
FAST, EFFICIENT AND DYNAMICALLY OPTIMIZED DATA AND
HARDWARE ARCHITECTURES FOR STRING MATCHING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SALIH ZENGIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2014

Approval of the thesis:

FAST, EFFICIENT AND DYNAMICALLY OPTIMIZED DATA AND
HARDWARE ARCHITECTURES FOR STRING MATCHING

submitted by SALIH ZENGIN in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Prof. Dr. Hasan Cengiz Güran
Supervisor, Electrical and Electronics Engineering Dept.,
METU

Assoc. Prof. Dr. Şenan Ece Schmidt
Co-supervisor, Electrical and Electronics Engineering Dept.,
METU

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Hasan Cengiz Güran
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit Oguztüzün
Computer Engineering Department, METU

Assoc. Prof. Dr. Nail Akar
Electrical and Electronics Engineering Dept., Bilkent University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SALIH ZENGIN

Signature :

iv

ABSTRACT

FAST, EFFICIENT AND DYNAMICALLY OPTIMIZED DATA AND
HARDWARE ARCHITECTURES FOR STRING MATCHING

Zengin, Salih

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Prof. Dr. Hasan Cengiz Güran

Co-Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt

September 2014, 105 pages

Many fields of computing such as network intrusion detection employ string matching
modules (SMM) that search for a given set of strings in their input. An SMM is
expected to produce correct outcomes while scanning the input data at high rates.
Furthermore, the string sets that are searched for are usually large and their sizes
increase steadily.

In this thesis, motivated by the requirement of designing fast, accurate and efficient
SMMs; we propose a number of SMM architectures that employ Bloom Filters to
compactly represent the large amounts of data for the string sets. The proposed archi-
tectures address the well-known slowdown problem of the Bloom Filters because of
the verifications of the positive matches.

To this end, the first contribution of the thesis is Double Bloom Filter SMM (DBF-
SMM) which employs a second Bloom Filter which acts as a verification engine. We
present an analysis, evaluation and implementation of the DBF-SMM. We further ver-
ify the required functionality of the DBF-SMM by modeling and testing the architec-
ture in SystemC environment. Our analytical and implementation results demonstrate
that DBF-SMM is superior to the existing Bloom Filter based SMM designs in terms
of sustainability of the response time with high string storage efficiency and hardware
scalability.

v

DBF-SMM is designed for fixed size strings. The second contribution of the thesis
is a finite automaton-based design that stores variable size strings as state transitions
between characters. To this end, we first identify the classes of state transitions. We
then modify the implementation of the well-known Aho-Corasick algorithm to ef-
fectively store and query the appropriate transition classes in a hardware architecture
that features Bloom Filters and CAM-RAM look-up tables. The Bloom Filter in this
architecture is realized as a DBF-SMM. The proposed SMM achieves a memory ef-
ficiency that is superior to all previous SMM designs together with fast and scalable
hardware design.

Keywords: Network-level security and protection, network intrusion detection sys-
tem, deep packet inspection, content filtering, string matching, pattern matching,
Bloom filter, Finite Automaton, field programmable gate array (FPGA), SNORT,
Aho-Corasick

vi

ÖZ

DİZİ EŞLEME AMAÇLI VERİMLİ VERİ VE DONANIM MİMARİLERİ

Zengin, Salih

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Prof. Dr. Hasan Cengiz Güran

Ortak Tez Yöneticisi : Doç. Dr. Şenan Ece Schmidt

Eylül 2014 , 105 sayfa

Verilen bir dizi kümesini kendi girişinde arayan dizi eşleme modülleri (SMM), ağ
sızıntı tespit sistemleri gibi bir çok hesaplama alanında kullanılır. Bir SMM, giriş
verisini yüksek hızlarda tararken, doğru sonuçlar üretmesi beklenir. Ayrıca, aranan
dizi kümeleri genelde büyüktür ve boyutları da sürekli artmaktadır.

Bu tezde, hızlı, doğru ve verimli tasarım gerekliliği motivasyonu ile, büyük miktarda
veriyi dizi kümeleri için sıkıştırarak temsil etmek maksadıyla Bloom Filter’leri kulla-
nan bir kaç SMM yapısı önerilmektedir. Bu yapılar, Bloom filtrelerin olumlu eşleme
sonuçlarının doğrulanması sebebiyle oluşan ve iyi bilinen yavaşlama problemini çöz-
meyi hedefler.

Bu amaçla, tezin ilk katkısı olarak, doğrulama maksatlı olarak kullanılan ikinci bir
filtre içeren Çift Bloom filtreli dizi eşleme modülü (DBF-SMM) oluşturulmuştur.
DBF-SMM’in analiz, değerlendirme ve uygulamaları gösterilmiştir. Ayrıca, DBF-
SMM’in istenen işlevi, SystemC ortamında ilgili yapı modellenip test edilerek doğru-
lanmıştır. Analiz ve uygulama sonuçlarımız, DBF-SMM’in Bloom filtre tabanlı diğer
SMM tasarımlarından tepki süresinin yüksek dizi saklama verimliliği ve donanım öl-
çeklendirilebilirliliği ile korunması açısından daha üstün olduğunu gösterir.

DBF-SMM sabit boyutlu diziler için tasarlanmıştır. Tezin ikinci katkısı ise, karakter-
ler arası durum geçişleri ile değişken boyutlu dizileri saklayan sonlu makine tabanlı

vii

tasarımlardır. Bu maksatla, durum geçişleri sınıfları tanımlanmıştır. Daha sonra, iyi
bilinen Aho-Corasick algoritması gerçeklenmesi, Bloom filtreleri ve CAM-RAM tab-
lolarını kullanarak uygun geçiş sınıflarını etkili bir şekilde donanımda saklayacak ve
sorgulayacak şekilde değiştirilmiştir. Bu yapıda Bloom filtre DBF-SMM olarak ger-
çeklenmiştir. Önerilen SMM yapısı, bütün diğer SMM tasarımlarından üstün hafıza
verimliliğine, hızlı ve ölçeklenebilir donanım tasarımıyla sahiptir.

Anahtar Kelimeler: Ağ seviyesi güvenlik ve koruma, ağ saldırı tespit sistemi, derin-
lemesine paket denetimi, içerik filtreleme, dizi eşleme, patern eşleme, Bloom filtresi,
Durum Makinesi, alanda programlanabilir kapı dizisi, SNORT, Aho-Corasick

viii

To My Family

ix

ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisors Prof. Dr. Cengiz
Hasan Güran and Assoc. Prof. Dr. Şenan Ece Schmidt. My special thanks go to
TÜBİTAK SAGE. Finally, I would like to thank my family and friends who sup-
ported me throughout the whole time.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

2 STRING MATCHING WITH BLOOM FILTERS 7

2.1 String Matching: Problem Formulation and Performance Met-
rics . 7

2.2 Bloom Filters . 8

2.3 Approximate String Matching with Bloom Filters 10

3 STRING MATCHING MODULE ARCHITECTURE WITH DOU-
BLE BLOOM FILTERS . 13

3.1 Analysis of Fixed-size String Matching Module with a Sin-
gle Bloom Filter . 13

xi

3.2 Fixed-size String Matching Module with Double Bloom Fil-
ter: DBF-SMM . 14

3.3 Analytical Model of DBF-SMM 16

3.3.1 Response Time 18

3.3.2 Correctness . 18

3.4 DBF-SMM and SBF-SMM Response Time Comparison . . . 19

3.5 Selecting Design Parameters 20

3.6 Complexity and Resource Requirements 21

4 PARALLEL IMPLEMENTATION OF DBF-SMM 23

5 DBF-SMM IN PRACTICE . 27

6 DBF-SMM EVALUATION UNDER DIFFERENT DESIGN PARAM-
ETERS . 31

6.1 Response Time Evaluation Under Different Design Parameters 31

7 FPGA IMPLEMENTATION OF DBF-SMM 37

7.1 Introduction . 37

7.2 VHDL Description of DBF-SMM 38

7.3 FPGA Implementation Results 39

8 SYSTEMC IMPLEMENTATION OF DBF-SMM 41

8.1 Introduction . 41

8.2 SystemC Model of DBF-SMM 42

8.3 Verification of the DBF-SMM Model 45

9 VARIABLE SIZE STRING MATCHING WITH AUTOMATA 47

xii

9.1 Bloom Filter based w-byte Deterministic Finite Automaton . 49

9.1.1 w-byte Deterministic Finite Automaton (wDFA) . 49

9.1.1.1 Formal Definition of wDFA 49

9.1.1.2 Hardware Implementations of wDFA . 55

9.1.2 Bloom Filter based wDFA 57

9.2 String Matching with Aho-Corasick Finite Automaton 58

9.2.1 Aho-Corasick Based Multi-Byte DFA 66

9.2.2 Lemmas and Theorems on AC-based Automaton . 68

9.3 Mapping SNORT String Set into an AC-wDFA 70

10 VARIABLE SIZE STRING MATCHING WITH DOUBLE BLOOM
FILTERS . 79

10.1 String Matching Module with Bloom Filter based Aho-Corasick
Automaton . 79

10.1.1 Basic BFbAC-wDFA 80

10.1.2 Multiple BFbAC-wDFA 83

10.2 Evaluations of the Proposed Architectures 87

10.2.1 Comparison of the Results with Other Related Stud-
ies . 88

10.3 Related Work . 91

11 CONCLUSIONS AND FUTURE WORK 97

REFERENCES . 101

CURRICULUM VITAE . 105

xiii

LIST OF TABLES

TABLES

Table 6.1 Evaluation cases for the single AMU DBF-SMM. 34

Table 6.2 Evaluation cases for the parallel AMU DBF-SMM. 35

Table 7.1 FPGA implementation results for DBF-SMM. 40

Table 9.1 State transitions of the classic AC-based wDFA (w = 1) represent-
ing a set of strings S = {he, she, his, hers}. 54

Table 9.2 Compact representation of state transition rules of the classic AC-
2DFA machine storing the set of strings S = {he, she, his, hers}. The
priorities of the rules reduce towards bottom row. 67

Table 9.3 Alphabet and state parameters of the generated w-byte AC ma-
chines, each of which stores the signature strings of Snort v2.9. 72

Table 9.4 Set cardinalities of transitions of AC-wDFAs storing the signature
strings of Snort v2.9. 72

Table 10.1 Evaluation of the wDFA (improved) and BFbDFA machines storing
the signature set of SNORT v2.9. The memory sizes are in bits and the
number of shared hash functions is k = 10. 87

Table 10.2 Evaluation of BFbAC-wDFA machines storing the signature set of
SNORT v2.9. The number of shared hash functions is k = 10 and the
memory sizes are in bits. 88

Table 10.3 Evaluation of SMM constructed with w MBFbAC-wDFAs. SMM
stores the signature set of SNORT v2.9. The number of shared hash func-
tions is k = 10 and vFC = vC ∗ 50%. UTVU is limited to store 5 per-
centage of unsuccessive and depth-2 or more transitions, i.e., |∆UTV U | =
|(∆U ∩∆i≥2)| ∗ 5%. The memory sizes are in bits. 89

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Bloom Filter architecture. All of the hash values for an input string
are mapped to the m-bit positions in the vector v. 9

Figure 2.2 S1 and S2 are members of the set S and they are approximately
represented by the Bloom Filter with k = 2 and m = 5 bits. The queried
strings y1, y2 /∈ S falsely produce match outcomes because the m-bit vec-
tor positions pointed by the calculated hash values are set to logic 1 by S1

and S2. 10

Figure 3.1 DBF-SMM Architecture. 15

Figure 4.1 The Parallel DBF-SMM Architecture. Each AMU has a search
window of w bytes that are one byte shifted with respect to each other. . . 24

Figure 5.1 DBF-SMM with Dynamic Updates. 28

Figure 5.2 DMC is incremented by c = 5 because of a dynamic match denoted
by * symbol. The DMC is decremented by 1 for queries that are not
verified by the EMU to be a true positive match or unmatch cases for both
vF_dynamic and vF_frequent. When the DMC value drops down to the rate
of 1/c match per query, the vF_dynamic is cleared, which is depicted by #. . 30

Figure 6.1 The length distribution of the signature strings in SNORT v2.9
database. 33

Figure 7.1 Synthesized AMU circuit of DBF-SMM Architecture. 38

Figure 7.2 Implementation of AMU circuit on an FPGA. 39

Figure 8.1 The SystemC Model of DBF-SMM. 43

Figure 8.2 An example for the execution of the SystemC model. 44

xv

Figure 8.3 Simulation results of the SystemC model evaluated with 10 differ-
ent traffics. 46

Figure 9.1 Structure of w-byte DFA (Moore Model). 52

Figure 9.2 State transition graph of an AC-based wDFA representing a set of
strings S = {he, she, his, hers}. The vertices and edges represent state
and state transitions respectively. 53

Figure 9.3 The execution of AC-based DFA matching the input string {usherst · · · }
against the string set S = {he, she, his, hers}. The red state numbers de-
pict the visited accepting states. 55

Figure 9.4 RAM-based naive implementation of wDFA. 56

Figure 9.5 Typical hardware implementation of wDFA. LUT stores all of the
transitions ∆. The transition conditions δ and the associated next states qn
(with the accepting state flags) are stored in a CAM and a RAM, respec-
tively. 56

Figure 9.6 Improved hardware implementation of wDFA. CAMA stores the
transitions to the accepting next states ∆A = {(qc, Pw

i, qn), qn ∈ G} and
CAMB stores ∆ \ (∆0 ∪∆A). ∆0 transitions are inferred by the unmatch
case of both CAMs. The accepting state flag is also inferred by the match
case of CAMA. 57

Figure 9.7 Structure of the BFwDFA. 59

Figure 9.8 String-by-string construction of goto transitions g with string set
S = {he, she, his, hers} . 61

Figure 9.9 State transition graph of an AC-NFA machine storing the string set
S = {he, she, his, hers} . 62

Figure 9.10 The behavior of the AC-NFA matching the input string P = {usherst}
against the string set S = {he, she, his, hers}. 63

Figure 9.11 Illustration of transition types of a state qc by a directed graph,
whose vertices and edges represent states and state transitions respectively. 65

Figure 9.12 Illustration of AC-wDFA based SMM for w = 2. 66

Figure 9.13 State transition graph for the AC-2DFA based SMM storing the
string set S = {he, she, his, hers}. 67

xvi

Figure 9.14 The execution of the AC-wDFA based SMM matching (w = 2) the
input string P = {usherst · · · } against the string set S = {he, she, his, hers}.
The red state numbers depict the visited accept states. 68

Figure 9.15 Mapping SNORT String Set into an AC-wDFA. 71

Figure 9.16 Mapping string set S = {he, she, his, hers} into an AC-wDFA. . . 75

Figure 9.17 Array of linked list structure to represent the state transitions given
in Table 9.1. 76

Figure 9.18 Employed alphabet size |σw| as a function of w. 76

Figure 9.19 Total number of states |Q| as a function of w. 77

Figure 9.20 Total number of depth-1 states |Q1| as a function of w. 77

Figure 9.21 Percentage of transition set cardinalities as a function of w. 78

Figure 10.1 Structure of the basic BFbAC-wDFA. 80

Figure 10.2 The RAM and BF content of the proposed machine storing the
string set S = {he, she, his, hers} . 82

Figure 10.3 The execution of the proposed machine matching the input string
{P = ushersy · · · } against the string set S = {he, she, his, hers}. The
machine begins consuming each byte on the left side of the input string. . . 83

Figure 10.4 Basic structure of MBFbAC-wDFA. 84

Figure 10.5 String Matching Module employing w AMUs. 85

Figure 10.6 Content of each MBFbAC-DFA (w = 2) units each of which stores
the string set S = {he, she, his, hers}. 86

Figure 10.7 The execution of MBFb-2DFA based SMM matching the input
string P = {usherst · · · } against the string set S = {he, she, his, hers}.
The red states depict the visited accept states. 86

Figure 10.8 The execution of MBFb-2DFA based SMM matching the input
string P = {usherst · · · } against the string set S = {he, she, his, hers}.
The bold vertices depict the visited accepting states. 87

Figure 10.9 Summary of comparison results. 90

xvii

LIST OF ABBREVIATIONS

AC Aho-Corasick

AC-wDFA Aho-Corasick based wDFA

AMU Approximate Matching Unit

ASCII American Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

BFbAC-wDFA Bloom Filter based Aho-Corasick wDFA

BFwDFA Bloom Filter based w-byte (Multi-byte) Automaton

BF Bloom Filter

B-FSM BaRT-based Finite State Machine technology

BRAM Block RAM

CAM Content Addressable Memory

ClamAV Clam AntiVirus

CLB Configurable Logic Block

CU Control Unit

D2FA Delayed Input DFA

DBF Double Bloom Filter

DBF-SMM Double Bloom Filter-String Matching Module

DFA Undeterministic Finite Automaton

DMC Dynamic Match Counter

DMR Dynamic Match Rate

EMU Exact Matching Unit

FastFA Fast Finite Automaton

FPGA Field Programmable Gate Array

FSAM Fast Scalable Automaton Matching

GBF Generalized Bloom Filter

Gbps Gigabit per second

HDL Hardware Description Languages

IEEE Institute of Electrical and Electronics Engineer

xviii

IEEE-SA Institute of Electrical and Electronics Engineers Standards As-
sociation

ISE Integrated Software Environment

LUT Look-up Table

MBFbAC-wDFA Multi-Bloom filter based Aho-Corasick wDFA

MCU Monitor and Control Unit

NFA Deterministic Finite Automaton

NIDS Network Intrusion Detection System

NMC Normalized Memory Consumption

NMCx Normalized Memory Complexity

OSCI Open SystemC Initiative

RAM Random Access Memory

RTL Register Transfer Language

SBF-SMM Single Bloom Filter-String Matching Module

SMM String Matching Module

SR State Register

TCAM Ternary Content Addressable Memory

UTVU Unconsecutive Transition Verification Unit

VHDL Very High Speed Integrated Circuit HDL

VU Verification Unit

wDFA w-byte (Multi-byte) Automaton

xix

xx

CHAPTER 1

INTRODUCTION

String matching is the task of searching for a given set of strings in a given larger

string. The string matching problem manifests itself in many fields of computing in-

cluding text retrieval, computational biology and signal processing [27]. Network in-

trusion detection systems (NIDS) is a very prominent area that employs string match-

ing module (SMM) to search for attack strings in the incoming packets [15, 38, 16,

21, 39, 41, 20, 36, 42, 40, 24, 26, 12].

SMMs are expected to scale with the increasing amounts of data and the processing

rate requirements in computing applications. In particular, the sizes of the attack

signature sets of NIDS steadily grow to include the new signatures while maintaining

the signatures of old and rare attacks which can still occur and harm the system. The

SMMs of NIDS which are installed at the traffic aggregation points such as routers

[14] are required to scan the incoming traffic at gigabit per second (Gbps) rates. Low

response times to reach such scan rates can be achieved by SMM implementations on

hardware platforms which must take the hardware logic and memory resources into

account [16, 19, 43].

Bloom Filters [10] are hashing data structures which fulfill these requirements and

they are frequently employed for building SMMs for network applications [13, 18].

A Bloom Filter compactly stores a given string set and queries it in constant time

for the input without any false negatives. However, they perform approximate string

matching with a false positive probability that increases with the size of the stored

string set. Works such as [15, 16, 37] employ Bloom Filters for quickly filtering out

the input that does not match the string set and an additional matching engine without

1

any false results for verifying the positive outcomes. The verification engine is a

slower component than the Bloom Filter, hence, frequent positive outcomes because

of true and false positives slow down the SMM.

Motivated by the requirement of fast, accurate and efficient SMMs, in this thesis,

we propose a number of Bloom Filter based SMM architectures which exploit the

compact data representation and fast response features of Bloom Filters.

To this end, the first contribution of this thesis is the novel Double Bloom Filter SMM

(DBF-SMM) architecture. DBF-SMM has two Bloom Filters that concurrently query

the incoming strings. The first Bloom Filter stores the entire string set and its no-

match results can be trusted thanks to the zero false negatives. The second Bloom

filter stores a limited set of strings so that its false positive probability is almost zero

and its match results do not need verification. Hence, the average response time of the

SMM decreases with the ratio of the matches detected by the second Bloom Filter.

The content of the second Bloom Filter is dynamically adapted to the current input

data to increase the detected matches while maintaining the almost zero false positive

probability. In the best case, all of the positive matches for the incoming strings are

detected by the second Bloom Filter and the response time of the DBF-SMM is equal

to the response time of the Bloom Filters without any verification. We propose DBF-

SMM as a fast SMM architecture to be implemented in hardware. Accordingly we

take logic and memory resources in consideration.

DBF-SMM is a fixed-size string matching SMM. Matching variable size strings re-

quire keeping track of the order of string pieces with a deterministic finite automaton.

The second contribution of the thesis is the design of a novel Bloom Filter based

Multi-byte Deterministic Finite Automaton (BFwDFA) which employs DBF-SMM as

the Bloom Filter. To this end, we propose a modified version of Aho-Corasick (AC)

string matching algorithm in order to map a variable size string set into a BFwDFA.

Different than previous automaton based implementations, our architecture elimi-

nates the need to completely store all of the state transition rules from any state to

some states that are zero or one transition away from the initial state, while consum-

ing multiple bytes at a time with limited memory consumption. In this variable size

SMM architecture, state transition rules and their associated transition conditions (ex-

2

cept eliminated transitions) are stored in a verification unit and in a BF, respectively.

This enables us to achieve high memory efficiency that increases with the number of

transitions eliminated. Besides, high rate of state transitions per time can be achieved

in the case of executing high number of eliminated transitions, where BF is not ex-

pected to frequently output positive results. DBF-SMM enhances this variable size

SMM as the BF to store the appropriate frequently occurring state transitions and a

look-up table consisting of CAM and RAM to store the rest of the frequent transition

rules.

The outline of the work in this thesis study to realize these two main contributions is

as follows:

• The design, analysis and evaluation of the DBF-SMM according to the response

time, correctness and the hardware resource requirement metrics

• Extension of DBF-SMM to a parallel implementation together with its analysis

and evaluation

• Detailed description of the selection of the design parameters of the DBF-SMM

• One possible method of dynamically updating the content of the second Bloom

Filter according to the current input

• Numeric evaluation results comparing DBF-SMM to the standard Bloom Filter

based SMM under different design parameter values and FPGA implementation

results of DBF-SMM that demonstrate the improvement in the response time

and the implementation scalability

• Construction of SystemC model of DBF-SMM and verifying the required func-

tionality of the proposed architecture

• Formal definition of Multi-byte Deterministic Finite Automaton (wDFA), whose

input symbols consist of one or more ASCII characters. Classification of the

states, state transition rules and state transition conditions according to their

shortest distance from the initial state. Basic hardware implementations of

wDFA with RAM and/or CAM to constitute a basis for comparison.

3

• Bloom Filter based wDFA (BFwDFA) which eliminates storing all of the tran-

sitions from any state to the initial state (transitions to the initial state). In this

architecture, state transition rules and their associated transition conditions (ex-

cept transitions to the initial state) are stored in a verification unit and in a BF,

respectively. This architecture enables us to achieve high memory efficiency

that increases with the number of transitions eliminated. Besides, high rate of

state transitions per time can be achieved in the case of high number of transi-

tions to the initial state, where BF is not expected to frequently output positive

results.

