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ABSTRACT 

 

BACKCALCULATION OF PAVEMENT LAYER PROPERTIES USING 

ARTIFICIAL NEURAL NETWORK BASED GRAVITATIONAL SEARCH 

ALGORITHM 

 

Öcal, Arda 

 M.S., Department of Civil Engineering 

 Supervisor: Assist. Prof. Dr. Onur Pekcan 

 

September 2014, 161 pages 

 

Transportation agencies need to make accurate decisions about maintenance strategies 

to provide sustainability of pavements. Non-destructive pavement evaluation means 

play a crucial role when making such assessments. A commonly used method is to use 

Falling Weight Deflectometer (FWD) device which measures the surface deflections 

under imposed loadings. Determination of layer properties through the use of FWD 

deflections is known as pavement layer backcalculation. This process requires the use 

of mathematical pavement model to simulate the deflections, which is called forward 

response model. Calculated deflections from this model are then compared with the 

field deflections measured through FWD in an iterative manner, which requires 

intelligent schemes as this process is time-consuming and sometimes produces 

erroneous results. In this study, an artificial intelligence based inversion algorithm is 

presented to backcalculate the flexible pavement layer properties. A hybrid approach 

is proposed using the combination of Artificial Neural Networks (ANN) and a recently 

developed metaheuristic optimization technique Gravitational Search Algorithm 

(GSA). The forward calculation engine is based on the finite element analysis of 

flexible pavements and its surrogate ANN model, which is used to eliminate the time- 

consuming stages for computing the deflections. GSA is utilized as an efficient search 

algorithm to seed the ANN model to obtain the deflections in a quick way. The 

performance of the proposed algorithm is then validated using both synthetically 

created FWD data and the ones obtained from actual field FWD data. The proposed 

method is also validated by comparing two well-accepted backcalculation software, 

EVERCALC and MODULUS. To present the effectiveness of the GSA method, 

Simple Genetic Algorithm (SGA) is also utilized for comparison purposes. The 

findings show that the proposed algorithm can predict layer moduli with high accuracy 

for various types of flexible pavements. 
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Keywords: Flexible Pavement, Backcalculation, Artificial Neural Networks, 

Gravitational Search Algorithm, Falling Weight Deflectometer  
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ÖZ 

 

YAPAY SİNİR AĞLARI TABANLI YERÇEKİMSEL ARAMA 

ALGORİTMASI KULLANILARAK ESNEK ÜSTYAPI KATMAN 

ÖZELLİKLERİNİN GERİ-HESAPLANMASI  

 

Öcal, Arda 

 Yüksek Lisans, İnşaat Mühendisliği Bölümü 

 Tez Yöntecisi: Yrd. Doç. Dr. Onur Pekcan 

 

Eylül 2014, 161 pages 

 

Ulaştırma konusunda ilgili kuruluşların, yol üstyapılarının sürdürülebilirliğini 

sağlamak amacıyla uygun bakım stratejileri belirlemeleri gerekmektedir. Bu bağlamda 

üstyapıların değerlendirilmesinde hasarsız test yöntemleri önemli rol oynamaktadır. 

Bu yöntemlerden en çok tercih edilenlerden bir tanesi, kaplama yüzeyine uyguladığı 

yüke karşı oluşan düşey yer değiştirme miktarlarını ölçen, Düşen Ağırlık 

Deflektometresi (FWD) kullanmaktır. Ölçülen bu yer değiştirmeleri kullanarak 

yapının mekanik özelliklerinin belirlenmesine geri-hesaplama adı verilir. Bu işlemde 

yer değiştirmeleri simüle etmek amacıyla ileri hesaplama modeli olarak bilinen 

matematiksel modeller kullanılmaktadır. İleri hesaplama modeli ile hesaplanan yer 

değiştirmeler FWD ile elde edilenlerle tekrarlı olarak karşılaştırılır. Geri-hesaplama 

işlemleri uzun zaman aldığından ve bazı durumlarda hatalı sonuçlar verebildiğinden, 

problemlerin çözümleri için akıllı yaklaşımlara ihtiyaç duyulmaktadır. Bu çalışmada 

esnek üstyapıların mekanik özelliklerinin geri-hesaplanmasında kullanılacak Yapay 

Sinir Ağları (YSA) ve Yerçekimsel Arama Algoritması (GSA) tabanlı, GSA-ANN 

olarak adlandırlan, hibrit bir model sunulmuştur. Önerilen bu algoritmada, yer 

değiştirmelerin hesaplanmasına ayrılan zamanı azaltmak amacıyla, ileri hesaplama 

modeli olarak sonlu elemanlar analizlerine dayanan YSA modelleri kullanılmıştır. 

YSA’ya en uygun girdi değerleri ise etkili bir arama algoritması olan GSA tarafından 

seçilmiştir. Önerilen algoritmanın etkinliği, sentetik olarak oluşturulan ve araziden 

elde edilen veriler kullanılarak tahkik edilmiştir. GSA-ANN üstyapı geri-

hesaplamasında kabul görmüş EVERCALC ve MODULUS programlarıyla 

karşılaştırılmıştır. Ayrıca, GSA’nın etkinliğini farklı bir algoritma ile karşılaştırarak 

değerlendirmek amacıyla Basit Genetik Algoritma (SGA) kullanılmıştır. Elde edilen 

sonuçlar göstermiştir ki, geliştirilen algoritma değisik özelliklerdeki esnek üstyapıların 

mekanik özelliklerini yüksek doğrulukta tahmin edebilmektedir. 



 

viii 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1. INTRODUCTION 

1.1 Background 

Highways have similar functions with the blood vessels of human body considering 

their transportation duty. To maintain one’s life, blood circulation is enabled by the 

arteries and required blood is supplied to the organs. In the same manner, goods and 

people are moved from a point to another through the highways which help to sustain 

a country. Nowadays, development level of a country is thought to be directly related 

with comprehensiveness and functionality of its transportation systems.  

Highways are the integral part of the transportation systems and funds supplied by 

governments indicate their importance for the countries. For the year 2014, USA which 

has the largest highway network in the world allocated approximately 68 billion dollar 

for Federal Highway Administration (FHWA) from the budget of the government 

(U.S. Department of Transportation 2014). The amount of the fund was increased 60% 

according to year 2012. In Turkey, the budget for General Directorate of Highways 

(KGM) was determined as 7.1 billion Turkish Liras which shows 3% increment in 

comparing to the previous year (TBMM Plan ve Bütçe Komisyonu 2014). 

Serviceability and safety are the significant issues for the roads that should be 

considered by the transportation agencies of countries. Regardless of the material used 

within pavement layers and construction methods, every highway is exposed to traffic 

loading and environmental effects which deteriorate the pavement structure over time 

(see Figure 1). In order to maintain the serviceability and safety level high and to slow 
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down the deterioration, maintenance and rehabilitation processes are required.  

Considering the sizable investments, right decisions should be taken for in service 

pavements about which of them requires maintenance or rehabilitation. For these 

actions, accurate determination of geometrical and mechanical properties of 

pavements are essential issues that are needed to be regarded. With the objective of 

structural evaluation of existing pavements, non-destructive testing (NDT) methods 

are frequently preferred as compared to destructive ones because they keep the 

integrity of structures by fast and easy implementations. One of the commonly 

employed NDT devices is Falling Weight Deflectometer (FWD) which measures the 

surface deflections under imposed loading. Through the use of FWD deflections in 

several analyses, structural capacity of pavement can be evaluated and therefore 

rehabilitation and maintenance needs can be properly determined.  

   

Figure 1 Deterioration of Flexible Pavements 

 

Pavement layer backcalculation is the process of estimating mechanical properties of 

pavement layers which uses the measured deflections by FWD. Backcalculation is an 

inverse type problem whose solutions may sometimes be problematic. In a typical 

solution method of this problem, a pavement section of whose layer properties are 

backcalculated is modelled numerically and FWD test is simulated on this section. 

Using the numerical model, surface deflections are computed and the results are 

compared with the measured deflections from the field. In backcalculation, it is aimed 

to numerically simulate the pavement section whose deflection responses are 

reasonably closer to the ones measured with FWD. Finding the optimum solution of a 

pavement layer backcalculation problem requires iterative processes so that layer 
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properties of numerical model are changed iteratively. In each step, layer moduli 

values are updated for the next iteration so as to minimize the deflection differences. 

A search method is employed in order to minimize the deflection differences and to 

determine the new layer properties for the following iteration. At the end, layer 

properties which produce most approximate surface deflections to the field 

measurements are reported as the solution of the problem.  

Pavement layer backcalculation problem is composed of two main parts; forward 

response modelling and search method. Both components are the significant in the 

sense of obtaining accurate layer properties. Numerical modelling of pavement and 

FWD simulation are named as forward response modelling. Layered elastic theory is 

the most commonly employed forward response analysis approach due to provided 

calculation simplicity. This theory makes some assumptions for material behaviors and 

geometrical properties which simplify the problem.  Among these assumptions, most 

significant one is the linear elastic material behavior for all the pavement layers that 

may influence the accuracy of the backcalculated layer properties. Unbound granular 

base/subbase layers and subgrade soils have stress sensitive nature that their stiffness 

properties are changed according to the stress states. Therefore, these pavement 

geomaterials cannot be adequately characterized by linear elasticity. The limitations 

of layered elastic theory can be handled by another approach: finite element method 

(FEM). In contrast to elastic layered theory, FEM based analyses use more complex 

mathematical models to solve the pavement sections and they produce more realistic 

solutions than elastic layered theory. This superiority originates from the ability of 

FEM based analyses dealing with the nonlinearity of materials and making fewer 

assumptions. Nowadays, several general purpose finite element softwares are available 

and also, there are programs which are specifically focusing on the pavement analysis. 

Beside the advantages provided by FEM based solutions, time-consuming analysis and 

complex computational stages are the drawbacks of this approach. Since the 

backcalculation is an iterative process and it requires great number of analyses, FEM 

based forward response engines may not be practical. Thereby, a proper way of 
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relaxing computational difficulties is required to eliminate the complexity of 

computation and to decrease the runtime of the analyses.  

In order to overcome the limitations of traditional forward response models, soft 

computing techniques can be implemented. The term soft computing refers to 

combination of several artificial intelligence (AI) methods which are performed for 

handling computationally intense, complex and hard to solve problems by using 

conventional (hard) computing techniques. While soft computing methods are 

tolerating impression, uncertainty and approximation, they give robust and low cost 

solutions. Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), 

fuzzy mathematical programming and evolutionary computation methods are the main 

components of soft computing (Kecman 2001). Generally, these methods are inspired 

by human mind, evolutionary theory and the behavior of the living creatures and 

objects encountered in the nature. Among all these methods, ANNs are the one of most 

applied AI methods in pavement layer backcalculation studies as surrogate engine for 

forward response analysis. Owing to the capability of ANN of establishing nonlinear 

relationship between input and output values of a system, accurate analyses can be 

conducted by neural networks. Besides, runtime of backcalculation analyses can be 

reduced dramatically by comparing to the FEM based solutions. Initial applications of  

ANN in pavement layer backcalculation show that ANN based forward response 

engines produce fast and accurate solutions just as the ones obtained with conventional 

methods (Meier and Rix 1994, 1995; Meier 1995). By these studies, effectiveness of 

ANNs were proven and their usage in pavement layer backcalculation have been 

increased through the time (Bosurgi and Trifirò 2005; Ceylan and Gopalakrishnan 

2006; Ceylan et al. 2005; Gopalakrishnan 2009a; Nazzal and Tatari 2013; Pekcan 

2010; Pekcan et al. 2008; Saltan and Terzi 2009; Saltan et al. 2012; Tutumluer et al. 

2009).  

Accuracy of the deflections calculated by the forward response analysis is directly 

related with the provided input values to the system regardless of the employed 

forward model either FEM or ANN based engines. Selection of appropriate input 

values to the models are conducted by a search method which is the second significant 
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part of pavement layer backcalculation problems. Since the function of search method 

is to minimize the difference between calculated and measured deflections and to 

determine the new layer moduli for the following iteration, the process can be 

considered as an optimization routine. Several soft computing techniques can be 

employed in pavement layer backcalculation as a search method. Through the use of 

an objective function, search algorithm can calculate the deflection differences and by 

using the values of the function, it estimates the new layer properties.  After completing 

the iterations, most representative layer moduli found by search algorithm are reported 

as the solution of the problem. Choosing the proper optimization algorithm is crucial 

issue for backcalculation procedures. In recent years, use of metaheuristic optimization 

algorithms as search algorithm has been increased owing to several advantages that 

they provide. In this context, some evolutionary and swarm intelligence algorithms 

such as genetic algorithm (GA) and particle swarm optimization (PSO) method, have 

been implemented to seek the search space for finding the most appropriate input 

values of the forward response model (Bosurgi and Trifirò 2005; Gopalakrishnan 

2009a; Rakesh et al. 2006; Tutumluer et al. 2009). Performance of these search 

algorithms may show variations according to complexity of problem to be solved. 

Moreover, there is no specific algorithm which works perfectly for all types problems. 

Therefore, further studies on this topic could be improved the quality of backcalculated 

pavement layer properties.   

1.2 Objectives and Scope of the Thesis 

Overall aim of this thesis is to develop an inversion algorithm to backcalculate flexible 

pavement layer properties. By this algorithm, it is intended to solve pavement 

backcalculation problems in a fast and robust manner. Primary objectives of the 

proposed algorithm are presented below. 

First objective of this study is to predict realistic deflections occurred on pavement 

surface. For this purpose, previously developed ANN forward response models for 

full-depth asphalt pavement (FDP), conventional flexible pavement (CFP) and full-

depth asphalt pavement on lime stabilized soils (FDP-LSS) are used in this study 
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(Pekcan 2010). While developing the ANN models, researcher used FEM based 

pavement analysis and design software; ILLI-PAVE which takes into account the 

nonlinear elasticity of pavement geomaterials. Another objective is to combine ANN 

forward response models with a search method in order develop a complete 

backcalculation algorithm. A newly developed metaheuristic search technique; 

Gravitational Search Algorithm (GSA) is performed as a search routine to provide 

input values to the ANN forward models. As a consequence of this, it is aimed to 

propose a backcalculation algorithm named as GSA-ANN. The third objective is to 

evaluate performance of the proposed backcalculation algorithm. For this purpose, 

used ANN models and developed GSA-ANN algorithm are performed for the data 

obtained from different sources. The pavement sections which are simulated 

synthetically by ILLI-PAVE computer program are utilized to assess the ANN and 

GSA-ANN. However, it is not sufficient to validate the backcalculation model using 

only synthetically derived data. In order to gather more reliable solutions, field data 

extracted from the United States FHWA’s Long-Term Pavement Performance (LTPP) 

Program which is most comprehensive research program performed ever are used for 

further verification (Quintus and Simpson 2002). Another goal of this study is to prove 

the validity of proposed algorithm by using two well-known conventional 

backcalculation software: EVERCALC and MODULUS for comparison purposes. 

Moreover, in order to assess the performance of GSA search method, another 

optimization technique which is Simple Genetic Algorithm (SGA) is combined with 

the same ANN models and obtained algorithm is performed to solve the same test data 

sets with GSA-ANN algorithm.  By this way, solutions of GSA and SGA based 

algorithms are compared to prove the effectiveness of the GSA approach. 

At the end of this study, fast, reliable and validated backcalculation algorithm namely 

GSA-ANN is intended to be developed which provide decision makers opportunity to 

make real time assessment of stiffness properties for in-service pavements which can 

be utilized for rehabilitation and maintenance operations. 

http://tureng.com/search/technique
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1.3 Thesis Organization 

This thesis is composed of five chapters that provide information about the topics 

covered in the study. In Chapter 2, an extensive literature review is presented to 

introduce the issues about pavement backcalculation. For this purpose, flexible type 

pavement structures and characterization of geomaterials are described prior to 

backcalculation problem. The main components of pavement backcalculation namely 

FWD measurements, forward modelling aspects of pavement sections and utilized 

traditional and nontraditional backcalculation methods are expressed respectively to 

provide a comprehensive background and better understanding to the current study. 

Chapter 3 introduces the development of proposed GSA-ANN algorithm to evaluate 

stiffness related layer properties of different types of pavements. Development stages 

of employed ANN models are provided  by starting in all aspects of ILLI-PAVE 

analysis steps of which includes FWD simulation, meshing of analyses domain, and 

material characterizations. After that, combining GSA method and ANN models to 

form the entire algorithm is presented. In Chapter 4, validation and performance 

evaluation of the proposed algorithm for using both synthetically generated and field 

deflection data are presented. Also, comparison of backcalculation results with 

conventional backcalculation softwares: EVERCAL and MODULUS are made using 

field measurements. Apart from these, another search algorithm namely SGA, is also 

performed for synthetic and field data and then results are presented in Chapter 4. 

Finally, a summary of the study and conclusions together with recommendations for 

future work are included in Chapter 5.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2. LITERATURE REVIEW 

2.1 Introduction 

Every pavement structure is subjected to traffic loading and environmental effects 

during its lifetime and as a normal consequence of these conditions, deterioration of 

structural layers occurs with different forms having different characteristics such as 

cracking, rutting and swelling etc. Considering the great deal of money funded to 

construction of highways, transportation agencies need to determine proper strategies 

to make provisions against the deterioration processes with maintenance and 

rehabilitation operations like sealing and overlay constructions. It is an essential issue 

to derive information from in-service pavements without causing any permanent 

damage to the structural layers. For this reason, non-destructive testing methods 

become more preferable than destructive ones. Using the non-destructive test results, 

especially deflection measurements, stiffness related pavement properties can be 

determined and this process is called as backcalculation which enables significant 

information about structural capacity of pavement sections. Methodologies utilized for 

backcalculation influence the accuracy of calculated stiffness properties, and therefore 

several studies have been conducted on this topic to develop better approaches. This 

literature review focuses on previously accomplished practices and current studies on 

pavement layer backcalculation subject. First of all, backcalculation problem is 

summarized, and then flexible pavement types and non-destructive testing of 

pavements are reviewed. After that, a pavement information database of LTPP  
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Program which includes the most comprehensive information about pavements of 

USA and Canada are explained. At the end, forward modelling of pavements and 

techniques employed for backcalculation are described, respectively.   

2.2 Backcalculation Problem 

Problems can be classified into two categories as forward and inverse types. In forward 

problems, outputs of a system can be calculated through the known input properties. 

Unlike the forward problems, input properties and system parameters can be estimated 

through the measured data in inverse type problems (See Figure 2). Backcalculation 

of pavement layer properties is a type of inverse problem of which estimates the 

stiffness related layer properties by using deflection measurements of FWD tests. 

Determined moduli for layers comprising of different materials and subgrade soils can 

give valuable information about the structural capacity of the entire pavement 

structure. Using these data, decision makers on pavement engineering have 

opportunity to evaluate structures if they need any rehabilitation or maintenance 

operation in an effort to sustain required performance of the pavement for future traffic 

and environmental conditions. A typical pavement layer backcalculation operation is 

composed of two different parts. First one is the forward response modelling of the 

pavements which calculates surface deflections utilizing either simple or complex 

equations. In forward response modelling, pavement section whose layer properties to 

be backcalculated is simulated and deflections under FWD loading are calculated 

through the use of assumed layer properties. After that, computed deflections and 

measured deflections are compared and according to difference between them, new 

layer moduli are estimated by a search method which is another essential part of 

backcalculation operations. Updated layer moduli values by the search method are 

given as new inputs of the forward response engine to calculate new deflections and 

this process continues until reaching the termination criteria which may be a tolerable 

error rate between deflections or maximum number of iterations. At the end, the layer 

properties of pavement section which produce most approximate deflection values to 

the field ones are reported as the solution of the backcalculation of the problem. A 

flowchart summarizing the backcalculation processes is presented in Figure 3. As it is 
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an iterative process, all the steps are handled through the instrument of computer 

programs. Accuracy of the interpreted layer moduli depends on the methods utilized 

in backcalculation processes. Choosing the method for both forward calculation of 

surface deflections and searching new layer moduli play crucial roles in obtaining 

realistic and accurate results. Layered elastic theory and FEM based pavement 

response analysis are the most popular forward calculation approaches. First method 

is the simplest one for modelling the pavement due to several assumptions considered 

for material and layer conditions. FEM is the second approach employed as forward 

response engine which is more capable than layered elastic theory in terms of 

modelling pavement layers realistically. In this approach, deflections are calculated 

with less assumptions but more computational effort because of complex equations 

that FEM makes use of. Researchers employ several optimization methods for 

searching and updating the input stiffness properties of forward engine for successive 

iterations. Each search method has advantages and disadvantages according to applied 

problem and there is no algorithm which perfectly works for all types of problems. 

This makes backcalculation problems open to be improved in term of the accuracy of 

interpreted layers moduli by changing the search method for forward analysis. 

 

 

Figure 2 Forward and Inverse Problems 
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Figure 3 A Typical Backcalculation Scheme 

 

2.3 Flexible Pavements 

Regarding the construction materials used for covering the surface, pavements can be 

classified into three groups as flexible, rigid and composite. Flexible pavement term 

tends to be used to refer the usage of bituminous or asphalt materials in structural 

layers of pavements.  The word “flexible” comes from the flexing behavior of asphalt 

layers under traffic loading. In contrast to this, rigid pavements composed of Portland 

Cement Concrete (PCC) are stiffer than flexible ones due to the higher modulus of 

elasticity of concrete.  Stress distributions for both flexible and rigid pavement are 

presented in Figure 4. Composite pavements are the structures that are constructed by 

making using of Hot Mixed Asphalt (HMA) and PCC together.  Among the pavement 

types, flexible pavements have the widest applications through the highways in all over 

the world. Regardless of materials constituted within the layer, function of a pavement 

is to transmit the traffic loading to the natural soil substantially. For this purpose, 

pavements are created with several number of layers of those takes the load and then 
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spread out to the following layer below. Therefore, the pressure induced by the applied 

load is lessened while moving from the top layer which exposed to much pressure, to 

the subgrade. A typical flexible pavement section is composed of superimposed 

courses of surface, base and subbase laying over the natural subgrade. In surface layer 

asphalt materials are employed while base and subgrade layers are granular and fine 

grained geomaterials. Constructed pavement layers should have enough thicknesses 

for load transferring while enabling safe and comfortable driving with adequate 

smoothness and friction of its surface. At the same time, surface and base layers must 

be impervious to protect beneath layers against water movement throughout the layers 

(Karagöz 2004). 

 

Figure 4 Stress Distributions for Rigid and Flexible Pavements 

 

The underlying philosophy of the placement order of pavement layers is to construct 

sustainable and solid section to make sure that entire structure can resist to applied 

loads. For this reason, HMA materials which have greatest bearing capacity are placed 

on the top of the structural layers to withstand the highest pressure values occurred on 

the pavement surface. Materials having less load bearing capacity are located beneath 

the asphalt layers where the impacts are relatively small.    
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There are some situations faced in design and construction stage of highways. These 

are lack of local materials, low strength of natural soils, excessive traffic loadings or 

economical issues that are needed to be taken into account for proper design 

operations. Pavements have to accomplish their expected functions and performance 

in all these cases. In order to do this, full-depth asphalt pavement (FDP) and 

conventional flexible pavement (CFP) concepts are emerged as two different flexible 

pavement types. FDP is generally chosen to build while excessive vehicle traffic is 

expected during the service time of the road or in the case of lack of enough base 

materials. In this approach, one or more asphalt layers are directly constructed over 

subgrade that may be improved with stabilization using lime or cement whether the 

subgrade is weak. This type of full-depth asphalt pavement constructed over lime 

stabilized soil is also within the scope of this study and abbreviated as FDP-LSS. Since 

HMA materials are petroleum products, construction of FDPs is quite expensive. 

Therefore, amount of asphalt may be limited in some cases to lower the overall project 

costs. For instance, a relatively tiny asphalt layer is constructed as top layer where the 

stress intensity is high and below this course, base/subbase layers constituted with 

granular materials which are cheap compared to bituminous materials are built. This 

type of structure is called as CFP which can be preferred to construct as a consequence 

of availability of local materials, considered project costs and lack of heavy traffic 

loading (Huang 2003). Typical cross sections for FDP and CFP are shown in Figure 

5.  

 

Figure 5 Typical Cross Section for FDP and CFP 
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Pavement responses associated with loading states play a major role in mechanistic-

empirical methods to estimate the distress of structural layers of in-service pavement 

with the help of field data. Tensile strain occurred at the bottom of asphalt layer is first 

time recommended to use as a failure criteria in order to prevent against to fatigue 

cracking by Saal and Pell (1960). Other critical response; vertical compressive strain 

on the subgrade is related with the rutting failure mechanisms (Kerkhoven and Dormen 

1953; Huang 2003). In Figure 6, critical responses for a layered structure is presented. 

Where ƐAC refers to the critical tensile strain occurred beneath the asphalt layer, ƐSG is 

the critical compressive strain occurred above the subgrade and σdev is the deviator 

stress on the subgrade.  

 

Figure 6 Critical Pavement Responses Occurred in a Layered Structure 

 

2.4 Non-destructive Testing of Pavements 

Assessment of pavement structures is conducted to check whether the highway can 

carry the future traffic loading while being subjected to environmental conditions over 

the time. As a result of successful evaluation of pavements, effective rehabilitation and 

maintenance strategies can be developed. By this way, reasons of failure in structural 

components and deteriorations can be addressed and necessary operations are 

employed to prevent the overall structure from distress. For that purpose, it is essential 

to perform in-situ tests which examine the layer properties. Coring is an approach of 
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testing which makes holes on the pavement sections that need to be filled with 

material. Even if it is repaired, considering number of coring along the roads and time 

required for taking samples, implementation of such destructive techniques may not 

be feasible.  Thus, NDTs become more popular among the highway community in the 

way of providing structural integrity and their fast and easy applications. Non-

destructive tests examine the pavement structures in two different manners, deflection 

basin and wave propagation which are occurred in response to imposed loading states 

on pavement surface.  

Spectral analysis of surface waves (SASW) is a geophysical NDT method of which 

evaluates stiffness related layer properties and thicknesses of pavements (Nazarian and 

Stokoe 1984). In this method, a dynamic source which is able to generate surface 

waves in different wavelengths applies load on the pavement. Occurred stress waves 

are recorded by means of the successively located at least two geophones. Using the 

calculated travel time between geophones and phase differences, effective-velocity 

dispersion curve is developed which can be used for determining layer moduli and 

layer thicknesses (Li 2008; Nazarian and Stokoe 1989). 

Ground penetrating radar (GPR) is another geophysical method which utilizes the 

radio waves to evaluate pavement structures especially to find layer thicknesses. It can 

also detect the discontinuities within the layers such as voids and cracks. In this 

approach, high-frequency radio waves are transmitted into the pavement layers and 

then they are reflected back to the receiver of GPR. Due to the material characteristics 

of each individual subsurface layers, signals are reflected in different energy levels. 

By combining these signals,  section profile can be visualized and then, thickness of 

layers can be determined (Loizos and Plati 2007; Paker et al. 1999). Another popular 

technique based on seismic wave propagation is seismic pavement analyzer (SPA). 

Just as SASW and GPR devices, SPA is also used for determining stiffness and 

thickness of layers in addition to detecting cracks. The device has pneumatic hammers 

having different size that creates different wavelengths when they imposed vibration 

on the pavement. Sensors located at certain distances away from the hammers measure  
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these vibrations and mechanical properties in addition to thickness of layers can be 

determined by manipulating received vibrations in each wavelength (Nazarian et al. 

