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APPLICATION OF NYSTRÖM METHOD FOR THE SOLUTION OF TIME 

DOMAIN ELECTRIC FIELD INTEGRAL EQUATION 
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Solution of surface scattering problems with electric field integral equation (EFIE) 

requires careful treatment of singularities introduced by the 3D dyadic Green’s 

function when source and observation points are close to each other or coincide. One 

may either utilize the divergence conforming basis and testing functions to reduce 

the order of singularity or directly deal with singularities via analytical singularity 

extraction methods. The latter method is a not a commonly used one although it 

enables use of less complicated pulse-like basis functions and no attempt is done to 

apply it in time domain. In this study a new time domain formulation for EFIE is 

obtained. Self-cell contribution is evaluated by an efficient treatment of 

hypersingular integrals. By using Hadamard finite part interpretation new formulas 

are introduced for hypersingular integrals on planar surfaces. Also same 

interpretation is used to obtain explicit expressions for hypersingular integrals on 

nonplanar surfaces and these expressions improve the accuracy significantly. Close 

cell contribution is evaluated by increasing the number of quadrature points and 

applying interpolation. Explicit marching on in time (MOT) scheme along with new 

formulation is applied to solve transient scattering from perfectly electric conductor 

(PEC) surfaces. Agreement with analytical results is obtained. 
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ÖZ 
 

 

ZAMAN UZAMINDA ELEKTRİK ALAN TÜMLEVSEL DENKLEMİNİN 

ÇÖZÜMÜ İÇİN NYSTRÖM YÖNTEMİNİN UYGULANMASI 

 

 

 

Selçuk, Gökhun 
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    Tez Yöneticisi : Prof. Dr. S. Sencer Koç 

 

 

 

Eylül 2014, 109 Sayfa 

 

 

 

Yüzey saçılım problemlerinin elektrik alan tümlevsel denklem (EATD) yöntemiyle 

çözümü, kaynak noktası ile gözlem noktasının yakın olduğu ya da çakıştığı 

durumlarda, 3B ikici Green işlevinin tekilliklerinin dikkatli şekilde ele alınmasını 

gerektirmektedir. Tekilliğin seviyesinin düşürülmesi için ıraksaklık uyumlu temel ve 

test fonksiyonlarına başvurulabileceği gibi, bu tekillikler direkt olarak analitik 

tekillik özütleme yöntemleri ile de ele alınabilir. İkinci yöntem daha basit darbe 

benzeri temel fonksiyonlarını kullanmayı olanaklı kılmasına rağmen yaygın olarak 

kullanılmamaktadır ve yöntemin zaman bölgesinde kullanımı için hiçbir teşebbüs 

yapılmamıştır. Bu çalışmada EATD için zaman uzamında yeni bir formülasyon elde 

edilmiştir. Öz-hücre etkisi, hipertekil tümlevin etkin şekilde ele alınması ile 

hesaplanmıştır. Hadamard sonlu parça yaklaşımı kullanılarak düzlemsel yüzeylerde 

hipertekil tümlevler için yeni formüller elde edilmiştir. Aynı yaklaşım düzlemsel 

olmayan yüzeylerde de hipertekil tümlevler için açık ifadelerin bulunmasında 

kullanılmış ve bu ifadeler hassasiyeti önemli ölçüde artırmıştır. Yakın hücre etkisi 

tümlev noktalarının artırılması ve aradeğerleme uygulanması ile hesaplanmıştır. Yeni 

formülasyon kullanılarak zamanda açık ilerleme (ZAİ) şeması ile mükemmel 

elektriksel iletken (MEİ) yüzeylerden geçici saçılım problemi çözülmüştür. Analitik 

sonuçlarla uyum elde edilmiştir. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Time domain integral equation (TDIE) methods are used extensively to 

analyze transient scattering and radiation problems. The major advantages of TDIE 

methods over finite difference time domain (FDTD) and time domain finite 

element (TD-FEM) methods are that, TDIEs require lesser unknowns and they do 

not use artificial absorbing boundary conditions (ABC) to truncate the 

computational domain. Despite its advantages TDIEs are plagued by late time 

stability and computational complexity. In this study these two shortcomings of 

TDIE methods are addressed. This is achieved by using the well-known Nyström 

method for the solution of time domain electric field integral equation (TDEFIE). 

Nyström method is basically a frequency domain method purposed in [1-3] for 

the solution of integral equation methods in electromagnetics. The main idea of the 

procedure is to replace the surface integrals of the basis and testing functions in the 

conventional method of moments (MoM) procedure with quadrature rules. Since 

evaluation of kernel of EFIE at selected quadrature nodes is computationally more 

efficient and simpler than evaluating surface integrals, Nyström method offers 

faster precomputation phase than MoM procedure and reduces computational 

complexity by eliminating basis and testing functions. 

One drawback of the Nyström method is that quadrature rules are accurate 

only for smooth kernels but electromagnetic problems involve singular kernels. 

Because of this, quadrature rules can only be used for far cell interactions and 

special care should be exercised to compute near cell and self-cell interactions. 

Moreover, Nyström method does not use divergence conforming basis and testing 

functions to which the differential operators of the free space Green’s function can 

be transferred. Therefore the method introduces weakly singular, strongly singular 
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and hypersingular integrals with R/1 , 
2/1 R  or 

3/1 R  terms in the kernel, 

respectively. The remedy with singular kernels is to modify the kernel so that the 

modified kernel produces correct field at quadrature nodes. This is referred to local 

corrections. Although local corrections increase computational complexity, they 

are only required for a small number of interactions and do not affect total 

computational cost drastically.    

One contribution of this study is in evaluation of hypersingular integrals which 

arise in the solution of EFIE via Nyström method. Although the literature dealing 

with evaluation of weakly singular and strongly singular integrals is extensive, few 

studies address evaluation of hypersingular integrals for the solution of 

electromagnetic problems. A Cauchy principal value like approach in the limiting 

sense is used in [4] and a similar approach along with Stoke’s theorem is used in 

[5] to obtain simpler formulas. Hypersingular surface integrals are converted to 

regular line integrals on curvilinear patches in [6] but explicit formulas are not 

introduced. Here we evaluate hypersingular integrals based on Hadamard finite 

part (HFP) interpretation. Hadamard finite part interpretation neglects the 

divergent part of the integral and keeps the finite part which in fact gives the 

correct value for the physical field. The advantage of using HFP interpretation is 

twofold. First the resulting explicit expressions for flat surfaces are simpler 

compared to other expressions previously introduced in the literature. Secondly 

HFP interpretation can easily be adapted for evaluation of hypersingular integrals 

on nonplanar surfaces. Numerical tests have shown that the new expressions for 

hypersingular integrals on flat surfaces are as accurate as previously introduced 

ones. Moreover, on curvilinear elements we have obtained improved accuracy and 

have shown that when scattering from nonplanar surfaces is considered, the new 

formulas introduce higher rate of convergence for the solution compared to flat 

face discretization. Having obtained ready to use explicit expressions for 

hypersingular integrals, the computational complexity for the method is reduced 

without sacrificing accuracy.  
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Despite its advantages in frequency domain, Nyström method was not 

considered for time domain scattering problems. The main contribution of this 

study is utilization of Nyström method for analysis of transient electromagnetic 

phenomena, specifically for the solution of TDEFIE. Unlike MoM procedure, 

which introduces a set of temporal and spatial basis and testing functions for the 

unknown current density, we used samples of current at selected quadrature nodes 

and specific time instants to formulate EFIE. The spatial integrals are again 

approximated by quadrature rules. The time derivative and the integral of the 

current density are approximated by backward difference scheme and numerical 

integration respectively. One problem in time domain Nyström scheme is that; due 

to the retarded interactions, the values of current density at arbitrary time instant 

are required for marching on in time. Since the method only uses samples of 

current at specific instants, the delayed interactions are evaluated by using 

interpolation in time. By numerical studies we have shown that quite accurate 

results can be obtained by the purposed procedure. Moreover late time stability is 

improved by interpolation process and no stabilization technique is necessary for 

the procedure. 

The thesis is organized as follows. Chapter 2 introduces an overview of 

computational electromagnetics and presents some fundamental theorems for 

derivation of integral equations. In Chapter 3 frequency domain MoM procedure 

and Nyström method are introduced. Chapter 4 is devoted to evaluation of singular 

integrals and their accuracies. Here we introduce the novel formulas obtained for 

hypersingular integrals for both flat and curvilinear surfaces. In chapter 5 we 

introduce the new formulation for TDEFIE using Nyström method and present 

some numerical results. Chapter 6 concludes the thesis and future studies are 

discussed.     
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CHAPTER 2  

 

 

INTEGRAL EQUATION METHODS FOR COMPUTATIONAL 

ELECTROMAGNETICS 

 

 

 

2.1 Overview of Computational Electromagnetics 

Electromagnetic systems play an important role in today’s technology since 

they form the fundamental part of many applications such as telecommunications, 

radar, medical diagnosis and electronic warfare. Understanding the behavior of 

electromagnetic wave in different media along with radiation and scattering 

mechanisms is essential for the synthesis of such systems. The construction of 

these systems as well as analysis and testing ultimately require solution of 

Maxwell’s equations for the system of interest. Although expressions for the 

behavior of electromagnetic waves can be obtained analytically for a limited 

number of cases, numerical analysis offers extensive application area and has 

gained wide attention with the advent of fast computers. Computational 

electromagnetics basically involves the development and application of numerical 

algorithms for the solution of Maxwell’s equations [7].  

 With diverse application areas and the wide attention on the topic, there is a 

variety of methods to solve Maxwell’s equations. Here we try to give a brief 

overview of computational electromagnetics in order to introduce integral equation 

methods as a part of a bigger framework. The methods in computational 

electromagnetic can be categorized according to the form of Maxwell’s equation 

they use. Differential equation methods use Maxwell’s equations in differential 

form and integral equation methods use these equations in integral form to 

construct their algorithms. Methods in computational electromagnetic can also be 

classified according to whether they use Maxwell’s equations in time domain or in 

frequency domain and categorized as time domain or frequency domain 
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techniques, respectively. Here we use the first criteria and categorize the methods 

as differential equation methods and integral equation methods. The distinction 

between time domain and frequency domain techniques will be emphasized later 

in chapter 5. 

2.1.1 Differential Equation Methods 

Maxwell’s equations in differential form are point relations and relate the field 

values at these points. Therefore in application of differential equation techniques, 

every point in space should be discretized and the unknowns are the field values at 

these points.  

A very popular and the oldest technique using differential equations is the 

finite difference time domain method (FDTD) introduced by Yee in the mid-1960s 

[8]. This method samples the electromagnetic field in a finite volume at distinct 

points in a space lattice and equally spaced instants in time. Electromagnetic 

phenomenon is modeled automatically by imposing time domain curl equations 

via finite differences and marching in time. The data on each sample point at a 

given instant is effected only by neighboring points at the previous instant so that 

there is no need to store the history of field values and this reduces required 

memory size. Therefore the memory storage and running time requirements are 

proportional to the number of unknowns. However the field values should be 

defined at each space lattice and this increases the number of unknowns. Also 

numerical wave radiation conditions such as absorbing boundary conditions 

(ABCs) should be employed to eliminate spurious, nonphysical reflections from 

the borders of the problem space. 

The transmission line matrix method (TLM) [9] uses a similar principle but 

does not use Maxwell’s curl equations directly. The computational domain is 

considered as a mesh of transmission lines connecting the nodes. The 

electromagnetic field is modeled as wave pulses propagating in these lines and 

scattered at the nodes. Similar to FDTD method the computational domain is 
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whole space where fields exist. Also no back-storage in time is required other than 

the field values in the adjacent nodes at the previous time. 

Another commonly used frequency-domain technique is the finite element 

method (FEM) [10] where each cell is referred to as an element. The method is 

employed for the solution of frequency-domain boundary value electromagnetic 

problems by using a variational form. The method is often used for computing 

field distribution in complex, closed regions such as cavities and waveguides [11]. 

Similar to FDTD method the solution domain must be truncated making FEM 

unsuitable for scattering and radiation problems unless combined with a boundary 

integral equation approach [12].  

The main advantage of differential equation methods is that, they can easily 

handle inhomogeneous dielectric media such as biological tissues, geophysical 

strata and shielding metal structures having complex interior loading [7]. Also 

nonlinear media is easily incorporated with these methods since the characteristics 

of the media are involved in the equations for each element. Moreover for time 

domain problems no back-storage in time is required as the new field values are 

only determined by the present values and for frequency domain methods the 

system matrix is sparse due to local interactions. On the other hand a major 

drawback of differential equation methods is the requirement to discretize whole 

problem space which increases the number of unknowns drastically especially for 

problems with open regions. Open region problems can be treated by absorbing 

boundary conditions but these conditions can also introduce errors. Another 

disadvantage is stability and dispersion problems which require additional efforts 

for compensation [13].  

2.1.2 Integral Equation Methods 

Integral equation methods set up an equation which relates the electromagnetic 

field to the unknown sources by using the boundary conditions on the surface or 

within the volume. These equations are not general and should be derived based on 

the type of scattering geometry and on the characteristics of material content. 

These can be either volume integral equations or surface integral equations. 
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Whereas volume integral equations set up an integro-differential equation relating 

polarization currents within the volume to total field, surface integral equations try 

to find unknown surface currents whether electric, magnetic or both.  

The main advantage of integral equation methods over differential equation 

methods is that integral equation methods only discretize the space where sources 

exists. This discretization reduces the number of unknowns especially for open 

problems and is suitable for antenna radiation and scattering problems. 

Nevertheless the disadvantage is that, since there is interaction between all 

elements in the solution domain, the system matrix is dense for frequency domain 

problems and the required computer memory is proportional to N
2
 where N is the 

number of unknowns. For time domain problems on the other hand storage of all 

previous current values is required so that the required memory is proportional to 

N
2
T where T is the number of time steps. Recently a multilevel fast multipole 

method (MLFMM) [47], is introduced to reduce the memory requirement for 

integral equation methods. Instead of allowing interaction between each element 

directly the scheme groups far cell elements and interactions are evaluated on a 

group by group level so that the required memory is proportional to Nlog(N). 

Another important disadvantage of the integral equation methods, which is one of 

the research topics of this study, is the complex source-field relation due to 

different orders of singularities introduced by the Green’s function itself and its 

derivatives. 

2.1.3 Other Methods 

As mentioned, computational electromagnetic is an extensive research area 

and the techniques for numerical solution of electromagnetic problems cannot be 

categorized only as differential equation methods or integral equation methods. 

Below we name some of the methods that cannot be classified within the two 

aforementioned methods. 

Geometrical theory of diffraction (GTD) [15] uses ray optics to analyze 

electromagnetic wave propagation. The amplitude and the phase of the field value 

on a ray are determined by Fermat’s principle. At diffraction points new waves are 



9 
 

launched whose amplitudes are determined for a number of canonical shapes. The 

method offers fast solution especially for electrically large objects but is not as 

accurate as the previously mentioned methods since it is a high frequency 

approximation. Also the method estimates infinite field between the border of 

illuminated and shadow regions. In order to overcome this defect a uniform theory 

of diffraction (UTD) [16] is developed which introduces new coefficients for the 

amplitude of diffracted rays and eliminates infinite field. Time domain techniques 

based on GTD and UTD [17] is also introduced for the solution of transient 

scattering problems.  

