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ABSTRACT 

 

 

Hybrid CPU-GPU Implementation of 

Tracking-Learning-Detection Algorithm 

 
GÜRCAN, İlker 

M.S., Department of Information Systems 

Supervisor: Assoc. Prof. Alptekin TEMİZEL 

 

Tracking objects in a video stream is an important problem in robot learning 

(learning an object’s visual features from different perspectives as it moves, rotates, 

scales, and is subjected to some morphological changes such as erosion), defense, 

public security and many other various domains. In this thesis, we focus on a 

recently proposed tracking framework called TLD (Tracking-Learning-Detection). 

While having promising tracking results, the algorithm has high computational cost. 

The computational cost of the algorithm prevents running it at higher resolutions as 

well as running multiple instances of the algorithm to track multiple objects on 

CPU.  In this thesis, we analyzed this framework with an aim to optimize it 

computationally on a CPU-GPU hybrid setting and developed a solution via using 

GP-GPU (General Purpose GPU) programming using Open-MP and CUDA. Our 

results show that 2.82 times speed-up at 480x270 resolution can be achieved. The 

speed-ups are higher at higher resolutions as expected in a massively parallel GPU 

platform, increasing to 10.25 times speed-up at 1920x1080 resolution. The resulting 

performance of the algorithm enables the algorithm to track multiple objects at 

higher frame rates in real-time and improving detection and tracking quality by 

allowing selection of configuration parameters requiring higher processing power. 

Keywords: Computer Vision, Long-term Tracking, GP-GPU Programming, 

Multiprocessing, Real-Time 
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ÖZ 

 

 

TAKİP ETME-ÖĞRENME-TESPİT ALGORİTMASININ 

HİBRİD CPU-GPU GERÇEKLEMESİ 

 
GÜRCAN, İlker 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Danışmanı: Assoc. Prof. Alptekin TEMİZEL 

 

Bir video görüntüsünde var olan nesnelerin takibi; robotların öğrenme mekanizması 

(bir nesnenin görsel özelliklerinin robot tarafından; hareket etme, şekilsel değişikliğe 

uğrama, ölçek değişimi, ve/veya dönme gibi zaman içinde nesnede meydana gelen 

değişikliklerin anbean takip edilerek öğrenilmesi), savunma, kamu güvenliği, ve 

bunlara benzer diğer birçok alanda önemli bir yere sahiptir. Bu tezde yakın bir 

zamanda önerilmiş olan, TLD (Takip Etme-Öğrenme-Tespit) isimli bir nesne takip 

algoritmasına odaklandık. TLD başarılı sonuçlar üretmesine karşın, çok yüksek 

hesaplama gücüne ihtiyaç duyan bir yöntemdir. Bu yüksek hesaplama gücüne 

duyulan ihtiyaç; CPU üzerinde yüksek çözünürlüklerdeki video’larda tek bir 

nesnenin takibini ya da bir video’da birden fazla nesnenin takip edilebilmesini 

engellemektedir. Biz de bu özgün takip algoritmasının hızını arttırmaya yönelik bir 

dizi çalışmalar yaptık ve GP-GPU (GPU üzerinde genel amaçlı programlama) ile 

Open-MP ve CUDA teknolojilerini kullanarak hibrid bir çözüm gerçekleştirdik. 

Sonuçlarımız gösteriyor ki 480x270 çözünürlükte 2.82 kat kadar hızlanma 

sağlanmaktadır. Çok büyük bir ölçekte paralel bir sistemden beklendiği üzere 

hızlanma daha yüksek çözünürlüklerde daha fazla olmaktadır ve 1920x1080 

çözünürlüğünde 10.25 kata kadar yükselmektedir. Bu hızlanma, yüksek 

çözünürlüklerde nesne takibine ve çoklu nesne takibine imkan sağlamakta ve takip 
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algoritmasının kalitesini arttıracak şekilde kurulum değişkenlerinin belirlenmesine 

olanak sağlamaktadır. 

Anahtar Kelimeler: Bilgisayar Görüntüsü, Uzun Süreli Nesne Takibi, Genel Amaçlı 

GPU Programlama, Çoklu-İşleme, Gerçek Zamanlı 
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CHAPTER 1 

1 INTRODUCTION 

 

This thesis is based on ―Open TLD‖, which is an algorithm for long-term tracking of 

objects throughout a series of video frames The aim of this thesis is to increase the 

processing speed of this algorithm by parallelizing it to run on hybrid CPU-GPU 

environment.  

Open TLD algorithm has high computational complexity. For instance, its detection 

module runs an extensive search (a kind of a sliding window method) for detecting 

location of the object within each frame, which is a highly compute-bound operation 

(due to running a single operation on thousands or even hundreds of thousands 

bounding boxes depending on the video resolution and number of scale levels 

object’s patches have). While modern hardware is capable of achieving such goals, 

real-time tracking is only possible for low-resolution images and for a single object 

due to its high computational cost. Parallelization of the algorithm and increasing its 

processing speed is expected to allow running multiple instances of the algorithm to 

track multiple objects, which opens up possibilities for other applications. 

Optimization of the algorithm to run at higher resolutions is also desirable. Open 

TLD has also some configuration parameters to tune the accuracy of its 

tracking/detection operations. Tuning those parameters for higher tracking accuracy; 

eventually leads to performance degradation. For example, for the sake of being 

invariant to scale and rotational changes; the framework creates a number of patches 

of the object under observation, differing in scale and rotation angle. That number is 

specified at configuration time and should be kept small, if anyone wants to run its 

application at higher frame rates. This raises an issue of trade between object 

tracking quality and processing speed. By incorporation of GPU technology in 

particular; now speed of video/image processing applications that even run on a 
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single machine rather than a cluster of machines, might be accelerated significantly. 

A faster Open TLD implementation on the GPU is important in the sense that: 

- Increase the resolutions for which the algorithm can run in real-time, 

- Allow running multiple instances of the algorithm to enable real-time 

multiple object tracking, 

- Allow running the algorithm at higher accuracy by making it possible to run 

the algorithm with parameters resulting in higher accuracy while increasing 

the computational cost. 

The aim of this thesis is to design and implement an efficient hybrid CPU-GPU 

processing framework which makes use of the specific properties of CPU and GPU 

(i.e. using CPUs for operations for which CPU has advantages and vice versa). 

 

Figure 1-1 CPU-GPU Comparison 

Most modern computer platforms have both processing units, CPUs and GPUs. 

Thus, in this thesis, one of the aims is to exploit both processing units. Each has its 

own advantages and disadvantages by their design. For instance, CPUs are good at 

executing branched-instructions and have higher clock frequencies; while GPUs are 

not optimized for divergent operations requiring branching and typically have lower 

clock frequencies. On the other hand, GPUs have hundreds of cores devoted to data 
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processing rather than data caching and control flow (branched-instructions); 

therefore they may run a single instruction on more data simultaneously in 

comparison with the CPU (See Figure 1-1for a comparison). 

The aim of the thesis is not to modify or improve Open TLD in algorithmic sense; 

but to decrease its execution time. By improving its execution time, its detection and 

tracking quality will be increased implicitly. 

1.1 Motivation 

Especially in the last decade, there have been significant improvements in terms of 

GPUs and they have been started to be used in general purpose programming. At the 

beginning, GPUs had always been used to process graphical data in order to display 

geometrical shapes on the screen along with a proper perspective and depth. 

However, while initially driven by gaming and graphics applications there has been 

an interest to leverage this high processing power of GPUs in other application areas. 

As a result, many software development platforms have emerged to ease 

programming of GPUs and make their massive processing power available for 

general purpose applications. Among those, the most prominent ones are Open-CL, 

Open-ACC, C++ AMP and, CUDA.  

CUDA is a combination of software tools (GPU accelerated libraries such as 

CUBLAS, a driver API, and a run-time API) that enables developers to develop and 

run applications on the GPUs leveraging their massively parallel architectures. See 

Figure 1-2 for an illustration of software layers of CUDA in hierarchical order. 

Incorporating GPUs into such application programming in order to have them 

cooperate with CPUs is called (a kind of) heterogeneous computing or programming. 

Since data and instructions must be transferred to GPU’s memory; they mostly use 

PCI-Express bus to transmit data back and forth. However that is the most critical 

bottleneck of heterogeneous computing (GPU architects have been trying to 

minimize this overhead and it is still a hot topic for many of these GPU 

architectures). In order to eliminate this cost, application developers are encouraged 
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to execute as many instructions as possible on the data residing on GPU memory 

currently so that whenever another portion of the data is to be moved to GPU 

memory (this operation is completely independent of execution and carried out by 

loading units), time required to transmit it could be hidden out by aforementioned 

execution time. There are many other restrictions and bottlenecks specified in 

manuals of corresponding technologies.  

 

Figure 1-2 CUDA Architecture 

CUDA is highly popular for several reasons, some of which are listed below: 

- Unlike technologies such as Open-CL, CUDA is developed for a specific 

hardware from NVIDIA eliminating the overhead caused by interoperability 

issues; hence resulting in a better performance. 

- CUDA is supported by many teaching centers in universities, companies and 

even by individuals. Thus, there are many 3
rd

 party libraries provided to 

application developers. Besides, its evolution is faster than other 

heterogeneous parallel computing tools. 

- Application developers are completely isolated from graphics APIs and they 

can develop their programs without considering the pipeline. 
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- CUDA allows many C++ features like classes, templates, etc. while many 

others are based on C99. 

CUDA also has some very powerful libraries that could be incorporated into 

video/image processing applications; such as [1]. In addition to those libraries, some 

open source communities such as Open-CV has recently started to provide 

application developers with GPU-accelerated versions of its already built-in 

methods. Due to these reasons, CUDA is chosen for the implementation phase in this 

thesis.  

Various video/image processing algorithms suits well to SIMD architectures 

provided that they are based on running a single instruction on individual pixels. 

GPU architectures are good candidates for such purposes; because of having small 

fast memories and registers attached to cores; but having thousands of those cores 

dedicated to data processing. Although GPU cores are not specialized for executing 

branching instructions; many video/image processing algorithms’ computationally 

complex parts do not contain flow control structures (even if they do, many of them 

do not cause branch divergence among threads). That also leads developers of such 

applications to run such computationally intensive fractions of the algorithm on 

GPU.  

Open TLD’s tracking and detection modules run independent of each other; i.e. they 

do not need to share any common data until the integrator receives results from both 

in order to estimate the location of the object. An important advantage of 

heterogeneous computing is to keep CPU and GPU busy as much as possible and 

hence utilize the resources efficiently. A detailed study of the algorithm in [2] reveals 

that it could be run on CPU and GPU independently and might be overlapped. 

Moreover;  using CUDA streams/events [3] enables developers to overlap data 

transfer between host/device; and some very critical parts of Open TLD fits well to 

this pattern (its detector module in particular). Each ―TLDObject‖ (defined in 

Section 4) is independent of each other in the sense that they may run different 

methods from same or different modules at the same time without any interference. 
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For instance, while TLD Object ―A‖ is running tracking module’s method ―B‖; in the 

meantime object ―C‖ might be running detection module’s method ―D‖. Finally, 

multi-core CPUs may be exploited in order to perform tasks that are not desired to be 

executed on GPUs for particular reasons (such as parts of the algorithm which 

require moving data back and forth between CPU and GPU very frequently). 
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CHAPTER 2 

2 LITERATURE REVIEW 

 

In this chapter, an overview of object tracking algorithms and the related work 

focusing on acceleration of object tracking algorithms as well as the rationale behind 

selection of the TLD algorithm as the main focus in this thesis are given.  