• A slight modification of Aho-Corasick (AC) string matching algorithm in order

to store a given string set in a wDFA which yields an Aho Corasick-based

automaton (AC-wDFA).

• A preprocessing C++ program to store any given string set by the modified AC

algorithm on a wDFA. We demonstrate the significant features of AC-wDFA

and calculate the memory usage efficiency of the proposed variable string size

matching engine by storing the well-known SNORT string set in an AC-wDFA.

• Bloom Filter based implementation of AC-wDFA (BFbAC-wDFA) in order to

achieve higher memory efficiency than AC-wDFA. This is achieved by elimi-

nating the transitions from any state to some states that are one transition away

from the initial state (depth-1 transitions). Similar to BFwDFA, transitions to

the initial state are also inferred instead of completely storing them in a look-up

table. Actually, depth-1 transitions are inferred by a CAM and a RAM storing

only the associated input symbols and the next states respectively. The novel

advantage of this automaton is limiting the required memory to infer the depth-

1 transitions when the machine is needed to consume multiple-bytes at a time.

• Employing DBF-SMM in BFbAC-wDFA, namely, Multi-Bloom Filter based

AC-wDFA (MBFbAC-wDFA). BF-based architectures need verification units

that are typically slow engines due to eliminate the false positive outcomes,

which slows down the execution of the machine. To overcome this side effect,

we previously proposed double Bloom Filter structure (DBF-SMM). In this

architecture, frequent consecutive transition rules are approximately stored in

4

a BF where frequent unconsecutive transition rules are stored completely in

a look-up table consisting of a CAM and a RAM. The overall machine can

conserve the state transition rate while consuming low memory.

• Evaluation of the proposed architectures, wDFA, BFwDFA, BFbAC-wDFA and

MBFbAC-wDFA with signature set of SNORT v2.9 and our results are also

compared with other related works. To achieve fair comparison, the hardware

complexity of the used memories are also considered.

The remainder of the thesis is organized as follows. First of all, Chapter 2 formalizes

the string matching problem with its performance evaluation metrics. Then, Bloom

Filters are introduced and their string matching applications in the literature are given.

Chapter 3 presents design, analysis and evaluation of the novel DBF-SMM by com-

paring it with the single-BF version and the architecture is extended to the parallel

implementation including its analysis and evaluation in Chapter 4. Chapter 5 exem-

plifies dynamically updating the content of the second Bloom Filter according to the

current input. Chapter 6 demonstrates a number of different design cases for both

of the single and parallel implementations of the DBF-SMM and depicts the evalu-

ation results. These cases are also implemented on an FPGA and the corresponding

resource consumptions and clock periods are reported by Chapter 7. In Chapter 8 Sys-

temC model of the DBF-SMM and the verification of the architecture are explained.

Chapter 9 is dedicated to automaton-based variable size string matching architectures.

In this chapter, firstly, Multi-byte Deterministic Finite Automaton is defined formally,

and then its BF-based version is described. After that, Aho-Corasick string matching

automaton is summarized with its multi-byte type. At the end of the chapter, SNORT

string set is mapped into an automaton emphasizing some significant observations.

Chapter 10 applies the idea behind DBF-SMM into Aho-Corasick and BF based au-

tomatons that are applied as variable size string matching machines. Evaluation of

the proposed architectures and the comparison of the related works are also presented

in this chapter. Lastly, Chapter 11 summarizes the most significant outcomes of this

study and some possible advancements as future work.

5

6

CHAPTER 2

STRING MATCHING WITH BLOOM FILTERS

2.1 String Matching: Problem Formulation and Performance Metrics

Let the string database is represented as a finite set of strings S = {S1, S2, · · · , Sn}.
For the scope of this thesis, we assume that the strings consist of fixed number of

characters where each character is represented by a single byte similar to an ASCII

character. We remove this constraint by extending our work to include variable size

strings starting with Chapter 9. The number of strings in S is n = |S|. For a string

Sj with a length of w, string matching determines if Sj ∈ S is true.

String matching is realized with a String Matching Module (SMM) which stores S
and scans an input stream of bytes P by shifting a search window of w bytes along

P . The string representations in libraries such as SNORT [5] determine the string

boundaries in bytes. Hence, for the rest of this thesis we assume that the search

window is shifted byte-by-byte. SMM queries the string Sj that is enclosed in the

current search window Pw
i and produces an outcome which is a match or a no-match.

Next, we define the metrics to evaluate a given SMM that is operating as described

above.

Correctness: We call the events Sj ∈ S and Sj /∈ S positive and negative respectively

for the rest of the thesis. The probability that a given w-byte string Sj is positive is

PS . We assume that this probability is the same for all w-byte strings that are queried.

Accordingly, we define the following probabilities for the SMM outcomes per query;

7

True positive probability: Ptp = P (match|positive),

False positive probability: Pfp = P (match|negative),

True negative probability: Ptn = P (no-match|negative),

False negative probability: Pfn = P (no-match|positive).

(2.1)

For a given SMM design, it is desired to have high precision and accuracy as defined

in Section 3.3.2 which requires that Pfn and Pfp are low.

Response Time and Scan Rate: We define the response time T as the time to query a

given string in the S for a possible match. The SMM executes 1/T queries per unit

time. If the SMM shifts the search window b bits for each query on the input P , the

scan rate is R = b/T bits/sec.

Complexity and Resource Requirements: The amount of required resources to store

the S together with the time complexity of querying and adding a new string to S
determine the feasibility and the scalability of a given SMM design.

Variable Size String Support: Variable size string support is defined as an ability of

storing a set of strings S = {S1, S2, · · · , Sn}, where each string consists of a different

number of characters.

2.2 Bloom Filters

Bloom Filters are memory-efficient, probabilistic, multi-hashing data structures with

many applications in computer networks [10, 13, 18]. The focus of our thesis is string

matching, hence we refer to the data that is stored in the Bloom Filters as strings.

A Bloom Filter consists of a linear vector v with m bits and k independent hash

functions,H = {h1, h2, . . . , hk} as illustrated in Fig.2.1.

Storing S in a Bloom Filter starts with clearing allm bits in v. Then, for each element

Sj ∈ S , each hash function hi(Sj) maps Sj to v by setting the corresponding bits to

logic 1 for i = 1 · · · k, and j = 1 · · ·n.

Querying an input string Sj computes all hi(Sj) to find the respective bit positions in

8

h1

h2

hk

k hash functions

m-bit vector

..
.

h3

m

In
p
u
t
st
ri
n
g

M
at
ch
 F
la
g

m1

m2

mm

m3

..
.

1

2

vector v

..
.

..
.

2

Figure 2.1: Bloom Filter architecture. All of the hash values for an input string are
mapped to the m-bit positions in the vector v.

v and returns a match result if all of these bits are set to logic 1. The time needed to

store and query an element only depends on the number of serially implemented hash

functions. These hash functions can be executed concurrently in hardware resulting in

O(1) time complexity. This property not only supports the scalability of the querying

with respect to |S| but also it enables the easy storing of a new element. Deleting an

element from a Bloom Filter is not a straight forward operation and requires a more

complicated design such as counting Bloom Filters [18].

A Bloom Filter always returns a match result if the corresponding string is stored in

v. However, it can generate false positive results since all of the ones checked during

the query are not necessarily set by a single element in the set S. Furthermore, if the

hash functions are not one-to-one, it is possible that they map a queried string that

is not in S to all 1 locations in v. Fig. 2.2 shows these two examples for the false

positives.

The analysis for Bloom Filters in the literature [18, 13] presents the following results.

Consider a Bloom Filter with k hash functions and the vector v with a size of m to

store S. Assume that the outputs of the hash functions are uniformly and randomly

distributed to the range of {1, 2, · · · ,m}. Then, the false positive probability Pfp

and the corresponding optimal number of hash functions, kopt, that minimize Pfp

9

S1 S

S2 S

y2 S

v

y1 S

Figure 2.2: S1 and S2 are members of the set S and they are approximately repre-
sented by the Bloom Filter with k = 2 and m = 5 bits. The queried strings y1, y2 /∈ S
falsely produce match outcomes because the m-bit vector positions pointed by the
calculated hash values are set to logic 1 by S1 and S2.

are;

Pfp = (1− e−k·|S|/m)k, (2.2)

kopt =
mopt

|S|
· ln2. (2.3)

By replacing k in Equation (2.2) as kopt in Equation (2.3);

kopt = −log2(Pfp). (2.4)

Accordingly, the Bloom Filter’s worst-case space complexity is O(|S|) under the

constant false positive rate. Note that the time and space complexities are independent

of the size of the strings stored in a Bloom Filter. However, the hardware complexity

of the hash functions is dependent on the string size as given in Section 3.6.

For a given k and Pfp one can derive the ratio between |S| and m where m is not

necessarily optimal as follows:

|S|
m

= − ln(1− e
ln(Pfp)

k)

k
. (2.5)

2.3 Approximate String Matching with Bloom Filters

SMMs featuring Bloom Filters are prominently employed in computer network secu-

rity applications [18] such as intrusion detection by deep packet inspection. To this

10

end, an SMM scans each packet P to check whether it contains any known attack sig-

nature string. Hence the attack signatures constitute the string set S. A match results

in actions that include marking or dropping the packet.

A Bloom Filter does not have any false negatives (misses). Therefore, it can be em-

ployed in order to quickly filter out the input strings that do not match the string

database [15, 16, 37]. However, the positive query results must be verified by another

engine without any false positives. Most of the time this is a relatively slow exact

matching engine. If the match outcomes are frequent, then the subsequent verifica-

tions result in a significant decrease of the scan rate [30].

[15] proposes a set of parallel Bloom Filters, each of which approximately represents

only a set of fixed size strings. Therefore, variable size strings can be represented

with overall architecture. However, the proposed machine is implemented as a pro-

totype system that stores only 32-byte fixed-size strings. On one hand, the no-match

outcomes of each Bloom filter can be trusted because of the no false negatives of the

Bloom Filters. On the other hand, any match signal from the filters is verified by a

slow software component to check against the false positive probability, therefore, the

engine slows down to the speed of the verification engine under frequent matches. In

[16] variable size strings are stored in a finite state machine by splitting long strings

into multiple short length substrings with an Aho-Corasick based scheme. In this ar-

chitecture, state transition conditions are stored into a set of Bloom Filters. If any BF

match occurs, then slow off-chip memory is accessed to get the next state informa-

tion, which slows down the machine in the case of high BF matches. Multiple SMMs

are also employed to gain higher scan rates.

A sub-linear time (BFAST) algorithm is proposed to accelerate the Bloom Filter op-

eration for pre-filtering of the clear packets in [25]. In this algorithm, the shift dis-

tance of the search window is determined by a heuristic similar to the bad-character

heuristic used in the Boyer-Moore algorithm [11]. The results of the queries from the

parallel Bloom Filters are considered as algorithmic heuristics. The false positives of

Bloom Filters decrease the shift distance for the search window down to one byte at

the worst case. If all Bloom Filters return match results, a sequential slow verification

must be performed. A linear worst-case time option is also proposed for BFAST but

11

it is not implemented.

In [37], a fast scalable automaton-matching (FSAM) hardware combining pre-hashing

and root-indexing techniques are proposed in order to speed up the bitmap AC-based

matching process. The root-index approach compares multiple bytes in one single

matching process when the machine is in the root state. Before AC matching, pre-

hashing tests the input substring for the non-root states using hash functions. The

slow automaton matching is skipped if the initial hashing does not produce a match

for the input mapped on the current search window. Under frequent matches, slow au-

tomaton matching cannot be skipped most of the time. Root-indexing only advances

the matching by a limited number of bytes kroot for each matching string. Conse-

quently, if the match rate is high and the length of the matching strings is longer than

kroot, then the advantage of the root-indexing decreases. The memory efficiency of

the proposed machine is significantly low with respect to mainly Bloom Filter-based

architectures because the systems is based on automaton. In addition, in order to

avoid the large size in building root-index data, kroot is selected to be less than 2 bytes

for large string sets.

Bloom filters are also employed to transmit large sets in a compact form to exchange

information. In these kinds of applications, the content of vector v is transmitted

among distributed network systems. However, an attacker can easily hack the system

by broadcasting v vectors whose all bits are set to one, where the false positive prob-

ability becomes one. Hence, the standard Bloom filters are not secure in transferring

information over untrusted medium. In [23], Generalized Bloom Filter (GBF) is pro-

posed to prevent these types of attacks. In the architecture, an additional set of hash

functions is employed to "reset" the m-bit locations during the storing process. This

process results in a non-zero false negative probability at each query and limits the

false positive probability and broadcasting all-one v vectors of GBF is meaningless.

As a result, the GBF can provide more secure data representation with the limited

non-zero error rates.

We further discuss a number of previous works in the literature in Section 10.3 after

we introduce our proposed variable size SMM, which is based on automaton in 10.

12

CHAPTER 3

STRING MATCHING MODULE ARCHITECTURE WITH

DOUBLE BLOOM FILTERS

3.1 Analysis of Fixed-size String Matching Module with a Single Bloom Filter

The motivation for our work in this thesis is the increased response time of the Bloom-

Filter based SMMs because of the slow verification such as [15, 16, 37]. While the

analysis presented in this Section is for fixed size strings we emphasize that our ap-

proach throughout this thesis targets decreasing the slow verification time for both

fixed and variable size string matching modules.

To this end, we first present a model for such SMMs and analyze it in this section to

demonstrate the slow down in the response time under frequent matches.

We call the SMM that is proposed in [15, 16, 37] a Single Bloom Filter SMM (SBF-

SMM). To this end, an SBF-SMM is constructed with a fast Approximate Matching

Unit (AMU) that features a Bloom Filter FA and a slow Exact Matching Unit (EMU)

that is a low cost engine without any particular optimization for a high scan rate. The

response time for a query in AMU and EMU are tAMU and tEMU respectively where

tEMU = E · tAMU and E > 1.

Let FA store the string database S where all strings have the same fixed length of

w bytes. The false positive probability of FA that is computed by Equation (2.2) is

PfpA.

For a queried string Sj , let PmA denote the probability of a match result of FA. Then,

13

PmA = PS + (1− PS) · PfpA. (3.1)

Let TSBF−SMM denote the average response time of the SBF-SMM per query. It is

desired that TSBF−SMM is close to tAMU to take the most advantage of the Bloom

Filter component. To this end, we express TSBF−SMM in terms of tAMU as follows:

TSBF−SMM = tAMU + PmA · E · tAMU ,

= tAMU · [1 + E(·PS + (1− PS) · PfpA)].
(3.2)

The verifications of the match results of FA that are either for positive events or false

positives increase TSBF−SMM . PfpA can be decreased by increasing the number

of hash functions. However, PS only depends on the incoming strings. TSBF−SMM

grows linearly with PS and approaches to tAMU + tEMU under high PS , diminishing

the advantage of the Bloom Filter.

3.2 Fixed-size String Matching Module with Double Bloom Filter: DBF-SMM

We propose a String Matching Module that features an AMU that is constructed

with two Bloom Filters to mitigate the increase of the response time as PS increases.

Hence, we call this architecture a Double Bloom Filter SMM (DBF-SMM) as shown

in Fig. 3.1.

The AMU consists of two Bloom Filters FA and FF . FF and FA have two independent

bit vectors vF and vA with respective numbers of bits mF and mA. FA is identical

to the FA in the SBF-SMM with a false positive probability PfpA. FF stores a set

of strings F ⊂ S. The false positive probability of FF is purposely selected as

PfpF ≈ 0 by selecting |F| sufficiently small. Then, if FF matches, it is far more

likely that Sj ∈ F and therefore FA also matches. Similarly, if FA does not match,

then it is exactly true that Sj /∈ S, and due to F ⊂ S, FF is not expected to match.

DBF-SMM queries the string Sj that is enclosed in the current search window as

defined in Section 2.2 and shifts the window byte by byte to scan the input stream

P . We propose the DBF-SMM for fast SMMs that are implemented in hardware.

Hence, without loss of generality, we assume that both FF and FA share a set of k

14

Monitor and
Control Unit

(MCU)

h1

k hash
functions

...

1

 /k

flagFF

flagFA

Approximate Matching Unit
(AMU)

Exact Matching Unit
(EMU)

Monitor
Unit

fl
ag

E
M

U

Control
Unit

Double Bloom Filter (DBF)

vector vF

vector vA

h2

hk

2

...

mF

1

2

...
mA

 /k

In
pu

t S
tr

in
g

DBF-SMM Architecture

DBF-SMM output

Figure 3.1: DBF-SMM Architecture.

hash functions H to save the expensive hardware resources. Instead, independent

hash functions can be employed for each filter, resulting two times more complexity

in hardware and lower scan rates. When a string Sj is to be queried, it is first con-

currently mapped to vF and vA through the same hash function setH with a response

time of tAMU . Similar to the SBF-SMM, the DBF-SMM has an EMU with a response

time of tEMU = E · tAMU and E > 1.

If Sj /∈ S, then FA produces a no-match result that is correct because of the zero false

negatives of the Bloom Filters. If Sj ∈ F , then FF produces a match result that does

not need verification because PfpF ≈ 0. In both cases, the query is completed in

tAMU with a no-match and a match result respectively.

For a given input Sj , a match in FA without a match in FF can happen either because

Sj ∈ S and Sj /∈ F or there is a false positive result with probability PfpA. Hence, a

match of FA without a match in FF requires the subsequent verification by the EMU.

The Monitor and Control Unit (MCU) evaluates the match results of FF and FA and

15

either produces the query result or invokes the EMU.

3.3 Analytical Model of DBF-SMM

We first introduce the relevant probabilities for DBF-SMM and then we analyze its

performance according to the metrics that we define in Section 2.1.

Let PmA and PmF denote the match probabilities per query for FA and FF respec-

tively. PtpA and PtpF are the respective true positive probabilities of FA and FF

where true positive is as defined in Section 2.1.

FA stores the entire S and produces a match result for all Sj ∈ S. Hence, the true

positive probability of FA is;

PtpA = P (FA matches |positive) = 1. (3.3)

FF stores F ⊂ S hence, for a given input string Sj ∈ S, it is possible that Sj /∈ F .

Then the true positive probability of FF is;

PtpF = P (FF matches |positive) = α ≤ 1. (3.4)

Here, we define α, as a parameter which depends on the choice of F .

Then the match probabilities of FA and FF are as follows:

PmA = P (FA matches |positive) · PS + P (FA matches |negative) · (1− PS),

= PS + (1− PS) · PfpA.
(3.5)

PmF = P (FF matches |positive) · PS + P (FF matches |negative) · (1− PS),

= α · PS .
(3.6)

16

The four combinations of all possible filter matches and their respective probabilities

are enumerated below:

1. FA does not match, FF does not match: The probability is PĀF̄ .

2. FA does not match, FF matches: The probability is PĀF = 0.

3. FA matches, FF does not match: The probability is PAF̄ .

4. FA matches, FF matches: The probability is PAF .

We can define these probabilities in terms of match probabilities that are introduced

above as follows:

PAF̄ + PAF = PmA = PS + (1− PS) · PfpA,

PĀF + PAF = PAF = PmF = α · PS .
(3.7)

Note that PAF̄ + PAF + PĀF̄ = 1. Hence;

PAF̄ = PS · (1− α) + (1− PS) · PfpA (3.8)

and,

when there are no matches: P PS≈0
AF̄

= PfpA, (3.9)

under very frequent matches: P PS≈1
AF̄

= (1− α). (3.10)

Note that, in the case of having independent hash functions for each filter, PĀF is not

zero and we have an opportunity to detect some of the false positives of FF . In other

words, for a given input string Sj , if FA does not match and FF matches, it means

that Sj /∈ S and FF matches falsely.

17

3.3.1 Response Time

The response time of DBF-SMM for querying input string Sj changes according to

the outcomes of the Bloom Filters. The possible query outcomes and their corre-

sponding response times are enumerated below:

1. Neither FA nor FF matches with probability of PĀF̄ . No further verification or

processing is required and the query finishes in tAMU .

2. Both FA and FF match with probability of PAF . This result also does not

require further processing as PfpF ≈ 0 and the query finishes in tAMU .

3. FA matches but FF does not match with a probability of PAF̄ . Hence, EMU ver-

ification has to follow the operation of AMU and the query finishes in tAMU +

tEMU . We can look at this case in two components:

(a) If Sj ∈ S, the match is missed by FF with probability of PS · (1− α).

(b) If Sj /∈ S, then FA has a false positive match with probability (1 − PS) ·
PfpA.

Then, the average response time of the DBF-SMM is:

TDBF−SMM = tAMU + E · tAMU · PAF̄
= tAMU · [1 + E · (PS · (1− α) + (1− PS) · PfpA)].

(3.11)

3.3.2 Correctness

The false positive probability of DBF-SMM is Pfp = PfpF ≈ 0 because of the

following:

1. If only FA returns a match, the result is verified by EMU. Hence, no false

positive occurs.

2. FF returns a false positive match with PfpF ≈ 0.

There are no false negatives because the AMU pre-screens the incoming strings with-

out any misses.

18

Consequently, both the precision and accuracy of the DBF-SMM are one as shown in

Equations (3.12) and (3.13).

Precision =
Ptp

Ptp+ Pfp︸︷︷︸
≈0

≈ 1 (3.12)

Accuracy =
Ptp+ Ptn

Ptp+ Ptn+ Pfp+ Pfn︸ ︷︷ ︸
≈0

≈ 1 (3.13)

3.4 DBF-SMM and SBF-SMM Response Time Comparison

Here, we compare the response times of a DBF-SMM and an SBF-SMM with iden-

tical design parameters to quantify the advantage of the DBF-SMM. Accordingly,

tAMU , tEMU and PfpA are the same.

As seen in Equations (3.2) and (3.11) both TSBF−SMM and TDBF−SMM grow linearly

as PS increases. However, DBF-SMM slows down this growth with α. Hence, the

difference in the response times of SBF-SMM and DBF-SMM under the same PS is

α · PS · E · tAMU . If α = 0, Tα=0
DBF−SMM = TSBF−SMM .

We propose DBF-SMM to mitigate the increase of the SBF-SMM response time as

PS increases. The respective average response times under frequent positive events

are as follows:

T PS≈1
SBF−SMM = tAMU · [1 + E], (3.14)

T PS≈1
DBF−SMM = tAMU · [1 + E · (1− α)]. (3.15)

It is interesting to note that when PS ≈ 1, the effect of false positives are diminished.

Hence, when α = 1, DBF-SMM reaches a response time of tAMU . We discuss the

possible selection strategies for F in Section 5 such that α is maximized.

Under infrequent positive events, the EMU verifications can occur due to non-zero

false positive probability. Accordingly by (3.2) and (3.11);

19

T PS≈0
DBF−SMM = T PS≈0

SBF−SMM = tAMU · (1 + E · PfpA). (3.16)

3.5 Selecting Design Parameters

We assume that |S| and E are known before when a DBF-SMM is to be designed.

Accordingly, we determine k, mA, mF and |F| which are the design parameters that

affect both the performance and the resource consumption of the DBF-SMM. Logic

resources are required for implementing the k hash functions and memory resources

are required for the bit vectors vA and vF .

