A CONTEXT-AWARE MOBILE EVENT NOTIFICATION
SYSTEM USING THE PUBLISH-SUBSCRIBE MODEL WITH A
BUSINESS RULE ENGINE AND LINKED DATA

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF
INFORMATICS OF MIDDLE EAST TECHNICAL
UNIVERSITY

BY

MELIH GURGAH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2014

A CONTEXT-AWARE MOBILE EVENT NOTIFICATION SYSTEM USING THE
PUBLISH-SUBSCRIBE MODEL WITH A BUSINESS RULE ENGINE AND
LINKED DATA

Submitted by Melih GURGAH in partial fulfillment of the requirements for the degree of
Master of Science in the Department of Information Systems, Middle East Technical
University by,

Prof. Dr. Nazife Baykal
Director, Informatics Institute

Prof. Dr. Yasemin Yardimci Cetin
Head of Department, Information Systems

Assist. Prof. Dr. P. Erhan Eren
Supervisor, Information Systems, METU

Examining Committee Members

Prof. Dr. Nazife Baykal
Information Systems, METU

Assist. Prof. Dr. P. Erhan Eren
Information Systems, METU

Dr. Nail Cadall1
KAREL A.S.

Assoc. Prof. Dr. Altan Kogyigit
Information Systems, METU

Assoc. Prof. Dr. Alptekin Temizel
Work Based Learning, METU

Date: 11/09/2014

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. | also declare that, as required
by these rules and conduct, | have fully cited and referenced all material and results

that are not original to this work.

Name, Last Name: Melih Giirgah

Signature:

ABSTRACT

A CONTEXT-AWARE MOBILE EVENT NOTIFICATION SYSTEM USING THE
PUBLISH-SUBSCRIBE MODEL WITH A BUSINESS RULE ENGINE AND LINKED
DATA

Gurgah, Melih
MSc., Department of Information Systems
Supervisor: Assist. Prof. Dr. P. Erhan Eren

September 2014, 58 Pages

Context-awareness has become an important feature of event recommendation and
notification systems. So far, several studies in tourism and education domains have provided
good results on using different context data and delivering messages based on this context-
aware environment. Although many context data are gathered, the analysis of these context
data for a proper recommendation still remains insufficient. Even if the recommendation
itself is said to be successful, delivery performance, in other words, notifying the message
recipient under appropriate conditions, is still inadequate. We propose a publish-subscribe
based event notification system enhanced with a business rule engine for context data
evaluation, and linked data for semantic analysis. We aim to improve event notification
performance by aggregating various context data, making complex inferences and finding
the most suitable time to deliver messages for the subscriber by applying the business rule
concept. Furthermore, in order to semantically analyze event details and infer new
relationships, we utilize semantic analysis by using linked data. To validate our proposed
system, we implement a working prototype incorporating event publishers, an event
management server composed of a business rule engine, a semantic analysis module
powered with linked data and an event dispatcher component, as well as internal and
external context sources. The applicability of the system is demonstrated by evaluating it
against several sample scenarios.

Keywords: Mobile Computing, Context-Aware Notification System, Publish - Subscribe
Model, Business Rule Engine, Linked Data

(0Y/

IS KURALI MOTORU VE BAGLI VERI ILE YAYINLA-ABONE OL MODELINI
KULLANAN BAGLAM BILINCLI MOBIL ETKINLIK BILDIRIM SISTEMI

Gtirgah, Melih
Yiiksek Lisans, Bilisgim Sistemleri Boliimii
Tez Yoneticisi: Yrd. Dog. Dr. P. Erhan Eren

Eyliil 2014, 58 Sayfa

Baglam bilinglilik, etkinlik tavsiyesi ve bildirim sistemlerinde énemli bir 6zellik olmustur.
Simdiye kadar, turizm ve egitim alanlarinda bir¢ok c¢alisma farkli baglam verilerini
kullanmada ve bu baglam bilingli ortama dayanarak mesajlar1 iletmede iyi sonuglar
saglamistir. Birgok baglam verisi toplanmasina ragmen, bu baglam verilerinin analizi iyi bir
tavsiye i¢in hala yetersiz kalmaktadir. Tavsiyenin kendisi bagarili olarak nitelense bile, iletim
performansi, diger bir deyisle, mesaj alicisina uygun kosullarda mesaj bildirmek hala
yetersiz olmaktadir. Bu noktada, baglam verileri degerlendirme igin is kurali motoru ve
anlamsal analiz icin bagl veri ile gelistirilmis yayinla-abone ol tabanli etkinlik bildirim
sistemi sunmaktayiz. Buradaki amag, is kurali kavramini kullanarak, cesitli baglam verilerini
birlestirip ve kompleks ¢ikarimlar yapip aboneye mesajlart iletmede en uygun zamani
bularak, etkinlik bildirim performansini gelistirmektir. Ayrica, etkinlik detaylarini anlamsal
olarak analiz etmek ve yeni iliski ¢ikarimlarinda bulunmak i¢in, anlamsal analizden bagl
veri araciligiyla faydalaniriz. Sunulan sistemi dogrulamak amaciyla, etkinlik yayinlayicisi
modiilii, etkinlik abonesi modiilii; is kurali motoru, anlamsal analiz modiili ve etkinlik
dagiticist alt modiillerinden olusan etkinlik yonetim sistemi modiillerinin yani sira, i¢sel ve
digsal baglam kaynaklarinin dahil oldugu ¢alisan bir prototip gelistirilmistir. Sistemin
uygulanabilirligi, sistemin birka¢ drnek senaryo ile degerlendirilmesi ile gosterilmistir.

Anahtar Kelimeler: Mobil Hesaplama, Baglam Bilingli Bildirim Sistemleri, Yaynla - Abone
Ol Modeli, Is Kurali Motoru, Bagl Veri

This thesis is dedicated to my family.

Vi

TABLE OF CONTENTS

ABSTRACT .ttt b b e b bRt R e bR R R bt e et ne e iv
OZ ottt sttt st n e v
LIST OF TABLEScoo ottt sttt ettt ettt aenaene e iX
LIST OF FIGURESoo ittt na st sne sttt n e X
CHAPTERS
I LN @16 L O I | SO 1
2 RELATED WORK ..ottt sttt sttt saanaebeabe s et e e nnens 5
3 PROPOSED CONCEPTUAL DESIGNccoiiiiiieieiiisiesese e 11
3.1, Main Features of the SYStEM.......c.ccviiiiiiicc e 11
3.1.1. MESSAgE DEIIVEIY ..o s 11
3.1.2. Business Rule Management System for Context Data..............ccccceeeeveinennnn 12
3.1.3. Semantic Analysis Using Linked Dataccccccovvevieiiiieciece e 13
3.2, SYSLEM ATCNITECIUIEo 16
3.2.1. EVENE PUDIISNEE ... e 17
3.2.2. Event Management SYSEEIM........oocive e e et 18
3.2.3. CONEEXE SOUITES ...ttt sttt ettt sttt sttt et sbeebeenre e e 21
3.24. EVENt SUDSCIIDET ... 21
4 IMPLEMENTATION ...ttt ettt st nn e 23
4.1, Used Technologies and SEIVICES........ccciiiieiiiieie et 23
4.1.1. REST architecture / Restful Web Servicescccoovevvvieiivevviieic e 23
412, ASP.INET WED APL.....oociiiiee et 23
4.1.3. Microsoft Visual Studio 2013 and Azure Cloud Services...........ccccccoevevuennenn. 24
4.1.4. Google Cloud Messaging PUSh SErVICe..........c.ccoviiriniieiiiiiisese e 24
4.1.5. Drools - Business Rule Management SYStemccovverriininieneneneneenens 24
41.6. Java, Android and ECHIPSe......coveiiiie e 24
4.1.7. DBpedia & DBpedia LOOKUP SEIVICE........cccioiieeiieeieie e 24
4.1.8. OpenWeatherMap APL.........coiiiiiese e 24
4.2. Architecture Overview of the Implemented System..........ccccvviiiiiiiiniiicenn 25
42.1. Event Management SYSEM........couiiiiiiiieeesee e 26
4.2.2. Semantic Tag Matcher via DBpedia LOOKUP Service.........c.ccooevvreneiennennnn. 27
4.2.3. CONEEXE SOUITES ..vvevveeiiieiee sttt sttt ste e st be et e st sraeenbeebeenre e e 28
4.2.4. DroolS BRIMIS........ooiiiiiee ettt s nne s 30

4.25. Event Publisher ANAroid CHENT.........oviii ittt e e e e e e e e 33

4.2.6. Event Subscriber Android CHent...........coeieiiiiiinin e 33

4.3. Sample Usage 0f the SYStEMccooiiiiiiiiieec e 34
4.3.1. INEEIESE SELLING ... c.eeeeeeieiieie e 34
4.3.2. Event Creation and Message DeliVEry ... 35
4.3.3. Event Detail Display, Registering to Event and Setting Time Profile 38
4.3.4. Message Delivery By Means Of Linked Data...........cccccoovrereneneneicinennn 40
4.3.5. Message Delivery Delay..........cccooiiiiiiiiiiiencccs e 40

4.4, SAMPIE USE CASES ...veeveiveiiieiiecteee sttt se et te st e te e sresta e besbeess e besaeesnesreeneeneas 41
441, SaMPIE USE CASE Lociiiiiiieiiiiieieeee e 41
442, SAMPIE USE CASE 2.ttt 42
4.4.3. SaMPIE USE CASE 3...oiiieeiiieciie ettt te e te et be e s nre e 42

5 RESULTS AND DISCUSSIONctiiiiiiiiiiiieiieisisisie sttt e 43
5.1, SAMPIE SCENAIIOS ...t nne 44
5.2, Evaluation of the RESUIS.........cccciiiiiiiecc e 46
5.3. A Proof of Concept Application at METU Informatics Instituteccccoeeveeee. 48

6 CONCLUSION AND FUTURE WORK ..ottt 53
REFERENCES.......ociiiii ettt ettt et et et eraenaeneans 55

viii

LIST OF TABLES

Table 1 Geonames OULPUL SAMPIEScoiiiiiriiieieeee e 14
Table 2 BRMS TimMe INTEIENCEoiivie ittt sbae e 19
Table 3 BRMS Weather Condition INfEIrENCE.........covvviiciieiiee et 20
Table 4 BRMS Subscriber Interaction INFErENCEocvviiiiiiie e 20
Table 5 System Evaluation With/Without ModUIEScceceiiiiiiiiisc e 45
TabIe 6 SUNVEY RESUILSoviieieiie ettt et enrenre s 49

LIST OF FIGURES

Figure 1 Used CONEXE FACIOIS.......cviii ittt sttt s re st sre e sre e e 7
Figure 2 In bad weather and outdoor condition, new recommendations are offered 7
Figure 3 Notification Manager of liveCities System [L10].........ccccereieiiniiniininineneeeeeeee 9
Figure 4 William Shakespeare Output XML File ..o 15
Figure 5 Architecture of Proposed Conceptual DeSIgN..........ccccoeveveiiininineneseseeeeeees 17
Figure 6 Architecture of Proposed Implementationc.cceveieinininiincnceeeeee 25
Figure 7 Interests can be specified in this SCrEENcccviv i 26
Figure 8 Linked Data-User Interests Successful MatCh...........ccoccooiiiiiiicccnc s 27
Figure 9 Word Filtering Module first eXample ... 28
Figure 10 Word filtering module second eXample ... 28
Figure 11 3-days weather forecasts for Ankara [18].........ccccceviviiiiiiiiic i 29
Figure 12 Daily Calendars.........coouiiiiiiieiiiieieeeee e 30
Figure 13 Weekly Calendarsccoiiiiiiiieieie s 30
Figure 14 Subscriber PreferenCes SCrEENccvcie it 31
Figure 15 Night Timer Rule that works only night hoursccccciveiiicn e, 32
Figure 16 GO0d WEAhEr RUIE..........cciiiiiiieee s 32
Figure 17 Bad Weather RUIEccooiiiiie st s 32
Figure 18 Login as Standard USEIc.ccuciiieiieie ettt st st s 34
Figure 19 Standard USEr MaiN SCrEENM.........couiiririeieieiisie sttt 35
Figure 20 INTEreSt SEIEINGcovevriiirierieite ettt 35
Figure 21 Login as EVENt NOTITIEr ..o e e 36
Figure 22 Main Screen of EVENt NOTITIErccoovviiiiiiie s 36
FIQUIE 23 EVENT CrEALION ..ottt 37
Figure 24 BRM NOLTICALIONccoiieiiiiiic sttt s 37
Figure 25 Standard USEr Main SCIEEN..........coiiiieiieiie e se ettt sre st sre e 38
FIgure 26 SUQQESTEU BVENTS.......c.eiiiiitiieiite sttt 38
Figure 27 Event description With MESSAQE.........ccevieieiiie ettt e 39
Figure 28 Time profile set t0 NON-DBUSINESS-NOUIS........cceiviiiiiiieic e 40
Figure 29 BRM-Alayed MESSAGEcoveiveriiieieieisii sttt 41
FIQUIe 30 USEI INEEIESESc.veueeiiiiieiisiest ettt 50
Figure 31 Notification about IS 777 COUISE.......cc.eiiiieiiie e 50
Figure 32 Notification ADOUt METU EVENLSc.ocoviiiiiiiiieeeeec s 50

CHAPTER 1

INTRODUCTION

Recently, technology has provided significant capabilities for effective use of computing
power through mobile devices. By means of wireless sensors, easy Internet access from
mobile devices, and enhanced mobile operating systems, the systems can receive many types
of context information related to the mobile user and the environment. With this utilization,
studies in related domains have improved capabilities to propose and provide context-aware
systems.

One of the significant context-aware systems is context-aware event recommendation and
message delivery systems. These systems generally concentrate on the tourism domain that
includes recommendation of places to visit or events to attend. Additionally, some studies
focus on the university campus domain in order to increase quality of in-campus information
delivery about academic, non-academic events, in-campus café/restaurant offers and in-
campus news. Furthermore, some research studies provide successful results in context-
aware movie or music recommendation. The context-aware recommendation systems utilize
user profile information, user activities, user preferences, location, and weather information
as contextual data, and then create new knowledge in order to best describe the user and act
accordingly.

With the technical improvements in mobile devices, location finding via GPS and other
wireless sensors has become a basic feature of mobile phones. In context-aware event
recommendation and message delivery systems, location information is the fundamental
context data used for recommending geographically related events. For example, a tourist
wants to visit nearest places and closest events, so utilizing location context data carries a
very important role in event recommendation. Moreover, time data also have a significant
effect on recommendation, so that a tourist or a student will not have unfortunate
experiences while arranging event schedules, with the help of time-aware recommendations.
Furthermore, in event recommendation, weather forecast data are important, especially for
outdoor events. Making recommendations by considering weather forecast information will
provide better results improving the quality of the recommendation for the users. There are
many studies, such as STS [7], which includes weather data as context to use it in
recommendation, and the system may alert the user to avoid attending an event, due to bad
weather at the event date.

