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ABSTRACT 

 

DESIGN CONSTRAINTS FOR GAS-LIQUID CATALYTIC 

MICROREACTORS 

 

 

ÜNER, Necip Berker 

M. S. Department of Chemical Engineering 

Supervisor: Prof. Dr. Deniz ÜNER 

Co Supervisor: Assist. Prof. Dr. Ertuğrul ERKOÇ 

 

August 2014, 220 pages 

 

 

Microreactors are a promising class of chemical reactors, which can provide high 

conversion, selectivity, heat-mass transfer rates and safety in production. They can 

accommodate gas-liquid or gas-liquid-solid reactions very well. The aim of this 

study is to present some new mass transfer and kinetics oriented physical phenomena 

and operation strategies that can emerge in multiphase microreactors, which are 

usually overlooked in macroscale reactors.  

The first example is demonstrated experimentally by absorbing NO into ferrous 

sulfate solutions with help of a novel contactor. It is observed that when the liquid 

layer is almost stagnant with respect to the gas flow, Marangoni convection currents 

occur upon gas absorption. These are dimmed by adding chemical reactants to the 

liquid, but then a surface poisoning effect may occur, which decreases uptake rates 
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significantly. In addition to this homogeneous reaction-diffusion example, the 

applicability of classical mass transfer theories to finite films is questioned and 

quantitative limitations are given for the use of penetration theory for gas-liquid mass 

transfer in thin films. The saturation-depletion limits for contact times are also 

provided. A general solution for diffusion into a flowing liquid film with n
th

 order 

reaction is presented, in order to demonstrate the effects of velocity field on mass 

transfer rates. 

As a gas-liquid-solid example, low-temperature Fischer-Tropsch synthesis is 

investigated. Effectiveness factors for diffusion with negative order reaction are 

presented. Conceptual periodic operation of Fischer-Tropsch synthesis is discussed 

and a model for Taylor flow is generated. Analogous to the homogeneous reaction 

part, a general solution of mass transfer to a flowing liquid film with surface reaction 

is presented, whereby the reaction initiation times are deduced for any flow field in 

the film. 

 

Keywords: gas-liquid mass transfer, microreactors, NO absorption, Fischer-Tropsch 

synthesis, periodic operation, Taylor flow, diffusion-reaction problems.  
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ÖZ 

 

GAZ-SIVI KATALİTİK MİKROREAKTÖRLER İÇİN TASARIM 

KOŞULLARI 

 

 

ÜNER, Necip Berker 

Yüksek Lisans, Kimya Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Deniz ÜNER 

Ortak Tez Yöneticisi: Assist. Prof. Dr. Ertuğrul ERKOÇ 

 

Ağustos 2014, 220 sayfa 

 

 

Mikroreaktörler yüksek çevrim, seçimlilik, ısı-kütle iletim hızları ve güvenlikleri 

nedeniyle gelecek vaad eden kimyasal reaktörler olarak görülmektedirler. Gaz-sıvı 

ya da gaz-sıvı-katı reaksiyonlarını oldukça başarılı bir şekilde gerçekleştirdikleri 

kanıtlanmıştır. Bu çalışmanın amacı makro boyutlardaki reaktörlerde ihmal edilen, 

fakat mikroreaktörlerde üzerinde düşünülmesi gerekilen kütle aktarımı ve reaksiyon 

kinetiği çerçevesinde bir takım yeni fiziksel olayları ve işletim stratejilerini 

sunmaktır.  

Ilk örnek olarak, NO’nun demir sülfat çözeltilerine yeni bir temas ünitesi ile deneysel 

emilimi verilmiştir. Üzerinden akan gaza göre neredeyse durağan bir sıvıda gaz 

emilimi nedeniyle Marangoni konvektif akımları oluşabileceği gözlemlenmiştir. 

Emilim hızını arttırması beklentisiyle eklenen kimyasalların, yüzeyi 
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zehirleyebileceği ve aktarım hızlarını ciddi anlamda düşürebileceği gösterilmiştir. Bu 

homojen reaksiyon-difüzyon örneğine ek olarak, klasik gaz-sıvı kütle aktarımı 

kuramlarının sonlu sıvı filmlerinde geçerlilikleri tartışılmış ve penetrasyon kuramının 

kullanımı için bir takım sayısal sınırlar belirlenmiştir. İnce filmler için doyma ve 

tükenme sınırları da verilmiştir. Ayrıca akan sıvı filmlerine n’nci dereceden 

reaksiyonlu kütle aktarımı için genel bir çözüm sunulmuş ve film içindeki hız 

profillerinin kütle aktarımına nasıl etki edebileceği gösterilmiştir. 

Sonrasında, bir gaz-sıvı-katı reaksiyon sistemi olarak Fischer-Tropsch sentezi 

incelenmiştir. Eksi mertebeden yüzey reaksiyonları için etkenlilik katsayıları  

sunulmuştur. Kavramsal olarak Fischer-Tropsch sentezinin çevrimsel işletimde 

yürütülmesi tartışılmış ve buna ithafen Taylor akış modeli uygun görülmüştür. Bu 

akışla ilgili olarak bir de matematiksel model oluşturulmuştur. Son olarak, homojen 

reaksiyonlarda olduğu gibi akan sıvı filmlerine kütle aktarımı ve akabinde herhangi 

bir yüzey reaksiyonu için genel bir çözüm sunularak reaksiyonun başlama 

zamanlarının film içerisindeki hız profiline bağlılığı gösterilmiştir. 

 

Anahtar Kelimeler: gaz-sıvı kütle aktarımı, mikroreaktörler, NO emilimi, Fischer-

Tropsch sentezi, çevrimsel işletim, difüzyon-reaksiyon problemleri.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Synthesis of commodities, many specialty chemicals and production of devices that 

implement physicochemical phenomena are continuously and increasingly demanded 

by the world. Such chemical operations should be run in well designed and well 

understood reactors that work in the most economical way. This principle constitutes 

the discipline of chemical reactor engineering (CRE), whose foundations lie on the 

fields of chemical kinetics, thermodynamics, fluid mechanics and heat-mass transfer. 

Although the basic principles of these fields are very well established, their 

interaction is usually quite complex, nonlinear and sometimes chaotic. Along with 

the difficulties in measuring physical properties accurately, the coupling of the fields 

mentioned above forms one of the main difficulties in chemical engineering, which 

creates problems in quantitative and qualitative analysis. This eventually hinders a 

priori design. A priori design is the dream of each chemical engineer, since its 

accomplishment would mean a leap in the development of chemical industry where 

at the same the design costs would be reduced significantly.  

The difficult procedure of reactor engineering still leads to active research. The 

complicated forms of interacting physics bring many variables to control and 

measure, thus the types of reactors and relevant designs branch widely. So in a 

reactor design project, a change in any parameter may change the whole design. 
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1.1. Common Practices in the Industry 

 

Reactors can be generally defined as hydrodynamic systems containing dispersed 

reactants. A chemical reactor may contain a gas, liquid, gas-liquid, liquid-liquid, gas-

solid, liquid-solid or a gas-liquid-solid system. Yet more, now even new reactors 

containing an assisting plasma phase are being considered [1]. 

Gas-solid and gas-liquid-solid operations embrace very important processes like the 

Fischer-Tropsch synthesis (FTS), dimethyl ether synthesis (DME) and ammonia 

production. This fact actually shows the importance of the common solid phase, 

which usually means the science of catalysis. On the other hand, gas-liquid reactions 

also have significant importance. Besides synthesis, like the reaction of liquid water 

with nitrogen tetroxide to obtain nitric acid, there is a huge list of operations focused 

on reactive separation, like carbon dioxide capture in amine solutions or NOx 

absorption in acidic liquors. In such processes, the gas and liquid phases may include 

some diluted reactants and a solvent (or a certain excess feed of a reactant), or they 

can be concentrated mixtures. Analysis and accomplishment of such processes form 

the heart of the chemical process industries (CPI). 

Generally, CPI operates with very large reactors. Attaining required mixedness in 

terms of temperature levels (also in terms of concentration in some cases) becomes 

hard in large reactors. Temperature nonuniformities result in hot spots, which usually 

reduce selectivity and/or conversion. Another complexity is the amount and structure 

of dispersion. In multiphase systems like gas-liquid or gas-liquid-solid systems, 

chaotic multiphase flow patterns, sensitive even to the minor changes in reactor 

geometry are common. One may add other complications to this, like interfacial 

mass transfer, turbulence, radiative heat transfer for high temperature synthesis and 

complex surface reactions. The common practice in designing such complex 

phenomena is to scale-up from lab scale experiments, where the molecular-scale 

discoveries are made, through pilot scale and finally to industrial scale in a rapid 

processing, safe, economical and environmentally benign manner [2]. Although 

logical and systematic, this is an expensive methodology. The heuristics developed 

with help of prior design experiences is commonly employed for reactor design in 

CPI. 
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1.2. The Concept of Miniaturization in Chemical Reaction Engineering   

 

It was the end of 90’s that the miniaturization concept entered the world of CRE. The 

idea is due to Feynman and dates back to 1960 [3]. In his paper, Feynman had ideas 

of quickly dissipating the heat generated in a very small lubrication device. He 

claimed that the heat generated by friction and viscous dissipation would escape 

away very rapidly due to the small size of the device. In fact, it is this logic that 

builds the bridge between miniaturization and CRE. If the reactor is very small in 

both diameter and length, than the heat generated via reactions will be conducted 

very fast and mass diffusion occurs very rapidly when compared to reactor 

dimensions. This enables to use the well applied theory of diffusional transport and 

to eliminate hot spots. 

With already developed tools of micro-manufacturing like silicon micromachining, 

flow channels were etched on polymer, silica or elastomeric plates in the late 90’s, 

with polydimethylsiloxane (PDMS) becoming one of the most popular substrates. 

The result was lab-on-chip (LOC) devices [4], which are a combination of process 

units on a millimetric scale. This means a 1000 fold decrease in reactor size (see 

Figure 1). Besides the LOC devices, there were also the monoliths. Existing 

monolithic reactor technology of catalytic converters is already applied to 

commercial catalytic gas-solid reactions [5, 6]. The mm-sized channels gave birth to 

variations the μm scale. Fluid phenomena in such channels are called as 

microfluidics, and reactors in microfluidic domains are called as microreactors.  
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Figure 1. A lab on a chip device [7] and a schematic for the slurry bubble column. 

 

1.3. Transport Processes in Small Scale 

 

To exemplify, on may analyze mass transport in microfluidic flows where the 

classical continuum convection-diffusion equation is adequate for modelling 

purposes. For a single species in a dilute system with constant diffusivity, the 

equation can be given as: 

∂C

∂t′
+ � ∙ ∇C = D∇�C + r(C)     (1) 

C is concentration, t′ is time,D is diffusivity1, � is the velocity field vector and r is 

the reaction rate expression. Upon ignoring the convection and reaction terms, non-

dimensionalization in 1-D with ξ= x/L� yields: 

∂C

∂τ
=
∂�C

∂ξ�
      (2) 

where L�  is the characteristic length of the system and the new time variable τ is the 

dimensionless time, or Fourier number: 

τ= Fo=
Dt′

L�
�      (3) 

                                                
1 D~10-8-10-10 m2/s for soluble gases in liquids and ~10-5 m2/s in a gaseous mixture. 
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Such a simplification in analysis is used to solve in many transient diffusion 

problems in stagnant media. The Fourier number represents the ratio of diffusion 

time to storage capacity. In classical reactor design, Fo is usually low, depicting large 

storage or short contact times. This is utilized by the assuming the geometry of 

analysis as semi-infinite. The time t′ is the clock time, but in gas-liquid mass transfer 

analysis, the exposure time, t, can replace it.  

A priori knowledge about the relative magnitude of convective and diffusive 

transport rates is also helpful in design and prediction. The comparison of transport 

rates are given by the Biot number: 

Bi=
hL�
D

      (4) 

where h is a general heat or mass convective transfer coefficient. For small Bi 

numbers, the mathematical problem can be reduced to a purely convective one. But 

for large Bi numbers, the diffusive problem must also be included in mathematical 

analysis. 

 

1.4. Use of Microreactors in Synthesis and Devices   

 

Microchannels and microfluidics are employed in many subjects of research, in 

terms of synthesis, analysis2, sensors and energy production. Though the 

development of the latter two is mainly falls under the huge literature of MEMS 

research, it has been demonstrated that sensors can easily be implemented into 

microchemical processes for effective control [8].  Focusing on synthesis and 

analysis, the continuous microfluidic microreactor is already accepted by many 

chemists as the replacement for batch reactors for fast, hazardous and highly 

exothermic reactions [9, 10], for which microreactors can provide safe and efficient 

synthesis. In addition, microreactors are also implemented into industrial 

manufacturing of pharmaceuticals and fine chemicals [11, 12]. The small volumes 

needed for a micro-analysis system are also found very valuable by the bio-medical 

scientist due to their huge savings on chemicals and samples [13]. 

                                                
2 Also called μTAS: micro total analysis systems. 
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As examples, microreactors are applied to liquid-liquid multiphase synthesis and 

separation3 of carbamates where hazardous azides and isocyanates occur [14]. The 

liquid-liquid synthesis scenarios are enhanced with the accomplishment of the Aldol 

reaction and alkylations [15]. As gas-liquid-solid reactions, using washcoated 

microchannels operating in gas-liquid multiphase flow, extensive forms of 

hydrogenation reactions are accomplished by Kobayashi et al. [16]. Novel processes 

like hydrogen production for portable electronics and polymerase chain reactions 

have also been demonstrated [17]. 

In the perspective of the chemical engineer, the schemes for synthesis should be 

feasibly translated into mass production if needed. This brings out the need for 

understanding the gas-liquid multiphase flow patterns. For closed conduits, flow 

regime maps can be used, which can be found for many kinds of flow configurations. 

Examples for microfluidic flow patterns in closed conduits are given below in Figure 

2. As a free surface multiphase contactor, the falling film microreactor (FFMR) of 

IMM4 is given as an example in Figure 3. 

The more ordered structure of slug, annular and film flow patterns are amenable to 

analysis and they have very large interfacial areas, around 25000 m2/m3, where in a 

typical bubble column it is around 200 m2/m3 [17]. Table 1 presents a detailed 

comparison between micro- and conventional reactors. The liquid side mass transfer 

coefficients, k�,  and interfacial areas per unit volume, a, are given and combined for 

the total mass transfer coefficient k�a. 

                                                
3 Running such operations in microreactors are now being called as micro-unit operations (MUO).  
4 Mainz Institute of Microtechnology, recently acquired by the Fraunhofer Society in 2014. 
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Figure 2. Flow patterns for air-water flow in a 1mm diameter circular tube based on 

superficial liquid and gas velocities. Taken from [18], used with permission of 

Wiley&Sons. 

 

 

  

Figure 3. The IMM FFMR. Left: a schematic for flow in slots. Right: FFMR plates 

containing the slots for liquid flow, [19]. 
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Table 1. Microreactors compared with conventional reactors in gas-liquid mass 
transfer performance (adapted from Yue et al. [20]) 

Type of Contactor kL∙105 (m/s) a (m2/m3) kLa∙103 (s-1) 

Bubble columns 10-40 50-600 0.5-24 

Taylor-Couette Flow reactor 9-20 200-1200 3-21 

Impinging jet absorbers 29-66 90-2050 2.5-122 

Packed columns, concurrent 4-60 10-1700 0.04-102 

Packed columns, counter-current 4-20 10-350 0.04-7 

Spray column 12-19 75-170 1.5-2.2 

Static mixers 100-450 100-1000 10-250 

Stirred tank 0.3-80 100-2000 3-40 

Tube reactors, horizontal & coiled 10-100 50-700 0.5-70 

Tube reactors, vertical 20-50 100-2000 2-100 

Gas-liquid microchannel 40-160 3400-9000 30-2100 

 

From the table, it can be seen that the interfacial areas in microreactors may be 10 to 

100 times greater than an average macroscale reactor. Such high interfacial areas 

lead to the occurrence of very thin fluid films. The distinctive feature of such films is 

the capillary effect; therefore the complications led by surface tension cannot be 

neglected. Buoyancy effects diminish, and gravity effects almost vanish in horizontal 

flows. In addition to Reynolds number Re, which gives the ratio of inertial forces to 

viscous forces, new dimensionless numbers, such as the Bond number5 (Bo), the 

Weber number (We) and the capillary number (Ca) also take role in flow 

characterization. Although not related with surface tension effects, the definition 

Froude number (Fr) is also given below along with the abovementioned numbers, 

since it is important for free surface flows. It characterizes gravitational waves in 

shallow open channel flows.   

