problems in science, 

engineering, and business applications, longer execution time to compute each 

fitness value of the problem limits its performance. Due to the subroutine of the 
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algorithm, for each cycle time one fitness calculation is possible. Considering the 

huge amount of data computation together with several iterations, GAs built 

solutions in a considerable time. An approach to use several distributed computers 

together for calculation makes it possible to speed up this computation process. One 

of the main examples of this process can be seen from Kandil and El-Rayes (2006). 

The main objective of Kandil and El-Rayes (2006) work is to develop a parallel 

multi-objective genetic algorithm framework that is capable of distributing the 

computations over a network of computers. Five research questions are examined. 

These are; 

 Can parallel GAs enable an efficient optimization of large-scale projects? 

 What are the time savings achieved? 

 How many processors are needed? 

 What is the effect of parallel GA design on efficiency and effectiveness? 

 Which parallel GA paradigm is more suitable for optimization large-scale 

projects? 

Two parallelism approach was applied namely the global parallel GA and coarse-

grained GA. In the first approach a main processors is selected in charge of all 

others and other processors are used for fitness evaluation. In the second approach, 

the global population is divided into sub-populations called demes that are evolved 

independently. A migration process is applied where best solutions are exchanged 

within clusters.  Results of first approach revealed a time saving of 7.14 times for 

720 activities network. In the second approach three different sized large-scale 

construction project is selected that contains 180, 360 and 720 activities as test 

cases. Elapsed time for 180 activities network in one processors was 4 hours and it 

significantly reduced to 0.5 hours with 5 processors (8 times). Nevertheless, 

computation time of 5 processors and 50 processors was almost same and it was not 

possible to speed up the computations. In the similar manner, for 360 activities 

network almost 8 times speed up was possible up to 5 processors and increasing the 

processors beyond 5 did not decrease the computation time. One of the best results 

of this study was it is shown that computational time savings are possible. Adding 
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more processors although do not increase computational time beyond 5 to 10 

processors, it can increase the quality of the solutions with applied coarse-grained 

model. Global parallel GA approach was found as more efficient but less effective 

way of parallelism compared to coarse-grained model.  

Nevertheless, these networked computers are not easy to manage, requires more 

resource and they are expensive. Some researchers use different platforms in order 

to search solution space more effectively. A low cost computing device which is 

called a Graphical Processing Unit (GPU) is also used by researchers in order to 

increase effectiveness of algorithms together with meta-heuristics.  

A GPU is a device which has multiple cores on it and used for parallel computing 

purposes. It can be programmed with less programing knowledge, it has low initial 

and maintenance cost and ease of use together with personal computers make them 

suitable for general purpose computing.  

2.6.2. Literature Review of GPU Applications  

Although GAs are very effective in searching solutions within a domain, crossover, 

mutation and selection process requires considerable time. For every population 

that has to be evaluated, fitness value should be calculated. Traditional computing 

technique is the evaluation of each fitness value at each cycle time of the computer. 

Fortunately, GAs are suitable for distributing the computational load to different 

cores (Paz and Goldberg, 2000). At this point parallel computing technology brings 

new opportunities. There are three different parallelism approaches available in the 

literature. These are: master-slave model, fine-grained model and island model 

(coarse-grained). With these models it is possible to design different types of GAs. 

The master - slave model includes one population but fitness evaluations are 

distributed among different cores (Figure 2.10). This model has many advantages: 

they explore the search space as a serial GA, it is easy to implement, and it has 

several significant improvements in performance (Pospichal et al., 2010). In fine-

grained model it is assumed that any individual can only mate with individuals 

located on the neighboring processing nodes. Whereas island model includes more 
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than one population, each evolves independently, may have different sizes and they 

may communicate within each other or not.  

 

 

 

 

 

 

Application of GPUs in scheduling is very limited, although meta-heuristic 

applications have large application area. Melab et al., (2012) used GPU on a branch 

and bound algorithm. The focus of the application is on the bounding mechanism 

of branch and bound algorithm, which is the most time consuming part of their 

exploration process. An NVIDIA Tesla C2050 GPU is used for testing and 

significant improvements have been achieved.  

Zajicek and Sucha (2011) used GPUs for the flow shop scheduling problem. They 

used a homogeneous computing strategy where all computations are done on the 

GPU.  

Nesmachnow and Canab´e (2011) used GPUs in order to improve the efficiency of 

two scheduling heuristics.  It is implemented in a heterogeneous computing system 

where more than one computer is available. Experimental results demonstrated that 

the parallel implementations of these two heuristics on GPU provide significant 

improvements compared to the sequential implementations at large scale instances. 

Other GPU applications include a parallel traveling salesman problem of Fujimoto 

and Tsutsui (2011). In this implementation GA is run at m thread blocks where m 

is the number of individuals, each individual is processed by n threads where n is 

Master  

Slave Slave Slave Slave 

CPU 

GPU 

Figure 2.10: Master-slave model of GPU application 
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the number of cities and each thread block performs special crossover and mutation 

operators at the same time.  

A parallel ant colony optimization is proposed by Delevacq et al., (2013). Max–

Min Ant System (MMAS) algorithm augmented with 3-opt local search is used as 

a framework for the implementation of the parallel ants and significant 

improvements have been achieved in term of the efficiency of algorithms. 
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CHAPTER 3 

3. SOLUTION METHODS 

 

This chapter includes the proposed algorithms for the RCMPSP. First of all, a 

mathematical formulation is given. After that, the problem is solved with four 

heuristics, a sole GA, a sole SA, a hybrid GA-SA algorithm and a backward forward 

hybrid GA-SA. In the last section, algorithm is tested on a Graphical Processing 

Unit (GPU) through which it is intended to increase the efficiency of the algorithm. 

Test instances, algorithm details and performance of each algorithm is given in 

corresponding sections. Throughout the study, a new hybrid algorithm is developed. 

GPU implementation of GA is also one of the first research efforts in scheduling 

practices. 

Mathematical model, heuristics and each meta-heuristic are tested with generated 

test instances. In addition, RESCON (Deblaere et al., 2011) and MS Project 

heuristics are used for comparison purposes. For small test instance RESCON can 

obtain optimum results and its meta-heuristic algorithm is accepted as a successful 

method in the literature. Since MS Project’s two heuristics namely standard order 

and ID order heuristics are commonly used in practice, it is an important test to see 

the capacity of tools available in practice and compare them with developed 

algorithm.  

3.1.Test Instances 

Standard Kolish (Kolisch and Sprecher, 1997) test instances which are J30, J60 and 

J120 sets are used for testing purposes. These test instances are extensively used in 

literature and commonly accepted for comparison purposes. Percent deviation from 

optimum results are given if an optimum result is available. Otherwise lower bound 

(CPM based) solutions are used for comparison.  
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Proposed mathematical model is tested with only J30 and J60 problems since large 

test instances cannot be solved with exact methods. Existing results are also given 

and model is compared with literature findings.  

Table 3.1: PSLIB project instances 

Project No PSLIB Instance 

1 J30_2_2 

2 J30_45_8 

3 J60_1_7 

4 J60_48_6 

5 J120_32_4 

 

A new multi-project test instance set is developed for multi-project testing .Twenty 

six test portfolios were generated using five single Kolish benchmark instances. In 

order to generate multi-project test instance five projects consisted of two projects 

with 30 activities, two projects with 60 activities, and one project with 120 activities 

which were randomly selected from well-known instance sets J30, J60, and J120 as 

shown in Table 3.1. The projects of each portfolio and enterprise resource 

constraints are presented in Table 3.2.  

Table 3.2: Multi-project test case details 

Portfolio Projects Total Activity  Resource Availability 

Set 1 1_2 60 13 11 13 16 

Set 2 1_3 90 13 10 12 16 

Set 3 1_4 90 34 28 27 33 

Set 4 1_5 150 19 14 16 22 

Set 5 2_3 90 13 13 14 13 

Set 6 2_4 90 34 32 29 30 

Set 7 2_5 150 19 17 18 19 

Set 8 3_4 120 34 30 29 30 
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Portfolio Projects Total Activity  Resource Availability 

Set 9 3_5 180 19 15 18 19 

Set 10 4_5 180 40 34 33 36 

Set 11 1_2_3 120 13 11 13 15 

Set 12 1_2_4 120 27 24 23 26 

Set 13 1_2_5 180 17 14 16 19 

Set 14 1_3_4 150 27 22 23 26 

Set 15 1_3_5 210 17 13 15 19 

Set 16 1_4_5 210 31 25 25 30 

Set 17 2_3_4 150 27 25 24 24 

Set 18 2_3_5 210 17 15 17 17 

Set 19 2_4_5 210 31 28 27 28 

Set 20 3_4_5 240 31 26 26 28 

Set 21 1_2_3_4 180 23 20 21 23 

Set 22 1_2_3_5 240 16 13 15 17 

Set 23 1_2_4_5 240 26 23 23 26 

Set 24 1_3_4_5 270 26 22 22 26 

Set 25 2_3_4_5 270 26 23 23 24 

Set 26 1_2_3_4_5 300 24 20 21 23 

 

For multi-project test cases Chen and Shahandashti (2009) presented two multi-

project case examples consisted of three test projects including 74 activities and 

two resources, and the second portfolio (real portfolio) consisted of three real 

projects including 130 activities and 11 resources.  These test instances is used for 

comparison of algorithms.    

Table 3.2: (Continued) 
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3.2. A Mathematical Formulation of RCPSP 

Since mathematical model gives insight behavior of the problem itself, a 

mathematical model is given in this section. Considering the previous works 

mathematical model of the problem is regenerated for this problem is as follows; 

 

A finite set which includes activities },,2,1{ nN   and activity relations   

},  :),{( NjijiA   is given. If Aji ),(  that means activity j cannot start before 

i is finished. In addition, resources Kk is given, the availability of resource k is 

shown as kR  and resource usage of activity j is defined as 
kjr ,
 (

kkj Rr  ,0 ) 

3.2.1. Parameters 

),( ANG  Graph with arcs and activities 

},,2,1{ nN   Activities  

 }, ),{( NjijiA 
 Precedence set  

K: Type of resource Kk ,,2,1   

:kR
 
Resource limits of k  

r j,k : Resource usage of activity j from resource k 

:ip
 
 Processing time of activity i  

:M  A large number 

3.2.2. Variables 

:is
 
i start time of task i 

:ic
 
  Finish time of task i 

:maxC
 
Finish time of last dummy activity,  
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:, jix  
If start time of task i is smaller than finish time of task j than 1, jix , 

otherwise 0, jix . That is; 



 


..,0

,1
,

wo

cs
x

ji

ji

  

:, jih If start time of task i is larger or equal than start time of task j 1, jih , 

otherwise 0, jih . That is: 










0..

1
,

wo

ss
h

ij

ji

 

  

:, jiz  
If start time of task i is between the start time and finish time of task j 

1, jiz , otherwise 0, jiz . That is: 










0..

1
,

wo

css
z

jij

ji

 

 Where  binary variables jiy ,
, 

jit ,
}1,0{

 

3.2.3. Constraints  

 iij sps 
 

Aji  ),(
 (3.1) 

 iii spc 
 

Ni  (3.2) 

 icC max  
Ni  (3.3) 

 jiji yMcs ,*
 

Aji  ),(   and ji 
 (3.4) 

 
)1(*1 ,, jiji yMx 
 

Aji  ),( and ji 
 (3.5) 

 jiji tMss ,*1  Aji  ),( and ji 
 (3.6) 

 
)1(*1 ,, jiji tMh   Aji  ),( and ji 

 (3.7) 



49 

 

 
2/)( ,,, jijiji hxz 

 
),( ji

 (3.8) 

 
1,,,  jijiji hxz

 
),( ji

 (3.9) 

 
kik

j

ijkj rRzr ,,, * 
 

),( ki
 (3.10) 

3.2.4. Objective Function 

Min maxC                                                                                                   (3.11) 

Constraint 3.1 states that processing time of activity j should be greater than 

processing time of activity i plus its duration.  Finish time of any activity is 

determined with (3.2) and (3.3) is used for determining the last task finish time, 

(3.4)-(3.9) is used for determining the task ongoing in same time periods, (3.10) is 

an upper limit of resources in order to restrict the total resource usage. 

3.2.5. Performance of Mathematical Model 

The mathematical model is used in Gurobi 5.0 solver and Python 2.7 interface.  

Model is tested with J30 and J60 test instances. Total time is limited to 300 seconds 

for J30 sets and 1000 seconds for j60 sets.  

Table 3.3: Number of optimum solutions and mean CPU times 

Problem Set Number of Problems Optimally 

Solved 

Mean CPU Time 

(Seconds)* 

30 454 14.3 

60 351 19.9 

*CPU time is measured with Intel I5 processor computer 

 

All of the J30 sets is solved with this model and %94.5 of the sets are optimal 

results. In case of J60 sets, only %73 is optimally solved. Mean CPU time for Intel 

Core I5 computer is 14.3 and 19.9 seconds for J30 and J60 sets respectively. Results 

are tabulated at Table 3.3.  
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Table 3.4: Results Comparison between the model and Kone (2011) 

  Problem Set Results 

(This Study)  

Optimum 

(Upper Bounds) 

Deviation 

(%) 

1 J309_2 92 92 0 

2 J3013_1 61 58 5.17 

3 J3013_2 68 62 9.68 

4 J3013_3 80 76 5.26 

5 J3013_4 73 72 1.39 

6 J3013_5 73 67 8.96 

7 J3013_6 68 64 6.25 

8 J3013_7 83 77 7.79 

9 J3013_8 108 106 1.89 

10 J3013_9 71 71 0 

11 J3013_10 64 64 0 

12 J3014_2 54 53 1.89 

13 J3014_7 50 50 0 

14 J3025_5 72 72 0 

15 J3029_1 86 85 1.18 

16 J3029_2 90 90 0 

17 J3029_3 79 78 1.28 

18 J3029_4 105 103 1.94 

19 J3029_6 98 92 6.52 

20 J3029_7 74 73 1.37 

21 J3029_8 86 80 7.5 

22 J3030_10 53 53 0 

23 J3041_10 99 99 0 

24 J3045_2 125 125 0 

25 J3045_6 129 129 0 

26 J3046_7 60 59 1.69 
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Test sets that cannot be solved optimally are compared with the model results of 

Kone (2011) which is based on mix integer programming.  Kone (2011) used 500 

seconds as time limit. Totally %97 of the J30 sets is solved optimally in the model. 

Furthermore, upper bound solutions are given where optimum results are not 

reached. 

 

In order to compare our models’ performance with those sets that cannot be solved 

optimally, optimum results and upper bounds are used whichever is available 

(Table 3.4.). On the average, our model results depicts from optimum and upper-

bounds only %2.68. Results revealed the acceptance of the mathematical model. 

3.3.Heuristic Solutions  

 

In the literature best heuristics in multi-project test cases are found as Minimum 

Slack (MinSlack), Shortest Activity from Shortest Project (SASP) and Maximum 

Total Work Content (MaxTWK).  In order to use heuristic results as comparison, 

multi-project test cases are solved with these three heuristics. Therefore, a heuristic 

solver is developed in order to solve test cases with known heuristics. Basic 

algorithms used in these heuristics are summarized in this section.  

The developed algorithm gives opportunity to choose priority rule at the beginning 

of execution. Results are summarized as ordered activity list. It is written with C++ 

computer language and compiled with Microsoft Visual Studio 2010.  

The algorithm applied in each heuristic rule is explained in the following sections. 

Test results are also tabulated and compared between each heuristics.  

3.3.1.  MinSlack Rule 

First heuristics implemented in the solver is MinSlack rule which is defined as 

“Give higher priority to activity which has minimum slack” by (Kurtulus and Davis, 

1982); 
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Where 

𝑆𝑙𝑎𝑐𝑘 = 𝐿𝐹𝑇 (𝑖, 𝑗) − 𝐸𝐹𝐿(𝑖, 𝑗)                                                                           (3.11) 

LFT denotes late finish time; EFL denotes early finish time of activity.  

The algorithm applied in heuristic solver is as follows; 

1. Apply CPM forward pass 

2. Apply CPM backward pass 

3. Calculate slack of each activity with equation 3.11 

4. Select activities with zero predecessor and move to decision set D.C 

5. Select activity from D.C. which have lowest slack value 

6. Check resource availability; 

6.1.  if available: move activity to started activity set S.A.S, reduce resource 

availability with consumed quantity  

6.2. if not: select other activity from D.C. which have lowest slack value 

7. Go to step 4 

8. Continue until all activities are scheduled. 

3.3.2. SASP Rule 

SASP rule defined as “Give priority to shortest activity from shortest project” by 

(Kurtulus and Davis, 1982); 

𝑀𝑖𝑛 𝐹(𝑖, 𝑗) 𝑤ℎ𝑒𝑟𝑒   𝐹(𝑖, 𝑗) = 𝐶𝑃𝑀(𝑖) − 𝐷(𝑖, 𝑗)                                             (3.12) 

F(i,j) denotes finish time, D(i,j) denoted duration of activity j from project i and 

CPM(i) denoted CPM duration of project i 

Algorithm applied in heuristic solver is as follows; 

1. Apply CPM forward pass 

2. Apply CPM backward pass 

3. Calculate CPM(i) of each project 

4. Calculate F(i,j) of each activity 

5. Select activities with zero predecessor and move to decision set D.C 
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6. Select activity from D.C. which have 𝑀𝑖𝑛 𝐹(𝑖, 𝑗) 

7. Check resource availability; 

7.1.  If available: move activity to started activity set S.A.S, reduce resource 

availability with consumed quantity  

7.2. If not: select other activity from D.C. which have 𝑀𝑖𝑛 𝐹(𝑖, 𝑗) 

8. Go to step 5 

9. Continue until all activities are scheduled. 

3.3.3.  MaxTWK Rule 

Maximum Total Work content (MaxTWK) rule defined as “Give priority to 

activities that have maximum total work content value” by  (Kurtulus and Davis, 

1982); 

Where  

𝑀𝑎𝑥   𝐺(𝑖, 𝑗) = 𝑇𝑊𝐾𝑖 + 𝐷(𝑖, 𝑗) ∗ ∑ 𝑅(𝑖, 𝑗, 𝑘)𝐾
𝑘                                                (3.13) 

𝑇𝑊𝐾𝑖 = ∑ ∑ 𝐷(𝑖, 𝑗) ∗ 𝑅(𝑖, 𝑗, 𝑘)𝑗 ∈ 𝑆.𝐴.𝑆
𝐾
𝑘                                                       (3.14) 

Algorithm applied in heuristic solver is as follows; 

1. Apply CPM forward pass 

2. Apply CPM backward pass 

3. Calculate G(i,j) of each activity 

4. Select activities with zero predecessor and move to decision set D.C 

5. Select activity from D.C. which have 𝑀𝑎𝑥 𝐺(𝑖, 𝑗) 

6. Check resource availability; 

6.1.  if available: move activity to started activity set S.A.S, reduce resource 

availability with consumed quantity  

6.2. if not: select other activity from D.C. which have 𝑀𝑎𝑥 𝐺(𝑖, 𝑗) 

7. Go to step 4 

8. Continue until all activities are scheduled. 
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3.3.4. Backward Forward Heuristic 

Backward planning is constructing a schedule from backward direction where 

dummy finish activity is selected as the beginning of a schedule. An arbitrary long 

duration is selected and schedule is constructed gradually until all activities are 

started. The resulting start times can be adjusted by setting dummy start activities’ 

start time as 0. Forward planning considers a given priority list and constructs 

schedule from forward direction where dummy start activity is selected as 

beginning of a schedule.  