Physical optics (PO) is also a high frequency method for the solution of 

Maxwell’s equations and uses source-field relations similar to integral equation 

methods. Whereas integral equation methods evaluate for the current density 

directly, PO uses high frequency approximation for the current density. PO is 

widely used in reflector antenna problems and radar cross section (RCS) problems 

but its application area is limited since it does not account for the diffracted fields 

unless used with physical theory of diffraction (PTD) [18,19]. PTD is used to 

supplement PO solution by adding the effects of nonuniform currents at the 

diffracting edges. 

Apart from the above mentioned methods, there are also hybrid methods 

which combine powerful aspects of two different methods into a single method. 

An example is a combination of finite element method with boundary integral 

method (FE-BI) [10]. A commercial EM simulation software [20] uses GTD along 

with integral equation methods to provide both accurate and fast solutions.  

2.2 Maxwell’s Equations 

Integral equation methods use source-field relations to set up the system of 

equations for a given problem. Since these relations are obtained utilizing 

Maxwell’s equations, they will be introduced here for the sake of completeness. 

For a homogenous medium with constitutive parameters   and  , frequency 

domain Maxwell’s equations can be written as, 
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                                                   rMrHjrE


                                 (2.1) 

                                                   rEjrJrH


                                    (2.2) 

                                                 rrD e


                                                     (2.3) 

                                                 rrB m


                                                     (2.4) 

where  rE


 is the electric field intensity in V/m,  rH


 is the magnetic field 

intensity in A/m,  rD


 is the electric flux density in C/m
2
 and  rB


 is the 

magnetic flux density in Wb/m
2
. Also  rJ


 is the volume electric current density 

in A/m
2
 ,  rM


 is the volume magnetic current density in V/m

2
,  re


  is the 

volume electric charge density in C/m
3
 and  rm


  is the volume magnetic charge 

density in Wb/m
3
. Finally  is the angular frequency in rad/s,   is the permittivity 

of medium in F/m and   is the permeability of medium in H/m. In writing (2.1)-

(2.4) 
tje 
convention is used, and this will be suppressed throughout the thesis. 

The electric field intensity is related to the electric flux density with, 

                                                  rErD


                                                         (2.5) 

and magnetic field intensity is related to magnetic flux density with, 

                                                 rHrB


                                                         (2.6) 

 which are called as constitutive relations. 

2.3 Boundary Conditions 

At a boundary between two media with constitutive parameters  1 , 1  and 

2 , 2  the boundary conditions can be written as, 

                                                  rMrEnrEn s


 12 ˆˆ                                 (2.7)     

                                                 rJrHnrHn s


 12 ˆˆ                                  (2.8) 

                                                 rrDnrDn e


 12 ˆˆ                                     (2.9) 

                                                 rrBnrBn m


 12 ˆˆ                                   (2.10) 

where n̂  is the unit vector normal to the boundary and pointing from region 2 to 

region 1. For the special case when region 1 is a perfect electrically conducting 
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(PEC) object, the fields inside object are zero and the boundary conditions can be 

written as, 

                                              0ˆ 2  rEn


                                                         (2.11)     

                                               rJrHn s


 2ˆ                                                   (2.12) 

                                               rrDn e


 2ˆ                                                    (2.13) 

                                              0ˆ 2  rBn


                                                          (2.14) 

 

2.4 Vector Potential Formulation 

Although Maxwell’s equations can be used to directly obtain field values from 

the source function in many cases it may be difficult or impossible to directly 

solve these equations for the fields [11]. It is therefore a common practice to 

introduce auxiliary vector potentials as intermediate steps to solve for the field 

values  rE


 and  rH


 from the known source functions. The most common 

vector potentials are the magnetic vector potential   rA


 and the electric field 

potential  rF


. It should be noted that although the field quantities are physically 

measurable quantities, for most engineers the vector potentials are only 

mathematical tools which ease the derivation of field from the sources [21].  

2.4.1 Magnetic Vector Potential 

The magnetic vector potential  rA


 is derived first. This potential is useful in 

solving the electromagnetic field generated by a given electric current  rJ


. Much 

of the discussion here is borrowed from [22]. 

Since the magnetic field  rH


 is solenoidal, it can be written as a curl of 

another vector  rA


, so that one writes; 

                                              rArH





1
                                                 (2.15) 

Using (2.1), (2.15) can be written as, 

                                              rAjrE


                                           (2.16) 
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Rewriting (2.16) gives 

                                                0 rAjrE


                                           (2.17) 

Since the curl of the term within the parentheses is zero, it can be written as 

the gradient of a scalar so that 

                                               rrAjrE e


                                         (2.18) 

where   re


  is an arbitrary electric scalar potential. Using the identity 

                                             AAA


2                                     (2.19) 

and take curl of both sides of (2.15), we can write, 

                                            AAH


2                                         (2.20) 

and using also (2.2) leads to, 

                                          AAEjJ


2                                    (2.21) 

The electric field intensity in (2.21) is substituted using (218) so we can write 

                                          AAAjjJ e


2                 (2.22) 

Reorganization of (2.22) leads to 

                                      ejAJAkA  


22
                      (2.23) 

where 2k  is the wavenumber.  

The curl of the magnetic vector potential was selected in (2.15), but we are 

still free to choose the divergence of the potential. We select the divergence of A


 

such that the second term on the RHS of (2.23) is eliminated. So by using, 

                                           ejA  


                                                   (2.24) 

we can simplify (2.23) to,  

                                             JAkA


 22                                                 (2.25) 
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This is the Helmholtz equation for the magnetic potential so that A


 can be 

obtained from J


by using, 

                                                  
V

VdrJrrGrA


,                                   (2.26) 

where  rrG

,  is the solution of scalar Helmholtz equation, 

                                                  rrrrGkrrG

 ,,, 22                         (2.27) 

and is given by, 

                                             
rr

e
rrG

rrjk











4
,                                               (2.28) 

This derivation leads to a formula relating the electric field to magnetic vector 

potential A


 and scalar potential e , 

                                                Aj
AjAjE e





          (2.29) 

Substituting (2.26) into (2.29) leads to the final formula relating the electric field 

to the current,  

            













 


 






V

rrjk

V

rrjk

VdrJ
rr

e

k

j
VdrJ

rr

e
jrE

















44 2
  (2.30) 

Also by using (2.15) 

                                              






V

rrjk

VdrJ
rr

e
rH







4
                            (2.31) 
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2.4.2 Electric Vector Potential 

By symmetry of the Maxwell’s equations we can also define an electric vector 

potential F


. The procedure for the magnetic potential is summarized below for the 

electric potential without giving details, 

                                    FE





1
                                                                  (2.32) 

                                    F
j

m






1
                                                       (2.33) 

                                    MFkF


 22
                                                       (2.34) 

                                     Fj
FjFjH m





                  (2.35) 

                                          
V

VdrMrrGrF


,                                        (2.36) 

The formulas (2.32)-(2.36) lead to a final equation relating the magnetic field H


to 

the magnetic currents M


as, 

          













 


 






V

rrjk

V

rrjk

VdrM
rr

e

k

j
VdrM

rr

e
jrH

















44 2
 (2.37) 

Also by using (2.32) 

                                      






V

rrjk

VdrM
rr

e
rE







4
                                   (2.38) 

2.5  Equivalence Theorems 

For the solution of electromagnetic radiation and scattering problems it is 

often more convenient to formulate the problem in terms of an equivalent one. In 

obtaining the equivalent problem, actual sources are replaced by equivalent 

fictitious sources which radiate the correct field in the region of interest. The 
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advantage of using equivalence theorems is that they eliminate the presence of 

obstacles in the original problem and sources radiate in a homogenous medium. 

Nevertheless in most cases obtaining solutions for the equivalent problem is as 

difficult as the original problem. On the other hand equivalent problems are useful 

for obtaining formulations for electric field integral equation (EFIE) and magnetic 

field integral equation (MFIE) and are also useful in visualizing the nature of 

scattered field [23].  Equivalence theorems may either introduce equivalent 

volume currents which are obtained by using volume equivalence principle or they 

introduce equivalent surface currents which are obtained by using surface 

equivalence principle. Volume equivalence principle is mostly used for the 

solution of scattering problems from inhomogeneous dielectric objects and surface 

equivalence principle is generally used for scattering problems from PEC objects 

and homogenous dielectrics. 

2.5.1 Volume Equivalence Principle 

 In using volume equivalence theorem the obstacle in the problem is replaced 

by equivalent electric and magnetic currents, vJ


 and vM


which radiate the 

scattered fields sE


and sH


. 

In order to obtain the formulation for volume equivalence principle, it is first 

assumed that real sources iJ


 and iM


 radiate in unbounded free space with no 

obstacle present and radiate fields, incE


 and incH


. Since they satisfy Maxwell’s 

equations, we can write 

                                        i
incinc MHjE


 0                                        (2.39) 

                                        i
incinc JEjH


 0                                         (2.40) 

When same sources radiate in the medium represented by  11,  they 

generate fields E


 and H


which satisfy, 

                                        iMHjE


 1                                               (2.41) 
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                                        iJEjH


 1                                                   (2.42) 

Subtraction of (2.39) from (2.41) and (2.40) from (2.42) yields  

                                           001
0 HHjEE


                              (2.43) 

                                           001
0 EEjHH


                                 (2.44) 

Next define the difference  incEE


  and  incHH


  as the scattered fields 

sE


and sH


such that (2.42) and (2.43) can be rewritten as, 

                                       ss HjHjE


001                             (2.45) 

                                      ss EjEjH


001                                   (2.46) 

We define volume equivalent electric and magnetic sources vJ


 and vM


as, 

                                     EjJv


01                                                           (2.47) 

                                     HjM v


01                                                        (2.48) 

which only exist within the obstacle. Using (2.47) and (2.48), (2.45) and (2.46) can 

be written as, 

                                    
s

v
s HjME


0                                              (2.49) 

                                    
s

v
s EjJH


0                                                  (2.50) 

Using (2.49) and (2.50) the fields sE


and sH


, radiated by equivalent sources 

vJ


 and vM


which exist only within the obstacle, can be found outside the material 

if the equivalent sources radiate in free space. It should be noted that the solution 

of the equivalent problem is not easier than the original problem since the 

equivalent sources are written in terms of unknown total fields E


 and H


. 
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However equivalent problem provides a physical interpretation for scattering 

phenomena and is useful for obtaining potential integral formulation [21].  

2.5.2  Surface Equivalence Principle 

Surface equivalence is a principle in which actual sources are replaced with 

equivalent sources which radiate the same field in the region of interest. Surface 

equivalence principle help in obtaining potential integral formulations for 

scattering and diffraction problems and also are more suggestive of 

approximations. Being first introduced in [24], surface equivalence principle is a 

more rigorous formulation of Huygen’s principle [25], which state that “each point 

on a primary wavefront can be considered to be a new source of a secondary 

spherical wave and that the secondary wavefront can be constructed as the 

envelope of these secondary spherical waves” [26].  

For the development of the surface equivalence principle consider Figure 2.1a 

where actual sources 1J


 and 1M


 radiate fields 1E


 and 1H


 in free space with 

permittivity and permeability  00 ,  respectively.  

 

      

 

   

 

 

 

Fig 2.1 Field geometry for actual problem and equivalent problem 

(a) Actual problem (b) Equivalent problem 

 HHnJ s


 1ˆ  

1J

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

, 1H


 

1J


 

1J


 

1M
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S
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1E
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, 1H
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2V
 

1J
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00 ,  

(a) 

 EEnM s


 1ˆ  

E


,H


 

00 ,  

1V
 

1J


 

S
 

1J


 

2V
 

1J


 

00 ,  

n̂
 

1J


 

(b) 
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The sources in actual problem are enclosed within an imaginary surface S . We 

want the develop an equivalent problem in which arbitrary fields E


, H


 are 

present within 1V  but suitable tangential currents are introduced on S  which give 

rise to actual fields  1E


, 1H


 within the region of interest 2V . In order to satisfy 

boundary conditions the surface currents are given by, 

                                                    rMrErEn s


 1ˆ                                 (2.51) 

                                                    rJrHrHn s


 1ˆ                                   (2.52) 

where n̂  is the unit normal on S  pointing from 1V  to 2V . The sources in (2.51) 

and (2.52) radiate in unbounded free space and (2.30-31) and (2.37-38) can be 

used to determine fields outside the closed surface. As the equivalent problem 

defines tangential fields on the surface of S , from uniqueness theorem we know 

that they are the correct fields. When the arbitrary fields within S  are assumed to 

be zero we get Love’s equivalence principle [27] which introduces currents, 

                                               rMrEn s


 1ˆ                                                (2.53) 

                                              rJrHn s


 1ˆ                                                    (2.54) 

on  S .  

Let us next consider scattering problem form a PEC object which is of much 

practical concern. Although there are alternate methods for the solution of this 

problem we will consider only physical equivalent which is used for scattering 

problems rather than radiation problems and is utilized to obtain formulations for 

EFIE and MFIE. 

We first assume that real sources 1J


 and 1M


 radiate fields 1E


 and 1H


, which 

are also assumed to be known in the absence of the scattering object. In the 

presence of the PEC scattering object the total fields outside the object are E


, H


 

which are expressed as, 
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                                             rErErE s 
 1                                                 (2.55) 

                                             rHrHrH s 
 1                                               (2.56) 

where sE


, sH


 denote scattered fields from the object as shown in Figure 2.2a. 

Since the total tangential electric field on S  is zero, the magnetic current is 

equal to zero and we can write, 

                                         rEnrEn s 
 ˆˆ 1                                                 (2.57) 

Also the induced electric current is equal to the total tangential magnetic field 

so that we can write, 

                                          rHnrHnrHnJ s
p


 ˆˆˆ 1                         (2.58) 

 

 

 

 

 

 

 

(a)                                                                 (b) 

Figure 2.2 Physical equivalent for scattering from a PEC object (a) Actual problem 

(b) Equivalent problem. 

 

Therefore the equivalent problem for the solution of Fig. 2.2a  is that given in 

Fig. 2.2b. It should be remembered that the equivalent sources in (2.57) and (2.58) 
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
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radiate in unbounded free space with no object present. Since  pM


 is zero and pJ


 

radiate in free space (2.30) and (2.31) can be used to evaluate fields outside the 

object. It should also be noted that the total tangential field  H


 is unknown so that 

the equivalent problem does not help in simplifying the solution. Instead the 

equivalent problem will be utilized to obtain potential integral formulation for the 

problem which is the topic of next section. 

2.6 Surface Integral Equations 

Scattering problem can be considered as radiation problems where the locally 

radiating currents are generated by other currents or fields. Similarly antenna 

analysis can be considered as a scattering problem in which the currents on the 

antenna are generated by an external source and RCS calculations involve incident 

electromagnetic field which induces currents on the scatterer that re-radiate the 

scattered field [11]. 

In radiation problems the unknown fields are found by integration of known 

currents J


 and M


. But in scattering problems these sources are unknown and first 

an integral equation for the unknown currents should be obtained. After finding 

these sources, they can be used to evaluate the scattered fields sE


and sH


. 

