

A CONTEXT-AWARE MOBILE EVENT NOTIFICATION

SYSTEM USING THE PUBLISH-SUBSCRIBE MODEL WITH A

BUSINESS RULE ENGINE AND LINKED DATA

A THESIS SUBMITTED TO  THE GRADUATE SCHOOL OF

INFORMATICS OF MIDDLE EAST TECHNICAL

UNIVERSITY

BY

MELİH GÜRGAH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2014

A CONTEXT-AWARE MOBILE EVENT NOTIFICATION SYSTEM USING THE

PUBLISH-SUBSCRIBE MODEL WITH A BUSINESS RULE ENGINE AND

LINKED DATA

Submitted by Melih GÜRGAH in partial fulfillment of the requirements for the degree of

Master of Science in the Department of Information Systems, Middle East Technical

University by,

Prof. Dr. Nazife Baykal ___________________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin ___________________

Head of Department, Information Systems

Assist. Prof. Dr. P. Erhan Eren ___________________

Supervisor, Information Systems, METU

Examining Committee Members

Prof. Dr. Nazife Baykal ___________________

Information Systems, METU

Assist. Prof. Dr. P. Erhan Eren ___________________

Information Systems, METU

Dr. Nail Çadallı ___________________

KAREL A.Ş.

Assoc. Prof. Dr. Altan Koçyiğit ___________________

Information Systems, METU

Assoc. Prof. Dr. Alptekin Temizel ___________________

Work Based Learning, METU

Date: 11/09/2014

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name, Last Name: Melih Gürgah

Signature: ___________________

iv

ABSTRACT

A CONTEXT-AWARE MOBILE EVENT NOTIFICATION SYSTEM USING THE

PUBLISH-SUBSCRIBE MODEL WITH A BUSINESS RULE ENGINE AND LINKED

DATA

Gurgah, Melih

MSc., Department of Information Systems

Supervisor: Assist. Prof. Dr. P. Erhan Eren

September 2014, 58 Pages

Context-awareness has become an important feature of event recommendation and

notification systems. So far, several studies in tourism and education domains have provided

good results on using different context data and delivering messages based on this context-

aware environment. Although many context data are gathered, the analysis of these context

data for a proper recommendation still remains insufficient. Even if the recommendation

itself is said to be successful, delivery performance, in other words, notifying the message

recipient under appropriate conditions, is still inadequate. We propose a publish-subscribe

based event notification system enhanced with a business rule engine for context data

evaluation, and linked data for semantic analysis. We aim to improve event notification

performance by aggregating various context data, making complex inferences and finding

the most suitable time to deliver messages for the subscriber by applying the business rule

concept. Furthermore, in order to semantically analyze event details and infer new

relationships, we utilize semantic analysis by using linked data. To validate our proposed

system, we implement a working prototype incorporating event publishers, an event

management server composed of a business rule engine, a semantic analysis module

powered with linked data and an event dispatcher component, as well as internal and

external context sources. The applicability of the system is demonstrated by evaluating it

against several sample scenarios.

Keywords: Mobile Computing, Context-Aware Notification System, Publish - Subscribe

Model, Business Rule Engine, Linked Data

v

ÖZ

İŞ KURALI MOTORU VE BAĞLI VERİ İLE YAYINLA-ABONE OL MODELİNİ

KULLANAN BAĞLAM BİLİNÇLİ MOBİL ETKİNLİK BİLDİRİM SİSTEMİ

Gürgah, Melih

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. P. Erhan Eren

Eylül 2014, 58 Sayfa

Bağlam bilinçlilik, etkinlik tavsiyesi ve bildirim sistemlerinde önemli bir özellik olmuştur.

Şimdiye kadar, turizm ve eğitim alanlarında birçok çalışma farklı bağlam verilerini

kullanmada ve bu bağlam bilinçli ortama dayanarak mesajları iletmede iyi sonuçlar

sağlamıştır. Birçok bağlam verisi toplanmasına rağmen, bu bağlam verilerinin analizi iyi bir

tavsiye için hala yetersiz kalmaktadır. Tavsiyenin kendisi başarılı olarak nitelense bile, iletim

performansı, diğer bir deyişle, mesaj alıcısına uygun koşullarda mesaj bildirmek hala

yetersiz olmaktadır. Bu noktada, bağlam verileri değerlendirme için iş kuralı motoru ve

anlamsal analiz için bağlı veri ile geliştirilmiş yayınla-abone ol tabanlı etkinlik bildirim

sistemi sunmaktayız. Buradaki amaç, iş kuralı kavramını kullanarak, çeşitli bağlam verilerini

birleştirip ve kompleks çıkarımlar yapıp aboneye mesajları iletmede en uygun zamanı

bularak, etkinlik bildirim performansını geliştirmektir. Ayrıca, etkinlik detaylarını anlamsal

olarak analiz etmek ve yeni ilişki çıkarımlarında bulunmak için, anlamsal analizden bağlı

veri aracılığıyla faydalanırız. Sunulan sistemi doğrulamak amacıyla, etkinlik yayınlayıcısı

modülü, etkinlik abonesi modülü; iş kuralı motoru, anlamsal analiz modülü ve etkinlik

dağıtıcısı alt modüllerinden oluşan etkinlik yönetim sistemi modüllerinin yanı sıra, içsel ve

dışsal bağlam kaynaklarının dahil olduğu çalışan bir prototip geliştirilmiştir. Sistemin

uygulanabilirliği, sistemin birkaç örnek senaryo ile değerlendirilmesi ile gösterilmiştir.

Anahtar Kelimeler: Mobil Hesaplama, Bağlam Bilinçli Bildirim Sistemleri, Yayınla - Abone

Ol Modeli, İş Kuralı Motoru, Bağlı Veri

vi

This thesis is dedicated to my family.

vii

TABLE OF CONTENTS

ABSTRACT .. iv
ÖZ .. v
LIST OF TABLES .. ix
LIST OF FIGURES ... x
CHAPTERS
1 INTRODUCTION .. 1
2 RELATED WORK ... 5
3 PROPOSED CONCEPTUAL DESIGN ... 11

3.1. Main Features of the System .. 11
3.1.1. Message Delivery ... 11
3.1.2. Business Rule Management System for Context Data................................... 12
3.1.3. Semantic Analysis Using Linked Data .. 13

3.2. System Architecture ... 16
3.2.1. Event Publisher .. 17
3.2.2. Event Management System .. 18
3.2.3. Context Sources ... 21
3.2.4. Event Subscriber .. 21

4 IMPLEMENTATION ... 23
4.1. Used Technologies and Services .. 23

4.1.1. REST architecture / Restful Web Services .. 23
4.1.2. ASP.NET Web API.. 23
4.1.3. Microsoft Visual Studio 2013 and Azure Cloud Services 24
4.1.4. Google Cloud Messaging Push Service ... 24
4.1.5. Drools - Business Rule Management System .. 24
4.1.6. Java, Android and Eclipse .. 24
4.1.7. DBpedia & DBpedia Lookup Service .. 24
4.1.8. OpenWeatherMap API ... 24

4.2. Architecture Overview of the Implemented System .. 25
4.2.1. Event Management System .. 26
4.2.2. Semantic Tag Matcher via DBpedia Lookup Service 27
4.2.3. Context Sources ... 28
4.2.4. Drools BRMS ... 30

viii

4.2.5. Event Publisher Android Client .. 33
4.2.6. Event Subscriber Android Client .. 33

4.3. Sample Usage of the System .. 34
4.3.1. Interest Setting .. 34
4.3.2. Event Creation and Message Delivery ... 35
4.3.3. Event Detail Display, Registering to Event and Setting Time Profile 38
4.3.4. Message Delivery By Means Of Linked Data .. 40
4.3.5. Message Delivery Delay... 40

4.4. Sample Use Cases .. 41
4.4.1. Sample Use Case 1 ... 41
4.4.2. Sample Use Case 2 ... 42
4.4.3. Sample Use Case 3 ... 42

5 RESULTS AND DISCUSSION ... 43
5.1. Sample Scenarios ... 44
5.2. Evaluation of the Results .. 46
5.3. A Proof of Concept Application at METU Informatics Institute 48

6 CONCLUSION AND FUTURE WORK .. 53
REFERENCES ... 55

ix

LIST OF TABLES

Table 1 Geonames Output Samples ... 14
Table 2 BRMS Time Inference .. 19
Table 3 BRMS Weather Condition Inference .. 20
Table 4 BRMS Subscriber Interaction Inference ... 20
Table 5 System Evaluation With/Without Modules .. 45
Table 6 Survey Results .. 49

x

LIST OF FIGURES

Figure 1 Used Context Factors ... 7
Figure 2 In bad weather and outdoor condition, new recommendations are offered 7
Figure 3 Notification Manager of liveCities system [10] ... 9
Figure 4 William Shakespeare Output XML File .. 15
Figure 5 Architecture of Proposed Conceptual Design .. 17
Figure 6 Architecture of Proposed Implementation ... 25
Figure 7 Interests can be specified in this screen ... 26
Figure 8 Linked Data-User Interests Successful Match ... 27
Figure 9 Word Filtering Module first example .. 28
Figure 10 Word filtering module second example ... 28
Figure 11 3-days weather forecasts for Ankara [18] .. 29
Figure 12 Daily Calendars .. 30
Figure 13 Weekly Calendars .. 30
Figure 14 Subscriber Preferences Screen ... 31
Figure 15 Night Timer Rule that works only night hours .. 32
Figure 16 Good Weather Rule .. 32
Figure 17 Bad Weather Rule .. 32
Figure 18 Login as Standard User .. 34
Figure 19 Standard user main screen.. 35
Figure 20 Interest setting .. 35
Figure 21 Login as Event Notifier .. 36
Figure 22 Main Screen of Event Notifier ... 36
Figure 23 Event creation .. 37
Figure 24 BRM Notification .. 37
Figure 25 Standard User main screen ... 38
Figure 26 Suggested events .. 38
Figure 27 Event description with message ... 39
Figure 28 Time profile set to non-business-hours .. 40
Figure 29 BRM-delayed message .. 41
Figure 30 User Interests ... 50
Figure 31 Notification about IS 777 Course... 50
Figure 32 Notification About METU Events ... 50

1

CHAPTER 1

INTRODUCTION

Recently, technology has provided significant capabilities for effective use of computing

power through mobile devices. By means of wireless sensors, easy Internet access from

mobile devices, and enhanced mobile operating systems, the systems can receive many types

of context information related to the mobile user and the environment. With this utilization,

studies in related domains have improved capabilities to propose and provide context-aware

systems.

One of the significant context-aware systems is context-aware event recommendation and

message delivery systems. These systems generally concentrate on the tourism domain that

includes recommendation of places to visit or events to attend. Additionally, some studies

focus on the university campus domain in order to increase quality of in-campus information

delivery about academic, non-academic events, in-campus café/restaurant offers and in-

campus news. Furthermore, some research studies provide successful results in context-

aware movie or music recommendation. The context-aware recommendation systems utilize

user profile information, user activities, user preferences, location, and weather information

as contextual data, and then create new knowledge in order to best describe the user and act

accordingly.

With the technical improvements in mobile devices, location finding via GPS and other

wireless sensors has become a basic feature of mobile phones. In context-aware event

recommendation and message delivery systems, location information is the fundamental

context data used for recommending geographically related events. For example, a tourist

wants to visit nearest places and closest events, so utilizing location context data carries a

very important role in event recommendation. Moreover, time data also have a significant

effect on recommendation, so that a tourist or a student will not have unfortunate

experiences while arranging event schedules, with the help of time-aware recommendations.

Furthermore, in event recommendation, weather forecast data are important, especially for

outdoor events. Making recommendations by considering weather forecast information will

provide better results improving the quality of the recommendation for the users. There are

many studies, such as STS [7], which includes weather data as context to use it in

recommendation, and the system may alert the user to avoid attending an event, due to bad

weather at the event date.

In context-aware event recommendation and notification systems, semantic analysis may

create a value for additional relevant event service and event item discovery. For instance, in

the tourism domain, systems utilize tourism related ontologies to categorize tourism items

for better recommendation results. Accordingly, the computer becomes easily aware of the

event information and classifies it by means of semantic analysis. When classification

2

information is not available in the domain, the system may become inadequate in trying to

find semantic relationships. Therefore, ontologies may not be successful in such a domain.

Linked data [40] is another approach in semantic knowledge representation that is used to

display and connect data on the Web from various resources. Linked data method enables

machines to easily read the knowledge unit and find related information about the unit. To

achieve this, the computer uses the Web to find the most related data with the specified

information by exposing the connections of the data. Therefore, this method may prove to be

useful when ontology is insufficient or any information classification method is not

available. When everything is considered, using semantic analysis with linked data method

has the potential to improve related information discovery about events and other items in

the specified domain.

Another property of context-aware event recommendation and notification systems is that

they enhance their recommendation quality with case based reasoning by evaluating

complex conditions. They achieve this by defining rules to evaluate the conditions and

trigger actions. Business rules [47] are used in software systems to make a separation

between software implementation and business logic so as to modify the conditions with low

maintenance effort. One advantage of business rules is that they have exact time and date to

be executed, so the business rule activates only at specified times, and there is no need for

spending effort on arranging a job scheduler [49] to trigger an action at a particular time.

This feature may have significant role in delivery time of the recommendation message.

In message delivery, context-aware recommendation systems can use the publish-subscribe

approach [46] to filter messages and send only related messages to related subscribers who

are registered to interested topics only. In the publish-subscribe approach, the publishers

create content and add related topics to the content. The subscribers specify topics that are

interesting for them. Then, the subscriber receives related messages from the subscribed

topics. Another possibility is that they can specify message content constraints to retrieve

related messages. The publish-subscribe approach provides successful message filtering so

that the subscriber views only related messages. In mobile devices, push notification services

can be used for message delivery. Push notification [50] is publish-subscribe based message

delivery by a centralized server to an endpoint client without specific request from the client.

