

HYBRID CPU-GPU IMPLEMENTATION OF

TRACKING-LEARNING-DETECTION ALGORITHM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

İLKER GÜRCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2014

HYBRID CPU-GPU IMPLEMENTATION OF

TRACKING-LEARNING-DETECTION ALGORITHM

Submitted by İlker GÜRCAN in partial fulfillment of the requirements for the

degree of Master of Science in Information Systems, Middle East Technical

University by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Assoc. Prof. Dr. Alptekin Temizel

Supervisor, Work Based Learning Studies, METU

Examining Committee Members:

Assoc. Prof. Aysu Betin Can

IS, METU

Assoc. Prof. Dr. Alptekin Temizel

WBL, METU

Assist. Prof. Erhan Eren

IS, METU

Assist. Prof. Sinan Kalkan

CENG, METU

Assoc. Prof. Altan Koçyiğit

IS, METU

 Date: 16.09.2014

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name: İlker GÜRCAN

Signature : _________________

v

ABSTRACT

Hybrid CPU-GPU Implementation of

Tracking-Learning-Detection Algorithm

GÜRCAN, İlker

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Alptekin TEMİZEL

Tracking objects in a video stream is an important problem in robot learning

(learning an object’s visual features from different perspectives as it moves, rotates,

scales, and is subjected to some morphological changes such as erosion), defense,

public security and many other various domains. In this thesis, we focus on a

recently proposed tracking framework called TLD (Tracking-Learning-Detection).

While having promising tracking results, the algorithm has high computational cost.

The computational cost of the algorithm prevents running it at higher resolutions as

well as running multiple instances of the algorithm to track multiple objects on

CPU. In this thesis, we analyzed this framework with an aim to optimize it

computationally on a CPU-GPU hybrid setting and developed a solution via using

GP-GPU (General Purpose GPU) programming using Open-MP and CUDA. Our

results show that 2.82 times speed-up at 480x270 resolution can be achieved. The

speed-ups are higher at higher resolutions as expected in a massively parallel GPU

platform, increasing to 10.25 times speed-up at 1920x1080 resolution. The resulting

performance of the algorithm enables the algorithm to track multiple objects at

higher frame rates in real-time and improving detection and tracking quality by

allowing selection of configuration parameters requiring higher processing power.

Keywords: Computer Vision, Long-term Tracking, GP-GPU Programming,

Multiprocessing, Real-Time

vi

ÖZ

TAKİP ETME-ÖĞRENME-TESPİT ALGORİTMASININ

HİBRİD CPU-GPU GERÇEKLEMESİ

GÜRCAN, İlker

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Danışmanı: Assoc. Prof. Alptekin TEMİZEL

Bir video görüntüsünde var olan nesnelerin takibi; robotların öğrenme mekanizması

(bir nesnenin görsel özelliklerinin robot tarafından; hareket etme, şekilsel değişikliğe

uğrama, ölçek değişimi, ve/veya dönme gibi zaman içinde nesnede meydana gelen

değişikliklerin anbean takip edilerek öğrenilmesi), savunma, kamu güvenliği, ve

bunlara benzer diğer birçok alanda önemli bir yere sahiptir. Bu tezde yakın bir

zamanda önerilmiş olan, TLD (Takip Etme-Öğrenme-Tespit) isimli bir nesne takip

algoritmasına odaklandık. TLD başarılı sonuçlar üretmesine karşın, çok yüksek

hesaplama gücüne ihtiyaç duyan bir yöntemdir. Bu yüksek hesaplama gücüne

duyulan ihtiyaç; CPU üzerinde yüksek çözünürlüklerdeki video’larda tek bir

nesnenin takibini ya da bir video’da birden fazla nesnenin takip edilebilmesini

engellemektedir. Biz de bu özgün takip algoritmasının hızını arttırmaya yönelik bir

dizi çalışmalar yaptık ve GP-GPU (GPU üzerinde genel amaçlı programlama) ile

Open-MP ve CUDA teknolojilerini kullanarak hibrid bir çözüm gerçekleştirdik.

Sonuçlarımız gösteriyor ki 480x270 çözünürlükte 2.82 kat kadar hızlanma

sağlanmaktadır. Çok büyük bir ölçekte paralel bir sistemden beklendiği üzere

hızlanma daha yüksek çözünürlüklerde daha fazla olmaktadır ve 1920x1080

çözünürlüğünde 10.25 kata kadar yükselmektedir. Bu hızlanma, yüksek

çözünürlüklerde nesne takibine ve çoklu nesne takibine imkan sağlamakta ve takip

vii

algoritmasının kalitesini arttıracak şekilde kurulum değişkenlerinin belirlenmesine

olanak sağlamaktadır.

Anahtar Kelimeler: Bilgisayar Görüntüsü, Uzun Süreli Nesne Takibi, Genel Amaçlı

GPU Programlama, Çoklu-İşleme, Gerçek Zamanlı

viii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

1 INTRODUCTION ... 1

1.1 Motivation .. 3

2 LITERATURE REVIEW .. 7

2.1 Object Tracking Algorithms ... 8

2.2 Machine Learning ... 11

2.3 Tracking-Learning-Detection (TLD) .. 13

2.4 Tracking Algorithms Implemented on GPU or Hybrid Platforms 15

3 OPEN TLD ALGORITHM AND ANALYSIS OF COMPUTATIONAL

BOTTLENECKS .. 19

4 IMPLEMENTATION DETAILS .. 25

4.1 TLD Object & H-TLD Modules... 25

4.2 Implementation of H-TLD Detection Module ... 30

4.2.1 PV-Computation (GPU Only) .. 34

4.2.2 BB Stream Compaction (GPU Only) ... 46

4.2.3 RFI Calculation (GPU Only) ... 48

4.2.4 Confidence Calculation (CPU Only) ... 51

ix

4.3 Implementation of H-TLD Tracking Module .. 54

5 RESULTS .. 59

5.1 Detection .. 62

5.1.1 Integral Image (II) Computation on GPU .. 62

5.1.2 Image Blurring (Open-CV Used) .. 63

5.1.3 Total Recall Computation on CPU and GPU Collaboratively 64

5.2 Tracking Module .. 67

5.2.1 Optical Flow .. 67

5.3 Effect of Different Display Resolutions on the Performance 69

5.4 NVIDIA’s Visual Profiler & Overlapping Data Transfer and Kernel

Executions ... 72

5.5 Discussions .. 75

6 CONCLUSION AND FUTURE WORK .. 81

7 REFERENCES .. 85

x

LIST OF FIGURES

Figure 1-1 CPU-GPU Comparison .. 2

Figure 1-2 CUDA Architecture .. 4

Figure 2-1 TLD Framework [2] ... 13

Figure 2-2 Overview of Parallel Algorithm in [13] ... 15

Figure 2-3 GPU Timing for Each Separate Operation [14] 17

Figure 4-1 Communication with H-TLD via TLDObjects .. 26

Figure 4-2 Class Diagram for H-TLD Objects and Structures 27

Figure 4-3 A subset of a Rectangular Region on an II ... 31

Figure 4-4 Pseudo-Code for Total Recall Computation ... 33

Figure 4-5 Terms Used in PV-Computation .. 34

Figure 4-6 Pseudo-Code for PV-Computation on GPU ... 38

Figure 4-7 Mapping Multi-Threaded Concepts to PV-Computation Ones 39

Figure 4-8 BB Organization on RAM in Serial Code Context 41

Figure 4-9 Access Pattern for BB Offs without Conversion on Device Memory 42

Figure 4-10 Conversion from AoS to SoA... 43

Figure 4-11 Accessing BB Offsets on GPU’s Global Memory after Conversion 43

Figure 4-12 Relationship between Scan Line Pairs and Scale Levels 44

Figure 4-13 Processing of BBs without Loading Balancing 45

Figure 4-14 BB Ordering for Load Balancing ... 46

Figure 4-15 BB Stream after Running PV-Computation ... 47

Figure 4-16 Left-Shift Amounts after Running ―Prefix-Sum‖ 47

Figure 4-17 Feature of a Random Forest’s Tree .. 49

Figure 4-18 Pseudo-Code for RFI Calculation on GPU .. 51

Figure 4-19 Confidence Values Written to Output Array .. 53

Figure 5-1 A Sample Screen-shot Captured from the Test Video 62

xi

Figure 5-2 Average Time per Call for II-Computation .. 63

Figure 5-3 Average Time per Call for Image Blurring .. 64

Figure 5-4 Average Time per Call for Total Recall Computation 65

Figure 5-5 Stacked View for Elapsed Time of TRC .. 66

Figure 5-6 Data Transfer and Execution Time for RFI Calculation 67

Figure 5-7 LK-Tracker GPU vs. CPU Implementations .. 68

Figure 5-8 Effect of Resolution Change on TRC... 70

Figure 5-9 Total Gain of H-TLD ... 71

Figure 5-10 Timeline View of Visual Profiler ... 73

Figure 5-11 Visual Profiler Timeline View for TRC ... 74

Figure 5-12 Timeline That Shows Overlapping Behavior of Multiple Kernel

Invocations ... 74

Figure 5-13 Tricky Code for a Compiler ... 76

Figure 6-1 Change in Computation Power of CPU vs. GPU over Years 82

xii

LIST OF EQUATIONS

(2-1) .. 8

(2-2) .. 8

(2-3) .. 9

(2-4) .. 9

(2-5) ... 10

(2-6) ... 11

(2-7) .. 16

(4-1) .. 30

(4-2) .. 31

(4-3) .. 36

(4-4) ... 37

(4-5) ... 37

(4-6) .. 44

(4-7) .. 48

(4-8) .. 50

(4-9) .. 50

(4-10) .. 54

(4-11) .. 56

(5-1) .. 63

(5-2) ... 64

(5-3) ... 65

(5-4) ... 66

(5-5) ... 68

xiii

(5-6) ... 68

(5-7) ... 68

(5-8) ... 70

(5-9) ... 70

(5-10) .. 70

(5-11) .. 78

(6-1) ... 81

xiv

LIST OF TABLES

Table 3-1 Performance Statistics for Each Repetitive Task of Open TLD 21

Table 4-1 HETLDError Class’ Public Fields and Their Definitions 29

Table 4-2 Building Pyramids for LK Tracker .. 56

Table 5-1 System Specs of the Test Platform .. 60

Table 5-2 Method Used to Measure Time on Host Side .. 61

Table 5-3 Method Used to Measure Time on Device Side .. 61

Table 5-4 Elapsed Time for Each Stage of TRC .. 65

Table 5-5 Wrong Call Order for GPU to Overlap Kernel Invocations 75

Table 5-6 Correct Call Order for GPU to Overlap Kernel Invocations 75

Table 5-7 Object Detection Sequence against the Medium Size Video 78

xv

ABBREVIATIONS

-Open-TLD: Open Tracking Learning Detection

-CUDA: Computational Unified Device Architecture

-SMP: Symmetric Multi-Processing

-Open-MP: Open Multi-Processing

-SDK: Software Development Kit

-API: Application Programming Interface

-CPU: Central Processing Unit

-GPU: Graphical Processing Unit

-BB: Bounding Box

-PV-Computation: Patch Variance Computation

-II: Integral Image

-TRC: Total Recall Computation

-RFI: Random Forest Index

-NPP: NVIDIA Performance Primitives Library

-NPPI: NVIDIA Performance Primitives Library for Image Processing

-AoS: Array of Structures

-SoA: Structure of Arrays

-WDDM: Windows Display Driver Model

xvi

-TCC: Tesla Compute Cluster

-GP-GPU Programming: General Purpose GPU Programming

-MFT: Median Flow Tracker

1

CHAPTER 1

1 INTRODUCTION

This thesis is based on ―Open TLD‖, which is an algorithm for long-term tracking of

objects throughout a series of video frames The aim of this thesis is to increase the

processing speed of this algorithm by parallelizing it to run on hybrid CPU-GPU

environment.

Open TLD algorithm has high computational complexity. For instance, its detection

module runs an extensive search (a kind of a sliding window method) for detecting

location of the object within each frame, which is a highly compute-bound operation

(due to running a single operation on thousands or even hundreds of thousands

bounding boxes depending on the video resolution and number of scale levels

object’s patches have). While modern hardware is capable of achieving such goals,

real-time tracking is only possible for low-resolution images and for a single object

due to its high computational cost. Parallelization of the algorithm and increasing its

processing speed is expected to allow running multiple instances of the algorithm to

track multiple objects, which opens up possibilities for other applications.