The first parameter to be decided is k which affects PfpA. We limit PfpA by

PfpA_max such that the penalty of false positives is limited to the 1% of the de-

sired response time tAMU when PS ≈ 0 as in Equation (3.16). To this end, we define

PfpA_max = 0.01/E. Next, we determine the optimal k for PfpA_max by Equation

(2.4) and optimal mA according to (2.3) respectively.

The hash functions are shared between FA and FF . Once k is selected according to

PfpA_max, |F| and mF are determined such that PfpF ≈ 0. To this end, first we

need to define what is approximately 0 for PfpF .

The high-speed SMMs are mostly used in computer networking security applications

where a match indicates that a packet is carrying a malicious string. The consequent

action is usually dropping the respective packet. The only possibility for false positive

matches in DBF-SMM that can lead to a packet drop by mistake is because of the

non zero PfpF ≈ 0. Even if there is no security application, packets can be dropped

because of the buffer restrictions of the routers. Hence, we choose PfpF such that the

probability of a packet drop after a rare false positive result is less than the existing

packet drop probability in the routers. For a lightly congested core-router with a

buffer of 100 packets, the packet loss probability is 10−11 [22]. Assuming an average

payload length of 500 bytes and the SMM queries the input by 1 byte shifts, the

maximum false positive probability per query is PfpF_max = 10−11/500 = 2 ·10−14.

Given PfpF_max and k, after determining |F|
mF

by Equation (2.5), |F| is selected ac-

20

cording to the available memory resources for mF .

3.6 Complexity and Resource Requirements

The number of hash functions together with the length of the strings to be stored

determines the logic resource consumption when implementing a given Bloom Filter

on hardware. The strings that are stored in the DBF-SMM are of fixed size w bytes

according to our assumption in Section 2.1.

Let Z = w · 8 and Y denote the sizes of the input and output of a hash function

in bits respectively. Each hash function maps the input z1, z2, . . . , zZ to the outputs

y1, y2, . . . , yY by bit-wise and (AND) and exclusive or (XOR) operations [32]. Ac-

cordingly, the hash function is defined by a matrix of bits [ay,z] where:

yi = (z1 AND ai,1) XOR (z2 AND ai,2) XOR . . . (zZ AND ai,Z).

As shown in the expression above, each output bit yi is produced by Z AND gates and

an XOR gate with Z inputs. Hence the complexity of a hash function is determined

by the number of outputs and inputs O(Y · Z). Consequently, the respective logic

complexity of the hash function implementation for the DBF-SMM is O(k · Y · w).

A hash function with Y outputs can address a memory range of 2Y bits. Consider a

vector of m bits. If m < 2Y , it is possible to use additional logic to map the larger

hash function output range to m. If m > 2Y , m can be partitioned into blocks of 2Y

bits and perform AND on the match flags of the individual blocks.

The memory requirement is determined directly by the size of the output vectors

for FA and FF with sizes mA and mF bits respectively. Hence the total memory

requirement is O(mA +mF).

Storing a string in a Bloom Filter is a constant time operation. Furthermore, provided

that the EMU verifications are infrequent by maintaining α ≈ 1, querying of the

strings is only carried out by AMU with a constant time complexity.

One should note that the response time and the correctness of the DBF-SMM im-

21

proves with increasing mA, mF and k. The optimal hardware design that takes the

transistor counts for the hash functions and the output vectors together with the false

positive probabilities is out of the scope of this thesis.

22

CHAPTER 4

PARALLEL IMPLEMENTATION OF DBF-SMM

The AMU in the proposed DBF-SMM architecture consists of two Bloom Filters FA

and FF . It is possible to decrease the response time of the DBF-SMM by employing

s identical AMUs that store identical contents and work in parallel as depicted in

Fig.4.1. We do not aim to gain performance by EMU enhancement; hence, we assume

that there is a single EMU in the system and all required verifications are performed

sequentially.

Each AMUi, i = 0 . . . s− 1 checks a search window of w bytes. The search windows

of the consecutive AMU’s are one byte shifted with respect to each other to cover all

of the substrings. To this end, the search window of AMUi receives the bytes from

bj+i to bw+j+i−1 of the incoming string. Here j = 1, 2 . . . Psize − w − s + 2 denotes

the start of the search window for an input byte stream P of size Psize. The parallel

system of AMU0 . . .AMUs−1 queries a total of w + s − 1 bytes starting from bj to

bw+j+s−2 within tAMU and shifts s bytes after each query. It is important to note that

both single AMU and parallel AMU implementations execute a total of P queries

to scan a P byte input. However, the parallel implementation executes s queries

concurrently speeding up the scan.

When any AMU has an outcome with a match result from its FA and a no-match

from its FF , this match must be sequentially verified by the EMU. The same four

combinations of matches of FA and FF that are enumerated in Section 3.3.1 apply for

each AMUi.

Each AMUi is exposed to PS as all bytes of P has the same PS according to our

23

bj
...... ...

...

s byte/query

1 byte/query

Overall Current Search Window: it is w+s-1 bytes long

Next Search Windows byte shift

...
bw+j-1bj+1 bw+j bw+j+s-2bj+s-1

...
bj+s

EMU
AMU0 AMUs-1AMU1

...

Figure 4.1: The Parallel DBF-SMM Architecture. Each AMU has a search window
of w bytes that are one byte shifted with respect to each other.

assumption in Section 2.1. Then, the probability of a match in FA and a no-match in

FF for a given AMUi is the same for all i = 0 . . . s− 1 as in Eqn. (3.8).

The probability of FA match and FF no-match in exactly j AMUs is
(
s
j

)
P j

AF
· (1 −

PAF)s−j which is binomially distributed. In this case, EMU verification is performed

serially for j AMU matches consuming a total time j ∗ tEMU .

Consequently, the average response time of the parallel architecture TDBF−SMM−p is

expressed as follows:

TDBF−SMM−p = tAMU + tAMU · E ·
∑s

j=1

(
s
j

)
· PAF j · (1− PAF)s−j · j

= tAMU · [1 + E · s · PAF]

= tAMU · [1 + E · s · (PS · (1− α) + (1− PS) · PfpA)]

(4.1)

The respective average response times of parallel DBF-SMM under PS ≈ 0 and PS ≈ 1

are as follows by Equations (3.9) and (3.10):

T PS≈0
DBF−SMM−p = tAMU · [1 + E · s · PfpA] (4.2)

T PS≈1
DBF−SMM−p = tAMU · [1 + E · s · (1− α)] (4.3)

24

Here we would like to note that the average response time for a single query is longer

for the parallel implementation when compared to the single AMU implementation

because of the possible sequential EMU verifications.

Both PfpF and PfpA are defined per filter per query. On the one hand, PfpAs

of all FAs have a cumulative effect on TDBF−SMM−p because of the sequential EMU

verification when there are multiple AMU outcomes with FA match and FF no match.

On the other hand, the number of queries executed on the input string is the same for

the single and parallel AMU implementations. Hence, PfpF does not accumulate

and its effect is the same as the single AMU implementation.

25

26

CHAPTER 5

DBF-SMM IN PRACTICE

We assume that S is the most recent and complete set of strings. Accordingly, any

new positive strings are added to S and stored in FA.

The response time of DBF-SMM is at its minimum and it is not affected by the PS

when α = 1 as discussed in Section 3.4. Hence, it is desired to have α as close as

possible to 1.

To this end, we suggest a two-component approach to construct F . Let Ffrequent ⊂ S
be a set of strings that are known to appear frequently over long intervals of time.

Let Fdynamic ⊂ S be an additional disjoint set of strings whose content dynamically

changes according to the recent match results. Then, F = Ffrequent ∪ Fdynamic.

Accordingly, we implement FF with two vectors; vF_frequent and vF_dynamic with

mF_frequent andmF_dynamic bits respectively. Initially,Ffrequent is stored in vF_frequent

and vF_dynamic is reset. vF_frequent stays constant during the operation and Fdynamic
is continuously updated with selected strings Sj ∈ S where Sj /∈ Ffrequent.

The implementation of the DBF-SMM in Fig. 3.1 is updated as shown on Fig. 5.1.

The hash functions map the incoming string to vA, vF_frequent and vF_dynamic. FF

gives a match result if there is a match result from vF_frequent or vF_dynamic. Hence

the maximum value for PfpF is PfpF_frequent + PfpF_dynamic where PfpF_frequent

and PfpF_dynamic are computed according to Eqn. (2.2). The values for |Ffrequent|,
|Fdynamic|, mF_frequent and mF_dynamic should be selected such that PfpF_frequent +

PfpF_dynamic ≤ PfpF_max where PfpF_max = 2 · 10−14 as defined in Section 3.5.

27

DBF-SMM with Dynamic
Updates

Monitor and
Control Unit

(MCU)

h1

k hash
functions

... /k

flagFF

flagFA

Approximate Matching Unit
(AMU)

Exact Matching Unit
(EMU)

Monitor
Unit

fl
ag

E
M

U

Control
Unit

Double Bloom Filter (DBF)

vF vectors

vA vector
h2

hk

1

2

...

mA

 /k

In
pu

t S
tr

in
g

1 2

...

mF_frequent

1 2

...

mF_dynamic

vF_frequent

vF_dynamic

DBF-SMM output

Figure 5.1: DBF-SMM with Dynamic Updates.

Here, we would like to note that the selection of |Ffrequent| and |Fdynamic| depends

on the hardware resources and the selection of their optimal values is not in the

scope of this thesis. We suggest |Ffrequent| = |Fdynamic| which yields mF_frequent =

mF_dynamic. Then, PfpF_frequent = PfpF_dynamic = PfpF_max/2 = 10−14.

We suggest that vF_dynamic stores the most recent true positive strings that do not

exist in the pre-determined Ffrequent similar to a cache. This approach is particularly

appropriate for the intrusion detection systems where the SMM checks the incoming

packets against S that contains the attack signatures. Temporal locality of attacks

is observed in distributed denial of service attacks and brute force attacks. Previous

works such as [30] notes that SNORT fails under such burst attacks, i.e. it drops the

80% of the incoming packets against just 14 types of attack rules at 2Mbps rate. We

note that, this is one way of determining the vF_dynamic content and it is possible to

define other management policies for vF_dynamic.

To this end, we call the matches that are positive Ffrequent as dynamic matches.

28

We employ a Dynamic Match Counter (DMC) that continuously tracks the dynamic

match rate (DMR). When DMR is below a given threshold, vF_dynamic is cleared to

prevent the accumulation of old matching strings which are not relevant recently.

Algorithm 1 describes the management of vF_dynamic where the threshold value for

DMR to clear vF_dynamic is 1/c. Note that a zero value for the DMC indicates that the

DMR is below the 1/c match threshold per query.

Algorithm 1 vF_dynamic management
1: Initially: DMC = 0, vF_dynamic is cleared

2: For Each Queried String Sj:

3: if EMU reference returns true positive then

4: DMC = DMC + c, Store Sj in vF_dynamic

5: end if

6: if vF_dynamic or vF_frequent has a match then

7: DMC = DMC + c

8: else

9: DMC = max(0, DMC − 1)

10: end if

11: if DMC = 0 then

12: Clear vF_dynamic

13: end if

Fig.5.2 illustrates a simple example with c = 5. At time t = 1, the DMC is incre-

mented because of a dynamic match (true positive match that is found in vF_dynamic or

vF_frequent or verified by the EMU). When there are no dynamic matches in the con-

secutive queries DMC value is decremented for each query until a second dynamic

match occurs at time t = 5. There are no dynamic matches after t = 5. DMC value

decreases to zero at time t = 11 and the DMR value drops down to 1/c match per

query clearing vF_dynamic.

29

t

5
*

4 3 2 10 0

6
*

5 4 3 2

Current DMR
(match/query)

0 1

#

0 1 2 3 4 5 6 7 8 9 10 11 12Current time

DMC
value 0

1

2

1

3

1

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

DMR ≥ 1 5� DMR < 1 5� DMR < 1 5�

Figure 5.2: DMC is incremented by c = 5 because of a dynamic match denoted
by * symbol. The DMC is decremented by 1 for queries that are not verified by the
EMU to be a true positive match or unmatch cases for both vF_dynamic and vF_frequent.
When the DMC value drops down to the rate of 1/c match per query, the vF_dynamic

is cleared, which is depicted by #.

30

CHAPTER 6

DBF-SMM EVALUATION UNDER DIFFERENT DESIGN

PARAMETERS

We evaluate the response time of both single AMU and parallel AMU implemen-

tations of our proposed DBF-SMM under different cases which are defined by the

values of the design parameters and hit probabilities α.

To this end, we first evaluate the values of the response time expressions (3.2), (3.11)

and (4.1) for these cases. Next, we implement selected cases on FPGA to demonstrate

the feasibility of DBF-SMM implementation and provide a realistic analysis of the

hardware resource consumption.

6.1 Response Time Evaluation Under Different Design Parameters

Without any loss of generality, we select mF = mA for simplicity and partition this

mF evenly such that mF_frequent = mF_dynamic =
⌈
mF

2

⌉
. Accordingly, |Ffrequent| =

|Fdynamic|. In Tables 6.1 and 6.2 mtotal denotes the total memory requirement and

|F| = |Ffrequent|+ |Fdynamic|.

We enumerate a list of cases in Table 6.1 that represent a combination of the design

parameters together with |S| and the EMU slow-down factor E as inputs.

The SMMs are frequently used in intrusion detection systems, hence, we chose a

popular string matching based intrusion detection tool SNORT [5] as our reference.

We analyzed the rule set of SNORT v2.9 and the length distribution of the signature

strings is depicted in Fig. 6.1. There are 4095 content based rules represented as

31

strings and their lengths range from 1 byte to 970 bytes. The average string length is

approximately 30 bytes and the volume of the overall database is 120k bytes.We select

|S| = 5500 and |S| = 7000 assuming the expansion of the rule set of SNORT v2.9.

[29] reports an EMU frequency of 59.24 MHz for typical software-based SNORT

applications on a commodity processor and a tAMU = 3.225 ns with 310MHz clock

frequency yielding E = 5. Case 1 in Table 6.1 represents a baseline with |S| = 5500

and E = 5.

The maximum false positive probabilities are defined as PfpA_max = 0.01/E and

PfpF_frequent = PfpF_dynamic = PfpF_max/2 = 10−14. Accordingly, we select the

number of hash functions k = dkopte and determine mA = dk · |S| / ln 2e according

to Equation (2.3). For the computed k and given PfpF_frequent = PfpF_dynamic, we

compute the ratio of the number of strings to the bit vector size for bothF_frequent =

F_dynamic according to Eqn.(2.5).

Next, we compute the cumulative false positive probability PfpF = PfpF_frequent+

PfpF_dynamic with the selected parameters to ensure PfpF < PfpF_max is satisfied.

Similarly, we compute PfpA that is achieved with the selected parameters to show

that PfpA < PfpA_max.

Lastly we compute the response times under PS ≈ 1 with α = 1, α = 0.8 and α = 0.4

as in Eqn. (3.15) and compare it to an SBF-SMM with the same tAMU , E and false

positive probability. We provide the required amount of memory for the vector in

SBF-SMM for completeness as mSBF−SMM . Note that T PS≈1
DBF−SMM = T PS≈1

SBF−SMM

when α = 0 as stated in Section 3.4.

Note that the response times are expressed in terms of tAMU in Tables 6.1 and 6.2.

Next, we compute the design parameter and performance bound values for the parallel

implementation of the base Case 1 with s = 2, s = 4 and s = 8 as shown in Table

6.2.

Similar to the single AMU implementation we define PfpA_max−p for PfpA to limit

the penalty of false positives when PS ≈ 0. To this end, PfpA_max−p = 0.01/s · E
by Equation (4.2).

32

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

1
51

10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

80
1

85
1

90
1

95
1

number of strings

st
ri

ng
 le

ng
th

 (b
yt

es
)

Fi
gu

re
6.

1:
T

he
le

ng
th

di
st

ri
bu

tio
n

of
th

e
si

gn
at

ur
e

st
ri

ng
s

in
SN

O
R

T
v2

.9
da

ta
ba

se
.

33

Table 6.1: Evaluation cases for the single AMU DBF-SMM.

Case 1 Case 2 Case 3 Case 4
E 5 5 10 10
|S| 5500 7000 5500 7000
|F| 224 284 324 410
mtotal (kbits) 144 182 160 202
k 9 9 10 10
PfpA_max 2 · 10−3 2 · 10−3 10−3 10−3

PfpA 1.90 · 10−3 1.90 · 10−3 0.92 · 10−3 0.98 · 10−3

PfpF 1.87 · 10−14 1.92 · 10−14 1.94 · 10−14 1.99 · 10−14

TPS≈1
DBF−SMM , α = 1 1 1 1 1
TPS≈1
DBF−SMM , α = 0.8 2 2 3 3
TPS≈1
DBF−SMM , α = 0.4 4 4 7 7

TPS≈1
SBF−SMM 6 6 11 11
mSBF−SMM (kbits) 72 91 80 101

We derived the response time expressions for SBF-SMM, DBF-SMM and the parallel

implementation of DBF-SMM in the previous sections. The corresponding scan rates

as defined in Section 2.1 for these SMMs are;

RSBF−SMM = 8/TSBF−SMM bps ,

RDBF−SMM = 8/TDBF−SMM bps ,

RDBF−SMM−p = 8 · s/TDBF−SMM−p bps .

(6.1)

Accordingly, we present the response times for the parallel DBF-SMM implementa-

tions normalized by s for fair comparison in Table 6.2.

Table 6.2 shows the trade-offs between the increased memory (mtotal) and logic

(ktotal) resource consumption and decreased response times when DBF-SMM is im-

plemented in parallel.

34

Table 6.2: Evaluation cases for the parallel AMU DBF-SMM.

s=2 s=4 s=8
E 5 5 5
|S| 5500 5500 5500
|F| 324 438 564
mtotal (kbits) 320 704 1536
k per AMU 10 11 12
ktotal 20 44 96
PfpA_max 10−3 5 · 10−4 2.5 · 10−4

PfpA 0.92 · 10−3 4.59 · 10−4 2.28 · 10−4

PfpF 1.94 · 10−14 1.96 · 10−14 1.98 · 10−14

TPS≈1
DBF−SMM−p/s, α = 1 0.5 0.25 0.125
TPS≈1
DBF−SMM−p/s, α = 0.8 1.5 1.25 1.125
TPS≈1
DBF−SMM−p/s, α = 0.4 3.5 3.25 3.125

TPS≈1
SBF−SMM−p/s 5.5 5.25 5.125

35

36

CHAPTER 7

FPGA IMPLEMENTATION OF DBF-SMM

7.1 Introduction

Field programmable gate arrays (FPGAs) are semiconductor devices designed to be

configured in the field after manufacturing. They mainly consist of configurable logic

blocks (CLBs) that are connected via programmable interconnects. FPGAs (espe-

cially RAM-based types) can be reprogrammed over and over again to perform re-

quired changing functionality. Reprogrammability, lack of manufacturing cost and

short time-to-market are three major advantages of FPGAs (except one-time pro-

grammable types) with respect to Application Specific Integrated Circuits (ASICs)

which are manufactured to perform dedicated functions. Moreover, different than

processors, FPGAs have intrinsic parallelism. Therefore, multiple processing tasks

can be performed independently and concurrently by dedicated CLBs of an FPGA.

Specific applications of FPGAs include ASIC prototyping, computer hardware emu-

lation, digital signal processing, servers, routers, switches, network intrusion detec-

tion systems, etc.

In this study, after the design, analysis and evaluation of the DBF-SMM, an FPGA

design platform is employed to see the feasibility of the proposed architecture, which

include multiple hash functions running concurrently. For this purpose, single and

parallel DBF-SMM architectures are implemented on a real FPGA device to achieve

hardware resource consumptions and clock timings. However, the verification of the

DBF-SMM functionality is performed in SystemC as given in Chapter 8. This is

because FPGA design tools poorly support such a complex verification platform.

37

7.2 VHDL Description of DBF-SMM

To define the behavior of FPGA modules, FPGA vendors provide platforms that sup-

port hardware description languages (HDL) and/or schematic editors. Due to high

complexity of AMU structure, we prefer to use VHDL (Very High Speed Integrated

Circuit HDL). However, a schematic tool that illustrates the generated logic are uti-

lized to check the definition and the synthesis of the VHDL descriptions as seen in

Fig.7.1. Although SystemC also has capability of hardware description level similar

to VHDL, we do not prefer it due to poor support of FPGA vendors.

The fast components of DBF-SMM are the AMU and MCU while the EMU is as-

sumed to be a slow and possibly software component. To this end, we implement the

AMU and MCU shown in Figure 5.1 on Xilinx XC7VX550T-3FFG1158 FPGA [6]

by using ISE 14.5 [7] software, which is illustrated in Fig.7.1 where a part of the syn-

thesized AMU block is being depicted. The selected FPGA device consists of 86600

logic slices and 2360 Block RAMs each of which has a size of 18kbits and supports

28 Gbps transceivers.

Figure 7.1: Synthesized AMU circuit of DBF-SMM Architecture.

The string length that is defined in Section 3.6 is considered as w = 240 bits. Each

38

AMU query is completed in a single clock cycle, hence, tAMU = Clock Period.

One port of each Block RAM (BRAM) is assigned to only one hash function [16] as

indicated in Fig.7.2 and the other port is reserved in order to externally update the

RAM content on the fly.

v F
1

v A
1

v F
2

v A
2

v F
k

v A
k

flagFA

flagFF

..
. ..
.

..
.

..
.

..
.

Sj

..
.

..
.

h1

h2

hk

..
. BRAM

Match

Vector

Data

Port

Address

Port

Figure 7.2: Implementation of AMU circuit on an FPGA.

7.3 FPGA Implementation Results

In Table 7.1 we summarized the resource consumptions and depict the achieved clock

periods for the base Case 1 given in Table 6.1 and all of the three parallel implemen-

tations given in Table 6.2.

We normalize the reported EMU frequency of 59.24 MHz for typical software-based

SNORT applications on a commodity processor as in [29] to the current day by as-

suming processor frequencies almost doubled from 1.5GHz in 2007 to 3GHz in 2014.

Hence we assume the EMU frequency of 100MHz. Accordingly, the resulting scan

rate estimates under PS ≈ 1 and different values of α are also presented in Table 7.1.

Each hash function maps 8k locations in the associated memory; therefore, for each

39

Table 7.1: FPGA implementation results for DBF-SMM.

s=1 s=2 s=4 s=8
mtotal (kbits) 144 320 704 1536
ktotal 9 20 44 96
Block RAM 9 20 44 96
Slices 1072 1480 3031 5836
Clock Period (ns) 2.98 3.31 3.60 6.98
Scan Rate (Gbps), α = 0 0.47 0.59 0.68 0.74
Scan Rate (Gbps), α = 0.4 0.62 0.84 1.03 1.16
Scan Rate (Gbps), α = 0.8 0.89 1.46 2.14 2.79
Scan Rate (Gbps), α = 1.0 1.15 2.29 4.59 9.17

Block RAM, 8kbit is consumed for vA for both SMMs; however, extra 8kbits are

occupied by the vF vector in DBF-SMM. Hence, the total number of hash functions

is equal to the total number of employed Block RAMs.