Therefore, with this service, mobile devices easily receive messages anytime without

requesting information from the server.

As an enhancement to the former studies, we propose a publish-subscribe based design to

present a context-aware event notification system. The presented system provides added

value with a business rule engine that can gather all contextual data such as location, time,

weather forecast data, user preferences and user interests. The business rule engine deduces

valuable knowledge from the contextual data, and control the time to deliver the message at

the best moment for the subscriber. Secondly, the other added valued feature is offering

semantic knowledge with the linked data approach, in order to allow automatically setting

the related topics of the event, as a contribution to the main task of the publisher. This

feature may prove to be significant where ontology is not available. In our proposed system,

the subscribers set their interests (tags) in order to receive related events. In order to plan

message delivery time and arrange message delivery conditions, they can set and modify

their message delivery preferences through the event management system that takes into

account time, location and/or weather forecast context data while sending messages. The

publisher creates events with the tags they specify, and publish it to the event management

server. According to the preferences and the interests of the subscriber, finally, the

subscriber can be notified with the related event messages.

3

This thesis is structured as follows:

 Chapter 2 gathers information about related studies and discusses context aware

event recommendation and message delivery systems.

 In Chapter 3, we propose the conceptual design of our context aware event

notification system and describe it in detail.

 In Chapter 4, we describe our prototype based on our conceptual design. We also

explain use case scenarios of our implementation.

 In Chapter 5, we create test sets and sample scenarios for evaluation of our

prototype. By disabling the modules in the system individually, we evaluate the

results at the absence of the specified module, in order to highlight the importance of

the corresponding proposed module. We also describe the significance of the full

working system. Furthermore, we discuss applying the proposed system at METU

Informatics Institute environment.

 In Chapter 6, we briefly summarize the related work, current problem, the proposed

system and the prototype. Finally, we list future plans regarding our current work.

4

5

CHAPTER 2

RELATED WORK

Context-awareness is related to sensing environmental conditions or situations as well as

user parameters, and helps evaluate current conditions and act according to the situation. In

context-aware event recommender systems, there are many environmental and situational

inputs to consider and evaluate. In addition to location awareness, the systems might use

time of day information, weather information, user preferences, user history and

demographic info (e.g. age, gender). In delivery and recommendation mechanisms, some

systems use business rules. They define business rules and the system can change its

behavior dynamically, without updating the system programmatically. The systems may use

user history, i.e., track previous activities of the user and infer knowledge. Moreover, by

looking at the past user activities, the system might categorize the experienced activities and

appoint a profile for the user accordingly. For example, in the tourism recommender system

m-To-Guide[1], the system sets a profile for the user according to the travel type of the user,

leisure travel or business travel, and recommends services according to that profile.

In context-aware event recommender systems, location is the most significant factor, since

these systems offers places or events in the nearest area to make the user be able to join.

Location information is obtained generally from a mobile phone via GPS. Speta [2],

Gulliver’s Genie[3][36], LoL@[4], Maiden[5] use GPS to locate user’s location and find the

nearest services. LoL@[4] is a location based mobile application that provides tourism

information in Vienna. It aims to give information about predefined tours, about visiting

places and also provides routing to navigate tourists to the interesting places. Speta [2] gives

tourism related recommendations, aggregates social networks, semantic Web and context

awareness (location, weather forecast, time, user preferences, friend’s recommendation and

history). The recognition of user preferences is done by two ways. One is explicitly specified

interest of the user, and ratings to the attractions are taken into account. In addition to this,

social media interests, such as favorite painter, are considered for user preferences. Another

way is inferred from user behavior. For instance, the type of the museums, which are always

visited by the user, is taken into account. The social network integration part is limited to

adopting OpenSocial API[11], and only People (information about people and their

relationships with each other) and Activities (information about what people are doing.)

elements are used.

In context-aware recommendation and notification systems, in order to gather semantic

information about the recommendation entities, such as place, events and interests, the

systems may utilize semantic analysis through the use of ontologies. Ontology [39] is a

structure that aims to represent knowledge as a hierarchy of notions in a domain using a

common word to define types, properties and relationships between these notions. In the

semantic part of Speta [2], the ontology consists of entities, relations and the axioms. There

are abstract entities such as ‘City’, ‘Hotel’, ‘Restaurant’, and instances such as ‘Paris’ and

6

Hotel Ritz’. After all the context information is gathered, a recommender algorithm, which is

based on hybrid filtering [12] approach, is used to give the relevant information to the user.

In this system, there is no event driven and notification component. The recommender runs if

the user queries the system.

SigTur/E-Destination [38] has shown a good feature on using semantic environment that is

settled on tourism ontology to explicitly classify the activities to suggest among predefined

tourism concepts. We can give a sample for the tourism ontology that SigTur uses:

Sailing –> AquaticSports ->Sports - > ItemType

As a second example: HistoryMuseums -> Museums -> Culture -> ItemType

Moreover, Sem-Fit [13] shows a good example on hotel recommendations by combining

hotel ontology and fuzzy engine in order to increase precision on recommendation success.

When the activity name or hotel name is available in the ontology, semantic analysis will

have good performance on categorization. However, when an activity/hotel name is not

available in the ontology, the name will not give any idea about what is related to or what it

means. Thus, setting ontologies might sometimes remain inadequate in event/place

recommendations. When ontology remains insufficient, some studies use alternative ways,

for instance, they might use linked data method. A study about context-aware music

recommendation [51] shows an example of creating inter-ontologies using linked data

method, in addition to music ontology. It achieves this by aggregating related data from

Last.fm [52], Yahoo! Local [53], Twitter [54] and LyricWiki [55], then find the relations

between terms, lyrics and other words to recommend related music for users, so that the

system will be able find up to date related information about music, songs and their lyrics,

while music ontology alone cannot provide that much information.

Gulliver’s Genie [3] [36] is another context-aware tourism guide system. It utilizes user

defined interests and location information and user demographic data such as age, gender

and nationality. An important feature of this system is that it uses push notifications. When a

user is near a sight or a visiting place, the information about this place is pushed to the user’s

mobile device as notifications. Only push trigger of this system is location based, meaning

that, the push notification is triggered only if the user is in the neighborhood of the particular

place. MobiDenk [5] provides current information about places of interest, by utilizing GPS

location information. In addition to the GPS data, it also considers the movement speed and

direction of the user.

Generally, it is assumed that the places to visit and the activities to join are outdoor

locations. However, some interesting places could be indoor locations, and GPS alone may

be insufficient. At this point, some studies include different technologies for indoor

positioning. eAgora [6] (Agent based architecture for context-aware and personalized event

recommendation) system, proposes Wi-Fi, Bluetooth and ZigBee [14] technologies for

indoor positioning. It recommends academic or cultural events based on location, time and

profile information by using spreading activation method [28]. In this system, there is no

delivery mechanism with notifications or event driven approach.

In event recommendation systems, weather and time information may be very significant

especially for outdoor events. The awareness of weather forecast gives an extra added value

to the system and it may be very important in such a pervasive environment. The system

STS [7] offers context aware points of interest suggestions based on weather conditions. The

system recommends touristic places with suitable weather conditions. If the user wants to go

to a recommended place, he/she can bookmark the place. If the weather changes from e.g.

sunny to rainy, the system alerts the user to revise his/her choices. The system uses rich

context factors to determine recommended places as in Figure 1, however many of these

7

context info is taken by the user, thus, the inference engine could be weak, since the learning

is done by ratings of the places in addition to the user profile information, and the alert

mechanism is limited to weather change conditions. Finally, the system cannot recommend

new places against bad weather conditions.

Figure 1 Used Context Factors

Moreover, in CAIPS (Context-Aware Information Push Service in Tourism) [8], the system

stores planned trips and scheduled events for the user. If the weather is bad for the specified

event time, the system sends a notification to the user that the event is not suitable for the

bad weather. Instead of the planned event, the system offers new recommendations for those

weather conditions. An example of how new event is offered due to bad weather condition as

in Figure 2 is shown.

Figure 2 In bad weather and outdoor condition, new recommendations are offered

Business rules are another significant factor for context-aware event recommender and

delivery systems. In past studies, we can talk about business rule integrations to the systems.

In CAIPS [8], the system offers improvements by the business rules defined by the tourism

experts. The tourism experts create rules by means of a graphical user interface to arrange

push messages to the users. For example, the expert creates a rule that pushes information

about new recommendations against bad weather conditions, according to the user profile. In

8

terms of learning and improvement of the system itself, the capability generally depends on

the tourism experts. The business rules are limited to arranging push notifications and the

system itself cannot infer knowledge by considering the business rules.

We can discuss notification mechanisms in past studies. A former study about notification

system [9] has a different approach in time, location and user profile awareness. It proposes

an in-campus notification system that delivers the right information at the right time and

place to the right person. It succeeds in the approach by using RFID feature of the student

cards. The student can define his/her preferences and interests from a web application. Some

RFID reader terminals connected to the PCs are put at important places, such as sport center,

faculty buildings, cafés etc. When a user tag is read by a terminal, he/she can get related

information for him/her, at the right time and place. The information may be an academic

announcement in the faculty building, which informs the students about a cancelled morning

course, or it may be a sport event notification to invite the student to join the event in the

sport center. The system can be assessed as successful in delivering right information to the

correct person at the most suitable right and time. However, the user interaction level with

the system is very low and there is no feedback from the user except for arranging the

preferences from the web application. Thus, there is a low quality learning mechanism and

weak dynamic adaptation of the system. The sample delivery rule process is as follows [9].

Time = ‘5 pm’ 
Identity = ‘1038’ 
Location = ‘Sports Complex’
Preferences = ‘Sports’

Then the rules will be presented:

IF hour=5
AND ampm = ‘pm’
AND location = ‘sports_complex’
AND preferences = ‘sports’  THEN display_notification = “inter-varsity football league is
on now”

Furthermore, “liveCities” [10] proposes an improved notification system by including all

tourism entities such as a restaurant or a bus company, as a notifier, meaning that, a

restaurant company is able to send notifications to the related people by specifying

notification message and the person type that might be interested. The system takes the user

profile info from the user, a notifier can specify the user profiles of the recipient to send the

notification, and the system sends the related info to the user according to location and time.

A scenario can briefly describe the system [10].

Scenario: If a user is walking with the friends around a restaurant at lunchtime and the

weather is good, the system pushes an offer to have a lunch at the terrace.

Tourism entity: fast food restaurant

Notification: a discount to have lunch at the terrace.

Areas: An area has been created around the restaurant.

Context parameters: location, moving mode(walking), time(from 12 to 14), age (<30), social

context (friends) and temperature(>20 °C)

As seen in the scenario, the system uses location, time and weather data, user profile and

social context (user scans nearby devices via Bluetooth and assign a role: family, friend,

9

workmate or couple) data.

Figure 3 Notification Manager of liveCities system [10]

A tourism entity, such as a restaurant, can describe the notification settings, for example,

what property of the users to send, e.g. age, nationality, gender, moving mode, and also the

time can be determined. All settings are defined in the notification creation phase, and there

is no complex inference engine and business rule engine except for translating defined

settings into rules. Moreover, there is no user activity tracking and learning mechanism,

since most of context data are defined explicitly or pulled from some external service such as

weather. Nevertheless, it can be assessed as successful in terms of personalization, context

awareness, and in terms of sending right information to the right person.

There are remarkable studies in publish-subscribe approaches for context-aware systems.

Caglar [25] shows a good work on proposing context-aware reminder system based on

publish-subscribe model. The system, which uses time and location as context data,

composes reminder patterns for reminding events to the subscriber that it registered before.

The publisher component dispatches the reminder information, such as event detail or event

cancellation info, via the message dispatcher.

10

11

CHAPTER 3

PROPOSED CONCEPTUAL DESIGN

In this part, conceptual design of our context-aware event notification system is explained in

detail. The aim of the proposed system is to deliver event notifications to the right users at

the right place, right time, and under suitable conditions. To achieve this, the proposed

system should be able to use various information about the user and the environment for

evaluation of the conditions. While receiving information about the users and the

environment, the users must not be interrupted much, so the system should have the ability

of autonomously receiving information and deducing knowledge from such data. Another

aim is that the system information source should be open and flexible to be accessible

everywhere and provide easy information flow especially in composing event information.

Thus, the system knowledge pool can be extended easily and the users can retrieve more

number of event recommendations. Furthermore, the users should receive only related

messages under suitable conditions according to context data such as time, weather, and

place. They must not get messages regarding unrelated events that they may not be able to

attend or enjoy. While allowing fast growing information source of the system, there should

be mechanisms for filtering data and inspection of the relationship between user interests and

the events.

3.1. Main Features of the System

Main features of the system include Message Delivery, Business Rule Management System

for Context Data, and Semantic Analysis Using Linked Data, as explained next.

3.1.1. Message Delivery

In order to satisfy the aim of sending messages to the right users as explained above, a

publish-subscribe based approach is utilized in the proposed system. In systems

incorporating message delivery functionality, all messages are typically not sent to all

recipients. There are various methods for selective sending of the messages to the related

recipients. Publish-subscribe model [46] is one of them and it provides a message filtering

approach to send the message to the related recipients, in other words, the subscribers. In this

model, the subscribers can register to the topics that are defined by the publisher, or they

may specify the message content constraints to receive related messages. The advantage of

this approach is that it presents loose coupling between publisher and subscriber. Publisher

does not need to know who the subscriber is or whether the message is sent to the subscriber

or not. With this weak requirement, another advantage is that the model is scalable, meaning

that, publisher can send the message to a large number of subscribers without intensive

effort. In contrast, publish-subscribe model does not guarantee that the message is sent to all

12

related subscribers. In a system that aims assured message delivery, the model might need to

be supplemented accordingly. Moreover, the model may assume that the subscriber is

listening, when it is not. The information of whether the subscriber is listening will be

missed in this approach.