1993).  

Use of deflection measurement for the purpose evaluating structural capacity of 

pavement is another non-destructive data gathering approach. Just as involved in this 

study, deflection basins are used for backcalculating stiffness related pavement layer 

properties. Considering loading type, deflection basin measurements can be classified 

into three main groups: static, steady-state vibration, and impulsive loads.  

As a simple and easy approach, static load or in other word slowly moving load cannot 

model actual loadings applied on pavements. Another limitation of static type of 

applications is to find fixed reference location during deflections measurements. For 

these reasons, using such deflections in mechanistic design methods may not be 

possible without empirical correlations. In this topic, the Benkelman beam is the most 

known deflection measuring device. Basically, the beam is composed of measurement 

probe connected to a supporting beam and deflections are read from a dial gauge 

located on the supporting beam as shown in Figure 7. For this test, a vehicle which can 

apply 80 kN single axle load is employed as a loading source and operators place the 

end of the measurement probe between the rear dual tires. While the vehicle moving 

away slowly from the Benkelman beam, rebound deflection is measured with dial 

gauge.   After the test is applied for several preselected locations deflection basin can 

be generated. There are also measurement devices working with the same principles 

which are California travelling deflectometer and LaCroix Deflectometer developed 

in USA and France, respectively (Huang 2003).  
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Figure 7 Benkelman Beam (Huang 2003) 

 

Steady-state vibrational loading is the second type of deflection measurement 

approach. Deflections are produced as a result of superposition of static load and 

sinusoidal dynamic force. In order to measure the deflections, velocity sensors are used 

by locating the first one under the load application point and the others are placed with 

designated intervals such as 0.3 m. Basic advantages of steady-state loading over static 

loading are the ability of detecting inconsistent deflection measurement and no need a 

reference point for the measurement. However, there are also drawbacks of such 

devices that steady-state vibration does not simulate the real-like traffic loadings and 

in case of using large static loads, behavior of stress sensitive materials can be affected 

(Huang 2003). Dynaflect is a popular device applying steady-state vibrational loading 

which can exert static load within a narrow range while applying a constant dynamics 

force. Road rater is another testing device in this dynamic loading category. In contrast 

to Dynaflect, it can apply both static and dynamic loads within a wide range of loads 

and frequencies. The rolling dynamic deflectometer (RDD) is the newest one among 

the other vibrational devices. Instead of obtaining deflection measurements station by 

station, RDD determines them continuously (Sveinsdóttir 2011).  

Impulsive load based deflection measuring technique is the last but not the least one. 

By dropping a weight over a loading plate on pavement surface, deflection are 

generated and sensed by geophones arranged in designated intervals.  The impulse 

force emerged in response to applied load can be varied by changing the drop height 
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and amount of weight. The major advantage of impulsive load based method is to 

simulate actual moving load in terms of loading duration and its magnitude (Huang 

2003). For this reason, impulse loading devices have been performed extensively by 

pavement agencies for more than three decades (Alavi et al. 2008). Falling weight 

deflectometer falls into this category that has several types which are elaborated in the 

following subsection. 

2.4.1. Falling Weight Deflectometer 

In transportation community, falling weight deflectometers have been used for the 

evaluation of structural capacity of highways and airport runways. Flexible and rigid 

pavement can be assessed with these devices in design, maintenance and rehabilitation 

operations. Owing to the capability of FWDs to simulate actual traffic conditions, they 

have been performed for more than three decades (Alavi et al. 2008).   For this reason, 

FWDs are widely accepted and used in all around world and there are several 

manufacturers producing them such as KUAB, Dynatest, Carl Bro and JILS. The 

device is mounted on trailer or a test vehicle as shown in Figure 8.  

 

 

Figure 8 Trailer Mounted FWD Device (“Cornell Local Roads Program” 2005) 
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A typical FWD device is comprised of two essential components that are loading and 

measurement mechanisms. Loading system includes the falling weight, loading plate 

and corresponding controlling apparatus and the measurement system includes 

geophones and associated data acquisition systems (Doré and Zubeck 2009). An FWD 

works by dropping a falling weight and measuring the corresponding deflections at 

designated radial distances. Using a spring mass system, falling weight is released 

from a certain height which can be adjusted according to desired impulse level to a 

circular loading plate which has diameters of 305 or 457 mm (12 or 18 in.). The 

resulting applied force can be changed in the rage of 7 to 240 kN with respect to 

producer and model of the device (Alavi et al. 2008). The duration of the applied load 

is approximately 30 ms which is about the same load application duration of a 

travelling vehicle at 64 to 80 kmh (40 to 50 mph) (Ullidtz and Stubstad 1985). As a 

result of FWD loading, haversine shaped pulse is emerged as illustrated in Figure 9.  

 

Figure 9 Haversine Shaped Loading (NCHRP 2004) 

 

In order to ensure the uniformity of transmitted load and shape of the occurred pulse, 

cylindrical rubber buffer is mounted under the falling weight system (Schmalzer 

2006).  As a consequence of the applied load, occurred surface deflections are 

measured by means of a set of sensors or geophones located at designated radial 

distances. Deflection basin is generated by using the peak deflections measured in each 
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sensor. The number of sensors differs according to configuration of the device that 

may change 7 to 15 sensors. In each different array of sensors, the first one is located 

at the center of loading plate and other ones are placed with increasing radial distances 

by considering first sensor as reference point. Precise sensor distances for seven-

sensored FWDs are 0, 203, 305, 457, 610, 914 and 1,524 mm (0, 8, 12, 18, 24, 36 and 

60 in.). A typical test configuration formed with seven geophones with corresponding 

deflection basin is illustrated in Figure 10.  

 

Figure 10 FWD Setup and Deflection Basin 

 

Obtained deflection basins can be used for different purposes. First one is to calculate 

deflection basin indices and normalized basin area by the way of simple mathematical 

operations. These calculated values are the basic indicators of mechanical properties 

of overall pavement section and individual structural layers (Doré and Zubeck 2009). 

In another use of deflection basin, existence of a stiff pavement can be identified by 

utilizing regression equations for where the zero deflection occurs (Rohde and Scullion 

1990).  

There are three different types of deflectometers: light weight deflectometer (LWD), 

heavy weight deflectometer (HWD) and rolling weight deflectometer (RWD). LWD 

is the portable version of FWD which can be used by one operator and the device is 
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generally implemented to determine the base and subgrade stiffness properties during 

construction stages.  Other deflectometer type is HWD which is employed when 

greater loads are needed to be replicated. It is primarily utilized for evaluation of 

airport runways. Unlike LWD and HWD devices, RWD can collect continuous 

deflection data instead of gathering from separate road portions. So that it provides 

faster applications than FWD (Huang 2003).  

Loading, climate and pavement conditions can lead to variations in deflection 

measurements. While conducting non-destructive testing, they should be taken into 

account. The duration and magnitude of applied loads have major effects on deflection 

basins. In NDT applications, it is desired to simulate real-like vertical traffic loadings 

so that the amount of load and its application duration should be well selected. Because 

of the stress sensitive nature of some pavement geomaterials, applied loads may cause 

abnormal deflections so that nonlinear material behavior should be considered in 

analyses stages. Temperature and moisture also affect the stiffness properties of layers. 

In high temperatures, stiffness properties of hot mixed asphalt layers decrease and in 

connection with this deflections increase. For this reason, pavement deflection profile 

may change regarding the seasons. For example, in winter seasons, pavements are the 

strongest so that deflections are smaller than the other seasons. When the season of 

spring starts, melting frost water leave the structure that may cause deflections to 

decrease immediately. Cracks and rutting distresses are another factors influence the 

deflection measurements that need to be taken into account as well (Huang 2003; 

Papagiannakis and Masad 2008).  

Deflection measurements play a key role in mechanistic-empirical pavement design 

and rehabilitation strategies.  FWD is considered as an effective and robust assessment 

tool by pavement agencies and researchers for more than three decades. It has been 

widely applied in pavement backcalculation studies in order to acquire deflection data 

which are used for estimating stiffness related properties especially pavement layer 

moduli (Abdallah and Nazarian 2009; Asli et al. 2012; Ceylan and Gopalakrishnan 

2006; Ceylan et al. 2005; Goktepe et al. 2006; Gopalakrishnan et al. 2009, 2013; Hu 

et al. 2007; Khaitan and Gopalakrishnan 2010; Kim and Im 2005; Lav et al. 2009).  
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2.5 Long-Term Pavement Performance Program 

Considering the great deal of money funded in constructing and repairing of highways, 

transportation agencies need to determine proper strategies to use the investments 

effectively. As it is stated in Chapter 1, USA has the largest highway network in the 

world and the country makes great amount of investments for building, maintaining 

and rehabilitation operations. The Long-Term Pavement Performance (LTPP) 

Program was developed in mid-eighties within the scope of Strategic Highway 

Research Program (SHRP) in order to collect pavement performance data in all around 

the USA and Canada. The overall objective of LTPP program is to identify how and 

why pavements performs as they do which may lead to improve new pavement design, 

maintenance and rehabilitation strategies that can extend pavement life. 

(Transportation Research Board 2001). The core functions of LTPP program can be 

divided into four main categories: data collection and management, data analysis, 

product development and communications, respectively. The performance data are 

gathered from more than 2,400 different pavement test sections for HMA, PCC and 

composite pavements through the use of different test methods. The LTPP database is 

composed of several modules including data a broad array of topics such as inventory, 

traffic, climate, monitoring and material testing, maintenance and rehabilitation etc. 

For every test section, FWD tests are conducted to measure the deflections periodically 

in addition to distress observations and pavement surface profiles investigated with 

profilometers. Observed test sections are divided into two main categories; General 

Pavement Studies (GPS) and Specific Pavement Studies (SPS). Common types of in-

use pavements are included in GPS category and SPS test sections contains the 

pavements constructed specifically to examine sections against different factors.  

There are also a number of sites in both GPS and SPS sections which are examined in 

terms of climatic conditions and the studies are conducted as a part of Seasonal 

Monitoring Program (SMP). FWD tests are applied periodically that GPS section are 

monitored in five-year periods while SPS are in two-year periods. On the other hand, 

SMP test sites are investigated every month in one or two year periods (Quintus and 

Simpson 2002). To achieve the LTPP’s objectives on understanding the pavement’s 
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behavior, materials are explored in detail and a facility named as material reference 

library (MRL) is established to store the asphalt, Portland cement and aggregate 

samples used in general and specific pavement studies. In material testing processes, 

flexible pavement samples are evaluated for several aspects of engineering properties 

such as asphalt content, specific gravity of the surface layer and resilient modulus, 

moisture/density relations and classification of granular materials in base layers.  

Another core function of LTPP program is to convert performance data to useful 

information through several analyses. The overall aims of these analyses are to 

understand how they perform as they do, to control the quality of data measured from 

the field and to verify, improve or develop design and rehabilitation approaches, 

respectively. Characterization of traffic and materials in addition to evaluation of 

environmental effects and pavement response data give valuable insight on existing 

pavement and lead to proper strategy selection for design and repairing operations. As 

the results of LTPP analyses, significant products including methods, guidelines and 

procedures are emerged together with the softwares such as LTPPBind and rigid 

pavement design software. As a communication function of LTPP, the data are 

provided to accessible through the databases.  InfoPave is a web interface of where the 

whole collected LTPP data are readily available on internet that enables the easy access 

for the people who deals with pavements in all around the world. (Quintus and 

Simpson 2002; Transportation Research Board 2001, 2009). 

2.6 Forward Calculation of Deflection Basin 

Forward calculation of deflection basin is the most critical step of pavement layer 

backcalculation operations. Using geometrical and mechanical properties of layers as 

input properties of forward calculation software, pavement responses such as stress, 

strain and deflections can be computed. In backcalculation, it is essential to simulate 

test section in the way of presenting real-like surface deflections under actual traffic 

and environmental conditions. There are three different commonly employed methods 

as forward response modelling of pavements which are method of equivalent thickness 

(MET), multi-layered elastic theory and finite element method (FEM) explained in 

detail through the following sections, respectively.  
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2.6.1 Method of Equivalent Thickness 

Method of equivalent thickness bases on the theory proposed by Boussinesq (1885). 

Through the use of his theory, stresses, strains and deflections occurred in a layer under 

subjected point load can easily be determined. While calculating the responses, the 

theory assumes that pavement consists of homogenous and isotropic layers which is 

on semi-infinite elastic space. Considered point load in the theory does not reflect the 

actual loading condition of a wheel so that this concentrated point load are integrated 

to a circular loaded area. Axisymmetric stress state due to this circular loading is 

depicted in Figure 11   

 

Figure 11 Axisymmetric Stress Sate Due to Circular Loading (Huang 2003) 

 

 

Uniformly distributed load applied to the pavement surface and occurred stress, strain 

and deflections are defined with the following equations: 

 𝜎𝑧 = 𝑞 [1 −
𝑧3

(𝑎2 + 𝑧2)1.5
] (1) 

 

 𝜎𝑟 =
𝑞

2
[1 + 2𝜐 −

2(1 + 𝜐)𝑧

(𝑎2 + 𝑧2)0.5
+

𝑧3

(𝑎2 + 𝑧2)1.5
] (2) 
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  𝜖𝑧 =
(1 + 𝜐)𝑞

𝐸
[1 − 2𝜐 +

2𝜐𝑧

(𝑎2 + 𝑧2)0.5
−

𝑧3

(𝑎2 + 𝑧2)1.5
] (3) 

 

 𝜖𝑟 =
(1 + 𝜐)𝑞

2𝐸
[1 − 2𝜐 −

2(1 − 𝜐)𝑧

(𝑎2 + 𝑧2)0.5
+

𝑧3

(𝑎2 + 𝑧2)1.5
] (4) 

 

 𝜔 =
(1 + 𝜐)𝑞𝑎

2𝐸
{

𝑎

(𝑎2 + 𝑧2)0.5
+

1 − 2𝜐

𝑎
[(𝑎2 + 𝑧2)0.5 − 𝑧]}   (5) 

 

Where, 𝜎𝑧 , 𝜎𝑟 , 𝜀𝑧 𝑎𝑛𝑑 𝜀𝑟 refer that vertical stress, radial stress, vertical strain and radial 

strain, respectively. On the other hand, q is the uniform pressure, a is radius of the 

circular area, z is depth from the surface, v is Poisson’s ratio, E is modulus of elasticity 

and w is vertical deflection.  

Since the Boussinesq’s equations are only applicable for single isotropic and 

homogenous layer, the theory itself is insufficient to simulate in practice layered 

structures. Hence, there was a need of a method which is valid for multi-layered 

pavement structures composing of different materials. Odemark (1943) developed 

method of equivalent thickness which transforms multi-layered structures including 

layers with different thicknesses and elastic moduli into an equivalent structure of 

those all the layers have the same moduli but different thicknesses. Equivalent 

thickness of each layer is defines with the following equation: 

 ℎ𝑒 = 𝑓ℎ1 [
𝐸1

𝐸2
(

1 − 𝜐2
2

1 − 𝜐1
2)]

1
3⁄

 (6) 

 

Where, ℎ𝑒 refers to the equivalent thickness,  ℎ1 is the thickness of first layer and 

 𝐸1, 𝐸2, 𝑣1 𝑎𝑛𝑑 𝑣2 refer to elastic modulus and Poisson’s ratio for first and second 

layers, respectively. f is the correction factor enables better approximation to the 

layered elastic theory and it is related with number of layers and corresponding 
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thicknesses, modular ratios and Poisson’s ratios. By applying Odemark’s method, all 

the layers are transformed successively into an equivalent system regarding the same 

modulus. By this way, the system becomes suitable for application of Boussinesq’s 

equations to calculate deflection basins under imposed loading on multi-layered 

pavement structures. 

2.6.2 Multi-layered Elastic Theory 

A typical flexible pavement has multi-layered structure that the layers composed of 

strong materials are located on top and the layers which are composed of relatively 

weaker materials are placed beneath them. Analytical solutions for two-layer 

structures are proposed first time by Burmister (1943). After a few years, he advanced 

the theory to be applicable on three-layer structures. Today, n-layer (multi-layered) 

structures can be analyzed with this approach as an extended version of Burmister’s 

theory presented by Schiffman (1962). A schematic of a multi-layered system is 

illustrated in Figure 12. 

 

 

Figure 12 Multi-layered Pavement Structure Subjected to a Circular Loading (Huang 2003) 
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Stress, strain and displacement responses in a multi-layered system can be calculated 

through the multi-layered elastic theory by making basic assumptions which are listed 

below: (Huang 2003; Yoder and Witczak 1975). 

o Each pavement structure is composed of several layers of materials which are 

homogenous, isotropic and linearly elastic. 

o Layers are defined with two mechanical properties, elastic modulus, E and 

Poisson’s ratio, v. 

o Each layer is infinite in lateral directions and all the layers except the 

undermost have a finite thickness, h. 

o Full friction exists between the layers throughout each interface. 

o Circular load with uniform pressure is imposed to the pavement surface. 

o There is no shearing force on the surface. 

Responses of a multi-layered system are obtained by solving a boundary value 

problem. For this purpose fourth order differential equation is solved for the boundary 

conditions of pavement in question. The stress function of each layer is defined with 

φ and the following equation need to be satisfied.  

 ∇4𝜑 = 0   (7) 

 

In an axisymmetric problem, the equation will be presented as follows: 

   ∇4= (
𝜕2

𝜕𝑟2
+

1

𝑟
 

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2
) (

𝜕2

𝜕𝑟2
+

1

𝑟
 

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧
2

) (8) 

 

The stress function φ is solved by satisfying the boundary conditions and the 

corresponding stress and displacement responses can be calculated by the following 

equations: 
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 𝑢 =
1 + 𝜐

𝐸

𝜕2𝜙

𝜕𝑧𝜕𝑟
 (9) 

 

  𝑤 =
1 + 𝜐

𝐸
[2(1 − 𝜐)∇2𝜙 −

𝜕2𝜙

𝜕𝑧2
]  (10) 

 

 𝜎𝑧 =
𝜕

𝜕𝑧
[(2 − 𝜐)∇2𝜙 −

𝜕2𝜙

𝜕𝑧2
] (11) 

 

 𝜎𝑡 =
𝜕

𝜕𝑧
(𝜐∇2𝜙 −

1

𝑟
 
𝜕𝜙

𝜕𝑧
) (12) 

 

 𝜏𝑟𝑧 =
𝜕

𝜕𝑟
[(1 − 𝜐)∇2𝜙 −

𝜕2𝜙

𝜕𝑧2
] (13) 

 

 𝜎𝑟 =
𝜕

𝜕𝑧
(𝜐∇2𝜙 −

𝜕2𝜙

𝜕𝑟2
) (14) 

 

Where w is the vertical deflection that can be used in backcalculation. 

In structural analysis of pavements, several computer programs utilize the multi-

layered elastic theory. CHEVRON is the first pavement analysis software developed 

by Warren and Dieckmann (1963). Hwang and Witczak (1979) improved the 

CHEVRON and named the new software DAMA. This program takes into account the 

stress dependent nature of unbound granular materials and also it is capable of 

calculating pavement responses up to five-layer structures. Another multi-layered 

elastic theory based program is BISAR developed by De Jong, et al. (1973) in Shell 

Company and the software can handle multiple loading conditions. In 1986, ELSYM5 

program which can analyze five-layer pavements under multiple loads was developed 

at the University of California by Kopperman et al. Later on, Van Cauwelaert, et al. 

(1989) developed the program WESLEA in order to calculate stress, strain and 
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displacements of maximum five-layer structures in varying interface frictions under 

up to twenty wheel loads. The last example of softwares that uses the multi-layered 

elastic theory is KENLAYER (Huang 1993). Among these computer programs, 

KENLAYER is the most capable one in modelling pavement responses realistically 

that is because of  incorporating nonlinear elastic and viscoelastic behavior of materials 

in the analyses. These analysis softwares have been used as a forward response engine 

in backcalculation softwares for decades.  

Although extensive usage of multi-layered elastic theory in calculating pavement 

responses, the theory has several drawbacks which affect the accuracy of results. These 

limitations arise from the considered assumptions in the theory. As mentioned above, 

all the layers are regarded as linearly elastic, in fact they are not. Asphalt concrete is a 

mixture that presents viscoelastic behavior, so that its stiffness properties is associated 

with time and temperature. And also base/subbase and subgrade geomaterials show 

nonlinear behavior that stiffness related properties changes according to stress states. 

On the other hand, the theory assumes that all the materials within the layers are 

isotropic and homogenous which are not the real cases for the materials (Tutumluer 

and Thompson 1997). The loading pattern taken into account in the theory is not 

perfectly circular and uniformly distributed which is another limitation of the method 

for reaching the actual pavement responses. Most of these difficulties can be handled 

by the use of another approach which finite element method. 

2.6.3 Finite Element Method 

Many engineering problems having complex geometries can be expressed with partial 

differential equations of which are not easy to be solved using analytical methods. 

Numerical methods such as FEM enable approximate solutions to these equations for 

the problems including complex geometrical and material properties. Due to these 

abilities, finite element (FE) analysis approach have been commonly used in structural 

analysis of pavements. Through the advancing computer technology, FEM has been 

adapted for solving the problems of different engineering areas. For example, the 

method can be employed for conducting stress and thermal analyses of mechanical 
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products such as valves, pressure vessels, automotive engines and aircrafts under the 

umbrella of mechanical engineering. Almost every civil engineering structures like 

dams, buildings and tunnels can be analyzed using FEM based softwares (Fish and 

Belytschko 2007).  Due to the versatility of FEM, it can be applied in other areas 

including complex problems over the years.  

The main idea behind the FEM is to solve governing equation of a complex structure 

in a continuous domain by dividing into smaller units called finite elements. So that 

interconnection of each finite element presents entire structure as shown in Figure 13. 

The method develops the formulation for the approximate solution of each element 

and then they are assembled to obtain the general solution of the whole structure. FEM 

provides approximate and simplified solutions to the structural problems however, 

when the number of finite elements increase, problems become computationally 

intensive to be solved manually. So that it is essential to employ computers in finite 

element analysis. At present, there are many general and specific purpose FEM based 

structural analysis softwares which are well-accepted in most of the engineering 

branches.  

 

Figure 13 Finite Element Representation of a Body (Fish and Belytschko 2007) 

 

FEM can be also utilized for structural analysis of pavements. In contrast to the multi-

layered elastic theory, it can handle complicated geometry of pavement structures, 

non-uniform loadings and complex material properties. So that FEM is capable of 

modelling pavement responses more accurate than elastic theory that may directly 

affect the backcalculated pavement layer properties.  
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Application of the method in specific purpose pavement analysis softwares includes 

five major steps. First one is the preprocessing that required geometrical and material 

properties of structure are described to the software. Layer thicknesses, boundary 

conditions, and stiffness related material properties such elastic modulus, Poisson’s 

ratio need to be given as inputs and also constitutive material models are selected. 

Considering the geometrical properties and loading conditions, the structure in 

question is discretized into finite elements called as meshing and by this way, nodal 

coordinates and element connectivity are determined by the software. Second step is 

the element formulation; partial differential equations such as potential energy 

function is defined for each element in order to obtain stiffness matrices. Combining 

the equation of individual elements to form the global stiffness matrix of the entire 

structure is the third step of the analysis. Fourth step is the solution of the final equation 

by applying the boundary conditions of the problem domain. Post-processing is the 

final step of which consists of determining the responses of interest. In other words, 

stress and strain values of elements, nodal displacements and reactions can be 

calculated and these responses can also be visualized (Ahmed 2010; Fish and 

Belytschko 2007; Karagöz 2004). 

General purpose finite element based softwares such as ABAQUS, ADINA and 

ANSYS can be used for pavement response analysis. Although their capability of 

solving complex various engineering problems, it may not be practical to perform them 

as forward response engine in pavement layer backcalculation problems. Beside these 

softwares, there are also FEM based computer programs specifically developed for 

pavement analysis and design purposes. The prime objective of these softwares is to 

simulate approximate pavement behavior to the real conditions under traffic loading 

so that associated pavement responses are computed using various constitutive 

relations for nonlinear base/subbase and subgrade materials. These pavement analysis 

and design computer programs base on two different modeling approach as three-

dimensional and two-dimensional (axisymmetric). Revolution of the cross-sectional 

area of pavement structure employed in the axisymmetric modelling. ILLI-PAVE, 
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MICH-PAVE, GAPPS7, SENOL and DIANA are the softwares which use two-

dimensional axisymmetric modelling approach. 

2.6.4 Material Characterization  

HMA layers located on top of the other layers are composed of bituminous material 

which exhibits viscoelastic behavior means that the material has both elastic behavior 

of solid and viscous behavior of liquid. Thus, their stiffness properties is directly 

related with time and temperature. Taken into account the viscoelastic behavior of 

asphalt layers increases the number of variables to be handled that makes the analysis 

more complex. For the sake of computation simplicity, HMA layers were considered 

as linearly elastic in several studies for backcalculation purposes (Ceylan and 

Gopalakrishnan 2006; Gopalakrishnan 2009a; Khaitan and Gopalakrishnan 2010; 

Meier 1995; Nazzal and Tatari 2013; Rakesh et al. 2006).  

As mentioned earlier, base/subbase and subgrade materials exhibit stress dependent 

behavior.  By increasing stress state, granular and fine grained materials shows stress 

hardening and softening nature, respectively. Here, a concept emerges related with 

stiffness properties of such layers named resilient modulus need to be well 

characterized for both types of granular and fine grained materials.  

2.6.4.1 Resilient Modulus Concept 

Resilient modulus is an elastic modulus defined for stress dependent granular and fine 

grained subgrade soils. Figure 14 presents the resilient modulus laboratory test results 

under repeated loading conditions. As can be seen from the initial stage of load 

applications, significant plastic deformations occur besides the elastic deformations. 

With the increasing number of load applications, amount of permanent deformation 

starts to decrease and after 100 to 200 load applications it is regarded as there is no 

considerable plastic deformation. In the final stage, strain is defined with 𝜀𝑟. Using 

these data, resilient modulus 𝑀𝑅 is expressed as follows (Huang 2003): 
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Figure 14 Deformation Under Repeated Loading (Huang 2003) 

 

 𝑀𝑅 =
𝜎𝑑

𝜖𝑟
 (15) 

 

Where 𝜎𝑑 is deviator stress which is equal to axial stress in unconfined compression 

laboratory test. Since the negligible effect of confining pressure in low stress states 

and temperatures, unconfined compression test can also be implemented. However, in 

other cases, triaxial test is usually performed to examine the resilient behavior of 

materials. A typical triaxial test setup is illustrated in Figure 15.  

AASHTO, European, ICAR and Harmonized protocols have been established different 

test procedures for investigating resilient modulus of materials under repeated 

loadings. AASHTO protocols such as T 274: “Resilient Modulus of Subgrade Soils” 

and T 294: “Resilient Modulus of Unbound Granular Base/Subbase Materials and 

Subgrade Soils” are the standard test procedures established in the past of which had 

been widely used. In order to eliminate the encountered problems and deficiencies in 

these protocols, AASHTO provided a new protocol called 307: “Determining the 

Resilient Modulus of Soils and Aggregate Materials”. According to this protocol, 

granular and fine grained cylindrical specimens are subjected to repeated axial 

loadings under confining pressure to measure the recoverable strains trough the 
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deformations. Using the deviator stress and recoverable strain, resilient modulus of the 

tested material can be calculated.  

