
OPENCL IMPLEMENTATION OF MONTGOMERY MULTIPLICATION ON
FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET UFUK BÜYÜKŞAHIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2014

Approval of the thesis:

OPENCL IMPLEMENTATION OF MONTGOMERY MULTIPLICATION ON
FPGA

submitted by MEHMET UFUK BÜYÜKŞAHIN in partial fulfillment of the require-
ments for the degree of Master of Science in Electrical and Electronics Engineer-
ing Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Department, METU

Prof. Dr. Gözde B. Akar
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Alptekin Temizel
Graduate School of Informatics, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MEHMET UFUK BÜYÜKŞAHIN

Signature :

iv

ABSTRACT

OPENCL IMPLEMENTATION OF MONTGOMERY MULTIPLICATION ON
FPGA

Büyükşahin, Mehmet Ufuk

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

September 2014, 79 pages

Galois Field arithmetic has been used very frequently in popular security and error-
correction applications. Montgomery multiplication is among the suitable methods
used for accelerating modular multiplication, which is the most time consuming basic
arithmetic operation. Montgomery multiplication is also suitable to be implemented
in parallel.

OpenCL, which is a portable, heterogeneous and parallel programming framework,
is recently supported by a major FPGA vendor, Altera. Therefore it is now possi-
ble to exploit the advantages of using both FPGA and C based OpenCL language
simulataneously.

In this thesis, Montgomery multiplication algorithm is implemented on FPGA using
OpenCL programming language. Performance of the proposed FPGA implemen-
tation is evaluated and compared with CPU and GPU platforms. Using different
OpenCL specific directives, several FPGA configurations corresponding to different
parallel architectures are implemented for different multiplication sizes.

Keywords: Parallel Programming, OpenCL on FPGA, Montgomery Multiplication

v

ÖZ

OPENCL İLE FPGA ÜZERİNDE MONTGOMERY ÇARPIMININ
GERÇEKLENMESİ

Büyükşahin, Mehmet Ufuk

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt F. Bazlamaçcı

Eylül 2014 , 79 sayfa

Galois alanı aritmetiği, popüler güvenlik ve hata düzeltme uygulamaları içinde sık-
lıkla kullanılmaktadır. En çok zaman alan temel arithmetik operasyonu olan modüler
çarpma işlemi için de Montgomery çarpma işlemi uygun metotlar arsındadır. Mont-
gomery çarpması paralellel gerçekleştirme için de uygundur.

Taşınabilir, heterojen ve paralel programlama çerçevesi sunan OpenCL, artık önemli
FPGA üreticisi Altera tarafından desteklenmektedir. Böylece, uygulamalarda hem
FPGA’in hem de C tabanlı OpenCL dilinin avantajlarından beraberce yararlanmak
mümkündür.

Bu tez çalışmasında, Montgomery algoritması OpenCL programlama dili ile FPGA
üzerinde gerçeklenmiştir. Önerilen FPGA gerçeklemesinin başarımı, CPU ve GPU
platformları ile karşılaştırılmıştır. OpenCL’e özel direktiflerle, farklı paralel yapılar
çeşitli çarpma boyutları için gerçeklenmiştir.

Anahtar Kelimeler: Paralel Programlama, FPGA üzerinde OpenCL, Montgomery
Çarpma

vi

To my family and friends

vii

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my family for their love, support
and patience over the years.

I sincerely thank my supervisor Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı for all his
guidance and support throughout my study.

I would like to thank to my employer, ASELSAN for supporting me.

I also express my gratitude to TÜBİTAK BİDEB "National Scholarship Program for
MSc Students".

Finally, I would like to thank my friends Nusret Bayhan, Cem Tarhan and Ömer Alper
Özkan for their support and letting me use their computers.

Last but not least, I would like to thank Gizem Kocalar for her support throughout the
study.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ALGORITHMS . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 7

2.1 Mathematical Background 7

2.1.1 Galois Field . 7

2.1.2 Galois Field Arithmetic 7

2.1.2.1 Addition in GF (2m) 8

2.1.2.2 Multiplication in GF (2m) 9

ix

2.2 Development Environment and Tools 10

2.2.1 FPGA . 10

2.2.1.1 FPGA as Computation Unit 10

2.2.1.2 CPUs in the FPGA 11

2.2.1.3 FPGA as an OpenCL Device 11

2.2.2 OpenCL . 12

2.2.3 OpenCL on FPGA vs. GPU 13

2.2.4 Development Environment 15

2.2.4.1 Host Application Development 16

2.2.4.2 Kernel Development 16

3 RELATED WORK . 19

3.1 Multiplication Algorithms 19

3.1.1 Karatsuba Multiplication 19

3.1.2 Karatsuba Multiplication in GF (2m) 20

3.1.3 Montgomery Multiplication in GF (2m) 21

3.1.3.1 Parallel Implementations of Montgomery
Multiplication 23

3.1.3.2 Partitioning of Separated Operand Scan-
ning (SOS) Method 24

3.1.3.3 Partitioning of Coarsely Integrated Operand
Scanning (CIOS) Method 26

3.1.4 Multiplication in GF (2m) using Residue Number
System (RNS) . 27

x

3.2 FPGA Implementations of Various Galois Field Multipliers . 28

3.2.1 Logic Level Designs 28

3.2.2 Soft Processor Designs 29

3.3 GPU Implementations . 31

3.4 Other Multi-core Solutions 32

3.5 Software Solutions . 33

4 IMPLEMENTATION AND EVALUATION OF MONTGOMERY MUL-
TIPLICATION ON FPGA USING OPENCL 35

4.1 Preliminary Calculations 35

4.2 Extended Euclidean Algorithm 36

4.3 Implementation . 36

4.3.1 Inputs and Outputs 38

4.3.2 Kernel Attributes 40

4.3.2.1 FPGA Resource Usages 40

4.3.2.2 Kernel Frequencies 41

4.3.2.3 Kernel Performances 43

4.3.3 Primitive Sizes 47

4.3.4 Offline Compilation 50

4.4 Functional Testing . 52

4.4.1 Reference Results 52

4.4.2 Benchmarks and Profiling 53

xi

5 COMPARISON OF OPENCL FPGA MONTGOMERY MULTIPLIER
WITH GPU AND CPU PLATFORMS 59

5.1 Comparison with GPU . 59

5.2 Comparison with CPU . 62

5.3 Comparison with other Implementations in the Literature . . 64

6 CONCLUSION . 67

REFERENCES . 71

APPENDICES

A CONSTANT IRREDUCIBLE POLYNOMIALS (N) USED IN RE-
DUCTION . 75

A.1 Multiplication size = 256 75

A.2 Multiplication size = 512 75

A.3 Multiplication size = 1024 75

A.4 Multiplication size = 2048 76

A.5 Multiplication size = 4096 76

A.6 Multiplication size = 8192 77

B OPENCL CODE . 79

xii

LIST OF TABLES

TABLES

Table 4.1 Chosen irreducible polynomials for different multiplication sizes . . 39

Table 4.2 Comparison of area utilizations (in chip’s resource percentage) of
1024 bit Montgomery SOS algorithm implementations for different kernel
attributes . 41

Table 4.3 Comparison performances (in multiplications per second) for dif-
ferent kernel attributes . 44

Table 4.4 Multiplication size vs. work group sizes 47

Table 5.1 Specifications of GPUs tested . 60

Table 5.2 Specifications of CPUs tested . 63

Table 5.3 Comparison of performance of multiplier implementations in the
literature. 65

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 Tren in CPUs in terms of clock speed and number of cores 1 3

Figure 2.1 Overview of of OpenCL architecture [1] 12

Figure 2.2 Simple OpenCL code mapped into custom logic [2]. 14

Figure 2.3 Branching in SIMD structure vs. pipeline structure [2] 14

Figure 2.4 Multiple compute units vs. SIMD vs. both 18

Figure 3.1 Data flow of Montgomery multiplication (SOS) 25

Figure 3.2 Partitioning of SOS given in algorithm 6. 26

Figure 3.3 An example flow of regular (left) and proposed (right) iterations in
[3]. Multiplier sizes are given as KOMSIZE and number of multipliers
used is given next to arrows. 29

Figure 3.4 An example implementation of [4] with four soft processor cores. . 31

Figure 4.1 Flow of Montgomery multiplication. 37

Figure 4.2 Comparison of implemented (unsigned char) kernel frequencies
for different kernel attributes and multiplication sizes 42

Figure 4.3 Comparison of implemented (unsigned int) Kernel frequencies for
different kernel attributes and multiplication sizes 43

Figure 4.4 Comparison of normalized kernel performances for different kernel
attributes (unsigned char) . 44

Figure 4.5 Comparison of normalized kernel performances for different kernel
attributes (unsigned int) . 45

Figure 4.6 Comparison of Kernel performances for different multiplication
sizes (unsigned char) . 46

xiv

Figure 4.7 Comparison of Kernel performances for different multiplication
sizes (unsigned int) . 46

Figure 4.8 Logic resource utilization for the implemented multiplier on FPGA 48

Figure 4.9 Memory utilization for the implemented multiplier on FPGA 49

Figure 4.10 C# application for compilation . 50

Figure 4.11 Compilation times for unsigned char implementations 51

Figure 4.12 Compilation times for unsigned int implementations 51

Figure 4.13 A screenshot of multiplier application written in C# for functional
testing . 53

Figure 4.14 Benchmark results (in microseconds) obtained by host application
for FPGA multiplier . 55

Figure 4.15 Benchmark results (in microseconds) obtained by host application
for CPU/GPU multiplier . 57

Figure 5.1 Performance comparison of FPGA implementation with GPUs . . . 61

Figure 5.2 Performance comparison of FPGA implementation with CPUs . . . 64

xv

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Addition in GF (2m) . 8

Algorithm 2 Multiplication in GF (2m) . 9

Algorithm 3 Host application algorithm . 16

Algorithm 4 Karatsuba Multiplication in GF (2m) 20

Algorithm 5 Montgomery Product . 22

Algorithm 6 Montgomery product with SOS method 25

Algorithm 7 Montgomery product with CIOS method 27

Algorithm 8 Montgomery multiplication over trinomial residues 28

Algorithm 9 Extended Euclidean Algorithm 36

xvi

LIST OF ABBREVIATIONS

AOC Altera Offline Compiler

AOCL Altera OpenCL

API Application programming interface

ASIC Application-specific integrated circuit

CPU Central processing unit

CvP Configuration via Protocol

CRC Cyclic redundancy check

DSP Digital signal processor

FPGA Field-programmable gate array

GF Galois Field

GPU Graphics processing unit

JTAG Joint Test Action Group, IEEE 1149.1 Standard Test Access
Port and Boundary-Scan Architecture

LUT Lookup table

NIST National Institute of Standards and Technology

OpenCL Open Computing Language

PCIe PCI Express (Peripheral Component Interconnect Express)

RNS Residue number system

SDK Software development kit

SIMD Single instruction multiple data

SoC System on chip

xvii

xviii

CHAPTER 1

INTRODUCTION

Computers, laptops, mobile devices became very important in our daily life. Most of

the time those devices are connected to each other via Internet. One can watch video,

listen to music, do some work, store pictures, communicate with relatives/friends,

etc. and possibilities are unlimited. It is also possible to work on sensitive or even

confidential information. For example, on-line banking can save time and money by

eliminating the need to drive to an ATM, which is available in a 7/24 fashion.

However, all those possibilities would be practical if they are reliable. No one would

like sensitive information, pictures/videos of memories to be lost or even worse,

stolen. Therefore reliability and security are very important topics for our daily used

devices. Security is a very important issue especially for connected devices. Relia-

bility and security attributes have to be provided in a fast and efficient manner.

Reliability: Some extra information is used in order to increase reliability in an ap-

plication. This redundant information is often called error-correcting codes. There

are many methods for generating and decoding of error-correcting codes [5]. Cyclic

redundancy check (CRC) is one of the most commonly used error-detecting method.

CRC is used in basic hardware, mobile networks, dvd/blu-ray players, hard drives,

Internet communication, etc.1.

Security: Sensitive information should be protected against eavesdropping. It might

not always be possible to prevent eavesdropping, especially when the transfer medium

1 Some examples: CRC-1, parity bit in basic hardware; CRC-6-CDMA2000, CRC-10-CDMA2000, CRC-12-
CDMA2000, CRC-16-CDMA2000, CRC-30 in mobile networks; CRC-32 in Ethernet/Internet communication,
Reed-Solomon coding in storage

1

is air as in wireless communication. Data can also be transferred through unknown

networks as in the Internet. Therefore, information is encrypted into some other form

such that unwanted third-parties cannot understand it. Some widely used crypto-

graphic systems are RSA2, ECC (Elliptic Curve Cryptography), Schnorr signature,

PGP (Pretty Good Privacy), AES (Advanced Encryption Standard), DES (Data En-

cryption Standard), etc.

Speed: Both redundant information for reliability and encryption/decryption for se-

curity are required to protect sensitive information. Unfortunately, both operations

are computationally time consuming and are complex problems. No one would like

to have huge delays in secure communication. Long waiting times during on-line

secure banking/shopping that drains battery or secure but slow-motion DVD movie,

etc. are not generally acceptable. Therefore, developing efficient algorithms in this

domain is crucial.

Many of those algorithms such as RSA, ECC, Reed-Solomon coding, CRC etc. have

mathematical basics on Galois Field. Therefore, it is important to accelerate op-

erations in Galois Field to improve overall performance in such cryptographic and

checksum algorithms. Thus Galois Field multiplication, which is one of the most

time consuming operations in Galois Field, is a very hot topic.

Unfortunately, these Galois Field operations are computationally intensive calcula-

tions. Therefore, usually custom hardware solutions are preferred. Alternatively, par-

allel processing capabilities of recent processing devices with high processing power

can be utilized.

Parallel programming has always been a trendy topic and still is in recent years. This

is mainly due to the fact that major CPU manufacturers tend to produce CPUs that

have more cores rather than having higher clock frequencies to increase performance

as shown in Figure 1.1.

2 RSA: initials of surnames of inventors, Ron Rivest, Adi Shamir, and Leonard Adleman

2

0

1

2

3

4

5

6

7

8

9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

In
te

l P
en

ti
u

m
 2

0
0

In
te

l P
en

ti
u

m
 II

 4
5

0

In
te

l P
en

ti
u

m
 II

I 1
.4

G
H

z

In
te

l P
en

ti
u

m
 4

 2
.0

0
G

H
z

In
te

l P
en

ti
u

m
 4

 5
20

A
M

D
 S

em
p

ro
n

 3
8

0
0

+

In
te

l P
en

ti
u

m
 4

 6
7

2

In
te

l P
en

ti
u

m
 D

 9
6

0

A
M

T
A

th
lo

n
 X

2
 4

5
0

In
te

l P
en

ti
u

m
 E

5
2

0
0

In
te

l P
en

ti
u

m
 E

6
80

0

In
te

l C
o

re
 i3

-5
6

0

In
te

l C
o

re
 i5

-7
6

0

A
M

D
 A

th
lo

n
 X

4
 7

5
0

k

In
te

l C
o

re
 i5

-3
55

0

A
M

D
 F

X
-4

1
7

0

A
M

D
 F

X
-6

2
0

0

In
te

l C
o

re
 i7

-5
8

2
0

K

N
u

m
b

e
r

o
f

C
o

re
s

C
lo

ck
 S

p
e

ed
 (

M
H

z)

Clock Speed Cores

Figure 1.1: Tren in CPUs in terms of clock speed and number of cores 3

This trend also leads graphics processing units (GPUs) to be used in general purpose

programming. Results are quite promising since GPUs can offer very high computa-

tion power compared to CPUs [6].