There are successful studies in proposing context-aware publish-subscribe model based

message delivery systems. The study of Caglar [25] proposes a publish-subscribe model

based context-aware reminder system with reminder patterns. The proposed system uses

time and location as context, and uses them in the reminder pattern in order to remind an

upcoming event to the subscriber. For instance, the publisher can create a generic reminder

template by specifying the location and the radius to remind the event in or out of the radius,

or specifying the time interval to trigger event reminder. The subscriber registers to the

topics in order to receive related reminder information of these topics. Then, the publisher

creates an event specifying the topic and the reminder pattern. Finally, the subscriber

receives reminder messages from subscribed topic channels. In the study, the system is

successful in using time and location as context, and takes action accordingly so as to deliver

information to the right person. In terms of context-awareness, this approach of proposed

system can be extended and can be made more flexible in using and managing context data,

rather than just utilizing predefined patterns limited to time and location info. We intend to

extend this approach by allowing managing different context data from different sources

without depending on the predefined templates and without changing the system.

Furthermore, we aim to make a contribution to this publish-subscribe approach by

semantically analyzing the published items and inferring new topic matches in order to add

them to the published item. Automatically setting related tags for the published items is

valuable as the publisher may miss some information regarding related tags or topics when

publishing an item.

We propose to use the topic-based [46] publish-subscribe approach in publishing and

delivering event notifications to correct users. The publisher has the ability to compose the

events by attaching event related user interests and publish it for the subscriber. The

subscriber is another user of the system, which is able to receive event messages by

specifying user interests (tags) and which allows the system to gain knowledge about itself to

get appropriate events with minimum interruption. The broker [46] is responsible for

presenting the user interests (tags), publishing and delivering the events to the related

subscriber coming from the publishers. Our system is composed of publisher, subscriber,

event management system, which can be described as an enhanced broker in the publish-

subscribe model [46], and context sources, which are used in retrieving subscriber and

environment information. To arrange message delivery conditions, the subscribers set their

message delivery preferences such as time, location, and weather forecast context data

related to sending messages through the event management system. The publisher composes

the events with the tags they specify, and publish them to the event management server.

According to the preferences and the interests of the subscriber, finally, the subscriber is

notified with the related event messages. As additional contributions to the work of Caglar

[25], we propose to use a business rule engine, which allows easy evaluation of different

context data and inferring knowledge, in order to utilize different context sources and to

allow removing the limit of utilizing only predefined patterns that use place and time.

Furthermore, we propose to incorporate the ability of semantically analyzing published items

by using linked data, in order to discover all related tags, when the publisher does not fully

specify all related tags. These two features of the proposed system are described next.

3.1.2. Business Rule Management System for Context Data

In software systems, business rules [47] present a solution that can handle dynamic business

logic by separating business knowledge and the implementation. Thus, it provides a

13

flexibility that if the business knowledge has to be changed, there is no need for modifying

the implementation, so this decreases the software maintenance costs and provides more

dynamic behavior of the system itself. The rules are used to help decision-making, to deduce

new knowledge or to trigger actions based on the conditions. While achieving this, newly

entered input data and newly entered events are evaluated dynamically without modifying or

restarting the system. Business rule engine is a software system to execute different business

rules. Business rule engines are used as a pluggable software component, therefore, this

separation provides that running and modifying the rules to change business logic does not

need an IT (Information Technology) system intervention. This situation allows changing the

system without need of a technical person. Business Rule Management System (BRMS) [48]

is a software system for business rules, which is used to deploy, execute and maintain the

decision logic. It is a standalone whole system that contains a business rule engine and

business rules to execute. Many BRMS applications exist in the software industry. For

instance, Drools [33] is an open-source Java programming language based BRMS of JBoss

[21]. It presents core business rule engine, a web authoring and rules management

application. Drools BRMS can run independently from the actual implementation and

defining Drools rules keeps simplicity. Therefore, it aims flexibility, cost effectiveness and

ease of use.

In the related studies, we have witnessed that business rules are used in event

recommendation and message delivery. The business rules, which are proposed, generally

focus on one particular work. For example, the rules are defined only for message delivery

such as in specifying delivery time, or only for evaluating conditions such as checking

weather condition. In our system, we propose a flexibility to use the business rule

management system for evaluating different context data, trigger actions according to them

and arranging message delivery for the most suitable conditions for the subscriber.

3.1.3. Semantic Analysis Using Linked Data

In some cases, the publisher may not have enough knowledge for defining related tags of the

event that is about to be created. The event may be published with missing information so

the related subscribers cannot receive the event recommendation that actually would be

suitable for themselves. The solution to this problem could be creating a semantic

environment for the event detail in order to analyze it semantically and infer new knowledge.

With new semantic knowledge, the system will be able to match new tags as a contribution

to task of the publisher. As a method of semantic categorization of the event info, we can

consider creating ontologies of the related domain. Ontologies are successful in categorizing

the events only if event name is available in the ontology. If we think of semantic

environment with ontologies, the ontologies may remain unsuccessful in matching names

that does not exist in the ontology. In such cases, the words do not mean anything to the

system in order to add new tags into the published event. Against this problem, we can

provide an alternative method that infers and lists words related to the descriptions in the

event detail. For this purpose, linked data method seems appropriate to use, as the similar

technique is used in context-aware music recommendation [51]. Linked data is a method in

semantic Web domain that is used to expose and interlink data on the Web from various

resources. Berners-Lee [40] describes linked data principles as:

1. Use URIs [41] as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards.

(RDF [42], SPARQL [43])

4. Include links to other URIs, so that they can discover more things.

14

As seen in the principles, each name has a URI and links to other URIs, so this situation

enables computers to easily read the information of the things and connections among them

in Internet. In other words, it eases listing the related words of one specific word for

computers as humans can already semantically do. There are many applications and datasets

that compose linked data feature. For instance, DBpedia [16] is a large dataset that contains

extracted data from Wikipedia. It links different data sets on the Web to Wikipedia data.

FOAF [44] is a dataset containing persons, their features and relationships. GeoNames [45]

presents RDF descriptions of more than 7,500,000 geographical features. These datasets are

used for extracting relational information about current data. For instance, when we want to

get geographic relational information about “Ankara” city, we can receive position

(longitude, latitude) of Ankara, its counties, and population information via GeoNames as

Table 1 shows the examples.

Table 1 Geonames Output Samples

GeoNames

Query

Input

GeoNames Results

Name Name Country Feature class Latitude &

Longitude

Ankara Ankara
NK,Anakara,

Ancara,

Ancyra, Ang-

ka-la,Angkara,

Angora,

Anguriyah,

Ankar,Ankara,

Ankara

khot,Ankaro

,Ankuara...

Turkey,

Ankara

capital of a political

entity, population

3,517,182, elevation

850m

N 39° 55'

11'', E 32°

51' 15''

London London
City of

London,Gorad

Londan,ILond

on,LON,

Lakana,

Landen,Ljond

an,Llundain,

Londain,Lond

an,Londar,Lon

de,L...

United

Kingdom,

England

Greater

London

capital of a political

entity

population 7,556,900

N 51° 30'

30'', W 0°

7' 32''

Taksim Taksim Turkey,

Istanbul

section of populated

place

N 41° 2'

13'', E 28°

59' 11''

When we want to ask relational information about “skiing”, via DBpedia, we can get many

categories and classes of “skiing” from different sources, such as “Olympic sports”,

“activity”, “winter sports”, not just the information of “winter sports” as it generally exists in

sports ontology. As a different example, we can connect to DBpedia Lookup Service [17],

query about “William Shakespeare” word to list categories and classes of William

Shakespeare. We can achieve this job by arranging the URL with “William Shakespeare”

input, then we retrieve an XML file as output.

URL for William Shakespeare:

15

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?MaxHits=1&QueryString=Willi

am+Shakespeare

The XML file output will be as follows:

Figure 4 William Shakespeare Output XML File

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?MaxHits=1&QueryString=William+Shakespeare
http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?MaxHits=1&QueryString=William+Shakespeare

16

As the output, the system receives an XML file (as seen in Figure 4) that includes

information about William Shakespeare such as description, categories, classes etc. After

selecting the categories and classes from the XML file, we can get:

 person

 artist

 writer

 Sonneteers

 1564 births

 English dramatists and playwrights

 16th-century English people

 People of the Tudor period

 English poets

 English Renaissance dramatists

As seen from the datasets and the examples, linked data applications and datasets help

machines to easily find and expose the relations of words from different sources. We can say

linked data method has an extended feature of finding a set of related words that are both

available and not available in ontology. On the contrary, linked data feature may sometimes

mislead the computer to find the relations of words. Since this feature extracts the relations

that are mostly referred, sometimes, maximum number of references may not be the actual

relational information. This may happen when there is a word that has two meaning, such as

both as a place name and a person name.

3.2. System Architecture

After considering these two main features above, we can explain event management server

in which the corresponding modules provide these two features. In order to store event

details, topics (tags), manage the whole event processes and the relationships between the

modules we propose to use the event management server which incorporates three sub

modules: business rule management system, semantic tag matcher and event dispatcher. So

as to deliver messages at the most suitable time, and gathering all context information in one

place then infer knowledge special to user, and to satisfy the first feature, we propose

business rule management system. We can use internal and external context resources

connected with the business rule management system. For our system, we can use location

data of the subscriber, time information and weather forecast data as context. In order to

analyze event names semantically and automatically specify tags of the event, and to satisfy

second feature, we propose a semantic tag matcher utilizing linked data. This module will be

helpful in case the publisher misses specifying all related tags for the created event and the

subscriber will not be able to view the related event. Linked data approach allows finding

additional related data about the created event and then tries to match the related data with

the existing tags. In order to deliver messages to the subscribers at the right time, we also

include event dispatcher module. We propose event publisher to publish events and set the

topics for the events. Finally, we propose event subscriber to register to the topics and

receive related event notifications. You can see below figure of our conceptual design

architecture:

17

Figure 5 Architecture of Proposed Conceptual Design

3.2.1. Event Publisher

In our proposed conceptual design, event publisher has the main responsibility of event

creation and event publishing for the subscriber. It queries event topics from event

management system and publish the event with specified topics in order to be sent as

recommendation to the related subscribers. Event publisher has one connection. It connects

to the event management system to query as well as create new topics and sends the event

details to be published. Event publisher has to pass the authorization phase to query or create

topics, and create events.

In our proposed system, the publisher does not need to consider the context data such as

environmental, social and time situations. For instance, the publisher does not have the

responsibility of setting time to deliver the event message, however, it has chance to

optionally set the time, location or weather data conditions to trigger sending events.

The event to be published has these content fields.

 Event Title: Name of the event.

 Start Time: Start date and time of the event.

 Finish Time: Finish date and time of the event.

 Description: Extra information about the event.

 Place: Location of the event.

 Event Type: Indoor or outdoor event info.

 Event Id: Unique identification info of the event.

The publisher has the opportunity to set trigger conditions via business rule management

system. The conditions are as follows:

 Weather forecast condition: The publisher may set the weather conditions to send

the event messages. For instance, the publisher can arrange that the event message is

sent only if the weather condition is clear sky on the event day.

 Time condition: The publisher may set the event delivery time specifically. For

example, the publisher can set an event message delivery time to 09:00.

 Location: The publisher may set the message delivery action according to

neighborhood of the subscribers. For example, the publisher can set that the event

message is only delivered to the subscribers who are in Ankara.

18

3.2.2. Event Management System

In our proposed conceptual design, event management system, which can be referred to as an

enhanced broker in the publish-subscribe model, has the main responsibility of managing

events coming from publishers, and distributing the events to related subscribers. The topics

(tags), events and their details are held in event management system.

Event management system has three sub modules, business rule management system,

semantic tag matcher and event dispatcher. Semantic tag matcher helps to find more related

topics for created event by analyzing event info semantically. Even if the publisher does not

specify all related tags for a created event, semantic tag matcher tries to specify the tags

related to the event. Semantic tag matcher uses linked data method to find related words for

the event. It receives the related words by querying linked data datasets with event details as

input. Then, it tries to match the new received words with existing tags. If related words of

the event title have a successful match with a tag name, the event is now ready to be

delivered to the subscribers who subscribed to the matched tag or tags, in addition to

previously specified tags that the publisher sets.

Secondly, event dispatcher sub module has the responsibility to distribute the event

messages to the related subscribers with the trigger from BRMS. Event dispatcher stores the

identification info of the subscriber devices in order to send the message to the right

subscribers. Event dispatcher also has the ability to register new identification info of the

device when a new subscriber device is registered to the system.

Thirdly, business rule management system (BRMS) is a subsystem in the event management

system that infers extra information from context sources such as time, place, and weather

information, and trigger actions according to the inferred information. It determines time to

publish the messages. The system achieves this by defined business rules. In our proposed

BRMS, new business rules can be added and the existing business rules can be modified via

business rule editor interface. BRMS presents flexibility to trigger sending messages by

considering any single or multiple context data. BRMS helps the event manager system

when to deliver the message, help about what the message content will be and help about

how the event recommendation will be. To achieve this, BRMS uses preferences data of the

subscriber. There are three main preferences that the subscriber can set; time, location and

weather forecast.