These two directional scheduling heuristics can be combined together and used for 

compressing the schedule. Li and Willis (1992) used this method to improve 

schedule by an iterative process. It has been proposed the backward and forward 

pass will never make the schedule worse as time criterion is considered (Lova and 

Tormos, 2002: Li and Willis, 1992). 

Algorithm applied in Backward Forward (BF) heuristic is as follows; 

1. Given a priority list 

Backward Pass 

2. Set an arbitrary duration, Dl 

3. Start with dummy finish activity  

4. Find activities those have 0 successor 

4.1. From these activities find activity that have highest  finish time 

4.1.1. Check resource availability 

4.1.1.1 If available schedule () activity with latest time possible 

4.1.1.2. If not go to step 4.1. 

5. Continue until all activities are scheduled. 

6. Find start time of dummy start activity, Ds 
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7. Adjust all activities start times by subtracting Ds 

                   Forward Pass 

9. Given backward schedule  

10. Find activities those have 0 predecessor 

10.1. From these activities  find activity that have smallest  start time  

10.1.1.  Check resource availability 

10.1.1.1 If available schedule () activity with latest time possible 

10.1.1.2. If not go to step 10.1 

11. Continue until stopping criteria met 

 

3.3.5. Performance Tests of Heuristics 

Performances of heuristics are tested with created multi-project test instances. We 

can categorize results in two dimensions. First one is the results of single pass 

methods: MinSlack, SASP and MaxTWK. Within these methods generally 

MaxTWK heuristics outperformed the others. Out of 26 test projects 16 of them 

scheduled with minimum time using MaxTWK. Worse performance was from 

SASP heuristic. Second dimension is a multi-pass method which is BF heuristic. It 

outperformed other three single pass methods and obtained best results. Results are 

tabulated at Table 3.5. 

Table 3.5: Heuristics’ results on multi-project test instances 

 MinSlack SASP MaxTWK BF Best 

Set 1 141 169 146 128 BF 

Set 2 104 112 104 104 MinSlack, MaxTWK, BF 

Set 3 112 102 102 92 BF 

Set 4 257 287 253 234 BF 

Set 5 175 170 183 154 BF 

Set 6 119 126 122 112 BF 
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 MinSlack SASP MaxTWK BF Best 

Set 7 301 301 286 267 BF 

Set 8 110 114 103 98 BF 

Set 9 257 292 250 240 BF 

Set 10 174 188 173 164 BF 

Set 11 208 185 196 172 BF 

Set 12 161 159 158 151 BF 

Set 13 337 373 342 322 BF 

Set 14 154 156 142 132 BF 

Set 15 288 347 290 285 BF 

Set 16 231 258 225 220 BF 

Set 17 171 189 170 161 BF 

Set 18 337 389 337 322 BF 

Set 19 253 268 256 240 BF 

Set 20 235 256 224 234 MaxTWK 

Set 21 204 227 198 196 BF 

Set 22 400 462 399 379 BF 

Set 23 296 334 297 288 BF 

Set 24 278 311 282 274 BF 

Set 25 308 345 315 302 BF 

Set 26 345 397 355 341 BF 

 

3.4.Meta-heuristic Solutions 

 

This section includes meta-heuristic solutions to the RCMPSP. A step by step new 

algorithm development process is explained. Final algorithm is based on GA, SA 

and BF improvement techniques along with improvements and new techniques on 

crossover and mutation operators. Therefore, in order to clarify the final algorithm 

each basic step is explained in this section detaily. 

Table 3.5: (Continued) 
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3.4.1. A Sole GA 

Algorithm development process within the meta-heuristic solutions was started 

with a sole GA. To start with a GA, one has to decide the method of GA which 

consists of its chromosome coding and decoding, fitness evaluation procedure, 

crossover, mutation and selection. Before proceeding to details of the algorithm 

mechanism is explained as follows; 

1. Encode schedule into random key based chromosomes 

2. Define fitness function 

3. Define elitism, crossover and mutation ratio 

4. Generate random initial population of chromosomes 

5. Set current population  

5.1. Generate new solutions via crossover and mutation 

5.1.1. If better accept new solutions  

5.1.2. If not reject 

5.2. Select better chromosomes via selection mechanism and copy them to new 

population 

5.3. Protect %5 of chromosomes and copy them to new population 

5.4. Replace current population with new population 

6. Continue until stopping criteria met and go to step 5 

3.4.1.1.Chromosome Coding and Decoding 

Each chromosome consists ∑ 𝑁(𝑖)𝑀
𝑖=1  number of genes where each gene represents 

the priority number of an activity.  Starting from dummy start activity to dummy 

finish activity each gene has a value between 0 and 1. First N1 genes represent 

activities from project 1, second N2 genes represent activities from project 2 and it 

continues to number of project M. General representation can be seen from Figure 

3.1. 
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Figure 3.1: Chromosome representation 

The order of chromosome is defined same as activity numbers, i.e. 5th gene 

represents activity 4 for project 1and so on. Random keys change through GA 

iterations but the order of activities does not change.  Figure 3.1 shows a random 

key representation of two projects where 0.62 represents dummy activity of project 

1, 0.23 represents activity 1 from project 1.  

Coded chromosomes are decoded with an algorithm that is designed to build 

schedule with an S-SGS. Decoding algorithm is as follows; 

1. Read Chromosome 

2. Find the gene that has lowest random key value 

3. Check precedence availability 

3.1. If precedence value is equal to zero, check resource availability 

3.1.1 If there is enough resource, start() activity 

3.1.2. If there is not enough resource go to step 2 

3.2. If precedence value is not equal to zero go to step 2 

4. Continue until all activities are scheduled. 

3.4.1.2.Fitness Evaluation 

Fitness evaluation is particularly at the heart of a GA design and it is the most 

intellectual part of it since most of the selection mechanism is based on fitness 

evaluation. It is basically related with how a solution can be measured in terms of 

its quality. Sometimes it can be a measure of performance of a single solution 
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output. Therefore, fitness function used in this GA is selected as the total duration 

of project portfolio.  

Fitness Function: 

𝐶𝑚𝑎𝑥                              (3.15) 

Fitness calculation algorithm is as follows: 

1. Read activity ordered list 

2. Start activity with earliest time possible 

3. Read last activity’s finish time 

 

3.4.1.3.Crossover 

 One point crossover is applied to chromosomes where crossover ratio is predefined 

before the algorithm is started.  

Algorithm designed for crossover is as follows; 

1. Read crossover ratio 

2. Select father and mother chromosome randomly from population 

3. Randomly generate a number r between 1 and N, where N is the total activity 

number 

4. Change genes from 1 to r and r+1 to N between father and mother chromosomes 

5. Continue until crossover ratio is reached. 

3.4.1.4.Mutation 

Mutation is necessary in any GA in order to prevent premature convergence of the 

algorithm. Therefore, a standard mutation technique is applied. In this technique, 

randomly selected genes are applied to change its random key value. 

Algorithm designed for mutation is as follows; 
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1. Read mutation ratio 

2. Randomly select chromosomes where mutation is applied. 

2.1. Randomly select genes on this chromosome 

2.1.1. Replace its value by a new random key number 

3. Continue until mutation ratio is reached. 

  

3.4.1.5.Roulette Wheel Selection 

The idea of evolutionary computing is to give higher change to better chromosomes. 

Therefore as population evolves better chromosomes should have higher chance to 

live. In order to apply this principle, some kind of selection methods should be used. 

In this simple GA roulette wheel selection method is used through iterations. In this 

method, those schedules which are shorter have high probability of selection.  

Probability of a chromosome selected calculated as: 

 
1

𝑃(𝑖)
        𝑤ℎ𝑒𝑟𝑒          𝑃(𝑖) =

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖)
∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑗)𝑁

𝐽=1
⁄                             (3.16) 

As the equation implies if a solution have good fitness values, its probability value 

would be higher so that probability of selected would be higher.  

Algorithm designed for roulette wheel selection is as follows; 

1. Find all fitness values of a population, 

2. Calculate P(i) of each chromosome, 

3. Sort all chromosomes in ascending form according to P(i) values where  

0≤P(i)≤1 

4. Create a random number where   0≤ r ≤1 

5. Select chromosome that corresponds random number r 
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3.4.1.6.Elitism 

Elitism is passing knowledge from population to population by protecting best 

chromosomes. The amount of elitism is an important parameter. It is generally 

applied up to %10 of a population. Therefore in order to keep best solutions in the 

generation and in order to be inherited to the generations elitism is applied.  

Algorithm designed for roulette wheel selection is as follows; 

1. Find all fitness values of a population, 

2. Sort all chromosomes in ascending form according to fitness value 

3. Protect best %X chromosomes from crossover and mutation 

3.4.1.7.Parameter Setting 

For test instances 1000, 10000 and 50000 number of schedule generated and it is 

used together with a crossover ratio if %80, mutation ratio of 0.003 and elitism ratio 

of %5. Population size is selected as 100. 

3.4.1.8.Performance of the Algorithm 

Table 3.6: GA versus heuristics performances 

Test # GA MinSlack SASP MaxTWK BF % Deviation 

From Best 

Set 1 119 141 169 146 128 7.03% 

Set 2 88 104 112 104 104 15.38% 

Set 3 83 112 102 102 92 9.78% 

Set 4 217 257 287 253 234 7.26% 

Set 5 140 175 170 183 154 9.09% 

Set 6 104 119 126 122 112 7.14% 

Set 7 247 301 301 286 267 7.49% 

Set 8 92 110 114 103 98 6.12% 

Set 9 218 257 292 250 240 9.17% 

Set 10 152 174 188 173 164 7.32% 

Set 11 155 208 185 196 172 9.88% 

Set 12 140 161 159 158 151 7.28% 
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Test # GA MinSlack SASP MaxTWK BF % Deviation 

From Best 

Set 13 296 337 373 342 322 8.07% 

Set 14 123 154 156 142 132 6.82% 

Set 15 268 288 347 290 285 5.96% 

Set 16 206 231 258 225 220 6.36% 

Set 17 152 171 189 170 161 5.59% 

Set 18 303 337 389 337 322 5.90% 

Set 19 228 253 268 256 240 5.00% 

Set 20 217 235 256 224 234 3.13% 

Set 21 186 204 227 198 196 5.10% 

Set 22 350 400 462 399 379 7.65% 

Set 23 272 296 334 297 288 5.56% 

Set 24 256 278 311 282 274 6.57% 

Set 25 288 308 345 315 302 4.64% 

Set 26 328 345 397 355 341 3.81% 

Average      7.04% 

 

It can be seen from table 3.6 that % difference from best heuristics, which is 

calculated as a percentage of difference between GA and best heuristic, has an 

average value of %7.04. That is a sole GA can find as an average %7.04 better 

solutions for test cases. Moreover, this value increases for some test cases up to 

%15.38. Therefore, GA outperformed all other heuristics. 

 

Table 3.6: (Continued) 
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Table 3.7: GA versus MS Project heuristics comparison 

 GA MS Project Comparison 

 ID Order Standard 

Order 

GA-ID 

Order 

GA-Standard 

Order 

Set 1 119 143 139 16.78% 14.39% 

Set 2 88 97 96 9.28% 8.33% 

Set 3 83 99 94 16.16% 11.70% 

Set 4 217 280 258 22.50% 15.89% 

Set 5 140 169 156 17.16% 10.26% 

Set 6 104 119 111 12.61% 6.31% 

Set 7 247 300 294 17.67% 15.99% 

Set 8 92 104 103 11.54% 10.68% 

Set 9 218 274 271 20.44% 19.56% 

Set 10 152 193 164 21.24% 7.32% 

Set 11 155 195 200 20.51% 22.50% 

Set 12 140 173 161 19.08% 13.04% 

Set 13 296 352 375 15.91% 21.07% 

Set 14 123 147 138 16.33% 10.87% 

Set 15 268 348 364 22.99% 26.37% 

Set 16 206 254 234 18.90% 11.97% 

Set 17 152 173 174 12.14% 12.64% 

Set 18 303 368 377 17.66% 19.63% 

Set 19 228 272 251 16.18% 9.16% 

Set 20 217 261 246 16.86% 11.79% 

Set 21 186 210 208 11.43% 10.58% 

Set 22 350 431 458 18.79% 23.58% 

Set 23 272 323 313 15.79% 13.10% 

Set 24 256 307 302 16.61% 15.23% 

Set 25 288 340 343 15.29% 16.03% 

Set 26 328 390 382 15.90% 14.14% 

Average    16.76% 14.31% 
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When the results are investigated, it can be seen that GA results are far better from 

MS Projects’ heuristics. This difference is %26.37 at test instance 15 and % 6.31 at 

test instance 6. On the average, GA is %16.76 better than ID-Order heuristic results 

and %14.31 better than standard order heuristics. Therefore, sole GA outperformed 

the known software packages’ heuristics. 

Table 3.8 is constructed in order to compare Chen and Shahandashti (2009) real test 

case with our results. It can be seen that random key based sole GA performed better 

compared with their results. Test is run 10 times and average and best results are 

tabulated. 

Table 3.8: Comparison of GA results of this study with Chen and Shahandashti 

(2009) 

Method Best Average 

Genetic algorithm 547 544.1 

Genetic Algorithm (this study) 537 542.7 

3.4.2.  A Sole SA 

Simulated Annealing (SA) is a stochastic meta-heuristic algorithm inspired by the 

physical process of annealing (Kirkpatrick et al., 1983; Cerny, 1985).  SA has fine 

tuning capabilities, and is usually capable of escaping of local optima for locating 

a good approximation to the global optimum (Hwang and He, 2006). 

Basic idea behind a SA algorithm is to accept worse solutions according to 

metropolis criterion (Metropolis et al., 1953).  Probability of accepting worse 

solutions are high at the beginning and it is decreased with a chosen cooling schema.  

A linear cooling schema is as follows: 

𝑇𝑖+1 = 𝛼 𝑥 𝑇𝑖                                   (3.17) 

where T is temperature, i is iteration number and 0<α<1 

New solution is formed with previous solutions by changing activity orders. After 

forming new solution cost function is calculated as: 
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𝛿𝐹 = 𝐹𝑖+1 − 𝐹𝑖                      (3.18) 

With cost function at hand, probability of new solution accepted is calculated as: 

𝑃 = 𝑒
−𝛿𝐹

𝑇⁄                                                                                                         (3.19) 

A schedule is represented with a vector consisting of random key values of activities 

which are starting from dummy start activity 0 to dummy finish activity N. New 

solution is generated via randomly changing vector values based on a predefined 

changing ratio.  

With decreasing temperature probability value also decreases and probability of 

accepting worse solution decreases. For early stages of iterations probability of 

accepting worse solution is higher than late stages of iteration. 

Algorithm designed for SA is as follows: 

1. Initiate initial temperature T0 ,final temperature Tf, max. number of iterations N and 

initial schedule  

2. Calculate new solution by changing random key values of a schedule 

2.1. Calculate 𝛿𝐹 

2.1.1. Accept new solution if 𝛿𝐹 < 0 (better solution) 

2.1.2. If not 

2.1.2.1. Generate a random number, r 

2.1.2.2. Accept new solution if 𝑃 = 𝑒
−𝛿𝐹

𝑇⁄ > 𝑟 

2.1.2.2.1. If not reject solution 

2.2. Update Fi, Reduce T 

2.3. Continue until T<Tf and n<N 
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3.4.2.1.Parameter Setting 

Choice of parameters is crucially important in a SA algorithm. If T is selected too 

high p value converge to 1 which means almost all worse solutions will be accepted. 

Nevertheless, if T is selected too small p value converge to 0 which means almost 

all solutions would be rejected. Iteration number is also important since too many 

iterations would lead time loss, too few iterations would lead system not to converge 

near optimum values. Therefore proper setting of T is important. Mostly try and 

error method would help to optimize T and N parameters.  

For test instances a linear cooling schema with α=0.99, Ti=4000 and Tf=0 is 

selected.  Total of 5000 iterations used for stopping criterion.  

3.4.2.2.Performance of Algorithm 

Performance of SA algorithm is tested against the results obtained with GA 

algorithm. It can be seen from Table 3.9 that GA performed better in all cases except 

in set 1. GA on the average performed %5.89 better. GA outperformed with %11.97 

on the problem instance 16. 

Table 3.9: GA-SA comparison 

Set GA SA GA-SA Performance Comparison 

Set 1 119 119 0.00% 

Set 2 88 89 1.12% 

Set 3 83 92 9.78% 

Set 4 217 234 7.26% 

Set 5 140 150 6.67% 

Set 6 104 112 7.14% 

Set 7 247 258 4.26% 

Set 8 92 99 7.07% 

Set 9 218 234 6.84% 

Set 10 152 167 8.98% 

Set 11 155 163 4.91% 

Set 12 140 149 6.04% 
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Set GA SA GA-SA Performance Comparison 

Set 13 296 310 4.52% 

Set 14 123 139 11.51% 

Set 15 268 279 3.94% 

Set 16 206 234 11.97% 

Set 17 152 159 4.40% 

Set 18 303 330 8.18% 

Set 19 228 238 4.20% 

Set 20 217 234 7.26% 

Set 21 186 195 4.62% 

Set 22 350 369 5.15% 

Set 23 272 290 6.21% 

Set 24 256 273 6.23% 

Set 25 288 293 1.71% 

Set 26 328 339 3.24% 

Average   5.89% 

 

SA algorithm is also tested with Chen and Shahandashti (2009) real portfolio test 

set and results are tabulated at Table 3.10.  

Table 3.10: Comparison of SA results of this study with Chen and Shahandashti 

(2009) 

Method Best Average 

Simulated annealing 544 547.9 

Modified simulated annealing-1 540 544.3 

Modified simulated annealing-2 542 555.9 

Simulated annealing (this study) 546 551.3 

 

Table 3.9: (Continued) 
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3.4.3.  A hybrid GA-SA Algorithm 

A sole SA has low search efficiency as it maintains only one solution at each 

iteration.  GA on the other hand, can contain knowledge of previous good solutions, 

and is suitable for implementing search in parallel architecture. However, a sole GA 

can be restrictive since it has limited fine tuning capabilities, and may suffer from 

rapid population convergence to local optima (Rudolph, 1994; Leung et al., 1997).   