Bo =
∆ρgL�

�

σ
=
gravity forces

surface forces
, We =

ρv��L�
σ

=
inertial

surface forces

Ca=
μv�

σ
=
viscous forces

surface forces
, Fr=

v

� g
As
W s

=
characteristic velocity

gravitational wave velocity

  (5) 

                                                
5 Also called as the Eötvos number, abbreviated as Eö. 
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In the definition of capillary number, μ and v� (at the entrance) can be related to the 

gas phase or the liquid phase. Phase averaging is also possible. Note that for single 

phase flows, Re = We /Ca. Some descriptive operating parameters and 

dimensionless numbers are given for the FFMR in Table 2. The Fourier number 

convention will be explained in Section 4.2 in detail. 

 

 

Figure 4. Top: Bubbles visualized in Taylor flow. Bottom: Schematics for the 

circulations in liquid slugs. Taken from [21], used with permission of Wiley&Sons. 

 

All the three ordered flow types noted before have many advantages, but slug flow is 

the most unique. For slug flow in microchannels, rigorous circulations may occur in 

both the bubble and the liquid slug. Such flows are called as Taylor flow, named 

after G.I. Taylor, due to his experiments for determining the film thickness between 

the lateral surface of the bubble and the wall [22]. Besides the expected circulations 

inside the bubbles, Taylor also predicted the possible existence and shape of the 

circulations in the liquid slug. Such circulations mean mixing and the existence of 

the thin liquid layer signals effective applications of gas-liquid-solid reactions for a 

washcoated channel, since diffusion through the film would be very fast. A 

photograph of Taylor flow is given in Figure 4, along with the numerical solution of 

the liquid circulation patterns 

The FFMR seems to be the easiest to analyze and simulate, since very stable 

interfaces can be obtained. Annular flow has the highest interfacial area, and its near-

turbulent gas core gives the best gas-phase mixing. This flow setup is actually the 

one used by Kobayashi and his co-workers for various hydrogenation reactions [16]. 

On the overall, since the behavior of the gas-liquid interface is known, this would 
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ease predicting the mass transfer rates a priori. Furthermore, by knowing the effects 

of diffusion well, more realistic kinetic studies may be performed for distinguishing 

the reaction mechanisms. 

 

Table 2. Data for the FFMR. Calculations are performed for the narrowest reaction 
plate, W × d = 300× 100μm, by taking D = 3 ∙ 10��m2/s, δ = 50μm  and by using 
the physical properties of air and water at 20°C. 

FFMR Specifications [19] 
Derived 

Data 
Formula Magnitude 

Reaction 
channel length 

(L) 
7.6 cm 

Average 
velocity in 

a slot: 
v� = V̇ nW δ⁄  0.04 m/s 

Reaction 
channel width 
(W ) and depth 

(d) 

300x100 μm 
600x200 μm 
1200x400 
μm 

Peclet 
number: 

 
Pe= v�L D⁄  1.1∙106 

Number of 
slots  (n) 

64, 32 ,16 
Reynolds 
number: 

 
Re = �

4δW

2δ + W
�
v�ρ

μ
 4.4 

Flow rate (V̇) 
1.4∙10-8 - 

4.2∙10-7 m3/s 

Nusselt 
Film 

thickness 
δ = �

3V̇μ

ρg
�

�.��

 2.4∙10-3 m 

Residence time 0.8-20 s 
Fourier 

number 
Fo =

Dt

δ�
=

2DL

3v�δ�
 1.4 

Measured 
liquid film 

thickness (δ) 
25-100 μm 

Capillary 
number Ca =

μ�v�

σ
 6.1∙10-4 

Interfacial area 
up to 20000 

m2/m3 
Weber 
number We =

ρv��δ

σ
 1.3∙10-3 

Operation 
temp. - 
pressure 

180 to 
300°C, 

10 to 20 bar 

Bond 
number Bo =

∆ρgδ�

σ
 3.4∙10-4 

 

The advantages of microreactors should be used effectively for large scale synthesis 

and analysis. Since microreactors are numbered up instead of scaling, their large 

scale production depends on the distributor design only. For example, the FFMR 

plates shown in Figure 3 can be stacked to increase production capacity. Such 

stacked devices are already made commercial [19].  The stability and the uniformity 

of multiphase flow patterns in such designs are deemed to be important in synthesis, 

consequently there is now a growing literature on multiphase flow regulation and 
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control [23]. However, multiphase flow systems are very complex to analyze 

analytically. This brings out the importance of computational fluid dynamics (CFD), 

where robust numerical schemes are used to solve the Navier-Stokes equations in 

both phases. In addition to these, a new understanding of the mass transport 

phenomena is necessary since the thin liquid films would get saturated or depleted in 

terms of reactants (or diffusants). Furthermore, the knowledge on temperature 

distribution and heat effects in stacked microreactors is not matured yet, but they 

seem to be important, even though the microreactors theoretically dissipate much 

better than commercial ones. 

Considering gas-liquid reactions in microfluidic domains, CO2 absorption in water 

and NaOH solutions is the most frequently studied reaction [24, 25, 26]. There are 

many important applications for gas-liquid reactions such as absorption of chlorine in 

alkaline solutions for the synthesis of hypochlorites, oxygen absorption to 

fermentation liquors in bio-engineering uses and absorption of hydrogen for 

removing the sulfur from petroleum fractions [27]. Process intensification via 

miniaturization in such gas-liquid systems and their feasibility is yet unknown. The 

same seems to be valid for gas-liquid-solid reactions or liquid-liquid contact 

operations also. As Kashid et al. assert [28], the information of the characterization 

of fluid-fluid mass transfer and reaction is not enough, although there have been a lot 

of demonstrations. In contrast, pure gas-solid reactions are an exception, since their 

applicability is already well studied in monolithic channels. 

On the overall, microreactors seem to have a potential for significant mass transfer 

intensification and increased control over product selectivity and conversion. This is 

mainly due to the regular flow patterns that allow tuning the multiphase contact 

times. In addition, the removal of falsifications due to mass transfer limitations 

should allow a better basis for kinetic studies thus the hypotheses on reaction 

mechanisms may be tested on a more neutral ground. In terms of synthesis, there are 

doubts whether microreactors will be successful in general. Dudukovic [29] argues 

that after 2 decades of research, microreactors are not well implemented in chemical 

technology, although they are inexpensive to produce and they have significant 

power saving features [28]. 
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1.5. Scope of the Thesis 

 

In this thesis, gas-liquid-solid microreactor design in terms of mass transfer and 

chemical reaction is investigated in two levels of complexity. First, the gas-liquid 

mass transfer setup with homogeneous reaction is studied experimentally via NOx 

absorption in ferrous sulfate solutions. Although the experimental setup is in 

centimeter scale, the aim is to present the behavior of gas absorption to almost 

stagnant fluids, which do not possess any mixing agents, like in many microfluidic 

contactors. Then, the applicability limits of penetration theory type models in 

microfluidic domains, with or without chemical reactions, were demonstrated 

mathematically. Quantitative limits are given for the critical contact times after 

which saturation or depletion of reactants arise in the liquid film. A general 

approximate analytical solution is provided to account for the effects of the velocity 

field on mass transfer and fast nth order chemical reaction. 

Secondly, the gas-liquid-solid system is treated with Fischer-Tropsch synthesis 

(FTS) as the test reaction. First, the gas-liquid mass transfer rates of reactants, H2 and 

CO are investigated. Then, effectiveness factors for diffusion with general order 

power law type surface reaction are given to see the regions of multiplicities in 

reactions with a surface poisoning species. Since FTS is such a reaction, a conceptual 

periodic operation scheme is suggested to enhance the reaction rates, where reactants 

are periodically fed to the liquid film. The periodical behavior of the reaction-

diffusion system is then investigated numerically, with employing chemically 

consistent kinetics that includes more complexity. A model of Taylor flow for FTS is 

suggested and formulated, in order to test the feasibility of employing such periodic 

microfluidic flow fields for increasing the reaction rates and tuning selectivities. 

Finally, similar to the work done for homogeneous reactions, a general treatment of 

gas absorption into flowing liquid films in presence of heterogeneous reactions is 

presented. The necessary contact times to initiate a heterogeneous reaction in a 

flowing liquid film are provided by demonstrating the effects of the velocity field in 

the film. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

In this section, first the theories of interfacial mass transport are summarized. The 

theories are actually models, which try to simplify complex combinations of 

diffusion, reaction and hydrodynamics. Then, the connections between the theories 

and current microfluidic contactors are given. Finally, supplementary material on 

diffusion and hydrodynamics is provided for aid in modeling mass transfer with 

chemical reaction, along with some information on Fischer-Tropsch synthesis. 

 

2.1. Film Theory (FT) 

 

The first systematic theoretical approach to interfacial mass transfer is due to 

Whitman in 1923 [30]. As a footnote in his classic paper, he added: 

“Few subjects are creating more interest both theoretically and practically than gas 

absorption. For years entirely empirical in its applications and even yet 

preponderantly so, there have been developed several theories that seem to shed 

some light on its mechanism. This paper clears up some fog around the potential 

factor. It will contribute in helping to put this unit process on a substantial basis. 

One of slogans should perhaps be: “No more monstrosities as absorption towers!” 

No more of the old formula: “Let’s make it a foot bigger in diameter and 5 feet 

higher just for good luck.”” 
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It seems that the empirical approach has been embraced by chemical engineers as a 

primary chemical engineering design procedure after 50 years [31]. After 90 years, 

the empiricism has become the main material in standard mass transfer text books 

[32]. Although the complexity of standard unit operations on mass transfer prevented 

Whitman to reach his aim, his work has generated a large literature on mass transfer, 

and on its interplay with chemical reactions and hydrodynamics. 

In his theory, Whitman simply considered turbulent gas and liquid phases contacted 

along a straight interface. He assumed that stagnant films exist at both sides of the 

interface. This is the main assumption of FT.  

 

Figure 5. Schematic of FT. 

 

Considering physical absorption, FT can be summarized with the following equation 

which describes the flux of a single species across the interface: 

N = k�(P
� − P�)= k�(C

∗− C�)    (6) 

Here, k�  and k� are the mass transfer coefficients for gas and liquid phases, 

respectively. P�  is the partial pressure of the diffusing species in the bulk gas phase, 

P� is the vapor pressure of the gas dissolved in the liquid. C∗ is the interfacial 

liquid phase gas phase 

mass flow 

 δ�    δ� 

gas film
liquid

 film 

interface

P�

P�

C∗ 

C� 
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concentration and C� is the concentration in the bulk liquid. Both sides of Equation-

(6) express a linearized driving force for mass transfer, as can be seen from Figure 5. 

When compared with Fick’s law, mass transfer coefficients can be expressed as 

k� =
D�H

δ�
, k� =

D�

δ�
     (7) 

Subscripts define gas and liquid phases respectively. Thus, mass transfer rate is 

directly proportional to diffusivity. If the solution is dilute, as it usually would be for 

O2 or CO2 absorption in water, one may employ Henry’s law; 

C∗ = HP�      (8) 

otherwise interfacial concentration would then be a nonlinear function of P� and 

should be obtained from vapor-liquid equilibrium data. By using Equation-(8) in 

Equation-(6), one can eliminate P� and C∗: 

N =
1

1
k�

+
1

Hk�

(P� − C� H⁄ )= K�(P
� − C� H⁄ )   (9) 

The denominator indicates the compound resistance, which is validated 

experimentally [33]. The result is the overall mass transfer coefficient, given by K� . 

For very soluble gases, it is likely that mass transfer will be governed by gaseous 

diffusion only, as can be derived from the right hand side of Equation-(9) by keeping 

H  as very large. Conversely, for low solubilities, the main resistance is in the liquid 

phase, hence one may use directly: 

N = k�(C
∗− C�)     (10) 

Another useful methodology is to use the Sherwood number, which is related to the 

Biot number: 

Sh=
k�δ

D
     (11) 

After the development of FT, the theory is tested by blowing gas over stirred pots 

extensively and results are presented in the Absorption Symposium of ACS [34, 35, 

36]. However, the scatter on the absorption rate data was quite wide due to the 

differences in contactor design, mixing and unstable interfaces. These arguments still 

apply to the use of FT in stirred contactors, where the fictitious film thickness δ is 
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merely a fitting parameter for each system and for each set of operating conditions. It 

is interesting to note that in the discussion section of Whitman’s extension paper of 

FT [34], the possible large amounts of gas uptake rate by a bubble rising through a 

liquid is punctuated. This argument formed the experimental basis of penetration 

theory, and can be seen as a signal for the future use of Taylor bubbles in gas 

absorption.  

FT is extended by Hatta by incorporating first order reactions [37] and substantially 

by van Krevelen and Hoftijzer [38], who considered second order reactions in an 

approximate, but valid manner. The theory for second order reactions will be given 

in Section 2.8.3.  

In order to rationalize gas-liquid mass transfer and kinetics experimentation, 

Levenspiel and Godfrey [39] introduced the double-stirred contactor, even though 

primitive variants were used by Whitman and Davis before [40]. A wireframe sketch 

is given by Figure 6. The contactor may have baffles liquid and gas sections. The gas 

section operates in continuous mode and the liquid section can operate both in batch 

and continuous mode, depending on the rates of mass transfer. An important feature 

is the plates placed on the interface, which have a distinct number of holes of small 

size. This effectively stabilizes the interface for certain range of stirring speeds, in 

the same time gives an exactly known interfacial area. Levenspiel and Godfrey 

divided the case of mass transfer with second order bimolecular reaction into 8 

regimes in terms of the magnitude of reaction velocity. They proposed an 

experimental plan for distinguishing kinetic regimes. 
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Figure 6. Sketch of a double stirred contactor. Liquid side is baffled and operated in 
batch mode. The interfacial plate is not shown.  

 

Although their experimental rationale was systematic and logical, they found 

increasing mass transfer coefficients with increasing rotating speeds, even during the 

maximum rotation speeds that the contactor can allow without any interfacial 

rupture. This is an example of the difficulties of tuning mass transfer devices with a 

stirring apparatus. Later users provided small amounts of surfactants to the liquid 

phase to stabilize the interface during higher stirrer speeds [41, 42, 43]. However, it 

is known that surfactants effectively suppress mass transfer [44] by forming 

additional resistive layers on the interface. In liquid-liquid cases, 4-to-5 fold decrease 

is possible even if surfactant amounts on the order of 10 ppm are added [45]. 

Nevertheless, the device has been found to be useful for many regimes of mass 

transfer, especially where sole diffusion reigns. Tamir and Merchuk [46] adopted it 

for measuring diffusivities of evaporated liquids, by making use of the film-

penetration theory, which is explained in Section 2.4.1. The contactor has been 

modified for the applications in liquid-liquid extraction. Al-Dahhan and Wicks [47] 

provides a survey of such contactors. 

gas 

inlet 

gas 

outlet 
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The kinetic regimes used by Levenspiel and Godfrey form the basis of the use of FT 

with chemical reactions. An extensive review is provided by Doraiswamy [48]. 

FT needs bulk phases and steady gradients in order to be effective in modelling mass 

transfer with chemical reaction. Bulk phases are absent in microfluidic contactors. In 

addition, a distinct (usually not negligible) transient period, in terms of the 

development of concentration boundary layers, is expected to exist in microreactors. 

This is not accounted in FT, since a steady model of diffusion is accounted. This may 

mean physically that the initial transient region is very short for FT or conversely, 

based on the definition of Fourier number, FT would work for long contact times. So, 

one may then say that FT is for large Fo only [49]. Hence, the use of film theory may 

only contribute to construction of new correlations for some special micro-contacting 

designs, where mass transfer coefficients should be fitted to a large range of 

parameter data of Hohydrodynamics and equipment geometry. 

 

2.2. Penetration Theory (PT) 

 

Unlike the film model, the penetration model stems from an unsteady physical 

scheme. Considering a stagnant liquid layer beside a gas phase, the simplification of 

Equation-(1) to Equation-(2) can be reprised6. The resulting unsteady diffusion 

equation with the following conditions define the penetration theory: 

∂C

∂t′
= D

∂�C

∂x�
                      

at t′ = 0,   C = C�

at x= 0,   C = C∗

as x → ∞ ,   C → 0

   (12) 

However, PT is much more general than the stagnant layer case and it can be applied 

to flowing films also. Consider diffusion into a broad vertically falling laminar film, 

where the film is steady. So for this case, one may write the differential equation for 

the transport of a dilute species by cancelling the unsteady and reaction terms in 

Equation-(1). If the flow is unidirectional, say it is along the z-axis, then the velocity 

profile comes from the classical analysis of Nusselt [50]. Eventually, the convection-

diffusion equation becomes: 

                                                
6 The cancellation of the velocity terms can be interpreted as the product of perpendicular 
concentration gradient and parallel flow velocity, thus yielding zero. 
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v� �1 − �
x

δ
�
�

�
∂C

∂z
= D

∂�C

∂x�
     (13) 

The equation above neglects axial dispersion, convective flux through the interface 

(moderate solubility), interfacial shear, waves, surface tension and wetting effects. v� 

is the maximum velocity, or in general, the interfacial velocity. Nusselt’s analysis is 

discussed in Section 460.  

