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submitted by MEHMET AKIF AKKUŞ in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assist. Prof. Dr. Sinan Kalkan
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Fatoş Yarman Vural
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ABSTRACT

ANALYSIS OF BORDER OWNERSHIP CUES AND IMPROVEMENT OF
DEPTH PREDICTION USING BORDER OWNERSHIP

Akkuş, Mehmet Akif

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

September 2014, 59 pages

Border Ownership is the problem of identifying which image regions own the image
border. This information is essential and important for large variety of high-level
vision problems such as object segmentation, object recognition, depth perception,
motion perception etc. Current computational approaches to Border Ownership (BO)
estimation either use artificial or limited number of real images. In this thesis, we
propose a new comprehensive BO database, including 500 indoor and 500 outdoor
images whose BO information is labeled by human participants. Using this dataset,
BO estimation capability is investigated for several visual cues such as T-junction, L-
junction, curvature, lower region and contrast both individually and combinatorially.
Then using these cues, a basic computational model is proposed which estimates BO
information based on the majority rule. Moreover, a new method, which merges a
feature-based stereo algorithm and BO information, is proposed for more accurate
depth prediction on homogeneous areas.

Keywords: border ownership, cue analysis, image database, depth prediction
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ÖZ

SINIR SAHİPLİĞİ İPUÇLARININ ANALİZİ VE SINIR SAHİPLİĞİ BİLGİSİ İLE
DERİNLİK TAHMİNİNİN İYİLEŞTİRİLMESİ

Akkuş, Mehmet Akif

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Eylül 2014 , 59 sayfa

Sınır sahipliği resimdeki alanların hangi resim sınırlarını sahiplendiğini belirleme
problemidir. Bu bilgi nesne bölütleme, nesne tanıma, derinlik algılama, hareket algı-
lama gibi bir çok üst seviye görme problemi için gerekli ve önemlidir. Sınır Sahipliği
(SS) için kullanılan halihazırdaki hesaplama yaklaşımları ya yapay ya da yetersiz sa-
yıda gerçek dünya imgesiyle çalışmaktadır. Bu tezde, 500 iç alan 500 dış alan resmi
içeren geniş kapsamlı yeni bir SS veritabanı hazırlandı. Bu veritabanı kullanılarak T-
kesişim, L-kesişim, eğrilik, alt-alan ve zıtlık gibi değişik bilgisayarlı görü ipuçlarının
bireysel ve katışımsal olarak SS tahmin etmedeki yetkinlikleri sınandı. Ve bu ipuç-
ları kullanılarak çoğunluğu esas alan temel bir SS tahmin eden bir hesaplamalı model
geliştirildi. Bunlara ek olarak, nitelik tabanlı bir stereo metodu ile SS bilgisi birleş-
tirilerek imgedeki homojen alanlarda daha doğru sonuçlar üreten bir derinlik tahmin
metodu önerildi.

Anahtar Kelimeler: sınır sahipliği, ipuçlarının analizi, imge veritabanı, derinlik tah-
mini
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CHAPTER 1

INTRODUCTION

Projection of the three dimensional (3D) world onto electro-optical sensors yields im-

ages, and this projection process causes information loss. Most common computer

vision problems such as stereo vision and optical flow need non-homogeneous image

structures, since they need to find correspondence between different image regions.

Similarly, in biological systems, neurons in our visual cortex are not activated on re-

gions with uniform intensities, because they do not cause any change in the receptive

fields [25, 15]. This suggests that biological vision system utilizes some supplemen-

tary information, because we, humans, can perceive the 3D information available in

image areas that have uniform intensities.

It has been shown that, in biological vision systems, incomplete visual information

can be completed by reliable visual information available at the borders [4, 5, 8, 11,

34, 22]. For perceiving depth and motion, the valuable information at the borders

are diffused/filled in to image areas which mostly have uniform intensities [25, 15].

However, this diffusion process requires determining towards which region the in-

formation at a border should be diffused: i.e., the ownership of each border by the

regions need to be known in advance. Called Border Ownership (BO), this informa-

tion links regions and borders in an image.

What has been explained until now can be demonstrated in Figure 1.1, which shows

two examples of Border Ownership. In Figure 1.1(a) there are two pentagons and the

red line shows the border between them. Here, the border (red line) belongs to the

pentagon which is at right. In Figure 1.1(b), the red line belongs to the object which

lies at the bottom.
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(a) Border belongs to white pentagon (b) Border belongs to yellow object

Figure 1.1: The red line is a border between two regions and only one regions owns

it. [Best viewed in color]

1.1 Motivation

Current datasets for border ownership include a small number of images, based on

only one category and one or two participants for each border. For a more coherent

analysis, more images with different characteristics should be analyzed. Therefore,

in this thesis, we constructed a dataset including 500 indoor and outdoor images with

several categories which differ from natural scene to office images. Moreover, it has

labels by three participants for each border.

In computer vision, streopsis needs to overcome the correspondence problem. While

correspondence is easier to find on the edge-like structures, it is almost impossible at

weakly-textured or constant intensity image areas. Therefore, disparity information at

this kind of homogeneous places is not accurate. At this point, disparity information

can be estimated using bounding edges of homogeneous place, but to some extent.

The main reason for that is the lack of information of border ownership. For the

depth estimation of a point on such an area, entire of the bounding edges can not be

used. Only the borders which region owns can be used. Therefore, BO information

is essential for such a problem.

1.2 Contributions

This thesis makes the following contributions:

2



(a) An artificial image (b) Disparity of the image

(c) Example scene is shown from the artificial image. (on a 3D visualizer)

Figure 1.2: Image shows the difference on a artificial image when the BO information

is used. Using BO information, extracted surfaces are more accurate as positioned

closer to the edges. Left image shows the depth prediction using BO information and

right images shows depth prediction with BO information.

3



• A new comprehensive database with 500 indoor and 500 outdoor images. The

BO database includes various types of indoor (shopping mall, living room, train

station etc.) and outdoor images (animals, historical places, landscapes etc.)

with 1000 images in total. Each contour in them are labeled by three different

participants to get more accurate human labeled ground-truth database. Fur-

thermore, a user-friendly, well-documented on-line BO labeling tool is created

(see Chapter 3.1). Participants used this tool for labeling. On the other hand,

another tool named segment annotation tool (see Figure 3.6) and on-line own-

ership labeling tool give rise to expand dataset with new images.

• Analysis of the local visual cues for border ownership estimation is performed.

Those cues are: lower region, curvature, contrast, T-junction, L-junction. Each

cue is analyzed in terms of their predictive capability.

• Different number and types of cues are combined so as to create more accurate

prediction results. Analysis of conflicting cues are also performed. Results are

showed in a conflicting matrix.

• A new method merges BO information and a feature based stereo has been

developed to obtain more accurate depth perception on homogeneous image

areas.