In recent years, several skilled combinations of GA and SA were proposed to 

achieve an efficient search algorithm by integrating the complementary strengths 

of both methods.  The results of the hybridizing mechanism GA and SA have been 

promising as the hybrid algorithm is capable of escaping local optima (deficiency 

of a sole GA), has fine-tuning capability (deficiency of a sole GA), can implement 

search in parallel architecture (deficiency of a sole SA) and can use knowledge of 

previous solutions (deficiency of a sole SA) (Wang and Zeng 2001; Chen et al. 

2005; Hwang and He 2006; Han and Sun 2006; Chen and Shahandashti, 2009; 

Sonmez and Bettemir, 2012). 

The idea behind GA-SA hybrid algorithm is increasing GA’s fine tuning capability 

via accepting worse solutions with SA principles.  

1. Random key based chromosome representation is used as coding 

mechanism. Fitness evaluation is the finish time of last activity, 

crossover, mutation and roulette wheel selection mechanism is all same 

as defined in previous chapters. %5 elitism is used in order to pass best 

knowledge from population to population. Algorithm designed for GA-

SA hybrid algorithm is as follows; Initiate initial temperature T0 ,final 

temperature Tf, max. number of iterations N and initial schedule 

2. Encode schedule into random key based chromosomes 

3. Define fitness function 

4. Define elitism, crossover and mutation ratio 

5. Generate random initial population of chromosomes 

6. Set current population  

6.1. Generate new solutions via crossover and mutation 
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6.1.1. If better accept new solutions  

6.1.2. If not  

6.1.2.1. Generate a random number, r 

6.1.2.2.   Accept new solution if 𝑃 = 𝑒
−𝛿𝐹

𝑇⁄ > 𝑟 

6.2. Select better chromosomes via selection mechanism and copy them to new 

population 

6.3. Protect %5 of chromosomes and copy them to new population 

6.4. Replace current population with new population 

7. Reduce T, continue until stopping criteria met and go to step 5 

 

3.4.3.1.Performance of the Algorithm 

Performance of GA-SA algorithm is tested against the results obtained with sole 

GA and sole SA algorithm. It can be seen from Table 3.11 that GA-SA performed 

better in all cases. GA-SA on the average performed %3.26 better. It can be 

concluded that GA and SA hybrid algorithm performs better and this performance 

improvement is significant when we compared with set 5 results which is %6.06.   

Table 3.11: GA-SA comparison with sole GA and sole SA 

Set GA SA GA-SA GA-SA Performance 

Comparison 

Set 1 119 119 115 3.48% 

Set 2 88 89 88 0.00% 

Set 3 83 92 83 0.00% 

Set 4 217 234 211 2.84% 

Set 5 140 150 132 6.06% 

Set 6 104 112 101 2.97% 

Set 7 247 258 241 2.49% 

Set 8 92 99 89 3.37% 

Set 9 218 234 214 1.87% 

Set 10 152 167 148 2.70% 

Set 11 155 163 150 3.33% 
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Set GA SA GA-SA GA-SA Performance 

Comparison 

Set 12 140 149 137 2.19% 

Set 13 296 310 281 5.34% 

Set 14 123 139 120 2.50% 

Set 15 268 279 255 5.10% 

Set 16 206 234 202 1.98% 

Set 17 152 159 146 4.11% 

Set 18 303 330 289 4.84% 

Set 19 228 238 222 2.70% 

Set 20 217 234 207 4.83% 

Set 21 186 195 177 5.08% 

Set 22 350 369 332 5.42% 

Set 23 272 290 265 2.64% 

Set 24 256 273 249 2.81% 

Set 25 288 293 281 2.49% 

Set 26 328 339 317 3.47% 

Average    3.26% 

 

Table 3.12 summarized the result comparison of this study with the work of Chen 

and Shahandashti (2009). Although the best result cannot be obtained within this 

study, on the average with 10 consecutive runs there has been significant 

improvement. 

Table 3.12: Comparison of GA-SA results with Chen and Shahandashti (2009) 

Method Best Average 

Genetic algorithm/simulated annealing 525 544.0 

GA-SA (this study) 527 535.4 

Table 3.11: (Continued) 
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3.4.4.  A Backward-forward Hybrid GA-SA Algorithm 

When we examine the previous algorithms it can clearly be observed that BF 

heuristic outperformed in all tests sets when compared with other heuristics. In the 

same manner, although GA and SA performed solely better against heuristics, if a 

hybrid combination which brings strengths of each algorithm together has been 

made results behave better than GA and SA alone. BF heuristic is fast, robust and 

has fine tuning capabilities compared to other heuristics. In addition, it can be 

adapted to GA solutions easily. Therefore, in order to use complementary strength 

of heuristics and meta-heuristics a new optimization strategy is developed. In this 

method, together with GA and SA hybrid algorithm, backward- forward scheduling 

iteration method is hybridize for solution of RCMPSP. The proposed backward-

forward hybrid genetic algorithm (BFHGA) is described in the following sections.

 

 

Figure 3.2: Example problem and chromosome representation 
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The first step in algorithm is backward scheduling. Backward scheduling is 

constructing a schedule from backward direction where dummy finish activity is 

selected as beginning of a schedule and schedule is constructed with backward 

direction, from finish to start direction.  An arbitrary long duration is selected as a 

time buffer and schedule is constructed gradually until all activities are scheduled 

to start. All precedence relations are reversed and activities are scheduled as late as 

possible in the reverse time direction according to the priority list. The resulting 

schedule can be adjusted easily such that the start time of the dummy start activity 

equals 0 (Demeulemeester and Herroelen, p.275, 2002). The resulting start times 

can be adjusted by setting dummy start activities start time as 0.  

The method will be explained with an example and differences from sole GA and 

sole SA will be highlighted. To start with the BFHGA, below example can be 

considered. 

Fig. 3.2. shows the example resource-constrained multi-project scheduling problem 

and its chromosome representation consisting of two projects. The first project is 

composed of five non-dummy activities, and the second project is composed of 

seven non-dummy activities. There is only one common resource and the 

availability of R1 in each time period is seven units. In the chromosome 

representation, the first gene represents the priority of the first non-dummy activity 

of project 1 (activity 1–2), the second gene represents the priority of the second 

non-dummy activity of project 1 (1–3), the sixth (N1 =1) gene represents the 

priority of the first non-dummy activity of project 2 (2–2), and finally the twelfth 

(N1 =N2) gene represents the last non-dummy activity of project 2 (2–8) 

The proposed backward-forward hybrid genetic algorithm (BFHGA) transforms 

random key chromosome representation into a feasible schedule by using the 

backward-forward (BF) scheduling method through the following steps: 
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1. Set the portfolio duration to an arbitrary large duration to start backward 

scheduling.  

2. Let nsij be the number of backward-unscheduled successors for activity j of project 

i. Among the activities with nsij = 0 in the backward unscheduled activities list, select 

the activity with the largest random key value.  

2.1. Backward schedule the selected activity in its latest precedence and resource 

feasible start time in the reverse time direction.  

2.2. Decrease the nsij values of its predecessors by one, and remove the activity 

from the backward unscheduled activities list.  

3. Repeat step 2 until all the activities in the backward unscheduled activities are 

backward scheduled. Complete backward scheduling by adjusting the schedule so 

that the start time of the super-dummy start node is equal to zero.  

4. Among the activities in the forward unscheduled activities list, select the activity 

with the earliest start time (according to the backward schedule). In case of a tie, 

select the activity with smaller activity number. If both activities have the same 

activity number, select the activity with the smallest project number. Forward 

schedule the selected activity in its earliest precedence and resource feasible start 

time, and remove the activity from the forward unscheduled activities list. 

 5. Repeat step 4 until all the activities in the forward unscheduled activities list are 

forward scheduled 

        

The projects that do not start at the same time can be solved by imposing start times 

to the dummy start nodes of projects. The portfolio completion time is set as 30 

days arbitrarily, to start backward scheduling. In the initial backward unscheduled 

activities list, all of the non-dummy activities are included. In the backward list, 

activities 1–5, 1–6, 2–6, 2–7, and 2–8 have a number of backward-unscheduled 

successors (nsij) values of zero. Among these activities, 2–7 has the highest random 

key value and is backward scheduled first to start at day 26 as shown in Figure 3.3.  
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Figure 3.3: Backward scheduling part 1 

Once 2–7 is scheduled, the ns24 value is decreased by one to zero, and 2–7 is 

removed from the backward list. Among activities 1–5, 1–6, 2–4, and 2–6, activity 

1–6 has the highest random key value and is backward scheduled next to start at 

day 22, which is the latest time that this activity can start without violating the 

resource constraint of 7. After 1–6 is scheduled, the nsij values of 1–2, 1–3, and 1–

4 are decreased by one to zero, and 1–6 is removed from the backward list. The 

remaining activities are backward scheduled to their possible latest start times 

similarly (Figure 3.4).  

 

Figure 3.4: Backward scheduling part 2 

Finally, the schedule is adjusted so that the start time of the super-dummy start node 

is equal to zero. The portfolio duration is obtained as 25 days as shown in figure. 

3.3. The start times of activities that are obtained in backward scheduling are used 

to determine the activity priorities in forward scheduling improvement. In the initial 

forward unscheduled activities list, all of the non-dummy activities are included. 

Activity 2–3, which has the earliest start time in backward scheduling, is scheduled 
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first to start at day 0. Once activity 2–3 is scheduled, it is re moved from the forward 

unscheduled activities list. Activity 2–4 is forward scheduled second, and activity 

1–5 is scheduled third. The activities 2–2 and 2–6 both have a start date of 6. 

Because the activity number of 2–2 is smaller, this activity is scheduled to start at 

date 0. Next, activity 2–6 is scheduled to start at date 6, which is the earliest time 

that this activity can start without violating the resource constraint. The remaining 

activities are scheduled to their possible earliest start times as shown in Figure 3.5, 

and the portfolio duration is decreased to 24 days at the end of the forward 

improvement. 

 

Figure 3.5: Final schedule 

3.4.4.1.Crossover, Mutation and Selection  

The backward-forward hybrid genetic algorithm creates the initial population by 

generating PS chromosomes randomly, where PS is the population size. The 

random key representation of each chromosome is transformed into a feasible 

schedule by the backward-forward scheduling method. The portfolio durations of 

each chromosome are used for fitness evaluation. The chromosomes that will 

survive in the next generation are determined by elitist selection method. The top 

10% of the chromosomes are copied from the current generation into the next.  

The remaining chromosomes that will survive in the next generation are determined 

by the roulette wheel selection. New chromosomes are created by crossover or 

mutation operators. Hartmann (1998) has shown that a two-point crossover operator 

performs better than the one-point and uniform crossover operators for the RCPSP. 
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Hence, in BFHGA, two chromosomes are combined by using a two-point crossover 

operator. Mutation is performed by changing a number of random keys of selected 

chromosomes with new random keys. 

3.4.4.2.Integration of Simulated Annealing  

The SA is integrated into GA during mutation in the proposed hybrid algorithm. In 

BFHGA, two types of mutations are performed. The first type of mutation is 

performed after a crossover operation when there is not sufficient diversification 

between a child and one of its parents. The elitist selection method adopted in 

BFHGA can lead to a homogeneous population that may result in rapid population 

convergence to a local optimum. Hence, the first type of mutation is performed on 

a child after the crossover operation, when the mean absolute difference of random 

key values of a child and one of its parents (father or mother) is smaller than a 

predefined diversification value τ (Equation 3.19). The value of τ is reduced based 

on a cooling scheme defined by temperature t.  

Do Mutation 

      While      ∑ |𝑅𝐾𝑐ℎ𝑖𝑙𝑑 − 𝑅𝐾𝑝𝑎𝑟𝑒𝑛𝑡𝑠|𝑁
𝑖=0

𝑁
⁄ ≤ τ                           (3.19) 

 

The second type of mutation is the regular mutation that is performed randomly 

based on a predefined mutation rate. The main objective of both types of mutations 

is to achieve diversification for escaping premature convergence to achieve the 

global optimum or near-global optimum results.  

In BFHGA, every mutation that leads to a chromosome with a better (or equal) 

fitness evaluation function value is accepted. However, a mutation that leads to a 

chromosome with a worse fitness evaluation function value may be accepted or  
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Figure 3.6: Flow of BFHGA 
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rejected (not executed) based on a decision function (DF1). The general flow of 

BFHGA can be seen at Figure 3.6 and the decision function DF1 is defined in 

Equation (3.20) as follows:  
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3.4.4.3.Performance of Algorithm 

The initial comparisons include four single project RCPSP case examples.  The 

sources of the examples were Anagnostopoulos and Koulinas (2012), 

Christodoulou (2010), Hegazy (1999), and Leu and Yang (1999) respectively.  The 

single project examples included between 17 and 25 activities, and one and six 

resources. The optimal solutions for the first three case examples were obtained by 

using RESCON (Deblaere et. al. 2011).  RESCON can obtain the optimal solutions 

for relatively small resource constrained project networks including finish to start 

precedence relations.  The fourth single project case example was not solved by 

RESCON, since this example included start-to-start type of precedence relations. 

As can be summarized at Table 3.13, the BFHGA algorithm was able to obtain the 

optimal solutions of 54, 133, and 43 days for single-project case examples one, two, 

and three, respectively. The algorithm also successfully determined the best 

available solution (upper bound) 35 days for case example four. BFHGA was able 

to obtain successful solutions within less than 0.5 CPU seconds for the single case 

examples.  

Among the previous methods, the greedy randomized adaptive search procedure 

(GRASP) inspired hyper heuristic also obtained the optimal results for the first three 

examples, and GA2 (Leu and Yang 1999), and GA3 (Abido and Elazouni 2010) 
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achieved a solution of 35 days for the fourth case example  The ant colony 

optimization (ACO) (Christodoulou 2010) was able to determine a solution of 141 

days for the second case example, and GA1 (Hegazy 1999) was able to achieve a 

solution of 44 days for the third case example.  

Table 3.13: Performance comparison of BFHGA 

Case Source Optimal BFHGA 

(This Study) 

Time 

1 Anagnostopoulos and Koulinas (2012) 54 54 0.345 

2 Christodoulou (2010) 133 133 0.028 

3 Hegazy (1999) 43 43 0.432 

4 Leu and Yang (1999) NA 35 0.346 

 

Chen and Shahandashti (2009) presented two multiproject case examples to 

compare performances of five meta-heuristic methods, namely, a sole genetic 

algorithm, a sole simulated annealing algorithm, a hybrid genetic algorithm with 

simulated annealing, an arithmetically improved modified simulated annealing 

algorithm (modified simulated annealing), and a logarithmically improved 

modified simulated annealing algorithm (modified simulated annealing-2).  

Table 3.14: Comparison of BFHGA results with Chen and Shahandashti (2009) 

Test Case  

Method Best Average 

Genetic algorithm 133 135.5 

Simulated annealing 134 135.4 

Genetic algorithm/simulated annealing 132 134.5 

Modified simulated annealing-1 133 134.2 

Modified simulated annealing-2 130 133.0 

BFHGA (This Study)* 124 125.1 

*Solution can be found at Appendix. 
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Results of BFHGA are presented along with the results of the five previous meta-

heuristics for test portfolio and real portfolio in Tables 3.14 and 3.15 respectively. 

The stopping criterion for BFHGA was set as 500,000 schedules for multi-project 

case examples. Results indicate that BFHGA significantly out performs state-of-

the-art meta-heuristics for project portfolio duration minimization. Among the five 

previous meta-heuristics the modified simulated annealing-2 method had the best 

performance for test portfolio and was able to find the best solution of 130 days, 

and an average duration of 133.0 days. BFHGA obtained a best solution of 124 days 

as shown in Table 3.14, and an average duration of 125.1 days with a standard 

deviation of 0.6 for the test portfolio.  

The best performing previous method for the real portfolio was the genetic 

algorithm/simulated annealing method. The genetic algorithm/simulated annealing 

method was able to find a best solution of 525 days, and an average duration of 

544.0 days within 606 seconds.  BFHGA achieved a best solution of 517 and an 

average duration of 523.3 days with a standard deviation of 3.1. Because 3.06 GHz 

is used in experiments the CPU time was adjusted for 1.83-GHz clock speed. The 

average adjusted CPU time of BFHGA in 10 experiments for the real portfolio was 

139 seconds. The comparisons validate the effectiveness of the proposed algorithm 

for the RCMPSP. 

Table 3.15: Comparison of BFHGA results with Chen and Shahandashti Real 

Case (2009) 

Method Best Average Time (Secs) 

Genetic algorithm 547 544.1 491 

Simulated annealing 544 547.9 592 

Genetic algorithm/simulated annealing 525 544.0 606 

Modified simulated annealing-1 540 544.3 NA 

Modified simulated annealing-2 542 555.9 NA 

BFHGA (This Study)** 517 523.3 139* 

*Adjusted CPU time 

**Solution can be found at Appendix. 
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Table 3.16: Performance comparison based on BFHGA as upper bound 

%Deviation from BFHGA (1,000 Schedule) 

Set MINSLK SASP MAXTWK MSP-STD BF 

Set 1 20.5 44.4 24.8 18.8 9.4 

Set 2 18.2 27.3 18.2 9.1 18.2 

Set 3 33.3 21.4 21.4 11.9 9.5 

Set 4 17.4 31.1 15.5 17.8 6.8 

Set 5 25.9 22.3 31.7 12.2 10.8 

Set 6 15.5 22.3 18.4 7.8 8.7 

Set 7 21.9 21.9 15.8 19.0 8.1 

Set 8 22.2 26.7 14.4 14.4 8.9 

Set 9 17.4 33.3 14.2 23.7 9.6 

Set 10 15.2 24.5 14.6 8.6 8.6 

Set 11 31.6 17.1 24.1 26.6 8.9 

Set 12 15.0 13.6 12.9 15.0 7.9 

Set 13 15.4 27.7 17.1 28.4 10.3 

Set 14 26.2 27.9 16.4 13.1 8.2 

Set 15 9.1 31.4 9.8 37.9 8.0 

Set 16 11.6 24.6 8.7 13.0 6.3 

Set 17 14.0 26.0 13.3 16.0 7.3 

Set 18 12.7 30.1 12.7 26.1 7.7 

Set 19 12.9 19.6 14.3 12.1 7.1 

Set 20 11.9 21.9 6.7 17.1 11.4 

Set 21 12.7 25.4 9.4 14.9 8.3 

Set 22 17.3 35.5 17.0 34.3 11.1 

Set 23 9.6 23.7 10.0 15.9 6.7 

Set 24 9.0 22.0 10.6 18.4 7.5 

Set 25 8.5 21.5 10.9 20.8 6.3 

Set 26 7.5 23.7 10.6 19.0 6.2 

Average P.D.(%): 16.6 25.7 15.1 18.2 8.8 

Average CPU (S.): 0.1 0.1 0.1 13.4 0.7 
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The results of the computational experiments for project portfolio duration 

minimization are presented in Table 3.16. BFHGA obtained the best solution for all 

of the 26 test portfolios. Hence, the percentage of deviation of the heuristics from 

the solution obtained by BFHGA (upper bound) is used as a performance measure 

in comparisons.  The computational test results reveal the performance gap between 

the state-of-art heuristics and the proposed BFHGA. The CPU time for BFHGA 

varied between 0.2 and 1.5 s for 1,000 schedules, and the average CPU time was 

0.7 s with a standard deviation (SD) of 0.3. The maximum amount of memory 

(RAM) usage of BFHGA for the benchmark instances was 0.05 GB. Since BFHGA 

stores only 100 solutions at a time, it requires low memory usage. The 

computational comparisons confirm the effectiveness of the BFHGA 

 

Table 3.17: Performance comparison of BFHGA with other methods 

Set GA SA GA-SA BFHGA BFHGA 

Performance 

Comparison 

Set 1 119 119 115 113 1.74% 

Set 2 88 89 88 86 2.27% 

Set 3 83 92 83 82 1.20% 

Set 4 217 234 211 208 1.42% 

Set 5 140 150 132 131 0.76% 

Set 6 104 112 101 101 0.00% 

Set 7 247 258 241 238 1.24% 

Set 8 92 99 89 88 1.12% 

Set 9 218 234 214 210 1.87% 

Set 10 152 167 148 148 0.00% 

Set 11 155 163 150 149 0.67% 

Set 12 140 149 137 136 0.73% 

Set 13 296 310 281 279 0.71% 

Set 14 123 139 120 119 0.83% 
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Set GA SA GA-SA BFHGA BFHGA 

Performance 

Comparison 

Set 15 268 279 255 253 0.78% 

Set 16 206 234 202 200 0.99% 

Set 17 152 159 146 146 0.00% 

Set 18 303 330 289 288 0.35% 

Set 19 228 238 222 218 1.80% 

Set 20 217 234 207 205 0.97% 

Set 21 186 195 177 177 0.00% 

Set 22 350 369 332 329 0.90% 

Set 23 272 290 265 262 1.13% 

Set 24 256 273 249 248 0.40% 

Set 25 288 293 281 278 1.07% 

Set 26 328 339 317 314 0.95% 

Average     0.92% 

 

Table 3.17. shows the results of GA, SA, GA-SA and BFHGA together. As can be 

seen that, although sole GA and SA results are challenging compared with ordinary 

heuristics, hybrid algorithm outperforms others. Hybrid algorithm with BF 

improvement and GA-SA hybrid and ımproved crossover methods further 

improved the algorithm’s performances. Final algorithm has on average %0.92 

better results compared with GA-SA hybrid one. 