An increase in the clock period is expected as the design grows due to increase in

the routing (or interconnect) delays between the logic blocks. The logic consump-

tion for different s values increases with a factor that is less than s. The matrix that

defines a given hash function as described in Section 3.6 is constructed randomly.

If there are overlaps in these elements of matrices for different hash functions, the

FPGA optimization tool may only generate one shared instance which conserves cer-

tain amount of logic source. Furthermore, the FPGA optimization tool may generate

better implementations as the circuit grows with increasing s.

As a conclusion, the implementation results show that it is possible to implement

DBF-SMM with 8 parallel AMUs on XC7VX550T-3FFG1158 device with a 6.7%

logic and 4.1% memory resource utilization achieving 6.98ns clock period. There-

fore, the proposed DBF-SMM can be realized in hardware in order to match strings

at 9.1 Gbps average scan rate by storing 5500 strings where each of which is 30-byte

long. This scan rate can also be sustained if the strings stored in FF is limited to

|F | < 564.

40

CHAPTER 8

SYSTEMC IMPLEMENTATION OF DBF-SMM

8.1 Introduction

SystemC is a modeling and verification environment, which provides a wide range

of abstraction levels from system-level to register-transfer level (RTL). The designer

describes the system by using SystemC methodology, which is defined by a C++

class library entirely built on top of the standard object-oriented C++ language with

an event-driven simulation kernel. Following the modeling process, the model can be

verified in order to see whether it works as expected or not with the opportunity of

utilizing capabilities of C++ language. SystemC was defined by the Open SystemC

Initiative (OSCI), and has been approved by the Institute of Electrical and Electronics

Engineers Standards Association (IEEE-SA) as IEEE 1666-2011 [35]. In December

2011 Accellera and Open SystemC Initiative (OSCI) approved their merger, adopting

the name Accellera Systems Initiative, which is an independent, not-for-profit orga-

nization dedicated to system-level design, modeling, and verification standards [1].

In this thesis, a model of the DBF-SMM is implemented by employing the classi-

cal hardware modeling capability of SystemC language (RTL). The functionality of

the model is verified thoroughly by employing input strings having different charac-

teristics. The main motivation for modeling the DBF-SMM in SystemC is that the

verification process can be carried out easily and quickly.

SystemC 2.3.0 release is used in all of the SystemC implementation parts, which is

employed with the Microsoft Visual Studio 2010 Ultimate (Version 10.0.30319.1)

environment for the implementation and verification stages of the model.

41

8.2 SystemC Model of DBF-SMM

Basically, SystemC simulator has two main phases: (1) elaboration and (2) execution,

which run respectively. During the elaboration phase, needed processes due to be

prepared for the execution phase are performed such as the initialization of the data

structures, the establishment of the connectivities between modules, etc. SystemC

simulation kernel controls the execution phase, which runs the processes in such a

way that they seem running concurrently.

The SystemC model of the DBF-SMM is indicated in Fig. 8.1. There are three main

parts; (1) AMU, (2) Stimulus and (3) Monitor.

AMU consists of k hash functions H = {h1, h2, · · · , hk}, where each of which ad-

dresses a Dual Port RAM. Data ports of RAMs are logically ANDed to indicate that

queried input string Sj ∈ S or not. During the elaboration phase, string database

S is stored in the Bloom Filter FA by calculating k hash values for each element of

Sj ∈ S and setting the location of hi(Sj) in the associated Dual Port RAM RAMi.

Besides, each input string Sj ∈ P is queried by AMU in the execution phase. For

this purpose, k hash functions hi(Sj) are calculated and each of them addresses the

associated RAMi locations, i.e. RAMi(hi(Sj)). Note that each RAM cell has 2 bits;

one is dedicated for the match flag of FA and the other is for FF . Each RAM output

is logically ANDed to achieved value of the match vector having also 2 bits.

In order to keep the design as simple as possible and decease the simulation time,

MCU is implemented inside Stimulus. By this way, we keep the complexity inside

and eliminate the time spend due to high number of transmission channel events.

Due to increase the simulation time, the exact matching unit is also not implemented.

Instead, the input string traffic P is controlled by Stimulus in such way that each

input string Sj queried by the SMM is know that whether it is a member of the string

database S or not, which is indicated by true positive variable tp. For this purpose,

Stimulus selects a string Sj from a set of innocent input strings Si /∈ S or from the

string database S, depending on the aimed input string characteristics. Stimulus unit

controls the execution of the DBF-SMM by generating write enable (we) and erase

enable (ee) control signals according to the match vector.

42

Throughout the execution of the model, the monitor unit prints the most significant

variables on screen as a console output and writes more detailed information into log

files to be inspected soon.

MV
mF

mF

Monitor

clock1

hashMonitor

string
...

address10
MV

Match
Vector

Stimulus

String Sj

k hash functions
H={h1,h2,...,hk}

data1[2] ... datak[2]

Match
Vector

address1 ... addressk

k Dual Port
RAM

Monitor

Innocent
Input

Strings
Si

Log files

String
Database S

Hash
Matrix

String
Database S

LogA.txt
Log.txt

InnocentStrings.txt

HashMatrix.txt

console
output

we
ee

ee, we, tp

MCU

AMU

tp= flagEMU
Match Vector = flagFF & flagFA
we= write enable signal of RAMs
ee= erase enable signal of RAMs

S = String Database
k Hash functions, H={h1,h2,...,hk}
Si ∉ S

SystemC_DBF-SMM.pdf

P

AND1

ANDk

Logic AND

RAM1 RAMk
...

Match flags of
FF and FA

S1 ∈ S S2 ∈ S
S1 is stored

in FF

S1 is matched
by FF

SystemC_Exemple.pd

S2 is stored
in FF

StringDatabase.txt

Figure 8.1: The SystemC Model of DBF-SMM.

Fig.8.2 exemplifies the execution of the model with DMC constant c = 2. S1 ∈ S is

matched by FA at time 1 ns. Following the verification process, which lasts E = 10

cycles, S1 is stored in FF . The S1 is matched by both FF and FA at time 23 ns and

the verification is eliminated. True positive events are counted by the variable ntp

and for each of these events DMC value is incremented by c = 2 as illustrated at time

11 ns, 22 ns and 24 ns. Differently, it is decremented by one for each false positive

events. FF is cleared by Stimulus at time 30 ns because DMC is zero.

43

M
onitor

L
og files

L
ogA

.txt
L

og.txt

console
output

S
M
M
.p
d
f

M
atch flags of
F

F and F
A

F
F is

cleared
S

1 ∈
 S

S
2 ∈

 S
S

1 is stored
in F

F

S
1 is m

atched
by F

F

|F
| # of w

rite
operations

into F
F

S
y
ste

m
C
_
E
x
e
m
p
le
.p
d

S
2 is stored

in F
F

of true
positive
events

Figure
8.2:A

n
exam

ple
forthe

execution
ofthe

System
C

m
odel.

44

8.3 Verification of the DBF-SMM Model

To verify the model, we first test the false positive probability of the filter FA. For

this purpose, a string set S consisting of 5500 strings where each of which are w =

30 bytes long is randomly generated. k = 10 hash functions are used and each of

them maps 8192 locations in RAM. The theoretical value of the false positive rate

calculated according to Eqn. 2.5 is PfpA = 7.82 · 10−4. The simulation is run 10

times, where each run includes 106 AMU queries. The average false positive rate of

the simulation is 7.96 · 10−4, where it is 1.79% worse than the theoretical value. The

slight variation between these values may be because of the rand() function given in

C++ library.

Next, a DBF-SMM whose design parameters are based on the case-3 given in Table

6.1 is implemented in SystemC environment. For the input string traffic, each com-

bination of PS = {0, 0.4, 0.8, 1} and α = {0.4, 0.8, 1} are utilized. Therefore, 10

different kinds of traffic are generated (Note that α > 0 values are meaningless for

PS = 0). Each traffic type is simulated with 10 times, where each simulation in-

cludes 106 clock cycles. The simulation results are summarized in Fig.8.3, and they

are consistent with the theoretical values previously given in Table 6.1 and Eqn.3.11.

Therefore, the SystemC model verifies the functionality of the proposed DBF-SMM.

45

0 1 2 3 4 5 6 7 8

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

T
/t

A
M

U

P
s=

0
.4

, α
=

0
.4

P
s=

0
.4

, α
=

0
.8

P
s=

0
.4

, α
=

1
P

s=
0

.8
, α

=
0

.4
P

s=
0

.8
, α

=
0

.8

clo
ck

 cy
lces (*

1
0

6)

P
s=

0
.4

, α
=

0
.4

P
s=

0
.4

, α
=

0
.8

P
s=

0
.4

, α
=

1
P

s=
0

.8
, α

=
0

.4
P

s=
0

.8
, α

=
0

.8

P
s=

0
.8

, α
=

1
P

s=
1

, α
=

0
.4

P
s=

1
, α

=
0

.8
P

s=
1

, α
=

1
P

s=
0

clo
ck

 cy
lces (*

1
0

6)

Figure
8.3:Sim

ulation
results

ofthe
System

C
m

odelevaluated
w

ith
10

differenttraffics.

46

CHAPTER 9

VARIABLE SIZE STRING MATCHING WITH AUTOMATA

The design of DBF-SMM presented, analyzed and evaluated above assumes that all

strings in the database S are fixed-length of w bytes. In this chapter, we present

the extension of this machine to store also different size strings in order to provide

arbitrarily-length string matching process.

Representing arbitrarily long strings with BFs may be performed in two ways:

• A classic BF [10] stores only a specific length of strings. Hence, in order to

support arbitrarily-long strings, each length of strings can be stored into a spe-

cific BF [15, 16]. Therefore, a string set consisting of n number of different

lengths requires a set of n number of Bloom filters, each of which is dedicated

to a specific length of strings. In this concept, there are two remarkable prob-

lems. On one hand, the final machine may not be implementable for string

sets consisting of large number of long strings due to hardware resource limi-

tations and accumulation of logic delays. For instance, 171 number of BFs is

needed whose lengths range from a single byte to 970 bytes to store the string

set of SNORT v2.9. On the other hand, the number of BFs and their window

sizes are also strongly dependent on the string set. Hence, frequently changing

sets are not proper to be stored, because these types of sets necessitate frequent

re-construction of the hardware logic, which is a very demanding and long pro-

cess.

• Divide-and-conquer approach can be applied in order to handle different length

strings. To do this, short strings, whose lengths are less than or equal tow bytes,

47

can be stored into a set of w BFs, each of which is dedicated to a specific length

ranging from 1 to w bytes. Besides, long strings, whose lengths are longer

than w bytes, can be divided into substrings of w-bytes in length and each of

thesew-byte substrings can be stored into a specific BF, namelyw-byte BF. The

residual substrings can also be stored into appropriate BFs according to their

lengths. In this approach, the first, the middle and the residual (last) substrings

are called prefix-, suffix-, and postfix-substrings respectively. For instance, with

w = 3, the string metueee is divided into a prefix, suffix and postfix substrings

of met, uee, and e, respectively. The met and uee are stored into a 3-byte BF

and the postfix-substring e is stored into a 1-byte BF. Therefore, to represent

a set of string set, each substring must be stored. Next, at the query phase,

the correct sequence of the substrings must also be tracked correctly, which

can be performed by an automaton [16, 8]. Instead of feeding the strings into

SMM byte-by-bye, dividing the strings into w substrings enables us to achieve

w times speed-up [16]. However, each character in the input string should have

the chance to be considered as the first character. This issue is called byte

alignment problem and it can be eliminated with employing w SMM, each of

which has one byte shifted window (The details are given in Section 10.1.2)

[16]. In this study, we map any string set into well-known Aho-Corasick based

DFA [8], which can match multiple strings at a time with deterministic rate of

state transition per time. After that, the generated state transition conditions

are stored into appropriate look-up tables and BF-based structures in order to

achieve high efficiency in terms of memory usage. In addition, the false positive

disadvantages of the BFs are also handled with the previously applied concept

of double Bloom Filters.

Firstly, Section 9.1 defines w-byte Deterministic Finite Automaton and gives some of

its hardware implementations. And then, the usage of Bloom Filters (BF-wDFA) in

order to approximately and compactly implement DFAs are introduced. After that, a

well-known string matching automaton, Aho-Corasick machine, is described with an

example and some of its properties are given in Section 9.2. Following that, we map

the well-known SNORT string set into Aho-Corasick based wDFA (AC-wDFA) in

Section 9.3. The outcomes of this study are employed to support the properties given

48

in 9.2 and calculate the memory efficiencies of the proposed SMM architectures.

Next, BF-wDFA structure is modified to realize AC-wDFA and then its improved

version which implements multiple BFs are given in Section 10.1. The proposed

machines are evaluated and their performance are summarized in Section 10.2. Lastly,

the related works in the literature are mentioned at the end of the chapter.

9.1 Bloom Filter based w-byte Deterministic Finite Automaton

The main aim of the proposed BF-based Deterministic Finite Automaton is efficiently

storing the large transition tables into the expensive but high-speed hardware re-

sources. Bloom filters need to calculate k hash functions, therefore achieving short

query times are not possible on general software-based implementations. On the other

hand, implementing them on a specialized hardware, like FPGAs or ASICs, enables

us to gain data-level parallelism.

This part starts by defining w-byte Deterministic Finite Automaton and its use in

variable-size string matching and follows with their typical hardware implementa-

tions. Then, we introduce the usage of Bloom filters in order to approximately and

compactly implement these automatons.

9.1.1 w-byte Deterministic Finite Automaton (wDFA)

9.1.1.1 Formal Definition of wDFA

A w-byte Deterministic Finite Automaton (wDFA) is represented by a pentuple,

(Q,Σw,∆, q0, G), where:

• Q = {q0, q1, q2 · · · qi · · · } is a finite, non-empty ordered set of states. The order-

ing is inferred from the naming of the states and the operation of incrementing

defined as qi + 1 returns the next state in the order qi+1.

• Σw is a finite, non-empty set of w-byte symbols representing automaton alpha-

bet. Note that Σw is w power of an alphabet Σ that is a finite, non-empty set of

49

single byte symbols. In addition, Pw
i depicts the current input symbol that is

composed of concatenation of w bytes labeled as c1 · · · cw, and Pw
i ∈ Σw.

• δ = {δc,i} is a finite set of state transition conditions where δc,i = {(qc, Pw
i) :

qc ∈ Q, Pw
i ∈ Σw and (qc, P

w
i) ∈ QxΣw}

• ∆ = {∆c,i,n} is a finite set of state transition rules where ∆ = {δ −→ Q: ∆c,i,n =

(qc, P
w
i, qn), qn ∈ Q}.

• q0 is the start (or initial) state.

• G is a set of accepting (or final) states, where G ∈ Q.

Most of the traditional DFAs are defined with w = 1, it means that they consume only

one byte at a time. In other words, the input stream is processed using a window

of eight bits and advancing this window one byte on the input during one operating

cycle. On the other hand, a multi-byte DFA can be realized with w > 1 in order to

speedup the automaton by consuming multiple bytes (please refer to Section 9.2.1 for

more details).

The size of the symbol alphabet is |Σw| = 28·w and the number of possible state tran-

sitions is |∆| = |Q| · |Σw|, where |Q| and w are the numbers of states and 8-bit ASCII

characters in the input symbol, respectively. Note that |Σw| grows exponentially as a

function of w.

A w-byte Non-deterministic Finite Automaton (wNFA) can be represented by a sim-

ilar pentuple as above but replacing the set of transition rules. Hereby, ∆wNFA =

{δ −→ Qn : (qc, P
w
i, Qn), where qc ∈ Q, Pw

i = c1 · · · cw is input symbol and Qn ∈
2Q}. 2Q is the power set which is a set of all subsets of Q. Hence an NFA can be at a

set of states Qn at a time where DFA can be only at a single state. In other words, due

to achieve next state from a given state on a given input symbol, DFA requires only a

single state transition; however, NFA can have zero or more.

Throughout this thesis, NFA and DFA are referred as finite automaton (FA) or just au-

tomaton and finite sets of state transition rules are referred as transitions for simplicity

reasons.

50

We next define the depth(q) function as the minimum number of transitions from

the initial state q0 to some state q ∈ Q. Accordingly, the set of states Q can be

classified into subsets according to their depth values. Let Qi represents a set of

states whose minimum number of state transitions from q0 is i, i.e. Qi = {q : q ∈
Q and depth(q) = i}. Note that zero-depth state is q0, i.e. Q0 = {q0}.

A set of state transition rules ∆ can also be classified into four categories:

• Consecutive Transitions, ∆C = {(qc, Pw
i, qn), where qn = qc + 1}

• Unconsecutive Transitions, ∆U = {(qc, Pw
i, qn), where qn 6= qc + 1}

• Accept Transitions, ∆A = {(qc, Pw
i, qn), where qn ∈ G}

• Depth-i Transitions, ∆i = {(qc, Pw
i, qn), where qn ∈ Qi}

In like manner, the associated transition conditions can be defined as δC , δU , δA, δi,

respectively.

The consecutive transitions are the state transitions from state qc to the consecutive

next states qc + 1. On the contrary, unconsecutive transitions are the transitions to

unconsecutive next states. Transitions from any state to one of the G states are ac-

cepting transitions. Likewise, transitions to a next state of depth-i are defined as

depth-i transitions.

Note that there are some important relations between these transitions as follows:

• ∆C ∩∆0 = φ. The next state index n ≥ 0.

• ∆C ∩ ∆U = φ. A transition can not be consecutive and unconsecutive at the

same time, i.e. ∆C and ∆U are disjoint sets.

• ∆0 ⊆ ∆U . As a consequence of the above, all of the ∆0 transitions are also ∆U

transitions.

• (∆C ∩ ∆A) ∪ (∆U ∩ ∆A) = ∆A i.e. any ∆A transition is either ∆C or ∆U

transition.

• ∆ = ∆C ∪∆U .

51

The structure of wDFA can be illustrated as in Fig.9.1. The machine always begins

the execution on the start/initial state q0. It reads (or consumes) input symbols Pw
i

one by one. For each input symbol, a state transition rule δ determines the next state

qn which is associated with the current input symbol Pw
i and the current state qc. A

delay or memory element holds the current state qc and after a while, it updates the

output with a next state qn. The output of the machine is defined as accepting state

code with an indicator of accepting state flag. This flag is logic 1 if qc ∈ G, otherwise

it is logic 0. Note that the output function depends only the current state qc; therefore

the machine corresponds to the Moore model. However, the output function can also

be defined as a function of qc and Pw
i that corresponds to the Mealy model. After

updating the current state and the output, a new operating cycle begins with reading

a new input symbol.

Delay/Memory

Element

qn

qc

State Transition

Rules ∆

Pwi=c1...cw

Accepting State

Rules G

qc

qc

Structure of Deterministic Finite Automata

(Moore Model)

Accepting State Rules:

if qc G, then accepting state

flag =’1' else ‘0’

accepting

state flag

KULLANILDI

DFA_structure.pdf

Figure 9.1: Structure of w-byte DFA (Moore Model).

wDFA is exemplified with a classic AC-based DFA (w = 1) representing a set of

strings S = {he, she, his, hers}. This machine is generated with AC algorithms

given in [8], which are also summarized in 9.2. The state transition graph and state

transition table are given in Fig.9.2 and Table 9.1 respectively.

It has 10 states Q = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and 4 of them are accepting states

G = {2, 5, 7, 9}. In Fig.9.2, solid vertices depicts to accepting states and each of them

matches a non-empty subset of S respectively. Although the alphabet size of the DFA

is |Σw| = 28 = 256, only 5 of them are employed by the string set. The number of

possible state transitions is |∆| = |Q|·|Σw| = 2560, which are compactly illustrated as

edges in Fig.9.2. The ∆0 and ∆1 transitions are emphasized as dashed and dotted lines

52

because they are responsible for large portion of the overall transitions (|∆0| = 2534

and |∆1| = 15). All of the transition types are given explicitly in Table 9.1. In Section

10.1, we map these transitions into expensive hardware blocks in a proper manner in

order to achieve high memory efficiency.

Q1

0
initial

state

S={he, she, his, hers}

AC-1DFA

w = 1

1 8

6

3 4

h

≠{h,s}

2

h

s

≠{e,i,h,s}

r
h

s

≠{r,h,s}

h

s

h

s

≠{h,s}
≠{h,s}

h

≠{h,s}

s
h

≠{h,s}
s

≠{e,i,h,s} ≠{r,h,s}

e

i

h

s

rh

i

s

≠
{h,s}

e
9

7

5

{he}

{hers}

{he, she}

{his}

s h s

∆C = {(0,h,1), (1,e,2), (2,s,3),

(3,s,4), (4,e,5),(6,s,7), (8,s,9)}

∆A = {(1,e,2), (4,e,5),(6,s,7), (8,s,9)}

Q = {0,1,2,3,4,5,6,7,8,9}

Q0 = {0}

Q1 = {1,3}

Q2 = {2,4,6}

Q3 = {5,7,8}

Q4 = {9}

G = {2,5,7,9}

∆0 = {(1,≠{e,i,h,s},0)}

∆0 ∆1

wDFA_example.pdf

state

∆

accepting state

...

...
{he, she}

{hers}
0

t

t7

...

then the next state qn is achieved from the failure transition.

...

Q0 Q2 Q3 Q4

Figure 9.2: State transition graph of an AC-based wDFA representing a set of strings
S = {he, she, his, hers}. The vertices and edges represent state and state transitions
respectively.

The execution of the machine is illustrated in Fig.9.3. The DFA matches the input

string P = {usherst · · · } against the string set S = {he, she, his, hers}. For this

purpose, each symbol of the input string is applied successively as an input symbol

Pw
i to the DFA. In one operating cycle, the next state and the output (accepting state

indicator) are looked-up considering the current input symbol Pw
i and the current

state qc. During each cycle, the next input symbol and the next state are captured and

53

Table 9.1: State transitions of the classic AC-based wDFA (w = 1) representing a set
of strings S = {he, she, his, hers}.

∆ = (qc, P
w

i, qn)
Transition Types

qc Pw
i qn

0
h 1 ∆1 ∆C

s 3 ∆1 ∆U

others 0 ∆0 ∆U

1

e 2 ∆2 ∆A, ∆C

i 6 ∆2 ∆U

h 1 ∆1 ∆U

s 3 ∆1 ∆U

others 0 ∆0 ∆U

3,7,9
h 4 ∆2 (3, h, 4) ∈ ∆C , others ∈ ∆U

s 3 ∆1 ∆U

others 0 ∆0 ∆U

2,5

r 8 ∆3 ∆U

h 1 ∆1 ∆U

s 3 ∆1 (2, s, 3) ∈ ∆C , (5, s, 3) ∈ ∆U

others 0 ∆0 ∆U

6
h 1 ∆1 ∆U

s 7 ∆3 ∆A, ∆C

others 0 ∆0 ∆U

4

e 5 ∆3 ∆A, ∆C

i 6 ∆2 ∆U

h 1 ∆1 ∆U

s 3 ∆1 ∆U

others 0 ∆0 ∆U

8
h 1 ∆1 ∆U

s 9 ∆4 ∆A, ∆C

others 0 ∆0 ∆U

they are updated at the beginning of the next cycle. The exemplified machine starts

the execution at time t0 being at the initial state qc = 0. Between the time interval

t1 − t0 (the first operating cycle), the state transition rule ∆(0, u, 0) is executed and

the current state remains state 0. Besides, the output also remains zero due to the fact

that state 0 is not an accepting state. During this time interval, the next input symbol

{s} is also captured, which is performed by another machine that feeds the DFA with

input symbols and the current input symbol is updated at time t1. The following next

cycles are executed similarly. Note that at times t6 and t4 the DFA reaches accepting

states {5, 9} and outputs logic 1.