These contributions have been disseminated in the following:

• (Submitted) Mehmet Akif Akkuş, Buğra Özkan, Gaye Topuz and Sinan Kalkan,

Analysis of Visual Cues and a Computational Model for Border Ownership,

Computer Vision and Image Understanding.

• Mehmet Akif Akkuş, Gaye Topuz and Sinan Kalkan, A Comprehensive Database

for Border Ownership, in IEEE 21th Conference on Signal Processing and

Communications Applications (in Turkish), 2013
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1.3 Outline of the thesis

The outline of the thesis is as follows: The next chapter details background informa-

tion and literature survey. In chapter 3 , we describe our on-line BO labeling tool and

obtained database using this tool. This chapter also makes analysis of the database

in terms of consistency. Then chapter 4 introduces visual BO cues and their analysis

in terms of prediction capability of the cues. Moreover, it includes analysis of con-

flicting BO cues. Chapter 5 describes how BO information and feature based stereo

algorithm merged to get more accurate depth estimation on homogeneous image ar-

eas. Chapter 6 concludes the thesis with a discussion and future work.
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CHAPTER 2

REVIEW OF LITERATURE

In this chapter, literature review of Border Ownership is divided into three parts:

Psychology and Neuroscience, Computer Vision and the BO database.

2.1 Border Ownership in Neuroscience and Psychology

Border Ownership (BO) selective neurons in human visual system have been studied

for the recent decade. Zhou et.al. [36] have found that 18% of the cells in V1 and

more than the half of the cells in V2 and V4 respond to the according to direction of

the owner of the boundary. Similarly, Qui et.al. [29] have discovered that V2 and V4

brain areas are asserted to be involved in determination of direction of the owner.

There are many studies which claim that visual cues play an important role in the

BO estimation process such as contrast [23], depth order [30] and curvature [13].

Another interesting finding [23] is that different types of intensity changes activates

the different area of the brain. For instance, the V2 cells activated more when the

light gray patch on a dark ground is attached to the left of the figure compared to the

dark gray patch on the right (see Figure 2.1).

Qui and Heydt show that selective neurons to the corners in 2D images in V2 regions

of macaque monkeys’ visual cortex are also selective to the depth order of 3D images

and shows larger activation by the near side of the figures.

Among the cues which are mentioned in the previous paragraphs, as also analyzed

in this study, curvature is the one of the most informative visual cue. Zhou et.al.
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a b

Figure 2.1: BO cells with the same contrast values in the left and the right halves.

[36] have stated that in V2 and V4 regions in the monkey visual cortex BO selective

neurons are activated when the borders of figures are convex. As a matter of fact that,

particularly V4 neurons whose receptive fields are large and curved are pointed out

to be sensitive the concave and convex image areas.

There are some experimental studies which have show that latency of BO selective

neurons is 10-25 seconds. This fact indicates that BO information can be determined

using local cues rather than junction detection and junction evaluation.

Psychophysical studies have also been involved the BO problem and support what

neuroscience put forward considerably. For instance, it has been figured out that

human subjects show a strong preference for perceiving convex visual regions as

being closer to the viewer compared to concave part [27]. It is also shown that lower-

region, T-junctions, L-junctions are related to the BO problem. Vecera et.al. [35]

have shown that the relationship between some of the Gestalt rules. They showed that

humans are more likely to perceive lower region as figure compared to upper regions.

Furthermore, figures are percepted as occluders as being closer to the human subject

than the background. T-junctions and L-unctions are important cues as occlusion

features.

2.2 Border Ownership in Computer Vision

Border Ownership studies regarding to computer vision are not very common in the

literature except the last two decades. First computational studies for modeling BO

are neural network based, which use L-junctions and curvatures as BO cues, and used

8



local propagation and competition mechanism along contours [20, 21]. In a similar

manner, Nishimura et. al. [26] proposed another computational model utilizing neural

network to show importance of surrounding contrast for BO determination. They

achieved this by using artificial images for training and testing.

For the BO problem, Fowlkes et.al [10] utilized size, lower region and convexity cues

for the figure/ground segregation. They combined their cues with logistic regression.

In their study, combination of the size and lower region were much more powerful

than combination of size and convexity cues. Moreover, they stated that size and

convexity cues are often related since locally smaller regions are also locally convex.

Another finding which they discovered is that junctions are important important for

occlusion and depth order.

Another model from the Fowlkes et. al. [31] is that based on the shapeme representa-

tion. They developed a logistic classifier to locally predict figure/ground labels. Con-

ditional random fields is used to enforce global consistency by learning T-junction

frequency and continuity after local findings. They used loopy belied propagation

for inference. Their model outperforms when compared to a basic model using size

and convexity cues. Using 100 images of Berkeley Image Segmentation dataset, they

reported 78.3% accuracy.

Leichter et.al. [24] created a model for Border Ownership prediction using Con-

ditional Random Fields (CRF). In their model they utilized curves and T-junction

as a cue and formulated CRF using learnt non-parametric distributions of those cues.

Their method significantly improved the currently achieved figure/ground assignment

accuracy with 20.7% fewer errors in the Berkeley Image Segmentation Dataset.

In very recent years, Chen et.al. [6] used 5 visual cues:compactness, semantic, posi-

tion, junction and convexity. They used Adaboost to train their occlusion prediction

model. By using the occlusion information, they inferred the layer sequence of the

image scene. Moreover they analyzed the occlusion cues and they stated that semantic

cue is the best for the rural images followed by position, junction and compactness as

well as convexity cues. Furthermore, position cue is the best for artificial images fol-

lowed by semantic and junction cues. Their another finding is that semantic-position

cue pair yielded the best accuracy among the other pairs.
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Author(s) Method Dataset Cues
[20],
[21]

Neural-netwok L-junctions, curvatures Artificial dataset

[10] Logistic function size, lower region
and convexity

Berkeley SDS

[31] Conditional Random
Fields

shapemes
and T-junction

Berkeley SDS

[24] Conditional Random
Fields
20.7% fewer errors in
BSDM

curvatures
and T-junction

Berkeley SDS

[6] Adaboost compactness, semantic, position,
junction and convexity

Their own

Table 2.1: Border Ownership Dataset for Computer Vision in the literature

2.3 Border Ownership Datasets in the literature

For a BO dataset, collecting images are not the only ingredient. There should be cor-

responding regions and borders extracted with unique ids. Moreover, their ownership

labels (assignments between borders and regions) have to be done.

In the literature, there are a few dataset with BO label, but they are not comprehensive

with respect to amount of image and number of participants. Current border owner-

ship include a small number of images, some of them are artificial, based on only one

category and one or two participants for each border.

In one of the very beginning study on this field, Nishimura et.al [26] used gray-scale

or binary images with very low resolution. Kikuchi et.al. [20, 21] also worked with

these types of images. Why they used these basic images could be that in their studies

they focused on visual perception. They observed how V1 and V2 areas of visual

cortex affected by different types of cues and visual stimuli. Therefore, they do not

need so complex images. Some example images from their study can be seen on

Figure 2.2.