Parallelism is offered by FPGAs as well. Additionally, FPGAs provide better flexi-

bility compared to GPUs and CPUs. FPGAs can perform custom and high speed I/O

operations. Major FPGA manufacturers introduced advanced I/O capabilities in their

products. Modern FPGAs support PCIe, SATA, SAS, 10G-Ethernet, RapidIO, SDI,

DDR, QDR connection interfaces [7]. FPGAs are already widely used in the industry

to perform special tasks at a low supply cost. However, they lack ease of program-

ming. Therefore development process is longer and usually more complicated than

CPU/GPU development.

With recent improvements in FPGA development tools, major FPGA manufacturers

start offering OpenCL support on their FPGAs. Altera already supports OpenCL

on FPGA development platforms starting from Quartus 13.0sp1. The other major

company Xilinx will also provide OpenCL support in their 2014.1 version Vivado

3Sources: ark.intel.com/products and www.amd.com/en-us/products accessed on 13 September 2014

3

software [8]. Therefore, developers can now benefit from both flexibilities of FPGA

and easy programming of CPU/GPU by utilizing the C based programming language

OpenCL.

As a consequence, OpenCL based FPGA designs may allow very promising solutions

to existing or new problems. Hence, a Galois Field multiplier design on FPGA using

OpenCL is potentially an efficient and worth to investigate solution approach.

There are several methods existing for Galois Field multiplication. Trivial methods

like look-up table or old-school multiplication followed by long division are not suit-

able for large fields such as order of hundreds. Therefore, more complicated algo-

rithms such as Karatsuba-Ofman, RNS (Residue number system) and Montgomery

are developed.

Karatsuba-Ofman algorithm, actually, just divides large numbers into smaller pieces.

It introduces a tree-like structure for multiplication. Unfortunately, it lacks the reduc-

tion part. So reduction must be implemented separately after multiplication. RNS

algorithm provides easy method for multiplication that is highly parallel by design.

RNS also lacks reduction operation and additionally it requires computationally in-

tensive forward and backward transitions. Montgomery algorithm, on the other hand,

includes both multiplication and reduction operations. It can be parallelized as well.

Therefore, Montgomery algorithm is selected to be implemented on FPGA using

OpenCL.

This thesis covers evaluation of Montgomery multiplier implementation on FPGA us-

ing OpenCL. Effects of OpenCL specific Kernel attributes have been investigated and

performances of FPGA, GPU and CPU as computation platform have been compared.

Evaluation hardware is Nallatech P385-d54. The board is connected to the host sys-

tem via PCIe bus and includes an Altera Stratix V GS D5 FPGA and 8 GB on board

DDR3. Altera Stratix V GS D5 FPGA has 457K logic elements, 690K registers, 28

fractional PLLs, 3550 18x18 multipliers, 1775 27x27 multipliers. However, hardware

multipliers are not utilized due to mathematical differences in integer multiplication

and Galois Field multiplication. Multiplication modules are coded in OpenCL. Code

4 Details: http://www.nallatech.com/images/stories/product_briefs/openclcardspb_v1_5.pdf

4

is compiled using Altera OpenCL SDK with Quartus II version 13.0 service pack

1. Host application is based on Nallatech Hello World example and coded in Visual

Studio 2010.

The thesis is organized as follows: First, a brief mathematical background on Galois

Field arithmetic and on OpenCL framwork is given in Chapter 2. An introduction to

OpenCL development environment is also given in this chapter. Chapter 3 presents

a literature survey of the related work on Galois Field multiplication. Some sample

implementations are briefly summarized in Chapter 3. Chapter 4 describes the im-

plementation details of the OpenCL Montgomery multiplier on FPGA. In addition,

Chapter 4 includes FPGA test results and our observations. Comparison of the per-

formances of the implemented code on FPGA, GPU and CPU platforms and also

comparison with the performances of previous works are presented in Chapter 5. Fi-

nally, Chapter 6 summarizes and concludes the thesis work.

5

6

CHAPTER 2

BACKGROUND

2.1 Mathematical Background

2.1.1 Galois Field

Galois field is a finite set of numbers with some special mathematical properties so

that defined operations always results in the set.

It is required that defined operations must satisfy fixed axioms, associativity, commu-

tativity and distributivity rules over its elements. Additionally, any element must have

a unique additive inverse and any non-zero element should have a unique multiplica-

tive inverse [9].

2.1.2 Galois Field Arithmetic

Easiest example would be on prime Galois fields, GF (p). So arithmetic is identical

to regular integer addition and multiplication with modulo prime p. Some examples

in GF (3) where elements are (0, 1, 2) are as follows:

0 + 0 = 0 1 + 2 = 0 2 + 2 = 1 (2 + 2 ≡ 1 (mod 3))

0× 0 = 0 1× 2 = 2 2× 2 = 1 (2× 2 ≡ 1 (mod 3))

In order GF (p) to form a field, p must be a prime, otherwise some elements might

not have a unique multiplicative inverse. For instance, there is no x value satisfying

2× x = 1 mod 6.

7

We can also use vectors to enhance the field, so we can use GF (m) such that m = pn

where p is a prime and n is an integer. Furthermore, given n > 1, finite field GF (pn)

can be represented as the field of equivalence classes of polynomials in which coeffi-

cients are in the field GF (p). Therefore the elements of GF (pn) can be represented

by polynomials with degree less than n [10].

Moreover, addition in a vector field is relatively easier than addition of integers be-

cause integer addition has carry. Since there is no carry generated in vector addition,

all computations are guaranteed to be in the finite set. Here are some examples of

addition operation in GF (23):

000 + 000 = 000 010 + 100 = 110 011 + 110 = 101

Multiplication, on the other hand, could lead to larger results that do not fit into finite

space [11]. Therefore multiplication includes one more step referred as reduction.

Actually, GF multiplication is done by first doing a regular multiplication using car-

ryless additions, then by dividing the result with the reduction polynomial and by

noting the remainder as the final result. Therefore, both p, n in GF (pn) and the

reduction polynomial must be known in order to carry out multiplication in GF.

Multiplication with randomly chosen reduction polynomials can be very costly and

ineffective in certain operations. Therefore, National Institute of Standards and Tech-

nology (NIST) has chosen several polynomials which are optimized for the efficiency

of the elliptic curve operations [12].

2.1.2.1 Addition in GF (2m)

Addition is very easy for computers since it is only an exclusive or (XOR) operation

for each bit (see algorithm 1).

Algorithm 1: Addition in GF (2m)

Input : a(x) =
∑m−1

0 aix
i and b(x) =

∑m−1
0 bix

i

Output: c(x) =
∑m−1

0 cix
i = a(x) + b(x)

1 Procedure Sum(a(x), b(x))
2 for i = 0 to m− 1 do
3 ci = ai ⊕ bi
4 return c(x)

8

2.1.2.2 Multiplication in GF (2m)

Straight and old fashioned school multiplication followed by a long division is very

costly in GF multiplication. Since GF multiplication is widely used in the core of

many applications such as cryptography/security applications, it is crucial to have a

fast and efficient multiplier.

A simple method for multiplication is shift-and-add [9].

Given,

a(x) =
m−1∑
0

aix
i b(x) =

m−1∑
0

bix
i c(x) =

m−1∑
0

cix
i f(x) =

m−1∑
0

fix
i

c(x) = a(x) · b(x) mod f(x)

=
(
am−1x

m−1b(x) + · · ·+ a2x
2b(x) + a1xb(x) + a0b(x)

)
mod f(x)

(2.1)

We observe that Equation 2.1, iterating through i (on ai), calculates xib(x) mod f(x)

and accumulates the result if ai is non-zero.

b(x)x =
(
bm−1x

m + bm−2x
m−1 + · · ·+ b2x

3 + b1x
2 + b0x

)
mod f(x)

= bm−1x
m mod f(x) +

(
bm−2x

m−1 + · · ·+ b2x
3 + b1x

2 + b0x
)

mod f(x)

= bm−1r(x) +
(
bm−2x

m−1 + · · ·+ b2x
3 + b1x

2 + b0x
)

mod f(x)

(2.2)

Therefore, b(x)x mod f(x) can be calculated iteratively by a shift operation and

then adding r(x) = xm mod f(x) to b(x) if the most significant bit, bm−1, is 1 (see

algorithm 2).

Algorithm 2: Multiplication in GF (2m)

Input : a(x) =
∑m−1

0 aix
i and b(x) =

∑m−1
0 bix

i

Reduction Polynomial: f(x) =
∑m−1

0 fix
i

Output: c(x) =
∑m−1

0 cix
i = a(x) · b(x) mod f(x)

1 Procedure Multipy(a(x), b(x))
2 if a0 = 1 then
3 c(x)← b(x)
4 else
5 c(x)← 0
6 for i = 1 to m− 1 do /* i = 0 already processed */
7 b(x)← b(x)x mod f(x)
8 if ai = 1 then
9 c(x)← c(x)⊕ b(x)

10 return c(x)

9

2.2 Development Environment and Tools

2.2.1 FPGA

A field-programmable gate array (FPGA) is a large integrated circuit that can be con-

figured to perform specific tasks. Although FPGAs have flexible structure, they can

offer quite high computation power because they perform calculations at the gate

level. Nowadays, FPGAs are very rich in terms of resources. It is possible to find a

single FPGA chip that includes logic elements up to millions, a large memory up to

tens of Mbits, hard peripheral blocks/transceivers and hard computation units such as

multiple CPU cores, DSP cores, thousands of multipliers, etc. [13] [14].

FPGAs require special equipment for programming and a very common way is using

a JTAG connection. Reprogramming of an FPGA completely restarts the device. This

is not a problem for most of the times because it happens at system start-up. However,

this may not be so practical for some applications such as an application where FPGA

is connected as a PCIe device to the host computer. Any change in FPGA requires

complete reprogramming and hence PCIe core requires to be restarted. That makes

the FPGA inaccessible by the host until a complete restart of the host system. The

solution is to use partial reconfiguration. Partial reconfiguration, as the name implies,

allows FPGA to be programmed partially. Moreover, this method is further enhanced

to use PCIe connection to eliminate the need for special equipment. This is called as

configuration via protocol (CvP) by Altera [15].

2.2.1.1 FPGA as Computation Unit

FPGAs are massively parallel processors by design. Unlike sequential C programs, it

could be very hard and time consuming to design, debug and verify an FPGA system.

Moreover, compilation time may easily exceed several hours. Also, abstraction is

limited because a programmer may need to consider very low level hardware related

issues such as timing.

10

2.2.1.2 CPUs in the FPGA

In order to speed up the design process, major FPGA manufacturers introduced soft

processors. Altera named their soft processor as NIOS II and Xilinx named theirs

as MicroBlaze. Soft processor is basically a simple CPU core using logic resources

of the FPGA. With the increasing number of logic elements in an FPGA, it is even

possible to implement many soft CPU cores in a single chip. Moreover, major FPGA

vendors started manufacturing chips including single or many hard CPU cores 1 [16]

[17].

2.2.1.3 FPGA as an OpenCL Device

Recently, Altera released a high performance computation solution using a Stratix V

FPGA as an OpenCL device. Therefore, an FPGA can be used as a parallel comput-

ing device similar to a GPU. Moreover, the solution provides a highly customizable

architecture that regular GPUs do not have. Additionally, this solution may decrease

power consumption dramatically while increasing the throughput compared to CPU

or GPU based solutions [18].

OpenCL is a portable programming language, meaning that applications can run on

different hardware. However, it may be very time consuming to optimize an OpenCL

code for different brands/models of GPU hardware. Therefore, migration is easy from

functional point of view but may be hard is an efficient migration is desired. Since

GPU hardware is fixed and varies a a lot among brands/models, a code optimized for

"GPU-A" must be re-optimized manually for "GPU-B". FPGA hardware on the other

hand can adapt itself to a specific piece of code. Therefore, in an FPGA solution,

which includes an optimal hardware-software co-design, migration to another FPGA

just becomes re-compilation of the code. For instance, work group sizes should be

optimized depending on number of processing units in the GPU in order to maximize

utilization. However, FPGA implementation will generate required number of cores

during compilation.

1 Xilinx released Zynq-7000 series with dual ARM Cortex-A9 based application processor unit with CPU
frequency up to 1 GHz [16]. Similarly, Altera has ARM-based hard processor system that utilizes dual-core ARM
Cortex-A9 MPCore processor [17].

11

2.2.2 OpenCL

OpenCL is a framework for parallel programming. Its applications run on heteroge-

neous platforms consisting of one or more single/multi core CPUs, GPUs, DSPs, FP-

GAs, and other processing units [19]. It uses the heterogeneous programming model.

Operations such as memory management, data transfers to/from devices, queuing

tasks to devices, and error management are handled by the host device. It is based on

C99 programming language with additional keywords.

OpenCL is maintained by Khronos Group and supported by a variety of companies

including Intel, AMD, Qualcomm, IBM, Samsung, Apple, nVidia, Nokia, Altera,

Xilinx, ARM, Broadcom, Ericsson, Freescale [19].

An OpenCL application basically has two parts: (i) the main code that runs on the

host to prepare and orchestrate the heterogeneous platform and (ii) kernels that run

on OpenCL device(s) that perform the actual computation (see Figure 2.1). The ap-

plication running on the host submits tasks to OpenCL devices.

HOST

Compute Device

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Device

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Device

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Compute Unit

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

P
ro

ce
ss

in
g

El
em

en
t

Figure 2.1: Overview of of OpenCL architecture [1]

First, the OpenCL host application (usually a sequential code written in C++) queries

and selects computation devices using OpenCL API. Then it manages them using

work queues. Kernels written in OpenCL runs on each computation unit in parallel.

12

There are basically two models in parallelizing a computation task, which are called

as data-parallel and task-parallel.

Data-parallel model: A sequence of instructions are executed on a unique element

of an array, which are mapped by unique-ids of each processing unit. For ex-

ample,
∑NumOfPU

1 Ai + Bi can be calculated at once by each core summing

two inputs mapped by ids.

Task-parallel model: Each processing unit can be used independently to execute

given task.

Memory management is explicit. Host application must transfer data from host mem-

ory to OpenCL devices’ memories and then get the results back [19].

Memory regions in OpenCL are differentiated depending on access type and scope.

Global memory can be accessed by all work-items of all work-groups. Access type

is read/write.

Local memory can be accessed by all work-items of the same work-group. Access

type is read/write.

Constant memory is read-only accessible by all-work items.

Private memory is read/write accessible by individual work-items.

2.2.3 OpenCL on FPGA vs. GPU

Kernel execution is handled differently on FPGA and GPU. GPU consists of many

(usually in the order of hundreds) simple SIMD processing units on which work-items

are computed instruction-by-instruction. Due to fixed size SIMD architecture same

instruction must be executed on a number of processing units. However, each kernel

is mapped into a custom dedicated logic on FPGA [2]. All data paths (including

conditional paths) in the code are converted into piece of hardware as illustrated in

Figure 2.2.

13

__kernel void Add(

__global int *A,

__global int *B,

__global int *C)

{

 int i = get_global_id(0);

 C[i] = A[i] + B[i];

}

A[i] B[i]

Adder

C[i]

Figure 2.2: Simple OpenCL code mapped into custom logic [2].