54

∆C = {(0,h,

(3,s,4), (4,e

∆A = {(1,e

Q0 = {0}

Q1 = {1,3

Q2 = {2,4

Q3 = {5,7

Q4 = {9}

G = {2,5,

∆0 = {(1

u s h e r s t

...

...

0Current state qc 3

Input Symbol P
w
i

{he, she}
0 4 5 9

{hers}
0

wDFA_exemple_exe.pdf

tTime
t0 t1 t2 t3 t4 t5 t6 t7

Output
...0 00 0 1 10

failure

transitions

9

{hers}

{his}
8

Next state qn 0 43 5 8 09 ...

δ
∆

Q4

Figure 9.3: The execution of AC-based DFA matching the input string {usherst · · · }
against the string set S = {he, she, his, hers}. The red state numbers depict the
visited accepting states.

9.1.1.2 Hardware Implementations of wDFA

The transition conditions of wDFA can be naively implemented into a RAM as a

look-up table in the form of 2D matrix. Each row (or entry) stores the next state and

the status of the accepting state flag which is the output. Each row is addressed by

the associated transition condition δ as given in Fig. 9.4. The delay (or memory) can

be implemented with a register, namely, State Register (SR). To naively implement a

wDFA, |Q| · |Σw| rows, each of which is (dlog2|Q|e+ 1)-bits long, are required. For

example, DFA given in 9.1.1.1 requires 2560*5 = 12.8kbit RAM. After addressing the

RAM with current transition condition, the next state qn is loaded from the associated

RAM entry and then it is stored in the state register as a current state qc. After that,

the cycle begins again. In this approach, all of the transitions are stored in a RAM.

Hence, prohibitively large amount of memory may be needed to store large DFAs,

especially for multi-byte automatons. For instance, Aho-Corasick based DFA storing

SNORT v2.9 string set requires 50.61MByte RAM for w = 1 and 12.38GByte RAM

for w = 2.

Another hardware implementation of wDFA is depicted in Fig.9.5. The state transi-

tion rules ∆ = (qc, P
w
i, qn) and accept state flags are completely stored in a look-up

table (LUT). This table can be realized with a RAM which is addressed by a CAM.

In such implementation, the transition conditions δ = (qc, P
w
i) and the associated

next states qn are stored in each entry of CAM and RAM, respectively. The values

of accepting state flag (mf = mfLUT) can also be stored in RAM. Each state can be

55

Improved

w

mf

RAM

...

LUT

qn

State Register

Pw
i =c1...cw

qc

qn

mfLUT

qc

accepting

state flag

∆LUT = ∆

RAM based Imp. of DFA

δ

Pw
i

qc address

wDFA_RAM_imp.pdf

Figure 9.4: RAM-based naive implementation of wDFA.

coded with |q| = dlog2|Q|e bits. Therefore, to implement wDFA in this structure, we

need |∆| · |q| ·w · 8 bits CAM and |∆| · (|q|+ 1) bits RAM. For example, DFA given

in 9.1.1.1 requires 20.48kbit CAM and 12.8kbit RAM, which means that completely

storing all of the transitions ∆ results in less efficiency in terms of memory usage.

Instead, ∆0 transitions, which are in large quantities (for example, ∆0/∆ = 99% as

in Table 9.1), can be inferred by the help of the match flag of CAM.

qc . Pw
i

...

mf

CAM RAM

...

LUT

qn

State Register

Pw
i =c1...cw

qc

qn

mfLUT

qc

∆LUT = ∆

Fixed w.

Exact machine

Typical Hardware Imp

accepting

state flag

Pw
i

qc

∆LUT

Transit

∆LUT = ∆

δ

DFA_HW_imp.pdf

Figure 9.5: Typical hardware implementation of wDFA. LUT stores all of the tran-
sitions ∆. The transition conditions δ and the associated next states qn (with the
accepting state flags) are stored in a CAM and a RAM, respectively.

Large DFAs, for example string matching automatons, typically consist of large num-

ber of ∆0 transitions. Therefore, instead of storing them explicitly in a LUT, infer-

ring these transitions saves significant amount of memory resources. Inferring pro-

cess can be performed by resetting the state register to initial state q0 when CAM

unmatches. In this architecture, LUT only sores ∆ \ ∆0 transitions. Further im-

56

provement can be done with inferring the value of accepting state flag, which can

be realized with assigning a separate CAM to store the transitions to accepting next

states ∆A. This improved version is illustrated in Fig.9.6. This implementation ne-

cessitates |∆\∆0| · |q| ·w ·8 bits CAM and |∆\∆0| · |q| bits RAM. For example, DFA

given in 9.1.1.1 requires 4 transitions ∆A = {(1, e, 2), (6, s, 7), (4, e, 5), (8, s, 9)} to

be stored directly intoCAMA andRAMA. In addition, 22 transitions ∆\(∆0∪∆A) =

{(0, h, 1), (0, s, 3), (1, i, 6) · · · } are stored into CAMB and RAMB. The remaining

∆0 = 2534 transitions are inferred. Therefore, 0.832kbit CAM and 0.104kbit RAM

are necessary to implement DFA. It means that 24.62 and 123.08 times less CAM

and RAM respectively are needed comparing to the previous implementation method

illustrated in Fig.9.5.

Pw mf

CAM RAM

...

LUT

qn

State Register

qn

mfLUT

qc

∆

w.

Exact machine

Unfeasible for large DFAs. For a

large DFA, extremly large CAM and

RAM memories are needed.

Typical Hardware Imp. of DFA

accepting

state

flag

qc . Pw
i ...

CAMA RAMA

LUT

qn

State Register

Pw
i

qc

resetload
qn

accepting

state flag

qc

(Mealy Model)

Higher Memeory Efficiency

∆LUT = ∆\ ∆0

Transitions to zero state ∆0 are inferred by the

unmatch condition of CAMs.

Fixed size Pw.

Exact machine

St

Pw=c1...cw

qc

1 to w-byte

High

CAM

∆LUT =

Transit

unmatc

Arbitra

Exact m

qc . P
w

i

CAMB RAMB

qn

...
...

...

0

1

mfCAMA

KULLANILDI

wDFA (improved)

∆LUT = ∆

∆LUT = ∆\∆0

δ

DFA_HW_imp.pdf

DFA_HW_imp_improved.pdf

Figure 9.6: Improved hardware implementation of wDFA. CAMA stores the transi-
tions to the accepting next states ∆A = {(qc, Pw

i, qn), qn ∈ G} and CAMB stores
∆ \ (∆0 ∪∆A). ∆0 transitions are inferred by the unmatch case of both CAMs. The
accepting state flag is also inferred by the match case of CAMA.

9.1.2 Bloom Filter based wDFA

For a typical wDFA, the number of all possible transitions is |∆| = |Σw| · |Q| and it

is in line with the memory size. Therefore, for large DFAs, typical implementation

57

techniques may not be enough to realize the machine in terms of execution speed,

memory size and cost. Hence, we need to optimize the resource usage of expensive

hardware to increase feasibility and efficiency of the machine.

Bloom Filters are memory-efficient, probabilistic, multi-hashing data structures with

controllable false positive probability and zero false negative probability. Due to non-

zero false positives, a match result of the filter has to be verified by a block, namely,

Verification Unit (VU). This unit can be realized with a low cost engine without any

particular optimization; therefore the VU is expected to be a low speed and low cost

engine. For instance, software based implementation techniques can be employed for

this purpose.

Classical Bloom Filters [8] can be employed to compactly store some of the transi-

tion conditions of a DFA and we call this kind of machine as a Bloom Filter based

Deterministic Finite Automaton (BFwDFA). In the literature, Dharmapurikar and

Lockwood propose an Aho Corasick-based NFA, where state transition conditions

are stored in BFs [16]. If there is a match result for the current transition condition δ,

then this match can be verified by VU and the associated next state qn can be achieved

from the VU. Therefore, ∆ \∆0 transitions can be stored in a slow but low cost VU

and the associated transition conditions δ \ δ0 can be compactly represented by a high

speed BF. Hence, similar to the improved hardware implementation of wDFA, ∆0

transitions can be inferred by the unmatch case of the filter without any false results

because of zero false negative probability of BF. Fig. 9.7 illustrates the architecture

of the proposed BFwDFA and Algorithm 2 describes the execution of the machine.

If the machine returns to the initial state q0 most of the time, as in BF-based SMM

executing under the low attack (or positive) rates, the disadvantages of the verification

unit is diminished and we can take the advantage of the overall architecture in terms

high rate of state transitions per time.

9.2 String Matching with Aho-Corasick Finite Automaton

In this section, we present the necessary background to make clear some basic con-

cepts behind string matching procedures of Aho-Corasick Finite Automaton. For

58

qc . Pw

...

mf

CAM RAM

...

LUT

qn

SR

vH mf_BF

BF

m-bit

Pw=c1...cw

qc

mf_CAM

qn_RAM

∆VU = ∆BF = ∆ \ (∆a∪ ∆f)

∆LUT = ∆a\ ∆f

VUqc

qc

mf_VU

CU

qn
0

1
qn_VU

reset

Exact machine due to

verification of BF matches

SR

vH mfBF

BF

m-bit

Pw
i

qc

qc

∆VU = ∆ \ ∆0

δBF = δ \ δ0

Transitions to zero state ∆0 are inferred by

the unmatch or falsely match conditions

of BF.

Exact machine due to verification of BF

matches.

Slows down due to slow VU.

For large DFAs, too many transitions to

be stored in BF and VU.

VUqc
mfVU

qn_VU

Slows down due to slow

VU

Pw
i...

CAM RAM

...

LUT

qn

SR

vH mfBF

BF

m-bit

P
w

i

qc

mfLUT

qn_LUT

∆VU = ∆i≥2

δBF = δi≥2

∆1 is inferred by LUT when BF does NOT matches

or BF matches falsely.

Transitions to zero state ∆0 are inferred by the

unmatch or falsely match conditions of BF and

unmatch condition of LUT.

Exact machine due to verification of BF matches

Slows down due to slow VU

VUqc
mfVU

CU

qn

0

1 qn_VU

reset

∆LUT ∆

Fixed w.

Exact machine

Unfeasible for large DFAs. For a

large DFA, extremly large CAM and

RAM memories are needed.

∆LUT = ∆\ ∆0

Transitions to zero s

unmatch condition o

Fixed size Pw.

Exact machine

Although it has high

even unfeasible for

extremly large CAM

needed.

BFbDFA
Basic BFbDFA with Verification Unit

(Moore Model)

mf_LUT

accepting

state

flag

qc

CU

reset

Basic BFbAC-wDFA

qc

accepting

state flag

KULLANILDI

mf_CAMqc

...

CAM

accepting

state flag

KULLANILDI

BFbDFA.pdf

∆VU = ∆\∆0

δBF = δ \ δ0

∆VU = ∆i≥2

δBF = δi≥2

∆1: inferred by LUT

∆0: inferred

QA Coder

BFbDFA.pdf

Figure 9.7: Structure of the BFwDFA.

more details, the original paper [8] can be referred. Moreover, lemmas and theorems

related on the AC-based automatons are placed at the end of this section.

Automaton-based string matching approach, firstly, pre-processes the string set and

builds an automaton accordingly. Then, during the query process, partial matches

of the incoming strings are matched sequentially through state transitions. If the

automaton reaches one of the accepting states, then the related string is accepted (or

matched) by the machine. Entering an accepting state indicates that a non-empty set

of strings are found in the input string. Input string is processed using a window of w

bytes and advancing one byte at a time.

AC is the de-facto standard for multi-string matching engines, which matches all of

the strings S at each operating cycle. The algorithm constructs an automaton-based

string matching engine to process the input string by successively reading the input

symbols, making appropriate state transitions and occasionally producing output. In

typical implementations, each symbol is a single byte (8 bits). The construction of

AC-NFA is derived from three functions: (1) a goto function g, (2) a failure function

f , and (3) an output function. The function f can force the automaton to be mul-

tiple states. In these condition, the machine stops consuming input symbols, which

decreases the scan rate. However, the equivalent deterministic version (AC-DFA),

which consumes an input symbol for each state transition, can be generated by a next

move function nm. Output function assigns some states as output states to report

matching a subset of string set S.

Construction of the goto transitions is described in Algorithm 3. The algorithm begins

with adding an initial state 0 to the state transition graph and assigning return to zero

59

Algorithm 2 Control Unit(CU) function of basic BFwDFA
1: Initially: The machine is in the initial state q0

2: For Each Queried Input Symbol Pw
i:

3: if BF matches then . Approximate matching occurs

4: wait VU

5: if VU matches then . True positive output for BF

6: qn = qn_V U

7: if qn ∈ G then

8: set accepting state flag . A non-empty set of string is matched

9: else

10: reset accepting state flag . No string is matched

11: end if

12: else

13: qn = q0 . Reset SR to state q0

14: end if

15: else

16: qn = q0 . Reset SR to state q0

17: end if

transitions for all possible symbols from state 0. Then each symbol of each string

from S is added by generating a new state transition condition and inserting a new

state labeled with next successive numbers. If there is a common transition, then we

skip them. For example, the Fig.9.8 illustrates the construction of goto function with

S = {he, she, his, hers}. For each string Si ∈ S , the current state q is assigned as

accepting state and it is related with the current string Si at the end of the process.

The construction of the failure transitions f is described in Algorithm 4. The algo-

rithm begins with storing all of the depth-1 states Q1 to a queue. The main while

loop stores the next depth states to the queue to process later. The algorithm also adds

new strings to the accepting states.

The graph in Fig. Fig.9.9 exemplifies all of the goto g and failure f transitions of

an AC-NFA machine storing the string set S = {he, she, his, hers}. For example,

the goto transition edge labeled s from state 8 to 9 indicates that g(8, s) = 9. The

60

0
initial
state

0
initial
state 1h e

2
After adition of the

string {he}

0 1h e
2

After adition of the
strings {he, she}

4
e

53 h

0 1h e
2

After adition of the
strings {he, she, his}

4 53 h

6 7

0 1h e
2

After adition of the strings
{he, she, his, hers}

4 53 h

6 7

s
98

goto_function.pdf

starting

Figure 9.8: String-by-string construction of goto transitions g with string set S =

{he, she, his, hers}

absence of a goto transition edge represents fail case. At state 8, other symbols than

s g(8, 6= s) results in fail. Note that the initial state 0 is defined in such a way that

it has not any failure transition. If the goto function reports a fail case for a pair

consisting of a current state qc and current input symbol Pw
i, then the next state qn

is achieved from the failure transition. For example, AC machine returns directly to

initial state 0 for all fail cases of goto function from states 1,2,3,6,8. Accepting states

indicate that non-empty set of strings has been found. In Fig.9.9 the strings associated

with the accepting states (depicted as bold vertices) are also indicated. Note that each

accepting state label can also be used to represent the matched strings.

61

Q3Q2Q1Q0

Current state qc

Input Symbol Pw

wDFA

Time

Output

0

initial

state

1 8

6

3 4

h

≠{h,s}

r s

s

e

i

s

e

h

state
goto

transitions
failure

transitionsaccepting

state

2 9

7

5

{he} {hers}

{he, she}

{his}

Next state qn

δ
∆

Q4

Figure 9.9: State transition graph of an AC-NFA machine storing the string set S =

{he, she, his, hers}

After the construction of the AC automaton, then it can be applied as string machine

machine. The graph in Fig.9.10 illustrates the behavior of the AC NFA representing

S = {he, she, his, hers}. Each symbol of the input string P = usherst · · · is applied

to machine one by one. The appropriate next state qn is calculated by the goto func-

tion, i.e. qn = g(qc, Pw). When the goto function fails for an qc and Pw
i pair, failure

transition takes the machine to a certain state where the goto function is reexecuted.

It is possible that there are multiple failure transitions back to back and it is possible

that the machine returns to the initial state afer such chain of failure transitions.

For example, at state 9 the goto function fails with symbol t. Thus, the state 3 of the

failure function is tried, which is also fail, i.e. g(f(9) = 3, t) = fail. Therefore,

g(f(3) = 0, t) is tried which turn backs the machine to the initial state 0. Executing

the goto function reqiures one operation cycle. It means that, AC NFA can consume

more clock cycles to achieve the next state, which decreases the scan rate of the

machine.

The input stream of bytes P is inspected symbol by symbol by AC automaton. If

a transition condition δ = (qc, P
w
i) is fulfilled, then the DFA applies the associated

62

0 0u 3s 4h e 2r

8
s

3 t0 t0 t

g(5,r) = fail

f(5)=2

g(2,r) = 8 ≠ fail qn=8

g(9,t) = fail

f(9) = 3

g(3,t) = fail

f(3)=0

g(0,t) = 0 ≠ fail qn= 0

r

g_f_example.pdf

5

{he, she}

9

{hers}

The graph in Fig. XXX illustrated the behaviour of the AC NFA representing $S=\{he, she, his, hers\}$.

Each symbol of the input string P {usherst} is applied to machine one by one

The behaviour of the AC NFA matching the input string \{usherst\} against the string set $S=\{he, she, his, hers\}$.

Figure 9.10: The behavior of the AC-NFA matching the input string P = {usherst}
against the string set S = {he, she, his, hers}.

transition rule ∆ : (qc, P
w
i, qn) to enter the next state qn. Following that, the input

string is shifted one symbol to get the next input symbol.

For an AC-DFA, the number of state transitions required to process an input string Sn

is independent of the string set cardinality |S|. Therefore, AC-DFA is not vulnerable

to burst or high rate queries (or attacks), making it very attractive to security systems.

However, implementing a large AC-DFA representing a large string set into hardware

decreases the maximum clock frequency. Even, implementing by software, which

sustains high scan rate, is not possible; because, large number of state transition rules

cannot be stored entirely in a cache memory. Although AC-NFA machines gener-

ate smaller transition tables, they are generally inefficient due to limited parallelism

capability of hardware.

Table 9.1 exemplifies all of the state transitions of the AC-based DFA representing

a set of strings S = {he, she, his, hers}[8]. This machine consumes one-byte at a

time, which means that w = 1. Transition types are listed in Table 9.1 and they are

also illustrated in Fig.9.11.

Let define symbol σw to indicate the employed alphabet of a set of strings S , where

63

σw ∈ Σw. Although the alphabet size is |Σw=1| = 256, only 5 symbols are employed

by the set, i.e. σw=1 = {h, s, e, i, r}. The total number of state transitions is |∆| =

2560. Most of them are to initial state q0 and they are counted by |∆0| = 2534. 15

transitions are to states of depth-1 Q1 = {q1, q3}. 5 of the remaining 11 transitions

are consecutive ∆C ∩∆i≥2 = {(3, h, 4), (4, s, 5), (6, s, 7) · · · } and other 6 transitions

are unconsecutive ∆U ∩∆i≥2 = {(7, h, 4), (0, s, 3), (4, i, 6) · · · }. It can be observed

that many transitions occur to states whose depths are low. For example, 2549 of the

overall 2560 transitions are to states of depth-0 and depth-1. The number of other

transitions is remarkably small.

Main causes of these effects are listed as follows:

• Through matching a set of strings, almost all states, say qc, expect small number

of symbols (typically one symbol) to enter the next state qn, where depth(qc) ≤
depth(qn) (please refer to Fig.9.11). For example, only one symbol (r,e or s)

is needed to move the machine from depth-2 states 2,4,6 to depth-3 states 8,5,7

as indicated in Fig.9.9 and Table 9.1.

• Almost all other symbols make the machine enter zero state q0 due to failure

transitions. For instance, from all states, the machine returns back to the initial

state 0 with ≥ 252 symbols (Note that |Σw=1| = 256).

• At a state, approximately |Q1| number of symbols moves the machine to depth-

1 states Q1 in order to match initial symbols of some new incoming strings.

For example, states 0,1,2,4,5,8 need |Q1| = 2 number of symbols (h or s) to

match any strings from S (12 transitions). Similarly, states 3,7,9 and states 6,8

require symbols s and h to match strings {she}, {he, his, hers} respectively (5

transitions). All of these 17 transitions move the machine to one of the dept-1

states Q1 = {1, 3}.

• At a state, relatively small number of remaining symbols is needed to match

some new strings due to failure transitions as described in [8]. For example,

the machine moves to state 4 from states 7 and 9 with symbol h. Please refer to

Fig.9.9.

• goto function [8] mainly generates consecutive transitions. For example, {(0,h,1),

64

(1,e,2), (8,s,9), (6,s,7), (3,h,4), (4,e,5)} transitions are consecutive and {(0,s,3),

(1,i,6), (2,r,8), (4,e,5)} are unconsecutive goto transitions (Fig.9.9). The num-

ber of consecutive goto transitions may be increased as described in Theorem-2

(Section9.2.2).

Q<kQ0

qc qc+1
q0

qb∈∆0

∈∆U

∈∆C

...

∈∆1

4,e,5

4,h,1

4,s,3

4,i,6

initial

state

b ≠ c+1

AC-Transitions.pdf

Q1 Qk Qk+1

...

......

Figure 9.11: Illustration of transition types of a state qc by a directed graph, whose
vertices and edges represent states and state transitions respectively.

These observations are justified with AC-based wDFA implementations storing the

string set of SNORT v2.9 as given in Section9.3. Moreover, they can be employed to

map state transitions into fast hardware blocks as explain below:

• Instead of exactly storing ∆0 transitions, they can be inferred. For example, if

∆ \∆0 transitions are stored in a look-up table, then any unmatch case of this

table infers ∆0 transitions. For a typical AC-based automaton, there are lots of

∆0 transitions and therefore significantly large amount of memory can be saved

by inferring them.

• The consecutive transitions ∆C can also be inferred. We can approximately

store them in a Bloom filter and in the case of any match, the next state can

be calculated easily by incrementing the current state value. Due to the algo-

rithm behind the goto function, we expect many consecutive transitions, hence

inferring them enables us saving memory resources.

• Consider two transitions (qc, P
w
i, qn) and (qc′, Pw

i′, qn′). If qn = qn′ ∈ Q1,

then Pw
i = Pw

i′. It means that, independent of the current state qc, all of the

65

depth-1 states are one-to-one related with their associated input symbols Pw
i,

which is proven by Theorem-1 (9.2.2). Hence, ∆1 transitions can be inferred

by a look-up table storing only Pw
i and qn pairs. For example, for all ∆1

transitions, independent of the current state, the input symbols h and s moves

the machine to states 1 and 3, respectively as depicted in Fig. 9.2 and Table 9.1.

Note that the states 1 and 3 are members of Q1.