The dataset that Fowlkes et.al [10] created consists of wide variety of indoor and out-

door scenes containing man-made and natural objects, including humans and other

animals. These 200 images were chosen at random from the set of 1,000 hand seg-

mented images in the Berkeley Segmentation DataSet (BSDM). Each border in the
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(a) From Kikuchi et.al.’s study.

Study:[20]

(b) From Vecera et.al.’s study.

Study:[35]

(c) From Sakai et.al.’s study. Study:[32] (d) From Nishimura et.al.’s study.

Study:[26]

Figure 2.2: Basic images used as Border Ownership Dateset in the literature
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Figure 2.3: Sample wrongly-drawn borders in BSDM. [Best viewed in color]

dataset was labeled by two different human observers with 83.9% consistency on the

labellings. In their study, Ren et.al. [31] used the same dataset. This dataset includes

wide variety of images, but it has only 200 images. Moreover, some of the images

include wrongly-drawn borders that could mislead the system using this dataset. You

can see a sample of wrongly-drawn borders with blue color in this Figure 2.3.

In conclusion, It is required to create a new comprehensive dataset which includes

various types of indoor (shopping mall, living room, train station etc.) and outdoor

images (animals, historical places, landscapes etc.) taken from more participants.
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CHAPTER 3

ONLINE LABELING TOOL & BORDER OWNERSHIP

DATASET

For explained reasons in preceding chapters, we decided to create a new, compre-

hensive border ownership dataset incorporates both indoor and outdoor images. To

realize this, dataset should include:

• enough indoor and outdoor data

• data accurate enough to be used as groundtruth for computational models that

will be developed.

3.1 Online Labeling Tool

As explained earlier, Border Ownership is a problem of identifying which neighbour-

ing region the borders belong to. As a result, our database should include pair of

border and region information that border belongs to. An online Border Ownership

labeling web page which is with user-friendly and well-documented interface was

created (by Selin Akifoğlu and Mehmet Akif AKKUŞ) so as to obtain Border Own-

ership data simultaneously [3].

Home page of the online labeling tool can be seen in Figure 3.1. This home page

explains the problem of Border Ownership and in which purpose this tutorial page is

used. Then, it gives a sample image with corresponding sample border and regions.

From the home page, users are able to register to the system or log in to continue to

labeling process with his username or password.
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For a participant to use the system he/she first register to the system, then read the

explanations for border ownership, then tries and sees whether learned the concept

with an interactive tutorial page, then finally labeling page that includes real indoor

and outdoor border ownership data appears. These pages will be explained in the

following sections respectively.

Figure 3.1: Home page of the online labeling tool

3.1.1 Registration to the System

First of all, users are asked to register to the system which is shown in Figure 3.2.

They are requested to input their username, password, name, surname. In addition

to this information, users are expected to input their age, gender and education level

in case they can be used for statistical analysis. This information is used to observe

if there is any correlation with consistency of dataset. For example, one of the result

what we expect could be like that people who their age more than 20 have more

consistent labeling result than the others. Consistency results with respect to age and

gender are discussed in the section 4.2.
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Figure 3.2: Registration page of the online labeling tool

3.1.2 Explanations for Border Ownership

After login to the system, participants are faced with a page (see Figure 3.3) which

consists of several type of sample images. Each image has sample border (which is

shown white dashed line) and neighbouring regions (which are shown as transparent

blue and red regions). These explanations give an idea how a region can be selected

with the given border. As soon as participants feel trained enough for the concept

of Border Ownership, the following page is a tutorial page which tests them whether

they understand well or not.

3.1.3 A Tutorial Before Labeling

Tutorial page with interactive user interface (see Figure 3.4) gives users a chance

of trial before starting with real border ownership data. Participants are asked an

artificial image includes 5 very easy borders. For the sake of simplicity, image has

very basic shapes such rectangles, circles and pentagons. After each click, they are

given a feedback which explains clicked true or not with a reason. Users must click to

true region to pass to the next question. In Figure 3.4, you can see the related feedback

(a) when user not clicked yet, (b) after wrong click and (c) after correct click.

15



Figure 3.3: Users are trained with real indoor and outdoor images

(a) Participants are expected to click

on one of the regions for the border in

white

(b) Participant clicked wrong. Feed-

back given

(c) Participant clicked correctly.

Feedback given

Figure 3.4: Tutorial page on online labeling tool. For a set of simple borders, users

are informed whether they labeled right or wrong. [Best viewed in color]
16



3.1.4 Labeling Page

When the tutorial page is successfully completed, participants are ready for real in-

door (including office, shop, living room etc.) and outdoor (including nature, animals)

images. In the labeling page (Figure 3.5), users are asked to select one of the red or

blue regions. If they think that they did the last operation accidentally, they can undo

by clicking undo button. Other button I am not sure makes it possible to pass the

current question if user can not decide exactly which region owns the border. Finally,

user can disable the red and blue regions to see the image itself in more detail, and

user can enable again by re-clicking to the Drawing on/off button.

Each user is asked 30 pictures by default and number of borders varies picture to

picture. Progress on images and progress on borders of current image are shown

progress bar lies on the right part of screen. There is a Take a look at explanations

button can be used to see Border Ownership explanations again if user feels unsure

what to do.

Figure 3.5: Labeling page with instructions at the top and a panel at the right shows

the progress. Undo button gives a chance to undo the latest click operation, I am not

sure button is so as to pass current border if user is not sure enough to label one of

the regions, lastly, Drawing On/Off button enables/disables blue and region
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3.2 Border Ownership Dataset

In this section how images and corresponding borders are gathered will be explained.

Then, the followed section talks about participants.

3.2.1 Data to Be Labeled

Dataset incorporates 500 indoor and 500 outdoor images in jpeg format, 1000 images

in total. Outdoor images are obtained from Berkeley Segmentation Data set [2]. 500

indoor images are obtained from various sources, 219 of which are from LHI [1]

dataset, remaining part from diverse copy-free image sharing websites. (see Figure

3.7 for sample indoor images, see Figure 3.8 for outdoor images with sample border

and regions)

Regions were available for images taken from LHI and Berkeley Segmentation Data

set (they are needed for border to be asked), for other images regions are extracted

by hand using a segment annotation tool (see Figure 3.6). It presents ability to se-

lect each object (see yellow points) in order and see the resulting annotated segments

simultaneously. After obtaining segments for all the indoor and outdoor images, bor-

ders and neighbouring regions are easily generated by utilizing these images. In the

meantime, borders whose length is smaller than 4% of the the image diagonal are

eliminated because of difficulty of seeing and labeling.

To obtain more accurate BO data, each border are asked to at least three different

participants. Answers from there different users are analysed under section 4.2.