 

 

 

Table 3.17 :  (Continued) 
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Table 3.18: Performance comparison of RESCON with BFHGA 

Test Set BFHGA  RESCON 

Results 

 %Deviation from best solution 

 Time Result Tabu Search Best BFHGA TABU 

Set 1 1,4 113 115 113 0.00% 1.77% 

Set 2 2,2 86 88 86 0.00% 2.33% 

Set 3 2,2 82 84 82 0.00% 2.44% 

Set 4 4,6 208 213 208 0.00% 2.40% 

Set 5 2,3 131 133 131 0.00% 1.53% 

Set 6 2,3 101 102 101 0.00% 0.99% 

Set 7 4,8 238 242 238 0.00% 1.68% 

Set 8 3,2 88 90 88 0.00% 2.27% 

Set 9 5,9 210 217 210 0.00% 3.33% 

Set 10 5,8 148 146 146 1.37% 0.00% 

Set 11 3,4 149 152 149 0.00% 2.01% 

Set 12 3,5 136 138 136 0.00% 1.47% 

Set 13 6,2 279 284 279 0.00% 1.79% 

Set 14 4,5 119 122 119 0.00% 2.52% 

Set 15 7,5 253 259 253 0.00% 2.37% 

Set 16 7,4 200 201 200 0.00% 0.50% 

Set 17 4,6 146 148 146 0.00% 1.37% 

Set 18 7,8 288 300 288 0.00% 4.17% 

Set 19 7,6 218 219 218 0.00% 0.46% 

Set 20 9,0 205 208 205 0.00% 1.46% 

Set 21 6,0 177 180 177 0.00% 1.69% 

Set 22 9,4 329 332 329 0.00% 0.91% 

Set 23 9,4 262 267 262 0.00% 1.91% 

Set 24 10,9 248 251 248 0.00% 1.21% 

Set 25 11,0 278 281 278 0.00% 1.08% 

Set 26 13,2 314 319 314 0.00% 1.59% 

Avr.      1.74% 
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Another result comparison is made with RESCON results and BFHGA (Table 

3.18). The results are compared with the RESCON’s tabu search algorithm by 

running them exactly same time on the same computer. Out of 26 test cases BFHGA 

found 25 test case better than tabu search algorithm. On the average BFHGA is 

found %1.74 better than tabu search algorithm. This result revealed again the 

improved performance of final algorithm. 

Algorithm performance is also tested with optimum results of J30 test sets. 462 of 

all 480 J30 sets are solved optimally within 13 seconds. 18 of them could not be 

solved optimally but as an average of 480 sets, BFHGA depicts from optimum 

results only %0.06.  

3.4.5. GPU Implementation of BFHGA  

3.4.5.1.Application of BFHGA on GPU 

As far as the literature is concerned, GPU application with RCMPSP will be the 

first work. A master-slave model with homogeneous computing strategy is selected 

as its implementation is easy and have higher effectiveness compared to coarse-

grained models (Kandil and El-Rayes, 2006).  

The model works with N population sizes where N is also the block number. CUDA 

(Computer Unified Device Architecture) is selected as framework, the C language 

is selected as programing language and a GPU of Tesla C 2050 is used together 

with I7 Core CPU. 

3.4.5.2.Theory 

In this part of the research the master-slave model implemented in this research is 

given. In master-slave computation model, a CPU is in the heading position and 

GPU cores work as slaves. Due to the high computational effort, fitness evaluation 

is directed to slaves and master CPU is responsible for crossover, selection and 

mutation operators as well as controlling the whole iteration process. In this model 

as N increases, thread number increases and parallelism increases. The efficiency 

of the algorithm is expected to increase as thread number increases. Consider the 

Figure 3.7 where a parallel GA is schematized. In traditional computing, after 
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random population is produced each individual’s performance is evaluated by the 

fitness function. After that, known fitness values are used for selection. Crossover 

and mutations are done in regular ways. Nevertheless, in parallel computing 

strategy a population of size N is randomly generated and each individual’s fitness 

value is evaluated by one block. This makes possible to compute N fitness value at 

each cycle time of CPU. Due to hardware limitations N has a limit and after that 

limit device cannot be able to evaluate all of the fitness values. Therefore, the model 

implemented in this work is based on the application of fitness evaluations on 

GPU’s blocks.  

 

 

Figure 3.7: Flow of GPU and CPU based algorithm 
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3.4.5.3.Test of the Model 

Model is tested on the 26 projects test case. Total computation time of each case is 

measured on a CPU and same test problem is solved with a time limitation of same 

as CPU computation time. Results are tabulated at Table 3.19. Out of 26 test cases 

9 of them are further improved with GPU application. Test case 7 has an 

improvement of %1.68. As an average, %0.68 improvement was possible 

considering total 26 cases. 

Table 3.19: BFHGA performance with GPU 

Set BFHGA GPU Performance 

Comparison 

 

Set 1 113 113 0.00% 

Set 2 86 86 0.00% 

Set 3 82 82 0.00% 

Set 4 208 208 0.00% 

Set 5 131 131 0.00% 

Set 6 101 101 0.00% 

Set 7 238 234 1.68% 

Set 8 88 87 1.14% 

Set 9 210 210 0.00% 

Set 10 148 148 0.00% 

Set 11 149 149 0.00% 

Set 12 136 135 0.74% 

Set 13 279 279 0.00% 

Set 14 119 119 0.00% 

Set 15 253 253 0.00% 

Set 16 200 198 1.00% 

Set 17 146 144 1.37% 

Set 18 288 288 0.00% 

Set 19 218 217 0.46% 

Set 20 205 205 0.00% 

Set 21 177 176 0.56% 

Set 22 329 329 0.00% 

Set 23 262 261 0.38% 

Set 24 248 248 0.00% 

Set 25 278 278 0.00% 

Set 26 314 312 0.64% 

Average     0.31% 
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The performance of GPU implemented BFHGA is also tested on multi-project test 

instances of Vanquez et al., (2013). There are 26 test portfolios, which are 

originated from known single project test instances. First fourteen instances are 

created by single projects taken from the Kolish instances and their resource 

constraints remain unchanged. Seven instances 20 × 3 are generated by Browning 

and Yassine’s (2010) random generator. Five instances were generated by Vanquez 

et al., (2013) each have 10 projects with 10 activities.  Table 3.20 is constructed 

with their work, BFHGA and GPU implemented BFHGA. All comparisons are 

made on 100.000 schedule generation. The GPU is run exactly the same clock speed 

of the BFHGA run on the CPU. Therefore, the comparison is made based on percent 

deviations from best solution. Test case 3 is ignored since the data of this test case 

is corrupted on the internet site. Therefore, 25 test cases are solved. 

Table 3.20: Comparison of BFHGA on CPU and GPU 

Vanquez et. al 

(2013) 

BFHGA With 

CPU 

BFHGA 

With GPU 

CPU GPU 

Test 

Case 

Result Result Time Result %Dev from Best 

1 113 111 8.8 110 0.88% 0.00% 

2 228 229 17.8 228 0.44% 0.00% 

3 314 314 63.4 314 0.00% 0.00% 

4 117 114 15.4 112 1.71% 0.00% 

5 276 268 30.4 266 0.72% 0.00% 

6 356 348 47.7 346 0.56% 0.00% 

7 149 148 51.1 146 1.34% 0.00% 

8 90 88 22.4 88 0.00% 0.00% 

9 390 388 53.2 386 0.51% 0.00% 

10 698 690 86.7 689 0.14% 0.00% 

11 114 114 87.1 114 0.00% 0.00% 

12 181 178 37.1 176 1.10% 0.00% 

13 511 506 85.6 505 0.20% 0.00% 

14 1332 1332 100.2 1332 0.00% 0.00% 

15 1326 1326 100.1 1326 0.00% 0.00% 

16 1226 1226 100.1 1226 0.00% 0.00% 

17 1220 1220 100.1 1220 0.00% 0.00% 

18 1186 1186 100.1 1186 0.00% 0.00% 

19 29 29 7.7 29 0.00% 0.00% 
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Vanquez et. al 

(2013) 

BFHGA With 

CPU 

BFHGA 

With GPU 

CPU GPU 

Test 

Case 

Result Result Time Result %Dev from Best 

20 30 30 7.9 29 3.33% 0.00% 

21 29 29 7.8 29 0.00% 0.00% 

22 29 29 8.1 29 0.00% 0.00% 

23 31 31 8.1 31 0.00% 0.00% 

24 29 29 7.9 29 0.00% 0.00% 

25 50 50 8.1 50 0.00% 0.00% 

Avr.         0.44% 0.00% 

 

BGHGA implemented on GPU showed a significant improvement in Vanquez et 

al., (2013) results. If we look closely to the Table 3.20. It can clearly be seen that at 

an average %0.65 improvement has been succeeded with CPU.  If we compare CPU 

based BFHGA with GPU, it can be seen that for some test cases GPU results are 

better such as %3.3, totally on average GPU results are better than CPU results as 

%0.4. As a conclusion it can be said that larger problem instances can be solved 

with GPU and efficiency of the algorithm increases compared to CPU based 

algorithm.  

Table 3.21: CPU and GPU comparison of Chen and Shahandashti (2010) real case 

Method (500.000 Schedule) Best Average 

BFHGA (This study) 517 523.3 

BFHGA Implemented on GPU (This Study) 515 522.4 

 

BGHGA implemented on the GPU is also run with Chen and Shahandashti (2010) 

real portfolio case and the best result ever is obtained. Results are tabulated at Table 

3.21.  

Table 3.20: (Continued) 
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Table 3.22: GPU and CPU Comparison for Large Projects 
  

Test Case # of 

 Activities 

CPU GPU Computational 

Time 

(seconds) 

1
0

0
0
 

 S
ch

ed
u

le
 Test 1 500 1866 1859 3.4 

Test 2 1000 2057 2048 1.1 

Test 3 1500 1820 1815 6.9 

1
0

0
0

0
 

S
ch

ed
u

le
 

Test 1 500 1851 1840 36.6 

Test 2 1000 2039 2027 11.5 

Test 3 1500 1809 1805 60.1 

 

One of the key questions of GPUs performance is how they contribute to the 

efficiency of the algorithm as far as the large projects are considered. For this reason 

a test that contains large projects is conducted. For this reason a test set is created 

with 500, 1000 and 1500 activities and that contains 1, 2 and 3 projects respectively. 

Test sets are solved with 1000 and 10000 schedule generation limits and their 

results are compared with GPU results with same computational time limits. Results 

are tabulated at Table 3.22. For every test set GPU found better solutions compared 

to CPU results. This revealed the effectiveness of the GPU application. 
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CHAPTER 4 

4. ANALYSIS OF ALGORITHM PARAMETERS 

 

Meta-heuristics’ power comes from the iteration process and the capability to 

search the domain effectively. Although stochastic nature of the meta-heuristics 

gives an extra power to explore the domain extensively, validity of the algorithm is 

also important. In order to analyze the behavior of the algorithm with various 

parameters, it is important to analyze their effects. Analyzing the effects of 

parameters and design them in order to optimize meta-heuristics’ parameters is not 

only an ad hoc process but also requires some statistics. Some conventions are used 

extensively such as high population size and low mutation rate etc. Thus, there is 

not an exact solution to optimize the parameters and fine tune them. 

In this chapter it is intended to make an experiment design in order to obtain as 

much information as possible on the parameters and its effects on algorithm 

performance.  Since boundary of the parameters can be set as minimum and 

maximum, two level factorial design procedures is selected. Main advantage of 

factorial design is the ability to understand parameter effects solely and 

simultaneously with the minimum and maximum parameter settings.  

4.1.Two Level Factorial Design 

4.1.1. Theory: 

Aim of a factorial design is to measure systematically the output and to test the 

validity of the experiment. Parameters are changed in a systematical way and the 

response of the algorithm is measured. The lower level of an input parameter is 

usually indicated with a `-' sign; the higher level with a `+' sign.  

Basic case of a factorial design is to measure the effect of one variable. If one 

variable and its effect is considered the model becomes a linear model as follows; 

Assuming the output of a model with Y and parameter with X; 
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𝑌 =  𝛽0 + 𝛽1𝑋                                                                                                    (4.1) 

Effect of a parameter is defined as the difference in the average response between 

the high and low levels of a factor. 

 

The main effect of X is modelled in this way; 

𝐸 (𝑋) = 𝑌𝑋+ − 𝑌𝑋−                                                                                                   (4.2) 

 

Variance of N observations can be modelled such as; 

𝑉𝑎𝑟 (𝑋) =
4

𝑁
𝜎2                                                                                                      (4.3) 

 

As more parameters are considered the model becomes more complex. If more than 

one parameter is considered both the effects of each variable and their interactions 

should be taken into account and experiment number increases exponentially such 

that if there is 2 level and k dependent variable there should be 2k number of 

experiments in order to make a factorial design.  

 

2k factorial design is used extensively in the early stages of an experiment where 

the effects of dependent variables are investigated. Since two level of factor is 

considered, response is assumed to be linear over the range (Montgomery D.C., 

p.233, 2012).  

 

For two level and two variables, interaction is defined as one-half of the difference 

between the effect of parameter X1 at the high level of X2 and the effect of X1 at the 

low level of X2. 

 

The effect of two dependent variables is modelled in this way; 

𝐸(𝑋1, 𝑋2) =  
1

2
[(𝑌𝑥1+

− 𝑌𝑥1−
)

𝑋2+

− (𝑌𝑥1+
− 𝑌𝑥1−

)
𝑋2−

]                                  (4.4) 

where inside double brackets is called contrast of treatment (Montgomery D.C., 

p.244, 2012). 
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If we consider more than two variables, it is necessary to use design matrix which 

makes easier to measure the variable effects.  To measure the effect of any factor, 

matrix can be used according to signs designated at the each cell M[i] [j] . 

 

For example: 

 

Effect of variable A and AB is calculated easily considering design matrix such as: 

𝐴 =
1

8
[𝑎 − 𝑇 − 𝑏 + 𝑎𝑏 − 𝑐 + 𝑎𝑐 − 𝑏𝑐 + 𝑎𝑏𝑐 − 𝑑 + 𝑎𝑑 − 𝑏𝑑 + 𝑎𝑏𝑑 − 𝑐𝑑 + 𝑎𝑐𝑑

− 𝑏𝑐𝑑 + 𝑎𝑏𝑐𝑑] 

𝐴𝐵 =
1

8
[𝑇 − 𝑎 − 𝑏 + 𝑎𝑏 + 𝑐 − 𝑎𝑐 − 𝑏𝑐 + 𝑎𝑏𝑐 + 𝑑 − 𝑎𝑑 − 𝑏𝑑 + 𝑎𝑏𝑑 + 𝑐𝑑

− 𝑎𝑐𝑑 − 𝑏𝑐𝑑 + 𝑎𝑏𝑐𝑑] 

 

Sum of square of any factor is calculated as: 

 

𝑆𝑆𝑖𝑗 =
1

2𝑘 (𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑗)
2
                                                                                      (4.5) 

 

Mean square error is calculated as: 

𝑀𝑆𝐸𝑖𝑗 =
𝑆𝑆𝑖𝑗

𝐷𝑜𝑓𝑖𝑗
                                                                                                        (4.6) 

Finally F value is calculated as: 

𝐹 =
𝑀𝑆𝐸𝑖𝑗

𝑀𝑆𝐸𝑒𝑟𝑟𝑜𝑟
                                                                                                        (4.7) 

 

A half normal graph is obtained using the experiment results. Cumulative 

distribution of observed effects can be used for interpretation of each variable. If a 

half normal plot paper is used only probability for each test and their effects are 

drawn. Otherwise if plot paper is not available effects are converted to z values. 

Main factors can easily be determined since they exist as outliers. All effects lie 

along trend line are negligible whereas outliers have significant effects. 
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4.1.2.  Application 

As a methodology, developed BFHGA ıs tested with four selected. These are 

population size, mutation rate, crossover and temperature. Pareto of interactions 

and normal probability graph is also obtained in order to see the effect of 

parameters. At last, an F test is conducted.  

 

During this computations J sets (Kolish, 1999) is used. Library contains different 

problem sets for different types of resource constrained project scheduling problem 

as well as optimal and heuristic solutions. Instances are generated with a software 

named as ProGen (Kolish et al., 1995).  J sets consists of totally 480 test cases for 

30 and 60 activity sets, 600 test cases for 120 activity sets. In experiments along 

each ten case of J sets first network example is selected which in turn gives 48 test 

sets for J30 and J60, 600 test sets for J120. Each experiment is done separately and 

repeated two times.  