Optimization of the algorithm to run at higher resolutions is also desirable. Open

TLD has also some configuration parameters to tune the accuracy of its

tracking/detection operations. Tuning those parameters for higher tracking accuracy;

eventually leads to performance degradation. For example, for the sake of being

invariant to scale and rotational changes; the framework creates a number of patches

of the object under observation, differing in scale and rotation angle. That number is

specified at configuration time and should be kept small, if anyone wants to run its

application at higher frame rates. This raises an issue of trade between object

tracking quality and processing speed. By incorporation of GPU technology in

particular; now speed of video/image processing applications that even run on a

2

single machine rather than a cluster of machines, might be accelerated significantly.

A faster Open TLD implementation on the GPU is important in the sense that:

- Increase the resolutions for which the algorithm can run in real-time,

- Allow running multiple instances of the algorithm to enable real-time

multiple object tracking,

- Allow running the algorithm at higher accuracy by making it possible to run

the algorithm with parameters resulting in higher accuracy while increasing

the computational cost.

The aim of this thesis is to design and implement an efficient hybrid CPU-GPU

processing framework which makes use of the specific properties of CPU and GPU

(i.e. using CPUs for operations for which CPU has advantages and vice versa).

Figure 1-1 CPU-GPU Comparison

Most modern computer platforms have both processing units, CPUs and GPUs.

Thus, in this thesis, one of the aims is to exploit both processing units. Each has its

own advantages and disadvantages by their design. For instance, CPUs are good at

executing branched-instructions and have higher clock frequencies; while GPUs are

not optimized for divergent operations requiring branching and typically have lower

clock frequencies. On the other hand, GPUs have hundreds of cores devoted to data

3

processing rather than data caching and control flow (branched-instructions);

therefore they may run a single instruction on more data simultaneously in

comparison with the CPU (See Figure 1-1for a comparison).

The aim of the thesis is not to modify or improve Open TLD in algorithmic sense;

but to decrease its execution time. By improving its execution time, its detection and

tracking quality will be increased implicitly.

1.1 Motivation

Especially in the last decade, there have been significant improvements in terms of

GPUs and they have been started to be used in general purpose programming. At the

beginning, GPUs had always been used to process graphical data in order to display

geometrical shapes on the screen along with a proper perspective and depth.

However, while initially driven by gaming and graphics applications there has been

an interest to leverage this high processing power of GPUs in other application areas.

As a result, many software development platforms have emerged to ease

programming of GPUs and make their massive processing power available for

general purpose applications. Among those, the most prominent ones are Open-CL,

Open-ACC, C++ AMP and, CUDA.

CUDA is a combination of software tools (GPU accelerated libraries such as

CUBLAS, a driver API, and a run-time API) that enables developers to develop and

run applications on the GPUs leveraging their massively parallel architectures. See

Figure 1-2 for an illustration of software layers of CUDA in hierarchical order.

Incorporating GPUs into such application programming in order to have them

cooperate with CPUs is called (a kind of) heterogeneous computing or programming.

Since data and instructions must be transferred to GPU’s memory; they mostly use

PCI-Express bus to transmit data back and forth. However that is the most critical

bottleneck of heterogeneous computing (GPU architects have been trying to

minimize this overhead and it is still a hot topic for many of these GPU

architectures). In order to eliminate this cost, application developers are encouraged

4

to execute as many instructions as possible on the data residing on GPU memory

currently so that whenever another portion of the data is to be moved to GPU

memory (this operation is completely independent of execution and carried out by

loading units), time required to transmit it could be hidden out by aforementioned

execution time. There are many other restrictions and bottlenecks specified in

manuals of corresponding technologies.

Figure 1-2 CUDA Architecture

CUDA is highly popular for several reasons, some of which are listed below:

- Unlike technologies such as Open-CL, CUDA is developed for a specific

hardware from NVIDIA eliminating the overhead caused by interoperability

issues; hence resulting in a better performance.

- CUDA is supported by many teaching centers in universities, companies and

even by individuals. Thus, there are many 3
rd

 party libraries provided to

application developers. Besides, its evolution is faster than other

heterogeneous parallel computing tools.

- Application developers are completely isolated from graphics APIs and they

can develop their programs without considering the pipeline.

5

- CUDA allows many C++ features like classes, templates, etc. while many

others are based on C99.

CUDA also has some very powerful libraries that could be incorporated into

video/image processing applications; such as [1]. In addition to those libraries, some

open source communities such as Open-CV has recently started to provide

application developers with GPU-accelerated versions of its already built-in

methods. Due to these reasons, CUDA is chosen for the implementation phase in this

thesis.

Various video/image processing algorithms suits well to SIMD architectures

provided that they are based on running a single instruction on individual pixels.

GPU architectures are good candidates for such purposes; because of having small

fast memories and registers attached to cores; but having thousands of those cores

dedicated to data processing. Although GPU cores are not specialized for executing

branching instructions; many video/image processing algorithms’ computationally

complex parts do not contain flow control structures (even if they do, many of them

do not cause branch divergence among threads). That also leads developers of such

applications to run such computationally intensive fractions of the algorithm on

GPU.

Open TLD’s tracking and detection modules run independent of each other; i.e. they

do not need to share any common data until the integrator receives results from both

in order to estimate the location of the object. An important advantage of

heterogeneous computing is to keep CPU and GPU busy as much as possible and

hence utilize the resources efficiently. A detailed study of the algorithm in [2] reveals

that it could be run on CPU and GPU independently and might be overlapped.

Moreover; using CUDA streams/events [3] enables developers to overlap data

transfer between host/device; and some very critical parts of Open TLD fits well to

this pattern (its detector module in particular). Each ―TLDObject‖ (defined in

Section 4) is independent of each other in the sense that they may run different

methods from same or different modules at the same time without any interference.

6

For instance, while TLD Object ―A‖ is running tracking module’s method ―B‖; in the

meantime object ―C‖ might be running detection module’s method ―D‖. Finally,

multi-core CPUs may be exploited in order to perform tasks that are not desired to be

executed on GPUs for particular reasons (such as parts of the algorithm which

require moving data back and forth between CPU and GPU very frequently).

7

CHAPTER 2

2 LITERATURE REVIEW

In this chapter, an overview of object tracking algorithms and the related work

focusing on acceleration of object tracking algorithms as well as the rationale behind

selection of the TLD algorithm as the main focus in this thesis are given.

Tracking a particular object in a sequence of continuous video frames is an important

concept in computer vision domain due to the wide range of applications. Object

tracking systems are expected to track an object until it moves out of the camera’s

field of view. It is a challenging task due to many reasons such as changes in

illumination, noise, rotation or scaling, and object appearance. Besides, some

systems aim tracking on moving cameras; rather than stationary ones. This adds

additional complexity to object tracking algorithms. There are also some real time

limits which affect the continuous tracking of the object, therefore they demand high

processing power in order to track any object uninterruptedly.

In this chapter, two different types of past works are covered:

- Object Tracking Algorithms,

- Accelerating Object Tracking Algorithms via Heterogeneous Computing.

GP-GPU programming is relatively new topic compared to object tracking. Thus,

many different approaches to track an object in 2D and 3D scenes have been

proposed; while there is relatively less number of GPU-based or hybrid approaches.

In [4], object tracking is grouped into 3 different categories: recursive tracking,

tracking-by-detection, and adaptive tracking-by-detection. According to [4], a 4
th

category has emerged recently, which is called tracking-learning-detection. Our work

8

is based on a tracking algorithm that could be classified in this new group of tracking

algorithms.

As for increasing effectiveness and speed of object tracking algorithms via hybrid

solutions, almost all of these solutions focus on analyzing and improving optical flow

part of tracking algorithms; rather than focusing on the whole problem.

2.1 Object Tracking Algorithms

As just mentioned before there are 4 types of tracking algorithms. First group is

recursive tracking. This type of algorithms estimates the approximate location state xt

of the object on the current frame in accordance with its previous location xt-1 state

by applying a certain transformation to this previous location. CONDENSATION [5]

is one such popular recursive tracking algorithm. Unlike ―Kalman Filtering‖ method

which outputs a single estimate of position and covariance, it estimates entire

probability distribution of likely object positions; increasing its robustness against

distracting clutter. Note that, it assumes that all observations (frames) in a temporal

image sequence are mutually independent of each other; therefore previous

observations has no effect on determining next state xt, and it is called Markov

process as shown in Equation(2-1).

 () (|)

(2-1)

Where is the conditional probability density function of state xt, given that zt has

already been observed at time t.

 (|) (|) (|)

Where,

 (|) ∫ (|) (|)

(2-2)

9

Where kt is normalization constant, (zt | xt) is the probability density function that

weighting new samples in state xt, and (xt | xt-1) is the conditional probability

density function which proves the next step is conditioned directly only on the

previous state.

Another popular recursive technique is ―mean-shift tracker‖. In this method, tracker

tries to find the mean-shift vector by maximizing ―Bhattacharyya coefficient‖ [6]

shown in Equation (2-3). First it finds the weighted pdf (probability density function)

of object model (q) centered at the location y0 in the previous frame and the pdf of

the candidate centered at the location y on the next frame. Then it calculates the

similarity between these two PDFs.

 () ∑√ ̂()

(2-3)

Where () is Bhattacharyya coefficient, ̂() is the m-bins color histogram vector

of the candidate on the next frame centered at the location y, and is the m-bins

color histogram vector of the target on the previous frame centered at the location y0.

After calculating the first Taylor expansion of this function around y0; mean-shift

vector (shown in Equation (2-4)), that will be added up to the previous location

vector y0 (in order to find the new center location of the object), could be obtained.

This is shown in Equation (2-5). This will lead to error accumulation, if the previous

locations are calculated wrong.

 ()
∑ ()

∑ ()

(2-4)

Where is the mean-shift vector, is the weighted function which depends on p

and q (probability distribution functions), xi is the location inside the ROI (Region of

10

Interest) centered at the location y on the next frame, and y0 is the center of the object

on the previous frame.

 ̂ ()

(2-5)

Where Mh is the mean-shift vector maximizing Bhattacharyya coefficient in Equation

(2-3), and ̂ is the new center location of the object on the next frame.

However, in [7] it is mentioned that the recursive methods accumulate the error due

to dependence on the previous states of the object as depicted in Equation (2-2)

(where next state always depends on the immediately preceding state). If object

leaves the scene, and comes back into the view; they produce a significant error that

will propagate to the following frames eventually.

Second group of tracking algorithms is tracking-by-detection. However these

trackers have detectors that are trained once initially, and are never updated again. As

a consequence of this, they require to learn many different aspects of the object

beforehand (offline learning). In [8], a bunch of different patches are produced by

applying affine warping techniques; which are then used to train a classifier.

Although this tracker is effective; it cannot learn unseen appearances of the object;

because it is difficult to estimate all variances of the object’s appearance in the

beginning.

Third group is adaptive-tracking-by-detection. It was developed for updating the

classifier online. In [9] tracking problem is treated as a binary classification in which

there are two different classes, object and background. The method works on color

video frames, and uses self-learning (discussed in the next subsection) in order to

train its classifier throughout the temporal sequence of video frames. The features are

defined as a weighted linear combination of R, G, and B channels of any pixel as

shown in Equation (2-6).

11

 * | , -+

(2-6)

Where Fi is equal to any feature.

This methodology creates two m-bins histograms for both object and background;

then tries to maximize the likelihood ratio of each feature using the probability

density function based on those histograms. Features with higher likelihood ratios are

picked up and used to model both object and the background each time a new frame

is processed. However, in [10] it argues that self-learning algorithm causes drift due

to using its own inferences to update itself.

The last group is TLD (which the algorithm we use in this thesis is based on) and

discussed in more details in subsection 2.3.

2.2 Machine Learning

Machine Learning is an important subfield of computer science in object tracking

domain; because a spatial-temporal model is required in order to detect the object’s

presence throughout a video stream, in turn this model should shape itself in the

course of time as unseen samples are captured from that stream. There are 3 types of

machine learning techniques in general: unsupervised, supervised learning, and semi-

supervised.

- Unsupervised Learning: This type of learning techniques tries to find a

hidden structure in which each group of unlabeled data belongs to a particular

class (label). It uses methods such as k-means, mixture models, hierarchical

clustering, etc. in order to group data with respect to the features the input

data have.

- Supervised Learning: It uses labeled training data to infer a function (model).

In supervised learning, each training example is a pair of object (typically a

vector) and a label that it is classified as. However, extra caution should be

taken when training data are picked to create the model. For instance if the

heterogeneity of training data is high; while some algorithms such as SVM

12

(Support Vector Machine) which requires the input features to be numerical

and scaled to a certain range, are easier to apply; others like nearest neighbor

methods are sensitive to such data. There are many other constraints to be

considered in choosing training set. Main problem with supervised learning is

that it could lose its generalization power in the course of time due to bias-

variance trade-off. If bias is low, then it will fit each incoming data

differently, hence will result in a high variance (over-fitting); and vice-versa.