For short contact times, the solute will not penetrate much into the liquid; hence the 

local flow velocity will be around v�. This simplifies Equation-(13) into: 

v�
∂C

∂z
= D

∂�C

∂x�
     

The above equation can be put in a more practical form by employing the 

transformation t = z v�⁄  , which is the exposure time. Thus, the model can be 

formulated with its boundary conditions as: 

∂C

∂t
= D

∂�C

∂x�
                      

at t = 0,   C = C�

at x= 0,   C = C∗

as x → ∞ ,   C → 0

    (15) 

which is the same with Equation-(12). The model is steady in terms of clock time, 

but unsteady in terms of exposure time. The stagnant formulation is an unsteady 

model and 1-D in space. However, this exposure time-based formulation is 2D in 

space.  

It assumes an initially loaded and infinitely large liquid phase. At the interface, the 

equilibrium is reached instantly upon contact. This model is suggested by Higbie 

[51] in 1935. The solution of the PDE is a classic and it provides valuable 

information: 

C − C�
C∗− C�

= erfc�
x

2√Dt
�    (16) 

where erf(x) and erfc(x) are the error and complimentary error functions: 

erfc(x)= 1 − erf(x)=
2

√π
� e��

�
du

�

�

   (17) 

One may calculate the surface flux for the instantaneous rate of absorption: 
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N = −D
∂C

∂x
�
���

= (C∗− C�)�
D

πt
    (18) 

 

Figure 7: Schematic of PT [52]. 

 

Note that initially the absorption rate is infinite. The amount absorbed is expressed 

as: 

n� = � Ndt
�

�

= 2(C∗− C�)�
Dt

π
     (19) 

The average rate absorption per unit area then can be calculated easily: 

N� =
n�
t���

= 2(C∗− C�)�
D

πt���
= k��(C

∗− C�)   (20) 

The above expression yields the average mass transfer coefficient: k�� = 2�D πt⁄  . 

Configurationally, it depends on D�.�, in contrast to FT’s linear first order 

dependence. 

Since the model incorporates unsteady state diffusion, by looking at the magnitude 

Fo one can determine the effect of boundaries on mass transfer. One may arbitrarily 

define the position where (C − C�) (C∗− C�)⁄ = 0.005 as the penetration thickness 

[53], x= δ�. Using Equation-(16): 

P�  
z

x 

Flowing liquid, C� 

C∗ 

C∗ 

Gas 

Short time, C 

Long time, C 

interface 
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δ� ≅ 4√Dt     (21) 

Since the model assumes an infinite liquid layer, the penetration thickness should not 

surpass the actual thickness δ of the finite layer. Note that δ is also the characteristic 

length of the system. Thus Equation-(21) also brings a limitation in Fo: 

Fo =
Dt

δ�
=

DL

δ�v�
< 0.06    (22) 

Furthermore, taking the time derivative of δ� gives the spreading velocity as 2�D t⁄ . 

This shows that the Fickian perspective gives an initially infinite spreading velocity. 

Therefore for t > 0, the concentration is non-zero everywhere on 0 < x < ∞ . 

Physically this is wrong and this erroneous behavior is overcome by hyperbolic 

diffusion formulations [54]. So when penetration fronts are important in diffusion 

problems, the Fickian theory may only provide approximate results. Still, in 

microdomains, using the Fickian formulation seems to be appropriate.  

So consequently, PT is for low Fo (short contact times), in contrast to the film model. 

For non-quiescent fluids, the Fo limit is actually lower than as given in Equation-

(22), since at sufficiently high Fo, the solute leaves the fluid layer that is flowing 

approximately with v�. This will also decrease the uptake. The reason is that the fluid 

layers away from the surface usually flow slower than the interfacial elements, if 

there is a wall nearby. These layers sweep the diffusing molecules slower and slower 

as the solute approaches to the wall. Thus, in such a confined system with 

sufficiently long contact times, or high Fo, PT will over predict the uptake rates. 

Furthermore, when the diffusants reach the wall, the lack of a bulk phase and the 

finiteness of the liquid film will result in additional errors. 

Higbie performed his experiments by absorbing CO2, in form of long bubbles, to 

water in narrow pipes. He measured the film thickness and the length of the bubble 

for his calculations. Using his data at 25℃ ; D = 1.93 ∙ 10�� m2/s, δ = 0.14 mm and 

a maximum of t = 0.1s, one finds Fo ≅ 0.01 , which is below the limit given by 

Equation-(22).  

Though usually such cases prevail in the industry, in the context of microreactors and 

microfluidics, the limit can be easily surpassed. The contacting devices may ensure 

very thin film thicknesses and relatively long residence times simultaneously. As an 
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example, one may use the operation data for the IMM FFMR [19]. By using the 

average exposure time t = 2L 3v�⁄ 7 and film thickness data given as 16s and 50μm 

by Table 2 respectively, one finds Fo= 0.9 if diffusivity of CO2 is kept as the same. 

This result indicates that, in microfluidic setups, the liquid film can easily get 

saturated in terms of the diffusant. The saturation effect also occurs in macrosystems, 

but in longer contact times. An example is the wetted wall column. Johnstone and 

Pigford [55] provided a series solution to Equation-(13) for high Fo, with the third 

boundary condition of the Equation set-(15) replaced as  ∂C ∂x⁄ = 0 at x= δ: 

C∗− C�

C∗− C�
= 0.7857e��.������ + 0.1001e���.����� + 0.7857e����.���� +⋯ (23) 

where C� is the average concentration at z. By comparing the solution with numerical 

solutions, it can be seen that the solution is valid for Fo > 0.5, and terms other than 

the first are negligible. For Fo= 0.5, Equation-(23) indicate about 90% saturation 

for the finite film. Thus, the film is almost saturated in physical absorption for 

higher Fo. 

When a gas-phase resistance is present, one should replace the second boundary 

condition with −D∂C ∂x⁄ = (k� H⁄ )(C∗− C�). Here C� is the interfacial 

concentration that is not in equilibrium with the gas phase. To determine whether a 

resistance exists, one can check the Biot number, as given in Equation-(4) (The 

convective transfer coefficient h is replaced with k� H⁄ ). The methodology is given 

by Table 3. 

Note that for small Bi, gradients in the film vanish. This case is frequently observed 

in microdomains [56], since δ is small. It is important to note that PT does not have a 

static characteristic length. It was also discussed that for a working PT, δ� < δ. 

These eventually suggest that PT cannot predict lumped capacitance at any time. 

 

 

 

                                                
7 This expression is related with Nusselt’s analysis and given in Section 0. 
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Table 3. Biot number – gas phase resistance relationship with appropriate boundary 

conditions [53]. 

Case Physical Explanation Boundary Conditions 

Bi> 40 
almost no resistance exists on the gas-

side. 

Dirichlet type, 

C = C∗ 

0.1 < Bi< 40 
a significant gas-side resistance 

exists. 

Neumann type, 

with −D∂C ∂x⁄ = h(C∗ − C�) 

Bi< 0.1 
lumped capacitance maybe applied, 

all gradients in the film are neglected. 

No spatial BC’s, 

the problem turns into a ODE 

 

 

After Higbie, Danckwerts solved the case of PT for a first order reaction [57]. 

C

C∗
=
1

2
exp�−�

k

D
x�erfc��

x

2√Dt
− √kt��+

1

2
exp��

k

D
x�erfc��

x

2√Dt
+ √kt�� (24) 

Though complicated, the asymptotes of this solution for high and low Damköhler 

numbers, Da= kC∗
���

t, provided the basic equations for determining diffusivity, 

solubility and reaction rate constant in wetted wall columns or laminar jets. Number 

“n” is the reaction order, and is equal to one in Danckwerts’ solution. However, 

unlike the physical absorption case, Danckwerts’ solution does not allow an explicit 

relation for the penetration thickness, therefore for the transient stage; it cannot set a 

limit for the applicability of the penetration model for given combinations for Fo and 

Da numbers. These numbers are important and can be combined into a single critical 

parameter for ease in further analysis: the Thiele modulus with a general reaction of 

order n. 

Λ = �
Da

Fo
= �

kC∗
���

t

Dt δ�⁄
= �kδ

�C∗
���

D
    (25) 
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2.3. Surface Renewal Theory (SuRT) 

 

In FT, Whitman knew that accepting the existence of stagnant films nearby the 

interface was a serious oversimplification. On the existence of such films he noted 

that “actually no such demarcation exists.” The fictitious existence of stagnant layers 

near the interface have been defended by many next generations and kept in later 

theories, such as the surface rejuvenation. The general judgment was that eddies of 

turbulence did not reach the interface completely. This was rigorously discussed in 

the 50’s [58, 59], since experiments gave conflicting results. Years later, direct 

numerical simulations established [60] that surface elements constantly get replaced 

by eddies. 

In 1951, Danckwerts [61] introduced a more general model that considers the effects 

of eddies of the turbulent bulk phase on gas absorption. He assumed that eddies 

continuously sweep the gas-liquid surface, thereby bringing fresh liquid patches to 

the surface and replacing the old patches that contain diffused amounts of solute 

during their existence on the surface. The life time of the patches on the surface is 

denoted as the age of the patch. Danckwerts considered a nonuniform age 

distribution among the patches. This distribution depends on the surface renewal rate, 

“s”. This is the sole parameter of the model. Figure 8 presents the idea of surface 

renewal theory. 

Considering random renewal, but constant “s” in time, a normalized exponential 

distribution is obtained: 

Φ(t′)= se���
�
 , � Φ(t′)

�

�

dt′ = 1   (26) 

From probabilistic view, the age distribution function (ADF) Φ(t) can be regarded as 

a probability density function. Upon sampling an amount of interfacial area, it gives 

the probability of finding a surface patch with age t. With Equation-(26), one may 

use any surface flux expression to get the average absorption rates predicted by 

SuRT. The flux expressions can be obtained from solutions of the diffusion equation 

with various boundary conditions; such as constant surface concentration (PT), gas 
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phase or interfacial resistance8; and cases of diffusion with chemical reaction by 

using the following equation: 

N� = � Φ(t�)N(t′)
�

�

dt′ = s� e���
�
Ndt′

�

�

    (27) 

 

 

Figure 8: Schematic for SuRT. 

 

In essence, the theory considers the patches as stagnant pieces of liquid, thereby 

allowing many solutions of the diffusion equation to be adapted. Furthermore, the 

above equation physically means the expected value or the first moment of surface 

flux. Mathematically, it is the Laplace transform of N . The simplest example can be 

given by applying the instantaneous surface flux predicted by PT (Equation-(18)): 

N� = √Ds(C∗− C�)    (28) 

Equation-(28) defines k�� = √Ds  for SuRT.  

Some of the results are quite interesting. For example for a gas phase resistance, a 

solution for N can be obtained via solving the Equation-(15) with the second 

                                                
8 Though usually expressed in the same matematical form, physically they are very different. 
Interfacial resistance concept is discussed in detail below. 

Gas Liquid 

patches of different ages 

eddies of 

turbulent flow 

the interface 
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boundary condition replaced with −D ∂C ∂x⁄ = (k� H⁄ )(C∗− C) at x= 0, and 

substituting its surface flux to Equation-(27) leads to: 

N� =
C∗ − C�
1

√Ds
+

H
k�

      (29) 

which is surprisingly equivalent to the formulation given by film theory (i.e. 

combination of resistances, Equation-(9)), obtained from a very different route. 

The SuRT has another connection with PT. Since PT can also be described by 

systematic renewal (constant renewal time), its distribution function can be given as: 

Φ(t)= �

1

t
, 0 ≤ t′ ≤ t

0,                  t′ > t

     (30) 

Applying Equation-(27) with the uniform distribution given above, one obtains 

Equation-(20).  

 

2.4. Unifications and Modifications for FT, PT and SuRT 

 

In a period of 10 years after the accomplishment of SuRT, many modifications and 

corrections are made to the three main theories of interfacial mass transfer. Some 

attempts on the unification of these theories are also provided. 

 

 

2.4.1. Film-Penetration Theory (FPT) 

 

Toor and Marchello [62] formed unification between FT and PT. The theory lies on 

modifying the system described by Equation-(15) by dragging the boundary 

condition at infinity to a finite film thickness δ. For short times, the diffusant will 

obey the physics of PT and for long times, i.e. when the diffusant reaches δ; the 

physics of film theory is approached. At x= δ, bulk concentration of the diffusant or 

the reaction rate in the bulk phase will prevail as boundary conditions. A schematic is 

given by Figure 9.  
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The theory suggests a smooth variation of the exponent “n” of diffusivity from 0.5 to 

1. Although many experiments give “n” between those values, FPT is found to be 

qualitatively erroneous in terms of exponent’s approach to 1 in some cases [63]. 

The theory provides important knowledge about the basis of the basic mass transfer 

theories. By considering a Higbie distribution and a standard Danckwerts 

distribution, the authors show that for all Fo numbers, the average transfer rates do 

not differ much. This is shown in Figure 10.  

Later Huang and Kuo [64] added first order reaction into FPT. They also showed that 

the unknown parameters, s and δ, can be united into the Hatta modulus,  

M� =
kD

k��
� �

      (31) 

thereby converting FPT into a one parameter model. Here, k��
�  represents the average 

physical mass transfer coefficient and it can be determined for many systems using 

film or penetration theory. Once k��
�  is known, one can determine the chemical mass 

transfer coefficient, by using an enhancement factor expression, which is explained is 

Section 2.8.2. Like the asymptotic behavior of Toor and Marchello’s FPT, their 

equation of FPT with chemical reaction approached to the solutions of Hatta [37] for 

film theory and to Danckwerts’ solution as given with Equation-

�

�∗
=

�

�
exp�−�

�

�
x�erfc��

�

�√��
− √kt�� +

�

�
exp��

�

�
x�erfc��

�

�√��
+ √kt�� (24). 

For physical absorption, Huang and Kuo note that that the exponent of diffusivity 

may have values lower than 0.5 based on experimental data. From their equations, it 

can be seen that it is impossible to derive an exponent smaller than 0.5. This 

indicates the existence of an interfacial resistance; in such a case it should be 

regarded as an alternative and additive resistance. This fact will be detailed in 

Section 2.5. A realistic example of estimating s and δ as functions of Reynolds 

number is given by Brusset et al. [65]. 
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Figure 9: Schematic of FPT. 

 

 

Figure 10. Equivalence of Higbie and Danckwerts ADFs. At low Fo, FPT 
approaches to PT and at high Fo it approaches to FT asymptotically.  

 

Since now mass transfer with first order reaction is considered, it is clear that upon 

the establishment of steady-state, FT and PT may behave the same. It is shown by 

Lightfoot [66, 67] that for the same k��
�  (or the Sherwood number), FT and PT behave 

almost the same at steady-state when a bulk phase is present. In other words, this 

means that one may always select a δ value for FT to conform to the results of PT. 

Gas Liquid Film Liquid Bulk 

FT behavior PT behavior 

C�
∗

C������  
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This result is important, since it simply explains the practicality of FT, in terms of 

being a one parameter model and providing simple expressions at the same time. 

During any case with sufficiently fast kinetics in comparison to the contact times, 

and with the presence of a liquid bulk, FT can be useful tool. 

From FT to FPT, it is always assumed that the concentrations of the bulk phases do 

not change. This assumption would induce serious errors for long times, and also for 

short times considering dilute gas bubbles. The remedy is mathematically possible, 

and by using PT, the finite capacity tank is treated by Gill and Nunge [68], and the 

depleting bubble problem is solved by Estrin and Schmidt [69], albeit solutions 

become complex in these cases. 

 

2.4.2. Surface Rejuvenation and the Random Eddy Theory (RET) 

 

In 1955, Danckwerts and Andrew [70] discussed that the SuRT should by modified 

in many cases like absorption processes in trickle beds, by changing the amount of 

surface renewal to certain extent. That is, mixing does not provide complete 

replenishment after each contact point. Instead, eddies sweep away some of the 

diffused solute at random times, but their approach distance to the interface is 

constant. That is, in their model called as surface rejuvenation, they accepted that 

eddies does not reach the surface. Alper [71] showed that in packed columns, surface 

rejuvenation is more realistic than complete surface renewal. Later on, Harriott [63] 

modified this theory, by simulating a physical absorption situation where eddies 

arrived at the surface layer at random times and approached in random distances to 

the interface. He chose fit this randomness to a gamma distribution 

f(t′,α,β)=
t�
���

e��
� �⁄

β�Γ(α)
     (32) 

since f(t,α > 1,β) provides zero probability for an eddy to completely reach the 

surface, but it can come infinitesimally close to it. For α = 1, the distribution 

function simplifies to Equation-(26). The idea of random eddy theory is illustrated in 

Figure 11.  
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Successful matches between many cases of mass transfer with a bulk phase, even to 

turbulent pipe flow scenarios were reported. The main result is that the approach 

distance is a vital parameter. Even when the average approach distance is constant, 

eddies that get closer to the interface enhance mass transfer much more in the 

overall. Thus, the standard deviation from the mean approach distance also affects 

mass transfer. This also provides a smooth transition of the diffusivity exponent from 

0.5 to 1 upon wider contact time distributions. RET can be seen as the first 

computational and probabilistic model, but its success can also interpreted as a result 

of its 3-parameter nature. 