In this section we consider derivation of EFIE and MFIE for PEC objects using the 

physical equivalent problem which is introduced in 2.5.2. 

2.6.1 Electric Field Integral Equation 

 From the physical equivalent problem in Fig 2.2b we see that there are no 

magnetic currents induced on the surface of the object and only electric current 

exists which radiate in the absence of the scattering object. The radiated field due 

to a known electric current source can be evaluated by using (2.30) which is 

rewritten here as, 
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In order to establish the integral equation we use vanishing tangential electric 

field on the surface of the object. That is on the surface we have, 

                                       rEnrEn si 
 ˆˆ                                                  (2.60) 

Using (2.59) and (2.60) we obtain the EFIE, which is written as,       
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on the surface of the scattering object S . 

It should be noted that the del operators on the second integral on RHS of 

(2.61) operate on observation coordinates. When these operators are taken under 

the integral sign the second derivative of the free space Green’s function introduce 

terms with R/1 , 
2/1 R  and 

3/1 R  singularities which are difficult to integrate. For 

this reason using integration by parts, electric field integral equation (EFIE) is 

generally written in an alternate form as, 
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(2.62) 

where the del operators now act on source coordinates on current function. 

Depending on the type of the problem it may be advantageous to use one form 

over the other.    

2.6.2 Magnetic Field Integral Equation 

 The physical equivalent problem in Fig. 2.2b can also be utilized to obtain 

magnetic field integral equation (MFIE). This time the induced current on the 

scattering object is related to the magnetic field intensityH


. From Fig. 2.2b the 

induced current on the surface is given by, 

                                            rJrHrHn si 
ˆ                                           (2.63) 
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Also the scattered magnetic field is related to the current with, 
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Since observation point is within the source region we take the limit as r


 

approaches the surface from the outside (
 Sr


). Using (2.64) in (2.63) we 

write, 
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Moving the curl operator inside the integral sign we get,  
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Equation (2.66) relates the incident field to the induced current on the scattering 

object which should be solved numerically. However the gradient of free space 

Green’s function introduces terms with R/1 and 
2/1 R  singularities which require 

special care for evaluation. 

In the next chapter we introduce two methods, the conventional method of 

moments (MoM) procedure and the locally corrected Nyström method for the 

solution of EFIE and MFIE. We will emphasize how the two methods overcome 

the difficulties introduced by singular integrals and comment on the advantages 

and disadvantages of both methods. 
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CHAPTER 3 

 

 

NYSTRÖM METHOD FOR THE SOLUTION OF INTEGRAL 

EQUATIONS 

 

 

 

Solution of EFIE and MFIE on arbitrary surfaces by analytical methods is 

difficult and in most cases impossible. Therefore these equations are discretized 

and solved numerically to yield an approximation to exact solution. The most 

popular method for discretization of integral equations is method of moments 

(MoM) procedure, whose popularity is due to the work of Harrington [28]. 

Nyström method which is introduced in [1-3] is told to be an alternative MoM 

procedure although it is in fact a form of MoM with special basis and testing 

functions. In this chapter we introduce MoM and Nyström procedures and mention 

the advantages and disadvantages of two procedures over each other. 

3.1 The Method of Moments 

The MoM is a discretization procedure for integro-differential equations in the 

form, 

                                                     gf L                                                            (3.1) 

where L  is the integro-differential operator,  f  is the unknown function and g is 

a known function.  

The first step in MoM is the discretization of problem domain. The geometry 

is discretized into smaller simple geometrical pieces, usually triangles or 

quadrilaterals for surfaces and tetrahedra or hexahedra for volumes. If higher order 

accuracy is desired, the number of elements can be increased. However increasing 

the number of elements increases computation time since the number of unknowns 

is also increased. An alternative to obtain high accuracy without increasing the 
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number of meshes is to use curvilinear meshes to accurately represent the surface 

or volume under consideration. Discretization of problem domain is commonly 

called as meshing. 

The second step is to expand the unknown function as a linear combination of 

expansion functions whose coefficients are unknown. So that we write, 

                                                    


N

n
nn

N aff
1

                                             (3.2) 

where 
n

  are the basis functions and 
n
a  are the unknown coefficients to be 

determined. It can be seen from (3.2) that the unknown function f  is projected 

onto the space of basis functions. Therefore it is important to select proper basis 

functions and select N  adequately large to have good approximation for f  and 

have a small residue. The residue is defined as, 

                                              


N

n
nn

N agr
1

L                                                  (3.3) 

In writing (3.3) the linearity of operator L is used. In order to find the 

coefficients of the basis functions, we force the residue to be orthogonal to a set of 

testing functions. That is, 

                                            0, N

m
rt   for Nm ......3,2,1                              (3.4) 

where the inner product  ,  is defined as, 

                                           
S

nmnm
dSbtbt ,                                                      (3.5) 

Using (3.4) in (3.3) result in N  equations which can be written as, 

                                         


N

n
nmnm

tagt
1

,, L  for Nm ......3,2,1                (3.6) 

Equation (3.6) is a matrix equation in the form, 
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                                         IZV                                                                         (3.7) 

where  V  is the excitation vector whose elements are given by gtV
mm
,  , Z  is 

the impedance matrix with elements 
nmmn

tZ L,   and I  represents the 

coefficients of basis functions and its elements are 
nn
aI  .  

Selection of testing functions is also important to obtain satisfactory accuracy 

since the coefficients in (3.7) only guarantee orthogonality to the space spanned by 

testing functions. If testing functions are not selected properly, the residue may 

have large values outside the domain spanned by testing functions. However if 

testing functions are selected to be within the range of L , this unwanted situation 

is avoided [29]. 

The last step in MoM procedure is to solve (3.7) for unknown coefficients by 

using 

                                      VZI 1                                                                       (3.8) 

The inverse of impedance matrix can be found by LU decomposition or by 

Gaussian elimination which require a computation time of order  3NO  where N  

is the number of unknowns. When the number of unknowns is large one may 

consult to iterative algorithms which require a computation time of order  2MNO  

where N  is the number of unknowns and M is the number of iterations [30]. 

3.1.1 Selection of Basis Functions 

Accurate representation of the current density as well as charge density within 

the problem domain is possible only if the appropriate basis functions are selected 

to expand the unknown current function. These basis functions can be either entire 

domain or subdomain functions depending on the domain of definition, curved or 

planar functions depending on the shape of the surface on which current flows and 

low order or high order polynomials depending on the degree of accuracy desired 

[31].  
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Although the comparison of basis function are studied extensively in the 

literature [32-35], the most successful and the most popular basis function used in 

the past 30 years is the Rao-Wilton-Glisson (RWG) basis functions defined on 

triangular patches [11]. These vector basis functions span over adjacent triangles 

and are defined as, 
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where 


n
T  and 



n
T  are the triangles that share a common edge n , 

n
L  is the length 

of the common edge, r


 is the position vector and 
nA  and 

nA  are the areas of the 

corresponding triangles. On 


n
T ,   r

n

  points toward the vertex opposite to the 

edge and is given by, 
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and . On 


n
T ,   r

n

  points away from the vertex opposite to the edge and is, 
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where 
v  and 

v  are the positions of the vertex points opposite to the common 

edge. 

RWG basis functions are plotted in Figure 3.1. Since basis functions are 

defined only for adjacent triangles no basis functions assigned to boundary edges. 

These basis functions have no component normal to the edges other than they have 

assigned to. Evaluation of surface divergence of  r
n


  yields,  
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                             0 r
n


        ,  otherwise                                               (3.15) 

      Since divergence of current is proportional to the accumulated charge density, 

no charge is accumulated along the edge between two triangles. Since there is no 

charge accumulation, RWG basis functions are told to be divergence conforming.  

 

 

 

                                     

                                   Figure 3.1 RWG Basis Function 

      Other basis function used in electromagnetic problems such as curl conforming 

as well as higher order basis functions can be found in [36]. 

3.1.2 MoM Solution to EFIE with RWG Basis Functions 

In this section we write explicitly the elements of the impedance matrix Z  and 

excitation vector V  for EFIE on the surface of a conducting object when RWG 

basis and testing function are used for the solution. We rewrite EFIE again as, 

                          Sd
R

e
ra

k
rnjrErn

jkRN

n
nn

S

i   











1
2

1
1ˆˆ


         (3.16) 

which is one equation in N  unknowns. Applying N  testing functions to (3.16) 

and distributing the vector differential operators to basis and testing functions the 

elements of impedance matrix Z  can be obtained as, 
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inserting RWG basis and testing functions in (3.17) we arrive at, 
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Also the elements of excitation vector are given by, 
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The source and testing integrals are performed over two RWG functions which 

span two triangles each. Although the evaluation of double surface integrals seems 

to be computationally inefficient, the major advantage of using RWG basis 

functions is the reduction in the order of singularity since vector differential 

operators are transformed to basis and testing functions. Thus the singularity in the 

integrand in (3.18) is only due to the Green’s function itself. This is an  R/1  

singularity so that we call the integral in (3.18) as a weakly singular integral. 

3.2 The Locally Corrected Nyström Method  

Nyström method is a relatively old procedure which was introduced by 

Nyström in 1930 [37] for solution of integral equations. In application of Nyström 

method the integration domain is divided into N  pieces or patches and the integral 

on each patch is replaced by q  point quadrature rules leading to a total of Nq  

unknowns to be determined. The integral equation is enforced at the nodes of the 

quadrature rule and a system of equations is obtained for the samples of unknown 

quantity, usually surface current.    

The primary difference between Nyström method and MoM is that, in MoM 

procedure the surface current density is represented as linear combination of basis 

functions and the coefficients of these basis functions are to be determined by the 

procedure. In Nyström procedure on the other hand the unknown quantity is the 

samples of the surface current density at selected quadrature points. Indeed this 

difference can be considered as a change of basis functions and Nyström method 
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can be considered as MoM procedure with impulse basis and testing functions[38-

39].  

Both methods are high-order methods for which the accuracy can be improved 

by selecting smaller cells to represent the surface which result in increased 

unknowns to be determined. This is known as h-refinement. Another alternative to 

improve accuracy is the p-refinement. In MoM procedure p-refinement is achieved 

by using higher order polynomials to represent the current density. In Nyström 

procedure on the other hand p-refinement is achieved by increasing the number of 

quadrature points within the cell. 

In Nyström method the system matrix is constructed by using quadrature rules 

and the entries of this matrix are the samples of kernel with appropriate weights. 

However in conventional MoM procedure the elements of system matrix are found 

by evaluating double surface integrals of the basis functions as given in (3.18). As 

evaluation of the kernel at selected quadrature points is computationally cheaper 

than evaluation of double surface integrals, Nyström method is advantageous in 

terms of computational cost when compared with conventional MoM procedure 

[40]. 

The drawback of classical Nyström method is that it cannot handle integral 

equations with singular kernels. Therefore this method in conventional form is not 

suitable for 3D electromagnetic scattering problems where the kernels are singular 

due the singularity of Green’s function and its derivatives. However this drawback 

is alleviated in some studies either by a construction of special quadrature rule [41-

42] or by using singularity extraction methods [43-44] to avoid the infinite sample.      

Nyström method for the solution of electromagnetic problems gained 

popularity with the introduction of locally-corrected Nyström (LCN) method 

described in [1-3]. The LCN method alleviates the difficulty with singular kernels 

by replacing the samples of singular kernel with some corrected kernels which are 

finite and produce correct fields at quadrature nodes. The corrected kernels are 

found by convolution of the singular kernel with a set of basis functions and this in 
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turn increases computation time. However since local corrections are required only 

when the kernel is singular or nearly singular, it is required only for a small 

number of source-observation patch interactions. As for the majority of 

interactions classical quadrature rules are applied, LCN still offers substantially 

smaller matrix fill cost than conventional MoM procedure. 

3.2.1 Formulation of LCN Method 

 The first step in application of Nyström method is to determine the extent of 

domain where local corrections should be applied and the domain where classical 

quadrature rules will be used. The domain of local corrections should always 

include the patch containing the observation point where the kernel is singular. 

Outside the observation patch the kernel is not singular but exhibits a rapid change 

in magnitude so that classical quadrature rules still fail in accuracy. The domain of 

local corrections should be extended until the underlying quadrature rule has 

desired accuracy. As the order of accuracy is dependent on the order of singularity 

of the kernel as well as the underlying quadrature rule, this step may require some 

recursive calculations until the desired accuracy is obtained. 

Outside the domain of local corrections the integral is evaluated numerically 

by using, 
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for qj 1 .  

In (3.20) 
ni
w ’s  are the weights associated to the quadrature point “ i ” within 

source patch “ n ”,  nirf 


 is the value of the density function at source point “
ni
r 


” 

and  
nimj
rrG 


 is the kernel which is a function of distance between source point  

and observation point “
mj
r


”. The weights and nodes in (3.20) will be determined 

by the quadrature rule. An introduction to quadrature rules is given in appendix A. 
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The error for the numerical representation in (3.20) is same as the underlying 

quadrature rule [45]. That is for a smooth domain of integration and with regular 

kernel (3.20) is a high order representation of the exact integral if high order 

quadrature rules are used. 

 Unfortunately within the domain of local corrections (3.20) fail in accuracy so 

that the classical quadrature rules should be modified for accurate evaluation near 

or self patch contribution. That is instead of using (3.20), we use, 
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where  
n
rrG 
~

 is the new corrected kernel which must be synthesized at the 

necessary samples. One way to achieve this is to introduce some hypothetical 

current functions and find a new corrected kernel such that the near fields 

produced by this currents are exact at quadrature nodes. The hypothetical currents 

are a set of basis functions   rB
k




 and we form the matrix equation, 
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qkfor .....3,2,1 . This system needs to be solved for  
nimjni
rrGw 
~

. The 

corrected kernel obtained in (3.22) will be used in (3.21) and will accurately 

evaluate correct fields at sample nodes if the density function can adequately be 

described by the basis functions. The system of (3.22) is of order q  and should be 

repeated for each  
nimj
rrG 
~

 when source and observation points are within the 

domain of local corrections. Since this procedure is required only for a small 

number of source-observation patch pairs the required set of computations is 

relatively inexpensive. The most expensive part in calculations in (3.22) is the 

singular integrals on the RHS of (3.22) [40], which is one of the topics that we 

deal with in this thesis. 
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An alternative formulation to local corrections is proposed by Tong and Chew 

[38], where density function is again represented as a linear combination of some 

basis functions, 

                                                     


q

k
knkn
rBfrf

1


                                         (3.23) 

and the field at observation point “
mj
r


”, due to the current at cell n  is 

approximated by, 

                                    rdrrGrBfrdrrGrf
q

k nS
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nS

   




1

             (3.24) 

The alternative formulation has the same accuracy and the same 

computational cost as is shown in [40]. However the alternative formulation is 

more straightforward, as it uses an explicit set for density function and it uses 

correct sources in contrast to the hypothetical sources which are used in the 

original local corrections procedure. 

3.2.2 Advantages of LCN Method 

Some of the advantages introduced by LCN are faster precomputation, 

elimination of multipatch basis functions and iterative solver memory reduction as 

explained below. 