 

Figure 15 Triaxial Compression Test Cell Setup (Papagiannakis and Masad 2008) 

 

In repeated load test, it is essential to model a moving wheel loading as close as 

possible to actual field conditions.  So that load duration and shape of stress pulse 

should be well selected. For this purpose, haversine shaped loading is chosen to be 

exposed to the sample in AASHTO T 307 standard test protocol. The duration of a 

load cycle is considered as 1 second formed with 0.1 second for load duration and 0.9 

second for the resting period till the following loading. The test is performed using 

triaxial test apparatus proposed by AASHTO shown in Figure 15. The minimum 

sample size should satisfy the 1:2 diameter to length ratio. According to the current 

protocol, the test can be divided into two main stages. First one is conditioning stage 
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that different combinations of confining and deviator stress are imposed to the sample 

for 500 to 1000 load repetitions.  After completing the conditioning, second stage is 

started that successive loadings with varying dynamic cyclic stress and confining 

pressure. This stage includes several steps to measure the recoverable deformation. 

Each step is accomplished in constant confining pressure under increasing deviator 

stress and then confining pressure is changed for the next step to be exposed the same 

deviator stress with the previous step. The number of steps, load application sequences 

and corresponding load amounts are presented AASHTO T 307 protocol in detail.  At 

the end of the test, recoverable or resilient strain is calculated from the deformation 

data and together with the deviator stress resilient modulus can be calculated for each 

loading conditions.  

2.6.4.2 Empirical Correlations with CBR and R Value  

Strength of pavement materials can be examined through several field and laboratory 

tests. Usually, they are not performed to determine resilient modulus directly, however 

empirical correlations can be established between test results and resilient modulus 

MR.  

The California Bearing Ratio (CBR) test is employed for evaluating load-bearing 

capacity of pavement subgrade and base layers. In this test, a standard piston penetrates 

the soil and required pressures at certain amount of displacements are recorded. Then 

this pressure values are divided to equivalent pressures to obtain the same 

displacements on standard crashed rocks that the ratio gives the CBR value of the soil 

(Yoder and Witczak 1975). To define the correlation between MR and CBR values 

following equation is proposed:  

 𝑀𝑅 = 𝐾1(𝐶𝐵𝑅)𝐾2 (16) 

 

For K1 and K2 constants, researchers proposed different values. For instance, 

Heukelom and Foster (1960) suggested to use K1 = 1,500 and K2 = 1.0, Lister and 

Powell (1987) established the values as K1 = 2,555 and K2 = 0.64  and the Council of 
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Scientific and Industrial Research proposed the constants as K1 = 3,000 and K2 = 0.65. 

It is reported according to available laboratory results, MR - CBR correlation of fine 

grained soils is more reasonable than granular materials (Huang 2003).  

Another test method being used for strength evaluation purpose of pavement materials 

is to use of stabilometer. This device measures the internal friction of materials called 

resistance value, R. In Figure 16, typical section of a stabilometer is illustrated.  

 

Figure 16 Typical Section of Stabilometer (Huang 2003) 

 

A stabilometer is a type of triaxial compression test that applies a standard vertical 

load which is 1.1 MPa (160 psi) over the specimen and measures occurred lateral 

pressure in the fluid which is transmitted through the sample. The resistance value, R 

can be calculated with the following equation: 

 𝑅 = 100 −
100

(2.5 𝐷2) (𝑝𝑣/𝑝ℎ⁄ − 1) + 1
 (17) 

 

where pv is the standard vertical pressure, ph is the resulting lateral pressure due to pv. 

D2 is the amount of displacement of fluid under pressure which is necessary to increase 

lateral pressure from 35 to 690 kPa (5 to 100 psi). In 1982, Asphalt Institute established 

a correlation between MR and R as presented below: 

 𝑀𝑅 = 1155 + 555𝑅 (18) 
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Apart from CBR and R correlations, Van Til et al. (1972) conducted a study to propose 

the relations between resilient modulus and other test methods as shown in Figure 17. 

It should be noted that these correlations rely on the local conditions where they are 

developed and they can be used just as a guide unless more reliable resilient modulus 

information is available. These correlations does not take into account the stress 

sensitive behavior of granular and fine grained materials which is another drawback 

of this chart. Therefore, use of empirical correlations may not be efficient all the time  

(Huang 2003; Yoder and Witczak 1975).  

 

Figure 17 Resilient Modulus Correlation Chart with Several Test Parameters (Huang 2003) 

 

2.6.4.3 Material Models for Unbound Granular Materials 

In pavement design, unbound granular materials play an essential role in the 

performance of the structure. These materials are used to form base and subbase layers 

that have functions of transmitting the imposed traffic loading to the natural soil and 

preventing the subgrade against environmental effects. Aggregates with varying sizes, 

water and air voids between the particles constitute the unbound granular materials 
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and the mechanical behavior of such materials is related with interaction between the 

aggregates and the behavior of each aggregate particle itself. It is known that, there are 

several conditions affecting this internal structure of granular materials. Subjected load 

levels, density, moisture content and gradation of aggregates are the conditions that 

can influence the mechanical responses of pavement structures and they are needed to 

be considered in modeling stages. However, it could be quite problematic to regard all 

of the influencing factors in characterization of such materials. With increasing stress 

levels, granular materials exhibit stress hardening behavior means that increase in 

stiffness properties according to imposed loading. For this reason, as expressed in the 

previous section, resilient modulus is used to define mechanical properties of unbound 

granular materials in addition to Poisson’s ratio. For over the years, researchers have 

been conducted several studies in order to model nonlinear granular material properties 

with constitutive laws using laboratory and field tests (Kim 2007). These models are 

summarized in this section respectively. 

Seed et al. (1967) proposed the confining pressure model to express the resilient 

modulus in terms of confining pressure. 

 𝑀𝑅 = 𝐾1(𝜎3)𝐾2 (19) 

 

where 𝜎3 is confining pressure, K1 and K2 are the model constants obtained from 

triaxial tests.  

Another model based on stress state is K–θ model which is developed by Hicks and 

Monismith (1971).    

 𝑀𝑅 = 𝐾(𝜃)𝑛 (20) 

 

where θ is bulk stress or in order words sum of principal stress = 𝜎1 + 𝜎2 + 𝜎3, K and 

n are the constant obtained from triaxial tests. The model neglects the shear stresses 

which directly affects the resilient modulus value. However, due to its simplicity K-θ 

model is still used despite this deficiency (Kim 2007). In Figure 18, determination of 
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resilient modulus using triaxial test data is presented. Here, resilient modulus is plotted 

against the bulk stress on logarithmic scale that resilient modulus corresponding to 1 

psi bulk stress refers to K constant and the slope of the line gives the n value (Huang 

2003). In Table 1 typical K and n values for different type of granular materials are 

presented. 

 

Figure 18 Determination of K and n Constants from Triaxial Test Results (Huang 2003) 

 

Table 1 Typical K-θ model parameters for different type of granular materials (Rada and 

Witczak 1981) 

Granular Material Type 
Number of Data 

Points 

K (psi) n 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Silty Sands 8 1620 780 0.62 0.13 

Sand-Gravel 37 4480 4300 0.53 0.17 

Sand-Aggregate Blends 78 4350 2630 0.59 0.13 

Crushed Stone 115 7210 7490 0.45 0.23 

 

Shackel (1973) proposed a model using octahedral shear stress and octahedral normal 

stress for both granular and cohesive soils. 

 𝑀𝑟 = 𝐾1 [
(𝜏𝑜𝑐𝑡)𝐾2

(𝜎𝑜𝑐𝑡)𝐾3
] (21) 
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where  𝜎𝑜𝑐𝑡 is octahedral normal stress and 𝜏𝑜𝑐𝑡 is octahedral shear stress which are 

defined in terms of the first and the second stress invariants, I1 and I2 as shown below:  

 𝜎𝑜𝑐𝑡 =
1

3
(𝜎1 + 𝜎2 + 𝜎3) =

1

3
І1 (22) 

 

 𝜏𝑜𝑐𝑡 =
1

3
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2]

1
2 =

√2

3
(І1

2 − 3І2)
1
2 (23) 

 

As mentioned above K-θ model has a weakness since it does not consider the shear 

behavior. So that Uzan (1985) improved the model by adding the deviator stress 

component to incorporate the effect of shear behavior. The resulting Uzan model is 

presented in the following form: 

 𝑀𝑅 = 𝐾1(Ɵ)𝐾2(𝜎𝑑)𝐾3 (24) 

 

where 𝜎3 is confining pressure, θ is bulk stress = 𝜎1 + 𝜎2 + 𝜎3 K1, K2 and K3 are 

regression constants determined by test results. In this study, Uzan (1985) illustrated 

the effect of neglecting and taking into account shear stress in K-θ model and Uzan 

model, respectively as shown in Figure 19. As it can be clearly seen from the figures 

Uzan model shows good agreement with the test data better than K-θ model. 
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Figure 19 Comparison of test results and a) K-θ Model b) Uzan Model (Uzan 1985) 

 

Uzan model is modified by replacing the deviator stress component with the octahedral 

shear stress and in order to make the model parameters dimensionless, stress 

components are divided to atmospheric pressure (pa) for normalization purpose 

(Witczak and Uzan 1988). The proposed correlation is named as Universal Octahedral 

Shear Stress Model as presented below: 

 𝑀𝑅 = 𝐾1𝑝𝑎(
І1

𝑝𝑎
)𝐾2(

𝜏𝑜𝑐𝑡

𝑝𝑎
)𝐾3 (25) 

 

Where I1 is the first stress invariant = 𝜎1 + 𝜎2 + 𝜎3, 𝜏𝑜𝑐𝑡 is octahedral shear stress and 

pa is the atmospheric pressure and K1, K2 and K3 are the constants obtained from test 

results. 

 𝜏𝑜𝑐𝑡 =
1

3
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2]

1
2 =

√2

3
(І1

2 − 3І2)
1
2 (26) 
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Itani (1990) proposed a model which incorporates the several stress sates as variables 

in the model. The model is presented in the following form: 

 𝑀𝑅 = 𝐾1𝑝𝑎(
𝜎Ɵ

𝑝𝑎
)𝐾2(𝜎𝑑)𝐾3(𝜎3)𝐾4 (27) 

 

where 𝜎𝜃 is bulk stress =  𝜎1 + 𝜎2 + 𝜎3,  𝜎3 is confining pressure, pa is the atmospheric 

pressure  and  K1, K2, K3 and K4  are the model constants obtained from test results.    

In NCHRP 1-37A, MEPDG, a correlation is developed for both unbound granular and 

fine-grained subgrade materials.  This model characterizes the stiffening and softening 

effect of bulk and shear stress, respectively using K regression constants (Kim 2007). 

 𝑀𝑅 = 𝐾1𝑝𝑎 (
Ɵ

𝑝𝑎
)

𝐾2

(
𝜏𝑜𝑐𝑡

𝑝𝑎
+ 1)𝐾3 (28) 

 

where θ  is sum of the principal stresses =  𝜎1 + 𝜎2 + 𝜎3,  𝜏𝑜𝑐𝑡 is octahedral shear 

stress, pa is the atmospheric pressure  and  K1, K2 and K3  are the regression constants 

obtained from test results.  

2.6.4.4 Material Models for Fine Grained Subgrade Soils 

Subgrade is the one of the most significant component of a pavement structure located 

underneath the base and surface layers. Its behavior under imposed traffic loading and 

environmental effects overrides among the other conditions influencing the pavement 

design parameters and performance. Thus, characterization of subgrade materials 

should be well performed to obtain reliable pavement design. There are several factors 

which affect the characterization of subgrade materials include loading states and 

physical conditions such as compaction, Atterberg limits, moisture and dry density of 

soils. Mechanical behavior of fine-grained subgrade soils can be represented with 

resilient properties because of the stress sensitive behavior of the soils just as the 

unbound granular materials. Fine grained soils exhibit stress softening behavior that 

resilient modulus decrease with the increasing deviator stress. According the study 
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conducted by Thompson and Robnett (1979) it is reported that resilient modulus of 

fine-grained subgrade soils is a function of deviator stress and confining pressure is 

less significant by comparing to deviator stress. So that it is essential to develop 

mathematical models of fine-grained soils showing nonlinear behavior regarding the 

relation between deviator stress effecting and resilient modulus.   

Over the years, various constitutive equations were established by different researchers 

to better characterize the fine-grained soils incorporating effecting factors.  Brown 

(1979) established a mathematical model that considers mean normal stress which is 

caused by overburden pressure and occurred deviator stress due to wheel loading. The 

model is presented as follows: 

 𝑀𝑅 = 𝐴 ( 
𝑝0

𝑞𝑅
 )

𝐵

 (29) 

 

where p0 is effective mean normal stress and qR is the deviatoric stress. A and B are the 

subgrade soil constants having rages 2.9 to 29.0 and 0 to 0.5, respectively. In later 

studies, Loach (1987) improved the Brown’s model by combining another deviator 

stress term to the model as shown in the following equation: 

 𝑀𝑅 = 𝐶𝑞𝑅 ( 
𝑝0

𝑞𝑅
 )

𝐷

 (30) 

 

here, C and D are the fine-grained material constants varying between 10 to 100 and 1 

to 2, respectively (Kim 2007).   

Semilog model is another constitutive equation developed by Fredlund et al. (1977) to 

characterize resilient modulus in terms of deviator stress.  

 𝑙𝑜𝑔(𝑀𝑅) = 𝑘 − 𝑛𝜎𝑑 (31) 

 

Where k and n are the model constants having ranges 3.6 to 4.3 and 0.005 to 0.09, 

respectively.  
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Thompson and Robnett (1979) proposed the bilinear or arithmetic model which is one 

of the most popular constitutive models employed in stress dependent modulus 

characterization. As illustrated in Figure 20, the bilinear curve is plotted in order to 

show the relationship between deviator stress and resilient modulus based on the cyclic 

triaxial test results. Corresponding resilient modulus at the intersection point of the 

curves refers to breakpoint resilient modulus, ERİ which can be utilized to classify fine-

grained subgrade soils as being soft, medium or stiff. Also it is a good indicator of 

resilient behavior of materials than other material constants. σdi is the deviator stress 

associated with breakpoint resilient modulus, K3 and K4 are the material constants 

calculated from the slopes of the lines (Thompson and Robnett 1979). In this model, 

resilient of fine-grained materials under deviator stress can be calculated using the 

following equations: 

 𝑀𝑅 = 𝐸𝑅İ + 𝐾3(𝜎𝑑𝑖 − 𝜎𝑑) when 𝜎𝑑 ≤ 𝜎𝑑𝑖  (32a) 

 𝑀𝑅 = 𝐸𝑅İ + 𝐾4(𝜎𝑑 − 𝜎𝑑𝑖) when 𝜎𝑑 ≥ 𝜎𝑑𝑖 (32b) 

 

 

Figure 20 Bilinear or Arithmetic Model for Stress Dependent Modulus Characterization of 

Fine-Grained Soils (Thompson and Robnett 1979) 
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2.6.5 A Pavement Analysis and Design Software: ILLI-PAVE 

ILLI-PAVE is the one of the FEM based pavement analysis design softwares 

developed at University of Illinois at Urbana-Champaign (Raad and Figueroa 1980). 

This computer program considers the pavement in two-dimensional or axisymmetric 

domain that the entire structure is formed by the revolution of cross-sectional area. 

Nonlinear elastic material behaviors are incorporated into analyses with this software. 

In this respect, unbound granular materials presenting stress hardening under 

increasing loading conditions can be modelled with three different models: confining 

pressure model (Equation (19)), K-θ model (Equation (20)) and Uzan model (Equation 

(24)). Nonlinear nature of fine-grained subgrade soils are also incorporated into the 

ILLI-PAVE as three different constitutive equations:  Semilog model (Equation (31)), 

Log-log model and Arithmetic model (Equation (32)) that each of them relates the 

resilient behavior with deviatoric stress. In the analyses of pavement, since the 

principal stress components of layers are updated iteratively, to ensure the stresses not 

to exceed the strength of the materials, the software utilizes Mohr-Coulomb failure 

criteria in each iteration.  

For moreover than three decades, ILLI-PAVE has been used extensively for the 

purpose of nonlinear structural analysis of flexible pavements. Since the software takes 

into account the nonlinearity of materials and handles complex geometries, it can 

adequately characterize the pavement responses.  There have been several studies 

which use ILLI-PAVE software in the current literature. Terrell et al. (2003) 

investigated stiffness properties of granular layers in inverted type flexible pavements 

using field tests and researchers used ILLI-PAVE software in calculating the stress 

components. In another study, Kuo and Huang (2006) compared pavement responses 

obtained by  3D analysis of ABAQUS software with the solutions obtained from ILLI-

PAVE. The software is widely used in pavement layer backcalculation to estimate 

pavement deflections basins by simulating FWD test and calculating the associated 

deflections at designated sensor locations. Tutumluer et al. (2009) employed the ILLI-

PAVE in order to generate a database including deflection basins and corresponding 

pavement structures which are utilized to train ANN forward response models. Using 
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these neural network models, an innovative methodology named as SOFTSYS is 

developed to backcalculate flexible pavements’ layer thickness and stiffness 

properties. There are similar studies that ILLI-PAVE is successfully implemented to 

generate ANN models. Using the input-output pairs of ILLI-PAVE, reliable and robust 

neural network models can be developed (Khaitan and Gopalakrishnan 2010; Pekcan 

et al. 2009; Ceylan and Gopalakrishnan 2006; Pekcan et al. 2008; Gopalakrishnan 

2009). Beside the analysis of highway pavements, airport runways can also be 

investigated. In the study conducted by Gopalakrishnan and Thompson (2006), 

stiffness related layer properties of runways were backcalculated. Researchers 

preferred to utilize ILLI-PAVE software in forward calculation engine to replicate the 

HWD loading on highway pavement.  

 

Figure 21 ILLI-PAVE 2005 User Interface 

 

 



 

48 

 

2.7 Backcalculation of Layer Moduli 

Backcalculation is a process of evaluating structural capacity of in service pavements 

by using non-destructive test results. Researchers have been implemented several 

methods in pavement backcalculation issues. Difference of each backcalculation 

technique comes from the utilized forward response engine and search approach.  Due 

to the inherent nature of pavement structures and environmental conditions, sensitivity 

of stiffness properties and pavement responses is rather high  therefore, it is essential 

to find out the nature of the problem and to choose the most suitable approaches for 

backcalculation (Onur Pekcan et al. 2008). Depending on the forward response 

modeling in terms of loading, material characterization and employed optimization 

algorithms, backcalculation methods could be classified into different categories 

(Goktepe et al. 2006).   

2.7.1 Backcalculation Methods 

Goktepe et al. (2006) conducted a study which reviews the advances in pavement layer 

backcalculation. According to this study, backcalculation methods can be divided into 

three main categories by considering the type of forward calculation and analysis 

approaches as static, dynamic and adaptive as shown in Figure 22.  

In static backcalculation approach, pavement responses can be modelled using either 

multi-layered elastic theory or FEM based softwares. Taking into account the 

nonlinearity of base/subbase and subgrade materials in response analysis, increase the 

accuracy of the backcalculated layer properties. Optimization methods used in 

conjunction with the forward model also influences the accuracy of outputs of the 

backcalculation analysis. One of the static approaches is the closed form 

backcalculation algorithm which calculates layer moduli directly using layer 

thicknesses and deflections at some specific points (Fwa et al. 2000). 2L-BACK 

backcalculation software based on Burmister’s theory for two-layer flexible 

pavements uses closed form algorithms (Fwa and Rani 2005). There are also computer 

programs rely on the closed form solutions for rigid pavements such as ILLI-BACK 

and NUS-BACK. In order to estimate deflections at specific locations, every 



 

49 

 

backcalculation program carries out several numerical processes. For this purpose 

iterative methods, regression equations and optimization algorithms are employed in 

these computer programs (Swett 2007). Parameter identification algorithms like least 

squares, gradient descent and Gauss-Newton methods could be used for minimizing 

the error between calculated and measured deflection basins. Here, defined objective 

function is tried to be minimized without trapping local minima and to provide best 

match between theoretical and measured deflection basins. Researchers have been 

described several objective functions to be used so as to provide deflection 

convergence (Harichandran and Mahmood 1993; Sivaneswaran et al. 1991). The 

iterative approach can be illustrated using multivariate equivalent of linear 

interpolation as depicted in Figure 23 that process starts with deflection calculations 

corresponding to the supplied minimum and maximum layer moduli. Iterations 

continue until reaching the different between deflections less than 10% which is 

thought that convergence is obtained (Bush and Alexander 1985). Another static 

backcalculation approach is the database method. This approach employs previously 

created database of deflection basins associated with the various layer thicknesses and 

moduli values varying within particular ranges instead of computing the deflection 

basins iteratively. MODULUS backcalculation software is one of the popular software 

that works with the database method (Uzan et al. 1988).  

 

Figure 22 Classification of Backcalculation Methods (Goktepe et al. 2006) 
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Figure 23 Iterative Process for Pavement Layer Backcalculation (Huang 2003) 

 

As expressed in the study of Goktepe et al. (2006), dynamic backcalculation methods 

are another conventional approach used in investigation of flexible pavement 

properties. The distinctive features of dynamic backcalculation methods against the 

static ones are loading conditions applied over pavement surface and forward analysis 

routines. In contrast to using peak applied loads which is regarded in static 

backcalculation methods, dynamic manner uses impulsive and vibratory loads in time 

and frequency domains, respectively. Generally fast fourier transformations are 

implemented in the way of calculating deflection basins. Dynamic response analysis 

enables more realistic pavement structure characterization under traffic loadings since 

it incorporates into the viscoelastic material behavior of asphalt layers. Therefore, the 

complex moduli characterizes the AC layer when analysis is conducted in frequency 

domain and creep compliance is used to define the material properties in time domain. 

Despite the sensitive modelling capability of dynamic analysis, when the nonlinearity 

of materials are considered it becomes more complex. Therefore, in most of the 

dynamic analysis materials are assumed as exhibiting linearly (Goktepe et al. 2006). 

In deflection matching steps, the same optimization approaches with static ones can 

be performed to evaluate the stiffness properties. For instance, Asli et al. (2012) 

assessed the flexible pavement stiffness related properties dynamically using least 

square based method.  
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In addition to expressed optimization approaches above, artificial intelligence methods 

as nontraditional manner are performed in both static and dynamic backcalculation 

methods. Most commonly used one among these type of algorithms is genetic 

algorithm (GA) which is developed by inspiring the evolutionary theory (Goldberg 

1989). Several researcher have been used GA extensively for years in pavement layer 

backcalculation as a search method (Bosurgi and Trifirò 2005; Hu et al. 2007; Nazzal 

and Tatari 2013; Pan et al. 2012; Pekcan 2010; Rakesh et al. 2006; Tsai et al. 2009). 

Not also evolutionary algorithms employed in backcalculation but also another 

metaheuristic optimization algorithms like particle swarm optimization (PSO), 

differential evolution (DE) algorithm and Shuffled Complex Evolution (SCE) are 

implemented to estimate stiffness properties of flexible pavement layers 

(Gopalakrishnan et al. 2009; Khaitan and Gopalakrishnan 2010). In this study, a newly 

developed metaheuristic search method: Gravitational Search Algorithm (GSA) is 

utilized in optimization processes (Rashedi et al. 2009a). All the employed methods in 

this study will be expressed in detail within the following section.   

The last but not the least methods for flexible pavement layer backcalculation are 

adaptive ones. Artificial neural networks and adaptive neuro-fuzzy inference system 

(ANFIS) are the integral parts of this nontraditional backcalculation approach. An 

adaptive system is generated using input-output pairs of response analyses so that it 

can establish the nonlinear relationship between moduli and deflection values (Ceylan 

and Gopalakrishnan 2006; Meier and Rix 1994; O Pekcan et al. 2008; Rakesh et al. 

2006; Saltan and Terzi˙ 2008). A typical scheme for adaptive backcalculation 

procedures is presented in Figure 24. Since this study mainly focuses on nontraditional 

backcalculation methods, ANN and other optimization methods will be expressed 

comprehensively in the following sections. 
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Figure 24 A Typical scheme for Adaptive Backcalculation Procedures (Goktepe et al. 2006) 

 

2.7.2 Soft Computing Methods Used in Pavement Backcalculation 

It is usually quite hard to solve some problems consisting of several variables which 

make the problems resource-intensive and complicated. Sometimes conventional 

optimization methods may not be sufficient to manage such complex tasks. Soft 

computing concept as nontraditional approach emerges in respect of overcoming the 

deficiency of hard (conventional) computing methods that it can present approximate 

solutions by managing the impression and uncertainty (Magdalena 2010). By this way, 

limitations in complicated problems may be handled using soft computing techniques 

in almost every engineering branch. These nontraditional methods are generally 

inspired by the nature. They can mimic the behavior of living creature, objects and 

human mind to replicate the learning processes etc. In this context, various algorithms 

developed including ANN, support vector machines, fuzzy logic, evolutionary and 

metaheuristic algorithms (Kecman 2001; Waszczyszyn and Slonski 2010). Just as the 

other engineering branch, soft computing methods are accepted and validated through 

numerous studies in pavement engineering that are successfully implemented in 

flexible pavement backcalculation (Goktepe et al. 2006).  

Among the nontraditional computing methods GAs are the most popular one which 

has been applied in several pavement backcalculation studies. GA was first time 

proposed in John Holland’s “Adaptation in Natural and Artificial Systems” book in 

1975. The algorithm bases on the evolutionary theory of Darwin which can be phrased 

as “survival of the fittest” in the natural selection.  The theory was converted to a 

mathematical model using computer applications and GA is implemented as a search 
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algorithm in optimization problems. Since GA relies on the evolutionary theory, it 

replicates the sequence of actions of the theory. The process starts with a randomly 

generated population including certain number individuals or namely phenotypes and 

each one is defined in binary form (0s and 1s). Fitness of the each individual is 

evaluated solving the objective function of the problem in the way that GA seeks the 

entire search space defined to the algorithm prior to analysis. According the fitness 

calculations, best individuals are selected and exposed to evolutionary operations like 

crossover and mutation to generate a new population for the next iteration (Pan et al. 

2012; Mitchell 1995; Goldberg 1989).  

Each technique in soft computing has different advantages depending on the inherent 

nature of the method. In fact, combination of the superiorities of methods may result 

more powerful tools than the usage of single technique in problem solving. Adherence 

to this complementary manner, soft computing methods can be applied together called 

as hybridization. As robust and versatile search algorithm GA has been increasingly 

applied either individually or in hybrid manner by the researchers of pavement 

community in recent years. Tsai et al. (2009) established a paper to present the 

versatility of GA in pavement analysis and design operations. In this study researchers 

conducted 4 cases which are related with asphalt material properties. GA consists of 

several parameters and there is no available guideline of choosing these parameters in 

pavement backcalculation. Reddy et al. (2004) conducted a study on determining the 

optimum parameters for backcalculation. As mentioned above, GA could be employed 

with other artificial intelligence methods that one important example of such hybrid 

use is performed with ANN. Neural network models which are the integral part of 

backcalculation methods namely adaptive ones are the most common nontraditional 

approaches. Details of ANN will be expressed separately in the following section 

because it is one of major topics focused in this study. In GA and ANN hybrid manner, 

Rakesh et al. (2006) conducted a study. Previously developed GA based 

backcalculation model called as BACKGA was improved by combining the model 

with ANN forward calculation subroutine. So that resulting algorithm could have 

reliability and robustness of each method. Similar to this, Nazzal and Tatari (2013) 
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utilized GA and ANN together to evaluate the subgrade resilient modulus by making 

use of the soil index properties. In another study, Gopalakrishnan (2009), proposed a 

toolbox (namely NGOT) which uses the GA and ANN together to backcalculate layer 

moduli by simulating nonlinear material behaviors within FEM based pavement 

models. Analogous to this, Pekcan et al. (2009) developed a computer program called 

SOFTSYS. Regarding the nonlinearity of materials in ILLI-PAVE software databases 

were developed to train the corresponding ANN models. Instead of using ILLI-PAVE 

program as forward subroutine in each iteration, ANN was employed because of the 

provided computational effectiveness of neural networks. GA was adopted the ANN 

to be used in searching the possible solution space. In conclusion, achieved software 

can estimate the layer thickness and Poisson’s ratio in addition to layer moduli.  