 

 

Figure 11. Concentration profiles in time for physical absorption, truncated after 
swept by the eddies of RET. 

 

 

2.5. Interfacial Resistance and Statistical Rate Theory (SRT) 

 

In his experiments, Higbie observed a mismatch between values predicted via his 

penetration formulation and his measured uptake values at very short contact times, 

on the order of 0.1 s. He assumed that the surface saturates exponentially with time. 

The rate constant for saturation is arbitrarily chosen to fit the data. The qualitative fit 

introduces a new parameter which is not substantiated by any theory. Nevertheless, 

the interfacial resistance concept was born.  

Following this perspective, in presence of a resistance at the interface, rigorous 

mixing should affect the transport rates adversely if contact times are too short. 

Furthermore, the resistance also refutes the existence of the classical age distribution 

function of SuRT (Equation-(26)). The distribution claims that the most probable 

Concentration 
tails swept by 
eddies 
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surface age is zero, which is unlikely. Since interfacial resistance can also be thought 

as an initial time of reduced transfer, by analogy one can say that the surface 

elements are not considerably taken away by eddies at very short times, since then 

almost no mass transfer would occur. 

The interfacial resistance concept is incorporated to the SuRT by Perlmutter [72]. He 

replaced s with 1 τ⁄  , and interpreted it as the surface residence time. With this move, 

he showed that the classical surface age distribution is the same with the washout 

function of a perfect CSTR in residence time distribution (RTD) theory (see [52] for 

the basic concepts). By using Zwietering’s formula on eddy RTD and eddy age 

frequency [73], he established a connection between SuRT and RTD. Thereby he 

considered multiple capacitances (washout function of two CSTR’s in series) and 

dead volume (washout function of a PFR followed by a CSTR or vice versa) models 

to enhance SuRT’s ADFs. With such models, interfacial resistance is taken into 

account and for long contact times, the Higbie distribution given by Equation-(30) is 

approached by both models. Though physically meaningful, Perlmutter’s convention 

increased the number of unknown parameters in the problem herewith decreasing the 

ease of the use of his model. 

Upon Higbie’s insights on interfacial resistance, Danckwerts [74] tried to apply the 

kinetic theory of absorption developed by Miyamoto [75, 76]. The theory uses a 

Maxwellian distribution of velocity on both sides of the interface, and assumes only 

that a certain fraction of molecules, which have enough kinetic energy, can pass 

through it. The theory yields an FT-like expression: 

N� = ks(C
∗− C�)     (33) 

where  

ks=
α

H�2πR�TM
     (34) 

M is molecular weight and α is the condensation (or evaporation) coefficient or the 

probability that the molecule passes through the potential created by surface tension 

at the interface. Equation-(34) is sometimes called as Hertz-Knudsen equation and it 

determines the collision frequency on a flat line. Although the theory is of 

fundamental essence, it still possesses the unknown parameter α, which changes for 
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each gas-liquid-solute system. Moreover, Danckwerts failed to fit this kinetic model 

to Higbie’s data. This created suspicion about the existence of interfacial resistance 

and validity of Higbie’s results. Upon more unconformable results on the existence 

of interfacial resistance in laminar jet experiments (see Figure 12), Toor [77] noted 

that evolution of boundary layers near the surface of the laminar jet can create a 

falsified resistance to mass transfer. If there is acceleration in the surface layer, then 

the contact time becomes longer and averaged transfer rates decreases. He showed 

that upon assuming a surface velocity for a laminar jet falling along x direction in 

form of Px� , where −1 < n < 1 9,  the age distribution functions can have a similar 

form with the gamma distribution used in random eddy theory, thereby designating a 

resistance-like response. The mathematics of the idea was established by Scriven and 

Pigford [78, 79], who along with Raimondi and Toor [80] carried out carefully 

designed experiments for CO2 and O2 absorption in water, concluding that interfacial 

resistance is very small for slightly soluble gases. However, interfacial resistance is 

found to exist for soluble gases, for liquid-liquid organic pairs [81], for mediums 

with trace amounts of ions are present [82] and where the fluxes are high when the 

contact times are short. 

Later, Coughlin [83] re-analyzed the kinetic formulation and showed that the 

interface also may not be in thermal equilibrium due to the heat liberated in 

adsorption on to liquid surface, or due to the heat of condensation in a two phase 

single substance case. He emphasized that heat and diffusion equations must be 

strongly coupled, but he failed to fit his theory to experimental data also. He added 

that in some cases the condensation coefficient changes with experimental 

conditions. This eventually suggests that the kinetic formulation is incomplete. 

Nevertheless, the Hertz-Knudsen theory has an established place in the field of 

evaporation of pure substances. For water, a broad literature and data for α exists 

[84]. 

 

                                                
9 n = 1/4 would approximately resemble a laminar jet and n = 1/2 would describe free fall. P is the 
perimeter of the jet. 
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Figure 12: The laminar jet. Taken from [79], used with permission of Wiley&Sons. 

 

The developments on interfacial resistance took a step forward when Ward [85] 

created statistical rate theory. He created a new boundary condition for interfacial 

mass transfer where adsorption from gas phase on the liquid surface is a negative 

first order process and desorption into the gas phase is of straight first order, leading 

to: 

N� = Ks�
C∗

C�
−
C�
C∗
�    (35) 

with  

Ks=
P�

���C�P�

H�2πR�TM
     (36) 

Note that Ks is similar with ks of kinetic formulation. B denotes the solvent phase 

substance. The transfer rate is dependent of the solvent’s vapor pressure also. In case 

of water, C� is usually around 55.2 molar. SRT suggests the existence of a surface 

phase and a bulk phase, into which solutes are transported. For long times, C� → C∗, 

so the surface and the neighboring layer of the bulk phase reaches equilibrium 

concentrations. The theory is the most fundamental and comprehensive on interfacial 

mass transfer, since it does not have any fitting parameters. Later, Ward et al. [86] 

verified the theory by finding molecular distributions in each phase with 
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Boltzmann’s microstates entropy approach and calculated the transition probability 

from a perturbation analysis of the Schrödinger equation, eventually leading to the 

same expressions given by Equation-(35) and (36). Applications of bubble growth, 

nondissociative and dissociative adsorption are also given [87, 88, 89]. Since it is 

based on adsorption-desorption dynamics, SRT has become a theoretical tool for 

analyzing adsorption-desorption kinetics both on solids and liquids. 

The mathematical solution of the diffusion problem with equation-(36) as the 

boundary condition is given by Tao [90] in terms of a series sum of iterated integrals 

of the complimentary error function. Since the solution was complex and not always 

analytic10, the interfacial concentration is approximated by Gupta and Sridhar [91] 

with a simpler equation: 

C�
C∗

= �1 − exp (β�)erfc(β)  , with β =
Ks
C∗

�
t

D
  (37) 

It can be seen that as time increases, η increases and C� tends to C∗. Authors show 

that, for Ks > 10�� mol/cm2s, Tao’s solution is almost the standard PT solution 

(Equation-(16)). They also provide saturation times for oxygen, carbon dioxide and 

hydrogen in water as 0.012411, 0.0054 and 0.0043 seconds respectively, which are 

calculated from Equations (36) and (37). Although the times are short, it is 

speculated that under high surface renewal conditions, interfacial resistance may lead 

to erroneous measurements. That is, experimental values for D and kinetic rate 

constants will be measured higher than normal, if PT is used directly. Thus, for the 

general application of the instant equilibrium boundary condition, one should now 

the saturation time. The most practical tool is Equation-(37), which is in implicit 

form. 

Although interfacial resistance is found to be low for general macroscale equipment, 

it is possible that negating effect may exist, or the models may lump their existence. 

In the presence of surfactants it is almost undebatable that a significant resistance 

                                                
10 i.e. the series does not always converge. 
11 Toor and Raimondi’s [49] saturation time is much lower. When calculated, it comes as 0.002 
seconds, but experimental errors should have a huge impact on this result, and also their BC is linear 
(See Appendix E). 
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forms on the interface [44, 92]. The resistance effects in micro-contactors are not 

demonstrated yet. 

 

2.6. Boundary Layer Solutions 

 

Boundary layer theory is a very well developed area of transport phenomena and it 

has a huge number of applications. The theory can explicitly answer to many 

problems in terms of heat and mass transfer coefficients, including cases with 

developing velocity and temperature fields [93] and also can encompass arbitrary 

surface reactions [94] or slow homogeneous reactions [95]. However, due to 

narrowly confined geometries of microfluidics, velocity profiles in liquid flow 

develop almost instantly along the channel when compared to the concentration 

profiles12. In addition, confined geometries are not suitable for boundary layer 

solutions, which are naturally solved in semi-infinite domains. To see the length of 

the developing region, one may use the following empirical equation [96] for 

approximating the order of entrance length for laminar flow in a cylindrical 

microtube: 

L��� = 0.035 d Re    (38) 

Typically, the diameter d ~ 1 mm and Re ~ 10�, then L��� comes out around 3 mm. 

This can be considered as a short distance when compared to the axial length of 

many microchannels, which are usually few centimeters long. Therefore boundary 

layer solutions may not be useful for analyzing microfluidic cases. For mass 

transport, they can only be used when the predicted boundary layer thickness is small 

when compared to characteristic diffusion length, but Akiyama [97] proves that PT 

already gives the same results in such a case. Under such conditions, curvature may 

be neglected13, then PT will also give results obtained from using potential flow 

models [98]. 

 

 

                                                
12 This is due to the Schmidt number, Sc= Pe Re⁄ = ν D⁄ . For liquid flows, it is about 100-1000. 
13 For bubbles and drops for example. 
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2.7. Mass Transfer Theories Applied to Microcontactors 

 

Many of the above explained theories are used to analyze and quantify mass transfer 

in microcontactors, but with limited success. It seems that use FT in microcontactors 

is already disregarded due to its 1-D nature [28]. The developments done under PT 

with or without chemical reaction seem to be especially valuable for micro-milli 

contactors since it is a 2-D model. Many of microfluidic contacting systems would 

hardly be modelled at steady-state in terms of the exposure time (the methodology 

presented in Section 2.1 is followed here), since a certain transient period would be 

present at the short times. Exposure, which might be cut off before or after the 

concentration profiles have settled, depends on the design of the device and 

hydrodynamics. Furthermore, for irreversible bimolecular reactions, a steady-state 

does not exist in the absence of a bulk phase, apart from complete saturation and 

depletion in terms of the reactants.  

In terms of physical absorption, the inadequacy of PT for long contact times was 

known long before [99]. However, with the great number of successful applications 

in stirred tanks and bubble columns during 60’s and 70’s, the essence of the 

limitations seems to be overlooked. Recently, under the context of microfluidic 

applications, questions on the applicability of PT have been re-emerged. As 

explained above, for sufficiently large Fourier numbers PT can over predict the 

uptake rate in physical absorption. This over prediction of PT has been enunciated by 

Sobieszuk et al. [18] during the experiments involving the physical absorption of 

carbon dioxide into water in FFMR’s. In addition, Haase et al. [100] reported the 

same effect for flow over singly packed microspheres in a cylindrical microchannel, 

on which a dissolution process14 occurs. For short contact times, PT is successively 

employed in Taylor flow scenarios by van Baten and Krishna (numerical) [101] and 

Vandu et al. (experimental) [102]. Albeit for longer contact times, i.e. for smaller 

bubble velocities or long bubbles, saturation effects are observed. These results bring 

out the importance of a saturation criterion. In a short communication, Pohorecki 

[103] formulated some rough limits for effective use of Taylor flow in physical 

                                                
14 Dissolution may also be modelled with PT. 
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absorption, instantaneous reaction and surface reactions. He considered the contact 

time as: 

t =
L�
v�

     (39) 

where L� is the bubble length and v� is the bubble velocity, as shown in Figure 13.  

 

Figure 13. A schematic of Taylor flow. 

 

The author simply suggested that the maximum uptake rate will be equal to the one 

predicted by PT (Equation-(19)): 

δC�
∗ = 2C�

∗�
D�t�
π

    (40) 

where the saturation-exhaustion time t� can be given as: 

t� =
π

4

δ�

D�
= 0.77

δ�

D�
    (41) 

Following the same path for an instantaneous reaction of A + bB → P, considering A 

as the absorbed reactant and B is fluid phase reactant of initial presence, the 

depletion of B can be given as: 

δC�� = 2bE�C�
∗�

D�t�
π

    (42) 

v� 

L� 

δ 
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C��  is the initial concentration of B in the film, E� is the enhancement factor for an 

instantaneous reaction, to be given by Equation- (58). But here, he somewhat 

oversimplified it as: 

E� ≈
C��
bC�

∗�
D�

D�
     (43) 

to yield the neat result: 

t� =
π

4

δ�

D�
     (44) 

Equation-(44) is the minimum time for depletion when a second order bimolecular 

reaction occurs in the film. Since t ≪ t� and  t ≪ t�, Pohorecki concluded that 

Fo=
L�D

v�δ�
≪ 1     (45) 

where D is D� for saturation upon physical absorption and D� for liquid reactant 

depletion. For a heterogeneous reaction, the reverse criterion  Fo≫ 1 should hold, 

since the diffusant must reach the catalytic wall and accumulate there well, in order 

to allow kinetically controlled synthesis.  

Van Elk et al. [104] ran a numerical study of gas absorption in confined films. They 

considered physical absorption, absorption with first order reaction and second order 

bimolecular reaction in a laminar film. The reason of their investigation was to 

investigate the limits of PT in packed absorbers. The limits of PT were demonstrated 

qualitatively. Yue et al. [105] have run a similar numerical study for first and second 

order reactions in plug flow, but this time, they approached the problems from the 

perspective of microfluidic mass transfer. 

In addition to the theories and their applications explained above, simpler 

engineering approaches are also applied to microcontactors when measuring mass 

transfer rates. The most important of them is to define an overall mass transfer 

coefficient. If mass transfer resistance lies in only one of the phases, then one can 

assume one of the phases as a plug flow unit: 

dC

dτ
= k�a(C

∗− C)    (46) 
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τ is the mean residence or contact time and k�a is the volumetric mass transfer 

coefficient with a as the specific interfacial area. By accepting the above formula, 

velocity and dispersion effects are implemented into k�a. If the resistance lies in both 

phases, an alternate derivation involving the hold-ups are necessary [28]. Integration 

of Equation-(46) gives: 

k�a =
1

τ
ln�

C∗− C��
C∗− C���

�    (47) 

This simple equation can be used directly to determine k�a from experimental 

measurements. However, since volumetric flow rates are low, offline measuring 

methods, like sampling some of the biphasic mixture, subjecting it to phase 

separation and then to chemical analysis; cannot be applied well. This is due to the 

combined effects of short residence times and small amounts of material in 

microcontactors [28]. In aid of this situation, online mass transfer measurement 

techniques have been developed. A pH based light induced fluorescence (LIF) 

method has been recently applied during nitration of urea in a silicon microreactor 

[106]. 

Alongside with mass transfer coefficient analysis based on PT and on the overall, 

some other modelling approaches are also implemented. As examples, Su et al. [107] 

implemented surface renewal concept to micropacked beds for a liquid-liquid water-

kerosene system and Mhiri et al. [108] used the classical number of transfer units 

(NTU) concept in an FFMR for the treatment of chlorinated volatile organic 

compounds. 

In summary, the methods of attack to model and quantify mass transfer in 

microcontactors vary to a great degree. The generic mass transfer models may be 

useful in modelling microreactors; however they are only suitable for some restricted 

cases More detailed and reliable models, whose solutions are also practical to use, 

seem to be necessary. As Kashid et al. [28] demonstrates, the measured data and 

model predictions in microfluidic mass transfer does not seem to match. In general, 

experiments lead to a very wide scatter of volumetric mass transfer coefficients. As 

an example, the data for mass transfer in air-water Taylor flow is given in Figure 14. 

In Figure 15, insufficient modeling via PT and FT is demonstrated for CO2 

absorption in an FFMR. 
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Figure 14. Variation of k�ad� with gas velocity in Taylor flow. Taken from Kashid 
et al. [28], used with permission of Elsevier. 