FPGA, on the other hand, utilizes pipeline parallelism. Therefore, its branching be-

havior is different than SIMD, which is usually found in GPUs. Because of hav-

ing SIMD architecture on GPU, following different paths across work items after a

branching would cause idle times in the process. This is because only a single instruc-

tion can be executed at a time [2]. On the other hand, programmers are not faced with

this issue on FPGA. Because all possible branchings are already built into the custom

hardware and any path could be followed at any place of the pipeline. A simple be-

havior of pipelined FPGA and SIMD GPU are compared in Figure 2.3 where all three

work-items first execute A and then B, C and D stages are executed conditionally.

SIMD
Parallelism

 IDLE

 IDLE IDLE

 IDLE

Pipeline
Parallelism

...

𝐴();

if(𝐶𝑂𝑁𝐷) { 𝐵 (); 𝐶 (); }

else if(𝐶𝑂𝑁𝐷) { 𝐵 (); 𝐶 (); }

else if(𝐶𝑂𝑁𝐷) { 𝐵 (); 𝐶 (); }

// poor coding, just an example

...

Figure 2.3: Branching in SIMD structure vs. pipeline structure [2]

Scenario: First execute A on all CUs (compute units) then conditionally execute Bi

and Ci on ith CU.

14

• GPU

1. Execute A on SIMD processor in parallel. A is common for all Kernels.

2. Execute B1C1 which are conditionally executed on CU 1.

3. Execute B2C2 which are conditionally executed on CU 2.

4. Execute B3C3 which are conditionally executed on CU 3.

• FPGA

1. Execute A for CU 1.

2. – Execute either B1, B2 or B3 for CU 1 depending on condition.

– Execute A for CU 2.

3. – Execute either B1, B2 or B3 for CU 2 depending on condition.

– Execute either C1, C2 or C3 for CU 1 depending on condition.

– Execute A for CU 3.

4. – Execute either B1, B2 or B3 for CU 3 depending on condition.

– Execute either C1, C2 or C3 for CU 2 depending on condition.

5. – Execute either C1, C2 or C3 for CU 3 depending on condition.

One other difference between GPU and FPGA exists in the design process, which

will be explained in more detail in the following sections. Normally, OpenCL ker-

nels are compiled at runtime for the target device, i.e., for CPU or GPU. Compiling

kernels for GPU usually takes just a few seconds. However, FPGA logic synthesis is

a computationally intensive work and may take quite a long time. Therefore, Altera

provides an offline compiler (Altera Offline Compiler, AOC) to prepare FPGA logic

from OpenCL code. So, instead of runtime compilation, Altera just loads prepared

FPGA content. At this point, portability of OpenCL can shorten the design process

dramatically. It would be a good practice to test OpenCL code first on CPU or GPU,

then compile it for FPGA using AOC.

2.2.4 Development Environment

Development of software for OpenCL based Altera FPGA consists of two parts, soft-

ware focused host application development and hardware focused kernel develop-

15

ment.

2.2.4.1 Host Application Development

Host application is a C++ program that uses OpenCL API. Host application runs

on a regular CPU. It uses OpenCL APIs to manage compute devices as described

in algorithm summarized in algorithm 3. Normally kernels (at line 5) would be

compiled at runtime for the selected device [20]. However, in FPGA kernels are

compiled by AOC [21] and image is loaded by partial reconfiguration (CvP).

Algorithm 3: Host application algorithm
1 Function Main()
2 Discover OpenCL devices.
3 Query their capabilities and decide which ones to use.
4 Initiate OpenCL device. Create context, command queue etc.
5 Prepare kernel(s).
6 repeat
7 Allocate memory buffers, prepare kernel arguments.
8 Launch kernel.
9 Collect results.

10 until Application exits
11 Exit program

Host application provides timing information for performance measurements. Addi-

tionally, host application can perform computations using software libraries to com-

pare results.

2.2.4.2 Kernel Development

OpenCL is a portable solution, which means that the same code could be executed on

different hardware. Therefore optimizing kernel for all devices is almost impossible

as this task is highly dependent on hardware. On the other hand, an FPGA based

OpenCL system could overcome this situation by configuring itself depending on the

kernel, i.e., by producing an optimal hardware for each specific problem. So, the de-

veloper can only focus on solving the problem in a parallel manner. Therefore, Altera

offers Altera SDK for OpenCL, which allows designers to use OpenCL C. Gener-

ally, OpenCL Kernels would be compiled at runtime depending on target hardware.

16

However, Altera solution uses pre-compiled hardware binary file [21].

Data processing efficiency can further be increased by instructing the compiler to

use specific architectures. Altera provides several kernel attributes for this kind of

customizations, details of which are given in [22]. Some exemples are as follows:

#pragma unroll tells AOC to try to unroll loops to decrease the number of iter-

ations at the expense of increased hardware resource usage. Loop unrolling will fail

if loop bounds are not constant, loop contains too much data dependency, or loop is

too large so that it does not fit into hardware (in this case #pragma unroll <N>

could be used to limit unrolling).

max_work_group_size instructs compiler to limit work group size. Compiler

assumes 256 work-items for work group size by default. Therefore, software requir-

ing smaller work groups would lead unnecessary hardware to be generated when this

attribute is not set.

reqd_work_group_size is similar to max_work_group_size attribute but

specifies the exact size per work group to allow further hardware resource optimiza-

tion.

num_compute_units allows the compiler to generate multiple compute units per

kernel in order to increase throughput. It increases both global memory bandwidth

requirement and hardware resource utilization (see Figure 2.4a).

num_simd_work_items is similar to num_compute_units but it also requires

reqd_work_group_size to be specified. It increases throughput by vectorizing

kernel, which enables multiple work-items to be processed in SIMD fashion (see Fig-

ure 2.4b). Using SIMD compute units usually results in more efficient hardware than

using multiple compute units because SIMD compute units only duplicates data paths

[22]. Using both could be a better option (see Figure 2.4c). A comparison is depicted

in Figure 2.4.

17

(a) (b) (c)

Figure 2.4: (a) Multiple compute units (using num_compute_units(4) attribute)
(b) Compute unit with multiple SIMD lanes (using num_simd_work_items(4)
attribute) (c) Multiple compute unit with multiple SIMD lanes (using
num_compute_units(3) and num_simd_work_items(4) attributes).

18

CHAPTER 3

RELATED WORK

Parallel implementations of various multiplication algorithms exist in the literature.

The present chapter gives an overview of a sample of such implementations with

a focus on FPGA, GPU and multi-core solutions. The implemented multiplication

algorithms are also briefly summarized first.

3.1 Multiplication Algorithms

3.1.1 Karatsuba Multiplication

Karatsuba algorithm was introduced as a general integer multiplication method based

on divide and conquer approach. Basic idea is to replace multiplication with less

complex addition/subtraction operations [23].

Suppose, we need to calculate c = ab. First divide inputs as a = aHx
m + aL where

xm > aL and b = bHx
m + bL where xm > bL. Then,

c = ab = (aHX
m + aL)(bHx

m + bL)

c = c1x
2m + c2x

m + c3

c = aHbHx
2m + (aHbL + aLbH)xm + aLbL

(3.1)

Equation 3.1 would require four multiplications of size m/2. On the other hand,

aHbL + aLbH = (aH + aL)(bH + bL)− aHbH − aLbL

c2 = (aH + aL)(bH + bL)− c1 − c3

19

Therefore, c2 can be calculated using one multiplication instead of two and the whole

result can be expressed as in Equation 3.2 with three multiplications plus some shift

and add operations.

c = aHbHx
2m + ((aH + aL)(bH + bL)− aHbH − aLbL)xm + aLbL (3.2)

This method is especially useful for recursive multiplication of very large integers us-

ing limited size multipliers such as the ones we encounter in modern day processors,

which have 32, 64 bit multipliers. For example, Intel’s PCLMULQDQ instruction

uses this method to compute carryless multiplication of large numbers on 64 bit mul-

tipliers [24]. Any type of multiplication can be employed at the end of recursion.

3.1.2 Karatsuba Multiplication in GF (2m)

Finite field multiplication is performed in two steps; first one is classic multiplication

and the second one is modular reduction as described in algorithm 4 using multi-

pliers of size NMultiplierSize in line 8 [3]. Note that all summations (additions and

subtractions) in line 12 are the same operation exor in GF (2m).

Algorithm 4: Karatsuba Multiplication in GF (2m)

Input : A(x) =
∑2n−1

0 Aix
i and B(x) =

∑2n−1
0 Bix

i where n is an integer
Output: C(x) =

∑2n−1
0 Cix

i = AB mod f(x) where n is an integer
1 Function Multiply(A,B)
2 CPartial = Karatsuba(A,B)
3 C = ModularReduction(CPartial)
4 return C

Input : a(x) =
∑2n−1

0 aix
i and b(x) =

∑2n−1
0 bix

i where n is an integer
Output: c(x) =

∑2×2n−2
0 cix

i = ab where n is an integer
5 Function Karatsuba(a, b)
6 N ← max(degree(a), degree(b))
7 if N > NMultiplierSize then
8 return Mult(a, b)

Let: a = aHx
N/2 + aL and b = bHx

N/2 + bL
9 cHH ← Karatsuba(aH , bH)

10 cHL ← Karatsuba(aH + bL, aL + bH)
11 cLL ← Karatsuba(aL, bL)

12 return cHHx
N + (cHL − cHH − cLL)xN/2 + cLL

Any method can be used for Mult(a, b). Karatsuba algorithm calculates multipli-

cation of two numbers but it does not perform reduction operation, which has to be

20

performed separately.

3.1.3 Montgomery Multiplication in GF (2m)

Montgomery multiplication, first introduced in 1985, replaces time consuming divi-

sion and reduction operations in GF multiplication with less costly operations [25].

Suppose we need to calculate c(x) in GF (2m), i.e.,

c(x) =
m−1∑
0

cix
i = a(x)b(x) mod f(x)

Instead of directly working on a(x) and b(x), Montgomery algorithm suggests to use

ā ≡ aR(x) mod f(x) and b̄ ≡ bR(x) mod f(x) where R(x) is chosen such that

R(x) > f(x) and is relatively prime to f(x) (that is gcd(R(x), f(x)) = 1). Here,

gcd(a, b) stands for greatest common divisor of a and b.

As described in [26], for modulo f(x) = N ,

c = ab mod N

c̄ = cR mod N

= abR mod N = (aRbRR−1) mod N = (āb̄R−1) mod N

= (āb̄RR−1/R) mod N

(3.3)

Using identity RR−1 −NN ′ = 1,

c̄ = (āb̄(1 +NN ′)/R) mod N

= ((āb̄+ āb̄NN ′)/R) mod N
(3.4)

For any integer k,

c̄ = ((āb̄+ āb̄NN ′)/R + kN) mod N

= ((āb̄+ āb̄NN ′ + kNR)/R) mod N

= ((āb̄+ (āb̄N ′ + kR)N)/R) mod N

= ((āb̄+ ((āb̄N ′) mod R)N)/R) mod N

(3.5)

Notice that, (āb̄N ′) mod R < R and ā < N , b̄ < N therefore āb̄ < N2. So,

(āb̄+ ((āb̄N ′) mod R)N)/R < (N2 +RN)/R

21

SinceR > N and addition is xor operation in GF, expression āb̄+((āb̄N ′) mod R)N)/R

will always be less than N . Therefore mod N in the last line of Equation 3.5 has

no effect for GF. Therefore c̄ = āb̄ mod N can be calculated by algorithm 5.

Algorithm 5: Montgomery Product
Given : R a power of 2, R > N and gcd(R,N) = 1

N ′ such that RR−1 −NN ′ = 1
Input : ā ≡ aR mod N

b̄ ≡ bR mod N
Output: c̄ ≡ cR mod N

1 Function MontProd(ā, b̄)
2 t = āb̄
3 c̄ = (t⊕ (tN ′ mod R)N) /R
4 return c̄

Modulo and division byR are both easy operations for computers asR is a power of 2.

However, switching to N residue and computation on N ′ are costly. Therefore, this

algorithm is more appropriate for operations where several multiplication products

are required (i.e. exponentiation) with the same modulus [27].

Montgomery algorithm is also valid for integers. However, Montgomery for integers

has one more step in the end. Expression āb̄+((āb̄N ′) mod R)N)/R in Equation 3.5

is smaller than 2N for integers. Therefore, additional subtraction operation is required

if expression is larger than N . Following example illustrates Montgomery algorithm

for integer multiplication:

Example:

Suppose we would like to perform 25× 53 mod 97, take R = 100

So, pre-calculated constants R−1 = 65 mod 97 and RR−1 −NN ′ = 1⇒ N ′ = 67

First, transforms inputs into Montgomery domain,

a = 25 ā = 25× 100 mod 97 = 75

b = 53 b̄ = 53× 100 mod 97 = 62

Then, perform Montgomery reduction as given in algorithm 5.

22

t = āb̄ = 75× 62 = 4650

c̄ = (4650 + (4650× 67 mod 100)× 97)/100

= (4650 + (311550 mod 100)× 97)/100

= (4650 + (50× 97)/100)

= (4650 + 4850)/100

= 9500/100

c̄ = 95

Finally, convert result back from Montgomery domain.

c = c̄R−1 mod 97 = 95× 65 mod 97

c = 64 = 25× 53 mod 97

As illustrated in the example, Montgomery method converts expensive modulo oper-

ation with less costly divisions and modulo operations. For computers those division

and modulo operations will become just shifting and neglecting.

Montgomery reduction method is not suitable for single multiplication due to forward

and backward conversions. However for repeated multiplications like exponentia-

tion, it is very useful. Because, all computations can remain in Montgomery domain.

Therefore only initial and final domain conversions would be enough.

3.1.3.1 Parallel Implementations of Montgomery Multiplication

Montgomery based multiplication is performed when modulo multiplication of two

s-word numbers is required, where s is relatively large and a multiplier hardware exits

for multiplying word size numbers. Montgomery based algorithms can basically be

categorized in terms of two factors [27]:

1. whether multiplication and reduction stages are integrated1 or separate, and

2. whether the algorithm loops on operand’s words or product’s words.
1 called as finely when reduction is performed just after a word or coarsely when reduction is performed on

an array of words

23

Separated Operand Scanning (SOS): Multiplication and reduction steps are sepa-

rated in this technique. First, 2s-word product of two s-word integers is calculated

and then reduction is performed to obtain the final result.

Coarsely Integrated Operand Scanning (CIOS): Unlike SOS, this methods switches

between multiplication and reduction in the loop, therefore directly producing the s-

word final result instead of computing 2s-word complete product.

Finely Integrated Operand Scanning (FIOS): This method unrolls nested loops of

CIOS into singe loops to perform reduction word by word.

Finely Integrated Product Scanning (FIPS): This method loops on final product’s

words. It would be beneficial for microprocessors as most of the read, write opera-

tions are on accumulator words which would most likely be placed in registers.

Coarsely Integrated Hybrid Scanning (CIHS): This is similar to SOS but requires

less space by hybrid design. The method mixes product scanning and operand scan-

ning.

There are many studies on Montgomery multiplication algorithm. Some of them are

[27], [28], [29], [4], [30].

3.1.3.2 Partitioning of Separated Operand Scanning (SOS) Method

SOS Methodology is given in algorithm 6, which is a more detailed version of algo-

rithm 5 for modular multiplication of multi word numbers. It is observed that the most

time consuming parts are the inner loops at line 4 and line 8. Therefore parallelization

24

should be targeted in these loops. Additionally, data flow is given in Figure 3.1.

Algorithm 6: Montgomery product with SOS method
Input : s-word operands A, B; an odd modulus N .