 Nyström method uses quadrature rules to evaluate impedance matrix elements 

in contrast to conventional MoM Galerkin procedure which evaluates double 

surface integrals. As evaluating the kernel at sample points is faster when 

compared to evaluating double surface integrals, LCN is faster in evaluating the 

impedance matrix elements. For a system matrix of size N , MoM Galerkin 

procedure needs to evaluate 
2N  double surface integrals, whereas LCN needs to 

evaluate less than 
2N  kernel evaluation plus  NO  calculations for local 

corrections. As local corrections slow down LCN, this advantage is less 
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pronounced for electrically small objects but more pronounced for electrically 

large objects. 

Conventional MoM require divergence conforming basis and testing functions, 

such as RWG, to which vector differential operators are transferred. In order to 

facilitate differentiation these basis functions have certain level of continuity 

across the edge between adjacent patches. As shown previously in this section, an 

important property of the RWG basis functions is that, their normal components 

are continuous across the patch boundaries and no charge is accumulated along the 

boundary. But it has been shown in [46] that the requirement for such basis 

functions vanish for high-order codes because the continuity of the source 

distribution is achieved as a consequence of accurate evaluation of integrals.    

When used with iterative solvers the memory demand of LCN can be reduced 

from  2NO  to  NO . The maximum memory is required when all elements of 

system matrix are stored and the minimum demand is for elements belonging local 

corrections. Storing only elements belonging to local corrections is practical 

because evaluation of other elements is fast. It is shown that the memory 

requirement for multilevel fast multipole method (MLFMM) for conventional 

MoM procedure is  NNO log [47]. 

Despite the above mentioned advantages of LCN, one important disadvantage 

of Nyström method is the requirement to accurately evaluate singular integrals of 

different orders. Since there are no divergence conforming basis and testing 

functions to which the vector differential of Green’s function can be transferred, 

the kernel of the integrals are the derivatives of Green’s function which are 

difficult to evaluate. Chapter 4 deals with evaluation of singular integrals and 

obtains explicit formulas for singular integrals. Therefore the difficulty of 

evaluation of singular integrals is alleviated with ready to use expressions. 

 

 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

 

CHAPTER 4 

 

 

SINGULAR INTEGRALS AND THEIR EVALUATION 

 

 

 

It was shown in the previous section that integral equation methods for the 

evaluation of EM problems finally lead to matrix equations of type, 

         IZV                         (4.1) 

Where V  is a vector related to the excitation fields, I  represents unknown source 

function within or on the scattering body and Z  is the impedance matrix 

constructed such that the entry mnZ  evaluates the field on patch m due to the 

current on patch n. Specifically, evaluation of mnZ  requires evaluation of integrals 

whose kernels are free space Green’s function, its first derivative and in some 

cases, like Nyström method, its second derivative. When source and observation 

points are sufficiently separated, elements of the impedance matrix can be 

effectively and accurately evaluated using quadrature rules. However, quadrature 

rules fail in accuracy whenever source and observation points are close to each 

other and even may become infinite when they coincide. Free space Green’s 

function exhibits singularity of order R/1  whereas the first derivative involves 

terms with R/1  and 2/1 R  singularities. Finally the second derivative of the 

Green’s function involves terms with R/1 , 2/1 R  and 3/1 R  singularities with R  

being the distance between observation point and the source point.  

An integral is said to be singular if the integrand becomes infinite at some 

point within the integration domain. Nevertheless, such integrals may still exist 

since the value of integral does not depend on the value of the integrand at some 

finite number of isolated points. Rather it depends on the behavior of the integrand 

in the neighborhood of the singular point. Before evaluation of the integral one 

requires to know whether the integral exists in an ordinary sense or in a special 
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sense. For that purpose an infinitesimal zone Ωe around singular point is excluded 

from the integration domain Ω and then Ωe is made to shrink to singular point. 

Generally, Ωe is the intersection of Ω with a ball of radius ε centered at the singular 

point as plotted in Figure 4.1. Thus one is interested in the integral, 

   




e

dxxf0lim              (4.2) 

If the integral exists independently of the shape of the exclusion zone Ωe, 

singularity is integrable in the ordinary sense and it is called a weak singularity. 

However, the integral is still considered to be an improper one. 

An example for weakly singular integral is the surface integral of the free 

space Green’s function. As the exclusion zone consider a disk with radius ε around 

the singular point as shown in Fig. 4.1. The integrand increases at the rate /1  as 

0 . However, the area of the disk decreases with 2  so the contribution from 

an infinitesimal surface element around singularity diminishes as the area of the 

surface approaches zero. Thus one has, 










  dS
R

e
dS

R

e jkRjkR

e

0lim           (4.3) 

which is the formal definition for weak singularity. 

The first derivative of the Green’s function on the other hand, includes a term 

with 2/1 R  singularity and this requires special treatment. For this case the 

integrand increases at the rate 2/1   as 0 and the area of the surface element 

decreases at the same rate 2 . Thus contribution from an infinitesimal element is a 

finite value although it does not diverge. This finite value depends on the shape of 

the extracted zone. It is said that the integral exists in the Cauchy principal value 

(CPV) sense if the limit in (4.2) is finite assuming Ωe to be symmetric. The 

singularity for which CPV integral exists is called a strong singularity.    
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Figure 4.1 Exclusion zone in the domain of integration 

Finally, if the singularity of the integrand is stronger than CPV integrals, 

which occurs when the second derivative of the Green’s function is evaluated, then 

the integral is said to be a hypersingular integral. In electromagnetic problems 

hypersingular surface integrals involving 3/1 R  terms are encountered. For this 

case the increase rate of the integrand is 3/1   and the contribution from an 

infinitesimal surface element diverges as its area shrinks to zero. Nevertheless, one 

can still specify the coefficients of the particular divergent terms as well as the 

finite part of such an integral. Based on the ideas of Hadamard, it can be shown 

that finite part of such integrals still has a meaning in evaluation of real physical 

fields [48]. This approach in evaluation of hypersingular integrals is called 

Hadamard finite part interpretation. In following sections it will be shown that 

hypersingular integrals arising in EFIE formulation can be interpreted in the 

Hadamard finite part sense and accurate results can be obtained. 

It is also important to mention that the literature dealing with singular integrals 

is extensive. So is the nomenclature adopted for the definitions of singular 

integrals. In this study we adopted the definition utilized in boundary element 

method (BEM) where surface integrals containing R/1  singularity is said to be a 

weakly singular, the integrals containing 2/1 R  terms are said to be strongly 

singular and the integrals with 3/1 R  terms are said to be hypersingular [49-51]. 

EM community on the other hand uses a different convention where R/1  

singularity is termed as strong singularity, 2/1 R  singularity is called 

ε 

R 

Ω 

Ωe 

r’ 

r 
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hypersingularity and the integrals involving 3/1 R  terms are said to be super-

hypersingular [5, 52]. The reason why we adopted the convention of BEM is that, 

the contribution of this study is mainly due to the evaluation of surface integrals 

with 1/R
3
 terms. The methods for evaluation of such integrals were well known 

and applied since 1990’s for the solution of crack problems [53], acoustic and 

elastic wave scattering problems [50] and fluid flow problems by BEM. The 

attention of EM community for the evaluation of such integrals is only recent and 

few papers are published in this area [4]. In this study we applied some of the 

methods borrowed from BEM to find explicit formulas for hypersingular integrals 

and observed that the resulting formulas are far simpler than those previously 

published in literature and still have the same accuracy. Also we introduced new 

explicit formulas for the evaluation of hypersingular integrals on curved surfaces 

and showed that these new formulas increase accuracy by numerical tests.   

In this chapter first the evaluation of weakly singular integrals is introduced, 

following with some numerical test for accuracy analysis. Secondly, strongly 

singular integrals are handled and then we introduce the novel interpretation to 

hypersingular integrals and new explicit formulas for flat triangular patch surfaces. 

Lastly the modified hypersingular kernel on curved surfaces is introduced and 

accuracy analysis is conducted. 

4.1 Weakly Singular Integrals and Their Evaluation 

Consider the integral, 

 




 d
R

e
rJI

jkR

            (4.4) 

which appears on the RHS of (2.62) for the solution of EFIE. According to the 

definitions given above the integral is a weakly singular integral as long as the 

current function  rJ   has a smooth behavior and is bounded in integration 

domain. Here we will assume that  rJ   is constant, however, the derivation for 
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any other smooth function is straightforward. Using Taylor series expansion of 

exponential term, 

     
....

!3!2!1
1

32










 jkRjkRjkR
e jkR          (4.5) 

it is obvious that evaluation of the singular integral, 




 d
R

I
1

             (4.6) 

to a high accuracy is enough for accurate evaluation of (4.4) since the remaining 

terms of the Taylor series expansion are not singular and can be handled by 

quadrature rules. 

Evaluation of weakly singular integrals can either be done by using quadrature 

rules or by using analytical approaches. The advantage of using quadrature rules is 

that they do not require any regularization of the integrand and can directly handle 

(4.4).  In addition to this no extra coordinate transformation is required and 

quadrature rules can easily be applied in the global coordinate system. Accuracy of 

the method depends on the number of quadrature points selected, and their 

positions as well as the weighting factor applied to each quadrature point [1].  

Nevertheless, quadrature rules fail in accuracy whenever the number of integration 

points is not large enough. To save computation time and meanwhile preserve 

accuracy one needs to consult to analytical methods. Most commonly used 

procedure for the analytical solution of weakly singular integrals is Duffy 

transform [54]. The method basically converts the integral to a polar coordinate 

system and the Jacobian of the transformation removes the singularity.       

Let us evaluate the singular integral in (4.4) on a flat triangular patch as 

plotted in Figure 4.2 
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                 Figure 4.2 Triangular patch on which the singular integral is defined 

The triangular patch is assumed to lie on the xy-plane and the observation 

point is located at the origin of the coordinate system. The patch is divided into 

three subtriangles each having their common vertex at the observation point. The 

height of each triangle is defined by ih . One of the edges of each subtriangle is at 

an angle i1  from the x-axis and the second edge is at an angle i2 .  Also i  is 

defined as the angle between x-axis and drawn height line of each subtriangle.  The 

vertices of the triangular patch are located at points  ii yx ,  with i=1,2,3.In polar 

coordinate system the integral in (4.6) can be written in the form, 

                             



3

1i

iII    with    

 

 
i

i

iR

i RdRd
R

I
2

1 0

1






           (4.7) 

In inner integral in (4.7), radial integration is evaluated from 0R  to  iRR   

where  iR  is given by, 

 
 i
i

i

h
R






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            (4.8) 
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The weak singularity is removed by the Jacobian of transformation and one is 

left with an integral in angular coordinates. Using (4.8), (4.7) can be rewritten as, 

    
  


i

i

d
h

I
i

i

i

2

1
cos








             (4.9) 

Using the integral table [75], one obtains the final result as, 

          iiiiiiiiii hI   1122 tanseclntansecln            (4.10) 

A final point to be mentioned in evaluation of weakly singular integrals is that 

the derived formulas are not only valid for triangular patches but also for any other 

surface that can be divided into subtriangles with a common vertex point which 

coincides with the observation point. For a square patch for example one can 

divide the square patch into four subtriangles and write,  





4

1i

iII            (4.11) 

where the definition of iI  is the same as given above. 

Numerical tests: 

The validity of the formulas above is demonstrated by two numerical 

examples. 

In the first case we consider a square patch whose corners lie at points  1,1 ,  1,1 , 

 1,1  and  1,1 . The singular point is centered at the origin  0,0  as shown in 

Figure 4.3. We evaluate the surface integral, 

  



1

1

1

1 22

1
dxdy

yx
I           (4.12) 

and compare the results obtained by analytical method using (4.10) with the results 

obtained by using quadrature rules. 
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           Figure 4.3  The square patch over which weakly singular integral is defined 

Quadrature rule approximate the integral in (4.12) by, 

  
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1
        (4.13) 

in which  jif ,  is the value of the integrand at the 
thij  point and ijw  is the weight 

function associated with that point. In this problem square patch is divided into 

2N  elements each having equal area with side length Ndl /2  and have their 

center points at ),( ji yx . Thus we have 

                    
22

1
,

ji yx
jif


    and 

2

4

N
dSwij                    (4.14) 

Table 4.1 shows analytical results as well as the results calculated using quadrature 

rules with different N . The percentage accuracy is also included for reference.  

As expected accuracy of quadrature rules increase as the number of points is 

increased. However accuracy analysis shows that to obtain a tenfold improvement 

in accuracy, number of quadrature points must be increased by a factor of 100. 

This behavior of quadrature rules requires excess computation time and their use is 

not favorable when high accuracy is a concern. 

dl

dl 
r 

x 

y 

 1,1   1,1  

 1,1   1,1  
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Table 4.1 Results obtained for weakly singular integral on a square patch 

Analytical Result Quadrature Rule N  Accuracy (%) 

7.0509886 6.3496212 110  
1100.1   

7.0509886 6.9738148 210  
0101.1   

7.0509886 7.0431969 310  
1101.1   

7.0509886 7.0502087 410  
2101.1   

7.0509886 7.0509107 510  
3102.1   

 

As a second problem we consider the same integral as in (4.12) but this time 

observation point does not lie within the patch. Rather, the observation point is 

selected outside the source patch but close to it. Since the integrand still has a near 

singular behavior, quadrature rules are not very accurate at those regions and the 

integral is nearly weakly singular. In this problem the observation point is again at 

the origin whereas the square patch has its corners at  1,3  ,  1,3 ,  1,1  and 

 1,1 . Table 4.2 presents the results obtained by analytical formula (4.10) as well 

as quadrature rules. 

Table 4.2 Results obtained for nearly weakly singular integral on a square patch 

Analytical Result Quadrature Rule N  Accuracy (%) 

2.07609947180 2.05858319517 110  
0109.0   

2.07609947180 2.07589164576 210  
2100.1   

2.07609947180 2.07609735600 310  
4100.1   

2.07609947180 2.07609945061 410  
6100.1   

2.07609947180 2.07609947158 510  
8101.1   

 

Table 4.2 shows that unlike the singular case, nearly singular integrals obtain 

greater accuracy with fewer number of quadrature points. Accuracy with 810

quadrature points in singular case can be achieved with only 410  points in nearly 

singular case. Also it should be noted that for a tenfold increase in accuracy, it 

suffices to increase the number of quadrature points by a factor of 10. This was 

100 for singular case. 
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4.2 Strongly Singular Integrals and Their Evaluation 

Strongly singular integrals are those for which contribution from an 

infinitesimal element around the singular point does not vanish as its size 

diminishes around singular point but rather remains finite. Because of this finite 

contribution, conventional quadrature rules fail to yield correct results even if very 

high number of quadrature points is employed and singular point is excluded from 

integration domain. For nearly strongly singular integrals however, quadrature 

rules may produce accurate results with large number of quadrature points, but this 

is not an effective solution if computation time and memory are taken into 

account. So an analytical treatment before numerical calculation is necessary in 

most cases. 