3.2.2 Participants

Labeling process of Border Ownership was carried out by 151 participants (students

and researchers from computer engineering) whose ages varied from 17 to 34. The

participants (115 male, 36 female) are told about the purpose of the experiment and

joined a tutorial session related to use of online labeling tool.
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Figure 3.6: Segment annotation tool is used for creating segments of an image. Left

image is the one that will be segmented. Region with red border shows segmented

parts till then, Region with yellow points are currently segmented object. Right image

shows current segments.

Figure 3.7: Various borders in a sample indoor image. [best viewed in color]
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Figure 3.8: Various borders in a sample outdoor image. [best viewed in color]

3.3 Analysis of the Dataset

In this section, an analysis performed on generated Border Ownership dataset. In the

following paragraphs, consistency with respect to different type of images (indoor

and outdoor), age and gender will be examined.

In this dataset each border asked three different participants. For some borders, par-

ticipants are agreed on the same region, for some they are not. This type of labeling

is called as consistent if they are agreed upon. Labeled borders have the high ratios

of consistency (69.4%) for indoor images and (62.2%) for outdoor images. Also, it

should be stated that since participants had a chance to pass the border, without se-

lecting any of the region, if they were not sure to select it. Thus, these labellings are

not taken into consideration for consistency.

The dataset was labeled by 36 female and 117 male participants with different ages

varying from 17 to 34. Consistencies are filtered according to age and gender. Results

respect to age and gender are show in Figure 3.9(a) and Figure 3.9(b) respectively.

There is a slight decrease on the consistency ratios as the age increases and there is
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(a) Consistencies according to ages. Some of the ages are not shown due to low

participations
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(b) Consistency in terms of gender

Figure 3.9: Consistencies according to age (a) and gender (b). Color legend of two

types of images (indoor and outdoor) and for all images in total are listed on the right.

Total number of participant is shown in paranthesis [Best viewed in color]

a minor difference for males and females with respect to indoor and outdoor images.

Since number of participants in terms of age and gender are not equal nor nearly

equal it is not so much possible to conclude the result as in the Figure 3.9. As a result,

consistency of border ownership does not seem to be correlated with gender and age.

Other analysis is with respect to image type: indoor and outdoor (see Figure 3.10). It

can be easily shown that indoor images are more consistent than outdoor images. The

reason for this difference could be that indoor images hove more structured, regular

borders than indoor images, and figure-ground segregation is more clear in general

compared to outdoor images.
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Figure 3.10: Consistency ratios of indoor and outdoor images.

3.4 Summary

To summarize, new dataset for Border Ownership includes various types of indoor(shopping

mall, living room, train station etc.) and outdoor images (animals, historical places,

landscapes etc.) with 1000 images. Dataset presents not just one labeling for borders

but also it has at least three labeling for each borders. On the other hand, segment

annotation tool and online ownership labeling tool give rise to expand dataset with

new images.

It is believed that this dataset can be used as a benchmark for computational models

as well as for analyzing the underlying mechanisms of different vision problems,

especially that of Border Ownership.
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CHAPTER 4

BORDER OWNERSHIP CUES AND THEIR ANALYSIS

In this chapter, visual cues used for Border Ownership determination will be ex-

plained. Cues below are mostly used for previous studies: lower region, curvature,

contrast, T-junction, L-junction.

4.1 Used Border Ownership Cues

4.1.1 Lower Region

Particularly in outdoor images, object with the lower positions in the image is more

likely to be close to the camera. In other words, they are more likely to be perceived

as figures. This cue is used for image scene layering [10, 35, 6] as well as border

ownership [24].

As shown in Figure 4.1, straw stack (R1) is the lower than the others and the closest

object at them same time. Then, the house (R2) is the second lower region and goes

on like this. On the other hand, according to formulation of this cue given below

(see (4.1)), border between R1 and R2 belongs R1 since R1 is the lower. Thus, lower

region in our model estimates correctly for this border.

For a border b with two neighboring regions ra and rb, the lower region cue predicts

the owning border r̂(b) of b as follows:

r̂l(b) = arg min
r ∈ {ra,rb}

arg min
(x,y) ∈ r

y, (4.1)
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R1

R2

R3

R5

R4

R5

Figure 4.1: Sample image shows concept of lower region. Image at right correspond-

ing segmented image of the left image. As explained, R1 is at bottom and the closest

object, then house, tree and sky accordingly.

where x and y are the points on 2D coordinate system.

4.1.2 Curvature

Curvature is the another cue which is mostly used for border ownership estimation

[10, 6]. Curvature in 2D image tends to correspond to 3D object surface and convex

side of the border is likely to own the border. Also, there is a correlation between

degree of a convexity and ownership likelihood. In other words, the more border is

curved, the more likely the convex region owns the border. (see Figure 4.2)

r

r

𝑝2+12𝑝2

𝑝2 − 12

𝑝1

𝑝1+12𝑝1 − 12

Figure 4.2: Sample calculation of magnitude of a curvature on a certain point p1 and

p2. Note that radius and curvature direction changes along the curvature.

In our curvature model, curvature at a point has magnitude and direction. Magnitude
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of a curvature is inverse of the radius of a circle fitted at point. To fit a circle, we

select two more points before and after at that point (see Figure 4.2) since there can

be drawn unique circle passing from these three consecutive points (pi−12, pi, pi+12).

12 is selected empirically.

For calculation of magnitude m(pi) at a certain point pi on the border b, first circle c

is fitted with the radius r formulated as:

m(pi) = 1/r. (4.2)

The direction d(pi) at a point pi is the vector connecting the point pi and the center of

the circle ce(c) formulated as:

d(pi) = ce(c)− pi. (4.3)

To determine the region owning the border, all points are calculated along the bound-

ary as follows:

r̂c(b) = arg max
r ∈ {r1,r2}

∑
p ∈ b

(d(p)→ r) ∗m(p), (4.4)

where d(p) → r is 1 if the direction of curvature coincides with the region r, and 0

otherwise. Then, the point contributes as magnitude along the direction.

Sample curvatures on an image can be show on Figure 4.3.

Figure 4.3: Sample curvatures on an image. Dashed red lines are the curvatures and

arrows show the direction of the ownership.
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4.1.3 T-junction

Junctions are another type of cues which give highly strong information about 3D

structure where they occur [16]. T-junction is found out best among junctions since it

gives accurate results on depth ordering and figure-ground segregation and occlusion

detection [14, 31].

In this study, determination of T-junction points are based on corner points. First of

all, corner points are detected using curvature-based corder detector, proposed by He

& Yung [12]. Then we extract the line segments ls1...lsL meeting that corner point

and the angles between them θ1...θL. Line segments (the red lines) and angles can be

seen in Figure 4.4.