In context-aware event recommendation and notification systems, semantic analysis may
create a value for additional relevant event service and event item discovery. For instance, in
the tourism domain, systems utilize tourism related ontologies to categorize tourism items
for better recommendation results. Accordingly, the computer becomes easily aware of the
event information and classifies it by means of semantic analysis. When classification

information is not available in the domain, the system may become inadequate in trying to
find semantic relationships. Therefore, ontologies may not be successful in such a domain.
Linked data [40] is another approach in semantic knowledge representation that is used to
display and connect data on the Web from various resources. Linked data method enables
machines to easily read the knowledge unit and find related information about the unit. To
achieve this, the computer uses the Web to find the most related data with the specified
information by exposing the connections of the data. Therefore, this method may prove to be
useful when ontology is insufficient or any information classification method is not
available. When everything is considered, using semantic analysis with linked data method
has the potential to improve related information discovery about events and other items in
the specified domain.

Another property of context-aware event recommendation and notification systems is that
they enhance their recommendation quality with case based reasoning by evaluating
complex conditions. They achieve this by defining rules to evaluate the conditions and
trigger actions. Business rules [47] are used in software systems to make a separation
between software implementation and business logic so as to modify the conditions with low
maintenance effort. One advantage of business rules is that they have exact time and date to
be executed, so the business rule activates only at specified times, and there is no need for
spending effort on arranging a job scheduler [49] to trigger an action at a particular time.
This feature may have significant role in delivery time of the recommendation message.

In message delivery, context-aware recommendation systems can use the publish-subscribe
approach [46] to filter messages and send only related messages to related subscribers who
are registered to interested topics only. In the publish-subscribe approach, the publishers
create content and add related topics to the content. The subscribers specify topics that are
interesting for them. Then, the subscriber receives related messages from the subscribed
topics. Another possibility is that they can specify message content constraints to retrieve
related messages. The publish-subscribe approach provides successful message filtering so
that the subscriber views only related messages. In mobile devices, push notification services
can be used for message delivery. Push notification [50] is publish-subscribe based message
delivery by a centralized server to an endpoint client without specific request from the client.
Therefore, with this service, mobile devices easily receive messages anytime without
requesting information from the server.

As an enhancement to the former studies, we propose a publish-subscribe based design to
present a context-aware event notification system. The presented system provides added
value with a business rule engine that can gather all contextual data such as location, time,
weather forecast data, user preferences and user interests. The business rule engine deduces
valuable knowledge from the contextual data, and control the time to deliver the message at
the best moment for the subscriber. Secondly, the other added valued feature is offering
semantic knowledge with the linked data approach, in order to allow automatically setting
the related topics of the event, as a contribution to the main task of the publisher. This
feature may prove to be significant where ontology is not available. In our proposed system,
the subscribers set their interests (tags) in order to receive related events. In order to plan
message delivery time and arrange message delivery conditions, they can set and modify
their message delivery preferences through the event management system that takes into
account time, location and/or weather forecast context data while sending messages. The
publisher creates events with the tags they specify, and publish it to the event management
server. According to the preferences and the interests of the subscriber, finally, the
subscriber can be notified with the related event messages.

This thesis is structured as follows:

e Chapter 2 gathers information about related studies and discusses context aware
event recommendation and message delivery systems.

e In Chapter 3, we propose the conceptual design of our context aware event
notification system and describe it in detail.

e In Chapter 4, we describe our prototype based on our conceptual design. We also
explain use case scenarios of our implementation.

e In Chapter 5, we create test sets and sample scenarios for evaluation of our
prototype. By disabling the modules in the system individually, we evaluate the
results at the absence of the specified module, in order to highlight the importance of
the corresponding proposed module. We also describe the significance of the full
working system. Furthermore, we discuss applying the proposed system at METU
Informatics Institute environment.

o In Chapter 6, we briefly summarize the related work, current problem, the proposed
system and the prototype. Finally, we list future plans regarding our current work.

CHAPTER 2

RELATED WORK

Context-awareness is related to sensing environmental conditions or situations as well as
user parameters, and helps evaluate current conditions and act according to the situation. In
context-aware event recommender systems, there are many environmental and situational
inputs to consider and evaluate. In addition to location awareness, the systems might use
time of day information, weather information, user preferences, user history and
demographic info (e.g. age, gender). In delivery and recommendation mechanisms, some
systems use business rules. They define business rules and the system can change its
behavior dynamically, without updating the system programmatically. The systems may use
user history, i.e., track previous activities of the user and infer knowledge. Moreover, by
looking at the past user activities, the system might categorize the experienced activities and
appoint a profile for the user accordingly. For example, in the tourism recommender system
m-To-Guide[1], the system sets a profile for the user according to the travel type of the user,
leisure travel or business travel, and recommends services according to that profile.

In context-aware event recommender systems, location is the most significant factor, since
these systems offers places or events in the nearest area to make the user be able to join.
Location information is obtained generally from a mobile phone via GPS. Speta [2],
Gulliver’s Genie[3][36], LoL@[4], Maiden[5] use GPS to locate user’s location and find the
nearest services. LoL@[4] is a location based mobile application that provides tourism
information in Vienna. It aims to give information about predefined tours, about visiting
places and also provides routing to navigate tourists to the interesting places. Speta [2] gives
tourism related recommendations, aggregates social networks, semantic Web and context
awareness (location, weather forecast, time, user preferences, friend’s recommendation and
history). The recognition of user preferences is done by two ways. One is explicitly specified
interest of the user, and ratings to the attractions are taken into account. In addition to this,
social media interests, such as favorite painter, are considered for user preferences. Another
way is inferred from user behavior. For instance, the type of the museums, which are always
visited by the user, is taken into account. The social network integration part is limited to
adopting OpenSocial API[11], and only People (information about people and their
relationships with each other) and Activities (information about what people are doing.)
elements are used.

In context-aware recommendation and notification systems, in order to gather semantic
information about the recommendation entities, such as place, events and interests, the
systems may utilize semantic analysis through the use of ontologies. Ontology [39] is a
structure that aims to represent knowledge as a hierarchy of notions in a domain using a
common word to define types, properties and relationships between these notions. In the
semantic part of Speta [2], the ontology consists of entities, relations and the axioms. There
are abstract entities such as ‘City’, ‘Hotel’, ‘Restaurant’, and instances such as ‘Paris’ and

Hotel Ritz’. After all the context information is gathered, a recommender algorithm, which is
based on hybrid filtering [12] approach, is used to give the relevant information to the user.
In this system, there is no event driven and notification component. The recommender runs if
the user queries the system.

SigTur/E-Destination [38] has shown a good feature on using semantic environment that is
settled on tourism ontology to explicitly classify the activities to suggest among predefined
tourism concepts. We can give a sample for the tourism ontology that SigTur uses:

Sailing —> AquaticSports ->Sports - > ltemType
As a second example: HistoryMuseums -> Museums -> Culture -> ItemType

Moreover, Sem-Fit [13] shows a good example on hotel recommendations by combining
hotel ontology and fuzzy engine in order to increase precision on recommendation success.
When the activity name or hotel name is available in the ontology, semantic analysis will
have good performance on categorization. However, when an activity/hotel name is not
available in the ontology, the name will not give any idea about what is related to or what it
means. Thus, setting ontologies might sometimes remain inadequate in event/place
recommendations. When ontology remains insufficient, some studies use alternative ways,
for instance, they might use linked data method. A study about context-aware music
recommendation [51] shows an example of creating inter-ontologies using linked data
method, in addition to music ontology. It achieves this by aggregating related data from
Last.fm [52], Yahoo! Local [53], Twitter [54] and LyricWiki [55], then find the relations
between terms, lyrics and other words to recommend related music for users, so that the
system will be able find up to date related information about music, songs and their lyrics,
while music ontology alone cannot provide that much information.

Gulliver’s Genie [3] [36] is another context-aware tourism guide system. It utilizes user
defined interests and location information and user demographic data such as age, gender
and nationality. An important feature of this system is that it uses push notifications. When a
user is near a sight or a visiting place, the information about this place is pushed to the user’s
mobile device as notifications. Only push trigger of this system is location based, meaning
that, the push notification is triggered only if the user is in the neighborhood of the particular
place. MobiDenk [5] provides current information about places of interest, by utilizing GPS
location information. In addition to the GPS data, it also considers the movement speed and
direction of the user.

Generally, it is assumed that the places to visit and the activities to join are outdoor
locations. However, some interesting places could be indoor locations, and GPS alone may
be insufficient. At this point, some studies include different technologies for indoor
positioning. eAgora [6] (Agent based architecture for context-aware and personalized event
recommendation) system, proposes Wi-Fi, Bluetooth and ZigBee [14] technologies for
indoor positioning. It recommends academic or cultural events based on location, time and
profile information by using spreading activation method [28]. In this system, there is no
delivery mechanism with notifications or event driven approach.

In event recommendation systems, weather and time information may be very significant
especially for outdoor events. The awareness of weather forecast gives an extra added value
to the system and it may be very important in such a pervasive environment. The system
STS [7] offers context aware points of interest suggestions based on weather conditions. The
system recommends touristic places with suitable weather conditions. If the user wants to go
to a recommended place, he/she can bookmark the place. If the weather changes from e.g.
sunny to rainy, the system alerts the user to revise his/her choices. The system uses rich
context factors to determine recommended places as in Figure 1, however many of these

6

context info is taken by the user, thus, the inference engine could be weak, since the learning
is done by ratings of the places in addition to the user profile information, and the alert
mechanism is limited to weather change conditions. Finally, the system cannot recommend
new places against bad weather conditions.

Contextual factors and associated contextual conditions

Weather

Sunny, cloudy, rainy, thunderstorm, clear sky, snowing
Temperature

Burning, hot, warm, cool, cold, freezing

Distance

Far away, near by

Time available

Half day, one day, more than one day
Crowdedness

Crowded, not crowded, empty

Knowledge of surroundings

New to area, returning visitor, citizen of the area

Season

Spring, summer, autumn, winter

Budget

Price for quality, budget traveller, high spender
Daytime

Morning, afternoon, night

Companion

With friends/colleagues, with children, alone, with girlfriend/boyfriend, with family
Mood

Happy, sad, active, lazy

Weekday

Working day, weekend

Travel goal

Business, health care, scenic/landscape, hedonistic/fun, religion, visiting friends, education,
activity/sport, social event

Transport

A car, a bicycle, public transport, no transportation means

Figure 1 Used Context Factors

Moreover, in CAIPS (Context-Aware Information Push Service in Tourism) [8], the system
stores planned trips and scheduled events for the user. If the weather is bad for the specified
event time, the system sends a notification to the user that the event is not suitable for the
bad weather. Instead of the planned event, the system offers new recommendations for those
weather conditions. An example of how new event is offered due to bad weather condition as
in Figure 2 is shown.

Event: [WeatherEvent (statechange=blizzard)]
Condition: ‘[User.bookedEvent = outdoor AND

User.bookedEvent.location = weather.location]
Action: [Recommendation(Event)]

Figure 2 In bad weather and outdoor condition, new recommendations are offered

Business rules are another significant factor for context-aware event recommender and
delivery systems. In past studies, we can talk about business rule integrations to the systems.
In CAIPS [8], the system offers improvements by the business rules defined by the tourism
experts. The tourism experts create rules by means of a graphical user interface to arrange
push messages to the users. For example, the expert creates a rule that pushes information
about new recommendations against bad weather conditions, according to the user profile. In

7

terms of learning and improvement of the system itself, the capability generally depends on
the tourism experts. The business rules are limited to arranging push notifications and the
system itself cannot infer knowledge by considering the business rules.

We can discuss notification mechanisms in past studies. A former study about notification
system [9] has a different approach in time, location and user profile awareness. It proposes
an in-campus notification system that delivers the right information at the right time and
place to the right person. It succeeds in the approach by using RFID feature of the student
cards. The student can define his/her preferences and interests from a web application. Some
RFID reader terminals connected to the PCs are put at important places, such as sport center,
faculty buildings, cafés etc. When a user tag is read by a terminal, he/she can get related
information for him/her, at the right time and place. The information may be an academic
announcement in the faculty building, which informs the students about a cancelled morning
course, or it may be a sport event notification to invite the student to join the event in the
sport center. The system can be assessed as successful in delivering right information to the
correct person at the most suitable right and time. However, the user interaction level with
the system is very low and there is no feedback from the user except for arranging the
preferences from the web application. Thus, there is a low quality learning mechanism and
weak dynamic adaptation of the system. The sample delivery rule process is as follows [9].

Time ='5 pm’

Identity = 1038’

Location = ‘Sports Complex’
Preferences = “Sports’

Then the rules will be presented:

IF hour=>5

AND ampm = ‘pm’

AND location = “sports_complex’

AND preferences = ‘sports’ THEN display_notification = “inter-varsity football league is
on now”

Furthermore, “liveCities” [10] proposes an improved notification system by including all
tourism entities such as a restaurant or a bus company, as a notifier, meaning that, a
restaurant company is able to send notifications to the related people by specifying
notification message and the person type that might be interested. The system takes the user
profile info from the user, a notifier can specify the user profiles of the recipient to send the
notification, and the system sends the related info to the user according to location and time.
A scenario can briefly describe the system [10].

Scenario: If a user is walking with the friends around a restaurant at lunchtime and the
weather is good, the system pushes an offer to have a lunch at the terrace.

Tourism entity: fast food restaurant

Notification: a discount to have lunch at the terrace.

Areas: An area has been created around the restaurant.

Context parameters: location, moving mode(walking), time(from 12 to 14), age (<30), social
context (friends) and temperature(>20 °C)

As seen in the scenario, the system uses location, time and weather data, user profile and
social context (user scans nearby devices via Bluetooth and assign a role: family, friend,

workmate or couple) data.

New area

Area Name Notification Type Content Type
Information [~ Htmi Content '
@ Jan2011 W
| o | =iz]] e |as| — Sun Mon Tue Wed Thu Fri Sat
BlZ|Ujm|x|x|® ¥ W || FF 2|0 s St =
Fonts *| | Colors | v
= = Date end
0 [T 06 7 8
Time start [] |12 ® 10 |1 12 |13 |14 |15 |
- 6 |17 |18 19 20 |21 |2
Time end 12
4|2 % 7 9
30 1
Weekdays
|
Monday Tuesday | 'Wednesday | ' Thursday " Friday || Saturday [Sunday
Profile
Family Friends Work Couple
|
Age Nationality Gender Moving mode |

>:H 0 None [+] None 7': None 7"

Add polygon | Cancel

Figure 3 Notification Manager of liveCities system [10]

A tourism entity, such as a restaurant, can describe the notification settings, for example,
what property of the users to send, e.g. age, nationality, gender, moving mode, and also the
time can be determined. All settings are defined in the notification creation phase, and there
is no complex inference engine and business rule engine except for translating defined
settings into rules. Moreover, there is no user activity tracking and learning mechanism,
since most of context data are defined explicitly or pulled from some external service such as
weather. Nevertheless, it can be assessed as successful in terms of personalization, context
awareness, and in terms of sending right information to the right person.

There are remarkable studies in publish-subscribe approaches for context-aware systems.
Caglar [25] shows a good work on proposing context-aware reminder system based on
publish-subscribe model. The system, which uses time and location as context data,
composes reminder patterns for reminding events to the subscriber that it registered before.
The publisher component dispatches the reminder information, such as event detail or event
cancellation info, via the message dispatcher.