Treatment of strongly singular integrals in numerical evaluation of 

electromagnetic problems is relatively old [55, 56] and primarily deals with 

integrands whose singularities are due to
3/1 R  terms defined in a specified 

volume. Later [57] introduced a numerical procedure to evaluate strongly singular 

integrals with 2/1 R  terms defined on surfaces.  

Two common approaches exist for analytical treatment of strongly singular 

integrals which are also valid for evaluation of nearly strongly integrals. First 

method uses vector identity and evaluates the integral on the contour of the 

integration domain. The resulting integral is not singular when observation point 

does not lie on the contour of the integration domain. Second method uses a 

limiting procedure by first assuming the observation point to lie just above the 

source patch at ),0,0( h . After evaluating the nearly singular integral the limit 

0h is evaluated yielding the final result. In this study both methods will be 

presented. 

4.2.1 Contour Integration Method 

Vector identities can be helpful for evaluation of integrals whose integrands 

contain gradients of functions. The major advantage is the reduction of the 
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dimension of the integration domain. That is volume integrals are reduced to 

surface integrals around the boundary and surface integrals are reduced to line 

integrals around the surface. Another advantage is the reduction in the complexity 

of the integrand. Since it removes one of the derivatives the order of singularity is 

also reduced. A form of the theorem can be stated as [21], 

   




SS

dlrAndSrA ˆ            (4.15) 

where   rA  is a scalar function defined on the surface S , S  is the boundary 

contour of the surface and n̂  is the outward normal to S . Similar to the case for 

weakly singular integrals the integration domain is considered to be a flat 

triangular patch on xy-plane and singular point is located at the center of the 

coordinate system as shown in Fig. 4.2. Moreover, for a triangular patch 

yyxx anann ˆˆˆ   is constant and (4.15) can be decomposed into two integrals with, 
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The surface integral is represented as a sum of three integrals each corresponding 

to an edge of the triangle, thus 

                   


3

1i
xix II  with   i

i

xixi drAnI 
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         (4.17) 

and  

                   


3

1i
yiy II  with   i

i

yiyi drAnI 


                                                (4.18) 

As an example consider the strongly singular integral, 
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which appears in MFIE formulation in surface scattering problems. Using (4.16) 

one can write the equality, 
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Also from (4.8) and from Fig 4.2 one can write, 
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and finally one obtains an explicit formula for (4.19) as  
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4.2.2 Limiting Procedure: 

The limiting procedure for evaluation of strongly singular integrals is 

introduced in [5], which in fact is valid for any type of singularity in 

electromagnetic problems. The geometry of the problem is plotted in Figure 4.4, 

where a small area around the singular point is extracted from the integration 

domain and the remaining integral is evaluated first. Secondly the contribution of 

the extracted surface is evaluated by assuming the observation point to be outside 

the source patch at ),0,0( h  and the integral is evaluated at this point. Then the 

limit 
01
PP   is applied which gives a finite result for the integral. It can be shown 

that the singular terms of the two separately evaluated integrals cancel yielding a 

finite result [50]. 
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Figure 4.4 The surface S  over which strongly singular integral is defined and the 

extracted surface 

S  

Specifically for a strongly singular integral defined on the surface S  one writes, 
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To illustrate that the above mentioned procedure is valid, consider the same 

strongly singular integral considered in the previous subsection, 
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which is written in polar coordinates in the format given in (4.23).  The first 

integral on the RHS can be evaluated as, 
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and the second integral is written as, 
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It should be noted that as 0h  the first term in (4.26) is a divergent term and 

cancels the second term in (4.25). The second divergent term  2ln h  in (4.26) is 
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eliminated by the angular integral and the sum 
21
II   is a finite integral so that we 

can write, 
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on a subtriangle shown in Fig. 4.2. Although no explicit formula can be obtained 

for (4.27) it can be evaluated by numerical methods to a high accuracy since the 

singularity of the original integral is removed. 

Numerical tests:  

To illustrate the accuracy of these formulas, two tests are conducted to 

evaluate the integral given in (4.19). One case is for nearly strongly singular 

integral and the other case is for strongly singular integrals. For both problem the 

integration domain is a square with corner points  1,1 ,  1,1 ,  1,1  and  1,1 . 

For the nearly strongly singular problem, the observation point is taken outside 

the square patch but close to it so that near singular behavior of the integrand is 

still observed although integrand does not become infinite. So observation point 

for this problem is located at  2,0 . Since the integrand is bounded, quadrature 

rules are also applicable for the integral given in (4.19). Thus integration domain is 

divided into  2N  square elements and the value of the integrand is sampled at the 

center of each element. Table 4.3 summarizes the results obtained with formulas 

(4.22) and (4.27) as well as those obtained with Newton-Cotes quadrature formula.  

As expected, both (4.22) and (4.27) give the same values for the integral. It is 

also observed that accuracy of the quadrature formula increases as the number of 

quadrature points is increased and for a tenfold increase in accuracy a tenfold 

increase in number of quadrature points is required. This behavior is also observed 

for nearly weakly singular integrals in the previous section.  
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Table 4.3 Results obtained for nearly strongly singular integral on a square patch 

Analytical Result 

(4.22) and (4.27) 
Quadrature Rule N  Accuracy (%) 

1.1078468735646 1.1060106034721 110  
1107.1   

1.1078468735646 1.1078249180330 210  
1109.1   

1.1078468735646 1.1078466500219 310  
3100.2   

1.1078468735646 1.1078468713257 410  
5100.2   

1.1078468735646 1.1078468735507 510  
7108.1   

 

As a second numerical test, the integral in (4.19) is considered when 

observation point is within the domain of integration so the integrand becomes 

unbounded at that point. The integration domain is again a square patch with 

corner points located at  1,1 ,  1,1 ,  1,1 , and  1,1 , and the observation point 

is located at  5.0,5.0 . Similar to the previous case the patch is divided into 2N  

square elements with side length Ndl /2 . The results obtained via derived 

formulas (4.22) and (4.27) are compared with those obtained with a quadrature 

rule. Since conventional quadrature rules lead to incorrect results when 

observation point is within the domain of integration, we used modified quadrature 

rules introduced in [58] for evaluation of the integral. 

Table 4.4 Results obtained for strongly singular integral on a square patch 

Analytical Result 

(4.22) and (4.27) 
Quadrature Rule N  Accuracy (%) 

1.4909963089948 1.3676690976234 110  
0102.2   

1.4909963089948 1.4883717449217 210  
11076.1   

1.4909963089948 1.4906869417489 310  
21007.2   

1.4909963089948 1.4909654577391 410  
31012.2   

1.4909963089948 1.4909932247245 510  
41006.2   

 

Simulation results show that for strongly singular integrals performance of 

quadrature rules is not as good as nearly strongly singular integrals as presented in 

Table 4.3. Also when compared to nearly singular case, increment in accuracy is 
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not as rapid as number of quadrature points is increased. For a tenfold increase in 

accuracy the number of quadrature points must be increased by a factor of 100 

compared to 10 for nearly singular case. This behavior is due to the limiting 

procedure in evaluation of quadrature rules which puts a lower limit to the 

accuracy. 

4.3 Hypersingular Integrals and Their Evaluation 

Hypersingular integrals arise in many areas of engineering sciences such as 

crack problems and fluid flow problems in applied mechanics, acoustic and elastic 

wave scattering in physics and recently electromagnetic scattering problems in 

electrical engineering. In EM scattering problems one encounters hypersingular 

dyadic integrals in the form, 

 


S

jkR

Sd
R

e
              (4.28) 

These dyadic integrals are defined as the derivative of  CPV  integrals and 

therefore possess a stronger singularity with 3/1 R  terms. The literature dealing 

with hypersingular integrals is diverse and a detailed review can be found in 

[4,52]. The extensive literature on hypersingular integrals introduced many 

different methods for their evaluation. Despite the wide attention of other fields of 

engineering on the topic, publications in EM community basically deal with 

evaluation of weakly singular and strongly singular integrals and systematic 

evaluation of hypersingular integrals is introduced only in a few papers [4]. This is 

due to common convention of reducing hypersingular kernels to strongly singular 

or weakly singular kernels by transferring the differential operator acting on 

Green’s function to the unknown source function. Since singularity is weakened, 

accurate evaluation of integrals can be done more efficiently. The cost of 

weakening the kernels however is the requirement to introduce basis functions on 

which derivative operation can be applied. Introduction of such basis functions, 

called divergence conforming basis functions, for the unknown density, again 

increases numerical complexity and therefore computation time. 
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In this thesis we aim to introduce new explicit formulas for the evaluation of 

hypersingular integrals to a high degree of accuracy so that divergence conforming 

basis functions are not necessary anymore and the complexity in formulation is 

reduced. 

Two major methods to evaluate integrals with hypersingular kernels are 

contour integration method and evaluation of Hadamard finite part of the integral. 

In application of Stoke’s procedure the domain of integration is changed to the 

contour of the surface which cancels divergent terms. This is the cheapest and 

most effective solution as far as numerical effort is considered [59]. To the best of 

author’s knowledge, there are few papers which use this procedure to evaluate 

hypersingular integrals for the solution of EM scattering problems. [6] uses this 

method to evaluate hypersingular surface integrals in a scattering problem by two 

dielectric spheres but does not give explicit formulas which can be directly 

introduced to the formulation whereas [4] uses Stoke’s theorem along with a 

limiting procedure to obtain explicit formulas, but these formulas are rather 

complex. In this study, we obtain explicit expressions for hypersingular surface 

integrals which can be directly used in numerical implementations and are less 

complex than those introduced in [4]. Hadamard finite part interpretation for 

hypersingular kernels on the other hand discards the divergent terms in the 

resulting expression for the integrals and uses nondivergent terms. To our 

knowledge, there are no explicit formulas for hypersingular integrals which use 

Hadamard finite part interpretation in the literature which are first introduced in 

this study. It will be shown by numerical tests that both methods have same 

accuracy although they lead to different expressions for the same integrands. 

Apart from the contributions mentioned above, hypersingular integrals on 

nonplanar surfaces are also considered in this study. In EM literature, we could 

determine only a single paper [6]  that discusses the evaluation of such integrals on 

nonplanar surfaces and it proposes a transformation from curvilinear surface 

elements to flat, square elements. Instead of introducing an extra coordinate 
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transformation, following [60], we used a modified kernel which also possesses 

information on the curvature of the surface.    

4.3.1 Contour Integration for Flat Surfaces: 

In this section, hypersingular integrals on flat triangular elements are 

considered. As in previous chapters, we assume that the triangle lies on the xy- 

plane and its contour is defined by Γ. The triangle is divided into three subtriangles 

each having their vertex point at integration point as shown in Figure 4.2.  

As discussed previously by Taylor series expansion of Green’s function in relation 

with (4.5) and (4.6), divergent behavior of the integral in (4.28) is the same as the 

behavior of the dyadic integral   

 
S

Sd
R

1
                      (4.29) 

Therefore, we will be interested in evaluation of (4.29) rather than (4.28). The 

  operator outside the integral cannot be brought under the integral sign unless a 

limiting procedure is applied. Thus we have   
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proof of which is given in [48]. 

Application of vector identity in (4.15) to the integral on the RHS of (4.30) result 

in, 
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where n̂  is the unit normal to the surface and Γ defines the contour of the surface. 

Note that since the integration domain is the contour of the triangle, the integrand 

is no more singular and one is free to take the limit under the integral sign. This is 
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in contrast to the approach in [4], where integral is evaluated first and limit is 

evaluated afterwards. Applying first the limit, one gets, 

ld
R

a
nld

R
n R 








 222
0

ˆ
ˆ

1
ˆlim


         (4.32) 

where Râ  is the radial unit vector. 

     Note that the integral on the RHS of (4.32) is a dyadic term that can be used to 

evaluate field in a specified direction due to a surface current in a specified 

direction. For example, the field in xâ  direction due to a current density in xâ  

direction can be evaluated by writing, 
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Here xxI  is used to denote xxaa ˆˆ  component of (4.32) and  R  is defined in (4.8). 

From Figure 4.2 one can set 

cosˆˆ  xr aa                     (4.34a) 

ixi an cosˆˆ                      (4.34b) 

321          (4.34c) 
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Using (4.34) an explicit formula for result of (4.33) can be given as, 
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And, in a similar way, other components of (4.32) can be written as: 
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The resulting expressions for the hypersingular integral (4.29) appear less 

complicated than their counterparts introduced previously in [4] since the limit is 

applied before integration. As will be shown later they have the same accuracy as 

the formulas introduced in those studies. 

Using polar coordinate system in evaluation of the above integrals introduces 

extra coordinate transformation since the observation point should be at the center 

of the coordinate system. In order to get rid of this inconveniency, we converted 

the results obtained in Eqn. (4.35) to a Cartesian local coordinate system. In this 

local coordinate system the triangular patch on which the integral is to be 

evaluated lies on the xy-plane. The vertices of the triangle are located at points 

 
11

, yx ,  
22

, yx  and  
33

, yx . The observation point is assumed to be within the 

triangle and is located at  
00

, yx . By using trigonometric identities one obtains, 
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When applying formulas (4.36) one should use    
0044

,, yxyx  . Using (4.36), 

(4.35) can be written as, 
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The formulas in (4.37) can be tailored to be used to any flat surface element 

with a defined number of edges as long as they can be represented as a 

combination of triangular elements. Application of these formulas is easy since 

they only use coordinate information of the corner points. In a numerical 

implementation one requires only single coordinate transformation to represent 

any mesh in xy-plane and no extra coordinate transformation in polar coordinates 

is necessary. 
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4.3.2 Hadamard Finite Part Interpretation: 

Hadamard finite part of a hypersingular integral is obtained by keeping the 

nondivergent part of the integral and discarding the part that diverges. A one 

dimensional hypersingular integral can be written as, 
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where  xf  is called the density function and bca  . 

Definitely, the integral in (4.38) does not exist in the Riemann sense and 

should be defined in a special sense. Approaching the singular point in a limiting 

sense (4.38) can be written as,   
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Using Taylor series expansion of   xf  around singular point c ,  cF  is given as, 
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The term  cF  represents the finite part of the integral in (4.38) and does not 

blow-up as singular point is approached. Thus Hadamard finite part of a 

hypersingular integral is defined and denoted by, 
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Although the last term in (4.41) eliminates the divergent part of the integral, 

for the integral in (4.38) to exits the density function should meet certain 

smoothness criteria. Specifically the derivative of the density function should be 

Hölder continuous around the point of singularity [61]. That is 

    

2121 xxAxfxf           (4.42) 

where A  is a finite constant and 10  . This requirement is proved in 

Appendix C. 

The use of Hadamard finite part interpretation to evaluate hypersingular 

surface integrals in EM problems relies on the equality, 

Sd
R

HFPSd
R SS


















 

11 
                              (4.43) 

An interpretation to (4.43) can be provided in the following way: The 

expression on the LHS of the equation gives a bounded value since it is the 

derivative of a strongly singular integral and can be evaluated by finding 

derivative of CPV  integrals. Nevertheless, taking the   operator under the 

integral sign produces divergent terms and the integral on RHS is not bounded. 

Still discarding the divergent terms and keeping the finite part on RHS lead to 

same results as the LHS of the equation. The proof for (4.43) is given in 

Appendix B. 