Using the information of line segment and angles, first type of junction is determined

then, the ownership direction of the border. For a junction to be T-junction, it has

to have three line segments. Next, for ownership direction, θs with the biggest angle

is selected and lines, namely borders, belongs to the region including θs. Figure 4.5

shows the assigning borders to a region using T-junction. Note that it is special to

T-junction that each junction assigns two borders, while other cues assign only one

border at a time.

These processes are implemented for all the junctions in the image and sample T-

junctions and their ownership are available on Figure 4.6.

𝜃1

𝜃2

𝜃3

Figure 4.4: Representation of T junction. Note that T-junction has three lines seg-

ments.
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R1 R2

R3 R4

b0

b5

b4b3

b2

b1

b6

b8

b7

Figure 4.5: Sample T-junctions and ownership directions on an artificial image. Left

image: regions are labeled and two T-junctions are shown. Right image: labeled

borders with their ids. According to T-junction cue border b0 and b1 belong to region

R1, border b3 and b4 belong to region R3, border b5 and b6 belong to region R4 etc.

Figure 4.6: Sample T-junctions and ownership directions on sample indoor and out-

door image. Dashed rows show the ownership direction [Best viewed in color].

4.1.4 L-junction

Similarly to T-junction, L-junction is another corner based cue for Border ownership.

But in this case, there are only two line segments and two angles (see Figure 4.7).

According to this cue, inner part of the junction is more likely to own the borders. In

other words, region at the same side with small angle owns the borders. For instance,

as can be seen on Figure 4.5 border b2 at top right belongs to region R2 and at right

bottom b7 belongs to region R3 using L-junction. Moreover, Sample L-junctions on

a sample indoor and outdoor images can be seen on Figure 4.8.
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𝜃1𝜃2

Figure 4.7: Representation of L junction. Note that L-junction has two line segments.

Figure 4.8: Sample L-junctions and ownership directions on sample indoor and out-

door image. Dashed rows show the ownership direction [Best viewed in color].

4.1.5 Contrast

Last cue utilized in this study is contrast. According to this cue, brighter objects are

more close to the camera, so it is more likely to own the border.

The region r̂co owning a border b is as follows:

r̂co(b) = arg max
r ∈ {r1,r2}

∑
p ∈ r

1

N
I(p), (4.5)

where I(p) is the intensity of pixel P and N is the total number of pixel on the region.

In this study, these five cue have been utilized. In the following section, accuracy of

each cue for Border Ownership estimation will be explained.
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4.2 Analysis of the Cues

In this section, we analyse each cue in terms of their predictive capability. Then, we

combine different number and types of cues so as to create more accurate prediction

results.

First of all, number of available borders changes significantly between different types

of cues. Comparative results can be seen on Table 4.1. This table illustrates that

number of occurrences and availability is the same for the cue Lower region and

contrast. As we did not ask the some curvatures due to their small length, number of

available border decreases considerably. Since t-junction can vote for more than one

border its availability is bigger than its occurrences (see Section 4.1.3). As you can

see, L-junction votes only for one border and its occurrences and availability is the

same. This table also shows that L-junction and T-junction are more seldom than the

others.

Table 4.2 shows that distribution of different labeling types within different image

type. In general, 65.4% of the dataset has consistent border labeling (3/3), 30.8% of

the dataset includes different labels (2/3), while 3.8% does not include any label (“I

am not sure”). Such an analysis allows understanding of where participants disagree

more about BO and investigation of underlying reasons for that. Figure 4.9 shows

sample images which difficult to select one of the regions. It is very clear that la-

beling for indoor dataset is more consistent and participants are more unsure about

labellings.

Table 4.3 shows prediction capability of each cue against two kind of dataset, the first

of which is “single dataset” that includes one labeling for each border, the second of

which “is triple dataset” that includes three labeling for each border. Single dataset

was obtained by researchers in this study, triple dataset was obtained by over 100

participant from students studying computer engineering. Triple dataset is divided

into two categories according to labeling type that explained on the Table 4.3. One of

which includes only consistent borders and other includes both consistent borders and

non-consistent borders. For non-consistent borders the region which was labeled by

two participants selected. Note that in the existence of three participants, there must
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Table 4.1: Occurrences and availability of the cues on all images. Cues are ordered
according to number of available borders for a certain cue type.

Type of Cue # of occurrences # of available border
Lower region 32837 32837
Contrast 32837 32837
Curvature 32837 26434
T-junction 12961 14655
L-junction 12791 12791

Table 4.2: The analysis of different labeling with image type. 2/3 stands for partici-
pants are not labeled the same region, 3/3 stands for all three participants labeled the
same region

Image Type
Labeling Type Indoor Outdoor Total
(3/3) consistency 69.4% 62.2% 65.4%
(2/3) consistency 22.3% 37.7% 30.8%
Participant labeled “I am not sure” 8.3% 0.1% 3.8%

be at least two participants selecting one of the regions. Although “3/3 consistency”

is the best accuracy among them, “2/3 + 3/3 consistency” was used in the later part of

the analysis for the sake of more available data.

4.2.1 Accuracies of Visual Cues

From Table 4.3 following results can be deduced: (i) Accuracy with respect to cues

changes significantly. This is presumed since each cue works well under different cir-

cumstances. For instance, while T-junction and curvature are the better under indoor,

lower region is better on outdoor images. (ii) T-junction and curvature are strong

cues, which is in agreement with the literature [37]. L-junction is the third best and

Lower-region is the fourth best cue. Contrast is the worst cue with lower accuracy

than the random choice. (iii) Generally, indoor images have more accuracy than the

indoor images. Reason for this possibly is that indoor images are more likely to in-

clude regular structures than outdoor images. Hence, it might be reason why junction

based cues are generally better indoor images.
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(a) Ambigous border 1 (b) Ambigous border 2

Figure 4.9: For some borders, it may not be so obvious to determine ownership of the

border. This might be due to wrong segmentation by humans (a) or that the borders

might seem shared by two objects (b). [Best viewed in color]

4.2.2 Accuracies of Combined of Visual Cues

Another experiment is combining different number of cues so that better Border Own-

ership prediction can be obtained. Relative prediction accuracy can be shown on

Figure 4.10, which includes indoor (4.10(a)) and outdoor results (4.10(b)). While

combining multiple cues the majority rule was used. That’s to say, the region was se-

lected on which more cues are agreed. If the majority does not occur, which the half

of the cues predict different regions, the region with more accuracy was selected .

Another issue should be explained here is that availability of cues. Some cues are not

available on a certain border. In other words, it is not possible for every cue to occur

on a border. For instance, while cues such as lower region, curvature are available for

every border, cues such as T-junction and L-junction are available on the border only

where junction occurs.

Closer look to 4.10 explains the following results. As can be seen from the figure, for
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Table 4.3: Visual cues and their predictions compared against different consistencies
of labels.