9.2.1 Aho-Corasick Based Multi-Byte DFA

Instead of a single byte, w bytes can be consumed (or advanced) at a time, which

enables us to achieve w times scan rate. This kind of machine can be constructed

with w number of wDFAs, each of which concurrently consumes w-byte long input

symbol Pw
i at a time and requires O(1) computations per symbol.

The proposed machine is illustrated for w = 2 in Fig.9.12. There are two AC-2DFA

storing the same set. Each DFA consumesw = 2-byte concurrently at a time and their

search window is shifted by one-byte with respect to each other. After processing the

current substrings on the current search windows, the overall search window is shifted

(or advanced) by w = 2 bytes, which results in 2 times speedup in the scan rate.

0
0

Current states
1

0
2

3 4
0

Matched strings {he} {sher, she}

...Input string

AC-2DFA1

AC-2DFA2

...

AC-2DFA1

AC-2DFA2

current
search

window

next search
window

AC-2DFA_SMM_exem.pdf

AC-2DFA_exe_exem.pdfAC-2DFA1

AC-2DFA2

{hers}

8

Figure 9.12: Illustration of AC-wDFA based SMM for w = 2.

To demonstrate the execution of the machine, we construct a simple SMM storing

66

the set S = {he, she, his, hers}. The state transition graph is given in Fig. 9.13,

which depicts only the goto transitions for simplicity. In addition, all of the transition

rules are compactly represented in Table 9.2. The accepting states G = {1, 3, 5, 6}
represent all strings of the set S . States are also depicted into groups considering

their depths, namely, zero depth state Q0 = {0}, depth-1 states Q1 = {1, 2, 4} and

depth-2 states Q2 = {3, 5, 6}. At a state, more than one symbol can match to move

the machine into two different next states. Under the case of multiple matches of

transition conditions, the next state of the longest input symbol is considered.

0

2

4

he

e

s

1

3

5

{he, hers}

{he, she}

{he}

{his}

initial

state
sh

hi

S={he, she, his, hers}

6rs

AC-2DFA

w = 2
∆\∆0

qc ,Pw,qn
0,he,1

0,sh,2

0,hi,4

1,rs,6

1,he,1

1,sh,2

1,hi,4

2,e,3

2,he,1

2,sh,2

2,hi,4

3,he,1

3,sh,2

3,hi,4

4,s,5

4,he,1

4,sh,2

4,hi,4

5,he,1

5,sh,2

5,hi,4

6,he,1

6,sh,2

6,hi,4

) = fail.

Q1 Q2

u s h e r s t ...

0

0 2

0

3

1 6

0

{he} {he, she}

AC-2DFA_exe_exem.pdf

AC-2DFA1

AC-2DFA2

{he, hers}

0Current states

qc

Input Symbol Pw

...

...

G = {1, 3, 5, 6}

AC-2DFA_graph_exem.pdf

Q0

Figure 9.13: State transition graph for the AC-2DFA based SMM storing the string
set S = {he, she, his, hers}.

Table 9.2: Compact representation of state transition rules of the classic AC-2DFA
machine storing the set of strings S = {he, she, his, hers}. The priorities of the rules
reduce towards bottom row.

∆ = (qc, P
w

i, qn) Transition Types

qc Pw
i qn ∆0 ∆1

∆i≥2

∆C ∩∆i≥2 ∆U ∩∆i≥2

1 rs 6 X

2 e 3 X

4 s 5 X

any state
he 1 X

sh 2 X

hi 4 X

any state any symbol 0 X

For the input string P = {usherst · · · }, the appropriate state transitions and the

associated accepted strings are given in Fig.9.14. With current input symbol Pw
i =

67

{he} and current state qc = 0, AC-2DFA1 moves to state 1 and accepts the string

{he}. After that, this machine accepts the strings {he, hers} through visiting state 6.

Similarly, the strings {he, she} are matched by the automaton AC-2DFA2 at state 3.

, ,

3,sh,2

3,hi,4

u s h e r s t ...

0

0 2

0

3

1 6

0

{he} {he, she}

AC-2DFA_exe_exem.pdf

AC-2DFA1

AC-2DFA2

{he, hers}

0Current states

qc

Input String P

...

...

G = {1, 3, 5, 6}

Figure 9.14: The execution of the AC-wDFA based SMM matching (w = 2) the input
string P = {usherst · · · } against the string set S = {he, she, his, hers}. The red
state numbers depict the visited accept states.

9.2.2 Lemmas and Theorems on AC-based Automaton

For an AC machine, Algorithm 4 constructs a deterministic finite automaton from

the goto function g (Algorithm 2) and failure function f (Algorithm 3), as given in

[8]. The following theorems, lemmas and their related proofs are based on these

algorithms.

Lemma 1: For all of the goto functions g(qc, P
w
i) = qn, the inequality depth(qc) ≤

depth(qn) is valid.

Proof: The inequality depth(qc) ≤ depth(qn) is valid for all of the goto func-

tions g(qc, P
w
i) = qn 6= fail due to incremental state assignment, newstate =

newstate+ 1 except g(0, Pw
i), as defined in Algorithm 2. All of the goto transitions

such that g(0, Pw
i) = fail are assigned to initial state 0 as next state, therefore the

depth remains same.

Lemma 2: Every transitions to next state qn of depth ≤ 1 is due to (1) goto function

g(qc = 0, Pw
i) and (2) failure function f(qc) = 0.

Proof: The proof proceeds by induction on the depth of current state qc. There is only

one current state q0 on the depth of 0. By Algorithm 2, for all Pw
i such that g(0, Pw

i)

is fail, then the goto function defines the next state to q0, so the transition is to depth

68

of 0. Due to the definition of depth function, all other transitions (g(0, Pw
i) is not

fail) are to states of depth 1. For the qc of depth 1 ≤, due to the Lemma 1, there

is not any goto transition to qn of depth ≤ 1. Only the transitions due to the failure

functions f(qc) = 0 is to states of depth 1 ≤.

Theorem 1: When the AC-DFA is in some current state qc with a specific input

symbol Pw
i, there is only one next state qn at depth ≤ 1.

Proof: Every transitions to next state qn of depth ≤ 1 is due to (1) goto function

g(0, Pw
i) and (2) failure function f(s) = 0 (Lemma 2). For each input symbol

Pw
i, g(0, Pw

i) values are assigned to a deterministic transition, i.e. δ(0, Pw
i) ←−

g(0, Pw
i). Every failure functions that result in zero-value for some state s is as-

signed to deterministic transitions, i.e. δ(0, Pw
i) ← δ(f(s) = 0, Pw

i). Because all

of the transitions to next states at depth ≤ 1 is through the deterministic δ(0, Pw
i)

transitions, the theorem is true.

Theorem 2: If the construction of the goto function g (Algorithm 2) begins with the

longer strings, then the number of successive transitions such that qn = qc + 1 is

maximum.

Proof: The proof proceeds by considering all of the relationships between two strings.

Suppose that u = u1, u2, . . . , ui and v = v1, v2, . . . , vj are members of the string set

S.

• Assume that u is a proper prefix of v, i.e. u1 = v1, u1 = v1, . . . , ui = vi, and

j > i . The longest string v can be processed (1) before or (2) after processing

of u. In the first case (1), string v creates j − 1 successive transitions due to

the inner for-loop of Algorithm 2. Following this, during the processing of u, i

symbols (prefix) are ignored by the inner while-loop and no more transition is

generated. At the end, (j − 1) successive transitions are generated. (2) If u is

processed before v, then (i−1)+(j−i−1) successive transitions are generated

sequentially. Therefore, we get one more successive transitions in the first case

(1). That is because of having transition from vi to vi+1 in a successive state

assignment.

• Assume that u and v shares a prefix with l symbols with possibility of l = 0.

69

Then, i + j − l − 2 successive transitions occur, which is independent of the

sequence of string processing.

• Because Algorithm 2 ignores sharing of suffix or infix (it is based on longest

prefix matching), they do not effect the number of successive transitions.

Suppose that for a given set of string S, a number of η strings are proper prefix

of some other strings with possibility of η = 0. Processing the longer strings first

initiates processing some strings before their η proper prefixes and this enables us to

achieve η more successive transitions than the case of processing the shorter strings

(proper prefixes) firstly. Therefore, the theorem is true.

Theorem 3: The set of next states qn of depth ≤ 1 is a subset of next states qn =

δ(0, Pw
i)

Proof: Because all of the transitions to next states at depth ≤ 1 is through the deter-

ministic δ(0, Pw
i) transitions, the theorem is true (Please refer to the proof of Theo-

rem 1).

9.3 Mapping SNORT String Set into an AC-wDFA

In this Section, we present the construction of AC-wDFAs. w is a variable which

determines how many bytes are consumed at a time by a wDFA as defined in Section

9.1.1. In this study we take w as w = {1, 2, 3, · · · , 20} for the signature string set

of SNORT v2.9. For this purpose, a program is designed in Microsoft Visual C++

environment that takes a set of string S and w as main arguments and generates all

of the ∆ \ ∆0 transitions which can be used to construct the machine (Please refer

to Fig. 9.15). Some information, such as |Q|, |Q1|, |σw|, |∆0|, |∆1|,|∆i≥2|,|∆C ∩
∆i≥2|, |∆U ∩ ∆i≥2| · · · are also reported. These outcomes are employed to support

the observations given in Section 9.2 and calculate the memory efficiencies of the

proposed SMMs summarized in Section 10.2.

The execution of the program is exemplified in Fig. 9.16 by an AC-wDFA (w = 1)

storing the string set S = {he, she, his, hers}.

70

Rule Set Analyzerweb-attacks.rules

bad-traffic.rules

ddos.rules

dos.rules

web-attacks.rules

...

SNORT v2.9 rule files

...

report

AC-wDFA

signature

string set S

signature

string set

goto

function

g

failure

function

f

next move

function

nm
w

Input

parameter

SNORT_to_AC-wDFA.pdf

0 1 2 3 4 5 6 7 8 9

h,1

s,3

e,2

i,6

h,1

s,3

h,4

s,3

h,4

s,3

h,4

s,3h,1

s,3

r,8

h,1

s,3

r,8e,5

i,6

h,1

s,3

h,1

s,9

h,1

s,7

Array

(qc)

Linked List

(Pw,qn)

∆\∆0 transitions

of AC-wDFA

|Q|, |Q1|, |σ
w
|,

|∆0|, |∆1|, |∆i≥2|

|∆C∩∆i≥2|,|∆U∩∆i≥2|

Console Output

Figure 9.15: Mapping SNORT String Set into an AC-wDFA.

In the naive approach as shown in Figure 9.1, the transitions can be stored as 2D

array where each combination of qc and Pw
i is related with qn. However, the needed

memory to handle the transitions of AC-DFA is in line with the size of the symbol

alphabet |Σw|, therefore, for large w values, the execution of program is not possible

for Microsoft Visual C++ environment, which limits the usage of memory upto 4G

bytes. To cope with this problem, the transitions are stored in an array of linked lists

as illustrated in Fig.9.17. In this data structure, each array cell depicts the current state

qc and stores the associated Pw
i and qn pairs as a linked list. Furthermore, the inferred

∆0 transitions are not stored in the memory during the execution of the program.

Table 9.3 lists the alphabet and state parameters of the generated automatons for

SNORT v2.9. On one hand, the alphabet size |Σw| exponentially increases with w

due to the fact that |Σw| = 28·w. On the other hand, the employed alphabet size |σw|
by the string set does not grow dramatically. With increasing w, the universal set Σw

expands exponentially, as a result, the employment probability of the alphabet sym-

bols (by the automaton) increases until w = 4. Because of sharing many elements

of |σw| among string set members, there is a local minimum at w = 4 as shown in

Fig.9.18. For w > 4, this effect decreases, therefore, |σw| decreases. With increas-

ing w, the total number of states |Q| decreases and the number of depth-1 states |Q1|
increases as shown in Fig.9.19 and Fig.9.20, respectively.

The set cardinalities of the transitions are given in Table 9.4 and significant percent-

ages among them are shown in Fig.9.21. For w ≥ 2, ∆0 and ∆1 transitions cover

almost all of the transitions, i.e. |∆| ∼= |∆0| + |∆1|. As explained before, instead

71

Table 9.3: Alphabet and state parameters of the generated w-byte AC machines, each
of which stores the signature strings of Snort v2.9.

w |Σw| |σw| |σw|/|Σw| |Q| |Q1| |Q1|/|Q|
1 28 = 256 92 35.94% 92133 84 0.09%

2 216 = 65536 4162 6.35% 47669 941 1.97%

3 1.68 · 1007 12000 0.07% 33131 1730 5.22%

4 4.29 · 1009 14900 0.00% 25227 1966 7.79%

5 1.10 · 1012 14834 0.00% 21109 2330 11.04%

6 2.81 · 1014 13347 0.00% 17809 2493 14.00%

7 7.21 · 1016 12639 0.00% 15700 2575 16.40%

8 1.84 · 1019 11786 0.00% 14030 2748 19.59%

9 4.72 · 1021 10728 0.00% 12485 2806 22.47%

10 1.21 · 1024 10257 0.00% 11648 2863 24.58%

of exactly storing ∆0 and ∆1 transitions, they can be inferred, which saves signifi-

cant amount of memory. Similarly, ∆C transitions can be inferred by a Bloom filter.

Verification of this filter can be performed easily by a lowly populated second filter,

which is similar to the DBF-SMM architecture. However, ∆U transitions can not be

inferred by a Bloom filter, because these filters only stores the transition conditions

δ, therefore, the associated next states must be stored exactly somewhere else. But a

small portion of ∆U can be stored in a look-up table in order to bypass the verifica-

tion process for them. With increasing w, percentage of ∆C transitions increases and

percentage of ∆U transitions decreases, which increase the memory efficiency of the

proposed SMM.

Table 9.4: Set cardinalities of transitions of AC-wDFAs storing the signature strings
of Snort v2.9.

w |∆| |∆0| |∆1| |∆i≥2| |∆C ∩∆i≥2| |∆U ∩∆i≥2|
1 2.36 · 1007 1.58 · 1007 6.31 · 1006 1.425.724 89.026 1.336.698

2 3.12 · 1009 3.08 · 1009 4.48 · 1007 130.188 44.497 85.691

3 5.56 · 1011 5.56 · 1011 5.73 · 1007 42.540 29.924 12.616

4 1.08 · 1014 1.08 · 1014 1.03 · 1007 24.427 22.038 2.389

5 2.32 · 1016 2.32 · 1016 9.46 · 1006 19.101 17.896 1.205

6 5.01 · 1018 5.01 · 1018 8.73 · 1006 15.498 14.591 907

7 1.13 · 1021 1.13 · 1021 8.07 · 1006 13.253 12.484 769

8 2.59 · 1023 2.59 · 1023 8.56 · 1006 11.359 10.812 547

9 5.90 · 1025 5.90 · 1025 6.48 · 1006 9.717 9.264 453

10 1.41 · 1028 1.41 · 1028 6.08 · 1006 9.206 8.816 390

72

Algorithm 3 Construction of goto transitions [8]
1: Input: A set of strings S = {S1, S2 · · ·Sn}
2: Output: Goto function g and a partially computed output function output

3: Note: The function enter(S) inserts state transition graph a transition with sym-

bol S.

4: Initially: g(qc, P
w
i) = fail for all (qc, P

w
i) pairs, output(qc) is empty,

newstate = 0, and i = 1.

5: Begin

6: for i ≤ n do

7: enter(Si), i = i+ 1

8: end for

9: for all Pw
i such that g(0, Pw

i) = fail do . Executed |Σw| times !

10: g(0, Pw
i) = 0

11: end for

12: End

13: function enter(Pw1 , Pw2 · · ·Pwk
)

14: q = 0, j = 1

15: while g(q, Pwj
) 6= fail do . Skips the shared prefixes

16: q = g(q) . The last state that we will add a new transition

17: j = j + 1

18: end while

19: p = j

20: for p ≤ k do

21: newstate = newstate+ 1 . Generating a successive label

22: g(q, Pwp) = newstate . Generating a new goto transition

23: q = newstate . Update the last state that we’ll add a new trans.

24: end for

25: output(q) = {Pw1 , Pw2 · · ·Pwk
} . assigning the current string to q ∈ G,

26: end function

73

Algorithm 4 Construction of failure transitions [8]
1: Input: Goto transitions g and output function output from Algorithm 3.

2: Output: Failure transitions f and final output function output

3: Initially: Queue queue is empty.

4: Begin

5: for for each Pw
i such that g(0, Pw

i) = qn 6= 0 do

6: queue = queue ∪ {qn} . Store all depth-1 states Q1 to the queue.

7: f(qn) = 0 . Assign all failure transitions of depth-1 state Q1 to initial state 0.

8: end for

9: while queue 6= empty do

10: queue = queue− {qc} . Get the next state from the queue.

11: for each Pw
i such that g(qc, P

w
i) = qn 6= fail do

12: queue = queue ∪ {qn} . Add the next depth states to the queue.

13: q = f(qc)

14: while g(q, Pw
i) = fail do

15: q = f(q)

16: end while

17: f(qn) = g(q, Pw
i)

18: output(qn) = output(qn) ∪ output(f(qn))

19: end for

20: end while

21: End

74

String Set S

∆\∆0 transitions of AC-

DFA

Console Output

Figure 9.16: Mapping string set S = {he, she, his, hers} into an AC-wDFA.

75

AC-wDFA

signature

string set

Automaton

Parameters

goto

function

g

failure

function

f

next move

function

nm

w
Input

parameters

SNORT_to_AC-wDFA.pdf

0 1 2 3 4 5 6 7 8 9

h,1

s,3

e,2

i,6

h,1

s,3

h,4

s,3

h,4

s,3

h,4

s,3h,1

s,3

r,8

h,1

s,3

r,8e,5

i,6

h,1

s,3

h,1

s,9

h,1

s,7

Array

(qc)

Linked List

(Pw,qn)

Figure 9.17: Array of linked list structure to represent the state transitions given in
Table 9.1.

 -

 2.000

 4.000

 6.000

 8.000

 10.000

 12.000

 14.000

 16.000

 - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|∑
w
*|

w

σ w

Figure 9.18: Employed alphabet size |σw| as a function of w.

76

 -

 10.000

 20.000

 30.000

 40.000

 50.000

 60.000

 70.000

 80.000

 90.000

 100.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|Q|

w

Figure 9.19: Total number of states |Q| as a function of w.

 -

 500

 1.000

 1.500

 2.000

 2.500

 3.000

 3.500

 - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|Q1|

w

Figure 9.20: Total number of depth-1 states |Q1| as a function of w.

77

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g
es

 o
f

T
ra

n
si

ti
o
n

 S
et

C
a
rd

in
a
li

ti
es

w

∆0/∆

D1/D

(D0+D1)/D

Di/D, i>=2

(Dc - Di)/Di, i>=2

(Du-Di)/Di, i>=2

|∆0|

|∆|

|∆1|

|∆|

∆0 + ∆1

|∆|

|∆�|

|∆|
, � ≥ 2

|∆		
∩ ∆�|

|∆�|
, � ≥ 2

|∆�	
∩ ∆�|

|∆�|
, � ≥ 2

Figure 9.21: Percentage of transition set cardinalities as a function of w.

78

CHAPTER 10

VARIABLE SIZE STRING MATCHING WITH DOUBLE

BLOOM FILTERS

10.1 String Matching Module with Bloom Filter based Aho-Corasick Automa-

ton

Designing an automaton that matches (or accepts) a large set of string set is a chal-

lenging problem because high number of states and state transition rules emerge.

These issues bring significant problems in realization of the automaton. These prob-

lems can be generalized into two types: (1) hardware resource usage (memory, logic

gates...) and (2) execution speed.

The motivating idea behind of BF-based automaton is that storing the transitions in

a hash based architecture may save the hardware resources significantly such as in

[16]. They propose an NFA that is built upon AC[8] which consumes w-bytes at a

time. The states and their associated symbols are stored in BFs. If any match occurs,

then the next state transition is captured from the off-chip hash table, which slows

down the scan rate under the burst queries.

In [37], BF-based heuristic is proposed in order to speedup the bitmap AC-based

matching process. The slow automaton matching is bypassed if the initial BF does not

produce a match for the input symbols mapped on the current search window. Thus,

the architecture is only able to increase the scan rate under normal traffic conditions,

where the number of true positive matches of BF is low.

79

10.1.1 Basic BFbAC-wDFA

As mentioned before, inferring the ∆1 transitions can be performed for AC-based

DFAs. Hence, different from the BFbDFA depicted in Fig. 9.7, we can add a look-

up table in order to exactly store only the input symbols Pw
i and their associated

next states qn (and ignoring the current state qc). This architecture also bypasses the

verification process for the ∆1 transitions. Structure of the basic BFbAC-wDFA is

illustrated in Fig. 10.1 and the Control Unit (CU) function is given in Algorithm 5.

SR

vH mfBF

BF

m-bitc

qc

= ∆ \ ∆0

= δ \ δ0

Transitions to zero state ∆0 are inferred by
the unmatch or falsely match conditions
of BF.
Exact machine due to verification of BF
matches.
Slows down due to slow VU.
For large DFAs, too many transitions to
be stored in BF and VU.

VU
mfVU

qn_VU

Pw
i...

CAM RAM
...

LUT
qn

SR

vH mfBF

BF

m-bit

 Pw
i

qc

mfLUT

qn_LUT

• ∆VU = ∆i≥2

• δBF = δi≥2

• ∆1 is inferred by LUT when BF does NOT matches
or BF matches falsely.

• Transitions to zero state ∆0 are inferred by the
unmatch or falsely match conditions of BF and
unmatch condition of LUT.

• Exact machine due to verification of BF matches
• Slows down due to slow VU

VUqc
mfVU

CU

qn

0

1 qn_VU

reset

qc

• ∆LUT = ∆
• Fixed w.
• Exact machine
• Unfeasible for large DFAs. For a

large DFA, extremly large CAM and
RAM memories are needed.

State Register
n

 qc

• ∆LUT = ∆\ ∆0

• Transitions to zero state ∆0 are inferred by the
unmatch condition of CAMs.

• Fixed size Pw.
• Exact machine
• Although it has higher memeory efficiency, is

even unfeasible for large DFAs. For a large DFA,
extremly large CAM and RAM memories are
needed.

BFbDFA

CU
reset

Basic BFbAC-wDFA

qc

1

accepting
state flag

KULLANILDI

mf_CAMqc

...

CAM

accepting
state flag

KULLANILDI

BFbDFA.pdf

∆VU = ∆\∆0

δBF = δ \ δ0

∆VU = ∆i≥2

δBF = δi≥2

∆1: inferred by LUT
∆0: inferred

QA Coder

BFbDFA.pdf

Figure 10.1: Structure of the basic BFbAC-wDFA.

