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ABSTRACT

A MULTINOMIAL PROTOTYPE-BASED LEARNING ALGORITHM

Bulut, Ahmet Can
M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

September 2014, 105 pages

Recent studies in machine learning field proved that ideas which were once thought
impractical are in fact tangible. Over the years, researchers have managed to develop
learning systems which are able to interact with the environment and use experiences
for adaptation to new conditions. Humanoid robots can now learn concepts such as
nouns, adjectives and verbs, which is a big step for building human-like learners.
Behind all these achievements, development of successful learning and classification
techniques is one of the key factors. In this thesis, we propose a novel prototype-
based learning method which uses the distributional properties of class dimensions.
By dealing with the problem of feature dimensions’ having multiple polarities, our al-
gorithm can distinguish the dimensions which display unpredictable behaviors from
the ones which are composed of multiple predictable patterns. We tested our algo-
rithm on 8 different datasets and compared the results with 9 other algorithms includ-
ing SVM and AdaBoost. Apart from being insensitive to the ordering of inputs, our
method showed that it provides comparable performance in terms of accuracy rate,
running time, learning curve and most importantly the ability to resolve multipolarity
in dimensions.

Keywords: Machine Learning, Prototype-based Learning, Concept Learning, Cogni-
tive Robotics
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ÖZ

ÇOK KUTUPLU BOYUTLAR İÇEREN UZAYLARDA PROTOTİP TABANLI
ÖĞRENME

Bulut, Ahmet Can
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Eylül 2014 , 105 sayfa

Günümüzde, bir zamanlar ulaşılamaz sayılan fikirlerin aslında gerçeklenebilir olduğu
bilgisayar bilimindeki gelişmeler sayesinde kanıtlanmıştır. Bilim adamları, çevreyle
etkileşim kurabilen, kazandığı tecrübelerden yararlanarak yeni koşullara adapte ola-
bilen öğrenen sistemler geliştirmeyi başarmışlardır. İsim, fiil, sıfat gibi kavramları
öğrenebilen insansı robotlar artık programlanabilmektedir. Bütün bu gelişmelerin ar-
kasında, başarılı öğrenme ve sınıflandırma tekniklerinin geliştirilmesi yatmaktadır.
Bu tezde, boyutların dağılımsal özelliklerinden faydalanan, prototip tabanlı yeni bir
öğrenen sistem sunuyoruz. Prototiplerde görülen "çok kutuplu boyut" problemini çö-
zerek, düzensiz davranışlar sergileyen boyutlarla, birbirinden ayrı istikrarlı desenler
içeren boyutların ayrımına varabiliyoruz. Testlerimizde, 8 ayrı veri grubu kullandık ve
algoritmamızı aralarında SVM ve AdaBoost gibi algoritmaların bulunduğu 9 ayrı al-
goritmayla, her bir veri grubu üzerinde karşılaştırdık. Girdilerin sunum sırasına hassa-
siyet göstermemekle beraber, MNPBL ismini verdiğimiz öğrenme algoritması, isabet
oranı, koşu süresi, öğrenme eğrisi ve en önemlisi çok kutuplu boyutları çözümleme
alanlarında etkili performans göstermiştir.

Anahtar Kelimeler: Makine Öğrenimi, Yapay Öğrenme, Prototip Tabanlı Öğrenme,
Kavram Öğrenme, Robotik
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Ever since the computer era began, human being has been wondering whether ma-

chines could be made to learn. If we could manage to program computers to learn

and give them the capability to improve automatically as they gain experience, the

impact would be dramatic. Let us imagine computers learning to find out which treat-

ments are most effective for new diseases given the relevant medical records, houses

learning from experience to optimize energy cost depending on particular patterns of

usage belonging to their occupants, personal assistants updating themselves for the

changing needs of their users and robots which are able to perform novel set of com-

mands given by their masters [29].Although we do not know how to make machines

learn as well as humans do, algorithms which are effective for certain types of learn-

ing tasks have been proposed. A theoretical understanding of how learning has been

emerged and continue to emerge [29].

There exists successful studies which highlight machine learning as one of the most

important branches in computer science and prove that things which are once, thought

to be impossible are in fact achievable.To illustrate, over the years, researchers have

been managed to teach robots how to interact with the environment, act and get feed-

back, use the experience they gain for adapting to new conditions. Humanoid robots

are now able to learn certain concepts including noun, adjective, verb concepts and

making them earn these abilities is one big step for developing human-like robots.

Today, many machine learning applications, including cognitive robotics algorithms
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require large datasets for building learning systems which can improve performance

by gaining experience. To be able to make successful generalization over experiences

via machine learning methods, solving classification problems is an important issue

and there exists different classification techniques such as decision tree classifiers,

artificial neural network classifiers, support vector machine classifiers and prototype

based classifiers. In this thesis, we focus on prototype-based learning and propose an

efficient and successful method which overcomes the "multipolar dimensions" sensi-

tivity of a prototype derivation method developed by Kalkan et al. [21].

1.2 Scope

Kalkan et al. already proved in their study [21] that such a method displays successful

classification performance in the field of cognitive robotics. They used this method

to classify verb concepts using the data collected from iCub humanoid robot. Each

class represents a verb concept and class dimension information is one crucial part of

the algorithm.

The method uses prototype labels for each feature dimension of a class. A prototype

label defines the behavior of a feature in terms of its distributional characteristics.

The problem arises when a feature dimension displays a behavioral pattern which is

a combination of multiple consistent patterns. In such cases, the feature data shows

non-linear behavior. We call it "multipolarity" in dimensions where "bipolarity" is

the special case that there exist two peaks in the data. By the proposed method in

the study [21], multipolar in other words multinomial dimensions are perceived as

unpredictable patterns which is negligible information for class definition. However,

multipolar dimensions can carry important information which can affect classification

accuracy directly depending on the training data worked on.

In this thesis, we propose a robust prototype based learning algorithm which can

eliminate this "multipolarity" problem of class dimensions and achieve promising

performances on different types of data. We test the performance of our algorithm

in terms of accuracy, precision, recall, generalization and robustness by comparing it

with several other algorithms including:
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• Linear Vector Quantization (LVQ), which is a well-known prototype based

method,

• Support Vector Machine (SVM), which is a well-known binary classifier,

• Multi-SVM, which is an SVM method with the capability of classifying more-

than two classes, using different kernel functions.

– Linear kernel

– Quadratic kernel

– Polynomial kernel

– Radial Basis Function (RBF) kernel

• Adaptive Boosting (AdaBoost), an ensemble learning method.

• Decision Tree Learning, which represents target functions as decision trees.

• k-Nearest Neighbors (k-NN) classifier which is an instance-based method.

• The prototype based method presented and used in the study [21], by Kalkan

and his colleagues.

We include several datasets with different levels of multipolarity, different sizes in

terms of instance count, class count and dimension count. This way, we evaluate the

robustness of our algorithm, with the changing multipolarity levels in class dimen-

sions.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 presents background infor-

mation for a brief understanding of on the notions used in this study, such as machine

learning, categorization, concept learning, prototype learning and distance measure-

ment. In Chapter 3, we summarize some of the studies which are related to ours. In

Chapter 4, we propose our algorithm and explain the details of it while presenting

the experimental results, comparisons and evaluations in Chapter 5. Here, we also
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include a case study to enhance the understanding of our contribution with this the-

sis. Finally, we conclude our study with Chapter 6. Detailed experimental results are

presented in Chapter A.
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CHAPTER 2

BACKGROUND

2.1 Machine Learning

Machine learning answers the question of how to develop computer programs that

improve their performance on a given task, by gaining experience [29]. These learn-

ing systems are able to learn programs using provided data. Lately machine learning

usage is spread throughout and even beyond computer science field. It is used in a

lot of applications like spam filters, web search engines, recommender systems, stock

trading, ad placement, drug design and robotics [7].

The fundamental aim of machine learning is making generalization over the given

training set and going beyond it. Because, most of the time, it is unlikely to catch

the same examples over and over again. Data is very important for a learner but there

has to be more than that. Only having training data is never enough without further

knowledge or assumptions. Luckily, in real world cases, we can achieve providing the

learner further information beyond data since the functions to be learned are not gath-

ered uniformly from the complete set of mathematically possible functions. Rather,

they expose smoothness and are limited to certain dependencies helping us make as-

sumptions for our goals.

There are two main types of machine learning which are supervised learning and un-

supervised learning. For supervised learning, the learner gets supervision from out-

side while learning; however, in unsupervised learning no outsider help is involved.
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2.2 Categorization

Humans apply prior knowledge by considering a new situation as an instance of a pre-

vious situation. This process is achieved by categorization. As introduced in "Prin-

ciples of Categorization" [37] by Rosch, categorization comes with two general and

basic principles. The first one is that a category system has to present a function

which provides maximum information with least cognitive effort. This phenomenon,

which is also called "cognitive economy", saves space by considering the category of

objects rather than considering all objects one by one[47]. The second principle is

that the world that is perceived by the category system has to be in a structured form

and should not present arbitrary or unpredictable features. To be able to fulfill these

requirements, categories should map the structure of the perceived world as closely

as possible.

One of the most important functions of categorization is classification and a classifier

is a system which takes a set of vectors containing features and gives a discrete value,

in other words a class. Testing of a classifier is achieved by checking whether it gives

the correct class as an output for a given sample input vector or not [4].

The concept of similarity makes a base for most of the approaches in pattern classifi-

cation which are considered the simplest and the most intuitive among all [5, 18]. It

is defined between items which are to be compared and give opinion about how much

they overlap. According to this concept, the patterns which are similar, in certain

ways, are assigned to the same class. Prototype learning is one of the major learning

techniques and classification is achieved based on similarity [7].

The concept of prototype was defined by Eleanor Rosch in her study as the most

central member of a category [38]. Prototypes abstract out the central tendency from

the experienced examples, and then use it as a basis for categorization decisions [26].

2.3 Concept Learning

As it is stated by Mitchell [29], learning involves problems like generalizing functions

from specific training examples. In the presence of negative and positive examples
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of the category and a sample derived from them, concept learning aims to acquire

the definition of a general category. In other words, concept learning is the process

of searching for the hypothesis which best fits the training examples in a predefined

potential hypothesis space.

2.3.1 Illustration

As an illustration of concept learning task, learning the concept "the days on which the

person Y enjoys a sport activity Z" can be defined with a representation of day con-

taining attributes like sky state, air temperature, wind state, water state and weather

forecast. In addition to those, a final attribute "EnjoySport" indicates whether or not

the person Y enjoys the sport activity Z on a day with corresponding attributes which

are described in Table 2.1. The learning task in such a setup is for learning to predict

the value of "EnjoySport" in presence of its other attributes. To achieve this task, a hy-

pothesis representation should be provided to the learner and each hypothesis would

consist of a conjunction of constraints on the instance attributes. For each attribute,

the hypothesis would indicate one of the following:

• "?" : Any value is acceptable for this attribute.

• A single required value (e.g. Sunny).

• "0" : no value is acceptable.

Table 2.1: New instance to be classified (adapted from [29])

Instance Sky AirTemp Humidity Wind Water Forecast EnjoySport

A Sunny Warm Normal Strong Cool Change Yes
B Rainy Cold Normal Light Warm Same No
C Rainy Warm Normal Light Warm Same ?
D Rainy Cold Normal Strong Warm Same ?

Hypothesis h classifies an instance x as a positive example h(x) = 1 if it can manage

to satisfy all of the constraints of h, given a training set X , where x ∈ X .
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2.3.2 Views on Concept Learning

There are three main views to learn and represent concepts [14, 25, 38, 39]. The first

one is the rule based view [2] in which categories are defined with strict boundaries.

In this view, there are only two possible decisions about an exemplar belonging to a

category, it can either belong to the category or not. The certain rules and boundaries

result in exact decisions with no vagueness. The members of the same category have

the same properties in common and the common properties should be satisfied for the

membership of a category [21]. One of the problems with this view is that people not

always agree on categories, therefore there can be unclear cases where the resulting

categorization decision is arguable. Another problem is typicality handling. Members

of a category may expose variance in how well they satisfy the membership. To

illustrate, a falcon and a chicken are both birds but their membership of bird category

is different in terms of typicality.

The second view is the prototype based view and for this view, the membership of

categories is confidence-based [38]. In contrast to rule-based view, boundaries are

not strict in prototype-based view. "Prototype" stimuli which are the ones best rep-

resenting the category are used in decision making mechanism for membership of a

category. Statistical regularities and the frequency distributions of the features are

used for representing prototypes [21]. In this thesis, we also adopt the prototype-

based view for the method we propose.

Lastly, the third approach is the exemplar-based view and this view suggests rep-

resenting categories by exemplars which are stored in the memory. To be able to

categorize an instance, it is compared to the exemplars. If it is found to be similar to

one of the stored exemplars, it is considered as a member of that category.

2.4 Prototype Theory

According to prototype theory, category learning can be achieved via the learning of

category prototypes. To be able to assign an unfamiliar stimulus to a category, most

similarity is the concern and most similar prototype needs to be found. [20, 32, 33,
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35, 42, 46].

Since they are derived based on observations, prototypes include characteristic fea-

tures that are usually present, not only necessary or sufficient features [19]. Unclear

cases which cause problems for rule-based methods are handled by letting an object

be in a position with equal distances to prototypes of different categories. Prototype

theory also handles typicality by evaluating an object’s proximity to the prototype and

typicality increases as moving closer to the prototype. With typicality, it is possible

to list category members in a desired order since ordering information is present as

well as membership decision information. In addition, typicality may give an opinion

about the response time of membership decisions. Response time decreases as the

instance moves towards the prototype in the feature space. Another issue is family

resemblance. Membership of a category is based on the requirement that members

should be similar overall. The members may all have something in common but it is

not obligatory for membership of a category.

2.5 Distance Measurement

As mentioned by Walters in [46], a distance definition is stating rules to assign pos-

itive numbers between pairs of items. Let i, j,k be three point vectors and d be a

distance function which maps a pair of vectors to a real positive number. With an

illustration in Figure 2.1 function d has the following properties:

d(i,k) d(i,j) 

d(k,j) 

i 

j 
k 

Figure 2.1: Distances of Points

• Identification mark d(i, i) = 0.
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• Non-negativity d(i, j) > 0.

• Symmetry d(i, j) = d(j, i).

• Triangle inequality d(i, j) <= d(j,k) + d(k, j).

Euclidean distance, Manhattan distance and Mahalanobis distance are some popular

distance measures and which one to choose depends on the context.

2.5.1 Euclidean Distance

The Euclidean distance, which is given by the "Pythagorean formula", calculates the

length of the real straight line between two vectors.

Let p,q be vectors, where p = p1, ., ., pn and q = q1, ., ., qn, the Euclidean distance

is given as follows:

EUD(p,q) =

√√√√ n∑
i=1

√
(qi − pi)2. (2.1)

The norm associated with this metric is the Euclidean norm.

2.5.2 Manhattan Distance

Manhattan distance is computed by following a path in a grid-based path, with simple

summations of vertical and horizontal components. It is defined as follows:

MN(p,q) =
n∑
i=1

|(pi − qi)|. (2.2)

2.5.3 Mahalanobis Distance

For the calculation of Mahalanobis distance, the components of a vector have weights

depending on their variances. The ones with low variability receive higher weights
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therefore they have more impact on the calculation of the distance [31]. Let p and q

be two vectors. The Mahalanobis distance is given by Equation (2.3).

MD(p,q) =
√

(p− q)TC−1(p− q). (2.3)

where C is a non-singular n × n covariance matrix which is used for generalization

of the variance concept on more than one dimension. C is calculated by taking the

element C(i, j) as the covariance between ith and jth value of the sample vector.
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CHAPTER 3

RELATED WORK

In this Chapter, we mention the work related to our study in this thesis. Self Organiz-

ing Maps, Learning Vector Quantization, Support Vector Machines, Robust Growing

Neural Gas Algorithm, Gaussian Mixture Models and Derivation of Prototypes [21]

are explained briefly.

3.1 Self Organizing Maps

This study forms a basis and provides better understanding for some of the other

studies explained in this Chapter, including Learning Vector Quantization and Robust

Growing Neural Gas algorithm.

Self-Organizing Map (SOM) is a type of artificial neural network which was devel-

oped by Tuevo Kohonen in 1982 [23]. The "Self-Organizing" term is used because

it learns without a supervisor, forming the output by itself. SOM uses unsupervised

competitive learning, aiming to become like the given input data by reducing the di-

mensions of it.

Three layers are used for forming SOMs, the input layer, the computational layer

and the output layer. The basic SOM has M neurons placed on a low-dimensional

grid of computational layer. Generally 1 to 2 dimensions are used for this layer.

The reason of keeping dimensions low while higher dimensions are also possible is

that visualization of higher dimensional layers are relatively impractical [48]. Each

neuron in the computational layer is fully connected to the neurons in the input layer
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and they are not connected to each other. Figure 3.1 shows the structure of SOMS.

Input Vector X 

Output Vector Y 

Figure 3.1: SOM Structure

The purpose of developing such a structure is to learn a "feature map" from a con-

tinuous input space to a low dimensional discrete output space. This is achieved by

adapting the neurons in the computational layer. Furthermore, topology is preserved

in SOMs.

The algorithm can be presented in 6 steps as in [17]:

1. The values for the initial weight vectors are initialized.

2. A randomly chosen vector from the training set is presented to the network.

3. Every node in the neural network is checked to find out whose weights are the

most similar to the input vector. A winner node is detected which is also known
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as BestMatchingUnit(BMU).

D =

√√√√ n∑
i=0

Ii −Wi, (3.1)

where I is the input vector, W is the weight vector of node, D is the distance

for examining proximity by Equation (3.1).

4. The neighborhood radius of BMU is calculated. Typically it is initialized to the

radius of the network which is given by Equation (3.2) and it is decreased at

each iteration.

R = σ(t) = σ0e
−t/λ, (3.2)

where t is the current iteration, λ is the time constant given by Equation (3.3)

and σ0 is the radius of the map.

λ = numIterations/mapRadius. (3.3)

5. The nodes which stay inside the radius of the BMU are adapted. The closer

nodes’ weights are updated more significantly. The updated node weight is

given by Equation (3.4).

W (t+ 1) = W (t) + Θ(t)L(t)(I(t)−W (t)), (3.4)

where the learning rate L(t) is given by Equation (3.5), and Θ(t) is given by

Equation (3.6).

L(t) = L0e
t/λ, (3.5)

Θ(t) = exp(−disFromBMU2/(2σ2(t))). (3.6)

6. Repeat previous steps for N iterations.

3.2 Learning Vector Quantization

Learning Vector Quantization (LVQ) is an artificial neural network (ANN) which

combines SOM’s competitive learning with supervised learning and it is a power-

ful and intuitive classification algorithm for adaptive nearest prototype classification.

LVQ aims to generate optimal reference vectors [40].
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Let Q be a training set {sq : tq} containing training vectors and target outputs. sq

are vectors of with N dimensions and tq are target output vectors with M dimensions

where q = 1, 2, ., ., .Q. The target output vectors can be defined as in Equation (3.7):

At
(q)
i =

1, if sq belongs to class i

0, otherwise
(3.7)

As stated by Kohonen [24], the structure consists of an input layer, computational

layer and an output layer like SOMs do. Nevertheless, LVQ has two parts in its

computational layer, namely a competitive layer and a linear layer. In the competitive

layer, each one of the neurons is assigned to one class and different neurons may be

assigned to the same class. These classes are mapped to one neuron in the linear layer.

Therefore Q ≥ M condition should be preserved where Q is the number of neurons

in the competitive layer and M is the number of neurons in the linear layer.

Competitive layer learns to classify a region in the given input space by letting the

neurons learn a prototype vector. The similarity between an input vector and a weight

vector is measured by Euclidean distance as it is described in the following equation:

n(1) =



∥∥∥x−W (1)
1

∥∥∥
∥∥∥x−W (1)

2

∥∥∥
.

.

.∥∥∥x−W (1)
Q

∥∥∥


. (3.8)

After finding the closest weight vector to the input, the corresponding output ele-

ment is set to 1, indicating that the input vector lies in the boundaries of that class.

This procedure can be represented as a(1) = compet(n(1)) . These classes are called

subclasses because some of them may be identical. The second layer of the compu-

tational layer, namely linear layer is used to combine subclasses into one class. It is

achieved by using the second weight matrix W (2) where,

AWij =

1, if the neuron belongs to a subclass of j

0, otherwise
(3.9)
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The second weight matrix W (2) stays unchanged after it is set; however, the weights

of W (1) needs to be trained. At each iteration, input vector x from the training set is

presented to the network and the Euclidean distances between x and each one of the

prototype vectors which are forming the columns of the weight matrix, are calculated

to find out the closest component. If the neuron with the index j is the winner, the jth

element of a(1) is set to 1 while others are set to 0. To get the output of entire network

a(2), a(1) is multiplied by W (2). The only non-zero element of a(2) means that the

corresponding class is the output for the given input vector.

The LVQ structure is described in Figure 3.2.

Subclasses 
. 
. 

. 

. 

Target 
Classes 

Linear Layer 

Competitive Layer 

Input Vectors 

Figure 3.2: LVQ has two layers which are the competitive layer and the linear layer.

The competitive layer outputs subclasses which are the inputs of the linear layer.