 

 

Figure 15. Comparison of experimental results for liquid phase mass transfer 
coefficients with FT and PT predictions in an FFMR. Taken from Kashid et al. [28], 

used with permission of Elsevier. 
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2.8. Additional Tools of Transport Phenomena 

 

2.8.1. The Hikita-Asai Approximation (HAA) 

 

In 1964, without showing any proof, Hikita and Asai [109] developed linearized 

formulas to accommodate mth-nth order reactions in FT and PT as an extension to van 

Kravelen and Hoftijzer’s work [38]. Their linearization of the pseudo nth order 

reaction in PT was especially successful. For the nonlinear source term, they used: 

kC� ≅
2

n + 1
kC∗���C = k���C    (48) 

 (24) for any order, provided that n >  − 1. The approximation is very accurate; 

maximum is error is about 2%. 26 years later, Asai [110] completed the basis of the 

approximation and generalized it for reversible reactions in FT. He considers a 

reactive absorption case in a liquid film where the gas phase resistance is neglected, 

therefore on the interface C = C∗ and the on the boundary neighboring the liquid bulk 

C = C�. Considering an nth order reaction kC�, he integrates the nonlinear steady-

state reaction-diffusion equation once to obtain fluxes at each boundary. Then upon 

linearizing the reaction rate as kC� = aC+ b and solving the linearized reaction-

diffusion equation, he finds the values of a and b by the using the exact description of 

fluxes at the boundaries and an enhancement factor expression that is valid for fast 

reactions. Upon setting C� = 0, b comes out as zero and the linearization given in 

Equation-(48) is obtained. b is non-zero when there is equilibrium due to a reversible 

reaction in the bulk, that is C� ≠ 0. 

Although the linearization is made in steady-state; it is very accurate in transient 

cases as well. In other words, even if the linearization is derived for FT, it can also be 

used safely in PT, with zero concentration at the propagation front. 

 

2.8.2. Effectiveness and Enhancement Factors 

 

The number or variation of reaction-diffusion problems is almost infinitely many. 

Reasons for this is the number of parameters, various rate forms and some 

nonlinearly relationships; like the Arrhenius equation for the rate constant; and 
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concentration, temperature or gradient dependent [111] nature of the physical 

properties. In practical analysis, many of the effects leading to variable parameters 

may be neglected if operation conditions allow. If so, two factors can be used for 

practical computations. For gas-solid reactions, the effectiveness factor [112]: 

η =
average reaction rate

reaction rate at the surface
   (49) 

and for gas-liquid reactions, the enhancement factor [38] : 

E =
absorption rate with chemical reaction 

absorption rate without chemical reaction
  (50) 

are introduced15. The effectiveness factor for first order reactions can be found in 

many textbooks [113]. It is used for steady-state analysis, and can also be extended 

to gas-liquid reactions by using the film theory [114].On the other hand, 

enhancement factor can also be used for both steady and unsteady-state analysis by 

using FT and PT respectively.   

A general effectiveness factor expression for any rate expression and with variable 

diffusivity16 is given by Bischoff [115] 

η =
√2

δr(C∗)
�� D(C)r(C)dC

�∗

��

�

�/�

   (51) 

The concentration at the wall, C�, must be solved from an implicit equation to use 

this expression. However, at relatively high rates, it may be almost zero. Then a 

“dead core” occurs. In such a case, the above integral can be evaluated much simply 

by setting  C� = 0. Formation of a dead core is important in catalysis and it is strictly 

unwanted, since the catalyst in the dead core is wasted. This phenomenon is related 

to gas-liquid mass transfer with chemical reaction, where a portion of a liquid film is 

used in gas absorption at all. 

Following the steps of Bischoff, a general expression for enhancement factor at 

steady-state can be given as: 

                                                
15 The absorption rates are usually time averaged. Thus, the definition of E can also be given as the 
ratio k��/k��

�  , or as the ratios of the amounts absorbed (n�) under physical and chemical absorption. 
16 Useful for reactions with volume change. 
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E =
2D

k�(C∗− C�)
� r(C)dC
�∗

��

    (52) 

D is assumed as constant and C� is the concentration in the bulk, which is usually 

known. In unsteady state, one may provide a general expression by using the HAA in 

CC∗=12exp−kDxerfcx2Dt−kt+12expkDxerfcx2Dt+kt (24) and with use of Equation-

(18) for the denominator of Equation-(50): 

E = ��M� +
π

8�M�

�erf�
2�M�

√π
� +

1

2
exp�−

4M�

π
� ,�M� = �

2π

n + 1
kC∗���t   (53) 

However, general expressions for E in finite films, for mass transfer with arbitrary 

homogeneous reactions and for non-plug flow velocity fields cannot be provided 

analytically. Yue and his co-workers has published a series of four papers, in which 

they considered instantaneous reactions in plug flow [116], first and second order 

reactions in plug [105] and laminar film flows [117] and in the presence of gas-phase 

resistance [118]. For finite films and over an extensive parameter space, they 

provided correlations for E, by matching the numerical results with the empirically 

modified forms of the relations given by Danckwerts [57] and Hikita and Asai [109] 

for PT.  

 

2.8.3. Second Order Reactions 

 

In the perspective of FT, the first approximate solution to the equation set: 

D�

dC�
dx

= kC�C�

D�

dC�
dx

= bkC�C�

,

at x= 0,   C� = C�
∗

at x= 0,   dC� dx⁄ = 0

 ,

at x= δ,   C� = 0

at x= δ,   C� = C��

 (54) 

was provided by van Krevelen and Hoftijzer [38] in terms of an approximate and 

implicit relation for the enhancement factor: 

E =

�M��1− (E − 1)
D�bC�

∗

D�C��

tanh��M��1 − (E − 1)
D�bC�

∗

D�C��
�

   (55) 



44 
 

where M� = kC��D� k��
� �⁄  is the Hatta modulus (a modified version of Equation-

(31)). Also, the enhancement factor for an instantaneous reaction is given as: 

E� = 1 +
D�C��H�

bD�P��
= 1 +

D�C��
bD�C�

∗   (56) 

In view of PT, the equations for reaction-diffusion form the following system: 

∂C�
∂t

= D�
∂�C�
∂x�

− kC�C�

∂C�
∂t

= D�
∂�C�
∂x�

− bkC�C�

,

at x= 0,   C� = C�
∗

at x= 0,   ∂C� ∂x⁄ = 0

   

as x → ∞ ,   C� = 0

as x → ∞ ,   C� = C��

                            at t = 0, C� = 0  & C� = C�� 

  (57) 

Like Equations-(54), Equations- (57) form a nonlinear set and need a numerical 

solution. Danckwerts [119] provided an exact solution for the instantaneous case, 

which is an upper limit of absorption intensification. He also provided the 

enhancement factor for this case. His complicated and implicit expression for 

enhancement factor is later simplified and accepted as [120]: 

E� ≅ �
D�

D�
+
C��
bC�
∗�

D�

D�
    (58) 

for relatively large E�. Numerical solutions are then provided by Perry and Pigford17 

[121] and Brian et. al. [122, 123]. The main result was that van Kravelen and 

Hoftijzer’s expression (Equation-(55)) was accurate within 8% percent for FT, and in 

addition, E for PT can be represented by a modified and still implicit form of 

Equation-(55): 

E =
�M�

E� − E
E� − 1

tanh��M�
E� − E
E� − 1

�

    (59) 

                                                
17 It is interesting to note that the analog computer used by Perry and Pigford needed hours for a 
solution. However with a dual core mediocre laptop and a CAS, solving Equations- (5757) takes 
a couple of seconds, which shows a speed improvement about 60000 times. This linearly corresponds 
to getting 1000 times faster every year. 
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with the modified Hatta modulus M� = πkC��t 4⁄  18 within 20% error. The error is 

assumed as acceptable, and the parameter space was divided into five kinetic regimes 

as given by Table 4 below [120]. The E vs.M� plot is reproduced in Figure 16.  

 

 

Figure 16. The enhancement factor versus Hatta number for a second order 
bimolecular reaction in PT. Adapted from [124] and [125]. 

 

Some additional approximate numerical limits can be provided for M�. For example 

for the second regime, �M� < 0.5E�, for the third regime�M� > 3 and �M� > 0.5E� 

for the fifth regime. These expressions are based on FT but found to be valid for PT 

also. 

 

 

 

 

                                                
18 Very similar to Mn given in Equation- 
  (53). 
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Table 4. Reaction regimes for second order bimolecular reaction [120]. 

Case Regime Approach for determining E 

1 �M� ≪ 1, E ≈ 1 Slow reaction 
Employ physical absorption 

solutions. 

2 �M� ≪ E� Pseudo-first order Use Equation- 
  (53). 

3 1 ≪ �M� ≪ E�, E ≅ �M� 
Fast-pseudo first 

order 
Use Equation- 

  (53) and  (58). 

4 �M�~E� Intermediate 

Use numerical solutions, E vs 

�M� plots or approximate 

equations. 

5 �M� ≫ E�, E ≈ E� Instantaneous Use Equation- (58). 

 

 

2.8.4. Nusselt Theory 

 

For a falling film on an infinitely wide vertical plate, Nusselt’s analysis [50, 96] yield 

the following expression between film thickness and volumetric flow rate:  

δ = �
3V̇μ

ρg
�

�.��

     (60) 

The surrounding gas is assumed to be stagnant and the shear on the liquid interface is 

assumed to be zero. Such conditions yield the velocity field given in Equation-(13) 

and the interfacial velocity is comes out as: 

v� =
ρgh

μ�
     (61) 

which is also the maximum velocity in the film. The average velocity is given as 

v� = 2v� 3⁄ . When exposure time is defined with average velocity, t = z v�⁄ = 3z 2v�⁄ , 

the Fo number used in Table 2 and in footnote 7 is obtained. 

For the effects of slip and shear on the velocity profile, see Appendix-D. 
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2.8.5. Stability in Stratified Flow 

 

Normally, the general boundary condition between two fluids would be the jump 

condition on stress [126], which can be given as: 

� ∙ [�� − ��] = 2H�σ� − ��σ    (62) 

�  is the normal vector, � denote the stress tensor in each fluid, H� is the mean 

curvature of the interface and �� is the surface gradient operator, which can also be 

given as � − �(� ∙ �).  For equilibrium interfaces H� is a constant, but for a transient 

case, it changes with the unsteady stress fields of both phases in a very complicated 

manner. This is due to the perpendicular components of the velocity vectors that 

almost always exist during the flow of two superposed fluids with different 

viscosities in parallel shear flow [127]. When sufficient disturbance is applied, 

instability may give birth to bubbles or drops. However, surface tension can suppress 

this instability if [128]: 

(v� − v�)
� < 2�gσ(ρ� − ρ�)

ρ� + ρ�
ρ�ρ�

   (63) 

This unstable nature is called as the Kelvin-Helmholtz instability. For gas-liquid 

flows, flows are usually stable in microfluidic applications. However, for liquid-

liquid flow, instability may be seen in micro-scales. Research for flow stabilization 

has been done by many workers in the field and these are summarized by Günther 

and Jensen [129]. In microfluidics, even a complete elimination of waves during 

stratified flow is shown to be possible. 

 

2.8.6. Falling Film Reactors 

 

Stratified flow configurations have been used by chemical engineers in 

macrocontactors for many years. But the complications that occur during the analysis 

at the gas-liquid interface is usually avoided. Since Equation-(62) needs 

computational resources for non-stagnant interfaces, one may simplify it by 
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neglecting the curvature and surface tension regarding a completely parallel flow. 

This leads to equivalent tangential shear stresses at the interface: 

τ�� = τ�� = τ�     (64) 

The interfacial shear τ� is well studied and correlated for macroscale gas-liquid 

stratified flows with a large range of Re numbers [130, 131]. For low liquid phase 

Re, the interfacial shear is usually equivalent to that of single phase gas flow over a 

smooth wall [132]. It is expected that this would also be the case in microfluidics, 

also for liquid-liquid flows, when slip between the phases is negligible. Theoretically 

slip effects are expected to increase the thickness of falling films, but no 

demonstration has been given. On the other hand, the expected shear thinning is 

found to be negligible for gas velocities up to 15m/s in wetted wall reactors [133], 

but this effect for micro-liquid falling film and neighboring gas-flow is not well 

investigated. Equation-(60) can be modified to accommodate neighboring gas flow in 

an empirical manner: 

δ = �
μ

ρ�g
�
�.��

A Re�
�    (65) 

For A = 0.909 and B = 0.33 Equation-(65) becomes equivalent to Equation-(60).  

Note that, there should be a limiting value of δ for each flow setup and operational 

parameters, unlike the zero asymptote predicted by Equations (60) and (65). This so 

called minimum wetting thickness has been studied both theoretically and 

experimentally for large plates. The existence of incomplete wetting and dry patches, 

and also the adverse effect of flooding under high flow rates have been demonstrated 

for an FFMR by Zhang et al. [134].  In view of a falling film reactor, dry patches 

reduce productivity; lead to lower heat transfer surfaces for exothermic reactions 

(sulfonations and ethoxylations are examples), may produce unwanted reactions at 

gas-liquid-solid contact line and may cause corrosion due to direct gas-solid contact; 

for example for operations involving H2S. Although the theories for minimum 

wetting thickness in partially confined slots (like the one in an FFMR plate) have not 

developed yet, a simple equation for the minimum Re for a vertical falling film on an 

infinitely wide plate should be provided here [133]: 

Re��� = 0.148[Ka(1 − cosθ)]�.�   (66) 
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θ is the contact angle and Ka is the Kapitza number, used for characterizing falling 

film flows under gravity: 

Ka = σ�
ρ

gμ�
�
�.��

     (67) 

 

2.8.7. Slip Flow 

 

One of the new phenomena that emerged under microfluidics is boundary slip. 

Instead of the classical no-slip boundary condition on a fluid-solid interface, a more 

general the slip boundary condition19 is proposed [135]: 

at x= 0, v� = 0�������������  ⟶  at x= 0, v� = v��� − b�
dv�
dx���������������������

no− slip                                                slip    

  (68) 

Both the slip and the no-slip boundary conditions stem from observational studies. 

The slip length b� leads to a non-zero velocity on the interface. This is schematically 

shown by Figure 17. v��� is added to account for a moving interface. For gases, the 

occurrence of slip flow is determined by Knudsen number: 

Kn =
λ

L�
     (69) 

where λ is the mean free path20 and L� is the characteristic axial length of the flow 

duct. For Kn < 10�� continuum approximation is valid. For 10�� < Kn < 10�� slip 

flow occurs. The interval 10�� < Kn < 3 is called as the transitional regime and for 

Kn > 3 is the free molecular flow reigns [56]. Slip effects reduce frictional drag and 

usually increase flow rates. 

From the kinetic theory of gases, for dilute gases, the slip length is theoretically 

given as b� ≅ 1.15 λ [136]. On the other hand, for liquids, the absence of a 

developed molecular theory and an indicator like Kn, complicate the accountancies 

of slip in liquid flows. The only theoretical tool is molecular dynamics (MD). From 

                                                
19 This is an example for the generality of Neumann BC’s, since as bs goes to zero; the no-slip BC 
(Dirichlet BC) is obtained.  Similar case occurs for mass transfer with gas-phase or interfacial 
resistance. 
20 For a dilute gas, λ = k�T √2πd�P⁄   from kinetic theory. k� is Boltzmann’s constant, d is the 
molecular diameter. 
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MD simulations [137] and experiments [138], it is proved that slip effects are usually 

insignificant in liquid flow down to the length scales of 100 nm. This scale is out of 

the range of microfluidics, and related to the domain of extended nanospace. 

 

Figure 17: Boundary slip. 

 

However, caution must be exercised with such numbers. For example slip-lengths on 

the order of 100 nm have been measured on superhydrophobic surfaces [139]. 

Further slip may be induced when ridges (also called as grooves) are etched on 

channel walls, similar to the ones used by Daniello et al. [140] (Figure 18). Due to 

the stagnant fluids in the ridges, the overall shear stress on the wall decreases. Upon 

the initial feed of liquid, the ridges are usually filled with air. In this initial period, 

the slip has its highest value21. After a certain time, air dissolves in the flowing 

liquid, and it is eventually replaced by the flowing liquid. This reduces the slip on the 

overall, but the values of b are still much higher than the ones obtained from 

superhydrophobic coatings22. The slip lengths due to such stagnant pockets can be a 

few micrometers [139]. For thin films, this may be a considerable magnitude. 

Considering Taylor flow, since the liquid film that surrounds the bubbles has a 

thickness of 5-50 μm (depending on the Ca number) [141], ridges may affect the 

flow characteristics in terms of wall slip, as long as the width and depth of the ridges 

are not larger than film thickness. 

                                                
21 This is condition is called as the Cassie state, where wetting is incomplete. Later transition into 
complete wetting occurs and this state is called as the Wenzel state. 
22 Drag reduction via microridges occur naturally on the microscopically rough skin of large fishes 
[257].  

b� 

v�(x)

x 
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Figure 18. Slip via flow over air pockets and superhydrophobic surfaces, adapted 
from [140]. 