10

CHAPTER 3

PROPOSED CONCEPTUAL DESIGN

In this part, conceptual design of our context-aware event notification system is explained in
detail. The aim of the proposed system is to deliver event notifications to the right users at
the right place, right time, and under suitable conditions. To achieve this, the proposed
system should be able to use various information about the user and the environment for
evaluation of the conditions. While receiving information about the users and the
environment, the users must not be interrupted much, so the system should have the ability
of autonomously receiving information and deducing knowledge from such data. Another
aim is that the system information source should be open and flexible to be accessible
everywhere and provide easy information flow especially in composing event information.
Thus, the system knowledge pool can be extended easily and the users can retrieve more
number of event recommendations. Furthermore, the users should receive only related
messages under suitable conditions according to context data such as time, weather, and
place. They must not get messages regarding unrelated events that they may not be able to
attend or enjoy. While allowing fast growing information source of the system, there should
be mechanisms for filtering data and inspection of the relationship between user interests and
the events.

3.1. Main Features of the System

Main features of the system include Message Delivery, Business Rule Management System
for Context Data, and Semantic Analysis Using Linked Data, as explained next.

3.1.1. Message Delivery

In order to satisfy the aim of sending messages to the right users as explained above, a
publish-subscribe based approach is utilized in the proposed system. In systems
incorporating message delivery functionality, all messages are typically not sent to all
recipients. There are various methods for selective sending of the messages to the related
recipients. Publish-subscribe model [46] is one of them and it provides a message filtering
approach to send the message to the related recipients, in other words, the subscribers. In this
model, the subscribers can register to the topics that are defined by the publisher, or they
may specify the message content constraints to receive related messages. The advantage of
this approach is that it presents loose coupling between publisher and subscriber. Publisher
does not need to know who the subscriber is or whether the message is sent to the subscriber
or not. With this weak requirement, another advantage is that the model is scalable, meaning
that, publisher can send the message to a large number of subscribers without intensive
effort. In contrast, publish-subscribe model does not guarantee that the message is sent to all

11

related subscribers. In a system that aims assured message delivery, the model might need to
be supplemented accordingly. Moreover, the model may assume that the subscriber is
listening, when it is not. The information of whether the subscriber is listening will be
missed in this approach.

There are successful studies in proposing context-aware publish-subscribe model based
message delivery systems. The study of Caglar [25] proposes a publish-subscribe model
based context-aware reminder system with reminder patterns. The proposed system uses
time and location as context, and uses them in the reminder pattern in order to remind an
upcoming event to the subscriber. For instance, the publisher can create a generic reminder
template by specifying the location and the radius to remind the event in or out of the radius,
or specifying the time interval to trigger event reminder. The subscriber registers to the
topics in order to receive related reminder information of these topics. Then, the publisher
creates an event specifying the topic and the reminder pattern. Finally, the subscriber
receives reminder messages from subscribed topic channels. In the study, the system is
successful in using time and location as context, and takes action accordingly so as to deliver
information to the right person. In terms of context-awareness, this approach of proposed
system can be extended and can be made more flexible in using and managing context data,
rather than just utilizing predefined patterns limited to time and location info. We intend to
extend this approach by allowing managing different context data from different sources
without depending on the predefined templates and without changing the system.
Furthermore, we aim to make a contribution to this publish-subscribe approach by
semantically analyzing the published items and inferring new topic matches in order to add
them to the published item. Automatically setting related tags for the published items is
valuable as the publisher may miss some information regarding related tags or topics when
publishing an item.

We propose to use the topic-based [46] publish-subscribe approach in publishing and
delivering event notifications to correct users. The publisher has the ability to compose the
events by attaching event related user interests and publish it for the subscriber. The
subscriber is another user of the system, which is able to receive event messages by
specifying user interests (tags) and which allows the system to gain knowledge about itself to
get appropriate events with minimum interruption. The broker [46] is responsible for
presenting the user interests (tags), publishing and delivering the events to the related
subscriber coming from the publishers. Our system is composed of publisher, subscriber,
event management system, which can be described as an enhanced broker in the publish-
subscribe model [46], and context sources, which are used in retrieving subscriber and
environment information. To arrange message delivery conditions, the subscribers set their
message delivery preferences such as time, location, and weather forecast context data
related to sending messages through the event management system. The publisher composes
the events with the tags they specify, and publish them to the event management server.
According to the preferences and the interests of the subscriber, finally, the subscriber is
notified with the related event messages. As additional contributions to the work of Caglar
[25], we propose to use a business rule engine, which allows easy evaluation of different
context data and inferring knowledge, in order to utilize different context sources and to
allow removing the limit of utilizing only predefined patterns that use place and time.
Furthermore, we propose to incorporate the ability of semantically analyzing published items
by using linked data, in order to discover all related tags, when the publisher does not fully
specify all related tags. These two features of the proposed system are described next.

3.1.2. Business Rule Management System for Context Data

In software systems, business rules [47] present a solution that can handle dynamic business
logic by separating business knowledge and the implementation. Thus, it provides a

12

flexibility that if the business knowledge has to be changed, there is no need for modifying
the implementation, so this decreases the software maintenance costs and provides more
dynamic behavior of the system itself. The rules are used to help decision-making, to deduce
new knowledge or to trigger actions based on the conditions. While achieving this, newly
entered input data and newly entered events are evaluated dynamically without modifying or
restarting the system. Business rule engine is a software system to execute different business
rules. Business rule engines are used as a pluggable software component, therefore, this
separation provides that running and modifying the rules to change business logic does not
need an IT (Information Technology) system intervention. This situation allows changing the
system without need of a technical person. Business Rule Management System (BRMS) [48]
is a software system for business rules, which is used to deploy, execute and maintain the
decision logic. It is a standalone whole system that contains a business rule engine and
business rules to execute. Many BRMS applications exist in the software industry. For
instance, Drools [33] is an open-source Java programming language based BRMS of JBoss
[21]. It presents core business rule engine, a web authoring and rules management
application. Drools BRMS can run independently from the actual implementation and
defining Drools rules keeps simplicity. Therefore, it aims flexibility, cost effectiveness and
ease of use.

In the related studies, we have witnessed that business rules are used in event
recommendation and message delivery. The business rules, which are proposed, generally
focus on one particular work. For example, the rules are defined only for message delivery
such as in specifying delivery time, or only for evaluating conditions such as checking
weather condition. In our system, we propose a flexibility to use the business rule
management system for evaluating different context data, trigger actions according to them
and arranging message delivery for the most suitable conditions for the subscriber.

3.1.3. Semantic Analysis Using Linked Data

In some cases, the publisher may not have enough knowledge for defining related tags of the
event that is about to be created. The event may be published with missing information so
the related subscribers cannot receive the event recommendation that actually would be
suitable for themselves. The solution to this problem could be creating a semantic
environment for the event detail in order to analyze it semantically and infer new knowledge.
With new semantic knowledge, the system will be able to match new tags as a contribution
to task of the publisher. As a method of semantic categorization of the event info, we can
consider creating ontologies of the related domain. Ontologies are successful in categorizing
the events only if event name is available in the ontology. If we think of semantic
environment with ontologies, the ontologies may remain unsuccessful in matching names
that does not exist in the ontology. In such cases, the words do not mean anything to the
system in order to add new tags into the published event. Against this problem, we can
provide an alternative method that infers and lists words related to the descriptions in the
event detail. For this purpose, linked data method seems appropriate to use, as the similar
technique is used in context-aware music recommendation [51]. Linked data is a method in
semantic Web domain that is used to expose and interlink data on the Web from various
resources. Berners-Lee [40] describes linked data principles as:

1. Use URIs [41] as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards.
(RDF [42], SPARQL [43])

4. Include links to other URISs, so that they can discover more things.

13

As seen in the principles, each name has a URI and links to other URIs, so this situation
enables computers to easily read the information of the things and connections among them
in Internet. In other words, it eases listing the related words of one specific word for
computers as humans can already semantically do. There are many applications and datasets
that compose linked data feature. For instance, DBpedia [16] is a large dataset that contains
extracted data from Wikipedia. It links different data sets on the Web to Wikipedia data.
FOAF [44] is a dataset containing persons, their features and relationships. GeoNames [45]
presents RDF descriptions of more than 7,500,000 geographical features. These datasets are
used for extracting relational information about current data. For instance, when we want to
get geographic relational information about “Ankara” city, we can receive position
(longitude, latitude) of Ankara, its counties, and population information via GeoNames as
Table 1 shows the examples.

Table 1 Geonames Output Samples

GeoNames GeoNames Results
Query
Input
Name Name Country Feature class Latitude &
Longitude
Ankara Ankara Turkey, capital of a political N 39° 55
NK,Anakara, Ankara entity, population 11", E 32°
Ancara, 3,517,182, elevation 51" 15"
Ancyra, Ang- 850m
ka-la,Angkara,
Angora,
Anguriyah,
Ankar,Ankara,
Ankara
khot,Ankaro
/Ankuara...
London London United capital of a political N 51° 30
City of Kingdom, entity 30", W 0°
London,Gorad England population 7,556,900 732"
Londan,ILond Greater
on,LON, London
Lakana,
Landen,Ljond
an,Llundain,
Londain,Lond
an,Londar,Lon
de,L...
Taksim Taksim Turkey, section of populated N41°2'
Istanbul place 13", E 28°
59'11"

When we want to ask relational information about “skiing”, via DBpedia, we can get many
categories and classes of “skiing” from different sources, such as “Olympic sports”,
“activity”, “winter sports”, not just the information of “winter sports” as it generally exists in
sports ontology. As a different example, we can connect to DBpedia Lookup Service [17],
query about “William Shakespeare” word to list categories and classes of William
Shakespeare. We can achieve this job by arranging the URL with “William Shakespeare”

input, then we retrieve an XML file as output.

URL for William Shakespeare:

14

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?MaxHits=1&QueryString=Willi

am+Shakespeare

The XML file output will be as follows:

"

v<ArrayOfResult xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xsd=
¥<Result>
<Label>William Shakespeare</Label>
<URI>http://dbpedia.org/resource/William_ Shakespeare</URI>
» <Description>...</Description>
v<Classes>
» <Class>...</Class>
v<Class>
<Label>person</Label>
<URI>http://schema.org/Person</URI>
</Class>
v<Class>
<Label>artist</Label>
<URI>http://dbpedia.org/ontology/Artist</URI>
</Class>
v<Class>
<Label>writer</Label>
<URI>http://dbpedia.org/ontology/Writer</URI>
</Class>
v<Class>
<Label>agent</Label>
<URI>http://dbpedia.org/ontology/Agent</URI>
</Class>
¥<Class>
<Label>owl#Thing</Label>
<URI>http://www.w3.0rg/2002/07/0owl#Thing</URI>
</Class>
v<Class>
<Label>person</Label>
<URI>http://dbpedia.org/ontology/Person</URI>
</Class>
</Classes>
v<Categories>
v<Category>
<Label>Sonneteers</Label>
<URI>http://dbpedia.org/resource/Category:Sonneteers</URI>
</Category>
v<Category>
<Label>1564 births</Label>
<URI>http://dbpedia.org/resource/Category:1564_births</URI>
</Category>
v<Category>
<Label>English dramatists and playwrights</Label>
¥<URI>
http://dbpedia.org/resource/Category:English_dramatists_and_playwrights
</URI>
</Category>
v<Category>
<Label>William Shakespeare</Label>
¥<URI>
http://dbpedia.org/resource/Category:William_Shakespeare
</URI>
</Category>
» <Category>...</Category>
v<Category>
<Label>People from Stratford-upon-Avon</Label>
¥<URI>
http://dbpedia.org/resource/Category:People_from Stratford-upon-Avon
</URI>
</Category>
v<Category>
<Label>1616 deaths</Label>
<URI>http://dbpedia.org/resource/Category:1616_deaths</URI>
</Category>
v<Category>
<Label>16th-century English people</Label>
¥<URI>
http://dbpedia.org/resource/Category:16th-century English_people
</URI>
</Category>

Figure 4 William Shakespeare Output XML File

15

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?MaxHits=1&QueryString=William+Shakespeare
http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?MaxHits=1&QueryString=William+Shakespeare

As the output, the system receives an XML file (as seen in Figure 4) that includes
information about William Shakespeare such as description, categories, classes etc. After
selecting the categories and classes from the XML file, we can get:
e person
artist
writer
Sonneteers
1564 births
English dramatists and playwrights
16th-century English people
People of the Tudor period
English poets
English Renaissance dramatists

As seen from the datasets and the examples, linked data applications and datasets help
machines to easily find and expose the relations of words from different sources. We can say
linked data method has an extended feature of finding a set of related words that are both
available and not available in ontology. On the contrary, linked data feature may sometimes
mislead the computer to find the relations of words. Since this feature extracts the relations
that are mostly referred, sometimes, maximum number of references may not be the actual
relational information. This may happen when there is a word that has two meaning, such as
both as a place name and a person name.

3.2. System Architecture

After considering these two main features above, we can explain event management server
in which the corresponding modules provide these two features. In order to store event
details, topics (tags), manage the whole event processes and the relationships between the
modules we propose to use the event management server which incorporates three sub
modules: business rule management system, semantic tag matcher and event dispatcher. So
as to deliver messages at the most suitable time, and gathering all context information in one
place then infer knowledge special to user, and to satisfy the first feature, we propose
business rule management system. We can use internal and external context resources
connected with the business rule management system. For our system, we can use location
data of the subscriber, time information and weather forecast data as context. In order to
analyze event names semantically and automatically specify tags of the event, and to satisfy
second feature, we propose a semantic tag matcher utilizing linked data. This module will be
helpful in case the publisher misses specifying all related tags for the created event and the
subscriber will not be able to view the related event. Linked data approach allows finding
additional related data about the created event and then tries to match the related data with
the existing tags. In order to deliver messages to the subscribers at the right time, we also
include event dispatcher module. We propose event publisher to publish events and set the
topics for the events. Finally, we propose event subscriber to register to the topics and
receive related event notifications. You can see below figure of our conceptual design
architecture:

16

Conceptual Design Context
Sources

Business Rule
Management

=

Tag Matcher Dispatcher == =

= System
I Event Publisher Semantic Event . I Event Subscriber

Figure 5 Architecture of Proposed Conceptual Design

3.2.1. Event Publisher

In our proposed conceptual design, event publisher has the main responsibility of event
creation and event publishing for the subscriber. It queries event topics from event
management system and publish the event with specified topics in order to be sent as
recommendation to the related subscribers. Event publisher has one connection. It connects
to the event management system to query as well as create new topics and sends the event
details to be published. Event publisher has to pass the authorization phase to query or create
topics, and create events.

In our proposed system, the publisher does not need to consider the context data such as
environmental, social and time situations. For instance, the publisher does not have the
responsibility of setting time to deliver the event message, however, it has chance to
optionally set the time, location or weather data conditions to trigger sending events.

The event to be published has these content fields.

Event Title: Name of the event.

Start Time: Start date and time of the event.
Finish Time: Finish date and time of the event.
Description: Extra information about the event.
Place: Location of the event.

Event Type: Indoor or outdoor event info.

Event Id: Unique identification info of the event.

The publisher has the opportunity to set trigger conditions via business rule management
system. The conditions are as follows:

e Weather forecast condition: The publisher may set the weather conditions to send
the event messages. For instance, the publisher can arrange that the event message is
sent only if the weather condition is clear sky on the event day.

e Time condition: The publisher may set the event delivery time specifically. For
example, the publisher can set an event message delivery time to 09:00.

e Location: The publisher may set the message delivery action according to
neighborhood of the subscribers. For example, the publisher can set that the event
message is only delivered to the subscribers who are in Ankara.

