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ABSTRACT

NONPARAMETRIC APPROACHES FOR DISCOVERING TRIGGERING

EVENTS FROM SPATIO-TEMPORAL PATTERNS

Bak�r Batu, Berna

Ph.D., Department of Information Systems

Supervisor : Assist. Prof. Dr. Tu§ba Ta³kaya Temizel

Co-Supervisor : Prof. Dr. Ha�ze �ebnem Düzgün

October 2014, 90 pages

Temporal or spatio-temporal sequential pattern discovery is a well-recognized impor-

tant problem in many domains such as seismology, criminology and �nance. The

majority of the current approaches are based on candidate generation which necessi-

tates parameter tuning such as de�nition of a neighborhood, an interest measure and

a threshold value to evaluate candidates. However, their performance is limited as

the success of these methods relies heavily on parameter settings. In this thesis, two

sequential pattern mining algorithms are developed for the multi-type spatio-temporal

point patterns based on the nonparametric stochastic declustering methodology. The

algorithms use multivariate conditional intensity model to de�ne triggering relations

within and among the event types and employs the estimated model to extract signi�-

cant triggering patterns. They initially estimate pairwise triggering probabilities of all

instances according to the multivariate Hawkes model, and then generate candidate

patterns by using a rank selection method. Since a pair of instances is associated with

a triggering probability, the proposed approaches also allow user to evaluate the sig-

ni�cance of the pairwise pattern of any event type.The proposed methods are tested

with synthetic data sets exhibiting di�erent characteristics. The method gives good

results that are comparable with the methods based on candidate generation in the

literature. It is observed that the discretization of the density function based on the
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signi�cant interaction ranges obtained by Diggle D-function maximizes the triggering

probabilities of the patterns that exist at similar scales. The method is tested with real

data to estimate the e�ects of the speed bumps on the number of accidents reported

in METU Campus.

Keywords: Spatio-temporal sequences, Hawkes processes, stochastic declustering, space-

time clustering, Diggle D function
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ÖZ

MEKANSAL-ZAMANSAL ÖRÜNTÜLERDEN B�RB�R�N� TET�KLEYEN

OLAYLARI BULMAK �Ç�N PARAMETR�K OLMAYAN YAKLA�IMLAR

Bak�r Batu, Berna

Doktora, Bili³im Sistemleri Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Tu§ba Ta³kaya Temizel

Ortak Tez Yöneticisi : Prof. Dr. Ha�ze �ebnem Düzgün

Ekim 2014 , 90 sayfa

Zamansal veya mekansal-zamansal s�ral� desen ke³�, deprem bilimi, suç bilimi ve �nans

gibi birçok alanda tan�nan önemli bir problemdir. Mevcut yakla³�mlar�n ço§unlu§u

aday üretme yöntemine dayal� olup, bu adaylar�n de§erlendirilmesinde kullan�lmak

üzere, kom³uluk, anlaml�l�k ve e³ik de§eri gibi parametrelerin belirlenmesine ihtiyaç

duyar. Ancak, bu yöntemlerin performans� seçilen parametre de§erlerinden oldukça

etkilenmektedir. Bu tezde, farkl� olay tiplerini içeren mekansal-zamansal nokta desen-

leri için parametrik olmayan stokastik ayr�³t�rma metodolojisine dayal� iki adet s�ral�

örüntü ç�kar�m� algoritmas� geli³tirilmi³tir. Yöntemler, çok de§i³kenli ko³ullu yo§un-

luk modeli kullanarak ayn� ve farkl� olay tipleri aras�ndaki ili³kileri modelleyip bu

modelden anlaml� tetikleme ili³kilerini ç�kar�r. Öncelikle, tüm örnek ikilileri aras�ndaki

tetikleme olas�l�klar� çok de§i³kenli Hawkes modeli ile tahmin edilir, daha sonra anlaml�

ikililer rank yöntemi ile seçilerek örüntüler belirlenir. Her bir ikili bir olas�l�k de§eri ile

tan�mland�§� için, önerilen yöntemler ile, tüm olay tipleri için olas� ikili tetikleme örün-

tülerinin anlaml�l�§� de§erlendirilebilir. Yöntem farkl� özelliklere sahip sentetik veri set-

lerinde denenmi³ ve literatürdeki aday üretme yakla³�m�na dayal� yöntemler ile k�yasla

iyi sonuçlar vermi³tir. Yo§unluk fonksiyonunda kullan�lan kesikle³tirme parametreleri

Diggle D fonksiyonu ile elde edilen anlaml� etkile³im mesafeleri kullan�larak tan�mlan-

d�§�nda, benzer ölçekte etkile³im gösteren örüntülerin olas�l�k de§erlerinin maksimuma
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ula³t�§� gözlenmi³tir. Önerilen metodoloji ODTÜ kampüsünde bulunan h�z kasisleri-

nin kampüs içinde kaydedilen tra�k kazalar�n�n say�s� üzerindeki etkisinin incelenmesi

amac� ile gerçek bir veride test edilmi³tir.

Anahtar Kelimeler: Mekansal-zamansal diziler, Hawkes süreçleri, olas�l�ksal yeniden

kümelendirme, mekansal-zamansal kümeleme, Diggle D fonksiyonu
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A spatio-temporal triggering pattern of event types is a sequence of spatio-temporal
events where a former event generates the one that is following it. A spatio-temporal
event is de�ned by the time and location at which the event took place and the type
of the event. Despite the growing interest in the analysis of spatio-temporal events,
the triggering relationships between the di�erent spatio-temporal event types have not
been su�ciently investigated. However, in many real life processes, a sequence of dif-
ferent event types might be observed and this sequence may suggest a triggering or a
cause-and-e�ect type relationship within some spatio-temporal interaction scales. For
example, it is probable to observe subsequent natural disasters such as �ooding after
hurricane, tsunami after earthquake, etc. In addition, an environmental damage by
human action, i.e., deforestation or land destruction, can cause natural disasters. An
example can be given from Black Sea coast of Turkey where a set of natural hazards
occurred after construction of the coastal road. The region has a long coastline with
rocky steep slopes rising directly to the mountains which makes transportation di�cult
in the region. Although the coastal road was considered as a solution to the trans-
portation problem of the region, it induced several hazards due to the inappropriate
risk management. For instance, in Rize, a deadly �ooding occurred after heavy rain
in 2010 [2]. It was stated that the road, as a dam, prevented water �owing from the
valleys to the sea (See Figure 1.1). 12 people were dead and about 400 houses located
between the road and the valleys su�ered from �ooding and landslides. Another haz-
ard was in Espinye, Giresun where landslides caused huge rocks to drop onto the road
in 2008 [18]. It was claimed that quarrying too much rock from the hillside during the
construction of the road weakened rock and soil beds (See Figure 1.2).

Examples can be extended to various application areas. Crime events, for instance, can
be observed after some other activities such as assaults or gun use after football matches
or burglary events observed in a district after a shopping center is opened; a disease
type may cause an increase to observe another disease type within a neighborhood as
well as possibility of triggering new instances of itself; tra�c accidents observed in an
area may decrease after some preventive activities applied such as placing a camera or
speed bump, and so on. Although some of these examples might be trivial in terms of
expected causality, some others may suggest unknown but useful relationships. It can
still be important to �nd the degree of relationship for those which is already expected
in order to assess the risk. These information can be crucial for the government
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Figure 1.1: Flooding occurred in Rize, Turkey, in 2010. Photo:

http://www.hurriyet.com.tr

Figure 1.2: Landslides occurred in Giresun, Turkey, in 2008. Photo:

http://www.hurriyet.com.tr
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agencies in order to take the necessary precautions to avoid disease and crime spread,
mitigate the occurrence of disasters and improve road tra�c safety.

A spatio-temporal triggering pattern of event types has four dimensions as illustrated in
Figure 1.3: spatial, temporal, casual, type. They play an important role to understand
the behavior of the underlying processes. Besides complexity of the problem due to
the multidimensionality, each dimension may also introduce additional complexity by
the characteristics of the individual processes.

Spatial Dimension

In geography, the spatial dimension describes the location of a spatial feature. Based
on the underlying phenomena, a spatial feature can be represented by points (i.e.,
crime incidents), lines (i.e., roads) or polygons (i.e., city) in a coordinate space. One
or more random variables explaining properties of the spatial features can also be
associated with their location. If each location of a point process is labeled with one
or more value, it is called marked point process. For example, the location and the
magnitude of an earthquake correspond to the point process' spatial dimension and
mark respectively. The spatial dimension may introduce additional complexity to the
problem due to the following characteristics:

1. A spatial process may be stationary or not. In a stationary process, the distri-
bution is the same across the region.

2. A spatial process may be isotropic or not. In an isotropic process, the distribution
is the same across the region regardless of the direction.

3. Spatial interaction may exist at di�erent scales. Based on the scale used, a global
view of the processes may be explored or local interactions may be identi�ed.

Figure 1.3: Dimensions of the problem

3



Temporal Dimension

Temporal dimension of a feature describes its existence or occurrence within time and
exhibits the following characteristics:

1. There may be a seasonal e�ect in the data due to the non-stationarity.

2. Temporal behavior of the process may be independent of the spatial behaviour
or there may be space-time interaction in the process.

3. Temporal interaction may exist at di�erent scales.

Casual Dimension

Causality is the relationship between the cause and the e�ect. Early philosophers
usually discussed causality as a concept. David Hume, on the other hand, gave a
concrete de�nition of causality which forms a basis for causal modeling [15]. According
to Hume, A causes B if

• A precedes B in time.

• A and B are contiguous in space-time.

• A and B always co-occur (A is su�cient for the B)

Another philosopher, John Stuart Mill argued that causality could be con�rmed with
experimentation [25]. In other words, any other explanations of the relationship have
to be removed by controlled experiments. His perspective of causality provided more
practical implementations with four general methods: the method of agreement, the
method of di�erence, the method of concomitant variation, and the method of residues.
The third rule of causality de�ned by Hume (and also as in deterministic causality)
has some practical di�culties in real life examples because of its regularity. According
to this de�nition, almost none of the phenomena could be explained by causal relation-
ship. A clear example discussed in many studies is the relationship between smoking
and lung cancer. Several empirical studies suggest that "smoking causes lung cancer".
The third rule of Hume claims that anyone who smokes would have lung cancer if
smoking causes it. It is known that there are some people who smoke and do not
have lung cancer, therefore, this relationship does not hold given the rule. However,
in reality, there may be some other causes of lung cancer that cannot be controlled or
observed directly so that smoking may not be su�cient itself. Causality can exist in
di�erent forms:

1. Causal relation may exist between the same type of events or di�erent types of
events.

2. Causal structure can be in the form of chain of events, common cause, common
consequence, or mixture of three.

Type Dimension

4



Each event type introduces a new count process in the problem. Each process usually
has di�erent behavior. It is hard to de�ne a joint distribution for all of them. Some
di�culties can be:

1. There may be interaction between the same type of events, or among the di�erent
types of events (co-occurrence).

2. Strength of an interaction may vary for di�erent event types.

3. Di�erent event types may have di�erent probabilistic behavior.

1.2 Problem De�nition and Research Questions

Let D denotes a spatio-temporal event database. Each record in D consists of �elds
representing spatial index (s) where the event occurs, occurrence time (t) of the event
and the event type (e). D can be de�ned as D = {(s, t, e)|s ∈ Rd, t ∈ T, e ∈ E}
where Rd is d-dimensional continuous space, T is continuous time domain and E is
set of event types. A spatio-temporal triggering pattern of interest is an ordered list
of event types and can be in one of the following form according to underlying casual
relationship.

1. Chain of events: [e1, e2, . . . , en] is a chain of events where ei and ej are di�erent
event types for i 6= j; t1 < t2 < · · · < tn; (ti+1, si+1) is signi�cantly close
to (ti, si) based on a given spatio-temporal neighborhood function; and ei+1 is
conditionally independent from ek, k = 1, . . . , i− 1, given ei.

2. One or more consequent events with a common cause event: [e1, (e2, . . . , en)] is an
event list with a common cause event e1 where ei and ej are di�erent event types
for i 6= j; t1 < (t2, . . . , tn); (ti, si) is signi�cantly close to (t1, s1) for i = 2, . . . , n
based on a given spatio-temporal neighborhood function; and there is no order
among the consequent events. So, consequent events form an association instead
of sequence.

3. One or more cause events with one consequence: [(e1, e2, . . . , en−1), en] is event
list with a common consequence event where ei and ej are di�erent event types
for i 6= j; (t1, t2, . . . , tn−1) < tn; (tn, sn) is signi�cantly close to (ti, si) for i =
1, . . . , n− 1 based on a given spatio-temporal neighborhood function; and there
is no order among the cause events. So, cause events form an association instead
of sequence.

In this thesis, particularly, pairwise triggering patterns which can be the subset of any
type of causal structure de�ned above are studied. A pairwise triggering pattern can
be, for example, ek → ek+1 where 1 ≤ k < n, e1 → ek where 1 < k ≤ n, and ek → en
where 1 ≤ k < n for the chain, common cause and common consequence structure,
respectively. The following research questions are answered:

1. What kind of algorithm can be used to extract pairwise triggering patterns of
event types by considering causal relationship?
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2. Can a spatio-temporal neighborhood which is not bounded by threshold be de-
�ned ?

3. Can a probabilistic neighborhood function which allows pair of sample instances
to participate in support or signi�cance value of the pattern with some degree
be de�ned?

4. Can the probability of being a cause and e�ect pair between the pair of sample
instances be calculated? Can degree of casual relationship between the types be
measured based on these values? (i.e., summary statistics gives the estimated
probability of extracted pattern.)

5. How signi�cant patterns are identi�ed?

1.3 Contributions of the Thesis

In this study, two algorithms are proposed in order to discover pairwise triggering
patterns of spatio-temporal event types. In the algorithms, the relationships between
events are modeled by using multivariate Hawkes model which is a class of mutually
exciting point process. In order to estimate the mean rate and the total intensity of a
cluster process, stochastic declustering methodology is used with multivariate Hawkes
model. The model assumes that the process consists of events that occur randomly
with a mean rate and events triggered by these random events. The conditional inten-
sity of the entire process is the intensity at a particular time and location including both
random and triggered events. Speci�cally, the conditional intensity model is known
as self-exciting or Hawkes model which has a branching structure [11]. A typical ap-
plication of the stochastic declustering methodology is to form earthquake catalog by
discriminating main shocks and aftershocks probabilistically [44] which utilize para-
metric and nonparametric approaches based on the space-time branching models. The
proposed methodologies are based on the model independent stochastic declustering
(MISD) algorithm [24].

The main contributions of this thesis are as follows:

1. In this thesis, stochastic declustering methodology is utilized in sequential pat-
tern mining problem which is a new approach in this domain. In addition, multi-
variate spatio-temporal Hawkes model is utilized in the algorithm while previous
studies have used univariate models.

2. The proposed approach does not require candidate generation, instead it calcu-
late triggering probabilities between the pairs of event instances and the proba-
bilities for being a random or triggered event. Based on these values, it extracts
signi�cant triggering patterns from the data. The signi�cant pairs are �ltered
with rank selection and pairwise triggering probabilities are used to calculate
interest measure.

3. The algorithms proposed use similar approach for pattern extraction. However,
they di�er in terms of the estimation procedure. This di�erence is the result
of the di�erent conditioning used to de�ne random variables for the branching
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structure. More speci�cally, in one method the random variable is conditioned
on the type of the previously occurred events whereas in the other method it is
conditioned on the type of the current and the previously occurred events.

4. Unlike existing algorithms, this approach does not require a neighborhood thresh-
old since the interaction is explained by the spatio-temporal density function of
distances. In this thesis, histogram density estimation method is used.