A system expert may label the input data from time to time and keep the

balance between bias and variance via updating parameters of the model.

- Semi-supervised Learning: This learning technique stands in between

unsupervised and supervised learning. It exploits both unlabeled and labeled

input data for updating its model on its own. Initially, it is fed with an

independently identically distributed (i.i.d.) training data like in supervised

learning. Unlike supervised learning, there is no validation step to tune the

parameters of the model. It combines unlabeled and labeled data to enhance

the classification performance either by discarding the unlabeled data and

doing supervised learning, or discarding the labels and doing unsupervised

learning (hierarchical clustering, k-means, etc.).

Semi-supervised learning has made a significant progress recently. There has been

implemented a great variety of learners included in this group. In [11], some

algorithms were discussed in this context, such as expectation maximization (EM),

self-learning, and co-training.

EM maximizes the likelihood (which is soft-clustering. Unlike k-means in where

objects are classified as either inlier or outlier of a certain class; rather than assigning

a probability to it as to how much likely it belongs to that class); hence if the

posterior probability functions of two different classes are not separate on their low

boundaries, EM will eventually lose its discrimination power. In self-learning, after

classifier is trained, unlabeled data are evaluated by the classifier; and classifier picks

up the unlabeled data with the highest confidence value (hard-clustering), and

13

eventually this kind of schema in which the classifier uses its own decisions to train

itself, will lead decision boundaries to be pushed away from the unlabeled data [10];

as a result it will cause drift.

In learning algorithms, unimodality means that there is more than one different

resource that contributes to the object model. On the other hand, co-training splits the

vector that describes examples into two; then it trains two separate classifiers using

those separate features. At the learning step, each classifier evaluates unlabeled data

and enhances the training set of another. As a result, each classifier learns a different

group of features resulting in two modalities (multimodality). However in object

detection problem, samples (patches) are generally (for instance [9] is an exception

to this) obtained from a single modality. Thus, in [11] it is claimed that co-training is

not a good candidate for detecting objects within a temporal sequence of frames.

In [11] and [2], it was shown that P-N Learning, which is also a type of semi-

supervised learning, is superior to other semi-supervised learning techniques in

detecting objects under observation. This technique is discussed in the next sub

section in detail.

2.3 Tracking-Learning-Detection (TLD)

Figure 2-1 TLD Framework [2]

14

In Figure 2-1 TLD Framework, the whole framework of TLD algorithm is

summarized. In this subsection, these components and their roles in this framework

are explained.

The novel approach in TLD [2] is that its classifier does not use its own inference;

but another component (P/N experts) helps it in updating the model. In addition to

this improvement, it has some structural constraints. In [11] it is assumed that an

object cannot be located in more than one position on a single frame (i.e. at a time)

and that object should follow a particular trajectory.

In TLD, tracking is the process of predicting next locations of previous reliable

points located in the BB (bounding box) of the object; and determining their

reliability based on forward-backward and NCC (Normalized Cross Correlation)

scores as well [12]. As a result of those, it finds the trajectory (which is used by P/N

experts) as well.

Task of the detection module is to find the reliable BBs (based on classifier’s

scoring) where the object may exist. Then those BBs with high scores are sent to the

P-N learner for evaluation (discussed in next paragraphs). Main purpose of the

detector is to decide whether the object is still in the field of camera’s view and if

not, it tries to detect the object when it comes back into the scene. This is a

significant improvement over many other tracking algorithms.

TLD uses random forest to describe its model and P-N learning for updating that

model. As is the case with any semi-supervised learning, the classifier is initially

trained with some labeled data. Then the classifier evaluates unlabeled data. Finally,

P-N learning decides whether classifier’s decisions on unlabeled data are correct or

not by following steps:

- P expert checks each sample labeled as negative (background) against the

trajectory. If that sample is nearby the trajectory, then it re-labels it as

positive and adds it to the positive training set. This will eventually increase

generalization power of the classifier.

15

- N expert checks each sample labeled as positive (object) against the

trajectory. If that sample is far away from the trajectory, then it re-labels it as

negative and adds it to the negative training set. This will eventually increase

discrimination power of the classifier.

If any of the two steps (or both) above occurs, then the classifier is updated;

otherwise it remains intact as it was before.

2.4 Tracking Algorithms Implemented on GPU or Hybrid

Platforms

In this subsection some GPU implementations for tracking algorithms are mentioned.

Many algorithms implemented on GPU or hybrid platforms focused on calculating

optical flow as it is the common requirement for almost all modern tracking

algorithms. On the other hand, by the time H-TLD has been implemented, no hybrid

implementation for TLD was proposed.

In [13], CUDA was used to accelerate the speed of LK (Lucas-Kanade) optical flow

on GPU. It splits the algorithm into some sequential steps as shown in Figure 2-2.

Figure 2-2 Overview of Parallel Algorithm in [13]

It uses Harris operator to figure out which patch on the frame is better for finding

disparity (motion) vector h (this step is called patch selection step). Then it adds and

16

subtracts patches for further steps that will be run on GPU. It runs Sobel operator

(kernel) on (I + J) patch in order to obtain gx and gy gradient matrices in parallel. It

fuses multiplication and summation step into one and run parallel reduction

algorithm. After running equation solver to find vector h, it generates a new image J’

by adding h with J; then it runs all steps for several times again until vector h

converges. However, since it did not consider pyramidal case, it fails to capture fast

motion changes. Any speed-up was not given in the discussion part of [13].

In [14], it also includes pyramidal implementation from [15] in order to capture fast

motion changes between two consecutive frame contrary to [13]. They also split into

several steps; but they have more steps due to pyramidal implementation. They

showed that most time consuming operation among them is ―LK Optical Flow‖ as

shown in Figure 2-3. They achieved a good performance in that thesis, and compared

their results with Bruhn’s CPU implementation and Horn & Schunck (HSCuda)’s

GPU implementation, based on a measurement that reflects the trade-off between

execution time and accuracy (ETATO). This is shown in Equation (2-7). Their

algorithm outperformed other two algorithms.

(2-7)

A video analytics system targeting video surveillance applications is described in

[16]. As part of this work, a tracking algorithm was optimized on GPU, however, due

to its target application field; tracking is based on background subtraction and

assumes that the cameras are static.

Lastly, another parallel tracking algorithm has been published recently in 2014. It

[17] has two big modules, one for feature detection and another for the optical flow.

In this work, Bouguet’s corner detector [15] based on Harris detector [18] was used

to detect features to be tracked and LK optical flow was exploited for tracking those

detected features. They also used multiple GPUs (as CUDA allows developers to

enumerate and use multiple GPUs concurrently) to increase their speed gain. They

17

compared their work with Open-CV’s feature detector, tracker implementation; but

they only outran Open-CV under some certain circumstances (when some parameters

are tuned).

Figure 2-3 GPU Timing for Each Separate Operation [14]

Note that, all parallel algorithms mentioned in this subsection may perform faster in

conjunction with the development of new GPU architectures in the future.

18

19

CHAPTER 3

3 OPEN TLD ALGORITHM AND ANALYSIS OF

COMPUTATIONAL BOTTLENECKS

In this section, execution times of the TLD algorithm are analyzed to detect the

performance bottlenecks. Execution times were calculated by the methodology

explained in Chapter 5 (in Table 5-2 Method Used to Measure Time on Host Side).

Test platform and its specs could be found in Table 5-1 System Specs of the Test

Platform in Chapter 5 as well.

The algorithm is composed of the following components:

- LK-Tracker (LKT): It is a part of the tracking module and it calculates

frame-to-frame optical flow as was explained in median flow tracker [12]. It

is run twice per frame in order to find reliable tracking points with more

confidence values.

- Total Recall Computation (TRC): It is run in the detection module. Its aim

is to find a confidence value for each BB before the object- tracking phase

begins. The confidence value is then used to check the existence of the

tracked object in the current frame to find out whether it is still in the field of

camera’s view or not and detect its position.

- II-Computation (IIC): It computes integral and squared integral images for

each frame. These images are used within PV-Computation (patch variance

computation) of each BB. PV-Computation is the first stage of Total Recall

Computation, and called once before TRC begins.

- Blurring the Image (BI): Like II-Computation, this is called before TRC is

executed to smooth out the details in the image. This blurred image is used in

20

TRC for feature comparisons in order to find indices to random forest data

structure.

- Pattern Generation (PG): After tracking module estimates the location of

the next bounding box pertaining to the object, P-Expert decides on whether

the patch which that bounding box represents belongs to the object or not. If

it belongs to the object, then it retrains ensemble classifier by generating

positive patches (i.e. bounding box or scanning window). In the sense of

detection module (i.e. ensemble classifier), training data are simply patterns

generated via feature comparisons made on those generated positive patches.

- Computing BB Overlap (CBO): It is used by learning component in 3

different situations to find the ratio between two different bounding boxes

(()⁄). After bounding boxes

with high confidence values are determined by detection module, learning

component cluster these detections and form a greater bounding box

encompassing all bounding boxes owned by each cluster. Then it tries to find

how much of the bounding box defined by tracking module overlaps with

each of those bounding boxes. Second case is in which learning generates

positive and negative patches. The third and the last one is when learning

component harnesses detections (bounding boxes) with high confidence in

order to adjust trajectory which is intrinsically defined by tracking

component.

- Random Forest Update (RFU): Ensemble Classifier classifies labeled

example, and if this classification is proved to be incorrect by P-N Experts;

posterior probabilities of feature comparisons for that labeled patch are

updated (this operation was explained in [2] in more details and is out of this

thesis’ scope). This operation is not performed for every frame. It interferes

with the execution whenever detection or tracking module makes a mistake.

- Warping a Patch (WP): This operation is used to generate different version

of a positive patch to make it scale and rotation invariant. After a patch is

captured, it rotates, rescales that patch to create variants of it. It is called more

21

than once by learning component; but note that the learning component is not

run for every time a frame is generated.

- Norm Cross Correlation Computation (NCC): In the tracking module,

after finding the next points via median flow tracker [12], similarity between

sub rectangular regions, which are centered on original point on the previous

frame and centered on next (predicted) point on the next frame, with a

predefined size (explained in section 4.3), is calculated via Open-CV’s [19]

template matching procedure.

While there are other components of the algorithm, their execution times are

insignificant compared to the ones above. Thus, they were not considered in the

execution time analysis. In Table 3-1 Performance Statistics for Each Repetitive

Task of Open TLD, execution time per call and the average number of calls per

frame for each task mentioned above are given.

Component

Time per call (ms) Time for whole sequence

(ms)

480x270 960x540 1920x1080 480x270 960x540 1920x1080

Tracking

LK Tracker 1.100 4.280 17.520 509 1982 8112

Norm Cross

Correlation
0.620 0.630 0.770 287 292 357

Learning

Pattern Generation 0.010 0.020 0.080 32 65 258

Random Forest Update 0.440 1.200 1.890 141 386 608

Patch Warping 0.080 0.230 1.270 326 938 5180

BB Overlap

Computation
0.020 0.060 0.270 35 104 467

Detection

Total Recall

Computation
5.930 20.400 62.500 2752 9466 29000

Integral Image

Computation
0.271 1.100 4.560 126 510 2116

Image Blurring 1.685 6.509 23.649 782 3021 10974

Table 3-1 Performance Statistics for Each Repetitive Task of Open TLD

22

As seen in Table 3-1, there are some tasks which are not called per frame (average

number of calls lesser than 1) and which are called for couple of times per frame

(average number of calls greater than 1). All tasks that seem they are called for

couple of times per frame (PG, CBO, WP) are parts of learning module, and they are

executed when the learning module interferes with the process (Thus, it could be

inferred that they are called couple of times by the learning component when the

learning component runs). On the other hand, only RFU’s call statistic shows the

exact average number of calls to the learning component (because RFU is called

once per call to the learning component).

It can also be seen that there are some tasks which are called every time a frame is

processed, and are costly. These are TRC, BI and LKT which are computationally

expensive. Moreover, as the resolution of the video is increased, those three tasks

dominate the execution time.

TRC is the most time consuming component. The reason is that it performs an

exhaustive search for the object using a sliding window method. This task is

performed as follow:

- A series of BBs based on object size are initially created and saved into a data

structure.