Constant n′ = −n−10 mod 2w where w is the word length
Output: s-word C = AB mod N

1 Procedure MontMultSOS(A,B)
2 for i = 0 to s− 1 do
3 for j = 0 to s− 1 do
4 t[i+ j] = t[i+ j] + a[j]× b[i]

// Multiplication is OK. Now, reduction.
5 for i = 0 to s− 1 do
6 mi = t[i]× n′ mod 2w

7 for j = 0 to s− 1 do
8 t[i+ j] = t[i+ j] +mi × n[j]
9 C = (ts−1, · · · , t1, t0) // Lower s-word of t

10 return C

(0,0)

(0,0)�

(0,1)

?

(0,1)

?

�

(0,2)

?

(0,2)

?

�

(0,3)

?

(0,3)

?

�
m0

(1,0)

(1,0)�

(1,1)

?

(1,1)

?

�

(1,2)

?

(1,2)

?

�

(1,3)

?

(1,3)

?

�
m1

(2,0)

(2,0)�

(2,1)

?

(2,1)

?

�

(2,2)

?

(2,2)

?

�

(2,3)

?

(2,3)

?

�
m2

(3,0)

(3,0)�

(3,1)

(3,1)�

(3,2)

(3,2)�

(3,3)

(3,3)�
m3

(C0)(C1)(C2)(C3)

????

?

?

?

t

Figure 3.1: Data flow of Montgomery multiplication (SOS) given in algorithm 6.
White boxes show multiplication stages and gray boxes represent reduction steps.

With the analysis of data flow given in Figure 3.1, it is observed that there are basically

25

two options for partitioning, which can be row based or column based. Both methods

are illustrated in Figure 3.2, where Pi denotes the i-th partition.

Row Based Partitioning: Row based partitioning is depicted in Figure 3.2a. One can

easily observe that it has perfect task balancing since all partitions have equal num-

ber of boxes. However, t must be transferred between partitions, which introduces

communication overhead.

Column Based Partitioning: Column based partitioning is depicted in Figure 3.2b.

First of all, it has better communication overhead compared to row based partitioning.

Only mi terms are transferred. On the other hand, it could be argued that it does not

have a good task balancing. However, tasks can be balanced by computing for exam-

ple P0 and P4 on same computation unit. This case can be generalized by assigning

Pi and Pi+s to the same computation unit.

(0,0)

(0,0)�

(0,1)
?

(0,1)

?

�

(0,2)
?

(0,2)

?

�

(0,3)
?

(0,3)

?

�

(1,0)

(1,0)�

(1,1)
?

(1,1)

?

�

(1,2)
?

(1,2)

?

�

(1,3)
?

(1,3)

?

�

(2,0)

(2,0)�

(2,1)
?

(2,1)

?

�

(2,2)
?

(2,2)

?

�

(2,3)
?

(2,3)

?

�

(3,0)

(3,0)�

(3,1)

(3,1)�

(3,2)

(3,2)�

(3,3)

(3,3)�

(C0)(C1)(C2)(C3)

????

?

?

?

t

P0

P1

P2

P3

P4

P5

P6

P7

(a) Row based partitioning

(0,0)

(0,0)�

(0,1)
?

(0,1)

?

�

(0,2)
?

(0,2)

?

�

(0,3)
?

(0,3)

?

�

(1,0)

(1,0)�

(1,1)
?

(1,1)

?

�

(1,2)
?

(1,2)

?

�

(1,3)
?

(1,3)

?

�

(2,0)

(2,0)�

(2,1)
?

(2,1)

?

�

(2,2)
?

(2,2)

?

�

(2,3)
?

(2,3)

?

�

(3,0)

(3,0)�

(3,1)

(3,1)�

(3,2)

(3,2)�

(3,3)

(3,3)�

(C0)(C1)(C2)(C3)

????

?

?

?

P0P1P2P3P4P5P6

(b) Column based partitioning

Figure 3.2: Partitioning of SOS given in algorithm 6.

3.1.3.3 Partitioning of Coarsely Integrated Operand Scanning (CIOS) Method

Instead of calculating the whole product first and than reducing it as in algorithm 6,

CIOS combines two large loops at line 2 and line 5 into a single loop. Because

calculation of m at line 6 depends only on i. Then algorithm 6 becomes algorithm 7.

This method requires less amount of temporary memory space compared to SOS

method. Therefore, it is suitable for GPU implementations since most variables could

26

fit into GPU registers [28].

Algorithm 7: Montgomery product with CIOS method
Input : s-word operands A, B; an odd modulus N .

Constant n′ = −n−10 mod 2w where w is the word length
Output: s-word C = AB mod N

1 Procedure MontMultSOS(A,B)
2 for i = 0 to s− 1 do
3 for j = 0 to s− 1 do
4 t[i+ j] = t[i+ j] + a[j]× b[i]
5 m = t[i]× n′ mod 2w

6 for j = 0 to s− 1 do
7 t[i+ j] = t[i+ j] +m× n[j]
8 C = (ts−1, · · · , t1, t0) // Lower s-word of t
9 return C

3.1.4 Multiplication in GF (2m) using Residue Number System (RNS)

RNS is a number representation, which divides a large integer into smaller size inte-

gers [31]. Suppose that we have pairwise relatively prime moduli set {m1,m2, · · · ,mN}
with the least common multiple of mi being M . Then any number X < M has

a unique representation in the defined residue number system as {x1, x2, · · · , xN},
which satisfies xi = X mod mi.

RNS could be used in the computation of C = A ·B mod M . Then the product can

be obtained by calculating ci = ai · bi mod mi, which provides perfect parallelism

by design.

A highly parallel multiplication method using RNS is given in algorithm 8. It is based

on Montgomery method in RNS [32]. The algorithm is fully parallel except two base

extensions computed in line 4 and line 7. Unfortunately, these base extensions are

27

quite time consuming.

Algorithm 8: Montgomery multiplication over trinomial residues
Given : Precomputed constant matrices of multiplications by p−1i (mod ti),

pn+i (mod tn+i), m−1n+i (mod tn+i)
Input : A : {a1, · · · , a2n}, B : {b1, · · · , b2n}, P : {p1, · · · , p2n}
Output: R : {r1, · · · , r2n} where ri = aibim

−1 (mod pi) and m is
Montgomery factor

1 Function Mult(A,B)
2 {c1, · · · , c2n} = {a1, · · · , a2n} × {b1, · · · , b2n}
3 {q1, · · · , qn} = {c1, · · · , cn} × {p−11 , · · · , p−1n }
4 {qn+1, · · · , q2n} = BaseExt({q1, · · · , qn})
5 {rn+1, · · · , r2n} = {cn+1, · · · , c2n}+ {qn+1, · · · , q2n} × {p1, · · · , p2n}
6 {rn+1, · · · , r2n} = {rn+1, · · · , r2n} × {m−1n+1, · · · ,m−12n }
7 {r1, · · · , rn} = BaseExt({rn+1, · · · , r2n})
8 return {r1, · · · , r2n}

Input : {q1, · · · , qn residue representation of Q (mod M)
Input : {qn+1, · · · , q2n residue representation of Q (mod M ′)

9 Function BaseExt(Q) // Newton’s interpolation[32]
10 tmp1 = q1
11 for i = 2 to n do // Can be calculated in parallel
12 tmpi = qi
13 for j = 0 to i− 1 do
14 tmpi =

(
(tmpi + tmpi)× t−1j

)
mod ti

15 for i = 2 to n do // Can be calculated in parallel
16 qn+i = tmpn mod tn+i

17 for j = 0 to i− 1 do
18 qn+i = ((qn+i × tj + tmpj) mod tn+i

19 return {qn+1, · · · , q2n}

3.2 FPGA Implementations of Various Galois Field Multipliers

3.2.1 Logic Level Designs

Although it requires more effort and it takes more time to implement a low level de-

sign, it usually results in high performance due to highly customizing and optimizing

the circuit.

There are many research works on Galois Field multipliers that use bare FPGAs as

their computation units. One example is [3]. In [3], the authors analyzed complexities

of bit parallel Karatsuba-Ofman multiplier for both FPGA and ASIC. They have com-

28

pared the area-time product of their design with previous designs and achieved the

lowest area utilization in terms of logic resources for ASIC and LUTs for FPGA. Nor-

mally, i step Karatsuba-Ofman algorith can operate on m = 2in bits long operands.

However, usual operand lengths are not powers of two but usually prime numbers as

recommended by NIST. Therefore most designs pad zeroes to achieve a size such that

it is a power of two. But authors in [3] selected an asymmetrical method for iterations

to achieve non-power of two lengths as illustrated in Figure 3.3.

Figure 3.3: An example flow of regular (left) and proposed (right) iterations in [3].
Multiplier sizes are given as KOMSIZE and number of multipliers used is given next
to arrows.

3.2.2 Soft Processor Designs

Another approach is to make use of soft processors in FPGAs, which provides both

easy programming of C language and flexibility of FPGA. In soft processor use in

FPGA, the processors are created out of FPGA resources. Therefore such designs

can be scalable that is more processors can be added and also whole system can

be migrated to another FPGA brand or model as long as the FPGA resources are

sufficient. In soft processor based systems, mostly the clock frequency becomes the

bottleneck of the system, which has a big impact on the overall performance. Clock

frequencies in soft processors are usually around 100-200 MHz.

Practical applications of Galois field multiplication usually requires lengths of mul-

29

tiplicands to be many times larger than word length of computation unit. First part

of the multiplication, that is straightforward multiplication to obtain partial products,

has quadratic complexity. In addition, reduction part at the end will make the compu-

tation even longer. For instance, a straightforward implementation of a 2048-bit long

multiplier would require 4096 32-bit multiplications. Therefore, parallelization could

lead to huge performance improvements.

In general, some key properties such as balanced task partitioning, low intercommu-

nication delay, high scalability should be considered in order to maximize the effi-

ciency of a parallel design [4]. Consequently, parallel designs differ from sequential

designs in many aspects.

In [4] authors suggest a parallel Montgomery multiplier and compare row and column

based partitioning in terms of task partitioning balance and communication over-

heads. Finally, they suggest a novel method, called as parallel Separated Hybrid

Scanning (pSHS). They implement a prototype on Xilinx Virtex 5 FPGA using two,

four and eight 32-bit MicroBlaze soft processor cores running at 100 MHz. Each

MicroBlaze soft processor core has an independent local memory and are connected

with each other via Fast Simplex Link (FSL). An example with four soft processor

cores is illustrated in Figure 3.4 where timer connected to MicroBlaze0 measures the

execution time.

30

Figure 3.4: An example implementation of [4] with four soft processor cores.

3.3 GPU Implementations

High number of computation units in modern GPUs provide a great computation

power and allow parallel operations to be performed very efficiently on GPUs. There-

fore, major GPU manufacturers created lots of tools to make GPU kernel development

process fast and easy. As a result, idea of using GPU as computation unit is widely

accepted among authors especially for heavily parallel workloads. Even GPGPU

(General purpose GPU) applications have emerged recently.

GPU implementations tend to differ from multi-core CPU implementations in the

sense of parallelization. GPU implementations are supposed to be massively parallel

due to GPU hardware design. One can simply think of a multicore CPU as a small

number of large compute units whereas a GPU as a large number of small compute

units.

In [28] authors proposed a method to implement Montgomery multiplication and op-

timized it for SIMD architecture of GPUs. They have implemented a design on nVidia

31

GTX-480 GPU.

GPUs can work not only in data-parallel way but also in task-parallel manner. Capa-

bility of performing different tasks at the same time makes GPUs suitable for RNS

algorithm which basically performs similar but not the same operations on different

numbers. In [30] authors proposed residue number system (RNS) based Montgomery

multiplication. The advantage of RNS is that it is inherently parallel. They evaluated

their design on nVidia 285 GTX GPU. In [29], it is shown that alternative Mont-

gomery RNS designs are possible with same cost in terms of number of additions,

multiplications and base extension/conversions. RNS algorithm is also safe for side

channel attacks due to fully independent parallelism and arbitrary selection of num-

bers.

Although RNS algorithm introduces very good parallelism for multiplication, reduc-

tion process requires too much cross thread communication. In addition, the process

needs preliminary and post conversion computations.

3.4 Other Multi-core Solutions

Cell Broadband Engine is used in [33] to perform multiplication in parallel. Cell

Broadband Engine is the processor found in famous gaming console Sony Play Sta-

tion 3, blade servers such as IBM QS20/21 and laptops such as Toshiba Qosmio. Cell

Engine is a 64 bit variant of PowerPC running at 3.2GHz. It acts as central processor

unit of a multi-processor system consisting of 8 Synergistic Processor Units (SPUs).

Play Station 3 allows 6 of 8 SPUs to be used for general purpose computations and

authors used all 6 in [33].

SPUs are specialized processors with SIMD capabilities and each have two pipelines

therefore it can dispatch two instruction per cycle.

Authors of [33] used IBM multi-precision math (MPM) library and compared their

results with Intel Core 2 Quad Q9300 processor. Their results are comparable but

Sony Play Station 3 costs less than a desktop computer equipped with quad core Intel

Core 2 processor.

32

However, the authors mention that these comparisons are not fair as AMD processors

would yield similar performance at a lower cost. Also, Play Station 3 has 2 idle

cores (6 of 8 cores utilized), which can perform other tasks while Intel processor is

on full load. Lastly, prices may fluctuate in the market. Nevertheless, Cell Engine is

demonstrated to be a promising computation unit for security applications.

3.5 Software Solutions

There are several software solutions for cryptographic applications that does not re-

quire additional hardware and run directly on main processor. The problem is that,

most of the systems cannot share that much processor resource in a cryptographic

applications.

In order to accelerate software solutions, Intel introduced a special instruction for

their CPUs, PCLMULQDQ. It is based on Karatsuba-Ofman algorithm, [24]. The

instruction divides multiplication with large sized operands such as 256 into 64 bit

multiplications.

Authors of [34] use certain techniques, such as eliminating conditional branches (if

statements), decreasing data dependencies and using pipeline stalls, to speed up finite

field arithmetic operations on x86 and x64 based processors. They present test results

for Intel Atom N450, Core 2 Duo E6750, Xeon E5440 and AMD Opteron 252.

33

34

CHAPTER 4

IMPLEMENTATION AND EVALUATION OF MONTGOMERY

MULTIPLICATION ON FPGA USING OPENCL

4.1 Preliminary Calculations

As was presented in Chapter 3, Montgomery algorithm requires some constants for a

given field. The field can be described by an odd modulo functionN(x) =
∑n−1

0 ai2
i+

1, where ai = 1 and ai = 0 or 1 ∀i ∈ [1..n]. Montgomery multiplication algorithm

requires constants R, R−1, and N ′.

Montgomery algorithm basically converts reduction by N into reduction by R. This

constant is actually the tricky part of Montgomery algorithm. When R is chosen to

be a power of 2, costly reduction and division parts are converted into just shift and

erase operations. R should be chosen to be larger and relatively prime to N , that is

gcd(N,R) = 1 and R > N .

R−1 is the multiplicative inverse of R and can easily be calculated by the Extended

Euclidean algorithm given in the following subsection. R−1 is a constant for a given

field.

For a given field, N ′ is another constant that satisfies RR−1 = NN ′ + 1, which can

also be easily calculated by the Extended Euclidean algorithm.

35

4.2 Extended Euclidean Algorithm

Euclidean algorithm computes greatest common divisor of two integers [35]. Ex-

tended Euclidean algorithm additionally computes the coefficients of Bézout’s iden-

tity (x, y) for given a and b that satisfies ax + by = gcd(a, b) [35]. Pseudocode of

Extended Euclidean algorithm is given in algorithm 9[35].