“single dataset” “triple dataset”
“3/3 + 2/3 consistency” “3/3 consistency”

Indoor(%) Outdoor(%) Indoor(%) Outdoor(%) Indoor(%) Outdoor(%)
Curvature 65.6 61.0 65.6 59.2 72.0 64.9
T-junction 77.0 66.0 79.0 63.3 82.0 66.9
L-junction 50.0 55.0 58.0 50.6 59.6 54.1
Lower Region 46.0 50.0 52.0 50.9 54.7 52.0
Contrast 44.0 45.8 44.7 47.4 44.1 47.4

indoor images combination of for cues namely T-junction, L-junction, Curvature and

Lower-region are the best with 80% accuracy among 26 combinations. L-junction

and T-junction combination (79.9% accuracy ) and L-junction, T-junction and cur-

vature combination (79.3% accuracy) have nearly the same accuracy as the best cue

combination. Moreover, T-junction is best among the other cues and have the highest

contribution in combinations.

Regarding to outdoor images, combination of T-junction, curvature and lower region

is the best with the accuracy of 68.6% among 26 combination. Then combination

of L-junction and curvature (68.1%) follows. Interestingly, although curvature and

T-junction are individually best cues, combination of them is ranked fifth in two cue

combination. Reason for this might be that T-junction is so rare in outdoor images

due to lack of regular structures.

Among a total of 26 combinations from our 5 cues, while combination of 4 cues are

best for indoor images and combination of 3 cues are best for outdoor images. What is

interesting is that combination of more cues is not meant to perform better accuracies

for both indoor and outdoor images.

4.2.3 Analysis of the Conflicting Cues

Previous section covered the analysis how accuracy changes when they are combined.

Now, this section covers conflicting cues. Figure 4.11(a) and 4.12(a) show the ma-

trix of conflicting cues for indoor and outdoor images of BO prediction. Rows and
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(b) Combined cues on outdoor images

Figure 4.10: Combination of different cues on indoor and outdoor images. The x-axis

shows the number of combined cues and y-axis shows the accuracy by percentage

columns of 5 by 5 matrix stands for each cue. Each cell stores number of conflicting

values about two different cues. The numbers in the middle depicts number of cases

that cues conflict divided by total number of cases that cues co/occur. In addition

to number of cases, percentage of cases are shown on the upper right and down left

corners of each cell. These numbers stand for correct prediction of each cue in case

of conflict.

For indoor images, ratio of conflict is quite low between curvature and L-junction and

between T-junction and L-junction, while number of conflict between lower-region

and L-junction and between lower-region and curvature is quite high (see Figure

4.11(a)). On the other hand, for outdoor images, curvature and L-junction are quite in

accordance with each other while lower region and curvature conflicts most (see Fig-
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ure 4.12(a)). To sum up, L-junction, T-junction and curvature are in agreement with

each other for BO prediction while lower region and contrast are generally conflicting

for indoor images. However, in outdoor images, T-junction, L-junction and curvature

have more conflict compared to indoor images. These result is in agreement with

what we observe that, indoor images have more corners creating T and L junctions.
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(a) Conflicts between cues in indoor images
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(b) Diagram that explains each cell

Figure 4.11: Conflicting cues in indoors. (a) A matrix depicting which cues conflict,

and the winning cue in case of a conflict. (b) Explanation of each cell in the matrix.
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(a) Conflicts between cues in outdoor images
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(b) Diagram that explains each cell

Figure 4.12: Conflicting cues in outdoors. (a) A matrix depicting which cues conflict,

and the winning cue in case of a conflict. (b) Explanation of each cell in the matrix.
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CHAPTER 5

MORE ACCURATE DEPTH PREDICTION USING BORDER

OWNERSHIP

[9] 3D interpretation from their 2D projections, namely depth prediction, is one of the

field of the computer vision that has been studied for a long time. To realize this, there

are basicly two types of cues: monocular cues that 3D information can be obtained

using only one view of the scene and multi-view cues that at least two views of the

scene are available for 3D information.

This chapter addresses that for depth prediction on homogeneous areas, Border Own-

ership (BO)information increases the accuracy when it is used with sparse stero vision

algorithm.

5.1 Depth extracting cues

Texture gradient, perspective distortion, occlusion, shading, athmosperic effect are

examples of monocular cues. Texture gradient and perspetive distortion are similar

cues implying that closer objects to the camera are bigger and far objects are smaller.

Occlusion is the another frequently used cue making statement about image scene

layering, where occluding object is in front of the occluded object. Shading of a

surface gives idea about how the surface is formed such as flat or curved surface

etc. Last but not least, another cue is athmosperic effect, where closer objects seem

sharper and less blurred, whereas far objects seem more blurred and less sharp.

It is important to realize that monoculer cues are not capable to provide exact depth in-
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formation, they can only provide relative depth information or scene layering, namely

depth ordering, between different surfaces. Creating a computational model using

monoculer cues is quite limited due to difficulty of the formulation of the different

cues. In their study, Clerk et. al. have shown that recovering 3D surface information

from texture gradient needs that some certain assumptions has to be made [7].

Different from monocular cues, multi-view depth cues such as stereo can provide

absolute depth information rather than relative depth information without prior infor-

mation of the scene. These cues are used to determine absolute depth information

by triangulation of two or more views of the scene. Stereo vision requires corre-

spondance of globally-distinguishable image points between two images. Finding

correspondence is not always trivial especially on homogeneous or weakly-textured

image areas due to lack of distinguishable structures. Even in the existence of tex-

tured image areas, finding correspondence can be difficult. Using camera geometry

search area for correspondences can be limited to line-like area, namely epipolar line,

which makes easier the matching process.

There exists two main computational methods for stereo vision: sparse and dense

approaches. Whereas sparse methods utilize image features for correspondence, and

consequently, produce sparse depth information, dense methods deal with correspon-

dence problem at lower level and compute stereo information for every pixel. More-

over, sparse methods are cost effective because of the sparsity and they can work with

images which are big and have big disparities. On the other hand, dense methods

need textured image areas and they are computationally expensive.

5.2 Depth prediction on homogeneous areas using sparse stereo methods

Existing studies have shown that 3D information at the edges is able to recover the

missing depth information at weakly textured, homogeneous image areas [18]. To re-

alize this, sparse (feature-based) stereo algorithm is utilized to require 3D information

at the edges. In their study, model of Kalkan et.al. starts with creating local features

corresponding to edge-like structures and monos (structures on homogeneous image

area) using stereo image pair. Then, depth information at the edges is obtained using
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a sparse stereo method [28]. Therefore, it is available to predict depth at the homoge-

neous image patch using the depth at edges with a voting model. This voting model

only use the 3D line orientation at the 3D local edge features.

The missing part in the mentioned study is how to cope with the occlusions. Oc-

cluding edges should vote only occluding image areas during prediction. Otherwise,

occluded surface tends to be closer to the occluded surface rather than being at the its

exact position. This occlusion problem can be solved using Border Ownership (BO)

information. BO information is able to give ownership of an image area in terms of

borders, or edges.