Tracking a particular object in a sequence of continuous video frames is an important 

concept in computer vision domain due to the wide range of applications. Object 

tracking systems are expected to track an object until it moves out of the camera’s 

field of view. It is a challenging task due to many reasons such as changes in 

illumination, noise, rotation or scaling, and object appearance. Besides, some 

systems aim tracking on moving cameras; rather than stationary ones. This adds 

additional complexity to object tracking algorithms. There are also some real time 

limits which affect the continuous tracking of the object, therefore they demand high 

processing power in order to track any object uninterruptedly.  

In this chapter, two different types of past works are covered:  

- Object Tracking Algorithms, 

- Accelerating Object Tracking Algorithms via Heterogeneous Computing. 

GP-GPU programming is relatively new topic compared to object tracking. Thus, 

many different approaches to track an object in 2D and 3D scenes have been 

proposed; while there is relatively less number of GPU-based or hybrid approaches. 

In [4], object tracking is grouped into 3 different categories: recursive tracking, 

tracking-by-detection, and adaptive tracking-by-detection. According to [4], a 4
th

 

category has emerged recently, which is called tracking-learning-detection. Our work 
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is based on a tracking algorithm that could be classified in this new group of tracking 

algorithms. 

As for increasing effectiveness and speed of object tracking algorithms via hybrid 

solutions, almost all of these solutions focus on analyzing and improving optical flow 

part of tracking algorithms; rather than focusing on the whole problem. 

2.1 Object Tracking Algorithms 

As just mentioned before there are 4 types of tracking algorithms. First group is 

recursive tracking. This type of algorithms estimates the approximate location state xt 

of the object on the current frame in accordance with its previous location xt-1 state 

by applying a certain transformation to this previous location. CONDENSATION [5] 

is one such popular recursive tracking algorithm. Unlike ―Kalman Filtering‖ method 

which outputs a single estimate of position and covariance, it estimates entire 

probability distribution of likely object positions; increasing its robustness against 

distracting clutter. Note that, it assumes that all observations (frames) in a temporal 

image sequence are mutually independent of each other; therefore previous 

observations has no effect on determining next state xt, and it is called Markov 

process as shown in Equation(2-1). 

 

  (  )   (  |  ) 

 

 

(2-1) 

 

Where    is the conditional probability density function of state xt, given that zt has 

already been observed at time t. 

 

 (  |  )     (  |  ) (  |    ) 

Where, 

 (  |    )  ∫  (  |    ) (    |    )

    

 

 

 

 

(2-2) 
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Where kt is normalization constant,  (zt | xt) is the probability density function that 

weighting new samples in state xt, and  (xt | xt-1) is the conditional probability 

density function which proves the next step is conditioned directly only on the 

previous state. 

Another popular recursive technique is ―mean-shift tracker‖. In this method, tracker 

tries to find the mean-shift vector by maximizing ―Bhattacharyya coefficient‖ [6] 

shown in Equation (2-3). First it finds the weighted pdf (probability density function) 

of object model (q) centered at the location y0 in the previous frame and the pdf of 

the candidate centered at the location y on the next frame. Then it calculates the 

similarity between these two PDFs. 

 

 ( )  ∑√  ̂( )    

 

   

 

 

 

(2-3) 

Where  ( ) is Bhattacharyya coefficient,    ̂( ) is the m-bins color histogram vector 

of the candidate on the next frame centered at the location y, and    is the m-bins 

color histogram vector of the target on the previous frame centered at the location y0. 

After calculating the first Taylor expansion of this function around y0; mean-shift 

vector (shown in Equation (2-4)), that will be added up to the previous location 

vector y0 (in order to find the new center location of the object), could be obtained. 

This is shown in Equation (2-5). This will lead to error accumulation, if the previous 

locations are calculated wrong. 

 

  (  )  
∑   (  )  

 
   

∑   (  )
 
   

    

 

 

(2-4) 

Where    is the mean-shift vector,    is the weighted function which depends on p 

and q (probability distribution functions), xi is the location inside the ROI (Region of 
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Interest) centered at the location y on the next frame, and y0 is the center of the object 

on the previous frame. 

 

 ̂       (  ) 

 
(2-5) 

Where Mh is the mean-shift vector maximizing Bhattacharyya coefficient in Equation 

(2-3), and  ̂ is the new center location of the object on the next frame. 

However, in [7] it is mentioned that the recursive methods accumulate the error due 

to dependence on the previous states of the object as depicted in Equation (2-2) 

(where next state always depends on the immediately preceding state). If object 

leaves the scene, and comes back into the view; they produce a significant error that 

will propagate to the following frames eventually. 

Second group of tracking algorithms is tracking-by-detection. However these 

trackers have detectors that are trained once initially, and are never updated again. As 

a consequence of this, they require to learn many different aspects of the object 

beforehand (offline learning). In [8], a bunch of different patches are produced by 

applying affine warping techniques; which are then used to train a classifier. 

Although this tracker is effective; it cannot learn unseen appearances of the object; 

because it is difficult to estimate all variances of the object’s appearance in the 

beginning. 

Third group is adaptive-tracking-by-detection. It was developed for updating the 

classifier online. In [9] tracking problem is treated as a binary classification in which 

there are two different classes, object and background. The method works on color 

video frames, and uses self-learning (discussed in the next subsection) in order to 

train its classifier throughout the temporal sequence of video frames. The features are 

defined as a weighted linear combination of R, G, and B channels of any pixel as 

shown in Equation (2-6). 
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   *            |     ,           -+ 

 
(2-6) 

Where Fi is equal to any feature. 

This methodology creates two m-bins histograms for both object and background; 

then tries to maximize the likelihood ratio of each feature using the probability 

density function based on those histograms. Features with higher likelihood ratios are 

picked up and used to model both object and the background each time a new frame 

is processed. However, in [10] it argues that self-learning algorithm causes drift due 

to using its own inferences to update itself. 

The last group is TLD (which the algorithm we use in this thesis is based on) and 

discussed in more details in subsection 2.3. 

2.2 Machine Learning 

Machine Learning is an important subfield of computer science in object tracking 

domain; because a spatial-temporal model is required in order to detect the object’s 

presence throughout a video stream, in turn this model should shape itself in the 

course of time as unseen samples are captured from that stream. There are 3 types of 

machine learning techniques in general: unsupervised, supervised learning, and semi-

supervised. 

- Unsupervised Learning: This type of learning techniques tries to find a 

hidden structure in which each group of unlabeled data belongs to a particular 

class (label). It uses methods such as k-means, mixture models, hierarchical 

clustering, etc. in order to group data with respect to the features the input 

data have. 

- Supervised Learning: It uses labeled training data to infer a function (model). 

In supervised learning, each training example is a pair of object (typically a 

vector) and a label that it is classified as. However, extra caution should be 

taken when training data are picked to create the model. For instance if the 

heterogeneity of training data is high; while some algorithms such as SVM 
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(Support Vector Machine) which requires the input features to be numerical 

and scaled to a certain range, are easier to apply; others like nearest neighbor 

methods are sensitive to such data. There are many other constraints to be 

considered in choosing training set. Main problem with supervised learning is 

that it could lose its generalization power in the course of time due to bias-

variance trade-off. If bias is low, then it will fit each incoming data 

differently, hence will result in a high variance (over-fitting); and vice-versa. 

A system expert may label the input data from time to time and keep the 

balance between bias and variance via updating parameters of the model. 

- Semi-supervised Learning: This learning technique stands in between 

unsupervised and supervised learning. It exploits both unlabeled and labeled 

input data for updating its model on its own. Initially, it is fed with an 

independently identically distributed (i.i.d.) training data like in supervised 

learning. Unlike supervised learning, there is no validation step to tune the 

parameters of the model. It combines unlabeled and labeled data to enhance 

the classification performance either by discarding the unlabeled data and 

doing supervised learning, or discarding the labels and doing unsupervised 

learning (hierarchical clustering, k-means, etc.). 

Semi-supervised learning has made a significant progress recently. There has been 

implemented a great variety of learners included in this group. In [11], some 

algorithms were discussed in this context, such as expectation maximization (EM), 

self-learning, and co-training.  

EM maximizes the likelihood (which is soft-clustering. Unlike k-means in where 

objects are classified as either inlier or outlier of a certain class; rather than assigning 

a probability to it as to how much likely it belongs to that class); hence if the 

posterior probability functions of two different classes are not separate on their low 

boundaries, EM will eventually lose its discrimination power. In self-learning, after 

classifier is trained, unlabeled data are evaluated by the classifier; and classifier picks 

up the unlabeled data with the highest confidence value (hard-clustering), and 
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eventually this kind of schema in which the classifier uses its own decisions to train 

itself, will lead decision boundaries to be pushed away from the unlabeled data [10]; 

as a result it will cause drift.  

In learning algorithms, unimodality means that there is more than one different 

resource that contributes to the object model. On the other hand, co-training splits the 

vector that describes examples into two; then it trains two separate classifiers using 

those separate features. At the learning step, each classifier evaluates unlabeled data 

and enhances the training set of another. As a result, each classifier learns a different 

group of features resulting in two modalities (multimodality). However in object 

detection problem, samples (patches) are generally (for instance [9] is an exception 

to this) obtained from a single modality. Thus, in [11] it is claimed that co-training is 

not a good candidate for detecting objects within a temporal sequence of frames. 

In [11] and [2], it was shown that P-N Learning, which is also a type of semi-

supervised learning, is superior to other semi-supervised learning techniques in 

detecting objects under observation. This technique is discussed in the next sub 

section in detail. 

2.3 Tracking-Learning-Detection (TLD) 

 

Figure 2-1 TLD Framework [2] 
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In Figure 2-1 TLD Framework, the whole framework of TLD algorithm is 

summarized. In this subsection, these components and their roles in this framework 

are explained. 

The novel approach in TLD [2] is that its classifier does not use its own inference; 

but another component (P/N experts) helps it in updating the model. In addition to 

this improvement, it has some structural constraints. In [11] it is assumed that an 

object cannot be located in more than one position on a single frame (i.e. at a time) 

and that object should follow a particular trajectory. 

In TLD, tracking is the process of predicting next locations of previous reliable 

points located in the BB (bounding box) of the object; and determining their 

reliability based on forward-backward and NCC (Normalized Cross Correlation) 

scores as well [12]. As a result of those, it finds the trajectory (which is used by P/N 

experts) as well.  

Task of the detection module is to find the reliable BBs (based on classifier’s 

scoring) where the object may exist. Then those BBs with high scores are sent to the 

P-N learner for evaluation (discussed in next paragraphs). Main purpose of the 

detector is to decide whether the object is still in the field of camera’s view and if 

not, it tries to detect the object when it comes back into the scene. This is a 

significant improvement over many other tracking algorithms. 

TLD uses random forest to describe its model and P-N learning for updating that 

model. As is the case with any semi-supervised learning, the classifier is initially 

trained with some labeled data. Then the classifier evaluates unlabeled data. Finally, 

P-N learning decides whether classifier’s decisions on unlabeled data are correct or 

not by following steps: 

- P expert checks each sample labeled as negative (background) against the 

trajectory. If that sample is nearby the trajectory, then it re-labels it as 

positive and adds it to the positive training set. This will eventually increase 

generalization power of the classifier. 
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- N expert checks each sample labeled as positive (object) against the 

trajectory. If that sample is far away from the trajectory, then it re-labels it as 

negative and adds it to the negative training set. This will eventually increase 

discrimination power of the classifier. 