Algorithm 9: Extended Euclidean Algorithm
1 Function ExtEuclidean(a, b)
2 r0 = a r1 = b
3 s0 = 1 s1 = 0
4 t0 = 0 t1 = 1
5 while rk+1 6= 0 do
6 qi ← ri−1/ri // Integer division
7 ri+1 = ri−1 − qiri
8 si+1 = si−1 − qisi
9 ti+1 = ti−1 − qiti

// Euclidian Algorihm would return rk = gcd(a, b)
10 return sk, tk // ask + btk = gcd(a, b)

Extended Euclidean algorithm is very suitable to calculate constants for Montgomery,

R−1 and N ′ as given in Equation 4.1

ax+ by = gcd(a, b)

RR−1 +NN ′ = gcd(R,N) = 1
(4.1)

R, R−1, N , and N ′ are all constants for a given field. Therefore, there is no need to

calculate again and again.

4.3 Implementation

There are several Montgomery multiplication methods described in [27] and some

examples are given in subsection 3.1.3. We have chosen SOS, Separated Operand

Scanning, method because of its easy coding and easier/faster debugging along dif-

ferent CPU and GPU platforms. Moreover, it provides better readability of the code

due to its simple data flow. On the other hand, integrated methods (CIOS and FIOS)

36

may actually improve the performance and decrease the memory usage. However, de-

bugging process gets more complicated since the algorithm alternates between mul-

tiplication and reduction stages. SOS method first performs multiplication and then

starts reduction process. Therefore, intermediate results can easily be compared using

the results of other methods, such as Karatsuba or even simple school multiplication.

Any method, Karatsuba, RNS or simple school multiplication, can be used for the

first part of SOS method, which is just multiplication. RNS method requires time

consuming base transformations and conversion to/from RNS representation. Karat-

suba method divides large numbers into smaller numbers and decreases multiplication

width. It does not introduce any extra computation overhead but it is not balanced for

parallelization due to its tree like structure. Therefore, it is hard to code Karatsuba

into parallel kernels. Because of its perfect balance and easy coding, we chose simple

school multiplication for the first part. Whole OpenCL code example is given in Ap-

pendix B. Note that this is just a way of implementing SOS algorithm, it is possible

to further optimize the OpenCL code.

Data flow of algorithm 6, which is preferred in our implementation, is given in Fig-

ure 4.1 where A and B are two numbers in Montgomery domain.

Given, R = 24

· · ·
t = AB

c = (t⊕ (tN ′ mod R)N) /R

· · ·

A2 A1 A0

t = AB× B2 B1 B0

t5 t4 t3 t2 t1 t0
t′ = tN ′ mod R× N ′2 N ′1 N ′0

��t
′
8 ��t

′
7 ��t

′
6 ��t

′
5 ��t

′
4 ��t

′
3 t′2 t′1 t′0

t′′ = t′N× N2 N1 N0

t′′5 t′′4 t′′3 t′′2 t′′1 t′′0
u = (t′ ⊕ t′′)/R⊕ t5 t4 t3 t2 t1 t0

c5 c4 c3 ��c2 ��c1 ��c0

Figure 4.1: Flow of Montgomery multiplication.

37

For this thesis work, multiplication lengths of 256, 512, 1024, 2048, 4096, 8192

are chosen and implemented for different scenarios. Following scenarios for both

unsigned char and unsigned int data structures for all sizes are implemented:

• Multiplication block fully unrolled, size of SIMD processor is 4

• Multiplication block fully unrolled, number of computation units is 2

• Multiplication block fully unrolled, number of computation units is 2, size of

SIMD processor is 2

• Half of multiplication block unrolled, number of computation units is 2, size of

SIMD processor is 4

• Multiplication block fully unrolled, number of computation units is 2, size of

SIMD processor is 2, 1-lvl Karatsuba algorithm used for primitive multiplica-

tion

Unfortunately, one scenario with multiplication size of 8192 with unsigned int basic

data type which uses 1-level Karatsuba multiplication did not fit into FPGA and the

compilation failed. Therefore corresponding results are missing.

4.3.1 Inputs and Outputs

Inputs A and B are divided into 8 bit or 32 bit words depending on the data structure

used. 8 bit structure will be referred as unsigned char implementation and 32 bit

structure will be referred as unsigned int implementation throughout the thesis. Inputs

are converted into Montgomery domain by the host application and are then passed

to the FPGA as kernel arguments. Pre-calculated constants N , N ′ are also passed to

FPGA, separately. Constant N is an irreducible polynomial and is different for each

multiplication size. Values of N are chosen from [36] as trinomials and are given in

Table 4.1 and in section A.1.

38

Table 4.1: Chosen irreducible polynomials for different multiplication sizes

Multiplication Size Irreducible Polynomial, N
256 2255 + 282 + 1

512 2511 + 2216 + 1

1024 21014 + 2385 + 1

2048 22044 + 245 + 1

4096 24074 + 2595 + 1

8192 28145 + 2728 + 1

In addition, empty buffers t and m, which are double the size of inputs, are provided

to the FPGA. Buffer t holds the partial product, while buffer m holds mi values

calculated right after AB product is formed in algorithm 6. Finally, an output buffer

c is created at equal size with inputs. The multiplier provides an out in Montgomery

domain similar to inputs.

Constant R is hard coded as 2(k+1)∗8 or 2(k+1)∗32. So R is not passed to FPGA. Also,

constant R−1 is not passed to the kernel because output is provided in Montgomery

domain anyway. R−1 is used by the host application at the end to convert the result

back from Montgomery domain.

Partitioning is similar to the one described in Figure 3.2b. A whole row is computed

in parallel at once. For inputs A and B, all elements of A are multiplied with the first

element of B and then the second, the third, etc. in a loop. Hence loop size is equal

to word count in B which is related to multiplication size as in Equation 4.2.

Word Count =

Multiplication Size/8, for unsigned char

Multiplication Size/32, for unsigned int
(4.2)

Accumulations are performed at the end of each loop in global buffer t.

Similar steps are used for following multiplications in reduction part. Modulo and

division operations are done by just neglecting and changing array indexes since

modulus and division (by R) is now a power of two. This is the main advantage

in Montgomery multiplication.

39

4.3.2 Kernel Attributes

Since the implementation platform is FPGA, our architecture is now very flexible. We

can easily manipulated it using specific kernel attributes mentioned earlier. Actually,

these attributes shape the structure of FPGA. Therefore, changing these attributes

might have a huge impact on FPGA resource usage, performance and kernel clock

frequency. So, multiple trade-offs might appear with no certain winner.

In this thesis, different values for the following abbreviated attributes are investigated:

• RWS (Required workgroup size) allows compiler to further optimize the de-

sign by giving an exact value. Defaults to 256 when omitted. Unless otherwise

specified it is equal to the word size given in Equation 4.2.

• CU (Number of computation units)

• SWI (SIMD work items) determines the width of the SIMD processor.

• MBU (Multiplication block Unrolled) Basic multiplication block has a con-

stant loop length equal to the width of basic unit, i.e., 8 or 32. If multiplication

block is unrolled, performance increases dramatically at the expense of more

FPGA resources. Unless otherwise specified, this loop is unrolled (at least at

half size).

4.3.2.1 FPGA Resource Usages

Altera Offline Compiler (AOC) estimates area usage based on OpenCL code before

the full compilation. Estimated area depends on code, number of computation units,

size of SIMD processor and depth of loop unrolling. Comparison of estimated and

implemented FPGA resource utiliziations are given in Table 4.2. Multiplication size

does not change logic resource utilization, but small effect on memory utilization due

to pipelined parallel structure of Altera OpenCL implementation.

40

Table 4.2: Comparison of area utilizations (in chip’s resource percentage) of 1024 bit
Montgomery SOS algorithm implementations for different kernel attributes

Attribute Estimated (%) Implemented (%)
Logic Mem. Logic Mem.

None 42 70 48 36
RWS = 32 42 42 48 11
RWS = 32
SWI = 8

68 59 74 15

RWS = 32
CU = 2, SWI = 4

90 80 94 22

RWS = 32
SWI = 4
MBU

92 44 69 31

RWS = 32
CU = 2
MBU

58 57 64 22

RWS = 32
CU = 2, SWI = 2
MBU

69 64 80 37

RWS = 32
CU = 2, SWI = 4
Half MBU

82 44 91 21

RWS = 32
CU = 2, SWI = 2
1-lvl Karatsuba
MBU

70 68 87 42

RWS: Required Workgroup Size, CU: Number of Compute Units, SWI: Number of SIMD Work
Items, MBU: Multiplication block unrolled

We observe that compiler estimations do not exactly match actual implementation

results. The compiler seems to underestimate logic utilization but overestimate mem-

ory utilization in general. However, estimations may still be a good clue to foresee

a possible compilation failure later. Since the compiler attempts multiple times to fit

a design before giving up, estimations could save several hours of compilation. If

estimated logic or memory usage far exceeds 100%, it will probably not fit to chip

anyway.

4.3.2.2 Kernel Frequencies

Throughput is supposed to be affected by the kernel frequency. However, its effect

is negligible compared to the effect of architecture. This is because the frequency

41

values are found to be close to each other and around 175 MHz to 200 Mhz as given

in Figure 4.2 for unsigned char implementation and Figure 4.3 for unsigned int im-

plementation.

SWI = 4
MBU

CU = 2
MBU

CU = 2
SWI = 2

MBU

CU = 2
SWI = 4

Half of MBU

CU = 2
SWI = 2

1- lvl Karatsuba
MBU

8192 220,02 203,08 207,33 196,19

4096 226,03 179,17 187,93 196,15 175,34

2048 203,29 192,64 193,68 181,45 194,25

1024 221,77 193,53 177,97 220,60 202,14

512 230,57 195,38 205,93 214,08 199,60

256 238,15 186,98 220,07 196,34 211,90

150 MHz

160 MHz

170 MHz

180 MHz

190 MHz

200 MHz

210 MHz

220 MHz

230 MHz

240 MHz

250 MHz

8192 4096 2048 1024 512 256

Figure 4.2: Comparison of implemented (unsigned char) kernel frequencies for dif-
ferent kernel attributes and multiplication sizes

42

SWI = 4
MBU

CU = 2
MBU

CU = 2
SWI = 2

MBU

CU = 2
SWI = 4

Half of MBU

CU = 2
SWI = 2

1- lvl Karatsuba
MBU

8192 186,88 217,62 191,05 183,62

4096 184,02 206,52 193,68 188,64 172,86

2048 195,80 200,52 196,42 191,24 165,50

1024 188,71 199,19 192,38 195,08 180,31

512 187,96 209,73 194,17 199,56 174,82

256 182,61 209,07 206,86 191,38 177,74

150 MHz

160 MHz

170 MHz

180 MHz

190 MHz

200 MHz

210 MHz

220 MHz

230 MHz

240 MHz

250 MHz

8192 4096 2048 1024 512 256

Figure 4.3: Comparison of implemented (unsigned int) Kernel frequencies for differ-
ent kernel attributes and multiplication sizes

The above figures illustrate that the effect of multiplication size is smaller compared

to the effect of architecture. Moreover, there are big fluctuations due to random pro-

cesses of compiler during the compilation.

Kernel frequencies tend to be lower for the scenario that contains 1-level Karatsuba

multiplication. This is because of having a longer combinational path introduced by

Karatsuba method when multiplication is divided into three half size multiplications

and their results are XORed to obtain the final result.

Since unsigned int (32 bit) implementation has a larger primitive data size (meaning

a wider data bus in FPGA) than unsigned char (8 bit) implementation, unsigned int

implementations have lower frequencies in general.

4.3.2.3 Kernel Performances

The architecture dramatically affects performance. Initial scenarios and experiments

without loop unrolling have performed very poorly and therefore we do not include

such cases in the results presented thereafter. A comparison of performances for

43

different architectures is presented in Table 4.3 and visualized in Figure 4.4 and Fig-

ure 4.5 for unsigned char and unsigned int, respectively. Unfortunately, results of the

last scenario with size of 8192 using unsigned int and 1-level Karatsuba method is

missing since the compiler could not fit this design into hardware and failed compila-

tion.

Table 4.3: Comparison performances (in multiplications per second) for different
kernel attributes

Attribute Unsigned char Unsigned int
8192 4096 2048 1024 512 256 8192 4096 2048 1024 512 256

SWI = 4
MBU

54 150 334 969 2331 5155 318 840 2092 4082 8264 13699

CU = 2
MBU

20 59 191 515 1252 3268 217 558 1309 3413 8547 16667

CU = 2
SWI = 2
MBU

34 93 257 560 1748 4405 260 651 1751 4132 7937 16129

CU = 2
SWI = 4
Half MBU

48 131 291 954 2188 4425 193 524 1481 3268 6711 10989

CU = 2
SWI = 2
1-lvl Krsba
MBU

32 99 267 631 1082 4132 * 588 1508 3817 7692 14706

SWI: Number of SIMD Work Items, CU: Number of Compute Units, MBU: Multiplication block unrolled
* Compiler failure

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

8192 4096 2048 1024 512 256

P
e

rf
o

rm
an

ce
 R

at
io

 C
o

m
ap

re
d

 t
o

SW

I
=

4
 a

n
d

 M
B

U

Multiplication Size

CU = 2
MBU

CU = 2
SWI = 2
MBU

CU = 2
SWI = 4
½ MBU

CU = 2
SWI = 2
Ktsba
MBU

Figure 4.4: Comparison of normalized kernel performances for different kernel at-
tributes (unsigned char)

44

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

8192 4096 2048 1024 512 256

P
e

rf
o

rm
an

ce
 R

at
io

 C
o

m
ap

re
d

 t
o

SW

I
=

4
 a

n
d

 M
B

U

Multiplication Size

CU = 2
MBU

CU = 2
SWI = 2
MBU

CU = 2
SWI = 4
½ MBU

CU = 2
SWI = 2
Ktsba
MBU

Figure 4.5: Comparison of normalized kernel performances for different kernel at-
tributes (unsigned int)

Figure 4.6 and Figure 4.7 illustrates performance differences relative to first scenario

where number of computations units is 1, SIMD processor size is 4 and multiplication

block is fully unrolled. Zero level is the reference level, negative values indicate lower

number of multiplication per second for given scenario. Charts show that there is up to

50 percent difference for 8 bit unsigned char and up to 25 percent difference for 32 bit

unsigned int implementation. This actually implies there is a very good opportunity

for designer to optimize design depending of the problem.

Implemented algorithm has two identical and constant nested loops size of word

length in for each multiplication in the sequential school multiplication (line 2 and

line 5 in algorithm 6). Outer loop is executed in parallel on each kernel. How-

ever, internal loop cannot easily be parallelized because of having data dependencies.

Therefore, loop size (hence multiplication size) is inversely proportional to perfor-

mance. Additionally, when multiplication size is doubled, size of the result is also

doubled. Therefore, number of multiplications per second is observed to be inversely

proportional to the square of multiplication size.

Effect of multiplication size is observed to be exponential as expected and as depicted

45

in Figure 4.6 and Figure 4.7 for unsigned char and unsigned int, respectively. We note

that charts are in logarithmic scale.