 Time preference: The subscriber has an option to retrieve messages in particular

times. When an event is created, the message may not be directly sent to the

subscriber. The message can wait for the selected time or time interval that the

subscriber prefers. For instance, the subscriber may set his/her time preference in

order to receive message in out of business hours. In this case, if the event is created

in business hours, the notification waits until the business hours pass, then the

subscriber receives the notification.

 Location preference: The subscriber has an option to receive event messages that is

arranged in the subscriber’s neighborhood, or he/she can turn off this preference in

order to receive all related messages that do not depend on location.

 Weather preference: The subscriber can set his/her preference to receive event

messages or not receive messages depending on weather data in the event date. If the

event is outdoor event and the weather is rainy, or we can say the weather is bad, the

subscriber is avoided to receive the message. He/she can turn off this preference in

order not to depend notifications on weather data.

19

BRMS can use these preference data in order to evaluate the conditions and trigger actions

accordingly. For instance, by means of BRMS, we could set time triggered message

delivery, such as sending message every day at in business hours (08.00-16.00). An example

algorithm can show a time triggered event message. Let’s say BRMS has a rule that controls

sending the message about Event 1 to the Subscriber A in business hours. In this kind of

approach we do not need a job scheduler [49] to trigger action in the specified time. BRMS

is able to easily handle time-triggered events. Here is the example of a business rule:

When

(Time is in business hours)

Then

Send message (Event 1) to Subscriber A

We could set weather info triggered message delivery by means of BRMS. Or we can set

location info, weather info and time triggered message delivery, if we define that kind of

business rule without changing any code from the other parts of the event management

system. Therefore, we present more flexibility relative to predefined templates in order to set

trigger conditions to deliver the message. We can give an example of a business rule

algorithm that evaluates different context data.

When

(Time is in business hours)

AND (Event 2 location is near to Subscriber B location)

AND (Weather will be good in Event 2 date)

Then

Send message (Event 2) to Subscriber B

For that kind of rule, BRMS will avoid sending the event message to Subscriber B in bad

weather conditions, or BRMS won’t send event message when Subscriber B is far away

from Event 2 location. However, Subscriber B may turn off location, time and weather

dependent recommendation that we will talk about in Event Subscriber part. Therefore, the

example rule will work for the Subscriber 2 without considering location, time and weather

data.

When

()

Then

Send message (Event 2) to Subscriber B

In addition to specific time definition, BRMS is able to use time information and able to

categorize it in two ways: Day categorization and hour categorization. Day categories are

weekend and weekdays. Hour categories are business hours, non business hours, and night

hours. We can give a categorization example of a selected date:

Table 2 BRMS Time Inference

Input Date BRMS Inference

August 29, 2014 09:00 Friday, Weekday, Business hours

July 7, 2014 20:00 Monday, Weekday, Non Business Hours

July 6, 2014 01:00 Sunday, Weekend, Night hours

BRMS achieves receiving weather information by connecting to weather information

services and deduces the knowledge that the weather is good or bad. We can give an

example of connecting to weather services and deducing information.

20

Table 3 BRMS Weather Condition Inference

BRMS Request Input Weather Forecast

Service Response

BRMS Inference

Ankara

August 29, 2014 09:00

Clear Sky

19 °C - 32 °C

Good

London

August 31, 2014 15:00

Heavy Intensity Rain

19 °C - 25 °C

Bad

After retrieving the weather data, BRMS will use the weather inferences in evaluating

conditions and sending messages to the subscribers.

Another feature of BRMS is deducing subscriber behavior and set a time profile for the

subscriber by tracking the interaction time of the subscriber with the event message, as we

explain above in “Time preference” item. We can visually show the principle of assigning of

time profile. In addition to manually setting of time preference that we will talk about in

Event Subscriber part, BRMS can automatically set a time profile for the subscriber as in

Table 4.

Table 4 BRMS Subscriber Interaction Inference

Event Message

Sending Time

Subscriber

Interaction Time

With Sent Event

BRMS Inference

August 28, 2014,

Friday 10:00

August 28 2014,

Friday 10:02

Event is sent in weekday business hours, the

subscriber interacts with the event message in

business hours, too. No new time profile

assignment for the subscriber.

August 28, 2014,

Friday 10:00

August 28, 2014,

Friday 20:37

Event is sent in weekday business hours, the

subscriber interacts with the event message in

out of business hours. It is learnt that the

subscriber is more interactive in out of business

hours. Then, set time profile as non business

hours in order to send messages in out of

business hours, and in order not to make the

subscriber miss the notifications in business

hours.

August 28, 2014,

Friday 10:00

August 29, 2014,

Saturday 14:07

Event sent in weekday business hours, the

subscriber interacts with the event message at

weekend. Then, set time profile as weekend in

order to send messages in weekends, and in

order not to make the subscriber miss the

notifications in weekdays.

All BRMS inferences depend on defined business rule sets. Therefore, the inferences and

actions of BRMS are allowed to modify by changing the rules or by adding new rules. For

example, time context perception of BRMS is allowed to change by adding new categories

into hour or day categories. Moreover, weather data inference can be also changed. For

example, in snowy weather conditions, the weather inference could be set to “Good” while

the inference was “Bad” before. Furthermore, by means of BRMS, the context data is not

limited with time, location and weather info. Various context data could be evaluated by

aggregating the other context data.

21

BRMS sub module has one connection. The sub module communicates with the context

sources to gather all related data from external or internal context sources, in order to

evaluate the conditions and run the rules.

Event management server has three connections; these are with, event publisher, context

sources and event subscriber. Firstly, the event management server has communication with

the subscriber to present the topics to be subscribed and to deliver the event messages via

event dispatcher module. Secondly, event management server connects to the context

sources to use the context data in BRMS for evaluation of the conditions. Finally, it has

connection with the event publisher that we talked about in the event publisher part.

3.2.3. Context Sources

We propose internal or external context sources to define the existing situation better. From

context sources, the system receives extra information to return it to valuable knowledge. It

is done by BRMS sub module that communicates with the context sources and that gathers

the context data as input to start new inferences. Context sources in our conceptual design

will be time data, location and weather information.

3.2.4. Event Subscriber

Event subscriber can subscribe to the topics that the event management system provides. The

subscriber can select the topics that may attract the subscriber in order to receive related

event recommendations. Furthermore, the activities of the subscriber are tracked by the event

management system, so that event management server could maintain context-awareness and

the event management server is able to keep presenting related events to the subscriber.

Event subscriber has one connection with event management system in order to receive the

related events and topics.

In our conceptual design, event subscriber has chance to modify its preferences and interests

(tags) so that it will receive more customized notifications. Firstly, the subscriber may add

new interests or modify its interests about the events. We can give a sample list of some user

interests about the event that the subscriber may select or deselect:

 Music

o Pop

o Rock

o Jazz

o R&B

 Movie

o Action

o Drama

o Science Fiction

o Romance

o Comedy

 Sport

o Football

o Basketball

o Tennis

o Golf

o Volleyball

22

 Shopping

o Clothing

o Electronics

o Food

o Drink

By selecting the interests like above tag list, the subscriber filters the event messages that are

only interesting to it. This main feature of publish-subscribe approach provides customized

messages for every single subscriber and avoids spam event messaging. The subscriber is

able to change its interests both in the system beginning and later. Moreover, the subscriber

can set message delivery preferences that depend on time, location and weather forecast

data.

Firstly, the subscriber has the opportunity to add or remove location dependent event

notification. For instance, the subscriber may want to receive events only in Ankara where it

is located. Or it can remove location dependency to receive event notifications that are in or

not in the location of the subscriber. If the subscriber sets location dependent notification, the

subscriber will have the event messages in a location, when it enters the specified location.

In other words, the system triggers sending geographically related event, when the subscriber

enters into the event neighborhood.

Secondly, the subscriber can utilize weather sensitivity of the system to receive better event

notifications. The event management system is able to receive current and future weather

forecast data for a specified location so that the system will have better recommendation

skills dependent to weather forecast. By means of weather context data, the subscriber will

have the opportunity to be avoided in bad weather situations for outdoor events. The system

will not suggest an event that is an outdoor activity and in bad weather circumstances. The

subscriber may turn off the weather sensitive notification so that it can receive all events

related to the subscriber without considering weather context data.

Finally, time awareness could be significant for a context-aware system. In our conceptual

design, BRMS module has the ability to be aware of time notion. The subscriber has an

option to receive messages according to its specified time preferences. For example, the

subscriber may receive the event message in a specified hour interval, such as everyday in

out of business hours by setting a time profile. Furthermore, it can receive the messages in a

day range, such as on weekends. In addition to manual setting of the subscriber, the BRMS

can automatically assign a time profile for the subscriber, according to its activity time with

the event notifications. For instance, BRMS can have the knowledge about that the

subscriber interacts with the system in out of business hours, so BRMS may set a time

profile for the subscriber to send the messages in only out of business hours. BRMS achieves

this job by getting the information of the interaction time (the time of opening the event

message) of the subscriber, then compares the interaction time with the event creation time,

finally, BRMS could set a time profile according to the comparison. Of course, the

subscriber may change its time profile manually.

23

CHAPTER 4

IMPLEMENTATION

As a prototype application of the proposed system, an Android based mobile application is

implemented. While developing the application, the architecture of the proposed system is

taken into account, so the implementation architecture is parallel with the proposed system

structure. Before explaining the implementation architecture, used technologies and services

in the developed applications are described, then the architecture is explained in detail.

Finally, sample usage of the system and sample use cases are mentioned in order to express

the system and its features better.

4.1. Used Technologies and Services

4.1.1. REST architecture / Restful Web Services

REST (Representational State Transfer) is a web architecture that uses http requests to easily

connect client and server. We can simply use GET, POST, PUT or DELETE http methods

and get the response over json format. Additional overheads in SOAP [26] architecture are

not found in REST, such as the Envelope, which specifies what is in the message and how to

process it, encoding rules for data types, layout procedure calls. Since the REST is

lightweight, the architecture could be suitable for mobile devices, in terms of low CPU effort

and low battery consumption. Another property of REST is that we can access resources via

URI. For example, if we want to get item with id 15 we just use GET HTTP request by

writing the URI: http://example.com/resource/item/15, than we could get the item in json

format (or other Internet media types like XML, Atom etc.). To sum up, we can list the

features of the REST architecture;

 Client-server

 Stateless: Independent pairs of request and response. Previous request has no

relation with the further requests.

 Cacheable

 Layered System

 Code on demand: Servers might customize the functionality of a client by

transmission of the executable code.

 Uniform interface

4.1.2. ASP.NET Web API

ASP.NET Web API [29] is a framework that uses REST architecture, and eases to create

HTTP services for many types of clients such as browsers and mobile devices. In our

system, we use ASP.NET Web API with C# programming language to construct our main

application server (event management server).

http://example.com/resource/item/15

24

4.1.3. Microsoft Visual Studio 2013 and Azure Cloud Services

In implementation of our application server, we use Visual Studio 2013[30] Ultimate

platform for programming with C#. For easy and fast deployment we use Microsoft Azure

[31] cloud services.

4.1.4. Google Cloud Messaging Push Service

GCM [32], Google Cloud Messaging, is a Google service that provides developers to send

message from servers to Android applications. For push notifications, we use GCM push

service.

4.1.5. Drools - Business Rule Management System

Drools [33], is an open source Java based business rule management system provided by

JBoss [21], used in business rule engine server for our proposed system.

4.1.6. Java, Android and Eclipse

For mobile application development (client side), we use Java programming language and

Android [34] development with Eclipse [37] platform.

4.1.7. DBpedia & DBpedia Lookup Service

DBpedia [35] is a platform that provides extracted structured information from Wikipedia. It

also allows users to make complex queries from Wikipedia. DBpedia Lookup Service is used

to look up DBpedia URIs by related keywords. We use this service in our system to utilize as

linked data feature. For example, when we look up for ‘metu’ word, the results and some

parsed linked data are shown below.

 Organization

 Educational institution

 Agent

 University

 Educational institutions established in 1956

 Education in Ankara

 State universities and colleges in Turkey

 Technical universities and colleges

 Middle East Technical University

4.1.8. OpenWeatherMap API

OpenWeatherMap [17] API is both free and paid service for the developers to integrate

weather info into their apps. The developer can easily get up to 16-days weather information

for a selected city via OpenWeatherMap API. In our system, we utilize OpenWeatherMap

API to use weather data as context source.

25

4.2. Architecture Overview of the Implemented System

As a concrete output of our conceptual design we provide a real system, as the architecture is

shown below.

Figure 6 Architecture of Proposed Implementation

As we describe the conceptual design before, we can see reflection architecture of the

implementation in Figure 6. We have Event Publisher working on Android device, Event

Subscriber working on Android device, and Event Management System that composes of

Azure Application Server, Azure Database Server and Drools BRMS. As external services

and sources, we utilize DBpedia Lookup Service for Semantic Tag Matcher so as to

implement linked data method for related tag matching. We described DBpedia dataset and

its Lookup Service before. Drools BRMS uses Context Sources to receive context data. In

our implementation, we utilize OpenWeatherMap API to retrieve weather data. Moreover,

BRMS uses location data of the subscriber and time of day info. In order to deliver messages

to subscriber Android devices, we utilize Google Cloud Messaging service on Event

Dispatcher.

The events, event details, existing all user interests (tags) are stored in Azure application

server with Azure Database Server. The publishers create events by specifying the tags

related to the events via Android user interface. The subscriber Android mobile client can

enter the system and specify its interests and view the events. Drools BRMS receives the

data from the context sources such as weather data from OpenWeatherMap API externally,

location and time data internally, then creates valuable knowledge for the event

recommendation and waits for the best time of message delivery. Semantic tag matcher

deduces semantic inferences for new user interest discovery by linked data method via

DBpedia lookup service.