5. The level of discretization used to estimate the density function has an e�ect
on the pairwise triggering probabilities, thus, signi�cance of patterns may di�er
based on the discretization level chosen. This in�uence is empirically handled
with Diggle D function [8] the ranges of which are used for supervising the learn-
ing process. D function explores possible space time clustering or interaction with
respect to separation distances. If the discretization level corresponds to spatio-
temporal interaction range suggested by D function for a given pairwise pattern,
the proposed algorithms produces the highest probability for the pattern. As
the smaller or larger ranges are used, the pattern probabilities decrease. On the
contrary, one can use the algorithm for di�erent discretization levels and �nd
the interaction scale of the extracted patterns as the discretization values that
maximizes the pattern probability.

6. The proposed algorithm is able to extract most of the patterns regardless of the
discretization level used since the rank of the pattern probabilities are still high
despite their low probability values.

1.4 Organization of the Thesis

A brief introduction is already given in this chapter. Chapter 2 discusses related studies
in the literature and gives some preliminary information about the Hawkes processes
and stochastic declustering algorithm. Chapter 3 explains the methodologies proposed
in this thesis. Chapter 4 gives the descriptions and statistics of the synthetic datasets
for the simulated scenarios and discusses the results of the methods on these datasets.
Chapter 5 explains the case study for a real world problem and evaluates models on
real data sets. Chapter 6 gives summary and conclusion for the study and discusses
future directions.

Some part of works in Chapter 3 and Chapter 4 were presented at Spatial Statistics
Conference held in Columbus, Ohio in 2013. The presented work can be found in
Appendix D.
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CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

In this chapter, relevant studies in the literature are discussed and the methods used
as a basis to investigate the research problem and develop proposed method are given.
In Section 2.1 and Section 2.2, the studies and the methods related to causal modeling
and sequential pattern mining are addressed. In the rest of the chapter, a summary of
the methods used as a background in this thesis is provided.

2.1 Causal Modeling

Causality is de�ned as a relationship between a cause and its e�ect. Identifying causal
relationships between di�erent phenomena is a challenging issue and has attracted
many researchers for years since better understanding of such relationships enables to
control consequences or e�ects.

Probabilistic causation has emerged in 70s and aims to identify the relationship be-
tween cause and e�ect using probability theory [34]. The central idea is the follow-
ing: causes increase the probabilities of their e�ects and they can be expressed by
conditional probabilities. This notion made casual analysis of phenomena in natural
and social science feasible and veri�able based on the observations. There are sev-
eral methodologies used for causal modeling. Two common approaches are functional
models and graphical models. Structural equation model is a functional model which
is used to hypothesize causal relationships among variables and test it with a linear
equation system. Its formal de�nition using counterfactuals is made by Pearl [34].
Model may include hidden variables as well as observed ones. Structural equation
consists of a number of multiple and simple regression models whose structure de�nes
the relationships among the variables. Structural equation model is widely used in
social science and economics. In [3], for example, long term e�ect of parental divorce
on children is examined with functional models. Another modeling approach is causal
Bayesian networks which is a type of directed acyclic graph. A Bayesian network rep-
resents probabilistic conditional dependency structure among the variables graphically
[19]. Each node of the network stands for a variable or state and is associated with
a conditional probability distribution. Directed arcs correspond to direct in�uence or
dependency between variables. By this way, probability of a certain outcome in a node
can be inferred given the parent nodes. A particular Bayesian network represents a
speci�c decomposition of the joint probability distribution of the variables into prod-
uct of conditional probabilities. The advantage of this representation is to decrease
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complexity of the problem by decomposing it into smaller problems [4].

The methodologies used to model causal relationships may result in misleading con-
clusions because of the uncontrolled observational data used in the modeling. It is not
certain whether variation in e�ect is only caused by the observed variables. Causal
structure is usually complex and unknown. The correlation, time order and spatial
closeness are all important clues about the causal structure. However, these dependen-
cies may also be the result of the non-causal relations. Pearl [34] discussed identi�able
causal relations under some sampling schema. It is important to perform further in-
vestigations on the discovered relationships in order to obtain more valid results.

2.2 Sequential Pattern Discovery

2.2.1 Temporal Sequence Mining

Sequential pattern mining studies can be found in both temporal and spatio-temporal
domains. In temporal domain which is more dominant in the literature, two main
problems, pattern matching and trend analysis were examined. The goal of pattern
matching is to �nd speci�c order of occurrences whereas trend analysis aims to model
deterministic or stochastic trends. Pattern matching problem has been extensively
studied after it was �rst introduced by Agrawal and Srikant to solve sequential pat-
tern mining problem in customer transaction databases [1]. Apriori based candidate
generation approach they proposed has provided a basis for many researches. The
algorithm �nds frequent maximal k-sequential patterns that exceed a user speci�ed
minimum support threshold in a data set. In the basic algorithm, the time dimension
is implicitly involved in the learning phase to de�ne the order of events as before/after
relationship; thus, all realization of a particular order contributes to its support count
equally regardless of the time interval between them. However, relating events distant
in time may be insigni�cant since their realization may be independent. As a solution
to this problem, several window-based approaches were proposed to de�ne closeness of
events in time. For example, Srikant and Agrawal added time constraints called mini-
mum gap and maximum gap to their �rst algorithm [38]. By this way, only the events
which satisfy the time constraints were allowed to be in a sequence. Mannila et al.
presented a general framework for discovering frequent episodes in an event sequence
[23]. An event is an element of a set of di�erent event types. Unlike the transaction
data consisting of a set of customer sequences, here the data to be mined is a long
event sequence as a whole which is ordered by occurrence time of the events. Patterns
to be mined a.k.a. episodes are set of events which are serially ordered or parallel and
are given in advance. Since the data consists of a single sequence, support count used
in transaction data cannot be used directly to determine frequent episodes. Therefore,
a time window with a user-speci�ed width is used and by sliding it along the sequence,
the number of windows that contain the episode is counted to determine support value.
The fraction of windows in which an episode occurs gives the support value for the
episode. Users also specify the value for the minimum support as well as for the con-
�dence of the extracted rules. One drawback of these window-based solutions is the
sensitivity of the algorithms to these thresholds. The results may vary signi�cantly
depending on the threshold values. Although in some domains these values can be
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known and adequately provided by the domain experts, in some other domains they
may be unknown. For example, time gaps between natural phenomena may not be ex-
pressed su�ciently with a constant window width. Garofalakis et al. [10] added a new
constraint to the problem which is called regular expression that has to be speci�ed
by the user. The main idea is the fact that users are not interested in all frequent se-
quences. Instead, they are seeking for some speci�c patterns. Therefore the algorithm
prunes the candidates according to given constraints. It is computationally e�cient
compared to Apriori although the general structure of the algorithm is similar. This
approach provides no bene�t if users want to discover previously unknown patterns.
Alternatively, it can provide some bene�ts in terms of e�ciency since user can limit
the search with a subsequence that is desired to be included in the resulting sequences
even though the exact pattern is not known. Similar to the problem in [23], Cao et al
studied pattern matching in a long sequence [5]. The data, however, is not limited to
time ordered sequence. It can be any sequence such as characters which have a mean-
ingful order. This type of problem can be found in some domains, for instance, DNA or
amino acid sequence in biology. In the study, they searched for periodic patterns in the
data which are not known previously. Corresponding to time window, a period must
be de�ned in order to �nd a periodically observed pattern. The di�erence between the
time window and the period is that the time windows are overlapping windows since
they are slid through the sequence but periods are non-overlapping windows which
divide the sequence into equal length subsequences.

2.2.2 Spatio-temporal Sequence Mining

Spatio-temporal analysis of point pattern is a more recent topic compared to the ex-
tensive studies on spatial point patterns analysis. In these studies, taking snapshots
of time is a popular approach however it has some drawbacks [16], [17], [7]. The main
drawback is the possibility to miss the patterns at di�erent time granularities; there-
fore, domain knowledge is essential in order to choose an appropriate discretization.

In the context of spatio-temporal sequential pattern mining, most of the studies focus
on object trajectory problem which deals with the movement of the same object. The
main objective of these studies is to �nd frequent routes followed by an object [6] or to
detect motion in video streams [39], [20]. These studies are relevant but di�erent from
the problem studied in this thesis in a variety of aspects. The main di�erence is the fact
that moving object studies deal with how the location of a same object changes over
time. They assume that sequences are the consecutive locations of the same object
whereas this study does not concern with the movement. In this study, sequences
consist of di�erent objects or events types which are realized in one location and do
not move such as a tra�c accident at a particular location and time. Observation of
an event at another location and time is just another realization of the process. In
some papers, moving object problem is handled by event-based approaches [41], [42],
[12]. For example, Hornsby and Cole [12] model dynamic objects such as automobiles,
planes, boats, etc. in geospatial domain to track the movement of the objects by using
an event-based approach. They partition the spatial domain into non-overlapping
contiguous regions and de�ne the object movements as events such as "change zone
event", "unexpected zone event", etc. By this way, movement of an object forms
a sequence of event locations. Their approach to �nd patterns aggregates events in
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a pairwise manner according to a time window specifying minimum and maximum
allowable gaps between events. The window de�nes a neighborhood that relates the
events in a sequence according to time. Depending on the de�nition of event; a pattern
can be a movement of the same object, collocations of objects or movement of di�erent
objects of the same or di�erent types together. Collocation studies usually operate on
spatial domain and aims to identify di�erent types of spatial features, instances of
which are frequently located together. This relationship can be measured by cross-K
function or mean nearest neighbor distance [13]. An extension of collocation patterns in
spatio-temporal domain is conducted by Çelik et al. [7] which investigates patterns at
di�erent time slots. Their study deals with the collocated objects which are not located
at one location, instead they are moving in space together. An example application
discussed in the paper is the movements of players in di�erent roles such as kicker or
holder in a football match. Time is involved as snapshots and their method employs
candidate generation approach with a proposed interest measure.

Studies similar to or directly related to the focus of the problem in this thesis are
very limited. An analysis of spatio-temporal sequence of di�erent event types can be
found in [40], [14] and [26]. In all three studies, mining algorithms are suitable for
spatio-temporal event data and they use candidate generation approach. The main
contributions of the last two are new interestingness measures proposed. Wang et al.
[40] develop an algorithm to extract �ow patterns of event sets. An event set is the
set of events that occur at the same time or time interval. A �ow is a relation between
the event sets within and among the regions. In other words, a �ow pattern shows
how events change or evolve over regions and time. They study on a discrete spatio-
temporal domain and use window based neighborhoods. The approach in the study is
based on candidate generation, however, the candidates are generated by using only
2-length sequences. The authors use a summary tree to keep the frequent patterns
information and use dept �rst approach for mining. The main contributions of this
study are to incorporate spatio-temporal neighborhood relation in sequential pattern
mining problem and improve e�ciency of the candidate generation approach by elimi-
nating irrelevant patterns identi�ed by the 2-length sequences and spatial constraints.
In [14], a framework is proposed for mining event-based spatio-temporal sequences.
They de�ne a follow predicate to identify sequences based on a spatio-temporal neigh-
borhood which is bounded by user speci�ed thresholds and a signi�cance measure
called sequence index to determine signi�cant sequences. They also give the dynamic
neighborhood de�nitions such as a spatial neighborhood which is a function of time
as well as di�erent neighborhood de�nitions for di�erent event types. The signi�cance
measure they proposed is calculated based on the average density ratio of subsequent
events in the given neighborhood relative to its overall density within the whole space.
One advantage of calculating signi�cance measure relative to individual distributions
is to prevent sequences to be labeled as signi�cant just because of the high density of
an individual event. A sequence index can be interpreted as cross-K function; however,
it is a more generic measure since it allows incorporation of a temporal predicate and
inclusion of more than two types. Mohan et al. [26], aim to identify cascading events in
an event dataset over a common spatio-temporal framework and extend the sequence
discovery problem for the partially ordered patterns. They propose an algorithm for
mining cascading spatio-temporal patterns (CSTP) and �ltering strategies to prevent
generating uninteresting candidates. They de�ne a new signi�cance measure called
cascade participation index (CPI) which is the minimum of participation ratios of
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each event type in the sequence. They de�ne participation ratio of an event type in a
sequence as conditional probability of the sequence given a participating event type. It
is estimated as the number of instances of the event type participating in the sequence
over the number of instances of the event type in the database. It is shown that CPI
is an upper bound for the space-time K-function. The authors state that the focus of
the study conducted in [26] is the computational performance of the CSTP algorithm,
hence they do not address the e�ect of the parameter choice such as neighborhood and
signi�cance measure thresholds and grid cell size de�ned for �ltering.

2.2.3 Summary

As a summary, a great majority of temporal and spatio-temporal sequence studies use
a window-based approach to de�ne closeness of events or objects in time and space.
The window is constant and bounded by a user speci�ed threshold. All the events
falling in the same window are considered as neighbors. Small threshold values may
result in missing the true patterns at larger scales whereas higher values may produce
irrelevant patterns. In addition, the time distances between events in a window are
treated as the same and contribute to the signi�cance measures such as support count
equally while the ones larger than the threshold have no contribution. The window
based neighborhood de�nition may be suitable for some domains, such as DNA or
character sequences; however, it is not a realistic assumption in some other domains
where the events of a sequence interact with each other according to a decay law. For
instance, a main shock earthquake produces its aftershocks with a decreasing in�uence
as time passes. A time window cannot capture the true relations in such sequences.
Candidate generation is a common approach in sequential pattern mining, yet it poses
a challenge of exponential increase in the number of candidate patterns with respect
to the number of types. In some studies such as [26], a number of �ltering strategies
are used to tackle this challenge. Generally the number of windows in which a speci�c
pattern is observed gives the support value for that pattern. A minimum support value
is also required to be speci�ed which is domain dependent and should be provided by
domain experts. An important problem of this approach is the fact that in some
domains these values may be provided easily but sometimes specifying such values
may be hard especially if the underlying behavior is unknown. Another limitation
is the necessity of examining individual distribution of event types or elements in a
sequence before performing a mining task. A frequent sequence is not necessarily
a meaningful pattern. For example, two regular events may be observed in a time
window long enough to include both with a speci�c order although their occurrences
are independent. Furthermore, a frequent event sequence extracted by measures like
support does not necessarily imply a triggering or causal relationship between event
types although time order is a clue about causal relationship. It does not show whether
the preceding event triggers the next one in the sequence, rather it shows how likely
this sequence is observed. In fact, these shortcomings have signi�cant importance if the
sequential pattern mining problem aims to discover sequential triggering relationship.
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2.3 Hawkes Processes and Conditional Intensity Models

A Hawkes point process de�nes random events which are either an immigrant or a de-
scendant. It was �rst introduced in [11] for temporal domain with possible application
areas such as epidemiology and modeling neuron �ring. The process has an underly-
ing branching structure. If the event locations are discarded, it is reduced to a simple
branching process consisting of immigrants and descendants. Besides the univariate
case, Hawkes also proposes models for mutually-exciting point processes and also ex-
amines a special case where the decay is exponential. Self-exciting Hawkes models are
very popular and well-recognized in seismological studies after Ogata introduced Epi-
demic Type Aftershock Sequences (ETAS) model de�ned by the Hawkes process [31].
It de�nes earthquake process with a marked point process model where marks are the
magnitude of the earthquake events (See for example, [30, 32, 44]). Several extensions
of ETAS model have been studied for both temporal and spatio-temporal domain.
Univariate Hawkes model can be de�ned by the intensity function conditioned on the
history Ht of the process at time t. It is assumed that some events in the process
occur independently with a mean rate µ, and the value of µ may be independent of
the time and the location or may depend on the spatio-temporal dimensions. In this
thesis, independence of µ is assumed. Intensity at a particular location and time (s, t)
depends on both the mean rate and the previously occurred events with some degree
based on the spatio-temporal distance of point (s, t) to these historical events. The
de�nition of the intensity for an unmarked point process is given as;