Then, linear layer outputs the target classes.

3.3 Support Vector Machines

A support vector machine is a learning mechanism constructing hyperplanes which

separate the classes in feature space. Classes are bounded by edges which are com-

posed of support vectors and these vectors are used for the learning process. Main

purpose is to separate the classes between each other by using hyperplanes. In the

mean time, class margins need to be maximized[45].

Originally, SVM is binary classifier and a hyperplane which separates the two classes

needs to be found based on the idea that these two are separable. The hyperplane that
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separates the classes best may not be found exactly between two classes. For this case,

there exists a trade-off between the minimization of training sample count which are

located in the wrong side and maximization of the class margins. To be able to handle

this trade-off, an error item is proposed. By replacing the inner product of optimal

hyperplane with non-linear functions , SVM becomes capable of handling non-linear

classification. There are several kernel functions which are used frequently, including

radial basis function (BRF), sigmoid kernel, linear kernel and polynomial kernel [41].

Kernel functions map the data into higher dimensional spaces. This is because in

higher dimensions, the data may be separated more easily or structured better.

Class separation by SVM is illustrated in Figure 3.3.

+ 
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- 

+ 

Support 
Vector 

Support 
Vector 

Support 
Vector 

Support 
Vector 

Figure 3.3: SVM maximizes the margin between classes and finds the hyperplane

which separates them. The classes are bounded by support vectors.

SVM can also be used for multi-class mapping. This capability is achieved by divid-

ing the class set to several binary sets and applying the original SVM procedure to

all. There are three popular methods for making multi-class extension to SVM. The

first one is one-against-one method, the second one is one-against-all [8, 22] and the

third one is Directed Acyclic Graph-Support Vector Machine (DAGSVM) method.
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3.4 K-Nearest Neighbor Algorithm

The k-Nearest Neighbor (k-NN) algorithm is a supervised and instance-based learn-

ing algorithm [43]. k-NN makes classification by considering K training vectors

which are the closest to the test instance vector.

In the training part, k-NN does sorting and optimizations on the labeled feature vec-

tor set. For the classification part, k being a user defined constant, k-NN finds the

most frequent k neighbors which have the smallest distance to a given test instance.

Euclidean distance, which is explained in Section 2.5.1, is widely used for distance

calculation in this algorithm.

A simple explanation of k-NN algorithm is given in Equations 1 and 2.

Algorithm 1 k-Nearest Neighbor Algorithm (training) for approximation of a

discrete-valued function. Adapted from [29].
Input: training set TS,k

Output: Boosted hypothesis.

1: procedure K-NEAREST NEIGHBOR TRAINING

2: for all training sample 〈x, f(x)〉 in TS do

3: Add the sample to trsamples list.

4: end for

5: return the trained model including trsamples and k.

6: end procedure

Algorithm 2 k-Nearest Neighbor Algorithm (testing) for approximation of a discrete-

valued function. Adapted from [29].
Input: training model including trsamples and k, test vector xq

Output: classification result for xq.

1: procedure K-NEAREST NEIGHBOR TESTING

2: Find the nearest k vectors to xq in trsamples.

3: Store the nearest vectors as x1, x2, ..., xk.

4: return the result using Equation (3.10).

5: end procedure

For the testing algorithm of k-NN explained in Algorithm 2, the classification result
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is calculated as follows:

f̂(xq) = arg max
v∈V

k∑
i=1

δ(v, f(xi)), (3.10)

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

3.5 Adaptive Boosting

Adaptive Boosting (AdaBoost) [10, 11] formulated by Yoav Freund and Robert Schapire

is an algorithm which is an ensemble-learning type method. AdaBoost uses one or

multiple learning algorithms to derive better performance out of them. It boosts the

performance of the other algorithms, which are called weak learners, and creates an

improved classification ability. Maintaining a set of weights over a given training set,

it comes up with a stronger hypothesis with better fitting to the data. There are two

versions of Adaboost, called AdaBoost.M1 and AdaBoost.M2. The difference be-

tween them is that AdaBoost.M1 does binary classification while AdaBoost.M2 can

do classification for more than two classes [9]. AdaBoost.M2 algorithm is described

in Algorithm 3.

For the procedure explained in Algorithm 3, final hypothesis is calculated as follows:

hfin(x) = argmax
y∈Y

T∑
t=1

(log
1

βt
)ht(x, y). (3.11)

where

Dt+1(i, y) =
Dt(i, y)

Zt
β
(1/2)(1+ht(xi,yi)−ht(xi,y))
t , (3.12)

βt =
εt

1− εt
, (3.13)

εt =
1

2

∑
(i,y)∈B

Dt(i, y)(1− ht(xi, yi) + ht(xi, y)), (3.14)

and Zt is a normalization constant.

AdaBoost algorithm is often sensitive to outliers in the data, however it is resistant to

overfitting.
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Algorithm 3 AdaBoost.M2 Algorithm. Adapted from [9].
Input: Training set (x1, y1), (x2, y2)..., (xm, ym) with labels yi ∈ Y = 1, ..., k,

Input: Weak learning algorithm WLearn, iteration count T

Output: Boosted hypothesis.

1: procedure ADABOOST.M2

2: Let B = {(i, y) : i ∈ {1, ...,m}, y 6= yi}
3: Initialize D1(i, y) = 1/‖B‖ for (i, y) ∈ B.

4: for all t in 1, 2, ..., T do

5: Call WLearn with Dt.

6: Get a weak hypothesis ht : X × Y → [0, 1].

7: Calculate the pseudo-loss of ht by Equation (3.14).

8: Set βt by Equation (3.13).

9: Update Dt by Equation (3.12).

10: end for

11: Return the final hypothesis by Equation (3.11).

12: end procedure

3.6 Decision Tree Learning

Decision tree learning is a supervised learning method, which creates a tree-like struc-

ture by making inferences on a given training set. In other words, they are used for

making approximations of target functions and these functions can be visualized as

decision trees [29]. Decision trees have internal nodes and leaf nodes. Internal nodes

correspond to input features while leaf nodes correspond to classification results.

Decision trees have two types: which are classification trees and regression trees.

Classification trees are for nominal predictions while regression trees are for numeric

responses. The algorithm partitions the data and represent it as a tree starting from

the root node to the leaf nodes. When applying the partitioning procedure, the similar

valued instances are collected in the same subset as much as possible for preserving

homogeneity. Entropy is used for measuring the homogeneity of the tree. If the tree

is completely balanced, the entropy is 0. Therefore, decision tree learning algorithm

aims to minimize the entropy.
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Outlook 

Sunny Overcast Rain 

Humidity Wind 

Yes 

High Normal Strong Weak 

No Yes Yes No 

Figure 3.4: An example of decision tree for the concept EnjoySport which is also

described in Section 2.3.1. This tree is constructed for classifying Saturday mornings,

whether person X enjoys doing sports on that day or not. Adapted from [29].

Information gain is another notion when forming a decision tree. It is the the decrease

in the entropy when the tree data is partitioned with respect to an attribute, in other

words, information gain is the entropy difference between the first entropy and the

total entropy of the branches after the partitioning.

3.7 Robust Growing Neural Gas

The Neural Gas Algorithm (NG) [27] is applied to fields such as vector quantization,

pattern recognition and clustering etc. The algorithm shows similarities to Kohonen’s

Self Organizing Map. The difference is adapting the reference vectors without fixed

topological ordering. NG is considered as a soft competitive learning ANN with a

single layer. It adjusts the winner vector and other reference vectors given an input

vector, taking the proximities to the input vector into account [34].

Originating from the NG algorithm and containing a variable topology, Growing Neu-

ral Gas Algorithm (GNG), which is an incremental self-organizing network, was pro-

posed by Fritzke [12, 13]. An edge vector is defined for each reference vector to its
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direct topological neighbors. It starts with small number of prototypes, typically two,

and after a certain number of epochs a new prototype is introduced to the network.

The reference insertion mechanism is the reason that the network is called growing

neural gas and via this mechanism, the impact of initial prototypes is reduced. When

a performance goal is achieved or a predefined reference vector count is reached,

the growing procedure is stopped. GNG updates the winning vector and its direct

topological neighbors with respect to an input vector. The updating strengths for the

winner and its direct topological neighbors are different.

The updating rule is described by Equations (3.15) and (3.16).

∆ws1 = εb(x− ws1), (3.15)

∆wi = εn(x− wi), (3.16)

where x is the input vector, ws1 is the winner vector, wi is the ith topological neighbor

of the winner vector, εb and εn are the updating strengths respectively.

The GNG algorithm is also able to detect the inactive reference vectors which are not

updated for a certain predefined amount of time. By removing the edges which are

considered old, it modifies the network.

Robustness of an algorithm requires the following properties [34]:

1. For an assumed model, the algorithm should achieve a reasonable accuracy.

2. Small deviations of model assumption should not result in large deviations of

performance decrease.

3. Larger deviations of model assumption should not result in a catastrophe.

Traditional prototype based clustering algorithms are most of the time successful con-

sidering the first property. But many of them suffer from robustness issues including

being very sensitive to initialization, dealing with large number of outliers and the

order which input vectors are presented to the system. RGNG algorithm overcomes

the robustness defects of GNG algorithm.
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RGNG seeks the optimal number of prototypes by employing the minimum descrip-

tion length (MDL) criterion [16]. Furthermore, it aims to enhance the robustness of

the updating rule of GNG algorithm by introducing a parameter in addition to the

updating strengths εb and εb in Equations (3.15) and (3.16). This parameter is used

for limiting the force which is amplified by the outliers of the input vectors.

Learning rates of the prototypes are decreased as time step is increased because it is

desired that they have more impact at the beginning. In time, the decreased learning

rates of the prototypes allow their positions to converge. RGNG algorithm applies

different learning rates to the newly inserted prototypes and the older ones while

GNG algorithm applies the same learning rates to all prototypes. In RGNG, newly

introduced prototypes have larger learning rates than the older ones since they are

introduced to the system to find new clusters while others started to converge on

some position values.

RGNG presents another feature that it applies a repulsion scheme to solve the pro-

totype coincidence problem [44]. Prototype coincidence problem occurs when two

prototypes find the same cluster during the learning procedure.

3.8 Gaussian Mixture Models

A Gaussian Mixture Model is used for capturing the distribution of data using multi-

ple Gaussian functions, i.e. components. GMM is often used for clustering purposes.

For each data point, a posterior probability is assigned and this indicates that each

data point has some probability to belong to each of the clusters. The number of clus-

ters should be given as input to GMM and the clusters are assigned by selecting the

component which maximizes the posterior probability. An algorithm with iterative

approach which converges to a local optimum is used in GMM.

In Figures 3.5 and 3.6, clustering with GMM is illustrated.
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Figure 3.5: Random data without before clustering
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Figure 3.6: Random data clustered with GMM.
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GMM is a weighted sum of N component Gaussian densities [36] and it is described

as follows:

p(x|λ) =
N∑
i=1

wig(x|µi,Σi), (3.17)

where x is a data vector of dimension D with continuous values, wi, i = 1, 2, ..., N

are the mixture weights and g(x|µi,
∑

i), i = 1, 2, ..., N are the component Gaussian

densities. Each of them is described as:

p (x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

(
−1

2
(x− µi)′Σ−1i (x− µi)}

)
, (3.18)

where µi is the mean vector and Σi is the covariance matrix and the constraint
∑N

i wi =

1 is satisfied. The parameterized form of GMM is described by Equation (3.19):

λ = {wi, µi,Σi}, (3.19)

where i = 1, 2, .., N .

3.9 Derivation of Effect Prototypes

Notion of affordance was described by Gibson [15] as the ability of perceiving the

environment with the action possibilities available. To illustrate, if we look at a ball,

we do not perceive a generic view out of it. Instead, we perceive a set of abilities like

throw-ability or lift-ability that the ball offers to us [21].

Sahin et al. [3] formalized the notion for learning and using affordances at au-

tonomous robot control and represented an affordance relation instance tuple as:

(entity, behavior, effect),

where the term entity is defined as a single object, the term behavior corresponds to

the actions that a robot can take and the effect is defined as the perceptual change

created in the environment by the corresponding execution of that behavior.

Kalkan et al. [21] described effect instances whose features can be perceived by

the iCub humanoid robot. The robot has a repertoire of behaviors including "Move

Right", "Move Left", "Move Forward" etc. Using these behaviors for interacting
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with different objects, a labeled training set is created and different effect prototypes

are derived out of it including "Moved Right", "Moved Left", "Moved Forward" etc.

Along with a prototype-based learning algorithm 4, details of which is described in

Chapter 4, a modified version of Mahalanobis distance is proposed. The proposed

distance measurement function is used to evaluate the similarity between a new effect

vector and the effect prototypes generated.
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CHAPTER 4

A MULTINOMIAL PROTOTYPE-BASED LEARNING

ALGORITHM

This thesis aims to offer a solution to the problem of derivation of prototypes in the

spaces of multipolar dimensions. In their study Kalkan et al. [21] proposed an al-

gorithm to derive prototypes by examining the mean and variance values of features.

The method partitions the input data in the space of means and variances and derives

prototype labels for each feature of a prototype. These labels are called prototype

labels and they give an insight into the feature characteristics of the prototype. For

example, a feature label denoted with the symbol ’*’ indicates that feature is not a

reliable source for describing the class that the corresponding prototype represents.

When a new input vector is compared with this prototype the features with the label

’*’ is omitted. The reason is that the feature displays no informative characteristics

but disorder and it is not credible to put it into account deciding whether the given

input is similar to that prototype or not. The datasets collected using iCub humanoid

robot [28] are used for proving that the method works well on learning verb concepts.

The problem, however, is dealing with the datasets which have feature value distribu-

tions with more than one peak. In other words, when training instances have features

with more than one pattern, those features are perceived as garbage information and

do not have impact on describing classes with the derived prototypes.

In this thesis, we address this problem and propose a novel method which detects

the existence of multipolar patterns in features that look like one disordered pattern

at first glance. We introduce a new prototype structure which keeps all meaningful

information about the data it represents, including the mean and variance values of
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the detected peaks if found any. Moreover, a new distance function, which is built on

the basis of Mahalanobis distance, is developed for handling the new properties and

the new representation of prototypes. The overall system architecture we propose for

this thesis is shown in Figure 4.1.
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Figure 4.1: Overal System Architecture

4.1 Derivation of Prototypes

Similar to all prototype-based learning methods, the analysis of training samples is

crucial for derivation of prototypes method as well. The training set is grouped by

class labels, and each group is processed to form a class prototype. The first step for

the derivation of prototype labels is to examine the features of the sample vectors.

For each class group, mean and variance values of input vector features are calcu-

lated. Having the mean and variance values of the features, we can examine their

distribution characteristics. This way, the information which is collected out of the

features is used for representation of the class prototypes. An important part of this
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descriptive feature information is the prototype label as well as mean and variance

values. In order to extract the labeling information out of the features, we use Robust

Growing Neural Gas algorithm [34]. RGNG is an unsupervised clustering algorithm,

therefore by using the mean and variance values, features are clustered according to

their distribution characteristics. The output is a set of cluster center positions and for

each feature cluster, a label is assigned manually.

Algorithm 4 Derivation of Prototypes Algorithm [21].
Input: Training dataset of feature vectors and their labels.

Output: Prototypes for each class.

1: procedure DERIVATION OF PROTOTYPES

2: for all C in the set of clusters ε do

3: Compute the mean iµC = 1/N
∑

f∈C if ,

4: where N is the cardinality of the set {f ∈ C}.
5: Compute the variance iσC = 1/N

∑
f∈C if −i µC

6: end for

7: Apply RGNG algorithm in the space of µxσ using Algorithm 5.

8: Manually assign labels describing the characteristics of the feature,

9: ’+’, ’-’, ’0’, ’*’ etc.

10: end procedure

4.1.1 Robust Growing Neural Gas

RGNG algorithm [34] is an iterative prototype-based clustering algorithm. It starts

with a few prototypes and the number of prototypes gradually increases during the

iterations. The number of prototypes is usually initialized to two and after some

predefined number of epochs, a new prototype is introduced to the network. In the

domain of this thesis, RGNG prototypes correspond to our label prototypes, not the

overall class prototypes.
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Algorithm 5 Robust Growing Neural Gas Algorithm (Adapted from [34]).
Input: Training set to be clustered: X ,desire prototype count: prenumnode

Output: Cluster center positions (prototypes): W

1: procedure RGNG

2: Initialize current prototype vectors Wc.

3: Initialize learning rates.

4: Initialize prototype connection vector, C.

5: Initialize connection age vector, A.

6: Initialize maximum epoch number, maxEpochNum.

7: Initialize other constants.

8: while currentnumberofprototypes ≤ prenumnode and performance mea-

sure is not satisfied do

9: for m = 0 to MaxEpochNum do

10: Calculate dmk (0) with Equation (4.5) for each prototype.

11: Calculate learning rates for current prototypes.

12: Set step count t = 1.

13: Set currentTraningSet to X

14: while do

15: Get a random input x from currentTraningSet.

16: Determine the winner prototype, w1 and second nearest protoype,

w2.

17: Update C w.r.t. w1 and w2.

18: Update winner prototype and its direct neighbors w.r.t. x.

19: Update A w.r.t w1 and w2.

20: Remove old edges and prototypes which are not updated for a long

time.

21: Increment t by 1.

22: end while

23: end for

24: Calculate MDL values w.r.t. current prototypes.
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Algorithm 5 Robust Growing Neural Gas Algorithm (continued)
25: if currentMDL > previousMDL then

26: Save current prototype positions.

27: end if

28: Insert new prototype to the network.

29: Update C.

30: end while

31: Set W = Wc.

32: end procedure

In RGNG, the prototypes, in other words the reference vectors, are updated at each

iteration according to an introduced input vector to the network. In time, the positions

of the reference vectors converge to their optimal values. When a new input vector

is presented to the system, the best matching reference vector is found by calculating

the distance of each reference vector to the input vector. Neighborhood information

of prototypes is kept in a matrix structure. Using this information, the winning pro-

totype’s neighbors are found and both the winner and its neighbors are updated. The

updating function does not only depend on the distance to the input vector but also

some rules which makes the algorithm robust and reliable. The considerations when

updating weights of prototypes are as follows:

• The updating strength of the prototypes should change with their ages. The

ages of the prototypes should be kept throughout the life time of the algorithm.

Newer prototypes should be updated with larger weights because they are in-

serted to find out new clusters while the older ones converging to the positions

for cluster which are already revealed.

• Outliers should not have a large impact on the adaptation of cluster center po-

sitions. Therefore the absolute distance information between the prototype and

the input vector should be modulated to identify and eliminate the impact form

outlier inputs.

• Two prototypes finding the same cluster at the same time during the training

procedure is called prototype coincident problem [44]. If an input vector both
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attracts the winner prototype and it’s neighbor, a repulsion force is applied in

the local neighborhood of the winner prototype.

The updating rules for the winner prototype and its neighbors are described in Equa-

tions (4.1) and (4.2) respectively.

δws1 = εs1b σs1(iter)

(
x− ws1
‖x− ws1‖

)
, (4.1)

δwi =εinσi(iter)

(
x− wi
‖x− wi‖

)
+ exp

(
−ds1i
ζ

)
× β

∑
i ds1i
|Ns1|

wi − ws1
‖wi − ws1‖

(4.2)

where ∀i ∈ Ns1 .

σk(iter) =

σmk (t) =

d
m
k t, if‖xmt − witerk ‖ ≥ dmk (t− 1)

‖xmt − wikter‖, if‖xmt − witerk ‖ < dmk (t− 1)

(4.3)

with

dmk (t) =


{

1
2

[
1

dmk (t−1) + 1
‖xmt −witer

k ‖

]}−1
, if‖xmt − witerk ‖ ≥ dmk (t− 1)

1
2

[dmk (t− 1) + ‖xmt − witerk ‖] , if‖xmt − witerk ‖ < dmk (t− 1)
(4.4)

and the initial value of the function dmk (t) that is described as follows:

dmk (0) =

[
1

N

N∑
j=1

1

‖xj − wmNk ‖−1

]
, (4.5)

where N is the number of input vectors, xmt is the input vector presented at iteration

t, training epoch m and witerk is the prototype vector k at the iteration iter. dmk (t) is

used for limiting the large absolute distances caused by the presence of outliers.

εb and εn,described in Equations (4.6) and (4.7) respectively, are the learning rates

applied to the winner prototype and its neighbors respectively and they are not con-

stant values. They are functions which decrease monotonically with the increment of

prototypes.

εlb = εlbi
(
εlbf/ε

l
bi

)prenodel/pre_numnode
, (4.6)
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εln = εlni
(
εlnf/ε

l
ni

)prenodel/pre_numnode
, l = 1, 2, .., c, (4.7)

where c is the current number of prototypes, εlbi, ε
l
bf , εlni and εlnf are the initial and

final values of εlb and εln respectively which are predefined constant values.

During the iterations of the algorithm, inactive prototypes are detected. The age val-

ues of edges are incremented by 1 after each iteration and the edges older than some

predefined maximum age are removed from edge list. If a prototype has no con-

nected neighbors after this edge updating procedure, the prototype is removed from

the network.

The whole learning procedure stops after a certain performance measure is met or the

predefined number of prototypes is reached. The result is a set of cluster prototypes

for the given training set. In our case, it is the label prototypes representing the

clusters in the space of means and variances.