 

The ridges are also important in the context of mixing, since they may induce small 

scale currents which would enhance mass transfer. This is an old modification that 

has been done for many kinds of reactors and separators [142], but in the 

microfluidic domain, ridges provide slip also. Such in-channel mixing structures are 

proved to be effective in microreactors. An example is shown by Rebrov et al. [143] 

during catalytic oxidation of octanal by oxygen, where liquid side mass transfer 

coefficients increased 1.2-1.3 times when compared to the experiments of Zhang et. 

al. in which the same reactor setup is used, but without ridges [24]. IMM’s FFMR 

has such staggered-herringbone micro-grooves of 160μm width in its slots [19]. 

 

2.9. Effects of Non-Flat Interfaces on Gas Absorption 

 

It is a fact that surface waves almost always occur during the flow liquids in contact 

with another liquid [127]. By many experiments, it has been shown waves enhance 

mass (or heat) transfer. This is not due to the increase in surface area, on the 

contrary, due to the additional convective fields below wave crests, and the thinning 

that occur in wave troughs [144]. Upon rigorous disturbance at the surface, 

secondary convection cells may occur below the crests, which are called as “roll 

waves” [145]. It has been found that adjoint gas flow smoothes the wave profiles, but 
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decreased gas flow and increasing viscosity makes the waves more regular, albeit 

with steeper fronts. However, one may say that the frequency and the velocity of 

waves do not get influenced much by gas flow, when gas velocities above the surface 

are smaller than 10m/s [133]. This should apply to many cases in microfluidics with 

two-phase flow, but not to annular flows (see Figure 2) since gas velocities may be 

much higher [146]. 

It is interesting to note that the simple Nusselt theory given by Equation-(60) have 

been found to provide the mean film thickness in wavy flow very accurately, only 

with about 1% underprediction. Equation-(60) can be used safely up to Reynolds 

numbers of 1600 [147]. 

Since the fluid mechanics of wave inception and wavy flows are quite complicated, 

mass transfer in such cases is much more difficult to analyze. Several attempts have 

been performed by Ruckenstein [148], Javdani [149] and Ishimi et al. [150] for pre-

set sinusoidal wave profiles. Explicit relations for mass transfer coefficients are 

obtained but they usually complicated and apply only to short penetration distances. 

Howard and Lightfoot [151] created the surface stretch theory, which includes a very 

detailed mathematical description of waves. The theory can be applied to any wave 

shape and also can treat circulatory motion under a wave crest or a finite layer. 

However, for such complicated cases, numerical calculations are necessary. 

Nevertheless, the theory is well suited for periodically varying interfaces, especially 

for large oscillating bubbles, where the mass transfer coefficients can be given in a 

simple form [152]. Bubbles should be considered as large, since internal gradients 

and circulations inside the bubble must be neglected. This is possible if there is 

almost turbulence in the core of the bubble. In the context of microfluidics and 

Taylor flow, the circulations inside the bubbles are not negligible in terms of 

hydrodynamics, but whether the circulations affect mass transfer significantly or not 

seems to be an unanswered question. 

When wave forms are complex, empirical correlations for mass transfer can be used. 

For Re < 300, an example can be given as [133]: 
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Sh= A Re� Sc�

A =
0.1025

Ga�.��
, B = 0.73, C = 0.5

   (70) 

Ga is the Galilei number. In strictly confined geometries of microfluidics, the 

approaches above seem to be insufficient for modeling hydrodynamics and mass 

transfer. Instead of trying to adapt these theoretical developments, one may 

accommodate CFD with ease and apply it for a great number of cases. The Volume 

of Fluid (VOF) and the Level Set (LS) numerical schemes have been used to model 

many cases of multiphase flows and they had been incorporated into commercial 

CFD solvers. In the computations involving these schemes, Navier-Stokes equations 

are solved for both phases and the interface is tracked either with VOF, LS or both. 

Both schemes have their advantages and disadvantages. For example VOF is better 

as mass conservation, but LS provides more accurate interfaces. Coupled VOF and 

LS is more robust, but such simulations need large computing times. 

CFD solutions involving VOF or LS have been presented for multiphase flows in 

microreactors, for example Ho et al. [153] provided solutions for the IMM FFMR 

and Gupta et al. [154] used CFD to analyze Taylor flow. Some volume fraction 

contours for these VOF simulations are given by Figure 19 and Figure 20.  

Although they can resolve complicated phenomena, multiphase flow simulations 

need serious computational resources. It has been demonstrated that mass transfer 

can be coupled with VOF [155] or LS [156] algorithms. These applications are even 

more costly, and the general numerical methodologies are not yet implemented into 

commercial solvers. The difficulty of comparing numerical results with experiments 

is another important issue in this case. One simplification for numerical computation 

may be solving for the velocity field first and then averaging it over time to obtain a 

time-averaged interface shape. Then this field may be implemented for a mass 

transfer study [157]. However, since transient currents and interface shapes would 

enhance and mass transfer nonlinearly, such an application may not be accurate in 

terms of mass transport rates. For flow fields with alternating phases like Taylor 

flow, such a simplification is not even possible.  

Since computation times for the CFD resolution of multiphase flows are long, further 

simplifications are applied in order simulate the flow in a practical manner and rapid 
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manner. For example for Taylor flow, one of the approaches is to move the wall of 

the microconduit in simulations, instead of feeding the gas into a liquid stream 

(Figure 20), as it would be in reality. This eliminates the relatively difficult bubble 

formation step. This step is replaced by methodology where an initial ellipsoidal 

shape is drawn for the bubble. During the simulation, bubble obtains its familiar 

Taylor bubble shape in time. Such simulations have been performed [158, 159] and 

they demonstrated vivid circulations both in the Taylor bubbles and in the liquid 

slug. However, by inspecting the governing dimensionless numbers, one sees that the 

moving wall simulations are governed by Ca only, and interjector-fed simulations are 

governed by Ca and We  numbers. Thus, their validity and the strict existence of 

liquid slug vortices are also questionable. 

An extensive review of mass transfer into wavy film flows is given by Sisoev et.al 

from a non-CFD perspective [160]. CFD applications are summarized by Wörner 

[161]. 
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Figure 19. Volume fractions of liquid (red) and gas (blue) in an FFMR. Significant 
wave formation is predicted by CFD. From [153], used with permission of Elsevier. 

 

 

 

Figure 20. Taylor bubbles in a capillary, split into two from its symmetry axis. The 
flow is resolved to the lubricating film by using a very fine mesh. Note that even in 

such small scales, small waves still propagate on the perimeter of bubbles. From 
[154], used with permission of Elsevier.  
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2.10. Fischer-Tropsch Synthesis 

 

Fischer-Tropsch (FTS) is an important coal/natural gas-to-liquids technology, where 

synthetic fuels like higher hydrocarbons can be generated from syngas, i.e. CO-H2 

mixture, over a catalyst, according to the following descriptive reaction  

(2n + 1) H� + n CO → C�H���� + n H�O   (71) 

The chemistry and engineering of the synthesis is being studied for about 80 years, 

with still alive prospects of a leap in its technological implementation. The process is 

of great importance, since it is one of the main technologies to produce crude oil 

when oil reserves begin to deplete or oil gets expensive. 

 

2.10.1. Kinetics 

 

For FTS, one may use iron, cobalt or ruthenium catalysts. In case of iron catalysts the 

water-gas shift reaction, which produces H2 and CO2, also takes place. The process is 

usually performed at pressures range of 0.5-2.5 MPa and at a temperature range of 

200-300 ℃  for the so-called low temperature synthesis. A general mechanism for 

FTS proposed by Kellner and Bell [162] is given by Equations-(72). The mechanism 

of the reaction is based on the formation of methyl groups on the surface, growing by 

coupling with adsorbed methylene (or carbine) to larger carbon chains, while 

simultaneously terminating into desorbed linear α-olefins and paraffins. The 

probability of growth is denoted by α, and called as the chain growth probability. 

Since the FTS is actually a polymerization reaction, an Anderson-Schulz-Flory 

distribution emerges, which limits the selectivity to a certain range of products. Both 

α and the olefin-to-paraffin ratio (OPR) depends on the nature of the catalyst and on 

the characteristics of operation. Since higher hydrocarbons are aimed for the 

production of commodity fuels, like diesel for example, conversion and selectivity 

must be both high. This brings along many difficulties in FTS reactor design. 
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H� + 2 ∗ → 2 H ∗
CO + ∗ → CO ∗
CO ∗ + ∗ → C ∗ + O ∗
C ∗ +H ∗ → CH ∗ + ∗
CH ∗ +H ∗ → CH� ∗ + ∗
O ∗ + H ∗ → OH ∗ + ∗
OH ∗ +H ∗ → H�O + 2 ∗
CH� ∗+H ∗ → CH� ∗ + ∗
CH� ∗ + H ∗ → CH� + 2 ∗
R� ∗ + CH� ∗ → R��� ∗ + ∗
R� ∗+ H ∗ → P� + 2 ∗
R� ∗ ↔ O� + H ∗
R� ∗ ↔ O� + H ∗

    (72) 

At high temperatures and high H2/CO feed ratios, termination is favored, leading to 

shorter chain hydrocarbons. Conversely, low H2/CO feed ratios result in high 

selectivity towards olefins. It is also known that CO has a strong poisoning effect that 

heavily decreases conversion, especially on the cobalt catalyst.. Unlike paraffins, the 

termination step of olefins is reversible, thus OPR decreases as chain length 

increases. Since longer chain olefins form the basis of many chemicals and untreated 

low octane number gasoline, low OPR ratios might not be desirable [163]. 

Although the reaction mechanism is very complex, very simple empirical rate 

equations are proposed after validating them in a certain range of operation. For 

example Post et. al. [164] proposed a very simple first order rate with respect to CO 

for iron and cobalt based catalysts: 

− r�� = k��C�� = −
1

2
r��

=
1

2
k��

C��
   (73) 

which represents severe diffusion limitations in the liquid filled pores for particle 

sizes greater than 1mm. The expression is valid for CO conversions up to 60% [165]. 

Considering Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics, Yates and 

Satterfield [166] fitted their experimental data best to: 

−r����� =
aP��

P��
(1 + bP��)�

    (74) 

where a and b are temperature dependent parameters: 
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a= 8.8533∙ 10��exp�4494 .14 �
1

493.15
−
1

T
��

b = 2.226expexp�− 8236�
1

493.15
−
1

T
��

  (75) 

Dixit and Tavlarides [167] also arrived to the same rate expression upon testing their 

experimental data to a large class of LHHW models. Yates and Satterfield’s model 

have seen a large acceptance and used in many model studies, including monolithic 

reactors [168]. 

The FTS is an exothermal process. Various activation energies are reported in the 

literature, generally it is between 120-170 kj/mol for iron and cobalt catalysts. 

Activation energies for methane synthesis on ruthenium are given on Table 5. 

Activation energy for ruthenium catalysts is much lower than the ones provided by 

iron and cobalt catalysts. The rightmost column presents the reaction orders with 

respect to H2 and CO, for a general power law fit. Zimmerman and Bukur provides a 

similar table for iron based FTS [169]. 

 

Table 5. Activation energies and apparent reaction orders for ruthenium catalyzed 

FTS. 

 
Activation Energy 

(kj/mol) 
Catalyst 

Reactions Orders 

w.r.t. 

H2 , CO 

Dalla Betta et. al. 

[170] 
24 

1.5 % 

Ru/Al2O3 

1.8, -1.1 

Vannice 

[171] 
24.2 

5 % 

Ru/Al2O3 
1.6, -0.6 

Ekerdt and Bell 

[172] 
24.1 5 % Ru/SiO2 1.5, -0.6 

Kellner and Bell 

[162] 
28.2 

1 % 

Ru/Al2O3 
1.35, -0.99 
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2.10.2. Reactors and Modelling 

 

From its invention in 1920’s by Franz Fischer and Hans Tropsch, the FTS reactor has 

been continuously studied both experimentally and computationally to improve fuel 

yields. For a summary on conventional reactors, one may see de Deugd et.al. [163]. 

In terms of modelling and computation, new reactors and operations are being 

investigated in parallel with catalysis research. With the ascension of CFD and 

numerical methods, modelling studies have blossomed. In the Table 6 recent 

modelling studies, their anatomy and aims are given. 
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CHAPTER 3 

 

 

MATERIALS AND METHODS 

 

 

 

3.1. Gas-Liquid Reaction Experiments 

 

In the first part of this study, gas-liquid reactions are studied experimentally and 

theoretically. For the gas-liquid reaction system, nitric oxide absorption in liquid 

phase is chosen due to availability of experimental facilities. 

For NO absorption, the following setup given in Figure 21 is used. NO-N2 mixture is 

drawn from a 100ppm tank (Linde) and dry air is drawn from ambient air. These 

gases are carefully mixed in 1:14 proportion with help of Teledyne 200 Series flow 

controllers. The mixed gas is then sent to the contactor. The details of the setup are 

given elsewhere [173]. 

A novel but simple contactor is manufactured from glass, which would allow a 

stratified gas-liquid contact with negligible amount of wave formation on the surface. 

A photo is given in Figure 22. The liquid side is in batch mode and gas flows over it. 

Liquid circulation is possible via a slow peristaltic pump. The contactor has a length 

of 15 cm and a diameter of 3 cm. The gas enters the contact region from the upper 

half of the cylindrical contactor; flowing in a truncated cylindrical geometry of 0.5 

cm height. The rest of the contactor is filled with liquid of 8.2 mL volume. 
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Figure 21. NOx analyzer setup, adapted from [173]. 

 

 

Figure 22. The gas-liquid contactor for NOx absorption. 

 

The outlet gas is analyzed by the online chemiluminescence NOx analyzer (Thermo 

Scientific Model42i). The device can detect NO, NO2 and NOx amounts. The 

analyzer reacts NO with ozone to produce a characteristic luminescence with an 
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intensity that is almost linearly proportional to NO concentration. This process forms 

excited NO2 molecules, according to the following reactions: 

NO + O� → NO�
∗+ O� 

NO�
∗ → NO� + h�� 

The second reaction is the process of reaching an equilibrium state via 

chemiluminescence, where h� is Planck’s constant and  � is frequency. Therefore, 

light energy is emitted. The emission may also be induced by collision with another 

molecule. The luminescence is detected by a photomultiplier tube inside the reaction 

chamber. 

A schematic is given for the NOx analyzer in Figure 23. The device draws dry air to 

generate ozone, which is required for the chemiluminescent reaction. The main inlet 

that the sample flows through is followed by a solenoid valve. The valve selects the 

operation mode. In the NOx mode, molybdenum based NO2-to-NO converter heats 

up the sample to about 325°C, so that NO2 is converted to NO. 

 

Figure 23. Interior setup of Thermo Scientific Model42i NOx analyzer [173]. 
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3.2. Mathematical Models and Methods 

 

3.2.1. The Approximate Integral Balance Method (AIBM) 

 

The approximate integral method is an approximate analytical method for partial 

differential equations (PDE). It dates back to von Karman and Pohlhausen [93, 174], 

who used the method for solving boundary layer problems. Among mechanical 

engineers, the method is also known as the heat balance integral method (HBIM) or 

Goodman’s approximate integral method. The method can handle linear or nonlinear 

problems and reduces the PDE into an ordinary differential equation (ODE) [175]. Its 

mathematical basis and manipulations are fairly simple. 

First, the method aims to choose a polynomial profile which fulfills the boundary 

conditions. The selected profile is then tuned to satisfy the spatially integrated 

version of the PDE, but it does not satisfy the original equation. For propagation 

problems, where semi-infinite geometries may be assumed, the spatial integration 

has the boundaries 0 and a proposed penetration thickness, which propagates in time. 

Beyond the penetration thickness, there is no variation and no material flow. For 

fixed domains, the penetration thickness is constant, but values at the boundaries 

may change. For simplicity, propagation problems will be discussed here. 

 

 

Figure 24. The penetration thickness concept in AIBM. 

 

0

C�

C∗

� 
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∂C
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One may demonstrate a simple example by considering the equation set for PT. 

Integration of the PDE from 0 to δ�(t)23 [176] yields: 

�
∂C

∂t
dx

��(�)

�

= D
∂C

∂x
�
����(�)

− D
∂C

∂x
�
���

   (76) 

where the first term on the right hand side is considered to be zero since there is no 

flow into the outer layer of the penetration thickness, as discussed above. By using 

Leibnitz’s rule: 

d

dt
� f(x,t)dx
�(�)

�(�)

= �
∂f(x,t)

∂t
dx

�(�)

�(�)

+ f[b(t),t]
db

dt
−  f[a(t),t]

da

dt
   (77) 

the derivative at left hand side can be taken out: 

d

dt
� C dx
��(�)

�

= �
∂C

∂t
dx

��(�)

�

+
dδ�(t)

dt
C��(�)   (78) 

From Figure 24, C��(�) = C�. Again for simplicity, assume that C� is zero for now. C� 

can always be normalized to be equal to zero, if initial distributions are uniform. This 

is also possible if the problem is linear and an initial steady state distribution exists24 

[177]. Letting θ = ∫ C
��(�)

�
dx : 

−D
∂C

∂x
�
���

=
d

dt
θ    (79) 

Now that if a polynomial function of x that satisfies the boundary conditions is 

selected for the concentration profile, the above equation yields an ODE for the 

penetration thickness δ�(t). As can be seen from Figure 24, δ�(t) is present in 

boundary conditions, therefore it will also be present in the concentration profile. 