17

3.2.2. Event Management System

In our proposed conceptual design, event management system, which can be referred to as an
enhanced broker in the publish-subscribe model, has the main responsibility of managing
events coming from publishers, and distributing the events to related subscribers. The topics
(tags), events and their details are held in event management system.

Event management system has three sub modules, business rule management system,
semantic tag matcher and event dispatcher. Semantic tag matcher helps to find more related
topics for created event by analyzing event info semantically. Even if the publisher does not
specify all related tags for a created event, semantic tag matcher tries to specify the tags
related to the event. Semantic tag matcher uses linked data method to find related words for
the event. It receives the related words by querying linked data datasets with event details as
input. Then, it tries to match the new received words with existing tags. If related words of
the event title have a successful match with a tag name, the event is now ready to be
delivered to the subscribers who subscribed to the matched tag or tags, in addition to
previously specified tags that the publisher sets.

Secondly, event dispatcher sub module has the responsibility to distribute the event
messages to the related subscribers with the trigger from BRMS. Event dispatcher stores the
identification info of the subscriber devices in order to send the message to the right
subscribers. Event dispatcher also has the ability to register new identification info of the
device when a new subscriber device is registered to the system.

Thirdly, business rule management system (BRMS) is a subsystem in the event management
system that infers extra information from context sources such as time, place, and weather
information, and trigger actions according to the inferred information. It determines time to
publish the messages. The system achieves this by defined business rules. In our proposed
BRMS, new business rules can be added and the existing business rules can be modified via
business rule editor interface. BRMS presents flexibility to trigger sending messages by
considering any single or multiple context data. BRMS helps the event manager system
when to deliver the message, help about what the message content will be and help about
how the event recommendation will be. To achieve this, BRMS uses preferences data of the
subscriber. There are three main preferences that the subscriber can set; time, location and
weather forecast.

o Time preference: The subscriber has an option to retrieve messages in particular
times. When an event is created, the message may not be directly sent to the
subscriber. The message can wait for the selected time or time interval that the
subscriber prefers. For instance, the subscriber may set his/her time preference in
order to receive message in out of business hours. In this case, if the event is created
in business hours, the notification waits until the business hours pass, then the
subscriber receives the notification.

o Location preference: The subscriber has an option to receive event messages that is
arranged in the subscriber’s neighborhood, or he/she can turn off this preference in
order to receive all related messages that do not depend on location.

e Weather preference: The subscriber can set his/her preference to receive event
messages or not receive messages depending on weather data in the event date. If the
event is outdoor event and the weather is rainy, or we can say the weather is bad, the
subscriber is avoided to receive the message. He/she can turn off this preference in
order not to depend notifications on weather data.

18

BRMS can use these preference data in order to evaluate the conditions and trigger actions
accordingly. For instance, by means of BRMS, we could set time triggered message
delivery, such as sending message every day at in business hours (08.00-16.00). An example
algorithm can show a time triggered event message. Let’s say BRMS has a rule that controls
sending the message about Event 1 to the Subscriber A in business hours. In this kind of
approach we do not need a job scheduler [49] to trigger action in the specified time. BRMS
is able to easily handle time-triggered events. Here is the example of a business rule:

When

(Time is in business hours)

Then

Send message (Event 1) to Subscriber A

We could set weather info triggered message delivery by means of BRMS. Or we can set
location info, weather info and time triggered message delivery, if we define that kind of
business rule without changing any code from the other parts of the event management
system. Therefore, we present more flexibility relative to predefined templates in order to set
trigger conditions to deliver the message. We can give an example of a business rule
algorithm that evaluates different context data.

When

(Time is in business hours)

AND (Event 2 location is near to Subscriber B location)
AND (Weather will be good in Event 2 date)

Then

Send message (Event 2) to Subscriber B

For that kind of rule, BRMS will avoid sending the event message to Subscriber B in bad
weather conditions, or BRMS won’t send event message when Subscriber B is far away
from Event 2 location. However, Subscriber B may turn off location, time and weather
dependent recommendation that we will talk about in Event Subscriber part. Therefore, the
example rule will work for the Subscriber 2 without considering location, time and weather
data.

When

()

Then

Send message (Event 2) to Subscriber B

In addition to specific time definition, BRMS is able to use time information and able to
categorize it in two ways: Day categorization and hour categorization. Day categories are
weekend and weekdays. Hour categories are business hours, non business hours, and night
hours. We can give a categorization example of a selected date:

Table 2 BRMS Time Inference

Input Date BRMS Inference
August 29, 2014 09:00 Friday, Weekday, Business hours
July 7, 2014 20:00 Monday, Weekday, Non Business Hours
July 6, 2014 01:00 Sunday, Weekend, Night hours

BRMS achieves receiving weather information by connecting to weather information
services and deduces the knowledge that the weather is good or bad. We can give an
example of connecting to weather services and deducing information.

19

Table 3 BRMS Weather Condition Inference

BRMS Request Input Weather Forecast BRMS Inference
Service Response
Ankara Clear Sky Good
August 29, 2014 09:00 19°C-32°C
London Heavy Intensity Rain Bad
August 31, 2014 15:00 19°C-25°C

After retrieving the weather data, BRMS will use the weather inferences in evaluating
conditions and sending messages to the subscribers.

Another feature of BRMS is deducing subscriber behavior and set a time profile for the
subscriber by tracking the interaction time of the subscriber with the event message, as we
explain above in “Time preference” item. We can visually show the principle of assigning of
time profile. In addition to manually setting of time preference that we will talk about in
Event Subscriber part, BRMS can automatically set a time profile for the subscriber as in
Table 4.

Table 4 BRMS Subscriber Interaction Inference

Event Message Subscriber BRMS Inference
Sending Time Interaction Time
With Sent Event
August 28, 2014, August 28 2014, Event is sent in weekday business hours, the
Friday 10:00 Friday 10:02 subscriber interacts with the event message in

business hours, too. No new time profile
assignment for the subscriber.
August 28, 2014, | August 28, 2014, Event is sent in weekday business hours, the
Friday 10:00 Friday 20:37 subscriber interacts with the event message in
out of business hours. It is learnt that the
subscriber is more interactive in out of business
hours. Then, set time profile as non business
hours in order to send messages in out of
business hours, and in order not to make the
subscriber miss the notifications in business

hours.
August 28, 2014, | August 29, 2014, Event sent in weekday business hours, the
Friday 10:00 Saturday 14:07 subscriber interacts with the event message at

weekend. Then, set time profile as weekend in
order to send messages in weekends, and in
order not to make the subscriber miss the
notifications in weekdays.

All BRMS inferences depend on defined business rule sets. Therefore, the inferences and
actions of BRMS are allowed to modify by changing the rules or by adding new rules. For
example, time context perception of BRMS is allowed to change by adding new categories
into hour or day categories. Moreover, weather data inference can be also changed. For
example, in snowy weather conditions, the weather inference could be set to “Good” while
the inference was “Bad” before. Furthermore, by means of BRMS, the context data is not
limited with time, location and weather info. Various context data could be evaluated by
aggregating the other context data.

20

BRMS sub module has one connection. The sub module communicates with the context
sources to gather all related data from external or internal context sources, in order to
evaluate the conditions and run the rules.

Event management server has three connections; these are with, event publisher, context
sources and event subscriber. Firstly, the event management server has communication with
the subscriber to present the topics to be subscribed and to deliver the event messages via
event dispatcher module. Secondly, event management server connects to the context
sources to use the context data in BRMS for evaluation of the conditions. Finally, it has
connection with the event publisher that we talked about in the event publisher part.

3.2.3. Context Sources

We propose internal or external context sources to define the existing situation better. From
context sources, the system receives extra information to return it to valuable knowledge. It
is done by BRMS sub module that communicates with the context sources and that gathers
the context data as input to start new inferences. Context sources in our conceptual design
will be time data, location and weather information.

3.2.4. Event Subscriber

Event subscriber can subscribe to the topics that the event management system provides. The
subscriber can select the topics that may attract the subscriber in order to receive related
event recommendations. Furthermore, the activities of the subscriber are tracked by the event
management system, so that event management server could maintain context-awareness and
the event management server is able to keep presenting related events to the subscriber.
Event subscriber has one connection with event management system in order to receive the
related events and topics.

In our conceptual design, event subscriber has chance to modify its preferences and interests
(tags) so that it will receive more customized notifications. Firstly, the subscriber may add
new interests or modify its interests about the events. We can give a sample list of some user
interests about the event that the subscriber may select or deselect:

e Music
o Pop
o Rock
o Jazz
o R&B
e Movie
o Action
o Drama
o Science Fiction
o Romance
o Comedy
e Sport
o Football
o Basketball
o Tennis
o Golf
o Volleyball

21

e Shopping

o Clothing

o Electronics
o Food

o Drink

By selecting the interests like above tag list, the subscriber filters the event messages that are
only interesting to it. This main feature of publish-subscribe approach provides customized
messages for every single subscriber and avoids spam event messaging. The subscriber is
able to change its interests both in the system beginning and later. Moreover, the subscriber
can set message delivery preferences that depend on time, location and weather forecast
data.

Firstly, the subscriber has the opportunity to add or remove location dependent event
notification. For instance, the subscriber may want to receive events only in Ankara where it
is located. Or it can remove location dependency to receive event notifications that are in or
not in the location of the subscriber. If the subscriber sets location dependent notification, the
subscriber will have the event messages in a location, when it enters the specified location.
In other words, the system triggers sending geographically related event, when the subscriber
enters into the event neighborhood.

Secondly, the subscriber can utilize weather sensitivity of the system to receive better event
notifications. The event management system is able to receive current and future weather
forecast data for a specified location so that the system will have better recommendation
skills dependent to weather forecast. By means of weather context data, the subscriber will
have the opportunity to be avoided in bad weather situations for outdoor events. The system
will not suggest an event that is an outdoor activity and in bad weather circumstances. The
subscriber may turn off the weather sensitive notification so that it can receive all events
related to the subscriber without considering weather context data.

Finally, time awareness could be significant for a context-aware system. In our conceptual
design, BRMS module has the ability to be aware of time notion. The subscriber has an
option to receive messages according to its specified time preferences. For example, the
subscriber may receive the event message in a specified hour interval, such as everyday in
out of business hours by setting a time profile. Furthermore, it can receive the messages in a
day range, such as on weekends. In addition to manual setting of the subscriber, the BRMS
can automatically assign a time profile for the subscriber, according to its activity time with
the event notifications. For instance, BRMS can have the knowledge about that the
subscriber interacts with the system in out of business hours, so BRMS may set a time
profile for the subscriber to send the messages in only out of business hours. BRMS achieves
this job by getting the information of the interaction time (the time of opening the event
message) of the subscriber, then compares the interaction time with the event creation time,
finally, BRMS could set a time profile according to the comparison. Of course, the
subscriber may change its time profile manually.

22

CHAPTER 4

IMPLEMENTATION

As a prototype application of the proposed system, an Android based mobile application is
implemented. While developing the application, the architecture of the proposed system is
taken into account, so the implementation architecture is parallel with the proposed system
structure. Before explaining the implementation architecture, used technologies and services
in the developed applications are described, then the architecture is explained in detail.
Finally, sample usage of the system and sample use cases are mentioned in order to express
the system and its features better.

4.1. Used Technologies and Services

4.1.1. REST architecture / Restful Web Services

REST (Representational State Transfer) is a web architecture that uses http requests to easily
connect client and server. We can simply use GET, POST, PUT or DELETE http methods
and get the response over json format. Additional overheads in SOAP [26] architecture are
not found in REST, such as the Envelope, which specifies what is in the message and how to
process it, encoding rules for data types, layout procedure calls. Since the REST is
lightweight, the architecture could be suitable for mobile devices, in terms of low CPU effort
and low battery consumption. Another property of REST is that we can access resources via
URI. For example, if we want to get item with id 15 we just use GET HTTP request by
writing the URI: http://example.com/resource/item/15, than we could get the item in json
format (or other Internet media types like XML, Atom etc.). To sum up, we can list the
features of the REST architecture;
e Client-server
e Stateless: Independent pairs of request and response. Previous request has no
relation with the further requests.
e Cacheable
e Layered System
e Code on demand: Servers might customize the functionality of a client by
transmission of the executable code.
e Uniform interface

4.1.2. ASP.NET Web API

ASP.NET Web API [29] is a framework that uses REST architecture, and eases to create
HTTP services for many types of clients such as browsers and mobile devices. In our
system, we use ASP.NET Web API with C# programming language to construct our main
application server (event management server).

23

http://example.com/resource/item/15

4.1.3. Microsoft Visual Studio 2013 and Azure Cloud Services

In implementation of our application server, we use Visual Studio 2013[30] Ultimate
platform for programming with C#. For easy and fast deployment we use Microsoft Azure
[31] cloud services.

4.1.4. Google Cloud Messaging Push Service

GCM [32], Google Cloud Messaging, is a Google service that provides developers to send
message from servers to Android applications. For push notifications, we use GCM push
service.

4.1.5. Drools - Business Rule Management System

Drools [33], is an open source Java based business rule management system provided by
JBoss [21], used in business rule engine server for our proposed system.

4.1.6. Java, Android and Eclipse

For mobile application development (client side), we use Java programming language and
Android [34] development with Eclipse [37] platform.

4.1.7. DBpedia & DBpedia Lookup Service

DBpedia [35] is a platform that provides extracted structured information from Wikipedia. It
also allows users to make complex queries from Wikipedia. DBpedia Lookup Service is used
to look up DBpedia URIs by related keywords. We use this service in our system to utilize as
linked data feature. For example, when we look up for ‘metu’ word, the results and some
parsed linked data are shown below.

¢ Organization
Educational institution
Agent
University
Educational institutions established in 1956
Education in Ankara
State universities and colleges in Turkey
Technical universities and colleges
Middle East Technical University

4.1.8. OpenWeatherMap API

OpenWeatherMap [17] API is both free and paid service for the developers to integrate
weather info into their apps. The developer can easily get up to 16-days weather information
for a selected city via OpenWeatherMap API. In our system, we utilize OpenWeatherMap
API to use weather data as context source.

24

4.2. Architecture Overview of the Implemented System

As a concrete output of our conceptual design we provide a real system, as the architecture is
shown below.

OpenWeatherMap
API

Event

Subscriber
Event Semantic
Publisher Tag
Matcher

Figure 6 Architecture of Proposed Implementation

As we describe the conceptual design before, we can see reflection architecture of the
implementation in Figure 6. We have Event Publisher working on Android device, Event
Subscriber working on Android device, and Event Management System that composes of
Azure Application Server, Azure Database Server and Drools BRMS. As external services
and sources, we utilize DBpedia Lookup Service for Semantic Tag Matcher so as to
implement linked data method for related tag matching. We described DBpedia dataset and
its Lookup Service before. Drools BRMS uses Context Sources to receive context data. In
our implementation, we utilize OpenWeatherMap API to retrieve weather data. Moreover,
BRMS uses location data of the subscriber and time of day info. In order to deliver messages
to subscriber Android devices, we utilize Google Cloud Messaging service on Event
Dispatcher.

The events, event details, existing all user interests (tags) are stored in Azure application
server with Azure Database Server. The publishers create events by specifying the tags
related to the events via Android user interface. The subscriber Android mobile client can
enter the system and specify its interests and view the events. Drools BRMS receives the
data from the context sources such as weather data from OpenWeatherMap API externally,
location and time data internally, then creates valuable knowledge for the event
recommendation and waits for the best time of message delivery. Semantic tag matcher
deduces semantic inferences for new user interest discovery by linked data method via
DBpedia lookup service.