 With the above interpretation xxI  term of the dyadic in (4.43) integrated over 

a triangular patch, can be evaluated as, 
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    (4.44) 

This result in, 
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Similarly other terms in the dyadic can be evaluated as, 
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To test the accuracy of the formulas derived for hypersingular surface 

integrals, we evaluated these integrals on a randomly chosen triangle. Observation 

point is randomly selected within the triangle and we compare the results obtained 

with expressions (4.37) and (4.45) with the results given in [4]. In order to allow 

comparison of the results, the same triangle in [4] is used. The triangle has it 

vertices at  0,1.0,7.0 ,  0,3.0,4.0  and  0,2.0,1.0 , while the observation point is 

located at  0,2.0,4.0 . The results are presented in Table 4.5. 

Table 4.5: The components of hypersingular dyadic on a triangle with random 

shape 

 Reference [3] Reference [4] Equation (4.37) Equation (4.45) 

xxI  13.16227766016 13.16227766016 13.16227766016 13.16227766016 

xyI  3.162277660168 3.162277660168 3.162277660168 3.162277660168 

yxI  3.162277660168 3.162277660168 3.162277660168 3.162277660168 

yyI  58.46049894151 58.46049894151 58.46049894151 58.46049894151 
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As observed from Table (4.5) the results obtained with (4.37) and (4.45) are 

same with references up to the 14
th

 digit. In fact following these numbers up to 

100
th

 digit still gives same result. This makes us to belive that the new formulas 

are analytically equivalent to the previously published formulas in [3,4]. However 

we were not able to obtain the new formulas by algebraic operations.  

4.4 Hypersingular Integrals on Nonplanar Surfaces: 

 Previous sections deal with evaluation of singular surface integrals over flat 

surfaces. For EM scattering problems from nonplanar surfaces on the other hand, 

special care should be exercised for evaluation of singular integrals. Generally fine 

meshing approximates the surface with enough accuracy but increases 

computation time since computation time increases with the square of the number 

of meshes for iterative methods. Thus one is required to take into account the 

nonplanar parameters of the surface if one desires to obtain high accuracy with 

relatively small number of meshes. Typically, hypersingular integrals dominate in 

self cell or near cell interaction terms over strongly singular and weakly singular 

integrals. Thus accurate evaluation of hypersingular integrals is of utmost 

importance for high order accuracy. 

In this study we introduce a new kernel for hypersingular integrals on 

nonplanar surfaces based on Hadamard finite part interpretation. This approach 

was suggested in [61] for evaluation of hypersingular integrals of acoustic wave 

scattering problems where normal gradient of the static Green’s function should be 

evaluated. However for EM scattering problems tangential derivative of the static 

Green’s function should be evaluated and the kernel must be modified for its 

tangential derivatives. 

The surface over which the hypersingular integral is to be evaluated is shown 

in Fig. 4.5. It is defined in a local coordinate system with  21 ,uuSw   and 

observation point is located at  0,0,0 w  with         . The surface is defined 

by the expression, 
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  DuuuuSw  2121 ,,:         (4.46) 

where D is the projection of  Ω on 21uu  plane and is a quadrilateral. The normal to 

the surface at a given point is defined by the vector n̂ . Moreover, two vectors are 

defined which are tangential to the surface. One is in 1u -direction and is given by 

the expression nut ˆˆˆ
21   ; and the other is in 2u -direction and is given by the 

expression nut ˆˆˆ
12  . Thus we define, 

 

 

  

                                  

 

 

 

Figure 4.5  Nonplanar surface Ω and its projection D on 21uu  plane 
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The surface current density can be represented with two components one in 1̂t  

direction and the other in 2̂t direction. Similarly the tangential electric field on the 
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surface can be represented with two components again in 1̂t  and 2̂t  directions. In 

evaluating the field at observation point  one is required to evaluate four integrals. 

Specifically to evaluate 
it̂  directed field due to jt ˆ  directed current one needs to 

handle the hypersingular integral, 

















 



d
Rtt

HFPI
ji

ij

1

ˆˆ
             (4.50) 

where     222
1

2
2

2
1 ,0,0 uuSSuuR   and,  

     





















R
t

Rt

1
ˆ

1

ˆ 2

2


                     (4.51) 

Projecting the integral in (4.50) over curved surface Ω onto the surface D, one 

obtains, 
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where   ii uuuSF  /, 21  and   jj uuuSF  /, 21 . 

The analytical solution for (4.52) is not possible for every surface function

 21 ,uuSw  . So we need to express the surface in a form that is suitable for 

analytical evaluation.  In this study we purpose two approximations for the surface 

function for the solution of (4.52). First approximation uses Taylor series 

expansion of the surface function around the observation point and the second uses 

bicubic spline interpolation of the surface function. Two cases lead to different 

expressions with different accuracy and will be handled separately. 

4.4.1 Taylor series expansion for surface function 

In the first case the surface function is expanded around the singular point so 

that, 
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Using (4.53) in (4.52) results in four hypersingular integrals given as, 
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Except for the fourth integral 4I , integrals 1I , 2I , and 3I   are encountered 

previously, and explicit expressions for them are given in (4.45a)-(4.45c), 

respectively. These formulas can be used for the first three integrals keeping in 

mind that they should be defined over four subtriangles since the projection of the 

nonplanar surface is a quadrilateral in this case. For 4I , again finite part 

interpretation is utilized which leads to, 
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The other terms in (4.52) resulting from the Taylor series approximation have 

weaker singularities and can either be treated as finite part integrals or other 

techniques in literature can be employed. 

Numerical Tests:  

In order to test the accuracy of modified kernel on a curvilinear surface 22I  is 

evaluated on a surface with constant curvature. Resulting values for the integral of 

modified kernel is compared with the analytical result. The surface is represented 

by 
2

2

2 uaw   for 5.05.0 1  u and 5.05.0 2  u  with ""a  being the 

radius of curvature. The current on the surface flows in 2u direction and resulting 

field in 2u  direction is observed at the point  a,0,0 . 
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For the first case the radius of curvature surface is taken as a small value, namely

2a . Table 4.6 gives the results obtained by using (4.52) and the exact solution. 

Table 4.6 Comparison of (4.52) with analytical solution for 2a  

Order of 

Expansion 

Results obtained for - 22I  

Exact (4.52) Error(%) 

0 6.148666256 5.656854249 0109.7   
2 6.148666256 6.141123332 1102.1   
4 6.148666256 6.148447612 3107.3   

   

From Table 4.6 it is observed that (4.52) provides higher accuracy as the order 

of Taylor series expansion is increased. 

As a second example we consider a larger radius of curvature so that the effect 

of curvature decreases. For that purpose integral in (4.52) is evaluated for 5a . 

The results for this case are given in Table 4.7 

Table 4.7 Comparison of (4.52) with analytical solution for 5a  

Order of 

Expansion 

Results obtained for - 22I  

Exact (4.52) Error(%) 

0 5.734523235 5.656854249 0104.1   
2 5.734523235 5.734334808 3103.3   

4 5.734523235 5.734428556 5106.1   

 

From Table 4.7 it is observed that when the curvature of the surface is 

decreased, the accuracy of approximation increases. So the accuracy for  2a  

less than the accuracy obtained for 5a . This behavior is expected since (4.52) is 

exact for planar surfaces but is an approximation for nonplanar surfaces. As the 

surface approaches a flat surface accuracy is expected to increase. It is also 

observed that the rate of convergence is faster for 5a  as the surface is more 

accurately represented for larger radius of curvature. 
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4.4.2   Bicubic Spline Interpolation of surface function 

Spline interpolation of a function is used to represent a function with 

piecewise polynomials between sample points. As the polynomials are defined 

piecewise, low degree polynomials are adequate for fine representation without 

stability problems. Moreover spline interpolation forces the derivatives of the 

function to be equal at sample points so that smoothness is still preserved when 

piecewise polynomials are connected at sample points. These properties make 

spline interpolation a favorable method to represent curved functions in numerical 

simulations. Bicubic interpolation is the two dimensional extension of spline 

interpolation. Cubic polynomials are utilized to represent surface functions. The 

surface function  21 ,uuSw   can be represented by using bicubic splines as, 

                                                          
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where mna  are constants and 21 ,uu  are defined within the quadrilateral: This 

bicubic spline form is defined by four sample points 1P - 4P  . In order to evaluate 

sixteen coefficients mna , sixteen equations are required. Four equations are 

obtained by the values of surface function at sample points, four equations are 

obtained by 1u  derivative at sample points, four equations are obtained by 2u  

derivative and four equations are obtained by 21uu  derivatives making a total of 

sixteen equations. Using (4.56) in (4.52) results in eight hypersingular integrals, 

whose singularities are stronger than 2/1 R . These are written as, 
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Other emerging integrals are at most strongly singular integrals and can be 

evaluated either by using finite part interpretation or by using techniques 

previously introduced in the literature. Using Fig. 4.4, integrals in (4.57) are 
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evaluated on the projection of Ω on D , which is a quadrilateral formed by four 

subtriangles. The subtriangles have their common vertex at the observation point 

which is the origin of the local coordinate system. Finite part interpretation results 

in following expressions for the integrals in (4.57). 
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Numerical Tests:  

Bicubic spline interpolation of the surface function is used to represent the 

patch  
2

2

2 uaw   which is also used in Taylor series expansion approach. In 

order to allow comparison we evaluate the same integral 22I  for different values 

of radius of curvature. The values for exact result as well as those obtained using 

(4.58) are presented in Table 4.8. 

Table 4.8 Comparison of (4.58) with exact results 
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Radius of 

Curvature “ a ” 

Results obtained for - 22I  

Exact (4.58) Error(%) 

2 6.148666256 6.164626498 1106.2   
3 5.873544249 5.876425660 2109.4   

4 5.778378936 5.779308711 2106.1   
 

It can be seen from Table 4.8 that like the Taylor series expansion case, the 

accuracy of the expressions in (4.58) increases as the radius of curvature increases. 

It is also observed that for the radius of curvature 2a  using Taylor series 

expansion of surface function gives more accurate results even for an expansion 

order of two. This behavior is attributed to inaccurate estimation of observation 

point when bicubic splines are used since sample points are at the corners of the 

quadrilateral. In Fig. 4.6 we plot the relative error for different radius of curvatures 

and using different expressions which utilize Taylor series expansion, bicubic 

spline interpolation, and flat patch approximation. 

 

 

Fig. 4.6 Accuracy of 22I  with different approximations of surface function 
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4.5 Numerical Results 

In this section we consider some generic frequency domain scattering 

problems for the solution of which Nyström procedure is followed. The first 

problem is EM scattering from a dielectric cube and volume electric field integral 

equation is constructed to calculate radar cross section (RCS) of the cube. Second 

problem is scattering problem from a long PEC cylinder for which we evaluated 

induced current on the cylinder for TM
z
 and TE

z
 polarizations.  

4.5.1 Scattering from Dielectric Cube  

As the first problem we employed Nyström method for the solution of volume 

electric field equation in (2.15) to find the RSC of a dielectric cube. As volume 

current densities are the unknown sources to be determined, the integration domain 

is a volume so we encounter at most strongly singular integrals which are due to 

3/1 R   terms defined within the volume. Apart from integrals with 
3/1 R  terms in 

the kernel, we also encounter weakly singular integrals with 
2/1 R  terms in the 

kernel and regular integrals. The geometry of the problem is plotted in Fig. 4.7. 

  

 

 

 

 

 

Fig 4.7. Geometry for dielectric cube scattering problem 

The cube has a side length of 0.15m and is represented with cubic cells with 

side length of 0.015m so that there are a total of 1000 cells within the cube. The 

relative permeability r  of the cube is selected as 3. The incident wave is a plane 
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wave propagating in –x direction and is represented by  jkxEE i exp0 . In the 

first case the frequency of the incident wave is chosen as 300 MHz so that the cube 

is a 0.15λ cube. The RCS of the cube is plotted in Fig 4.8. 

Fig. 4.8. Bistatic radar cross section of dielectric cube with a=0.15λ for both 

vertical and horizontal polarizations. 

It is observed from Fig. 4.8 that RCS results obtained using Nyström method 

with singularity extraction is coherent with the results obtained using commercial 

simulation software CST Studio Suit 2013. 

As the second case the frequency of the incident plane wave is increased to 

900 MHz so that the cube is a 0.05λ cube. As the previous case the cube is 

represented by 1000 cubic cells. The results of Nytröm method again agree well 

with the results of CST Studio Suit which are both plotted in Fig. 4.9. 

4.5.2 Scattering from PEC Cylinder (TM
z 
polarization)  

As the second problem we consider scattering from a long PEC Cylinder for 

TM
z
 scattering. The length of the cylinder is selected long enough such that edge 

effects have minor contribution to the field in the middle region of the cylinder and 

results can be compared with analytical solution obtained by using Mie series [62]. 

The length of the cylinder is chosen as 10λ and the radius of the cylinder is 

selected as 0.5λ. The surface of the cylinder is represented by flat square patches 
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with 64 angular nodes. The incident wave is a plane wave with    jkxEE i exp0  

which has an amplitude of 120π. The hypersingular integrals for the solution of 

EFIE are evaluated using (4.45) which were obtained by using Hadamard finite 

part interpretation on flat surfaces. Same formulas are used to evaluate nearly 

hypersingular integrals due to neighboring cells. The geometry of the problem and 

the current induced on the cylinder are plotted in Fig. 4.10 and in Fig 4.11 

respectively. 

Fig. 4.9. Bistatic radar cross section of dielectric cube with a=0.05λ for both 

vertical and horizontal polarizations. 

                         

Fig. 4.10 Geometry of the PEC cylinder problem (TM
z
 polarization) 
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         Fig. 4.11 Current induced on PEC cylinder versus angle for TM
z
 poarization 

4.5.3 Scattering from PEC Cylinder (TE
z 
polarization)  

As a final problem we consider scattering from a PEC cylinder with TE
z
 

polarized incident field. The geometry of the problem is the same as TM
z
 

scattering problem which is plotted in Fig. 4.9. For evaluation of hypersingular 

integrals that arise in the solution of EFIE we used (4.58) which were obtained for 

hypersingular integrals on nonplanar surfaces. Same expressions are utilized for 

neighboring cells and sixteen point Newton-Cotes quadrature rules are used to 

account for far cell contribution. Fig. 4.12 plots the amplitude of current induced 

on PEC cylinder with 2r  with 200 angular nodes. 

 

Fig 4.12 Current induced on PEC cylinder versus Angle for TE
z
 polarization 



71 
 

In order to assess the performance of (4.58) which is used to evaluate 

hypersingular integrals on nonplanar surfaces, we solved the same problem by 

using (4.45) which were introduced for flat surfaces. We changed the number of 

angular nodes and observed the accuracy for the amplitude of current so that, 

                                             

2

2

Analytical

AnalyticalNumerical

I

II
Error


                               (4.59) 

on angular nodes. Fig. 4.13 plots error as a function of nodes obtained both by 

using (4.58) and (4.45).  