Reviewed studies so far are based on the static backcalculation approaches, unlike 

these Hu et al. (2007) developed a backcalculation program called DBFWD-GA which 

is based on dynamic forward response modelling. As its name implies, GA based 

analysis backcalculates the layer moduli for three or four-layer structures. Another 

software developed by researchers utilizing GA is BackGenetic3D developed by Pan 

et al. (2012) which is capable of predicting layer moduli and thickness. Not only 

backcalculation operations are conducted in pavement managements but also other 

conditions can be investigated which may affect the maintenance and rehabilitation 

procedures. In this manner an hybrid implementation of GA and ANN was used create 

sideway force coefficient and accident prediction models by Bosurgi and Trifirò 

(2005).  

Another hybrid application of ANN is proposed by Khaitan and Gopalakrishnan 

(2010) that differential evolution (DE) metaheuristic algorithm incorporated to neural 

network model. DE algorithm is employed for the purpose of exploring search space 

and finding the most suitable solutions. As a result, a toolbox named as I-PAT was 

developed for evaluation of stiffness properties of flexible pavements. Swarm based 

metaheuristic optimization algorithms have been used in pavement backcalculation as 

well. The major idea behind these techniques is to investigate the search space 

efficiently to achieve the optimal input values for forward response model. Particle 
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swarm optimization (PSO) is an iterative algorithm for solving problem using a 

population in the same manner with GAs. Individuals in the population are defined 

with position and velocity. Fitness of each individual is assessed according to its 

position and movement of the particles are determined by the locations. Through the 

iterations individuals tend to move toward the individual which has the best position 

is the solution of the problem (Kennedy 1995).  Gopalakrishnan (2009b) proposed in 

his another study to use two different metaheuristic search algorithms incorporated 

with ANN which are PSO and shuffled complex evolution (SCE) algorithms. 

In this study a hybrid use of two nontraditional optimization method is proposed. 

Previously developed ANN models are employed as a surrogate model for ILLI-PAVE 

FEM based solutions. Besides, a newly developed metaheuristic algorithm: GSA as a 

search method which explores the search space to find the most appropriate input 

properties of ANN is also utilized. Proposed hybrid use is first time implemented in 

the way of evaluating pavement layer properties in the current literature.  

2.7.2.1 Artificial Neural Networks 

ANN is one of the most popular soft computing techniques inspired by the behavior 

of neurons in the nervous system of a live being. A number of interconnected artificial 

neurons forms a neural network which refers to computational model of a certain 

problem (Gurney 2005). Each connection between the neurons has different weights 

that inputs are multiplied by these weights and signals to be transmitted are determined 

through mathematical functions.  Since the capability of handling resource-intensive 

problems which are hard to solve by traditional methods, ANN have been widely 

implemented in different areas of engineering. It can establish the nonlinear relation 

between the input and output variables while eliminating complex computation and it 

can also tolerate error in the utilized data (Onur Pekcan et al. 2008).  

Among the numerous ANN types, feed-forward neural network is the first and simple 

one. The network is consisted of a number of processing units namely perceptron in a 

layered architecture. As the name implies for feed-forward networks information 

transmitting via neurons is in only forward direction. A typical multilayered feed-
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forward network includes input, hidden and output layers of each one has different 

number of interconnected neurons with reference to regarded problem. In order to 

develop a multilayer feed-forward neural network, it is necessary to use a learning rule 

that error back-propagation is the best known one used for training (learning) purpose. 

The feed-forward neural networks using back-propagation algorithm as a learning rule 

can be named as back-propagation neural networks that a scheme presents the general 

structure of such networks is illustrated in Figure 25 (Onur Pekcan et al. 2008). 

 

Figure 25 Structure of a Typical Back-propagation Neural Network (Onur Pekcan et al. 

2008) 

 

Where AP and BP refer to directions of activation and error back-propagation while i1 

to i4 and o1 to o2 are the input and output variables of the problem. h11 to h23 are neurons 

in hidden layers. Figure 26 shows the components of a perceptron and performed 

processes in a typical neuron.  
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Figure 26 Structure of a Typical Processing Unit (Onur Pekcan et al. 2008) 

 

where Wij is connection weights and Xi is input signal for N number of prior neurons.  

θi refers to activation threshold, neti is the net input signal while yi is the output signal.  

In the activation propagation direction, input signals which are transmitted from the 

prior processing units reach to the new neuron. Then, they are evaluated according to 

their connection weights. Each input signal is multiplied by its corresponding 

connection weight to calculate the internal activity of the neuron in terms of weighted 

summation of input signals. Giving response of the neuron is assessed in such a way 

of exceeding activation threshold or bias that net input signal is calculated using the 

given equation:  

 𝑛𝑒𝑡𝑖 = ∑(𝑊𝑖𝑗𝑋𝑗) − 𝜃𝑖

𝑁

𝑗=1

 (33) 

 

If the calculated net input signal exceeds the threshold limit value, the neuron 

responses as yi in accordance with the selected transfer function f(x). The output 

signal can be expressed with regard to net internal activity in the following form: 

 𝑦𝑖 = 𝑓(𝑛𝑒𝑡𝑖) (34) 
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Transfer functions can be classified as linear, threshold and sigmoidal. Among those, 

sigmoidal transfer function can present better similarity with real neurons over the 

other two. The output signal value yi can change between 0 and 1 as the results of 

given sigmoidal function: 

 𝑓(𝑥) =
1

(1+𝑒−𝑥)
 (35) 

  

Through the provided input and output data sets back-propagation algorithm seeks the 

relation between each neuron by adjusting their connection weights in successive 

iterations. The main idea behind the back-propagation learning rule is to minimize the 

difference (error) between desired and calculated output values which can be named 

as supervised learning. The training or learning process begins with randomly 

initialized connection weights and then they are updated according to the degree of 

error along with the iterations. At the end of each individual step of forward 

propagation the error Ek is calculated using an objective function: 

 𝐸𝑘 =
1

2
∑[𝑡𝑖

𝑘 − 𝑦𝑖
𝑘]2

𝑖

 (36) 

 

where ti
k is the actual output for neuron i and k data in the training data set. As 

mentioned above, connection weights are adjusted according to calculated error. The 

amount of change between i and j neurons ΔWij can be expressed by calculating the 

derivative of the error term according to connection weight  

 ∆𝑊𝑖𝑗 = −ɳ
𝜕𝐸

𝜕𝑊𝑖𝑗
= −ɳ ∑ (

𝜕𝐸𝑘

𝜕𝑊𝑖𝑗
)

𝑘

 (37) 

 

where ƞ is the learning coefficient which is greater than zero.  By applying chain rule 

the term 
𝜕𝐸𝑘

𝜕𝑊𝑖𝑗
 can be rewritten in the way of delta term δi

k in the generalized delta rule.  
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 −
𝜕𝐸𝑘

𝜕𝑊𝑖𝑗
= −

𝜕𝐸𝑘

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝑊𝑖𝑗
= −𝛿𝑖

𝑘 𝜕𝑛𝑒𝑡𝑖

𝜕𝑊𝑖𝑗
= −𝛿𝑖

𝑘𝑋𝑗 (38) 

 

Since actual and estimated output signals are already available the delta term can be 

computed in output layer. In hidden layers, due to unknown output signals to be sent 

the delta term δm
k is employed to calculate the current delta value which uses the 

neurons m located in the previous layer of i-th layer. The generalized delta rule can be 

expressed in the following form: 

 𝛿𝑖
𝑘 = {

(𝑡𝑖
𝑘 − 𝑦𝑖

𝑘)𝑓′(𝑛𝑒𝑡𝑖
𝑘)           𝑓𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟𝑠

∑ 𝛿𝑚
𝑘 𝑊𝑖𝑚

𝑚

𝑓′(𝑛𝑒𝑡𝑖
𝑘)        𝑓𝑜𝑟 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠} (39) 

 

Derivative of the sigmoidal function is given as: 

 𝑓′(𝑥) = 𝑓(𝑥){1 − 𝑓(𝑥)} (40) 

 

After activation propagation stages are completed, back-propagation begins from the 

output layer toward the input layer by adjusting the link weights in successive 

iterations. In this case, outputs of the activation direction become the inputs of the 

backpropagation direction. The new connection weight of i and j neurons can be 

updated for the following iterations utilizing the given equation: 

 𝑊𝑖𝑗(𝑖𝑡 + 1) = 𝑊𝑖𝑗(𝑖𝑡) + ɳ ∑ 𝛿𝑖
𝐾𝑋𝑗

𝐾 + 𝛼[𝑊𝑖𝑗(𝑖𝑡) − 𝑊𝑖𝑗(𝑖𝑡 − 1)]

𝑘

 (41) 

 

α is the momentum term which takes into account the weight changes in previous 

iterations used to prevent the algorithm to trap in local minimum and to cause 

oscillation (Onur Pekcan et al. 2008). Analogous with the link weights, bias values are 

also modified in the same manner: 
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 𝜃𝑖(𝑖𝑡 + 1) = 𝜃𝑖(𝑖𝑡) + ɳ ∑ 𝛿𝑖
𝑘 + 𝛼[𝜃𝑖(𝑖𝑡) − 𝜃𝑖(𝑖𝑡 − 1)]

𝑘

 (42) 

 

These steps are repeated for each data in the training set iteratively to reach the 

minimum error between desired and calculated outputs.   

Owing to the the ability of ANN in solving resource-intensive complex problems fast 

and accurately, it has been extensively applied in pavement problems. As an adaptive 

backcalculation method, initial applications of ANN in pavement evaluation were 

conducted by Meier and Rix (1993) for surface wave inversions. They also employed 

neural network to backcalculate the layer properties as a surrogate model of elastic 

forward analysis using FWD measurements and dynamic deflection basins modelling 

studies as well (Meier and Rix 1994, 1995). Obtained successful outputs from these 

studies increase the use of ANN in pavement layer backcalculation studies. FEM based 

analysis softwares as forward response engine have been become popular to solve the 

pavement structures but runtime of the computer programs is quite high due to the 

inherent nature of FE analysis. To overcome such limitations ANN models were 

replaced with forward FE analysis stages in numerous studies which estimates layers’ 

thickness, stiffness properties and emerged responses in specific locations of structural 

layers (Ceylan and Gopalakrishnan 2006; Ceylan et al. 2005; Hassani 2008; Pekcan 

2010;  Saltan et al. 2012; Sharma and Das 2008).  

2.7.2.2 Gravitational Search Algorithm 

GSA is a metaheuristic optimization algorithm developed by Rashedi et al. (2009). 

The algorithm is inspired by the Newton’s law of universal gravitation of which refers 

that each object in the universe moves to each other due the gravitational force 

emerging between the objects.  This gravitational force, F can be defined as a function 

of gravitational constant, distance between the objects and their masses as shown 

below: 

 𝐹 = 𝐺
𝑀1𝑀2

𝑅2
 (43) 
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where G is the gravitational constant which is the function of age of the universe, M1 

and M2  are the mass of the first and the second object, R is the corresponding distance 

between them. Movement of the objects in the universe could be expressed with 

Newton’s second law of motion which refers that when a force is exposed to a body, 

it gains acceleration depending on its mass. Behavior of objects in the universe can be 

depicted as in Figure 27. Newton’s second law of motion is defined as follows: 

 𝑎 =
𝐹

𝑀
 (44) 

  

Where a is the acceleration of the object. 

In accordance with Equations (32) and (33) Rashedi et al. (2009) proposed GSA 

algorithm. Researchers adopted the major ideas behind these theories to be applicable 

in solving high dimensional nonlinear optimization problems. In this novel algorithm, 

population is composed of a certain number of agents (objects) which can change their 

locations due to the interaction between agents caused by the gravitational forces.  In 

law of gravity, there is a tendency of an object to move toward the object which is 

heavier, and thus objects are assessed according to their masses in GSA. Through the 

iterations masses are updated using the objective function value which evaluates the 

objects. At the end of the iterations or when it is reached to termination criteria, the 

position of the heaviest mass is considered as the solution of the problem (Rashedi et 

al. 2009a).  
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Figure 27 Resultant Force Acting on an Agent and Corresponding Acceleration (Rashedi et 

al. 2009a) 

GSA includes different successive steps and details of each one is expressed below. 

Prior to the initialization step, search space is defined for each dimension. Following 

to this, a population composed of N number of agents is created: 

 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑛),    for 𝑖 = 1,2, … , 𝑁 (45) 

 

where, xi
d refers to the positions of the i-th agent in d-th dimension and n is the 

dimension of search space. 

Fitness of each agent is evaluated through the objective function defined specifically 

for the problem in question. Best and worst fitness parameters are determined for the 

problems as being maximization or minimization. Best and worst agents according to 

their fitness of a minimization problem are presented below: 

 𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡) (46a) 

 𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡) (36b) 

 

where,   fitj (t) refers to the fitness of the j-th agent at t-th iteration , best(t) and worst(t) 

are the best and worst fitness at t-th iteration, respectively. Best and worst values 

should be considered reversely for maximization problems.   
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After fitness evaluation, gravitational and inertial masses of agents are calculated by 

the following equations: 

 
𝑀𝑎𝑖 =  𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖 , 𝑖 = 1, 2, … , 𝑁 

(47) 

 𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (48) 

 𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

 (49) 

 

where, Mai, Mpi and Mii are the active gravitational mass, passive gravitational mass, 

and inertial mass of the i-th agent, respectively. According to weak and strong 

equivalent principle; inertial, active and passive gravitational masses are assumed to 

be the same (Kenyon 1990; Schutz 2009). 

As mentioned above, gravitational constant G is a function of age of the universe. In 

GSA it is initialized with a certain value and by successive iterations it is reduced 

(Mansouri et al. 1999; Rashedi et al. 2009a). The constant is expressed as shown 

below: 

 𝐺(𝑡) = 𝐺0𝑒(−𝛼𝑡/𝑡𝑚𝑎𝑥) (50) 

 

G0 and α are the constants where t is the current iteration and tmax is the maximum 

number of iteration. 

To compute the acceleration of each object in the population, total force imposed to 

one agent is calculation as follow: 

 𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗  𝐹𝑖𝑗

𝑑(𝑡)

𝑗∈Kbest,𝑗≠𝑖

 (51) 

 

where, randj  is a randomly selected number in the inverval  [0,1] and Kbest is the certain 

number of agents which have best fitness values. In order to avoid the algorithm to 
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trap in local optimum locations, only a group of agents having best fitnesses are 

considered to attract the other agents. In the first iteration, Kbest is adjusted to number 

of agent in the population means that all the agents apply force to the others. After 

iterations proceeded, Kbest is arranged to be decreased linearly and set to 2% of 

population number at the final iteration. This refers that at the end of the iterations only 

2% of agents apply gravitational force to others for the purpose of enhancing the 

performance of the algorithm (Rashedi et al. 2009a). 

Gravitational force applied to i-th agent by the j-th agent can be defined with Fij
d(t) for 

dimension n and iteration t. It is specified by the following equation: 

 𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡) × 𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡) + 𝜀
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)) (52) 

 

where, Mpi is the passive gravitational mass of agent i and Mai is the active gravitational 

mass of agent j. Rij(t) refers the Euclidian distance between the agents these agents at 

the iteration t. Lastly, G(t) is the calculated gravitational force and ε stands for a small 

constant.  

 𝑅𝑖𝑗(𝑡) =∥ 𝑋𝑖(𝑡), 𝑋𝑗(𝑡) ∥2 (53) 

 

From the Newton’s second law of motion, acceleration of an agent i in the d-th 

dimension is computed as following: 

 𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
 (54) 

 

Finally, after discovering all the necessary parameters, velocity, v and position, x to be 

employed in the next iteration are calculated. Corresponding relations are given as 

follows: 

 𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡)  (55) 
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 𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (56) 

 

After completing the first iteration, best agent in the population presents the global 

best agent namely solution of the problem. Throughout the iterations GSA records the 

information of best agents. In each iteration, the algorithm compares the associated 

fitness of best agent with previous iteration and if the last best agent has better fitness 

than previous global best agent, it is updated as new global solution of the problem. 

These processes are continued until reaching the termination criteria of which can be 

maximum number of iteration or obtaining certain threshold value. A flowchart of 

GSA is given in Figure 28.  

Although GSA is a relatively new search algorithm, it has been applied in several 

studies in different scientific branches. For example, Behrang et al. (2011) used the 

GSA algorithm to estimate the oil consumptions of Iran by solving linear and nonlinear 

relations. In another studies, researchers implemented GSA in electrical engineering 

topics which are composed of nonlinear constrained problems (Duman et al. 2011, 

2012, Chatterjee et al. 2010). There are also modified version of GSA proposed by the 

researchers. Rashedi et al. (2009b) established the binary gravitational search 

algorithm (BGSA) as the name implies this algorithm is the binary version of the 

typical GSA. A hybrid application of GSA and PSO was developed by Tsai et al. 

(2013) called as gravitational particle swarm (GPS) and it was reported that the hybrid 

algorithm provides some improvements to the current GSA and PSO.  

Just as the other engineering branches, GSA has been applied in civil engineering 

problems (especially geotechnical issues) as well.  Khajehzadeh and Taha (2012) 

utilized the GSA in optimization of shallow foundations that the algorithm minimizes 

the cost of structure while considering the constraints which are based on the failure 

conditions or minimum requirements of structural and geotechnical parameters. In 

another geotechnical engineering problem: optimization of retaining structures, GSA 

was successfully applied. Similar to shallow foundation problem proposed algorithm 

tries to minimize overall cost of the retaining structures by taking into account the 

structural and geotechnical constraints (Khajehzadeh and Eslami 2012). The same 
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researchers improved the GSA algorithm by employing adaptive velocity parameter 

which adjust the velocity of agents with regard to the state of convergence. Modified 

version of GSA named as MGSA is evaluated on several benckmark problems and in 

solving slope stability problem. The aim in such problems is to obtain minimum factor 

of safety and reliability index (Khajehzadeh et al. 2012).  

Although extensive research has been carried out using GSA, no single study exists in 

pavement engineering. In this study, GSA is selected to use a search algorithm on the 

basis of presented reliability and robustness in the way of searching solution space in 

previous studies. 

 

Figure 28 Flowchart of GSA (Rashedi et al. 2009a) 

 

2.7.2.3 Genetic Algorithms 

Genetic algorithms are metaheuristic search methods classified in the evolutionary 

algorithms which are based on the natural selection process. By simulating the 

evolutionary theory, GAs seek the search space to find the optimum solutions of the 
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problems. Just as being in the nature, GAs use the approach behind the natural 

selection which is “survival of the fittest” (Goldberg 1989). A typical GA operation 

starts with the random generation of a population. The size of the population and the 

search space are determined according to the problem to be solved. Each individual in 

the population is regarded as the possible solution of the problem that they are also 

named as phenotypes in natural selection. GA uses the binary strings that the properties 

of individuals (namely chromosomes in evolutionary theory) are stored within these 

strings. Since this operation is an iterative process, each iteration refers to a generation 

where the population is evaluated. Each individual is assessed by means of an objective 

function specifically assigned to the problem to be solved. Through the use of the 

fitness of each agent regarding the values of the objective function, a selection step is 

implemented to the individuals to prepare a new population for the next generation. In 

this step, individuals which have the higher fitness values are selected and their 

properties are stored during the generations in order to enable “survival of the fittest” 

approach. Following step is to develop the new population for the next generation. For 

this purpose, genetic operators in the natural selections are replicated such as crossover 

and mutation. By the use of crossover, a pair of parent individuals are selected to 

generate a new individual namely child and it is aimed to transfer the properties of 

better individuals to their children.  Mutation is another genetic operator used to 

provide population diversity by changing a single individual (Goldberg 1989; Mitchell 

1995). Then the new population is formed and maintained to begin the new generation. 

These operations continue until reaching the termination criteria.  

GA is the one of the most adapted metaheuristic search algorithms to the pavement 

layer backcalculation studies that is why it is selected in this study to compare with 

GSA. In recent studies, GA has been applied as search method for ANN forward 

response models and the hybrid use is employed for backcalculating stiffness related 

pavement layer properties (Bosurgi and Trifirò 2005; Gopalakrishnan 2009a; Nazzal 

and Tatari 2013; Pekcan 2010; Rakesh et al. 2006).  
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2.7.3 Backcalculation Softwares Used in the Study 

Pavement backcalculation is an important component in pavement management 

systems. Estimating the stiffness related layer properties plays a key role in evaluating 

the structural capability of pavements in overlay design and remaining life analysis. 

Pavement agencies and researchers in pavement community use various software for 

the purpose backcalculating layer moduli. Each software has distinctive characteristics 

of those forward response analysis approach, material characterization and utilized 

search method which may lead a backcalculation software being different from the 

others. In order to validate the proposed algorithm in this thesis, it is essential to 

compare the results of the algorithm with the other softwares. In this respect, two 

conventional backcalculation softwares; EVERCAL 5.0 and MODULUS 6.0 are 

utilized for the comparison.  

2.7.3.1 EVERCALC 

EVERCALC 5.0 backcalculation software was developed by Washington Department 

of Transportation (WSDOT). The program makes use of WESLEA layered elastic 

analysis program for the forward calculation of deflection basins.  As a search method, 

EVERCALC uses modified Augmented Gauss-Newton algorithm. Maximum five-

layered pavement structures can be analyzed by this program. An FWD test can be 

simulated for maximum ten geophones and twelve drops per one station. Root mean 

square (RMS) error objective function is used while comparing the calculated and 

measured deflection basins.  

 𝑅𝑀𝑆 = √
1

𝑛𝑑
∑ (

𝑑𝑐𝑖 − 𝑑𝑚𝑖

𝑑𝑚𝑖
)

2

(100)

𝑛

𝑖=1

 (57) 

 

Where nd is the number of deflection sensors and dci and dmi are the calculated and 

measured deflections, respectively.  
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Although employed multi-layered elastic theory by the software, it is able to determine 

stress sensitivity coefficients of geomaterials in the case of providing deflection data 

for more than one load level. By this way, nonlinearity of materials might be taken 

into account while backcalculating the stiffness properties. For unbound granular base 

materials, the software can predict K and n coefficients in K-θ model presented in 

Equation (20) and for fine-grained subgrade soils K1 and K2 coefficient in confining 

pressure model as presented in Equation (19).  

EVERCALC offers two alternatives for defining initial layer moduli which will be 

used in the first iteration. Either program can compute the moduli values by means of 

internal regression equations or user can define a set of moduli himself to the software. 

The software decides to terminate the processes when at least one of the criterions is 

satisfied that of reaching predefined deflection tolerance, moduli tolerance or 

maximum number of iterations. It is reported that 1% tolerance is enough to terminate 

the program (Washington Department of Transportation 2005).   

Since the stiffness properties of asphalt layers are directly affected through the change 

in temperature, sometimes it might be necessary to convert backcalculation results into 

laboratory conditions. EVERCALC is capable of normalizing modulus of elasticity to 

the 25°C through regression equations. The software can also investigate the existence 

of a rigid layer beneath the subgrade and associated depth can be calculated 

(Washington Department of Transportation 2005). A general data entry screen and 

deflection entry interface are shown in Figure 30 and 31, respectively. A flowchart of 

EVERCALC is presented in Figure 29.  
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Figure 29 A typical flowchart of EVERCALC software (Washington Department of 

Transportation 2005) 
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Figure 30 EVERCALC General Data Entry Screen 

 

 

 

Figure 31 EVERCALC Deflection Basin Entry Interface 
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2.7.3.2 MODULUS 

MODULUS 5.1 is another pavement backcalculation software works in MS-DOS 

environment employed in this study. The software was developed by Texas 

Transportation Institute (TTI) for the use of Texas Department of Transportation 

(TxDOT) in the studies of performing pavement backcalculation operations and 

remaining life analyses. Forward response analysis of the software bases on the 

solutions of WESLEA layered elastic analysis program. Unlike the EVERCALC 

software, MODULUS does not run forward response engine in each iteration. Instead, 

it uses a database which includes input properties and corresponding deflections of 

WESLEA analyses that previously generated and stored embedded into the 

MODULUS.  As a search method, MODULUS uses pattern search technique to extract 

the set of moduli which presents the best fitted deflection basin to the field deflection 

basin. The software is able to analyze maximum four layered structures and it also 

determines the depth of rigid layer beneath thee subgrade (Liu and Scullion 2001; 

Ahmed 2010). The main interface of MODULUS 5.1 is shown in Figure 32.   

 

 

Figure 32 Main Screen of MODULUS 5.1 
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CHAPTER 3 

 

 

BACKCALCULATION METHODOLOGY 

 

 

3. BACKCALCULATION METHODOLOGY 

3.1 Introduction 

This chapter focuses on the description of development stages of proposed 

backcalculation algorithm namely GSA-ANN. In this study, previously developed 

ANN models by Pekcan (2010) are employed as forward response modelling of 

pavements. Researcher produced these models using the solutions of ILLI-PAVE FEM 

based software. Proposed algorithm is also performed with the data generated by this 

software to evaluate its performance. Therefore, details of the finite element modelling 

of pavement by ILLI-PAVE is expressed in detail to provide insight about the analyses. 

Then, both linear and nonlinear material characterization taken into account in the 

analyses are explained, respectively. Apart from these, additional computer programs 

which the researcher employed while generating the ANN models are also presented 

in this chapter. Also, combination of ANN models with the GSA search method are 

provided to show how GSA-ANN backcalculation algorithm is formed. Finally, to 

provide better understanding about the proposed algorithm, a sample full-depth asphalt 

pavement section’s layer properties are backcalculated by introducing all the steps 

individually.  
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3.2 Finite Element Modeling of Pavements Using ILLI-PAVE Software 

In pavement layer backcalculation problems, structural analysis of pavements is the 

overriding factor in terms of obtaining real-like deflections. In a typical ILLI-PAVE 

analysis, first step is to define loading conditions to the software. After that layer 

properties are introduced which are number of layers and corresponding thicknesses, 

material related features like constitutive material model and general properties of used 

geomaterials. In this step, nonlinear material behaviors which are the most 

representative nature of base and subgrade materials are taken into account. The 

software can analyze up to ten-layered pavement structures. Prior to analyzing the 

pavements, proper evaluation domain is determined in terms of mesh dimensions and 

spacing. At the end, analysis is completed and deflections are extracted together with 

the pavement responses, like stress and strain at any point examined in the 

axisymmetric domain.  These expressed steps are general overview of a typical ILLI-

PAVE run and they were conducted for developing ANN models of FDP, CFP and 

FDP-LSS type test sections and also for the performance evaluation of GSA-ANN 

algorithm. In subsections, detailed information about these steps are given 

respectively.  