4.1.2 Prototype Labels

In our study, prototype labels play an important role for defining class prototypes. The

labeling information gives an insight into the distribution behavior of the features in

prototype vectors along with the mean and variance values.

The output of RGNG is a set of reference vectors each containing features of mean

and variance values. In their study [21], Kalkan et al. focused on learning verb

concepts and they managed to derive effect prototypes out of object feature changes.

They used the following labels for the clusters that emerge as the output of RGNG

algorithm:

• ‘+’ meaning consistently increasing feature data.

• ‘-’ meaning consistently decreasing feature data.

• ‘0’ meaning no change in the feature data.

• ‘*’ meaning unpredictable change in feature data.
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The mean-variance relations of the generated label prototypes are illustrated in Figure

4.2. Consistently increasing features have high mean values with low variances and

they are represented by a prototype with label ‘+’. Likewise, prototypes with ‘-’ and

‘0’ labels represent features with consistent behaviors. However, prototypes with ‘*’

labels have high variances. The distribution patterns of label prototypes are shown in

Figure 4.3.

Mean, 
μ 

Variance, 
σ 

* 

- 0 + 

Figure 4.2: Label prototypes on µ× σ space.

Label cluster number and label choices may change with respect to different types of

clustering problems and training sets with different characteristics. Within the scope

of this thesis, we focused on classification problems in the spaces of multipolar di-

mensions. Distinguishing the dimensions which have unpredictable behaviors from

those which have multiple meaningful patterns is one of our main concerns. There-

fore, in addition to the four label strings described above, we have introduced a new

one representing the existence of multipolarity for the feature data, denoted by the

symbol ‘#’. Choosing between the labels ‘#’ and ‘*’ is a critical decision for generat-

ing prototypes that can successfully represent the training data.
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Figure 4.3: Distribution charateristics of label prototypes.

4.2 Multipolar Dimensions

Kalkan and his colleagues [21] showed in their study that the label prototype ap-

proach works well for deriving effect prototypes. For example, the algorithm can

detect unpredictable changes in feature data, and by denoting a ‘*’ label it uses this

information for representing the corresponding feature. This information is valuable

because it directly affects the calculation of the distance between an input vector to

be classified and the prototype that the particular feature belongs to. It is wise to

omit the features with unpredictable behaviors when describing a class, but an im-

portant problem arises at this point. Sometimes more than one meaningful pattern

exist and look like one disordered pattern. In such a case, instead of retrieving the

hidden distribution patterns out of the data and examining it, assigning ‘*’ label and

omitting a potentially valuable data may cause precision loss in clustering abilities or

a completely wrong class decision which is even worse. Therefore, the existence of

multipolar dimensions in input and prototype vectors is an important concern.

In Section 4.2.1, we define multipolar dimensions and in Sections 4.2.2 and 4.2.3,

37



we investigate two possible approaches of dealing with multipolar dimensions for

prototype derivation and classification. In this thesis, we adopt the latter which is

introduced in Section 4.2.3.

4.2.1 Characteristics

If a dimension of a prototype shows multipolarity, it means, when the prototype is

defined as a member of a certain class, there are multiple different observed and

expected behaviors for the feature represented by that dimension. However, in the

case of unipolarity, there is only one type of behavior, one peak in the distribution of

the data and one mean - variance value pair.

Feature clusters with high variances which are labeled to be unpredictable by the

RGNG algorithm may in fact have different clusters with small variance values in

them. Let f ∈ F is a feature instance value where F is a set with mean µF = 0.1149

and variance σF = 0.6921 within the range of [−1, 1]. The distribution behavior of f

is shown in Figure 4.4.
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Figure 4.4: Hidden bipolarity in feature value distribution.
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Without further analysis on the dataset, the distribution pattern shown in Figure 4.4

and the ‘*’ label which is obtained by RGNG algorithm indicate that the feature val-

ues behave unpredictably with high variance, at first glance. It is true that given values

do not have one consistent behavior and it is also true that the variance is high enough

for the label of that prototype to be classified as ‘*’ by RGNG algorithm. However,

an important characteristics, which we call multipolarity (bipolarity in this case), is

revealed by further analysis on the feature dataset. There actually exist two consis-

tent behaviors combined together and it delusively looks like a complete disorder.

F contains two subsets F1 and F2 with mean and variance values µF1 = 0.9332 ,

σF1 = 0.0055 , µF2 = −0.7034 , σF2 = 0.0053 respectively. Each set shows a con-

sistent behavior with low variance and they both are important for understanding the

overall behavior. Figure 4.5 shows the bipolar behavior, where pattern 1 and pattern

2 shows the distributions of the subsets F1 and F2 respectively.
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Figure 4.5: Bipolarity in feature value distribution.

To describe the concept of multipolarity of dimensions, some illustrations of effect

prototypes from the study [21] can be used. The features of effect prototypes include

changes in position information such as ∆x, ∆y, ∆z. For the effect prototype "Moved

Right", the feature describing the change in y axis has a large positive mean value and
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a small variance, while the same feature for "Moved Left" has a large negative mean

value with small variance. This indicates that the prototype named "Moved Right"

has the information of a consistent positive change on y axis, while "Moved Left" has

the information of consistent negative change on the same axis.

In this study we describe a new behavior called "Move Sideways" and a correspond-

ing effect prototype called "Moved Sideways" which displays multipolar behavior in

its feature dimensions. The feature dimension corresponding to ∆y is a bipolar di-

mension in this case. Whether an object is decided to be moved right or to be moved

left, "Moved Sideways" condition is satisfied for both of the cases. Assume that the

aim is to get an object out of the way for some reason and "Move Sideways" behavior

is applied to achieve this goal. In such a case, moving the object to the right side

or moving it to the left side both do the job and both of their effects on the object

can be labeled as "Moved Sideways". Therefore the training data for "Moved Side-

ways" class can have effect instances labeled both as "Moved Right" and "Moved

Left". There are two main approaches to deal with prototype vectors with multipolar

dimensions, namely multiple prototype approach and single prototype approach.

4.2.2 Multiple Prototype Approach

The first approach for handling multipolarity of prototype feature dimensions is to

split the prototype into multiple prototypes with each feature representing only one

type of behavior. By this way, one class may have more than one prototype to be

represented.

Let x be an input vector to be classified as one of the classes defined in class set C,

where P ci , Sc , Scip and Sf are the set of prototypes describing class ci , the number

of classes in C, the number of prototypes for representing the class ci , the number of

features in a prototype respectively and i = 1, .., Sc. The number of total prototypes

is calculated in Equation 4.8.

Sp =
Sc∑
i=1

Scip . (4.8)

To be able to classify x, it should be compared to all prototypes. The winning class

that input vector x belong to is ci, where pj ∈ P ci is the winning prototype and
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j = 1, .., Scip .

Table 4.1 shows the structure of class prototype feature architecture with changing

number of bipolar dimensions for the multiple prototype approach.

Table 4.1: Relation of bipolar dimension number and prototype number for multi
prototype approach.
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If a class does not have any multipolar dimensions, then one prototype is enough for

that class to be represented. However, with the existance of multipolar dimensions

it is not enough. To illustrate, if it has one bipolar dimension, feature representation

should be split into two parts and so should the prototype representation. Therefore,

for one occurrence of bipolar dimension, there should be two, for two occurrences of

bipolar dimension there should be four prototypes and for n occurrences of bipolar

dimension, there should be at least 2n prototypes defined. Each prototype means extra

space allocation cost for the features other than the ones with bipolar behaviors. Fur-

thermore, computational cost rises up with a fast increase in the number of prototypes

when calculating the distance between prototypes and an input vector because of the

reoccurrence of the unipolar dimensions.

Both the computational complexity and the space complexity of this approach is

O(2n). In the case of multipolarity with more than two peaks, the complexity is

even higher. For n dimensions with m peaks, there has to be mn prototypes with this

approach.
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4.2.3 Single Prototype Approach

The second and a better approach is called the single prototype approach. With this

approach, each multipolar dimension is examined and the extracted information is

kept in a single feature structure. Therefore, unlike the previous approach, the number

of multipolar dimensions does not have an increasing effect on prototype count.

Table 4.2: Relation of bipolar dimension number and prototype number for single
prototype approach
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For each multipolar dimension, the class prototype has a feature structure which keeps

the distribution information of all existing clusters. In addition to the mean and vari-

ance values of the clusters, the feature is assigned a ‘#’ label for multipolarity. Table

4.2 shows the structure of class prototype and feature architecture for the single pro-

totype approach.

Since it is much more efficient than the previous approach we adopt the single proto-

type approach in our implementations for this thesis.

4.3 Detection of Multipolarity

After running RGNG algorithm and receiving the label prototype clusters, at the stage

of assigning labels to prototype features, detection of multipolarity procedure is ap-

plied. Features which are labeled with ‘*’ symbol have potential to display multipo-

larity. Therefore the labeling decision of assigning a ‘*’ symbol or a ‘#’ symbol is

taken at this point of the prototype derivation method.
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If a feature is labeled with ‘*’ symbol in the pre-labeling stage using the label proto-

types derived with RGNG algorithm, its distribution information is extracted and used

for determining whether it has two clusters displaying consistent and meaningful be-

havior or the pre-assignment made a correct labeling by assigning the ’*’ symbol.

Using the "peak detection function", a possible multiple peak occurrence is detected

and labeling is finalized for the prototype feature.

+ - 0 *

Feature
(µ, σ )

* 0 - +

Feature
Distribution 
Information

Assigned Label

RGNG

*

Pre-assignment

#

// /

/Final Label

Cluster 
Extraction

Label 
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Figure 4.6: Overview of bipolarity detection
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An overview of multipolarity detection and labeling process of a feature is provided

in Figure 4.6 and the peak detection function is described in detail in the next section.

4.3.1 Peak Detection

Peak detection is one of the key points of this study. The scope of this thesis includes

analyzing the existence of peaks in feature dimensions, therefore if two peaks are de-

tected in a feature data, this indicates that bipolarity is detected for the corresponding

dimension of the class prototype.

Algorithm 6 DBSCAN Algorithm [6].
Input: Dataset D, neighborhood radius ε,

Input: minimum elements requried to form a cluster minPts.

Output: Resultant clusters.

procedure DBSCAN

C = 0.

for all unvisited point P in D do

Set P visited.

Set NbrPts using SetRegion(P, ε) as in Algorithm 7.

if sizeof(NbrPts) < MinPts then

Label P to be noise.

else

Set C as next cluster.

Extend the cluster using ExtendCluster(P,NbrPts, C, ε,MinPts)

as in Algorithm 8.

end if

end for

end procedure

A peak detection function is described in Algorithm 9 for examining features and

detecting possible peaks if multipolarity occurs. Let f be a prototype feature, F be

the set of feature values that f represents. The function takes F as input and it outputs

the multipolarity information. This information includes a Boolean value of whether

multipolarity is detected or not and if it is detected, µ1, σ1, µ2, σ2, ...,µn, σn values
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Algorithm 7 SetRegion Algorithm.
Input: Point P , neighborhood radius ε.

Output: Region points.

procedure SETREGION

Find the points around P within ε.

Include P and return the points.

end procedure

Algorithm 8 ExtendCluster Algorithm.
Input: Point P , neighbor points NbrPts, cluster C, neighborhood radius ε, MinPts.

Output: Extended cluster.

procedure EXTENDCLUSTER

Add point P to cluster C.

for all P ′ in NbrPts do

if P ′ is not processed then

Set P ′ visited.

Set NbrPts′ using SetRegion(P ′, ε) as in Algorithm 7.

if sizeof(NbrPts′) >= MinPts then

Increment NbrPts with NbrPts′.

end if

end if

if P does not belong to any cluster then

Set P ′ as member of C.

end if

end for

end procedure

45



indicating mean of the first cluster, variance of the first cluster, mean of the second

cluster, variance of the second cluster, mean of the nth cluster and variance of the nth

cluster respectively.

The first step is applying the Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) algorithm [6] on the set of feature instances F . Given the neigh-

borhood radius ε and minimum number required to form a cluster, algorithm detects

the peaks, in other words clusters, in the feature set. The advantage here is that, with

this method, we can detect any number of clusters hidden inside the feature set. GMM

method, however, needs to know the number of desired clusters before trying to find

them. Another advantage is that DBSCAN is very successful on low dimensional

data. Although our learning algorithm aims to be successful on high dimensional

datasets as well as low dimensional ones, this peak detection module inspects each

dimension alone. This way DBSCAN runs on one dimensional data and successfully

returns the detected clusters. DBSCAN is briefly explained in Algorithm 6.

Neighborhood radius ε is estimated by a comparison among the densities of the orig-

inal dataset and another uniformly distributed dataset having same size and same

volume. The calculation can be showed as in Equation (4.10):

ε =

√
V kΓ(1

2
n+ 1)

m
√
πn

, (4.9)

V =
n∏
i=1

{maxxi −minxi}, (4.10)

where ε, m, n, Γ, V are the neighborhood radius with k objects, the number of ele-

ments in the dataset, dimensionality of the dataset, the gamma function and the vol-

ume of the space of m elements. Gamma function Γ is described as in the following

equation:

Γ(n) = (n− 1)!. (4.11)

Although radius estimation can be achieved internally without requiring an input, ε

can be specified manually. For different domains it can be set to exact values for

further precision. In other words, ε is an optional parameter.
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If the algorithm finds more than one cluster in the dataset, this indicates possible

multipolarity. We propose approval criterion for the multipolarity decision that comes

from DBSCAN algorithm. If this criterion is also fullfilled, it is decided that the given

dataset has multipolarity in the examined feature set, which means there exists more

than one feature pattern. The values of µ1, σ1, µ2, σ2, ... , µn, σn are attached to the

output of the function in addition to the boolean value indicating multipolarity in the

corresponding feature set, where n is the number of peaks detected.

Algorithm 9 Peak Detection Algorithm.
Input: Set of instance values F belonging to a certain feature f .

Output: Bipolarity information

1: procedure PEAK DETECTION

2: Estimate or manually specify neighborhood radius ε.

3: Apply DBSCAN algorithm on F with ε.

4: if somePerformanceMeasurement holds then

5: Extract the mean and variance values of clusters found by WinnerModel.

6: Store the mean and variance values as µ1, σ1, µ2, σ2.

7: Normalize µ1, σ1, µ2, σ2 w.r.t the training data boundaries.

8: end if

9: end procedure

4.3.2 Performance Measurement

After the peak scan part described in Section 4.3.1, if the model offering multiple

clusters is chosen, the clusters are judged with respect to some additional performance

criteria which is proposed in this thesis.

With the presence of noise in the data, DBSCAN usually gives successful results sep-

arating the outlier points by labeling them as so. However,it may still not be adequate

to take the decision of multipolarity depending on the context of the problem and the

characteristics of the dataset used. To resolve this problem, we define a threshold

value called the "ratio threshold", Tr.

Let ci, N , ri be the ith cluster of the chosen model, the total number of instances in
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both clusters and the ratio between the number of instances in ci and N . N and ri are

given in Equations (4.12) and (4.13) respectively.

N =
2∑
i=1

|ci|, (4.12)

ri =
|ci|
N
, (4.13)

where i = 1, 2 and |ci| is the cardinality of the set ci.

To distinguish a meaningful cluster from noise, there has to be some balance between

the cardinalities of the clusters. Therefore, each cluster should satisfy the condition

in Equation (4.14):

ri > Tr. (4.14)

Tr takes a predefined value and it can be optimized with respect to the type of the

problem and the dataset used for training and testing.

Another issue with the approval of bipolarity is that the concepts of peak can be

perceived differently with respect to different requirements of different problems.

In other words, after a normalization procedure, the variance values of the clusters

should be checked using a predefined threshold value which we call the "variance

threshold", Tσ . Therefore clusters should also satisfy the condition in Equation

(4.15):

σ̂i < Tσ, (4.15)

where i = 1, 2 and σ̂i is the normalized variance value of ci.

As well as Tr, this predefined value of Tσ can be optimized considering the charac-

teristics of the problem and the dataset for accuracy manners.

If both clusters satisfy the conditions mentioned above, they are considered as valid

peaks and the detected bipolarity is approved.
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4.4 Classification

Given an instance vector, to be able to find the most similar class prototype, the

distances between the instance vector and all class prototypes should be measured and

compared to each other. The distance measurement function we propose in this thesis

is an improved distance function based on Mahalanobis distance. We improved the

original method to fit our prototype models. Since our prototype derivation algorithm

makes use of prototype labels, the distance function should be modified so that the

characteristics information carried by feature labels is utilized.

The feature information for the ones with the label ‘*’ is omitted because if the fea-

ture displays an unpredictable pattern, it is not wise to rely on it. Therefore, the

corresponding feature information is omitted for distance calculations.

A feature that has the ‘#’ label on it means that we have more than one different

cluster information stored in the feature structure. Unlike in the case of ’*’ label,

these clusters are very important for calculating an accurate distance.

Let x be an input vector, p be the prototype that x is compared to , fi be the ith feature

of p and fxi be the ith feature of x, where i = 1, . . . , N and N is the number of

features in a prototype vector. If fi has the label ‘#’ indicating that it corresponds to a

multipolar dimension, there are multiple candidates one of which is a better match for

fxi . Therefore the distances from fxi to the clusters of fi are calculated and the cluster

with the smaller distance is the winner. The prototype distribution information is

updated by adopting the distribution information of the winner cluster. The updating

operations are done locally and are not permanent. Because the cluster we adopt for

modification changes with respect to different input vectors. After manipulating the

features and the information they carry, we apply Mahalanobis distance and return

the result.

MD(x, p) =
√

(µxfi − µxpi)TC−1p (µxfi − µxpi), (4.16)

where C is the covariance matrix of the given feature set.
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Algorithm 10 Modified Mahalanobis Distance.
Input: instance vector x, prototype p

Output: distance between the given instance vector and the prototype vector, dist(x, p)

1: procedure MODIFIED MAHALANOBIS

2: for all feature fi in prototype p do

3: if labelfi equals ‘*’ then

4: Omit feature fi from calculations.

5: end if

6: end for

7: for all feature fi in prototype p do

8: if labelfi equals ‘#’ then

9: for all clusterk in clusters do

10: Calculate distance between ficlusterk and fxi , store it as distk.

11: end for

12: Determine max?(dist1, dist2, ..., distk), store winner’s index as j.

13: Update µfi with µ of clusterjfi .

14: Update σfi as σ of clusterjfi .

15: end if

16: end for

17: Update covariance matrix Cp.

18: By considering all dimensions, calculate the distance using Equation (4.16)

19: end procedure
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CHAPTER 5

RESULTS & EVALUATION

This chapter includes descriptions of the datasets we used for this study, the tests and

the comparison with other methods. We have implemented / re-implemented nine

other algorithms for comparison with the algorithm we developed and proposed in

this thesis. Test results and observations are discussed.

5.1 Datasets

In this section we describe the datasets which we experimented on for investigation

of the performance of the proposed and re-implemented algorithms. The datasets are:

1. IRIS Dataset (IRIS)

2. Dataset of Effect Prototypes (DEP)

3. Short-Tall Dataset (STD)

4. Dataset of Effect Prototypes with Bipolarity (DEPB)

5. Reduced Dataset of Effect Prototypes with Bipolarity (RDEPB)

6. Synthetic Dataset with High Multipolarity (DMP)

7. Wine Dataset (WD)

8. Seeds Dataset (SEED)

Some of the basic properties that describe these datasets are summarized in Table 5.1.
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Table 5.1: Summary of the datasets used in experimental work.

Dataset Number of 

Classes 

Number of 

Features 

(Attributes) 

Labeled Contains 

Missing 

Values 

Average Number 

of Instances in 

Each Class 

IRIS 3 4 Yes No 50 

DEP 7 67 Yes No 40 

STD 2 92 Yes No 210 

DEPB 6 67 Yes No 40 

RDEPB 4 3 Yes No 41 

DMP 6 3 Yes No 154 

WD 3 13 Yes No 60 

SEED 3 7 Yes No 70 

 

5.1.1 IRIS Dataset

Iris dataset is one of the popular datasets used in the field of Machine Learning. It is

created by R.A. Fisher and taken from UCI Machine Learning Repository [1]. The

classes in this dataset refer to the types of iris plant. Attributes are numerical and each

refers to characteristics for defining the plant type.

We include tests with this dataset in our study because of comparability and repro-

ducibility purposes since it is a well-known and relatively simple dataset. Other

datasets we use in our tests are more domain specific and more complicated than

IRIS Dataset.

This dataset contains 3 classes with 50 instances in each class. Each instance has 4

dimensions corresponding to iris flower features.

5.1.2 Dataset of Effect Prototypes

This dataset is created by Kalkan et al. and used in the study [21]. It was created in

KOVAN Research Lab which is one of the major research labs in METU Computer

Engineering Department and it is used in many other studies as well.

iCub humanoid robot [28] which is designed for cognitive and developmental robotics

research is used to generate this dataset. The robot is physically designed in the form

of a 4-year old child. iCub’s perception of objects is assisted by a Kinect RGB-D
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camera and sensorimotor data corresponding to perceptual features of objects includ-

ing surface features, spatial features and object presence are used in the dataset.
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However, such an association provides a limited coverage
for all the meanings that the verb “lift” should convey. First,
the robot can probably lift an object with different behaviors,
such aslift-with-right-arm and lift-with-left-arm (for exam-
ple, Figure 1 shows six different behaviors that can be used
by humans to push an object towards left). Second, the exe-
cution of the particular behavior may fail on some objects,
e.g., heavy or slippery objects. Third, in certain cases, a
seemingly contradictory behavior such as pressing, may also
lift an object that is placed on a lever to accomplish lifting.