If any of the two steps (or both) above occurs, then the classifier is updated; 

otherwise it remains intact as it was before. 

2.4 Tracking Algorithms Implemented on GPU or Hybrid 

Platforms 

In this subsection some GPU implementations for tracking algorithms are mentioned. 

Many algorithms implemented on GPU or hybrid platforms focused on calculating 

optical flow as it is the common requirement for almost all modern tracking 

algorithms. On the other hand, by the time H-TLD has been implemented, no hybrid 

implementation for TLD was proposed. 

In [13], CUDA was used to accelerate the speed of LK (Lucas-Kanade) optical flow 

on GPU. It splits the algorithm into some sequential steps as shown in Figure 2-2. 

 

Figure 2-2 Overview of Parallel Algorithm in [13] 

It uses Harris operator to figure out which patch on the frame is better for finding 

disparity (motion) vector h (this step is called patch selection step). Then it adds and 
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subtracts patches for further steps that will be run on GPU. It runs Sobel operator 

(kernel) on (I + J) patch in order to obtain gx and gy gradient matrices in parallel. It 

fuses multiplication and summation step into one and run parallel reduction 

algorithm. After running equation solver to find vector h, it generates a new image J’ 

by adding h with J; then it runs all steps for several times again until vector h 

converges. However, since it did not consider pyramidal case, it fails to capture fast 

motion changes. Any speed-up was not given in the discussion part of [13]. 

In [14], it also includes pyramidal implementation from [15] in order to capture fast 

motion changes between two consecutive frame contrary to [13]. They also split into 

several steps; but they have more steps due to pyramidal implementation. They 

showed that most time consuming operation among them is ―LK Optical Flow‖ as 

shown in Figure 2-3. They achieved a good performance in that thesis, and compared 

their results with Bruhn’s CPU implementation and Horn & Schunck (HSCuda)’s 

GPU implementation, based on a measurement that reflects the trade-off between 

execution time and accuracy (ETATO). This is shown in Equation (2-7). Their 

algorithm outperformed other two algorithms. 

 

                            

 

(2-7) 

A video analytics system targeting video surveillance applications is described in 

[16]. As part of this work, a tracking algorithm was optimized on GPU, however, due 

to its target application field; tracking is based on background subtraction and 

assumes that the cameras are static. 

Lastly, another parallel tracking algorithm has been published recently in 2014. It 

[17] has two big modules, one for feature detection and another for the optical flow. 

In this work, Bouguet’s corner detector [15] based on Harris detector [18] was used 

to detect features to be tracked and LK optical flow was exploited for tracking those 

detected features. They also used multiple GPUs (as CUDA allows developers to 

enumerate and use multiple GPUs concurrently) to increase their speed gain. They 
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compared their work with Open-CV’s feature detector, tracker implementation; but 

they only outran Open-CV under some certain circumstances (when some parameters 

are tuned). 

 

 

Figure 2-3 GPU Timing for Each Separate Operation [14] 

Note that, all parallel algorithms mentioned in this subsection may perform faster in 

conjunction with the development of new GPU architectures in the future. 
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CHAPTER 3 

3 OPEN TLD ALGORITHM AND ANALYSIS OF 

COMPUTATIONAL BOTTLENECKS 

In this section, execution times of the TLD algorithm are analyzed to detect the 

performance bottlenecks. Execution times were calculated by the methodology 

explained in Chapter 5 (in Table 5-2 Method Used to Measure Time on Host Side). 

Test platform and its specs could be found in Table 5-1 System Specs of the Test 

Platform in Chapter 5 as well. 

The algorithm is composed of the following components: 

- LK-Tracker (LKT): It is a part of the tracking module and it calculates 

frame-to-frame optical flow as was explained in median flow tracker [12]. It 

is run twice per frame in order to find reliable tracking points with more 

confidence values. 

- Total Recall Computation (TRC): It is run in the detection module. Its aim 

is to find a confidence value for each BB before the object- tracking phase 

begins. The confidence value is then used to check the existence of the 

tracked object in the current frame to find out whether it is still in the field of 

camera’s view or not and detect its position. 

- II-Computation (IIC): It computes integral and squared integral images for 

each frame. These images are used within PV-Computation (patch variance 

computation) of each BB. PV-Computation is the first stage of Total Recall 

Computation, and called once before TRC begins. 

- Blurring the Image (BI): Like II-Computation, this is called before TRC is 

executed to smooth out the details in the image. This blurred image is used in 
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TRC for feature comparisons in order to find indices to random forest data 

structure. 

- Pattern Generation (PG): After tracking module estimates the location of 

the next bounding box pertaining to the object, P-Expert decides on whether 

the patch which that bounding box represents belongs to the object or not. If 

it belongs to the object, then it retrains ensemble classifier by generating 

positive patches (i.e. bounding box or scanning window). In the sense of 

detection module (i.e. ensemble classifier), training data are simply patterns 

generated via feature comparisons made on those generated positive patches.  

- Computing BB Overlap (CBO): It is used by learning component in 3 

different situations to find the ratio between two different bounding boxes 

(             (                        )⁄ ). After bounding boxes 

with high confidence values are determined by detection module, learning 

component cluster these detections and form a greater bounding box 

encompassing all bounding boxes owned by each cluster. Then it tries to find 

how much of the bounding box defined by tracking module overlaps with 

each of those bounding boxes. Second case is in which learning generates 

positive and negative patches. The third and the last one is when learning 

component harnesses detections (bounding boxes) with high confidence in 

order to adjust trajectory which is intrinsically defined by tracking 

component. 

- Random Forest Update (RFU): Ensemble Classifier classifies labeled 

example, and if this classification is proved to be incorrect by P-N Experts; 

posterior probabilities of feature comparisons for that labeled patch are 

updated (this operation was explained in [2] in more details and is out of this 

thesis’ scope). This operation is not performed for every frame. It interferes 

with the execution whenever detection or tracking module makes a mistake. 

- Warping a Patch (WP): This operation is used to generate different version 

of a positive patch to make it scale and rotation invariant. After a patch is 

captured, it rotates, rescales that patch to create variants of it. It is called more 
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than once by learning component; but note that the learning component is not 

run for every time a frame is generated.  

-  Norm Cross Correlation Computation (NCC): In the tracking module, 

after finding the next points via median flow tracker [12], similarity between 

sub rectangular regions,  which are centered on original point on the previous 

frame and centered on next (predicted) point on the next frame, with a 

predefined size (explained in section 4.3), is calculated via Open-CV’s [19] 

template matching procedure. 

While there are other components of the algorithm, their execution times are 

insignificant compared to the ones above. Thus, they were not considered in the 

execution time analysis. In Table 3-1 Performance Statistics for Each Repetitive 

Task of Open TLD, execution time per call and the average number of calls per 

frame for each task mentioned above are given. 

Component 

Time per call (ms)  Time for whole sequence 

(ms) 

480x270 960x540 1920x1080 480x270 960x540 1920x1080 

Tracking 

LK Tracker 1.100 4.280 17.520 509 1982 8112 

Norm Cross 

Correlation 
0.620 0.630 0.770 287 292 357 

Learning 

Pattern Generation 0.010 0.020 0.080 32 65 258 

Random Forest Update 0.440 1.200 1.890 141 386 608 

Patch Warping 0.080 0.230 1.270 326 938 5180 

BB Overlap 

Computation 
0.020 0.060 0.270 35 104 467 

Detection 

Total Recall 

Computation 
5.930 20.400 62.500 2752 9466 29000 

Integral Image 

Computation 
0.271 1.100 4.560 126 510 2116 

Image Blurring 1.685 6.509 23.649 782 3021 10974 
 

Table 3-1 Performance Statistics for Each Repetitive Task of Open TLD 
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As seen in Table 3-1, there are some tasks which are not called per frame (average 

number of calls lesser than 1) and which are called for couple of times per frame 

(average number of calls greater than 1). All tasks that seem they are called for 

couple of times per frame (PG, CBO, WP) are parts of learning module, and they are 

executed when the learning module interferes with the process (Thus, it could be 

inferred that they are called couple of times by the learning component when the 

learning  component runs). On the other hand, only RFU’s call statistic shows the 

exact average number of calls to the learning component (because RFU is called 

once per call to the learning component). 

It can also be seen that there are some tasks which are called every time a frame is 

processed, and are costly. These are TRC, BI and LKT which are computationally 

expensive. Moreover, as the resolution of the video is increased, those three tasks 

dominate the execution time. 

TRC is the most time consuming component. The reason is that it performs an 

exhaustive search for the object using a sliding window method. This task is 

performed as follow:  

- A series of BBs based on object size are initially created and saved into a data 

structure.  

- Then TRC treats each one of these BBs as a search window and carries out a 

series of costly sub tasks (PV (Patch Variance)-Computation, feature 

comparison, and CV (Confidence Value)-Calculation sequentially) on this 

single window (BB) to figure out which one of them is the best for the object 

to fit into (or it does not exist in the field of camera’s view).  

According to [2], there could be 50k BBs for a QVGA image (240x320) depending 

on the initial size of the object’s BB. Therefore, this high number of BBs causes this 

high computational cost. 
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Although BI is not a heavy operation, yet it could become problematic as the 

resolution increases. In [2]’s case, it runs in a virtual machine (VM) and this brings 

another extra overhead for this task. 

LKT’s sparse mode is used in [2]. Since Median Flow Tracker (MFT) mentioned in 

[12] calls LKT twice to calculate the forward-backward error for all points; it 

doubles the cost. Moreover, Open TLD [2] uses pyramidal LK tracker [15] in order 

to capture large motions. As a consequence of those two facts, tracking good features 

(points) of the object under observation becomes an expensive operation; even 

though it does not compute dense optical flow.  

Finally, computational cost of IIC increases linearly with the number of pixels in 

video frame. Besides, the first sub task (PV-Computation) of TRC was implemented 

on GPU (discussed in Chapter 4); hence there are two options: either both (plain and 

squared) IIs had to be calculated on CPU and then moved to GPU; or only the 

current frame had to be moved to GPU and then IIC should have been performed on 

GPU as well. First option is more expensive than is the second one; because moving 

data back and forth between GPU and CPU is expensive compared to computational 

operations that could be done on GPU. Furthermore, IIC task suits well to the GPU 

architecture, hence we decided to run this component on the GPU. 
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CHAPTER 4 

4 IMPLEMENTATION DETAILS 

 

In this section, the design of the H-TLD library and the implementation details are 

provided. 

4.1 TLD Object & H-TLD Modules 

In this subsection, the general software design and main components of the Hybrid-

TLD (H-TLD) algorithm are given. H-TLD has been designed for easy injection into 

any serial context. The context is not restricted only to C/C++ based native OS 

processes; but it may also be a JVM, .NET framework, or another container. Since 

the output of this code is a DLL or SO file, it can be used within various applications 

on different platforms. 