Verification Unit exactly stores transitions ∆V U = ∆i≥2 and BF approximately stores

transition conditions δBF = δi≥2. ∆1 transitions are inferred by LUT when BF un-

matches or BF matches falsely. ∆0 transitions are also inferred by unmatch conditions

of LUT with unmatch or falsely match conditions of BF. The accepting state flag can

be generated with the match flag of a CAM storing accepting states QA. Note that,

for 1-byte input symbol (Pw=1
i), LUT can be implemented only with a single RAM

consisting of 256 locations. In this configuration, address bus of the RAM is con-

nected to the input symbol Pw=1
i and each RAM content stores the associated next

state. Therefore, RAM always matches and instead of inferring the ∆0 transitions

they can also be exactly stored in RAM. For w >> 1, the number of required loca-

80

Algorithm 5 Control Unit(CU) function of basic BFbAC-wDFA.
1: Initially: The machine is in state q0 (reset value of SR)

2: Condition: Main if functions are concurrent

3: For each queried input symbol Pw
i:

4: if BF matches then . BF has higher priority than LUT

5: wait VU . Due to verify the BF matches

6: if VU matches then . True positive match for BF

7: qn = qn_V U . Load the next state from VU

8: else if LUT matches then . False positive match for BF

9: qn = qn_LUT . ∆1 transition occurs

10: else qn = q0 . Return to initial state

11: end if

12: else if LUT matches then

13: qn = qn_LUT . ∆1 transition occurs

14: else qn = q0 . Return to initial state

15: end if

tions becomes too large to be realized with a small RAM. For example, 8.6G bytes of

RAM is needed for w = 4 by considering 2 bytes to code the states.

After the generation of AC-based wDFA from a set of string as described in Section

9.2, then we can determine the parameters of the proposed machine: The length of

SR is dlog2|Q|e, where |Q| is the cardinality of the set Q. To store Pw=1
i × qn matrix

for one byte input symbols, we need 28 = 256 locations, each of which is dlog2|Q|e
bits in size. As a result, the overall RAM size is 256·dlog2|Q|e bits. For multiple-byte

SMM (w ≥ 2), |Q1| · |Pw
i| bits CAM and |Q1| · dlog2|Q|e bits RAM are needed to

implement LUT. The BF parameters, i.e. the number of hash functions k and the size

of the v-vector m, can be determined by the allowable false positive probability Pfp

and the number of transition rules stored in, i.e. |∆BF |.

After the construction of the proposed machine, it can be applied as a compact SMM.

In each query process, both of the BF and LUT execute concurrently. For any transi-

tion condition δ(qc, Pw
i), the BF can report a positive or negative match. Any match

output of BF necessitates a query in order to verify this match. If a negative or a false

81

positive match occurs, then it means that there is not any real match in BF and the next

state is loaded from the associated RAM location if LUT matches, i.e. qn = qn_LUT .

Otherwise, the state register is reset in order to move the automaton to the initial state

q0. If a true positive occurs, then the next state is loaded from VU, i.e. qn = qn_V U .

The accepting states QA are decoded concurrently with a CAM by activating the ac-

cepting state flag.

Fig. 10.2 exemplifies the memory contents of the proposed machine (w = 1) storing

the set of strings S = {he, she, his, hers}. All transitions of AC-wDFA storing this

set is given in Table 9.1. The execution cycles of BFbAC-wDFA are demonstrated in

Fig. 10.3, where the input string is {P = ushersy · · · }. The next states of the transi-

tions (0, u, 0), (0, s, 0), and (9, y, 0) are loaded from the RAM. For these transitions,

BF is not expected to match any false positive output due to low false positive rate.

However, (3, h, 4), (4, e, 5), (5, r, 8), and (8, s, 9) transitions are matched by the BF

and after the verification of each transition conditions, the associated next states are

loaded from the VU.

RAM

...

FF 0

00 0

73: s 3

68: h 1

...

...

...

...

...

BF

qc Pw=1

1 e
1 i
2 r

5 r
6 s

4 e
4 i

8 s

VU

qc Pw=1

1 e
1 i
2 r

5 r
6 s

4 e
4 i

8 s

qn

2
6
8

8
7

5
6

9

Pw=1 qn

3 h 3 h 4

7 h 7 h 4

9 h 9 h 4

∆VU = ∆ \ ∆0δBF = δ \ δ0 ∆RAM = ∆0 ∆1

...
u

0 0 3 4

589

qn=qn_LUT

...

s h

e

rs
0

y

qn=qn_LUT qn=qn_VU

qn=qn_VU

qn=qn_VUqn=qn_VUqn=qn_LUT

{she, he}{her}{hers}

∆1 ∆i ≥ 2∆0

Figure 10.2: The RAM and BF content of the proposed machine storing the string set
S = {he, she, his, hers}

The memory efficiency of BFbAC-wDFA is highly related on the number of inferred

transitions, i.e. |∆0∪∆1|. Besides, the scan rate of the system depends on the number

of slow VU queries, which is determined by the true and false positive rates of BF.

82

RAM

FF 0

...

...

BF

5 r
6 s

4 i

8 s

VU

5 r
6 s

4 i

8 s

8
7

6

9
7 h 7 h 4

9 h 9 h 4

...
u

0 0 3 4

59

qn=qn_LUT

...

s h

e

rs
0

y

qn=qn_LUT qn=qn_VU

qn=qn_VU

qn=qn_VUqn=qn_VUqn=qn_LUT

{she, he}{hers}

∆1 ∆i ≥ 2∆0

BFbAC-1DFA_exe1.pdf

8

Figure 10.3: The execution of the proposed machine matching the input string {P =

ushersy · · · } against the string set S = {he, she, his, hers}. The machine begins
consuming each byte on the left side of the input string.

True positive rate depends on the input symbol characteristics and BF design param-

eters determine the false positive rate. If a high number of ∆0 ∪∆1 transitions occur,

then a low number of slow verifications occur and the average scan rate increases.

Otherwise, the machine slows down by spending more time in order to verify the cur-

rent transition conditions and, as a result, the scan rate decreases. In other words, if

the input strings consist of a low number of positive strings (PS ∼= 0), then significant

amount of the transitions are performed quickly by the fast RAM. However, if the

input strings consist a large number of strings (PS ∼= 1) from the set S, then slow

verification process is invoked frequently, which significantly decreases the scan rate

of SMM.

10.1.2 Multiple BFbAC-wDFA

The scan rate of BFbAC-wDFA strongly depends on the input traffic characteristic.

Under frequent positive events (PS ∼= 1), a high number of references to the VU

occur, which slows down the machine. Similar to the DBF-SMM, a second Bloom

filter can be employed to store a limited number of transition conditions δ such that its

false positive probability is almost zero and its match results do not need verification.

For this purpose, frequently encountered δC conditions can be stored in a second

vector vFC , where the associated next states qn = qc + 1 can be inferred easily.

83

Frequent δU conditions can not be stored in a Bloom filter vector because acquiring

the associated next states via Bloom filter is a difficult task. In addition, the number of

∆U transitions is expected to be low (please refer to Section 9.3); therefore a fraction

of them can be exactly stored in a look-up table, namely Unconsecutive Transition

Verification Unit (UTVU). The basic structure of the MBFbAC-wDFA is depicted

in Fig.10.4 and the functionality of Monitor and Control Unit (MCU) is described in

Algorithm 6. Note that each transition condition δ requires multiple memory accesses

for the BF, UTVU and LUT queries, which are performed concurrently on hardware.

P
w

i...

CAM RAM

...

LUT

qn

P
w

i

SR

vC

H

mfvC

mfvFC

mfvU

BF

qc

mfLUT

qn_LUT

mfCAM

qc

VU

Pw
i

qc

mfVU

MCU

qn

qn_VU

MBFbAC-DFA

...

CAM

accepting

state flag

qc

qc . Pw
i...

CAM RAM

...

UTVU

qn

qc

Pw
i

mfUTVU

qn_UTVU

vFC

vU

...

AMUw

c1

c1c2

c1..cw

load

reset

increment

AMU

VU
mfVU

qn

qn
SR

qc

Pw
i=c1...cw

AMU2

AMU1

...

add

Pw
i

P

search

window

cw

c1

c2

...
...

...

QA Codder

CAM
acce

state

qn

load

reset

increment

address

AMUw

Pw
i

QA Coder

∆VU = ∆i≥2

δBF-vC = δC∩δi≥2

δBF- vFC⊂ δc∩δi≥2

δBF-vU = δU∩δi≥2

∆UTVU⊂ ∆U∩∆i≥2

∆1:inferred by LUT

∆0:inferred

Pw
i

S={he, she, his, hers, sher

CAM QA Coder = {1, 4,

VU = {(1, rs, 6), (2,er,7)

vC = {(2, e), (4, s)}

vU = {(1, rs), (2,er)}

LUT = {(he,1), (sh, 2), (hi

control

signals

control

signals

Figure 10.4: Basic structure of MBFbAC-wDFA.

MBFbAC-wDFA handles only constant length (w-byte) symbols. To perform string

matching process, we need to handle 1 to w byte symbols. Therefore, w AMUs are

employed, where each of which handles a predefined length of symbols as depicted in

Fig. 10.5. If multiple matches of AMU occur, then the longest one must be considered

84

to determine the next state.

...

AMUw

c1

c1c2

c1..cw

load
reset

increment

MCU

AMU

VU
mfVU

qnqn

SR

qc

Pw
i=c1...cw

AMU2

AMU1

...
address

Pw
i

P

search
window

cw

c1

c2

...
...

...

QA Codder
CAM

accepting
state flag

qc

= ∆i≥2

 = δC∩δi≥2

vFC ⊂ δc∩δi≥2

 = δU∩δi≥2

UTVU ⊂ ∆U∩∆i≥2

inferred by LUT
inferred

S={he, she, his, hers, sher, h}

CAM QA Coder = {1, 4, 8 ,6 , 7, 3, 5}

VU = {(1, rs, 6), (2,er,7), (2, e, 3), (4, s, 5)}

vC = {(2, e), (4, s)}

vU = {(1, rs), (2,er)}

LUT = {(he,1), (sh, 2), (hi, 4), (h, 8)}

SMM_MBFb-wDFA.pdf

control
signals

Figure 10.5: String Matching Module employing w AMUs.

To demonstrate the execution of the MBFb-wDFA, we use a SMM whose state tran-

sition graph and state transition rules are given in Fig. 9.13 and in Table 9.2, re-

spectively. There are two automatons each of which scans one byte shifted part of

the input string as shown in Fig. 10.7. Each automaton moves to the next state

by considering the current state and consuming w = 2 bytes at once. For both

of the automatons, the corresponding content of the BFs, VU, LUT and QA coder

CAM are depicted in Fig. 10.6. The transitions to the states of depth-2 or more

∆i≥2 = {(1, rs, 6), (2, e, 3), (4, s, 5)} are stored in the VU. The consecutive transi-

tion conditions δC ∩ ∆i≥2 = {(2, e), (4, s)} and unconsecutive transition condition

δC ∩ ∆i≥2 = {(1, rs)} are stored in the BFvC and UTVU respectively. The input

symbols {he, sh, hi}, which move the machines into the states of depth one (Q1),

and their associated next states are stored respectively into the CAM and RAM of the

LUT, respectively.

The execution cycles of MBFbAC-wDFAs are demonstrated in Fig. 10.7 and 10.8,

where the input string is P = {usherst · · · }.

The zero next state of the transitions (0, us, 0), and (3, st, 1) are inferred by reset-

85

MBFbAC-2DFA_exe_content.pdf

LUT

he 1

VU

qc Pw≤1

1 rs
2 e
4 s

qn

6
3
5

Pw≤1 qn

∆1 : infered by LUT

qc Pw≤1

2 e
4 s

δBF-vC = δC∩δi≥2

BFs

qc Pw≤1

1 rs

δBF-vU = δU∩δi≥2

RAMCAM

sh 2
hi 4

∆VU = ∆i≥2

h

3,he,1

3,sh,2

3,hi,4
G = {1, 3, 5, 6}

Input Symbol P

1

QA

3
5

QA Codder CAM

6

{he}

{he,hers}

{he, she}
{his}

Figure 10.6: Content of each MBFbAC-DFA (w = 2) units each of which stores the
string set S = {he, she, his, hers}.

ting the state register to zero due to unmatch condition of the BFs, VU and LUT.

Moreover, (1, rs, 6) and (2, er, 3) transitions are matched by the BFs and after the

verification of each transition conditions, the associated next states are loaded from

the VU. In addition, (1, rs, 6) and (2, er, 3) transitions are stored into the UTVU and

BFvFC respectively. The next states of the transitions (0, he, 1) and (0, sh, 2) (each

of these transitions are ∈ ∆1) are loaded from the RAM of the LUT. Due to low false

positive rate, BFs are not expected to match any false positive output under the case

of unmatch condition of the LUT and UTVU.LUT

he 1

RAMCAM

sh 2
hi 4

MBFbAC-2DFA1

MBFbAC-2DFA2

u s h e r s t ...

0

0 2

0

3

1 6

0

Matched strings {he}{he,she}

us
0 0

qn=0

he rs

qn=qn_LUT qn=qn_VU

MBFbAC-2DFA1
(SR reset) (BF-vC matches)

1

{he}

{he,hers}

{he, hers}

6 ...

(LUT matches)

MBFb

MBFbA

...

...
Current

states qc

Input Symbol Pw

initial

state

3
5

QA Codder CAM

6

{ }

{he,hers}

{he, she}
{his}

Figure 10.7: The execution of MBFb-2DFA based SMM matching the input string
P = {usherst · · · } against the string set S = {he, she, his, hers}. The red states
depict the visited accept states.

86

MBFbAC-2DFA_exe_content.pdf

LUT

he 1

VU

qc Pw≤1
1 rs
2 e
4 s

qn
6
3
5

Pw≤1 qn

∆1 : infered by LUT

qc Pw≤1

2 e
4 s

δBF-vC δC∩δi≥2

BFs

qc Pw≤1

1 rs

δBF-vU δU∩δi≥2

RAMCAM

sh 2
hi 4

MBFbAC-2DFA1

MBFbAC-2DFA2

VU i≥2

u s h e r s t ...

0

0 2

0

3

1 6

0

Matched strings {he}{he,she}

us
0 0

qn=0

he rs

qn=qn_LUT qn=qn_VU

∆1 ∆2∆0

MBFbAC-2DFA1
(SR reset) (BF-vC matches)

1

{he}

{he,hers}

{he, hers}

6

sh
0 2

er st

MBFbAC-2DFA2

3

...

...

qn=qn_LUT qn=qn_VU

(BF-vC matches)

0
qn=0

(SR reset)

{he, she}

(LUT matches)

(LUT matches)

MBFbAC-2DFA_exe_execution.pdf

MBFbAC-2DFA_exe_execution_detail.pdf

...

...
Current

states qc

Input Symbol Pw

initial

state

initial

state

1

QA

3
5

QA Codder CAM

6

{he}

{he,hers}

{he, she}
{his}

Figure 10.8: The execution of MBFb-2DFA based SMM matching the input string
P = {usherst · · · } against the string set S = {he, she, his, hers}. The bold vertices
depict the visited accepting states.

10.2 Evaluations of the Proposed Architectures

The parameters of w-byte Aho-Corasick DFAs storing the signature string set of

SNORT v2.9 are given in Section 9.3. In this part, we evaluate these parameters to

the proposed machines and compare their normalized memory consumptions (NMC).

The required amount of memory is calculated by the number of transitions stored in.

Table 10.1: Evaluation of the wDFA (improved) and BFbDFA machines storing the
signature set of SNORT v2.9. The memory sizes are in bits and the number of shared
hash functions is k = 10.

w

wDFA (improved) BFwDFA
∆LUT = ∆ \∆0, ∆0 :inferred

NMC
δBF = δ \ δ0, ∆0 :inferred

NMC
CAMA + CAMB RAMA +RAMB BF

1 1.05 · 109 1.32 · 108 1, 237 1.12 · 108 117

2 1.15 · 1010 7.19 · 108 12, 758 6.48 · 108 677

3 2.20 · 1010 9.18 · 108 23, 959 8.27 · 108 864

4 4.96 · 109 1.55 · 108 5, 346 1.49 · 108 156

5 5.69 · 109 1.42 · 108 6, 087 1.37 · 108 143

6 6.30 · 109 1.31 · 108 6, 711 1.26 · 108 132

7 6.34 · 109 1.13 · 108 6, 738 1.17 · 108 122

8 7.68 · 109 1.20 · 108 8, 146 1.24 · 108 129

9 6.54 · 109 9.09 · 107 6, 928 9.37 · 107 98

10 6.82 · 109 8.53 · 107 7, 214 8.79 · 107 92

87

Table 10.2: Evaluation of BFbAC-wDFA machines storing the signature set of
SNORT v2.9. The number of shared hash functions is k = 10 and the memory
sizes are in bits.

w

LUT BF QA codder
NMC∆LUT = ∆1 δBF = δi≥2 CAM

CAM RAM v

1 672 1, 428 20, 568, 849 69, 615 21.555
2 15, 056 15, 056 1, 878, 216 65, 520 2.061
3 41, 520 27, 680 613, 722 65, 520 0.782
4 62, 912 29, 490 352, 407 61, 425 0.529
5 93, 200 34, 950 275, 569 61, 425 0.486
6 119, 664 37, 395 223, 589 61, 425 0.462
7 144, 200 36, 050 191, 200 57, 330 0.448
8 175, 872 38, 472 163, 876 57, 330 0.455
9 202, 032 39, 284 140, 187 57, 330 0.458

10 229, 040 40, 082 132, 815 57, 330 0.480

As depicted in Table 10.1, the improved naive implementations (wDFA-improved)

have at least 10 times worse NMC values with respect to BFbDFA versions. There-

fore, it is obvious that Bloom filters enable us to save significant amount of memory

resources. Moreover, applying LUTs in BFbAC-wDFA to infer ∆1 transitions de-

ceases the number of transitions to be stored in memory and provides upto 330 times

resource efficiency (Table 10.2). However, the execution speed (or input symbol con-

sumption rate) of BFbAC-wDFA decreases significantly if BF matches frequently.

Therefore, we have to add more memory sources to sustain the speed. That’s why the

SMM employing w MBFbAC-wDFAs necessitates slightly higher memory resources

as given in Table 10.3. Note that, the memory efficiency of the machines employing

CAMs to decode accepting states can be improved in such a way that the QA coder

can be hardly coded into logic sources instead of a CAM.

10.2.1 Comparison of the Results with Other Related Studies

The performance results in terms of memory usage and complexity are summarized in

Fig.10.9. In the literature, some of the studies are based on the different types of mem-

ories, such as RAM, CAM and TCAM. To achieve fair comparison, we also consider

the hardware complexities of employed memories, therefore we add another param-

eter, namely, normalized memory complexity (NMCx). Each bit stored in SRAM,

88

Ta
bl

e
10

.3
:E

va
lu

at
io

n
of

SM
M

co
ns

tr
uc

te
d

w
ith

w
M

B
Fb

A
C

-w
D

FA
s.

SM
M

st
or

es
th

e
si

gn
at

ur
e

se
to

fS
N

O
R

T
v2

.9
.T

he
nu

m
be

ro
fs

ha
re

d

ha
sh

fu
nc

tio
ns

is
k

=
10

an
d
v F

C
=
v C
∗

50
%

.U
T

V
U

is
lim

ite
d

to
st

or
e

5
pe

rc
en

ta
ge

of
un

su
cc

es
si

ve
an

d
de

pt
h-

2
or

m
or

e
tr

an
si

tio
ns

,i
.e

.,

|∆
U
T
V
U
|=
|(∆

U
∩

∆
i≥

2
)|
∗

5%
.T

he
m

em
or

y
si

ze
s

ar
e

in
bi

ts
.

w

L
U

T
U

T
V

U
B

F
Q

A
co

dd
er

N
M

C

∆
L
U
T

=
∆

1
|∆

U
T
V
U
|

δ B
F

=
δ i
≥
2

C
A

M
(C

A
M

/L
og

ic
)

C
A

M
R

A
M

C
A

M
R

A
M

v C
v U

v F
C

1
−

4
,3

5
2

9
·1

0
6

1
.1
·1

0
6

1
.3
·1

0
6

1
9
.3
·1

0
6

1
.3
·1

0
6

6
9
,6

1
5

3
3
.5

8
/
3
3
.5

0

2
1
4
,9

6
8

1
5
,0

5
6

1
.1
·1

0
6

6
8
,5

5
3

6
4
1
,9

5
6

1
.2

4
·1

0
6

6
4
1
,9

5
6

6
5
,5

2
0

3
.9

5
/
3
.8

8

3
4
1
,0

8
8

2
7
,6

8
0

2
4
2
,2

2
7

1
0
,0

9
3

4
3
1
,7

1
2

1
8
2
,0

1
0

4
3
1
,7

1
2

6
5
,5

2
0

1
.5

0
/
1
.4

3

4
6
1
,6

4
8

2
9
,4

9
0

5
7
,3

3
6

1
,7

9
2

3
1
7
,9

4
1

3
4
,4

6
6

3
1
7
,9

4
1

6
1
,4

2
5

0
.9

2
/
0
.8

6

5
8
7
,7

6
8

3
4
,9

5
0

3
6
,1

5
0

9
0
4

2
5
8
,1

8
5

1
7
,3

8
4

2
5
8
,1

8
5

6
1
,4

2
5

0
.7

9
/
0
.7

2

6
1
0
9
,1

2
0

3
7
,3

9
5

3
2
,6

5
2

6
8
0

2
1
0
,5

0
4

1
3
,0

8
5

2
1
0
,5

0
4

6
1
,4

2
5

0
.7

1
/
0
.6

4

7
1
2
7
,7

3
6

3
6
,0

5
0

3
0
,1

4
5

5
3
8

1
8
0
,1

0
6

1
1
,0

9
4

1
8
0
,1

0
6

5
7
,3

3
0

0
.6

5
/
0
.5

9

8
1
5
1
,4

8
8

3
8
,4

7
2

2
4
,5

0
6

3
8
3

1
5
5
,9

8
4

7
,8

9
2

1
5
5
,9

8
4

5
7
,3

3
0

0
.6

2
/
0
.5

6

9
1
6
8
,4

9
6

3
9
,2

8
4

2
2
,8

3
1

3
1
7

1
3
3
,6

5
1

6
,5

3
5

1
3
3
,6

5
1

5
7
,3

3
0

0
.5

9
/
0
.5

3

10
1
8
5
,1

7
6

4
0
,0

8
2

2
1
,8

4
0

2
7
3

1
2
7
,1

8
8

5
,6

2
7

1
2
7
,1

8
8

5
7
,3

3
0

0
.5

9
/
0
.5

3

89

CAM and TCAM requires 6, 10 and 20 transistors, respectively [28, 31]. Therefore

we apply 10/6 and 20/6 times penalties for the usage of each CAM and TCAM bit.

On the other hand, only the memory consumptions per SMM are considered for fair

comparison.

25

30

35

40

45

50

55

60

N
M

C
 /

 N
M

C
x

Normalized Memory Consumption(NMC) and

Normalized Memory Complexity (NMCx)

MBFb-AC-wDFA: NMC
MBFb-AC-wDFA: NMCx
CompactDFA: NMC
CompactDFA: NMCx
Weinsberg: NMC
Weinsberg: NMCx
ACC with NSA: NMC/NMCx
B-FSM: NMC/NMCx
Dharmapurikar: NMC/NMCx

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

N
M

C
 /

 N
M

C
x

w

Figure 10.9: Summary of comparison results.