Integrating the ODE completes the AIBM solution.  δ�(t) adds the time dependent 

behavior to the polynomial profile. The complete example is given in Appendix-G 

with additional notes on the accuracy and use of AIBM. 

 

                                                
23 A variant is to integrate two times. This way is called as the refined integral method (RIM) or 
double integral method (DIM). Accuracy can be improved slightly in some cases. 
24  This is done by defining a deviation concentration Cdev= C − Csteadystate and solving for 

Cdev. 
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3.2.2. Method of Lines (MOL) 

 

MOL is a numerical method for solving parabolic or hyperbolic PDEs. It is one of 

the methods that transform boundary value problems (BVP) into initial value 

problems (IVP) [178]. Considering a simple 1-D diffusion problem with specified 

concentrations at both ends, one may discretize the spatial derivative with a finite 

difference formula. For example, by using a 3 point central difference formula, the 

nodal values of concentration can be expressed as: 

∂C�(t)

∂t
=

D

∆x�
�C���(t)− 2C�(t)+ C���(t)� , 1 ≤ j ≤ N + 1 (80) 

Considering L as the thickness as the domain, the grid size is given as ∆x=

L/(N + 1) with N as the number of intervals. The above equation is now a set IVP-

ODEs. In matrix form: 

�′ = �� + �     (81) 

where � is the coefficient matrix and � is the source vector. This system can be 

solved by many seasoned ODE solvers, such as Runge-Kutta (RK) variants. The 

advantage of MOL over finite differences (FD) is that these solvers can be employed 

to get a quite correct transient behavior and stability in terms of time integration can 

be assured. For hyperbolic problems, specific integrators like the Runge-Kutta-

Nyström method [179] might be employed. 

Mathcad®25, which has an internal MOL solver, is used for solving simple parabolic 

differential equations. Mathcad can employ five point differences, which are 4th 

order accurate [180]. Time integration pattern is black box, but since the system of 

equations is solved recursively, the application of a backward differentiation formula 

(BDF) is probable. The solver is found to be quite robust, fast and practical. For most 

cases, the solver is found to handle nonlinear equations. However, for nonlinear BC’s 

of the second or third kinds with large transfer coefficients, significant artificial 

diffusion is detected. In such a case, time steps are taken smaller.  A representative 

screen is given on Figure 25. 

                                                
25 Mathcad is a trademark of PTC Inc. 
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Figure 25. Mathcad screen for the MOL solution of the PDE representing diffusion 
with second order reaction in Couette flow. 

 

3.2.3. Shooting Method 

 

Shooting method is a way to convert BVP-ODEs into IVP-ODEs. After obtaining an 

IVP one may again employ RK solvers to get the solution. Assume that y is the 

solution of a general nonlinear second order ODE with the boundary conditions: 

y(a)= A , y(b)= B    (82) 

There should be an α, such that the boundary condition 

y′(a)= α     (83) 

would also give the same result instead of the Dirichlet boundary condition as x = b. 

Assuming y as a function of α , as well as x, one may show the conformity by [181]: 

f(α)= y(α,b)− B = 0    (84) 

One may try to solve this equation with Newton-Raphson method: 

α��� = α� −
f(α�)

f′(α�)
    (85) 

Since function f is not known, one should use a backward finite-difference formula 

for f′(α�): 

f′(α�)=
f(α���)− f(α�)

α��� − α�
    (86) 

Newton-Raphson method modified by Equation-(86) is called as the secant method 

[182]. Then Equation-(85) becomes: 
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α��� = α� −
(α��� − α�)[y(α�,b)− B]

[y(α���,b)− y(α�,b)]
   (87) 

Thus with two initial guesses, α can be found by iterating Equation-(87). When α is 

obtained, then the problem becomes an IVP, so that it can easily be solved by RK 

integrators. A Mathcad screen is provided in Figure 26.  

 

Figure 26. Mathcad screen for the solution of the steady-state diffusion-reaction 
problem with fractional order kinetics. First, the shooting method is applied, then this 

is followed by adaptive Runge-Kutta integration. 

 

Mathcad is used for most of the calculations except the more complicated 

numerical solutions, which are provided by COMSOL®26. Mathcad is found to be 

fast, dynamic and time saving during repetitive tasks and trial-error. Since the 

program allows code writing and involves a symbolic solver, it can be used an all-

around mathematical tool. In the text where it is noted that a computer algebra 

system (CAS) has been used, it points out to Mathcad usage. The integrals and 

equations that come up in the analytical parts of this study was evaluated and plotted 

with the program. 

 

 

 

 

                                                
26 Formerly FemLAB, Comsol Multiphysics is a trademark of COMSOL Inc. 
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3.2.4. Finite Element Method and COMSOL 

 

The finite element method (FEM) is a widely used numerical method to solve 

general forms of partial differential equations of arbitrary geometries. It has two 

formulations: The Ritz method and the Galerkin method. Ritz method is the 

predecessor of Galerkin method, and it is usually preferred for structural problems. 

Here, Galerkin method will be summarized, since it is more general and it has been 

incorporated into various commercial solvers, like COMSOL, to handle fluid flow, 

heat and mass transfer, electrical and acoustical problems. 

It seems mandatory to select a specific function to exemplify the method. Consider 

the linear three dimensional diffusion-reaction equation of the general form: 

0 = ∇(D(x,y,z)∇C)− kC , on R

C = a(x,y,z), on ∂R�

D
∂C

∂n
= −p(x,y,z)C + q(x,y,z), on ∂R�

   (88) 

where R is the region that the equation is to be solved on, ∂C ∂n⁄  is the directional 

derivative in the direction of the normal vector of the boundary ∂R�. The other part 

of the boundary is ∂R�, on which a Dirichlet boundary condition is given. Now one 

multiplies the equation with a trial function Ξ (or shape element) which is so selected 

to be zero on ∂R�: 

�[∇(D(x,y,z)∇C)− kC]Ξ dxdydz

�

+ ��−D
∂C

∂n
− pC + q�

���

Ξ dA = Residual  (89) 

After applying the divergence theorem and some vector calculus, if the following 

form of a solution is assumed: 

C�(x,y,z)= Ω(x,y,z)+�b�

�

���

Ξ�(x,y,z)   (90) 

one can obtain the equation: 

���D∇���∇�� − kC�Ξ��dxdydz

�

+ ��−pC�Ξ� + qΞ��

���

dA = Residual  (91) 

The above equation is called as the weak formulation and C�  is the weak solution. C�  is 

so found that the residual is minimized [181]. If it is zero, then the solution is exact.  
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COMSOL is a general PDE solver. It uses FEM and works according to the 

principles as summarized above [183]. However, for stability, convergence and 

accuracy many more mathematical complications are involved in the solvers. 

COMSOL is an all-in-one numerical analysis package. That is, it includes the 

classical trio of pre-processing, solver and post-processing tools within. The pre-

processing step involves the geometry constructor which is based on a CAD system. 

After drawing the geometry, one may define the boundary conditions, volume 

sources or necessary multiphysics couplings. Before solving the equations, the 

geometry must be meshed. Meshing is quite simple, triangular or quadrilateral cells 

can be selected. After meshing, the equations become ready to be solved. COMSOL 

has physics based solvers. By using them, COMSOL adapts to the type of problem 

by automatically arranging its solver scheme. On the other hand, one may directly 

use the kernel of the program to solve general types of PDEs and ODEs and 

manipulate the library of solvers manually. Adding various details like moving 

boundaries and sensitivity analysis is possible. However, without the physics 

packages, solving specialized equations like the Navier-Stokes may not be possible.  

After the problem is solved, the remaining step is post-processing. This step involves 

the representation of results in form of plots and animations. 

To run a numerical model with COMSOL, one may follow the general pathway as 

outlined below: 

1. Select the dimensions of the geometry and then select the physics to be 

solved if specialized physics packages are available. If not, use the kernel. 

2. Select the solver type. This may be a steady-state (stationary) solver or a 

transient solver. 

3. Draw the geometry. Avoid the unnecessary details. Always use the 

symmetry if it is available in the geometry; this would save considerable 

time. 

4. Define the boundary conditions and sources, and if there is, the initial 

conditions27. If the boundary conditions are time dependent, avoid sharp 

                                                
27 Even for steady-state solver, initial conditions appear. These work as initial guesses and may 
improve convergence, if appropriately selected. 
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changes and smoothen the functions if such variations are existent. Such 

sharp variable dependency may exist in physical properties. 

5. Construct the mesh. A denser mesh is necessary to resolve the regions 

with steep gradients. If a quadrilateral mesh is used, its aspect ratio must 

be carefully arranged. For example, for boundary layers, very thin and 

long elements can be placed near the wall where the flow is always in the 

direction of the longer edges. This would capture the gradient very well. 

But if cross flow to such elements occur, these meshes give physically 

wrong results due to numerical diffusion. 

6. Solve the equations. If a transient solver is selected, then adjust the time 

step to be taken by the solver. Even when the time steps are specified, 

COMSOL takes free steps in between to enhance accuracy by default. It 

can also take larger time steps if convergence is fast. Such a solver may 

not suitable to every problem. For a linear diffusion problem the decay 

the steady-state is exponential and the free behavior of the solver may 

speed up convergence. But for periodic steady-states that involve 

relatively sharp changes between each state, the solver is not suitable. 

7. Plot the results or extract the data. Check mesh independency by reducing 

cell sizes. Reduce the absolute and relative errors (tolerances) to see if the 

solution is sufficiently accurate. Higher order trial functions can also be 

selected to establish the validity of the solution. If there is experimental 

data or an exact solution to a similar case, the numerical solution should 

always be validated. 

8. If solution is to be reprised with different parameters, optimize the 

accuracy with respect to computing time. 

The possibilities with COMSOL seem to be almost limitless, only that the limits 

emerge as computing times. Various couplings between species transport, heat 

transfer and fluid flow are possible. The program is also quite flexible in the sense 

that it allows almost any kind of user-defined functions for entering detailed 

boundary conditions or additional PDEs in general. The user-defined functions do 

not need to be written with a language and no compilations are necessary. All is 

embedded into the graphical user interface. For more complicated simulations, one 
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may interoperate COMSOL with Matlab®28 to provide the necessary programming 

features. 

COMSOL is relatively less black box than most software, since many of its solver 

features are transparent. Still, a source code is not available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
28 Matlab is a trademark of Mathworks Inc. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

 

4.1. Gas-Liquid Systems 

 

4.1.1. NO Absorption in Ferrous Sulfate Solutions 

 

The aim of this section is to experiment gas absorption on almost stagnant liquid 

layers. Such layers exist in microreactors, for example in FFMR’s, when the liquid 

flow rates are much lower than gas flow rates [26]. Since the gravitational flow of 

the liquid film is slow, the film is almost stagnant with respect to the gas flowing 

above it and thereby the gas drags the liquid along.  

NO uptake rates can be monitored online with the available NOx analyzer. NO 

absorption has also an established literature, in terms of mass transfer and kinetics 

[184]. Various inorganic and organic materials, such as ferrous sulfate (FeSO4) ions 

[41] and iron-EDTA complexes [185] have been included in water in past studies and 

enhanced absorption rates are observed. In this work, FeSO4 are added to water, 

yielding the reaction [184]: 

NO + Fe�� ⇌ FeNO��    (92) 

Like Hikita et. al. [41], 0.17 M H2SO4 is added to the stock solution of FeSO4, which 

is 0.5 M, in order to prevent the oxidation of iron ions. After diluted with air and 
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saturated with water, the feed gas mixture consisted 7300-7350 ppb NO. Gas flow 

rate is 0.8 lt/min.  

Initially, the NO mixture bypassed the contactor and sent straight to the NOx 

analyzer. When the device calibrated itself, two two-way valves are simultaneously 

switched and the gas mixture is fed to the contactor. The analyzer sampled and 

reported the NO amounts at time periods of 10s.  

In addition to the ferrous-acidic solution of 0.5 M, absorption into pure and tap water 

is also tested. Results of the experiments are given on Figure 27. 

 

 

Figure 27. Time trend of NO concentration at the outlet of the contactor. 

 

All of the liquids lead to a very sharp drop of NO concentration in the gas stream 

when valves are switched.  Gas phase concentration time trends corresponding to 

pure and tap water are very similar. They both show broad oscillations (with an 

initial period on the order of several minutes), which may have attributed to 

convection currents induced by absorption and reaction. Interestingly, the ferrous 
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acidic solution leads to lower absorption rates. The oscillations also seem to be 

suppressed.  

The reason for such a decrease in uptake rates may arise from interfacial turbulence. 

The existence of interfacial turbulence during CO2 absorption was demonstrated long 

ago by Danckwerts [186]. When a gas is absorbed, density stratifications may occur, 

and these may lead to significant cellular convection patterns in the liquid. Another 

possibility is the variation of surface tension over the interface due to the differences 

in composition, that occur during absorption. These may lead to Marangoni effects. 

However, determining the exact mechanism seems to be difficult. 

In macrocontactors like wetted walls and packed columns, it has been found that 

interfacial turbulence increases mass transfer rates [187]. However, there is also 

experimental data on near quiescent fluids, where mass transfer is hindered [188]. On 

thinner films supplied by laminar jets and falling films, such inhibitory effects are 

also observed. [189, 190]. It is proposed that a stagnant layer comprising ions form 

on the interface. Ions usually stem out of reactions, for example in the absorption of 

CO2 with monoethanolamine (MEA) solutions: 

CO� + 2RNH� → RNHCOO� + RNH�
� 

It has before said that the presence of ions may lead to an interfacial resistance. In 

addition, if the surface tension of this layer is larger than in the bulk, then cellular 

convections are enhanced. But if they are low, the currents will be slightly damped, 

leading to larger residence times on the surface. This prolonged surface layer would 

then be saturated with the gas and reactant; thereby uptake rates decrease. In another 

perspective, one may also say that the effective diffusivity is concentration 

dependent, and changes near the interface. Measurement of the surface tension of the 

stagnant layer is found to be quite difficult, and cannot be accomplished by standard 

methods [186].  

Recently, such surface poisoning is also observed in FFMR’s [191]. The addition of 

NaOH to water for CO2 capture resulted in lower liquid side mass transfer 

coefficients than in absorption to pure water. The results have been attributed to 

Marangoni effects. 
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So the reason for the oscillations for runs made with pure and tap water may be the 

interfacial turbulence, which occurs in form of slow convection currents. The 

currents are slow since the period of oscillations are on the order of minutes.  For the 

liquid containing ferrous sulfate solutions, the behavior may result by a poisoning 

effect due to the forming FeNO�� ions on the interface. These ions may be clinging 

on interface and forming the reckoned stagnant layer, thereby slowing absorption and 

diffusion. This effect seems to be analogous to the effect provided by surface-active 

substances during mass transfer [44]. . Furthermore, the reduced uptake rates in the 

acidic solution may be due to heat effects. It is possible that the absorbed gases may 

desorb when the interface gets heated by the enthalpy of absorption. The acidic 

solution would be a better conductor of heat; hence if the oscillations are due to heat 

effects, they would be suppressed in the acidic solution. 

The similar effects observed in FFMR’s may be due to the same mechanisms 

proposed above. If this is so, microreactors can have significant disadvantage in 

multiphase synthesis and separation when compared to macrocontactors, which 

usually have constant mixing effects due to stirring, complex flow geometry (like 

packed beds) or flow instabilities (like waves on a wetted-wall column) that possibly 

lead to breakage of such stagnant surface layers. However, in order to exactly 

determine the mechanism of the absorption and its importance in microsystems, 

more experiments with smaller and isothermal contactors seem to be necessary. 

 

4.1.2. Limits of Penetration Theory 

 

In the previous section a significant phenomenon in mass transfer is given 

experimentally. Beginning from this section, the study will follow a mathematical 

basis. On analytical grounds, the aim of this section is to describe the limits of 

penetration theory and film saturation-depletion in a quantitative manner. It might be 

considered as an extension to Pohorecki’s [103], van Elk et al.’s [104] and Yue et 

al.’s work [192].   

In addition to physical absorption, PT with chemical reaction can theoretically be 

used both for the steady and the transient stages depending on Fo and Λ. High Fo 
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numbers decreases Λ, since Λ = �Da Fo⁄ . Then this would indicate a relatively slow 

reaction, thin film or fast diffusion. Based on this judgments, high Fo and low Λ, 

both point out a possible saturation in a finite film. To find the transition period to 

saturation, one can calculate the time to reach the wall via the approximate 

penetration thickness concept, as given by Equation-(21) for plug flow. However, 

Equation-(21) is only valid for physical absorption and in the presence of reaction, 

such limits are not readily apparent.  