- Then TRC treats each one of these BBs as a search window and carries out a

series of costly sub tasks (PV (Patch Variance)-Computation, feature

comparison, and CV (Confidence Value)-Calculation sequentially) on this

single window (BB) to figure out which one of them is the best for the object

to fit into (or it does not exist in the field of camera’s view).

According to [2], there could be 50k BBs for a QVGA image (240x320) depending

on the initial size of the object’s BB. Therefore, this high number of BBs causes this

high computational cost.

23

Although BI is not a heavy operation, yet it could become problematic as the

resolution increases. In [2]’s case, it runs in a virtual machine (VM) and this brings

another extra overhead for this task.

LKT’s sparse mode is used in [2]. Since Median Flow Tracker (MFT) mentioned in

[12] calls LKT twice to calculate the forward-backward error for all points; it

doubles the cost. Moreover, Open TLD [2] uses pyramidal LK tracker [15] in order

to capture large motions. As a consequence of those two facts, tracking good features

(points) of the object under observation becomes an expensive operation; even

though it does not compute dense optical flow.

Finally, computational cost of IIC increases linearly with the number of pixels in

video frame. Besides, the first sub task (PV-Computation) of TRC was implemented

on GPU (discussed in Chapter 4); hence there are two options: either both (plain and

squared) IIs had to be calculated on CPU and then moved to GPU; or only the

current frame had to be moved to GPU and then IIC should have been performed on

GPU as well. First option is more expensive than is the second one; because moving

data back and forth between GPU and CPU is expensive compared to computational

operations that could be done on GPU. Furthermore, IIC task suits well to the GPU

architecture, hence we decided to run this component on the GPU.

24

25

CHAPTER 4

4 IMPLEMENTATION DETAILS

In this section, the design of the H-TLD library and the implementation details are

provided.

4.1 TLD Object & H-TLD Modules

In this subsection, the general software design and main components of the Hybrid-

TLD (H-TLD) algorithm are given. H-TLD has been designed for easy injection into

any serial context. The context is not restricted only to C/C++ based native OS

processes; but it may also be a JVM, .NET framework, or another container. Since

the output of this code is a DLL or SO file, it can be used within various applications

on different platforms.

A C++ object called TLDObject is the key to communicate with the library. Each

TLDObject refers exactly to one object under observation in the current video

stream, and is pure state holder which means that it does not have any behavioral

implementation. TLDObjects are passed to H-TLD modules (tracking, detection) in

order to exploit H-TLD capabilities. For this reason, there might be more than one

TLDObjects while there is only one instance of each H-TLD module (i.e. one

instance for tracking and one for detection) in a single process. Each TLDObject

consists of 2 different module states: one state for tracking and one for detection. The

learning component is not included in this object. Reasons for excluding the learning

component from this object are explained in Chapter 3.

TLDObject is called ―active‖ whenever a TLDObject binds to (calls) an API method

of any module from H-TLD. Note that, when one of those objects is busy (i.e. active)

26

with any of those modules’ methods (either tracking’s or detection’s); it excludes all

other objects from using that method for thread safety. That is because many

GPUkernels use file-scoped variables residing on GPU’s constant memory (which

stores data per TLDObject) until module it belongs to is done with that active

TLDObject. Nevertheless, other unbound methods of that module and all other

modules’ methods can be used by any other TLDObject simultaneously without

worrying about any kind of race condition that may occur in between two active

TLDObjects. Figure 4-1depicts this notion.

Figure 4-1 Communication with H-TLD via TLDObjects

27

As can be seen in Figure 4-1, whenever one of the methods from any module is

occupied by one of these TLDObjects, any other object’s request, that demands the

execution of the same method, should be suspended.

Figure 4-2 Class Diagram for H-TLD Objects and Structures

Figure 4-2 depicts the relationships among the key objects. There is no circular

dependency between those objects (loosely coupled). In other words, when one of

those classes is required to be changed (or extended) all the rest will not be affected.

―has‖ relation shows that class/struct which is pointed by head of the arrow is owned

28

by class/struct attached to the tail of that same arrow and ―uses‖ relation depicts that

class/struct which is attached to the tail of the arrow has an instance of class/struct

which is pointed by head of that same arrow. Since all classes/structs have their

definitions and all necessary comments in their corresponding source codes; only a

brief definition for each class/struct will be given in following items:

1. TLDObject: It is the key to communicate with the serial code. It has all state

variables for an object under observation, and it stores all the information

required by singleton H-TLD modules. Many of those variables are created at

initialization time of the TLDObject as they remain intact until the disposal of

that TLDObject; hence causing to eliminate overhead that would have been

brought by allocation and de-allocation instructions. Each TLDObject is

associated with a unique id called ―handler‖ and it is the only way to acquire

the TLDObject on demand in a serial context.

2. MemoryManagement: It has methods used within both serial code context

(moving the current frame to the GPU, etc.); and the modules in H-TLD

(such as converting BB offsets stored in the form of array-of-structures into

structure of arrays for coalesced memory access of GPU). It manages all

CPU/GPU data transfers; and conducts all other memory related operations.

3. FastTracking: It has methods which are executed in a heterogeneous way to

reduce execution time of tracking module. For the time being, it only

attempts to speed up forward/backward optical flow computations based on

[12] using [19]. It has associated C++ structure called

―FAST_TRACKING_STR‖ and it is created per TLDObject. It holds state

variables for running tracking related operations.

4. FastDetection: It has methods which are executed in a heterogeneous way to

reduce execution time of detection module. It has two methods for computing

integral images via [1] and total recall computation which is explained in the

next part of this chapter. It has associated C++ structure called

―FAST_DETECTION_STR‖ and it is created per TLDObject. That structure

holds state variables for running detection related operations.

29

5. Master: It is a container for having access to all API objects. When it is

created for the first time, it creates the other H-TLD modules in accord with

the parameters passed from serial code context. Access to any TLDObject or

H-TLD module (either FastTracking or FastDetection), should be done

through this module. Another purpose of it is to create and destroy

TLDObjects on demand.

6. Error Management: This module is responsible for error handling. The

class, named ―HETLDError‖ is the type of all errors thrown by H-TLD. It

inherits all basic fields, methods, constructors and destructors from its parent

which is standard C++ library’s ―runtime_error‖ class. All what clients

should do is to surround API calls with try-catch blocks in order to capture

and handle those errors. Table 4-1 describes its public fields for whenever an

error is captured, clients will know what error has just occurred and in which

module it did so.

Public Field Name Definition

_module It holds enumeration for the module that

caused erroneous case.

_error_code It stores the error code. Clients may check

out ―hetld_errors.hpp‖ file in order to

figure out the exception (in that file each

module has its own set of errors; so that

API users may match the error code with

the one they got at run-time).

what_arg It is inherited from the parent class and

clients may use it for displaying error

messages in a user-friendly way.

Table 4-1 HETLDError Class’ Public Fields and Their Definitions

30

4.2 Implementation of H-TLD Detection Module

For the time being, H-TLD’s detection module accelerates two critical parts of the

original detection module from [2] (See Chapter 6 for speed-ups):

 Total Recall Computation: As mentioned in the previous chapters, detection

module uses a sliding window methodology to detect whether the object

under observation is still in the video or not and if it is, then to estimate

object’s location. Thus, for each BB; a confidence value must be assigned per

frame. This operation has high computational load due to the high number of

BBs for even lower resolution video streams (e.g. for a 470x310 resolution

frame; ~30,000 BBs need to be scanned).

 II Calculation: Integral Image, which is also known as ―summed area table‖,

is a data structure and algorithm for generating the sum of values in a

rectangular subset of a grid (a video frame could be assumed as a grid).

Equation (4-1) gives the formulation for forming an II out of a video frame.

Suppose that there is a video frame , then II is calculated as:

 () ∑ ()

(4-1)

Where a pair of x and y specifies a particular location in the frame I.

Once II is calculated, in order to find the sum of all pixel values in any sub

rectangular region within an II like the one in Figure 4-3 (Image was copied

from [20]):

31

Figure 4-3 A subset of a Rectangular Region on an II

 () () () () ()

(4-2)

As it can be seen from Equation (4-2), it is only adding and subtracting four

array references.

Before Random Forest Index (RFI) calculation step (a subpart in total recall

computation), an integral image and squared integral image must be

calculated for the use in PV-computation to eliminate many of the BBs before

they make their way to RFI calculation phase; hereby reducing total recall

computation time. The reason why PV-Computation is the first step of the

ensemble classifier is that it is far cheaper operation by comparison with the

rest. Both integral images are calculated (right after current frame is moved to

GPU by ―MemoryManagement‖ module) by [1]’s

―nppiSqrIntegral_8u32s_C1R” method. Results of this method and

comparison with its serial counterpart could be found in Chapter 5.

 Obtaining Blurred Image: Original frame is not used in ―RFI Calculation‖

phase when pixel comparisons are made; instead it is blurred by a ―Gaussian

Filter‖ for the sake of eliminating details. ―MemoryManagement‖ module

blurs that frame on-demand using a method from [19] and stores it on a

separate location on GPU memory.

32

 ―Total Recall Computation‖ does not take place only on GPU; contrary to II-

Calculation; but on both processing units to efficiently utilize both CPU and GPU.

That computation includes 4 separate subparts executed in the order given below

(however, all these steps are executed for number of asynchronous invocations and

each invocation is independent of each other; hence none of the invocation has to

wait for each other to be completed):

 PV-Computation (GPU Only),

 BB Stream Compaction (GPU Only),

 RFI Calculation (GPU Only),

 Confidence Calculation (CPU Only).

Each subpart’s implementation details will be discussed in separate subsections

along with the reasons for choosing particular processing unit type (CPU or GPU). A

general overview of ―total recall computation‖ could be found in the pseudo-code

shown below (Please, see [21] for what ―single region‖ and ―parallel region‖ come to

the meaning of).

33

Figure 4-4 Pseudo-Code for Total Recall Computation

34

4.2.1 PV-Computation (GPU Only)

Some concepts which are used to organize data in order to increase speed-up that

will be referred to in the implementation part are detailed below.

A Scan-
Line Pair

A Scan-
Line Pair

A Scan-Line
A Scan-Line

A BB from
Scale-Leveln

A BB from
Scale-Leveln

A BB from
Scale-Leveln-1

A BB from
Scale-Leveln-1

Figure 4-5 Terms Used in PV-Computation

1. Scale Level: Open-TLD generates scanning windows (i.e. BB) via applying

different scaling values (fractional number that equals to 1.2
k
 where k is in [–

(n – 1)/2, (n – 1)/2] as specified in [2] and where n is equal to the total

number of scale levels) to width and height of the original object’s BB, in

order to prevent object from not being detected in the case which it is

rescaled in some way. Just before it creates a group of BB that belong to

certain scale level, it multiplies original width and height of the object’s BB

with scaling value to find width and height of BB at that certain scale level.

In this thesis, scale levels are numbered from 0 to (n-1).

2. Scan Line: Each BB is represented by its 4 corners. Since each BB’s top and

bottom border align with the horizontal axis (i.e. overlaps with a particular

row of any II), each pair of corner locations (either at the top or bottom. e.g.

top left and top right corner locations form a pair) of any BB lies within a

single row of II. Any this type of row is called ―scan line‖. Note that, one

scan line may form top and/or bottom borders of BBs from different

scale levels (This property will result in reducing the number of scan

lines that must be read into shared memory).

35

3. Scan Line Pair: A pair of scan lines encompasses top and bottom borders of

a group of BB at a given scale level. That is to say, one scan line for top

borders and another one for bottom ones of a particular group of BBs at a

given scale level.

4. Chunk: is the smallest container unit for BBs from different scale levels.

They are building blocks of clusters. Although each chunk is carefully

designed to house BBs spanning a single scan-line pair from every scale

level; since number of scan-line pairs decrease as scale level goes up and due

to shared memory limit, chunks do not always have to have bounding boxes

from all scale levels. While the number of BBs among chunks may vary, the

chunks are designed in such a way to have approximately the same number of

BBs. But one thing within a chunk is guaranteed to be consistent which is that

a group of BBs spanning a scan-line pair cannot be impartible and should be

located within a single chunk, no matter what

5. Cluster: Actual logical unit which is run in GPU thread blocks. Each thread

block of CUDA enabled device is responsible for executing one cluster per

invocation. Each cluster has almost (See subsection called ―Load Balancing

Concern‖) equal number of chunks.

In the remainder of this chapter, firstly the design of kernel on GPU is discussed.

Then, memory optimizations, more specifically shared memory and coalesced

memory access to global memory concerns are mentioned. And finally, load

balancing design and memory access patterns on GPU are addressed.