A C++ object called TLDObject is the key to communicate with the library. Each 

TLDObject refers exactly to one object under observation in the current video 

stream, and is pure state holder which means that it does not have any behavioral 

implementation. TLDObjects are passed to H-TLD modules (tracking, detection) in 

order to exploit H-TLD capabilities. For this reason, there might be more than one 

TLDObjects while there is only one instance of each H-TLD module (i.e. one 

instance for tracking and one for detection) in a single process. Each TLDObject 

consists of 2 different module states: one state for tracking and one for detection. The 

learning component is not included in this object. Reasons for excluding the learning 

component from this object are explained in Chapter 3.  

TLDObject is called ―active‖ whenever a TLDObject binds to (calls) an API method 

of any module from H-TLD. Note that, when one of those objects is busy (i.e. active) 
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with any of those modules’ methods (either tracking’s or detection’s); it excludes all 

other objects from using that method for thread safety. That is because many 

GPUkernels use file-scoped variables residing on GPU’s constant memory (which 

stores data per TLDObject) until module it belongs to is done with that active 

TLDObject. Nevertheless, other unbound methods of that module and all other 

modules’ methods can be used by any other TLDObject simultaneously without 

worrying about any kind of race condition that may occur in between two active 

TLDObjects. Figure 4-1depicts this notion. 

 

Figure 4-1 Communication with H-TLD via TLDObjects 
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As can be seen in Figure 4-1, whenever one of the methods from any module is 

occupied by one of these TLDObjects, any other object’s request, that demands the 

execution of the same method, should be suspended.  

 

Figure 4-2 Class Diagram for H-TLD Objects and Structures 

Figure 4-2 depicts the relationships among the key objects. There is no circular 

dependency between those objects (loosely coupled). In other words, when one of 

those classes is required to be changed (or extended) all the rest will not be affected. 

―has‖ relation shows that class/struct which is pointed by head of the arrow is owned 
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by class/struct attached to the tail of that same arrow and ―uses‖ relation depicts that 

class/struct which is attached to the tail of the arrow has an instance of class/struct 

which is pointed by head of that same arrow. Since all classes/structs have their 

definitions and all necessary comments in their corresponding source codes; only a 

brief definition for each class/struct will be given in following items: 

1. TLDObject: It is the key to communicate with the serial code. It has all state 

variables for an object under observation, and it stores all the information 

required by singleton H-TLD modules. Many of those variables are created at 

initialization time of the TLDObject as they remain intact until the disposal of 

that TLDObject; hence causing to eliminate overhead that would have been 

brought by allocation and de-allocation instructions. Each TLDObject is 

associated with a unique id called ―handler‖ and it is the only way to acquire 

the TLDObject on demand in a serial context. 

2. MemoryManagement: It has methods used within both serial code context 

(moving the current frame to the GPU, etc.); and the modules in H-TLD 

(such as converting BB offsets stored in the form of array-of-structures into 

structure of arrays for coalesced memory access of GPU). It manages all 

CPU/GPU data transfers; and conducts all other memory related operations.  

3. FastTracking: It has methods which are executed in a heterogeneous way to 

reduce execution time of tracking module. For the time being, it only 

attempts to speed up forward/backward optical flow computations based on 

[12] using [19]. It has associated C++ structure called 

―FAST_TRACKING_STR‖ and it is created per TLDObject. It holds state 

variables for running tracking related operations. 

4. FastDetection: It has methods which are executed in a heterogeneous way to 

reduce execution time of detection module. It has two methods for computing 

integral images via [1] and total recall computation which is explained in the 

next part of this chapter. It has associated C++ structure called 

―FAST_DETECTION_STR‖ and it is created per TLDObject. That structure 

holds state variables for running detection related operations. 



 

29 

  

5. Master: It is a container for having access to all API objects. When it is 

created for the first time, it creates the other H-TLD modules in accord with 

the parameters passed from serial code context. Access to any TLDObject or 

H-TLD module (either FastTracking or FastDetection), should be done 

through this module. Another purpose of it is to create and destroy 

TLDObjects on demand.  

6. Error Management: This module is responsible for error handling. The 

class, named ―HETLDError‖ is the type of all errors thrown by H-TLD. It 

inherits all basic fields, methods, constructors and destructors from its parent 

which is standard C++ library’s ―runtime_error‖ class. All what clients 

should do is to surround API calls with try-catch blocks in order to capture 

and handle those errors. Table 4-1 describes its public fields for whenever an 

error is captured, clients will know what error has just occurred and in which 

module it did so. 

Public Field Name Definition 

_module It holds enumeration for the module that 

caused erroneous case. 

_error_code It stores the error code. Clients may check 

out ―hetld_errors.hpp‖ file in order to 

figure out the exception (in that file each 

module has its own set of errors; so that 

API users may match the error code with 

the one they got at run-time). 

what_arg It is inherited from the parent class and 

clients may use it for displaying error 

messages in a user-friendly way. 

Table 4-1 HETLDError Class’ Public Fields and Their Definitions 
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4.2 Implementation of H-TLD Detection Module 

For the time being, H-TLD’s detection module accelerates two critical parts of the 

original detection module from [2] (See Chapter 6 for speed-ups):  

 Total Recall Computation: As mentioned in the previous chapters, detection 

module uses a sliding window methodology to detect whether the object 

under observation is still in the video or not and if it is, then to estimate 

object’s location. Thus, for each BB; a confidence value must be assigned per 

frame. This operation has high computational load due to the high number of 

BBs for even lower resolution video streams (e.g. for a 470x310 resolution 

frame; ~30,000 BBs need to be scanned).  

 II Calculation: Integral Image, which is also known as ―summed area table‖, 

is a data structure and algorithm for generating the sum of values in a 

rectangular subset of a grid (a video frame could be assumed as a grid). 

Equation (4-1) gives the formulation for forming an II out of a video frame. 

Suppose that there is a video frame  , then II is calculated as: 

 

 (   )   ∑  (     )

    
    

 

 

 

 

(4-1) 

 

Where a pair of x and y specifies a particular location in the frame I. 

Once II is calculated, in order to find the sum of all pixel values in any sub 

rectangular region within an II like the one in Figure 4-3 (Image was copied 

from [20]): 
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Figure 4-3 A subset of a Rectangular Region on an II 

 

 

 (   )   ( )    ( )    ( )    ( ) 
 

(4-2) 

As it can be seen from Equation (4-2), it is only adding and subtracting four 

array references. 

Before Random Forest Index (RFI) calculation step (a subpart in total recall 

computation), an integral image and squared integral image must be 

calculated for the use in PV-computation to eliminate many of the BBs before 

they make their way to RFI calculation phase; hereby reducing total recall 

computation time. The reason why PV-Computation is the first step of the 

ensemble classifier is that it is far cheaper operation by comparison with the 

rest. Both integral images are calculated (right after current frame is moved to 

GPU by ―MemoryManagement‖ module) by [1]’s 

―nppiSqrIntegral_8u32s_C1R” method. Results of this method and 

comparison with its serial counterpart could be found in Chapter 5. 

 Obtaining Blurred Image: Original frame is not used in ―RFI Calculation‖ 

phase when pixel comparisons are made; instead it is blurred by a ―Gaussian 

Filter‖ for the sake of eliminating details. ―MemoryManagement‖ module 

blurs that frame on-demand using a method from [19] and stores it on a 

separate location on GPU memory. 
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 ―Total Recall Computation‖ does not take place only on GPU; contrary to II-

Calculation; but on both processing units to efficiently utilize both CPU and GPU. 

That computation includes 4 separate subparts executed in the order given below 

(however, all these steps are executed for number of asynchronous invocations and 

each invocation is independent of each other; hence none of the invocation has to 

wait for each other to be completed):  

 PV-Computation (GPU Only), 

 BB Stream Compaction (GPU Only), 

 RFI Calculation (GPU Only), 

 Confidence Calculation (CPU Only). 

Each subpart’s implementation details will be discussed in separate subsections 

along with the reasons for choosing particular processing unit type (CPU or GPU). A 

general overview of ―total recall computation‖ could be found in the pseudo-code 

shown below (Please, see [21] for what ―single region‖ and ―parallel region‖ come to 

the meaning of). 
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Figure 4-4 Pseudo-Code for Total Recall Computation 
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4.2.1 PV-Computation (GPU Only) 

Some concepts which are used to organize data in order to increase speed-up that 

will be referred to in the implementation part are detailed below. 

A Scan-
Line Pair

A Scan-
Line Pair

A Scan-Line
A Scan-Line

A BB from 
Scale-Leveln

A BB from 
Scale-Leveln

A BB from 
Scale-Leveln-1

A BB from 
Scale-Leveln-1

 

Figure 4-5 Terms Used in PV-Computation 

1. Scale Level: Open-TLD generates scanning windows (i.e. BB) via applying 

different scaling values (fractional number that equals to 1.2
k
 where k is in [–

(n – 1)/2, (n – 1)/2] as specified in [2] and where n is equal to the total 

number of scale levels) to width and height of the original object’s BB, in 

order to prevent object from not being detected in the case which it is 

rescaled in some way. Just before it creates a group of BB that belong to 

certain scale level, it multiplies original width and height of the object’s BB 

with scaling value to find width and height of BB at that certain scale level. 

In this thesis, scale levels are numbered from 0 to (n-1).  

2. Scan Line: Each BB is represented by its 4 corners. Since each BB’s top and 

bottom border align with the horizontal axis (i.e. overlaps with a particular 

row of any II), each pair of corner locations (either at the top or bottom. e.g. 

top left and top right corner locations form a pair) of any BB lies within a 

single row of II. Any this type of row is called ―scan line‖. Note that, one 

scan line may form top and/or bottom borders of BBs from different 

scale levels (This property will result in reducing the number of scan 

lines that must be read into shared memory). 
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3. Scan Line Pair: A pair of scan lines encompasses top and bottom borders of 

a group of BB at a given scale level. That is to say, one scan line for top 

borders and another one for bottom ones of a particular group of BBs at a 

given scale level. 

4. Chunk: is the smallest container unit for BBs from different scale levels. 

They are building blocks of clusters. Although each chunk is carefully 

designed to house BBs spanning a single scan-line pair from every scale 

level; since number of scan-line pairs decrease as scale level goes up and due 

to shared memory limit,  chunks do not always have to have bounding boxes 

from all scale levels. While the number of BBs among chunks may vary, the 

chunks are designed in such a way to have approximately the same number of 

BBs. But one thing within a chunk is guaranteed to be consistent which is that 

a group of BBs spanning a scan-line pair cannot be impartible and should be 

located within a single chunk, no matter what 

5. Cluster: Actual logical unit which is run in GPU thread blocks. Each thread 

block of CUDA enabled device is responsible for executing one cluster per 

invocation. Each cluster has almost (See subsection called ―Load Balancing 

Concern‖) equal number of chunks. 

In the remainder of this chapter, firstly the design of kernel on GPU is discussed. 

Then, memory optimizations, more specifically shared memory and coalesced 

memory access to global memory concerns are mentioned. And finally, load 

balancing design and memory access patterns on GPU are addressed. 

 

4.2.1.1 PV-Computing Kernel on GPU 

This kernel is composed of three parts:  

1. Read the scan-line pairs into the shared memory. 

2. Compute patch variance (PV) for each BB either based on integral image or 

squared integral image. 
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3. Decide on whether BB’s calculated PV passes specified threshold value (min 

PV) and assign 0 or -1 (depending on the outcome of PV-Computation) for 

below and above threshold value respectively. 

Pseudo-code in Figure 4-6 shows implementation details of the kernel. Note that, 

since kernel code is run by each thread in a block; that pseudo-code should be treated 

as if it was a piece of serial code run by a single thread. 