   

Figure 4.13 Accuracy obtained for TE
z
 scattering problem when number of nodes 

is increased 

It can be observed from Fig. 4.13 that as the number of nodes is increased the 

accuracy is increased for both curvilinear patch representation and flat patch 

representation. When the number of nodes is small, similar accuracy is obtained 

for both cases although curvilinear patch representation gives slightly better 

accuracy. However when the number of nodes is further increased the 

hypersingular integrals start to dominate the total accuracy. This behavior can be 

explained by larger contribution of  hypersingular terms when the patch sizes get 

smaller. This is obvious from expressions in (4.45) and (4.58), whose magnitudes 
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are inversely proportional to the height of subtriangles 
i
h .  As a result, the rate of 

convergence for flat patch representation is limited by inaccurately evaluated 

hypersingular integrals on these surfaces. It can be seen from Fig. 4.12 that when 

hypersingular terms are evaluated on curvilinear patches using (4.58) the rate of 

convergence preserves its slope. This figure shows the importance of using 

curvilinear elements in high order methods for which the rate of convergence is a 

major concern and that without using curvilinear elements such methods are of 

little benefit. 

Having evaluated hypersingular integrals to a high accuracy we are now in a 

position to develop a time domain locally corrected Nyström method which will be 

introduced in chapter 5. 
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CHAPTER 5 

 

 

A TIME DOMAIN NYSTRÖM METHOD FOR THE SOLUTION OF EFIE 

 

 

 

Although Maxwell’s equations are first introduced in time domain, until recent 

time majority of research in computational electromagnetics was conducted in 

frequency domain. This situation is explained by some advantages of frequency 

domain study such as being easily tractable analytically and availability of 

hardware for practical experiments [63]. However, with the advent of fast 

computers, the inferior position of time domain methods over frequency domain 

methods start to change. For certain problems, such as wide band radiation and 

scattering or problems involving time varying media, direct time domain methods 

are employed since these problems are more efficiently treated in time domain. 

Despite the advantages of integral equation methods over differential equation 

methods as mentioned in chapter 2, time domain integral equation (TDIE) methods 

lagged behind time domain differential equation (TDDE) methods due to their 

computational complexity and late time instability, which is caused by 

accumulated error in marching on in time (MoT) procedure. 

In this study we propose a new formulation for time domain electric field 

integral equation (TDEFIE) for scattering problems from PEC objects. Unlike the 

conventional TDEFIE which uses RWG basis functions, the new formulation 

applies Nyström scheme. Employing Nyström method aims to reduce the 

computational complexity of the method since it applies quadrature rules instead 

of evaluating double surface integrals of basis and testing functions. This is 

because the location of quadrature nodes and their weights can be found by using 

the tables developed for quadrature rules. Moreover, the difficulties that arise from 

singular integrals for self-cell interaction in Nyström method are alleviated by 

using explicit expressions for hypersingular integrals. These explicit expressions 
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are obtained for both flat and curvilinear surfaces in chapter 4 and high accuracy is 

obtained. Moreover, we applied interpolation in time to account for near cell 

contribution and this increase stability of the procedure as will be shown by 

numerical simulations.    

 5.1 Formulation 

When illuminated by a transient electromagnetic pulse, surface current is 

induced on the surface of a PEC object which then reradiates the scattered field. 

Boundary conditions force the tangential component of the electric field to be zero 

on the surface so that we require the scattered field cancel the incident field on the 

surface at all times. The system equation for TDEFIE can be obtained by using the 

inverse Fourier transform of the frequency domain counterpart introduced in 

chapter 2 and written here again for convenience, 
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Evaluating the inverse Fourier transform of (5.1) one obtains an equation for 

TDEFIE as, 
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In writing (5.2) we have used, 
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5.1.1 Conventional Formulation for TDEFIE 

The conventional approach for numerical solution of (5.2) is to expand the 

unknown current in terms of sN  spatial and tN  temporal basis functions as 

                                    
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                                        (5.4) 

where 
jnI  are the unknown coefficients to be determined,  rSn


 are the spatial 

basis functions,  tT  is the temporal basis function and t  is the time step. 

Selection of temporal and spatial basis functions is critical as far as accuracy 

and late time stability are concerned. Late time stability is often attributed to 

inaccurate evaluation of surface integrals [64] which accumulate in MoT scheme, 

or to insufficient representation of low and high frequency components which 

again result in propagating error in MoT scheme [65-67]. Studies to obtain stable 

solution to MoT scheme often deals with designing new temporal basis functions 

[68-69]. The desired properties of the temporal basis functions are causality to 

satisfy MoT criterion, short temporal support to reduce the complexity of the 

formulation and being band limited to eliminate unwanted oscillations due to high 

and low frequency components. The selection of spatial basis functions is usually 

underestimated and conventional RWG basis functions are used in the majority of 

studies concerning late time stability. 

Discretization of (5.2) is achieved by using (5.4) for the density function, 

multiplying the derivative of (5.2) with    rStit
m


  and by integrating over the 

surface of the scattering object and over all time [70]. This amounts to Galerkin in 
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space , point matching in time. The derivative is taken to eliminate thetime  

integral of the current function. This yields the matrix equation 
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In (5.5) 
i
V  is an      vector and denotes the excitation matrix at time 

tit  . The elements of the excitation vector are given as,  
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Also 
j
I  is an      vector, whose elements are the unknown coefficients of 

the expansion function in (5.4) at time tjt  . This is written as, 
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II                                                                (5.7) 

Finally ji
Z

  is an 
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NN   matrix, whose elements mnjiZ ,  relate the field at 

observation patch m , at time tit   to the current at source cell n  at time tjt 
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with  jik   and R  is the distance between patch m  and n .  

It can be deduced from (5.8) that for temporal basis functions with finite 

duration, some of the impedance matrices ji
Z

  are zero. For a causal temporal 

basis function of duration tl  and with the maximum distance between two 

elements on the surface being 
max
R , the contribution of current at time tj  to the 

field at time ti  is between, 

                                        tl
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R
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c
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eraction
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int

max                        (5.9) 
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It can be seen from (5.9) that for l
tc

R
ji 


 max  the impedance matrices are 

all zero. This condition suggests to use of basis functions with short temporal 

support to reduce the memory requirement and computational complexity. 

Another subject to be mentioned about the temporal basis functions is the 

marching condition. For temporal basis functions with,   0tT for tt  , (5.5) 

can be written as [71], 

                                              





1

1
0

i

j
jjiii
IZVIZ                                              (5.10) 

which writes the current at time ti  in terms of the excitation at the same time and 

in terms of currents earlier than ti  in an iterative manner. Note that the upper 

limit in the summation on the RHS of (5.10) is up to 1i   due to marching 

condition. If this condition is not met, information of future currents would be 

required for which extrapolation methods should be employed [72].Since using 

future currents is not compatible with causality, in most cases extrapolation 

schemes lead to unwanted oscillations. 

Moreover for cRt /
min

  with min
R  being the minimum distance between two 

patches, the interaction matrix on the LHS of (5.10) is a diagonal matrix and the 

marching is called as explicit. Similarly with cRt /
min

  the interaction matrix is 

not diagonal and the marching scheme is called as an implicit scheme. 

Finally for each ji
Z

 , sN  equations are obtained which relate the field at time 

tit   to the currents earlier than tit  . Also 
t
N  such groups are obtained 

yielding a total of 
ts
NN  equations for 

ts
NN  unknown coefficients

jn
I . 

5.1.2 Nyström Method for the solution of TDEFIE 

It was mentioned in chapter 3 that the main difference between Nyström 

method and MoM procedure in frequency domain is the replacement of the surface 
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integrals in MoM procedure with quadrature rules. This can be seen as a change of 

basis functions where impulse functions are employed for spatial basis functions in 

Nyström method. Thus unlike the MoM procedure which seeks the coefficients of 

expansion functions, Nyström method searches for the samples of the current at 

selected quadrature nodes. In this study, using explicit MoT scheme, we aim to 

obtain a discretization of (5.2) which is in the form, 
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In (5.11) the field at point klr


 and at time step tn  is written in terms of 

sample of current at points ijr


 , i.e.  at thj  quadrature node of mesh i , and at time 

instants tzt   earlier than tn . This eliminates the use of temporal as well as 

spatial basis functions in conventional MoM. That is, (5.11) is discretization of 

TDEFIE which applies Nyström scheme.    

Nyström discretization is achieved by first applying the differential operators 

in (5.2) to the kernel in order to obtain the dyadic Green’s function for electric 

field. This yields, 
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multiplying (5.12) with    
kl
rrtnt


  , which is point matching both in time 

and space, integrating over the surface and over all time and replacing the integrals 

with quadrature rules we obtain, 
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Equation (5.13) uses the samples of current, its integral and its first derivative 

at time instants, which are not multiples of time step t  due to the delay exhibited 

by the electromagnetic field. In order to obtain an accurate representation of 

TDEFIE, the derivative and the integral of the current function should be 

adequately represented by the samples of current at integer multiples of time step. 

It has been shown in [73-74] that using numerical differentiation and 

integration of the current function can yield quite accurate results. Thus the 

derivative of the current sample is approximated by backward difference scheme 

so that, 

               

 

t

c

R
tnrJ

c

R
tnrJ

t

c

R
tnrJ klklkl

































 1,,,



              (5.14) 

and for the integral of the sample of current we write the iterative equation, 
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In (5.13-15), we also need to express the current at time cRtn /  in terms 

of the samples of current at time instants that are multiples of  the time step. This 

is achieved by using Taylor series expansion of the retarded current function. That 

is, 
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where egerRint  is the closest value to  R  which is larger than R  and for which we 

have, 

                                            tmcR eger int                                                       (5.17) 

m  being an integer. 

Using (5.14) for the derivative operator in (5.16), (5.16) can be rewritten as, 
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Using (5.14)-(5.18) in (5.13) we can now obtain (5.11) where all integrals in 

EFIE are replaced by quadrature rules. In this formulation only samples of current 

at specific quadrature nodes and discrete time instants are unknowns. Higher order 

accuracy can be obtained if high order terms in (5.16) are used for the estimation 

of early current. However this will introduce samples of current at very early time 

instants so that summation over time index in (5.11) will involve more terms and 

the computational complexity will be increased. 

 Similar to the case of frequency domain counterpart however, (5.11) is only 

valid for far cell interactions and again local corrections should be applied to 

account for near-cell and self-cell contribution. This is achieved by extracting the 

singular core from the integrand of TDEFIE before differential operators are 

applied to Green’s function. We first write the frequency domain EFIE as, 
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The first integral on the RHS of (5.19) is a weakly singular integral. Using 

Taylor series expansion of 1 jkRe , 
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 in (5.19), we see that the second integral on the RHS is also at most weakly 

singular. The first two integrals in (5.19) can be evaluated by using one of the 

methods for evaluation of weakly singular integrals presented in chapter 4. 

The last integral in (5.19) is a hypersingular integral and should be evaluated 

by using Hadamard finite part interpretation which is described in chapter 4. With 

all of these discussions we write (5.19) in time domain as, 
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The time integral and time derivative of the current density is evaluated by 

using (5.14)-(5.18) so that (5.21) allows us to evaluate the near-cell and self-cell 

interactions accurately using again the samples of current at quadrature nodes at 

discrete time instants. That is we can write (5.21) in the form of (5.11) which uses 

quadrature rules. Discretization of (5.13) and (5.21) completes the formulation of 

the novel Nyström method proposed in this study for the solution of TDEFIE. 
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5.2 Numerical Results 

In order to verify the validity of the derived formulas, three surface scattering 

problems are solved. In the first problem transient scattering from an electrically 

large PEC plate is analyzed. In the second problem transient scattering from a PEC 

cylinder is analyzed and in the last problem scattering from a long PEC strip is 

analyzed. In the series in the second integral on RHS in (5.21) only the first two 

terms are taken into account. One point quadrature rule is applied for far cells and 

25 point quadrature rule is applied for close cells. The excitation pulse for the 

problem is a Gaussian pulse multiplied with a carrier to avoid DC breakdown. The 

transient pulse can be represented by, 
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 
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5.2.1 Electrically Large Plate 

Plate is square in shape with side length of 10m. Geometry for the problem is 

plotted in Fig. 5.1. Incident pulse is a TM
x
 pulse with fc=300 MHz, t0 is selected as 

7.5 ns and β as 3.4ns. Surface of plate is represented by square patches each 

having side length of 0.1m. Fig. 5.2 plots x-directed induced current on plate 

calculated by Nyström method as well as analytical solution.   
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                                   Fig. 5.1 Geometry for PEC plane problem 

              

                       Fig. 5.2 Amplitude of induced current on PEC plate 

It is observed from Fig 5.2 that the numerical result is coherent with the 

analytical result. Altgough this is a simple problem since the plate is both 

electrically and physically large and no reflections occur at the edges. It is useful 

to demonstrate that the time domain formulation obtained by using hypersingular 

terms is valid. 

 



84 
 

5.2.2 PEC Cylinder 

In the second numerical problem we analyzed a long cylinder with radius of 

1m and length 5m. The excitation pulse is a TM
z
 pulse with carrier frequency of 

750 MHz, t0=2.4ns and β 1ns. The cylinder is represented with square patches 

having side length of 0.1m. Fig. 5.3 and Fig. 5.4 plot the geometry for the problem 

and amplitude of z-directed current on the cylinder, respectively. 

                              

                                 Fig. 5.3 Geometry for PEC cylinder problem 

               

                          Fig. 5.4 Amplitude of the induced current on cylinder  



85 
 

It can be observed from Fig. 5.4 that the numerical results are close to the 

numerical results obtained by using new formulation. The analytical solution is 

obtaines by inverse Fourier transform of the Mie series solution wich is then 

convolved with the excitation pulse. This problem demonstrates that the 

formulation yields correct results for objects with smooth surfaces. 

5.2.3 PEC Strip 

In the last problem we consider TM
z
 scattering from a long PEC strip lying 

along z-direction. The length of strip is 10 m and the width is 0.5m.The strip is 

represented with square patches of sidelength 0.1 m. Incident pulse is a TM
z
 pulse 

with fc=300 MHz, t0 is 7.5 ns and β is 3.4ns. Fig. 5.5 plots the current induced at 

the center of the strip. The results are compared with the method proposed in [63]. 

In both methods no stabilization scheme is used. When no stabilization is applied, 

it is shown that the method proposed in this study remains stable although 

oscillation is observed in the reference solution at late times. This improvement is 

attributed to high order quadrature rules and interpolation in time, which are 

utilized to account for near cell contribution. On the other hand the disadvantage 

of using high order quadrature rules is increased simulation time and increased 

computational complexity to apply interpolation in time. 

                    

                      Fig. 5.5 Amplitude of current induced on PEC strip 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

6.1 Conclusion 

Nyström method is successfully applied for the solution of TDEFIE. Although 

the method introduces some advantages when compared to MoM procedure in 

frequency domain, no attempt was made to apply it in time domain. In contrast to 

the conventional MoM procedure for the solution of TDIE, Nyström method does 

not use temporal and spatial basis functions and uses samples of current at selected 

quadrature points. Since repeated evaluation of double surface integrals of 

divergence conforming basis and testing functions are avoided, simpler 

formulation is obtained for the solution of integral equations. 