This chapter details that BO information can be used to enhance the accuracy of a

depth prediction at the homogeneous image areas.

5.3 Formulation of the depth prediction model

In their study in 2007 Kalkan et. al. used different representation for homogeneous

and edge-like image structures, namely primitives [18, 19]. Primitives can be edge-

like and homogeneous or either 2D or 3D. The corresponding 3D primitives of 2D

edge-like primitives is extracted using stereo vision. For homogeneous primitives,

3D primitive is predicted from the 3D edge-like primitives. Figure 5.1. shows ex-

tracted primitives for a sample image. They developed a novel voting-based method

for predicting depth at monos. They used a voting model since it is appropriate for

producing result from data which consist of outliers. In this model, there is a set of

voters stating their opinion about a certain mono. To make decision about the mono,

the voting model combines these votes in a reasonable way.

For a depth prediction problem, the mono πm to be voted for its depth and 3D orien-

tation needs voters which are bounding edge primitives πe
k (for k = 1,....,n). A pair Pj

of two edge primitives πe
i and πe

k are required from the set of bounding edges.

The edge pair should assure some certain conditions:

• Edge primitives πe
i and πe

k should share the same color with the mono.
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Figure 5.1: Extracted primitives (b) for the example image in (a). Magnified edge

primitives and edge primitives together with monos are shown in (c) and (d) respec-

tively. Source: [17]
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Figure 5.2: A set of primitives for illustrating why the relations co-planarity, co-

colority and linear dependence are required as restrictions for forming pairs from

edges. Source: [17]

• The 3D primitives Πe
i and Πe

k of the edge primitives πe
i and πe

k should be on the

same plane.

• Edge primitives πe
i and πe

k should be linearly independent so that they define a

plane.

Figure 5.2. depicts the listed restrictions on a sample mono and set of bounding edge

primitives. The edge primitives πe
j and πe

l are co-color with the mono (1). They are

on the same plane (2) and they are not on the same line (3). Therefore edge primitives

πe
j and πe

l are the possible candidates for voting the mono πm
i . On the other hand,

edge primitives πe
k and πe

j are neither co-color nor do they define a plane. Hence, they

are not the possible candidate for voting.

5.3.1 Bounding edge determination of a mono

Bounding edge determination is crucial for a mono to estimate its depth and 3D ori-

entation. For this, search is made in a set of directions dt, t = 1,...,Nd. Using two

distance thresholds Rmin and Rmax, only edge primitives between these distances are

searched. Found edge primitives are added to a list of bounding edges. In addition,

there can be some missing edge primitives due to discrete search operation. These

edge primitives can be added by grouping.
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Figure 5.3: Illustration of how the vote of a pair of edge primitives is computed. The

3D primitives Πe
i and Πe

j corresponding to the 2D primitives πe
i and πe

j define the

plane p. The intersection of p with the ray l that goes through the 2D mono πm and

the camera center C then determines the position of the estimated 3D mono Πm. The

3D orientation of Πm is set to be the orientation of the plane p. Source: [17]

5.3.2 Voting model for a mono

A pair Pi of two edge primitives πe
j and πe

k and corresponding 3D edge primitives Πe
j

and Πe
k which assure the mentioned conditions can define a plane p with 3D normal

n and position P .

As it can be seen from the Figure 5.3, the intersection of the plane p with the ray l

going through 2D mono πm and camera center C determines position of the 3D mono

Πm. The orientation of the 3D mono Πm is the same as the orientation of the plane.

For a certain 2D mono πm , there exists good number of votes from bounding edge

pairs to determine 3D representation Πm of the mono. Taking weighted average of

the votes is the one alternative way. but it is not a good idea due to the outliers.

Clustering the votes and taking the best cluster among them is the better alternative.

Vote clusters can be seen in 3D Euclidean in figure 5.4. The cluster that includes the

most votes can be labeled as the cluster that has the highest reliability. Equation 5.1.

defines the best cluster as the most crowded one.

Πm = arg maxck
#ck, (5.1)
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Figure 5.4: The distribution of the votes for some monos shown in the 3D Euclidean

space. Sub-figures (a)-(c) are clear examples where there are two distinct clusters.

However, such clear clusters do not always occur (d). Source: [17]

where ck denotes clusters for k = 1,...,Nk and # is the cardinality of a cluster. Clus-

tering is practical for eliminating the outlying votes. As shown in the Figure 5.4.

clustering is not always trivial for the nature of the distribution.

5.4 Adding Border Ownership information to the voting model

As stated in previous sections, edge primitives on the occlusion edges can mislead the

voting model while detemining the position of a mono on the occluded image areas.

Firt of all, image segments and borders (see Figure 5.6) are generated using the RGB

image (see Figure 5.5 for stereo image pair). This generation process can be either
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with by hand using an image annotation tool or using one of the image segmentation

algorithm. For the sake of simplicity and more accurate image segments, image an-

notation tool is used (see section 3.2.1. for more information). Then, using basic BO

computational model BO information can be obtained for each border.

(a) Left image (b) Right image

Figure 5.5: Stereo image pair from an artificially created scene. [Best viewed in

color]

BO information prevent voting model from choosing edge primitives which normally

should not vote for a certain mono. You can see the difference in Figure 5.7. to

see difference bounding edge primitives to be used for a certain mono (labeled as

black point on the left image) before using BO information (left image) and after

BO information (right image). As you realized that for monos which are on the

occluded image area, edge primitives lying on the occluding edge can not vote and

these primitives are eliminated from the list of voters. Moreover, irrelevant image

primitives due to missing edges points also can be eliminated (see the last row on the

Figure 5.7).
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(b) Corresponding borders

Figure 5.6: Regions and corresponding contours (border). Each border and region

have unique id. [Best viewed in color]

5.5 Results

This section evaluates the performance of depth prediction with BO information and

compares its performance to standard depth prediction method. The object is to show

depth prediction using BO information helps resulting with less erroneous depth es-

timation. To show this, comparisons are performed on an artificial scene where noise

of the scene can be controlled to see behavior of the two approaches. What we expect

is that depth prediction using BO is also helpful in different types of noises.

Evaluation is performed by comparing with groundtruth. For this, two metrics which

have been frequently used in the literature are utilized: Root-Mean-Squares (RMS)

and Bad-Matching-Percentage (BMP). These measures are taken from the study of

Schartein et. al. [33]. RMS (eq. 5.2) and BMP (eq. 5.3) are defined as follows

respectively:

RMS(S) =
1

#S

∑
p∈S

(|dc(p)− dG(p)|2)1/2, (5.2)

BMP(S) =
1

#S

∑
p∈S

(|dc(p)− dG(p)| > 1). (5.3)
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Figure 5.7: Left part is the scene and corresponding depth image. In rectangle, left

images shows bounding edges for a certain mono, right images denote voting egdes

after BO information is applied. Note that some edges primitives are disappeared due

to their wrong prediction vote.