Although order of time complexity function (i.e. Big O) of any algorithm in [2] was 

not modified; functions themselves were done so in order to have them complied 

with parallel structures and parallel computation methodologies. Adding some 

―overhead instructions‖ (such as initializing instructions before a loop begins), 

―control instructions‖ (such as incrementing an index to advance any loop), and some 

other helper instructions in the main loop such as having access to some extra 

memory locations are some modifications that did not affect the order of time 

complexity function. In conclusion, ―basic instructions‖ (instructions that are 

executed for as many times as the size of input) remained intact. 

Time complexity function of PV-Computation is given in Equation (4-3). 

 

 (   )    (     ) 

 

(4-3) 

 

 

Where n is equal to the number of BBs and m is equal to the number of scan-lines to 

read. 

For a given complexity function  ( ),  ( ( )) (i.e. Big O) is the set of complexity 

functions  ( )  for which there exists some positive real constant c and some 

nonnegative integer N such that for all     , 
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 ( )      ( ) 

 

(4-4) 

 

 

If     ,      and     ; then Equation (4-5) satisfies Equation (4-4). 

 

  (     )    (    ) 

 

(4-5) 

 

 

It means that the order of time complexity function is  (   ). Thus, PV-

Computation is still running at linear time as does its serial counterpart (which 

is  ( )). 
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Figure 4-6 Pseudo-Code for PV-Computation on GPU 



 

39 

  

There is a mapping between concepts in a multi-threaded environment and the ones 

in PV-Computation:  

1. Each thread in a particular block is mapped to more than one scan lines (not 

necessarily; but it might happen as dimensions of the frame becomes larger 

and larger) located in any of the IIs (either normal or squared); at the time 

when II (either Squared or Plane II) pixels are read into shared memory 

collaboratively. 

2. A cluster is mapped to a single block per kernel invocation and vice versa, 

3. A BB’s PV-Computation is mapped to a single thread associated with a 

particular block; but not vice versa (i.e. a thread may process more than one 

BB of a cluster that its block is assigned to). 

Figure 4-7 depicts these relationships:  

 

 

Figure 4-7 Mapping Multi-Threaded Concepts to PV-Computation Ones 
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4.2.1.2 Optimization of Memory Access 

There are two main concerns regarding the use of shared memory:  

1. Pixels located on a single scan-line are used by multiple threads in a block 

while PVs are being computed (in some cases, threads may use some pixel 

values for more than once); hence it would have resulted in multiple accesses 

to global memory for exactly the same memory locations. There are two 

cases in which this phenomena shows itself up. 

- As illustrated in Figure 4-7 BBs from scale level i and scale-level i-1 

share the same scan-line which spans bottom and top borders of their 

associated scan line pairs respectively. Those BBs from different scale 

levels are more likely to be processed in the same CUDA block. This 

is explained in more detail in the subsection where load balancing and 

exploitation of spatial locality are described.  

- BBs are not that far away from each other and have gaps between 

them as shown in Figure 4-7, BBs drawn in between scan-line pairs 

are shifted 10% of their width to left; therefore resulting in multiple 

accesses to very same pixels by those BBs that are adjacent 

horizontally to each other. All in all, scan-lines required by threads of 

any block should be read into shared memory for accelerating speed 

of memory access.  

2. As it can also be seen from pseudo-code; a PV for a BB is computed in two 

steps rather than in one (outer loop iterates for 2 times). The reason is the 

limited size of the shared memory of a GPU’s streaming multiprocessor. As 

of yet, CUDA architecture 5.0 supports no more than 64KB of shared 

memory [22]. Thus, scan-lines for II and squared-II are read into the shared 

memory separately, so that more BBs could be processed per invocation 

within a single CUDA block. More scan-lines each block reads into shared 

memory, more BBs confined in between scan-line pairs are processed per 
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single kernel invocation; i.e. more chunks a cluster may hold; less number of 

clusters are formed to be processed. As a result, it leads to fewer number of 

kernel invocations for PV computation which is the key to reduce the 

potential overhead of multiple kernel invocations at this stage. 

Only concern about global memory access is how BB offsets are read into thread 

registers. Those accesses must be coalesced; so that maximum bandwidth might be 

used per memory transaction (See Chapter 6 of [23] for more details about global 

memory chip design). Figure 4-8 depicts how array of BB offsets was organized on 

the host side: 

 

Figure 4-8 BB Organization on RAM in Serial Code Context 

As the direction of arrows indicates, it is a row major memory access and all 

attributes of any BB’s offset are placed sequentially. This pattern is called Array of 

Structures (AoS).  
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Figure 4-9 Access Pattern for BB Offs without Conversion on Device Memory 

Using this pattern, memory accesses to global memory would be non-coalesced as 

illustrated in Figure 4-9. Coalesced access could be achived by realignment of data 

stored on device’s global memory. This is done by a kernel implemented for this 

purpose named ―convertBBOXOffsToSoA‖ in ―MemoryManagement‖ module.  

This kernel groups each attribute type; in contiguous memory locations, converting 

the AoS pattern into SoA pattern. Mapping of AoS based indexing into SoA is 

illustrated in Figure 4-10.   

 

Figure 4-11 shows new access pattern. 

 

 

First off , current index to the AoS array is computed as follow:  

 

                                          
                      

 

Secondly, which attribute ―the value read‖ refers to has to be found (i.e. attribute 

index for the current BB. Attribute indices starts with 0 and ends at n -1; where n is 



 

43 

  

equal to the number of BB’s offset attributes). 

Suppose that, (a % b) operation is defined as        (  ⁄ )   . 

                       
                              (                            )   
                                   

 
―One over number of attributes‖ is kept around because division is relatively much 

more expensive than multiplication. 

 

Thirdly, destination location for that attribute has to be calculated. Since number of 

attributes each attribute group has is equal to total number of BBs; the following 

shows that how destination location within SoA array is computed:  

 

                                       
                                    (                            ) 

 
Then all has to be done is to move that attribute to its final destination:  

 

                 ,          -                   ,          - 
 
 

Figure 4-10 Conversion from AoS to SoA 

 

  
 

Figure 4-11 Accessing BB Offsets on GPU’s Global Memory after Conversion 
 

4.2.1.3 Load Balancing Concern 

In PV-Computation, ideally, BBs from different scale levels should be grouped in 

such a way to ensure the clusters to have the same number of BBs to be processed. 
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Spatial locality between BBs must be exploited as well; so that scan-lines read into 

shared memory might be used by higher number of threads during PV-Computation 

process. Equation (4-6) and Figure 4-12 illustrate the decrease in the number of BBs 

in a scan-line pair with the increasing scale level. Note that BBs specified by a 

particular scan-line pair must be processed by a single CUDA block which means 

that those BBs are impartible among CUDA blocks per kernel invocation. In 

Equation (4-6), f is a function of scale level and gives the number of BBs a scan-line 

pair may hold at a certain scale level x: 

 

 ( )  
          

           
 

 

(4-6) 

 

 

Where:    = 470px,   = 1.2,  = 0.1,    = 128px, and  (scale level) varies from 

0 to 7. 

Figure 4-12 Relationship between Scan Line Pairs and Scale Levels 

Where   is the width of video frame,   is base scale level (which is equal to 1.2 in 

Open TLD’s [2] implementation,   is shifting factor (it is in the range of (0, 1] and 
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in Open TLD’s [2] implementation equal to 0.1) and    is the width of initial 

bounding box that defines the object under observation. 

Graph in Figure 4-12 is visual depiction of the function f in Equation (4-6) (assuming 

all parameters are known; but scale level x).Figure 4-13 shows order in which BBs 

are stored on memory on the host side. 

 

Figure 4-13 Processing of BBs without Loading Balancing 
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Processing of BBs in the order as they are processed on the host side prevents proper 

load balancing on GPU side. As direction of PV-Computation in Figure 4-13 

indicates, each scan-line pair and the BBs located within it at a certain scale level is 

located contiguously in the memory. Thus, blocks of PV-Computing kernels would 

start processing fewer numbers of BBs compared to the earlier ones. This would 

cause unbalanced kernel loads where many processing units become idle after a 

while. To prevent such unbalanced operations, a pre-processing step as shown in 

Figure 4-14 takes place once at the time when TLDObject is initialized. 

 

Figure 4-14 BB Ordering for Load Balancing 

4.2.2 BB Stream Compaction (GPU Only) 

We need to eliminate the BBs which fail the test and dispatch only the ones passed to 

the next stage to allow sequential access to remaining BBs in the following steps, and 
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copy only their RFIs back to host side after completion of ―confidence index 

calculation‖ step (the next stage in where RFIs for only PV-Test succeeding BBs). 

Figure 4-15 shows the status of BB stream right after running PV-Computation. 

 

Figure 4-15 BB Stream after Running PV-Computation 

As it is seen Figure 4-15, in order to compact BB stream and group all succeeding 

BBs together, they must be shifted to the  left. If a prefix sum is run with the output 

of PV-Computation shown in Figure 4-15; then result shown in Figure 4-16, which 

gives the shift amounts that next two steps (RFI Calculation and Confidence 

Calculation) require, is obtained (That prefix-sum is performed by the state of art 

library CUB [24]): 

 

Figure 4-16 Left-Shift Amounts after Running ―Prefix-Sum‖ 

Equation (4-7) gives the formula that moves succeeding BBs to their correct 

locations within the BB stream for compaction. Where i equals to the ith BB’s index 

in the original BB stream and           is the array which holds left shift amounts 

for zipping that BB stream. 
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By this way, after RFI calculation step, there is no need to compute and copy all 

RFIs for all BBs; but only of those that passed PV-Test. This step produces (memory 

operations between host and device which are very expensive. This can be seen from 

the results listed in Chapter 6). If all those l-shift values are negated via multiplying 

them with ―-1‖, one may use those r-shift values to find previous locations (the ones 

before compaction occurs) of those succeeding BBs by adding up to their current 

location after compaction. 

 

    ( )                       ( )  
 

 

(4-7) 

 

 

4.2.3 RFI Calculation (GPU Only) 

In this subpart, calculation of indices to confidence array (i.e. weights array) is 

described. In [2], it was explained that how random forest are formed and features of 

each tree in that forest are indexed. On GPU side, there are some memory accesses 

which cannot be coalesced at all. For instance, memory accesses to blurred image 

data can’t be coalesced due to the nature of how comparison is made for a single 

feature on condition that this comparison is made by a single GPU thread (See Figure 

4-17). Besides, a single thread conducts all feature comparisons for a single BB in 

this implementation. 
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Figure 4-17 Feature of a Random Forest’s Tree 

Although pixels which are subjected to comparison are not located on contiguous 

memory locations, new architectures from CUDA team have been trying to leverage 

global memory transactions and furthermore, parallel computation power of today’s 

CPUs is not a match to the one of GPUs provided that one has 4, 8 cores whereas the 

other one has hundreds of cores. That is to say, it may easily compensate time loss 

caused by that non-coalesced global memory access pattern. Pseudo-code in Figure 

4-18 shows that how each individual GPU thread computes RFIs based on 

aforementioned pixel comparison. 

Time complexity function of RFI calculation is given in Equation (4-8). 
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 (     )    (    (   )) 

 

(4-8) 

 

 

Where m equals to the number of BBs, n equals to the number of trees and o equals 

to the number of features. 