Although Barr et al. [12] modified the string set to include only strings of length 5

bytes or more, we assume that they apply all 6423 strings having 30 bytes length in

average. Moreover, for the unevaluated values w ≥ 6, we estimate the parameters by

assuming linear increase as a function of w. Furthermore, only the implementations

considering minimization of the number of entries and having variable width entries,

where each rule is stored with exactly the number of bits required to encode it, are

inspected. The results depict that the overall memory sizes of CompactDFA [12] is

in line with w because of increase in code width per state and the number of entries.

Hence, NMC and NMCx increases linearly with w.

The proposed machine by Weinsberg et al. [41] is based on the on an earlier work

of [17] and provides significant improvement over this machine in terms of memory.

However, their studies cover only automatons consuming single bytes, i.e. w = 1.

90

Both of the studies [36] and [39] are based-on only RAMs; hence their NMC and

NMCx values are same. For ACC with NSA proposed in [36], NMC values are

calculated for 1785 strings from SNORT with total 29.0KBytes. For 2-way and 2

subsets configuration 256KByte RAM is needed, whereas 81KByte RAM is required

for 8-way with 16 subsets. Besides, while storing 1.5K strings with 25.2KByte size,

188KBytes and 92KBytes of memories are needed for 4 and 16 groups, respectively

in B-FSM [39].

16 hash functions are considered for the study proposed by Dharmapurikar et.al. in

order to store 2259 strings having 6.94bits in average in [16].

Although the worst NMC and/or NMCx values belong to our proposed machine

MBFb-AC-wDFA for w = 1, we are able to achieve the best performance when

w ≥ 3. Therefore, we can apply high number of parallel SMMs to achieve higher

scan rates.

10.3 Related Work

An automaton should determine which state to move according to the current tran-

sition condition. Naive implementation procedure exactly stores all possibilities,

namely, one transition rule per each transition condition. This results in unimple-

mentable large amount of on-chip memory requirement. For instance, to naively store

the signature strings of SNORT v2.9 by AC-wDFA, 401MByte CAM and 54MByte

RAM are needed (for w = 1). In such implementations, some of the transitions, for

example ∆ \ ∆0 transitions, can be stored explicitly and the others, for example ∆0

transitions, can be inferred. While traversing through the automaton, if current transi-

tion conditions is not found in LUT, then the ∆0 transition logic is triggered to return

the automaton to the initial state q0. Even in this automaton, 132MByte CAM and

17MByte RAM are needed (for w = 1).

In general, AC-like DFAs are time-efficient but space-inefficient and NFA versions

are time-inefficient but space-efficient. This is because of NFAs may need multiple

transitions (multiple cycles) to consume one input symbol, since the matching opera-

tion needs to explore multiple paths in the automaton to determine whether the input

91

matches any string in the set. Although they may require large amount of matching

time, they have relatively small number of transitions. However, DFAs have deter-

ministic execution speed (one cycle needed to consume one input symbol) but they

generate large number of state transition rules. Therefore, there has been an intensive

effort in order to compactly implement AC-like DFAs that can fit into small but fast

on-chip memories [38, 34, 21, 36, 33, 9, 39, 12]. A common optimization that sig-

nificantly reduces the DFA memory size is the removal of ∆0 and/or ∆1 transitions

[38, 34, 21, 36, 33], which is based on the observation that these transitions consti-

tute a large fraction of overall transitions ∆ and removing them provides significant

memory reduction.

In [21], Kumar et.al. introduce a new representation for DFAs, called the Delayed

Input DFA (D2FA), which substantially reduces space requirements. The idea of

D2FA is based on the observation that many states in a DFA often share some set

of transitions. Therefore; several transitions of the automaton can be replaced with a

single default transition, which reduce the amount of memory requirements. The re-

placement operation is based on a technique used in AC-automaton [8]. The approach

dramatically reduces the number of transitions between states by more than 95% for

a collection of regular expressions drawn from current commercial and academic sys-

tems. Default transitions are triggered when there is no corresponding transition for

the input symbol. Although an input symbol leads to a single transition between

states in a classic DFA, a D2FA may require multiple default transitions to consume

a single character, which slows down the automaton. In order to compensate this side

effect, the automaton is implemented with multiple on-chip memories and processors,

each of which is uniformly occupied and accessed, which results in high throughput.

In [9], similar toD2FA, by exploiting redundancy in transitions, a DFA is represented

in a compact way. In fact, this approach is based on the observation that automatons

recognizing regular expressions have large amount of transitions lead back to the

low depth states. The proposed automaton is called FastFA. An alphabet reduction

scheme is also employed to achieve higher compaction rates. However, the level

of compression achieved is similar to the original D2FA [21], while providing a

better worst-case speed. Because, regardless of the maximum length of the default

transitions, the proposed automaton needs up to 2n transitions when processing an

92

input string of length n. The authors achieved compression rates higher than 99% for

all sets tested.

Van Lunteren observed that a large fraction of state transitions are ∆0 and ∆1 transi-

tions [39, 36]. Similar to our approach, he successfully reduced ∆0 and ∆1 transitions

having at most 256 transitions per state (for w = 1) [39] . The reduction is achieved

by using the priority approach; ∆0 and ∆1 transitions are assigned to low priorities of

0 and 1 respectively. Therefore; these transitions can be combined to single transition

rules. BaRT-based Finite State Machine technology (B-FSM)[39] provides compact

hash-based data structure and one state transition per operation cycle. After that, they

extends automatons to support essential features of regular expression and reduces

common state transitions [40].

Eliminating some of the other transitions (∆i≥2), namely cross transitions, are con-

sidered in [36]. To do this, they try to partition the string set to many unrelated smaller

sets (similar to [39]), handled by multiple small AC-DFAs, so as to avoid common

sub-strings and their transition rules. Besides, they propose to use next states to ac-

cessing the transition rules in memory. The proposed machine consumes 81KByte

(9.5MByte) RAM memory to store 1.8K (50K) rules (total 29K(4.44M) characters)

NMC is 2.79 (2.13) for SNORT (ClamAV) set. However, the optimization results

in a significant disadvantage of traversing multiple states. It is observed that in the

worst-case, the processing of the input strings needs a traversal of up to 31 pointers,

which causes 22X performance degradation with respect to the the average-case [33].

In order to improve the worst-case performance, Bloom filters are employed to jump

the automaton to next state by bypassing the failure transitions, which yields over 3X

performance improvement in [33].

The state coding can be performed as desired as long as all states are assigned to

unique codes. Barr et. al. [12] employed this observation to achieve a compressed

DFA, namely CompactDFA. In fact, the proposed automaton is a kind of generaliza-

tion of [39] and [36] that eliminates all cross transitions. They encode the states in

such a way that all transitions to a specific state are represented by a single prefix

storing a set of current states. The overhead of this process is the higher number of

bits per state. For Snort, only 17-bits are needed per state for arbitrarily distributed

93

state codes, while 36-bits are required in [12]. Therefore they limit the number of

current states stored in prefix. Besides, in order to achieve high scan rates, they also

need to divide the transition rules into multiple TCAMs.

In [24] Le et. al. propose an algorithm to preprocess the string set in such a way that

all the nonleaf strings are emerged with their leaf strings. In order to improve the

NMC, the strings are divided into segments, where each of them are executed with

cascaded Binary Search Trees. By this approach, for fixed-length strings of SNORT,

the algorithm decreases the NMC from 1,45 to 1,07. A pipelined search tree is also

presented in order to one look-up operation per clock cycle to increase the scan rate.

By employing these two techniques, 1,32 NMC and 3,2Gbps scan rate are achieved

for SNORT set (the results belongs to a dual-pipeline architecture with dividing the

strings into 24-byte long segments).

94

Algorithm 6 Control Unit(CU) function of MBFbAC-wDFA.
1: Initially: The machine is in state q0 (reset value of SR)

2: Condition: Main if functions are concurrent

3: Condition: If multiple units of UTVU, vC , vU , vFC or LUT are employed to han-

dle symbols which are shorter than w bytes, assign higher priority to the longest

one.

4: For each queried input symbol Pw
i:

5: if UTVU or vFC matches then . Exact matching occurs

6: if UTVU matches then . UTVU has higher priority than vFC

7: qn = qn_UTV U . Load the next state from UTVU

8: else qn = qc + 1 . vFC matches, increment the current state

9: end if

10: else . vC and vU have lower priority than UTVU and vFC

11: if vC or vU matches then . Approximate matching occurs

12: wait VU . Due to verify the BF matches

13: if VU matches then . True positive output for BFs

14: qn = qn_V U . Load the next state from VU

15: if vC matches then

16: store transition condition (qc, Pw
i) into vFC

17: else . vU matches

18: store transition (qc, Pw
i, qn) into UTVU

19: end if

20: end if

21: else if LUT matches then

22: qn = qn_LUT . ∆1 transition occurs

23: else qn = q0 . Return to initial state

24: end if

25: end if

95

96

CHAPTER 11

CONCLUSIONS AND FUTURE WORK

In this thesis, we present Double Bloom Filter String Matching Module (DBF-SMM)

as a novel Bloom-Filter based SMM architecture. The first Bloom Filter of DBF-

SMM stores the entire string set that is searched and its no-match results are correct

because of the zero false negatives of the Bloom Filters. The significant feature of

DBF-SMM is the second Bloom Filter that queries the input strings concurrently with

the first one. The second filter stores a small string set and consequently it has almost

zero false positive probability. This small set is dynamically updated to contain the

strings that are likely to appear in the current input. Hence, the second filter detects

most of the matching strings without further verification. As one possible method, we

suggest updating the content of the second Bloom Filter with the most recent matches.

Our analysis results show that the response time of the DBF-SMM is decreased down

to the response time of the Bloom Filter component provided that the content of the

second Bloom Filter is always covering the matches in the current input string. Fur-

thermore, our FPGA implementation results show that even parallel implementations

of DBF-SMM are feasible to implement on contemporary FPGAs potentially achiev-

ing up to 10 Gbps scan rates. Besides, the DBF-SMM is modeled in SystemC en-

vironment and the required functionality of the proposed architecture is verified by

applying 10 different types of input traffic.

We also employed the idea behind the DBF-SMM for implementing fast Determin-

istic Finite Automaton with efficient use of hardware resources. The resulting ar-

chitecture and its implementation provide a viable solution for applications such as

variable size string matching, regular expression matching and speech recognition.

97

Researchers have been working to achieve multi-gigabit scan rates, frequently by try-

ing to increase the automaton speed and decrease the amount of memory needed.

To do this, we use the features of the classic AC machine behind the string match-

ing process and employ these features to fast hardware blocks. Automaton-evaluated

string matching is generally memory-intensive process, which limits performance in

commodity hardware resources. In the thesis, we provide background information

of AC string matching algorithm and propose BF-based machines which reduce the

amount of memory required significantly and improve its performance on real hard-

ware implementations. The signature string set of SNORT v2.9 is also implemented

as AC-based wDFAs and the parameters of the generated automatons are analyzed.

Based on this analysis, we carefully group the state transition rules according to their

next state characteristics and map them to appropriate hardware components. Instead

of storing all of the rules, only a small portion are exactly stored in memory and the

other transitions are inferred. As a result, the proposed architecture enables us to

represent entire data structure of AC machine with small amount of memory. Addi-

tionally, high scan rates are achieved thanks to parallelism of hardware blocks, where

groups of transition rules are queried concurrently.

BF based approaches provide high memory efficiency and high execution speed; how-

ever, the main disadvantage of this approximate matching techniques is that the scan

rate decreases with high positive matches. To cope with this problem, we employ

the idea behind the DBF-SMM, where the slow verification process is eliminated

for frequent state transition rules. As a result, the proposed SMM (based on MBFb-

AC-wDFA) consumes only 0.53 bytes of memory per byte for signature string set

of SNORT v2.9 and sustains 10 Gbps scan rate on average under the case of high

positive rate.

The proposed hardware-based approaches all exploit a high degree of parallelism

by representing transitions of automaton by the parallel logic resources available in

FPGA or ASIC devices. However, it might not be acceptable in systems where the

string sets needed to be updated frequently, which necessitates quickly re-synthesize

and update the logic behind SMM functionality. Therefore, SMMs which rely on

memory rather than logic are often more desirable as they provide higher degree of

flexibility and programmability. On one hand, the logic behind our proposed ma-

98

chines is not needed to be re-synthesized frequently. In fact, re-synthesis procedure is

not needed until a pre-defined size limit of the string set stored in the machine. On the

other hand, only the associated memory contents can be modified with pre-calculated

values to support changes in the string set.

The proposed architectures may be evaluated further with other string sets extracted

from other sources such as ClamAV [3], BRO [2], Roget [4], etc. Moreover, the

variable size string matching architecture can be mapped into commercially available

FPGAs and off-chip memories in order to depict the feasibility and the scan rate.

Also, instead of assigning CAM devices for each substring length, a single TCAM

can be used. At this point, the penalty in terms of Normalized Memory Consumption

(NMC) and Normalized Memory Complexity (NMCx) should be calculated. Further-

more, similar to DBF-SMM, MBFb-AC-wDFA can be modeled in SystemC and its

functionality can also be verified with different types of input traffics.

The performance of the proposed architectures can be improved further; the scan rate,

for example, can be increased in the normal traffic conditions by employing heuristic

mechanisms. To do this, appropriate methods published in the literature should be

inspected carefully and modified properly to be used in the proposed architectures.

In addition to this, higher memory efficiency can be achieved with sharing multi-port

memories for parallel SMMs having the same memory contents.

99

100

REFERENCES

[1] Accellera systems initiative. http://www.accellera.org. Accessed:
2014-08-12.

[2] Bro: Network monitoring and network intrusion detection system. http://
bro-ids.org/. Accessed: 2014-08-12.

[3] Clam antivirus: an open source (gpl) anti-virus toolkit for unix. http://
www.clamav.net. Accessed: 2014-08-12.

[4] Roget: System hacking general password crackers wordlists.
http://packetstormsecurity.org/files/31989/
roget-dictionary.gz.html. Accessed: 2014-09-28.

[5] Snort: A free lightweight network intrusion detection system for unix and win-
dows. http://www.snort.org. Accessed: 2014-08-12.

[6] Virtex-7 fpgas data sheet: Dc and switching characteristics, April 2014.

[7] Xilinx:a digital programmable logic device (pld) company, April 2014.

[8] M. J. C. Alfred V. Aho. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18:333–340, 1975.

[9] M. Becchi and P. Crowley. An improved algorithm to accelerate regular expres-
sion evaluation. In R. Yavatkar, D. Grunwald, and K. K. Ramakrishnan, editors,
ANCS, pages 145–154. ACM, 2007.

[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13:422–426, July 1970.

[11] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communica-
tions of the ACM, 20(10), October 1977.

[12] A. Bremler-Barr, D. Hay, and Y. Koral. Compactdfa: Scalable pattern matching
using longest prefix match solutions. Networking, IEEE/ACM Transactions on,
22(2):415–428, April 2014.

[13] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. In Internet Mathematics, pages 636–646, 2002.

101

http://www.accellera.org
http://bro-ids.org/
http://bro-ids.org/
http://www.clamav.net
http://www.clamav.net
http://packetstormsecurity.org/files/31989/roget-dictionary.gz.html
http://packetstormsecurity.org/files/31989/roget-dictionary.gz.html
http://www.snort.org

[14] H. Chen, Y. Chen, and D. Summerville. A survey on the application of fpgas
for network infrastructure security. Communications Surveys Tutorials, IEEE,
13(4):541 –561, quarter 2011.

[15] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep packet
inspection using parallel bloom filters. Micro, IEEE, 24(1):52 – 61, jan.-feb.
2004.

[16] S. Dharmapurikar and J. Lockwood. Fast and scalable pattern matching for
network intrusion detection systems. Selected Areas in Communications, IEEE
Journal on, 24(10):1781 –1792, oct. 2006.

[17] Y. Fang, R. H. Katz, and T. V. Lakshman. Gigabit rate packet pattern-matching
using tcam. In ICNP, pages 174–183. IEEE Computer Society, 2004.

[18] S. Geravand and M. Ahmadi. Bloom filter applications in network security: A
state-of-the-art survey. Computer Networks, 57(18):4047–4064, 2013.

[19] H. Kim, H.-S. Kim, and S. Kang. A memory-efficient bit-split parallel string
matching using pattern dividing for intrusion detection systems. Parallel and
Distributed Systems, IEEE Transactions on, 22(11):1904 –1911, nov. 2011.

[20] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing regular ex-
pressions matching algorithms from insomnia, amnesia, and acalculia. In Pro-
ceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and
Communications Systems, ANCS ’07, pages 155–164, 2007.

[21] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algorithms
to accelerate multiple regular expressions matching for deep packet inspection.
In Proceedings of the 2006 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, SIGCOMM ’06, pages
339–350, New York, NY, USA, 2006. ACM.

[22] A. Lakshmikantha, C. Beck, and R. Srikant. Impact of file arrivals and depar-
tures on buffer sizing in core routers. Networking, IEEE/ACM Transactions on,
19(2):347 –358, april 2011.

[23] R. P. Laufer, P. B. Velloso, and O. C. M. B. Duarte. A generalized bloom filter
to secure distributed network applications. Comput. Netw., 55(8):1804–1819,
June 2011.

[24] H. Le and V. Prasanna. A memory-efficient and modular approach for large-
scale string pattern matching. Computers, IEEE Transactions on, 62(5):844–
857, May 2013.

[25] P.-C. Lin, Y.-D. Lin, Y.-C. Lai, Y.-J. Zheng, and T.-H. Lee. Realizing a sub-
linear time string-matching algorithm with a hardware accelerator using bloom

102

filters. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
17(8):1008 –1020, aug. 2009.

[26] Y. Meng, W. Li, and L.-F. Kwok. Towards adaptive character frequency-based
exclusive signature matching scheme and its applications in distributed intrusion
detection. Computer Networks, 57(17):3630 – 3640, 2013.

[27] G. Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33:31–88, March 2001.

[28] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (cam) cir-
cuits and architectures: a tutorial and survey. Solid-State Circuits, IEEE Journal
of, 41(3):712–727, March 2006.

[29] A. Papadogiannakis, D. Antoniades, M. Polychronakis, and E. Markatos. Im-
proving the performance of passive network monitoring applications using lo-
cality buffering. In Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2007. MASCOTS ’07. 15th International Sympo-
sium on, pages 151 –157, oct. 2007.

[30] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos. Tolerating overload
attacks against packet capturing systems. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference, USENIX ATC’12, pages 18–18,
Berkeley, CA, USA, 2012. USENIX Association.

[31] A. Patwary, B. Geuskens, and S. Lu. Low-power ternary content addressable
memory (tcam) array for network applications. In Communications, Circuits
and Systems, 2009. ICCCAS 2009. International Conference on, pages 322–
325, July 2009.

[32] M. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient hardware hashing func-
tions for high performance computers. Computers, IEEE Transactions on,
46(12):1378 –1381, dec 1997.

[33] G. S. Shenoy, J. Tubella, and A. González. A performance and area efficient
architecture for intrusion detection systems. In IPDPS, pages 301–310. IEEE,
2011.

[34] G. S. Shenoy, J. Tubella, and A. González. Hardware/software mechanisms for
protecting an ids against algorithmic complexity attacks. In IPDPS Workshops,
pages 1190–1196. IEEE Computer Society, 2012.

[35] I. C. Society. Ieee standard for standard systemc language reference manual.
IEEE Std. 1666-2011, January 2012.

[36] T. Song, W. Zhang, D. Wang, and Y. Xue. A memory efficient multiple pat-
tern matching architecture for network security. In INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, pages –, April 2008.

103

[37] K.-K. Tseng, Y.-C. Lai, Y.-D. Lin, and T.-H. Lee. A fast scalable automaton-
matching accelerator for embedded content processors. ACM Trans. Embed.
Comput. Syst., 8:19:1–19:30, April 2009.

[38] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-
efficient string matching algorithms for intrusion detection. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communica-
tions Societies, volume 4, pages 2628–2639 vol.4, 2004.

[39] J. Van Lunteren. High-performance pattern-matching for intrusion detection. In
INFOCOM 2006. 25th IEEE International Conference on Computer Communi-
cations. Proceedings, pages 1–13, April 2006.

[40] J. Van Lunteren and A. Guanella. Hardware-accelerated regular expression
matching at multiple tens of gb/s. In INFOCOM, 2012 Proceedings IEEE, pages
1737–1745, March 2012.

[41] Y. Weinsberg, S. Tzur-David, D. Dolev, and T. Anker. High performance string
matching algorithm for a network intrusion prevention system (nips). In High
Performance Switching and Routing, 2006 Workshop on, pages 7 pp.–, 2006.

[42] N. Weng, L. Vespa, and B. Soewito. Deep packet pre-filtering and finite state en-
coding for adaptive intrusion detection system. Computer Networks, 55(8):1648
– 1661, 2011.

[43] L. Yang, R. Karim, V. Ganapathy, and R. Smith. Fast, memory-efficient regular
expression matching with nfa-obdds. Computer Networks, 55(15):3376 – 3393,
2011.

104

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Zengin, Salih

Nationality: Turkish (TC)

Date and Place of Birth: 25.04.1979, Ankara

Marital Status: Married

Phone: +90 506 282 47 64

Phone: +90 312 590 91 85

Fax: +90 312 210 13 92

EDUCATION

Degree Institution Year of Graduation

M.S. Electrical and Electronics Engineering Dept., METU 2006

B.S. Electrical and Electronics Engineering Dept., METU 2003

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2004- TÜBİTAK SAGE Chief Expert Researcher

105

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	String Matching with Bloom Filters
	String Matching: Problem Formulation and Performance Metrics
	Bloom Filters
	Approximate String Matching with Bloom Filters

	String Matching Module Architecture with Double Bloom Filters
	Analysis of Fixed-size String Matching Module with a Single Bloom Filter
	Fixed-size String Matching Module with Double Bloom Filter: DBF-SMM
	Analytical Model of DBF-SMM
	Response Time
	Correctness

	DBF-SMM and SBF-SMM Response Time Comparison
	Selecting Design Parameters
	Complexity and Resource Requirements

	Parallel Implementation of DBF-SMM
	DBF-SMM In Practice
	DBF-SMM Evaluation under different design Parameters
	Response Time Evaluation Under Different Design Parameters

	FPGA Implementation of DBF-SMM
	Introduction
	VHDL Description of DBF-SMM
	FPGA Implementation Results

	SystemC Implementation of DBF-SMM
	Introduction
	SystemC Model of DBF-SMM
	Verification of the DBF-SMM Model

	Variable Size String Matching with Automata
	Bloom Filter based w-byte Deterministic Finite Automaton
	w-byte Deterministic Finite Automaton (wDFA)
	Formal Definition of wDFA
	Hardware Implementations of wDFA

	Bloom Filter based wDFA

	String Matching with Aho-Corasick Finite Automaton
	Aho-Corasick Based Multi-Byte DFA
	Lemmas and Theorems on AC-based Automaton

	Mapping SNORT String Set into an AC-wDFA

	Variable Size String Matching with Double Bloom Filters
	String Matching Module with Bloom Filter based Aho-Corasick Automaton
	Basic BFbAC-wDFA
	Multiple BFbAC-wDFA

	Evaluations of the Proposed Architectures
	Comparison of the Results with Other Related Studies

	Related Work

	Conclusions and Future Work
	REFERENCES
	CURRICULUM VITAE