3.2.1 Simulation of Falling Weight Deflectometer Test 

FWD device generates various level of transient impulsive forces by dropping a weight 

from different heights to the loading plate. Associated with the loading states, transient 

displacements occur on the pavement surface where the maximum value is in the load 

application point and less deflections are emerged radially more distant locations. 

Usually, the force is subjected over a circular plate of 152 mm (6 in.)  radius in FWD 

tests and occurred impulse is propagated through the plate. In this study, a 40 kN (9 

kip) equivalent single axle load (ESAL) applied over the loading plate corresponds to 

552 kPa (80 psi) uniform pressure is defined to the software. Occurred deflections at 

the radially located sensors can be calculated using proper mesh spacing. The most 

commonly used sensor locations away from the load application point in FWD tests 
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are listed in Table 2. Deflections at these specific locations can be abbreviated as D0, 

D8, D12, D18, D24, D36, D48, D60, D72 and D-12, respectively.  

Table 2 Sensor Spacing Types of Falling Weight Deflectometer 

Sensor 

Locations 

in 0 8 12 18 24 36 48 60 72 -12 

mm 0 203 305 457 610 914 1219 1524 1829 -305 

Uniform ✓  ✓  ✓ ✓ ✓ ✓ ✓  

7-sensored ✓ ✓ ✓ ✓ ✓ ✓  ✓   

9-sensored ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

 

In this study, uniform sensor spacing is selected to calculate and extract deflection data 

which are D0, D12, D24 and D36. Therefore, proper element dimensions are adjusted in 

meshing stage in order to extract deflection data from the exact sensor locations 

consistent with the selected uniform sensor spacing.  

3.2.2 Meshing of the Axisymmetric Models 

Meshing is one of the major factors which directly affect the accuracy of calculated 

responses and entire performance of the FE software. In this respect, in the case of 

utilizing finer meshes in the analysis domain, precision of stress, strain and 

displacement responses increase but the runtime of the FE analyses increases 

proportional to desired accuracy. Thus, exercising finer meshes may sometimes be 

problematic in figuring out the problems having complex geometries. It is essential to 

balance mesh intervals and element dimensions regarding the process speed and 

desired level of accuracy.   

The analyzed pavement is introduced to the ILLI-PAVE as a cross-sectional area 

which has symmetry about a vertical axis which is named as 2D axisymmetric model 

(see Figure 33). The entire model can be formed by the rotation of ZR cross-sectional 

region about the Z axis where R refers to the radial direction. By this way, a 3D 

pavement model can be converted into 2D or axisymmetric model which is easier and 

faster to handle.  The dimensions of the 2D domain in radial and vertical directions are 

the important properties for the meshing stage which may affect the accuracy of 
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analysis results. Boundary conditions should not influence the propagation of stresses 

throughout the domain. Therefore, proper depth and radial distance from the load 

application point till the boundaries should be selected. In the present study, total 

analysis depth is treated as 7620 mm (300 in.) and the radial distance is considered as 

14572 mm (80 in.) away from load application location for all the three type of 

pavements in question so that the effects of boundary can be neglected. Thickness of 

the surface and base courses (if exist) are subtracted from the total analysis depth to 

define the subgrade depth to the below boundary. The bottom boundary is simulated 

using fixed support conditions while roller supports employed in vertical boundaries 

which allows to move through the associated direction.  

 

Figure 33 2D Axisymmetric Model and 3D Model 

 

Since FWD sensors are placed to certain locations, appropriate mesh adjustment is 

needed to calculate the deflections exactly at the same coordinates with these sensors. 

ILLI-PAVE uses 4-noded quadrilateral mesh units to form the whole domain as a grid.     

The size of each element at its corresponding coordinates are adjusted in such a way 

that each sensor location fits to that of associated node coordinates. To better observe 

the pavement responses and displacements, and also to provide stress waves to 
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propagate throughout the domain regularly, finer meshes are used around loaded and 

sensor placed areas. Moreover, relatively thinner surface and base layers to the 

subgrade are also modelled with smaller mesh elements around the loading area. The 

ratio of the longest edge over to the shortest one of a mesh element namely aspect ratio 

is generally adjusted to 1 with an upper value of 4. The influence of FWD load 

decreases while moving toward the domain boundaries, and therefore coarser meshes 

or in other words bigger mesh units are used at more distant regions from the loading 

location. In Figure 34, generated meshes for each of FDP, CFP and FDP-LSS sections 

are illustrated. Columns of the meshes are placed the radial distances of 1, 2, 3, 4, 5, 

6, 8, 12, 18, 24, 36, 48, 60, 72, 90, 108, 126, 144 and 180 in.  from the initial vertical 

line while rows are adjusted distances of  2, 3, 5, 7, 9, 11, 13, 14, 17, 20, 25, 35, 55, 

100, 150, 200, 250 and 300 in. from the initial lateral line.  

 

Figure 34 Meshing of FDP, FDP-LSS and CFP Sections 

 

3.2.3 Material Characterization 

Flexible pavements are composed of several layers of different materials located over 

the natural subgrade. The nature of each material should be well comprehended under 

imposed traffic loading in the manner of design and analysis. It is obvious that 

appropriate modelling of these materials is one of the overriding factors in 

backcalculation of layer properties. The upper most layer of flexible pavements is 
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produced from bituminous material called as asphalt concrete (AC) which actually 

exhibits viscoelastic behavior associated with temperature and time. For the sake of 

computational simplicity, asphalt layers were considered as linear elastic so that 

mechanical properties of surface layers were presented with elastic modulus EAC and 

Poisson’s ratio vAC along with the analyses.  

Conventional flexible pavement is other flexible pavement type constructed with 

base/subbase layer beneath the surface course. The function of such layers is to 

transmit the occurred impact of traffic loading to the natural subgrade by protecting it 

against the environmental influences.  They are constructed with unbound granular 

materials whose behavior depends on imposed stress level. Unbound granular 

materials harden under increasing load levels and this can be modelled in ILLI-PAVE 

software through the use of material models established by several researchers. As 

reviewed in section 2.6.4.3, there are various resilient modulus models for unbound 

granular materials. Among these ones, ILLI-PAVE utilizes just three of them; 

confining pressure model (Equation (19)), K-θ model (Equation (20)) and Uzan model 

(Equation (24)). In this study, K-θ equation is employed to calculate resilient modulus 

such that the model is the function of bulk stress, θ beside the K and n model 

parameters (Hicks and Monismith 1971). These model parameters are correlated to 

each other through the Equation (58) which is established by using the test results 

presented in Figure 35. Typical K and n parameters acquired for different type of 

granular materials are also presented in Table 1.  

 log10(𝐾) = 4.657 − 1.807𝑛 (58) 
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Figure 35 Relation Between Parameters of K-θ  Model (Rada and Witczak 1981) 

 

Consequently, ILLI-PAVE computes the modulus of granular materials iteratively by 

adjusting bulk stress in each iteration for defined K parameter. From now on, the 

parameter K will be states as KGB to refer the granular base layer in CFP sections. 

Therefore, unbound granular layers are characterized with its stiffness constant, KGB 

and Poisson’s ratio, vGB  

Subgrade is the natural soil located beneath the structural layers of all type pavements. 

Similar to unbound granular layers, subgrade exhibits nonlinearly under imposed 

traffic loading so that resilient properties of such soils can be used to present the 

material behaviors. Although subgrade could be composed of granular or fine-grained 

materials, this study focuses on only fine-grained subgrade soil patterns. In contrast to 

granular materials, fine-grained soils soften under increasing load states which reduces 

the strength of the materials. According to the study conducted by Thompson and 

Robnett (1979), it is reported that resilient modulus of fine-grained subgrade soils is a 

function of deviator stress and confining pressure is less significant by comparing to 

deviator stress. For this reason, developed constitutive equations generally establish 

the relation between resilient modulus and deviatoric stress. Among the utilized 

subgrade material models in ILLI-PAVE, bilinear or arithmetic constitutive equations 

(Equation (32)) are utilized to characterize the fine-grained natural soils. In this model, 
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relationship between deviator stress and resilient modulus are illustrated in Figure 20 

with parameters of ERİ, σdi, K3 and K4.  Resilient modulus at the breakpoint of linear 

curves is named as breakpoint resilient modulus ERİ which is the corresponding moduli 

at the breakpoint deviator stress, σdi. ERİ is the main stiffness property presenting 

resilient behavior rather than other material parameters of those K3 and K4 are 

considered as constants originating from the study conducted by Thompson and Elliott 

(1985). Based on this study, the maximum resilient modulus could be acquired under 

13.8 kPa (2 psi) deviatoric stress which is the lower limit of deviatoric stress, σdll . 

Minimum resilient modulus associated with maximum deviatoric stress, σdul could be 

limited to the unconfined compressive strength of the soil, Qu which can expressed as 

a function of ERİ: (Thompson and Robnett 1979) 

 𝜎𝑑𝑢𝑙(𝑝𝑠𝑖) = 𝑄𝑢(𝑝𝑠𝑖) =
𝐸𝑅İ(𝑘𝑠𝑖) − 0.86

0.307
 (59) 

 

In this study, breakpoint deviator stress of 41.3 kPa (6 psi) is treated for local fine-

grained materials. K3 and K4 slopes are taken constant as 1100 and 200, respectively 

that the values are proposed as a consequence of laboratory studies conducted by 

Thompson and Robnett (1979) and Thompson and Elliott (1985). 

Sometimes it is essential to improve strength of soil which is not strong enough to 

construct pavements above. In these cases, as an easy and effective approach lime 

stabilization can be applied so that mechanical properties of natural soils significantly 

advanced. Pekcan et al. (2009) investigated the deflection behaviors of stabilized 

pavements in their studies and it was obviously observed that great differences 

between the deflections basins of non-treated and treated soils. Therefore, this study 

addresses to take into account the lime stabilized soils as a separate layer in 

backcalculation of pavements of which is constructed over stabilized soils. In this 

study, lime stabilized sections of full-depth asphalt pavements are also analyzed. 

Stabilized layers are treated as linearly elastic for computation simplicity and they are 

characterized with the properties of elastic modulus ELSS and Poisson’s ratio vLSS.  
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3.2.4 Defining Layer Properties 

Prior to analyze pavement sections for calculating deflection values at FWD sensor 

locations, geometrical and mechanical layer properties should be defined to the 

software. In order to create ANN forward calculation engine, it is required to generate 

a great number of deflection bowls associated with various combination of input 

properties in previously defined ranges. Range of thicknesses of layers and 

corresponding stiffness properties of different paving materials vary according the type 

of flexible pavement. Utilized ANN model for FDPs and testing data sets of GSA-

ANN algorithm were created with the following ranges for thickness of asphalt course, 

tAC, elastic modulus, EAC and breakpoint deviator stress for fine-grained subgrade soil, 

ERİ: 

Table 3 Ranges of Layer Properties for Full-Depth Asphalt Pavements 

Material 

Type 

Layer Thickness 

Range 

Material 

Model 
Layer Modulus Range 

Poisson’s 

Ratio 

Asphalt 

Concrete 

tAC = 127 - 635 mm 

(5 - 24 in.) 

Linear 

Elastic 

EAC = 689 - 13,780 MPa  

(100 - 2,000 ksi) 
0.35 

Fine-Grained 

Subgrade 

7620 - tAC mm 

(300 - tAC in.) 

Nonlinear 

Bilinear 

Model 

ERİ = 6.9 – 96.5 MPa 

(1 – 14 ksi) 
0.45 

 

24,000 different combinations of thickness and moduli of layers for FDPs fully 

covering the entire ranges defined in Table 3 were analyzed and together with their 

results in terms of deflections, Pekcan (2010) generated the FDP ANN model.  

In the analyses of conventional flexible pavements, considered thickness of AC and 

unbound granular layer and moduli ranges of each layer are presented in Table 4. 

Asphalt layer properties are considered as the same as the FDP sections. As for the 

granular base layer, KGB parameter in the K-θ material model is defined to characterize 

resilient modulus property of unbound layer along with the thickness of granular base, 

tGB. Fine-grained subgrade is presented with breakpoint deviator stress, ERİ as well. 

The range of KGB parameter is selected on the basis of the data set obtained from their 

studies of Rada and Witczak (1981) which are also presented in Table 4. CFP ANN 
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model was also developed by the 24,000 ILLI-PAVE runs executed by covering the 

predefined ranges (Pekcan 2010).  

Table 4 Ranges of Layer Properties for Conventional Flexible Pavements 

Material 

Type 

Layer Thickness 

Range 

Material 

Model 
Layer Modulus Range 

Poisson’s 

Ratio 

Asphalt 

Concrete 

tAC = 76 - 381 mm 

(3 - 15 in.) 

Linear 

Elastic 

EAC = 689 - 13,780 MPa 

(100 - 2,000 ksi) 
0.35 

Granular 

Base 

tGB =102 – 559 mm 

(4– 22 in.) 

Nonlinear 

K-θ Model 

KGB = 20.7 – 82.7 MPa 

(3 – 12 ksi)  

0.35 for  

KGB ≥ 5 ksi 

0.40 for  

KGB < 5 ksi 

Fine-

Grained 

Subgrade 

7620 - tAC- tGB mm 

(300 - tAC - tGB in.) 

Nonlinear 

Bilinear 

Model 

ERİ = 6.9 – 96.5 MPa 

(1 – 14 ksi) 
0.45 

 

In the analyses of full-depth asphalt pavements on lime stabilized soils, AC course and 

subgrade thickness and stiffness properties are evaluated in the same manner with FDP 

and CFP sections. Lime stabilized subgrade layers are treated as linearly elastic with 

the parameters of elastic modulus, ELSS, thickness, tLSS, and also breakpoint deviator 

stress for fine-grained subgrade soil, ERİ is used. Corresponding layer properties of 

FDP-LSS are presented in Table 5. 26,000 different combinations of input parameters 

were executed with ILLI-PAVE to form FDP-LSS ANN model (Pekcan 2010).  

Table 5 Ranges of Layer Properties for Full-Depth Asphalt Pavements on Lime Stabilized 

Subgrades 

Material 

Type 

Layer Thickness 

Range 

Material 

Model 
Layer Modulus Range 

Poisson’s 

Ratio 

Asphalt 

Concrete 

tAC = 102 - 635 mm 

(4 - 24 in.) 

Linear 

Elastic 

EAC = 689 - 13,780 MPa 

(100 - 2,000 ksi) 
0.35 

Lime 

Stabilized 

Subgrade 

tLSS =102 – 508 mm 

(4 – 20 in.) 

Linear 

Elastic 

ELSS = 110 – 1,034 MPa 

(16 – 150 ksi)  
0.31 

Fine-Grained 

Subgrade 

7620 - tAC- tLSS mm 

(300 - tAC - tLSS in.) 

Nonlinear 

Bilinear 

Model 

ERİ = 6.9 – 96.5 MPa 

(1 – 14 ksi) 
0.45 

 



 

83 

 

3.2.5 Analyzing Pavement Sections and Creating Data Sets 

By considering the great number of FE analysis to be performed with ILLI-PAVE, 

providing input parameters of each run separately is an extremely challenging and 

time-consuming task. In this respect, it is required to use additional computer programs 

which enable researchers fast and practical input data generation and analysis 

opportunity. In this context, input parameters of each flexible pavement which are 

randomly selected within the specified ranges are stored in MS Excel file as given in 

Figure 36. The parameters included in databases for FDP sections: tAC, EAC and ERİ for 

CFP sections:  tAC, tGB, EAC, KGB and ERİ and for FDP-LSS sections: tAC, tLSS, EAC, ELSS and 

ERİ.  

 

Figure 36 Example of Input Data Stored to be Analyzed with ILLI-PAVE 

 

It is necessary to convert these input values of ILLI-PAVE into its input file format of 

“.ili”. In order to generate input files from Excel data sheets an auxiliary computer 

program written with Borland Delphi programming language developed by Pekcan 

(2006) is employed. By means of this input file generator, desired number of input 
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files can be generated using the thickness and stiffness properties in the data sets 

through only one run and could be saved to the same directory (Pekcan 2010). The 

interface of this software is shown in Figure 37.  

 

Figure 37 Input File Generator for ILLI-PAVE 

 

Analyzing pavement sections with ILLI-PAVE is a tedious task in itself and therefore 

another additional computer program is employed namely ILLI-PAVE Auto Analysis 

to analyze the pavements and extract the deflection data. Analogous to input file 

generator, this software is also written in Borland Delphi programming language. It 

uses the analysis engine of ILLI-PAVE 2005 and is able to analyze input files 

collectively. Previously developed input data sets of ILLI-PAVE are handled by using 

auto analysis software. Moreover, it can extract the deflections at FWD sensor 

locations and critical responses at designated points. Obtained analyses results are then 

recorded to an MS Excel database beside their corresponding input properties. These 

database could be used to develop ANN models and also to evaluate the performance 

of proposed GSA-ANN algorithm. An example data set for CFP sections is illustrated 

in Figure 38.  
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Figure 38 An Example Data Set for CFP Analyses of ILLI-PAVE 

 

3.3 ANN Based Forward Analysis Models 

In order to properly train an ANN model, a great number of analyses is required so 

that it is expected from the analyses to fully cover the ranges of input properties. 

Because of the required excessive runtime for the thousands of FE analyses, operations 

for generating ANN model are time-consuming tasks. For this reason, ANN models 

for FDP, CFP and FDP-LSS type flexible pavements developed by Pekcan (2010) are 

employed in this study. Through the use of ANNs as forward response models, runtime 

of backcalculation operations is dramatically reduced. FWD tests are applied to a road 

portion for certain times along with the stations. Sometimes, the distance between each 

station may be less than 10 m. By considering the length of highways, it is obviously 

seen that many FWD tests are needed to be conducted. In the case of implementing 

backcalculation operations at each station and also regarding the iterative manner, 

computational intensive problems are emerged that is why ANN models are selected 

to analyze the pavement sections. By using ANN models, deflections are estimated for 

the given thickness and modulus values with high accuracy and faster than a typical 

FE analysis.  
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All of the employed ANN models cover the predefined geometrical and mechanical 

layer properties in section 3.2. FDP and CFP neural network models were created by 

using 2 hidden layers of each one includes 60 neuros. FDP-LSS forward model was 

also developed with 2 hidden layers but it employs 20 neurons in each hidden layer in 

contrast to other two models. There are 3 neurons in input layer and 4 neurons in output 

layer of FDF forward model while CFP and FDP-LSS include 5 neurons in input layer, 

4 neurons in output layer. Regarded parameters of input and output neurons are given 

in Table 6.  The number of hidden layers and neurons are originating from a similar 

training application conducted by Ceylan et al. (2005). All the models were trained for 

10,000 epochs (Pekcan 2010).  

Table 6 Input and Output Variables of Forward ANN Models 

Pavement Type Inputs Outputs 

FDP tAC, EAC, ERİ D0, D12, D24, D36 

CFP tAC, tGB, EAC, KGB, ERİ D0, D12, D24, D36 

FDP_LSS tAC, tLSS, EAC, ELSS, ERİ D0, D12, D24, D36 

 

3.4 Development of GSA-ANN Backcalculation Algorithm 

This section introduces how the proposed backcalculation algorithm namely GSA-

ANN is developed. As the name of algorithm implies that the combination of 

gravitational search method and neural network models are utilized to perform 

pavement layer backcalculation. For this purpose, MATLAB R2012 software is used 

to code the entire algorithm. First of all, GSA optimization technique is written by 

following the steps explained in Section 2.7.2.2. After that each neural network model 

is embedded to GSA code as a function which makes forward response calculation for 

given input properties to predict deflections. By making use of the GSA-ANN 

algorithm, it is possible to backcalculate layer properties of FDP, CFP and FDP-LSS 

type flexible pavements. GSA-ANN backcalculation approach can be summarized in 

9 steps: 
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Algorithm:  GSA-ANN Backcalculation Algorithm 

1 Define necessary parameters of the pavement to be analyzed; 

2 Generate a random initial population for N number of agents which consists of 

stiffness properties of pavement layers to be backcalculated; 

3 Provide the population to ANN model and calculate deflections; 

4 Evaluate fitness of each agent in the population by comparing calculated and 

measured deflections. Then select the worst and best fitted agents according to 

Equation (36); 

5 Calculate mass of each agent using Equation (38) and (39); 

6 Compute the total force imposed to each agent with Equation (42); 

7 Calculate acceleration of each agent by utilizing Equation (44); 

8 Update the velocity and position to generate a new population by                                                           

employing Equation (45) and (46); 

9 Repeat steps 3 to 8 until reaching maximum number of iterations. 

 

MATLAB is a computing environment which works with m-files consisting of 

commands or functions in it. As the name implies that the extension of these files is 

“.m”. It is essential to write each command sequentially that MATLAB can properly 

execute the program. GSA-ANN code is divided into several m-files of each one 

performs different task. To create an integrated code, each individual m-file is gathered 

under the umbrella of a main script that calls the commands in a sequence. The process 

of the GSA-ANN code is summarized below respectively.  

In MATLAB, functions are declared in the following form that for the given inputs, 

x1,…, xN, the functionName returns the output values,  y1,…, yM. 

 function     [𝑦1, … , 𝑦𝑀] = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒(𝑥1, … , 𝑥𝑁) (60) 

 

The data analyzed in MATLAB are stored either in arrays or matrices by considering 

the dimensions of variables to be analyzed. main.m is the major file where the variables 
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are declared as globally and also it requests from the user to provide values of 

necessary input parameters which are listed below together with their definitions: 

main.m: definition of input variables 

N: number of agents in the population 

maxTestNumber: number of test sections/stations to be analyzed. 

maxIterationNumber: number of iterations 

Rpower: power of Euclidean distance in Equation (42). In fact this value is 2 of which 

bases on Newton’s law of universal gravitation but it gives better results when Rpower 

is considered as 1 according to Rashedi et al. (2009a).  

pavementType: type of flexible pavement (FDP, CFP or FDP-LSS) 

deflectionFileName: directory of MS Excel file which stores FWD deflection data to 

be evaluated. 

 

main.m reads the field deflections from directory specified with  deflectionFileName 

variable and records them to the array of deflection_measured for the current 

section/station in order to use it later to evaluate fitness of agents. The only function 

that main.m includes is GSA.m which is called after all the essential variables are 

introduced. It consists of other integral functions of GSA to be executed in turn. GSA.m 

is declared in the same form with Equation (60) and input and output are presented in 

Table 7: 

Table 7 Input and Output Variables of GSA.m 

Function Input Variables Output Variables 

GSA 

N  

maxIterationNumber 

Rpower 

pavementType 

deflection_measured 

i 

fitness_best 

solution_best 

deflection_calculated 

cost 
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Where i refers to the number of test section/station currently dealing with. Actually, 

the outputs of the GSA function correspond to solution of the backcalculation problem. 

After performing all the functions of GSA, four outputs are returned of which are 

expressed as below. 

GSA.m: definitions of output variables 

solution_best: backcalculated stiffness properties which are the most representative 

ones with the field conditions. 

deflection_calculated: calculated deflections of solution_best using ANN. 

fitness_best: corresponding fitness value of solution_best which corresponds how well 

deflection_calculated was agreed with deflection_measured. 

cost: array of calculated fitness_best values for each iteration. By using this 

performance of GSA-ANN code on reaching the solution could be plotted. 

 

Both measured and calculated deflection data are stored in the array form as given 

below: 

 (𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑖 = (𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)𝑖 = [𝐷0, 𝐷12, 𝐷24, 𝐷36] (61) 

 

Backcalculated stiffness properties of each type of pavement are also expressed in the 

following form: 

For FDP;                          (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑏𝑒𝑠𝑡)𝑖 = [𝐸𝐴𝐶 , 𝐸𝑅İ] (62a) 

For CFP; (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑏𝑒𝑠𝑡)𝑖 = [𝐸𝐴𝐶 , 𝐾𝐺𝐵, 𝐸𝑅İ] (62b) 

For FDP-LSS; (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑏𝑒𝑠𝑡)𝑖 = [𝐸𝐴𝐶 , 𝐸𝐿𝑆𝑆, 𝐸𝑅İ] 
(62c) 

 

The outputs which are listed above are provided by GSA.m executions. These results 

are products of a series of function evaluations of GSA optimization method adapted 

for backcalculation. These functions are introduced according to sequence of actions. 
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At the initial stage of a GSA run, ranges of parameters to be backcalculated are 

assigned according to predefined pavementType value. objflimits is the function which 

stores the ranges of input parameters and it is also the first called function when GSA 

is executed. pavementType takes only strings of ’FDP’, ‘CFP’ and ‘FDP-LSS’ and 

number of layers with the corresponding moduli ranges for each pavement type are 

called from objflimits.m file. For the given pavement type, number of layers and 

corresponding moduli ranges are assigned to the variables by objflimits function. In 

order to obtain properly backcalculated data, ranges of material properties should be 

consistent with limits to that of defined ones used for creating ANN forward models 

(see Table 3 to 5). The form of objflimits function is denoted as follows: 

    [𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑑𝑖𝑚] = 𝑜𝑏𝑗𝑓𝑙𝑖𝑚𝑖𝑡𝑠(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒) (63) 

 

where dim refers to the dimension of population to be analyzed. For pavement layer 

backcalculation, each stiffness property to be predicted corresponds to one dimension 

so that FDP sections have 2 dimensional search domain while CFP and FDP-LSS have 

3 dimensional. up and down that are the extends for each dimension in other words 

lower and higher layer moduli. Following to this, initialization stage is performed to 

create a random population of stiffness properties. initialization.m is performed with 

the form given below: 

    [𝑋𝑘𝑗] = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑑𝑖𝑚, 𝑁, 𝑢𝑝, 𝑑𝑜𝑤𝑛) (64) 

 

Referring to Equation (35), population, Xkj is composed of N number of agents  

(k = 1 to N) in n (j = 1 to dim) dimensional search space. This means that population 

has a matrix form of dim number of columns by N number of rows and each one stores 

the stiffness data.  

Since backcalculation is an iterative process, parameters are estimated successively to 

improve the quality of input data in terms of how our calculated deflections fit with 

the measured ones from the field.  For this reason, GSA function starts with the 

initialized population, Xij, repeat its all functions for predefined maxIterationNumber 



 

91 

 

times by adjusting the population in every iteration. Prior to begining the first iteration, 

essential arrays and matrices are created which are listed below: 

Velocity;                𝑉𝑘𝑗 = 𝑧𝑒𝑟𝑜𝑠(𝑁, dim) (65a) 

Best Stiffness;                (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑏𝑒𝑠𝑡)𝑖 = 𝑧𝑒𝑟𝑜𝑠(1, dim) (65b) 

ANN Deflections; (𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)𝑖 = 𝑧𝑒𝑟𝑜𝑠(1,4) 
(65c) 

 

zeros(a,b) denotes an a by b matrix whose all units are zero. Due to being in first 

iteration, all the agents in the population are motionless, and therefore all the velocities 

are set to zero. Other two arrays presented above are generated to record the results of 

the problem in these arrays.   