If     , and         , then the inequality in Equation (4-9) satisfies the 

inequality mentioned in Equation (4-4). 

 

                

 

(4-9) 

 

 

It means that the order of time complexity function is   (   ) . Thus, RFI-

Calculation is still running at linear time as does its serial counterpart (which 

is  (   ) again). 

Another version of RFI Calculation was also implemented and tested; but failed in 

speed-up due to data loading time into L-Cache of a CPU core. It was a hybrid 

solution for RFI Calculation in which CPU helps GPU by calculating a fraction of 

RFIs based on a benchmark which is run before any TLDObject is created. Results 

can be found in Chapter 5. 
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Figure 4-18 Pseudo-Code for RFI Calculation on GPU 

4.2.4 Confidence Calculation (CPU Only) 

The last step takes place only on host side (since weights for random forests are 

constantly updated by learning component on host side from time to time; those 

weights must have been moved to GPU each time right after they are updated which 

would be very costly operation) and is the simplest one among all those have been 
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mentioned so far except relocating BBs for which caller may receive confidence 

values for all BBs in order as it expects. Open-MP [21] is put into action for which 

all CPU cores could be exploited like it has been done so far on GPU side. Each 

group of BBs (number of BBs in any such group is exactly equal to the number of 

BBs processed in the corresponding PV-Computing kernel) is once again split into 

much more smaller chunks; so that each of those chunks that are equal in size could 

be processed by individual CPU cores concurrently. There is an important notion that 

should be addressed before mentioning how confidence values for BBs are calculated 

on CPU cores. As explained before in PV- Computation subsection, in order to 

balance the load that each kernel invocation would be responsible for; locations of all 

BBs on the memory are changed. On the other hand, caller that calls 

―computeTotalRecall‖ method was unaware of this load balancing operation; 

therefore ―computeTotalRecall‖ method should return all BBs’ confidence values in 

order that is known to the client. However, it’ll lead to a ―false cache-line sharing‖ 

via L-caches of CPU cores. It is shown in Figure 4-19. 
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Figure 4-19 Confidence Values Written to Output Array 

If data had been written in a fashion similar to the one shown in Figure 4-19, then 

cache-lines that are attached to different cores must have been flushed out to the 

RAM before any other core (which wants to execute a ―write-transaction‖) has 

access to any memory location nearby. It is easily overcome by creating separate 

temporary arrays for each CPU thread to write their corresponding results into; then 

only one CPU thread could be in charge of gathering those values located in the 

temporary arrays together on the final output array, which is supposed to be returned 

to caller. Pseudo-code in Figure 4-4 has already shown when it is done. After 

computing all confidence values for all those remaining BBs and writing those 

values into separate temporary arrays allocated for each CPU thread; they are copied 
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from those temporary arrays to the output array by a single CPU thread in such a way 

that caller may receive them in order which is known to it. 

4.3 Implementation of H-TLD Tracking Module 

In TLD [2] Median Flow Tracker (MFT) [12] is used.  

MFT uses LK (Lucas-Kanade Optical Flow) [25] in order to generate a sparse 

motion-flow based on either some pre-determined points on the first frame (for initial 

flow generation) or some reliable points obtained from previous tracking results (for 

flow generation processes other than the first one). Suppose that there are two 

contiguous frames extracted from a video stream It, It+1. Before two-step filtering 

process (discussed in next two paragraphs), MFT generates a flow in the forward 

direction (from frame It to It+1); then it uses these predictions (i.e. next points on 

frame It+1 for original points located on frame It) extracted from this flow to go back 

in the reverse direction (from frame It+1 to It) for finding points called forward-

backward points. Those next points (result of the first flow) and forward-backward 

points (result of the second flow) are sent to NCC (Normalized Cross Correlation) 

and FB (Forward-Backward) filters. 

One of the two filtering methods used in [2] is NCC filter and its formula is given in 

Equation (4-10).  

 

 (     )  
∑ (   ( 

    )       (     ))     

√∑    (     )       ∑      (     )      

 

 

 

(4-10) 

 

Where St is the searching window (centered on the location (xt, yt) in It) which we 

want to correlate with the searching window St+1 (centered on the location (xt+1, yt+1) 

in It+1). (x’, y’) is the location of a pixel in local coordinate system of any searching 

window. If the correlation between these two searching windows is greater than a 
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certain threshold; then this point is considered as it is passed through the NCC filter, 

and is sent to FB filter for further filtration. This filter is not costly due to processing 

few thousand points even on videos with high resolutions depending on the size of 

BB of object under observation. Thus, this operation was left as it is (its cost for 

different resolutions can be seen in Chapter 3). 

Decision as to whether to further filter out a point based on FB filter is made by 

performing Euclidean distance calculation on that original point and its 

corresponding forward-backward point; and this operation is also not heavy; 

therefore it was left as it is too (Note that it was not mentioned in Chapter 3 due to its 

low computational cost). 

Although filtering methods used in template matching such as Squared Sum of 

Differences (SSD), NCC, or any other produces satisfying results; FB (Forward-

Backward) filter complements them in cases which they might fail (This is explained 

in Chapter 2 and 5 of [12], and out of this thesis’ scope). To sum up, LK tracker must 

be run twice for finding more reliable points in tracking module of [2]. As a result of 

this; it requires more processing power than any traditional tracking algorithm. 

There are 2 sequential steps performed by Open-CV’s GPU module [19] in order to 

accomplish the LK sparse optical flow:  

- Building Pyramids: This is done by reducing resolution (half in both 

directions), and running interpolation on images I 
L
t and I 

L
t+1 at levels other 

than the base level (at where It and It+1 are located). This operation is both 

sequential and parallel. Each image at a higher level requires the image at the 

level just one below its level; hence CPU iteratively calls ―build pyramid‖ 

routine on both It and It+1 (note that, pyramids are built for both images). On 

the other hand, it is parallel in the sense of down-scaling the image at a level 

of pixel; because a pixel at a higher level only depends on the image at one 

level below, but not on its neighborhood; therefore this interpolation method 

is executed on GPU for both images simultaneously. Each GPU thread is 
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responsible for finding the value of a single pixel at one higher level. In Table 

4-2, there is a piece of code copied from GPU module of Open-CV [19] that 

shows how an image at a higher level is built up from the image at one level 

below. 

    for (int level = 1; level <= maxLevel; ++level) 

    { 

        pyrDown(prevPyr_[level - 1], prevPyr_[level]); 

        pyrDown(nextPyr_[level - 1], nextPyr_[level]); 

    } 

Table 4-2 Building Pyramids for LK Tracker 

Where ―prevPyr_‖ is It and ―nextPyr‖ is It+1; and where method ―pyrDown‖ 

runs interpolation on GPU asynchronously to generate images (frames) at 

higher levels. 

- Predicting Next Points: According LK sparse optical flow, when the over-

determined linear system given in Equation (4-11) is iteratively solved for a 

certain number of times, or until motion vector reaches a certain threshold 

(this method is called Newton-Raphson) for a given point qi on It, it 

approximates this point’s next location on It+1. 
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(4-11) 

Where Vx and Vy show components of motion vector, qi is the pixel inside the 

searching window, Id is equal to (It+1 – It), and Ix, Iy, are the partial derivatives 

of the image It with respect to position (x, y) evaluated at the point qi. 

Each GPU thread is responsible for finding the next point on It+1 that corresponds to 

a particular pixel (point) on It by solving the system given in Equation (4-11) 

iteratively. If there are less points to track that cannot highly occupy GPU’s Stream 

Multiprocessors (SMs); then CPU implementation may have a chance to outrun the 
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performance of GPU version (this is exemplified in Chapter 5 in the sub section 

dedicated to tracking).  

There have been many ongoing discussions and studies on how the LK tracker (or 

any other tracker) should be implemented on a GPU or on a hybrid CPU-GPU 

platform as was explained in Chapter 2. However, it is easy to switch to a new 

algorithm from the one presented by Open-CV’s GPU module [19]; and integrate it 

to H-TLD for which it is an independent method in a separate module. 
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CHAPTER 5 

5 RESULTS 

 

In this section, results of each accelerated part are discussed and compared with its 

original implementation (i.e. sequential one). Speed-up of each individual fraction of 

code mentioned in Chapter 4 is detailed in this chapter in such a way that how much 

of total wall clock time elapses on processing unit and the rest of it does on data 

transfer between host and device. More particularly; 

- In detection module, ―Total Recall Computation‖ is the part that takes the 

longest time to compute among all others. In this section, each of its subparts 

is analyzed performance wise. 

- Some state-of-art technologies such as [24] and [1] were incorporated into the 

implementation accordingly, in order to increase the total speed-up. The 

contribution of such libraries is analyzed. 

- Speed-up obtained in the tracking module by use of Open-CV [19] is 

analyzed. 

- The effect of video resolution on speed-up is discussed.  Hybrid and 

sequential ―Total Recall Computation‖ methods are run on 3 video with 

different resolutions (low, medium, and high) to depict this effect. 

- Finally, NVIDIA’s Visual Profiler is used to display how overlapping kernel 

executions and data transfer between host and device help H-TLD in 

improving performance. 

Each method under observation is run for 10 times (both sequential and hybrid 

methods); then average elapsed time is calculated and this result is reported. In case 

of using [21] to exploit all cores of CPU, the longest time interval elapses on one of 

those cores is used as the base in measuring the performance for that piece of code. 

Resolution of video frames for all test cases is equal to 480x270. The purpose is to 
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have exactly one asynchronous call to device (each time when a single frame is 

processed) so that elapsed time for each individual stage within a particular part of 

the implementation could be measured accurately. All methods (either sequential or 

hybrid) were tested under the same circumstances (unnecessary processes were 

terminated, services were closed, network connection was disconnected). 

Test platform specs are given in Table 5-1. 

OS Windows 7 x64 

CPU Intel i7 4770K  3.5 GHz, 4 Physical 

Cores, Hyper Threading Factor is 2 

GPU Tesla K 40c, Compute Capability 3.5, 15 

SMs, 192 Cores per SM, 2 Async Copy 

Engine, Hyper-Q Enabled 

RAM 32 GB DDR3 

Serial Computer Expansion Bus PCIe 2.1 

CUDA Toolkit 6.0 

CUDA Driver Version 6.0 

CUDA Run time Version 6.0 

Open-CV Version 2.4.9 

Open-MP Version 2.0 

Table 5-1 System Specs of the Test Platform 

On the host (CPU) side, the C code shown in Table 5-2 is used to measure the 

elapsed time as it is one of the most precise techniques on Windows platforms. 