The criticisms that are stated above indicate that the rep-
resentation of a verb concept by a particular behavioral cat-
egory implicitly includes the “manner” information by spec-
ifying the exact type of behavior that is being asked for. An
alternative, which we take in this article, is to associate verbs
with effect categories as:

(<any-entity>, <any-behavior>, lifted). (3)

In other words, we propose linking the verb “lift” to the set
of behaviors that have thelifted effect (see Figure 2(b)).

Experimental Framework

We used the iCub humanoid robot (Metta et al., 2008), a
fully open-source platform designed for cognitive and devel-
opmental robotics research. The robot, built in the form of
4 year old child, has 53-DOF in its body and equipped with
7-DOF arms and 9-DOF hands making it possible to develop
human-like simple object manipulation behaviors for inter-
acting with objects put on a table.

The robot used a Kinect RGB-D camera (Figure 3) fixated
on the side of the robot to perceive the objects on the table.
The camera captured the depth of scenes with a resolution
of 640× 480, providing a cloud of 3D points with the corre-
sponding RGB data.

Behaviors

We used a repertoire of six manipulation behaviors for
interacting with the objects, similar to the ones used by
Bergquist et al. (2009); Metta & Fitzpatrick (2003). These
behaviors, denoted asb0, ..,b5, are: push-left, push-right,
push-forward, pull, top-grasp and side-graspbehaviors3.
Thetop-graspandside-graspbehaviors are approach the ob-
ject from the top, or from the left or right (depending on the
relative position of the object) and fingers close upon touch.

Perceptual features

The object in the depth image captured by the Kinect de-
vice is segmented from the tabletop by assuming that the
workspace is planar and placed parallel to the ground. The

Figure 3. iCub interacting with an object on the table.

Figure 4. The elements of perception extracted within our system.

following features were then extracted from the point cloud
corresponding to the object:
• Surface features:surface normals (azimuth and zenith

angles), principal curvatures, and shape index as represented
with 20-bin histograms, using curvature and normal estima-
tion methods provided by an open-source Point Cloud Li-
brary - PCL (Rusu & Cousins, 2011).
• Spatial features:bounding box center, orientation, and

dimensions (alongx, y, z).
• Object Presence:a binary feature for whether an object

exists on top of the table or not. This information is espe-
cially useful when an object disappears after an interaction.

The features extracted from the objects before the execu-
tion of a behavior are called theinitial featureswhereas the
features extracted after the behavior are called thefinal fea-
tures. The difference between the final and the initial features
are used as theeffect features. These initial and effect fea-
tures correspond to theentityand theeffect in the affordance
formalization in Equation 1.

Learning Affordance Relations

In the experiments, the robot interacted with a set of 35
objects of different sizes and shapes as shown in Figure 5. In
total, 413 different interactions were recorded, that consisted

Figure 5.1: iCub humanoid robot.

As it is also explained in Section 3.9, to be able to manipulate the objects, the robot ap-

plies behaviors like "Push Right", "Push Left", "Push Forward", "Pull", "Top Grasp"

and "Side Grasp". As a consequence of these behaviors, changes in object features

occur and then they are recorded. These changes correspond to the features of the

effect instances which are used in this dataset. Effects have labels including "Moved

Right", "Moved Left", "Moved Forward" etc. and they correspond to the classes of

the dataset.

This dataset includes 7 classes, containing 311 instances in total. Each instance has

67 dimensions corresponding to object features. We refer this dataset as DEP in short.

5.1.3 Short-Tall Dataset

This dataset is also created in KOVAN research lab as well as the previously intro-

duced dataset DEP [30]. In our study, we use this dataset to compare several algo-

rithms which we developed and re-implemented. This dataset is also applicable for

the SVM algorithm as well as the Multi-SVM algorithms since it has 2 classes and

requires binary classification.

This dataset includes 2 classes with 420 instances in total. Each instance has 92
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dimensions corresponding to object features. We refer this dataset as STD in short.

5.1.4 Dataset of Effect Prototypes with Bipolarity

Dataset of Effect Prototypes (DEP), which is presented in the previous subsection

consists of instances with mostly unipolar dimensions and bipolar dimensions do not

have significance. To be able to test the bipolarity/multipolarity detection capabil-

ity of our proposed algorithm which is called Multinomial Prototype-based Learning

(MNPBL), we proposed a new effect which is called “Moved Sideways”. This ef-

fect is created by either moving the object to the left side or moving it to the right

side. Since both behaviors create effects which are equally valid to be classified

as “Moved Sideways”, we created a dataset by merging “Moved Left” and “Moved

Right” instances of DEP. This dataset shows stronger multipolarity characteristics in

their dimensions compared to the DEP dataset. With this dataset, the aim is to test our

algorithms multiple pattern detection abilities by adding multipolarity characteristics

to some of the dimensions.

This dataset includes 6 classes, containing 265 instances in total. Each instance has

67 dimensions corresponding to object features. We refer this dataset as DEPB in

short.

5.1.5 Reduced Dataset of Effect Prototypes with Bipolarity

This dataset is also created for testing multipolarity in dimensions. Unlike the pre-

vious ones it is reduced so that bipolar/multipolar dimensions have more emphasis

compared to DEP and DEPB datasets. Both the dimension count and class count

is decreased, leaving the ones which carry multipolarity characteristics. With this

dataset, the aim is to test the multiple pattern detection ability of our algorithm for the

existence of higher multipolarity levels.

This dataset includes 4 classes with 163 instances in total. Each instance has di-

mensions with reduced count to 3 for the purpose of amplifying the weight of the

multipolar dimensions. We call this dataset RDEPB in short.
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5.1.6 Synthetic Dataset with a High Level of Multipolarity

This dataset is created for testing high level of multipolarity and includes up to 4

peaks in class dimensions. Classes correspond to different patterns in 3-D space. An

important property of this dataset is that different classes seem to have very similar

dimension means. Therefore it is very hard to distinguish them without revealing the

different patterns inside each dimension. Visual representations are given in Figures

5.2 and 5.3 for a better understanding of the dataset and the patterns of the classes.

This dataset includes 6 classes, containing 924 instances in total. Each instance has 3

dimensions corresponding to position features in 3-D space.

We refer this dataset as DMP in short.
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Figure 5.2: Visualization of Class 1 in 3-D space. The dataset is a synthetic one

with high degree of multipolarity for testing the multiple pattern sensitivity of the

algorithms.
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Figure 5.3: Visualization of the entire dataset in 3-D space. The dataset is a synthetic

one with high degree of multipolarity for testing the multiple pattern sensitivity of the

algorithms.

5.1.7 Wine Dataset

This dataset is originally created by Forina, M. et al and donated to UCI Machine

Learning Repository [1] in 1991. The data contains chemical analysis of wines and

the attributes correspond to the chemical and physical features like magnesium, phe-

nols, alcohol, color intensity etc. for different types of wines.

The dataset includes 3 classes, containing 178 instances in total. Each instance has

13 dimensions.

We call this dataset WD in short.

5.1.8 Seeds Dataset

This dataset is donated to UCI Machine Learning Repository [1] in 2012 by Chary-

tanowicz, M. and Niewczas, J. from The John Paul II Catholic University of Lublin,

Piotr Kulczycki, Piotr A. Kowalski, Syzmon Lukasik, Slowomir Zak from Cracow
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University of Technology and Systems Research Institute, Polish Academy of Sci-

ences. The dataset enables analysis on different types of kernels which belong to

different types of wheats. The attributes correspond to the kernel features such as

area, perimeter, asymmetry coefficient etc.

The dataset includes 3 classes, containing 210 instances in total. Each instance has 7

dimensions.

We call this dataset SEEDS in this thesis.

5.2 Evaluation Metrics

We have divided this section into two subsections to be able to give more details

about the experimental work of this thesis. In Section 5.3, we investigate the algo-

rithms that we propose and re-implemented, compare them in terms of accuracies,

learning curves and running times on different datasets that have different properties

and then we discuss the results. As well as overall performances of algorithms, we

also compare the results in class level, with respect to f-measure, precision and recall

values for the classes of datasets. Precision is the fraction of retrieved instances which

are relevant and recall can be described as the fraction of relevant instances that are

retrieved. F-measure is the harmonic average of precision and recall. Let number of

true positives, number of true negatives, number of false positives, number of false

negatives be TP, TN, FP, FN respectively. Then, precision, recall, f-measure and ac-

curacy can be calculated by Equations (5.3), (5.1), (5.2), (5.4). The relation between

accuracy and precision can be shown as in Figure 5.4.

precision =
TP

TP + FP
, (5.1)

recall =
TP

TP + FN
, (5.2)

f-measure = 2
(precision)(recall)
precision + recall

, (5.3)

57



accuracy =
TP + TN

TP + TN + FP + FN
. (5.4)

In Section 5.3.1, we present a case study of handling multipolar dimensions. Looking

only at the accuracy results gives an idea about the overall performance of our algo-

rithm among the others but sometimes it is not enough to understand the dominance

of our algorithm in terms of multipolarity handling. Therefore, we compare our pro-

posed algorithm MNPBL with DOP by further analyzing the internal steps during

classification and explain the improvements on multipolar dimension handling with

numbers from experimental cases. This leads to a better understanding of how our

algorithm works and gets better results by coping with multiple pattern challenges in

dimensions.

Reference value 

Value 

Probability 
density 

Accuracy 

Precision 

Figure 5.4: Relation between accuracy and precision.

5.3 Comparison with Other Methods

The aim of this comparison is to test different algorithms, including ours, with differ-

ent datasets and observing their behaviors that they show in different cases. We have

experimented on 8 datasets (IRIS, STD, DEP, DEPB, RDEPB, DMP, WD and SEED)

with 10 different algorithms (LVQ, Multi-SVM with linear kernel, Multi-SVM with

polynomial kernel, Multi-SVM with quadratic kernel, Multi-SVM with RBF kernel,

AdaBoost, k-NN, Decision Tree Learning, DOP and MNPBL) and then discuessed

the results we derived from these experiments.
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For our experiments we used 10-fold cross-validation for our accuracy, f-measure,

precision and recall evaluations. We emprically set some values for parameters of the

methods we used. LVQ networks that we used was optimezed with 15 to 150 epochs

and the class weights were distributed equally. For SVM algorithms, we used 3000 as

max iteration count. We used MNPBL to estimate the epsilon value for neighborhood

radius when determining the number of peaks in dimensions. Variance threshold Tσ

was taken as −0.8 and the ratio threshold Tr was taken as 0.1 for the peak detection

mechanism of MNPBL algorithm. For k-NN algorithm we set k = 3. AdaBoost algo-

rithm with ensemble cycle value of 100 was used. AdaBoost.M1 andAdaBoost.M2

algorithms were applied depending on the dataset whether it needs a binary classifi-

cation or multi-class classification. Pruning was used when applying Decision Tree

Learning algorithm with a pruning criterion of ’error’ and the minumum parent size

value was set to 10 for branch node observations.

The datasets we have choosen display differences in terms of attribute count which

refers to the number dimensions of the space worked on, the number of classes, in-

stance count etc. Since we test different algorithms with different characteristics, we

are able to observe their behavior with the changing properties of the datasets. But

more importantly, we test the algorithms with datasets having different levels of mul-

tipolarity and with the obtained results we show that our algorithm, MNPBL, has

comparable performance competing the other algorithms investigated in this thesis.

MNPBL’s performance is high in terms of accuracy, precision, recall and f-measure

on datasets with unipolar dimensions, moreover thanks to its multipolarity handling

mechanism, the significance of its performance increases with the increasing level of

multipolarity in dimensions. Table 5.2 shows the accuracy results.

During our tests, we also measured the algorithm running times for training and com-

pared them. Learning curve analysis is also a part of our experiments for discussing

the generalization performances of the algorithms.
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Table 5.2: Average accuracies of algorithms (%). 10-fold cross-validation is used.
(M=mean,SD=standard deviation)

 IRIS STD DEP DEPB RDEPB DMP WD SEED Overall 

LVQ M 92.14 84.04 12.26 17.31 73.89 16.67 34.12 88.57 52.38 

SD 5.03 14.36 2.14 2.46 2.83 3.5e-15 3.53 11.31 5.21 

M-SVM 

(Linear) 

M 75.00 98.25 79.35 55.77 49.44 16.67 93.53 90.48 69.81 

SD 11.18 5.26 7.38 8.11 1.67 3.5e-15 6.14 8.78 6.07 

M-SVM 

(Poly.) 

M 91.43 97.37 71.29 66.54 99.44 93.33  91.18 92.38 87.87 

SD 6.99 6.76 7.28 9.59 1.67 8.17 7.56 7.44 6.93 

M-SVM 

(Quad.) 

M 95.71 93.86 73.23 72.30 99.44 91.55 92.94 93.33 89.05 

SD 5.71 10.79 6.46 13.30 1.67 7.46 6.34 6.10 7.23 

M-SVM 

(RBF) 

M 95.00 73.51 43.87 44.62 99.44 91.56 84.12 91.43 77.94 

SD 7.18 21.78 7.24 6.01 1.67 7.46 5.29 8.19 8.10 

k-NN M 95.71 93.68 80.97 81.92 99.44 100.0 87.65 89.05 91.05 

SD 6.55 9.68 3.37 7.31 1.67 0.00 7.18 11.31 5.88 

D-Tree M 95.71 93.68 83.87 87.31 98.89 100.0 91.77 91.43 92.83 

SD 5.71 7.78 3.23 5.18 2.22 0.00 9.19 7.32 5.08 

AdaBoost M 95.00 96.32 71.29 76.15 99.44 74.78 94.12 90.48 87.20 

SD 5.58 5.79 4.66 9.23 1.21 7.59 6.44 8.52 6.13 

DOP M 93.57 80.35 65.81 71.92 25.00 38.33 91.18 92.86 69.88 

SD 5.93 14.01 18.43 4.57 6.60 5.69 6.58 4.88 8.34 

MNPBL M 94.29 80.70 74.19 77.69 99.44 94.11 91.18 92.86 88.06 

SD 5.35 13.79 11.63 5.91 1.67 5.60 6.58 4.88 6.93 

 

Our algorithm MNPBL shows good accuracy results in general. It outranks many

other algorithms on several datasets. On IRIS dataset, with 94.29% accuracy, MNPBL

is more successful than DOP, Linear-kernel SVM, Polynomial-kernel SVM and LVQ.

There is only 1.42% difference between the accuracy of MNPBL and the highest

accuracy achieved on this dataset. Highest accuracies are achieved by k-NN and

Decision Tree Learning algorithm while AdaBoost and RBF-kernel SVM has 95%

accuracy rate. Since IRIS dataset is a simpler one compared to many other datasets

and does not have high levels of multipolarity, this result shows that MNPBL com-

petes well with other algorithms on datasets with unipolar dimensions on different

domains. Since they are both prototype based algorithms with similar structure, DOP

also has similar high accuracies except for the dataset with increased multipolarities.

For IRIS dataset, DOP achieved 93.57%. The largest standard deviation observed on

IRIS dataset belongs to Linear-kernel SVM with the value of 11.18 and the smallest

belongs to LVQ with 5.03 after 10-fold cross validation. The results on IRIS dataset

are visualized in Figure 5.5.
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Figure 5.5: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM,

k-NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on IRIS dataset. 10-

fold cross validation is used.

On STD dataset, MNPBL has over 80% accuracy and outranks DOP and RBF-kernel

Multi-SVM algorithm while LVQ has slightly better performance than our algo-

rithms. Other algorithms have accuracies over 90% and Linear kernel-SVM is the

most successful algorithm on this dataset. The results on STD dataset is visualized in

Figure 5.6.

For the DEP dataset and the DEPB dataset which has increased multipolarity charac-

teristics compared to DEP, MNPBL has promising results with accuracies of 74.19%

and 77.69 respectively. For DEP dataset, MNPBL is ranked 4th among 10 algo-

rithms and for DEPB dataset it outranked the Linear-kernel Multi-SVM algorithm

and climbed to 3th place. The reason is Linear-kernel Multi-SVM experienced a sig-

nificant performance decrease with the increased multipolarity from DEP to DEPB.

On these datasets, Decision Tree Learning and k-NN algorithms are the first and

second most successful ones respectively and they are the only two algorithms that

slightly outranks MNPBL on DEPB dataset. Similar to our algorithm MNPBL, Deci-

sion Tree Learning and k-NN are not affected by the changing level of multipolarity in

the datasets. AdaBoost also achieved good performance on both datasets and not ex-
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perienced a performance decrease after the multipolarity level change in the datasets.

Among the different kernel Multi-SVM’s, quadratic kernel Multi-SVM is the most ro-

bust one for DEP and DEPB datasets although liner kernel Multi-SVM is the one with

highest accuracy on the DEP dataset, when multipolarity level is low. Polynomial-

kernel Multi-SVM displayed also good and consistent performance which is slightly

under quadratic-kernel Multi-SVM. However RBF-kernel is not successful on either

datasets. The lowest accuracy rates belong to LVQ on both datasets. The results on

DEP and DEPB datasets are visualized in Figures 5.7 and 5.8 respectively.
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Figure 5.6: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM,

k-NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on STD dataset. 10-

fold cross validation is used.

For RDEPB dataset, which is a reduced dataset featuring multipolarity, all algorithms

other than linear-kernel SVM, DOP and LVQ had very successful results.Although it

was not as successful as k-NN, Decision Tree Learning, AdaBoost, quadratic-kernel,

polynomial-kernel,RBF-kernel Multi-SVMs and MNPBL, LVQ increased its perfor-

mance because of the fact that RDEPB is reduced. However, for the same reason,

DOP had experienced a dramatic performance decrease. Reducing the dimensions

resulted in wrong predictions for DOP because of its multipolarity sensitivity. Linear-

kernel SVM also displayed sensitivity of multipolarity on RDEPB. Having 99.44%
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average accuracy rate and a standard deviation value of 1.67, MNPBL shared the 1st

place in terms of accuracy with the other kernel versions of SVMs, AdaBoost and

k-NN. The results on RDEPB dataset are visualized in Figure 5.9.
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Figure 5.7: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM,

k-NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on DEP dataset. 10-

fold cross validation is used.

The differences between MNPBL and DOP in accuracies becomes more significant

when the unipolar features are excluded from the dataset because this way there is

more emphasis on bipolar dimensions and their weight on the overall judgment is in-

creased. For the dataset DEPB, there exists certain amount of multipolarity with the

“Moved Sideways” class we proposed in this thesis. Although MNPBL has higher

accuracy than DOP on this dataset by doing more accurate calculations for the mul-

tipolar dimensions, the difference is still not very dramatic. This is because DEPB

dataset has a lot of unipolar dimensions and the bipolarity level is not high enough to

compromise its success severely. However, on the RDEPB dataset the MNPBL is far

more successful than DOP because DOP perceives multipolarity as unpredictability

and this time the weights of multipolar dimensions are larger than before.
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Figure 5.8: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM,

k-NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on DEPB dataset. 10-

fold cross validation is used.
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Figure 5.9: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM,

k-NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on RDEPB dataset.

10-fold cross validation is used.
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Figure 5.10: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM, k-

NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on DMP dataset. 10-fold

cross validation is used.
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Figure 5.11: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM, k-

NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on WD dataset. 10-fold

cross validation is used.
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Figure 5.12: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM, k-

NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on SEED dataset. 10-fold

cross validation is used.
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Figure 5.13: Average accuracies of algorithms LVQ, Linear kernel Multi-SVM, Poly-

nomial kernel Multi-SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM,

k-NN, Decision Tree Learning, AdaBoost, DOP and MNPBL considering all of 8

datasets. 10-fold cross validation is used.

DMP dataset has 6 classes and each class has different patterns with similar mean val-
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ues in their dimensions, which means high level of multipolarity. Therefore, DOP dis-

played a low accuracy result on this dataset. Likewise, linear-kernel Multi-SVM and

LVQ was not successful. After k-NN and Decision Tree Learning algorithm, MNPBL

was ranked 3rd with 99.11% accuracy rate which reveals that it is a highly promising

result. After MNPBL, RBF-kernel, quadratic-kernel and polynomial-kernel acheived

to be 4th, 5th, 6th respectively with very close success rates while AdaBoost could

manage to have 74.78%. The average accuracy results on DMP dataset are visual-

ized in Figure 5.10 and the f-measure values of the algorithms for each class of DMP

dataset is shown in Figures 5.14 and 5.15.
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Figure 5.14: Average f-measure values of the algorithms MNPBL, DOP, LVQ, Deci-

sion Tree Learning, k-NN and AdaBoost for each class in DMP dataset. 10-fold cross

validation is used.
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Figure 5.15: Average f-measure values of the algorithms MNPBL, DOP, linear-kernel

Multi-SVM, quadratic-kernel Multi-SVM, polynomial-kernel Multi-SVM and RBF-

kernel Multi SVM for each class in DMP dataset. 10-fold cross validation is used.