λ(s, t|Ht) = µ+
∑
j:tj<t

g(s− sj , t− tj ; Θ) (2.1)

In the Equation 2.1, g(x, y, t; Θ) is the triggering function of the process where Θ
represents the distribution parameters. Multivariate Hawkes model generalizes the
univariate case by de�ning a conditional intensity for each component or event types
k as follows:

λk(s, t|Ht) = µk +
∑
r

∑
v:tv<t

ηrkfrk(s− sv, t− tv; Θ) (2.2)

where ηrk is the average number of event type k triggered by event type r, frk is the
triggering function for the pairs of event types r and k which de�nes the probability
of an event type of r at (sv, tv) triggering an event type k at (s, t). The univariate
Hawkes model with or without marks is employed in many studies, for example, to
analyse earthquakes and crime events [44], and to model temporal triggering behaviour
of activities in social media such as Twitter and Wikipedia [22, 37]. Multivariate
temporal models have received signi�cant attention in the recent years. Embrechts
et. al. conduct a study on �nancial data to investigate triggering e�ect on extremes
[9]. Zhou and Zha propose an algorithm for learning kernel functions of multivariate
Hawkes processes where they focus on the temporal characteristics of the domain for
di�erent event types [43]. To our knowledge, there is no study yet dealing with spatio-
temporal multivariate Hawkes model.
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2.4 Stochastic Declustering with Parametric and Non-Parametric

Models

Stochastic declustering algorithm was �rst introduced by Zhuang, Ogata and Vere-
Jones to discriminate main shock earthquakes from their aftershocks with a probabilis-
tic thinning procedure by using the estimated conditional intensity model describing
the process [44]. The process is assumed to be consisting of the main events and the
aftershocks clustered around these main events. The earthquake occurrences are con-
sidered as a marked spatio-temporal point process where marks are the magnitudes.
Based on the common features of the earthquake models, the intensity function is
de�ned by the Equation 2.3. In the equation, µ(s, t,M) is the mean rate of the back-
ground process, κ(Mj) is the expected number of aftershocks that is excited by a main
event with magnitude Mj , and g, f and z are the response functions de�ning relation
between the main and aftershock events given the magnitude of the main event.

λ(s, t,M |Ht) = µ(s, t,M) +
∑
j:tj<t

κ(Mj)g(t− tj)f(s− sj |Mj)z(M |Mj) (2.3)

In their paper, the authors make some additional independence assumptions and sim-
plify the intensity model used in the algorithm as given in Equation 2.4.

λ(s, t,M |Ht) = z(M)[µ(s, t) +
∑
j:tj<t

κ(Mj)g(t− tj)f(s− sj |Mj)] (2.4)

Well-developed theoretical aftershock models describing the branching behavior of the
process, i.e., ETAS models, allow researchers in seismological science to de�ne inten-
sity function with parametric models the parameters of which can be estimated by
maximum likelihood procedure. The probability of the events being drawn from the
aftershock or background processes is calculated from the estimated intensity model
of the entire process. The probability of an event being an aftershock is the sum of
the pairwise excitation probabilities between the event and the events that causally
precede it. Their de�nitions are given in Equation 2.5 and Equation 2.6.

ρi,j = Pr{the ith event is generated by jth event|Ht} =
κ(Mj)g(ti − tj)f(si − sj |Mj)

λ(si, ti|Hti)
(2.5)

ρi = Pr{the ith event to be an aftershock|Hti} =

i−1∑
j=1

ρi,j (2.6)

Using the kernel density estimation method, the total rate of the process can be esti-
mated. Then, the mean rate of the background process is calculated approximately as
given in Equation 2.7. The derivation steps can be found in [44].
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µ(s) =
1

T

∑
i

(1− ρi)kd(s− si) (2.7)

The estimation of the model is made through an iterative procedure. The iteration
algorithm estimates simultaneously the mean rate and the branching behavior. The
algorithm steps are given below:

Intensity Model Estimation Algorithm

Step 1: Set l = 0 and µ(l) = 1.

Step 2: Fit the conditional intensity function using MLE.

Step 3: Calculate ρi from Equation 2.5 and Equation 2.6 for each i = 1, 2, . . . N .

Step 4: Calculate µ(l+1) from Equation 2.7

Step 5: If max|µ(l+1) − µ(l)| > ε then set l = l+ 1 and go to Step 2. Otherwise, take
µ(l+1) as the mean rate.

Once the model is estimated, the events are declustered probabilistically. Based on the
�nal obtained intensity model, the following steps are used for probabilistic decluster-
ing:

Stochastic Declustering Algorithm

Step 1: For each event calculate probability ρi from the �nal solution of the Intensity
Model Estimation Algorithm.

Step 2: Generate N uniform random numbers Ui in [0,1].

Step 3: If Ui < 1− ρi then keep the ith event; otherwise, remove it from the catalog
as it is an aftershock. The remaining events can be considered the background events.

Although decay behavior in space and time can be explained by the speci�c models in
the case of seismology, in many other application domains, there is no prior informa-
tion about the form of decay function which describes the triggering behavior. Even
in seismology, aftershock e�ect can be more complicated due to second generation af-
tershocks produced by the previous aftershocks. Mohler et al. [28] state that there is
a need to re�ne parametric models in seismology because of the researches last over
decades. Marsan and Lengline [24] propose a nonparametric approach called model in-
dependent stochastic declustering algorithm (MISD) to solve the same problem which
is later used in many other domains. For example, it is used in the crime analysis to
estimate the mean rate of the crime events and the dense areas instead of the hot spot
analysis which is common in this domain [28].

The MISD algorithm use univariate Hawkes model and estimate the conditional in-
tensity and the mean rate with a nonparametric kernel estimation procedure. Since
the branching structure is unobservable, in other words, it is not known which event
actually triggers the others, the algorithm utilizes Expectation-Maximization method.
The random variable Xij is de�ned for the branching structure and it takes value of
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1 if ith event is caused by jth event, otherwise it takes the value of 0. Similarly, the
random variable Xii takes the value of 1 if it is a triggering casual event, otherwise it
takes the value of 0. Since these variables cannot be observed, their expected values
are estimated. Given the intensity function of unmarked point process in Equation
2.1, the algorithm works as follows:

MISD Algorithm

Step 1: Start with the initial values for the intensity and the mean rate.

Step 2: Calculate the expected values for the triggering (pij) and the background
(pii) probabilities as follows:

pij =

{
g(si−sj ,ti−tj)

µ+
∑i−1

r=1 g(si−sr,ti−tr)
ti > tj

0 otherwise
(2.8)

pii =
µ

µ+
∑i−1

r=1 g(si − sr, ti − tr)
(2.9)

where, pij is the probability of the ith event being triggered by the jth event and pii is
the probability of ith event being a background event.

Step 3: Update the intensity and the mean rate based on the probabilities calculated
in the expectation step as follows:

g(∆s,∆t) =
1

δsδt

∑
i,j∈Λ

pij (2.10)

where δs,δt are the discretization parameters and Λ is the set of pairs such that ti−tj ∈
[t− δt, t+ δt), si − sj ∈ [s− δs, s+ δs).

µ =
1

TR

n∑
i=1

pii (2.11)

where T is the duration of time, R is the area of the studied region and n is the number
of events. Step 2 and Step 3 are repeated until g and µ converge.

2.5 Spatial Statistics for Point Patterns

Ripley's K-function or second order moment measure is a widely used method for the
analysis of point patterns. It can be employed in spatial or spatio-temporal domain to
understand the extent of the interaction among the events or the spatial dependence
at di�erent scales [35]. Formally, it is the average number of other events within the
separation distance from an arbitrary event. The de�nitions for spatial and spatio-
temporal domains are given in Equation (2.12) and Equation (2.13), respectively, where
λ is the intensity of the process.

K(s) = λ−1E{# of events within the distance s of an arbitrary event} (2.12)

K(s, t) = λ−1E{# of events within the distance s and time t of an arbitrary event}
(2.13)
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If a point pattern is clustered due to the spatial dependence, then the plot of the K
function for the observed data falls above the reference envelope representing Poisson
distribution. For example, in the Figure 2.1 (a), up to distance of 4.5, the values
of K function fall above the envelope. This indicates spatial dependence between the
events. However, for those separated by a distance more than 4.5 there is no more
dependency. To �nd the scale of possible clustering L function, normalized form of K,
can be used. In the plot of L function peaks in the positive values indicate clustering
at that scale. In the Figure 2.1 (b), for example, there are two peaks at scale of 1 and
4 which indicates clustering at these scales.

Figure 2.1: (a) K-function for sample data (b) L-function for sample data

If the spatial and temporal components of the spatio-temporal process are independent,
then K(s, t) can be factorized as the composition of individual components, such as,

K(s, t) = K(s)K(t) (2.14)

where K(s) and K(t) are separate space and time functions.

In the analysis of spatio-temporal dependence Diggle [8] used Ripley's K-function as
a diagnostic tool and explore signi�cant space-time clusters with D-function which is
de�ned as,

D(s, t) = K(s, t)−K(s)K(t) (2.15)

If there is no space-time interaction or clustering Equation (2.14) holds, and thus,
D-function is equal to 0. If there is an interaction, the surface of D(s, t) shows peaks
at the corresponding ranges. In Figure 2.2(a), an illustrative example is given. In
the �gure there is a peak at s = 1.5 and t = 0.8 which indicates space-time clusters at
the corresponding range. These clusters are also signi�cant based on the test statistics
obtained by Markov Chain Monte Carlo (MCMC) simulation the distribution of which
is given in Figure 2.2(b). There may be signi�cant clusters at di�erent scales. In other
words, there may be local or global clusters in the data which can be explored by using
di�erent resolutions.
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Figure 2.2: (a)D plot and (b) MCMC simulation for signi�cance test.

2.6 Evaluations

The methods proposed in Chapter 3 were evaluated by their ability to predict ac-
tual pairs, cause events and mean rate. For the assessment, sensitivity (recall) and
precision measures were used. Sensitivity shows true positives rates of the predictions,
whereas precision shows how precise the positive predictions are. They are de�ned as

Sensitivity = TP
TP+FN

Precision = TP
TP+FP

where TP is the number of correctly classi�ed positive samples, FP is the number of
negative samples incorrectly classi�ed as positive and FN is the number of positive
samples incorrectly classi�ed as negative. In order to compare the results with a single
value, F1 measure were also used. F1 measure can be considered as the weighted
average of the sensitivity and precision values, and de�ned as

F1 = 2× Sensitivity×Precision
Sensitivity+Precision
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CHAPTER 3

METHODOLOGY

In this chapter, the proposed methods for the triggering pattern extraction from the
spatio-temporal event data sets are explained. The proposed methods either use result
of the existing intensity estimation and stochastic declustering algorithms or modify
them to improve the algorithms for the multi-type pattern extraction problem. The
main contributions of this thesis are provided in Section 3.3 and Section 3.4.

3.1 Method 1: Triggering Pattern Extraction by Post Processing the

Results of Intensity Model Estimation Algorithm

Recall that stochastic declustering methodology proposed in [44] uses conditional in-
tensity model with parametric density functions and it is generally used in seismology
domain. In Method 1, the results of the original algorithm is used for �nding triggering
patterns of spatio-temporal event types.

The original algorithm does not use event types, instead, it models self-exciting behav-
ior of the same type of events. In addition, the primary concern of the algorithm is to
estimate the mean density of the background process and the branching structure, and
�nally to determine the main events probabilistically. Therefore, pairwise triggering
probabilities which are used to calculate the probability of an event being an o�spring
are not examined individually. The focus in this study, on the other hand, is these
individual pair relations. To evaluate whether this approach is suitable for the trigger-
ing pattern extraction problems, in other words, whether the �tted model describes
the triggering behavior, a post processing approach is proposed. In this approach, the
�tted model parameters are used as neighborhood thresholds and the pairs satisfying
these thresholds are determined. Then, event types of selected pairs are used to extract
patterns. The post processing algorithm is presented in Figure 3.1.

In seismology, there are well studied parametric models which describe behavior of
seismic activities in temporal and spatial domains. However, for many application
domains in real world, particularly those in social and behavioral science, domain
speci�c models are usually unavailable and as a consequence certain known density
functions such as Gaussian or exponential functions are utilized for modeling [27].

In line with the literature, certain density functions were utilized in the de�nition
of conditional intensity model. Speci�cally, Gaussian density for the space function,
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Figure 3.1: Triggering Pattern Extraction (TPEX) by Post Processing

f(x, y), and exponential and gamma densities for the time function, g(t) were used.
Individual behaviors of these functions are examined to understand their tendency
during parameter �tting in the maximum likelihood estimation. These results can be
found in Appendix B.

The results of the Method 1 on the synthetic datasets are given in Section 4.2.1 in
Chapter 4. According to the results, small sample size a�ects the stability of the pre-
dictions. For each replication of the same data settings, the model parameters' values
that maximize the likelihood function varies. In addition, these values describe the
behavior of the process, as a result it is expected to have similar values for the similar
data sets. The reason might be using density functions which are not appropriate to
explain entire process. As discussed in Chapter 4, the data sets used in the analysis
have space-time clusters. However, independence of the space and the time dimen-
sions was assumed and factorization of the individual functions was used in the model
since a complete model is not available. The proposed method relies on the use of an
appropriate model and the correct estimation of the model parameters describing the
interaction ranges between the events.

3.2 Method 2: Triggering Pattern Extraction with MISD Algorithm

As demonstrated in Section 4.2 in Chapter 4, parametric models are limited in terms
of sensitivity in the choice of the kernel function and its parameters. In this section,
MISD algorithm was studied to evaluate whether (1) nonparametric approach has
superiority over parametric approach in terms of explaining the data sets which follow
either a known or an unknown distribution (2) spatial and temporal dimensions can
individually explain the relationship with an acceptable error rate. Two triggering
kernels which are the function of time and the function of two-dimensional space were
examined as well as spatio-temporal triggering kernel. Intensity model for the �rst
two are shown in Equations 3.1 and 3.2 below. The third model is already de�ned
in Equation 2.1. In this study, histogram estimator for the nonparametric estimation

22



of density functions was used. Any other approach can also be employed for learning
triggering densities.

λ(t|Ht) = µ+
∑
j:tj<t

g(t− tj) (3.1)

λ(s|Hts) = µ+
∑
j:tj<t

g(s− sj) (3.2)

The original MISD algorithm is implemented for three intensity models. Based on
the results obtained from the original algorithm, the two-dimensional spatial model
was improved by using a binary constant in the de�nition of triggering kernel. The
function was modi�ed as follows:

g(∆s) = 1(∆s<r)
1

δs

∑
i,j∈Λ

pij (3.3)

In the equation, r is the separation distance which shows the extent of the signi�cant
spatial interaction the value of which is obtained from Ripley's K-function. This
modi�cation ensures that the value of g is zero outside the range of signi�cant spatial
clusters. It is made due to the fact that if an event in space triggers another one, it
is expect that there is an interaction between the events at some spatial scales. If the
pattern is random at some scales triggering kernel should be zero for the separation
distances that correspond to the scales. Observed peaks at the separation distances
higher than the value of r are more likely to happen by chance. Using such binary
constants smoothen the function for higher distances and eliminates any e�ects of
random noise.