In our proposed system, we aim sending right information to correct person at the right

conditions, while considering rich context construction by utilizing improved internal and

26

external context services. For rich context construction and efficient information delivery,

we bring together; time, weather, place, user history and user profile information criteria

with smart services, semantic environment, business rule management system.

For related context, the backbone of our system is the tags, in other words, the user interests.

To find related content with the user, we mainly utilize user interest and process jobs using

tags. In Figure 7, the user can arrange his/her interests then receives notifications according

to them. Furthermore, the subscriber can set her/his message delivery preferences according

to time, place and weather forecast information so that the message will be sent by

considering time, place of the subscriber and weather information in event date. The

publisher sets the tags while he/she is creating an event, but he/she might not have enough

knowledge to set all related tags; even he/she might not specify any tags. At this point, we

propose a helper solution that we discuss in semantic tag matcher.

Figure 7 Interests can be specified in this screen

4.2.1. Event Management System

Event management system composes of three sub systems, Azure application server, Azure

database server and Drools BRMS.

Azure Application Server is one of the main components responsible from event publishing

that has the connections with Drools BRMS, database, publisher and the subscriber. The user

information, topics that are called tags i.e. user interests, and the user histories are hold in

this event management system via Azure database server. The communications with the

other components are done via suitable sub modules inside the event management system.

Firstly, for event message delivery, the event management system uses the message

dispatcher sub module in Azure application server to send messages to registered subscribers

via Google Cloud Messaging service. Secondly, in order to use context sources to check

conditions, process events and trigger message sending, the system utilizes Drools BRMS.

Thirdly, so as to infer semantic relations for event name to match more tags, semantic tag

matcher uses linked data method by connecting DBpedia Lookup Service. Moreover, before

27

connecting to the DBpedia Lookup Service, word-filtering algorithm, which is working in

semantic tag matcher, helps refining the word in order get more successful results coming

from DBpedia Lookup Service. Finally, Azure Application Server is built on Web API to

interact with the subscriber and publisher Android Mobile Clients via REST framework. We

will talk about semantic matcher in part 4.2.2., and we will talk about Drools BRMS in part

4.2.4. in detail.

4.2.2. Semantic Tag Matcher via DBpedia Lookup Service

In order to make semantic contextual inferences, we use linked data [15] method in semantic

tag matcher. In content delivery, the aim is trying to reach highest number of subscriber who

may be interested in the event. While an event is created, the publisher might not add the

related tags to the event. At this point, semantic tag matcher searches for linked words with

the specified word in the event title to match the related words to the tags. For that purpose,

the system utilizes DBpedia [16] to find related words. For example, if a publisher creates an

event named “William Shakespeare”, the semantic tag matcher connects to lookup service

[17] of DBpedia and look up categories and classes of the word as related words.

Some linked data are listed below for William Shakespeare coming from DBpedia as the

example is visually explained in conceptual design part.

 person

 artist

 writer

 Sonneteers

 1564 births

 English dramatists and playwrights

 16th-century English people

 People of the Tudor period

 English poets

 English Renaissance dramatists

Figure 8 Linked Data-User Interests Successful Match

This kind of output could create a value that; there is no need for exact word matching for

the specified tag. There are some alternatives like these related words to help find interest

matching. An example may clarify the situation, a subscriber is interested in sonneteers and

28

he/she adds “English Poets” and “Sonneteers” to his/her interests via his/her Android device.

Another person as publisher creates an event titled “William Shakespeare Seminar Event”

without specifying any tags related to the event. Semantic tag matcher connects to the

DBpedia and receives the XML file about William Shakespeare, parses the classes and

categories about William Shakespeare, finds “English Poets” and “Sonneteers” classes, and

binds the “English Poets” and “Sonneteers” existing tags with this event. Finally, the system

is able to notify the user who is interested in sonneteers and English poets, as shown in

Figure 8. The benefit of this feature is providing automated tag matching and reaching more

subscribers who may be interested. Moreover, for healthier keyword lookup, a basic word

filtering mechanism works in our system. There are some reserved words to filter event

name, for example, “event, party, festival, night, of, the, movie, seminar” words are

discarded for refined search. Thus, when we type “William Shakespeare Seminar Event”, the

filtering mechanism works and removes “Event” and “Seminar” words, then connects to

DBpedia with “William Shakespeare” in order to get linked words about William

Shakespeare. The word filtering mechanism, as the examples are shown in Figure 9 and

Figure 10, is a sub module in semantic tag matcher, and it could be improved in the future.

Figure 9 Word Filtering Module first example

Figure 10 Word filtering module second example

4.2.3. Context Sources

As context source, we utilize time of data to perceive time. The time data is resided in

Drools BRMS. There are some predefined calendars in BRMS to become aware of time

concept, which we will talk about in Drools BRMS part.

Secondly, we use weather context data for our prototype. In context-aware event

recommender and message delivery systems, weather information could be very significant

especially for outdoor events. For instance, in rainy situations, an outdoor event might not be

that enjoyable. For that purpose, we add weather forecast context in our system by utilizing

OpenWeatherMap API [17] to receive current and future weather data according to where

the event will be. OpenWeatherMap presents a free service for developers to integrate

weather information to their applications. With this service, we basically type the URL with

Event Title as

input:

William

Shakespeare

Seminar Event”

Word

Filtering

Module

"William+Shakespeare"

as output, ready for

DBpedia URL

Event Title as

input:

"The Night Of

Kill Bill Movie"

Word

Filtering

Module

"Kill+Bill"

 as output, ready for

DBpedia URL

29

the city name, or GPS information (longitude and latitude), and then receive current weather

data and also up to 16-days forecast information in JSON or XML format. For more

readability, we can give an example for 3-days forecast of Ankara.

URL for 3-days weather forecast of Ankara:

http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric

&cnt=7

The output XML file is in Figure 11 below:

Figure 11 3-days weather forecasts for Ankara [18]

In addition to temperature value, we consider the weather condition parameters [19] in our

system:

 clear sky

 few clouds

 scattered clouds

 broken clouds

 shower rain

 rain

http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=7
http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=7

30

 thunderstorm

 snow

 mist

Drools BRMS uses these parameters to make healthier recommendations and healthier

information delivery by regarding weather info as context. For instance, the system may

discourage the user to attend while presenting an outdoor event with a rainy weather data, by

showing a warning message about the situation. This condition can be scaled with the BRMS

that we will talk about below.

Thirdly, we utilize location context data of the subscriber. Drools BRMS use location info

about the subscriber and determine triggering of message delivery. In our prototype, we

retrieve direct location input of the subscriber instead of using GPS and other wireless

sensors.

4.2.4. Drools BRMS

Business rules are another factor that could create value in context-aware systems. We

integrate Drools BRMS [20] into our system. Drools is open-source, Java programming

language based business rule engine and enterprise framework for the construction and

maintenance of business logics in an organization, application or service supported by JBoss

[21]. In addition to business rule engine, Drools has the feature of complex event processing

(CEP [22]). CEP is an event processing that aggregates data from multiple resources to

deduce patterns and events that propose complicated circumstances. The aim of CEP is to

identify significant events and react accordingly to them quickly. Therefore, Drools BRMS

helps to find most suitable conditions to deliver message specific to the subscriber.

In Drools platform, we can define business rules by adding conditions (like if-else

conditions) and time-based conditions. For our system, we can define time rules to run the

rule only in the selected time interval or specified future time. For instance, we create some

time intervals named calendars such as “business-hours” and “non-business-hours”

calendars. (Figure 12 and Figure 13)

Figure 12 Daily Calendars

Figure 13 Weekly Calendars

31

We use these calendars in order to evaluate subscriber time preferences. The subscriber may

want to receive notifications in certain time intervals such as in business hours, out of

business hours, night hours. You can see below figure that displays subscriber time

preferences.

Figure 14 Subscriber Preferences Screen

If we integrate one of the calendars into a rule depicted in Figure 12 and Figure 13, the rule

will work only in the specified times. The calendars can be any time interval that can be

defined, such as, business hours between 08:00 and 16:00 (as shown in Figure 14), or a day

interval such as, weekends. Furthermore, we define timers to trigger actions, when single or

multiple conditions occur. For example, we can run the rule action after 8 hours, or in a

specified date such as 10/10/2014 09:00. Additionally, we can run a rule periodically, such

as, every day at 13:00. These are time-based conditions. We can also define case based

conditions. Weather data could be integrated into rules to suggest events. For instance, if an

outdoor event is created for a rainy day (the weather information is taken from

OpenWeatherMap API), the rule engine works and gives an alert to not suggest this event.

Furthermore, if a person attends to event A and event B, by means of rule engine, the system

offers event C. The rule engine can be dynamically changed and modify its behavior by

adding new rules into our system, by allowing to upload a DRL file. The benefit of this

process is to make the system work fluently without deploying new code. Thus, without

maintenance effort, the system provides new rules that can be added later.

32

Figure 15 Night Timer Rule that works only night hours

In timer based rules, in the rule definition phase, one of the specified calendars could be

selected, such as, night-hours, business-hours, weekends or weekdays, to define the rule in

the selected time interval without affecting any other time range. This arrangement provides

independent rules in different times. Figure 15 shows a time-based rule. The person who

defines the rules, specified “night-hours” calendar, meaning that, the time range is between

00:00 and 08:00, and he/she sets a timer to run the rule after 8 hours (timer (int: 8 h)). It

means running the rule after the “night-hours” calendar time is passed. The successful

scenario in Figure 15 is that, if an event is created in the night-hours, wait for passing of

night hours, and then send event information to the user.

Figure 16 Good Weather Rule

We can add context data based condition rules such as weather context. Figure 16 shows an

example of sending an event notification in good weather circumstances. In here, all fine

weather situations are abstracted as “Good” in the specified time from the server before, then

the rule only checks the whether the conditions is good or bad. The weather parameters clear

sky, few clouds, scattered clouds, broken clouds are said to be as “Good”, and shower rain,

rain, thunderstorm, snow, mist weather parameters are said to be as “Bad” from the server.

Of course, specific weather parameters could be also added to the business rules without

abstraction.

Figure 17 Bad Weather Rule

Figure 17 shows a bad weather warning example. If an outdoor event is created and the

weather is bad during the event time, the server sends a warning message to the user, while

he/she is viewing the specified event.

33

Finally, we can say that new rules can be defined later into our system without deploying

new code or without having to change whole system, since the rule framework is based on a

modifiable .drl file. Furthermore, Drools BRMS has the opportunity to be modified visually

by the utilization of Drools Guvnor [24] service of Drools mechanism, in order to ease

business rule creation for non-developer people.

In our system, there are two system roles: Standard User as Subscriber, Event Notifier as

Publisher. Standard User is the subscriber role of the system. He/she can specify his/her

interests, create new interests (tags), and view the events that may be interesting. He/she can

be notified and view the push messages when an event, which might be interesting, is

created. Event Notifier is the publisher role of the system that can create tags, create events

with related tags. Event Notifier could be any character such as a restaurant/cafe manager,

restaurant/cafe customer, student, academician, hotel receptionist or even a person who

walks on the street, who wants to notify the subscribers who may be interested in the

specified event/place. For rich content creation, there is no constraint to be an event notifier

but registration and authorization phase, so that anybody could create an event in order to

notify other users.

4.2.5. Event Publisher Android Client

We implement event publisher Android client responsible from event creation with attached

from Android user interface. In our implementation, the publisher must fill these fields as in

Figure 23:

 Event Title: Name of the event.

 Start Time: Start date and time of the event.

 Finish Time: Finish date and time of the event.

 Description: Extra information about the event.

 Location: Location of the event.

 Event Type: Indoor or outdoor event info.

 Tags: Related tags of the event.

4.2.6. Event Subscriber Android Client

We implement event subscriber Android client responsible from setting preferences,

subscribing to user interests, viewing events and registering into events from Android user

interface.

Event subscriber can modify his/her interests in order to retrieve related notification and to

view related events. Moreover, event subscriber has the opportunity to set his/her

preferences so as to get notification in appropriate times for the subscriber. We define 3

types of message delivery preferences as in Figure 14.

 Time preference: The subscriber can receive the notification in specified time

intervals.

o none: The subscriber can receive the message without any time interval

constraint. He/she receives the message whenever the related event is

created.

o business-hours: The subscriber can only receive the notifications in business

hours. (Default interval: 08:00-16:00)

o non-business-hours: The subscriber can only receive the notifications in out

of business hours.(Default interval: 16:00-00:00)

34

o night-hours: The subscriber can only receive the notifications in night hours.

(Default interval: 00:00-08:00)

 Location preference: The subscriber can receive the event notifications whose event

place is only in the neighborhood of the subscriber. Or the subscriber may turn off

this preference in order to receive the event notifications whose event place could be

anywhere.

 Weather preference: The subscriber can receive the event notifications only if the

weather is good in the event date. The subscriber has the option to turn off this

preference in order to receive the event info without checking the weather data.

4.3. Sample Usage of the System

4.3.1. Interest Setting

1. User logins to system as Standard User (Subscriber).

Figure 18 Login as Standard User

2. After successful login, the user taps on the “Your Interests” button.

35

Figure 19 Standard user main screen

3. User selects the interests “Turkish pop singers”, “Football” and “Action Movies”,

and taps to “Save” button then exits. Now, the user will have chance to receive

related event notifications.

Figure 20 Interest setting

4.3.2. Event Creation and Message Delivery

1. User logins to system with the role of Event Notifier (Publisher).

36

Figure 21 Login as Event Notifier

2. User taps on the “Create Event” button.

Figure 22 Main Screen of Event Notifier

3. User fills the form specifying title as “Tarkan Concert”, event type as “Outdoor”,

start date as “12/08/2014 19:00”, finish date as “12/08/2014 22:00”, description as

“Tarkan’s first tour”, Location as “Ankara”, and the tag as “Turkish pop singers”.