As for the device (GPU) side, CUDA events and streams are used to measure the 

performance as show in Table 5-3. This piece of code and explanation of it could be 

found in Chapter 3 of [26] (In CUDA, events are the best timers, for asynchronous 

calls sent to GPU, in particular). 
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void startCounter(__int64 *counter_start, double *pc_freq) { 

 

    LARGE_INTEGER li; 

    if(!QueryPerformanceFrequency(&li))  

        std::cout<<”QueryPerformanceFrequency Failed!”<<std::endl; 

     

    *pc_freq = ((double)li.QuadPart)/1000.0; 

 

    QueryPerformanceCounter(&li); 

    *counter_start = li.QuadPart; 

} 

 

double getCounter(__int64 *counter_start, double *pc_freq) { 

     

    LARGE_INTEGER li; 

    QueryPerformanceCounter(&li); 

    return ((double)(li.QuadPart – (*counter_start))) / (*pc_freq); 

} 

 

Following shows how they are used in order to measure elapsed time accurately: 

 
startCounter(&counter_start, &pc_freq); 

//Piece of Code to Measure Execution Time 

//Code to Test Code to Test Code to Test… 

//Code to Test Code to Test Code to Test… 
time = getCounter(&counter_start, &pc_freq); 

Table 5-2 Method Used to Measure Time on Host Side 

cudaEvent_t start, stop; 
cudaEventCreate(&start); 
cudaEventCreate(&stop); 
cudaEventRecord(start, stream); 
//Piece of Code to Measure Execution Time 

//Code to Test Code to Test Code to Test… 

//Code to Test Code to Test Code to Test… 
cudaEventRecord(stop, stream); 
cudaEventSynchronize(stop); 
float elapsedTime; 
cudaEventElapsedTime(&elapsedTime, start, stop); 
cudaEventDestroy(start); 
cudaEventDestroy(stop); 

Table 5-3 Method Used to Measure Time on Device Side 

In Figure 5-1, a sample frame from the test video in where we tracked a bottle of 

water could be seen. 
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Figure 5-1 A Sample Screen-shot Captured from the Test Video 

5.1 Detection 

5.1.1 Integral Image (II) Computation on GPU 

In detection module, IIs are used to compute PV of each BB. Since PV-Computation 

takes place on GPU; IIs must reside on GPU as well. Moreover, II-Computation fits 

well to GPU architecture. Thus, once the current frame is moved to GPU; two IIs 

(plain II and squared II) could be calculated. Finally, it would also save the time to 

move both IIs to device provided that IIs were calculated on CPU. NPPI Library [1] 

has a method which calculates both at once and was mentioned in the beginning of 

Chapter 4. 



 

63 

  

 

Figure 5-2 Average Time per Call for II-Computation 

In Figure 5-2 average time per call for each method is displayed (transfer time for 

current frame is not included). NPPI’s method is not hybrid. It is only run on 

device’s processing units. Equation (5-1) shows speed-up. 

(         ⁄ )            (5-1) 

 

Note that this method is called per frame; it has a significant effect on the overall 

performance. 

5.1.2 Image Blurring (Open-CV Used) 

A method from Open-CV [19] has been used to increase the speed of process of 

blurring the current frame. This blurred frame is required at the time when pixel 

comparisons (referred in Chapter 5 of [2]) are made. However, this comparison was 

not fair on sequential code’s behalf due to running MATLAB’s method to blur the 

current frame (After a process is created for MATLAB, MATLAB creates a virtual 

container, a JVM, in order to execute its m files). Yet the comparison of MATLAB’s 

method used in [2] and the one from [19] which is used in H-TLD is shown in Figure 

5-3 (transfer time for current frame is not included) and Equation (5-2). 
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Figure 5-3 Average Time per Call for Image Blurring 

 

 

(       ⁄ )            

 
(5-2) 

 

 

The time on MATLAB side was measured via ―tic-toc‖ mechanism provided by the 

MATLAB platform. 

5.1.3 Total Recall Computation on CPU and GPU Collaboratively 

―Total Recall Computation‖ is a hybrid implementation; hence both CPU and GPU 

are used in various stages of it accordingly. In this sub section firstly, total 

improvement over serial code is given in order to highlight significance of our work 

and importance of use of heterogeneous computing. Then, each stage is observed 

separately to show the fact that how much time of it is spent on which processing 

unit and the rest of it is on data communication between those two different 

processing units. 
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In Figure 5-4 (all transfer time between host and device for hybrid implementation is 

included) and Equation (5-3), overall improvement could be seen. 

 

Figure 5-4 Average Time per Call for Total Recall Computation 

 

.          ⁄ /           

 

(5-3) 

 

As explained in Chapter 4, ―Total Recall Computation (TRC)‖ is composed of 

several stages. In Table 5-4, each of those stages is analyzed individually. Note that, 

the total elapsed time when each part is measured separately and summed up (6.416 

milliseconds); and when all steps are measured at once (5.934 milliseconds) are 

different; because there is an overhead that the timer itself creates. 

Stage Sequential (ms) Hybrid (ms) 

PV-Computation 0.170 0.0459 (GPU) 

Stream-Compaction - 0.0463 (GPU) 

RFI Calculation 5.296 0.320 (GPU) 

Confidence Value 

Calculation 

0.950 0.138 (CPU) 

Other Operations - 0.152(CPU & GPU) 

Total 6.416 0.721 
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Figure 5-5 Stacked View for Elapsed Time of TRC 

As it can be seen in Figure 5-5 much of the elapsed time is spent on ―RFI 

Calculation‖ for both implementations. Since RFIs are required in ―CV Calculation‖ 

phase; some data have to be transferred to host side per asynchronous kernel 

invocation at this stage (As it was shown in Figure 4-4, on line 9, RFI Calculation is 

repeated for number of asynchronous calls to PV-Computation; because at each loop 

cycle RFIs of BBs, that have passed the PV-Test, are found). Moreover, this elapsed 

time increases as the number of BBs (for instance, when the display resolution is 

increased) gets higher. This is formulated in Equation (5-4), and it is also equal to the 

size of data to move to host side in bytes. 

 

 (   )         (   )      
 

 
(5-4) 

 

Where x is equal to the number of trees, and y is equal to the number of BBs that 

have passed PV-Test. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Sequential

Hybrid

Time in ms 

Im
p

le
m

en
ta

ti
o
n

s 

Stacked View 

PV-Computation

Stream-Compaction

RFI Calculation

CV Calculation



 

67 

  

 

Figure 5-6 Data Transfer and Execution Time for RFI Calculation 

As it is shown in Figure 5-6, data transfer takes ~78 % of ―RFI Calculation‖. 

Besides, this latency cannot be completely hidden; though there are some 

instructions which are executed at the time when RFI-Calculation takes place (they 

are not so computationally intensive or do many memory transactions that they might 

cancel it out). Since RFIs are used to calculate confidence values of BBs; all threads 

must be suspended until the transfer is completed. This issue is discussed in Chapter 

6 and a persistent solution at hardware level for next generation CUDA-Enabled 

Devices is proposed. 

5.2 Tracking Module 

In tracking module only the optical flow calculation that is used in median flow 

tracker [12] to predict the next locations of good features (points) of the object under 

observation, was accelerated via GPU as was discussed in Chapter 4. 

5.2.1 Optical Flow 

LK-Tracker, which was implemented on GPU, is part of Open-CV [19]. It was 

shown that it is highly efficient only under the condition that the frame size is big 
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MP [21] is enabled) may outrun it. This phenomenon of massively parallel 

architectures applied to the case in which we track reliable points from previous 

frame to the next frame as well and is shown in Figure 5-7. 

 

Figure 5-7 LK-Tracker GPU vs. CPU Implementations 

Although GPU implementation is slower for videos that have low resolution, it is not 

significantly so bad and GPU becomes more advantageous for higher resolution 

videos. 
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As proved in Equations (5-5), (5-6), and (5-7) (speed-up of CPU for the low 

resolution video and of GPU for the medium and high resolution videos 

respectively), there is no need to add an additional complexity to the algorithm for 

checking size of the frame against the performance of the platform on which the 

application runs; then deciding on either optical flow should be executed on CPU or 

on GPU. In conclusion, H-TLD only runs its GPU version regardless of frame size 

and quality of the hardware. 

5.3 Effect of Different Display Resolutions on the Performance 

All tests so far were conducted on the video stream with relatively low display 

resolution. However, today’s video capturing devices are able to capture increasingly 

higher resolutions. On the other hand, with the increasing video resolutions, the 

detection module should scan a much higher number of BBs, an II and a blurred 

image with larger size should be calculated, the tracking module should track more 

points when it transitions from one frame to another, etc. which in turn, requires 

more computation power preventing real-time operation. Thus, a great deal of 

processing power is required to run real time tracking applications with multiple 

objects being observed simultaneously. 

In this sub section, the aim is to demonstrate the higher speed-up results obtained 

ineffective as the display resolution increases. There are 3 different resolutions called 

low, medium, and high in our test scenario. Resolutions are: 

- 480x270: Low (1X), 

- 960x540: Medium (4X), 

- 1920x1080: High (16X). 

This effect on detection module’s TRC task (in where slow-down is the most 

immense and to which we focused on improving its execution time in Chapter 4) is 

shown in Figure 5-8. 
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Figure 5-8 Effect of Resolution Change on TRC 

It can be observed in Figure 5-8, that the gap between sequential and hybrid 

implementations get bigger as display resolution increases. 
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Gains shown in Equations (5-8), (5-9), and (5-10) proves our hypothesis which 
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discussed in subsection 5.4. Even if there had been no overlapped kernel invocation, 

there would have been an increase in occupancy; but not as much as it is shown in 

this thesis. 

 

Figure 5-9 Total Gain of H-TLD 
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In Figure 5-9, overall speed-up including all tasks mentioned in Chapter 3 could be 

seen. It was formed by stacking up elapsed time of each individual task; because that 

is the only option in this thesis until the whole platform is moved to the native side as 

is explained in ―Discussions‖ part of this section. As is the case with TRC, total 

speed-up increases with the increasing resolution. As for the highest resolution, 

speed-up reaches to a level at which hybrid implementation is ~10.248 times faster 

than the sequential one. 

5.4 NVIDIA’s Visual Profiler & Overlapping Data Transfer and 

Kernel Executions 

The NVIDIA Visual Profiler [28] is a cross-platform performance profiling tool that 

delivers developers vital feedback for optimizing CUDA C/C++ applications. It 

displays the whole timeline of an application’s CPU and GPU activities. It does not 

only help developers on GPU side; but on CPU side as well (like displaying for how 

much time the display driver keeps the instruction that should be run on GPU in the 

queue, before it flushes the instruction out, etc.). It also allows developers to monitor 

any process; in turn they can specify the path to the executable file, and visualize its 

activity (For instance, in this sub section MATLAB’s JVM process is monitored to 

capture all GPU related activities; rather than running an entirely native process). 

Finally, in case of any unexpected behavior, it is easy to figure out what went wrong. 

In Figure 5-10, TimeLine-View (it is one of many different types of views of the 

profiler) is shown. It displays all operations taking place in a CUDA Context 

separately such as ―MemCpy‖. As seen in that figure, none of the vector operation 

overlaps with any other or with any memory transaction (one starts right after 

another one is completed). 
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Figure 5-10 Timeline View of Visual Profiler 

In Figure 5-11, a fraction of profiling TRC via NVIDIA Visual Profiler is shown. 

There are three important observations that could be inferred from Figure 5-11: 

- Copying the data back to the host and RFI Calculation were overlapped. 

- RFI Calculation takes long enough to hide the total latency for copying BB 

shift amounts which were computed in stream-compaction phase mentioned 

in Chapter 4. 

- Copying RFIs back to host takes a long time. 

- If occupation of SMs are low at any time when two or more independent 

kernels are invoked, it is also be possible to observe some kernel invocations 

to be overlapped with each other (requires compute capability higher than or 

equal to 2.x). In Figure 5-12 this behavior is proved to be correct for the case 

in which PV-Computation and Stream-Compaction take place. 