4.2.1.1 PV-Computing Kernel on GPU

This kernel is composed of three parts:

1. Read the scan-line pairs into the shared memory.

2. Compute patch variance (PV) for each BB either based on integral image or

squared integral image.

36

3. Decide on whether BB’s calculated PV passes specified threshold value (min

PV) and assign 0 or -1 (depending on the outcome of PV-Computation) for

below and above threshold value respectively.

Pseudo-code in Figure 4-6 shows implementation details of the kernel. Note that,

since kernel code is run by each thread in a block; that pseudo-code should be treated

as if it was a piece of serial code run by a single thread.

Although order of time complexity function (i.e. Big O) of any algorithm in [2] was

not modified; functions themselves were done so in order to have them complied

with parallel structures and parallel computation methodologies. Adding some

―overhead instructions‖ (such as initializing instructions before a loop begins),

―control instructions‖ (such as incrementing an index to advance any loop), and some

other helper instructions in the main loop such as having access to some extra

memory locations are some modifications that did not affect the order of time

complexity function. In conclusion, ―basic instructions‖ (instructions that are

executed for as many times as the size of input) remained intact.

Time complexity function of PV-Computation is given in Equation (4-3).

 () ()

(4-3)

Where n is equal to the number of BBs and m is equal to the number of scan-lines to

read.

For a given complexity function (), (()) (i.e. Big O) is the set of complexity

functions () for which there exists some positive real constant c and some

nonnegative integer N such that for all ,

37

 () ()

(4-4)

If , and ; then Equation (4-5) satisfies Equation (4-4).

 () ()

(4-5)

It means that the order of time complexity function is (). Thus, PV-

Computation is still running at linear time as does its serial counterpart (which

is ()).

38

Figure 4-6 Pseudo-Code for PV-Computation on GPU

39

There is a mapping between concepts in a multi-threaded environment and the ones

in PV-Computation:

1. Each thread in a particular block is mapped to more than one scan lines (not

necessarily; but it might happen as dimensions of the frame becomes larger

and larger) located in any of the IIs (either normal or squared); at the time

when II (either Squared or Plane II) pixels are read into shared memory

collaboratively.

2. A cluster is mapped to a single block per kernel invocation and vice versa,

3. A BB’s PV-Computation is mapped to a single thread associated with a

particular block; but not vice versa (i.e. a thread may process more than one

BB of a cluster that its block is assigned to).

Figure 4-7 depicts these relationships:

Figure 4-7 Mapping Multi-Threaded Concepts to PV-Computation Ones

40

4.2.1.2 Optimization of Memory Access

There are two main concerns regarding the use of shared memory:

1. Pixels located on a single scan-line are used by multiple threads in a block

while PVs are being computed (in some cases, threads may use some pixel

values for more than once); hence it would have resulted in multiple accesses

to global memory for exactly the same memory locations. There are two

cases in which this phenomena shows itself up.

- As illustrated in Figure 4-7 BBs from scale level i and scale-level i-1

share the same scan-line which spans bottom and top borders of their

associated scan line pairs respectively. Those BBs from different scale

levels are more likely to be processed in the same CUDA block. This

is explained in more detail in the subsection where load balancing and

exploitation of spatial locality are described.

- BBs are not that far away from each other and have gaps between

them as shown in Figure 4-7, BBs drawn in between scan-line pairs

are shifted 10% of their width to left; therefore resulting in multiple

accesses to very same pixels by those BBs that are adjacent

horizontally to each other. All in all, scan-lines required by threads of

any block should be read into shared memory for accelerating speed

of memory access.

2. As it can also be seen from pseudo-code; a PV for a BB is computed in two

steps rather than in one (outer loop iterates for 2 times). The reason is the

limited size of the shared memory of a GPU’s streaming multiprocessor. As

of yet, CUDA architecture 5.0 supports no more than 64KB of shared

memory [22]. Thus, scan-lines for II and squared-II are read into the shared

memory separately, so that more BBs could be processed per invocation

within a single CUDA block. More scan-lines each block reads into shared

memory, more BBs confined in between scan-line pairs are processed per

41

single kernel invocation; i.e. more chunks a cluster may hold; less number of

clusters are formed to be processed. As a result, it leads to fewer number of

kernel invocations for PV computation which is the key to reduce the

potential overhead of multiple kernel invocations at this stage.

Only concern about global memory access is how BB offsets are read into thread

registers. Those accesses must be coalesced; so that maximum bandwidth might be

used per memory transaction (See Chapter 6 of [23] for more details about global

memory chip design). Figure 4-8 depicts how array of BB offsets was organized on

the host side:

Figure 4-8 BB Organization on RAM in Serial Code Context

As the direction of arrows indicates, it is a row major memory access and all

attributes of any BB’s offset are placed sequentially. This pattern is called Array of

Structures (AoS).

42

Figure 4-9 Access Pattern for BB Offs without Conversion on Device Memory

Using this pattern, memory accesses to global memory would be non-coalesced as

illustrated in Figure 4-9. Coalesced access could be achived by realignment of data

stored on device’s global memory. This is done by a kernel implemented for this

purpose named ―convertBBOXOffsToSoA‖ in ―MemoryManagement‖ module.

This kernel groups each attribute type; in contiguous memory locations, converting

the AoS pattern into SoA pattern. Mapping of AoS based indexing into SoA is

illustrated in Figure 4-10.

Figure 4-11 shows new access pattern.

First off , current index to the AoS array is computed as follow:

Secondly, which attribute ―the value read‖ refers to has to be found (i.e. attribute

index for the current BB. Attribute indices starts with 0 and ends at n -1; where n is

43

equal to the number of BB’s offset attributes).

Suppose that, (a % b) operation is defined as (⁄) .

 ()

―One over number of attributes‖ is kept around because division is relatively much

more expensive than multiplication.

Thirdly, destination location for that attribute has to be calculated. Since number of

attributes each attribute group has is equal to total number of BBs; the following

shows that how destination location within SoA array is computed:

 ()

Then all has to be done is to move that attribute to its final destination:

 , - , -

Figure 4-10 Conversion from AoS to SoA

Figure 4-11 Accessing BB Offsets on GPU’s Global Memory after Conversion

4.2.1.3 Load Balancing Concern

In PV-Computation, ideally, BBs from different scale levels should be grouped in

such a way to ensure the clusters to have the same number of BBs to be processed.

44

Spatial locality between BBs must be exploited as well; so that scan-lines read into

shared memory might be used by higher number of threads during PV-Computation

process. Equation (4-6) and Figure 4-12 illustrate the decrease in the number of BBs

in a scan-line pair with the increasing scale level. Note that BBs specified by a

particular scan-line pair must be processed by a single CUDA block which means

that those BBs are impartible among CUDA blocks per kernel invocation. In

Equation (4-6), f is a function of scale level and gives the number of BBs a scan-line

pair may hold at a certain scale level x:

 ()

(4-6)

Where: = 470px, = 1.2, = 0.1, = 128px, and (scale level) varies from

0 to 7.

Figure 4-12 Relationship between Scan Line Pairs and Scale Levels

Where is the width of video frame, is base scale level (which is equal to 1.2 in

Open TLD’s [2] implementation, is shifting factor (it is in the range of (0, 1] and

0

5

10

15

20

25

30

0 2 4 6 8

Num of BBs per Scan-Line Pair

Num of BBs per Scan-

Line Pair

Scale Levels

45

in Open TLD’s [2] implementation equal to 0.1) and is the width of initial

bounding box that defines the object under observation.

Graph in Figure 4-12 is visual depiction of the function f in Equation (4-6) (assuming

all parameters are known; but scale level x).Figure 4-13 shows order in which BBs

are stored on memory on the host side.

Figure 4-13 Processing of BBs without Loading Balancing

46

Processing of BBs in the order as they are processed on the host side prevents proper

load balancing on GPU side. As direction of PV-Computation in Figure 4-13

indicates, each scan-line pair and the BBs located within it at a certain scale level is

located contiguously in the memory. Thus, blocks of PV-Computing kernels would

start processing fewer numbers of BBs compared to the earlier ones. This would

cause unbalanced kernel loads where many processing units become idle after a

while. To prevent such unbalanced operations, a pre-processing step as shown in

Figure 4-14 takes place once at the time when TLDObject is initialized.

Figure 4-14 BB Ordering for Load Balancing

4.2.2 BB Stream Compaction (GPU Only)

We need to eliminate the BBs which fail the test and dispatch only the ones passed to

the next stage to allow sequential access to remaining BBs in the following steps, and

47

copy only their RFIs back to host side after completion of ―confidence index

calculation‖ step (the next stage in where RFIs for only PV-Test succeeding BBs).

Figure 4-15 shows the status of BB stream right after running PV-Computation.

Figure 4-15 BB Stream after Running PV-Computation

As it is seen Figure 4-15, in order to compact BB stream and group all succeeding

BBs together, they must be shifted to the left. If a prefix sum is run with the output

of PV-Computation shown in Figure 4-15; then result shown in Figure 4-16, which

gives the shift amounts that next two steps (RFI Calculation and Confidence

Calculation) require, is obtained (That prefix-sum is performed by the state of art

library CUB [24]):

Figure 4-16 Left-Shift Amounts after Running ―Prefix-Sum‖

Equation (4-7) gives the formula that moves succeeding BBs to their correct

locations within the BB stream for compaction. Where i equals to the ith BB’s index

in the original BB stream and is the array which holds left shift amounts

for zipping that BB stream.

48

By this way, after RFI calculation step, there is no need to compute and copy all

RFIs for all BBs; but only of those that passed PV-Test. This step produces (memory

operations between host and device which are very expensive. This can be seen from

the results listed in Chapter 6). If all those l-shift values are negated via multiplying

them with ―-1‖, one may use those r-shift values to find previous locations (the ones

before compaction occurs) of those succeeding BBs by adding up to their current

location after compaction.

 () ()

(4-7)

4.2.3 RFI Calculation (GPU Only)

In this subpart, calculation of indices to confidence array (i.e. weights array) is

described. In [2], it was explained that how random forest are formed and features of

each tree in that forest are indexed. On GPU side, there are some memory accesses

which cannot be coalesced at all. For instance, memory accesses to blurred image

data can’t be coalesced due to the nature of how comparison is made for a single

feature on condition that this comparison is made by a single GPU thread (See Figure

4-17). Besides, a single thread conducts all feature comparisons for a single BB in

this implementation.

49

Figure 4-17 Feature of a Random Forest’s Tree

Although pixels which are subjected to comparison are not located on contiguous

memory locations, new architectures from CUDA team have been trying to leverage

global memory transactions and furthermore, parallel computation power of today’s

CPUs is not a match to the one of GPUs provided that one has 4, 8 cores whereas the

other one has hundreds of cores. That is to say, it may easily compensate time loss

caused by that non-coalesced global memory access pattern. Pseudo-code in Figure

4-18 shows that how each individual GPU thread computes RFIs based on

aforementioned pixel comparison.

Time complexity function of RFI calculation is given in Equation (4-8).

50

 () (())

(4-8)

Where m equals to the number of BBs, n equals to the number of trees and o equals

to the number of features.

If , and , then the inequality in Equation (4-9) satisfies the

inequality mentioned in Equation (4-4).

(4-9)

It means that the order of time complexity function is () . Thus, RFI-

Calculation is still running at linear time as does its serial counterpart (which

is () again).

Another version of RFI Calculation was also implemented and tested; but failed in

speed-up due to data loading time into L-Cache of a CPU core. It was a hybrid

solution for RFI Calculation in which CPU helps GPU by calculating a fraction of

RFIs based on a benchmark which is run before any TLDObject is created. Results

can be found in Chapter 5.

51

Figure 4-18 Pseudo-Code for RFI Calculation on GPU

4.2.4 Confidence Calculation (CPU Only)

The last step takes place only on host side (since weights for random forests are

constantly updated by learning component on host side from time to time; those

weights must have been moved to GPU each time right after they are updated which

would be very costly operation) and is the simplest one among all those have been

52

mentioned so far except relocating BBs for which caller may receive confidence

values for all BBs in order as it expects. Open-MP [21] is put into action for which

all CPU cores could be exploited like it has been done so far on GPU side. Each

group of BBs (number of BBs in any such group is exactly equal to the number of

BBs processed in the corresponding PV-Computing kernel) is once again split into

much more smaller chunks; so that each of those chunks that are equal in size could

be processed by individual CPU cores concurrently. There is an important notion that

should be addressed before mentioning how confidence values for BBs are calculated

on CPU cores. As explained before in PV- Computation subsection, in order to

balance the load that each kernel invocation would be responsible for; locations of all

BBs on the memory are changed. On the other hand, caller that calls

―computeTotalRecall‖ method was unaware of this load balancing operation;

therefore ―computeTotalRecall‖ method should return all BBs’ confidence values in

order that is known to the client. However, it’ll lead to a ―false cache-line sharing‖

via L-caches of CPU cores. It is shown in Figure 4-19.