LVQ was not successful also on WD dataset but the other algorithms had high ac-

curacy rates with close values. AdaBoost had the 1st place with 94.12% accuracy
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rate while MNPBL achieved to have 91.18% which is also a very high success rate.

Among the SVM kernels the most successful one was linear-kernel with 93.53% rate

and the least successful one was RBF-kernel with 84.12% rate. The results on WD

dataset are displayed in Figure 5.11.

On SEED dataset MNPBL achieved an accuracy rate of 92.86% which is very high

and ranked 2nd after quadratic-kernel Multi-SVM with 93.33% rate. The difference is

only below 0.47% and MNPBL has smaller standard deviation with the value of 4.88.

The most successful SVM kernel on SEED dataset was quadratic-kernel and the least

successful was linear-kernel with 90.48% which is also a good accuracy result. In this

case, AdaBoost and Decision Tree Learning algorithms were below the Multi-SVM

and MNPBL averages but they still achieved to have success rates over 90%. k-NN

and LVQ had accuracy rates slightly under 90%. The results on SEED dataset are

displayed in Figure 5.12.

Overall results on all 8 datasets reveal that LVQ, DOP, linear-kernel Multi-SVM and

RBF-kernel Multi-SVM algorithms are not as stable as other algorithms. RBF and

linear kernel, DOP are sensitive to multipolarity in datasets. However although it

fluctuates a lot, LVQ’s performance is not very much dependent on multipolarity.

MNPBL has an overall accuracy rate of 88.06% with an average standard deviation

value of 6.93 when 10-fold cross validation is applied. It is not sensitive to multi-

polarity and it is competitive on all datasets outranking many other algorithms each

time. For the datasets we used, the overall best algorithm in terms of accuracy rates

is Decision Tree Learning algorithm with an accuracy rate of 92.83% and a stan-

dard deviation value of 5.08. The difference between Decision Tree Learning and

MNPBL is below 5% and our algorithm outranked 6 of 9 other algorithms on the

average of 8 datasets, including DOP, linear-kernel Multi-SVM, RBF-kernel Multi-

SVM, polynomial-kernel Multi-SVM, LVQ and AdaBoost. These results shown in

Figure 5.13 prove that our algorithm has promising results among different types of

learning algorithms on different datasets.
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Figure 5.16: Average accuracies of algorithms LVQ, Quadratic kernel Multi-SVM,

k-NN, Decision Tree Learning, AdaBoost, DOP and MNPBL on datasets IRIS, STD,

DEP, DEPB, RDEPB and DMP. 10-fold cross validation is used.

Table 5.3: Average training times of algorithms (in milliseconds). 10-fold crossed
validation is used on datasets.

 IRIS STD DEP DEPB RDEPB DMP WD SEED Overall 

LVQ M 5034.60 20371.60 11058.10 9524.60 6666.00 31956.30 6323.70 8310.90 12405.72 

SD 335.50 925.20 72.60 325.30 887.10 646.00 642.90 1088.70 615.41 

M-SVM 

(Linear) 

M 55.80 196.70 1318.10 1124.40 126.40 1425.10 209.60 131.50 573.45 

SD 17.60 24.40 239.30 285.80 13.80 120.00 31.50 38.60 96.38 

M-SVM 

(Poly.) 

M 95.90 97.20 355.50 249.00 66.80 447.50  85.40 307.60 213.11 

SD 16.00 13.70 31.20 8.70 11.00 66.00 2.00 61.40 26.25 

M-SVM 

(Quad.) 

M 81.20 141.40 374.70 265.00 58.40  272.30 142.70 186.50 190.28 

SD 23.40 15.80 14.30 23.90 14.40 18.70 14.90 28.40 19.23 

M-SVM 

(RBF) 

M 55.90 431.10 431.10 305.00 56.20 304.50 125.90 76.70 223.30 

SD 2.70 320.10 20.40 8.90 12.30 16.10 17.50 2.80 50.10 

k-NN M 172.40 8.60 8.40 105.80 32.20 10.60 8.60 9.30 44.49 

SD 1.60 5.30 0.20 0.30 0.20 0.70 0.60 0.90 1.23 

D-Tree M 14.30 16.10 22.20 304.90 33.70 15.60 10.90 11.90 53.70 

SD 1.80 0.70 3.00 0.80 01.00 0.20 4.10 0.50 1.51 

AdaBoost M 1537.10 1325.80 1155.60 1332.40 980.00 1218.30 1208.80 1252.20 1251.27 

SD 270.70 207.00 8.10 17.20 1210.90 28.20 743.80 658.10 393.00 

DOP M 56.10 640.80 1468.90 1234.30 99.80 81.90 121.80 80.90 473.06 

SD 9.30 366.20 16.40 16.40 8.70 8.50 10.70 2.50 54.84 

MNPBL M 73.10 797.90 1519.00 1804.20 117.20 148.80 130.40 97.70 586.04 

SD 8.90 29.40 399.10 19.30 11.90 9.30 11.70 9.50 62.39 
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As it is summarized in Table 5.3, in terms of running times for training, LVQ has

the longest by far for all datasets, training the network brings a noticeable amount of

running time cost. The second logest training time belongs to AdaBoost algorithm

with an average time of 1251.27 milliseconds considering all of the datasets. MNPBL

and linear-kernel Multi-SVM have very close running times with 586.04 and 573.45

milliseconds respectively. Other kernels for Multi-SVM algorithm run with smaller

values for training times.
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Figure 5.17: Average running times of algorithms for training on DEPB. The values

are in milliseconds.

The smallest value of training time belongs to k-NN algorithm which is briefly ex-

plained in Algorithm 1, having an average time of 44.49 milliseconds with a value

of 1.23 for standard deviation. Decision Tree Learning algorithm, which has the best

average accuracy rate on all datasets, has 53.70 milliseconds of average running time

and this result makes it the second fastest algorithm of all in terms of training time.

Among SVM kernels the fastest is the quadratic kernel and the slowest is the linear

kernel for our experiments.

For all datasets we have tested, the running time comparison result is shown in Equa-
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tion (5.5).

tLV Q > tAdaBoost > tMNPBL > tLinearSVM > tDOP > tRBFSVM >

tPolynomialSVM > tQuadraticSVM > tD−Tree > tk−NN ,
(5.5)

where tLV Q, tAdaBoost, tMNPBL, tLinearSVM , tDOP , tRBFSVM , tPolynomialSVM ,

tQuadraticSVM , tD−Tree and tk−NN are the training run times of LVQ, AdaBoost,

MNPBL, linear-kernel Multi-SVM, DOP, RBF-kernel Multi-SVM, polynomial-kernel

Multi-SVM, quadratic-kernel Multi-SVM, Decision Tree Learning algorithm and k-

NN algorithm respectively. The comparison is illustrated in Figure 5.17.
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Figure 5.18: Learning curves of Linear kernel Multi-SVM, Polynomial kernel Multi-

SVM, Quadratic kernel Multi-SVM, RBF kernel Multi-SVM and MNPBL on WD

dataset. 5-fold cross validation is used.
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Figure 5.19: Average accuracies of algorithms LVQ, k-NN, Decision Tree Learning,

AdaBoost and MNPBL on WD dataset. 5-fold cross validation is used.

To be able to do learning curve analysis, we sampled the SEED dataset with changing

sizes. For each sample we used 5-fold cross validation and extracted the learning

behavior with respect to the changing data size. MNPBL has once again displayed

a competitive performance for this test. It learns and stabilizes quicker than LVQ,

k-NN and RBF-kernel Multi-SVM algorithm. The other algorithms have quicker but

very similar responses to the change in data size.

AdaBoost and MNPBL has nearly the same tangent value up to 80% accuracy rate but

then MNPBL stabilizes better while AdaBoost experiences fluctuations until 50% of

data size is reached. Comparing MNPBL with Decision Tree Learning algorithm,

they reach 50% accuracy rate at the same data size but until that point, MNPBL

runs with higher rate. At around 13.33% of data size, Decision Tree Learning al-

gorithm reaches its first local maximum with 90% before MNPBL reaches its first

local maximum with 83.33% accuracy rate at 20% of data size. However, at the same

point (20% data size), Decision Tree Learning algorithm’s accuracy drops to 66.66%

accuracy rate which is below MNPBL’s performance. Then the two algorithm sta-

bilizes with minor fluctuations. Among SVM kernels, linear kernel reaches its first

local maximum before than any other kernels. RBF kernel learns slower and needs

more data reach a maximum. However, together with MNPBL all other kernels stabi-
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lizes after around 20% of data size. These behaviors visualized in Figure 5.18 reveal

that MNPBL has a competitive generalization performance compared to AdaBoost,

Decision-Tree, k-NN and LVQ.

5.3.1 Case Study

In this section, we analyze the algorithms, DOP and MNPBL and show how they

behave differently because of their different ways of feature analysis. We derived

"Moved Sideways" prototypes with both DOP and MNPBL algorithms on the dataset

DEPB. By introducing a "Moved Sideways" effect instance to the both of the algo-

rithms, we investigated the classification step.

5.3.1.1 Prototype Derivation Phase

During prototype derivation process, MNPBL finds the clusters in an multipolar fea-

ture set, while DOP treats it as one chunk of data. Therefore, they build different

prototypes for "Moved Sideways" effect. Let wDOP , wMNPBL, fwDOP
y , fwMNPBL

y

be the prototype generated by DOP, the prototype generated by MNPBL, feature of

wDOP corresponding to y axis change and ,feature of wMNPBL corresponding to y

axis change respectively. The detailed information about fwDOP
y and fwMNPBL

y is

given in Tables 5.4 and 5.5.

Table 5.4: fwDOP
y , y axis feature of DOP prototype for "Moved Sideways" effect.

   
     Feature Data 

Mean 0.4184 

Variance 0.1021 

Normalized Mean 0.1633 

Normalized Variance 0.5292 

Number of Instances 41 

Label ‘*’ 

 

 

 

 

  
       Feature Data  

 Cluster 1 Cluster 2 

Mean 0.1390 0.7117 

Variance 0.0011 0.0012 

Normalized Mean -0.7220 0.4234 

Normalized Variance -0.9950 -0.9947 

Number of Instances 20 21 

Label ‘#’ 

 

With the help of RGNG, DOP decides that the feature fwDOP
y does not have reli-

able information for a class description. Therefore it assigns ’*’ label to that feature.
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Since DOP do not have the ability to detect the peaks in a dimension, the mean and

variance values are misleading values for this case. Derived variance value indicates

unpredictability although "Moved Sideways" class has two distinct predictable behav-

iors. The extracted mean value of fwDOP
y lies in a position between the mean values

derived by MNPBL. Therefore, this single mean value of 0.4184 does not reflect none

of the two behaviors that "Moved Sideways" class displays on y axis. However, DOP

algorithm is aware of the fact that it has extracted unreliable mean and variance val-

ues. Thus, it assigns the label which causes omission of this misleading data for the

corresponding feature in distance calculation process.

MNPBL detects that the input data corresponding to fwMNPBL
y does not display a

single consistent behavior as a first step. Then, it further investigates the data for a

final decision, whether it is one unpredictable cluster of inconsistent values or it has

two clusters of consistent values. By applying Algorithm 10, MNPBL concludes that

the feature fwMNPBL
y has two consistent clusters and assigns the ‘#’ label.

Table 5.5: fwMNPBL
y , y axis feature of MNPBL prototype for "Moved Sideways"

effect.

   
     Feature Data 

Mean 0.4184 

Variance 0.1021 

Normalized Mean 0.1633 

Normalized Variance 0.5292 

Number of Instances 41 

Label ‘*’ 

 

 

 

 

  
       Feature Data  

 Cluster 1 Cluster 2 

Mean 0.1390 0.7117 

Variance 0.0011 0.0012 

Normalized Mean -0.7220 0.4234 

Normalized Variance -0.9950 -0.9947 

Number of Instances 20 21 

Label ‘#’ 

 

5.3.1.2 Classification Phase

We introduce a test instance x and its feature fxy with a normalized value of 0.5075 and

classify it with both of the algorithms. Since they have different prototypes, different

distances are calculated by the algorithms.

DOP omits fxy and fwDOP
y for distance calculation because it labels fwDOP

y with ’*’
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symbol indicating that "Moved Sideways" class has unpredictable behavior on y-axis.

The overall distance from x to wDOP is calculated to be 8.6631 by DOP. However,

MNPBL finds the best matching cluster in its prototype wMNPBL for x, by comparing

the existing clusters.

Let dist1(fxy , f
wMNPBL
y ) and dist2(fxy , f

wMNPBL
y ) be the distances from the clusters of

fwMNPBL
y to fxy and they are calculated as:

dist1(f
x
y , f

wMNPBL
y ) = 1.2295

dist2(f
x
y , f

wMNPBL
y ) = 0.0841

Since dist2(fxy , f
wMNPBL
y ) < dist1(f

x
y , f

wMNPBL
y ), the cluster with the normalized

mean value of 0.4234 is chosen as the best matching cluster and dist2(fxy , f
wMNPBL
y )

is decided as the distance from fxy to fwMNPBL
y . The overall distance from x to

wMNPBL is calculated to be 6.7104 by MNPBL. A comparison of DOP and MNPBL

in terms of their distance calculations is shown in Table 5.6 and Figure 5.20.
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Figure 5.20: Normalized feature distances and total distances between the Input Vec-

tor and the prototypes of DOP and MNPBL.

Although DOP has a clever mechanism for avoiding incorrect information, it still

75



suffers from lack of information. This has a significant impact on results especially for

cases where more than one prototype compete for classification of an instance vector

and the competition depends on that feature distance calculation which is omitted. As

an illustration of such cases, in Figure 5.16, DOP experiences a noticeable decrease

in accuracy for RDEPB dataset, after exhibiting successful accuracy rates on DEP

and DEPB datasets, while MNPBL is stable for all them.

Since we examine the performances of DOP and MNPBL on DEPB dataset in this

case study, the accuracy rates of both algorithms are observed to be similar .However,

we show that even if the overall results seem to be similar, MNPBL is more precise

in distance calculation, benefiting its improved prototype structure and the modified

distance calculation that we propose. They are explained in Table 4.2 and Algorithm

10 in detail, respectively.

Table 5.6: Feature distances and total distances calculated by DOP and MNPBL for
"Moved Sideways" instance.

 Feature Distance Total Distance Normalized 

Feature Distance 

Normalized Total 

Distance 

DOP 0.67  

(omitted) 

8.66 1 

(omitted) 

1 

MNPBL 0.08 6.71 0.13 0.77 
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CHAPTER 6

CONCLUSION

In this chapter, we conclude the thesis with a summary of the contributions, the limi-

tations of the current work and the list of potential directions.

6.1 Summary

In this thesis, we propose a prototype based learning method which derives proto-

types out of training data by examining the feature dimension values. Making use

of the RGNG algorithm, these values are clustered and labeled with symbols such as

‘+’, ‘-’, ‘*’, ‘#’ etc. The purpose of these label prototypes is to describe the distri-

bution properties of class prototypes. However, when a class dimension has multiple

separate group of values, each of them having steady behaviors such as consistently

increasing or no change, this causes a problem for the prototype-based learning since

the corresponding feature is misclassified by assigning ’*’ label. We overcome this

problem in our method by detecting multipolar dimensions and extracting the clusters

out of it. A set of performance criteria is applied on the extracted clusters to verify

that they are meaningful. If they are clarified after the performance measurement test,

a prototype feature structure which stores the distribution information of the extracted

clusters is formed. We assign ‘#’ symbol to multipolar dimensions to signify multi-

polarity such that the classification method which we developed is able to sense the

multipolarity in the feature dimension and chooses the correct cluster for making the

most accurate distance calculation.

We developed one and re-implemented 9 different learning algorithms for comparison
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in the scope of this thesis:

• LVQ : A well-know prototype based algorithm

• SVM : A well-known binary classifier.

• Multi-SVM, which is an SVM method with the capability of classifying more-

than two classes, using different kernel functions.

– Linear kernel

– Quadratic kernel

– Polynomial kernel

– Radial Basis Function (RBF) kernel

• AdaBoost: An ensemble learning method which uses weak learners to boost

learning performance.

• Decision Tree Learning: A learning method which describes target functions

as decision trees.

• k-NN: An instance-based supervised learning method.

• A prototype based method which we call DOP, presented and used in the study

[21], by Kalkan and his colleagues.

• The improved prototype based algorithm that we developed for this study. We

call it Multinomial Prototype-based Learning (MNPBL).

We test our algorithm on 8 different datasets. Some of them are created for this

study and some of them are derived from other studies and UCI Machine Learning

Repository [1]. Therefore, we are able to present the performance of the algorithms

on variety of datasets.

• Iris Dataset (IRIS)

• Dataset of Effect Prototypes (DEP)

• Short-Tall Dataset (STD)
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• Dataset of Effect Prototypes with Bipolarity (DEPB)

• Reduced Dataset of Effect Prototypes with Bipolarity (RDEPB)

• Synthetic Dataset with Multipolar Dimensions (DMP)

• Wine Dataset (WD)

• Seeds Dataset (SEED)

Our algorithm, MNPBL, produces a solid performance in terms of accuracy and f-

measure, regardless of the multipolarity levels of datasets, and shows a promising

performance on 8 different datasets. DOP, which is the predecessor, being sensitive to

multipolarity, experiences a severe performance decrease on datasets such as RDEPB;

however, on the other unipolar datasets, it achieves promising accuracy rates overall.

With our improvements, we solved the multipolarity problems of DOP and developed

a robust algorithm which achieves compelling classification results on different types

of datasets.

LVQ, which is also a prototype based algorithm, is sensitive to initialization, and it

is not as robust as other algorithms such as MNPBL, Multi-SVM and k-NN. Multi-

SVM performs well with convincing accuracy rates on all of the datasets. Except for

the linear-kernel version, multipolarity in class dimensions does not have a signifi-

cant impact on Multi-SVM algorithms. They do not experience severe performance

decreases when multipolarity levels increase. AdaBoost is also a robust algorithm

which shows good overall performance on all datasets and it is not sensitive to the

existence of multiple patterns in class dimensions. k-NN and Decision Tree Learning

algorithms display even better performance than AdaBoost in a general perspective.

k-NN has the highest average accuracy rate on all 8 datasets.

In addition to its overall success on all of the datasets, MNPBL is also insensitive to

initialization and ordering of the training inputs. In Figure 5.16, comparison of the

algorithms on IRIS, STD, DEP, DEPB, RDEPB, DMP, WD and SEED datasets is

presented. In terms of learning curve analysis, MNPBL learns fast with small amount

of data and stabilizes to high accuracy rates early. Therefore, compared to other

methods, MNPBL shows a promising generalization performance as well.
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In terms of running times, we observed that LVQ runs slowest whereas k-NN is the

fastest. When different SVM kernels are compared we see that linear kernel is the

slowest kernel for SVM and quadratic kernel is the fastest one on the datasets we

have tested. DOP and MNPBL spends reasonable time both for training and classifi-

cation phases compared to the other algorithms. The running time difference between

DOP and MNPBL is acceptably small because MNPBL spends an expected amount

of extra time on multipolarity detection and resolution. Figure 5.17 illustrates the

running time comparison of the algorithms.

6.2 Future Work

We have demonstrated the effectiveness of our prototype based learning algorithm

with the experimental results presented in Chapter 5. It could be extended and further

improved in a number of ways.

In our experiments, we have proved that our algorithm has a promising performance

on classification. Regression performance could be tested on different datasets and

improved further by analyzing the feature behaviors in a more comprehensive way.

Parameters such as neighborhood radius value can be assigned individually for each

dimension instead of a general assignment.

An optimization algorithm could be applied on the derived mean-variance dataset

to reduce possible noise. Especially noise in the variance dimension causes abnor-

malities after normalization and this affects estimation of high and low variances.

Variance of a dimension is an important part of the decision making and label as-

signment mechanism for our method. Although we solve this problem by eliminating

noises in the stage of multipolarity detection and dismissing the false clusters, an

early preprocessing for noise reduction could be beneficial.

Last but not least, MNPBL algorithm could be examined in terms of entropy and

compared to the other algorithms. Since it is a prototype-based learning algorithm

which can operate on multipolar dimensional data, it stores cluster information for

representing the training data in a prototype structure. To be able to work on a possible

performance increase on prototype structure, data compression could be evaluated.

80



REFERENCES

[1] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[2] Jerome S Bruner, Jacqueline J Goodnow, and George A Austin. A study of
thinking. A Wiley publication in psychology. Wiley, New York, 1956.
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Üçoluk. To afford or not to afford: A new formalization of affordances to-
ward affordance-based robot control. Adaptive Behavior - Animals, Animats,
Software Agents, Robots, Adaptive Systems, 15(4):447–472, December 2007.

[4] Pedro Domingos. A few useful things to know about machine learning. Com-
mun. ACM, 55(10):78–87, October 2012.

[5] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification
(2Nd Edition). Wiley-Interscience, 2000.

[6] Martin Ester, Hans peter Kriegel, Jörg S, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. pages
226–231. AAAI Press, 1996.

[7] Hatem A. Fayed, Sherif R. Hashem, and Amir F. Atiya. Self-generating proto-
types for pattern classification. Pattern Recogn., 40(5):1498–1509, May 2007.