Then creates the event.

37

Figure 23 Event creation

4. After creating the event, the system finds the related users and pushes the event

information to the subscriber who registered to “Turkish pop singers”. We can see

the event message (with title Caem Notification) in a subscriber’s mobile phone.

(BRM: Business rule engine message)

Figure 24 BRM Notification

38

4.3.3. Event Detail Display, Registering to Event and Setting Time Profile

1. The user logs into system as the role of Standard User. After successful login, the

user taps on the “Interesting Events” button in order to view the related events.

Figure 25 Standard User main screen

2. The user views the listed events and selects an event to view the details.

Figure 26 Suggested events

3. In the next screen, the system gathers all information about the event. It checks the

weather information sends the weather info to the business rule engine. The engine

assesses the conditions and sends a message to application server. The application

39

server sends a message about the event. In here, the message from the business rule

engine is that the weather will not be suitable in the event date.

Figure 27 Event description with message

4. After viewing the event information and the message, the subscriber finds the event

interesting and registers to the event anyway, even if the system does not suggest the

event. The system checks the conditions and the interaction time of the user. The

event was actually created in business hours, but the user interacts with the event in

out of business hours. System infers the knowledge that the user is more active in

out of business hours, then, sets time profile of the user to “non-business-hours”, in

order to send the messages only in out of business hours. The subscriber may change

his/her profile later if s/he wants to.

40

Figure 28 Time profile set to non-business-hours

4.3.4. Message Delivery By Means Of Linked Data

When an event notifier adds an event information to the system without specifying related

tags, the system connects to DBpedia lookup service and tries to match the tags with the

received categories and classes of lookup service. For example, there is an event created,

named as “Tarkan Concert”. However, there is no tag specified about Tarkan Concert event.

In that case, the system connects to the DBpedia lookup service and receives “Turkish pop

singers” category and matches the category with the tag that is already available in the

system. Finally, the system is able to send the messages to the users who are interested in

Turkish pop singers by means of linked data feature. (This use case refers to Sample Use

Case 1 in part 4.4.1.)

4.3.5. Message Delivery Delay

Assume that the user time profile is set to “non-business-hours” (as explained in 4.2.6. Event

Subscriber part), meaning that, the messages are sent to the user only in out of business

hours. Event Notifier creates an event in business hours. The system sends the event

information to the related users immediately, except for the users whose time preference is

set to “non-business-hours”. The messages of “non-business-hours” profiled users are

delayed until the end of the business hours. Then, they receive the messages by means of the

business rule engine by attaching “BRM-delayed” word into the original message, meaning

that, Business Rule Message-delayed.

41

Figure 29 BRM-delayed message

4.4. Sample Use Cases

4.4.1. Sample Use Case 1

Ali is a computer engineering student in Middle East Technical University, Ankara. He

registers and logins to the system. He adds “Turkish pop singers”, “Football” and “Action

Movies”, as he is interested in these tags, and logs out. He sets his message delivery

preferences as “Time profile: none, Location profile: on, Location: Ankara and Weather

profile: on”. Mehmet is industrial engineering student in METU, Ankara. An event brochure

is given to him in METU shopping center. He sees in the brochure that there is a Tarkan

Concert in Ankara in 12/08/2014 at 19:00. Mehmet logins to the system and add the event

details by specifying the place and date, and he forgets to add Tarkan Concert related

interests. Finally, he pushes the create button. The system checks the event details, such as

event title, date and place. Firstly, the system filters the words and gets the word “Tarkan”,

and connects to the DBpedia with the “Tarkan” word. As a result, it receives the related

words: “person”, “Turkish pop singers”, “Musical artist”, “Turkish-language artists”. It finds

the tags available and tries to match the tag names with the related words. It finds “Turkish

pop singers” category is a match. It queries the users who added the “Turkish pop singers” to

their interests before. Secondly, the system gets the weather information of Ankara from

OpenWeatherMap API for the specified date. As a result, the system receives “23 C, clear

sky” weather data, and abstracts the data as “Good” weather. Thirdly, Business rule engine

checks the conditions, and then gives a response about to send the notifications to the related

users according to preferences of the users. Finally, the system sends the notification to the

related users, “Here’s a new event for you: Tarkan Concert”. Ali realizes that he has a push

notification from the system about Tarkan Concert, he finds it interesting and registers to the

event in order to get event details and news about the event.

42

4.4.2. Sample Use Case 2

Melek is research assistant in English Literature department in METU and arranging a

seminar event about William Shakespeare. Melek logins into system as publisher, and create

the event with name “William Shakespeare Event” and with tags “English Literature” and

“Sonneteers”. Zeynep is sociology student in METU, Ankara. She is interested in English

poets and sonneteers. She registers to the system as subscriber and adds “Sonneteers” to her

interests. Then, she arranges her message delivery preferences as follows: The weather

profile is on, location profile is on and location is Ankara and time profile is on. When

Melek as publisher creates the event, even if Zeynep is a related subscriber for the event,

Zeynep does not receive the notification because the weather will be bad. Thus, she is not

aware of the event. While using the mobile app, she taps the “Interesting Events” button

from her Android phone. She realizes there is an event named “William Shakespeare Event”

in Ankara, four days later. She finds it interesting and taps on the event to view detailed

description about the event. System receives the current weather data about the event date,

deduces the specified outdoor event is not suitable due to bad weather circumstances. While

Zeynep is viewing the detailed description about the event, she realizes a warning message

that the event is not suitable because of rainy weather. Then, she refuses to register to the

event in order not to encounter a bad surprise.

4.4.3. Sample Use Case 3

Rana has a job in Ankara and is working very hard in business hours. Generally, she could

not answer the phones and view the messages in business hours. She is interested in musical

instruments and she always wanted to play a musical instrument. She logs into system and

adds “Musical Instruments” tag into her interests. She misses to set the preferences and the

time profile is set as “none” by default so that Rana has no time preference to receive the

notification in certain times. An event is created named “Piano Training” in Ankara 5 days

later. A push notification about this event is sent to Rana’s Android phone in business hours.

She realizes she received message, but she couldn’t view the message. Later, she forgets to

view the message and she misses the event. After the event time has passed, Rana realizes

that she misses that interesting event. Thus, she taps on “Your Preferences” button and sets

the time profile as “non-business-hours” in order to receive all messages in out of business

hours. One week later, there is another event created in business hours, named “Guitar

Training” in Ankara. The notification waits for business hours to pass, then goes to Rana’s

phone in out of business hours in the evening. She finds the event interesting and registers to

the event. When a new event, which Rana might be interested, is created in business hours,

by means of business rule engine, the message waits until the business hour is passed then

the system sends the push notification to Rana in order to maximize interaction rate with

Rana’s attracted events.

43

CHAPTER 5

RESULTS AND DISCUSSION

In this section we discuss efficiency, importance and applicability of our implemented

system. In order to demonstrate the value added by the system modules, we compare several

different conditions of the system that are with the system modules and without system

modules. The system modules of interest are semantic tag matcher, business rule

management system and event dispatcher. For the assessment, we create test data set and

sample scenarios. The sample scenarios are shown below. (Default values for unspecified

inputs are, Event Type: “Indoor”, Weather Info: “Clear sky, Good”, Event Creation Time:

“Out of business hours”, Subscriber Time Profile: “non-business-hours” meaning that the

user receives all messages in out of business hours, Event Start Time: “20/08/2014 09:00”,

Event Finish Time: “20/08/2014 13:00”, Event Place: “Ankara”, Subscriber Location:

“Ankara”, Subscriber Interests: “Computer Science”, “Turkish Pop Singers”, “Sonneteers”,

“Entertainment”, “Musical instruments”, and “American actors”. Standard user turns on all

message delivery preferences, time dependency, location dependency and weather

information dependency by default.

With the scenarios below, we test our system with or without the modules. We run first as a

whole, “Full Active System”, then “Without Semantic Tag Matcher”, “Without Business

Rule Management System” and “Without Event Dispatcher” as we explain in the scenarios.

In Table 5, we show the outputs from the scenarios. We assess the scenarios and create the

table. In this assessment, we consider whether the subscriber is satisfied or unsatisfied with

the event notification and the event experience. We say Satisfied (✔),

 If the subscriber is satisfied with the event that he/she receives its notification in

appropriate conditions according to the subscriber preferences.

 If the subscriber is prevented from receiving unrelated events that the subscriber is

not interested, because of geographically unrelated event that is far from the

subscriber, because of an outdoor event that will have a bad weather, or because of

an unsuitable time that the subscriber receives.

We say Unsatisfied (✖),

 If the system could not send the event message that the subscriber is actually

interested in.

 If the system cannot avoid sending the event which could be an unrelated event that

the subscriber is not interested, which could be a geographically unrelated event that

is far from the subscriber, which could be an outdoor event that will have a bad

weather, or which could be sent in unsuitable time for the subscriber.

44

5.1. Sample Scenarios

S1. Event Notifier creates an event named “Java Programming Language Training” and

specifies the tags as “Computer Science” and “Programming”. Since the subscriber

has “Computer Science” interest, the subscriber receives the notification in

appropriate conditions with full active system. The subscriber is satisfied with this

related event notification. Only if we remove event dispatcher and start the system,

the subscriber cannot receive notification and cannot be satisfied. (The aim of this

scenario is to show successful working of the system without the help of semantic

tag matcher and BRMS)

S2. Event Notifier creates an event named “Tarkan Concert” without specifying any

tags. The semantic tag matcher is able to find Tarkan related tag such as “Turkish

Pop Singers”. Since the subscriber has “Turkish Pop Singers” interest and the

semantic tag matcher is able to find “Turkish Pop Singers” interest from Tarkan, the

subscriber receives the notification in appropriate conditions. The subscriber is

satisfied with the related notification. Subscriber cannot receive the notification if

we remove semantic tag matcher module, because the system cannot find related

interests. If we remove event dispatcher, the notification cannot be delivered. (The

aim of the scenario is to prove that the semantic tag matcher finds related topics in

case the publisher is not able to set the related topics.)

S3. Event Notifier creates an event named “William Shakespeare Event” without

specifying any tags. The event type is “Outdoor” and the weather will be rainy in

this event. The subscriber does not receive the event notification because of bad

weather, so the subscriber is satisfied, since the system avoids the subscriber from

bad experience. If we remove BRMS that uses context sources such as weather data,

the system will not prevent the subscriber from bad weather experience, so the

subscriber will be unsatisfied. If we remove event dispatcher, the notification cannot

be delivered. (The aim in this scenario is to show how BRMS uses weather context

data and evaluates it to decide whether to send or not to send the notification.)

S4. Event Notifier creates an event named “Guitar Training” and specifies the tags as

“Musical instruments” and “Music”. The event is created in business hours. The

subscriber receives the message in out of business hours, since he/she set his/her

time preference as “non-business-hours” before, in order to receive all related

messages in out of business hours. Therefore, the system makes the messages wait if

the event is created in business hours. If we remove BRMS module which actually

handles the notification timing, the subscriber will not be satisfied, since he/she

receives the notification in a busy hour when he/she does not want to receive any

notifications. (The aim in this scenario is to show how BRMS uses time context data

and evaluates it to decide appropriate time for sending message to the subscriber.)

S5. Event Notifier creates an event named “Tomato Festival” without specifying any

tags. Semantic tag matcher remains unsuccessful in analyzing “Tomato Festival”

semantically and finding related terms for current interests. Thus, the system cannot

send the notification to the subscribers who might be interested in this event. The

related subscribers such as the subscribers who are interested in “Entertainment”

cannot receive the notification, so the related subscribers could not be satisfied, as

they will not receive a related event notification. (The aim in this scenario is to show

full active system might remain unsuccessful in sending notifications to the related

subscribers in some cases.)

S6. Event Notifier creates an event named “Spam Event” with specifying all of the tags.

The subscriber receives the event however; the subscriber is unsatisfied because the

event does not mean anything to him/her. (The aim in this scenario is to show

weakness of the full active system in filtering the event notifications and in blocking

spam notifications.)

45

S7. Event Notifier creates an event named “Bradley Coming to Ankara” without

specifying any tags and with the description, “American footballer Michael Bradley

is going to play in the friendly match in Ankara.” Semantic Tag Matcher tries to find

tags about “Bradley”. However, it finds “Brad Pitt” instead of “Michael Bradley”. It

matches the tag “American actors” with user interest “American actors”, then the

event is sent to the subscriber. The subscriber is not interested in “Football”. Thus,

the subscriber will be unsatisfied that the notification is unrelated with him. (The

aim of this scenario is to point that linked data method in semantic tag matcher may

sometimes bring wrong results that do not make the subscriber happy.)

We can show the outputs of the scenarios, with or without modules.

Table 5 System Evaluation With/Without Modules

Full Active

Without

Semantic Tag

Matcher

Without

BRMS

Without Event

Dispatcher

S1: Correct Tags

specified, other

conditions nominal
✔ ✔ ✔ ✖

S2: Tags not

specified, semantic

tag matcher is able

to find tags

✔ ✖ ✔ ✖

S3: Correct tags

specified, outdoor

rainy event
✔ ✔ ✖ ✖

S4: Correct tags,

event created in

business hours
✔ ✔ ✖ ✖

S5: Tags not

specified, semantic

tag matcher is

unable to find tags

✖ ✖ ✖ ✖

S6:Wrong tags

specified
✖ ✖ ✖ ✖

S7: Tags not

specified, linked

data brings wrong

results

✖ ✖ ✖ ✖

 Full Active System: Full active system works successfully on all scenarios except

for Scenarios 5, 6, and 7. In Scenario 5, semantic tag matcher remains weak in

finding new tags that the publisher is unable to specify. Semantic tag matcher could

not find any related words for “Tomato Festival”. In Scenario 6, the subscriber

receives a spam event notification that he/she is not satisfied with. Therefore, a weak

point of the system is that there is no spam filtering, so a user may create spam

events. In Scenario 7, semantic tag matcher finds wrong results that are not related

46

with the subscriber’s interests. Thus, the subscriber will not be content with the

event notification.