- By this way; in the case occupancy of SMs is low, it is possible to boost up 

GPU cores in order to overcome the issue of idly stayed cores. Thus, it results 

in accelerating the overall execution time of the application. The key to 

overlap multiple independent kernel invocations is to cluster all independent 

calls for an individual kernel (e.g. computePVOnGPU kernel) in all streams 
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and issue them to GPU rather than issuing them to GPU in such a way that 

they are interleaved with other calls in all those streams. 

 

Figure 5-11 Visual Profiler Timeline View for TRC 

 

Figure 5-12 Timeline That Shows Overlapping Behavior of Multiple Kernel 

Invocations 
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for(int i = 0; i<num_of_async_calls; i++) { 

 computePVOnGPU(i); 

 doStreamCompaction(i); 

 copyDataAsync(i); 

} 

Table 5-5 Wrong Call Order for GPU to Overlap Kernel Invocations 

for(int i = 0; i<num_of_async_calls; i++) 

 computePVOnGPU(i); 

for(int i = 0; i<num_of_async_calls; i++) 

 doStreamCompaction(i); 

 

for(int i = 0; i<num_of_async_calls; i++) 

 copyDataAsync(i); 

Table 5-6 Correct Call Order for GPU to Overlap Kernel Invocations 

In Table 5-5 and Table 5-6 this simple; but powerful technique which was exploited 

in this thesis’ implementation to improve execution time of [2] is shown. 

5.5 Discussions 

In this sub section, difficulties we encountered during the implementation and how 

we solved them are given; so that the future developers will not make same mistakes 

or will have to deal with the same problems. 

Today’s compilers are smart enough to remove unused piece of codes; therefore 

developers might be tricked into the idea that their codes for which they will test the 

performance on are present in the source code; whereas their machine-level 

instruction equivalents might actually not be in the executable file. A fraction of code 

taken from [2]’s detection module on native side and shown in Figure 5-13 is a good 

example to this case. 
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Figure 5-13 Tricky Code for a Compiler 

Suppose that ―RFI Calculation‖ (―measure_tree_offset‖ method in Figure 5-13 does 

exactly this calculation) for sequential code is desired to be measured and no other 

instruction is to interfere with this execution. Logically, Commenting out the lines 

31, 32, and 34 could make sense. However when the result is obtained after 

application is run and ~0 MS (note that, it does not matter whether video with high or 

low display resolution was used in this experiment) is written out in the console, it 

might be confusing for the developer (because the elapsed time to compute RFIs on 

GPU without data transfer time is included was equal to ~0.07 MS). Since the output 

of this method is never used by any following instruction; the compiler automatically 

removes it in order to optimize the code. This is called ―dead code removal‖. 

Although many advanced IDEs (Integrated Development Environment) such as 

Eclipse, Visual Studio 2010+, warn developers about the dead code at development 
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time; some others like MATLAB’s code editor does not warn. Thus, extra caution 

must be taken before the compiler is run. 

Secondly, the test platform was a combination of implementations that is; it had been 

implemented in MATLAB’s script language and C/C++. Since MATLAB creates the 

process which our application lives in, that script is the client who calls C/C++ 

routines via ―mex‖. ―mex‖ is a built-in interface between MATLAB and subroutines 

written in C/C++ or Fortran. It acts like a bridge between C/C++ native executable 

code and MATLAB script code. This plugin allows MATLAB users to leverage any 

library written in C/C++. It may also compile C/C++ code by the compiler and linker 

tools provided by the OS which MATLAB runs on. However, this cross platform 

routine calls bring extra overhead to the application. Moreover, modules in [2] are 

separate entities, which means that their native instructions are executed as if they 

were living in individual processes; because there is no state-sharing notion (data 

exchange) between different executable ―mex‖ files. Thus, when H-TLD creates its 

master module in detection module, it is not possible to share the reference of that 

C++ object with tracking module and vice versa. During the test phase, each module 

was tested one by one. That is to say, when there was an instance of master module 

in detection module; another instance of it in tracking module was commented out in 

order to come up with accurate results. This issue is addressed in Chapter 6. 

Finally, all developers should be aware of the Windows Display Driver Model 

(WDDM) software on Windows Vista and successor platforms as well as other 

corresponding software on UNIX and other platforms; because it might be very 

difficult to realize why commands to GPU are not flushed immediately; but waiting 

in a queue instead. It could be seen when it is checked out on activity view of [29]. 

WDDM is a replacement for the Windows XP display driver model and is aimed at 

enabling better performance graphics and new graphics functionality. Display drivers 

in Windows Vista and later can choose to either adhere to this model or to Windows 

2000 Display Driver Model (XDDM). With the removal of XDDM from Windows 8, 

however, WDDM became the only option. The problem is that WDDM decides on 

http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Windows_2000
http://en.wikipedia.org/wiki/Windows_2000
http://en.wikipedia.org/wiki/Windows_8
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criticality of a command and may issue CUDA commands to GPU later than they 

were expected to be done. Thus, if WDDM is to be skipped in order to see the actual 

result of any CUDA-based implementation; Tesla Compute Cluster (TCC) driver is 

the only option. The defect of this driver is that it is only compatible with very few 

GPUs. These kinds of GPUs have no VGA output and they are called ―computing 

boards‖ rather than GPUs. They are specialized for only GP-GPU programming.  

 

 

   
   

⁄  ∑    (         )

   

 

 

 

 
 
 
(5-11) 

Where     is equal to the number of frames on which the object is visible in both 

implementations,      and      are the center points of object’s BB on the i
th

 frame 

for hybrid and original implementations respectively, and   is the deviation of center 

point of the object’s BB defined by the hybrid implementation from the one defined 

by the original implementation. 

Implementation Visible  Obscured  Visible  Obscured σ 

Original 0-253 254-301 302-461 462-463  

15.682px 
Hybrid 0-254 255-299 300-461 462-463 

Table 5-7 Object Detection Sequence against the Medium Size Video 

In Equation (5-11) and Table 5-7, how much close detections done by both 

 implementations to each other are shown. In other words, how seriously causes such 

as floating-point precision of mathematical calculations, extra data type conversions 

for moving data from one memory location to another, etc. affected the accuracy of 

tracking, resulting in divergence from the center point  of the object’s BB detected by 

the original implementation. Note that, our initial purpose was not to improve the 

quality of tracking via modification of the original TLD algorithm (it is TLD 
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algorithm’s concern); hence we did not compare our results with the ground truth 

values; rather we checked our own fast implementation against the original 

sequential implementation in order to find whether the implementation differences 

had caused any abnormality in tracking. As shown in Table 5-7, the sequence is as 

follow: object is initially visible, then obscured by another object, then visible once 

again, and finally became hidden for a few numbers of frames. The object’s size is 

equal to ~47.790x129.353px on the average throughout the whole sequence of 

frames; and deviation (σ) shown in Table 5-7 is equal to 15.682px. The reasons for 

this are that the blurring image method used in H-TLD is different than the one 

implemented in [2], and the optical flow method used in H-TLD produces slightly 

different reliable points. Moreover, when object (water bottle) is rotated BBs are not 

reliable. 
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CHAPTER 6 

6 CONCLUSION AND FUTURE WORK 

 

In this section, future works and expectations, and tasks that have been accomplished 

in this thesis are mentioned. 

As seen in Figure 5-5, ~45% of TRC’s time is spent on RFI Calculation; and 

moreover ~80% of the RFI Calculation’s time (see Figure 5-6) is lost in moving 

those RFIs to host side for CV-Calculation. If this data transfer had been removed 

from this equation, speed-up given in Equation (6-1) would have been achieved 

instead of the one we obtained in Equation (5-3). 

 

.     (           )⁄ /            

 
(6-1) 

 

 

In a GPU Tec. conference (mentioned in [30]), NVIDIA announced the successor of 

Maxwell GPUs. This new GPU family will be named as ―Pascal‖. As written in [30], 

a new type of memory called ―stacked DRAM or 3D memory‖ (along with many 

other new features) will be introduced. By the aid of this new memory model, GPUs 

will achieve terabytes of bandwidth (several times greater than what Maxwell family 

has). This new technique will allow GPUs to gain access to data residing on RAM 

almost as fast as CPUs can do. As a result of this, H-TLD’s bottleneck at where data 

transfer cannot be hidden will be overcome. 
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Figure 6-1 Change in Computation Power of CPU vs. GPU over Years 

In Figure 6-1, in 2013 GTC (GPU Technology Conference); how computation power 

of GPU has excessively increased in time compared to the one of CPU. Note that, 

this processing power might only be harnessed provided that your algorithm and 

amount of data cause GPU to be highly occupied. Since the quality of videos are 

getting higher; eventually TLD will require more processing power to run at higher 

or at least exact same quality as it used to do now. Besides, this trend also proves that 

the speed-gain of H-TLD will have increased; even though no improvement is made 

to it. 

In order to find out the total speed-up (it was mentioned in the discussion part of 

Chapter 5); all sequential code written in MATLAB’s script language should be 

moved to the native side coded in C/C++ language. By this way, one instance of 

master module could be created and its reference could be shared across all modules. 

Besides, it will help the application in eliminating all those unnecessary overhead
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created by MATLAB’s JVM container and MEX’s cross platform calls. Since our 

purpose in this thesis is to prove the speed-up against the sequential code written on 

native side (and is called by MEX engine), we were able to measure the performance 

without any interference of MATLAB’s script language (onlyperformance metrics 

for blurred image given in Chapter 5 is an exception to this). It is even difficult to 

differentiate the speed-up by the naked eye due to running tests on this mix platform; 

because videos with higher display resolutions cause so much speed loss, owing to 

the bidirectional data transfer between these native and script codes, that it 

suppresses the visual perception of observer. 

Another future task is to figure out the reason why the quality of tracking is reduced 

as the display resolution increases. For video from our experiment dataset with the 

resolution of 1920x1080, Open TLD’s tracking trajectory is broken for some time 

(for both sequential and hybrid implementations) and it restarts to track object. There 

are some assumptions we made such as ―Since a fast movement of object from one 

frame to another may cause tracker to fail due to the nature of optical flow technique 

called ―Pyramidal Lucas-Kanade‖ [15], hence for videos with higher resolutions, 

more pyramidal levels might be required in order to detect such fast changes‖. 

Consequently, a series of experiments should be conducted to figure it out. 

As for the last future task, TLD [2] is not sensitive enough to morphological changes 

occurred in object under observation. For instance, whenever object is rotated around 

the axis other than the z-axis that stretches back and forth in the direction of camera’s 

depth, it fails to learn variety of new appearances of the object. Assuming that the 

camera may capture enough information (frames) for such transformations, a 

computationally expensive; but effective learning algorithm that will be implemented 

on a hybrid platform, may be integrated to TLD to make it realize such changes in 

object’s shape. 

In Chapter 1 some goals were defined. It was proven that they can be achieved after 

serial code is fully moved to the C-based native side. The purpose of TLDObject was 

to enable the application to track multiple objects; so that the serial code that will be 



 

84 

  

written in C/C++ can exploit this fact. All results, given in Chapter 5, show that 

many per frame operations which require heavy processing power (see Chapter 3) 

were accelerated. As a consequence of these improvements; 

- New hybrid algorithm developed in this thesis was tested with different 

resolutions; it was shown that it could be used with videos which have higher 

display resolutions (see sub section 5.1.3 in Chapter 5), 

- Our TLDObject notion will provide application developers using H-TLD 

with the tracking of multiple objects within a single video stream, 

- The time that was bought by H-TLD could be used to tune the configuration 

parameters of Open TLD; hence it will result in better tracking quality. 
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