The results of the original algorithm and the improved version on the synthetic datasets
are discussed in Chapter 4. According to the results, the temporal dimension, alone,
is not able to detect cause-e�ect pairs as the temporal rate increases. There is no such
in�uence for the spatial dimension and signi�cant improvement is observed over tem-
poral model. Spatial and spatio-temporal triggering functions are ideal for detection of
cause e�ect pairs. Due to the computational costs, spatial model can be preferred over
spatio-temporal model since their predictive performance is comparable for the simple
data sets where space-time interaction exists. However, none of the models are able to
recover mean rate of the process due to the incorrect estimation of pii values although
their corresponding pairwise triggering probabilities are high. To use of weights not
only increase sensitivity and precision values based on the ground-truth pairs created
but also result in successful predictions for µ and pii values.

3.3 Method 3: Multivariate Triggering Pattern Extraction Based on

MISD Algorithm Conditioned on the Type of Triggering Events

All aforementioned studies except [9, 43], and the Method 1 and Method 2 proposed in
this study employ univariate Hawkes process. However, in many real world problems,
there are many event types which interact with each other as well as there are possible
interactions among the same types. For example, in ecology, loss of predators due to the
uncontrolled hunting causes an increase in the population of the prey species. It then
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causes shortage of the food resources of the prey species which results in �ghting for
food and �nally extinction. There arem2 number of di�erent pair of types including self
relation where m is the number of event types. The relationship between each pair of
event types is usually di�erent. For example, the elevated risk of food shortage caused
by drought can be di�erent from the risk caused by increasing population. Decay of
the e�ect can vary for di�erent types as well. Therefore, modeling relationships among
the large number of event types by using a univariate model which excludes the type
information cannot explain such processes well and might produce insu�cient results.
In the results of the Method 1 and Method 2, even for the simplest case where there
are only two types of events and causes are necessary and su�cient for the e�ects, it
is observed that the results are sensitive to the parameters' values and the estimation
of the mean rate is a�ected by noise in the triggering function.

For the limitations above it is proposed to de�ne (1) a random variable for the branch-
ing structure which is conditioned on the type of triggering event occurred in the past
and (2) a random variable for being a casual event which is conditioned on its own
type.

Let Y is a discrete random variable representing the type of spatio-temporal event
occurred at a particular time t and location s and there are n number of observations,
y1, y2, . . . , yn of Y ∈ {1, 2, . . . ,K} . Following conditional random variables are de�ned.

Xij |Yj = yj =

{
1 if event i is caused by event j given the type of jth event is yj
0 otherwise

(3.4)

Xii|Yi = yi =

{
1 if event i occurred randomly given the type of ith event is yi
0 otherwise

(3.5)
Due to the unobservable branching structure, the expected values are considered as
follows:

E(Xij |Yj = yj) = P (Xij |Yj = yj)

E(Xii|Yi = y) = P (Xii|Yi = yi)

The estimated values for the probabilities above can be de�ned as:

pij = P (Xij |Yj = yj) =
∑
i

P (Xij |Yi = yi, Yj = yj)P (Yi = yi) (3.6)

pii = P (Xii|Yi = yi) = P (Xii|Yi = yi)P (Yi = yi) (3.7)

For example, if there are two types of events, and the type of the events observed in
the past is 2, then Equation 3.6 will be

P (Xij |Yj = 2) = P (Xij |Yi = 1, Yj = 2)P (Yi = 1) + P (Xij |Yi = 2, Yj = 2)P (Yi = 2)

Considering the multivariate Hawkes model in Equation 2.2, each element of the sum
in Equation 3.6 can be estimated as follows:
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P (Xij |Yi = yi, Yj = yj)P (Yi = yi) =
ηyjyifyjyi(si − sj , ti − tj)

λyi(si, ti)
∗ nyi
n(ti)

(3.8)

where fyjyi is non-parametric density estimated by the subset of the data such that all
pairs are (yj , yi) type, nyi is the number of type yi events and n(ti) is the total number
of events up to time ti. Similarly, the probability in Equation 3.7 can be calculated
as:

P (Xii|Yi = yi) =
µyi

λyi(si, ti)
∗ nyi
n(ti)

(3.9)

grk(s, t) is de�ned as grk(s, t) = ηrkfrk(s, t) and then the mean rate µk and the grk(s, t)
are de�ned as:

µk =
1

TR

n∑
i=1

1Yi=kpii (3.10)

grk(∆s,∆t) =
1

Nrkδsδt

∑
i,j∈Λ

1Yj=rpij (3.11)

where T is the duration of time, R is the area of the study region, 1 is the indicator
function, n is the number of observed events, Nrk is the number of pairs of type
(Yi = k, Yj = r) where ti > tj , δs and δt are the discretization parameters and Λ is
the set of pairs such that ti − tj ∈ [t− δt, t+ δt), si − sj ∈ [s− δs, s+ δs).

This method assumes that the type of the current event is unknown but the type for
those occurred in the past are known. Two selection procedures were applied to �lter
out related sample instances. The �rst one is to use a threshold value such as 0.5
for the pairwise probabilities and the second one is to select the highest triggering
probability between a given sample instance and its preceding events.

The results given in Chapter 4 show that the method is able to produce high true pos-
itive rate for the simple data sets. One drawback is low precision values which means
observing high false positives. The false positive pairs are usually have smaller proba-
bility values than the true positive pairs. The distribution of the pij values has either
heavy left tail or is bi-modal. This drawback is eliminated with an adjustment after
selection procedure. Otsu thresholding is used to discriminate incorrect estimations
from the true ones. The Otsu thresholding is a technique used in image processing to
�nd the optimum threshold value which separates the two class of pixels in an image
[33]. It assumes the values comes from a bimodal distribution. The distribution of
the probability values in the initial results satis�es this assumption. For example, in
Figure 3.2 and Figure 3.3,the distributions of the values obtained by the threshold and
rank selection from the data set DS1 are illustrated. Otsu's method was applied to
the cases, after selecting the pairs by using a threshold or rank. In both cases, after
�ltering the results with Otsu threshold, false positive rates signi�cantly decrease while
true positive rates remain high. Initial selection by using a threshold value which is
0.5 produces considerably high precision value than the initial selection by using rank.
However, the result of the �rst one is sensitive to the threshold value used.
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Figure 3.2: For a sample simulated data the distribution of pij which are selected by

using threshold value, 0.5.

Figure 3.3: For a sample simulated data the distribution of pij which are selected by

using ranking
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3.4 Method 4: Multivariate Triggering Pattern Extraction Based on

MISD Algorithm Conditioned on the Types of Triggering and

Triggered Events

As discuss in Section 3.3, relationships among the di�erent types can be modeled better
with a multivariate model since these interactions can be too complex to represent with
a simple model excluding types. Therefore, MISD algorithm was improved by de�ning
new conditional random variables and their estimator by using multivariate Hawkes
model. The proposed algorithm (Method 3) gives good results on simple datasets,
however, its success is limited in the terms of complexity of the problem. This might
be due to the incomplete information about the current event types used during the
learning phase of the algorithm. In order to handle the problems faced in Method
3, it is proposed to de�ne (1) a random variable for the branching structure which is
conditioned on the type of triggering event occurred in the past and the type of the
triggered event occurred currently, and (2) a random variable for being a casual event
which is conditioned on its own type. The conditional expectations for the random
variables Xij and Xii with respect to the type of the events were de�ned and the MISD
algorithm was reformulated for the multivariate model.

Let Y be a discrete random variable representing the type of a spatio-temporal event
occurred at a particular time t and location s. Assume that the sample space of Y con-
sists of K number of event types and there are n number of observations, y1, y2, . . . , yn
of Y . The following random variables conditioned on the value of Y are de�ned.

Xij |Yi = yi, Yj = yj =


1 if ith event is caused by

jth event given Yi, Yj
0 otherwise

Xii|Yi = yi =


1 if ith event occurs randomly

given Yi
0 otherwise

Then, the conditional expectations are calculated using conditional densities.

E(Xij |Yi, Yj) = P (Xij |Yi, Yj)

E(Xii|Yi) = P (Xii|Yi)

The conditional probability distribution of the random variables is estimated from the
model as follows:

p
′
ij = P (Xij |Yi, Yj) =

ηYjYifYjYi(si − sj , ti − tj)
λYi(si, ti|Hti)

(3.12)

p
′
ii = P (Xii|Yi) =

µYi
λYi(si, ti|Hti)

(3.13)

For the nonparametric estimation of triggering structure, take grk(s, t) = ηrkfrk(s, t)
in Equation 2.2 and estimate the entire model. Then the mean rate µk and the grk(s, t)
can be de�ned as:

µk =
1

TR

n∑
i=1

1Yi=kp
′
ii (3.14)
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grk(∆s,∆t) =
1

Nrkδsδt

∑
i,j∈Λ

1Yi=k,Yj=rp
′
ij (3.15)

where T is the duration of time, R is the area of the study region, 1 is the indicator
function, n is the number of observed events, Nrk is the number of pairs of type
(Yi = k, Yj = r) where ti > tj , δs and δt are the discretization parameters and Λ is
the set of pairs such that ti − tj ∈ [t− δt, t+ δt), si − sj ∈ [s− δs, s+ δs).

The primary assumption for the pairwise relationship is that if there is an interaction
at a particular scale, there should be many pairwise space-time distances less than the
interaction range while other distance values are evenly distributed. The estimated
density function will re�ect this relationship with peaks if appropriate discretization
values are utilized. There may be di�erent scales where space-time interaction exists.
Large discretization intervals may suppress the relation at smaller scales, therefore, the
use of di�erent values during the estimation of grk is worthy. Signi�cant space-time
clusters at di�erent scales can be explored and tested with D function. The estimation
can be supervised with these values.

The method �nds pairwise triggering patterns of spatio-temporal event types. It �rst
�ts conditional intensity model by using multivariate Hawkes process and calculates
pairwise probabilities for all pair of instances. It then selects signi�cant probabilities
with rank selection method and generate distinct pairwise patterns from this reduced
set. It returns each signi�cant pattern with its interest measure. The algorithm is
given in Figure 3.4. A spatio-temporal dataset consisting of locations and the types
of the events and the discretization values for the density functions are the inputs of
the algorithm. Stopping criterion is satis�ed by the convergence of the mean rate and
density functions which also ensures convergence of probabilities. If the interaction
ranges in space and time suggested by D-function are given to the algorithm as dis-
cretization values, it produces optimal results in terms of signi�cance and rank values
for a certain group of patterns interacting at similar scales. High discretization values

Figure 3.4: Triggering Pattern Extraction (TPEX) by Multivariate Hawkes Model
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may result in missing patterns at small scales, on the other hand, small discretization
values cause a decrease in signi�cance values of patterns at larger scales.

The signi�cance of the resulting patterns is evaluated probabilistically. The algo-
rithm extracts patterns of event types from the pair of instances which are obtained
by performing rank selection. Each pair of instances contributes to a pattern with
a probability value. In the experimental study, it is realized that the distribution of
the estimated probabilities for a particular pattern is not normal, instead it usually
shows heavy-tailed and left-skewed distribution. Mosteller and Tukey [29], discuss the
robustness of the location measures in terms of two concepts when the data is not nor-
mal. Robustness of validity ensures that regardless of the underlying distribution the
con�dence interval for the population location will cover the true value with a 95% of
chance. Robustness of e�ciency means con�dence interval for the population location
is as narrow as the one we can have when the true shape of the distribution is known.
The mean and the median are the best in terms of these two robustness measures when
the data is normal. However, in the case of non-normality, the robustness of validity
does not hold for the mean whereas the median lacks robustness of e�ciency. There
are a number of location measure alternatives to the mean and the median, which try
to balance two robustness concepts such as mid-mean, trimmed mean and winsorized
mean. In that sense, mid-mean measure was selected as a location measure for the
pair probabilities. Mid-mean measure is the mean value of the observations between
the 25th and 75th percentiles. The probability of a triggering pattern of two types is
the mid-mean of the probability values of the pair of instances which constitute the
pattern. It can be written as:

P (r → k) = mid−mean(p∗ij : Yj → Yi = r → k) (3.16)

where p∗ij is the probability of the pair of instance which contributes to the pattern.
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CHAPTER 4

EXPERIMENTS WITH SYNTHETIC DATA SETS

In this chapter, the state-of-the art methods and the proposed algorithms are evaluated
using synthetic data sets. The data sets are explained in Section 4.1. The rest of the
chapter gives the experimental results and discussions.

4.1 Data Sets

There are two types of synthetic data sets used in this study. The di�erence between
the two sets is the complexity in terms of the causal structure, the number of event
types, uncertainty about producing the e�ects and existence of di�erent interaction
ranges among the events.

In both cases, stationarity holds and several values of the parameters for the distri-
bution the data comes from are examined. These data sets are generated following a
standard data set generation technique which is in line with the literature [36]. The
details of the data set generation can be found in Appendix A.

4.1.1 Scenario I: Simple Pair of Two Event Types

In this setting, the datasets comprise two types of events one of which generates the
other within a constant spatio-temporal neighborhood. Each cause event has one e�ect
event. In other words, cause and e�ect relation satis�es su�ciency and necessary
condition, de�nitions of which are given below.

Su�ciency Condition: If an event C is su�cient for an event E it means that, the
existence of C guarantees the existence of E (C → E holds). However, the existence of
event E does not imply the existence of event C since there may be some other events
which are su�cient to produce E (E → C does not hold).

Necessary Condition: If an event C is necessary condition for an event E, it means that
the event E cannot be happened without the event C (E → C holds). However, the
existence of the event C may not be su�cient by itself for the event E, therefore, the
opposite is not true. (C → E does not hold).

There are three varying factors: the mean rate of the spatial process (λs), the mean
rate of the temporal process (λt) and the sample size (N). Their values are given
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Figure 4.1: D plot of a sample data

in Table 4.1. The sample size and λs are positively correlated. In other words, if
the mean rate of a Poisson process increases, then the sample size also increases for a
constant region. The sample size for the replications of the same Poisson process varies
due to the randomness. However, in the early �ndings of the study it was observed
that variation in sample size for the same experimental settings increases the standard
error of the average performance. Therefore, the e�ect of within group variation was
eliminated by selecting the samples, the size of which is equal to the mean of sample
size distribution. As a result, two factors with three levels producing nine di�erent
data settings were used.

The location of the e�ect events were generated randomly within one unit neighbor-
hood of the cause events. In Figure 4.1, D plot of a sample data shows the scale
at which space-time clustering is observed. The scale represents the neighborhood
threshold used to generate e�ect events. These clusters are signi�cant based on the
MC simulation results. The small scale local clusters in space can be seen from the
L function and density maps as well. According to the L function in Figure 4.2, the

Table 4.1: Characteristics of the simulated datasets. DS indicates the data set.

Factor DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9

λs 0.5 0.5 0.5 2 2 2 4 4 4

λt 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

N 30 30 30 100 100 100 200 200 200
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Figure 4.2: Signi�cance of spatial clustering and clustering scales

pattern is random beyond the distance larger than 2.5 unit, in other words, there is
no interaction between the observations at those ranges. In Figure 4.3 (a), dense areas

Figure 4.3: Kernel density estimations of Simple Simulation Data (a) bandwidth=1

(b) bandwidth=2.5
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are the local clusters the pairs comprise whereas in (b) they are observed by chance.

The spatial locations of the data were simulated within a region of [0, 50] x [0, 50]. The
time points are generated according to the corresponding mean rate and then mapped
to [0, 50] interval. Five replications were applied for each setting.