In our proposed system, we aim sending right information to correct person at the right
conditions, while considering rich context construction by utilizing improved internal and

25

external context services. For rich context construction and efficient information delivery,
we bring together; time, weather, place, user history and user profile information criteria
with smart services, semantic environment, business rule management system.

For related context, the backbone of our system is the tags, in other words, the user interests.
To find related content with the user, we mainly utilize user interest and process jobs using
tags. In Figure 7, the user can arrange his/her interests then receives notifications according
to them. Furthermore, the subscriber can set her/his message delivery preferences according
to time, place and weather forecast information so that the message will be sent by
considering time, place of the subscriber and weather information in event date. The
publisher sets the tags while he/she is creating an event, but he/she might not have enough
knowledge to set all related tags; even he/she might not specify any tags. At this point, we
propose a helper solution that we discuss in semantic tag matcher.

i@ UserlnterestsActivity

_| Football

V" Basketball
World Cup 2014

_| Entertainment

" Turkish pop singers
Save

Create Interest

o (! =
Figure 7 Interests can be specified in this screen

4.2.1. Event Management System

Event management system composes of three sub systems, Azure application server, Azure
database server and Drools BRMS.

Azure Application Server is one of the main components responsible from event publishing
that has the connections with Drools BRMS, database, publisher and the subscriber. The user
information, topics that are called tags i.e. user interests, and the user histories are hold in
this event management system via Azure database server. The communications with the
other components are done via suitable sub modules inside the event management system.
Firstly, for event message delivery, the event management system uses the message
dispatcher sub module in Azure application server to send messages to registered subscribers
via Google Cloud Messaging service. Secondly, in order to use context sources to check
conditions, process events and trigger message sending, the system utilizes Drools BRMS.
Thirdly, so as to infer semantic relations for event name to match more tags, semantic tag
matcher uses linked data method by connecting DBpedia Lookup Service. Moreover, before

26

connecting to the DBpedia Lookup Service, word-filtering algorithm, which is working in
semantic tag matcher, helps refining the word in order get more successful results coming
from DBpedia Lookup Service. Finally, Azure Application Server is built on Web API to
interact with the subscriber and publisher Android Mobile Clients via REST framework. We
will talk about semantic matcher in part 4.2.2., and we will talk about Drools BRMS in part
4.2.4. in detail.

4.2.2. Semantic Tag Matcher via DBpedia Lookup Service

In order to make semantic contextual inferences, we use linked data [15] method in semantic
tag matcher. In content delivery, the aim is trying to reach highest number of subscriber who
may be interested in the event. While an event is created, the publisher might not add the
related tags to the event. At this point, semantic tag matcher searches for linked words with
the specified word in the event title to match the related words to the tags. For that purpose,
the system utilizes DBpedia [16] to find related words. For example, if a publisher creates an
event named “William Shakespeare”, the semantic tag matcher connects to lookup service
[17] of DBpedia and look up categories and classes of the word as related words.

Some linked data are listed below for William Shakespeare coming from DBpedia as the

example is visually explained in conceptual design part.
e person

artist

writer

Sonneteers

1564 births

English dramatists and playwrights

16th-century English people

People of the Tudor period

English poets

English Renaissance dramatists

(7]
17 < S
S 3 3
8 | *PopMusic A | *English poets = | English poets
k= *NBA 8 sSonneteers = sSonneteers
. basketballers = o Artist =
Q | «Football = i »
Z = | eWriter | D
— | *Sonneteers — Enelish 8
«English Poet *Lngish
nglsh roets dramatists and r.%
| playwrights ‘ —)

Figure 8 Linked Data-User Interests Successful Match

This kind of output could create a value that; there is no need for exact word matching for
the specified tag. There are some alternatives like these related words to help find interest
matching. An example may clarify the situation, a subscriber is interested in sonneteers and

27

he/she adds “English Poets” and “Sonneteers” to his/her interests via his/her Android device.
Another person as publisher creates an event titled “William Shakespeare Seminar Event”
without specifying any tags related to the event. Semantic tag matcher connects to the
DBpedia and receives the XML file about William Shakespeare, parses the classes and
categories about William Shakespeare, finds “English Poets” and “Sonneteers” classes, and
binds the “English Poets” and “Sonneteers” existing tags with this event. Finally, the system
is able to notify the user who is interested in sonneteers and English poets, as shown in
Figure 8. The benefit of this feature is providing automated tag matching and reaching more
subscribers who may be interested. Moreover, for healthier keyword lookup, a basic word
filtering mechanism works in our system. There are some reserved words to filter event
name, for example, “event, party, festival, night, of, the, movie, seminar” words are
discarded for refined search. Thus, when we type “William Shakespeare Seminar Event”, the
filtering mechanism works and removes “Event” and “Seminar” words, then connects to
DBpedia with “William Shakespeare” in order to get linked words about William
Shakespeare. The word filtering mechanism, as the examples are shown in Figure 9 and
Figure 10, is a sub module in semantic tag matcher, and it could be improved in the future.

Event Title as Word "William+Shakespeare"
input: Filtering as output, ready for
William » Module > DBpedia URL
Shakespeare
Seminar Event”

Figure 9 Word Filtering Module first example

Event Title as Word "Kill+Bill"
input: Filtering as output, ready for
"The Night Of -» Module . DBpedia URL
Kill Bill Movie"

Figure 10 Word filtering module second example

4.2.3. Context Sources

As context source, we utilize time of data to perceive time. The time data is resided in
Drools BRMS. There are some predefined calendars in BRMS to become aware of time
concept, which we will talk about in Drools BRMS part.

Secondly, we use weather context data for our prototype. In context-aware event
recommender and message delivery systems, weather information could be very significant
especially for outdoor events. For instance, in rainy situations, an outdoor event might not be
that enjoyable. For that purpose, we add weather forecast context in our system by utilizing
OpenWeatherMap API [17] to receive current and future weather data according to where
the event will be. OpenWeatherMap presents a free service for developers to integrate
weather information to their applications. With this service, we basically type the URL with

28

the city name, or GPS information (longitude and latitude), and then receive current weather
data and also up to 16-days forecast information in JSON or XML format. For more
readability, we can give an example for 3-days forecast of Ankara.

URL for 3-days weather

forecast of Ankara:

http://api.openweathermap.org/data/2.5/forecast/daily?g=ankara&mode=xml&units=metric

¢=7

The output XML file is in Figure 11 below:

v<weatherdata>
v<location>
<name>Ankara</name>
<type/>
<country>TR</country>
<timezone/>
<location altitude="0"
</location>
<credit/>
Y<meta>
<lastupdate/>

latitude="39.919868" longitude="32.854271" geobase="geonames" geobaseid="0"/>

<calctime>0.0085</calctime>

<nextupdate/>
</meta>
<sun rise="2014-07-26T02
v<forecast>

:42:05" set="2014-07-26T17:08:09"/>

v<time day="2014-07-26">

<symbol number="500"

name="light rain" var="10d"/>

<precipitation value="0.5" type="rain"/>
<windDirection deg="344" code="NNW" name="North-northwest"/>

<windSpeed mps="1.8"

<temperature day="32.

<pressure unit="hPa"

<humidity value="36"

<clouds value="clear
</time>

name="Light breeze"/>

29" min="21.07" max="32.29" night="21.07" eve="30.98" morn="26.81"/>
value="908.85"/>

unit="%"/>

sky" all="8" unit="%"/>

v<time day="2014-07-27">

<symbol number="800"
<precipitation/>

name="sky is clear" var="01d"/>

<windDirection deg="264" code="W" name="West"/>

<windSpeed mps="2.47"

<temperature day="30.

<pressure unit="hPa"

<humidity value="37"

<clouds value="clear
</time>

name="Light breeze"/>

94" min="17.27" max="32" night="18.99" eve="31.35" morn="17.27"/>
value="911.78"/>

unit="%"/>

sky" all="0" unit="%"/>

v<time day="2014-07-28">

<symbol number="800"
<precipitation/>

name="sky is clear" var="01d"/>

<windDirection deg="289" code="WNW" name="West-northwest"/>

<windSpeed mps="3.06"
<temperature day="29.
<pressure unit="hPa"
<humidity value="35"
<clouds value="clear
</time>
</forecast>
</weatherdata>

name="Light breeze"/>

73" min="15.55" max="31.01" night="18.59" eve="29.95" morn="15.55"/>
value="913.53"/>

unit="%"/>

sky" all="0" unit="%"/>

Figure 11 3-days weather forecasts for Ankara [18]

In addition to temperature value, we consider the weather condition parameters [19] in our

system:
e clear sky
o few clouds
e scattered clouds
e broken clouds
e shower rain
e rain

29

http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=7
http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=7

e thunderstorm
e Snow
e mist

Drools BRMS uses these parameters to make healthier recommendations and healthier
information delivery by regarding weather info as context. For instance, the system may
discourage the user to attend while presenting an outdoor event with a rainy weather data, by
showing a warning message about the situation. This condition can be scaled with the BRMS
that we will talk about below.

Thirdly, we utilize location context data of the subscriber. Drools BRMS use location info
about the subscriber and determine triggering of message delivery. In our prototype, we
retrieve direct location input of the subscriber instead of using GPS and other wireless
Sensors.

4.2.4. Drools BRMS

Business rules are another factor that could create value in context-aware systems. We
integrate Drools BRMS [20] into our system. Drools is open-source, Java programming
language based business rule engine and enterprise framework for the construction and
maintenance of business logics in an organization, application or service supported by JBoss
[21]. In addition to business rule engine, Drools has the feature of complex event processing
(CEP [22]). CEP is an event processing that aggregates data from multiple resources to
deduce patterns and events that propose complicated circumstances. The aim of CEP is to
identify significant events and react accordingly to them quickly. Therefore, Drools BRMS
helps to find most suitable conditions to deliver message specific to the subscriber.

In Drools platform, we can define business rules by adding conditions (like if-else
conditions) and time-based conditions. For our system, we can define time rules to run the
rule only in the selected time interval or specified future time. For instance, we create some
time intervals named calendars such as “business-hours” and ‘“non-business-hours”
calendars. (Figure 12 and Figure 13)

business- non-business- :
hours hours night-hours day-hours
* 08:00 - * 16:00 - * 00:00 - * 08:00 -
16:00 00:00 08:00 e 00:00
Figure 12 Daily Calendars
weekend weekday
sSaturday . 2’“’“‘;33’
'Sunday :‘u\?:dsn:;vdav
e Thursday ’
e Friday

Figure 13 Weekly Calendars

30

We use these calendars in order to evaluate subscriber time preferences. The subscriber may
want to receive notifications in certain time intervals such as in business hours, out of
business hours, night hours. You can see below figure that displays subscriber time

preferences.
N

s PreferencesActivity

Time Profile:) none

() business-hours
(®) non-business-hours

_ night-hours
Weather Profile @ on O off

Location Profile: @ On off

Location: Ankara

Save

> (| =
Figure 14 Subscriber Preferences Screen

If we integrate one of the calendars into a rule depicted in Figure 12 and Figure 13, the rule
will work only in the specified times. The calendars can be any time interval that can be
defined, such as, business hours between 08:00 and 16:00 (as shown in Figure 14), or a day
interval such as, weekends. Furthermore, we define timers to trigger actions, when single or
multiple conditions occur. For example, we can run the rule action after 8 hours, or in a
specified date such as 10/10/2014 09:00. Additionally, we can run a rule periodically, such
as, every day at 13:00. These are time-based conditions. We can also define case based
conditions. Weather data could be integrated into rules to suggest events. For instance, if an
outdoor event is created for a rainy day (the weather information is taken from
OpenWeatherMap API), the rule engine works and gives an alert to not suggest this event.
Furthermore, if a person attends to event A and event B, by means of rule engine, the system
offers event C. The rule engine can be dynamically changed and modify its behavior by
adding new rules into our system, by allowing to upload a DRL file. The benefit of this
process is to make the system work fluently without deploying new code. Thus, without
maintenance effort, the system provides new rules that can be added later.

31

rule "night timer rule"
calendars "night-hours"
timer(int: 8h)
when
eventl: Event(messageType=="Notification" && sendStatus=="NotSent")
message: Message()
then
message.sendMessage(""+ "New event for you: "+ eventl.getEventTitle);

end

Figure 15 Night Timer Rule that works only night hours

In timer based rules, in the rule definition phase, one of the specified calendars could be
selected, such as, night-hours, business-hours, weekends or weekdays, to define the rule in
the selected time interval without affecting any other time range. This arrangement provides
independent rules in different times. Figure 15 shows a time-based rule. The person who
defines the rules, specified “night-hours” calendar, meaning that, the time range is between
00:00 and 08:00, and he/she sets a timer to run the rule after 8 hours (timer (int: 8 h)). It
means running the rule after the “night-hours” calendar time is passed. The successful
scenario in Figure 15 is that, if an event is created in the night-hours, wait for passing of
night hours, and then send event information to the user.

rule "good weather rule"

when
eventl: Event(weatherStatus=="Good" && messageType=="Notification" && sendStatus=="NotSent")
message :Message()

then
message.sendMessage(""+ "New event for you: "+ eventl.getEventTitle);

end

Figure 16 Good Weather Rule

We can add context data based condition rules such as weather context. Figure 16 shows an
example of sending an event notification in good weather circumstances. In here, all fine
weather situations are abstracted as “Good” in the specified time from the server before, then
the rule only checks the whether the conditions is good or bad. The weather parameters clear
sky, few clouds, scattered clouds, broken clouds are said to be as “Good”, and shower rain,
rain, thunderstorm, snow, mist weather parameters are said to be as “Bad” from the server.
Of course, specific weather parameters could be also added to the business rules without
abstraction.

rule "bad weather rule"

when
event3: Event(weatherStatus=="Bad" && inOrOut=="Outdoor" && messageType=="Warning" && sendStatus=="NotSent")
message: Message()

then
message .warn(""+ "This outdoor event is not suggested in bad weather conditions");

end

Figure 17 Bad Weather Rule

Figure 17 shows a bad weather warning example. If an outdoor event is created and the
weather is bad during the event time, the server sends a warning message to the user, while
he/she is viewing the specified event.

32

Finally, we can say that new rules can be defined later into our system without deploying
new code or without having to change whole system, since the rule framework is based on a
modifiable .drl file. Furthermore, Drools BRMS has the opportunity to be modified visually
by the utilization of Drools Guvnor [24] service of Drools mechanism, in order to ease
business rule creation for non-developer people.

In our system, there are two system roles: Standard User as Subscriber, Event Notifier as
Publisher. Standard User is the subscriber role of the system. He/she can specify his/her
interests, create new interests (tags), and view the events that may be interesting. He/she can
be notified and view the push messages when an event, which might be interesting, is
created. Event Notifier is the publisher role of the system that can create tags, create events
with related tags. Event Notifier could be any character such as a restaurant/cafe manager,
restaurant/cafe customer, student, academician, hotel receptionist or even a person who
walks on the street, who wants to notify the subscribers who may be interested in the
specified event/place. For rich content creation, there is no constraint to be an event notifier
but registration and authorization phase, so that anybody could create an event in order to
notify other users.