SWI = 4
MBU

CU = 2
MBU

CU = 2
SWI = 2

MBU

CU = 2
SWI = 4

Half of MBU

CU = 2
SWI = 2

1lvl Karatsuba
MBU

8192 54 20 34 48

4096 150 59 93 131 99

2048 334 191 257 291 267

1024 969 515 560 954 631

512 2331 1252 1748 2188 1802

256 5155 3268 4405 4425 4132

10

100

1.000

10.000
M

u
lt

ip
lic

at
io

n
 p

e
r

se
co

n
d

8192

4096

2048

1024

512

256

Figure 4.6: Comparison of Kernel performances for different multiplication sizes
(unsigned char)

SWI = 4
MBU

CU = 2
MBU

CU = 2
SWI = 2

MBU

CU = 2
SWI = 4

Half of MBU

CU = 2
SWI = 2

1lvl Karatsuba
MBU

8192 318 217 260 193

4096 840 558 651 524 588

2048 2092 1309 1751 1481 1508

1024 4082 3413 4132 3268 3817

512 8264 8547 7937 6711 7692

256 13699 16667 16129 10989 14706

100

1.000

10.000

M
u

lt
ip

lic
at

io
n

s
p

e
r

se
co

n
d

8192

4096

2048

1024

512

256

Figure 4.7: Comparison of Kernel performances for different multiplication sizes
(unsigned int)

46

4.3.3 Primitive Sizes

Our kernels are constructed using both 8 bit unsigned char and 32 bit unsigned integer

primitive data stores. So that our Montgomery multiplier design can be scaled for

8× k bits (for unsigned char) or 32× k bits (for unsigned int), where k is an integer.

unsigned int and unsigned char implementations differ in (i) their basic multiplication

size and (ii) their work group/word counts and hence the size of multiplication loops.

The algorithms and data flows are exactly the same in both. This provides more

flexibility for 8 bit and 32 bit data processors and can further be extended to 64 bit

with some modifications in the code. Size of multiplication can be changed with a

simple modification in a C header file and 256, 512, 1024, 2048, 4096, 8192 or any

other multiples of 8 or 32 can be used as long as it fits into the FPGA. However,

the design should be re-compiled for each multiplication size since kernel attributes

and constant loop counters depend on multiplication size. Work group size is equal

to word count and depends on multiplication size as given in Equation 4.2 Table 4.4

lists work group size for different multiplication sizes and for unsigned char and

textitunsigned int.

Table 4.4: Multiplication size vs. work group sizes

Multiplication Size Unsigned char Unsigned int
256 32 8
512 64 16

1024 128 32
2048 256 64
4096 512 128
8192 1024 256

FPGA resource usage does not directly depend on workgroup size and multiplication

size due to pipelined structure of Altera OpenCL implementation. However, prim-

itive size has impact on FPGA resource usage because register sizes and multiplier

sizes (therefore size of computation unit) directly depend on the most basic storage

unit. Increasing basic data width increases logic and memory usage. More detailed

information on FPGA resource and memory usage is presented in Figure 4.8 and Fig-

ure 4.9i respectively. We note that the pattern within the same multiplication size is

repeated for other sizes as well.

47

SW
I = 4

M
B

U
C

U
 = 2

M
B

U

C
U

 = 2
SW

I = 2
M

B
U

C
U

 = 2
SW

I = 4
½

 M
B

U

C
U

 = 2
SW

I = 2
K

tsb
a

M
B

U

SW
I = 4

M
B

U
C

U
 = 2

M
B

U

C
U

 = 2
SW

I = 2
M

B
U

C
U

 = 2
SW

I = 4
½

 M
B

U

C
U

 = 2
SW

I = 2
K

tsb
a

M
B

U

SW
I = 4

M
B

U
C

U
 = 2

M
B

U

C
U

 = 2
SW

I = 2
M

B
U

C
U

 = 2
SW

I = 4
½

 M
B

U

C
U

 = 2
SW

I = 2
K

tsb
a

M
B

U

SW
I = 4

M
B

U
C

U
 = 2

M
B

U

C
U

 = 2
SW

I = 2
M

B
U

C
U

 = 2
SW

I = 4
½

 M
B

U

C
U

 = 2
SW

I = 2
K

tsb
a

M
B

U

SW
I = 4

M
B

U
C

U
 = 2

M
B

U

C
U

 = 2
SW

I = 2
M

B
U

C
U

 = 2
SW

I = 4
½

 M
B

U

C
U

 = 2
SW

I = 2
K

tsb
a

M
B

U

SW
I = 4

M
B

U
C

U
 = 2

M
B

U

C
U

 = 2
SW

I = 2
M

B
U

C
U

 = 2
SW

I = 4
½

 M
B

U

C
U

 = 2
SW

I = 2
K

tsb
a

M
B

U

8
1

9
2

4
0

9
6

2
0

4
8

1
0

2
4

5
1

2
2

5
6

8
 b

it (u
n

sign
ed

 ch
ar)

5
1

%
5

7
%

6
1

%
6

3
%

6
1

%
5

1
%

5
7

%
6

1
%

6
3

%
6

1
%

5
1

%
5

7
%

6
1

%
6

3
%

6
1

%
5

1
%

5
6

%
6

0
%

6
3

%
6

1
%

5
1

%
5

6
%

6
0

%
6

3
%

6
1

%
5

1
%

5
6

%
6

0
%

6
3

%
6

1
%

3
2

 b
it (u

n
sign

ed
 in

teger)
7

0
%

6
5

%
8

0
%

8
6

%
0

%
7

0
%

6
5

%
8

0
%

8
6

%
8

7
%

7
0

%
6

4
%

8
0

%
9

1
%

8
7

%
6

9
%

6
4

%
8

0
%

9
1

%
8

7
%

6
9

%
6

4
%

8
0

%
8

8
%

8
7

%
6

9
%

6
4

%
8

0
%

8
6

%
8

7
%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

8
 b

it (u
n

sign
ed

 ch
ar)

3
2 b

it (u
n

sign
ed

 in
teger)

Figure
4.8:L

ogic
resource

utilization
forthe

im
plem

ented
m

ultiplieron
FPG

A

48

SW
I =

 4
M

B
U

C
U

 =
 2

M
B

U

C
U

 =
 2

SW
I =

 2
M

B
U

C
U

 =
 2

SW
I =

 4
½

 M
B

U

C
U

 =
 2

SW
I =

 2
K

ts
b

a
M

B
U

SW
I =

 4
M

B
U

C
U

 =
 2

M
B

U

C
U

 =
 2

SW
I =

 2
M

B
U

C
U

 =
 2

SW
I =

 4
½

 M
B

U

C
U

 =
 2

SW
I =

 2
K

ts
b

a
M

B
U

SW
I =

 4
M

B
U

C
U

 =
 2

M
B

U

C
U

 =
 2

SW
I =

 2
M

B
U

C
U

 =
 2

SW
I =

 4
½

 M
B

U

C
U

 =
 2

SW
I =

 2
K

ts
b

a
M

B
U

SW
I =

 4
M

B
U

C
U

 =
 2

M
B

U

C
U

 =
 2

SW
I =

 2
M

B
U

C
U

 =
 2

SW
I =

 4
½

 M
B

U

C
U

 =
 2

SW
I =

 2
K

ts
b

a
M

B
U

SW
I =

 4
M

B
U

C
U

 =
 2

M
B

U

C
U

 =
 2

SW
I =

 2
M

B
U

C
U

 =
 2

SW
I =

 4
½

 M
B

U

C
U

 =
 2

SW
I =

 2
K

ts
b

a
M

B
U

SW
I =

 4
M

B
U

C
U

 =
 2

M
B

U

C
U

 =
 2

SW
I =

 2
M

B
U

C
U

 =
 2

SW
I =

 4
½

 M
B

U

C
U

 =
 2

SW
I =

 2
K

ts
b

a
M

B
U

8
1

9
2

4
0

9
6

2
0

4
8

1
0

24
5

1
2

2
5

6

8
 b

it
 (

u
n

si
gn

ed
 c

h
ar

)
1

4
%

2
4

%
2

4
%

2
3

%
2

3
%

1
2

%
1

9
%

2
1

%
2

1
%

2
0%

1
1

%
1

8
%

1
9

%
1

8
%

1
8

%
1

1
%

1
6

%
1

7
%

1
8

%
1

7
%

1
1

%
1

5
%

1
7

%
1

8
%

1
7

%
1

1
%

1
5

%
1

7
%

1
8

%
1

7
%

3
2

 b
it

 (
u

n
si

gn
ed

 in
te

ge
r)

4
6

%
3

2
%

4
8

%
2

2
%

0
%

3
1

%
3

0
%

3
7

%
2

2
%

4
2

%
3

1
%

2
3

%
3

7
%

2
1

%
4

2
%

3
1

%
2

2
%

3
7

%
2

1
%

4
2

%
3

1
%

2
2

%
3

7
%

2
1

%
4

2
%

3
1

%
2

2
%

3
7

%
2

1
%

4
2

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

8
 b

it
 (

u
n

si
gn

e
d

 c
h

ar
)

3
2

b
it

 (
u

n
si

gn
ed

 in
te

ge
r)

Fi
gu

re
4.

9:
M

em
or

y
ut

ili
za

tio
n

fo
rt

he
im

pl
em

en
te

d
m

ul
tip

lie
ro

n
FP

G
A

49

4.3.4 Offline Compilation

As was mentioned earlier, OpenCL compiles kernels during run time. On the other

hand, Altera OpenCL implementation uses pre-compiled kernels. Altera is currently

providing an offline compiler (AOC) in OpenCL SDK for this task. Altera OpenCL

SDK version 13.0 with service pack 1 is used in this thesis. In this version, AOC

runs on command line. Therefore, a simple C# application is coded in order to speed

up and make batch processing possible (see Figure 4.10). Batch processing is im-

portant for this thesis also due to quite long compilation times, which are given in

Figure 4.11, and Figure 4.12 for unsigned char and unsigned int, respectively. Com-

pilations are performed on a 64 bit Windows 7 workstation equipped with an 2.66

GHz dual 6 core Intel Xeon X5650 (24 threads with hyper-threading) with 48 GB of

RAM. Compilations take even longer time when resource usage gets closer to 100%.

Failed compilations took around 9-10 hours because the compiler tries to fit the design

again and again before eventually giving it up.

Figure 4.10: C# application for compilation

50

2 h

3 h

4 h

5 h

SWI = 4
MBU

CU = 2
MBU

CU = 2
SWI = 2

MBU

CU = 2
SWI = 4

Half of MBU

CU = 2
SWI = 2

1- lvl Karatsuba
MBU

8192 4096 2048 1024 512 256

Figure 4.11: Compilation times for unsigned char implementations

4 h

5 h

6 h

7 h

8 h

SWI = 4
MBU

CU = 2
MBU

CU = 2
SWI = 2

MBU

CU = 2
SWI = 4

Half of MBU

CU = 2
SWI = 2

1- lvl Karatsuba
MBU

8192 4096 2048 1024 512 256

Figure 4.12: Compilation times for unsigned int implementations

51

4.4 Functional Testing

4.4.1 Reference Results

A reference application that performs Galois Field multiplication of large numbers is

required to verify the results. The first choice would be to use Matlab, well known

numerical computation environment. However, by default, Matlab supports field sizes

of up to 216 only if gf(x,m) function is to be used1. Unfortunately this is far too

small for our required range of computations (lowest required field is 2256 and largest

is 28192)

Although there are some online tools that are capable of doing arithmetic operations

in Galois Field, they are either unreliable or too slow for large numbers. Moreover,

they are not suitable to be used in an automated tool for fast verification.

Therefore, we implemented a simple application in C#, which uses BigInteger class2,

to do computations using large numbers. The application uses several methods (sim-

ple school multiplication, Karatsuba, Montgomery, RNS) for both regular integer and

Galois Field arithmetic. Moreover, our application performs computations with the

same data flow as both unsigned int and unsigned char OpenCL implementations. In

this way, intermediate values of calculations can be debugged even for large numbers

up to 8192 bits. However, this application is not optimized neither for performance

nor for user experience. A screenshot from this multiplier application can be seen in

Figure 4.13.
1 For current release, R2014a: http://www.mathworks.com/help/comm/ref/gf.html
2 Introduced in .NET Framework 4,

http://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.100).aspx

52

Figure 4.13: A screenshot of multiplier application written in C# for functional testing

OpenCL supports printf() function located in standard C libraries. It provides

great benefits during coding on CPU and GPU. FPGA designs must also be recom-

piled even for a small change but compliation is too slow. Moreover, printf()

consumes too much logic resources on FPGA and, needless to say, has very poor per-

formance. Therefore, they are removed after debugging and not used while obtaining

our test results on performance or resource usage.

4.4.2 Benchmarks and Profiling

Following our functional verification, all debug interfaces and auxiliary intermediate

values are removed and final working codes are compiled. Performance results are

53

obtained from both host application and OpenCL device by running kernels for 1000

times and getting the minimum of these results.

OpenCL device can report profiling information by clGetEventProfilingInfo3.

Profiling information contains times in nanoseconds when a command is queued, sub-

mitted, started and ended [37]. Subtracting start time of command from end time of

command results in total execution time in nanoseconds.

Results are also collected using Windows API QueryPerformanceCounter4.

This approach provides more detailed performance results such as memory transfers,

enqueuing tasks, initializing OpenCL system, programming FPGA, etc.

Profiler and performance counter results are shown in Figure 4.14. Profiler results

are a bit smaller than Windows API results as can be seen and verified in the image.

This is because of having the overhead of profiler information collection from FPGA

included in Windows API method. However, the difference is negligibly small.
3 Details: http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetEventProfilingInfo.html
4 Provides current value of time stamp from high resolution (1µs) performance counter,

http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx

54

Figure 4.14: Benchmark results (in microseconds) obtained by host application for
FPGA multiplier

Windows API also showed us that programming the FPGA via PCIe (CvP) takes

around 3-4 seconds. For a typical application, this would only be required once per

55

total system shutdown if FPGA is not to be loaded from flash.

Similar benchmarking and profiling methods are used for CPU/GPU comparisons of

the same code presented in the next chapter. However, memory transfers are not

compared because it highly depends on system configuration, which varies a lot. A

screenshot from a sample run for CPU/GPU testing is given in Figure 4.15

56

Figure 4.15: Benchmark results (in microseconds) obtained by host application for
CPU/GPU multiplier

57

58

CHAPTER 5

COMPARISON OF OPENCL FPGA MONTGOMERY

MULTIPLIER WITH GPU AND CPU PLATFORMS

In this chapter, the Montgomery multiplier code written in OpenCL and evaluated

on FPGA in the previous chapter is mapped and run on various GPU and CPU plat-

forms. Results are compared and comments are made about the pros and cons of

each platform. The OpenCL FPGA Montgomery Multiplier built in this thesis is also

compared with implementations reported in the literature.

5.1 Comparison with GPU

One of the most important advantages of OpenCL over nVidia CUDA (a popular pro-

prietary GPU programming language) is that OpenCL is portable. The same code can

run on various platforms without any modification. So GPUs can be used as compu-

tation platform as well as FPGAs to offload CPU. Parallel computing capabilities and

recent software improvements such as integrated development environments (IDE)

made by major GPU manufacturers turned GPUs into very attractive platforms for

general purpose computations also.

Modern graphics cards have very high speed PCIe interfaces to the host PC. They

also have large amounts of on board DDR memory to provide high computing power.

Sometimes, they even require additional power connections due to high power con-

sumption.

We collected benchmark results by running the fastest OpenCL code for FPGA on

59

various GPU platforms. Table 5.1 lists the GPU platforms used in our tests and their

specifications.