[8] G.M. Foody and Ajay Mathur. A relative evaluation of multiclass image clas-
sification by support vector machines. IEEE Transactions on Geoscience and
Remote Sensing, 42(6):1335–1343, June 2004.

[9] Yoav Freund and Robert E. Schapire. Experiments with a new boosting al-
gorithm. In International Conference on Machine Learning, pages 148–156,
1996.

[10] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–
139, August 1997.

[11] Yoav Freund and Robert E. Schapire. A short introduction to boosting. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intel-
ligence, pages 1401–1406. Morgan Kaufmann, 1999.

[12] Bernd Fritzke. A growing neural gas network learns topologies. In Advances in
Neural Information Processing Systems 7, pages 625–632. MIT Press, 1995.

81



[13] Bernd Fritzke. Some competitive learning methods. Artificial Intelligence In-
stitute, Dresden University of Technology, 1997.

[14] Liane Gabora, Eleanor Rosch, and Diederik Aerts. Toward an ecological theory
of concepts. In (D. Aerts, B. D’Hooghe and N. Note, Eds.) Worldviews, Science
and Us: Bridging Knowledge and Perspectives on the World, World Scientific,
2005.

[15] James J Gibson. The ecological approach to visual perception. Psychology
Press, 2013.

[16] Peter D. Grünwald. The Minimum Description Length Principle (Adaptive
Computation and Machine Learning). The MIT Press, 2007.

[17] Shyam M Guthikonda. Kohonen self-organizing maps. Wittenberg University,
2005.

[18] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The el-
ements of statistical learning: data mining, inference and prediction. The Math-
ematical Intelligencer, 27(2):83–85, 2005.

[19] Eleanor Rosch Heider. "focal" color areas and the development of color names.
Developmental psychology, 4(3):447–455, 1971.

[20] Donald Homa, Sharon Sterling, and Lawrence Trepel. Limitations of exemplar-
based generalization and the abstraction of categorical information. Journal of
Experimental Psychology: Human Learning and Memory, 7(6):418, 1981.

[21] Sinan Kalkan, Nilgün Dag, Onur Yürüten, Anna M Borghi, and E Sahin. Verb
concepts from affordances. Interaction Studies Journal, 15(1):437–451, 2014.

[22] Taskin Kavzoglu and I Colkesen. A kernel functions analysis for support vector
machines for land cover classification. International Journal of Applied Earth
Observation and Geoinformation, 11(5):352–359, 2009.

[23] Teuvo Kohonen. Self-organized formation of topologically correct feature
maps. Biological cybernetics, 43(1):59–69, 1982.

[24] Teuvo Kohonen. The handbook of brain theory and neural networks. chap-
ter Learning Vector Quantization, pages 537–540. MIT Press, Cambridge, MA,
USA, 1998.

[25] John K Kruschke. Category learning. The handbook of cognition, pages 183–
201, 2005.

[26] Mingbo Ma, Ming Shao, Xu Zhao, and Yun Fu. Prototype based feature learn-
ing for face image set classification. In 10th IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition (FG), pages 1–6, April
2013.

82



[27] T.M. Martinetz, S.G. Berkovich, and K.J. Schulten. ‘neural-gas’ network for
vector quantization and its application to time-series prediction. IEEE Transac-
tions on Neural Networks, 4(4):558–569, Jul 1993.

[28] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and Francesco
Nori. The icub humanoid robot: An open platform for research in embodied
cognition. In Proceedings of the 8th Workshop on Performance Metrics for In-
telligent Systems, PerMIS ’08, pages 50–56, New York, NY, USA, 2008. ACM.

[29] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

[30] G. Orhan, S. Olgunsoylu, E. Sahin, and S. Kalkan. Co-learning nouns and
adjectives. In IEEE Third Joint International Conference on Development and
Learning and Epigenetic Robotics (ICDL), pages 1–6, Aug 2013.

[31] Raquel R. Pinho, João Manuel, R. S. Tavares, and Miguel V. Correia. Efficient
approximation of the mahalanobis distance for tracking with the kalman filter.
In CompIMAGE - Computational Modelling of Objects Represented in Images:
Fundamentals, Methods and Applications, pages 84–92, 2006.

[32] Michael I Posner and Steven W Keele. On the genesis of abstract ideas. Journal
of experimental psychology, 77(3p1):353, 1968.

[33] Michael I Posner and Steven W Keele. Retentation of abstract ideas. Journal of
experimental psychology, 77:304, 1970.

[34] A. K. Qin and P. N. Suganthan. Robust growing neural gas algorithm with ap-
plication in cluster analysis. Neural Netw., 17(8-9):1135–1148, October 2004.

[35] Stephen K Reed. Pattern recognition and categorization. Cognitive psychology,
3(3):382–407, 1972.

[36] Douglas Reynolds. Gaussian mixture models. Encyclopedia of Biometrics,
pages 659–663, 2009.

[37] Eleanor Rosch and Barbara B Lloyd. Cognition and categorization. Hillsdale,
New Jersey, 1978.

[38] Eleanor H Rosch. Natural categories. Cognitive psychology, 4(3):328–350,
1973.

[39] Jeffrey N. Rouder and Roger Ratcliff. Comparing exemplar- and rule-based the-
ories of categorization. Current Directions in Psychological Science, 15(1):9–
13, 2006.

[40] Atsushi Sato and Keiji Yamada. Generalized learning vector quantization. Ad-
vances in neural information processing systems, pages 423–429, 1996.

83



[41] Dee Shi and Xiaojun Yang. Support vector machines for landscape mapping
from remote sensor imagery. Proc. AutoCarto 2012, pages 16–18, 2012.

[42] J. David Smith and John Paul Minda. Prototypes in the mist: The early epochs
of category learning. Journal of Experimental Psychology: Learning, Memory,
and Cognition, pages 1411–1430, 1998.

[43] N. Suguna and K Thanushkodi. An improved k-nearest neighbor classifica-
tion using genetic algorithm. International Journal of Computer Science Issues
(IJCSI), 7(4), 2010.

[44] Heiko Timm, Christian Borgelt, Christian Döring, and Rudolf Kruse. Fuzzy
cluster analysis with cluster repulsion. In Proc. European Symposium on Intel-
ligent Technologies, Hybrid Systems and Their Implementation on Smart Adap-
tive Systems (eunite’01, Puerto de la Cruz, Tenerife, Spain), Aachen, Germany,
2001. Verlag Mainz.

[45] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[46] Janett Walters-Williams and Yan Li. Comparative study of distance functions
for nearest neighbors. In Khaled Elleithy, editor, Advanced Techniques in Com-
puting Sciences and Software Engineering, pages 79–84. Springer Netherlands,
2010.

[47] Pr Massimo Warglien and Liudmila Antonova. Categorization and decision
making: Focal points and prototypicality. 2010.

[48] AA Zherebtsov and Yu A Kuperin. Application of self-organizing maps for
clustering djia and nasdaq100 portfolios. arXiv preprint cond-mat/0305330,
2003.

84



APPENDIX A

DETAILED EVALUATION

In this Chapter, we present the class level analysis of f-score, precision and recall

measures for each algorithm on each dataset.

A.1 Results on DEP Dataset

Table A.1: Precision, recall and f-score values of classes in DEP dataset, using Ad-
aBoost algorithm. 10-fold cross validation is used.

Dep ab 

SuccessRate: 71.2903 

RunTime: 1.1556 

1 0.180555555555556 0.400000000000000 0.248567119155354 0.838709677419355 

2 0.701190476190476 1 0.818088578088578 0.932258064516129 

3 0.960000000000000 0.955000000000000 0.954603174603175 0.987096774193548 

4 0.963333333333333 1 0.979797979797980 0.993548387096774 

5 0.273333333333333 0.600000000000000 0.375091575091575 0.835483870967742 

6 0.795555555555556 0.980000000000000 0.868802308802309 0.954838709677420 

7 0 0 0 0.870967741935484 

 

Class Precision Recall F-Measure 

1 0.18 0.40 0.25 

2 0.70 1.00 0.82 

3 0.96 0.96 0.95 

4 0.96 1.00 0.98 

5 0.27 0.60 0.38 

6 0.80 0.98 0.87 

7 0.00 0.00 0.00 

 

Table A.2: Precision, recall and f-score values of classes in DEP dataset, using DOP
algorithm. 10-fold cross validation is used.

Dep dop 

SuccessRate: 65.8065 

RunTime:  1.4689 

1 0.638333333333333 0.395000000000000 0.447655122655123 0.874193548387097 

2 0.738333333333333 0.715000000000000 0.713131313131313 0.932258064516129 

3 1 0.870000000000000 0.924206349206349 0.980645161290322 

4 0.775000000000000 0.755000000000000 0.763888888888889 0.961290322580645 

5 0.456865079365079 0.698333333333333 0.534794094794095 0.848387096774194 

6 0.800833333333333 0.685000000000000 0.699102009102009 0.935483870967742 

7 0.324203296703297 0.465000000000000 0.338994708994709 0.783870967741936 

 

Class Precision Recall F-Measure 

1 0.64 0.40 0.45 

2 0.74 0.72 0.71 

3 1.00 0.87 0.92 

4 0.78 0.76 0.76 

5 0.46 0.70 0.53 

6 0.80 0.69 0.70 

7 0.32 0.47 0.34 
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Table A.3: Precision, recall and f-score values of classes in DEP dataset, using Deci-
sion Tree Learning algorithm. 10-fold cross validation is used.

Dep dt 

SuccessRate: 83.8710 

RunTime: 0.0222 

1 0.755476190476190 0.760000000000000 0.746536796536797 0.925806451612903 

2 0.913333333333333 0.935000000000000 0.916421356421356 0.974193548387097 

3 0.933333333333333 0.975000000000000 0.947532467532467 0.983870967741936 

4 0.980000000000000 0.980000000000000 0.977777777777778 0.993548387096774 

5 0.741666666666667 0.705000000000000 0.710447330447330 0.922580645161290 

6 0.839761904761905 0.850000000000000 0.825829725829726 0.951612903225806 

7 0.530000000000000 0.490000000000000 0.505901875901876 0.925806451612903 

 

Class Precision Recall F-Measure 

1 0.76 0.76 0.75 

2 0.91 0.94 0.92 

3 0.93 0.98 0.95 

4 0.98 0.98 0.98 

5 0.74 0.71 0.71 

6 0.84 0.85 0.83 

7 0.53 0.49 0.51 

 

Table A.4: Precision, recall and f-score values of classes in DEP dataset, using k-NN
algorithm. 10-fold cross validation is used.

Dep knn 

SuccessRate: 80.9677 

RunTime: 0.0084 

1 0.640833333333333 0.785000000000000 0.700104895104895 0.903225806451613 

2 0.763928571428571 0.980000000000000 0.846519036519037 0.945161290322581 

3 1 0.930000000000000 0.960317460317460 0.990322580645161 

4 0.980000000000000 1 0.988888888888889 0.996774193548387 

5 0.750000000000000 0.551666666666667 0.612619047619048 0.900000000000000 

6 0.881428571428572 0.930000000000000 0.892337662337662 0.967741935483871 

7 0.608333333333333 0.320000000000000 0.394761904761905 0.916129032258064 

 

 

Class Precision Recall F-Measure 

1 0.64 0.79 0.70 

2 0.76 0.98 0.84 

3 1.00 0.93 0.96 

4 0.98 1.00 0.99 

5 0.75 0.55 0.61 

6 0.88 0.93 0.89 

7 0.61 0.32 0.40 

 

Table A.5: Precision, recall and f-score values of classes in DEP dataset, using LVQ
algorithm. 10-fold cross validation is used.

Dep lvq 

SuccessRate: 12.2581 

RunTime: 11.0581 

1 0 0 0 0.851612903225806 

2 0.0290322580645161 0.200000000000000 0.0506349206349206 0.709677419354839 

3 0 0 0 0.851612903225806 

4 0.0548387096774194 0.400000000000000 0.0963492063492064 0.564516129032258 

5 0.0258064516129032 0.200000000000000 0.0457142857142857 0.703225806451613 

6 0 0 0 0.854838709677419 

7 0.0129032258064516 0.100000000000000 0.0228571428571429 0.709677419354839 

 

 

Class Precision Recall F-Measure 

1 0.00 0.00 0.00 

2 0.03 0.20 0.05 

3 0.00 0.00 0.00 

4 0.05 0.40 0.09 

5 0.03 0.20 0.04 

6 0.00 0.00 0.00 

7 0.01 0.10 0.02 
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Table A.6: Precision, recall and f-score values of classes in DEP dataset, using
MNPBL algorithm. 10-fold cross validation is used.

Dep mnpbl 

SuccessRate: 74.1935 

RunTime: 1.5190 

1 0.783333333333333 0.410000000000000 0.504761904761905 0.890322580645161 

2 0.913333333333333 0.735000000000000 0.784401154401154 0.948387096774194 

3 1 0.910000000000000 0.949206349206349 0.987096774193548 

4 0.980000000000000 0.930000000000000 0.949206349206349 0.987096774193548 

5 0.523015873015873 0.840000000000000 0.632167832167832 0.858064516129032 

6 0.719166666666667 0.880000000000000 0.785609945609946 0.945161290322581 

7 0.494090909090909 0.455000000000000 0.409920634920635 0.867741935483871 

 

Class Precision Recall F-Measure 

1 0.78 0.41 0.50 

2 0.91 0.74 0.78 

3 1.00 0.91 0.95 

4 0.98 0.93 0.95 

5 0.52 0.84 0.63 

6 0.72 0.88 0.79 

7 0.49 0.46 0.41 

 

Table A.7: Precision, recall and f-score values of classes in DEP dataset, using SVM
algorithm. Linear kernel is used as kernel function. 10-fold cross validation is used.

Dep svm lin 

SuccessRate: 79.3548 

RunTime: 1.3181 

1 0.637738095238095 0.740000000000000 0.641670551670552 0.909677419354839 

2 0.843333333333333 0.980000000000000 0.903232323232323 0.967741935483871 

3 0.911428571428571 0.935000000000000 0.913492063492064 0.974193548387097 

4 0.930000000000000 1 0.959797979797980 0.987096774193548 

5 0.766666666666667 0.426666666666667 0.525079365079365 0.883870967741935 

6 0.889166666666667 0.975000000000000 0.922233322233322 0.974193548387097 

7 0.629629629629630 0.383333333333333 0.438464005130672 0.878136200716846 

 

Class Precision Recall F-Measure 

1 0.64 0.74 0.64 

2 0.84 0.98 0.90 

3 0.91 0.94 0.91 

4 0.93 1.00 0.96 

5 0.77 0.43 0.53 

6 0.89 0.98 0.92 

7 0.63 0.38 0.44 

 

Table A.8: Precision, recall and f-score values of classes in DEP dataset, using SVM
algorithm. Polynomial kernel is used as kernel function. 10-fold cross validation is
used.

Dep svm poly 

SuccessRate: 71.2903 

RunTime: 0.3555 

1 0.685476190476191 0.725000000000000 0.678658008658009 0.900000000000000 

2 0.733095238095238 0.865000000000000 0.786689976689977 0.929032258064516 

3 0.901428571428572 0.905000000000000 0.894877344877345 0.970967741935484 

4 0.800476190476191 0.905000000000000 0.839148629148629 0.951612903225806 

5 0.625000000000000 0.455000000000000 0.516522366522367 0.870967741935484 

6 0.921666666666667 0.800000000000000 0.830230880230880 0.958064516129032 

7 0.316666666666667 0.185000000000000 0.208975468975469 0.845161290322581 

 

 

Class Precision Recall F-Measure 

1 0.69 0.73 0.68 

2 0.73 0.87 0.79 

3 0.90 0.91 0.89 

4 0.80 0.91 0.84 

5 0.63 0.46 0.52 

6 0.92 0.80 0.83 

7 0.32 0.19 0.21 
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Table A.9: Precision, recall and f-score values of classes in DEP dataset, using SVM
algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation is
used.

Dep svm quad 

SuccessRate: 73.2258 

RunTime: 0.3747 

1 0.587142857142857 0.725000000000000 0.634393939393940 0.883870967741935 

2 0.762142857142857 0.810000000000000 0.772626262626263 0.929032258064516 

3 0.888333333333333 0.880000000000000 0.881623376623377 0.967741935483871 

4 0.935000000000000 0.895000000000000 0.905555555555556 0.974193548387097 

5 0.696666666666667 0.490000000000000 0.552142857142857 0.887096774193548 

6 0.871666666666667 0.880000000000000 0.868362193362193 0.964516129032258 

7 0.370634920634921 0.290000000000000 0.297527472527473 0.858064516129032 

 

Class Precision Recall F-Measure 

1 0.59 0.73 0.63 

2 0.76 0.81 0.77 

3 0.89 0.88 0.88 

4 0.94 0.90 0.91 

5 0.70 0.49 0.55 

6 0.87 0.88 0.87 

7 0.37 0.29 0.30 

 

Table A.10: Precision, recall and f-score values of classes in DEP dataset, using SVM
algorithm. RBF kernel is used as kernel function. 10-fold cross validation is used.

Dep svm rbf 

SuccessRate: 43.8710 

RunTime: 0.4311 

1 0.791666666666667 0.390000000000000 0.510238095238095 0.896774193548387 

2 0.841666666666667 0.345000000000000 0.466904761904762 0.896774193548387 

3 0.800000000000000 0.300000000000000 0.426428571428571 0.896774193548387 

4 0.800000000000000 0.400000000000000 0.523333333333333 0.912903225806452 

5 0.400000000000000 0.0850000000000000 0.140000000000000 0.864516129032258 

6 1 0.705000000000000 0.811507936507937 0.958064516129032 

7 0.169261183261183 0.860000000000000 0.277885299108687 0.451612903225806 

 

 

Class Precision Recall F-Measure 

1 0.79 0.39 0.51 

2 0.84 0.35 0.47 

3 0.80 0.30 0.43 

4 0.80 0.40 0.52 

5 0.40 0.09 0.14 

6 1.00 0.71 0.81 

7 0.17 0.86 0.28 

 

A.2 Results on DEPB Dataset

Table A.11: Precision, recall and f-score values of classes in DEPB dataset, using
AdaBoost algorithm. 10-fold cross validation is used.

Depb ab 

SuccessRate: 76.1538 

RunTime: 1.3324 

1 0.413809523809524 0.490000000000000 0.422799422799423 0.830769230769231 

2 0.963333333333333 0.975000000000000 0.965512265512266 0.988461538461539 

3 0.966666666666667 1 0.981818181818182 0.992307692307692 

4 0.728095238095238 0.975000000000000 0.805824175824176 0.903846153846154 

5 0.788095238095238 0.980000000000000 0.865151515151515 0.946153846153846 

6 0 0 0 0.846153846153846 

 

Class Precision Recall F-Measure 

1 0.41 0.49 0.42 

2 0.96 0.98 0.97 

3 0.97 1.00 0.98 

4 0.73 0.98 0.81 

5 0.79 0.98 0.87 

6 0.00 0.00 0.00 
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Table A.12: Precision, recall and f-score values of classes in DEPB dataset, using
DOP algorithm. 10-fold cross validation is used.

Depb dop 

SuccessRate: 71.9231 

RunTime: 1.2343 

1 0.517500000000000 0.485000000000000 0.485732600732601 0.834615384615385 

2 1 0.910000000000000 0.949206349206349 0.984615384615385 

3 0.983333333333333 0.890000000000000 0.926226551226551 0.976923076923077 

4 0.703214285714286 0.748333333333333 0.683562548562549 0.876923076923077 

5 0.918333333333333 0.725000000000000 0.768210678210678 0.938461538461539 

6 0.338611111111111 0.425000000000000 0.363125763125763 0.826923076923077 

 

Class Precision Recall F-Measure 

1 0.52 0.49 0.49 

2 1.00 0.91 0.95 

3 0.98 0.89 0.93 

4 0.70 0.75 0.68 

5 0.92 0.73 0.77 

6 0.34 0.43 0.36 

 

Table A.13: Precision, recall and f-score values of classes in DEPB dataset, using
Decision Tree Learning algorithm. 10-fold cross validation is used.

Depb dt 

successRate: 87.3077 

runTime : 0.3049 

1 0.859523809523810 0.815000000000000 0.816666666666667 0.942307692307692 

2 0.933333333333333 0.975000000000000 0.947532467532467 0.980769230769231 

3 0.983333333333333 0.980000000000000 0.979797979797980 0.992307692307692 

4 0.920476190476191 0.880000000000000 0.879509379509380 0.961538461538462 

5 0.825000000000000 0.895000000000000 0.838607503607504 0.946153846153846 

6 0.708333333333333 0.535000000000000 0.581385281385281 0.923076923076923 

 

Class Precision Recall F-Measure 

1 0.86 0.82 0.82 

2 0.93 0.98 0.95 

3 0.98 0.98 0.98 

4 0.92 0.88 0.88 

5 0.83 0.90 0.84 

6 0.71 0.54 0.58 

 

Table A.14: Precision, recall and f-score values of classes in DEPB dataset, using
k-NN algorithm. 10-fold cross validation is used.