4.1.2 Scenario II: Pairs among the Six Event Types

An example scenario of a triggering pattern including six event types is represented
in Figure 4.4. In the �gure, discount day (DD) and concert (C) events at a shopping
mall are the triggering (random) events which trigger violating parking rules (V PR),
pickpocketing (P ) and clogging (CL) events. CL events further trigger fainting (F )
events. Here, V PR is the common consequence of DD and C events, however, both
ancestors can trigger the consequence individually. An event of the type triggered
may be a casual event. If an event type triggers another type of event, it increases the
likelihood of the triggered one. In other words, a triggered event type arises with a
higher rate than usual after its triggering event type was observed. Lets assume that
a V PR event occurs randomly with a speci�c mean rate. When a C event takes place
at a speci�c time and location, the number of V PR events observed may be more than
usual within the neighborhood of the C event.

There are 36 possible patterns including both self (e.g., V PR → V PR) and mutual
(e.g., DD → F ) excitation of events. The ground truth patterns are DD → V PR,
C → V PR, C → P , C → CL and CL → F . The patterns CL → F and C → CL
exist in very small and small scales, respectively, whereas the remaining ones interact
at higher ranges. The scale of the interaction for each true pattern can be explored
by D-function. Small scale interactions are visible when very small discretization was
used while constructing D-function.

Figure 4.4: An example scenario for the triggering pattern of event types.
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Several data sets of the scenario were generated based on the di�erent parameter
settings. The parameters describe the mean rates of the triggering events, cluster size
of the triggered events and the noise included in the data. Six shopping malls were
selected in Ankara, Turkey, where discount and concert events are organized. The
sample sizes of the triggering events were generated from Poisson distributions with
mean rates λdiscount ∈ {4, 8} and λconcert ∈ {3, 6}. The two levels for each are coded
as small and large. The spatial locations of the shopping malls and concert stands are
represented by 2-dimensional space. The time of the generated events in terms of the
day of the year are assigned randomly.

The number of events triggered by each discount day or concert are generated from
Poisson distribution with mean rates λparking ∈ {3, 6, 10, 20},λpickpocketing ∈ {2, 4, 8, 16},
and λclogging = 3. The number of fainting events triggered by a clogging event is gen-
erated with mean rate λfainting = 1. These parameters controls the cluster size of
the triggering events. In other words, they de�ne average number of triggered events
around a triggering event. Four levels of mean rates to generate V PR and P events are
coded as small, medium, large and very large. For each particular parameter setting,
the datasets are generated without noise and with noise such that the noise constitutes
either 5% or 10% of the total sample size. The noise added to the data are the random
events of the type triggered events such as P and V PR which occur independently
from the triggering events DD and C. To ensure that the noise generated is repre-

Figure 4.5: Neighborhood regions for di�erent event types.
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sentative of the real case, the region for the random P events was de�ned based on
the regions reported by the government agencies as usual areas for P events. Ran-
dom V PR events are generated within the study region. Ten runs were performed for
each particular setting and the averages over these runs were reported. The summary
of data settings, coding for dataset name and average sample size for the generated
datasets are given in Table 4.2

Table 4.2: Experimental Data Settings

λtriggering λtriggered Noise(N%) DataSet Name Average of N

small small 0 ss 331

small small 5 ss5 310

small small 10 ss10 347

small medium 0 sm 439

small medium 5 sm5 520

small medium 10 sm10 457

small large 0 sl 691

small large 5 sl5 767

small large 10 sl10 783

small very large 0 svl 1123

small very large 5 svl5 1502

small very large 10 svl10 1385

large small 0 ls 562

large small 5 ls5 675

large small 10 ls10 692

large medium 0 lm 901

large medium 5 lm5 1023

large medium 10 lm10 1065

large large 0 ll 1286

large large 5 ll5 1488

large large 10 ll10 1585

large very large 0 lvl 2516

large very large 5 lvl5 2727

large very large 10 lvl10 2759

The neighborhood regions around the shopping malls where triggered events can oc-
cur were de�ned such as indoor and outdoor parking areas, concert areas, clogging
areas and pickpocketing areas. A sample view of neighborhood regions around a shop-
ping mall is illustrated in Figure 4.5. After simulating the number of triggered events
generated by each DD and C events according to the de�ned Poisson distributions,
their locations are determined randomly within the neighborhood region of the cor-
responding triggering events. The temporal neighborhood is de�ned either within a
day or within hours according to the event type. For example, a clogging event must
occur during a concert which lasts 2 or 3 hours. Spatio-temporal locations of the all
generated events are normalized to the interval [0, 100] using min-max normalization.
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4.2 Results and Discussions

4.2.1 Method 1

In this section, the objective is to evaluate the performance of the Intensity Model
Estimation and Stochastic Declustering algorithms to discriminate cause/triggering
(C) and e�ect/triggered (E) events in synthetic datasets and to evaluate Method 1 in
terms of triggering pattern extraction.

In the experiments, the density of distances in space is explained by Gaussian func-
tion. The density of distances in time is explained either exponential and gamma
functions. As a result, two distinct intensity models were used during learning. The
parameters of the exponential function are K and W . K is the probability of elevated
risk to observe an e�ect after observing a cause, W−1 stands for the extent of the
e�ect range in time. d, the parameter of the Gaussian function, is the bandwidth in
space. During the MLE the values that maximize the likelihood function were searched
from the following sets: W = {0.1, 0.3, 0.5, 1, 2, 3.3, 10}, K = {0.1, 0.3, 0.5, 0.75, 1} and
d = {0.005, 0.02, 0.04, 0.5, 1, 2, 4, 8, 15}. All the models were converged in maximum of
13 iterations. The algorithm produces a value, φ, for each event which represents the
probability of the event being a cause. As described in the Stochastic Declustering al-
gorithm, if the generated random number Ui is smaller than φ, the event was assigned
as a cause, otherwise, it was assigned as an e�ect. Since the objective of the stochastic
declustering algorithm is to estimate the main events and the mean rate of the back-
ground process consisting of the main events, being a cause event was considered as
positive and performance measures such as true positive (TP) rates and true negative
(TN) rates were calculated accordingly.

Table 4.3: Results of Model Fitting for Gaussian-Exponential Intensity Model

DataSet Name W K d

DS1 3.3, 10 1 0.005, 0.5

DS2 0.5, 1, 2 1 0.005, 0.5

DS3 0.5, 1 1 0.01, 0.02, 0.04, 0.5

DS4 10 1 0.5

DS5 3.3, 10 1 0.5

DS6 1, 2, 3.3 1 0.01, 0.04, 0.5

DS7 10 1 0.5

DS8 10 1 0.5

DS9 3.3 1 0.5

Over the �ve replications of the sample designs, the estimation of the parameters and
the mean rate are given in Table 4.3. There is a variation in the �tted values not only
for the datasets with di�erent settings but also that of those for the replications of the
same setting. For all of the cases the probability of the elevated risk is estimated as
1 which means each main event produces an e�ect. This estimation is true since the
generated datasets satisfy su�ciency and necessary condition for the cause and e�ect
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Table 4.4: Accuracy of Gaussian-Exponential Intensity Model

DataSet Name Sensitivity Precision F-measure

DS1 1 0.9 0.95

DS2 1 0.87 0.93

DS3 1 0.63 0.77

DS4 0.98 1 0.99

DS5 0.95 1 0.97

DS6 0.97 0.8 0.88

DS7 0.93 1 0.96

DS8 0.96 1 0.98

DS9 0.9 0.98 0.94

Overall 0.97 0.91 0.93

relationship. The other two parameters have di�erent values among the cases. The
�tted values for W are close to the inverse of the maximum time distance between
the cause and the e�ect events. Thus, they are able to represent the data behavior.
However, the estimated values for the parameter d is not representative for the data.
It is expected to have a value close to the maximum spatial distance between the
cause and the e�ect events, which is 1 in the simulated cases. About in half of the
cases it is estimated as 0.5 (mean spatial distance between the cause and the e�ect
events), and for the remaining data it is estimated as very small number such as
0.005. The mean rate of the processes are also incorrectly estimated for most of
the cases. The accuracy of the results in terms of sensitivity (TP rate), speci�city
(TN rate) and precision of positive estimates are presented in Table 4.4. The e�ect of
incorrect parameter estimations on the performance is signi�cantly high and sensitivity
and precision values for those cases dramatically decrease. For the cases where the
bandwidth d is estimated as the mean spatial distance between the cause and the e�ect
events, most of the events are correctly classi�ed although the mean rate of the process
is incorrectly estimated.

Table 4.5: Results of Model Fitting for Gaussian-Gamma Intensity Model

DataSet Name α β d

DS1 1.5 0.1 0.1, 0.5

DS2 2 0.5 0.1, 0.5

DS3 1.5 1 0.1

DS4 1 0.1 0.5

DS5 2 0.1 0.5

DS6 2 0.3 0.1

DS7 1 0.1 0.5

DS8 1.5 0.1 0.5

DS9 2 0.1 0.5
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Table 4.6: Accuracy of Gaussian-Gamma Intensity Model

DataSet Name Sensitivity Precision F-measure

DS1 1 0.92 0.96

DS2 1 0.87 0.93

DS3 1 0.63 0.77

DS4 0.98 1 0.99

DS5 0.94 1 0.97

DS6 1 0.6 0.75

DS7 0.87 0.99 0.93

DS8 0.94 1 0.97

DS9 0.95 0.99 0.97

Overall 0.96 0.89 0.92

Similarly, the �tted Gaussian-Gamma Intensity models do not represent the data well
in terms of the mean rate and the spatial extent. The worst performance values are
observed for those cases the parameters of which are incorrectly estimated. The other
two parameters α and β are the shape and the rate parameters of the Gamma function,
respectively. The parameter estimations and the performance values are given in Table
4.5 and Table 4.6. There are signi�cant di�erences between the accuracy of the two
models for the small datasets such as DS1, DS2 and DS3. Both models have tendency
to assign events as a cause or random event when the �tted model is not adequate,
however, Gaussian-Gamma Intensity model is able to classify correctly more e�ect
events even the model parameters are incorrectly estimated.

The variation among the results of the data sets having the same settings might be due
to the small sample size which may a�ect the result of the MLE. Although the sample
datasets are very simple such that the commonly used density functions utilized in the
study are expected to be able to model the data, in real cases the processes are more
complex and there is a need to use more speci�c functions describing each of them. In
addition to the necessity of knowing the form of the domain speci�c functions, if spatial
and temporal dimensions of the process are dependent, then, to use the product of the
separate functions is not appropriate. In the Figure 4.1 in Section 4.1, it is shown that
the data sets in the simple design have signi�cant space-time clusters. Therefore, the
product of the space and time functions might be inappropriate to model the data.

4.2.2 Method 2

Based on the �ndings in Section 4.2.1, in this section the objective is to evaluate
non-parametric approaches in intensity modeling. The ability of the models with the
temporal and spatial intensity functions to describe the relationships in the spatio-
temporal datasets was evaluated and the results of the Method 2 were discussed.
In the experiments, di�erent discretization values were used for the de�nition of the
nonparametric function. It is observed that these values a�ect the results signi�cantly.
The reported �ndings are based on the best results obtained from each individual case.
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Table 4.7: Accuracy Comparison of Nonparametric Intensity Models and Nonpara-

metric Spatial Models with Binary Weighting

Temporal Spatial Weighted Spatial

DataSet Name Sensitivity Precision Sensitivity Precision Sensitivity Precision

DS1 0.68 0.83 0.97 0.88 0.99 0.99

DS2 0.29 0.36 0.99 0.8 1 1

DS3 0.22 0.3 0.97 0.86 0.97 0.99

DS4 0.8 0.81 0.97 0.79 0.97 0.94

DS5 0.17 0.66 0.95 0.8 0.95 0.93

DS6 0.09 0.23 0.94 0.79 0.94 0.81

DS7 0.64 0.9 0.91 0.88 0.91 0.9

DS8 0.12 0.55 0.9 0.9 0.9 0.9

DS9 0.04 0.4 0.89 0.89 0.92 0.96

Overall 0.34 0.56 0.94 0.84 0.95 0.93

4.2.2.1 Modeling with Temporal Intensity Function

The success of the algorithm to predict actual cause e�ect pairs depends on the density
in time. As the temporal density increases, sensitivity and precision values decrease
dramatically. In other words, if pairs are well separated in time it works well. For
the dataset exhibiting low temporal density, sensitivity is 0.7 and precision is 0.85
on average. However, these values drop to 0.12 and 0.31 on average for the dataset
exhibiting high temporal density. The high number of false positives (FP), i.e., events
paired incorrectly, arises from predicting cause events as pairs although they occur
randomly in time. This is because the mean distance in time between the cause
events are close to the interaction scale of the cause and e�ect events which is hard to
discriminate.

Although the model can be considered as successful to discover pairs for very speci�c
cases such as in the case of well separated clusters, it has limitation in prediction of
the mean rate. For none of the experimented data sets the mean rate is correctly
estimated. This is because for all of the events except for the �rst in time, pii values
converge to zero which means none of them were predicted as cause or background
event. A temporal intensity for self-exciting point process was also studied by Lewis
and Mohler [21]. They used MISD algorithm and extend it with maximum penalty
likelihood estimation. In their study with simulated data, they assumed that triggering
kernel needs to be zero outside the interval of [0, 4] which leads to successful estimates
for the mean rate, however, they neither provide reasoning for this restriction nor for
the cut-o� point.

4.2.2.2 Modeling with Spatial Intensity Function

Unlike the temporal intensity function, the spatial intensity model is capable of predict-
ing the actual cause e�ect pairs without using time information. Very high prediction
accuracy for the actual cause e�ect pairs were observed for all cases. As the spatial
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density increases, sensitivity decreases from 0.98 to 0.90. Precision of the predictions
varies between 0.79 and 0.90. A relationship between the precision values and the
spatial density of the data were not observed. On average, sensitivity and precision
values are 0.94 and 0.84, respectively. The problem faced during the prediction of µ
and pii still remains unsolved here.

4.2.2.3 Improvement: Modeling with Spatial Intensity Function Weighted

based on Ripley's K Function

Simulated data sets were analyzed with Ripley's K function and the range where
clustering is signi�cant was determined. This information was incorporated into the
algorithm as de�ned in Section 3.2 in Chapter 3. The results were compared with
those obtained by using spatial intensity model without weighting. The use of weights
does not only increase sensitivity and precision values but also results in successful
predictions for µ and pii values. This modi�cation signi�cantly increases precision of
the estimates compared to the original algorithm. Both has similar sensitivity values.
In a few cases binary weighting has small improvements on sensitivity values. Finally,
on average, 90% of cause events are labeled correctly as cause in this method whereas
the original algorithm is not able to predict cause events.

For all the methods, there is a trade-o� between TP and FP as the discretization value
changes. In general, the use of small discretization values increase both TP and FP.

4.2.3 Method 3

In this section, the objective is to evaluate performance of Method 3 which uses type
information during learning. The algorithm was applied to both simple and complex
scenarios described in Section 4.1. The maximum number of iterations for convergence
is 15. The pairs were selected based on two methods. In the �rst method, a threshold

Table 4.8: Accuracy Comparison of Nonparametric Intensity Models and Nonpara-

metric Spatial Models with Binary Weighting (F-measures)

DataSet Temporal Spatial Weighted Spatial

DS1 0.75 0.92 0.99

DS2 0.32 0.88 1

DS3 0.25 0.91 0.98

DS4 0.8 0.87 0.95

DS5 0.27 0.87 0.94

DS6 0.13 0.86 0.87

DS7 0.75 0.89 0.9

DS8 0.2 0.9 0.9

DS9 0.07 0.89 0.94

Overall 0.42 0.89 0.94
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value was used. If pij > 0.5, the event pairs are selected. In the second method, rank
selection method was used to extract pairs.

Table 4.9: Average predictive accuracy of Method 3 with threshold selection and

threshold+Otsu selection for Scenario I.