 

Table 4.1: Independent variables 

    Low 

Level 

-1 

High 

Level 

+1 

A POPULATION_SIZE  50 200 

B MUTATION_RATE  0 0.01 

C CROSS_OVER__NUM 30% 90% 

D TEMPERATURE  0 4000 

 

For J30 and J60 test case optimum results are used as references. Nevertheless, 

lower bound solutions are used for J120 since there is no optimum result. 

Independent variables are selected as population size, mutation rate, crossover 

number and temperature (Table 4.1.) 

 

Dependent variable is calculated as; 
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𝑌 =
(∑

[𝐹𝑖−𝐹𝑜]

𝐹𝑜

𝑗
𝑖 )

𝑗
 𝑥100                                                     (4.8) 

where; 

Fo is the optimum solution if it is available or lower-bound solution, 

i= {0, 1, 2, 3….j}, 

J≤48 for J30 and J60, 

J≤60 for J120. 

4.1.2.1.Test of J30 Sets 

J30 sets are run up to 50000 schedule and mean computation time for repeated to 

experiment is 2.8 sec. When the results of experiment are examined it can easily be 

seen that two factor namely C and A have relatively higher effects than others 

(Figure 4.1). Mean value of effects is 5.6. C has a value of 23.87 which is far away 

from double mean. When the Pareto Graph is examined, other factors such as B and 

D have less effects than main factors. In addition, interaction effects are getting 

smaller as factors are added.  

 

 

Figure 4.1: Pareto graph of J30 test results 

When we examine the results of half normal plot (Figure 4.2), it can easily be seen 

that factor C is a possible outlier. Therefore, the effect of factor C is significantly 

high. Other factors accumulate on a trend line. Whether the effect of C is significant 

statistically F test results must be analyzed. 
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Figure 4.2: Normal plot for J30 test results 

Table 4.2: Results of F test 

Variable  DoF Sum of Squares Mean Square Error F Value Test Result 

A 1,0 682,2 682,2 2,67 accept 

B 1,0 96,6 96,6 0,38 accept 

C 1,0 2279,2 2279,2 8,91 reject 

D 1,0 43,5 43,5 0,17 accept 

AB 1,0 29,7 29,7 0,12 accept 

AC 1,0 62,9 62,9 0,25 accept 

AD 1,0 5,7 5,7 0,02 accept 

BC 1,0 13,1 13,1 0,05 accept 

BD 1,0 277,6 277,6 1,09 accept 

CD 1,0 193,8 193,8 0,76 accept 

ABC 1,0 0,2 0,2 0,00 accept 

ABD 1,0 384,7 384,7 1,50 accept 

ACD 1,0 5,2 5,2 0,02 accept 

BCD 1,0 7,4 7,4 0,03 accept 

ABCD 1,0 11,2 11,2 0,04 accept 

Error 16,0 4093,2 255,8     

Model 31,0 8186,4 264,1     
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Final results can be obtained from F test results. From Table 4.2 it can be seen that 

15 factors have degree of freedom 1. Calculating sum of squares and mean square 

errors from Equation 4.7,   F values can be computed. (1/16) degree of freedom 

table can be used since error term has 16 degrees of freedom. With these values it 

can be said that only factor C is rejected, which means effect of factor C is 

significant. 

4.1.2.2. Test of J60 Sets 

J60 sets are run up to 50000 schedule and mean computation time for repeated to 

experiment is 8.3 sec. When the results of experiment are examined it can easily be 

seen that two factors A and C have relatively higher effects than others. Mean value 

of effects is 3.6. A has a value of 16.76 which is far away from double mean. When 

the Pareto Graph is examined (Figure 4.3), other factors such as B and D have less 

effects than main factors. In addition, interaction effects are getting smaller as 

factors are added. ABC interaction is significant than other interaction effects. 

 

When we examine the results of half normal plot (Figure 4.4), it can easily be seen 

that factors A and C are outliers. Therefore, the effect of factor A and C is 

significantly high. Other factors accumulate on a trend line. Whether the effect of 

A and C are significant statistically F test results must be analyzed. 

 

 

Figure 4.3: Pareto graph of J60 test results 
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Figure 4.4: Normal plot for J60 test results 

Table 4.3: Design matrix and results for J60 Sets 

 DoF Sum of Squares Mean Square Error F Value Test Result 

A 1.0 1124.3 1124.3 4.63 reject 

B 1.0 0.7 0.7 0.00 accept 

C 1.0 516.3 516.3 2.13 accept 

D 1.0 3.2 3.2 0.01 accept 

AB 1.0 57.0 57.0 0.23 accept 

AC 1.0 11.8 11.8 0.05 accept 

AD 1.0 19.5 19.5 0.08 accept 

BC 1.0 28.4 28.4 0.12 accept 

BD 1.0 1.5 1.5 0.01 accept 

CD 1.0 8.3 8.3 0.03 accept 

ABC 1.0 83.1 83.1 0.34 accept 

ABD 1.0 10.8 10.8 0.04 accept 

ACD 1.0 0.0 0.0 0.00 accept 

BCD 1.0 65.9 65.9 0.27 accept 

ABCD 1.0 11.4 11.4 0.05 accept 

Error 16.0 3884.0 242.8   

Model 31.0 7768.0 250.6   
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Final results can be obtained from F test results. From Table 4.3 it can be seen that 

15 factors have degree of freedom 1. Calculating sum of squares and mean square 

errors from Equation 4.7, F values can be computed. (1/16) degree of freedom table 

can be used since error term has 16 degrees of freedom.  

4.1.2.3.Test of J120 Results 

J120 sets are run up to 50000 schedule and mean computation time for repeated to 

experiment is 18.8 sec. When the results of experiment are examined it can easily 

be seen that two factors A and C have relatively higher effects than others (Figure 

4.5). Mean value of effects is 8.3. A has a value of 41.2 which is far away from 

double mean. When the Pareto Graph is examined, other factors such as B and D 

have less effects than main factors. In addition, interaction effects are getting 

smaller as factors are added. BCD interaction is significant than other interaction 

effects. 

 

When we examine the results of half normal plot (Figure 4.6), it can easily be seen 

that factors A, C, AD and B are outliers. Therefore, the effect of these factors may 

be significantly high and other factors accumulate on a trend line. Whether the 

effect of these factors is significant statistically F test results must be analyzed. 

 

 

Figure 4.5: Pareto graph of J120 test results 
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Figure 4.6: Normal plot for J120 test results 

Table 4.4: Design matrix and results for J120 sets 

  DoF Sum of Squares Mean Square Error F Value Test Result 

A 1.0 6816.3 6816.3 5.33 reject 

B 1.0 170.7 170.7 0.13 accept 

C 1.0 1772.1 1772.1 1.39 accept 

D 1.0 178.9 178.9 0.14 accept 

AB 1.0 301.3 301.3 0.24 accept 

AC 1.0 172.3 172.3 0.13 accept 

AD 1.0 25.6 25.6 0.02 accept 

BC 1.0 349.2 349.2 0.27 accept 

BD 1.0 244.7 244.7 0.19 accept 

CD 1.0 57.4 57.4 0.04 accept 

ABC 1.0 30.2 30.2 0.02 accept 

ABD 1.0 0.0 0.0 0.00 accept 

ACD 1.0 1.5 1.5 0.00 accept 

BCD 1.0 68.8 68.8 0.05 accept 

ABCD 1.0 43.0 43.0 0.03 accept 

Error 16.0 20464.0 1279.0     

Model 31.0 30696.0 990.2     
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Final results can be obtained from F test results. From Table 4.4 it can be seen that 

15 factors have degree of freedom 1. Calculating sum of squares and mean square 

errors from Equation 4.7, F values can be computed. (1/16) degree of freedom table 

can be used since error term has 16 degrees of freedom. With these values it can be 

said that only factor A is rejected which means effect of factor A is significant. 

Therefore other factors` effects are not statistically significant.  

 

Figure 4.7: Main effect plots of each test sets
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4.1.1. Interpretation from Main Effect Plots 

A rough estimation of effects can also be seen from main effect plots. Main effect 

of a factor is calculated when it is minimum while the others are maximum and 

maximum while others are minimum.  When the Figure 4.7 is considered effect of 

A and C are looks similar. Increasing A and C would increase the effects 

significantly. Whereas factors B and D behave different for each test case. For test 

case J30, if  B increases result would be incresing on the other hand for test case 

J60 and J120 result would be  decreasing with incresing value of B. As for factor 

D, if it increases for J30 tests effects would be increasing, for J60 tests effects would 

not change significantly and for J120 sets effects would be decreasing. It can be 

concluded that for every test sets different parameter combinations should be used 

in order to gain maximum benefit from the algorithm. It is also worth saying that 

high population size,  low mutation number, low crossover ratio would contribute 

higher effects. Temperature parameter is not that significant but, rather it has fine 

tuning capability.  
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CHAPTER 5 

5. CONCLUSION 

 

5.1. Summary and Discussion of Results 

Effective resource management is vital in project management since idle resources 

or excess resources increase the cost of the projects. Due to the challenging market 

conditions and competition between companies, resource management process 

becomes more important since cost overruns would result profit loss of the 

company. This situation is well known in the construction sector but, practically 

used techniques such as CPM does not cover resource management related issues. 

Moreover, practically used software packages are neither capable of dealing with 

multiple projects and its resources, nor have sufficient performances.  

Resource allocation process which is extensively worked in operations research and 

project management literature gives some directions to the practitioners through 

heuristic methods, available software packages and developed algorithms. 

However, majority of the existing research has focused on single projects. The 

performances of these methods and software packages can be argued. Fast and 

robust algorithms should be developed and this gap gives opportunities to the 

researchers. Therefore, in this research it is aimed to obtain optimum or near 

optimum solutions to the RCMPSP via meta-heuristics. For this purpose, a new 

meta-heuristic algorithm was developed and its performance is tested with known 

test instances. Developed algorithm is based on GA, SA and backward forward 

heuristics through with improvements on mutations, crossover and selection 

methods. Moreover, in order to increase the effectiveness of the algorithm parallel 

computing strategy is applied to the algorithm and it is used with a GPU. The results 

revealed the effectiveness of the algorithm. 

Research has four main phases. In the first phase, a linear-integer model is 

developed and it is tested with the previous test results. Also, it is shown that for 

networks larger than 60 activities, linear-integer models are not capable of solving 

the problem. It has been shown that software packages used extensively in the 
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practice have very low resource management capabilities. The second phase is the 

algorithm development processes. It includes GA, SA, hybridization process and 

new novel contributions to the algorithm. In order to clarify the development 

process each part of the algorithm is summarized in corresponding sections. Third 

phase is the performance measurement of the algorithms. Heuristics and known test 

results are used for comparison purposes. Last phase is the parallel computing 

application of final algorithm. 

As a summary, the developed mathematical model is tested with optimum results 

or upper bound solutions available in the literature. Standard Kolish (Kolisch and 

Sprecher, 1997) test instance are used. Total time is limited to 300 seconds for J30 

sets and 1000 seconds for j60 sets.  J30 sets are completely solved with this model 

and %94.5 of the results are optimum. %73 of J60 sets are solved optimally within 

time and mean CPU time for Intel Core I5 computer is 14.3 and 19.9 seconds for 

J30 and J60 sets respectively. J120 test sets cannot be solved within reasonable time 

limits. Those sets cannot be solved optimally compared with upper bound solutions 

and on the average, our model results depict from optimum and upper-bounds only 

%2. 68. Most important conclusion of the model is the limitation of the 

mathematical models for larger sets which is compatible with literature findings. 

In order to test algorithms’ performances a heuristic solver was developed. In this 

solver Minimum Slack (MinSlack), Shortest Activity from Shortest Project (SASP) 

and Maximum Total Work Content (MaxTWK) heuristics are used.  Also BF 

heuristic is applied for each problem and results are compared within heuristics and 

with meta-heuristics in further sections. BF heuristics outperformed other 

heuristics. 

A sole GA is developed with random key based chromosome representation. This 

representation has been seldom used in the literature. Nevertheless, it has various 

opportunities such as the fast crossover capability and compatibility with coding 

techniques. It has been shown that even a sole GA is better %3.6 from best 

heuristics with an average value of %7.04.  In some test cases this value increases 

up to %15.38. Developed GA is tested with MS Project’s heuristics. Test results 
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showed that in some test cases sole GA is better %26.37 with an average of %16.76.  

Therefore, sole GA outperformed the known software packages’ heuristics. 

A sole SA with the idea of worse solutions can also be accepted to some extend is 

applied. The probability of accepting worse solutions is high at the beginning and 

it is decreased according to a linear cooling schema. Results are compared with GA 

results. It has been revealed that GA solutions performed better in all cases. GA on 

the average performed %5.6 better. Since GA explores a large space compared to 

SA, the results verified the effectiveness of GA. 

A sole SA has a low search efficiency as it maintains only one solution at each 

iteration.  GA on the other hand, can contain knowledge of previous good solutions 

and have high search capacity. An intelligent hybrid algorithm which has better 

sides of each algorithm would perform better results. Therefore, a GA and SA 

hybrid algorithm is developed and tested with sole GA and sole SA results. Results 

revealed that the hybrid algorithm performance is better than sole algorithms and it 

has an average performance improvement of % %3.26.  

Based on the findings of previous algorithms and the results revealed by hybrid 

algorithm, it can be said that if complementary strengths of algorithms can be put 

together and work coherently results would improve. Within these findings a novel 

approach was developed to problem solving strategy. A new method together with 

GA and SA hybrid algorithm, backward- forward scheduling iteration method is 

hybridized for solution of RCMPSP. Initial comparisons with Anagnostopoulos and 

Koulinas (2012), Christodoulou (2010), Hegazy (1999), and Leu and Yang (1999) 

revealed best results available in the literature. Furthermore, results of Chen and 

Shahandashti (2009) used as performance comparison and the method applied in 

the work was able to find 525 days, and an average duration of 544.0 days within 

606 s. BFHGA achieved a best solution of 517 and an average duration of 523.3 

days.  The results of the algorithm showed significant performance improvements 

on literature findings. Another significant improvement has been achieved for 

comparisons of RESCON results with final algorithm. Out of 26 test cases BFHGA 

found 25 test cases better than tabu search. On the average BFHGA is found %1.74 

better than tabu search algorithm. 
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It is known in the literature that although GAs are effective in solving many 

optimization problems, longer execution time to compute each fitness value of the 

problem limits its performance. Due to the subroutine of the algorithm, for each 

cycle time one fitness calculation is possible. In order to increase the effectiveness 

of the algorithm developed novel BFHGA is rearranged to work with parallel 

computing strategy. In order to apply the algorithm with a parallel computing 

strategy, firstly the fitness calculation process which is the most time consuming 

part is recoded to work compatibly with a GPU. Parallel computing strategies are 

effective for large problem instances due to the fact that the time to communicate 

between CPU and GPU is high for small test instances. Therefore, a multi-project 

test instance of Vanquez et al. (2013) is used for comparison purposes. Results 

revealed that both BFHGA and GPU based BFHGA performs better %0.4 and %1.1 

respectively. Algorithm performance was further tested with generated 26 portfolio 

projects. Out of 26 test cases 9 of them are further improved with GPU application. 

As an average, %0.68 improvement was possible. The performance of a GPU for 

large scale projects was tested with 500, 1000 and 1500 activities networks. Results 

revealed the effectiveness of GPU application. This research is the first research in 

the literature on the application of meta-heuristics with a GPU in the scheduling 

practices. The most important conclusion of GPU based BFHGA is the high 

potential of parallel computing strategies on meta-heuristic algorithms and 

improved effectiveness on solution quality. 

In compliance with the literature, it is shown that the most important factors in 

BFHGA are the population size and crossover ratio. Other tested factors also affect 

the behavior of the algorithm, but rather have fine tuning capabilities.  

5.2.Conclusion 

Throughout the study basic resource allocation problem with its multi-project case 

definition is used. Basic definition includes deterministic durations and resource 

usage. Due to the necessity compliance with standard Kolish instances, only finish 

to start activity relations are considered in the majority of the instances.  
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In the problem, it is assumed that each resource is renewable and there are no 

resource transfer times between projects. All comparisons are made to the literature 

are compared with same CPU time units.  

Project portfolio duration minimization is used as the objective function of this 

study. In this objective function each project assumed to have the same importance 

to the company and have an equal chance to use each resource. This may bring 

some limitations in practice since companies may have projects with different 

priorities and different concerns. 

Although the developed algorithm has shown significant improvements it cannot 

be used easily by the practitioner with the current interface. Therefore, algorithm 

can either be integrated into a known project management software or can be 

developed in order to work as an individual scheduling tool. This situation needs 

further improvements. 

Project portfolio duration minimization is commonly used in the literature for 

optimal scheduling of multiple construction projects with common limited 

resources. However, this objective function has limitations in practice, as it is based 

on the assumption that resources can be transferred between projects without any 

expense in time and cost. In addition, stochastic durations can be added to the model 

and model can be regenerated. Hence, models, instance sets, and approaches, 

including resource transfer times and costs, models including stochastic durations 

are appear to be promising areas for future research. 

Parallel computing technologies bring many new opportunities to the researchers. 