Depb knn 

SuccessRate: 81.9231 

RunTime: 0.1058 

1 0.618333333333333 0.800000000000000 0.686002331002331 0.869230769230769 

2 0.980000000000000 0.930000000000000 0.949206349206349 0.984615384615385 

3 0.983333333333333 1 0.990909090909091 0.996153846153846 

4 0.855000000000000 0.730000000000000 0.765079365079365 0.926923076923077 

5 0.873333333333333 0.935000000000000 0.891976911976912 0.961538461538462 

6 0.630000000000000 0.410000000000000 0.462222222222222 0.900000000000000 

 

Class Precision Recall F-Measure 

1 0.62 0.80 0.69 

2 0.98 0.93 0.95 

3 0.98 1.00 0.99 

4 0.86 0.73 0.77 

5 0.87 0.94 0.89 

6 0.63 0.41 0.46 

 

 
Table A.15: Precision, recall and f-score values of classes in DEPB dataset, using
LVQ algorithm. 10-fold cross validation is used.

Depb lvq 

SuccessRate: 17.3077 

RunTime: 9.5246 

1 0 0 0 0.826923076923077 

2 0.0192307692307692 0.100000000000000 0.0322580645161290 0.765384615384615 

3 0 0 0 0.826923076923077 

4 0.0500000000000000 0.300000000000000 0.0855913978494624 0.626923076923077 

5 0.0538461538461538 0.300000000000000 0.0911827956989248 0.638461538461538 

6 0.0555555555555556 0.333333333333333 0.0951015531660693 0.623931623931624 

 

Class Precision Recall F-Measure 

1 0.00 0.00 0.00 

2 0.01 0.10 0.03 

3 0.00 0.00 0.00 

4 0.05 0.30 0.09 

5 0.05 0.30 0.09 

6 0.06 0.33 0.10 
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Table A.16: Precision, recall and f-score values of classes in DEPB dataset, using
MNPBL algorithm. 10-fold cross validation is used.

Depb mnpbl 

SuccessRate: 77.6923 

RunTime: 1.8042 

1 0.629761904761905 0.395000000000000 0.447142857142857 0.865384615384616 

2 1 0.910000000000000 0.949206349206349 0.984615384615385 

3 0.983333333333333 0.910000000000000 0.940115440115440 0.980769230769231 

4 0.688611111111111 0.950000000000000 0.765714285714286 0.888461538461539 

5 0.811904761904762 1 0.891414141414142 0.957692307692308 

6 0.608333333333333 0.360000000000000 0.407063492063492 0.876923076923077 

 

Class Precision Recall F-Measure 

1 0.63 0.40 0.45 

2 1.00 0.91 0.95 

3 0.98 0.91 0.94 

4 0.69 0.95 0.77 

5 0.81 1.00 0.89 

6 0.61 0.36 0.41 

 

Table A.17: Precision, recall and f-score values of classes in DEPB dataset, using
SVM algorithm. Linear kernel is used as kernel function. 10-fold cross validation is
used.

Depb svm lin 

SuccessRate: 55.7692 

RunTime: 1.1244 

1 0.285854978354978 0.625000000000000 0.386349527665317 0.665384615384616 

2 0.705000000000000 0.565000000000000 0.609603174603175 0.896153846153846 

3 0.616666666666667 0.275000000000000 0.366190476190476 0.865384615384616 

4 0.816666666666667 0.555000000000000 0.624365079365079 0.884615384615385 

5 0.823809523809524 0.980000000000000 0.890101010101010 0.957692307692308 

6 0.398333333333333 0.255000000000000 0.293968253968254 0.846153846153846 

 

Class Precision Recall F-Measure 

1 0.29 0.63 0.39 

2 0.71 0.57 0.61 

3 0.62 0.28 0.37 

4 0.82 0.56 0.62 

5 0.82 0.98 0.89 

6 0.40 0.26 0.29 

 

Table A.18: Precision, recall and f-score values of classes in DEPB dataset, using
SVM algorithm. Polynomial kernel is used as kernel function. 10-fold cross valida-
tion is used.

Depb svm poly 

SuccessRate: 66.5385 

RunTime: 0.2490 

1 0.429523809523810 0.505000000000000 0.456666666666667 0.800000000000000 

2 0.864761904761905 0.885000000000000 0.865786435786436 0.953846153846154 

3 0.826428571428571 0.895000000000000 0.852222222222222 0.946153846153846 

4 0.725000000000000 0.568333333333333 0.613174603174603 0.876923076923077 

5 0.910000000000000 0.800000000000000 0.833730158730159 0.950000000000000 

6 0.296666666666667 0.205000000000000 0.220555555555556 0.803846153846154 

 

Class Precision Recall F-Measure 

1 0.43 0.51 0.46 

2 0.86 0.89 0.87 

3 0.83 0.90 0.85 

4 0.73 0.57 0.61 

5 0.91 0.80 0.83 

6 0.30 0.21 0.22 
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Table A.19: Precision, recall and f-score values of classes in DEPB dataset, using
SVM algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation
is used.

Depb svm quad 

SuccessRate: 72.3077 

RunTime: 0.2650 

1 0.539285714285714 0.575000000000000 0.537770562770563 0.830769230769231 

2 0.871666666666667 0.880000000000000 0.870310245310245 0.957692307692308 

3 0.903333333333333 0.915000000000000 0.901067821067821 0.965384615384616 

4 0.783333333333333 0.568333333333333 0.635512265512266 0.884615384615385 

5 0.888333333333333 0.885000000000000 0.878412698412699 0.961538461538462 

6 0.448148148148148 0.450000000000000 0.441269841269841 0.829059829059829 

 

Class Precision Recall F-Measure 

1 0.54 0.58 0.54 

2 0.87 0.88 0.87 

3 0.90 0.92 0.90 

4 0.78 0.57 0.64 

5 0.89 0.89 0.88 

6 0.45 0.45 0.44 

 

Table A.20: Precision, recall and f-score values of classes in DEPB dataset, using
SVM algorithm. RBF kernel is used as kernel function. 10-fold cross validation is
used.

Depb svm rbf 

SuccessRate: 44.6154 

runTime: 0.3050 

1 0.700000000000000 0.245000000000000 0.354285714285714 0.861538461538462 

2 0.900000000000000 0.305000000000000 0.448571428571429 0.880769230769231 

3 0.800000000000000 0.430000000000000 0.546746031746032 0.900000000000000 

4 0.650000000000000 0.151666666666667 0.241904761904762 0.846153846153846 

5 1 0.710000000000000 0.814682539682540 0.950000000000000 

6 0.194407308377897 0.860000000000000 0.314636474636475 0.453846153846154 

 

Class Precision Recall F-Measure 

1 0.70 0.25 0.35 

2 0.90 0.31 0.45 

3 0.80 0.43 0.55 

4 0.65 0.15 0.24 

5 1.00 0.71 0.81 

6 0.20 0.86 0.31 

 

A.3 Results on IRIS Dataset

Table A.21: Precision, recall and f-score values of classes in IRIS dataset, using
AdaBoost algorithm. 10-fold cross validation is used.

Iris ab 

SuccessRate: 95.00 

RunTime: 1.5371 

1 1 1 1 1 

2 0.913333333333333 0.930000000000000 0.918686868686869 0.950000000000000 

3 0.943333333333333 0.920000000000000 0.928686868686869 0.950000000000000 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.91 0.93 0.92 

3 0.94 0.92 0.93 

 

Table A.22: Precision, recall and f-score values of classes in IRIS dataset, using DOP
algorithm. 10-fold cross validation is used.

Iris dop 

SuccessRate: 93.5714 

RunTime: 0.0561 

1 1 1 1 1 

2 1 0.800000000000000 0.876984126984127 0.935714285714286 

3 0.854761904761905 1 0.916060606060606 0.935714285714286 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.80 0.88 

3 0.86 1.00 0.92 
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Table A.23: Precision, recall and f-score values of classes in IRIS dataset, using
Decision Tree Learning algorithm. 10-fold cross validation is used.

Iris dt 

SuccessRate: 95.7143 

RunTime: 0.0143 

1 1 1 1 1 

2 0.955000000000000 0.905000000000000 0.919444444444445 0.957142857142857 

3 0.934761904761905 0.960000000000000 0.943131313131313 0.957142857142857 

 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.96 0.91 0.92 

3 0.94 0.96 0.94 

 

Table A.24: Precision, recall and f-score values of classes in IRIS dataset, using k-NN
algorithm. 10-fold cross validation is used.

Iris knn 

SuccessRate: 95.7143 

RunTime: 0.1724 

1 1 1 1 1 

2 0.930000000000000 0.925000000000000 0.922655122655123 0.957142857142857 

3 0.950000000000000 0.940000000000000 0.941414141414142 0.957142857142857 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.93 0.93 0.92 

3 0.95 0.94 0.94 

 

Table A.25: Precision, recall and f-score values of classes in IRIS dataset, using LVQ
algorithm. 10-fold cross validation is used.

Iris lvq 

SuccessRate: 92.1429 

RunTime: 5.0346 

1 1 1 1 1 

2 0.833809523809524 0.980000000000000 0.897171717171717 0.921428571428571 

3 0.966666666666667 0.795000000000000 0.866269841269841 0.921428571428571 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.83 0.98 0.90 

3 0.97 0.80 0.87 

 

Table A.26: Precision, recall and f-score values of classes in IRIS dataset, using
MNPBL algorithm. 10-fold cross validation is used. Neighborhood radius ε is
choosen as 1.00.

Iris Mnpbl – dbscan komsuluk parametre = 1 

SuccessRate: 94.2857 

RunTime: 0.0731 

 

1 0.871428571428572 0.840000000000000 0.836183261183261 0.900000000000000 

2 0.693650793650794 0.930000000000000 0.787007437007437 0.821428571428572 

3 0.830000000000000 0.595000000000000 0.685158730158730 0.850000000000000 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.82 0.89 

3 0.87 1.00 0.93 

 

Table A.27: Precision, recall and f-score values of classes in IRIS dataset, using SVM
algorithm. Linear kernel is used as kernel function. 10-fold cross validation is used.

Iris svm lin 

SuccessRate: 75.00 

RunTime: 0.0558 

 

1 1 1 1 1 

2 0.449166666666667 0.585000000000000 0.504397824397824 0.750000000000000 

3 0.686111111111111 0.670000000000000 0.624267399267400 0.750000000000000 

 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.45 0.59 0.50 

3 0.69 0.67 0.62 
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Table A.28: Precision, recall and f-score values of classes in IRIS dataset, using SVM
algorithm. Polynomial kernel is used as kernel function. 10-fold cross validation is
used.

Iris svm poly 

SuccessRate: 91.4286 

RunTime: 0.0959 

 

1 1 1 1 1 

2 0.852261904761905 0.930000000000000 0.880768675768676 0.914285714285714 

3 0.943333333333333 0.810000000000000 0.852496392496393 0.914285714285714 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.85 0.93 0.88 

3 0.94 0.81 0.85 

 

Table A.29: Precision, recall and f-score values of classes in IRIS dataset, using
SVM algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation
is used.

Iris svm quad 

SuccessRate: 95.7143 

RunTime: 0.0812 

 

1 1 1 1 1 

2 0.913095238095238 0.975000000000000 0.940151515151515 0.957142857142857 

3 0.980000000000000 0.895000000000000 0.929603174603175 0.957142857142857 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.91 0.98 0.94 

3 0.98 0.90 0.93 

 

Table A.30: Precision, recall and f-score values of classes in IRIS dataset, using SVM
algorithm. RBF kernel is used as kernel function. 10-fold cross validation is used.

Iris svm rbf 

SuccessRate: 95.00 

RunTime: 0.0559 

 

1 1 0.975000000000000 0.985714285714286 0.992857142857143 

2 0.903333333333333 0.975000000000000 0.935353535353535 0.957142857142857 

3 0.955000000000000 0.900000000000000 0.924444444444445 0.950000000000000 

 

 

Class Precision Recall F-Measure 

1 1.00 0.98 0.99 

2 0.90 0.98 0.94 

3 0.96 0.90 0.92 

 

A.4 Results on RDEPB Dataset

Table A.31: Precision, recall and f-score values of classes in RDEPB dataset, using
AdaBoost algorithm. 10-fold cross validation is used.

Rdepb ab 

successRate : 99.44 

runTime: 0.9800 

1 1 1 1 1 

2 1 0.977777777777778 0.986666666666667 0.994444444444445 

3 0.983333333333333 1 0.990476190476191 0.994444444444445 

4 1 1 1 1 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.98 0.99 

3 0.98 1.00 0.99 

4 1.00 1.00 1.00 
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Table A.32: Precision, recall and f-score values of classes in RDEPB dataset, using
DOP algorithm. 10-fold cross validation is used.

Rdepb dop 

SuccessRate: 25.00 

runTime: 0.0998 

1 NaN 0 NaN 0.750000000000000 

2 NaN 0 NaN 0.750000000000000 

3 NaN 0 NaN 0.750000000000000 

4 0.250000000000000 1 0.400000000000000 0.250000000000000 

 

Class Precision Recall F-Measure 

1 0.00 0.00 0.00 

2 0.00 0.00 0.00 

3 0.00 0.00 0.00 

4 0.25 1.00 0.40 

 

Table A.33: Precision, recall and f-score values of classes in RDEPB dataset, using
Decision Tree Learning algorithm. 10-fold cross validation is used.

Rdepb dt 

Successrate : 98.8889 

runTime: 0.0337 

1 1 1 1 1 

2 0.983333333333333 0.977777777777778 0.977142857142857 0.988888888888889 

3 0.983333333333333 0.977777777777778 0.977142857142857 0.988888888888889 

4 1 1 1 1 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 0.98 0.98 0.98 

3 0.98 0.98 0.98 

4 1.00 1.00 1.00 

 

Table A.34: Precision, recall and f-score values of classes in RDEPB dataset, using
k-NN algorithm. 10-fold cross validation is used.

Rdepb knn 

SuccessRate:  99.4 

runTime: 0.0322 

1 1 1 1 1 

2 1 0.977777777777778 0.986666666666667 0.994444444444445 

3 0.983333333333333 1 0.990476190476191 0.994444444444445 

4 1 1 1 1 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.98 0.99 

3 0.98 1.00 0.99 

4 1.00 1.00 1.00 

 

Table A.35: Precision, recall and f-score values of classes in RDEPB dataset, using
LVQ algorithm. 10-fold cross validation is used.

Rdepb lvq 

SuccessRate: 73.8889 

runTime: 6.6660 

1 0 0 0 0.750000000000000 

2 0.783333333333333 0.977777777777778 0.854761904761905 0.900000000000000 

3 0.636666666666667 1 0.765873015873016 0.833333333333333 

4 1 0.977777777777778 0.986666666666667 0.994444444444444 

 

Class Precision Recall F-Measure 

1 0.00 0.00 0.00 

2 0.78 0.98 0.85 

3 0.64 1.00 0.77 

4 1.00 0.98 0.99 

 

94



Table A.36: Precision, recall and f-score values of classes in RDEPB dataset, using
MNPBL algorithm. 10-fold cross validation is used.

Rdepb mnpbl 

successRate: 99.4444 

runTime: 0.1172 

1 1 1 1 1 

2 1 0.980000000000000 0.988888888888889 0.994444444444445 

3 0.980000000000000 1 0.988888888888889 0.994444444444445 

4 1 1 1 1 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.98 0.99 

3 0.98 1.00 0.99 

4 1.00 1.00 1.00 

 

Table A.37: Precision, recall and f-score values of classes in RDEPB dataset, using
SVM algorithm. Linear kernel is used as kernel function. 10-fold cross validation is
used.

Rdepb svm lin 

SuccessRate: 49.4444 

runTime: 0.1264 

1 0.332417582417582 1 0.498452012383901 0.500000000000000 

2 0 0 0 0.750000000000000 

3 0 0 0 0.744444444444445 

4 1 0.980000000000000 0.988888888888889 0.994444444444445 

 

Class Precision Recall F-Measure 

1 0.33 1.00 0.50 

2 0.00 0.00 0.00 

3 0.00 0.00 0.00 

4 1.00 0.98 0.99 

 

Table A.38: Precision, recall and f-score values of classes in RDEPB dataset, using
SVM algorithm. Polynomial kernel is used as kernel function. 10-fold cross valida-
tion is used.

Rdepb svm poly 

SuccessRate: 99.4444 

runTime: 0.0668 

1 1 1 1 1 

2 1 0.980000000000000 0.988888888888889 0.994444444444445 

3 0.980000000000000 1 0.988888888888889 0.994444444444445 

4 1 1 1 1 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.98 0.99 

3 0.98 1.00 0.99 

4 1.00 1.00 1.00 

 

Table A.39: Precision, recall and f-score values of classes in RDEPB dataset, using
SVM algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation
is used.

Rdepb svm quad 

SuccessRate: 99.4444 

runTime = 0.0584 

1 1 1 1 1 

2 1 0.980000000000000 0.988888888888889 0.994444444444445 

3 0.980000000000000 1 0.988888888888889 0.994444444444445 

4 1 1 1 1 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.98 0.99 

3 0.98 1.00 0.99 

4 1.00 1.00 1.00 
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Table A.40: Precision, recall and f-score values of classes in RDEPB dataset, using
SVM algorithm. RBF kernel is used as kernel function. 10-fold cross validation is
used.

Rdepb svm rbf 

SuccessRate: 99.4444 

runTime: 0.0562 

1 1 1 1 1 

2 1 0.980000000000000 0.988888888888889 0.994444444444445 

3 0.980000000000000 1 0.988888888888889 0.994444444444445 

4 1 1 1 1 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 0.98 0.99 

3 0.98 1.00 0.99 

4 1.00 1.00 1.00 

 

A.5 Results on STD Dataset

Table A.41: Precision, recall and f-score values of classes in STD dataset, using
AdaBoost algorithm. 10-fold cross validation is used.

Std ab 

SuccessRate: 96.3158 

RunTime: 1.3258 

1 0.958028616852146 0.979310344827586 0.964937965260546 0.963157894736842 

2 0.974789915966387 0.926108374384236 0.943452531668463 0.947368421052632 

 

Class Precision Recall F-Measure 

1 0.96 0.98 0.96 

2 0.97 0.93 0.94 

 

Table A.42: Precision, recall and f-score values of classes in STD dataset, using DOP
algorithm. 10-fold cross validation is used.

Std dop 

SuccessRate: 80.3509 

RunTime: 0.6408 

1 0.875955020589167 0.791220406253108 0.820706287702388 0.803508771929825 

2 0.619213226109778 0.712746305418719 0.631267061095598 0.754385964912281 

 

Class Precision Recall F-Measure 

1 0.88 0.80 0.82 

2 0.62 0.71 0.63 

 

Table A.43: Precision, recall and f-score values of classes in STD dataset, using
Decision Tree Learning algorithm. 10-fold cross validation is used.

Std dt 

SuccessRate: 93.6842 

RunTime: 0.0161 

1 0.942977941176471 0.955051421657592 0.940716870079234 0.936842105263158 

2 0.839743589743590 0.784020935960591 0.800370367666935 0.921052631578947 

 

 

Class Precision Recall F-Measure 

1 0.94 0.96 0.94 

2 0.84 0.78 0.80 
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Table A.44: Precision, recall and f-score values of classes in STD dataset, using k-NN
algorithm. 10-fold cross validation is used.

Std knn 

SuccessRate: 93.6842 

RunTime: 0.0086 

1 0.942500000000000 0.953571428571429 0.936178354051429 0.936842105263158 

2 0.955782312925170 0.884764250527797 0.901655342684124 0.909774436090226 

 

Class Precision Recall F-Measure 

1 0.94 0.95 0.94 

2 0.96 0.88 0.90 

 

Table A.45: Precision, recall and f-score values of classes in STD dataset, using LVQ
algorithm. 10-fold cross validation is used.

Std lvq 

SuccessRate: 84.0351 

RunTime: 20.3716 

1 0.882679473245065 0.868142338605134 0.861299856118112 0.840350877192983 

2 0.625957480818414 0.567272167487685 0.571441956012532 0.800438596491228 

 

Class Precision Recall F-Measure 

1 0.88 0.87 0.86 

2 0.62 0.57 0.57 

 

Table A.46: Precision, recall and f-score values of classes in STD dataset, using
MNPBL algorithm. 10-fold cross validation is used.