Threshold Threshold+Otsu

DataSet Sensitivity Precision F-measure Sensitivity Precision F-measure

DS1 1 0.94 0.96 1 0.94 0.96

DS2 0.95 0.87 0.90 0.91 0.88 0.90

DS3 0.81 0.88 0.84 0.77 0.89 0.82

DS4 0.96 0.6 0.74 0.96 0.73 0.84

DS5 0.99 0.65 0.78 0.99 0.75 0.86

DS6 0.99 0.64 0.78 0.98 0.74 0.84

DS7 0.99 0.62 0.76 0.99 0.87 0.92

DS8 0.84 0.55 0.66 0.84 0.77 0.8

DS9 0.98 0.65 0.78 0.98 0.92 0.94

Overall 0.95 0.71 0.82 0.94 0.83 0.88

Table 4.10: Average predictive accuracy of Method 3 with rank selection and

rank+Otsu selection for Scenario I.

Rank Rank+Otsu

DataSet Sensitivity Precision F-measure Sensitivity Precision F-measure

DS1 1 0.13 0.22 1 0.94 0.96

DS2 0.96 0.13 0.22 0.95 0.88 0.92

DS3 0.83 0.09 0.16 0.81 0.88 0.84

DS4 0.97 0.19 0.32 0.97 0.59 0.74

DS5 1 0.16 0.28 1 0.65 0.78

DS6 1 0.18 0.30 1 0.62 0.76

DS7 1 0.49 0.66 0.99 0.78 0.88

DS8 0.86 0.42 0.56 0.84 0.68 0.74

DS9 1 0.5 0.66 0.98 0.83 0.90

Overall 0.96 0.25 0.4 0.95 0.76 0.84

The summary of the performance on Scenario I based on the selection methods are
given in Table 4.9 and Table 4.10. A trade-o� between sensitivity and precision values
was observed according to the selection method used. The rank selection method
produces slightly higher sensitivity values than the method based on thresholding,
however, it produces signi�cantly lower precision values. Generally, the method based
on thresholding has lower precision values as the spatial density increases, whereas the
rank selection method behaves oppositely such that it produces higher precision values
in the cases where spatial density is high. As mentioned in Section 3.3, the incorrect
pairs usually have small probability values. For that reason, Otsu thresholding was
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used after both methods to adjust predictions. The most signi�cant improvements
is achieved for the rank selection method considering the initial performance. For
example, for the data set DS3, precision of the predicted pairs is 0.09 with rank
selection method. It increases to 0.88 after Otsu thresholding. The highest decrease
in sensitivity after Otsu method applied is 0.04 and the most of the sensitivity values
remains the same. The average sensitivity and precision values of the methods over
all data sets are 0.95 and 0.71 for the method based on thresholding and 0.96 and 0.25
for the rank selection method. These values are adjusted to the 0.94 and 0.83 for the
former and 0.95 and 0.76 for the latter after applying Otsu method. The limitation of
the method is the estimation of mean rate of the process, thus, pii values.

Table 4.11: Average predictive accuracy of Method 3 with threshold selection and

threshold+Otsu selection for Scenario II.

Threshold Threshold+Otsu

DataSet Sensitivity Precision F-measure Sensitivity Precision F-measure

ss 0.07 0.27 0.06 0.01 0.1 0

ss5 0.02 0.14 0.02 0.01 0.25 0.01

ss10 0.01 0.11 0 0 0 0

Average 0.04 0.19 0.03 0.01 0.17 0.01

Table 4.12: Average predictive accuracy of Method 3 with rank selection and

rank+Otsu selection for Scenario II.

Threshold Threshold+Otsu

DataSet Sensitivity Precision F-measure Sensitivity Precision F-measure

ss 0.05 0.1 0.03 0.02 0.07 0.01

ss5 0.09 0.05 0.03 0.02 0.09 0.02

ss10 0.05 0.05 0.02 0.02 0.15 0.02

Average 0.07 0.07 0.03 0.02 0.09 0.02

In the Table 4.11 and Table 4.12, the results for the Scenario II are given. In these
tables, only the results for the �rst simplest data sets are provided. This is because the
method is unsuccessful for the remaining data sets. In other words, for the remaining
data sets, all of the events in the data were predicted as random or cause events.
For the simplest cases, the method still shows low performance since the TP rate is
less than 0.1 for all. Low precision values are observed for both selection methods as
well, however, the method based on thresholding performs better in terms of precision
values. Its performance ranges between 0.11 and 0.27 whereas performance of rank
selection method is at most 0.1.

4.2.4 Method 4

The performance of Method 4 (TPEX algorithm) is evaluated on the complex dataset
scenario. The evaluation is made in terms of predictive accuracy, computational per-
formance and user de�ned parameters required. The accuracy of the results was evalu-
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ated based on the ability of the algorithm to extract ground truth patterns within the
top ten ranked patterns (recall@10) and the distribution of their signi�cance values.
recall@10 illustrated in Table 4.13 shows the proportion of actual pairwise patterns
correctly identi�ed within the top ten ranked patterns. In the table, the results are re-
ported for di�erent data sets and discretization values. (δs = 1, δt = 0.05) de�nes the
scale of the pattern CL → F . (δs = 4, δt = 0.5) and (δs = 8, δt = 1) are representa-
tive for the remaining patterns. (δs = 16, δt = 2) doubles the extent of the interaction
in space and time for the maximal range. The performance was also examined by
using a very large discretization level (δs = 25, δt = 25) which produces highly rough
density function. The ranking is carried out among the signi�cance values calculated
for all possible patterns. For the best case, it is desirable to �nd a true pattern with
high rank value within the top ten, and with a signi�cance value equal or close to 1.
The rank distributions of the ground truth patterns are visualized in Figure 4.7 with
a rank map where darker areas represent higher ranks, and the distributions of their
signi�cance values among the datasets in Figure 4.8. The results were compared with
a recent study which uses CPI measure to identify signi�cant patterns [26].

4.2.4.1 Comparison based on Predictive Performance

For 17 out of 24 datasets, TPEX achieves recall@10 = 1 when the density function
is estimated with the smallest discretization intervals. It decreases to 0.8 for the
remaining seven datasets in most of which triggering events are not dense. CSTP,
on the other hand, extracts only the pattern CL → F since given threshold de�nes
signi�cantly small neighborhood which allows to capture interactions at very small
scales.

When the discretization values are set to (δs = 4, δt = 0.5), (δs = 8, δt = 1) or
(δs = 16, δt = 2) TPEX �nds all patterns except CL → F (recall@10 = 0.8). The
reason is that larger discretization intervals smoothen the distribution function gCL,F
such that local peaks representing small range interactions are not visible anymore.
However, an indirect relation between C and F due to the cascade of 3 events, C →
CL → F , is extracted as a direct relation by TPEX. The larger ranges are more
representative of the range between the root cause and �nal consequence. Once the
relation between the intermediate cause and �nal consequence is discovered by using
appropriate discretization, the signi�cance of the relation between C and F decreases
to 0. This behavior is meaningful in the sense of conditional independence. All the
patterns TPEX found has high ranks as can be seen from the relatively darker areas in
the rank map in Figure 4.7. For the same discretization values, CSTP �nds three of the
�ve patterns in all datasets. The missing patterns are DD → V PR and C → V PR
which have the longest interaction ranges. The given neighborhood thresholds are
greater than the distance between the events of the pairs, therefore, these patterns can
be captured based on the CPI threshold de�ned by the user. However, they are not
in the top ten ranked patterns since their ranks change between 11 and 17. In other
words, some irrelevant patterns are found more signi�cant than these two patterns.
As a result, they are shown with light colors on the rank map of CSTP.

For the largest discretization which produces the roughest density function, recall@10
takes one of the values, 0.6, 0.8, and 1, with TPEX algorithm. All 0.6 values are
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Table 4.13: recall@10: The percentage of ground truth patterns found within the top

ten ranked patterns.

Discretization δs = 1, δt = 0.05 δs = 4, δt = 0.5 δs = 8, δt = 1 δs = 16, δt = 2 δs = 25, δt = 25

DataSet TPEX CSTP TPEX CSTP TPEX CSTP TPEX CSTP TPEX CSTP

ss 0.8 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

ss5 0.8 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

ss10 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

sm 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6

sm5 0.8 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

sm10 0.8 0.2 0.8 0.6 0.8 0.6 0.8 0.8 0.8 0.8

sl 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6

sl5 0.8 0.2 0.8 0.6 0.8 0.6 0.8 0.6 1 0.8

sl10 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

svl 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6

svl5 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6

svl10 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 1 0.8

ls 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

ls5 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.6 0.6

ls10 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.6 0.6

lm 0.8 0.2 0.8 0.6 0.8 0.6 0.8 0.6 1 0.8

lm5 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

lm10 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.6 0.6

ll 0.8 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

ll5 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.8

ll10 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6

lvl 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 1 0.8

lvl5 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.6 0.8

lvl10 1 0.2 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6

observed for the datasets where the density of the triggering events are large. CSTP
achieves both 0.6 and 0.8 for recall@10 and there is no distinct pattern according to
datasets.

TPEX and CSTP measure the signi�cance of a pattern using midmean and CPI,
respectively. Figure 4.8 shows their distributions for the ground truth patterns over 24
datasets by each discretization level. The patterns DD → V PR and C → V PR have
considerably high signi�cance values for TPEX than CSTP for all discretization levels
except the largest one. Although use of a rough density function signi�cantly decreases
the pattern probabilities calculated by TPEX, it still produces high ranks for them.
For example, it can be seen from Figure 4.7, DD → V PR is always extracted within
the top ten rank regardless of discretization level. It is even the top �ve for most of the
cases. The highest signi�cance and rank values are obtained when the discretization is
δs = 8, δt = 1. This pattern is found either in 11th or 12th rank by CSTP algorithm.
TPEX shows similar performance for the pattern C → V PR. There is a small decrease
in probability and rank values for this pattern, but, it is still discovered within the top
�ve for most of the cases. The ranks that CSTP produce, however, is usually greater
than 13. Although CSTP has remarkably higher signi�cance values for both patterns
on the largest discretization TPEX still has higher ranks for them.
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Similarly, TPEX is more succesful in discriminating the pattern C → P than CSTP
on the �rst three discretization levels. For the discretization values (δs = 16, δt = 2)
it is observed that TPEX produces higher signi�cance values for the datasets where
density of triggering events are small whereas CSTP has higher values when the density
is large. Another observation is that for the ranks of the C → P , CSTP is a�ected by
the noise. The more noise the data set has, the lower the rank of the pattern is. No
such e�ect is observed for TPEX.

CSTP is more successful in overall for the pattern C → CL. TPEX still produces
comparable results based on discretization levels. For example, although TPEX ranked
within the top �ve in most of the cases, CSTP performed better than TPEX. Similarly,
TPEX is able to �nd the pattern CL→ F having the smallest interaction range if the
smallest discretization is used. CSTP �nds it with high signi�cance and ranks for all
cases.

The behavior of the algorithm was further examined for the pattern CL → F . The
�rst nine datasets were selected for further evaluation since the signi�cance values
calculated for these datasets are the worst which is 0.27 on average. In addition, the
signi�cance value of the pattern C → F was calculated as 0.56, on the average, for the
same set. Two aspects that a�ect the performance in terms of accuracy were found.
Firstly, when smaller discretization values are used for the density function an increase
was observed in the signi�cance of CL → F from 0.27 to 0.36 and a decrease in the
signi�cance of C → F from 0.56 to 0.03. However, it also causes the signi�cance
of remaining true patterns to decrease while keeping the ranks to be high. This is
expected, because it is also claimed in this study that the signi�cance of a pattern
has its maximum if the discretization is representative for the interaction range of the
events the value of which can be obtained by D-function. Secondly, the e�ect of null
additions on the signi�cance value of a pattern was observed. Null addition can be
de�ned as the existence of irrelevant data in the set with respect to a pattern. In the
scenario, small density values were used for the CL and F events to be representative
for the real word situations. However, in such settings, these events represented in the
datasets with small frequencies relative to the other events such as V PR and P . Once
the data is simulated with similar densities for all four event types, regardless of the
discretization values used the method is able to �nd the pattern CL → F within the
top ten ranked patterns and with a signi�cance value around 0.2 while the remaining
patterns have high signi�cance as well.

The detailed results of the algorithm for each replication and the datasets can be found
in Appendix C.

4.2.4.2 Comparison based on Computational Performance

In this thesis, the focus is the predictive performance of the pairwise triggering pattern
extraction, however, its computational performance was also evaluated with respect
to discretization level and the sample size. The same scenario with di�erent density
values was used to generate the data sets with sample sizes from 200 to 5000. To
evaluate the e�ect of discretization level, ss data set was used with the discretization
levels from 1 to 20. Figure 4.6 (a) shows execution time of the algorithm in seconds
with respect to discretization level. Since the range of each dimension of the density
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Figure 4.6: (a) E�ect of data size on performance. (b) E�ect of discretization value
on performance.

function is 100, the discretization values can be interpreted as percentage. For example,
if δt = 2 then it means the time dimension of the density function consists of 50 bins
each of which constitutes 2% of the range. It can be seen from the Figure 4.6 (a),
there is a fast decrease in execution time until δt, δs = 3 and then it decreases slowly
as discretization level increases. The �uctuations around 5 and 10 is attributed to the
number of iterations required to converge. For example, at δt, δs = 4 and δt, δs = 5
TPEX converges after 6 and 8 iterations, respectively. There is a decrease in execution
time per iteration for δt, δs = 5.

The most in�uential factor on computational performance is the size of the dataset.
Figure 4.6 (b) shows execution time of the algorithm in seconds with respect to sample
size. Sharp increase was observed in the run time after N = 2000. CSTP algorithm
performs better than TPEX with respect to the computational time reported in [26].

The number of event types increases complexity little since there are m2 number of
pairwise density function in the model where m is the number of event types. For the
experiments in this study, the e�ect of the number of event types was insigni�cant up
to six event types.

4.2.4.3 Comparison based on User De�ned Parameters

TPEX requires the user to de�ne discretization values for the density function. There
is no other threshold needed to be de�ned by the user, for example, a threshold for the
signi�cance or neighborhood since it employs rank selection for the pattern extraction
and the neighborhood is de�ned by the density function of distances. Note that a
parametric density estimation procedure can also be employed in TPEX methodology.
In such cases, discretization values are not needed to be de�ned, rather, a parameter
estimation method such as MLE can be used in the algorithm. In such case where the
form of the function is known, once the density is estimated, TPEX can be considered
as a input free algorithm for triggering pattern extraction. In the non-parametric case,
the suitable discretization values can be obtained by using D-function if the users are
not sure about the appropriate values. On the other hand, if such values are not
available, users may try di�erent discretization levels and evaluate them based on the
calculated pattern probabilities which is maximum.

In the candidate generation approach, users are required to de�ne a neighborhood
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appropriate for the domain as well as a threshold for the signi�cance measure. A small
neighborhood may cause missing patterns at global scales whereas larger ones may
produce many irrelevant patterns.

4.2.5 Summary

Based on the average performance of the methods over all data settings in Scenario I,
all methods except Method 2 using nonparametric temporal intensity function show
comparable performance for predicting background events. Their success di�er in
terms of precision of the predictions. In other words, some of them tend to estimate
the e�ects as random events. For example, in Method 2, if spatial density is used,
only 84% of the positive predictions are true causes whereas it increases to 93% when
proposed method that uses weighted spatial density is used. Their F measures are
0.89 and 0.94, respectively. There is signi�cantly high di�erences between the precision
of the positive predictions of the initial results of Method 3 with threshold selection
where threshold value is 0.5 and with rank selection. The �rst one produce 71% precise
predictions, however, it is 25% for the second one. This high di�erences reduced with
the use of Otsu method such that Otsu thresholding adjusts precision values as 83%
and 76%, respectively. Their F measures are 0.82 and 0.4 before Otsu thresholding and
0.88 and 0.84 after Otsu thresholding. Although Method 3 with threshold selection
produce better results for both, its success might change based on the threshold value
used. Therefore, Method 3 with rank selection adjusted by Otsu thresholding can be
preferred since it is threshold free and more robust method.