Being the low cost parallel computing opportunity, GPUs have a vast amount of 

application areas in construction management practice of meta-heuristics to 4D 

modelling. Therefore, new algorithms with different parallel computing strategies 

may increase the effectiveness of the current algorithms.  
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APPENDICES 

 

A. Test Case Results 

 

Results of Multi Project Test Case of Chen and Shahandashti (2010) 

Test Project 1  Test Project 2  Test Project 3 

Activity Start Finish   Activity Start Finish  Activity Start Finish  

1-2 22 32  1-2 0 7  1-2 8 10 

1-3 32 34  1-3 0 10  1-3 0 3 

2-3 34 39  2-5 7 8  2-5 25 29 

2-4 34 35  2-6 7 10  3-4 14 23 

3-5 39 45  2-8 14 20  3-7 3 7 

4-5 45 46  3-4 10 14  4-6 46 55 

4-7 79 84  3-5 10 14  4-7 25 34 

5-6 53 59  4-7 21 22  5-11 35 39 

5-9 91 97  4-9 14 23  6-8 55 63 

6-8 59 69  5-9 14 21  7-9 53 59 

7-9 101 102  6-9 10 14  7-10 59 60 

7-10 84 88  7-10 32 35  7-11 41 47 

8-11 80 83  8-11 20 25  8-13 69 79 

8-12 84 91  9-10 23 31  9-13 83 90 

9-12 102 109  9-12 43 47  9-12 69 79 

10-13 90 91  10-12 35 43  10-12 61 69 

11-14 91 98  11-12 31 41  11-12 49 59 

12-14 109 113  12-13 47 49  11-16 60 61 

13-15 113 121  12-14 47 53  12-14 79 83 

14-15 116 121  13-15 71 80  12-15 98 101 

15-16 121 124  14-15 63 71  13-14 97 105 

    15-16 103 105  14-18 110 116 

    15-17 99 103  15-17 102 104 

    16-18 105 110  16-17 91 99 

    17-19 106 109  17-18 105 106 

    18-19 110 120  18-19 121 124 

    19-20 120 124     
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Result of Multi Project Real Test Case of Chen and Shahandashti (2010) 

Real Project 1  Real Project 2  Real Project 3 

Activity Start Finish   Activity Start Finish  Activity Start Finish  

1 0 1  1 0 1  1 0 0 

2 23 29  2 22 23  2 0 25 

3 45 62  3 27 29  3 0 11 

4 45 54  4 23 24  4 25 46 

5 79 93  5 25 27  5 1 22 

6 62 76  6 11 16  6 16 31 

7 62 66  7 23 23  7 46 55 

8 124 142  8 54 58  8 31 45 

9 94 108  9 87 108  9 31 41 

10 142 147  10 108 115  10 55 67 

11 148 158  11 142 148  11 45 55 

12 148 159  12 159 180  12 67 79 

13 148 160  13 199 213  13 67 77 

14 160 166  14 213 313  14 77 87 

15 180 181  15 254 282  15 94 108 

16 181 193  16 213 343  16 77 84 

17 193 199  17 336 350  17 108 115 

18 215 226  18 282 326  18 108 115 

19 226 232  19 223 343  19 108 120 

20 232 244  20 350 364  20 108 108 

21 244 254  21 335 365  21 159 169 

22 254 262  22 384 510  22 120 134 

23 313 335  23 364 368  23 87 94 

24 326 336  24 370 384  24 134 148 

25 336 342  25 370 400  25 169 179 

26 326 336  26 368 368  26 115 124 

27 365 370  27 368 388  27 134 141 

28 388 398  28 414 442  28 148 162 

29 444 464  29 368 408  29 199 215 

30 464 479  30 370 410  30 179 189 

31 449 464  31 412 472  31 141 147 

32 456 463  32 414 444  32 254 257 

33 464 474  33 398 412  33 167 179 

34 479 492  34 442 472  34 262 267 

35 443 464  35 442 456  35 189 199 

36 456 456  36 410 410  36 267 274 

37 463 471  37 472 479  37 274 281 

38 492 509  38 472 510  38 400 414 

39 471 481  39 456 466  39 413 414 

40 494 504  40 479 479     

41 481 505  41 479 482     

42 504 515  42 510 510     

43 505 505  43 456 471     

44 491 515  44 482 489     

45 515 517  45 482 486     

    46 488 489     
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B. Code Details 

 
#define WINDOWS 1 
#define CUDA 0 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#if WINDOWS 
#include <conio.h> 
#endif 
 
#if WINDOWS 
#include <limits.h> 
#endif 
#include <math.h> 
#include <time.h> 
#define DEBUG 0 
#define TRUE 1 
#define FALSE 0 
 
int numOfActivities; 
int numOfResources; 
int *maxAvailableResources; 
#define MAX_DURATION 1000 
#define ELITISM_NUM 4 
#define POPULATION_SIZE 100 
#define MUTATION_RATE 0.003 
#define CROSS_OVER__NUM 80 
#define TEMPERATURE 1000 
#define XOVERDIFF 0.05 
#define DIVERSIFICATION_IMPROVEMENT_RATE 0.20 
#define LOWER_BOUNDARY_XOVER_IMPROMENT_RATE (0.05 * numOfActivities) 
int rouletteWheelSelectionNum = (int) (POPULATION_SIZE 
  - (CROSS_OVER__NUM + ELITISM_NUM)); 
 
typedef struct Activity { 
 int nofPre; //number of predecessors 
 int noOfPreConst; //constant number of predecessor 
 int noOfSucConst; 
 int nofSuc; 
 int *precedessor; //precedence array 
 int *successor; //successor array 
 int duration; 
 int *maxResourceUse; //resource usage if an activity 
 int starttime; //start time of an activity 
 int finishtime; //finish time of an activity 
 int id; //global id of an activity 
 double priority; 
} Activity, PActivity; 
 
 
#define MAX_RESOURCE_NUM 4 
#define MAX_ACTIVITY_NUM 100 
#define BLOCK_SIZE 128 
int *d_maxAvailableResources_org; 
int *d_maxAvailableResources; 
int * d_nofSuc_org; 
int * d_nofSuc; 
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void quickSortRK(Activity **list, int left, int right); 
#define cuCheck(stmt) do {                                 \ 
  cudaError_t err = stmt;                            \ 
  if (err != cudaSuccess) {                          \ 
   printf("cuda error: %d :%s \n",(int) 
stmt,cudaGetErrorString(stmt));    \ 
   exit(EXIT_FAILURE)  ;                                  
\ 
  }                                                  \ 
} while(0); 
 
typedef struct  { 
 int nofPre; //number of predecessors 
 int noOfPreConst; //constant number of predecessor 
 int noOfSucConst; 
 int nofSuc; 
 int *precedessor; //precedence array 
 int *successor; //successor array 
 int duration; 
 int *maxResourceUse; //resource usage if an activity 
 int starttime; //start time of an activity 
 int finishtime; //finish time of an activity 
 int id; //global id of an activity 
 double priority; 
 void Activity_CUDA(Activity const & activity){ 
  this->nofPre = activity.nofPre; 
  this->noOfPreConst = activity.noOfPreConst; 
  this->noOfSucConst = activity.noOfSucConst; 
  this->nofSuc = activity.nofSuc; 
  this->duration = activity.duration; 
  this->starttime = activity.starttime; 
  this->finishtime = activity.finishtime; 
  this->id = activity.id; 
  this->priority = activity.priority; 
 
  if (precedessor != NULL){ 
   cuCheck(cudaFree(precedessor)); 
  } 
  if (successor != NULL){ 
   cuCheck(cudaFree(successor)); 
  } 
  if (maxResourceUse != NULL){ 
   cuCheck(cudaFree(maxResourceUse)); 
  } 
 
 
  if (noOfPreConst > 0 && activity.precedessor != NULL){ 
   cuCheck(cudaMalloc((void**) & precedessor, noOfPreConst 
* sizeof(int))); 
   cuCheck(cudaMemcpy(precedessor, activity.precedessor, 
noOfPreConst * sizeof(int), cudaMemcpyHostToDevice)); 
  } 
 
  if (noOfSucConst > 0 && activity.successor != NULL){ 
   cuCheck(cudaMalloc((void**) & successor, noOfSucConst * 
sizeof(int))); 
   cuCheck(cudaMemcpy(successor, activity.successor, 
noOfSucConst * sizeof(int), cudaMemcpyHostToDevice)); 
  } 
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  if (numOfResources > 0 && activity.maxResourceUse != NULL){ 
   cuCheck(cudaMalloc((void**) & maxResourceUse, 
numOfResources * sizeof(int))); 
   cuCheck(cudaMemcpy(maxResourceUse, 
activity.maxResourceUse, numOfResources * sizeof(int), 
cudaMemcpyHostToDevice)); 
  } 
 } 
 void Activity_CUDA(void) { 
  nofPre = 0; 
  noOfPreConst = 0; 
  noOfSucConst = 0; 
  nofSuc = 0; 
  precedessor = NULL; 
  successor = NULL; 
  duration = 0; 
  maxResourceUse = NULL; 
  starttime = 0; 
  finishtime = 0; 
  id = 0; 
  priority = 0; 
 } 
 void free() { 
  if (precedessor != NULL){ 
   cuCheck(cudaFree(precedessor)); 
  } 
  if (successor != NULL){ 
   cuCheck(cudaFree(successor)); 
  } 
  if (maxResourceUse != NULL){ 
   cuCheck(cudaFree(maxResourceUse)); 
  } 
 } 
 void set(Activity const & activity){ 
  this->nofPre = activity.nofPre; 
  this->noOfPreConst = activity.noOfPreConst; 
  this->noOfSucConst = activity.noOfSucConst; 
  this->nofSuc = activity.nofSuc; 
  this->duration = activity.duration; 
  this->starttime = activity.starttime; 
  this->finishtime = activity.finishtime; 
  this->id = activity.id; 
  this->priority = activity.priority; 
 
  if (precedessor != NULL){ 
   cuCheck(cudaFree(precedessor)); 
  } 
  if (successor != NULL){ 
   cuCheck(cudaFree(successor)); 
  } 
  if (maxResourceUse != NULL){ 
   cuCheck(cudaFree(maxResourceUse)); 
  } 
  if (noOfPreConst > 0 && activity.precedessor != NULL){ 
   cuCheck(cudaMalloc((void**) & precedessor, noOfPreConst 
* sizeof(int))); 
   cuCheck(cudaMemcpy(precedessor, activity.precedessor, 
noOfPreConst * sizeof(int), cudaMemcpyHostToDevice)); 
  } 
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  if (noOfSucConst > 0 && activity.successor != NULL){ 
   cuCheck(cudaMalloc((void**) & successor, noOfSucConst * 
sizeof(int))); 
   cuCheck(cudaMemcpy(successor, activity.successor, 
noOfSucConst * sizeof(int), cudaMemcpyHostToDevice)); 
  } 
 
  if (numOfResources > 0 && activity.maxResourceUse != NULL){ 
   cuCheck(cudaMalloc((void**) & maxResourceUse, 
numOfResources * sizeof(int))); 
   cuCheck(cudaMemcpy(maxResourceUse, 
activity.maxResourceUse, numOfResources * sizeof(int), 
cudaMemcpyHostToDevice)); 
  } 
 
 } 
} Activity_CUDA; 
 
typedef struct { 
// Declare pointer that point to device memory 
 int * id; 
 double * priority; 
 int * starttime; 
 int * finishtime; 
 int * duration; 
 
 int * id_buff; 
 double * priority_buff; 
 int * starttime_buff; 
 int * finishtime_buff; 
 int * duration_buff; 
// Declare host pointer 
 int * h_id; 
 double * h_priority; 
 int * h_starttime; 
 int * h_finishtime; 
 int * h_duration; 
 
 int numOfActivity; 
 void ActivityManager(){ 
  id  = starttime = finishtime = duration = NULL; 
  priority = NULL; 
  h_id  = h_starttime = h_finishtime = h_duration = NULL; 
  h_priority = NULL; 
 } 
 void ActivityManager(int numOfAct) { 
  int size =  POPULATION_SIZE * numOfAct; 
 
  numOfActivity = numOfAct; 
  cuCheck(cudaHostAlloc((void**)&h_id, sizeof(int) * size,0)); 
  cuCheck(cudaHostAlloc((void**)&h_priority, sizeof(double) * 
size,0)); 
  cuCheck(cudaHostAlloc((void**)&h_starttime, sizeof(int) * 
size,0)); 
  cuCheck(cudaHostAlloc((void**)&h_finishtime, sizeof(int) * 
size,0)); 
 } 
 void initializeDeviceMemory(){ 
  int size = numOfActivity * (POPULATION_SIZE); 
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  cuCheck(cudaMalloc((void**) & id, size * sizeof(int))); 
  cuCheck(cudaMalloc((void**) & starttime, size * sizeof(int))); 
  cuCheck(cudaMalloc((void**) & finishtime, size * 
sizeof(int))); 
 
  cuCheck(cudaMalloc((void**) & priority, size * 
sizeof(double))); 
 
  cuCheck(cudaMalloc((void**) & id_buff, size * sizeof(int))); 
  cuCheck(cudaMalloc((void**) & starttime_buff, size * 
sizeof(int))); 
  cuCheck(cudaMalloc((void**) & finishtime_buff, size * 
sizeof(int))); 
 
  cuCheck(cudaMalloc((void**) & priority_buff, size * 
sizeof(double))); 
 } 
 
 void transferDataFromHostToDevice(){ 
  int size = numOfActivity * (POPULATION_SIZE ); 
 
  cuCheck(cudaMemcpy(id, h_id, size * sizeof(int), 
cudaMemcpyHostToDevice)); 
  cuCheck(cudaMemcpy(starttime, h_starttime, size * sizeof(int), 
cudaMemcpyHostToDevice)); 
  cuCheck(cudaMemcpy(finishtime, h_finishtime, size * 
sizeof(int), cudaMemcpyHostToDevice)); 
 
  cuCheck(cudaMemcpy(priority, h_priority, size * 
sizeof(double), cudaMemcpyHostToDevice)); 
 
 
 } 
 void transferDataFromDeviceToHost(){ 
  int size = numOfActivity * (POPULATION_SIZE ); 
 
   cuCheck(cudaMemcpy( h_id, id,size * sizeof(int), 
cudaMemcpyDeviceToHost)); 
   cuCheck(cudaMemcpy( h_starttime,starttime, size * 
sizeof(int), cudaMemcpyDeviceToHost)); 
   cuCheck(cudaMemcpy( h_finishtime,finishtime, size * 
sizeof(int), cudaMemcpyDeviceToHost)); 
 
   cuCheck(cudaMemcpy( h_priority,priority ,size * 
sizeof(double), cudaMemcpyDeviceToHost)); 
 
 } 
 void set(Activity *** list){ 
 
  for (int i = ELITISM_NUM ; i < POPULATION_SIZE ; i ++) { 
   quickSortRK(list[i], 0, numOfActivities - 1); 
  } 
  for (int i = 0; i < numOfActivity; i++) { 
   for (int j = 0 ; j < POPULATION_SIZE; j++){ 
    int index = i * POPULATION_SIZE + j; 
    h_id[index] = list[j][i]->id; 
    h_priority[index] = list[j][i]->priority; 
    h_starttime[index] = list[j][i]->starttime; 
    h_finishtime[index] = list[j][i]->finishtime; 
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   } 
  } 
 
 } 
 void set_back(Activity *** list){ 
 
  for (int i = 0; i < numOfActivity; i++) { 
   for (int j = 0 ; j < POPULATION_SIZE; j++){ 
    int index = i * POPULATION_SIZE + j; 
 
    list[j][i]->id = h_id[index] ; 
    list[j][i]->priority = h_priority[index] ; 
    list[j][i]->starttime = h_starttime[index] ; 
    list[j][i]->finishtime = h_finishtime[index]; 
 
   } 
  } 
 
 } 
 void set_temp(Activity ** list,int i){ 
 
  for (int j = 0 ; j < numOfActivity ; j++){ 
   int index = j * POPULATION_SIZE + i; 
   h_id[index] = list[j]->id; 
   h_priority[index] = list[j]->priority; 
   h_starttime[index] = list[j]->starttime; 
   h_finishtime[index] = list[j]->finishtime; 
 
  } 
 
 
 
 } 
}ActivityManager; 
 
__global__ void solveSchedule_kernel1(int numOfResources, Activity_CUDA * 
temp, ActivityManager am, int *d_maxAvailableResources, int * nofSuc){ 
 
 int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
 if (idx < POPULATION_SIZE - ELITISM_NUM){ 
  idx = idx + ELITISM_NUM; 
 
  for (int i = am.numOfActivity - 1; i >= 0;) { 
   for (int j = am.numOfActivity - 1; j >= 0; j--) { 
    int jpos = j * POPULATION_SIZE + idx; 
    if (nofSuc[am.id[jpos] * POPULATION_SIZE + idx] 
== 0) { 
 
     am.id_buff[i * POPULATION_SIZE + idx] = 
am.id[jpos]; 
     am.priority_buff[i * POPULATION_SIZE + 
idx] = am.priority[jpos]; 
     i-- ; 
     nofSuc[am.id[jpos] * POPULATION_SIZE + 
idx]--; 
 
 
     for (int k = 0; k < 
temp[am.id[jpos]].noOfPreConst; k++) { 
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      int preId = 
temp[am.id[jpos]].precedessor[k]; 
      nofSuc[preId * POPULATION_SIZE + 
idx]--; 
     } 
    } 
   } 
  } 
 
  int successerStartTime = MAX_DURATION; 
 
  int dpos = (am.numOfActivity - 1) * POPULATION_SIZE + idx; 
  am.finishtime_buff[dpos] = MAX_DURATION; 
  am.starttime_buff[dpos]= MAX_DURATION; 
 
  for (int i = am.numOfActivity - 1; i >= 0; i--) { 
   successerStartTime = MAX_DURATION; 
   int index = am.id_buff[i * POPULATION_SIZE +idx]; 
 
   for (int k = 0; k < temp[index].noOfSucConst; k++) { 
    int successorId = temp[index].successor[k]; 
    int spos = temp[successorId].id * 
POPULATION_SIZE + idx; 
    if (successerStartTime > am.starttime[spos]) 
     successerStartTime =  am.starttime[spos]; 
   } 
   int pos = index * POPULATION_SIZE + idx; 
   am.finishtime[pos] = successerStartTime; 
 
   for (int n = 0; n < numOfResources; n++) { 
    for (int j = am.finishtime[pos]; j > 
am.finishtime[pos] - temp[index].duration; 
      j--) { 
     if (d_maxAvailableResources[n * 
(MAX_DURATION +1) * POPULATION_SIZE + j * POPULATION_SIZE + idx] < 
temp[index].maxResourceUse[n]) { 
      am.finishtime[pos] = j - 1; 
      n = -1; 
      break; 
     } 
    } 
   } 
 
   am.starttime[pos] = am.finishtime[pos] - 
temp[index].duration; 
 
 
   am.starttime_buff[i * POPULATION_SIZE + idx] = 
am.starttime[pos]; 
   am.finishtime_buff[i * POPULATION_SIZE + idx] = 
am.finishtime[pos]; 
 
   for (int e = 0; e < numOfResources; e++) { 
    for (int k = 0; k < temp[index].duration; k++) { 
     d_maxAvailableResources[e * (MAX_DURATION 
+1) * POPULATION_SIZE + (am.finishtime[index * POPULATION_SIZE + idx] - k) 
* POPULATION_SIZE + idx] 
               -= 
temp[index].maxResourceUse[e]; 
    } 
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   } 
  } 
 
 
  for (int i = 0; i < am.numOfActivity; i++) { 
 
   int starttime = INT_MAX; 
   int s_id; 
   for (int j = 0; j < am.numOfActivity; j++) { 
    if (starttime > am.starttime_buff[j * 
POPULATION_SIZE + idx]) { 
     s_id = j; 
     starttime = am.starttime_buff[j * 
POPULATION_SIZE +idx]; 
    } 
 
   } 
   int dpos = i * POPULATION_SIZE + idx; 
   int spos = s_id * POPULATION_SIZE + idx; 
   am.id[dpos] = am.id_buff[spos]; 
   am.starttime[dpos] = starttime; 
   am.finishtime[dpos] = am.finishtime_buff[spos]; 
   am.priority[dpos] = am.priority_buff[spos]; 
   am.starttime_buff[spos] = INT_MAX; 
  } 
 