After forming the necessary parameters listed above, iteration is set to 1. Since the 

population generated randomly, there may be some agents that violate the limits of up 

and down. To prevent agents of exceeding the boundaries, all agents are checked and 

if any of them exists which violates the limitations of those are initialized again. Next 

step is the assessment of population. In order to evaluate the agents in the way of 

forward response calculations, ANN is needed to be performed which is embedded to 

the objective function of GSA. Through the provided data with main.m and GSA.m, 

objective function, objf.m could be executed. In this study, mean absolute percentage 

error (MAPE) (see Equation (68)) is selected as the objective function to calculate the 

difference between deflection basins. Input and output variables of this function are 

listed in Table 8. 

Table 8 Input and Output Variables of objf.m 

Function Input Variables Output Variables 

objf 

X 

pavementType 

deflection_measured 

iteration  

fitness_best  

solution_best 

deflection_calculated 

MAPE 

deflection_calculated 

fitness_best 

solution_best 

cost 
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ANN models for each type of pavement are put together to a MATLAB function 

namely runANN.m which is also embedded into the objf.m file. According to 

predefined pavementType, the code decides which model to use. For the purpose of 

calculating deflections at D0, D12, D24 and D36 sensor locations, ANN requests 

thickness and modulus properties of the layers of the associated pavementType. At 

previous stages, N set of agents in dim dimension are initialized as positions which 

correspond to stiffness properties of the test section. Accordingly, thickness of each 

layer (extracted from the input directory of MS Excel file) in the same test 

section/station are assigned to the each agent. The input matrix of ANN for test section 

i can be expressed as follows: 

    (𝑖𝑛𝑝𝑢𝑡𝐴𝑁𝑁)𝑖 = [𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝑋𝑘𝑗] (66) 

 

The dimension of inputANN matrix differs according to pavementType. For example, 

‘FDP’ inputANN consists of N by 3 elements that one column refers to the thickness 

while the other two denote to the stiffness properties. ‘CFP’ and ‘FDP-LSS’ 

inputANNs include N by 5 elements of which are 2 thicknesses and 3 stiffness 

properties. By running the runANN.m, ANN forward response engine estimates the 

deflections for the current section/station i which are presented in the following form: 

 [(𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)𝑖] = 𝑟𝑢𝑛𝐴𝑁𝑁((𝑖𝑛𝑝𝑢𝑡𝐴𝑁𝑁)𝑖)    (67) 

 

The next step is to determine how deflection_calculated fits the deflection_measured 

values. This is the fitness evaluation part of the algorithm which assesses the test 

section in question. By this way, how close deflections obtained from our simulated 

pavement sections (presented with population) with an in-situ pavement section can 

be assessed. The approximation between two deflection sets denotes to our success of 

modelling field sections mathematically so that assumed stiffness properties are 

considered as the representative features of the field conditions. In this respect, 

employed objective function, MAPE is presented below: 
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 𝑀𝐴𝑃𝐸𝑘 = 100 ×
1

𝑛
∑ |

𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑡 − 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑡

𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑡
|

𝑛

𝑡=1

 (68) 

 

Where n is the number of sensors which is 4 in this study. MAPEk is an array of N by 

1 dimension that stores the fitness values of each agent. Using these data, best fitted 

agent is determined which is specified with solution_best and its corresponding fitness 

value fitness_best. For the current iteration, these values are recorded to their specific 

arrays in an attempt to be compared for the future iterations. Also fitness_best value of 

iteration is recorded to the cost array.  

As explained in Section 2.7.2.2 mass of each agent in the population is calculated 

through the fitness values.  By using Equation (38) and (39), massCalculation.m 

computes the masses a using the fitness values stored in MAPEk array.. The form of the 

function are expressed as given below: 

 [𝑀𝑘] = 𝑚𝑎𝑠𝑠𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑀𝐴𝑃𝐸𝑘)    (69) 

 

Following stage is to determine gravitational constant, Giteration which is a function of 

age of the universe (Mansouri et al. 1999) (see Equation (40)). In GSA code, this age 

is imitated with the current iteration, maxIterationNumber and two constants of G0 and 

α. Originating from our experimental studies G0 is taken as 108 and α is taken into 

account as 0.5. Giteration is adjusted for each iteration using following function: 

 [𝐺𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] = 𝐺𝑐𝑜𝑛𝑠𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟)    (70) 

 

The next stage is to calculate the applied force by the agents to each other. This force 

is the function of agent’s mass, Mk, Euclidian distance between other agents, Rkj (see 

Equation (43)), difference between objects positions, Xkj and gravitational constant 

Giteration. In order to calculate the total force which acts on the agent k Equation (41) 

and (42) are utilized. Kbest is set to 2% which refers to, at the last iteration, only 2% 

percent number of agents having best fitness value in the population will apply 
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gravitational force to prevent the algorithm trapping in local minimum solutions. In 

the first iteration, all the agents apply force to each other and throughout the iterations, 

regarded force applied by agents are linearly decreased to 2% of the population. 

accCalculation function determines the accelerations of agents (see Equation (44)) and 

its input-output variables are presented in Table 9.  

Table 9 Input and Output Variables of accCalculation.m file 

Function Input Variables Output Variables 

accCalculation 

M 

X 

Giteration  

Rnorm and Rpower   

iteration  

maxIterationNumber  

a 

 

After calculating accelerations of agents in corresponding dimensions, it is required to 

update velocity them. Motionless agents whose velocities were assigned as zero, (see 

Equation (65a) for agent k, in dimension j) before the algorithm executed. In ensuing 

iterations, they gain acceleration due to exposed overall gravitational force, Fkj, so that 

they awake to move toward the best agent in the population. Through the influence of 

updated velocities, agents change their positions, Xkj. These velocity and position 

adjustments are executed in the function of agentMovement which employs the 

Equation (45) and (46), respectively and it can be expressed in the following form: 

 [𝑋𝑘𝑗, 𝑉𝑘𝑗] = 𝑎𝑔𝑒𝑛𝑡𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑋𝑘𝑗, 𝑎𝑘𝑗𝑉𝑘𝑗)    (71) 

 

The new Xkj and Vkj matrices are saved in an effort to be used in next iteration. The 

same stages are repeated from checking against possible boundary violations of 

positions to the updating the new positions until the maxIterationNumber. At the end, 

dependent output variables of GSA which are fitness_best, solution_best, 

deflection_calculated and cost are printed out. The data stored in solution_best refers 

to the calculated layer moduli of analyzed pavement section that are specified in 

Equation (62). A general flowchart of GSA-ANN algorithm is illustrated in Figure 39.  
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3.5 Solving a Sample Backcalculation Problem Using GSA-ANN  

In this section, a sample backcalculation problem are solved using developed GSA-

ANN approach to provide better understanding about the working schemes of the 

proposed approach. A sample FDP section is created by using ILLI-PAVE software 

and elastic moduli of AC layer and breakpoint resilient modulus of fine-grained 

subgrade soil are backcalculated through the use of proposed algorithm.  The aim of 

this analysis is to find closest moduli values to the sample moduli values calculated 

with GSA-ANN. The input and output values of sample section which are stored in 

MS Excel file is presented in Table 10.  Stages of the code is provided respectively. 

Table 10 Sample FDP Section’s Input and Output Data 

Input Variables Output Variables (mils) 

Thickness 

(inch) 
EAC 

(psi) 
ERİ 

(psi) 
D0 D8 D12 D18 D24 D36 D48 D60 D72 

13.2 889,744 5,393 6.71 5.96 5.60 5.11 4.62 3.69 2.86 2.15 1.58 
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Figure 39 General Flowchart of GSA-ANN Backcalculation Code 
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Required values of the variables are defined to the main.m which are listed below: 

Table 11 Input Parameters and Corresponding Values of GSA-ANN for Sample Pavement 

Section  

Variable Value 

N 15 

maxIterationNumber 50 

maxTestNumber 1 

pavementType ‘FDP’ 

α 0.5 

G0 108 

 

Using the values above, algorithm determines the properties of search space in terms 

of dimension, dim, lower and upper limits of the moduli, low and up which are 

extracted by objflimits function. Corresponding values for these parameters are 

specified in the table below: 

Table 12 Dimension and Ranges of Search Space 

Variable Assigned Array 

dim [2] 

up [2,000,000  14,000] 

low [10,000  1,000] 

 

A population is created for the given N number of agents and their positions (layer 

moduli) are initialized through the initialization.m file by considering the values in 

Table 12. Then, velocities of all agents are assigned as zero since they are motionless 

in the first iteration. Initial values of positions and velocities are presented in the Table 

13. In order to store the obtained best results for each iteration, fitness_best and 

solution_best arrays are also created and zero value assigned to each one as shown in 

Table 14.  
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Table 13 Initial Positions and Velocities for the Sample Problem 

Agent 
Xkj 

Vkj 
EAC  ERİ  

1 1631300 2845 0 0 

2 1812526 6483 0 0 

3 262704 12905 0 0 

4 1827618 11299 0 0 

5 1268395 13473 0 0 

6 204105 9525 0 0 

7 564211 1464 0 0 

8 1098294 12039 0 0 

9 1915439 13142 0 0 

10 1930128 9824 0 0 

11 323650 10851 0 0 

12 1941480 10661 0 0 

13 1914762 6099 0 0 

14 975898 9521 0 0 

15 1602558 3225 0 0 

  

Table 14 Initial fitness_best and solution_best arrays 

Variable Assigned Array 

fitness_best [0] 

solution_best [0  0] 

 

Next, iterative process begins by setting the iteration as 1 and thickness of AC layer 

of sample section is extracted from the corresponding MS Excel file shown in Table 

10. The thickness value of 13.2 in. (335 mm) is incorporated into the position matrix 

to provide the data into ANN model. By executing forward response model in objf.m 

file corresponding deflections are calculated using FDP ANN model. Then, calculated 

deflections are compared with the actual deflections in Table 10 through MAPE 

objective function (see Equation (68)). Obtained results are shown in the table below: 
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Table 15 Calculated Deflections and Obtained Errors for Iteration-1 

Iteration-1 

Agent tAC 
(in.) 

 Xkj Calculated Deflections by ANN 
MAPEk 

EAC (psi) ERİ (psi) D0 D12 D24 D36 

1 13.2 1631300 2845 5.53 4.85 4.18 3.53 11.21 

2 13.2 1812526 6483 4.38 3.78 3.21 2.67 31.35 

3 13.2 262704 12905 9.21 6.04 4.16 2.85 19.46 

4 13.2 1827618 11299 3.7 3.12 2.6 2.12 43.85 

5 13.2 1268395 13473 4.2 3.42 2.75 2.18 39.43 

6 13.2 204105 9525 11.63 7.59 5.2 3.55 31.30 

7 13.2 564211 1464 10.91 9.13 7.53 6.05 63.14 

8 13.2 1098294 12039 4.71 3.81 3.06 2.4 32.62 

9 13.2 1915439 13142 3.43 2.88 2.39 1.94 48.29 

10 13.2 1930128 9824 3.77 3.21 2.69 2.22 42.03 

11 13.2 323650 10851 8.86 6.19 4.45 3.16 15.16 

12 13.2 1941480 10661 3.66 3.11 2.6 2.14 43.91 

13 13.2 1914762 6099 4.32 3.75 3.19 2.67 31.81 

14 13.2 975898 9521 5.42 4.41 3.55 2.8 21.94 

15 13.2 1602558 3225 5.47 4.78 4.1 3.46 12.65 

 

As can be clearly seen that 1st agent in the population has the minimum MAPE value 

which means that it produces the closest deflections with the sample section. In 

ensuing iterations, GSA-ANN algorithm attempts to decrease the difference between 

deflection basins in order to increase the closeness of layer moduli through the GSA’s 

searching capability. For Iteration-1 fitness_best, solution_best and cost arrays are 

updated as following: 

Table 16 fitness_best, solution_best and cost arrays for Iteration-1 

Iteration-1 

Variable Assigned Array 

fitness_best [11.21] 

solution_best [1,631,300 2,845] 

costk [11.21]  
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To mobilize the agents in the population, their masses and applied forces to each other 

are essential to be calculated first. Using the fitness values of each agent, masses are 

computed and then gravitational constant are decreased linearly using the current 

iteration number. In conclusion, new positions and velocities which are going to be 

used for the next iteration are updated through the acceleration for each dimension. 

Obtained results for Mk, akj, Vkj and Xkj are presented in the following tabular form: 

Table 17 Updated Variables of GSA-ANN Algorithm for Iteration-1 

Iteration-1 G1 = 990,050 

Agent Mk akj Vkj Xkj 

1 0.114126 -141334 5866 -141334 5866 1489966 8711 

2 0.06933 -200161 11715 -200161 11715 1612365 10374 

3 0.095775 176915 -8730 176915 -8730 439618 4175 

4 0.041507 -244365 -20455 -244365 -20455 1583253 2375 

5 0.05134 -13721 -2256 -13721 -2256 1254674 11218 

6 0.069429 518626 3742 518626 3742 722731 13267 

7 -0.0014 240940 6828 240940 6828 805151 8292 

8 0.066488 135518 -3806 135518 -3806 1233812 8232 

9 0.031644 -440833 -42776 -440833 -42776 1474606 13646 

10 0.045571 -424787 -7571 -424787 -7571 1505341 2252 

11 0.105349 316670 -787 316670 -787 640320 10064 

12 0.041377 -471177 -6237 -471177 -6237 1470302 4424 

13 0.068294 -316678 29241 -316678 29241 1598084 7303 

14 0.090259 111874 -256 111874 -256 1087772 9265 

15 0.110916 -4400 5637 -4400 5637 1598158 8862 

 

Immediately after updating new positions, Iteration-2 starts by combining thickness of 

AC layer with new positions. Next, they are provided to ANN model to estimate new 

deflections. Positions in the second iteration and associated deflections are presented 

along with the obtained error rates in Table 18.  
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Table 18 Calculated Deflections and Obtained Errors for Iteration-2 

Iteration-2 

Agent tAC 
(in.) 

 Xkj Calculated Deflections by ANN 
MAPEk 

EAC (psi) ERİ (psi) D0 D12 D24 D36 

1 13.2 1489966 8711 4.49 3.79 3.15 2.57 31.89 

2 13.2 1612365 10374 4.07 3.42 2.84 2.31 38.55 

3 13.2 439618 4175 10.27 8.12 6.38 4.91 42.30 

4 13.2 1583253 2375 5.78 5.08 4.39 3.72 7.23 

5 13.2 1254674 11218 4.51 3.71 3.02 2.4 34.03 

6 13.2 722731 13267 5.57 4.28 3.3 2.5 25.35 

7 13.2 805151 8292 6.25 5.04 4.03 3.15 11.07 

8 13.2 1233812 8232 5.04 4.21 3.47 2.8 24.68 

9 13.2 1474606 13646 3.88 3.19 2.6 2.07 43.21 

10 13.2 1505341 2252 6 5.27 4.54 3.84 5.57 

11 13.2 640320 10064 6.55 5.09 3.95 3 11.17 

12 13.2 1470302 4424 5.4 4.67 3.96 3.3 15.25 

13 13.2 1598084 7303 4.55 3.88 3.26 2.69 29.86 

14 13.2 1087772 9265 5.18 4.26 3.46 2.76 24.26 

15 13.2 1598158 8862 4.3 3.65 3.03 2.48 34.49 

 

In the second iteration, 10th agent in the population has the minimum error rate which 

means that the algorithm found a better agent whose deflection basin fits better than 

the best agent in the previous iteration. Therefore, fitness_best, solution_best and cost 

arrays are updated as follows: 

Table 19 fitness_best, solution_best and cost arrays for Iteration-2 

Iteration-2 

Variable Assigned Array 

fitness_best [5.57] 

solution_best [1,505,341 2,252] 

costk [
11.21
5.57

] 
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By following the calculation of gravitational constant, G2 for Iteration-2, Mk, akj, Vkj 

and Xkj are updated, respectively. Corresponding values are shown in the following 

tabular form: 

Table 20 Updated Variables of GSA-ANN Algorithm for Iteration-2 

Iteration-2 G1 = 980,199 

Agent Mk akj Vkj Xkj 

1 0.041419 -61455 -18390 -102468 -17812 1387498 -9102 

2 0.016089 -567538 -22402 -631093 -12754 981272 -2380 

3 0.001804 468141 3974 583788 2447 1023407 6622 

4 0.135273 -314669 19228 -548511 15882 1034742 18257 

5 0.033283 44072 -9003 31232 -10505 1285906 713 

6 0.066344 405889 -7113 643361 -3766 1366092 9501 

7 0.120693 140855 -213 198796 3314 1003947 11606 

8 0.068875 29685 -1183 133207 -3858 1367019 4375 

9 -0.00164 -116719 -33590 -451455 -40160 1023151 -26514 

10 0.141616 -236941 18251 -551559 11032 953782 13284 

11 0.120282 477884 -2181 713388 -2607 1353708 7457 

12 0.10478 -58134 1672 -108041 -2568 1362261 1857 

13 0.049159 -444867 -2481 -660702 -1412 937383 5892 

14 0.070473 194803 -1627 246630 -1834 1334402 7431 

15 0.031555 -382936 -64597 -383870 -60378 1214288 -51515 

 

Iterations continue by updating and checking the boundary conditions of positions. At 

the end of the last iterations results are printed to the screen. Since it is not possible to 

show each stage of iterations, overall results are presented. As denoted at the beginning 

of the algorithm, maxIterationNumber is regarded as 50 so that the obtained 

fitness_best and solution_best values at the end of the iterations are presented in Table 

21. This means that backcalculated layer moduli are 887,786 psi (6118 MPa) for EAC 

and 5,434 psi (37.4 MPa) for ERİ which show good approximation with corresponding 

deflection basin of 0.27 MAPE value.  

 



 

103 

 

Table 21 Solution of the Problem at the End of Iteration-50 

Iteration-50 

Variable Assigned Array 

fitness_best [0.27] 

solution_best [887,786 5,434] 

 

The performance of GSA-ANN algorithm can be evaluated through the comparison of 

backcalculated and actual layer moduli values in Table 10. According to this 

comparison presented in Table 22, GSA-ANN estimates layer moduli less than 1% 

error which is satisfactory for backcalculation problems.  

Table 22 Comparison of Actual and Backcalculated Moduli  

Variable 
Actual Value Backcalculated Value MAPE 

(%) 
(MPa) (psi) (MPa) (psi) 

EAC 6130 889,744 6117 887,786 0.22 

ERİ  35 5,393 37 5,434 0.75 

 

cost is the 50 by 1 array of recorded fitness_best results for each iteration. It is 

performed to show how GSA-ANN algorithm comes through the solution of the 

problem. The array is plotted by presenting the fitness_best versus iteration values as 

illustrates in Figure 40. Moreover, movement of agents in the search space is observed 

that approximating to the global solution are presented thorough the randomly selected 

iterations as depicted in Figure 41. 
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Figure 40 Plot of cost array 
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Figure 41 Positions of the Agents in the Search Space through the Iterations 
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CHAPTER 4 

 

 

PERFORMANCE EVALUATION OF GSA-ANN METHOD 

 

 

4. PERFORMANCE EVALUATION OF GSA-ANN METHOD 

4.1 Introduction 

Proposed GSA-ANN backcalculation method needs to be validated to indicate how 

effectively it works in pavement layer backcalculation problems. This chapter focuses 

on the verification of the proposed approach through the use of two different data 

sources. First data set is composed of the synthetically generated pavement sections 

by means of ILLI-PAVE software. Prediction capability of employed ANN models are 

evaluated using randomly selected data from the synthetic data sets. Moreover, these 

data are provided to the proposed GSA-ANN backcalculation algorithm to be 

backcalculated as well. For the evaluation of searching ability of GSA, ANN forward 

response models are combined with genetic algorithm as search method which is one 

of the most popular metaheuristic optimization techniques. Obtained backcalculation 

algorithm by the use of a simple genetic algorithm (SGA) is named as SGA-ANN and 

it is then executed using exactly the same synthetic data backcalculated with GSA-

ANN.  However, these assessments are conducted with the deflection data calculated 

numerically with computer programs so that it is essential to execute backcalculation 

algorithms utilizing field deflection data measured by FWD. Therefore, for each type 

of flexible pavement, deflection and other required pavement data are extracted from 

the LTPP database and their stiffness properties are then backcalculated. In order to 

validate the obtained results from GSA-ANN and SGA-ANN executions, the same 

LTPP sections are analyzed by conventional backcalculation softwares namely 

EVERCALC and MODULUS.  
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4.2 Performance of ANN Forward Response Models 

In order to evaluate the prediction performance of employed ANN models, a set of 

analyses are conducted. Among the thousands of data generated by ILLI-PAVE so as 

to train ANN models, approximately 1,000 ones for each three type of flexible 

pavements are randomly selected for testing purpose. By providing layer thicknesses 

(i.e. tAC, tLSS and tGB) and stiffness values (i.e. EAC, ERİ, ELSS and KGB) of pavement sections 

to the corresponding ANN model, deflections are calculated for the uniformly spaced 

D0, D12, D24 and D36 sensor locations. Following that, agreement between calculated 

and actual deflections stored in testing data set are evaluated through the use of MAPE 

function. The comparison is illustrated by 45-degree line of equality where 

backcalculated and actual deflections are equal on this line.  

Performance of the developed ANN models are illustrated in the way of plotting 

deflections for each individual sensor and pavement type, respectively. Deflections 

calculated with ANN are plotted versus the ILLI-PAVE solutions in the testing 

database. For FDP test sections, Figure 42 shows how both deflection basins are 

matched that the MAPE values obtained are in the range of 0.10% to 0.57%. In the 

same manner, differences between CFP deflection basins change from 0.19% to 0.44% 

MAPEs as shown in Figure 43. For FDP-LSS test sections, the error between 

deflections vary in the range of 0.13% to 0.34% (see Figure 44). As can be clearly seen 

that great majority of solutions of each section types are centered on the line of equality 

which indicate the success of training stages of ANN forward response models. In 

conclusion, ANN models for FDP, CFP and FDP-LSS sections estimate deflections 

accurately with a 0.3% average MAPE value. Therefore, ANN proves that its ability 

to calculate deflections for the sections whose layers’ nonlinear nature were taken into 

account.   It is verified that ANN can be effectively employed as a forward response 

model instead of ILLI-PAVE FE analysis and also ANN can individually be used as 

an analysis tool for flexible pavements.   
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a) b) 

  

c) d) 

Figure 42 Comparison of ANN - ILLI-PAVE Deflections for FDP sections 

 

 

 

MAPE = 0.57 % MAPE = 0.10 % 
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a) b) 

  

c) d) 

Figure 43 Comparison of ANN - ILLI-PAVE Deflections for CFP sections 
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a) b) 

  

c) d) 

Figure 44 Comparison of ANN - ILLI-PAVE Deflections for FDP-LSS sections 
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4.3 Performance of GSA-ANN Algorithm for Synthetically Derived Data 

Among the synthetic testing data sets including 1,000 runs of ILLI-PAVE data for 

each pavement type, randomly selected 100 sections are utilized to backcalculate their 

layer properties.  In order to perform backcalculation with GSA-ANN and SGA-ANN 

algorithms, required values of associated parameters for each algorithm are introduced 

respectively. To make the solutions of both algorithms to be comparable and to 

maintain the consistency, it is necessary to execute the same number of function 

evaluation. Since the both GSA and SGA are population based methods, 50 number of 

agents/individuals form the population and they are evaluated for 100 times which is 

the selected maximum number of iterations. In GSA algorithm, Rpower, α and G0 

parameters are defined as 1, 0.5 and 108, respectively on the basis of performed 

experimental studies for the purpose of determining the most favorable values 

(Rashedi et al. 2009a). Apart from these, according to a study conducted by Reddy et 

al. (2004) which investigates the most effective values of GA parameters,  probability 

of crossover and mutation are selected as 0.74 and 0.1, respectively. Consequently, 

performance of GSA-ANN and SGA-ANN algorithms is evaluated in terms of their 

ability of estimating layer moduli and reaching the optimum fitness values.  

4.3.1 Performance for Full-depth Asphalt Pavements 

EAC and ERİ values of each full-depth asphalt pavement section are backcalculated by 

GSA-ANN and SGA-ANN algorithms. Comparisons of estimated layer moduli with 

associated actual values stored in the testing data set are presented In Figures 45 and 

46, respectively. Accordingly, GSA-ANN can estimate the asphalt layer moduli within 

MAPE value of 1.88% while SGA-ANN can produce the layer moduli within 2.12% 

MAPE value. Breakpoint resilient moduli for subgrade are also predicted successfully 

that GSA-ANN and SGA-ANN achieve 2.18% and 2.63% MAPEs, respectively. 

Closely locating the modulus comparison points around the line of equality proves the 

success of GSA-ANN approach for estimating layer moduli (Öcal and Pekcan 2014). 

For randomly selected two test sections, capability of reaching the optimum fitness 

value of backcalculation algorithms is investigated through the iterations. As 
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illustrated in Figure 47, algorithms achieve the lowest fitness value at the initial 

iterations. Although GSA and SGA produce approximately the same optimum fitness 

values, it is observed that SGA reaches the optimum values before GSA.  

 

  

a) b) 

Figure 45 Performance of GSA-ANN algorithm for FDP Synthetic Data 

 

  

a) b) 

Figure 46 Performance of SGA-ANN algorithm for FDP Synthetic Data 

MAPE = 1.88 % MAPE = 2.18 % 

MAPE = 2.12 % MAPE = 2.63 % 
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a) b) 

Figure 47 Progress Curves of Two Randomly Selected FDP sections for Reaching the 

Optimum Fitness Values 

 

4.3.2 Performance for Conventional Flexible Pavements 

The performance of GSA-ANN algorithm for backcalculation of layer moduli of CFP 

sections is given in Figure 48. Obtained results for each stiffness property show that 

EAC and ERİ estimations have 3.37% and 4.02% MAPEs while KGB is predicted with 

much greater MAPE value of 21.8%. Although, GSA-ANN calculates EAC and ERİ of 

CFPs within slightly larger MAPEs than FDP solutions, these error rates are still in 

reasonable range. As can be seen from the Figure 49 SGA-ANN predicts each layer 

property with slightly higher MAPE values than the ones obtained with GSA-ANN. 