None of these methods are successful on the data in Scenario II. Method 4 is the
only approach which successfully model and identify triggering patterns of event types
simulated in the scenario.

Table 4.14: Overall Accuracy of Methods for Scenario I

Method Sensitivity Precision F-measure

Method 1 - exp 0.97 0.91 0.93

Method 1 - gamma 0.96 0.89 0.92

Method 2 - temporal 0.34 0.56 0.42

Method 2 - spatial 0.94 0.84 0.89

Method 2 - weighted spatial 0.95 0.93 0.94

Method 3 - threshold 0.95 0.71 0.82

Method 3 - threshold+Otsu 0.94 0.83 0.88

Method 3 - rank 0.96 0.25 0.4

Method 3 - rank+Otsu 0.95 0.76 0.84
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Figure 4.7: Patterns' rank maps for di�erent datasets and discretizations for TPEX

and CSTP algorithms.
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Figure 4.8: Distribution of patterns' signi�cance for di�erent discretizations for TPEX

and CSTP algorithms.
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CHAPTER 5

CASE STUDY: ARE SPEED BUMPS AND TRAFFIC

ACCIDENTS RELATED?

Middle East Technical University (METU) is a state university having over 26000
students by the end of 2013. It has relatively large campus area. There is signi�cant
tra�c �ow in the campus, especially at certain times of the day and on particular
routes. To increase safety of pedestrians, to control the speed of the vehicles within
the campus and to reduce the number of tra�c accidents, several speed bumps were
built on the roads where pedestrians are dense and the drivers tend to speed up, in
addition to the speed limit already applied in the campus.

Tra�c o�cers may want to know if the existence of the speed bumps causes a decrease
in the number of accidents within the campus. They also may wander if the e�ects of
speed bumps have regional di�erences. For example, some of them may result in higher
decrease in the number of accidents within those regions compared to the others, or
they may have opposite e�ects at some regions. Based on the knowledge acquired,
tra�c o�cers may suggest to the university authorities to construct new speed bumps
or to change the location of the existing ones.

In this chapter, tra�c accident data collected by METU Tra�c O�ce was analyzed
and a triggering relationship between the speed bumps and the accidents occurred in
the campus was examined. The research questions can be listed as:

1. Is there a triggering relationship between the existence of speed bumps and the
tra�c accident occurrences throughout the campus? If it exists, is it positive or
negative?

2. Do all of the speed bumps in the campus a�ect the tra�c accident occurrences
similarly? Is there any regional di�erences? If so, which one has the highest
e�ect?

5.1 Data Set Construction

Selecting Relevant Data

Each tra�c accident is recorded by an o�cial report by the Tra�c O�ce of METU if
there is any damaged property of METU or injured people. A sample o�cial report
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is illustrated in Fig 5.1. All the accident reports recorded from 2002 to the middle of
2014 were examined. About half of the reported accidents occur at the gates of METU,
speci�cally at Gate A1, Gate A4 or Gate A7, which cause damage to gate barriers.
According to the reports, these accidents are caused by the drivers who rush to pass
the already raised barrier without waiting for the reader to register their vehicles,
thus, having the barrier come down before the o�ending vehicle can clear the gate.
These accidents are discarded from the analysis for simpli�cation since their causes
are known and are not related to any other events such as existence of a speed bump
on the road. A few of the accidents are also removed due to the missing information
in the reports such as driving direction of the vehicles. This information is important
as the distance between a speed bump and an accident is determined based on the
driving direction. Finally, a number of reported accidents which occurred outside of
the campus and cause damages at the borders of the campus area are removed since
they are both irrelevant and outside the study region. After eliminating irrelevant and
incomplete data, there are 64 in-campus accidents spanning over years from 2002 to
2014.

Figure 5.1: : A sample o�cial report recorded by Tra�c O�ce of METU.

In the METU campus, there are 41 speed bumps built in di�erent years range from
1999 to 2011. Some of them are on the one way roads whereas some others are on the
two way roads. It is assumed that a speed bump constructed on a two way road as two
separate speed bumps according to the driving direction of the lane. Thus, 62 speed
bumps was presumed in total in the campus. The locations of the speed bumps built in
the campus are shown in Fig 5.2 where the labels represent approximate construction
year of each.

Determining Spatio-temporal Locations

The approximate geographic locations of the accidents are identi�ed from the expla-
nations in the reports and their coordinates are determined by using Google Earth.
The temporal locations, on the other hand, are de�nite since the date and the time
of the accidents are recorded. The temporal locations were represented as days where
the range is 4575 days. The decimal place shows the time of the day that the accident
happened.

52



Figure 5.2: : Locations and approximate construction years of the speed bumps in

METU.

Representing a speed bump with a spatio-temporal point require further work. Actu-
ally, a speed bump covers an area instead of a single point in space. In addition, its
existence in time is a duration once it is constructed. Therefore, some transformation
is needed to represent each speed bump as a spatio-temporal point data. The spatial
location can be expressed by a representative point such as center. Because a possible
relation between the existence of speed bumps and accidents is investigated, the time
of the speed bumps can be speci�ed based on the occurrence time of the accidents.
By this way, a variable that represent existence or nonexistence of all speed bumps
which exist currently in the campus, at the time snapshot of each accident can be
de�ned. For each snapshot, the time value of a speed bump was calculated as the time
of the accident minus a value proportional to the spatial distance. For example, if the
distance between the accident and the speed bump is small then the time distance
should be small too since the speed bump should have been passed by the vehicle just
a little while ago.

Data Sampling

Generating speed bump map of the campus at the time snapshot of the accidents
produces 62 speed bump records for each accident which results in 3968 speed bumps
in total. This class imbalance usually cause di�culties during the modeling. For
example, pairs between the types related with speed bumps such as (exist, exist),
(exist, non-exist) and (non-exist, non-exist) have signi�cantly higher frequency than
the pairs such as (exist-accident) and (non-exist-accident) in the data. In addition,
pairs between the types related with speed bumps may show spatio-temporal clusters
since there are usually more than one speed bump within a small region. As a result,
those pairs are expected to be extracted, and due to the null addition e�ect, they may
suppress the signi�cance of those contain accidents.
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According to the domain knowledge, speed prevention e�ect of a speed bump subsides
approximately within 100 meters. In order to have a continuous prevention, there
would be a speed bump about every 100 to 150 meters. However, in reality, there are
usually at most two or three speed bumps close to each other in the campus. A group
of speed bump that are close to each other can force a vehicle to be within speed limits,
however, their e�ect will not be seen anymore after about more than 100 meters from
the last one. The nearby speed bumps might produce a combined e�ect on an accident
as well. The triggering pattern extraction method proposed estimates the direct e�ect
of an event on another one. Di�erent causes can be explored by examining individual
probabilities. By using the domain knowledge on the e�ect range of speed bumps,
those already known as irrelevant can be eliminated to reduce null addition e�ect. As
a result, only the speed bumps within 250 meters neighborhood of each accident were
sampled which yield 204 data samples including both accidents and the speed bumps.

5.1.1 Limitation of Data Preparation

The �rst limitation of the dataset is the missing information about the construction
dates of the speed bumps. The exact dates are not recorded, thus, the construction
years are asked during the interview with the head of O�ce of Domestic Services. The
most of them are provided as year, some are determined approximately, such as within
3 years. However, the exact dates of the accidents are known. Even the construction
year is correct it might be uncertain if a speed bump exists during the occurrence of
an accident. Therefore, three points in time are considered; beginning, middle and the
end of the year or 3 years.

Second limitation is the missing information about the exact routes of the vehicles be-
fore accidents occur since there are more than one alternative due to the junctions. For
example, driving route of a driver having an accident in front of Doyurucu Patisserie
can be from gate A4 or from Registrar O�ce, as a result, the speed bump actually
passed by the driver is not certain. Unlike the scenario described in Chapter 4, Eucle-
dian distance is not suitable for this case. Instead, distances are calculated according
to the road network in the campus. The shortest path is considered while calculating
the distances.

Third limitation is the necessity of data type conversion for the speed bumps to obtain
spatio-temporal point data. A speed bump, in fact, covers an area instead of a single
point, however, it can be expressed by a representative point such as center. The time,
on the other hand, is not a point, instead, it is a duration once the speed bump is
constructed. For that reason, a new variable which shows the existence of each speed
bump at the time of the accident is needed to be de�ned

5.1.2 Encoding of Event Types

Based on the research questions stated at the beginning of this chapter, the event types
related to speed bump were de�ned in two di�erent ways. First, the sampled speed
bumps are labeled as "exist" and "not exist" based on at the time of the accident.
This encoding is made to examine the overall e�ect of the speed bumps on accidents.
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Another approach is to examine the e�ects of the speed bumps at a speci�c region. For
this purpose subgroups for the types "exist" and "not exist" were speci�ed according to
the region they are constructed. For example, the type of the speed bumps around the
Department of Basic English was coded as "exist at Basic English Department" and
"not exist at Basic English Department". Each speed bump can be labeled separately
as well to analyze individual relations. However, such labeling were not used in this
study due to the insu�cient number of samples per event type.

5.2 Results and Discussion

An interview was made with the head of O�ce of Domestic Services to understand the
domain and to discuss and evaluate the results. According to the domain knowledge,
speed bumps decrease the number of accidents, especially for the region known by the
drivers such as campus. This is because of the fact that, the drivers learn the location
of the speed bumps and drive slowly when they get closer to them. The results for the
overall e�ect are given in Table 5.1. P1, P2 and P3 are the probability values obtained
by using three di�erent construction date (min, mean and max, respectively) based
on the provided construction year. Based on this value, there is signi�cant variation
in the results. Unlike the general expectations of the domain experts, the probability
of an accident to be happen when a speed bump exists around is higher than when it
does not exist. The di�erence is minimum when the construction year is considered
as the �rst day of the construction year. In addition, the other possible patterns also
have high probabilities. Some of them can be explained by the domain knowledge. For
example, speed bumps at certain regions are usually made at the same time period.
Therefore, the patterns Exist → Exist or NotExist → NotExist might have high
probabilities since they are usually sampled together. There might be positive or
negative correlations between the speed bumps and the accidents at di�erent regions.
These local correlations might be invisible when global behavior is examined. It is
hard to evaluate the correctness of the results due to the limitations posed by the data
such as incomplete information about the dates and the routes.

Table 5.1: Prediction for the Overall E�ect of Speed Bumps

Pattern P1 P2 P3

Accident → Accident 0.5 0.16 0

Not Exist → Accident 0.27 0.21 0.16

Exist → Accident 0.38 0.41 0.5

Accident → Not Exist 0.49 0.17 0

Not Exist → Not Exist 0.29 0.37 0.18

Exist → Not Exist 0.26 0.46 0.26

Accident → Exist 0.45 0.18 0.6

Not Exist → Exist 0.15 0.49 0.25

Exist → Exist 0.6 0.44 0.27

In Table 5.2, the results for the regional e�ects are given. The results obtained by
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using minimum date for the construction year are more likely to be expected by the
domain experts. Therefore, it is assumed that the values in column P1 are correct and
the discussions were made based on these values. For example, the probability of an
accident occurred around the Mining Engineering department is 0.27 when there is no
speed bump whereas it is 0 after construction. Similarly, around the Environmental
Engineering, Courts and gate A1, these probabilities are 0.54, 0.85 and 0.74, respec-
tively, when there is no speed bump. After constructions, probability of accident drops
to zero. In some region, construction of speed bump reduces the risk of accident little,
for example, at Residents area, it is decreases by 0.06, however, elevated risk is still
0.78. There might be some other factors in that region that trigger accidents.

Table 5.2: Prediction for the Regional E�ect of Speed Bumps

Pattern P1 P2 P3

Mining- → Accident 0.27 0 0

Mining+ → Accident 0 0 0

BasicEng- → Accident 0 0 0

BasicEng+ → Accident 0.5 0.4 0.4

Environmental- → Accident 0.54 0 0

Environmental+ → Accident 0 0 0

Residents- → Accident 0.84 0 0.56

Residents+ → Accident 0.78 1 -

Court- → Accident 0.85 0 0.5

Court+ → Accident 0 0.34 0.39

Civil- → Accident 0 0 0

Civil+ → Accident 1 1 0.7

A1- → Accident 0.74 1 1

A1+ → Accident 0 0 0.5

Education- → Accident 1 1 1

ISBank+ → Accident 0.5 0 0

PresidentsO�ce+ → Accident 1 0 0

Shopping- → Accident 1 1

Shopping+ → Accident 0 0.77 0.56

Cafeteria+ → Accident 0 0.41 0.86

Museum- → Accident 0.53 0.61 0.66

However, the e�ect is opposite in the vicinity of the Department of Basic English, Civil
Engineering, Is Bank and President's O�ce. In other words, it is found that in these
areas, speed bumps increase the risk for accidents. When I discussed these results
with the domain expert, he stated that the causes of the accidents vary. For example,
around the Department of Basic English, there are some other known reasons for the
accidents. There is a bus bulb for the service buses and taxies to discharge and pick
up passengers. However, drivers of the taxies do not usually use this area, instead,
pick up or drop passenger on the road which results in impatient drivers overtaking.
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It is claimed that this is the one of the main causes of accidents in this region. There
is also a junction nearby which is on the main road. As a result, explaining accidents
only with the speed bumps might be insu�cient for this case.

It is clear that there may be many other causes of accidents and even tough a complete
data set of the speed bumps and accidents is obtained, only a limited portion of the
variation in accidents can be explained by speed bumps. In addition to speed bumps,
the weather, psychology of the driver, pedestrians, or other factors might be the reasons
for the accidents.

As discussed in data preprocessing steps, the data set is limited to evaluate the capabil-
ity of the proposed algorithm. The most important reason is incomplete information.
Besides, the domain is not a realization of a point process. Therefore,sa data type con-
version was made to have a spatio-temporal point data. It might be better to evaluate
every speed bump individually by considering each as di�erent type. However, several
speed bumps in the same region were grouped since the number of samples per each
is insu�cient otherwise.
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CHAPTER 6

CONCLUSION

In this thesis, sequential triggering pattern of spatio-temporal event types was stud-
ied. A spatio-temporal event can be an observed disease, the location where a forest
�re has started, a crime committed at a location, a tra�c accident, and so on. We
believe that exploring such relationships can provide valuable information for several
domains such as public safety, crime prevention, epidemiology and environmental stud-
ies. In the study, new methodologies were proposed to solve sequential pattern mining
problem which is usually handled by frequency based candidate generation approaches
in the literature. The methodologies operate on continuous spatio-temporal domain.
Speci�cally, the focus is spatio-temporal sequences the elements of which are related
according to an unknown triggering or branching structure. In other words, the ob-
jective is to discover causal relationships among the events in a data set. Traditional
frequency based approaches and the constant neighborhood thresholds commonly used
in the sequential mining literature are not capable of explaining such complex and un-
known relationships. In these approaches, the relationships between the observations
are determined based on only the closeness of the data samples which are needed to
be de�ned by the user. However, spatio-temporal correlation as a result of the close-
ness does not necessarily imply a causal relationship although it may provide a clue
for understanding causation. Such sequences can be the result of any relationships or
other factors. If the process is assumed to be the result of any causal structure, it
is appropriate to extract the sequences based on a model that is able to describe its
behavior.