 
 }// end if idx < 
 
} 
 
__global__ void solveSchedule_kernel2(int numOfResources, Activity_CUDA * 
temp, ActivityManager am, int *d_maxAvailableResources, int * nofSuc){ 
 
 int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
 if (idx < POPULATION_SIZE - ELITISM_NUM){ 
  idx = idx + ELITISM_NUM; 
 
  for (int i = 0; i < am.numOfActivity; i++) { 
   am.starttime_buff[i * POPULATION_SIZE + idx] = 0; 
   am.finishtime_buff[i * POPULATION_SIZE + idx] = 0; 
  } 
 
  for (int i = 0; i < am.numOfActivity; i++) { 
 
   int index = am.id[i * POPULATION_SIZE + idx]; 
   int pos = index * POPULATION_SIZE + idx; 
   for (int k = 0; k < temp[index].noOfPreConst; k++) { 
    int curPreId = temp[index].precedessor[k]; 
 
    if (am.starttime_buff[pos] < 
am.finishtime_buff[curPreId * POPULATION_SIZE +idx]) { 
     am.starttime_buff[pos] = 
am.finishtime_buff[curPreId * POPULATION_SIZE +idx]; 
    } 
   } 
 
   for (int n = 0; n < numOfResources; n++) { 
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    for (int j = am.starttime_buff[pos]; j < 
am.starttime_buff[pos] + temp[index].duration; j++) { 
     if (d_maxAvailableResources[n * 
(MAX_DURATION +1) * POPULATION_SIZE + j * POPULATION_SIZE + idx] < 
temp[index].maxResourceUse[n]) { 
      am.starttime_buff[pos] = j + 1; 
      n = -1; 
      break; 
     } 
    } 
   } 
 
   am.finishtime_buff[pos] = am.starttime_buff[pos] + 
temp[index].duration; 
 
   am.starttime[i * POPULATION_SIZE + idx] =  
am.starttime_buff[pos]; 
   am.finishtime[i * POPULATION_SIZE + idx] = 
am.finishtime_buff[pos]; 
 
   for (int e = 0; e < numOfResources; e++) { 
    for (int k = 0; k < temp[index].duration; k++) { 
     d_maxAvailableResources[e * (MAX_DURATION 
+1) * POPULATION_SIZE + (am.starttime_buff[pos] + k) * POPULATION_SIZE + 
idx] 
                              -= 
temp[index].maxResourceUse[e]; 
    } 
   } 
 
  } 
 
 }// end if idx < 
 
} 
Activity ***geneticAlgoritm_CUDA(Activity ***list, double *preTemp, 
  double *premotherXoverRate, double *coolingRateXover, 
  double *coolingRate); 
 
ActivityManager * activityManager; 
Activity ***solutionListBeforeGeneticAlgoritm_CUDA; 
 
Activity_CUDA * dev_temp; 
 
 
Activity** temp; 
 
int** availabilityMatrix; 
int numSchedules = 500000; 
 
Activity **earlyStartLeftScheduling(Activity **solution); 
 
double getRandomNumber() { 
 return (rand() % 10000) / (double) 10000; 
} 
 
Activity *createActivityPriority() { 
 Activity *act = (Activity *) malloc(sizeof(Activity)); 
 act->priority = getRandomNumber(); 
 return act; 
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} 
 
void freeMemoryOfActivity(Activity *other) { 
 free(other->maxResourceUse); 
 free(other->precedessor); 
 free(other->successor); 
 
} 
 
void createAvailabilityMatrix() { 
 int k; 
 availabilityMatrix = (int**) malloc(sizeof(int *) * numOfResources); 
 for (k = 0; k < numOfResources; k++) { 
  availabilityMatrix[k] = (int *) malloc(sizeof(int) * 
MAX_DURATION); 
 } 
} 
 
void initializeAvailabilityMatrix() { 
 int i, k; 
 for (k = 0; k < numOfResources; k++) { 
  for (i = 0; i < MAX_DURATION; i++) { 
   availabilityMatrix[k][i] = maxAvailableResources[k]; 
  } 
 } 
 
} 
 
Activity *createActivity(Activity *other) { 
 Activity *act = (Activity *) malloc(sizeof(Activity)); 
 act->duration = other->duration; 
 act->starttime = other->starttime; 
 act->finishtime = other->finishtime; 
 act->id = other->id; 
 act->priority = other->priority; 
 return act; 
} 
 
void calculateScheduleFromLeft(Activity **solution, int 
**availabilityMatrix) { 
 int i, k, n, e, j, curPreId; 
 Activity *cur, *pre; 
 int startTime; 
 
 for (i = 0; i < numOfActivities; i++) { 
  temp[i]->starttime = 0; 
  temp[i]->finishtime = 0; 
 } 
 
 for (i = 0; i < numOfActivities; i++) { 
 
  cur = temp[solution[i]->id]; 
 
   
  for (k = 0; k < cur->noOfPreConst; k++) { 
   curPreId = cur->precedessor[k]; 
   pre = temp[curPreId]; 
 
   if (cur->starttime < pre->finishtime) { 
    cur->starttime = pre->finishtime; 
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   } 
  } 
 
  for (n = 0; n < numOfResources; n++) { 
   for (j = cur->starttime; j < cur->starttime + cur-
>duration; j++) { 
    if (availabilityMatrix[n][j] < cur-
>maxResourceUse[n]) { 
     cur->starttime = j + 1; 
     n = -1; 
     break; 
    } 
   } 
  } 
 
   
  cur->finishtime = cur->starttime + cur->duration; 
  startTime = cur->starttime; 
 
  solution[i]->starttime = cur->starttime; 
  solution[i]->finishtime = cur->finishtime; 
 
  for (e = 0; e < numOfResources; e++) { 
   for (k = 0; k < cur->duration; k++) { 
    availabilityMatrix[e][startTime + k] -= cur-
>maxResourceUse[e]; 
   } 
  } 
 
 } 
 
 if (DEBUG) { 
  for (i = 0; i < numOfResources; i++) { 
   for (j = 0; j < numOfActivities; j++) { 
    if (availabilityMatrix[i][j] < 0) { 
     printf("as"); 
    } 
   } 
  } 
 } 
} 
 
Activity **scheduleFromLeft(Activity **list) { 
 int k, i, j; 
 Activity **scheduledChromose = (Activity**) malloc( 
   sizeof(Activity *) * numOfActivities); 
 for (j = 0; j < numOfActivities; j++) { 
  temp[j]->nofPre = temp[j]->noOfPreConst; 
 } 
 
 if (DEBUG) { 
  for (j = 0; j < numOfActivities; j++) 
   printf("%d %d, ", temp[j]->id, temp[j]->noOfPreConst); 
  printf("\n"); 
 } 
 
 for (i = 0; i < numOfActivities;) { 
  for (j = numOfActivities - 1; j >= 0; j--) { 
   if (temp[list[j]->id]->nofPre == 0) { 
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    scheduledChromose[i++] = 
createActivity(list[j]); 
 
    temp[list[j]->id]->nofPre--; 
    for (k = 0; k < temp[list[j]->id]->noOfSucConst; 
k++) { 
     int succesorId = temp[list[j]->id]-
>successor[k]; 
     temp[succesorId]->nofPre--; 
    } 
   } 
  } 
 } 
 
 return scheduledChromose; 
 
} 
 
void quickSortRK(Activity **list, int left, int right) { 
 int x = left, y = right; 
 Activity *tmp; 
 double pivot = list[(left + right) / 2]->priority; 
 
 while (x <= y) { 
  while (list[x]->priority < pivot) 
   x++; 
  while (list[y]->priority > pivot) 
   y--; 
  if (x <= y) { 
   tmp = list[x]; 
   list[x] = list[y]; 
   list[y] = tmp; 
   x++; 
   y--; 
  } 
 } 
 
 if (left < y) 
  quickSortRK(list, left, y); 
 if (x < right) 
  quickSortRK(list, x, right); 
 
} 
 
Activity **findRightSolution(Activity **list) { 
 int j, i, k, preId; 
 Activity **scheduledChromose = (Activity**) malloc( 
   sizeof(Activity *) * numOfActivities); 
 for (j = 0; j < numOfActivities; j++) { 
  temp[j]->nofSuc = temp[j]->noOfSucConst; 
 } 
 
 for (i = numOfActivities - 1; i >= 0;) { 
  for (j = numOfActivities - 1; j >= 0; j--) { 
   if (temp[list[j]->id]->nofSuc == 0) { 
 
    if (DEBUG) { 
     printf("%d ", list[j]->id); 
    } 
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    scheduledChromose[i--] = 
createActivity(list[j]); 
    temp[list[j]->id]->nofSuc--; 
 
    for (k = 0; k < temp[list[j]->id]->noOfPreConst; 
k++) { 
     preId = temp[list[j]->id]->precedessor[k]; 
     temp[preId]->nofSuc--; 
    } 
   } 
  } 
 } 
 return scheduledChromose; 
} 
 
void calculateRightSchedule(Activity **solution, int **availabilityMatrix) 
{ 
 
 int successerStartTime = MAX_DURATION; 
 Activity *cur; 
 int i, k, e, n, j, finishtime; 
 int successorId; 
 Activity *suc; 
 
 solution[numOfActivities - 1]->finishtime = MAX_DURATION; 
 solution[numOfActivities - 1]->starttime = MAX_DURATION; 
 
 for (i = numOfActivities - 1; i >= 0; i--) { 
  successerStartTime = MAX_DURATION; 
  cur = temp[solution[i]->id]; 
 
  for (k = 0; k < cur->noOfSucConst; k++) { 
   successorId = cur->successor[k]; 
   suc = temp[successorId]; 
   if (successerStartTime > suc->starttime) 
    successerStartTime = suc->starttime; 
  } 
 
  cur->finishtime = successerStartTime; 
 
  for (n = 0; n < numOfResources; n++) { 
   for (j = cur->finishtime; j > cur->finishtime - cur-
>duration; 
     j--) { 
    if (availabilityMatrix[n][j] < cur-
>maxResourceUse[n]) { 
     cur->finishtime = j - 1; 
     n = -1; 
     break; 
    } 
   } 
  } 
 
  cur->starttime = cur->finishtime - cur->duration; 
  finishtime = cur->finishtime; 
 
  solution[i]->starttime = cur->starttime; 
  solution[i]->finishtime = cur->finishtime; 
 
  for (e = 0; e < numOfResources; e++) { 
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   for (k = 0; k < cur->duration; k++) { 
    availabilityMatrix[e][finishtime - k] -= cur-
>maxResourceUse[e]; 
   } 
  } 
 } 
} 
 
Activity **earlyStartLeftScheduling(Activity **solution) { 
 
 Activity **earlyLeftStartInputChromosome = (Activity**) malloc( 
   sizeof(Activity *) * numOfActivities); 
 Activity *activityWithSmallestStartTime = (Activity *) malloc( 
   sizeof(Activity)); 
 int i, j; 
 for (i = 0; i < numOfActivities; i++) { 
 
  activityWithSmallestStartTime->starttime = INT_MAX; 
 
  for (j = 0; j < numOfActivities; j++) { 
   if (activityWithSmallestStartTime->starttime 
     > solution[j]->starttime) { 
    activityWithSmallestStartTime = solution[j]; 
   } 
 
  } 
 
  earlyLeftStartInputChromosome[i] = createActivity( 
    activityWithSmallestStartTime); 
  //activityWithSmallestStartTime->starttime = INT_MAX; 
 } 
 
 //free(activityWithSmallestStartTime); 
 return earlyLeftStartInputChromosome; 
 
} 
 
void quickSortWithStartTimes(Activity **list, int left, int right) { 
 int x = left, y = right; 
 Activity *tmp; 
 double pivot = list[(left + right) / 2]->starttime; 
 
 while (x <= y) { 
  while (list[x]->starttime < pivot) 
   x++; 
  while (list[y]->starttime > pivot) 
   y--; 
  if (x <= y) { 
   tmp = list[x]; 
   list[x] = list[y]; 
   list[y] = tmp; 
   x++; 
   y--; 
  } 
 } 
 
 if (left < y) 
  quickSortWithStartTimes(list, left, y); 
 if (x < right) 
  quickSortWithStartTimes(list, x, right); 
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} 
 
void swapPriority(Activity *mother, Activity *father) { //swap function. it 
is used for xover 
 double temp = mother->priority; 
 mother->priority = father->priority; 
 father->priority = temp; 
} 
 
Activity **solveSchedule(Activity **list) { 
 int i; 
 Activity **scheduled; 
 Activity **earlyStartLeftScheduled; 
 
 quickSortRK(list, 0, numOfActivities - 1); 
 initializeAvailabilityMatrix(); 
 scheduled = findRightSolution(list); 
 calculateRightSchedule(scheduled, availabilityMatrix); 
 
 earlyStartLeftScheduled = earlyStartLeftScheduling(scheduled); 
 initializeAvailabilityMatrix(); 
 calculateScheduleFromLeft(earlyStartLeftScheduled, 
availabilityMatrix); 
 
 for (i = 0; i < numOfActivities; i++) { 
  free(scheduled[i]); 
 } 
 
 free(scheduled); 
 numSchedules--; 
 return earlyStartLeftScheduled; 
} 
 
Activity **readFile(char *fileName) { 
 int i = 0, j, k; 
 Activity **activityList; 
 int *numOfPres; 
 FILE *fd = fopen(fileName, "r"); 
 if (fd == NULL) { 
  printf("unable to open file %s\n", fileName); 
  exit(1); 
 } 
 
 fscanf(fd, "%d%d", &numOfActivities, &numOfResources);  
 
 if (DEBUG) 
  printf("%d %d\n", numOfActivities, numOfResources); 
 
  
 maxAvailableResources = (int*) malloc(sizeof(int) * numOfResources); 
 for (i = 0; i < numOfResources; i++) { 
  fscanf(fd, "%d", &maxAvailableResources[i]); 
 
  if (DEBUG) { 
   printf("%d ", maxAvailableResources[i]); 
  } 
 } 
 
 //printf("\n"); 
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 activityList = (Activity **) malloc(sizeof(Activity *) * 
(numOfActivities)); 
 numOfPres = (int *) malloc(sizeof(int) * numOfActivities); 
 for (k = 0; k < numOfActivities; k++) { 
  numOfPres[k] = 0; 
 } 
 
 for (k = 0; k < numOfActivities; k++) { 
 
  Activity *activity = createActivityPriority(); 
 
  activity->id = k; 
  activity->maxResourceUse = (int*) malloc(sizeof(int) * 
numOfResources); 
 
   
  fscanf(fd, "%d", &(activity->duration)); 
 
  if (DEBUG) { 
   printf("%d ", activity->duration); 
  } 
 
   
  for (j = 0; j < numOfResources; j++) { 
   fscanf(fd, "%d", &(activity->maxResourceUse[j])); 
   if (DEBUG) 
    printf("%d ", activity->maxResourceUse[j]); 
  } 
 
  fscanf(fd, "%d", &(activity->noOfSucConst)); 
  activity->nofSuc = activity->noOfSucConst; 
  if (DEBUG) 
   printf("%d ", activity->noOfSucConst); 
 
   
  activity->successor = (int *) malloc( 
    sizeof(int) * activity->noOfSucConst); 
 
  for (i = 0; i < activity->noOfSucConst; i++) { 
   fscanf(fd, "%d", &(activity->successor[i])); 
 
    
   activity->successor[i]--; 
 
   numOfPres[activity->successor[i]]++; 
   if (DEBUG) { 
    printf("%d ", activity->successor[i]); 
   } 
  } 
 
  //printf("---%d\n", 12); 
 
  if (DEBUG) 
   printf("\n"); 
 
  activityList[k] = activity; 
 } 
  
 fclose(fd); 
  



137 

 

 for (k = 0; k < numOfActivities; k++) { 
 
  Activity *runner = activityList[k]; 
  runner->noOfPreConst = numOfPres[k]; 
  runner->precedessor = (int*) malloc(sizeof(int) * runner-
>noOfPreConst); 
  runner->nofPre = 0; 
  for (i = 0; i < numOfActivities; i++) { 
   Activity * cur = activityList[i]; 
   for (j = 0; j < cur->noOfSucConst; j++) { 
    if (cur->successor[j] == runner->id) { 
     runner->precedessor[runner->nofPre] = cur-
>id; 
     runner->nofPre++; 
    } 
   } 
  } 
 
  runner->noOfPreConst = runner->nofPre; 
  if (DEBUG) { 
   printf("\n%d %d %d \n", runner->id, runner->nofPre, 
     runner->noOfPreConst); 
   for (i = 0; i < runner->nofPre; i++) 
    printf("%d ", runner->precedessor[i]); 
   printf("\n"); 
  } 
 } 
 
 return activityList; 
} 
 
void crossOver(Activity ***solutionListBeforeGeneticAlgoritm, int motherId, 
  int fatherId, int *curIndex, 
  Activity ***solutionListAfterGeneticAlgoritm, double 
motherXoverRate) { 
 int firstLocation = (rand() % (numOfActivities)); 
 int secondLocation = (rand() % (numOfActivities)); 
 int i; 
 double diffSum; 
 Activity **motherRow = (Activity **) malloc( 
   sizeof(Activity*) * numOfActivities); //new chromosome 
 Activity **fatherRow = (Activity **) malloc( 
   sizeof(Activity*) * numOfActivities); //new chromosome 
 Activity **mother = solutionListBeforeGeneticAlgoritm[motherId]; 
 Activity **father = solutionListBeforeGeneticAlgoritm[fatherId]; 
 int *choosenLocations = (int*) malloc(sizeof(int) * numOfActivities); 
 double averageDiffSum; 
 for (i = 0; i < numOfActivities; i++) { 
  motherRow[i] = createActivity(mother[i]); 
  fatherRow[i] = createActivity(father[i]); 
 } 
 
 diffSum = 0; 
 for (i = 0; i < numOfActivities; i++) { 
  diffSum += abs((motherRow[i]->priority - fatherRow[i]-
>priority)); 
 } 
 
 //cout<< "diffsum " << diffSum << "\t" << "motherXoverRate "<< 
motherXoverRate << endl; 
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 for (i = 0; i < numOfActivities; i++) 
  choosenLocations[i] = 0; 
 
 averageDiffSum = diffSum / numOfActivities; 
 if (averageDiffSum <= XOVERDIFF) { 
  for (i = 0; i < (int) (motherXoverRate);) { 
   int location = (rand() % numOfActivities); 
   if (choosenLocations[location] == 0) { 
    motherRow[location]->priority = 
getRandomNumber(); 
    choosenLocations[location] = 1; 
    i++; 
   } 
  } 
 } 
 
 if (firstLocation > secondLocation) { 
  int temp = firstLocation; 
  firstLocation = secondLocation; 
  secondLocation = temp; 
 
 } else if (firstLocation == secondLocation) { 
 
  for (i = firstLocation; i < numOfActivities; i++) 
   swapPriority(fatherRow[i], motherRow[i]); 
 
 } else { 
 
  for (i = firstLocation; i <= secondLocation; i++) { 
   swapPriority(fatherRow[i], motherRow[i]); 
  } 
 } 
 
 solutionListAfterGeneticAlgoritm[(*curIndex)++] = motherRow; 
 solutionListAfterGeneticAlgoritm[(*curIndex)++] = fatherRow; 
 
 free(choosenLocations); 
 