 Without Semantic Tag Matcher:

o S1, S3 and S4 (Satisfied): The system will remain successful in keeping the

subscriber satisfied since the tags are already specified, so there is no need

for semantic tag matcher in these scenarios.

o S2 (Unsatisfied): Since the publisher does not set any tags, without semantic

tag matcher, the system cannot reach to the related subscribers. The

subscriber will be unsatisfied due to missing a related event.

o S5, S6 and S7 (Unsatisfied): Same reasons explained in Full Active System

part above.

 Without BRMS:

o S1 and S2 (Satisfied): Since default good conditions, which do not need

context data such as weather data these scenarios will remain successful in

making the subscriber satisfied.

o S3 (Unsatisfied): In this scenario, we have an outdoor event and the weather

will be rainy. Even if the context data service is open, the system cannot

infer knowledge from context data without BRMS. Thus, the system will

keep sending notifications even though the event is on a rainy day and not

enjoyable. We can say the subscriber will be unsatisfied.

o S4 (Unsatisfied): The event is created in business hours but the subscriber

sets his/her time preferences as “non-business-hours” in order to receive

notifications in out of business hours. Without BRMS, the subscriber

receives his/her notification in business hours when he/she does not prefer to

receive. Thus, the subscriber will be unsatisfied.

o S5, S6 and S7 (Unsatisfied): Same reasons explained in Full Active System

part above.

 Without Event Dispatcher: Absence of this service cause not to deliver any messages

to the subscriber. The subscriber, of course, is still able to see the events from the

user interface by manually querying the events.

5.2. Evaluation of the Results

Firstly, we realize from the scenarios that the semantic tag matcher tries to identify

additional related subscribers. In case of not specifying any tags, semantic tag matcher

searches for new categories to match the tags as a contribution to the publisher’s task. In our

system, semantic tag matcher utilizes the DBpedia source. However, as in seen in Scenario

5, DBpedia source remains insufficient in finding the related tags. For more accurate results,

the external sources can be extended, and also an ontology would be helpful in addition to

the linked data method.

Secondly, BRMS is very useful for inferring new knowledge for the users and the events, by

aggregating the inputs so that the event message could be more meaningful for the user. For

instance, BRMS, which uses the context data coming from another external sources such as

weather service, deduces knowledge that whether the event is suitable for the user or not. In

Scenario 3, we showed the power of BRMS by giving example of using weather context

data. Additionally, BRMS can use location and time context data to arrange sending the

notification to the subscriber. For instance, assume an event is created in business hours, the

user might miss the messages if the message does not wait for out of business hours. Right

here, BRMS does this job and sends the message in the most suitable time for the user by

47

inferring the suitable time for each user, by considering time as in Scenario 4, or location and

weather information. Therefore, without BRMS many of the event messages could be seen

as spam or could be left unseen if received at an unsuitable time.

Finally, regarding the event dispatcher that handles message delivery, absence of this service

results in undelivered messages. The user is only able to query the events and able to view

the info manually without the event dispatcher. Thus, this service is significant in reaching

the user on time.

It can be said that the system has weaknesses in some cases. Firstly, the publisher may create

spam events with attached unrelated tags. Hence, there is a need for a mechanism in

monitoring relationships between created event and the tags. Secondly, if the publisher does

not specify any tags, and the semantic tag matcher was unable to find related tags, the event

is not sent to any subscriber. Thus, the weak point of the system is that the existence of

attached tags is mandatory. Thirdly, the linked data method used in semantic tag matcher

may sometimes identify wrong tags, so, this situation leads the subscriber to be unsatisfied

with the notifications.

If we talk about the assumptions in the scenarios, firstly, we assumed that the Standard User

(subscriber) might be a student or might have a job. Thus, we created some predefined

calendars for business rule engine. However, a user may not be that active in business hours

or in weekdays. In the rule file, the calendars are static but we can create new rules with

these calendars without changing the system itself. If want to change the calendar times or

add a new one, we must deploy new rule definitions into the business rule management

system (BRMS). Thus, these calendar times are our assumptions. Secondly, we assume clear

sky and cloudy weather conditions as “Good” weather; otherwise the weather is “Bad”. In

some conditions, for example, snowy conditions for some events may be suitable. In this

case, because of our assumption, the event could not be notified because it is seen as “Bad”

weather. However, in BRMS, we could define weather-specific rules to override this

situation without deploying new code. For example, we could add a rule that has snowy

condition:

48

When

event1 : Event (weatherSpecific == “Snow”)

Or for more accurate results, we can define the condition with weather code.

When

Event2 : Event (weatherCode >= 600 && weatherCode < 700)

We give weather code between 600 and 699 since it describes snowy conditions for

 OpenWeatherMap API[19].

5.3. A Proof of Concept Application at METU Informatics Institute

As proof of concept, a sample application for METU Informatics Institute is presented by

using Institute related data. For instance, we create course topics, course related events,

nonacademic events in METU, and some entertainment activity announcements at the

Informatics Institute. After arranging such an appropriate environment, we pick 12 users

among MSc/PhD students, research assistants and non-academic personnel in METU

Informatics Institute, and ask them to use and evaluate the system. We explain the aim of the

system and show the mobile application for both publisher’s and subscriber’s views. Then,

users register to the system as subscribers, and set related user interests such as course topics

that they are taking, or social topics in the institute or in METU, as seen in figures 30, 31 and

32. The users also set their preferences in order to receive messages in appropriate

conditions. As a publisher, we create topic related events. Finally, the users receive the event

notifications. After using and evaluating the mobile system, a survey and an interview is

conducted with the users. There are 5 questions in the survey and the users give scores to the

system from 1 to 5. Many of the issues are explained and there is no missing knowledge

regarding the system and from the survey questions. In the interviews, we ask for feedbacks

and suggestions to improve the system. The questions, minimums and maximums, averages

and standard deviations for the scores for each question are given in Table 6.

49

Table 6 Survey Results

Questions Min Max

Standard

Deviaton Average

Q1. Are the notifications related with

your interests? (1: Generally Unrelated,

5: Generally Related) 2 5 0,89 4,00

Q2. Are the notifications sent according

to your preferences?

(1: Rarely, 5: Generally) 2 5 0,90 4,27

Q3. How would you score the user

interface of the mobile app? (1:

Unsatisfactory, 5: Satisfactory) 1 3 0,60 1,82

Q4. How would you score your general

satisfaction with the mobile application?

(1: Unsatisfied, 5:Satisfied) 3 5 0,60 3,82

Q5. How much applicable and usable is

the mobile app at METU Informatics

Institute?

(1:Hard to apply, 5: Easy to apply) 3 5 0,75 4,18

 For question 1, results show that the system generally sends related messages. This

situation may be affected by that the publisher did not create unrelated events for

each topic. The system also shows in this proof of concept application that, Semantic

Tag Matcher did not find any unrelated tags to the events (similar to the situation

described in Scenario 7 above), so the users were not disappointed.

 For question 2, the users generally receive their messages based on their preferences.

The assumption could be effective on gathering high scores in here that if the users

set time preferences such as non-business hours, the system is said to be successful

if the related notification is immediately received with prefix “delayed”, instead of

waiting for the specified time interval. It is meant that the notifications would be

actually sent in selected time interval, when the users are unable to wait and track

the situation.

 For question 3, the users generally give low scores to the user interface of the mobile

application. In the mobile application, we mainly focus on functionality, so the user

interface remains weak.

 For question 4, the users are generally satisfied with the mobile application. They

appear satisfied more with the functionality of the system. However, the score in

question 4, is lower than in questions 1 and 2. The reason might be that the user

interface remains insufficient.

 For question 5, the users give high scores in applying the system at METU

Informatics Institute. In this grading, the users might assume that if the mobile app is

improved according to the feedbacks they give, the system seems more usable in

METU Informatics Institute.

50

Figure 30 User

Interests

Figure 31 Notification

about IS 777 Course

Figure 32 Notification

About METU Events

After the survey, we interview some of the METU Informatics Institute research assistants,

MSc /PhD students and non-academic personnel in order to evaluate the system and discuss

the applicability and usability of the system at METU Informatics Institute. They generally

find it feasible to use the proposed mobile system. We can list some main topics of the

feedbacks and suggestions from the interviews:

1. New course notifications using topics: If a new course is opened in METU

Informatics Institute, this new course topic can be added easily into system to send

new course related notifications. (Actually, the feature is supported, but none of the

users used it.)

2. Notification details: In the notification content, the publisher name and related topics

of the notification should be available, so that the subscribers can gain knowledge

about who the publisher is and what the topics are.

3. Authorization issue: The subscribers can be anybody who registers into the system.

However, in publishing event notifications, there should be a constraining

mechanism in order to prevent unwanted and unrelated messages. Two approaches

are presented in the interviews. Firstly, a restriction for being a publisher can be

applied. The publishers should only be teaching members, teaching assistants and

other academic or non-academic personnel in METU. Secondly, a limit on setting

academic tags can be applied. In other words, everyone can be a publisher, however,

not everyone can create an event attached with e.g. IS 501 course tag. Academic tags

must be only set by METU personnel.
4. Admin role: There should be an admin role in addition to the publisher and

subscriber, in order to authorize METU personnel to set academic tags or to be a

publisher.
5. Rate the publisher: There should be a rating mechanism by giving scores by the

subscribers to the publishers, in order to increase the quality of the notifications.
6. Option to select attending/not attending: While viewing the event notification detail,

there can be an option for the subscriber to specify attendance condition of the

subscriber. It could be helpful, for instance, when an instructor plans an additional

course and wants to learn the attendance situation of the students, this attendance

information could help to cancel the course hour and arrange another time.
7. Context data can be helpful only in non-academic events: Using weather, location

and time context data for the subscriber, and sending notifications according to

them, can be very important and beneficial especially for non-academic events.

However, it might not be that preferable for the academic event notifications. Thus,

51

there could be a separation between academic events and non-academic events in

order to send every academic message to related subscribers.
8. Integration to METU OIBS: The system might be integrated into METU OIBS

(Student Affairs Information System), so that taken current course topics can be

automatically registered for the subscriber.
9. Statistics and reports: Analysis and statistics of created events can be presented

visually by the system. For instance, the report may include the number of total

events tagged by IS501 in the current semester, the number of posts of the selected

publisher, the attendance percentage of the events, the number of total subscribers

registered to a specific topic.
10. Friend list and social network integration: Friend list should be integrated into the

system so that the subscriber can share the event with other subscribers who do not

actually receive the event notification since they did not register to the related topics.

Friend list can be gathered from phone contact list, email contact list or social

network contact list. Moreover, the event should be shared via a social network

application.
11. Integration with Google Calendar [56]: The events that the subscriber is attending

can be integrated into Google Calendar so that external and internal events are

combined in one place and the subscriber can display whole schedule.
12. Publish important events via publisher confirmation: The students as subscribers

may sometimes find out about an event that has not been published into the system

yet. In this case, the subscriber may have the opportunity to create an event draft

with related course tags in order to send to the related publisher’s screen. If the

publisher sees the event as important and confirms the related tags are correct,

she/he confirms the event to be sent to the related subscribers. Therefore, the

subscribers can contribute to event notification in addition to attending events. For

instance, the CEO of a global IT company is coming to Ankara to attend a seminar.

The seminar might not be course related but a subscriber, who finds out about the

event, may think that IS 501 course students may be interested in this event. Since

she/he cannot create an event or cannot create an event with academic tags, she/he

creates the event by specifying the date and IS 501 topic. Then, he/she sends the

event to the publishers to be confirmed. A publisher sees the event that could be

significant, and confirms the event to publish the event for the IS 501 subscribers.

As we learn from the feedbacks, the users understand the system, and also they really want

to use the system, since they describe concrete situations and requirements in an academic

environment. They generally give feedbacks about improvements that they want to utilize.

The system provides adequate functionality according to the interests and the preferences of

the subscribers, but the user interface remains weak that we intend to improve first.

However, we deduce that weakness of the user interface did not very much affect the

functionality and value provided by the system.

52

53

CHAPTER 6

CONCLUSION AND FUTURE WORK

In context-aware event recommender and notification systems, many successful studies have

been conducted so far. For rich context and knowledge creation, time of day information,

location, weather information, user preferences and demographic info (age, gender etc.),

semantic environments, business rules have been used. Many studies have shown a good

example of context-aware information delivery. For instance, some systems use complex

algorithms to recommend accurate items. Some studies use social media to have more

interaction with the people. There are some works using publish-subscribe approach with

push notification. In addition to push notifications, there are business rule engines to send a

message to the user in a specified time. The business rule engines in former systems focus on

single job such as only message delivery. There are also some successful semantic Web

features in new service discovery. Many studies have provided a solution with a

recommendation engine, business rule engine, in semantic analysis, or in context-aware

environment. However, the studies remain inadequate in combining many of these features

into one solution, for instance, both successful recommendation, successful delivery of

message at the right time to the correct person and immediate behavior altering of the

system. Additionally, semantic analysis may prove to be insufficient, if ontology of the

application domain does not exist. Furthermore, the studies do not provide adequate

functionality and a feasible proof-of-concept application in finding the user at the most

suitable time to deliver the info, when it finds a related info about the user.