Results indicate that EAC and ERİ are estimated within the 4.36% and 6.21% MAPEs, 

respectively. Just as obtained with GSA-ANN performance of SGA-ANN for KGB is 

quietly poor that 32.5% MAPE is produced. For both approaches, KGB values cannot 

be predicted within tolerable error rates. Therefore, backcalculated KGB values of 

granular layers are not rational to be considered in pavement maintenance and 

rehabilitation operations. When the solutions are investigated it is seen that abnormal 

predictions located away from the line of equality generally produced by the sections 

having thick AC layers (greater than 10 in.) and/or high stiffness values. So that the 

influence of applied FWD load could not be sensed by granular layers. To deal with 

tAC   = 305 mm 

EAC = 6187 MPa 
ERİ   = 39 MPa 

tAC   = 429 mm 
EAC = 11995 MPa 

ERİ   = 70 MPa 

MAPE (GSA-ANN) = 0.18% 

MAPE (SGA-ANN) = 0.18% 
 

MAPE (GSA-ANN) = 0.12% 
MAPE (SGA-ANN) = 0.11% 
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this problem, greater level of loads should be applied to stimulate unbound granular 

layers by an NDT device such as heavy-weight deflectometer (HWD). Another source 

of error is the same deflection basin produced by different combination of layer moduli 

which results in erroneous prediction of stiffness values. When the performance of the 

algorithms on reaching to the optimum fitness values is investigated, the same trend is 

observed with the FDP sections that SGA finds the optimum fitness before GSA. It is 

also observed that optimum fitness value found by SGA is slightly lower than the value 

found by GSA.    

  
a) b) 

 
c) 

Figure 48  Performance of GSA-ANN algorithm for CFP Synthetic Data 

MAPE = 3.37 % MAPE = 21.8 % 

MAPE = 4.02 % 
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a) b) 

 
c) 

Figure 49  Performance of SGA-ANN algorithm for CFP Synthetic Data 
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MAPE = 6.21 % 
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a) b) 

Figure 50 Progress Curves of Two Randomly Selected CFP sections for Reaching the 

Optimum Fitness Values  

 

4.3.3 Performance for Full-depth Asphalt Pavements on Lime Stabilized Soils 

Performance of the GSA-ANN algorithm for FDP-LSS pavement layer moduli 

predictions is presented in Figure 51. Accordingly, algorithm estimates EAC and ERİ 

within admissible MAPE values of 3.16% and 3.41% while ELSS predictions have 

higher error rate around 15%.  On the other hand, MAPEs obtained from SGA-ANN 

runs indicate that the algorithm can predict the layer moduli within higher errors than 

GSA-ANN. It gives the estimations with 5.85%, 24.3% and 5.25% MAPEs for EAC, 

ELSS and ERİ, respectively (see Figure 52). When backcalculation results and ability to 

reaching optimum fitness are investigated, it is concluded that GSA outperforms by 

compared to SGA approach for FDP-LSS sections. Apart from these, elastic moduli 

of stabilized layer cannot be well predicted by both approaches. Higher inequalities of 

ELSS predictions originate from the high flexural rigidity of pavements which have 

thick AC layers and/or higher AC layer moduli. Rigidity of surface layer is one of the 

most important factor influencing deflections occurred on the pavement surface. 
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Figure 51  Performance of GSA-ANN algorithm for FDP-LSS Synthetic Data 
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a) b) 

 

c) 

Figure 52  Performance of SGA-ANN algorithm for FDP-LSS Synthetic Data 
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a) b) 

Figure 53 Progress Curves of Two Randomly Selected FDP-LSS sections for Reaching the 

Optimum Fitness Values  

 

4.4 Field Validation 

Validation using only synthetically derived data is not sufficient to reveal the 

accomplishment of the GSA-ANN algorithm. Since the synthetic data were obtained 

from the numerical modelling of pavements, it is essential to verify the algorithm with 

the field data. Therefore, GSA-ANN model is executed for data extracted from the 

LTPP Program database. For each of flexible pavement types, three LTPP test sections 

are selected. In each section several number of FWD tests were applied that 

corresponding locations are named as station. Each station can be considered as a 

single backcalculation problem. Utilized LTPP data are accessible for download from 

the website: www.infopave.com. This web interface provides users the opportunity to 

query and to find the desired data easily.  

To present the performance of GSA against SGA as a search method, SGA-ANN 

algorithm is also performed for the same LTPP sections. On the other hand, 

EVERCALC and MODULUS conventional backcalculation softwares which 

considers different approaches for pavement layer backcalculation are also executed 

to evaluate the performance of GSA-ANN algorithm. 
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MAPE (GSA-ANN) = 0.30% 

MAPE (SGA-ANN) = 0.38% 
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MAPE (SGA-ANN) = 0.40% 
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For each of test sections, thickness of layers whose moduli values are backcalculated 

and corresponding deflection basins for 40 kN (9 kips) FWD loads along with the 

stations are extracted from the LTPP database and saved in an MS Excel file. For each 

type of flexible pavements, GSA-ANN algorithm is performed for a population 

consisting of 50 agents which are evaluated iteratively for 100 times. Other parameters 

of GSA: Rpower, α and G0 are set to 1, 0.5 and 108, respectively. The same population 

size and iteration number are selected for SGA-ANN algorithm so as to make the 

analyses consistent with each other. Probability of crossover and probability of 

mutation are selected as 0.74 and 0.1, respectively (Reddy et al. 2004). Through the 

use of these input data layer properties are backcalculated and results are stored in an 

MS Excel file.  

EVERCALC backcalculation program uses two input files namely the general file and 

the deflection file. The general file requests values of all the necessary input 

parameters from the user. Sensor configuration, radius of loading plate and units to be 

used in the analyses are given in the general file. Then the number of layers, 

corresponding moduli ranges and Poisson’s ratios are defined to the software. These 

values are generally given as the same as the ranges used in GSA-ANN and SGA-

ANN analyses to make them consistent with each other. Maximum number of 

iterations, deflection basin error tolerance and moduli error tolerance are chosen 

typically used values as 10, 1% and 1%, respectively (WSDOT 2005). The next step 

is to define the loads and associated deflection basins in the deflection file. Since the 

EVERCALC is able to calculate stress sensitivity coefficients in the case of providing 

deflection basins for more than one load level,  4 different load levels which are around 

30, 40, 60 and 80 kN  (6, 9, 11 and 15 kips) magnitudes are taken into account along 

with their deflection basins.  After conducting analyses, backcalculated layer moduli 

values are stored in the same MS Excel file with GSA-ANN and SGA-ANN.  

MODULUS is another conventional backcalculation software that it assumes all layers 

as linear elastic. The software works in MS-DOS environment and it requests from the 

user to define plate radius, number of sensors and corresponding locations. At the same 

screen, layer thicknesses, moduli ranges and Poisson’s ratios are defined to the 
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program. Unlike the EVERCALC program, MODULUS does not require any range 

for subgrade moduli and it only asks for an initial moduli for natural soil. On the other 

hand, the software enables user to define thickness for subgrade which may influence 

the backcalculated results. Deflection data of approximately 40 kN (9 kips) loading 

conditions are given to the program to perform backcalculation of layer moduli by 

using predefined layer properties. Finally, obtained results are recorded to the same 

MS Excel file with previously backcalculated moduli values using the other 

approaches.  

All the approaches specified above are performed 10 times and an average moduli for 

each layer and subgrade along with the stations are plotted. For each type of flexible 

pavements, details of LTPP test sections, analyses and corresponding results are 

presented in the following sections separately. 

4.4.1 LTPP Full-depth Asphalt Pavement Sections 

Full-depth asphalt pavements built on fine-grained subgrade are rarely encountered 

because of their high cost of construction and/or lack of available granular materials 

in the local area. In order to analyze such sections, LTPP database are investigated and 

locations of chosen test sections are illustrated using satellite images in Figure 57. 

Selected first FDP section is located in Spencer County in the State of Indiana. 

Sections in LTPP database are defined with the combination of two identification 

numbers that first one refers to the state code and the second one is the section ID 

specified uniquely for every LTPP section in the state. In this manner, the first section 

to be analyzed is named as 18-A350 where 18 is the state code and A350 is the section 

ID. This pavement was constructed in 1975 and it has been observed through the LTPP 

program specific pavement studies (SPS-3) ever since 1987. Among the several FWD 

tests applied to this section, deflection data measured on May 11, 1994 is extracted to 

perform backcalculation. When the test was started, pavement temperature was 

recorded as 44°C (111°F). Either flexible pavements may be built with several AC 

layers at one construction stage or additional AC layers may be placed on the existing 

asphalt pavements later on. In this context, 18-A350 section is composed of 399 mm 
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(13.6 in.) total thickness of AC layers over lean inorganic clayey fine-grained soil. The 

test was performed with a 7-sensored FWD device along with the 6 stations for two 

different lanes of the section 18-A350.  Loading plate radius of an FWD configuration 

may differ regarding to performed test, so that it was searched for radius of 152 mm 

(6 in.) loading plates. Because, deflection basins in ANN models were generated under 

40 kN ESAL over loading plate having 152 mm (6 in.) radius. 

The second FDP section is 20-A320 which is located in Franklin County in the State 

of Kansas. The road including this section was constructed in 1971 and has been 

investigated through the LTPP Program specific pavement studies (SPS-3) ever since 

1987. The backcalculated deflection data belong to the performed test on April 23, 

1993 and the measured pavement temperature when the test started is 72°F (22°C). 

The cross section of the pavement consists total thickness of 345 mm (13.6 in) of AC 

layer built on lean inorganic clayey fine-grained soil. The road has two lanes that 

deflections were recorded in 6 stations for both lanes by means of 7-sensored FWD 

device.  The third FDP test section is located afterwards of the 20-A320 section and 

named as 20-A330. The FWD test data were collected on April 23, 1993 that the 

pavement temperature was 59°F (15°C). The section was constructed with 335 mm 

(13.2 in) of AC layer above the clayey fine-grained soil. The same FWD configuration 

was implemented in this section and deflections were captured for 6 stations for each 

lane.  

As explained above, FWD tests applied on the each of selected LTPP sections only 

have 6 stations. To observe the estimation consistency between the lanes, layer moduli 

are backcalculated for F1 and F3 lanes of all the FDP sections. Obtained layer moduli 

along with the stations for each FDP section are presented from Figure 54 to 56.  SGA-

ANN produces approximately the same layer moduli curve with GSA-ANN algorithm 

for AC layer and subgrade. As it can be seen from these figures, GSA-ANN and SGA-

ANN calculations for linear elastic AC layer have the same trend with conventional 

backcalculation softwares despite the slight differences existing among them. 

Additionally, calculated layer moduli for two lanes are usually agreeable with each 

other. Although the same trend is observed for each analyses method except a few 
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stations, subgrade moduli show slight variations. Generally, GSA-ANN and SGA-

ANN produce lower layer moduli by compared to the other two approaches. Since the 

EVERCALC takes into account the nonlinearity of layers under several load levels, it 

is expected for GSA-ANN to produce consistent results with this software. Adherence 

to this, similar trend with EVERLCALC software at certain stations is observed. 

Because of different material model employed by EVERLCALC for fine-grained 

subgrades, the software may produce dissimilar layer moduli compared to GSA-ANN 

outputs. Nevertheless, GSA-ANN estimations for AC layer moduli are consistent with 

the SGA-ANN and other two programs and present admissible solutions for fine-

grained subgrade moduli with traditional methods.   
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a) 

 
b) 

Figure 54 Comparison of Layer Moduli for 18-A350 FDP Section  
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a) 

 
b) 

Figure 55 Comparison of Layer Moduli for 20-A320 FDP Section  
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a) 

 
b) 

Figure 56 Comparison of Layer Moduli for 20-A330 FDP Section  
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a) Location of 18-A350 Test Section (GPS-Lat., Long. (degree): 38.19612, -86.99742) 

 

b) Location of 20-A320 Test Section (GPS-Lat., Long. (degree): 38.62293, -95.24045) 

 

c) Location of 20-A330 Test Section (GPS-Lat., Long. (degree): 38.62308, -95.24844) 

Figure 57 Locations of LTPP FDP Test Sections 
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4.4.2 LTPP Conventional Flexible Pavement Sections 

Conventional flexible pavements have been extensively constructed in all around the 

word due to their economic advantages. Building pavements with unbound granular 

layers reduces the total thickness of asphalt layers being constructed. Therefore, there 

is a large number of CFP type sections’ data are readily available in LTPP database.  

As the results of investigations in LTPP database, three of test sections are selected 

from different locations in the USA and Canada. Locations of chosen test sections are 

illustrated using satellite images in Figure 61. The first section is situated in Walton 

County in the State of Georgia and it is named as 13-1001. This section was built in 

1986 and it has been investigated through LTPP program general pavement studies 

(GPS-1) since a year later of its construction. Among the applied several FWD tests in 

different dates, the test was chosen which was performed on April 30, 1995 and 

recorded pavement temperature when the test started was approximately 38°C (100°F). 

Analyzed section is composed of total thickness of 211 mm (8.3 in.) of AC layer and 

218 mm (8.6 in.) of crushed gravel layer which are constructed over fine-grained soil 

including sandy silt. FWD test were applied for two lanes of 13-1001 section along 

with the 21 successive stations located within approximately 150 m long road portion.  

Employed FWD device is configured with 7 sensors to measure deflections occurred 

on the pavement surface.  

The second CFP test section is selected from the western part of USA located in 

Golden Valley County in the State of Montana. Defined identification number for this 

section is 30-8129 and it has been observed by LTPP program general pavement 

studies (GPS-1) since the construction year of 1988. Among the applied several FWD 

tests in different dates, the test is chosen which was performed on July 27, 2003 and 

the reported pavement temperature when the test started was approximately 28°C 

(82°F). The cross section of the pavement is composed of 185 mm of (7.3 in.) AC layer 

and 558 mm (22 in.) of crashed gravel layer placed above the gravelly lean clay with 

sandy soil. 9-sensored FWD device was used to measure the deflections occurred on 

the pavement surface. Test was performed for two lanes of the section along with the 

21 successive stations located within approximately 150 m long road portion.  
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The third test section extracted from LTPP is situated in Canada. The unique ID 

number for the section is 90-6410 of which 90 refers to the ID of the Saskatchewan 

State and 6410 is the section ID. This pavement is relatively old comparing to the other 

analyzed LTPP sections that was constructed in 1968. Ever since the year of 1987, it 

has been investigated through LTPP program general pavement studies (GPS-1 and 

GPS-6B). In 2005, the section was removed from the LTPP studies. Among the FWD 

tests performed before the removal of the section, the test is selected which was carried 

out on June 14, 1990. Recorded pavement temperature was 54°F (18°C) on the test 

day. The section was constructed with AC layers of 147 mm (5.8 in.) and 239 mm (9.4 

in.) of crushed gravel unbound layer over the fine-grained sandy silt soil. Deflection 

were measured with 7-sensored FWD device through the approximately 150 m long 

road portion including 21 stations for two lanes. 

Figure 58 to 60 provide the moduli curves for CFP type LTPP test sections through 

the stations. Performance of GSA-ANN and SGA-ANN algorithms on granular layers 

are not sufficient as it was expressed in Section 4.3.2. In addition to these, MODULUS 

software gives elastic moduli of granular layer while GSA-ANN estimates the KGB 

parameters in the constitutive material model. Therefore, it is not convenient to 

compare the outputs of the programs and it is thought that presenting granular layer 

moduli data does not make any contribution to this study. When the moduli curves 

were investigated for elastic AC layers, a general trend is observed for each of the test 

sections and also it is seen that GSA-ANN gives closer estimations with EVERCALC. 

Also, SGA-ANN produces approximately the same layer moduli curve with GSA-

ANN algorithm for AC layer and subgrade. On the other hand, MODULUS AC layer 

moduli calculations are usually located above the other solutions. In a few stations of 

13-1001, MODULUS overestimates the AC layer moduli much more than the upper 

limit of predefined range for subgrade, and hence these stations were not reported on 

the graph. Consequently, it is observed that EVERCALC solutions for subgrade 

moduli are generally higher than the other two approach and in some cases like in 13-

1001 section, huge gaps emerge with another solutions. In conclusion, GSA-ANN  
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gives consistent predictions with conventional softwares especially for AC layers. 

Predictions for unbound granular layer properties are excluded from the scope of this 

study because of the inadequate performance of programs. 
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a) 

 
b) 

Figure 58 Comparison of Layer Moduli 13-1001 CFP Section  
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a) 

 
b) 

Figure 59 Comparison of Layer Moduli for 30-8129 CFP Section  
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a) 

 
b) 

Figure 60 Comparison of Layer Moduli for 90-6410 CFP Section  
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a) Location of 13-1001 Test Section (GPS-Lat., Long. (degree): 33.8075, -83.79003) 

 

b) Location of 30-8129 Test Section (GPS-Lat., Long. (degree): 46.30759, -109.12174) 

 

c) Location of 90-6410 Test Section (GPS-Lat., Long. (degree): 52.05876, -106.59993) 

Figure 61 Locations of LTPP CFP Test Sections 
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4.4.3 LTPP Full-depth Asphalt Pavement Sections on Lime Stabilized Soils 

Sometimes, it is essential to improve the natural soil quality to build pavements over 

the subgrade. One of the materials used for the purpose of improvement is lime. 

Previous studies proves the necessity of regarding lime stabilized soils as an 

independent layer in pavement analyses (Pekcan 2010). Since the strength of untreated 

fine-grained subgrade soils may not be sufficient to resist the applied loads, lime 

stabilization is a common approach for improvement. Several full-depth asphalt 

pavement sections on lime stabilized soils which is a popular approach in USA are 

available in LTPP database. Locations of chosen test sections are illustrated using 

satellite images in Figure 68. The first FDP-LSS section analyzed is located in Clinton 

County in the State of Illinois and identified as 17-1003. The pavement was 

constructed in 1986, and ever since the year of 1987 it has been observed through the 

LTPP Program general pavement studies (GPS-1). The FWD test data belong to this 

section were collected on August 31, 2004 and the pavement temperature was around 

31°C (88°F). The test section in question consists of a total thickness of 310 mm (12.2 

in.) AC layers which include a number of thinner successive AC layers and 305 mm 

(12 in.) lime stabilized soil layer constructed over the fine-grained sandy clayey soil. 

FWD tests were performed with 9-sensored device along with the approximately 150 

m long road portion which includes 21 test stations.  

The second FDP-LSS section is also located in Clinton County in the State of Illinois 

and specified as 17-A320. This section was constructed afterwards the previously 

defined 17-1003 section in 1986 and it has been observed since 1987 within the scope 

of LTPP program specific pavement studies (SPS-3). The selected FWD test was 

performed on September 1, 2004 and the corresponding pavement temperature was 

about 38°C (100°F). The cross section of the pavement includes 315 mm (12.4 in.) of 

AC layer and 305 mm (12 in.) of lime stabilized soil layer constructed over the fine-

grained sandy clayey soil. The FWD device captured the deflection data with 9-

sensored configuration throughout the test direction. The length of the test portion of 

the road is about 150 m and it consists of 12 experimental stations.  
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The third and the last section analyzed is located in Buchanan County in State of Iowa 

and it is defined as 19-1044. The section was constructed in 1971, and ever since the 

year of 1987, it has been investigated along with the LTPP program general pavement 

studies (GPS-1). The data belong to this section was measured on April 4, 2002 and 

the pavement temperature was recorded as 15°C (59°F). Because the pavement was 

constructed long time ago, it has been subjected to overlaying operations that AC layer 

thickness increases during the service life of pavements. The latest condition was 

considered in this section of which composed of 506 mm (19.9 in.) of AC layer and 

254 mm (10 in.) of lime stabilized soil built over the sandy lean clayey subgrade. FWD 

tests were performed with 9-sensored device along with the approximately 150 m long 

road including 21 test stations.  

Backcalculated layer moduli of FDP-LSS sections of LTPP database are illustrated 

from Figure 62 to 67. As can be clearly seen that, for all the sections, GSA-ANN 

prediction for linear elastic layers (AC and LSS layer) are consistent with the other 

two backcalculation programs. Similar to FDP and CFP comparison results, SGA-

ANN gives the best approximation to the GSA-ANN algorithm. Especially, there are 

substantial conformity among the EAC estimations while ELSS predictions show slight 

differences that both layer moduli are estimated around the lower limit of associated 

modulus ranges by each backcalculation approach. In section 17-1003, modulus of 

stabilized layer is calculated higher than the other approaches as much as half of the 

stations. Apart from these, for the most of the stations, backcalculated subgrade moduli 

by GSA-ANN show a good trend with other programs’ results, in particular 

EVERCALC solutions. Generally GSA-ANN calculated subgrade moduli are found 

to be lower than the other programs. Since the proposed model considers the subgrade 

nonlinear and employs the bilinear arithmetic model solutions, the gap between the 

results may be originated from the assumed linearity of subgrade by MODULUS 

software. Nevertheless, estimations of GSA-ANN for subgrade moduli is commonly 

agreeable with the nonlinear solutions of EVERCALC. GSA-ANN works in 

conformity with the other two backcalculation programs for full-depth asphalt 

pavements constructed over lime stabilized soils.  
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a) 

 
b) 

Figure 62 Comparison of Surface and Base Layer Moduli for 17-1003 FDP_LSS Section  
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Figure 63 Comparison of Subgrade Moduli for 17-1003 FDP_LSS Section  
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a) 

 
b) 

Figure 64 Comparison of Surface and Base Layer Moduli for 17-A320 FDP_LSS Section  
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Figure 65 Comparison of Subgrade Moduli for 17-A320 FDP_LSS Section  
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a) 

 
b) 

Figure 66 Comparison of Surface and Base Layer Moduli for 19-1044 FDP_LSS Section  



 

143 

 

 

 

 

 

 

 

 

Figure 67 Comparison of Subgrade Moduli for 19-1044 FDP_LSS Section  
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a) Location of 17-1003 Test Section (GPS-Lat., Long. (degree): 38.61603, -89.63421) 

 

b) Location of 17-A320 Test Section (GPS-Lat., Long. (degree): 38.61616, -89.63927) 

 

c) Location of 19-1044 Test Section (GPS-Lat., Long. (degree): 42.46363, -91.64574) 

Figure 68 Locations of LTPP FDP-LSS Test Sections 
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CHAPTER 5 

 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

 

5. SUMMARY, CONSLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

Transportation agencies evaluate structural capacity of in-service pavements to 

accurately decide about the rehabilitation and maintenance operations. Nondestructive 

pavement testing and evaluation tools play a significant role while making such 

assessments. Among various testing devices, the most commonly used one is Falling 

Weight Deflectometer (FWD), which measures the surface deflections under imposed 

loading conditions. Through the use of FWD deflections, layer moduli of pavements 

can be inversely determined using intelligent search schemes. This process is called as 

backcalculation and it is composed of two main parts which are forward response 

modelling of deflections and employing a search method. In pavement 

backcalculation, it is aimed to match FWD deflections with forward response model 

deflections repetitively by adjusting layer moduli in each iteration. Regarded material 

behavior in forward analyses is one of the overriding factors on the accuracy of 

calculated deflections. Generally, forward models use elastic layered theory of which 

assumes that all the layers exhibit linearly elastic, however subgrade and base/subbase 

layers have stress dependent nonlinear nature. For the purpose of obtaining more 

accurate deflections, it is required to take into account the nonlinear behavior of these 

geomaterials. Finite element method (FEM) can be considered as the most appropriate 

approach for advanced structural modeling of pavements owing to its capability of 

handling complex geometries and nonlinearity of geomaterials by means of 

constitutive material models. However, inherent nature of FEM analyses increases the 
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runtime of the backcalculation algorithm. Since the backcalculation operations work 

iteratively, it requires a great number of analyses to be performed successively so that 

a forward response approach is needed which gives fast and accurate deflections. In 

this context, artificial neural networks (ANNs) can be used as an analyses tool which 

can produce fast and accurate results through the use of FE solutions. Search method 

is the second significant part of a backcalculation operation that input properties of 

forward response model are investigated using a search method. It determines the most 

appropriate values by considering the difference between forwardly calculated and 

measured FWD deflections. For this purpose, several different optimization algorithms 

can be employed.  

In this study, a backcalculation algorithm namely GSA-ANN is proposed for 

backcalculation of flexible pavements. As a forward response engine,  previously 

developed ANN models were used (Pekcan 2010). While generating these models 

input and output data of the ILLI-PAVE FEM based pavement design and analysis 

software were used so that nonlinearity of pavement geomaterials were considered. By 

making use of the ability of ANNs in establishing the nonlinear relationship between 

input and output properties of a system, a fast and robust approach was employed. 

However, the accuracy of the ANN estimations are also related with the provided input 

properties to the ANN models. Proposed algorithm uses a newly developed 

metaheuristic optimization technique namely gravitational search algorithm (GSA) to 

select most appropriate input properties of ANN models. This method was developed 

by inspiring the Newton’s law of universal gravitation and second law of motion 

(Rashedi et al. 2009a). The ability of GSA in searching the global solutions in defined 

search space was combined with the employed ANN model to form the GSA-ANN 

backcalculation approach. Forward ANN models take layer moduli and thicknesses to 

produce deflections at certain radial locations. Therefore, GSA was adapted to find 

best values of input parameters of ANN models by searching within the predefined 

ranges of layer moduli.  

Proposed GSA-ANN algorithm was developed in MATLAB computing environment. 

Entire algorithm was developed on the basis of GSA which contains within itself ANN 
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forward response models. In this manner, GSA code was developed by adapting the 

parameters of the algorithm to the pavement layer backcalculation problem. Then, 

ANN forward response models were embedded to the objective function part of the 

GSA. In order to start the algorithm, GSA-ANN requests from the user necessary input 

properties such as type of pavement, directory of FWD data in the computer and GSA 

parameters. After providing all the values of parameters to the algorithm, GSA 

generates an initial population consisting a certain number of possible layer moduli of 

the pavement section in question. Then they are provided together with layer thickness 

to the ANN models in order to calculate deflections. Mean absolute percentage error 

(MAPE) function was employed as the objective function which evaluates the 

difference between calculated and FWD deflections. GSA aims to minimize the 

MAPEs by searching much approximate layer moduli to the actual values throughout 

the iterations. According to obtained values of the objective function, GSA updates the 

layer moduli for the next iteration. This process continues iteratively until reaching the 

termination criteria which was selected as maximum number of iterations in this study. 

At the end, the layer properties of pavement section which produces the closest 

deflection basins to the actual ones is reported as the backcalculated layer moduli of 

the section.  

In an attempt to validate developed GSA-ANN backcalculation model, it is required 

to conduct a number of analyses through the use of different data sources. Firstly, 

synthetically derived data generated ILLI-PAVE software were employed for 

evaluation of forward ANN models and GSA-ANN backcalculation algorithm. 

Moreover, to check the performance of GSA while searching layer moduli, another 

metaheuristic search method namely simple genetic algorithm (SGA) was combined 

with the same ANN forward response models. Obtained algorithm was named as SGA-

ANN and it was also evaluated using the same synthetic data with GSA-ANN. 

Accordingly, the results of both algorithms were compared to present the effectiveness 

of GSA against a powerful search method. However, validation of GSA-ANN method 

by synthetically derived data is not sufficient to present the effectiveness of the 

method. In this context, field data were utilized which are extracted from the Long-
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Term Pavement Performance (LTPP) Program databases. Three of LTPP sections 

located all around the USA and Canada were selected and analyzed for each type of 

pavement type. These sections’ layer properties were backcalculated with GSA-ANN 

and SGA-ANN. Moreover, for further validation of the algorithm, the same LTPP 

sections were backcalculated with two conventional backcalculation softwares: 

EVERCALC and MODULUS. Finally, layer moduli values backcalculated by each 

approach were compared and obtained results were presented to show effectiveness of 

developed GSA-ANN model.   

5.2 Conclusions 

In this thesis, a backcalculation algorithm was developed which adequately 

characterizes pavement geomaterials and eliminates the computational complexity of 

pavement layer backcalculation problems. The main objective of this study was to 

examine the use of hybrid soft computing methods in backcalculating nonlinear 

pavement layer properties. In this context, performance of the proposed approach was 

investigated by using synthetically derived deflection data and field data to show its 

effectiveness in pavement layer backcalculation. According to the findings of the 

study, the following conclusions are obtained. 

Utilized ANN models for forward response analyses could predict surface deflections 

of full-depth asphalt pavements on natural and lime stabilized soils and conventional 

flexible pavements very close to that of calculated deflections obtained through ILLI-

PAVE FE program. Superior performances of ANN models indicate that they could 

be employed as surrogate forward response models of FE analyses. By this way, ANN 

enables fast, precise and realistic deflections of those computed with ILLI-PAVE 

software and also it reduces the required analyses time of pavement layer 

backcalculation problems.  