53

Figure 4-19 Confidence Values Written to Output Array

If data had been written in a fashion similar to the one shown in Figure 4-19, then

cache-lines that are attached to different cores must have been flushed out to the

RAM before any other core (which wants to execute a ―write-transaction‖) has

access to any memory location nearby. It is easily overcome by creating separate

temporary arrays for each CPU thread to write their corresponding results into; then

only one CPU thread could be in charge of gathering those values located in the

temporary arrays together on the final output array, which is supposed to be returned

to caller. Pseudo-code in Figure 4-4 has already shown when it is done. After

computing all confidence values for all those remaining BBs and writing those

values into separate temporary arrays allocated for each CPU thread; they are copied

54

from those temporary arrays to the output array by a single CPU thread in such a way

that caller may receive them in order which is known to it.

4.3 Implementation of H-TLD Tracking Module

In TLD [2] Median Flow Tracker (MFT) [12] is used.

MFT uses LK (Lucas-Kanade Optical Flow) [25] in order to generate a sparse

motion-flow based on either some pre-determined points on the first frame (for initial

flow generation) or some reliable points obtained from previous tracking results (for

flow generation processes other than the first one). Suppose that there are two

contiguous frames extracted from a video stream It, It+1. Before two-step filtering

process (discussed in next two paragraphs), MFT generates a flow in the forward

direction (from frame It to It+1); then it uses these predictions (i.e. next points on

frame It+1 for original points located on frame It) extracted from this flow to go back

in the reverse direction (from frame It+1 to It) for finding points called forward-

backward points. Those next points (result of the first flow) and forward-backward

points (result of the second flow) are sent to NCC (Normalized Cross Correlation)

and FB (Forward-Backward) filters.

One of the two filtering methods used in [2] is NCC filter and its formula is given in

Equation (4-10).

 ()
∑ ((

) ())

√∑ () ∑ ()

(4-10)

Where St is the searching window (centered on the location (xt, yt) in It) which we

want to correlate with the searching window St+1 (centered on the location (xt+1, yt+1)

in It+1). (x’, y’) is the location of a pixel in local coordinate system of any searching

window. If the correlation between these two searching windows is greater than a

55

certain threshold; then this point is considered as it is passed through the NCC filter,

and is sent to FB filter for further filtration. This filter is not costly due to processing

few thousand points even on videos with high resolutions depending on the size of

BB of object under observation. Thus, this operation was left as it is (its cost for

different resolutions can be seen in Chapter 3).

Decision as to whether to further filter out a point based on FB filter is made by

performing Euclidean distance calculation on that original point and its

corresponding forward-backward point; and this operation is also not heavy;

therefore it was left as it is too (Note that it was not mentioned in Chapter 3 due to its

low computational cost).

Although filtering methods used in template matching such as Squared Sum of

Differences (SSD), NCC, or any other produces satisfying results; FB (Forward-

Backward) filter complements them in cases which they might fail (This is explained

in Chapter 2 and 5 of [12], and out of this thesis’ scope). To sum up, LK tracker must

be run twice for finding more reliable points in tracking module of [2]. As a result of

this; it requires more processing power than any traditional tracking algorithm.

There are 2 sequential steps performed by Open-CV’s GPU module [19] in order to

accomplish the LK sparse optical flow:

- Building Pyramids: This is done by reducing resolution (half in both

directions), and running interpolation on images I
L
t and I

L
t+1 at levels other

than the base level (at where It and It+1 are located). This operation is both

sequential and parallel. Each image at a higher level requires the image at the

level just one below its level; hence CPU iteratively calls ―build pyramid‖

routine on both It and It+1 (note that, pyramids are built for both images). On

the other hand, it is parallel in the sense of down-scaling the image at a level

of pixel; because a pixel at a higher level only depends on the image at one

level below, but not on its neighborhood; therefore this interpolation method

is executed on GPU for both images simultaneously. Each GPU thread is

56

responsible for finding the value of a single pixel at one higher level. In Table

4-2, there is a piece of code copied from GPU module of Open-CV [19] that

shows how an image at a higher level is built up from the image at one level

below.

 for (int level = 1; level <= maxLevel; ++level)

 {

 pyrDown(prevPyr_[level - 1], prevPyr_[level]);

 pyrDown(nextPyr_[level - 1], nextPyr_[level]);

 }

Table 4-2 Building Pyramids for LK Tracker

Where ―prevPyr_‖ is It and ―nextPyr‖ is It+1; and where method ―pyrDown‖

runs interpolation on GPU asynchronously to generate images (frames) at

higher levels.

- Predicting Next Points: According LK sparse optical flow, when the over-

determined linear system given in Equation (4-11) is iteratively solved for a

certain number of times, or until motion vector reaches a certain threshold

(this method is called Newton-Raphson) for a given point qi on It, it

approximates this point’s next location on It+1.

[

] [

∑ ()

∑ () ()

∑ () ()

∑ ()

]

 [

 ∑ () ()

 ∑ () ()

]

(4-11)

Where Vx and Vy show components of motion vector, qi is the pixel inside the

searching window, Id is equal to (It+1 – It), and Ix, Iy, are the partial derivatives

of the image It with respect to position (x, y) evaluated at the point qi.

Each GPU thread is responsible for finding the next point on It+1 that corresponds to

a particular pixel (point) on It by solving the system given in Equation (4-11)

iteratively. If there are less points to track that cannot highly occupy GPU’s Stream

Multiprocessors (SMs); then CPU implementation may have a chance to outrun the

57

performance of GPU version (this is exemplified in Chapter 5 in the sub section

dedicated to tracking).

There have been many ongoing discussions and studies on how the LK tracker (or

any other tracker) should be implemented on a GPU or on a hybrid CPU-GPU

platform as was explained in Chapter 2. However, it is easy to switch to a new

algorithm from the one presented by Open-CV’s GPU module [19]; and integrate it

to H-TLD for which it is an independent method in a separate module.

58

59

CHAPTER 5

5 RESULTS

In this section, results of each accelerated part are discussed and compared with its

original implementation (i.e. sequential one). Speed-up of each individual fraction of

code mentioned in Chapter 4 is detailed in this chapter in such a way that how much

of total wall clock time elapses on processing unit and the rest of it does on data

transfer between host and device. More particularly;

- In detection module, ―Total Recall Computation‖ is the part that takes the

longest time to compute among all others. In this section, each of its subparts

is analyzed performance wise.

- Some state-of-art technologies such as [24] and [1] were incorporated into the

implementation accordingly, in order to increase the total speed-up. The

contribution of such libraries is analyzed.

- Speed-up obtained in the tracking module by use of Open-CV [19] is

analyzed.

- The effect of video resolution on speed-up is discussed. Hybrid and

sequential ―Total Recall Computation‖ methods are run on 3 video with

different resolutions (low, medium, and high) to depict this effect.

- Finally, NVIDIA’s Visual Profiler is used to display how overlapping kernel

executions and data transfer between host and device help H-TLD in

improving performance.

Each method under observation is run for 10 times (both sequential and hybrid

methods); then average elapsed time is calculated and this result is reported. In case

of using [21] to exploit all cores of CPU, the longest time interval elapses on one of

those cores is used as the base in measuring the performance for that piece of code.

Resolution of video frames for all test cases is equal to 480x270. The purpose is to

60

have exactly one asynchronous call to device (each time when a single frame is

processed) so that elapsed time for each individual stage within a particular part of

the implementation could be measured accurately. All methods (either sequential or

hybrid) were tested under the same circumstances (unnecessary processes were

terminated, services were closed, network connection was disconnected).

Test platform specs are given in Table 5-1.

OS Windows 7 x64

CPU Intel i7 4770K 3.5 GHz, 4 Physical

Cores, Hyper Threading Factor is 2

GPU Tesla K 40c, Compute Capability 3.5, 15

SMs, 192 Cores per SM, 2 Async Copy

Engine, Hyper-Q Enabled

RAM 32 GB DDR3

Serial Computer Expansion Bus PCIe 2.1

CUDA Toolkit 6.0

CUDA Driver Version 6.0

CUDA Run time Version 6.0

Open-CV Version 2.4.9

Open-MP Version 2.0

Table 5-1 System Specs of the Test Platform

On the host (CPU) side, the C code shown in Table 5-2 is used to measure the

elapsed time as it is one of the most precise techniques on Windows platforms.

As for the device (GPU) side, CUDA events and streams are used to measure the

performance as show in Table 5-3. This piece of code and explanation of it could be

found in Chapter 3 of [26] (In CUDA, events are the best timers, for asynchronous

calls sent to GPU, in particular).

mailto:4770K@3.5

61

void startCounter(__int64 *counter_start, double *pc_freq) {

 LARGE_INTEGER li;

 if(!QueryPerformanceFrequency(&li))

 std::cout<<”QueryPerformanceFrequency Failed!”<<std::endl;

 *pc_freq = ((double)li.QuadPart)/1000.0;

 QueryPerformanceCounter(&li);

 *counter_start = li.QuadPart;

}

double getCounter(__int64 *counter_start, double *pc_freq) {

 LARGE_INTEGER li;

 QueryPerformanceCounter(&li);

 return ((double)(li.QuadPart – (*counter_start))) / (*pc_freq);

}

Following shows how they are used in order to measure elapsed time accurately:

startCounter(&counter_start, &pc_freq);

//Piece of Code to Measure Execution Time

//Code to Test Code to Test Code to Test…

//Code to Test Code to Test Code to Test…
time = getCounter(&counter_start, &pc_freq);

Table 5-2 Method Used to Measure Time on Host Side

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, stream);
//Piece of Code to Measure Execution Time

//Code to Test Code to Test Code to Test…

//Code to Test Code to Test Code to Test…
cudaEventRecord(stop, stream);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);

Table 5-3 Method Used to Measure Time on Device Side

In Figure 5-1, a sample frame from the test video in where we tracked a bottle of

water could be seen.

62

Figure 5-1 A Sample Screen-shot Captured from the Test Video

5.1 Detection

5.1.1 Integral Image (II) Computation on GPU

In detection module, IIs are used to compute PV of each BB. Since PV-Computation

takes place on GPU; IIs must reside on GPU as well. Moreover, II-Computation fits

well to GPU architecture. Thus, once the current frame is moved to GPU; two IIs

(plain II and squared II) could be calculated. Finally, it would also save the time to

move both IIs to device provided that IIs were calculated on CPU. NPPI Library [1]

has a method which calculates both at once and was mentioned in the beginning of

Chapter 4.

63

Figure 5-2 Average Time per Call for II-Computation

In Figure 5-2 average time per call for each method is displayed (transfer time for

current frame is not included). NPPI’s method is not hybrid. It is only run on

device’s processing units. Equation (5-1) shows speed-up.

(⁄) (5-1)

Note that this method is called per frame; it has a significant effect on the overall

performance.

5.1.2 Image Blurring (Open-CV Used)

A method from Open-CV [19] has been used to increase the speed of process of

blurring the current frame. This blurred frame is required at the time when pixel

comparisons (referred in Chapter 5 of [2]) are made. However, this comparison was

not fair on sequential code’s behalf due to running MATLAB’s method to blur the

current frame (After a process is created for MATLAB, MATLAB creates a virtual

container, a JVM, in order to execute its m files). Yet the comparison of MATLAB’s

method used in [2] and the one from [19] which is used in H-TLD is shown in Figure

5-3 (transfer time for current frame is not included) and Equation (5-2).

0.270

0.020

0.000

0.050

0.100

0.150

0.200

0.250

0.300

Sequential GPU Version

T
im

e
in

 m
s

Implementations

II Computation

II Computation

64

Figure 5-3 Average Time per Call for Image Blurring

(⁄)

(5-2)

The time on MATLAB side was measured via ―tic-toc‖ mechanism provided by the

MATLAB platform.

5.1.3 Total Recall Computation on CPU and GPU Collaboratively

―Total Recall Computation‖ is a hybrid implementation; hence both CPU and GPU

are used in various stages of it accordingly. In this sub section firstly, total

improvement over serial code is given in order to highlight significance of our work

and importance of use of heterogeneous computing. Then, each stage is observed

separately to show the fact that how much time of it is spent on which processing

unit and the rest of it is on data communication between those two different

processing units.