Due to the limitations of the existing sequential pattern mining approaches to dis-
cover causal patterns, novel methodologies were proposed which use conditional in-
tensity model to de�ne the data as a realization of self-exciting or mutually exciting
point process. Conditional intensity model assumes that the process consists of events
which are either an immigrant or a descendant. In the literature, studies which use
conditional intensity models can be found mostly as the application of seismological
science. Recently, these models are utilized to describe the processes in some other
domains such as criminology and social media. None of these studies concerned with
the triggering pattern extraction problem. The proposed methodologies in this the-
sis use conditional intensity models and stochastic declustering for sequential pattern
mining, particularly to solve triggering pattern extraction problem. However, the esti-
mations of the mean rate of the immigrants and the total intensity of the process are
challenging issues. The di�culty arises due to the fact that decay law which controls
interaction scale in space and time, and the productivity which controls number of
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triggered events per independent causes may di�er based on the domain, event type,
measurements describing the events and spatio-temporal proximity of the events. The
triggering behavior of the process can be a consequence of either short range or long
range interaction. Moreover, interaction at di�erent scales can also be observed in
the same process which results in highly mixture models. As a result, using simple
parametric functions in the model is not usually capable of describing the complex
process behavior. It is recommended to use domain speci�c functions in such models,
however, they are usually unknown. Nonparametric approaches might have potential
to get insight about the underlying behavior of a process which is not known well. In
this perspective, the model independent stochastic declustering method was used for
pairwise triggering pattern extraction. The original algorithm was improved for the
processes where there are more than one type by using multivariate Hawkes model.
The triggering probabilities were estimated between the events and then causal rela-
tionships between the types were extracted based on these probability values.

6.1 Discussions Based on Research Questions

In the �rst research question, the objective is to develop an algorithm to extract
pairwise triggering patterns of event types by considering causal relationship. The
proposed methodologies use conditional intensity models which describe excitation
behavior in a process. Therefore, these methods can be considered as triggering pattern
extraction algorithms.

In order to relate the observations, the existing methods use neighborhoods bounded
by thresholds. In the second research question, the objective is to de�ne a spatio-
temporal neighborhood which is not bounded by threshold. This is because of the fact
that the threshold values are domain speci�c, usually unknown, and the results are
sensitive to these values. In Method 1, second objective is not achieved. Here, the orig-
inal stochastic declustering algorithm was used with some basic parametric functions
such as exponential and Gaussian. Then, the values of model parameters from the
�nal solution were used as neighborhood thresholds during the post processing where
triggering events are extracted. In this method, the success of the results is highly
a�ected by the parameters' value. In other words, its success heavily relies on correct
estimation of the model parameters which might be hard to achieve when the sample
size is small. In Method 2, Method 3 and Method 4, such thresholds are not required.
In the conditional intensity models, the density functions of distances are considered
as neighborhood functions. Based on these functions, the observations are considered
as neighbors with some degree according to the decay law de�ned by the functions.
Thus, a neighborhood threshold is not needed. However, in Method 2, a threshold
was used to prune the tail of the spatial function since otherwise it is not able to
estimate the mean rate of the process and the ground-truth pairs. The threshold value
used in the distance function is the signi�cant interaction range obtained by Ripley's
K-function. In Method 3, however, the ground-truth pairs are successfully estimated
without using a cut o� point although the mean rate of the process is still estimated
incorrectly. This issue is not observed in Method 4 where event types of pairs are used
during the learning. Therefore, the best solution for the second research question is
Method 4 which does not require any sort of thresholds to determine neighbors.
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Regarding the third research question, use of density function of distances as a neigh-
borhood function in all methods allows evaluation of each pair of instances individually
based on the distribution of distances. The decay law de�ned by the density functions
represents subsiding strength of the relationship as the distance increases. In Method
1, on the other hand, constant thresholds obtained from the �tted models were used
to assign pairs as neighbor or not. Therefore, the third objective is achieved by the
remaining methods.

As de�ned in MISD algorithm, Method 2 and the multivariate approaches proposed
in Method 3 and Method 4, the triggering probability between the pair of sample
instances can be estimated by using the density function of distances and the entire
intensity model. Thus, the probability of being a cause and e�ect can be calculated
for each pair. If there is a triggering relationship between the events at some scale,
it is more likely to observe many pairs the distances of which are within the inter-
action scale compared to the random distribution. Thus, for a generated event and
its generator, the value of density function accounts for higher portion of the total
intensity at the time of generated event. As a result, high probability value is ex-
pected for that pair. In all nonparametric methods proposed, triggering probabilities
can be calculated by similar way. The di�erences in the calculations arise due to the
de�nition of the random variables representing triggering relationship. For example,
in Method 2, there is no type information during the modeling and the estimations
are made based on the univariate Hawkes model. In Method 4, on the other hand,
the triggering relationship is de�ned by conditional random variables which use event
types for conditioning and the estimations are made by using multivariate Hawkes
model. According to the results on the simulated data sets, Method 2, which uses
binary constant in density function based on the signi�cant spatial interaction ranges,
successfully �nds most of the true pairs in the simple cases described in Scenario I with
higher probabilities than the irrelevant pairs. It is observed that TP rates decreases as
the spatial density increases in this method. The precision of the predictions are high.
Method 3 is also successful for the same cases. It produces higher probabilities for the
true pairs, however, the precision of the predictions is low if small threshold value is
used or rank selection is utilized. This disadvantage is eliminated by �ltering initial
results with Otsu thresholding method. It signi�cantly improved the initial results.
Such relation between TP rates and spatial density is not observed in this method.
Unlike the simple cases, Method 3 is unsuccessful to discover triggering relations sim-
ulated in Scenario II. Method 4 which employs type information of both triggering
and triggered events in the model is the most successful approach among the others to
produce higher probabilities for the ground-truth pairs. It is able to extract pairs in
complex cases described in Scenario II. Moreover, the estimated probability values for
the true pairs are far from the irrelevant ones. In Method 4, the degree of causal rela-
tionship for a pairwise triggering pattern is calculated from the estimated probabilities
of the pairs constituting the pattern. Due to the skewed distribution of the selected
pairs' probabilities for a particular pattern, mid-mean, the summary statistic of the
probabilities, is used to estimate signi�cance of the triggering pattern. Although mid-
mean statistic is used to calculate signi�cance of extracted patterns only in Method 4,
it can be used in Method 2 and Method 3 as well.

Finally, regarding the �fth research question, in Method 4, signi�cant patterns are
identi�ed based on their ranks in terms of pattern signi�cance. It is observed that
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ground-truth patterns have high rank and are usually placed within the �rst �ve or
ten. Moreover, most of the true pairs constituting the patterns are selected during
the pattern extraction phase, and thus, contribute the signi�cance values. However,
there are some limitations which can be handled by paying particular attention. For
example, if frequency of a pattern is very small compared to the others in the data,
then its contribution to the total intensity of the process might have been suppressed
by those having higher frequencies. As a result, the probability estimations for the
corresponding pairs might be very small or zero. This issue can be eliminated by
balancing the data distributions. If the interaction scale of the infrequent pattern is
di�erent than the others, then, discretization of the nonparametric density function
might be done appropriately such that it represents peaks for the infrequent pattern
as well.

The case study discussed in this thesis is limited to evaluate capability of the presented
work. The results are a�ected by incomplete information. However, the approach can
be considered as successful in some aspects. The domain experts claim that they ob-
served a decrease in the number of accidents after construction of speed bumps. Based
on this knowledge, the most representative results were determined and evaluated.
Therefore, in this case study, the aim is not to extract unknown patterns, instead, it
is to determine the strength of the relation. Triggering pattern probabilities for each
region before and after construction of the speed bumps can be used to determine the
strength of the relation. If the di�erence is high it can be considered as the existence
or non-existence of speed bump in the region has high e�ect on accidents.

By considering the general characteristics, the capability of the proposed methods can
be summarized as in Table 6.1. The �rst two methods do not use type information
during the learning phase whereas Method 3 and Method 4 use information about all
four dimensions of the problem. The neighborhood threshold required in Method 1 is
provided by the system after model �tting. Candidate generation based approaches
require user to de�ne the neighborhood threshold. The remaining three do not need
this information. In both Method 1 and Method 2 a signi�cance threshold is needed
to be de�ned to extract the patterns as similar to the studies in the literature. In
Method 3, one may use a signi�cance threshold during the pattern extraction phase,
or may use rank method without providing a threshold. The former surpasses the latter
in terms of precision of the initial results, however, after applying Otsu thresholding
to eliminate the irrelevant patterns, their di�erence is comparable. Method 4, on
the other hand, is able to eliminate irrelevant patterns with rank selection since the
probability of the true patterns and the irrelevant ones are well separated. For all
of the proposed methods, the resulting patterns represent causal relationship at some
degree since they are extracted based on the triggering probabilities obtained by using
a conditional intensity model. The existing sequential pattern mining algorithms does
not necessarily extract causal patterns from the data, instead, they generate patterns
of correlated events since interaction is explained only by closeness. Spatio-temporal
data handling is provided by all.
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Table 6.1: General Characteristics of Proposed Methods

Feature

Candidate

Generation Based

Approaches

Method 1 Method 2 Method 3 Method 4

Spatio-temporal

data handling
X X X X X

Casual

relationship
not necessarily X X X X

Multitype

handling
during learning during post processing during post processing during learning during learning

Neighborhood

threshold
required required not required not required not required

Signi�cance

threshold
required required required not required not required

6.2 Future Work

A number of tasks to improve proposed methods is considered as a future work.

In method 1, the performance is limited due to the incorrect parameter estimates in
spatial density function for some cases. Gaussian family was used for spatial densities,
in line with the literature, however, the functions used in those studies are special case
of the Gaussian family developed for corresponding domain. Therefore, simple models
might be incapable to re�ect the process behavior. Other parametric models or kernels
with dynamic bandwidth might be used for further evaluation.

More importantly, computational performance of the methods are needed to be im-
proved. The proposed methods were used for small to medium size data sets. However,
scalability issue is faced when large data sets are studied. Performance is a�ected by
discretization level in addition to sample size. Besides the improvement that can be
made in the implementation, sampling methods can be developed for large data sets
similar to the method Mohler et. al. proposed in [28] for the same performance issues.

Another important future work is to extend pairwise triggering patterns extraction
algorithms to construct a causal network. In this future study, one task is to generate
entire causal network e�ciently, and the second task is to de�ne signi�cance of any
causal patterns within the network.

Finally, the proposed methods can be tested with new real world cases which are more
suitable for the problem de�nition in this thesis.
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APPENDIX A

DATA GENERATION

To simulate the de�ned cases which have arbitrary distributions, the values of corre-
sponding random variables are simulated by using inverse transform method described
in [36].

Poisson Random Variable

Probability mass function: pn = P (X = n) = e−λλ
n

n!

Cumulative distribution function: F (n) = P (X ≤ n) =
∑n

k=0 P (X = k)

To generate random number X, the relation pn = λ
npn−1 is utilized.

Pseudo Code:

Step1: Generate a random uniform number U over (0,1).

Step2: n = 0, pn = e−λ, F = pn.

Step3: If U < F , set X = n and stop.

Step4: n = n+ 1, pn = λ
npn−1, F = F + pn.

Step5: Go to Step3.

Exponential Random Variable

Probability mass function: pn = f(x) = λe−λx

Cumulative distribution function: F (x) = P (X ≤ x) = 1− eλx

To generate the value of random variable X from exponential distribution, the relation
x = F−1(U) is utilized, where U is a random uniform number over (0,1). From this
equation X = 1

λ log(U) can be derived which produces value of the exponential random
variable.
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APPENDIX B

KERNEL FUNCTIONS FOR INTENSITY ESTIMATION

B.1 Gaussian

Gaussian space function de�ned in equation B.1 has parameter D, representing band-
width or spatial extent.

f(x, y) =
1

2πD
e−(x2+y2)/(2D2) (B.1)

The value of D that maximizes Gaussian density over x and y is examined. Figure
B.1 shows changes in value of f(x = xi, y = yi as D changes. It can be seen from the
�gure, the maximum value of f(x, y;D) decreases as x and y increase. There is also

Figure B.1: Changes in Gaussian function over D given x and y.

a relation between the value of (x, y) and D̂ = arg maxD f(xi, yi;D). This relation is
correlated with quadratic mean or root mean square (RMS) value which is a measure
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of the spread of a quantity. De�nition of RMS and the relation between D̂ and RMS
are given in equation B.2 and B.3.

RMS(x1, x2, . . . , xn) =

√
1

n
(x2

1 + x2
2 + · · ·+ x2

n) (B.2)

D̂ ≈
√

(x2 + y2) =
√

2RMS(x, y) (B.3)

In Table B.1, D̂ and
√

2RMS(x, y) values are given for the evaluated value of x and
y shown in Figure B.1.

Table B.1: Experimental outputs for the relation between D and RMS

x y
√

2RMS(x, y) D̂

0.1 0.1 0.14 0.16

0.1 0.2 0.22 0.21

0.2 0.2 0.28 0.26

0.1 0.3 0.32 0.31

0.2 0.3 0.36 0.36

0.3 0.3 0.42 0.41

0.5 1 1.12 1.11

1 1 1.41 1.41

B.2 Exponential

The exponential function given in equation B.4 is considered to explain temporal
behaviour. This function is used to model spatio-temporal patterns of crime in the
study of Mohler et al. [27]. The function has two parameters K and W . In their
study, they de�ne the parameters as the elevated risk of e�ects following the crime
events and the decay of this elevated risk, respectively. K takes value between 0 and
1, whereas W (−1) ∈ (0, n] (W (−1) : unit of time). The de�nition of the function is

g(t;W,K) = KWe−Wt (B.4)

g(t;W,K) has its maximum at K = 1 and W = 1/t. If K = 1, g(t;W,K) is equal
to the exponential probability distribution function, and therefore, its maximum is at
the mean value of the distribution which is W (−1) .

In Figure B.2, surface plot for g(t = 0.1;W,K) is given. Its maximum value is at the
point where W = 1/t = 10. For all t, the function has the same shape around the 1/t.
As t increases, the maximum value of the function decreases.
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Figure B.2: Changes in Exponential function over W and K given t = 0.1

Figure B.3: Changes in Gamma function over α and β given t = 0.1 and t = 0.5

B.3 Gamma

Another function used to model temporal behaviour is the gamma distribution which
is from two parameters distribution family. It is de�ned as in equation B.5.

g(t; Γ, β) = βα
1

Γ(α)
tα−1e−βt (B.5)

where t, α, β > 0.α is the shape parameter and β is the rate or inverse scale parameter
of the distribution. Given t, g(t;α, β) has its maximum where t = α/β such that α is
the possible maximum value which satis�es this equality. This relation represents the
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expected value of the distribution. In other words, the maximum value of the function
is at the point where t is equal to the expected value satis�ed by the possible maximal
value of the parameters. In Figure B.3, the surface plots for the gamma function over
the parameters given t = 0.1 and t = 0.5 are illustrated. The maximum value of the
function decreases as t increases and the value of α that maximize the function shifted
towards upper bound of the α as t increases.

In the intensity de�nition, x and y of the space function correspond to di�erence
between the latitude values of an event and the previously occurred events, and the
di�erence between the longitude values of an event and the previously occurred events,
respectively. Similarly, t of time function corresponds to di�erence between the time of
an event and the time of the previously occurred events. Therefore, if events are distant
from each other in space-time these functions will produce very small values.
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APPENDIX C

RESULTS OF TPEX ALGORITHM ON SYNTHETIC

DATA
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Figure D.1: Poster presented at Spatial Statistics Conference, 2013.
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