Table 5.1: Specifications of GPUs tested

GPU Cores
Core Freq

(MHz)
Memory BW

(GB/sec)
Max Power

(Watts)
nVidia Quadro FX 380 16* 450 22.4 34
nVidia Quadro 410 192* 706 14 38
nVidia GeForce GTX 780 2304* 863 288.4 250
nVidia GeForce GT 630 192* 875 28.5 50
nVidia GeForce GT435M 96* 1300 25.6 50

* CUDA Cores
Sources:
http://www.nvidia.com/object/product_quadro_fx_380_us.html
http://www.nvidia.com/object/quadro-410-graphics-card.html#pdpContent=2
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gt-630-oem/specifications
http://www.geforce.com/hardware/notebook-gpus/geforce-gt-435m

The ratio of GPU performance results (in number of multiplications per second) to

FPGA performance results are presented in Figure 5.1, where workgoup size is also

reported for each column marked as a thick yellow line. GPU to FPGA ratio is ob-

served to be higher (GPU is better) when workgroup size is large. In other words,

GPU performs better when workload is highly parallelized.

Unfortunately, nVidia Quadro FX380 failed to compute the multiplication result when

size 8192 is implemented with unsigned char primitive data. This is probably because

of having the the required workgroup size, which is 1024, being far more than the

number of CUDA cores available, which is just 16 as can be seen in Table 5.1.

60

1024

512

256

128
64 32

256

128
64 32 16 8

-100%

-50%

0%

50%

100%

150%

200%

8192 4096 2048 1024 512 256 8192 4096 2048 1024 512 256

Unsigned char Unsigned Int

M
u

lt
ip

lic
at

io
n

 p
e

r
Se

co
n

d
 R

at
io

G
P

U
 /

 F
P

G
A

Multiplication Size

Altera FPGA (Ref) nVidia GeForce GT435M nVidia Quadro 410

nVidia Quadro FX380 nVidia GeForce GTX780 nVidia GeForce GT 630

Workgroup Size

Figure 5.1: Performance comparison of FPGA implementation with GPUs

Actually, results for GPU could further be enhanced by optimizing the code for each

platform depending on the number of cores and available SIMD capabilities. How-

ever, that would require too much effort and is out of the scope of this thesis. Actu-

ally, this is another advantage of using OpenCL on FPGA, which implements custom

hardware so that hardware is always optimized for the developed code.

Having GPU as the compute unit has some disadvantages over FPGA. The architec-

ture of an FPGA is fully customizable, meaning that different tasks can be imple-

mented differently. On the other hand, the architecture of GPU is fixed. Even worse,

structure of hardware differs from brand to brand, or even between models of the

same brand. Therefore, it is hard to optimize a single code for all GPUs. On the other

hand, all FPGA implementations can be optimized for a given specific code.

Another disadvantage of GPUs is the supply of a single chip. Major manufacturers do

not sale small amounts of chips to small companies. Therefore, it is almost impossible

to create custom boards with GPUs. Although there are integrated CPU/GPU (such

as Intel i7) solutions, such GPUs usually have poor performance compared to other

standalone GPUs. Moreover, CPU/GPU being located on the same (or very close)

silicon area leads to single hot point in the design that would cause cooling problems.

61

Therefore, it is not a good co-processor solution for custom-made systems.

Finally, GPUs cannot be customized for a special task unlike FPGAs. FPGA can

perform fully custom I/O operations unlike GPU. Those operations could be simple

I/O, peripheral communication such as sensors, simple storage, other I2C/SPI/UART

slave devices or even complex I/O operations such as networking, PCIe, SATA, etc.

For example, an FPGA can be used as a SATA controller located on the host comput-

ers PCIe slot and perform encryption/decryption on the fly.

Moreover, modern high-end GPUs usually consume quite high power compared to

FPGAs. Some high end graphics cards even require external power supply. Maxi-

mum power consumption for the GPUs tested in this thesis work are also given in

Table 5.1.

5.2 Comparison with CPU

Naturally, CPUs are perfect compute units as the name central processing unit im-

plies. The CPU is usually responsible for performing the main task and side-jobs

should be taken care of by co-processors. Let us imagine a system performing a real-

time image processing task while storing encrypted data to SATA device or send-

ing/receiving data over a custom network with CRC-checksum, etc. In such a system,

main task would be image processing, which could be performed by the CPU while

the other task of encrypting and storing data on SATA device could be performed

by FPGA. Actually, image processing could also be performed on FPGA but this is

a topic, which is out of the scope of this thesis. Therefore, comparing a processor

(CPU) with a co-processor (FPGA) is not so fair.

Another aspect is that modern CPUs are usually more power hungry due to having

multiple cores, high clock frequencies, etc. The specifications of the CPUs compared

in this thesis are given in Table 5.2.

62

Table 5.2: Specifications of CPUs tested

CPU Cores
Core Freq

(MHz)
Memory BW

(GB/sec)
Max Power

(Watts)
Intel i7 4770K 8* 3900 25.6 84
Intel Xeon X5650 12* 2666 32 95
Intel Xeon E5-2650 16* 2000 51.2 95
Intel i7 2620M 4* 2700 21.3 35

* including virtual hyper-threading cores
Sources:
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/64590/
http://ark.intel.com/products/52231/Intel-Core-i7-2620M-Processor-4M-Cache-up-to-3_40-GHz

Due to the portability of OpenCL code, it can also run on a variety of CPUs without

any modification. So we performed benchmarks of our Montgomery multiplier code

on the CPUs listed in Table 5.2. Results are presented in Figure 5.2. Actually, these

results could further be enhanced also by optimizing the code for each CPU platform

depending on the number of cores and available SIMD capabilities similar to the ar-

gument made GPU comparison section. However, that would also require too much

effort and is out of the scope of this thesis. As was mentioned before, this is actu-

ally an advantage of OpenCL on FPGA over CPU and GPU counterparts. Because

OpenCL implements a custom hardware on FPGA. In other words, FPGA hardware is

always optimized for the code and there is no need to optimize the code for hardware.

63

1/1024 1/512 1/256 1/128
1/64

1/32

1/256 1/128
1/64

1/32

1/16

1/8

-200%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

8192 4096 2048 1024 512 256 8192 4096 2048 1024 512 256

Unsigned char Unsigned Int

M
u

lt
ip

lic
at

io
n

 p
e

r
Se

co
n

d
 R

at
io

C
P

U
 /

 F
P

G
A

Multiplication Size

Altera FPGA (Ref) Intel i7 4770K Intel Xeon X5650

Intel Xeon E5-2650 Intel i7 2620M 1 / Workgroup Size

Figure 5.2: Performance comparison of FPGA implementation with CPUs

1/WorkgroupSizes are reported for each column and marked as a thick yellow line

in Figure 5.2. It is observed that the smaller the number of workgroups is the better

the performance is for CPUs. This is actually expected due to small number of cores.

5.3 Comparison with other Implementations in the Literature

In [33], the authors used Cell processors and 6 Synergistic Processor Units (Sony

Play Station 3 allows 6 of 8 SPUs to be used for general purpose computations) to

perform 256 bit multiplication. The authors compared their results with a software

solution by using IBM multi-precision math (MPM) library running on Intel Core 2

Quad Q9300 processor. Results are given in Table 5.3

Soft processor designs such as the one in [4] have a similar approach along with

this thesis. The design presented in [4] is implemented using multi MicroBlaze soft

processor cores to perform parallel computing. Their results for 1024 bits operand

size shows that computation takes 19334 cycles at 250 TTU (transfer time unit -

transfer latency). That implementation is on Xilinx Virtex 5 while the clock speed

64

is 100MHz, which means 193.34 µsec per multiplication hence 5498 multiplications

per second. Results of [4] are included in Table 5.3

Fastest solutions are from [38]. The authors in [38] use multiple Application Spe-

cific Instruction Processors (ASIP) together with multiple dedicated multiplier units

(MMUs) running at 250 MHz. Their results are also included in Table 5.3.

Table 5.3: Comparison of performance of multiplier implementations in the literature.

Reference Computation Unit Operand Size Operations / sec
This thesis OpenCL on Altera FPGA 256 16667
This thesis OpenCL on Altera FPGA 1024 4132

[33] Play Station 31 256 27474
[34] 2.6 GHz AMD Opreton 252 256 19048
[30] nVidia GeForce 8800 GTS 224 3138
[30] nVidia GeForce 285 GTX 224 9827
[4] 4x MicroBlaze2 1024 5498
[4] 8x MicroBlaze2 1024 7435

[38] 16x ASIP 16x 32bit MMU3 1024 65359
[38] 8x ASIP 8x 64bit MMU3 1024 70423
[38] 4x ASIP 4x 128bit MMU3 1024 72464
[38] 4x ASIP 16x 32bit Multiplier4 1024 16155

1 3.2 GHz Cell and 6x SPUs
2 Softprocessor in Xilinx FPGA running at 100MHz
3 ASIP: Application Specific Instruction Processor running at 250 MHz, MMU: Dedicated Montgomery
multiplication Unit
4 Utilizes pSHS method described in [4]

Implemented design is not the best nor the worst among implementations in the liter-

ature. However, due to flexible structure of FPGA and easy to use interface, it is very

promising for many applications. Design is highly customizable and PCIe interface

to host does not require much extra effort to implement high level applications.

65

66

CHAPTER 6

CONCLUSION

Electronic devices are very important in today’s modern life. Especially mobile de-

vices are already indispensable for everyone. Battery consumption, security, respon-

siveness, reliability, etc. are all very important topics for handheld devices. Not only

handheld devices but other stationary electronic equipment are also required to be

efficient in terms of power, security, resistance to errors, speed, responsiveness, etc.

Speed, security and reliability are fatal issues both in military and civil applications.

The most common error correction techniques and many cryptographic algorithms

have mathematical bases on Galois field. Hence arithmetic operations in Galois field

should be performed very efficiently.

One of the most time consuming operations in Galois field is the modular exponentia-

tion, which is basically repeated modular multiplication. Montgomery multiplication

is a clever and fast technique that is very suitable for repeated multiplications and

hence for the computation of modular exponentiation.

There is a general trend of performing parallel processing in modern computing de-

vices. Major electronics manufacturers are now producing devices with many-core

processing units. Even mobile phones now have multi-core processors. Therefore

parallel programming stays to be an important topic.

Gate-level design of an FPGA project provides a highly parallel solution. However,

such a design may have been very complicated and may require additional implemen-

tations such as a custom interface to host device.

67

In order to eliminate design complexity, a designer could chose software solutions

to run on CPU or GPU. Unfortunately, using CPU for such task may not be desired

due to the high workload required. Moreover, using GPU may limit optimization

possibilities since GPU hardware cannot be modified.

On the other hand, OpenCL offers a parallel, heterogeneous and portable program-

ming framework for software developers. Its parallel structure is in favor of many-

core trend. Being a heterogeneous and portable framework makes OpenCL a very

attractive environment for developers. Because a single piece of code can run on a

variety of hardware even on customized hardware such as FPGA.

A designer can benefit from many aspects when OpenCL is used together with FPGA

programming. Parallel, portable and fully customized designs may be created easily.

Multiple tasks can be performed on a single custom hardware. Better yet, the same

code would run on a different platform when custom hardware does not exist.

In the present thesis work, an OpenCL implementation of Montgomery multiplication

is done and evaluated on FPGA. To summarize our findings, performance figures

are in favor of GPU when workgroup size is high, CPU when workgroup size is

small whereas FPGA is in the middle. Generated hardware on FPGA can easily be

optimized to fit the specific problem requirements.

As a consequence, recently supported OpenCL on FPGA seems to be a very promis-

ing platform for systems developers. Especially those projects that require FPGAs

for specialized tasks would benefit greatly by utilizing OpenCL on FPGA.

OpenCL code can be further optimized for performance. Since memory bandwidth is

the most common bottleneck of parallel architectures, optimization possibilities can

be investigated for memory transfers. Additionally, compilation process might be im-

proved by manually performing intermediate steps of Altera offline compiler. AOC

first generates VHDL code of the design using OpenCL code, then compiles it to gen-

erate programming file. AOC also creates some additional interfaces (i.e. temperature

monitor) which are not mandatory for Montgomery multiplication. User can further

decrease logic utilization by removing potentially unnecessary components. How-

ever, this leads manual compilation and requires too much effort which contradicts

68

with ease of programming advantage of OpenCL on FPGA.

69

70

REFERENCES

[1] A. Munshi, “The opencl specification,” November 2012. https://www.
khronos.org/registry/cl/specs/opencl-1.2.pdf accessed on
20 November 2013.

[2] Acceleware Corp., OpenCL on FPGAs for GPU Programmers, June
2014. http://design.altera.com/openclforward?elq=
fb69b4f2a9dd4b77b9ed1253df464bc5 accessed on 12 July 2014.

[3] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity analysis and efficient
implementations of bit parallel finite field multipliers based on karatsuba-ofman
algorithm on fpgas,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, vol. 18, no. 7, pp. 1057–1066, 2010.

[4] Z. Chen and P. Schaumont, “A parallel implementation of montgomery multipli-
cation on multicore systems: Algorithm, analysis, and prototype,” Computers,
IEEE Transactions on, vol. 60, no. 12, pp. 1692–1703, 2011.

[5] V. Guruswami, “List decoding of error-correcting codes,” 2001. http://
hdl.handle.net/1721.1/8700 accessed on 15 December 2013.

[6] nVidia Corp., CUDA C Programming Guide, July 2013. http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf ac-
cessed on 15 December 2013.

[7] Altera Corp., “Transceiver protocols,” 2014. http://www.altera.
com/technology/high_speed/protocols/all-protocols/
hs-all-protocols.html accessed on 12 July 2014.

[8] Xilinx Corp., “Vivado design suite user guide,” May 2014. http:
//www.xilinx.com/support/documentation/sw_manuals/
xilinx2014_1/ accessed on 12 July 2014.

[9] H. Patil and S. Szygenda, Security for Wireless Sensor Networks using Identity-
Based Cryptography. Taylor & Francis, 2012.

[10] E. W. Weisstein, “Finite field..” http://mathworld.wolfram.com/FiniteField.html
accessed on 20 December 2013.

[11] I. Karonen, “Galois fields in cryptography,” May 2012.

71

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://design.altera.com/openclforward?elq=fb69b4f2a9dd4b77b9ed1253df464bc5
http://design.altera.com/openclforward?elq=fb69b4f2a9dd4b77b9ed1253df464bc5
http://hdl.handle.net/1721.1/8700
http://hdl.handle.net/1721.1/8700
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.altera.com/technology/high_speed/protocols/all-protocols/hs-all-protocols.html
http://www.altera.com/technology/high_speed/protocols/all-protocols/hs-all-protocols.html
http://www.altera.com/technology/high_speed/protocols/all-protocols/hs-all-protocols.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/

[12] NIST, Recommended Elliptic Curves for Federal Government Use, July 1999.
http://csrc.nist.gov/groups/ST/toolkit/documents/
dss/NISTReCur.pdf accessed on 11 November 2013.

[13] Altera Corp., Stratix V Device Overview, May 2013. http://www.altera.
com/literature/hb/stratix-v/stx5_51001.pdf accessed on 20
November 2013.

[14] Xilinx Inc., 7 Series FPGAs Overview, July 2013. http://www.xilinx.
com/support/documentation/data_sheets/ds180_7Series_
Overview.pdf accessed on 20 November 2013.

[15] Altera Corp., Configuration via Protocol (CvP) Implementation in Altera
FPGAs User Guide, November 2013. http://www.altera.com/
literature/ug/ug_cvp.pdf accessed on 20 November 2013.

[16] Xilinx Inc., Zynq-7000 All Programmable SoC Overview, September 2013.
http://www.xilinx.com/support/documentation/data_
sheets/ds190-Zynq-7000-Overview.pdf accessed on 20 November
2013.