} 
 
Activity **copyChromosome(Activity **other) { 
 Activity **chromosome = (Activity **) malloc( 
   sizeof(Activity *) * numOfActivities); 
 int i; 
 for (i = 0; i < numOfActivities; i++) 
  chromosome[i] = createActivity(other[i]); 
 return chromosome; 
 
} 
 
void mutation(Activity ***solutionListAfterGeneticAlgoritm, 
  double currentTemp) { 
 int mutationIndex; 
 int mutationGeneNum, i, finishTimeBeforeMutation, 
finishTimeAfterMutation; 
 Activity **chromozomeBeforeMutation; 
 Activity **mutationRow; 
 Activity **chromozomeAfterMutation; 
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 do { 
  mutationIndex = (rand() % POPULATION_SIZE); 
 } while (mutationIndex < ELITISM_NUM); 
 
 chromozomeBeforeMutation = solveSchedule( 
   solutionListAfterGeneticAlgoritm[mutationIndex]); 
 finishTimeBeforeMutation = 
   chromozomeBeforeMutation[numOfActivities - 1]-
>finishtime; 
 
 mutationRow = solutionListAfterGeneticAlgoritm[mutationIndex]; 
 
 mutationGeneNum = (int) ceil( 
   POPULATION_SIZE * (numOfActivities) * MUTATION_RATE); 
 for (i = 0; i < mutationGeneNum; i++) { 
  int geneLocation = (rand() % (numOfActivities)); 
  double priority = getRandomNumber(); 
  mutationRow[geneLocation]->priority = priority; 
 } 
 
 chromozomeAfterMutation = solveSchedule(mutationRow); //chromozome 
has been resolved. 
 finishTimeAfterMutation = 
   chromozomeAfterMutation[numOfActivities - 1]-
>finishtime; 
 
  
 if (finishTimeAfterMutation >= finishTimeBeforeMutation) { 
  int delta = finishTimeAfterMutation - 
finishTimeBeforeMutation; 
  double power = -(delta / (currentTemp)); 
  double acceptancePro = exp(power); 
  double pro = getRandomNumber(); 
  if (acceptancePro > pro) { 
   //rejected 
 
   for (i = 0; i < numOfActivities; i++) { 
    free(mutationRow[i]); 
   } 
   free(mutationRow); 
 
   solutionListAfterGeneticAlgoritm[mutationIndex] = 
     chromozomeBeforeMutation; 
 
  } else { 
   //accepted 
 
   for (i = 0; i < numOfActivities; i++) { 
    free(chromozomeBeforeMutation[i]); 
   } 
   free(chromozomeBeforeMutation); 
 
  } 
 } 
 
 for (i = 0; i < numOfActivities; i++) { 
  free(chromozomeAfterMutation[i]); 
 } 
 
 free(chromozomeAfterMutation); 
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} 
 
void crossOverWrapper(Activity ***solutionListBeforeGeneticAlgorithm, 
  Activity ***solutionListAfterGeneticAlgorithm, double 
motherXoverRate, 
  int *elitIndex) { 
 int i; 
 for (i = 0; i < CROSS_OVER__NUM / 2; i++) { 
  int motherIndex = (rand() % POPULATION_SIZE); 
  int fatherIndex = (rand() % POPULATION_SIZE); 
  if (motherIndex == fatherIndex) { 
   i--; 
   continue; 
  } 
  crossOver(solutionListBeforeGeneticAlgorithm, motherIndex, 
fatherIndex, 
    elitIndex, solutionListAfterGeneticAlgorithm, 
motherXoverRate); 
 } 
} 
 
void elitism(int *elitIndex, Activity ***solutionListAfterGeneticAlgoritm, 
  Activity ***solutionListBeforeGeneticAlgoritm) { 
 // cout << solutionListBeforeGeneticAlgoritm[0]-
>solution[TOTAL_ACTIVITY - 1]->finishtime << "\n"; 
 for (; *elitIndex < ELITISM_NUM; (*elitIndex)++) { 
  solutionListAfterGeneticAlgoritm[(*elitIndex)] = 
copyChromosome( 
   
 solutionListBeforeGeneticAlgoritm[(*elitIndex)]); 
 } 
 
} 
 
void quickSortsolutionList1(Activity ***list, int left, int right) { 
 int x = left, y = right; 
 Activity **tmp; 
 double pivot = list[(left + right) / 2][numOfActivities - 1]-
>finishtime; 
 
 while (x <= y) { 
  while (list[x][numOfActivities - 1]->finishtime < pivot) 
   x++; 
  while (list[y][numOfActivities - 1]->finishtime > pivot) 
   y--; 
  if (x <= y) { 
   tmp = list[x]; 
   list[x] = list[y]; 
   list[y] = tmp; 
   x++; 
   y--; 
  } 
 } 
 
 if (left < y) 
  quickSortsolutionList1(list, left, y); 
 if (x < right) 
  quickSortsolutionList1(list, x, right); 
} 
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void rouletteWheelSelection(int *elitIndex, 
  Activity ***solutionListAfterGeneticAlgoritm, 
  Activity ***solutionListBeforeGeneticAlgoritm) { 
 
 double selectionProbability[POPULATION_SIZE]; 
 double sum = 0; 
 int i, k, j; 
 double probabilitySum = 0; 
 for (i = 0; i < POPULATION_SIZE; i++) { 
  sum += 
   
 solutionListBeforeGeneticAlgoritm[i][numOfActivities - 1]-
>finishtime; 
 } 
 
 for (i = 0; i < POPULATION_SIZE; i++) 
  selectionProbability[i] = 
    sum 
      / 
solutionListBeforeGeneticAlgoritm[i][numOfActivities 
        - 1]->finishtime; 
 
 for (i = 0; i < POPULATION_SIZE; i++) 
  probabilitySum += selectionProbability[i]; 
 
 selectionProbability[0] /= probabilitySum; 
 for (i = 1; i < POPULATION_SIZE; i++) 
  selectionProbability[i] = selectionProbability[i] / 
probabilitySum 
    + selectionProbability[i - 1]; 
 
 for (k = 0; k < rouletteWheelSelectionNum; k++) { 
  double randNum = getRandomNumber(); 
 
  for (j = 0; j < POPULATION_SIZE; j++) { 
   if (randNum < selectionProbability[j]) { 
    solutionListAfterGeneticAlgoritm[(*elitIndex)] = 
copyChromosome( 
     
 solutionListBeforeGeneticAlgoritm[j]); 
    (*elitIndex)++; 
    break; 
   } 
  } 
 } 
} 
 
Activity ***geneticAlgoritm(Activity ***list, double *preTemp, 
  double *premotherXoverRate, double *coolingRateXover, 
  double *coolingRate) { 
 int elitIndex = 0, i, j; 
 Activity ***solutionListBeforeGeneticAlgoritm = (Activity***) malloc( 
   sizeof(Activity**) * POPULATION_SIZE); //Solution list 
is stored before GA starts 
 Activity ***solutionListAfterGeneticAlgoritm = (Activity***) malloc( 
   sizeof(Activity**) * POPULATION_SIZE); //Solution list 
is stored after GA 
 
 *preTemp = *preTemp * *coolingRate; 
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 if (LOWER_BOUNDARY_XOVER_IMPROMENT_RATE < *premotherXoverRate) 
  *premotherXoverRate = *premotherXoverRate * *coolingRateXover; 
 
 for (i = 0; i < ELITISM_NUM; i++) { 
  solutionListBeforeGeneticAlgoritm[i] = 
copyChromosome(list[i]); 
 } 
 
 for (i = ELITISM_NUM; i < POPULATION_SIZE; i++) { 
  solutionListBeforeGeneticAlgoritm[i] = solveSchedule(list[i]); 
 } 
 
 quickSortsolutionList1(solutionListBeforeGeneticAlgoritm, 0, 
   POPULATION_SIZE - 1); 
 
 elitism(&elitIndex, solutionListAfterGeneticAlgoritm, 
   solutionListBeforeGeneticAlgoritm); //elitism 
 crossOverWrapper(solutionListBeforeGeneticAlgoritm, 
   solutionListAfterGeneticAlgoritm, *premotherXoverRate, 
&elitIndex); //crossover 
 rouletteWheelSelection(&elitIndex, solutionListAfterGeneticAlgoritm, 
   solutionListBeforeGeneticAlgoritm); //rouletwheel 
selection 
 
 mutation(solutionListAfterGeneticAlgoritm, *preTemp); //mutation 
 
 for (i = 0; i < POPULATION_SIZE; i++) { 
  for (j = 0; j < numOfActivities; j++) { 
   free(solutionListBeforeGeneticAlgoritm[i][j]); 
   free(list[i][j]); 
  } 
  free(solutionListBeforeGeneticAlgoritm[i]); 
  free(list[i]); 
 
 } 
 
 free(solutionListBeforeGeneticAlgoritm); 
 free(list); 
 
 return solutionListAfterGeneticAlgoritm; 
 
} 
 
Activity ***firstIteration(char *fileName, double *preTemp, double 
*coolingRate, 
  double *coolingRateXover, double *premotherXoverRate) { 
 int elitIndex = 0, i, j; 
 Activity ***solutionListBeforeGeneticAlgoritm = (Activity***) malloc( 
   sizeof(Activity**) * POPULATION_SIZE); //Solution list 
is stored before GA starts 
 Activity ***solutionListAfterGeneticAlgoritm = (Activity***) malloc( 
   sizeof(Activity**) * POPULATION_SIZE); //Solution list 
is stored after GA 
 
 *preTemp = *preTemp * (*coolingRate); 
 *premotherXoverRate = numOfActivities * (*coolingRateXover) 
   * DIVERSIFICATION_IMPROVEMENT_RATE; 
 
 for (i = 0; i < POPULATION_SIZE; i++) { 
  Activity** list = readFile(fileName); 
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  solutionListBeforeGeneticAlgoritm[i] = solveSchedule(list); 
 
  for (j = 0; j < numOfActivities; j++) { 
   free(list[j]); 
  } 
  free(list); 
 } 
 
 quickSortsolutionList1(solutionListBeforeGeneticAlgoritm, 0, 
   POPULATION_SIZE - 1); 
 
 elitism(&elitIndex, solutionListAfterGeneticAlgoritm, 
   solutionListBeforeGeneticAlgoritm); //elitism 
 crossOverWrapper(solutionListBeforeGeneticAlgoritm, 
   solutionListAfterGeneticAlgoritm, *premotherXoverRate, 
&elitIndex); //crossover 
 rouletteWheelSelection(&elitIndex, solutionListAfterGeneticAlgoritm, 
   solutionListBeforeGeneticAlgoritm); //rouletwheel 
selection 
 
 mutation(solutionListAfterGeneticAlgoritm, *preTemp); //mutation 
 
 return solutionListAfterGeneticAlgoritm; 
} 
 
void solveProblemSet(char *fileName) { 
 int i, j; 
 double preTemp = TEMPERATURE; 
 double coolingRate = 0.97; 
 double coolingRateXover = 0.97; 
 double premotherXoverRate; 
 Activity ***firstGeneration; 
 clock_t startTime; 
 FILE *fd = fopen("out.txt", "w"); 
 temp = readFile(fileName); 
 
 srand(time(NULL)); 
 //srand(0); 
 createAvailabilityMatrix(); 
 
 firstGeneration = firstIteration(fileName, &preTemp, &coolingRate, 
   &coolingRateXover, &premotherXoverRate); 
 
 startTime = clock(); 
#if CUDA 
 Activity_CUDA * h_temp = new Activity_CUDA[numOfActivities]; 
 for (int i = 0 ; i < numOfActivities ; i++){ 
  h_temp[i].Activity_CUDA(); 
  h_temp[i].set(*temp[i]); 
 } 
 cuCheck(cudaMalloc((void**)& dev_temp, numOfActivities * 
sizeof(Activity_CUDA))); 
 cuCheck(cudaMemcpy(dev_temp, h_temp, numOfActivities * 
sizeof(Activity_CUDA), 
   cudaMemcpyHostToDevice)); 
 
 activityManager = (ActivityManager*) malloc(sizeof(ActivityManager)); 
 activityManager->ActivityManager(numOfActivities); 
 activityManager->initializeDeviceMemory(); 
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 int * h_maxAvailableResources; 
 int size =  numOfResources * (MAX_DURATION +1) * POPULATION_SIZE; 
 h_maxAvailableResources = (int *) malloc(sizeof(int) * size ); 
 
 for (int k = 0; k < numOfResources; k++) { 
  for (i = 0; i <= MAX_DURATION; i++) { 
   for (int p = 0 ; p < POPULATION_SIZE ; p++) 
     h_maxAvailableResources[k * (MAX_DURATION + 1) 
* POPULATION_SIZE + i* POPULATION_SIZE + p] = 
       maxAvailableResources[k]; 
  } 
 } 
 cuCheck(cudaMalloc((void**) & d_maxAvailableResources_org, size * 
sizeof(int))); 
 cuCheck(cudaMalloc((void**) & d_maxAvailableResources, size * 
sizeof(int))); 
 cuCheck(cudaMemcpy( d_maxAvailableResources_org, 
h_maxAvailableResources,size * sizeof(int), cudaMemcpyHostToDevice)); 
 
 int * h_nofSuc; 
 h_nofSuc = (int *) malloc(sizeof(int) * numOfActivities * 
POPULATION_SIZE); 
 for (int i = 0 ; i < numOfActivities ; i++) 
  for (int p = 0 ; p < POPULATION_SIZE ; p++){ 
   h_nofSuc[i * POPULATION_SIZE + p] = temp[i]-
>noOfSucConst; 
  } 
 
 cuCheck(cudaMalloc((void**) & d_nofSuc, numOfActivities * 
POPULATION_SIZE * sizeof(int))); 
 cuCheck(cudaMalloc((void**) & d_nofSuc_org, numOfActivities * 
POPULATION_SIZE * sizeof(int))); 
 cuCheck(cudaMemcpy( d_nofSuc_org, h_nofSuc,numOfActivities * 
POPULATION_SIZE * sizeof(int), cudaMemcpyHostToDevice)); 
 
 
#endif 
 
 for (; numSchedules >= 0;) { 
  //printf("%d\n", numSchedules); 
#if CUDA 
  firstGeneration = geneticAlgoritm_CUDA(firstGeneration, 
&preTemp,&premotherXoverRate, &coolingRateXover, &coolingRate); 
#else 
  firstGeneration = geneticAlgoritm(firstGeneration, &preTemp, 
    &premotherXoverRate, &coolingRateXover, 
&coolingRate); 
#endif 
 } 
 
#if CUDA 
 
 for (int i = 0; i < numOfActivities; i++){ 
  h_temp[i].free(); 
 } 
 free(h_temp); 
 cuCheck(cudaFree(dev_temp)); 
 
 free(h_maxAvailableResources); 
    free(h_nofSuc); 
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 cuCheck(cudaFree(d_maxAvailableResources)); 
 cuCheck(cudaFree(d_maxAvailableResources_org)); 
 cuCheck(cudaFree(d_nofSuc)); 
 cuCheck(cudaFree(d_nofSuc_org)); 
 
 
 
#endif 
 
 printf("%s %d %f \n", fileName, 
   firstGeneration[0][numOfActivities - 1]->finishtime, 
   ((double) (clock() - startTime)) / CLOCKS_PER_SEC); 
 
 for (i = 0; i < POPULATION_SIZE; i++) { 
  for (j = 0; j < numOfActivities; j++) { 
   fprintf(fd, "%d %d %d\n", firstGeneration[i][j]->id + 
1,firstGeneration[i][j]->starttime, firstGeneration[i][j]->finishtime); 
  } 
  fprintf(fd, "\n***%c***\n", ' '); 
 } 
 
} 
 
int main(int argc, char **argv) { 
 solveProblemSet("in.txt"); 
 
#if WINDOWS 
 printf("Finished\n"); 
 _getch(); 
#endif 
 return 0; 
} 
 
Activity ***geneticAlgoritm_CUDA(Activity ***list, double *preTemp, 
  double *premotherXoverRate, double *coolingRateXover, 
  double *coolingRate) { 
 int elitIndex = 0, i, j; 
 
 Activity ***solutionListAfterGeneticAlgoritm = (Activity***) malloc( 
   sizeof(Activity**) * POPULATION_SIZE); //Solution list 
is stored  
 
 
 *preTemp = *preTemp * *coolingRate; 
 if (LOWER_BOUNDARY_XOVER_IMPROMENT_RATE < *premotherXoverRate) 
  *premotherXoverRate = *premotherXoverRate * *coolingRateXover; 
 
 
 
 activityManager->set(list); 
 
 activityManager->transferDataFromHostToDevice(); 
 //** Kernel Launch section 
 cuCheck(cudaMemcpy(d_maxAvailableResources, 
d_maxAvailableResources_org, numOfResources * 
    (MAX_DURATION +1) * POPULATION_SIZE * 
sizeof(int),cudaMemcpyDeviceToDevice)); 
 cuCheck(cudaMemcpy(d_nofSuc, d_nofSuc_org, numOfActivities * 
       POPULATION_SIZE * 
sizeof(int),cudaMemcpyDeviceToDevice)); 
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 solveSchedule_kernel1<<< (POPULATION_SIZE - ELITISM_NUM -1)/ 
BLOCK_SIZE + 1, BLOCK_SIZE>>>( numOfResources, 
   dev_temp, *activityManager, 
d_maxAvailableResources,d_nofSuc); 
 cuCheck(cudaMemcpy(d_maxAvailableResources, 
d_maxAvailableResources_org, numOfResources * 
    (MAX_DURATION +1) * POPULATION_SIZE * 
sizeof(int),cudaMemcpyDeviceToDevice)); 
 
 solveSchedule_kernel2<<< (POPULATION_SIZE - ELITISM_NUM -1)/ 
BLOCK_SIZE + 1, BLOCK_SIZE>>>( numOfResources, 
   dev_temp, *activityManager, 
d_maxAvailableResources,d_nofSuc); 
 
 //** End Kernel Launch section 
 activityManager->transferDataFromDeviceToHost(); 
 activityManager->set_back(list); 
 
 
 numSchedules -= POPULATION_SIZE - ELITISM_NUM; 
 
 
 quickSortsolutionList1(list, 0, 
   POPULATION_SIZE - 1); 
 
 elitism(&elitIndex, solutionListAfterGeneticAlgoritm, 
   list); //elitism 
 crossOverWrapper(list, 
   solutionListAfterGeneticAlgoritm, *premotherXoverRate, 
&elitIndex); //crossover 
 rouletteWheelSelection(&elitIndex, solutionListAfterGeneticAlgoritm, 
   list); //rouletwheel selection 
 
 mutation(solutionListAfterGeneticAlgoritm, *preTemp); //mutation 
 
 for (i = 0; i < POPULATION_SIZE; i++) { 
  for (j = 0; j < numOfActivities; j++) { 
   free(list[i][j]); 
  } 
  free(list[i]); 
 } 
 free(list); 
 
 return solutionListAfterGeneticAlgoritm; 
 
} 
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