2.000

0.089

0.000

0.500

1.000

1.500

2.000

2.500

Sequential GPU Version

T
im

e
in

 m
s

Implementations

Image Blurring

Image Blurring

65

In Figure 5-4 (all transfer time between host and device for hybrid implementation is

included) and Equation (5-3), overall improvement could be seen.

Figure 5-4 Average Time per Call for Total Recall Computation

. ⁄ /

(5-3)

As explained in Chapter 4, ―Total Recall Computation (TRC)‖ is composed of

several stages. In Table 5-4, each of those stages is analyzed individually. Note that,

the total elapsed time when each part is measured separately and summed up (6.416

milliseconds); and when all steps are measured at once (5.934 milliseconds) are

different; because there is an overhead that the timer itself creates.

Stage Sequential (ms) Hybrid (ms)

PV-Computation 0.170 0.0459 (GPU)

Stream-Compaction - 0.0463 (GPU)

RFI Calculation 5.296 0.320 (GPU)

Confidence Value

Calculation

0.950 0.138 (CPU)

Other Operations - 0.152(CPU & GPU)

Total 6.416 0.721

Table 5-4 Elapsed Time for Each Stage of TRC

5.934

0.702

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

Sequential Hybrid

T
im

e
in

 m
s

Implementations

Total Recall Computation

Total Recall

Computation

66

Figure 5-5 Stacked View for Elapsed Time of TRC

As it can be seen in Figure 5-5 much of the elapsed time is spent on ―RFI

Calculation‖ for both implementations. Since RFIs are required in ―CV Calculation‖

phase; some data have to be transferred to host side per asynchronous kernel

invocation at this stage (As it was shown in Figure 4-4, on line 9, RFI Calculation is

repeated for number of asynchronous calls to PV-Computation; because at each loop

cycle RFIs of BBs, that have passed the PV-Test, are found). Moreover, this elapsed

time increases as the number of BBs (for instance, when the display resolution is

increased) gets higher. This is formulated in Equation (5-4), and it is also equal to the

size of data to move to host side in bytes.

 () ()

(5-4)

Where x is equal to the number of trees, and y is equal to the number of BBs that

have passed PV-Test.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Sequential

Hybrid

Time in ms

Im
p

le
m

en
ta

ti
o
n

s

Stacked View

PV-Computation

Stream-Compaction

RFI Calculation

CV Calculation

67

Figure 5-6 Data Transfer and Execution Time for RFI Calculation

As it is shown in Figure 5-6, data transfer takes ~78 % of ―RFI Calculation‖.

Besides, this latency cannot be completely hidden; though there are some

instructions which are executed at the time when RFI-Calculation takes place (they

are not so computationally intensive or do many memory transactions that they might

cancel it out). Since RFIs are used to calculate confidence values of BBs; all threads

must be suspended until the transfer is completed. This issue is discussed in Chapter

6 and a persistent solution at hardware level for next generation CUDA-Enabled

Devices is proposed.

5.2 Tracking Module

In tracking module only the optical flow calculation that is used in median flow

tracker [12] to predict the next locations of good features (points) of the object under

observation, was accelerated via GPU as was discussed in Chapter 4.

5.2.1 Optical Flow

LK-Tracker, which was implemented on GPU, is part of Open-CV [19]. It was

shown that it is highly efficient only under the condition that the frame size is big

enough to highly occupy the GPU cores [27]; otherwise CPU implementation (Open-

0.070

0.250

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

RFI Calculation

T
im

e
in

 m
s

Data Transfer Time

Execution Time

68

MP [21] is enabled) may outrun it. This phenomenon of massively parallel

architectures applied to the case in which we track reliable points from previous

frame to the next frame as well and is shown in Figure 5-7.

Figure 5-7 LK-Tracker GPU vs. CPU Implementations

Although GPU implementation is slower for videos that have low resolution, it is not

significantly so bad and GPU becomes more advantageous for higher resolution

videos.

(⁄) (5-5)

(⁄) (5-6)

. ⁄ / (5-7)

1.100

4.280

17.520

1.730 2.000
3.000

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

Low Medium High

T
im

e
in

 m
s

Video Resolutions

CPU

GPU

69

As proved in Equations (5-5), (5-6), and (5-7) (speed-up of CPU for the low

resolution video and of GPU for the medium and high resolution videos

respectively), there is no need to add an additional complexity to the algorithm for

checking size of the frame against the performance of the platform on which the

application runs; then deciding on either optical flow should be executed on CPU or

on GPU. In conclusion, H-TLD only runs its GPU version regardless of frame size

and quality of the hardware.

5.3 Effect of Different Display Resolutions on the Performance

All tests so far were conducted on the video stream with relatively low display

resolution. However, today’s video capturing devices are able to capture increasingly

higher resolutions. On the other hand, with the increasing video resolutions, the

detection module should scan a much higher number of BBs, an II and a blurred

image with larger size should be calculated, the tracking module should track more

points when it transitions from one frame to another, etc. which in turn, requires

more computation power preventing real-time operation. Thus, a great deal of

processing power is required to run real time tracking applications with multiple

objects being observed simultaneously.

In this sub section, the aim is to demonstrate the higher speed-up results obtained

ineffective as the display resolution increases. There are 3 different resolutions called

low, medium, and high in our test scenario. Resolutions are:

- 480x270: Low (1X),

- 960x540: Medium (4X),

- 1920x1080: High (16X).

This effect on detection module’s TRC task (in where slow-down is the most

immense and to which we focused on improving its execution time in Chapter 4) is

shown in Figure 5-8.

70

Figure 5-8 Effect of Resolution Change on TRC

It can be observed in Figure 5-8, that the gap between sequential and hybrid

implementations get bigger as display resolution increases.

. ⁄ / (5-8)

Gain for Low Resolution Video

(⁄) (5-9)

Gain for Medium Resolution Video

. ⁄ / (5-10)

Gain for High Resolution Video

Gains shown in Equations (5-8), (5-9), and (5-10) proves our hypothesis which

claims that H-TLD will be faster as the resolution increases. Important reason for this

significant improvement is that the occupancy of GPU cores is boosted due to having

more pixels to be processed, and overlapping behavior of multiple kernels as

5.934

20.422

62.500

0.702 1.900
4.310

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

Low Medium High

T
im

e
in

 m
s

Video Resolutions

Effect of Resolution Change

Sequential

Hybrid

71

discussed in subsection 5.4. Even if there had been no overlapped kernel invocation,

there would have been an increase in occupancy; but not as much as it is shown in

this thesis.

Figure 5-9 Total Gain of H-TLD

10.471

3.711

37.520

6.193

122.460

11.950

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

65.000

70.000

75.000

80.000

85.000

90.000

95.000

100.000

105.000

110.000

115.000

120.000

125.000

130.000

SeqHybrid SeqHybrid SeqHybrid

T
im

e
in

 m
s

Implementations Run on Different Resolutions

Warping a Patch

Random Forest Update

Computing BB Overlap

Pattern Generation

Computing Cross

Correlation

LK Tracker

II Computation

Blurring the Image

Total Recall Computation

72

In Figure 5-9, overall speed-up including all tasks mentioned in Chapter 3 could be

seen. It was formed by stacking up elapsed time of each individual task; because that

is the only option in this thesis until the whole platform is moved to the native side as

is explained in ―Discussions‖ part of this section. As is the case with TRC, total

speed-up increases with the increasing resolution. As for the highest resolution,

speed-up reaches to a level at which hybrid implementation is ~10.248 times faster

than the sequential one.

5.4 NVIDIA’s Visual Profiler & Overlapping Data Transfer and

Kernel Executions

The NVIDIA Visual Profiler [28] is a cross-platform performance profiling tool that

delivers developers vital feedback for optimizing CUDA C/C++ applications. It

displays the whole timeline of an application’s CPU and GPU activities. It does not

only help developers on GPU side; but on CPU side as well (like displaying for how

much time the display driver keeps the instruction that should be run on GPU in the

queue, before it flushes the instruction out, etc.). It also allows developers to monitor

any process; in turn they can specify the path to the executable file, and visualize its

activity (For instance, in this sub section MATLAB’s JVM process is monitored to

capture all GPU related activities; rather than running an entirely native process).

Finally, in case of any unexpected behavior, it is easy to figure out what went wrong.

In Figure 5-10, TimeLine-View (it is one of many different types of views of the

profiler) is shown. It displays all operations taking place in a CUDA Context

separately such as ―MemCpy‖. As seen in that figure, none of the vector operation

overlaps with any other or with any memory transaction (one starts right after

another one is completed).

73

Figure 5-10 Timeline View of Visual Profiler

In Figure 5-11, a fraction of profiling TRC via NVIDIA Visual Profiler is shown.

There are three important observations that could be inferred from Figure 5-11:

- Copying the data back to the host and RFI Calculation were overlapped.

- RFI Calculation takes long enough to hide the total latency for copying BB

shift amounts which were computed in stream-compaction phase mentioned

in Chapter 4.

- Copying RFIs back to host takes a long time.

- If occupation of SMs are low at any time when two or more independent

kernels are invoked, it is also be possible to observe some kernel invocations

to be overlapped with each other (requires compute capability higher than or

equal to 2.x). In Figure 5-12 this behavior is proved to be correct for the case

in which PV-Computation and Stream-Compaction take place.

- By this way; in the case occupancy of SMs is low, it is possible to boost up

GPU cores in order to overcome the issue of idly stayed cores. Thus, it results

in accelerating the overall execution time of the application. The key to

overlap multiple independent kernel invocations is to cluster all independent

calls for an individual kernel (e.g. computePVOnGPU kernel) in all streams

74

and issue them to GPU rather than issuing them to GPU in such a way that

they are interleaved with other calls in all those streams.

Figure 5-11 Visual Profiler Timeline View for TRC

Figure 5-12 Timeline That Shows Overlapping Behavior of Multiple Kernel

Invocations

75

for(int i = 0; i<num_of_async_calls; i++) {

 computePVOnGPU(i);

 doStreamCompaction(i);

 copyDataAsync(i);

}

Table 5-5 Wrong Call Order for GPU to Overlap Kernel Invocations

for(int i = 0; i<num_of_async_calls; i++)

 computePVOnGPU(i);

for(int i = 0; i<num_of_async_calls; i++)

 doStreamCompaction(i);

for(int i = 0; i<num_of_async_calls; i++)

 copyDataAsync(i);

Table 5-6 Correct Call Order for GPU to Overlap Kernel Invocations

In Table 5-5 and Table 5-6 this simple; but powerful technique which was exploited

in this thesis’ implementation to improve execution time of [2] is shown.

5.5 Discussions

In this sub section, difficulties we encountered during the implementation and how

we solved them are given; so that the future developers will not make same mistakes

or will have to deal with the same problems.

Today’s compilers are smart enough to remove unused piece of codes; therefore

developers might be tricked into the idea that their codes for which they will test the

performance on are present in the source code; whereas their machine-level

instruction equivalents might actually not be in the executable file. A fraction of code

taken from [2]’s detection module on native side and shown in Figure 5-13 is a good

example to this case.

76

Figure 5-13 Tricky Code for a Compiler

Suppose that ―RFI Calculation‖ (―measure_tree_offset‖ method in Figure 5-13 does

exactly this calculation) for sequential code is desired to be measured and no other

instruction is to interfere with this execution. Logically, Commenting out the lines

31, 32, and 34 could make sense. However when the result is obtained after

application is run and ~0 MS (note that, it does not matter whether video with high or

low display resolution was used in this experiment) is written out in the console, it

might be confusing for the developer (because the elapsed time to compute RFIs on

GPU without data transfer time is included was equal to ~0.07 MS). Since the output

of this method is never used by any following instruction; the compiler automatically

removes it in order to optimize the code. This is called ―dead code removal‖.

Although many advanced IDEs (Integrated Development Environment) such as

Eclipse, Visual Studio 2010+, warn developers about the dead code at development

77

time; some others like MATLAB’s code editor does not warn. Thus, extra caution

must be taken before the compiler is run.

Secondly, the test platform was a combination of implementations that is; it had been

implemented in MATLAB’s script language and C/C++. Since MATLAB creates the

process which our application lives in, that script is the client who calls C/C++

routines via ―mex‖. ―mex‖ is a built-in interface between MATLAB and subroutines

written in C/C++ or Fortran. It acts like a bridge between C/C++ native executable

code and MATLAB script code. This plugin allows MATLAB users to leverage any

library written in C/C++. It may also compile C/C++ code by the compiler and linker

tools provided by the OS which MATLAB runs on. However, this cross platform

routine calls bring extra overhead to the application. Moreover, modules in [2] are

separate entities, which means that their native instructions are executed as if they

were living in individual processes; because there is no state-sharing notion (data

exchange) between different executable ―mex‖ files. Thus, when H-TLD creates its

master module in detection module, it is not possible to share the reference of that

C++ object with tracking module and vice versa. During the test phase, each module

was tested one by one. That is to say, when there was an instance of master module

in detection module; another instance of it in tracking module was commented out in

order to come up with accurate results. This issue is addressed in Chapter 6.