4.2.5. Event Publisher Android Client

We implement event publisher Android client responsible from event creation with attached
from Android user interface. In our implementation, the publisher must fill these fields as in
Figure 23:

Event Title: Name of the event.

Start Time: Start date and time of the event.
Finish Time: Finish date and time of the event.
Description: Extra information about the event.
Location: Location of the event.

Event Type: Indoor or outdoor event info.
Tags: Related tags of the event.

4.2.6. Event Subscriber Android Client

We implement event subscriber Android client responsible from setting preferences,
subscribing to user interests, viewing events and registering into events from Android user
interface.

Event subscriber can modify his/her interests in order to retrieve related notification and to
view related events. Moreover, event subscriber has the opportunity to set his/her
preferences so as to get notification in appropriate times for the subscriber. We define 3
types of message delivery preferences as in Figure 14.

e Time preference: The subscriber can receive the notification in specified time
intervals.

o none: The subscriber can receive the message without any time interval
constraint. He/she receives the message whenever the related event is
created.

o business-hours: The subscriber can only receive the notifications in business
hours. (Default interval: 08:00-16:00)

o non-business-hours: The subscriber can only receive the notifications in out
of business hours.(Default interval: 16:00-00:00)

33

o night-hours: The subscriber can only receive the notifications in night hours.
(Default interval: 00:00-08:00)

o Location preference: The subscriber can receive the event notifications whose event
place is only in the neighborhood of the subscriber. Or the subscriber may turn off
this preference in order to receive the event notifications whose event place could be
anywhere.

o Weather preference: The subscriber can receive the event notifications only if the
weather is good in the event date. The subscriber has the option to turn off this
preference in order to receive the event info without checking the weather data.

4.3. Sample Usage of the System

4.3.1. Interest Setting

1. User logins to system as Standard User (Subscriber).

I8 caemAndroid

Username: user]

Password **#kik

User Type Standard User 4

Login Register

o =

Figure 18 Login as Standard User

2. After successful login, the user taps on the “Your Interests” button.

34

8 WelcomeScreenActivity

Hi,

Interesting Places
Interesting Events
Your Interests
Your Preferences
Messages

Your Registrations

=) (o =
Figure 19 Standard user main screen

3. User selects the interests “Turkish pop singers”, “Football” and “Action Movies”,
and taps to “Save” button then exits. Now, the user will have chance to receive
related event notifications.

ol

s UserInterestsActivity

¥ Turkish pop singers
+' Football
Basketball

" Action Movies

|| Tennis

Save

Create Interest

o (- =
Figure 20 Interest setting

4.3.2. Event Creation and Message Delivery

1. User logins to system with the role of Event Notifier (Publisher).

35

=N |

'il CaemAndroid

Username: notifier1

Password o

User Type Event Notifier 4
Login Register
o] !

Figure 21 Login as Event Notifier

2. User taps on the “Create Event” button.

(] OwnerActivity

Create Place
Create Event

Create Interest

L) - =

Figure 22 Main Screen of Event Notifier

3. User fills the form specifying title as “Tarkan Concert”, event type as “Outdoor”,
start date as “12/08/2014 19:00”, finish date as “12/08/2014 22:00”, description as
“Tarkan’s first tour”, Location as “Ankara”, and the tag as “Turkish pop singers”.

Then creates the event.

36

o & M

iw CreateEventActivity

Title: Tarkan Concert
Start Date: 12/08/2014-19.00
Finish Date: 12/08/2014-22.00

Description: Tarkan's first tour

Event Type () indoor
(@) outdoor
Location Ankara y
Tags: Add
Clear Create

L) = =
Figure 23 Event creation

4. After creating the event, the system finds the related users and pushes the event
information to the subscriber who registered to “Turkish pop singers”. We can see
the event message (with title Caem Notification) in a subscriber’s mobile phone.
(BRM: Business rule engine message)

azi olarak baglandi

cenekleri igin dokunun

Figure 24 BRM Notification

37

4.3.3. Event Detail Display, Registering to Event and Setting Time Profile

1. The user logs into system as the role of Standard User. After successful login, the
user taps on the “Interesting Events” button in order to view the related events.

i WelcomeScreenActivity

Hi,
Interesting Places
Interesting Events

Your Interests
Your Preferences
Messages

Your Registrations

> (-] =
Figure 25 Standard User main screen

2. The user views the listed events and selects an event to view the details.

. EventsActivity

Food Festival
u Outdoor

Movie Night
‘ = “ Outdoor

NBA Finals
“ =3 “ Outdoor

William Shakespeare Event
- Outdoor
i

90s Party

‘B“ Indoor

> S =
Figure 26 Suggested events

3. In the next screen, the system gathers all information about the event. It checks the
weather information sends the weather info to the business rule engine. The engine
assesses the conditions and sends a message to application server. The application

38

server sends a message about the event. In here, the message from the business rule
engine is that the weather will not be suitable in the event date.

= ||

s EventDetailActivity

JQLI

Title: William Shakespeare Event

Event Type: Outdoor

Start Time: 20/08/2014 09:30

Finish Time: 20/08/2014 11:30
Message :

Weather is not suitable for this outdoor
event. Weather info: 13.77 °C - 25.87 °C,
light rain

Back Register

o [=
Figure 27 Event description with message

After viewing the event information and the message, the subscriber finds the event
interesting and registers to the event anyway, even if the system does not suggest the
event. The system checks the conditions and the interaction time of the user. The
event was actually created in business hours, but the user interacts with the event in
out of business hours. System infers the knowledge that the user is more active in
out of business hours, then, sets time profile of the user to “non-business-hours”, in
order to send the messages only in out of business hours. The subscriber may change
his/her profile later if s/he wants to.

39

=W

i EventDetailActivity

i

Title: William Shakespeare Event

Event Type: Outdoor

Start Time: 20/08/2014 09:30

Finish Time: 20/08/2014 11:30
Message :

Weather is not suitable for this outdoor
event. Weather info: 13.77 °C- 25.87 °C,
light rain

Back

You are registered! Time profile set to non-
business-hours

L) (] =
Figure 28 Time profile set to non-business-hours

4.3.4. Message Delivery By Means Of Linked Data

When an event notifier adds an event information to the system without specifying related
tags, the system connects to DBpedia lookup service and tries to match the tags with the
received categories and classes of lookup service. For example, there is an event created,
named as “Tarkan Concert”. However, there is no tag specified about Tarkan Concert event.
In that case, the system connects to the DBpedia lookup service and receives “Turkish pop
singers” category and matches the category with the tag that is already available in the
system. Finally, the system is able to send the messages to the users who are interested in
Turkish pop singers by means of linked data feature. (This use case refers to Sample Use
Case linpart4.4.1)

4.3.5. Message Delivery Delay

Assume that the user time profile is set to “non-business-hours” (as explained in 4.2.6. Event
Subscriber part), meaning that, the messages are sent to the user only in out of business
hours. Event Notifier creates an event in business hours. The system sends the event
information to the related users immediately, except for the users whose time preference is
set to “non-business-hours”. The messages of “non-business-hours” profiled users are
delayed until the end of the business hours. Then, they receive the messages by means of the
business rule engine by attaching “BRM-delayed” word into the original message, meaning
that, Business Rule Message-delayed.

40

Figure 29 BRM-delayed message

4.4. Sample Use Cases

4.4.1. Sample Use Case 1

Ali is a computer engineering student in Middle East Technical University, Ankara. He
registers and logins to the system. He adds “Turkish pop singers”, “Football” and “Action
Movies”, as he is interested in these tags, and logs out. He sets his message delivery
preferences as “Time profile: none, Location profile: on, Location: Ankara and Weather
profile: on”. Mehmet is industrial engineering student in METU, Ankara. An event brochure
is given to him in METU shopping center. He sees in the brochure that there is a Tarkan
Concert in Ankara in 12/08/2014 at 19:00. Mehmet logins to the system and add the event
details by specifying the place and date, and he forgets to add Tarkan Concert related
interests. Finally, he pushes the create button. The system checks the event details, such as
event title, date and place. Firstly, the system filters the words and gets the word “Tarkan”,
and connects to the DBpedia with the “Tarkan” word. As a result, it receives the related
words: “person”, “Turkish pop singers”, “Musical artist”, “Turkish-language artists”. It finds
the tags available and tries to match the tag names with the related words. It finds “Turkish
pop singers” category is a match. It queries the users who added the “Turkish pop singers” to
their interests before. Secondly, the system gets the weather information of Ankara from
OpenWeatherMap API for the specified date. As a result, the system receives “23 C, clear
sky” weather data, and abstracts the data as “Good” weather. Thirdly, Business rule engine
checks the conditions, and then gives a response about to send the notifications to the related
users according to preferences of the users. Finally, the system sends the notification to the
related users, “Here’s a new event for you: Tarkan Concert”. Ali realizes that he has a push
notification from the system about Tarkan Concert, he finds it interesting and registers to the
event in order to get event details and news about the event.

41

4.4.2. Sample Use Case 2

Melek is research assistant in English Literature department in METU and arranging a
seminar event about William Shakespeare. Melek logins into system as publisher, and create
the event with name “William Shakespeare Event” and with tags “English Literature” and
“Sonneteers”. Zeynep is sociology student in METU, Ankara. She is interested in English
poets and sonneteers. She registers to the system as subscriber and adds “Sonneteers” to her
interests. Then, she arranges her message delivery preferences as follows: The weather
profile is on, location profile is on and location is Ankara and time profile is on. When
Melek as publisher creates the event, even if Zeynep is a related subscriber for the event,
Zeynep does not receive the notification because the weather will be bad. Thus, she is not
aware of the event. While using the mobile app, she taps the “Interesting Events” button
from her Android phone. She realizes there is an event named “William Shakespeare Event”
in Ankara, four days later. She finds it interesting and taps on the event to view detailed
description about the event. System receives the current weather data about the event date,
deduces the specified outdoor event is not suitable due to bad weather circumstances. While
Zeynep is viewing the detailed description about the event, she realizes a warning message
that the event is not suitable because of rainy weather. Then, she refuses to register to the
event in order not to encounter a bad surprise.

4.4.3. Sample Use Case 3

Rana has a job in Ankara and is working very hard in business hours. Generally, she could
not answer the phones and view the messages in business hours. She is interested in musical
instruments and she always wanted to play a musical instrument. She logs into system and
adds “Musical Instruments” tag into her interests. She misses to set the preferences and the
time profile is set as “none” by default so that Rana has no time preference to receive the
notification in certain times. An event is created named “Piano Training” in Ankara 5 days
later. A push notification about this event is sent to Rana’s Android phone in business hours.
She realizes she received message, but she couldn’t view the message. Later, she forgets to
view the message and she misses the event. After the event time has passed, Rana realizes
that she misses that interesting event. Thus, she taps on “Your Preferences” button and sets
the time profile as “non-business-hours” in order to receive all messages in out of business
hours. One week later, there is another event created in business hours, named “Guitar
Training” in Ankara. The notification waits for business hours to pass, then goes to Rana’s
phone in out of business hours in the evening. She finds the event interesting and registers to
the event. When a new event, which Rana might be interested, is created in business hours,
by means of business rule engine, the message waits until the business hour is passed then
the system sends the push notification to Rana in order to maximize interaction rate with
Rana’s attracted events.

42

CHAPTER 5

RESULTS AND DISCUSSION

In this section we discuss efficiency, importance and applicability of our implemented
system. In order to demonstrate the value added by the system modules, we compare several
different conditions of the system that are with the system modules and without system
modules. The system modules of interest are semantic tag matcher, business rule
management system and event dispatcher. For the assessment, we create test data set and
sample scenarios. The sample scenarios are shown below. (Default values for unspecified
inputs are, Event Type: “Indoor”, Weather Info: “Clear sky, Good”, Event Creation Time:
“Qut of business hours”, Subscriber Time Profile: “non-business-hours” meaning that the
user receives all messages in out of business hours, Event Start Time: “20/08/2014 09:007,
Event Finish Time: “20/08/2014 13:00”, Event Place: “Ankara”, Subscriber Location:
“Ankara”, Subscriber Interests: “Computer Science”, “Turkish Pop Singers”, “Sonneteers”,
“Entertainment”, “Musical instruments”, and “American actors”. Standard user turns on all
message delivery preferences, time dependency, location dependency and weather
information dependency by default.

With the scenarios below, we test our system with or without the modules. We run first as a
whole, “Full Active System”, then “Without Semantic Tag Matcher”, “Without Business
Rule Management System” and “Without Event Dispatcher” as we explain in the scenarios.

In Table 5, we show the outputs from the scenarios. We assess the scenarios and create the
table. In this assessment, we consider whether the subscriber is satisfied or unsatisfied with
the event notification and the event experience. We say Satisfied (v),

o If the subscriber is satisfied with the event that he/she receives its notification in
appropriate conditions according to the subscriber preferences.

e If the subscriber is prevented from receiving unrelated events that the subscriber is
not interested, because of geographically unrelated event that is far from the
subscriber, because of an outdoor event that will have a bad weather, or because of
an unsuitable time that the subscriber receives.

We say Unsatisfied (X),

e If the system could not send the event message that the subscriber is actually
interested in.

o If the system cannot avoid sending the event which could be an unrelated event that
the subscriber is not interested, which could be a geographically unrelated event that
is far from the subscriber, which could be an outdoor event that will have a bad
weather, or which could be sent in unsuitable time for the subscriber.

43

5.1.

S1.

S2.

S3.

S4.

SS.

S6.

Sample Scenarios

Event Notifier creates an event named “Java Programming Language Training” and
specifies the tags as “Computer Science” and “Programming”. Since the subscriber
has “Computer Science” interest, the subscriber receives the notification in
appropriate conditions with full active system. The subscriber is satisfied with this
related event notification. Only if we remove event dispatcher and start the system,
the subscriber cannot receive notification and cannot be satisfied. (The aim of this
scenario is to show successful working of the system without the help of semantic
tag matcher and BRMS)

Event Notifier creates an event named “Tarkan Concert” without specifying any
tags. The semantic tag matcher is able to find Tarkan related tag such as “Turkish
Pop Singers”. Since the subscriber has “Turkish Pop Singers” interest and the
semantic tag matcher is able to find “Turkish Pop Singers” interest from Tarkan, the
subscriber receives the notification in appropriate conditions. The subscriber is
satisfied with the related notification. Subscriber cannot receive the notification if
we remove semantic tag matcher module, because the system cannot find related
interests. If we remove event dispatcher, the notification cannot be delivered. (The
aim of the scenario is to prove that the semantic tag matcher finds related topics in
case the publisher is not able to set the related topics.)

Event Notifier creates an event named “William Shakespeare Event” without
specifying any tags. The event type is “Outdoor” and the weather will be rainy in
this event. The subscriber does not receive the event notification because of bad
weather, so the subscriber is satisfied, since the system avoids the subscriber from
bad experience. If we remove BRMS that uses context sources such as weather data,
the system will not prevent the subscriber from bad weather experience, so the
subscriber will be unsatisfied. If we remove event dispatcher, the notification cannot
be delivered. (The aim in this scenario is to show how BRMS uses weather context
data and evaluates it to decide whether to send or not to send the notification.)