 One drawback of the frequency domain Nyström method is the failure of the 

classical quadrature rules when the kernel of the integrand is singular. Although 

local corrections are applied to overcome this difficulty, evaluation of 

hypersingular integrals increase the computational complexity. We have used 

Hadamard finite part interpretation for evaluation of hypersingular integrals and 

obtained explicit expressions for these integrals. These explicit expressions reduce 

the computational complexity of local corrections. When compared to other 

formulas previously introduced in literature, the new expressions are simpler and 

have the same accuracy. We have also purposed new formulas for hypersingular 

integrals on curvilinear surfaces. Improved accuracy is obtained when compared to 

flat facet approximations. Numerical studies conducted in frequency domain have 

shown that accurate representation of nonplanar characteristics of surface is 

important to preserve the rate of convergence of the solution.  

Transient scattering problems are solved to test the accuracy of the purposed 

time domain method. It has been observed that results are coherent with analytical 



88 
 

results and with the results obtained by using conventional MoM procedure. Also 

the results are stable even at late times even if no stabilization techniques are 

employed. This behavior is attributed to the applied interpolation in time, which 

better approximated retarded interactions. 

Finally it is foreseen that time domain formulation using Nyström method is 

also valid for solution of TDMFIE and TDCFIE as the singular integrals in these 

equations are not worse than hypersingular integrals. Also time domain analysis of 

integral equations using volume equivalent sources can be conducted by this 

method. Moreover we have used Newton-Cotes quadrature rules throughout the 

thesis but application of other rules such as Gauss-Legendre or Gauss-Lobatto is 

expected to give more accurate results. 
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APPENDIX A 

 

 

NUMERICAL INTEGRATION AND QUADRATURE RULES 

 

 

 

The numerical evaluation of integrals is historically known by the name of 

quadrature, from the Latin word quadratura, which denotes the division of a region 

into squares to estimate its area. An n -point quadrature rule writes the integral as a 

summation with the form,  

                                           
 



1

1 1

n

i

ii nExfwdxxffI                            (A.1) 

The points ix  at which the function is evaluated are called as abscissas or the 

nodes. The multipliers iw  are called as the weights of the quadrature rule.  nE  

denotes the error of the quadrature rule which in general decreases as the number 

of nodes is increased. 

Here we introduce quadrature rules which approximate the integrals within 

unit domain 11  x  . The integrals with domain  ba,  can be converted to unit 

domain by a change of variable, 

                                           2/2/ ababxz                                           (A.2) 

and  
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                (A.3) 

Quadrature rules are based on polynomial interpolation. The integrand 

function is evaluated at some nodes, the polynomial that interpolates the function 

at these nodes is determined and the integral of the interpolating polynomial is 

used as the approximation of the original function. Thus designing a quadrature 
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rules requires determination of the nodes and the weights of the summation. In this 

appendix we constrain ourselves the most common quadrature rules and their 

performance. These are the Newton-Cotes, Gauss-Legendre and the Gauss-Lobatto 

Quadrature rules.  

A.1. Newton-Cotes Quadrature Rules 

 Earlier quadrature rules use equally spaced nodes and are known as Newton-

Cotes quadrature rules. In principle for an n -point quadrature rule with fixed 

nodes, the integrand can be approximated with polynomials at most of degree 

1n . If the nodes include the end points of the integration domain the quadrature 

rule is called as closed, otherwise it is called as an open quadrature rule. The 

weights are determined by solving the matrix equation, 
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The advantage of Newton-Cotes quadrature rule is that the weights associated 

to the quadrature rule can be determined easily by using (A.3). On the other hand 

using fixed nodes reduces the degree of freedom and limits the degree of 

interpolating polynomials.   

A.2. Gauss-Legendre Quadrature Rules 

Gauss has observed that if the position of nodes is not kept fixed, their position 

can be optimized to give better accuracy for smooth function when compared with 

Newton-Cotes quadrature rules. That is for a cubic polynomial with four degrees 

of freedom, two point quadrature rules may be used since both weights and 

positions of quadrature nodes can be optimized. Specifically, for interpolating 

polynomials at most of degree 3 two node quadrature rule can be constructed by 

solving, 
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211 wwdx                                                (A.4) 

                                                    
2211 xwxwxdx                                          (A.5) 
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                                                  3

22

3

11
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The advantage of using Gauss-Legendre rules is that an  n -point quadrature 

rule can integrate polynomials of degree 12 n . However solution of (A.4)-(A.7) 

is more difficult when compared with (A.3) as they are nonlinear equations. 

Nevertheless the system of equations (A.4)-(A.7) need not be solved since it has 

been shown that for an  n -point quadrature rule the nodes are the roots of the 

Legendre polynomials and the weights are given by, 

                                               
    221

2

ini

i
xPx

w


                                            (A.8) 

with  xPn  being the Legendre polynomial of degree n . 

A.3. Gauss-Lobatto Quadrature Rules 

Gauss-Lobatto quadrature rules are similar to Gauss-Legendre rules but they 

include the end points of the integration domain. As two nodes are fixed they do 

integrate polynomials of degree 32 n  exactly. The nodes for an n -point rule are 

 thi 1  zero of  xPn 1  and the weights are given by  

                                                
    211

2

in

i
xPnn

w


                                       (A.9) 
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A.4 Relative Performance of Quadrature Rules 

In order to compare the performance of quadrature rules, the above mentioned 

rules are employed to evaluate a one dimensional integral and the error is 

compared for different number of nodes. Specifically we evaluate the integral, 

                                          





1

1
1.1

1
dx

x
xI                                                     (A.10) 

The integral in (A.10) is a nearly strongly singular integral according to the 

convention introduced in chapter 4. 

Table A.1 gives the error of different quadrature rules. The error is calculated 

by using, 

                                      
analytical

numercalanalytical

I

II
Error


                                         (A.11) 

 

Table (A.1) Relative performance of quadrature rules 

Number of Nodes Newton-Cotes Gauss-Lobatto Gauss-Legendre 

5  1105.1   2109.5   2104.1   

7  2107.5   3107.8   3104.2   

9  2105.2   3104.1   4102.4   

 

It can be observed from table (A.1) that Gauss-Legendre has the best accuracy 

and Newton-Cotes rule has the worst accuracy. As the number of nodes is increase 

the accuracy of all rules of increased. The rate of convergence is similar in Gauss-

Legendre and Gauss-Lobatto rules but it is relatively slow for Newton-Cotes 

quadrature rule. This is expected since as the order of nodes is increased by one, 
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the degree of interpolating polynomials increase by two for Gauss-Legendre and 

Gauss-Lobatto rules. It is also observed from the table that regardless of the 

employed quadrature rule, accuracy improves as the degree of interpolating 

polynomials is increased.  
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APPENDIX B 

 

 

EQUIVALENCE OF FINITE PART INTEGRALS TO PHYSICAL FIELDS 

 

 

  

In this Appendix we prove the validity of (4.43) on a flat surface defined on a 

coordinate system  yxx ,, 21  which is plotted in Fig. B.1. 

 

 

 

 

 

                          Fig. B1. Geometry on which (4.43) is defined 

We rewrite (4.43) here in a different format as, 

                      

























S jiS ji

dxdxxxf
Rxx

HFPdxdxxxf
Rxx

21212121 ,
1

,
1

    (B.1) 

where R is the distance between source point  21, xx  and observation point 

 yxx ,, 2010 .  

Unlike the equation in Chapter 4 we also included the density function 

 21, xxf  in the integrand in (B.1). This results in a more general proof that is valid 

unless the density function is not Hölder continuous that is     ,1
21, Cxxf  . 

We start the proof by assuming the observation point is off the source plane at 

1P  such that the integral in the LHS of (B.1) is not singular. Also we extract a 

2x  

y

S  S  




h  

 hxxP ,20,101   

   

 1  

0P  

1x  
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small patch S from the source plane and evaluate the contribution of SS  and 

S  separately. It will be shown that the contribution of SS   and S  will diverge 

separately as 01 PP   and 0S . Nevertheless it will be shown that divergent 

terms from both surfaces are same with opposite signs so that the resulting integral 

is finite. Having discarded the divergent terms on LHS in (B.1) we arrive to the 

Hadamard finite part of the integral which is on RHS of (B.1) and is already 

defined in Chapter 4. It should also be noted that although the proof is given on a 

flat surface it is also valid for smooth nonplanar surfaces since the extracted 

surface element S  can be considered as locally flat as its area diminishes. 

We start the proof dividing the domain of integration it two parts and rewrite 

the integral on the LHS of (B.1) 

   
















 



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












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





 















 SS jiPPSS jiPPS

dxdxxxf
Rxx

dxdxxxf
Rxx

2121
0

2121
0

,
1

limlim,
1

limlim
0101

                                                                        

.                                                      +  












 















 S ji
PPS

dxdxxxf
Rxx

2121
0

,
1

limlim
01

    (B.2) 

where we have  
22 hrR   and    2202

2
101 xxxxr  . 

In the first integral on the RHS of (B.2) the limit 01 PP   can directly be 

applied since the singular point is not included in SS  . Applying this limit result 

in the following integral, 

   











 






























 
















 SS jiSSS jiPPS

dxdxxxf
rxx

dxdxxxf
Rxx

I 2121
0

2121
0

1 ,
1

lim,
1

limlim
01

   (B.3) 

The density function is expanded around the singular point so that we write, 

            ...,,,, 2022010210120101201021 TOHxxxxfxxxxfxxfxxf       (B.4) 
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where     12120101 /,, xxxfxxf   and     22120102 /,, xxxfxxf   evaluated at 

 2010, xx . 

Substituting (B.4) for the density function in (B.3), 1I is rewritten as, 

    






 











 

















 SS jiSS jiS

dxdxxxxxf
rxx

dxdxxxf
rxx

I 2110120101212010
0

1 ,
1

,
1

lim  

                                         +   






 















 SS jiS

dxdxxxxxf
rxx

2120220102
0

,
1

lim      (B.5) 

The first integral on the RHS of (B.5) is written in a local coordinate system 

whose origin is at the observation point at  2010, xx . This result in, 

   
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
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


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 








2

0
32010

0
212010

0
1

1

,lim,
1

lim rdrd
r

g
xxfdxdxxxf

rxx
I

ijij

SSS
ji

S
a

(B.6) 

where   

                                                           2

11
cos3g                                       (B.7a) 

                                                              sincos3
2112

 gg                  (B.7b) 

                                                          2

22
sin3g                                         (B.7c) 

with rx /cos
1

  , rx /sin
2

  and 1
ij

  for ji   and 0
ij

  for ji  . 

Evaluating the integral of the radial component yields, 

                                           
 

 

 













 






 















2

0
2010

0
1

1

,lim d
r

g
xxfI

ijij

a
               (B.8) 

for which the divergent part as 0S  is, 
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                                          
 

  
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

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













2

0
2010

0
1

,lim d
g

xxfI
ijijd

a
                           (B.9) 

Next consider the second integral on the RHS of (B.5), which is written in 

polar coordinates as, 

    
  

 

 






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
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2
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220101
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2110120101
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1

1 cos
,lim,

1
lim rdrd

r
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xxfdxdxxxxxf
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I

ijij

SSS
ji

S
b

(B.10)     

where   cos101 rxx  is used in (B.10). Evaluating the integral of the radial 

component yields, 

                                              

 






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                  (B.11) 

and the divergent part as 0S  is, 

                                            
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
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20101
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ijij

d

b
              (B.12) 

Same procedure can be used the divergent term for the third integral on the 

RHS of (B.5) and the result is, 

                                    
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c
                    (B.13) 

d
aI1 ,

d
bI1  and 

d
cI1  are the divergent terms that result for evaluation of the integral in 

(B.5) whose domain of integration is SS  . Next we consider the second integral 

on the RHS of (B.2) which is defined on S  and write explicitly the divergent 

terms resulting from this integral. Thus, 

   












 


































 
















 S ji
hSS ji

PPS

dxdxxxf
hrxx

dxdxxxf
Rxx

I 2121
2200

2121
0

2 ,
1

limlim,
1

limlim
01

  (B.12) 

and the expansion of the density function   21, xxf  in (B.4) is used to in (B.12) 

which yields, 
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                                             cba IIII 2222                                                (B.13) 

with 
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     (B.15) 
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   (B.16) 

In order to find divergent term due to aI2 , this integral is written in local 

coordinates as, 
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Using 
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(B.18) 

for the first integral in the brackets of the radial component and evaluating this 

expression in the boundaries yield, 
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Similarly using 
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for the second integral in the brackets of the radial component and evaluating this 

expression in the boundaries yield, 
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Adding the two integrals 
1

2a
I  and 

2

2a
I  yields, 
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When the limit 0h applied it can be shown that the first term produces a 

divergent term which has the same magnitude as (B.6) but has opposite sign, that 

is, 
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Also the second term in (B.22) vanishes as the limit is applied. The third term 

however is also a divergent term as  0h  but fortunately the angular integral 

removes this singularity so that this term also vanishes yielding 
d

a

d

a
II
21

 . 

 Also writing bI2  in polar coordinates result in, 
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        (B.24) 

The integral of the radial component is evaluated using 
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Substituting (B.21) in (B.20) result in, 
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Application of the limit 0h  eliminates second and fourth term within the 

brackets whereas the fourth term is still unbounded. However since the integration 

of angular component along the fourth term result in a vanishing integral and this 

term does not contribute a divergent value. The remaining divergent term due to 

bI 2  can be written as, 
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Similar inspection on cI 2  leads to the divergent integral, 
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 Having explicitly written divergent terms for  1I  and 2I , we see that these 

divergent terms cancel so that, 

                                   0222111  d
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b

d

a IIIIII                                    (B.28) 

which leads to the definition of Hadamard finite part of the integral on the LHS of 

(B.1)  and this completes the proof. 
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APPENDIX C 

 

 

REQUIREMENT ON THE DENSITY FUNCTION FOR THE EXISTENCE 

OF FINITE PART OF A HYPERSINGULAR INTEGRAL 
 

 

 

In Appendix B tangential components of a hypersingular integral is evaluated 

by extracting a small surface S  from the domain of integration and finding the 

divergent terms resulting from the integral on S  and SS  separately. It was 

shown that the divergent terms of the resulting integrals are same but have 

opposite signs such that the result is bounded. Specifically we proved that the sum, 
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is finite by using the expansion of the surface function  21, xxf  around the 

observation point  2010, xx . In order the proof given in Appendix A to be complete 

we need to prove either the remaining terms of the Taylor series expansion of 

density function do not introduce new divergent terms or these new divergent (if 

any) terms cancel each other. That is we need also to show that, 
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  (C.2) 

either by showing that the two integrals are both finite or by showing that their 

divergent terms cancel each other. Here we use the first method which imposes a 

loose condition on the density function. Writing the first integral in polar 

coordinates, 
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.                                                                                                                                    

it can be seen that this integral is finite if it is at most weakly singular. That is 

            1

2022010210120101201021 ,,,,

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
rAxxxxfxxxxfxxfxxf  (C.4) 

where A  is finite number and 10  . The condition in (C.4) is known as the 

Hölder continuity criteria of the density function and denoted by, 

                                                     ,1
21, Cxxf                                                  (C.5) 

Same discussion applies to the second integral in (C.2) which completes the 

proof.  
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