Caglar [25] proposes a publish-subscribe based context aware reminder system that utilizes

reminder patterns. The reminder patterns help to trigger reminding message by time or

location defined by the publisher. Message trigger is limited to time or location info and

limited to the offered patterns. Here, as a contribution to the study of Caglar, we propose a

publish-subscribe system that is empowered with a business rule management system and

semantic analysis using linked data. Business rule management system uses the context

sources to create a context-aware medium for the subscriber, by applying complex event

processing, assessing complex conditions and deciding suitable message delivery time.

BRMS can work independently and modify itself quickly without any other system change.

The advantage of our proposed BRMS is that we can use any context source as input and

evaluate it to infer valuable knowledge. This could be time, user profile info, user location,

user history, weather conditions or any other context data. We can define time based,

location based and weather condition based events so that the subscriber will be able to

receive the message in the most suitable time. Moreover, we use a semantic analysis with

linked data through the semantic tag matcher component, in order to get linked words related

to an event name. The aim of using semantic tag matcher is to maximize the success of

sending messages to the related subscribers, when the publisher misses to specify all related

tags on the created event.

54

In the results and discussion part, we apply the selected scenario to our implemented system

and observe the results. Event dispatcher has the most significant effect on pushing

notifications to the subscriber. In terms of message delivery, we realize that semantic tag

matcher improves the performance by finding more tags to match. In terms of

recommendation suitability performance, we can observe that BRMS has an important role

in using context data and inferring valuable knowledge for recommendation and message

delivery. On the contrary, as we realize from Scenario 6 in Results and Discussion part, the

message can be delivered successfully, but the notification will not be meaningful to the

subscriber, since the event is created as spam and it has unrelated tags on it. At this point the

system has a weakness of not catching unrelated and spam events.

Furthermore, we consider the applicability at METU Informatics Institute. A proof of

concept application at METU Informatics Institute is presented. To achieve this, the related

tags and events are created. METU Informatics personnel and Informatics students are

selected to use and evaluate the system. We find out that the system appears applicable, after

gathering the feedbacks, requirements and the suggestions. However, for a proper usage of

the system, there must be some improvements made, according to the selected users.

As future work, we intend to improve some modules of the system, by adding new features,

new context sources and new refined algorithms in message delivery and recommendation.

Firstly, semantic tag matcher can be improved to get more successful related results. We are

planning to improve word-filtering algorithm by adding new word manipulation algorithms

not only in English but also in Turkish and other languages. Thus, the event details will be

more meaningful to the event management server to categorize the events, and the word

similarity results will be more successful. Moreover, we are planning to add new semantic

services, for instance we can use ontologies to improve the semantic tag matcher in addition

to the DBpedia Lookup Service. As mentioned in the evaluation part, the linked data method

may sometimes bring unrelated and wrong matching. Thus, adding new services and

applying filtering to the queries from many sources may help reduce the wrong results.

Secondly, we want to add new context sources to increase context awareness performance of

the system. For instance, for indoor and outdoor positioning, we are planning to use GPS and

also wireless sensors to locate the user accurately. Finally, we plan to add spam filtering

module into system to filter unwanted messages, and also add the capability to block the

corresponding user.

55

REFERENCES

[1] Kamar, A. (2003). Mobile Tourist Guide (m-ToGuide). Deliverable 1.4, Project Final

Report. IST-2001-36004.

[2] García-Crespo, A., Chamizo, J., Rivera, I., Mencke, M., Colomo-Palacios, R., & Gómez-

Berbís, J. M. (2009). SPETA: Social pervasive e-Tourism advisor.Telematics and

Informatics, 26(3), 306-315.

[3] O'Hare, G. M., & O'Grady, M. J. (2003). Gulliver's Genie: a multi-agent system for

ubiquitous and intelligent content delivery. Computer Communications,26(11), 1177-1187.

 [4] Umlauft, M., Pospischil, G., Niklfeld, G., & Michlmayr, E. (2002). LoL@, A mobile

tourist guide for UMTS. Information Technology & Tourism, 5(3), 151-164.

[5] Krosche, J., Baldzer, J., & Boll, S. (2004). Mobidenk-mobile multimedia in monument

conservation. MultiMedia, IEEE, 11(2), 72-77.

[6] Neves, A. R. D. M., Carvalho, Á. M. G., & Ralha, C. G. (2014). Agent-based

architecture for context-aware and personalized event recommendation. Expert Systems with

Applications, 41(2), 563-573.

 [7] Braunhofer, M., Elahi, M., Ricci, F., & Schievenin, T. (2013). Context-aware points of

interest suggestion with dynamic weather data management. In Information and

Communication Technologies in Tourism 2014 (pp. 87-100). Springer International

Publishing.

 [8] Beer, T., Fuchs, M., Höpken, W., Rasinger, J., & Werthner, H. (2007). Caips: A context-

aware information push service in tourism. Information and Communication Technologies in

Tourism 2007, 129-140.

[9] Haron, N. S., Saleem, N. S., Hasan, M. H., Ariffin, M. M., & Aziz, I. A. (2010). A RFID-

based campus context-aware notification system. arXiv preprint arXiv:1003.4080.

[10] Martin, D., Alzua, A., & Lamsfus, C. (2011, January). A contextual geofencing mobile

tourism service. In ENTER (pp. 191-202).

[11] Website of OpenSocial. (n.d.), Retrieved August 14, 2014, from http://opensocial.org/

[12] Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User

modeling and user-adapted interaction, 12(4), 331-370.

[13] García-crespo, Á., López-cuadrado, J. L., Colomo-palacios, R., González-carrasco, I., &

Ruiz-mezcua, B. (2009). Sem-Fit : A semantic based expert system to provide

recommendations in the tourism domain, 1–10. doi:10.1016/j.eswa.2011.04.152

[14] Information about Zigbee (n.d.), Retrieved August 14, 2014, from

http://opensocial.org/

56

http://www.zigbee.org/

[15] Information about Linked Data. (n.d.), Retrieved August 14, 2014, from

http://linkeddata.org/

[16] Information about DBpedia. (n.d.), Retrieved August 14, 2014, from

http://wiki.dbpedia.org/About

[17] Information about OpenWeatherMap API. (n.d.), Retrieved August 14, 2014, from

http://openweathermap.org/API

[18] Sample OpenWeatherMap URL for 3-day weather information of Ankara as XML file.

(n.d.), Retrieved July 26, 2014, from

http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric

&cnt=3

[19] List of weather conditions of OpenWeatherMap API. (n.d.), Retrieved August 14, 2014,

from http://openweathermap.org/weather-conditions

[20] Description of Drools business rule engine. (n.d.), Retrieved August 14, 2014, frım

http://drools.jboss.org/

[21] Description of JBoss Middleware. (n.d.), Retrieved August 14, 2014, from

http://www.jboss.org/

[22] Tutorial document of complex event processing feature of Drools. (n.d.), Retrieved

August 14, 2014, from http://docs.jboss.org/drools/release/6.0.1.Final/drools-

docs/html/DroolsComplexEventProcessingChapter.html

[24] Description of JBoss Guvnor. (n.d.), Retrieved August 14, 2014, from

http://guvnor.jboss.org/

[25] Caglar, O., (2013), A Context-Aware Reminder System Based On Publish And

Subscribe Model, Retrieved August 14, 2014, from Middle East Technical University,

Informatics Institute Web site: http://etd.lib.metu.edu.tr/upload/12616083/index.pdf

[26] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).

Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE

Internet computing, 6(2), 86-93.

[27] Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic

processing. Psychological review, 82(6), 407.

[28] Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis: A New Synthesis.

Morgan Kaufmann Publishers, Inc., 121-122

[29] Microsoft .NET Web API. (n.d.), Retrieved August 14, 2014, from

http://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx

[30] Description of Microsoft Visual Studio 2013. (n.d.), Retrieved August 14, 2014, from

http://www.visualstudio.com/tr-tr/downloads/download-visual-studio-vs.aspx

[31] Website of Microsoft Azure. (n.d.), Retrieved August 14, 2014, from

https://azure.microsoft.com/tr-tr/vis

http://www.zigbee.org/
http://linkeddata.org/
http://wiki.dbpedia.org/About
http://openweathermap.org/API
http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=3
http://api.openweathermap.org/data/2.5/forecast/daily?q=ankara&mode=xml&units=metric&cnt=3
http://openweathermap.org/weather-conditions
http://drools.jboss.org/
http://www.jboss.org/
http://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/html/DroolsComplexEventProcessingChapter.html
http://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/html/DroolsComplexEventProcessingChapter.html
http://guvnor.jboss.org/
http://etd.lib.metu.edu.tr/upload/12616083/index.pdf
http://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx
http://www.visualstudio.com/tr-tr/downloads/download-visual-studio-vs.aspx
https://azure.microsoft.com/tr-tr/vis

57

[32] Description of GCM. (n.d.), Retrieved August 14, 2014, from

http://developer.android.com/google/gcm/index.html

[34] Android Developer Web page. (n.d.), Retrieved August 14, 2014, from

http://developer.android.com/index.html

[35] Description of DBpedia.. (n.d.), Retrieved August 14, 2014, from

http://wiki.dbpedia.org/About

[36] O’Grady, M. J., & O’Hare, G. M. (2004). Gulliver's Genie: agency, mobility,

adaptivity. Computers & Graphics, 28(5), 677-689.

[37] Website of Eclipse platform. (n.d.), Retrieved August 14, 2014, from

https://www.eclipse.org/

[38] Moreno, A., Valls, A., Isern, D., Marin, L., & Borràs, J. (2013). Sigtur/e-destination:

ontology-based personalized recommendation of tourism and leisure activities. Engineering

Applications of Artificial Intelligence, 26(1), 633-651.

[39] Gruber, T. R. (1993). A translation approach to portable ontology

specifications.Knowledge acquisition, 5(2), 199-220.

[40] Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so

far.International journal on semantic web and information systems, 5(3), 1-22.

[41] Definition of URI. (n.d.), Retrieved August 23, 2014, from

http://www.w3.org/TR/uri-clarification/

[42] Definition of RDF. (n.d.), Retrieved August 23, 2014, from

http://www.w3.org/TR/PR-rdf-syntax/

[43] Hebeler, J., Fisher, M., Blace, R., & Perez-Lopez, A. (2011). Semantic web

programming. John Wiley & Sons.

[44] FOAF project web page. (n.d.), Retrieved August 23, 2014, from http://www.foaf-

project.org/

[45] GeoNames web page. (n.d.), Retrieved August 23, 2014, from

http://www.geonames.org/

[46] Liu, Y., & Plale, B. (2003). Survey of publish subscribe event systems.Computer

Science Dept, Indian University, 16.

[47] Nagl, C., Rosenberg, F., & Dustdar, S. (2006, October). VIDRE--A Distributed Service-

Oriented Business Rule Engine based on RuleML. In Enterprise Distributed Object

Computing Conference, 2006. EDOC'06. 10th IEEE International (pp. 35-44). IEEE.

[48] BRMS definition from Hartmann Software Group IT Training & Consulting web page.

(n.d.), Retrieved August 23, 2014, from http://www.hartmannsoftware.com/pub/Enterprise-

Rule-Applications/brms

[49] Aida, K. (2000, January). Effect of job size characteristics on job scheduling

performance. In Job Scheduling Strategies for Parallel Processing (pp. 1-17). Springer Berlin

Heidelberg.

http://developer.android.com/google/gcm/index.html
http://developer.android.com/index.html
http://wiki.dbpedia.org/About
https://www.eclipse.org/
http://www.w3.org/TR/uri-clarification/
http://www.w3.org/TR/PR-rdf-syntax/
http://www.foaf-project.org/
http://www.foaf-project.org/
http://www.hartmannsoftware.com/pub/Enterprise-Rule-Applications/brms
http://www.hartmannsoftware.com/pub/Enterprise-Rule-Applications/brms

58

[50] Podnar, I., Hauswirth, M., & Jazayeri, M. (2002). Mobile push: Delivering content to

mobile users. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd

International Conference on (pp. 563-568). IEEE.

[51] Wang, M., Kawamura, T., Sei, Y., Nakagawa, H., Tahara, Y., & Ohsuga, A. (2014).

Context-Aware Music Recommendation with Serendipity Using Semantic Relations.

In Semantic Technology (pp. 17-32). Springer International Publishing.

[52] Last.fm web page. (n.d.), Retrieved August 23, 2014, from http://www.last.fm

[53] Twitter web page. (n.d.), Retrieved August 23, 2014, from http://www.twitter.com

[54] Yahoo! Local web page. (n.d.), Retrieved August 23, 2014, from

https://local.yahoo.com/

[55] LyricWiki web page. (n.d.), Retrieved August 23, 2014, from

http://lyrics.wikia.com/Lyrics_Wiki

[56] Google Calendar web page. (n.d.), Retrieved August 23, 2014, from

https://www.google.com/calendar/render?tab=mc%EF%BB%BF

http://www.foaf-project.org/
https://local.yahoo.com/
http://lyrics.wikia.com/Lyrics_Wiki
https://www.google.com/calendar/render?tab=mc%EF%BB%BF

TEZ
FOTOKOPİ

İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : GÜRGAH

Adı : Melih

Bölümü : Bilişim Sistemleri

TEZİN ADI (İngilizce) : A CONTEXT-AWARE MOBILE EVENT NOTIFICATION SYSTEM
USING THE PUBLISH-SUBSCRIBE MODEL WITH A BUSINESS RULE ENGINE AND
LINKED DATA

TEZİN TÜRÜ : Yüksek Lisans X Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek
şartıyla tezimin bir kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının

erişimine açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik
kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin
fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına
dağıtılmayacaktır.)

Yazarın imzası Tarih : 10/10/2014

X

X