Event Notifier creates an event named “Guitar Training” and specifies the tags as
“Musical instruments” and “Music”. The event is created in business hours. The
subscriber receives the message in out of business hours, since he/she set his/her
time preference as ‘“non-business-hours” before, in order to receive all related
messages in out of business hours. Therefore, the system makes the messages wait if
the event is created in business hours. If we remove BRMS module which actually
handles the notification timing, the subscriber will not be satisfied, since he/she
receives the notification in a busy hour when he/she does not want to receive any
notifications. (The aim in this scenario is to show how BRMS uses time context data
and evaluates it to decide appropriate time for sending message to the subscriber.)
Event Notifier creates an event named “Tomato Festival” without specifying any
tags. Semantic tag matcher remains unsuccessful in analyzing “Tomato Festival”
semantically and finding related terms for current interests. Thus, the system cannot
send the notification to the subscribers who might be interested in this event. The
related subscribers such as the subscribers who are interested in “Entertainment”
cannot receive the notification, so the related subscribers could not be satisfied, as
they will not receive a related event notification. (The aim in this scenario is to show
full active system might remain unsuccessful in sending notifications to the related
subscribers in some cases.)

Event Notifier creates an event named “Spam Event” with specifying all of the tags.
The subscriber receives the event however; the subscriber is unsatisfied because the
event does not mean anything to him/her. (The aim in this scenario is to show
weakness of the full active system in filtering the event notifications and in blocking
spam notifications.)

44

S7. Event Notifier creates an event named “Bradley Coming to Ankara” without
specifying any tags and with the description, “American footballer Michael Bradley
is going to play in the friendly match in Ankara.” Semantic Tag Matcher tries to find
tags about “Bradley”. However, it finds “Brad Pitt” instead of “Michael Bradley”. It
matches the tag “American actors” with user interest “American actors”, then the
event is sent to the subscriber. The subscriber is not interested in “Football”. Thus,
the subscriber will be unsatisfied that the notification is unrelated with him. (The
aim of this scenario is to point that linked data method in semantic tag matcher may
sometimes bring wrong results that do not make the subscriber happy.)

We can show the outputs of the scenarios, with or without modules.

Table 5 System Evaluation With/Without Modules

Without
Semantic Tag Without | Without Event
Full Active Matcher BRMS Dispatcher
S1: Correct Tags
specified, other v v v X
conditions nominal
S2: Tags not
specified, semantic
tag matcher is able v/ X v X
to find tags
S3: Correct tags
specified, outdoor v v X X
rainy event
S4: Correct tags,
event created in v v X X
business hours
S5: Tags not
specified, semantic
tag matcher is X X X X
unable to find tags
S6:Wrong tags
specified X X X X
S7: Tags not
specified, linked
data brings wrong X X X X
results

e Full Active System: Full active system works successfully on all scenarios except
for Scenarios 5, 6, and 7. In Scenario 5, semantic tag matcher remains weak in
finding new tags that the publisher is unable to specify. Semantic tag matcher could
not find any related words for “Tomato Festival”. In Scenario 6, the subscriber
receives a spam event notification that he/she is not satisfied with. Therefore, a weak
point of the system is that there is no spam filtering, so a user may create spam
events. In Scenario 7, semantic tag matcher finds wrong results that are not related

45

with the subscriber’s interests. Thus, the subscriber will not be content with the
event notification.

e Without Semantic Tag Matcher:

o S1, S3 and S4 (Satisfied): The system will remain successful in keeping the
subscriber satisfied since the tags are already specified, so there is no need
for semantic tag matcher in these scenarios.

o S2 (Unsatisfied): Since the publisher does not set any tags, without semantic
tag matcher, the system cannot reach to the related subscribers. The
subscriber will be unsatisfied due to missing a related event.

o S5, S6 and S7 (Unsatisfied): Same reasons explained in Full Active System
part above.

e Without BRMS:

o S1 and S2 (Satisfied): Since default good conditions, which do not need
context data such as weather data these scenarios will remain successful in
making the subscriber satisfied.

oS3 (Unsatisfied): In this scenario, we have an outdoor event and the weather
will be rainy. Even if the context data service is open, the system cannot
infer knowledge from context data without BRMS. Thus, the system will
keep sending notifications even though the event is on a rainy day and not
enjoyable. We can say the subscriber will be unsatisfied.

o S4 (Unsatisfied): The event is created in business hours but the subscriber
sets his/her time preferences as “non-business-hours” in order to receive
notifications in out of business hours. Without BRMS, the subscriber
receives his/her notification in business hours when he/she does not prefer to
receive. Thus, the subscriber will be unsatisfied.

o S5, S6 and S7 (Unsatisfied): Same reasons explained in Full Active System
part above.

e Without Event Dispatcher: Absence of this service cause not to deliver any messages
to the subscriber. The subscriber, of course, is still able to see the events from the
user interface by manually querying the events.

5.2. Evaluation of the Results

Firstly, we realize from the scenarios that the semantic tag matcher tries to identify
additional related subscribers. In case of not specifying any tags, semantic tag matcher
searches for new categories to match the tags as a contribution to the publisher’s task. In our
system, semantic tag matcher utilizes the DBpedia source. However, as in seen in Scenario
5, DBpedia source remains insufficient in finding the related tags. For more accurate results,
the external sources can be extended, and also an ontology would be helpful in addition to
the linked data method.

Secondly, BRMS is very useful for inferring new knowledge for the users and the events, by
aggregating the inputs so that the event message could be more meaningful for the user. For
instance, BRMS, which uses the context data coming from another external sources such as
weather service, deduces knowledge that whether the event is suitable for the user or not. In
Scenario 3, we showed the power of BRMS by giving example of using weather context
data. Additionally, BRMS can use location and time context data to arrange sending the
notification to the subscriber. For instance, assume an event is created in business hours, the
user might miss the messages if the message does not wait for out of business hours. Right
here, BRMS does this job and sends the message in the most suitable time for the user by

46

inferring the suitable time for each user, by considering time as in Scenario 4, or location and
weather information. Therefore, without BRMS many of the event messages could be seen
as spam or could be left unseen if received at an unsuitable time.

Finally, regarding the event dispatcher that handles message delivery, absence of this service
results in undelivered messages. The user is only able to query the events and able to view
the info manually without the event dispatcher. Thus, this service is significant in reaching
the user on time.

It can be said that the system has weaknesses in some cases. Firstly, the publisher may create
spam events with attached unrelated tags. Hence, there is a need for a mechanism in
monitoring relationships between created event and the tags. Secondly, if the publisher does
not specify any tags, and the semantic tag matcher was unable to find related tags, the event
is not sent to any subscriber. Thus, the weak point of the system is that the existence of
attached tags is mandatory. Thirdly, the linked data method used in semantic tag matcher
may sometimes identify wrong tags, so, this situation leads the subscriber to be unsatisfied
with the notifications.

If we talk about the assumptions in the scenarios, firstly, we assumed that the Standard User
(subscriber) might be a student or might have a job. Thus, we created some predefined
calendars for business rule engine. However, a user may not be that active in business hours
or in weekdays. In the rule file, the calendars are static but we can create new rules with
these calendars without changing the system itself. If want to change the calendar times or
add a new one, we must deploy new rule definitions into the business rule management
system (BRMS). Thus, these calendar times are our assumptions. Secondly, we assume clear
sky and cloudy weather conditions as “Good” weather; otherwise the weather is “Bad”. In
some conditions, for example, snowy conditions for some events may be suitable. In this
case, because of our assumption, the event could not be notified because it is seen as “Bad”
weather. However, in BRMS, we could define weather-specific rules to override this
situation without deploying new code. For example, we could add a rule that has snowy
condition:

47

When
eventl : Event (weatherSpecific == "“Snow”)

Or for more accurate results, we can define the condition with weather code.

When
Event? : Event (weatherCode >= 600 && weatherCode < 700)

We give weather code between 600 and 699 since it describes snowy conditions for
OpenWeatherMap API[19].

5.3. A Proof of Concept Application at METU Informatics Institute

As proof of concept, a sample application for METU Informatics Institute is presented by
using Institute related data. For instance, we create course topics, course related events,
nonacademic events in METU, and some entertainment activity announcements at the
Informatics Institute. After arranging such an appropriate environment, we pick 12 users
among MSc/PhD students, research assistants and non-academic personnel in METU
Informatics Institute, and ask them to use and evaluate the system. We explain the aim of the
system and show the mobile application for both publisher’s and subscriber’s views. Then,
users register to the system as subscribers, and set related user interests such as course topics
that they are taking, or social topics in the institute or in METU, as seen in figures 30, 31 and
32. The users also set their preferences in order to receive messages in appropriate
conditions. As a publisher, we create topic related events. Finally, the users receive the event
notifications. After using and evaluating the mobile system, a survey and an interview is
conducted with the users. There are 5 questions in the survey and the users give scores to the
system from 1 to 5. Many of the issues are explained and there is no missing knowledge
regarding the system and from the survey questions. In the interviews, we ask for feedbacks
and suggestions to improve the system. The questions, minimums and maximums, averages
and standard deviations for the scores for each question are given in Table 6.

48

Table 6 Survey Results

Questions Min |Max |Deviaton | Average

Standard

QL. Are the notifications related with
your interests? (1: Generally Unrelated,
5: Generally Related) 2 5 0,89 4,00

Q2. Are the notifications sent according
to your preferences?
(1: Rarely, 5: Generally) 2 5 0,90 4,27

Q3. How would you score the user
interface of the mobile app? (1:
Unsatisfactory, 5: Satisfactory) 1 3 0,60 1,82

Q4. How would you score your general
satisfaction with the mobile application?
(1: Unsatisfied, 5:Satisfied) 3 5 0,60 3,82

Q5. How much applicable and usable is
the mobile app at METU Informatics
Institute?

(1:Hard to apply, 5: Easy to apply) 3 5 0,75 4,18

For question 1, results show that the system generally sends related messages. This
situation may be affected by that the publisher did not create unrelated events for
each topic. The system also shows in this proof of concept application that, Semantic
Tag Matcher did not find any unrelated tags to the events (similar to the situation
described in Scenario 7 above), so the users were not disappointed.

For question 2, the users generally receive their messages based on their preferences.
The assumption could be effective on gathering high scores in here that if the users
set time preferences such as non-business hours, the system is said to be successful
if the related notification is immediately received with prefix “delayed”, instead of
waiting for the specified time interval. It is meant that the notifications would be
actually sent in selected time interval, when the users are unable to wait and track
the situation.

For question 3, the users generally give low scores to the user interface of the mobile
application. In the mobile application, we mainly focus on functionality, so the user
interface remains weak.

For question 4, the users are generally satisfied with the mobile application. They
appear satisfied more with the functionality of the system. However, the score in
question 4, is lower than in questions 1 and 2. The reason might be that the user
interface remains insufficient.

For question 5, the users give high scores in applying the system at METU
Informatics Institute. In this grading, the users might assume that if the mobile app is
improved according to the feedbacks they give, the system seems more usable in
METU Informatics Institute.

49

i UserlnterestsActivity

15748
15502
15504

v ISTTT

+ METU Events
Save

Create Interest

Figure 30 User Figure 31 Notification Figure 32 Notification
Interests about IS 777 Course About METU Events

After the survey, we interview some of the METU Informatics Institute research assistants,
MSc /PhD students and non-academic personnel in order to evaluate the system and discuss
the applicability and usability of the system at METU Informatics Institute. They generally
find it feasible to use the proposed mobile system. We can list some main topics of the
feedbacks and suggestions from the interviews:

1. New course notifications using topics: If a new course is opened in METU
Informatics Institute, this new course topic can be added easily into system to send
new course related notifications. (Actually, the feature is supported, but none of the
users used it.)

2. Notification details: In the notification content, the publisher name and related topics
of the notification should be available, so that the subscribers can gain knowledge
about who the publisher is and what the topics are.

3. Authorization issue: The subscribers can be anybody who registers into the system.
However, in publishing event notifications, there should be a constraining
mechanism in order to prevent unwanted and unrelated messages. Two approaches
are presented in the interviews. Firstly, a restriction for being a publisher can be
applied. The publishers should only be teaching members, teaching assistants and
other academic or non-academic personnel in METU. Secondly, a limit on setting
academic tags can be applied. In other words, everyone can be a publisher, however,
not everyone can create an event attached with e.g. IS 501 course tag. Academic tags
must be only set by METU personnel.

4. Admin role: There should be an admin role in addition to the publisher and
subscriber, in order to authorize METU personnel to set academic tags or to be a
publisher.

5. Rate the publisher: There should be a rating mechanism by giving scores by the
subscribers to the publishers, in order to increase the quality of the notifications.

6. Option to select attending/not attending: While viewing the event notification detail,
there can be an option for the subscriber to specify attendance condition of the
subscriber. It could be helpful, for instance, when an instructor plans an additional
course and wants to learn the attendance situation of the students, this attendance
information could help to cancel the course hour and arrange another time.

7. Context data can be helpful only in non-academic events: Using weather, location
and time context data for the subscriber, and sending notifications according to
them, can be very important and beneficial especially for non-academic events.
However, it might not be that preferable for the academic event notifications. Thus,

50

there could be a separation between academic events and non-academic events in
order to send every academic message to related subscribers.

8. Integration to METU OIBS: The system might be integrated into METU OIBS
(Student Affairs Information System), so that taken current course topics can be
automatically registered for the subscriber.

9. Statistics and reports: Analysis and statistics of created events can be presented
visually by the system. For instance, the report may include the number of total
events tagged by 1S501 in the current semester, the number of posts of the selected
publisher, the attendance percentage of the events, the number of total subscribers
registered to a specific topic.

10. Friend list and social network integration: Friend list should be integrated into the
system so that the subscriber can share the event with other subscribers who do not
actually receive the event notification since they did not register to the related topics.
Friend list can be gathered from phone contact list, email contact list or social
network contact list. Moreover, the event should be shared via a social network
application.

11. Integration with Google Calendar [56]: The events that the subscriber is attending
can be integrated into Google Calendar so that external and internal events are
combined in one place and the subscriber can display whole schedule.

12. Publish important events via publisher confirmation: The students as subscribers
may sometimes find out about an event that has not been published into the system
yet. In this case, the subscriber may have the opportunity to create an event draft
with related course tags in order to send to the related publisher’s screen. If the
publisher sees the event as important and confirms the related tags are correct,
she/he confirms the event to be sent to the related subscribers. Therefore, the
subscribers can contribute to event notification in addition to attending events. For
instance, the CEO of a global IT company is coming to Ankara to attend a seminar.
The seminar might not be course related but a subscriber, who finds out about the
event, may think that 1S 501 course students may be interested in this event. Since
she/he cannot create an event or cannot create an event with academic tags, she/he
creates the event by specifying the date and 1S 501 topic. Then, he/she sends the
event to the publishers to be confirmed. A publisher sees the event that could be
significant, and confirms the event to publish the event for the IS 501 subscribers.

As we learn from the feedbacks, the users understand the system, and also they really want
to use the system, since they describe concrete situations and requirements in an academic
environment. They generally give feedbacks about improvements that they want to utilize.
The system provides adequate functionality according to the interests and the preferences of
the subscribers, but the user interface remains weak that we intend to improve first.
However, we deduce that weakness of the user interface did not very much affect the
functionality and value provided by the system.