[17] Altera Corp., Altera’s User-Customizable ARM-Based SoC, 2013. http://
www.altera.com/literature/br/br-soc-fpga.pdf accessed on
20 November 2013.

[18] D. Chen and D. Singh, “Invited paper: Using opencl to evaluate the efficiency
of cpus, gpus and fpgas for information filtering,” in Field Programmable Logic
and Applications (FPL), 2012 22nd International Conference on, pp. 5–12,
2012.

[19] O. Rosenberg, OpenCL Overview, November 2011. http://www.
khronos.org/assets/uploads/developers/library/
overview/opencl-overview.pdf accessed on 19 November 2013.

[20] AMD Accelerated Parallel Processing OpenCL, July 2012. http:
//developer.amd.com/wordpress/media/2012/10/AMD_
Accelerated_Parallel_Processing_OpenCL_Programming_
Guide4.pdf accessed on 20 November 2013.

[21] Altera Corp., Altera SDK for OpenCL Programming Guide, November
2013. http://www.altera.com/literature/hb/opencl-sdk/
aocl_programming_guide.pdf accessed on 20 November 2013.

[22] Altera Corp., Altera SDK for OpenCL Optimization Guide, November
2013. http://www.altera.com/literature/hb/opencl-sdk/
aocl_optimization_guide.pdf accessed on 28 November 2013.

72

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.altera.com/literature/ug/ug_cvp.pdf
http://www.altera.com/literature/ug/ug_cvp.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.altera.com/literature/br/br-soc-fpga.pdf
http://www.altera.com/literature/br/br-soc-fpga.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://www.khronos.org/assets/uploads/developers/library/overview/opencl-overview.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide4.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide4.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide4.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide4.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_programming_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_programming_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf

[23] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by au-
tomatic computers,” Proceedings of the USSR Academy of Sciences, vol. 145,
pp. 292–293, 1962. Translation in Physics-Doklady, 7 (1963), pp. 595–596.

[24] K. Jankowski, P. Laurent, and A. O’Mahony, “Intel polynomial multiplication
instruction and its usage for elliptic curve cryptography,” white paper, Intel
Corp., April 2012.

[25] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics
of Computation, vol. 44, pp. 519–521, 1985.

[26] J. Henry S. Warren, Montgomery Multiplication, July 2012. http://
www.hackersdelight.org/MontgomeryMultiplication.pdf
accessed on 4 September 2014.

[27] C. Koç, T. Acar, and J. Kaliski, B.S., “Analyzing and comparing montgomery
multiplication algorithms,” Micro, IEEE, vol. 16, no. 3, pp. 26–33, 1996.

[28] K. Leboeuf, R. Muscedere, and M. Ahmadi, “A gpu implementation of the
montgomery multiplication algorithm for elliptic curve cryptography,” in Cir-
cuits and Systems (ISCAS), 2013 IEEE International Symposium on, pp. 2593–
2596, 2013.

[29] B. Phillips, “Modular multiplication in the montgomery residue number sys-
tem,” in Signals, Systems and Computers, 2001. Conference Record of the
Thirty-Fifth Asilomar Conference on, vol. 2, pp. 1637–1640 vol.2, 2001.

[30] S. Antão, J.-C. Bajard, and L. Sousa, “Rns-based elliptic curve point multipli-
cation for massive parallel architectures,” The Computer Journal, vol. 55, no. 5,
pp. 629–647, 2012.

[31] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Second
Edition. Oxford University Press, Incorporated, 2010.

[32] J. Bajard, L. Imbert, and G. Jullien, “Parallel montgomery multiplication
in gf(2k) using trinomial residue arithmetic,” in Computer Arithmetic, 2005.
ARITH-17 2005. 17th IEEE Symposium on, pp. 164–171, 2005.

[33] N. Costigan and P. Schwabe, “Fast elliptic-curve cryptography on the cell broad-
band engine,” 2009. https://eprint.iacr.org/2009/016.pdf.

[34] P. Longa and C. Gebotys, “Analysis of efficient techniques for fast elliptic curve
cryptography on x86-64 based processors,” 2010. http://eprint.iacr.
org/2010/335.pdf.

[35] E. Bach and J. Shallit, Algorithmic Number Theory, Volume 1 Efficient Algo-
rithms. MIT Press, 1996.

73

http://www.hackersdelight.org/MontgomeryMultiplication.pdf
http://www.hackersdelight.org/MontgomeryMultiplication.pdf
https://eprint.iacr.org/2009/016.pdf
http://eprint.iacr.org/2010/335.pdf
http://eprint.iacr.org/2010/335.pdf

[36] G. Seroussi, “Table of low-weight binary irreducible polynomials.” http://
www.hpl.hp.com/techreports/98/HPL-98-135.pdf accessed on
20 November 2013.

[37] K. Group, “Opencl 1.0 reference pages.” http://www.khronos.org/
registry/cl/sdk/1.0/docs/man/xhtml/ accessed on 10 May 2014.

[38] J. Han, S. Wang, W. Huang, Z. Yu, and X. Zeng, “Parallelization of radix-2
montgomery multiplication on multicore platform,” Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, vol. 21, pp. 2325–2330, Dec 2013.

74

http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf
http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/

APPENDIX A

CONSTANT IRREDUCIBLE POLYNOMIALS (N) USED IN

REDUCTION

A.1 Multiplication size = 256

N = 2255 + 282 + 1

57 896 044 618 658 097 711 785 492 504 343 953 926 634 992 332 820 286 855 432

070 462 473 263 644 673

A.2 Multiplication size = 512

N = 2511 + 2216 + 1

6 703 903 964 971 298 549 787 012 499 102 923 063 739 682 910 296 196 688 861

780 721 860 882 015 036 773 488 400 937 254 395 743 382 402 202 627 011 270

709 097 309 260 301 068 685 522 328 078 814 019 585

A.3 Multiplication size = 1024

N = 21014 + 2385 + 1

175 555 970 201 398 037 864 189 960 037 990 696 642 380 564 349 834 626 243

584 063 630 598 316 216 309 534 309 285 622 385 163 609 395 625 111 210 811

907 575 838 661 883 607 828 732 903 171 318 983 861 449 587 663 958 422 720

200 465 138 886 329 341 967 592 540 794 109 353 938 004 211 206 812 952 671

75

567 167 909 202 905 862 495 379 142 974 533 959 301 296 171 310 894 306 367

785 222 390 921 629 270 017

A.4 Multiplication size = 2048

N = 22044 + 245 + 1

2 019 812 879 456 937 956 294 679 793 041 871 997 527 756 416 857 217 752 008

146 589 220 290 946 179 243 180 824 825 088 220 182 091 480 544 872 557 618

626 218 382 472 446 905 682 568 443 009 524 153 017 695 039 429 835 456 312

255 734 387 359 399 353 256 674 753 602 399 004 223 017 299 513 665 163 734

760 114 880 896 154 760 654 411 352 865 752 269 065 180 473 493 221 316 613

037 972 024 945 245 649 095 119 645 836 854 271 401 292 810 924 160 285 593

428 511 002 207 895 128 629 862 853 708 189 137 044 278 769 634 391 162 054

011 069 795 371 475 232 403 866 084 849 896 947 018 852 869 025 231 100 827

080 451 951 695 355 294 426 263 107 822 318 857 933 207 716 854 908 911 291

043 620 940 374 829 272 062 414 888 470 322 899 339 833 471 475 133 464 576

850 290 332 404 912 809 509 262 097 240 885 875 596 853 249

A.5 Multiplication size = 4096

N = 24074 + 2595 + 1

249 001 713 135 994 078 324 258 973 769 336 791 653 624 593 984 456 963 630

731 936 284 054 257 386 102 070 057 112 410 529 851 331 315 252 806 357 011

619 290 825 742 110 773 514 177 146 729 490 244 714 087 950 219 387 184 073

924 622 621 915 372 463 159 159 285 562 041 248 308 712 572 173 795 556 476

770 799 716 635 786 196 379 064 752 556 969 119 001 405 545 246 300 725 605

276 696 199 842 357 165 576 621 756 309 719 511 934 744 573 981 807 294 116

163 153 518 064 695 231 748 348 878 966 107 136 014 931 774 107 864 908 109

115 084 543 200 800 773 219 642 141 922 592 338 106 110 542 449 831 122 183

844 814 622 165 779 366 892 598 549 922 430 646 665 804 884 021 175 091 262

725 918 152 793 172 648 858 267 268 464 110 334 791 362 576 799 033 366 767

76

913 234 287 738 394 835 554 310 050 629 538 176 582 960 372 878 672 102 271

464 067 872 008 175 870 802 073 980 053 489 255 356 360 033 313 993 854 047

459 410 544 652 920 159 439 890 452 712 804 027 560 927 190 574 517 245 957

973 813 918 006 847 923 065 860 541 842 123 096 676 893 184 555 733 152 140

217 670 087 114 625 756 516 789 175 507 472 277 193 775 986 597 009 391 533

956 674 577 573 048 037 271 457 445 757 780 641 831 115 799 279 363 404 727

677 377 921 750 150 407 896 216 022 467 606 521 077 505 532 139 116 251 532

376 542 067 479 132 673 930 995 274 013 191 418 103 802 172 531 046 688 599

188 106 172 828 539 172 542 417 395 955 679 641 069 276 675 035 577 427 719

760 646 904 705 383 135 382 438 885 188 649 095 827 893 547 903 718 886 684

714 053 070 790 428 255 848 605 753 637 462 595 694 747 859 069 574 208 030

396 337 944 644 323 620 832 204 029 953

A.6 Multiplication size = 8192

N = 28145 + 2728 + 1

7 750 231 643 082 485 742 460 962 148 454 817 554 808 927 312 110 943 521 132

588 686 766 392 043 019 772 694 494 408 217 204 309 517 171 319 696 133 174

838 856 731 062 862 885 892 624 909 301 425 458 031 069 687 381 622 956 884

467 176 122 834 274 907 839 071 721 949 250 045 030 032 452 235 549 622 262

738 873 889 659 188 068 186 906 408 048 285 754 242 101 646 693 186 200 819

786 797 249 106 810 745 561 450 215 960 487 324 579 098 393 772 117 674 521

719 451 059 408 010 322 072 818 487 646 150 460 643 526 173 893 871 456 459

336 467 096 064 105 965 175 632 321 304 421 569 426 101 101 024 972 404 941

849 271 455 164 557 969 029 069 763 548 687 313 664 936 669 722 349 353 380

347 509 379 274 327 180 874 639 266 454 278 903 109 547 858 443 717 982 509

125 882 373 246 703 317 594 463 947 060 856 137 280 577 318 302 776 076 201

372 955 744 039 830 403 165 544 427 894 116 559 019 184 337 406 011 676 040

474 726 562 517 756 345 272 319 925 653 131 961 817 531 748 659 680 100 423

129 114 764 953 424 044 104 277 579 741 289 456 682 951 879 218 919 920 488

585 381 331 309 214 444 452 537 858 950 923 824 717 507 365 751 424 240 450

454 464 557 080 064 752 460 367 291 468 502 803 528 018 669 713 395 318 303

77

862 232 642 552 390 611 196 129 485 964 323 450 407 157 009 784 534 357 632

506 245 996 430 233 868 608 126 793 832 317 541 519 210 503 694 101 223 599

686 223 867 362 936 080 799 531 050 677 026 357 175 506 780 653 063 824 682

197 874 805 170 801 223 792 880 670 303 071 706 935 826 452 922 185 610 324

316 199 882 647 690 626 341 080 645 126 744 589 039 297 131 932 267 978 840

335 840 271 514 845 737 820 372 691 231 603 763 241 349 211 473 334 493 434

482 502 962 657 532 554 599 710 677 319 354 302 316 738 352 364 582 536 366

983 648 835 613 549 161 320 989 624 845 809 512 134 300 175 060 656 217 587

906 090 375 419 647 994 013 312 512 782 586 476 711 678 445 504 661 352 524

802 974 335 248 779 681 927 748 467 435 722 289 631 107 669 594 160 983 842

446 253 582 917 985 535 869 077 770 656 963 150 932 595 696 595 792 796 153

241 565 437 076 315 977 420 077 011 593 906 652 754 206 412 661 295 774 373

329 547 648 077 892 881 408 714 615 329 566 414 609 384 160 827 121 065 690

959 320 505 282 032 818 012 740 186 387 849 657 380 059 165 005 992 797 170

262 732 030 783 020 756 432 483 041 706 595 522 434 205 882 342 418 811 081

658 607 682 216 871 640 801 661 815 411 812 163 077 511 952 888 724 044 727

614 717 790 158 721 060 793 630 594 109 978 698 015 944 177 872 722 550 666

711 996 224 744 690 034 205 762 907 967 870 457 105 904 857 939 497 702 187

205 356 840 262 058 198 154 837 004 341 125 490 953 072 419 173 118 405 504

899 241 392 580 378 666 042 303 156 202 166 970 644 754 683 324 172 390 077

362 876 638 553 402 777 138 479 701 767 206 577 506 914 403 828 273 705 441

308 731 404 289 942 287 447 227 108 332 789 699 488 908 193 990 316 874 267

927 954 122 180 500 166 556 335 696 655 244 218 656 989 840 071 948 206 538

272 466 283 209 009 709 728 804 319 138 320 958 804 949 898 176 916 206 200

138 621 555 322 735 185 204 019 655 349 631 313 609 923 028 442 787 489 582

025 199 663 919 653 337 825 957 758 500 524 441 788 335 083 079 315 305 932

938 037 586 087 289 110 553 955 948 231 988 842 656 274 011 986 264 588 289

78

APPENDIX B

OPENCL CODE

79

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Background
	Mathematical Background
	Galois Field
	Galois Field Arithmetic
	Addition in GF(2m)
	Multiplication in GF(2m)

	Development Environment and Tools
	FPGA
	FPGA as Computation Unit
	CPUs in the FPGA
	FPGA as an OpenCL Device

	OpenCL
	OpenCL on FPGA vs. GPU
	Development Environment
	Host Application Development
	Kernel Development

	Related Work
	Multiplication Algorithms
	Karatsuba Multiplication
	Karatsuba Multiplication in GF(2m)
	Montgomery Multiplication in GF(2m)
	Parallel Implementations of Montgomery Multiplication
	Partitioning of Separated Operand Scanning (SOS) Method
	Partitioning of Coarsely Integrated Operand Scanning (CIOS) Method

	Multiplication in GF(2m) using Residue Number System (RNS)

	FPGA Implementations of Various Galois Field Multipliers
	Logic Level Designs
	Soft Processor Designs

	GPU Implementations
	Other Multi-core Solutions
	Software Solutions

	Implementation and Evaluation of Montgomery Multiplication on FPGA using OpenCL
	Preliminary Calculations
	Extended Euclidean Algorithm
	Implementation
	Inputs and Outputs
	Kernel Attributes
	FPGA Resource Usages
	Kernel Frequencies
	Kernel Performances

	Primitive Sizes
	Offline Compilation

	Functional Testing
	Reference Results
	Benchmarks and Profiling

	Comparison of OpenCL FPGA Montgomery Multiplier with GPU and CPU Platforms
	Comparison with GPU
	Comparison with CPU
	Comparison with other Implementations in the Literature

	Conclusion
	REFERENCES
	APPENDICES
	Constant Irreducible Polynomials (N) Used In Reduction
	Multiplication size = 256
	Multiplication size = 512
	Multiplication size = 1024
	Multiplication size = 2048
	Multiplication size = 4096
	Multiplication size = 8192

	OpenCL Code