Std mnpbl 

SuccessRate: 80.7018 

RunTime: 0.7979 

1 0.877830020589167 0.798116957977246 0.824929683089996 0.807017543859649 

2 0.626250263146815 0.712746305418719 0.634526066241396 0.758771929824561 

 

 

Class Precision Recall F-Measure 

1 0.88 0.80 0.82 

2 0.63 0.71 0.64 

 

Table A.47: Precision, recall and f-score values of classes in STD dataset, using SVM
algorithm. Linear kernel is used as kernel function. 10-fold cross validation is used.

std svm lin 

SuccessRate: 98.2456 

RunTime: 0.1967 

1 0.973684210526316 1 0.984848484848485 0.982456140350877 

2 1 0.950738916256158 0.970238095238095 0.974937343358396 

 

Class Precision Recall F-Measure 

1 0.97 1.00 0.98 

2 1.00 0.95 0.97 

 

Table A.48: Precision, recall and f-score values of classes in STD dataset, using SVM
algorithm. Polynomial kernel is used as kernel function. 10-fold cross validation is
used.

std svm poly 

SuccessRate: 97.3684 

RunTime: 0.0972 

1 0.993218390804598 0.953571428571429 0.966318140641316 0.973684210526316 

2 0.955782312925170 0.989971850809289 0.968739390088538 0.962406015037594 

 

Class Precision Recall F-Measure 

1 0.99 0.95 0.97 

2 0.96 0.99 0.97 
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Table A.49: Precision, recall and f-score values of classes in STD dataset, using
SVM algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation
is used.

std svm quad 

SuccessRate: 93.8596 

RunTime: 0.1414 

1 0.968548387096774 0.903634085213033 0.927148394241418 0.938596491228070 

2 0.792390604890605 0.844519704433498 0.813392137335799 0.923245614035088 

 

Class Precision Recall F-Measure 

1 0.97 0.90 0.93 

2 0.79 0.85 0.81 

 

Table A.50: Precision, recall and f-score values of classes in STD dataset, using SVM
algorithm. RBF kernel is used as kernel function. 10-fold cross validation is used.

std svm rbf 

SuccessRate: 73.5088 

RunTime: 0.2836 

1 0.668982715397810 0.900000000000000 0.749779326364692 0.735087719298246 

2 0.927318295739348 0.390218156228008 0.417787114845938 0.621553884711779 

 

Class Precision Recall F-Measure 

1 0.67 0.90 0.75 

2 0.93 0.39 0.42 

 

A.6 Results on DMP Dataset

Table A.51: Precision, recall and f-score values of classes in DMP dataset, using
AdaBoost algorithm. 10-fold cross validation is used.

Adaboost 

successRate = 74.7778 

runTime = 1.2183 

1 0.730434782608696 1 0.824561403508772 0.915555555555556 

2 1 0.993333333333333 0.996551724137931 0.998888888888889 

3 1 1 1 1 

4 0.298387096774194 0.600000000000000 0.398550724637681 0.832222222222222 

5 0.200000000000000 0.400000000000000 0.266666666666667 0.833333333333333 

6 0.600000000000000 0.493333333333333 0.527272727272727 0.915555555555556 

 

Class Precision Recall F-Measure 

1 0.73 1.0 0.82 

2 1.00 0.99 0.99 

3 1.00 1.00 1.00 

4 0.30 0.60 0.40 

5 0.20 0.40 0.27 

6 0.60 0.49 0.53 

 

 
Table A.52: Precision, recall and f-score values of classes in DMP dataset, using DOP
algorithm. 10-fold cross validation is used.

Synth dop 

successRate : 38.33 

runTime: 0.0819 

1 0 0 0 0.833333333333333 

2 0.211637860002349 0.706666666666667 0.318058937173126 0.601111111111111 

3 0.508012351492321 1 0.672852021920729 0.836666666666667 

4 0.143210541272192 0.300000000000000 0.185937297612366 0.785555555555556 

5 0.642857142857143 0.293333333333333 0.354596692881629 0.878888888888889 

6 0 0 0 0.831111111111111 

Class Precision Recall F-Measure 

1 0.00 0.00 0.00 

2 0.21 0.71 0.32 

3 0.51 1.00 0.67 

4 0.14 0.30 0.19 

5 0.64 0.30 0.35 

6 0.00 0.00 0.00 
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Table A.53: Precision, recall and f-score values of classes in DMP dataset, using
Decision Tree Learning algorithm. 10-fold cross validation is used.

Synth dt 

successRate: 100 

runTime: 0.0156 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 1 

6 1 1 1 1 

 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 1.00 1.00 1.00 

 

Table A.54: Precision, recall and f-score values of classes in DMP dataset, using
k-NN algorithm. 10-fold cross validation is used.

Synth knn 

successRate : 100 

runTime: 0.0106 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 1 

6 1 1 1 1 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 1.00 1.00 1.00 

 

Table A.55: Precision, recall and f-score values of classes in DMP dataset, using LVQ
algorithm. 10-fold cross validation is used.

Synth lvq 

successRate: 16.6667 

runTime: 31.9563 

1 0 0 0 0.833333333333333 

2 0.0500000000000000 0.300000000000000 0.0857142857142857 0.633333333333333 

3 0 0 0 0.833333333333333 

4 0.0500000000000000 0.300000000000000 0.0857142857142857 0.633333333333333 

5 0.0166666666666667 0.100000000000000 0.0285714285714286 0.766666666666667 

6 0.0500000000000000 0.300000000000000 0.0857142857142857 0.633333333333333 

Class Precision Recall F-Measure 

1 0.00 0.00 0.00 

2 0.05 0.30 0.09 

3 0.00 0.00 0.00 

4 0.05 0.30 0.09 

5 0.02 0.10 0.03 

6 0.05 0.30 0.09 

 

Table A.56: Precision, recall and f-score values of classes in DMP dataset, using
MNPBL algorithm. 10-fold cross validation is used.

Synth mnpbl 

successRate :  94.1111 

runTime: 0.1488 

1 1 1 1 1 

2 1 1 1 1 

3 0.785211104684789 1 0.866887753399715 0.941111111111111 

4 1 1 1 1 

5 1 1 1 1 

6 1 0.646666666666667 0.730250059537985 0.941111111111111 

 

Class Precision Recall F-Measure 

1 1.00 1.00 1.00 

2 1.00 1.00 1.00 

3 0.78 1.00 0.87 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 1.00 0.65 0.73 
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Table A.57: Precision, recall and f-score values of classes in DMP dataset, using
SVM algorithm. Linear kernel is used as kernel function. 10-fold cross validation is
used.

Sytnh svm lin 

successRate: 16.6667 

runTime: 1.4251 

1 0.166666666666667 1 0.285714285714286 0.166666666666667 

2 0 0 0 0.833333333333333 

3 0 0 0 0.833333333333333 

4 0 0 0 0.833333333333333 

5 0 0 0 0.833333333333333 

6 0 0 0 0.833333333333333 

Class Precision Recall F-Measure 

1 0.17 1.00 0.29 

2 0.00 0.00 0.00 

3 0.00 0.00 0.00 

4 0.00 0.00 0.00 

5 0.00 0.00 0.00 

6 0.00 0.00 0.00 

 

Table A.58: Precision, recall and f-score values of classes in DMP dataset, using SVM
algorithm. Polynomial kernel is used as kernel function. 10-fold cross validation is
used.

Synth svm poly 

SuccessRate:  93.3333 

runTime: 0.4475 

1 0.800000000000000 1 0.866666666666667 0.933333333333333 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 1 

6 0.600000000000000 0.600000000000000 0.600000000000000 0.933333333333333 

 

Class Precision Recall F-Measure 

1 0.80 1.00 0.87 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 0.60 0.60 0.60 

 

Table A.59: Precision, recall and f-score values of classes in DMP dataset, using
SVM algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation
is used.

Synth svm quad 

SuccessRate: 91.55 

runTime: 0.2723 

1 0.730434782608696 1 0.824561403508772 0.915555555555556 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 1 

6 0.600000000000000 0.493333333333333 0.527272727272727 0.915555555555556 

 

Class Precision Recall F-Measure 

1 0.73 1.00 0.83 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 0.60 0.49 0.53 
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Table A.60: Precision, recall and f-score values of classes in DMP dataset, using
SVM algorithm. RBF kernel is used as kernel function. 10-fold cross validation is
used.

Synth svm rbf 

Successrate: 91.5556 

runTime: 0.3045 

1 0.730434782608696 1 0.824561403508772 0.915555555555556 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 1 

6 0.600000000000000 0.493333333333333 0.527272727272727 0.915555555555556 

Class Precision Recall F-Measure 

1 0.73 1.00 0.83 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 0.60 0.49 0.53 

 

A.7 Results on WD Dataset

Table A.61: Precision, recall and f-score values of classes in WD dataset, using Ad-
aBoost algorithm. 10-fold cross validation is used.

Wine Adaboost 

successRate = 94.1176 

runTime = 1.2088 

stdev = 6.4438 

rtstd = 0.7438 

1 0.940476190476191 0.966666666666667 0.947832167832168 0.964705882352941 

2 0.946428571428572 0.910000000000000 0.914956709956710 0.947058823529412 

3 0.965608465608466 0.933333333333333 0.933732933732934 0.967320261437909 

 

Class Precision Recall F-Measure 

1 0.94 0.97 0.95 

2 0.95 0.91 0.92 

3 0.97 0.93 0.93 

 

 

Table A.62: Precision, recall and f-score values of classes in WD dataset, using DOP
algorithm. 10-fold cross validation is used.

Wine dop 

successRate = 91.1765 

runTime = 0.1218 

stdev = 6.5767 

rtstdev = 0.0107 

1 0.969047619047619 0.846666666666667 0.885439005439006 0.935294117647059 

2 0.832976190476191 0.946666666666667 0.879230769230769 0.911764705882353 

3 0.977777777777778 0.940740740740741 0.957575757575758 0.973856209150327 

 

Class Precision Recall F-Measure 

1 0.97 0.85 0.89 

2 0.83 0.95 0.88 

3 0.98 0.94 0.96 

 

 

Table A.63: Precision, recall and f-score values of classes in WD dataset, using De-
cision Tree Learning algorithm. 10-fold cross validation is used.

Wine dt 

successRate = 91.7647 

runTime = 0.0109 

stdev = 9.1885 

rtstdev = 0.0041 

1 0.937500000000000 0.916666666666667 0.914718614718615 0.941176470588235 

2 0.903571428571429 0.906666666666667 0.899766899766900 0.935294117647059 

3 0.949735449735450 0.914814814814815 0.915084915084915 0.954248366013072 

 

Class Precision Recall F-Measure 

1 0.94 0.92 0.92 

2 0.90 0.91 0.90 

3 0.95 0.92 0.92 
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Table A.64: Precision, recall and f-score values of classes in WD dataset, using k-NN
algorithm. 10-fold cross validation is used.

Wine knn 

successRate = 87.6471 

runTime = 0.0086 

stdev = 7.1803 

rtstdev  = 0.0006 

1 0.857380952380952 0.893333333333333 0.854970878794408 0.888235294117647 

2 0.894047619047619 0.847532467532468 0.852508602508603 0.900000000000000 

3 0.984126984126984 0.862962962962963 0.898018648018648 0.960784313725490 

 

Class Precision Recall F-Measure 

1 0.86 0.89 0.86 

2 0.89 0.85 0.85 

3 0.98 0.86 0.90 

 

 
Table A.65: Precision, recall and f-score values of classes in WD dataset, using LVQ
algorithm. 10-fold cross validation is used.

Wine lvq 

successRate = 34.1176 

runTime = 6.3237 

stdev = 3.5294 

rtstdev = 0.6429 

1 0.0852941176470588 0.116666666666667 0.0771739130434783 0.623529411764706 

2 0.203137254901961 0.580000000000000 0.300309617918314 0.441176470588235 

3 0.111111111111111 0.333333333333333 0.166447079490558 0.575163398692810 

 

Class Precision Recall F-Measure 

1 0.09 0.12 0.77 

2 0.20 0.58 0.30 

3 0.11 0.33 0.17 

 

 
Table A.66: Precision, recall and f-score values of classes in WD dataset, using
MNPBL algorithm. 10-fold cross validation is used.

Wine mnpbl 

successRate = 91.1765 

runTime = 0.1304 

stdev = 6.5767 

rtstdev = 0.0117 

1 0.969047619047619 0.846666666666667 0.885439005439006 0.935294117647059 

2 0.832976190476191 0.946666666666667 0.879230769230769 0.911764705882353 

3 0.977777777777778 0.940740740740741 0.957575757575758 0.973856209150327 

 

Class Precision Recall F-Measure 

1 0.97 0.85 0.89 

2 0.83 0.95 0.88 

3 0.98 0.94 0.96 

 

 
Table A.67: Precision, recall and f-score values of classes in WD dataset, using SVM
algorithm. Linear kernel is used as kernel function. 10-fold cross validation is used.

Wine svm lin 

successRate = 93.5294 

runTime = 0.2096 

stdev = 6.1414 

trstdev = 0.0315 

1 0.954761904761905 1 0.975524475524476 0.982352941176471 

2 0.950000000000000 0.875151515151515 0.905858585858586 0.935294117647059 

3 0.829047619047619 0.846666666666667 0.835944055944056 0.952941176470588 

 

Class Precision Recall F-Measure 

1 0.96 1.00 0.98 

2 0.95 0.88 0.91 

3 0.83 0.85 0.84 

 

 
Table A.68: Precision, recall and f-score values of classes in WD dataset, using SVM
algorithm. Polynomial kernel is used as kernel function. 10-fold cross validation is
used.

Wine svm poly 

successRate = 91.1765 

runTime = 0.0854 

stdev = 7.5560 

rtstdev = 0.0020 

1 0.868452380952381 1 0.924615384615385 0.941176470588235 

2 0.946666666666667 0.884242424242424 0.909581529581530 0.941176470588235 

3 0.883333333333333 0.743333333333333 0.798333333333333 0.941176470588235 

 

Class Precision Recall F-Measure 

1 0.87 1.00 0.93 

2 0.95 0.88 0.91 

3 0.88 0.74 0.80 
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Table A.69: Precision, recall and f-score values of classes in WD dataset, using SVM
algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation is
used.

Wine svm quad 

successRate = 92.9412 

runTime = 0.1427 

stdev = 6.3355 

rtstdev = 0.0149 

1 0.932142857142857 0.983333333333333 0.953546453546453 0.964705882352941 

2 0.966666666666667 0.867575757575758 0.912409812409813 0.941176470588235 

3 0.838095238095238 0.843333333333333 0.833857808857809 0.952941176470588 

 

Class Precision Recall F-Measure 

1 0.93 0.98 0.95 

2 0.97 0.87 0.91 

3 0.84 0.84 0.83 

 

 

Table A.70: Precision, recall and f-score values of classes in WD dataset, using SVM
algorithm. RBF kernel is used as kernel function. 10-fold cross validation is used.

Wine svm rbf 

successRate = 84.1176 

runTime = 0.1259 

stdev = 5.2941 

rtstdev = 0.0175 

1 1 0.809047619047619 0.886499611499612 0.935294117647059 

2 0.952380952380952 0.786017316017316 0.842667332667333 0.900000000000000 

3 0.632500000000000 0.863333333333333 0.725321345321345 0.847058823529412 

 

Class Precision Recall F-Measure 

1 1.00 0.81 0.89 

2 0.95 0.79 0.84 

3 0.63 0.86 0.73 

 

 

A.8 Results on SEED Dataset

Table A.71: Precision, recall and f-score values of classes in SEED dataset, using
AdaBoost algorithm. 10-fold cross validation is used.

Seeds  Adaboost 

successRate = 90.4762 

runTime = 1.2522 

stdev = 8.5184 

rtstd = 0.6581 

1 0.907500000000000 0.800000000000000 0.834427533251062 0.904761904761905 

2 0.987500000000000 0.971428571428572 0.977948717948718 0.985714285714286 

3 0.868636363636364 0.942857142857143 0.890112893642306 0.919047619047619 

 

Class Precision Recall F-Measure 

1 0.91 0.80 0.83 

2 0.99 0.97 0.98 

3 0.87 0.94 0.89 

 

 

Table A.72: Precision, recall and f-score values of classes in SEED dataset, using
DOP algorithm. 10-fold cross validation is used.

Seeds  dop 

successRate = 92.8571 

runTime = 0.0809 

stdev = 4.8795 

rtstd = 0.0025 

1 0.861269841269841 0.957142857142857 0.902041585865115 0.928571428571429 

2 0.987500000000000 0.971428571428572 0.977948717948718 0.985714285714286 

3 0.971428571428572 0.857142857142857 0.906043956043956 0.942857142857143 

 

Class Precision Recall F-Measure 

1 0.86 0.96 0.90 

2 0.99 0.97 0.98 

3 0.97 0.86 0.91 
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Table A.73: Precision, recall and f-score values of classes in SEED dataset, using
Decision Tree Learning algorithm. 10-fold cross validation is used.

Seeds  dt 

successRate = 91.4286  

runTime = 0.0119 

stdev = 7.3154 

rtstd = 0.0005 

1 0.874206349206349 0.871428571428571 0.869697802197802 0.914285714285714 

2 0.975000000000000 0.971428571428572 0.971282051282051 0.980952380952381 

3 0.913492063492064 0.900000000000000 0.901163003663004 0.933333333333333 

 

Class Precision Recall F-Measure 

1 0.87 0.87 0.87 

2 0.98 0.97 0.97 

3 0.91 0.90 0.90 

 

 
Table A.74: Precision, recall and f-score values of classes in SEED dataset, using
k-NN algorithm. 10-fold cross validation is used.

Seeds  knn 

successRate = 89.0476  

runTime = 0.0093 

stdev = 9.0476 

rtstd = 0.0009 

1 0.870357142857143 0.814285714285714 0.833701788407671 0.890476190476191 

2 0.925992063492063 0.914285714285714 0.905521978021978 0.942857142857143 

3 0.913492063492064 0.942857142857143 0.925521978021978 0.947619047619048 

 

Class Precision Recall F-Measure 

1 0.87 0.81 0.83 

2 0.93 0.91 0.90 

3 0.91 0.94 0.93 

 

 
Table A.75: Precision, recall and f-score values of classes in SEED dataset, using
LVQ algorithm. 10-fold cross validation is used.

Seeds  lvq 

successRate = 88.5714  

runTime = 8.3109 

stdev = 11.3089 

rtstd = 1.0887 

1 0.862121212121212 0.857142857142857 0.841197808039913 0.885714285714286 

2 0.987500000000000 0.885714285714286 0.902948717948718 0.957142857142857 

3 0.897777777777778 0.914285714285714 0.888827300150830 0.928571428571429 

 

Class Precision Recall F-Measure 

1 0.86 0.86 0.84 

2 0.99 0.89 0.90 

3 0.90 0.91 0.89 

 

 
Table A.76: Precision, recall and f-score values of classes in SEED dataset, using
MNPBL algorithm. 10-fold cross validation is used.

Seeds  mnpbl 

successRate = 92.8571 

runTime = 0.0977 

stdev = 4.8795 

rtstd = 0.0095 

1 0.861269841269841 0.957142857142857 0.902041585865115 0.928571428571429 

2 0.987500000000000 0.971428571428572 0.977948717948718 0.985714285714286 

3 0.971428571428572 0.857142857142857 0.906043956043956 0.942857142857143 

 

Class Precision Recall F-Measure 

1 0.86 0.96 0.90 

2 0.99 0.97 0.98 

3 0.97 0.86 0.91 

 

 
Table A.77: Precision, recall and f-score values of classes in SEED dataset, using
SVM algorithm. Linear kernel is used as kernel function. 10-fold cross validation is
used.

Seeds  svm lin 

successRate = 90.4762  

runTime = 0.1315 

stdev = 8.7805 

rtstd = 0.0386 

1 0.850595238095238 0.942857142857143 0.888446115288221 0.914285714285714 

2 0.987500000000000 0.900000000000000 0.936923076923077 0.961904761904762 

3 0.931547619047619 0.871428571428572 0.888278388278388 0.933333333333333 

 

Class Precision Recall F-Measure 

1 0.85 0.94 0.88 

2 0.99 0.90 0.94 

3 0.93 0.87 0.89 
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Table A.78: Precision, recall and f-score values of classes in SEED dataset, using
SVM algorithm. Polynomial kernel is used as kernel function. 10-fold cross valida-
tion is used.

Seeds  svm poly 

successRate = 92.3810  

runTime = 0.3076 

stdev = 7.4383 

rtstd = 0.0614 

1 0.905303030303030 0.914285714285714 0.900726495726496 0.928571428571429 

2 0.948611111111111 0.914285714285714 0.922791375291375 0.952380952380952 

3 0.961111111111111 0.942857142857143 0.949038461538462 0.966666666666667 

 

Class Precision Recall F-Measure 

1 0.91 0.91 0.90 

2 0.95 0.91 0.92 

3 0.96 0.94 0.95 

 

 
Table A.79: Precision, recall and f-score values of classes in SEED dataset, using
SVM algorithm. Quadratic kernel is used as kernel function. 10-fold cross validation
is used.

Seeds  svm quad 

successRate = 93.3333  

runTime = 0.1865 

stdev = 6.0982 

rtstd = 0.0284 

1 0.905158730158730 0.942857142857143 0.919496336996337 0.942857142857143 

2 0.962500000000000 0.942857142857143 0.945034965034965 0.966666666666667 

3 0.957777777777778 0.914285714285714 0.931089743589744 0.957142857142857 

 

Class Precision Recall F-Measure 

1 0.91 0.94 0.92 

2 0.96 0.94 0.95 

3 0.96 0.91 0.93 

 

 
Table A.80: Precision, recall and f-score values of classes in SEED dataset, using
SVM algorithm. RBF kernel is used as kernel function. 10-fold cross validation is
used.

Seeds  svm rbf 

successRate = 91.4286  

runTime = 0.0767 

stdev = 8.1927 

rtstd = 0.0028 

1 0.897500000000000 0.871428571428571 0.875203619909502 0.914285714285714 

2 0.962500000000000 0.942857142857143 0.945034965034965 0.966666666666667 

3 0.917658730158730 0.928571428571429 0.920393772893773 0.947619047619048 

 

Class Precision Recall F-Measure 

1 0.90 0.87 0.88 

2 0.96 0.94 0.95 

3 0.92 0.93 0.92 
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