51

52

CHAPTER 6

CONCLUSION AND FUTURE WORK

In context-aware event recommender and notification systems, many successful studies have
been conducted so far. For rich context and knowledge creation, time of day information,
location, weather information, user preferences and demographic info (age, gender etc.),
semantic environments, business rules have been used. Many studies have shown a good
example of context-aware information delivery. For instance, some systems use complex
algorithms to recommend accurate items. Some studies use social media to have more
interaction with the people. There are some works using publish-subscribe approach with
push notification. In addition to push notifications, there are business rule engines to send a
message to the user in a specified time. The business rule engines in former systems focus on
single job such as only message delivery. There are also some successful semantic Web
features in new service discovery. Many studies have provided a solution with a
recommendation engine, business rule engine, in semantic analysis, or in context-aware
environment. However, the studies remain inadequate in combining many of these features
into one solution, for instance, both successful recommendation, successful delivery of
message at the right time to the correct person and immediate behavior altering of the
system. Additionally, semantic analysis may prove to be insufficient, if ontology of the
application domain does not exist. Furthermore, the studies do not provide adequate
functionality and a feasible proof-of-concept application in finding the user at the most
suitable time to deliver the info, when it finds a related info about the user.

Caglar [25] proposes a publish-subscribe based context aware reminder system that utilizes
reminder patterns. The reminder patterns help to trigger reminding message by time or
location defined by the publisher. Message trigger is limited to time or location info and
limited to the offered patterns. Here, as a contribution to the study of Caglar, we propose a
publish-subscribe system that is empowered with a business rule management system and
semantic analysis using linked data. Business rule management system uses the context
sources to create a context-aware medium for the subscriber, by applying complex event
processing, assessing complex conditions and deciding suitable message delivery time.
BRMS can work independently and modify itself quickly without any other system change.
The advantage of our proposed BRMS is that we can use any context source as input and
evaluate it to infer valuable knowledge. This could be time, user profile info, user location,
user history, weather conditions or any other context data. We can define time based,
location based and weather condition based events so that the subscriber will be able to
receive the message in the most suitable time. Moreover, we use a semantic analysis with
linked data through the semantic tag matcher component, in order to get linked words related
to an event name. The aim of using semantic tag matcher is to maximize the success of
sending messages to the related subscribers, when the publisher misses to specify all related
tags on the created event.

53

In the results and discussion part, we apply the selected scenario to our implemented system
and observe the results. Event dispatcher has the most significant effect on pushing
notifications to the subscriber. In terms of message delivery, we realize that semantic tag
matcher improves the performance by finding more tags to match. In terms of
recommendation suitability performance, we can observe that BRMS has an important role
in using context data and inferring valuable knowledge for recommendation and message
delivery. On the contrary, as we realize from Scenario 6 in Results and Discussion part, the
message can be delivered successfully, but the notification will not be meaningful to the
subscriber, since the event is created as spam and it has unrelated tags on it. At this point the
system has a weakness of not catching unrelated and spam events.

Furthermore, we consider the applicability at METU Informatics Institute. A proof of
concept application at METU Informatics Institute is presented. To achieve this, the related
tags and events are created. METU Informatics personnel and Informatics students are
selected to use and evaluate the system. We find out that the system appears applicable, after
gathering the feedbacks, requirements and the suggestions. However, for a proper usage of
the system, there must be some improvements made, according to the selected users.

As future work, we intend to improve some modules of the system, by adding new features,
new context sources and new refined algorithms in message delivery and recommendation.
Firstly, semantic tag matcher can be improved to get more successful related results. We are
planning to improve word-filtering algorithm by adding new word manipulation algorithms
not only in English but also in Turkish and other languages. Thus, the event details will be
more meaningful to the event management server to categorize the events, and the word
similarity results will be more successful. Moreover, we are planning to add new semantic
services, for instance we can use ontologies to improve the semantic tag matcher in addition
to the DBpedia Lookup Service. As mentioned in the evaluation part, the linked data method
may sometimes bring unrelated and wrong matching. Thus, adding new services and
applying filtering to the queries from many sources may help reduce the wrong results.
Secondly, we want to add new context sources to increase context awareness performance of
the system. For instance, for indoor and outdoor positioning, we are planning to use GPS and
also wireless sensors to locate the user accurately. Finally, we plan to add spam filtering
module into system to filter unwanted messages, and also add the capability to block the
corresponding user.

54

REFERENCES

[1] Kamar, A. (2003). Mobile Tourist Guide (m-ToGuide). Deliverable 1.4, Project Final
Report. 1IST-2001-36004.

[2] Garcia-Crespo, A., Chamizo, J., Rivera, I., Mencke, M., Colomo-Palacios, R., & Gomez-
Berbis, J. M. (2009). SPETA: Social pervasive e-Tourism advisor.Telematics and
Informatics, 26(3), 306-315.

[3] O'Hare, G. M., & O'Grady, M. J. (2003). Gulliver's Genie: a multi-agent system for
ubiquitous and intelligent content delivery. Computer Communications,26(11), 1177-1187.

[4] Umlauft, M., Pospischil, G., Niklfeld, G., & Michlmayr, E. (2002). LoL@, A mobile
tourist guide for UMTS. Information Technology & Tourism, 5(3), 151-164.

[5] Krosche, J., Baldzer, J., & Boll, S. (2004). Mobidenk-mobile multimedia in monument
conservation. MultiMedia, IEEE, 11(2), 72-77.

[6] Neves, A. R. D. M., Carvalho, A. M. G., & Ralha, C. G. (2014). Agent-based
architecture for context-aware and personalized event recommendation. Expert Systems with
Applications, 41(2), 563-573.

[7] Braunhofer, M., Elahi, M., Ricci, F., & Schievenin, T. (2013). Context-aware points of
interest suggestion with dynamic weather data management. In Information and
Communication Technologies in Tourism 2014 (pp. 87-100). Springer International
Publishing.

[8] Beer, T., Fuchs, M., Hopken, W., Rasinger, J., & Werthner, H. (2007). Caips: A context-
aware information push service in tourism. Information and Communication Technologies in
Tourism 2007, 129-140.

[9] Haron, N. S., Saleem, N. S., Hasan, M. H., Ariffin, M. M., & Aziz, I. A. (2010). A RFID-
based campus context-aware notification system. arXiv preprint arXiv:1003.4080.

[10] Martin, D., Alzua, A., & Lamsfus, C. (2011, January). A contextual geofencing mobile
tourism service. In ENTER (pp. 191-202).

[11] Website of OpenSocial. (n.d.), Retrieved August 14, 2014, from http://opensocial.org/

[12] Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12(4), 331-370.

[13] Garcia-crespo, A., Lopez-cuadrado, J. L., Colomo-palacios, R., Gonzalez-carrasco, |., &
Ruiz-mezcua, B. (2009). Sem-Fit: A semantic based expert system to provide
recommendations in the tourism domain, 1-10. doi:10.1016/j.eswa.2011.04.152

[14] Information about Zigbee (n.d.), Retrieved August 14, 2014, from

55

http://opensocial.org/

http://www.zigbee.org/

[15] Information about Linked Data. (n.d.), Retrieved August 14, 2014, from
http://linkeddata.org/

[16] Information about DBpedia. (n.d.), Retrieved August 14, 2014, from
http://wiki.dbpedia.org/About

[17] Information about OpenWeatherMap APIL. (n.d.), Retrieved August 14, 2014, from
http://openweathermap.org/API

[18] Sample OpenWeatherMap URL for 3-day weather information of Ankara as XML file.
(n.d.), Retrieved July 26, 2014, from
http://api.openweathermap.org/data/2.5/forecast/daily?g=ankara&mode=xml&units=metric
¢=3

[19] List of weather conditions of OpenWeatherMap API. (n.d.), Retrieved August 14, 2014,
from http://openweathermap.org/weather-conditions

[20] Description of Drools business rule engine. (n.d.), Retrieved August 14, 2014, frim
http://drools.jboss.org/

[21] Description of JBoss Middleware. (n.d.), Retrieved August 14, 2014, from
http://www.jboss.org/

[22] Tutorial document of complex event processing feature of Drools. (n.d.), Retrieved
August 14, 2014, from http://docs.jboss.org/drools/release/6.0.1.Final/drools-
docs/html/DroolsComplexEventProcessingChapter.html

[24] Description of JBoss Guvnor. (n.d.), Retrieved August 14, 2014, from
http://guvnor.jboss.org/

[25] Caglar, O., (2013), A Context-Aware Reminder System Based On Publish And
Subscribe Model, Retrieved August 14, 2014, from Middle East Technical University,
Informatics Institute Web site: http://etd.lib.metu.edu.tr/upload/12616083/index.pdf

[26] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).
Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE
Internet computing, 6(2), 86-93.

[27] Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic
processing. Psychological review, 82(6), 407.

[28] Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis: A New Synthesis.
Morgan Kaufmann Publishers, Inc., 121-122

[29] Microsoft .NET Web API. (n.d.), Retrieved August 14, 2014, from
http://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx

[30] Description of Microsoft Visual Studio 2013. (n.d.), Retrieved August 14, 2014, from
http://www.visualstudio.com/tr-tr/downloads/download-visual-studio-vs.aspx

[31] Website of Microsoft Azure. (n.d.), Retrieved August 14, 2014, from
https://azure.microsoft.com/tr-tr/vis

56

http://www.zigbee.org/
http://linkeddata.org/
http://wiki.dbpedia.org/About
http://openweathermap.org/API
http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=3
http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=3
http://openweathermap.org/weather-conditions
http://drools.jboss.org/
http://www.jboss.org/
http://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/html/DroolsComplexEventProcessingChapter.html
http://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/html/DroolsComplexEventProcessingChapter.html
http://guvnor.jboss.org/
http://etd.lib.metu.edu.tr/upload/12616083/index.pdf
http://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx
http://www.visualstudio.com/tr-tr/downloads/download-visual-studio-vs.aspx
https://azure.microsoft.com/tr-tr/vis

[32] Description of GCM. (nd.), Retrieved August 14, 2014, from
http://developer.android.com/google/gcm/index.html

[34] Android Developer Web page. (n.d.), Retrieved August 14, 2014, from
http://developer.android.com/index.html

[35] Description of DBpedia.. (n.d.), Retrieved August 14, 2014, from
http://wiki.dbpedia.org/About

[36] O’Grady, M. J., & O’Hare, G. M. (2004). Gulliver's Genie: agency, mobility,
adaptivity. Computers & Graphics, 28(5), 677-689.

[37] Website of Eclipse platform. (n.d.), Retrieved August 14, 2014, from
https://www.eclipse.org/

[38] Moreno, A., Valls, A., Isern, D., Marin, L., & Borras, J. (2013). Sigtur/e-destination:
ontology-based personalized recommendation of tourism and leisure activities. Engineering
Applications of Artificial Intelligence, 26(1), 633-651.

[39] Gruber, T. R. (1993). A translation approach to portable ontology
specifications.Knowledge acquisition, 5(2), 199-220.

[40] Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so
far.International journal on semantic web and information systems, 5(3), 1-22.

[41] Definition of URI. (n.d.), Retrieved August 23, 2014, from
http://www.w3.org/TR/uri-clarification/

[42] Definition of RDF. (n.d.), Retrieved August 23, 2014, from
http://www.w3.org/TR/PR-rdf-syntax/

[43] Hebeler, J., Fisher, M., Blace, R., & Perez-Lopez, A. (2011). Semantic web
programming. John Wiley & Sons.

[44] FOAF project web page. (n.d.), Retrieved August 23, 2014, from http://www.foaf-
project.org/

[45] GeoNames web page. (n.d.), Retrieved August 23, 2014, from
http://www.geonames.org/

[46] Liu, Y., & Plale, B. (2003). Survey of publish subscribe event systems.Computer
Science Dept, Indian University, 16.

[47] Nagl, C., Rosenberg, F., & Dustdar, S. (2006, October). VIDRE--A Distributed Service-
Oriented Business Rule Engine based on RuleML. In Enterprise Distributed Object
Computing Conference, 2006. EDOC'06. 10th IEEE International (pp. 35-44). IEEE.

[48] BRMS definition from Hartmann Software Group IT Training & Consulting web page.
(n.d.), Retrieved August 23, 2014, from http://www.hartmannsoftware.com/pub/Enterprise-
Rule-Applications/brms

[49] Aida, K. (2000, January). Effect of job size characteristics on job scheduling
performance. In Job Scheduling Strategies for Parallel Processing (pp. 1-17). Springer Berlin
Heidelberg.

57

http://developer.android.com/google/gcm/index.html
http://developer.android.com/index.html
http://wiki.dbpedia.org/About
https://www.eclipse.org/
http://www.w3.org/TR/uri-clarification/
http://www.w3.org/TR/PR-rdf-syntax/
http://www.foaf-project.org/
http://www.foaf-project.org/
http://www.hartmannsoftware.com/pub/Enterprise-Rule-Applications/brms
http://www.hartmannsoftware.com/pub/Enterprise-Rule-Applications/brms

[50] Podnar, 1., Hauswirth, M., & Jazayeri, M. (2002). Mobile push: Delivering content to
mobile users. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd
International Conference on (pp. 563-568). IEEE.

[51] Wang, M., Kawamura, T., Sei, Y., Nakagawa, H., Tahara, Y., & Ohsuga, A. (2014).
Context-Aware Music Recommendation with Serendipity Using Semantic Relations.

In Semantic Technology (pp. 17-32). Springer International Publishing.

[52] Last.fm web page. (n.d.), Retrieved August 23, 2014, from http://www.last.fm

[53] Twitter web page. (n.d.), Retrieved August 23, 2014, from http://www.twitter.com

[54] Yahoo! Local web page. (n.d.), Retrieved August 23, 2014, from
https://local.yahoo.com/

[55] LyricWiki web page. (n.d.), Retrieved August 23, 2014, from
http://lyrics.wikia.com/Lyrics_Wiki

[56] Google Calendar web page. (n.d.), Retrieved August 23, 2014, from
https://www.google.com/calendar/render?tab=mc%EF%BB%BF

58

http://www.foaf-project.org/
https://local.yahoo.com/
http://lyrics.wikia.com/Lyrics_Wiki
https://www.google.com/calendar/render?tab=mc%EF%BB%BF

TEZ

_FOTOKOPI
IZIN FORMU
ENSTITU
Fen Bilimleri Enstitlisu
Sosyal Bilimler Enstitlisii
Uygulamali Matematik Enstitlist
Enformatik Enstitiisii X

Deniz Bilimleri Enstitlsi

YAZARIN

Soyadi : GURGAH
Adi : Melih
Bollimu : Bilisim Sistemleri

TEZIN ADI (ingilizce) : A CONTEXT-AWARE MOBILE EVENT NOTIFICATION SYSTEM
USING THE PUBLISH-SUBSCRIBE MODEL WITH A BUSINESS RULE ENGINE AND
LINKED DATA

TEZIN TURU : Yiksek Lisans X Doktora

1. Tezimin tamami diinya ¢apinda erisime agilsin ve kaynak gosterilmek
sartiyla tezimin bir kismi veya tamaminin fotokopisi alinsin.

2. Tezimin tamami yalnizca Orta Dogu Teknik Universitesi kullancilarinin
erisimine acilsin. (Bu secenekle tezinizin fotokopisi ya da elektronik
kopyasi Kiitiiphane araciligi ile ODTU disina dagitilmayacaktir.)

3. Tezim bir (1) yil streyle erisime kapali olsun. (Bu secenekle tezinizin

fotokopisi ya da elektronik kopyasi Kiitiiphane aracihgl ile ODTU disina
dagitilmayacaktir.)

Yazarin imzasl ...ececeveeereeeeeeiieennns Tarih : 10/10/2014