Finally, all developers should be aware of the Windows Display Driver Model

(WDDM) software on Windows Vista and successor platforms as well as other

corresponding software on UNIX and other platforms; because it might be very

difficult to realize why commands to GPU are not flushed immediately; but waiting

in a queue instead. It could be seen when it is checked out on activity view of [29].

WDDM is a replacement for the Windows XP display driver model and is aimed at

enabling better performance graphics and new graphics functionality. Display drivers

in Windows Vista and later can choose to either adhere to this model or to Windows

2000 Display Driver Model (XDDM). With the removal of XDDM from Windows 8,

however, WDDM became the only option. The problem is that WDDM decides on

http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Windows_2000
http://en.wikipedia.org/wiki/Windows_2000
http://en.wikipedia.org/wiki/Windows_8

78

criticality of a command and may issue CUDA commands to GPU later than they

were expected to be done. Thus, if WDDM is to be skipped in order to see the actual

result of any CUDA-based implementation; Tesla Compute Cluster (TCC) driver is

the only option. The defect of this driver is that it is only compatible with very few

GPUs. These kinds of GPUs have no VGA output and they are called ―computing

boards‖ rather than GPUs. They are specialized for only GP-GPU programming.

⁄ ∑ ()

(5-11)

Where is equal to the number of frames on which the object is visible in both

implementations, and are the center points of object’s BB on the i
th

 frame

for hybrid and original implementations respectively, and is the deviation of center

point of the object’s BB defined by the hybrid implementation from the one defined

by the original implementation.

Implementation Visible  Obscured  Visible  Obscured σ

Original 0-253 254-301 302-461 462-463

15.682px
Hybrid 0-254 255-299 300-461 462-463

Table 5-7 Object Detection Sequence against the Medium Size Video

In Equation (5-11) and Table 5-7, how much close detections done by both

 implementations to each other are shown. In other words, how seriously causes such

as floating-point precision of mathematical calculations, extra data type conversions

for moving data from one memory location to another, etc. affected the accuracy of

tracking, resulting in divergence from the center point of the object’s BB detected by

the original implementation. Note that, our initial purpose was not to improve the

quality of tracking via modification of the original TLD algorithm (it is TLD

79

algorithm’s concern); hence we did not compare our results with the ground truth

values; rather we checked our own fast implementation against the original

sequential implementation in order to find whether the implementation differences

had caused any abnormality in tracking. As shown in Table 5-7, the sequence is as

follow: object is initially visible, then obscured by another object, then visible once

again, and finally became hidden for a few numbers of frames. The object’s size is

equal to ~47.790x129.353px on the average throughout the whole sequence of

frames; and deviation (σ) shown in Table 5-7 is equal to 15.682px. The reasons for

this are that the blurring image method used in H-TLD is different than the one

implemented in [2], and the optical flow method used in H-TLD produces slightly

different reliable points. Moreover, when object (water bottle) is rotated BBs are not

reliable.

80

81

CHAPTER 6

6 CONCLUSION AND FUTURE WORK

In this section, future works and expectations, and tasks that have been accomplished

in this thesis are mentioned.

As seen in Figure 5-5, ~45% of TRC’s time is spent on RFI Calculation; and

moreover ~80% of the RFI Calculation’s time (see Figure 5-6) is lost in moving

those RFIs to host side for CV-Calculation. If this data transfer had been removed

from this equation, speed-up given in Equation (6-1) would have been achieved

instead of the one we obtained in Equation (5-3).

. ()⁄ /

(6-1)

In a GPU Tec. conference (mentioned in [30]), NVIDIA announced the successor of

Maxwell GPUs. This new GPU family will be named as ―Pascal‖. As written in [30],

a new type of memory called ―stacked DRAM or 3D memory‖ (along with many

other new features) will be introduced. By the aid of this new memory model, GPUs

will achieve terabytes of bandwidth (several times greater than what Maxwell family

has). This new technique will allow GPUs to gain access to data residing on RAM

almost as fast as CPUs can do. As a result of this, H-TLD’s bottleneck at where data

transfer cannot be hidden will be overcome.

82

Figure 6-1 Change in Computation Power of CPU vs. GPU over Years

In Figure 6-1, in 2013 GTC (GPU Technology Conference); how computation power

of GPU has excessively increased in time compared to the one of CPU. Note that,

this processing power might only be harnessed provided that your algorithm and

amount of data cause GPU to be highly occupied. Since the quality of videos are

getting higher; eventually TLD will require more processing power to run at higher

or at least exact same quality as it used to do now. Besides, this trend also proves that

the speed-gain of H-TLD will have increased; even though no improvement is made

to it.

In order to find out the total speed-up (it was mentioned in the discussion part of

Chapter 5); all sequential code written in MATLAB’s script language should be

moved to the native side coded in C/C++ language. By this way, one instance of

master module could be created and its reference could be shared across all modules.

Besides, it will help the application in eliminating all those unnecessary overhead

83

created by MATLAB’s JVM container and MEX’s cross platform calls. Since our

purpose in this thesis is to prove the speed-up against the sequential code written on

native side (and is called by MEX engine), we were able to measure the performance

without any interference of MATLAB’s script language (onlyperformance metrics

for blurred image given in Chapter 5 is an exception to this). It is even difficult to

differentiate the speed-up by the naked eye due to running tests on this mix platform;

because videos with higher display resolutions cause so much speed loss, owing to

the bidirectional data transfer between these native and script codes, that it

suppresses the visual perception of observer.

Another future task is to figure out the reason why the quality of tracking is reduced

as the display resolution increases. For video from our experiment dataset with the

resolution of 1920x1080, Open TLD’s tracking trajectory is broken for some time

(for both sequential and hybrid implementations) and it restarts to track object. There

are some assumptions we made such as ―Since a fast movement of object from one

frame to another may cause tracker to fail due to the nature of optical flow technique

called ―Pyramidal Lucas-Kanade‖ [15], hence for videos with higher resolutions,

more pyramidal levels might be required in order to detect such fast changes‖.

Consequently, a series of experiments should be conducted to figure it out.

As for the last future task, TLD [2] is not sensitive enough to morphological changes

occurred in object under observation. For instance, whenever object is rotated around

the axis other than the z-axis that stretches back and forth in the direction of camera’s

depth, it fails to learn variety of new appearances of the object. Assuming that the

camera may capture enough information (frames) for such transformations, a

computationally expensive; but effective learning algorithm that will be implemented

on a hybrid platform, may be integrated to TLD to make it realize such changes in

object’s shape.

In Chapter 1 some goals were defined. It was proven that they can be achieved after

serial code is fully moved to the C-based native side. The purpose of TLDObject was

to enable the application to track multiple objects; so that the serial code that will be

84

written in C/C++ can exploit this fact. All results, given in Chapter 5, show that

many per frame operations which require heavy processing power (see Chapter 3)

were accelerated. As a consequence of these improvements;

- New hybrid algorithm developed in this thesis was tested with different

resolutions; it was shown that it could be used with videos which have higher

display resolutions (see sub section 5.1.3 in Chapter 5),

- Our TLDObject notion will provide application developers using H-TLD

with the tracking of multiple objects within a single video stream,

- The time that was bought by H-TLD could be used to tune the configuration

parameters of Open TLD; hence it will result in better tracking quality.

85

REFERENCES

[1] NVIDIA Performance Primitives. [Online]. https://developer.nvidia.com/npp

[2] Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-Learning-Detection," IEEE

Transactions On Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp.

1409-1422, July 2012.

[3] S. Rennich. (2011) On Demand GPU Tech. Conf. [Online]. http://on-

demand.gputechconf.com/gtc-

express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

[4] G. Nebehay, "Robust Object Tracking Based on Tracking-Learning-Detection,"

Technische Universität Wien, May 2012.

[5] M. Isard and A. Blake, "CONDENSATION—Conditional Density Propagation

for Visual Tracking," International Journal of Computer Vision, vol. 29, no. 1,

pp. 5-28, 1998.

[6] D. Comaniciu, V. Ramesh, and P. Meer, "Real-time tracking of non-rigid

objects using mean shift," in IEEE Conference on Computer Vision and Pattern

Recognition, vol. 2, 2000, pp. 142-149.

[7] V. Lepetit and P. Fua, "Monocular Model-Based 3D Tracking of Rigid Objects:

A Survey," Foundations and Trends in Computer Graphics and Vision, vol. 1,

no. 1, pp. 1-89, 2005.

[8] M. Ozuysal, P. Fua, and V. Lepetit, "Fast Keypoint Recognition in Ten Lines of

Code," in Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE

Conference on, June 2007, pp. 1-8.

[9] R. T. Collins, Y. Liu, and M. Leordeanu, "Online Selection of Discriminative

Tracking Features," IEEE Transactions on Pattern Analysis and Machine

https://developer.nvidia.com/npp
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

86

Intelligence, vol. 27, no. 10, pp. 1631-1643, October 2005.

[10] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning., 2006.

[11] Z. Kalal, J. Matas, and K. Mikolajczyk, "P-N Learning: Bootstrapping Binary

Classifiers by Structural Constraints," in Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, June 2010, pp. 49-56.

[12] Z. Kalal, K. Mikolajczyk, and J. Matas, "Forward-Backward Error: Automatic

Detection of Tracking Failures," in Pattern Recognition (ICPR), 2010 20th

International Conference on, 2010, pp. 2756-2759.

[13] E. Ringaby, "Optical Flow Computation on Compute Unified Device

Architecture," 2008.

[14] J. Marzat, Y. Dumortier, and A. Ducrot, "Real-Time Dense and Accurate

Parallel Optical Flow using CUDA," 2009.

[15] J. Bouguet, "Pyramidal Implementation of the Lucas Kanade Feature Tracker,"

Interl Corporation,.

[16] P. Guler, D. Emeksiz, A. Temizel, M. Teke, and T. Taskaya Temizel, "Real-

time Multi-Camera Video Analytics System on GPU," Journal of Real Time

Image Processing, March 2013.

[17] S.A. Mahmoudi, M. Kierzynka, P. Manneback, and K. Kurowski, "Real-time

Motion Tracking Using Optical Flow on Multiple GPUs," Bulletin of the Polish

Academy of Sciences, vol. 62, no. 1, pp. 139-150, 2014.

[18] C. Harris and M. Stephens, "A Combined Corner and Edge Detector," in 4th

Alvey Vision Conf., 1988, pp. 147-151.

[19] OpenCV Community. OpenCV Documentation. [Online].

87

http://docs.opencv.org/modules/gpu/doc/introduction.html

[20] Anonymous. Wikipedia. [Online].

http://en.wikipedia.org/wiki/Summed_area_table

[21] Open MP Org. Open MP. [Online]. http://openmp.org/wp/

[22] NVIDIA. CUDA Compute Capabilities. [Online].

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-

capabilities

[23] D. B. Kirk and W. Hwu, Programming Massively Parallel Processors, Second

Edition: A Hands-on Approach., 2012.

[24] NVIDIA CUB. [Online]. http://nvlabs.github.io/cub/

[25] T. Kanade and B. D. Lucas, "An iterative image registration technique with an

Application to Stereo Vision," in Proc 7th Intl Joint Conf on Artificial

Intelligence, 1981, pp. 674-679.

[26] CUDA Toolkit Documentation. [Online]. http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html#axzz39mQ0rc3K

[27] NVIDIA. (2014) CUDA Best Practices Guide. [Online].

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#occupancy

[28] NVIDIA Visual Profiler. [Online]. http://docs.nvidia.com/cuda/profiler-users-

guide/index.html#axzz39tFYHyEs

[29] NVIDIA Nsight. [Online]. http://www.nvidia.com/object/nsight.html

[30] NVIDIA Blog. [Online]. http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-

pascal/

http://docs.opencv.org/modules/gpu/doc/introduction.html
http://en.wikipedia.org/wiki/Summed_area_table
http://openmp.org/wp/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://nvlabs.github.io/cub/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz39mQ0rc3K
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz39mQ0rc3K
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#occupancy
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#axzz39tFYHyEs
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#axzz39tFYHyEs
http://www.nvidia.com/object/nsight.html
http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal/
http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal/