According to the results of verification with synthetically derived FWD data, proposed 

approach could produce the AC layer modulus and fine-grained subgrade resilient 

modulus, EAC and ERİ in a good agreement with the actual moduli values of synthetic 

sections. In FDP sections, MAPE of layer moduli predictions were calculated to be 



 

149 

 

around 2% while the ones for FDP-LSS and CFP predictions were generally found to 

be less than 4%.  In general, MAPEs show excellent performance of GSA-ANN 

algorithm. However, proposed method underperforms for unbound granular and lime 

stabilized layers moduli estimations that some predictions of these layers (particularly 

unbound granular layer) were observed to be out of the reasonable limits, i.e., MAPEs 

may exceed more than 20%. When the results were investigated, it is seen that 

abnormal predictions were produced in the sections with thin asphalt layer or when the 

asphalt layer has high stiffness value. Therefore, the impact of the applied FWD load 

could not be propagated enough to the layers located below.  

Through the use of the same synthetic data, the performance of SGA-ANN algorithm 

was also evaluated. According to obtained results, SGA-ANN could successfully 

predict the AC layer moduli and subgrade moduli of FDP sections within low MAPEs 

which are around 2%. However, the algorithm showed slightly worse performance 

than GSA-ANN for CFP and FDP-LSS sections that it produced approximately 5% 

MAPEs for each type. When the curves for reaching optimum fitness values were 

investigated a general trend was observed that SGA could finds the optimum fitness 

values before GSA finds. It is also observed that there is no significant difference 

between obtained fitness values for randomly selected test sections. The use of 

metaheuristic optimization methods in pavement backcalculation is a relatively new 

approach and GSA was utilized first time in a pavement layer backcalculation study. 

Regarding the findings and comparison with SGA-ANN solutions, GSA proves its 

effectiveness for synthetically derived data over SGA search approach. On the other 

hand, use of GSA and ANN together shows reliability and versatility of the hybrid soft 

computing methods in pavement backcalculation. 

By considering the necessity of using field data to verify GSA-ANN model, three test 

sections were selected from the LTPP database for each of FDP, CFP and FDP-LSS 

type pavements. In order to examine how consistent results are produced by GSA-

ANN model, SGA-ANN and two well-accepted conventional backcalculation 

softwares were utilized for solving the same LTPP sections. According to analyses 

results of all the pavement types, GSA-ANN produced AC layer modulus, EAC in 
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conformity with the other two programs such that each one considers the asphalt layer 

as linearly elastic. Observed good trend and close modulus values show the 

accomplishment of the GSA-ANN model in estimating elastic modulus of asphalt 

layers. Another layer considered as linear elastic by all the approaches is lime 

stabilized one. Because of the weak asphalt and lime stabilized layers selected FDP-

LSS sections generally have higher deflection values. Therefore predictions become 

closer to the lower limit of the defined ranges but all the approaches produce consistent 

stabilized layer moduli with each other.  

Apart from these, ERİ predictions of GSA-ANN, SGA-ANN and EVERCALC were 

expected to give approximate solutions due to their nonlinear analysis capability. By 

considering the results of investigations, the same trend was observed for most of the 

stations. However, quietly large gaps were observed between the solutions. 

EVERCALC calculated higher ERİ values for the sections having weak AC layers and 

it produced more close estimations for medium strength AC layers in CFPs. Although 

the consistency reached between each approach for subgrade moduli, values slightly 

differ that MODULUS interpretations usually located above the others. Excessive 

predictions of MODULUS come from the assumed linear elastic behavior of subgrade. 

Another issue is the predefined ranges of layer moduli which were also taken into 

account in developing ANN models are somewhat restricted for certain sections 

encountered in LTPP databases. So that layer moduli ranges should cover larger values 

to use GSA-ANN algorithm for large scale applications. 

Comparison of unbound granular layer modulus was not incorporated in this study. As 

stated in Chapter 4, performance of GSA-ANN in estimating KGB parameter was not 

sufficient through the use of synthetic FWD data. As expected, significant differences 

occurred between GSA-ANN, SGA-ANN and EVERCALC predictions. Also, 

MODULUS estimations were not regarded because the software produces elastic 

modulus. In comparisons, KGB parameter of material models were considered. 

Therefore, comparison of unbound granular layer stiffness property lies beyond the 

scope of this thesis. 
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5.3 Recommendations 

GSA-ANN backcalculation method proved to work effectively when the primary 

objectives of this study are considered. In order to increase the performance of the 

proposed method and to widen its applicability, the followings are recommended to be 

studied in the future studies:   

 GSA-ANN results may hit the upper limits of predefined ranges of ANN based 

surrogate models, which indicates the higher stiffness of the sections. To 

handle such cases, ranges of layer moduli should be extended to make GSA-

ANN to be more applicable for various sections. Moreover, other pavement 

types can be embedded to the proposed model by training additional ANN 

models for flexible pavements having more than three layers. 

 Further works need to be done to better characterize the unbound granular layer 

of conventional flexible pavements. An innovative approach is essential for 

backcalculating granular layer stiffness properties. In order to better describe 

this layer, higher FWD loads can be used in the field.  

 In this study, material characterization was carried a step further against the 

traditional elastic layered approaches, i.e., the stress dependent behavior of 

unbound base and fine-grained subgrade soils are taken into account. However, 

the behavior of surface layer was assumed as linear elastic although it has 

viscoelastic nature. As the FWD has dynamic nature, the viscoelastic behavior 

of asphalt materials should be considered for more accurate backcalculation 

models.   

 Temperature directly influence the stiffness properties of asphalt layers. For 

some field data, GSA-ANN produced extreme modulus values for AC layer. 

In order to address such cases, temperature should be taken into account in 

finite element analyses, which is possible if a viscoelastic constitutive material 

behavior is considered.  

 In recent FWD studies, thickness of pavement layers are obtained through the 

use of ground penetrating radar and/or coring operations in the field. To 
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eliminate this need thickness estimations should be investigated using the 

developed approach. 

 Since the backcalculated layer moduli calculated using different softwares 

show huge variations, laboratory analyses may be conducted on the samples 

obtained from the field. This can further increase the reliability of GSA-ANN 

solutions.  

 Deflections are directly influenced by the conditions when/where the test is 

applied. Cracks may cause the abnormal deflections on the surface. In addition, 

variations in reported layer thicknesses may cause GSA-ANN to produce 

erratic solutions. Therefore, FWD tests on damage free pavements or newly 

constructed pavements may produce more meaningful backcalculated layer 

moduli values. Another way to tackle such a problem is to continuously 

monitor the pavements using FWD device.  

  



 

153 

 

 

REFERENCES 

 

Abdallah, I. N., and Nazarian, S. (2009). “Rapid Interpretation of Nondestructive 

Testing Results.” Intelligent and Soft Computing in Infrastructure Systems 

Engineering, K. Gopalakrishnan, H. Ceylan, and N. Attoh-Okine, eds., Springer, 

1–19. 

Ahmed, M. (2010). “Evaluation of FWD software and deflection basin for airport 

pavements.” M.S. thesis, The University of New Mexico Albuquerque, New 

Mexico. 

Alavi, S., LeCates, J., and Tavares, M. (2008). NCHRP SYNTHESIS 381, Falling 

weight deflectometer usage. Washington, D.C., 121. 

Asli, C., Feng, Z.-Q., Porcher, G., and Rincent, J.-J. (2012). “Back-calculation of 

elastic modulus of soil and subgrade from portable falling weight deflectometer 

measurements.” Engineering Structures, Elsevier Ltd, 34, 1–7. 

Behrang, M. A., Assareh, E., Ghalambaz, M., Assari, M. R., and Noghrehabadi, A. R. 

(2011). “Forecasting future oil demand in Iran using GSA (Gravitational Search 

Algorithm).” Energy, Elsevier Ltd, 36(9), 5649–5654. 

Bosurgi, G., and Trifirò, F. (2005). “A model based on artificial neural networks and 

genetic algorithms for pavement maintenance management.” International 

Journal of Pavement Engineering, 6(3), 201–209. 

Brown, S. (1979). “The characterisation of cohesive soils for flexible pavement 

design.” Proceedings 7th European Conference on Soil Mechanics and 

Foundation Engineering, 15–22. 

Bush, A. J., and Alexander, D. R. (1985). “Pavement evaluation using deflection basin 

measurements and layered theory.” Transportation Research Record: Journal of 

the Transportation Research Board, 1022, 16–29. 

Ceylan, H., and Gopalakrishnan, K. (2006). “Artificial neural network models 

incorporating unbound material nonlinearity for rapid prediction of critical 

pavement responses and layer moduli.” International Center for Aggregates 

Research (ICAR) 14th Annual Symposium, 1–22. 

 



 

154 

 

Ceylan, H., Guclu, A., Tutumluer, E., and Thompson, M. R. (2005). “Backcalculation 

of full-depth asphalt pavement layer moduli considering nonlinear stress-

dependent subgrade behavior.” International Journal of Pavement Engineering, 

6(3), 171–182. 

Chatterjee, A., Mahanti, G., and Pathak, N. (2010). “Comparative performance of 

gravitational search algorithm and modified particle swarm optimization 

algorithm for synthesis of thinned scanned concentric ring array.” Progress In 

Electromagnetics Research B, 25, 331–348. 

“Cornell Local Roads Program.” (2005). <http://www.clrp.cornell.edu> (Last Visited 

on Aug. 12, 2014). 

Doré, G., and Zubeck, H. (2009). Cold Regions Pavement Engineering. ASCE Press, 

401. 

Duman, S., Güvenç, U., Sönmez, Y., and Yörükeren, N. (2012). “Optimal power flow 

using gravitational search algorithm.” Energy Conversion and Management, 59, 

86–95. 

Duman, S., Sonmez, Y., Guvenc, U., and Yorukeren, N. (2011). “Application of 

gravitational search algorithm for optimal reactive power dispatch problem.” 

2011 International Symposium on Innovations in Intelligent Systems and 

Applications, Ieee, 519–523. 

Fish, J., and Belytschko, T. (2007). A First Course in Finite Elements. John Wiley & 

Sons, Ltd, Chichester, UK, 319. 

Fwa, T., and Rani, T. (2005). “Seed modulus generation algorithm for backcalculation 

of flexible pavement moduli.” Transportation Research Record: Journal of the 

Transportation Research Board, 1905, 117–127. 

Fwa, T., Tan, K., and Li, S. (2000). “Closed-Form and Semi-Closed-Form Algorithms 

for Backcalculation of Concrete Pavement Parameters.” Nondestructive Testing 

of Pavements and Backcalculation of Moduli: Third Volume, ASTM STP 1375, S. 

D. Tayabji and E. O. Lukanen, eds., American Society for Testing and Materials, 

West Conshohocken, PA. 

Goktepe, A. B., Agar, E., and Lav, A. H. (2006). “Advances in backcalculating the 

mechanical properties of flexible pavements.” Advances in Engineering 

Software, 37(7), 421–431. 

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine 

learning. Addison-Wesley Publishing Company, Inc. 



 

155 

 

Gopalakrishnan, K. (2009a). “Backcalculation of Non-Linear Pavement Moduli Using 

Finite-Element Based Neuro-Genetic Hybrid Optimization.” Open Civil 

Engineering Journal, (515), 83–92. 

Gopalakrishnan, K. (2009b). “Backcalculation of Pavement Moduli Using Bio-

Inspired Hybrid Metaheuristics and Cooperative Strategies.” Proceedings of the 

2009 Mid-Continent Transportation Research Symposium, 1–5. 

Gopalakrishnan, K., Agrawal, A., Ceylan, H., Kim, S., and Choudhary, A. (2013). 

“Knowledge discovery and data mining in pavement inverse analysis.” 

Transport, 28(1), 1–10. 

Gopalakrishnan, K., Ceylan, H., and Attoh-Okine, N. (Eds.). (2009). Intelligent and 

Soft Computing in Infrastructure Systems Engineering, Recent Advances. 

Springer, 323. 

Gopalakrishnan, K., and Thompson, M. R. (2006). “Pavement moduli variation under 

heavy aircraft trafficking.” Proceedings of the ICE-Transport, 159(3), 117–125. 

Gurney, K. (2005). An introduction to neural networks. Taylor & Francis, 139. 

Harichandran, R., and Mahmood, T. (1993). “Modified Newton algorithm for 

backcalculation of pavement layer properties.” Transportation Research Record: 

Journal of the Transportation Research Board, 1384, 15–22. 

Hassani, A. (2008). “Kenlayer Based Pavement Backcalculation Moduli Using 

Artificial Neural Networks.” International Journal of Pavement Research and 

Technology, 1(4), 155–160. 

Heukelom, W., and Foster, C. R. (1960). “Dynamic testing of pavements.” Journal of 

the Soil Mechanics and Foundation Division, ASCE, 86(1), 1–28. 

Hicks, R., and Monismith, C. (1971). “Factors influencing the resilient response of 

granular materials.” Highway Research Record 345, 15–31. 

Hu, K.-F., Jiang, K.-P., and Chang, D.-W. (2007). “Study of Dynamic Backcalculation 

Program with Genetic Algorithms for FWD on Pavements.” Tamkang Journal of 

Science and Engineering, 10(4), 297–305. 

Huang, Y. (2003). Pavement analysis and design. Pearson Prentice Hall, 775. 

Itani, S. Y. (1990). “Behavior of base materials containing large sized particles.” Ph.D. 

Dissertation, Georgia Institute of Technology, GA. 



 

156 

 

Karagöz, C. (2004). “Analysis of Flexible Pavements Incorporating Nonlinear 

Resilient Behavior of Unbound Granular Layers.” M.S. thesis, Middle East 

Technical University, Ankara. 

Kecman, V. (2001). Learning and soft computing: support vector machines, neural 

networks, and fuzzy logic models. Cambridge, MA: MIT Press/Bradford …, The 

MIT Press, Massachusett, 541. 

Kennedy, J. (1995). “Particle swarm optimization.” Proceedings of IEEE International 

Conference on Neural Networks, IEEE, 1942–1948. 

Kenyon, J. R. (1990). General relativity. Oxford University Press, 234. 

Khaitan, S. K., and Gopalakrishnan, K. (2010). “Development of an intelligent 

pavement analysis toolbox.” Proceedings of the ICE - Transport, 163(4), 211–

221. 

Khajehzadeh, M., and Eslami, M. (2012). “Gravitational search algorithm for 

optimization of retaining structures.” Indian Journal of Science and Technology, 

5(1), 1821–1827. 

Khajehzadeh, M., and Taha, M. (2012). “Optimization of Shallow Foundation Using 

Gravitational Search Algorithm.” Research Journal of Applied Sciences 

Engineering and Technology, 4(9), 1124–1130. 

Khajehzadeh, M., Taha, M. R., El-Shafie, A., and Eslami, M. (2012). “A modified 

gravitational search algorithm for slope stability analysis.” Engineering 

Applications of Artificial Intelligence, Elsevier, 25(8), 1589–1597. 

Kim, M. (2007). “Three-dimensional finite element analysis of flexible pavements 

considering nonlinear pavement foundation behavior.” Ph.D. Dissertation, 

University of Illinois at Urbana-Champaign. 

Kim, N., and Im, S.-B. (2005). “A comparative study on measured vs. Predicted 

pavement responses from falling weight deflectometer (FWD) measurements.” 

KSCE Journal of Civil Engineering, 9(2), 91–96. 

Kuo, C., and Huang, C. (2006). “Three-Dimensional Pavement Analysis with 

Nonlinear.” Journal of Materials in Civil Engineering, 18(4), 537–544. 

Lav, A., Goktepe, A., and Lav, M. (2009). “Backcalculation of Flexible Pavements 

Using Soft Computing.” Intelligent and Soft Computing in Infrastructure Systems 

Engineering, 67–106. 



 

157 

 

Li, J. (2008). “Study of surface wave methods for deep shear wave velocity profiling 

applied in the upper Mississippi embayment.” Ph.D. Dissertation, University of 

Missouri – Columbia. 

Lister, N., and Powell, W. (1987). “Design practice for bituminous pavements in the 

United Kingdom.” Proceeding of 6th International Conference of Structural 

Design of Asphalt Pavement, 220–231. 

Liu, W., and Scullion, T. (2001). Modulus 6.0 for Windows: User’s manual. Austin, 

Texas, 52. 

Loizos, A., and Plati, C. (2007). “Accuracy of pavement thicknesses estimation using 

different ground penetrating radar analysis approaches.” NDT & E International, 

40(2), 147–157. 

Magdalena, L. (2010). “What is soft computing? revisiting possible answers.” 

International Journal of Computational Intelligence Systems, 3(2), 148–159. 

Mansouri, R., Nasseri, F., and Khorrami, M. (1999). “Effective time variation of G in 

a model universe with variable space dimension.” Physics Letters A, 259, 194–

200. 

Meier, R., and Rix, G. (1993). “An initial study of surface wave inversion using 

artificial neural networks.” ASTM geotechnical testing journal, 16(4), 425–431. 

Meier, R., and Rix, G. (1994). “Backcalculation of flexible pavement moduli using 

artificial neural networks.” Transportation Research Record: Journal of the 

Transportation Research Board, 1448, 75–82. 

Meier, R., and Rix, G. (1995). “Backcalculation of flexible pavement moduli from 

dynamic deflection basins using artificial neural networks.” Transportation 

Research Record: Journal of the Transportation Research Board, 1473, 72–81. 

Meier, R. W. (1995). Backcalculation of Flexible Pavement Moduli from Falling 

Weight Deflectometer. 239. 

Mitchell, M. (1995). “Genetic algorithms: An overview.” Complexity, 1(1), 31–39. 

National Cooperative Highway Research Program. (2004). “Laboratory determination 

of resilient modulus for flexible pavement design.” Transportation Research 

Record, Research Results Digest, (285). 

Nazarian, S., Baker, M., and Crain, K. (1993). “Development and testing of a seismic 

pavement analyzer.” Strategic Highway Research Program SHRP-H-375 

National Research Council, Washington, D.C. 



 

158 

 

Nazarian, S., and Stokoe, K. (1984). “In situ shear wave velocities from spectral 

analysis of surface waves.” Proceedings of the 8th world conference on 

Earthquake Engineering, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 31–

38. 

Nazarian, S., and Stokoe, K. (1989). “Nondestructive evaluation of pavements by 

surface wave method.” ASTM Special Technical Publication 1026, 119–137. 

Nazzal, M., and Tatari, O. (2013). “Evaluating the use of neural networks and genetic 

algorithms for prediction of subgrade resilient modulus.” International Journal 

of Pavement Engineering, 14(4), 364–373. 

Öcal, A., and Pekcan, O. (2014). “Determination of Layer Properties for Full Depth 

Asphalt Pavements Using Artificial Neural Network Based Gravitational Search 

Algorithm.” In Proceedings of the 4th International Conference on Engineering 

Optimization, Lizbon, Portugal. 

Paker, F., Vecellio, B., and Greene, J. (1999). Evaluation of the accuracy of the 

pavement surface layer thickness measured with ground penetrating radar. 

Auburn, Alabama, 132. 

Pan, E., Sangghaleh, A., Molavi, A., Zhao, Y., and Yi, P. (2012). An Efficient and 

Accurate Genetic Algorithm for Backcalculation of Flexible Pavement Layer 

Moduli. Report, 123. 

Papagiannakis, A., and Masad, E. (2008). Pavement design and materials. John Wiley 

and Sons Inc., 544. 

Pekcan, O. (2010). “Soft Computing Based Parameter Identification in Pavements and 

Geomechanical Systems.” Ph.D. thesis, University of Illinois at Urbana-

Champaigne. 

Pekcan, O., Tutumluer, E., and Thompson, M. (2008). “Artificial neural network based 

backcalculation of conventional flexible pavements on lime stabilized soils.” 

Proceedings of the 12th International Conference of International Asssociation 

for Computer Methods and Advances in Geomechanics (IACMAG), Goa, 1–6. 

Pekcan, O., Tutumluer, E., and Thompson, M. R. (2008). “Nondestructive Pavement 

Evaluation Using ILLI-PAVE Based Artificial Neural Network Models.” 

Research Report FHWA ICT-08-022, 190. 

Quintus, H. Von, and Simpson, A. (2002). Back-Calculation of Layer Parameters for 

LTPP Test Sections, Volume II: Layered Elastic Analysis for Flexible and Rigid 

Pavements. Publication FHWA-RD-01-113. FHWA, U.S. Department of 

Transportation, 144. 



 

159 

 

Raad, L., and Figueroa, J. (1980). “Load response of transportation support systems.” 

Journal of Transportation Engineering ASCE, 106(TE1), 111–128. 

Rada, G., and Witczak, M. (1981). “Comprehensive evaluation of laboratory resilient 

moduli results for granular material.” Transportation Research Record: Journal 

of the Transportation Research Board, 810, 23–33. 

Rakesh, N., Jain, a. ., Reddy, M. A., and Reddy, K. S. (2006). “Artificial neural 

networks—genetic algorithm based model for backcalculation of pavement layer 

moduli.” International Journal of Pavement Engineering, 7(3), 221–230. 

Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. (2009a). “GSA: A Gravitational 

Search Algorithm.” Information Sciences, Elsevier Inc., 179(13), 2232–2248. 

Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. (2009b). “BGSA: binary 

gravitational search algorithm.” Natural Computing, 9(3), 727–745. 

Reddy, M. A., Reddy, K. S., and Pandey, B. B. (2004). “Selection of Genetic 

Algorithm Parameters for Backcalculation of Pavement Moduli.” International 

Journal of Pavement Engineering, 5(2), 81–90. 

Rohde, G., and Scullion, T. (1990). MODULUS 4.0: Expansion and validation of the 

MODULUS backcalculation system, Research Report No. 1123-3. 

Saltan, M., and Terzi, S. (2009). “Backcalculation of pavement layer thickness and 

moduli using adaptive neuro-fuzzy inference system.” Intelligent and Soft 

Computing in Infrastructure Systems Engineering, 177–204. 

Saltan, M., and Terzi˙, S. (2008). “Modeling deflection basin using artificial neural 

networks with cross-validation technique in backcalculating flexible pavement 

layer moduli.” Advances in Engineering Software, 39(7), 588–592. 

Saltan, M., Tigdemir, M., and Karasahin, M. (2002). “Artificial neural network 

application for flexible pavement thickness modeling.” Turkish Journal of 

Engineering and Environmental Sciences, 26, 243–248. 

Saltan, M., Uz, V. E., and Aktas, B. (2012). “Artificial neural networks–based 

backcalculation of the structural properties of a typical flexible pavement.” 

Neural Computing and Applications, 23(6), 1703–1710. 

Schmalzer, P. (2006). Long-Term Pavement Performance Program Manual for 

Falling Weight Deflectometer Measurements, Version 4.1, Report No: FHWA-

HRT-06-132 4. 79. 

Schutz, B. (2009). A first course in general relativity. Cambridge University Press, 

New York, 393. 



 

160 

 

Seed, H., Mitry, F., Monismith, C., and Chan, C. (1967). “Factors Influencing the 

Resilient Deformations of Untreated Aggregate Base in Two-Layer Pavements 

Subjected to Repeated Loading.” Highway Research Record, (190), 19–57. 

Sharma, S., and Das, A. (2008). “Backcalculation of pavement layer moduli from 

falling weight deflectometer data using an artificial neural network.” Canadian 

Journal of Civil Engineering, 35(1), 57–66. 

Sivaneswaran, N., Kramer, S., and Mahoney, J. (1991). “Advanced backcalculation 

using a nonlinear least squares optimization technique.” Transportation Research 

Record: Journal of the Transportation Research Board, 1293, 93–102. 

Sveinsdóttir, B. Ö. (2011). “Pavement Behavior Evaluation during Spring Thaw based 

on the Falling Weight Deflectometer Method.” Degree Project, Royal Institute of 

Technology, Stockholm. 

Swett, L. J. (2007). “Seasonal Variations of Pavement Layer Moduli Determined 

Using In Situ Measurements of Pavement Stress and Strain.” M.S. Thesis, The 

University of Maine. 

TBMM Plan ve Bütçe Komisyonu. (2014). 2014 Yılı Merkezi Yönetim Bütçe Kanunu 

Tasarısı ve Bağlı Cetveller. 264. 

Terrell, R., Cox, B., and Stokoe, K. (2003). “Field evaluation of the stiffness of 

unbound aggregate base layers in inverted flexible pavements.” Geomaterials 

2003: Soils, Geology and Foundations, (1837), 50–60. 

Thompson, M. R., and Elliott, R. P. (1985). “ILLI-PAVE Based Response Algorithms 

for Design of Conventional Flexible Pavements.” Transportation Research 

Record, 1043, 50–57. 

Thompson, M. R., and Robnett, Q. L. (1979). “Resilient Properites of Subgrade Soils.” 

Journal of Transportation Engineering, ASCE, 105(1), 71–89. 

Van Til, C. J., Mccullough, B. F., Vallerga, B. A., and Hlcxs, R. G. (1972). Evaluation 

of AASHO interim guides for design of pavement structures, NCHRP 128. 

Transportation Research Board. (2001). Fulfilling the Promise of Better Roads: A 

report of the TRN Long-Term Pavement Performance Committee. Washington, 

D.C., 75. 

Transportation Research Board. (2009). Preserving and Maximizing the Utility of the 

Pavement Performance Database. Washington, D.C., 24. 

 



 

161 

 

Tsai, B., Harvey, J., and Monismith, C. (2009). “Case studies of asphalt pavement 

analysis/design with application of the genetic algorithm.” Intelligent and Soft 

Computing in Infrastructure Systems Engineering, K. Gopalakrishnan, H. 

Ceylan, and A.-O. Nii O., eds., Springer-Verlag Berlin Heidelberg, 205–238. 

Tsai, H.-C., Tyan, Y.-Y., Wu, Y.-W., and Lin, Y.-H. (2013). “Gravitational particle 

swarm.” Applied Mathematics and Computation, Elsevier Inc., 219(17), 9106–

9117. 

Tutumluer, E., Pekcan, O., and Ghaboussi, J. (2009). “Nondestructive Pavement 

Evaluation Using Finite Element Analysis Based Soft Computing Models.” 

NEXTRANS Project No 010IY01, 81. 

Tutumluer, E., and Thompson, M. (1997). “Anisotropic Modeling of Granular Bases 

in Flexible Pavements.” Transportation Research Record: Journal of the 

Transportation Research Board, 1577, 18–26. 

U.S. Department of Transportation. (2014). Budgets Highligths, Fiscal Year 2014. 64. 

Ullidtz, P., and Stubstad, R. (1985). “Analytical-empirical pavement evaluation using 

the falling weight deflectometer.” Transportation Research Record: Journal of 

the Transportation Research Board, 1022, 36–44. 

Uzan, J. (1985). “Characterization of granular material.” Transportation Research 

Record: Journal of the Transportation Research Board, 1022, 52–59. 

Uzan, J., Scullion, R., Michalek, C., Parades, M., and Lytton, R. (1988). A 

microcomputer based procedure for backcalculating layer moduli from FWD 

data, Research Report 1123 -1. 

Washington Department of Transportation. (2005). “EVERSERIES USER’S GUIDE 

Pavement Analysis Computer Software and Case Studies.” 

Waszczyszyn, Z., and Slonski, M. (2010). Advances of Soft Computing in Engineering. 

Vasa, (Z. Waszczyszyn, ed.), Springer, 336. 

Yoder, E. J., and Witczak, M. W. (1975). Principles of Pavement Design. John Wiley 

and Sons, Inc., 699. 

 