46



where S denotes the set of the points with disparity information, dc(p) and dG(p) are

respectively the computed and the ground truth disparity information at point p.

5.5.1 Results on artificial data

5.5.1.1 Evaluation with texture noise

On artificial data first texture noise (white noise) is added with different amount of

texture frequency (n ∈ {0, 0.01, 0, 025, 0.05, 0.075, 0.1, 0, 125, 0.15, 0.175, 0.2}). A

subset of input images can be seen in Figure 5.8.

  
Grount truth    = 0.05    = 0.2nn

Figure 5.8: Artificial image with different amount of texture noise. [Best viewed in

color]
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Figure 5.9: Root Mean Squares and Bad Mad Matching Percentage metrics are used

with different amount of texture noises.
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5.5.1.2 Evaluation with texture and pepper noise

Different from the noisy set of images in previous section, in this section pepper

noise added with several frequencies (un ∈ {0, 0.01, 0.05, 0.1, 0.15, 0.2}). A subset

of input images can be seen in Figure 5.10.

  
Grount truth  = 0.1       = 0.05 =  0.2       = 0.2un un nn

Figure 5.10: Artificial image with different amount of texture and pepper noise. [Best

viewed in color]
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Figure 5.11: Root Mean Squares and Bad Mad Matching Percentage metrics are used

with different amount of texture and pepper noises.
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5.5.2 On a real world image

Depth prediction algorithm is also performed on a real world image. Stereo images

are taken from a Bumblebee Stereo Vision camera. This camera has two calibrated

camera lenses which offer taking images with different resolutions. In this study

1024x768 image resolution has been used.

For simplicity, scene consists of one object in the middle and a few surfaces with

different colors. Surfaces with different colors are required for acquiring edges in the

image. Furthermore, in the scene there must be edges whose orientation is vertical or

almost vertical to find good correspondences since edges whose orientation is parallel

to epipolar line have big uncertainties. Taken stereo image pair can be seen on Figure

5.12

Depth prediction results on te real world image can be seen on Figure 5.13. In the

5.14(a), extracted edge primitives are shown, then image pair located below shows

the difference when the BO information is used. Using BO information, extracted

surfaces are more accurate as located closer to the edges.

(a) Left image (b) Right image

Figure 5.12: Stereo image pair taken from a Bumblebee stereo vision camera. In the

scene, basic colors are used for easing the segmentation process. [Best viewed in

color]
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(a) Edge primitives on a real world image (on a 3D visualizer)

(b) Example scene from a real world image (on a 3D

visualizer)

(c) Example Scene from a real world image (on a 3D

visualizer)

Figure 5.13: Image shows the difference on a real world image when the BO in-

formation is used. Using BO information, extracted surfaces are more accurate as

positioned closer to the edges.
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(a) Edge primitives on the artificial image (on a 3D

visualizer)

(b) Example scene is shown from the artificial image. (on a 3D visualizer)

(c) Example scene is shown from the artificial image. (on a 3D visualizer)

Figure 5.14: Image shows the difference on a artificial image when the BO informa-

tion is used. Using BO information, extracted surfaces are more accurate as posi-

tioned closer to the edges. Left image shows the depth prediction using BO informa-

tion and right images shows depth prediction with BO information.
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5.6 Time issues

The amount of time that depth prediction algorithm requires is related to amount of

homogeneous image areas and size. For a 512x512 pixel2 image, it needs 80-85

seconds on average without BO information and 50-55 seconds when the BO is used
1.

Utilization of BO information changes elapsed time dramatically with different amount

of texture noise for artificial image. Results of elapsed time for a certain amount of

texture noise can be seen on Figure 5.15.

BO information eliminates some edge primitives so the votes. Therefore, number of

edge primitives to be clustered will be decreased (see section 5.3.2). Since clustering

process is one the most time consuming part of the depth prediction model, elapsed

time drops considerably. Interesting point in the figure is that for the image which

does not include noise, depth prediction requires much more time than the others

since it has more clear edge primitives and segments increases the time.
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Figure 5.15: Elapsed time differs for the depth prediction when the BO information

is used. For a mono, elimination of edge primitives, which are in the occluding area

or on unrelated edges, shortens elapsed time.

1 These results are gathered on a computer includes dual core processors with 4 GB ram

52



5.7 Summary

In this chapter, first types of depth prediction cues are detailed. Since monocular

cues produces relative depth information, multi-view depth cues are used for absolute

depth information. Then, under multi-view cues stereo is a useful method with two

alternative types. Dense methods are those which performs well on textured image

areas. On the other hand, sparse methods are better on low-textured image areas.

This study mainly use Kalkan et.al.’s 20007 study [18], which uses sparse stereo

method for depth prediction on homogeneous image areas, and adapts BO informa-

tion to obtain more accurate depth information on weakly textured or homogeneous

image areas. The study presents promising results in terms of accuracy and time con-

sumption. What is missing in the study is that BO information is not changed with

the image when the applied noise changes, in other words static BO information is

used for the simplicity. This part is kept as future work.
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CHAPTER 6

CONCLUSION

In this thesis, a new comprehensive database is created with 500 indoor and 500

outdoor images. The BO database includes various types of indoor (shopping mall,

living room, train station etc.) and outdoor images (animals, historical places, land-

scapes etc.) with 1000 images in total. Each contour in these images are labeled by

three different participants to get more accurate human labeled groundtruth database.

Furthermore, a user-friendly, well-documented online BO labeling tool is developed.

Participants used this tool for labeling. Besides, another tool named segment anno-

tation tool and online ownership labeling tool give rise to expand dataset with new

images.

We performed analysis of the local visual cues for border ownership estimation. They

are: lower region, curvature, contrast, T-junction, L-junction. Each cue is analyzed in

terms of their predictive capability. Different number and different types of cues are

combined in order to create more accurate prediction results. Analysis of conflicting

cues are also performed and showed in a confliction matrix.

A new method for a feature based stereo has been developed to obtain more accu-

rate depth perception on homogeneous image areas. This study mainly use Kalkan

et.al.’s 20007 study [18], which uses sparse stereo method for depth prediction on

homogeneous image areas, and adapts BO information to obtain more accurate depth

information on weakly textured or homogeneous image areas. The study presents

promising results in terms of accuracy and time consumption.
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6.0.1 Future Work

There are several part that this study can be improved in the future. First of all, we

combined visual cues using a basic majority voting. Our visual cues only give the

BO direction, not with a confidence value. By getting the confidence value from each

visual cue, combinatorial analysis can be realized more complex methods such as

using logistic regression. We believe that other approaches can produce more realistic

and accurate results.

In depth prediction part, only artificial and very basic real world scene are utilized.

More complex real world and artificial stereo images can be added. Furthermore,

depth prediction method with BO can be improved so as to predict areas not only flat

surfaces, but also spherical surfaces.
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