In this section, the use of Thiele modulus is encouraged, since in a finite medium, 

mass transfer with homogeneous chemical reaction is essentially very similar with 

solid-gas kinetics in a porous catalyst, except for the velocity profiles in the film. 

Also the criteria given in Table 4 might provide additional errors to the effects of 

finiteness. 

The number of PT based models is huge and a large class of gas-liquid reaction cases 

has been complied by Doraiswamy and Sharma [193], which includes real 

applications from gas purification to synthesis of specialty chemicals. Therefore, for 

systems with small characteristic lengths for diffusion, one may want to know 

whether one can use the PT type analytical solutions, in order to utilize the literature. 

Hereby, some special cases of the convection-diffusion equation will be analyzed: 

v�(x,z)
∂C�
∂z

= D�

∂�C�
∂x�

− r�C�,Ci����, i= B,C,D… (93) 

Equation-(93) is an enhanced version of Equation-(13). It includes a general reaction 

and velocity field terms; and neglects gas-liquid interfacial dynamics by assuming a 

flat and stationary interface. Axial dispersion is not accounted for since Péclet 

numbers are usually large (see Table 2 as an example).  

The reaction term r�C�,C����� will be taken as zero for physical absorption, and then 

as kC�
�, indicating a pseudo nth order reaction29. This would be the case for gases 

reacting with pure fluids, like hydrogenation or ethoxylations reactions [28]. NO 

absorption in pure water presented in the previous section is also an example. 

However, for gases reacting with soluble compounds that are present in the liquid, 

                                                
29 The reaction rate constant k can also be given as k�C�� is this case. 
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bimolecular reactions would occur. For a second order bimolecular reaction with the 

rate equation r�C�,C����� = k�C�C�, Danckwerts [57] qualitatively showed that if 

kC∗t < 1, the system behaves approximately as a pseudo-first order reaction-

diffusion case. This would indicate low solubility, relatively low contact times30 or 

slow reactions. In terms of E� and √M, this would correspond to the 2nd and 3rd 

regimes given in Table 3. For fast reactions, high C�� seems to be needed to avoid 

depletion of the reactant B and to enhance reaction rates. 

What is defended here is that for bimolecular reactions, the pseudo order 

approximation does not depend on the finiteness on the liquid film. Thus, as long as 

it holds for a bimolecular second order reaction, then the Hikita-Asai approximation 

(HAA) can be employed to a certain degree, and the effects of saturation and the 

effects of velocity profiles will provide the main errors when PT models are used. 

Although simple, PT for physical absorption will be treated first, since its limits are 

not given in a quantitative manner by van Elk et al [104]. The existence of interfacial 

resistance is also omitted in this section. The analysis is not completely specific to 

gas-liquid mass transfer, but also can be employed to relevant fields involving mass 

transfer accompanied by chemical reactions.  

 

4.1.2.1. Limits of Penetration Theory for Physical Absorption 

 

Instead of tracking the penetration thickness, which does not have a distinct value, 

one may track the changes at the surface flux and compare this with the exact 

solution. This is more rational, since for a certain period, the surface flux does not 

change much, even when the solute reaches to the wall and accumulates there [104]. 

This means that PT may be applicable with a small error for a period after δ� = δ. 

Considering the amounts absorbed, PT should be accurate enough for Fourier 

numbers well above 0.1. Thus, one may calculate the amounts absorbed via 

Equation-(19), and compare with the results obtained from the numerical solutions of 

the following non-dimensional problem: 

                                                
30 This does not directly indicate that Fo is low. 
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f(ξ)
∂u

∂τ
=
∂�u

∂ξ�
                      

at τ= 0,   

at ξ= 0,

at ξ= 1,

        

u = 0

u = 1

∂u ∂ξ⁄ = 0

  (94) 

The function f(ξ) denotes the velocity field and it is taken as 1, 1 − aξ and 1 − ξ� 

representing plug flow (or a quiescent fluid), generalized Couette flow and film flow 

(see Appendix-D).  For the sake of completeness, an analytical solution for 

generalized Couette flow is also provided with its eigenvalues. All of the solutions, 

surface flux and absorbed amount expressions for these cases are given in Appendix-

A. The comparison of the amounts absorbed is given below in Figure 28, as plots of 

relative percent error. It is important to note that the curves are universal, since no 

parameters are involved except the coordinate axes.  

The simple Couette flow (a= 1) yields the lowest limits, use of PT in this case 

results in about 10% error when Fo ≅ 0.1, but quickly rises to 50% around  Fo ≅

0.4. At such Fo numbers, the error when compared to plug flow is less than 10%. 

The error with respect to film flow lies in between these values. The behavior of 

generalized Couette flow can also be discussed on these results. As a → 0, the error 

curve for generalized Couette flow will tend to the red curve of plug flow, as can be 

seen from the dotted and dashed-dot green lines representing Couette flow with 

a= 0.5 and a = 0.2 respectively. The initial errors are due to the flow field near the 

interface, and the errors that accumulate sharply for long times are due to saturation. 

From the red line for plug flow, it can be seen that the limit based on the penetration 

thickness, as given by Equation (22), is too stringent. Thus, PT solutions can be used 

for Fo < 0.7 within 10% error for a finite film in plug flow. In general, it may be 

said that for monotonically decreasing flow profiles (like the ones used here), the 

limits decrease as the average velocity decreases. For the profiles considered here, 

PT can be said to be valid for Fo < 0.3. If instantaneous surface fluxes were 

considered, limits would then be much lower for all flow fields. 
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Figure 28. Relative percent errors between surface fluxes predicted by PT and the 
exact solutions for diffusion into a finite flowing film. Green: Couette flow, blue: 

film flow, red: plug flow. 

 

4.1.2.2. Effect of Velocity Fields on Reactive Absorption 

 

The effect of a velocity field to mass transfer is a complicated topic, and many 

analyses have been performed. However, Gottifredi et.al. [194] have provided a 

useful insight on the applicability of the PT in flow conditions. Considering the field 

as v�(x) only and with a first order reaction, they normalized Equation-(93) in a 

different way and expanded the velocity term with a Taylor series: 

�1+
ε�
Λ
ξ∗+

ε�
Λ�

ξ∗
�
+⋯�

∂u

∂τ
=

∂�u

∂ξ∗
� − u   (95) 

where 

ε� = δ
(dv dx⁄ )|���

v�
; ε� =

δ�

2

(dv dx⁄ )|���
v�

;   τ=
kz

v�
;  ξ∗ =

x

δ
Λ  (96) 

a= 1 

a= 0.5 

a= 0.2 
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v� is the interfacial velocity. The series expansion is valid as long as v� is not close to 

zero and the penetration depth is not very far away. The resulting PDE is linear and 

superposed functions in the brackets immediately suggest a solution of the form: 

u = u�(ξ∗,τ)+
1

Λ
u�(ξ∗,τ)+

1

Λ�
u�(ξ∗,τ)+⋯   (97) 

Replacing this into the original form of Equation-(93) generates a series of PDE’s. 

The first one is: 

∂u�

∂τ
=
∂�u�

∂ξ∗
� − u�     (98) 

and it is equivalent to Equation-

�

�∗
=

�

�
exp �−�

�

�
x�erfc��

�

�√��
− √kt�� +

�

�
exp ��

�

�
x�erfc��

�

�√��
+ √kt�� (24) given by 

Danckwerts. The other PDE’s which stem from other terms with higher superscripts 

does not have known solutions, but from Equation-(97) one may easily say that PT is 

a first approximation to Equation-(95) with an error of the order of 1 Λ⁄ .. To 

demonstrate the validity of this reasoning, PT can be tested along numerical 

solutions, in combination with the HAA to accommodate higher reaction orders. 

Hence Equation-(48) can be incorporated into Equation-

�

�∗
=

�

�
exp �−�

�

�
x�erfc��

�

�√��
− √kt�� +

�

�
exp ��

�

�
x�erfc��

�

�√��
+ √kt�� (24), then the 

dimensionless surface flux expression can be obtained. 

−
∂u

∂ξ
�
���

= Λ�
2

n + 1
erf�Λ�

2τ

n + 1
� +

1

√πτ
exp �−Λ�

2τ

n + 1
�  (99) 

This expression is compared with the numerical solutions of the problem solved with 

MOL: 

f(ξ)
∂u

∂τ
=
∂�u

∂ξ�
− Λ�u�                      

at τ= 0 ,

at ξ= 0 ,

as ξ= 1 ,

    

u = 0

u = 1

∂u ∂ξ⁄ = 0

  (100) 

f(ξ) is taken as (1 − ξ) and (1 − ξ�)+ S(1 − ξ). These represent Couette flow and 

film flow with shear, as can be seen from Appendix-D. The parameter S signifies the 

magnitude of the shear at the interface and it is taken as -0.2, representing counter 
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current contacting. The surface flux is obtained via a five-point central difference 

formula [180]: 

−
∂u

∂ξ
�
���

≅ −
− 25u(0 ,τ)+ 48u(∆ξ ,τ)− 36u(2∆ξ ,τ)+ 16u(3∆ξ ,τ)− 3u(4∆ξ ,τ)

12∆ξ
  (101) 

∆ξ  is the grid size, it is taken as 0.01. The comparisons and relative absolute percent 

errors are given in Figure 29.  

The results show that PT with HAA gives the correct trend, but there is always an 

error in short contact times. It is observed that if the velocity increases away from the 

interface, then error increases significantly, as can be seen in the example of shear 

flow with counter-current shear.  But when the interfacial velocity is the maximum, 

as for simple Couette flow, errors are very small. Since the system will eventually 

tend to the same steady-state independent of the flow profile, which is determined by 

Λ and the reaction rate expression, errors decrease substantially as concentration 

profiles settle. For larger Λ, errors vanish faster.  It seems that these errors can be 

neglected for many cases for non-marginal flow patterns, since they decay very fast 

on the overall. This can be seen from the green and blue dotted lines on the right 

hand graphs of Figure 29.  

However, an exception to this rule may emerge when the reaction rate term leads to a 

multiple steady states, hence the approach path to steady state may affect the final 

state. In the context of gas-liquid reactions, the possibility of such a case seems to be 

vague, in contrast of the highly non-isothermal systems or LHHW kinetics in gas-

solid reactions. 

Aside from all these, one can say that absorption with reaction is more suitable for 

the applications of PT than physical absorption in flowing films, since for long times, 

the reactants may not reach to the wall due to chemical reaction, and upon the 

settlement of steady-state, velocity effects vanish. However, the red lines with low Λ 

have an error that increases monotonously in both flow scenarios. This is due to 

finiteness of the system. In these cases, film starts to saturate with the reactant. This 

effect will be discussed below. 
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Figure 29. Red: Λ = 0.1; blue: Λ = 5; green: Λ = 15. Dots: numerical solutions; 

straight and dotted lines: results predicted by Equation-(99). Straight lines: first order 

reaction; dotted lines: second order reaction. 

 

4.1.2.3. The Finite Film and the Critical Moduli 

 

To investigate the limits of PT with respect to finiteness one may investigate the 

steady-state case of Equation-(93). If the exact steady-state flux matches HAA within 

acceptable error, then relatively simple PT models can be used. With pseudo nth 

order kinetics, the steady and nondimensional from of Equation-(93) yields: 

d�u

dξ�
= Λ�u�      

at ξ= 1, u = 1

at ξ= 0, du/dξ= 0
   (102) 
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The coordinate system is reversed. This move is done for ease in analysis. Mehta and 

Aris [195] treated the above nonlinear problem as steady-state reaction-diffusion in 

catalyst slabs and obtained solutions describing the behavior of Thiele modulus and 

effectiveness factors. They used the convention  u(ξ= 0)= u� as the concentration 

at the symmetry axis, which happens to be a wall in gas-liquid reactions, and 

obtained an expression of Λ in terms of u� and n. Their result indicates that wall 

concentrations are never zero when n > 1. For n < 0 there exist multiplicities since 

there are two wall concentrations, one of them is very low and the other is very high, 

for a single value of Λ . The multiplicity become especially severe for n < −1 and a 

distinct maximum for Λ emerges. Beyond this value, no steady solution exists. Since 

the HAA can account for n > − 1 only and such low orders in gas-liquid reactions 

are very unlikely31, the analysis will not include n ≤ −1. For an almost clean liquid 

the approach to the steady state will also end up with the smaller u�, most probably.  

The results explained above stem from the following equations. The solutions for 

n = −1 and n ≤ − 1 are not given. 

Λ = �
2

n+ 1
 u�

�(���)/� (1 − u�
���)�.� F(0.5 ,0.5+ q ; 1.5 ; 1 − u�

���), n > 1  (103) 

Λ = �
2

n+ 1
  (1 − u�

���)�.� F(1 ,1 − q ; 1.5 ; 1 − u�
���), |n| < 1   (104) 

F(a,b; c; d) is the hypergeometric function and q = 1 ⁄ (n+ 1). As n → 1 Equations 

 (103) and (104) become equivalent. The mathematical details and a brief re-

derivation of Mehta and Aris’ solutions are given in Appendix-B. The solution is 

used by many authors, for example Kulkarni and Doraiswamy [196] adopted and 

modified the solution methodology for the presence of a bulk phase. Recently York 

et al. [197] used the material for analyzing dead cores in catalyst particles. That is, in 

some cases, when Λ  is great enough, there appears a significant dead region on the 

interval 0 < ξ< ξ� , with (du/dξ)���� = 0 and 0 < ξ� < 1. The same rationale can 

be used for gas-liquid reactions of pseudo orders and an unused part of the film may 

appear. Also for bimolecular reactions, this rationale is applicable as long as the 

pseudo-order approximation holds. For fractional orders, 0 < n < 1, the dead region 

                                                
31 A possibility may be exothermic homogenous catalysis. 
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is exact, that is, there exists a ξ� where concentration is exactly zero. However, for 

higher orders the concentrations drop to very small values but are never zero. The 

exact analysis corresponding to the work of Mehta and Aris [195] on fractional 

orders is given in Appendix-B. For higher orders, the conditions for the emergence of 

an unused film are discussed in Section 4.1.4.1. The unused film happens in reality 

and Rebrov et al.’s work [143] can be given as an example. In their experimental 

FFMR study coupled with simulations, they have found during the homogeneous 

catalysis of octanal to octanoic acid by molecular oxygen that oxygen front only 

surpasses about 10% of their film of 70 μm thickness. In addition, they deduce the 

reaction as fast-pseudo first order. So, if numbering up of reaction plates is 

considered under these conditions, this would mean that around 80% of the liquid 

volume would be wasted. Rebrov et al. punctuates that their FFMR works in a mass 

transfer controlled regime. If elimination of mass transfer resistances is the ultimate 

aim of microreactors, then such cases of microreactor operation seem to be quite 

away from it. 

To demonstrate the validity of HAA with respect to the finiteness of the system, one 

may select a tolerable error and then compare the surface fluxes given by the exact 

solution and the HAA. The exact steady solution gives the surface flux as: 

N� =
du

dξ
�
ξ= 1

= Λ�
2

n + 1
 (1 − u�

���)�.�   (105) 

As τ → 0, Equation-(99) tends to: 

N��� = Λ�
2

n + 1
     (106) 

As expected, due to the semi-infinite assumption, the HAA expression is equivalent 

to the exact solution when u� is zero. One may now define the relative error: 

Err=
N��� − N�

N�
=
1 − �1 − u��

����
�.�

�1 − u��
����

�.�    (107) 
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Solving for the critical u�� gives: 

u�� = �1 − �
1

1 + Err
�
�

�

�/(���)

    (108) 

Now, with a prescribed error, one may find u�� from Equation-(108), and then 

extract the critical Thiele modulus, Λ�, from Equations  (103) and (104). 

Elimination of u�� from these equations yields: 

Λ� = �
2

n+ 1
 �1 − �

1

1+ Err
�
�

�

�
(���)
�(���)

 �
1

1+ Err
�  F�0.5 ,0.5+ q ;1.5 ; �

1

1+ Err
�
�

�  (109) 

Λ� = �
2

n+ 1
  �

1

1+ Err
� F�1 ,1 − q ; 1.5 ; �

1

1+ Err
�
�

�      (110) 

With Equations (109) and (110) one can now plot Λ� versus reaction order. Figure 30 

shows that low Λ� can be tolerated, especially for low reaction orders.  

  

Figure 30. Λ� for 5 % error (red) and 10 % error (blue) respectively. 

 

For example, for errors smaller than 5 %, Λ > 1.8 is a must for a first order reaction, 

if PT is going to be used. This proves the nature of the deviation of the red error lines 

in Figure 29, since Λ was selected as 0.1 in that case. On the overall, one can say that 



89 
 

PT can be applicable for Λ ⪎ 1 and n ≥ 0, as long as the velocity field classification 

given in the previous subsection holds. 

The resulting concentration profiles predicted by the numerical solution of Equation-

(102) and HAA are given by Figure 31. It seems that under acceptable error limits, 

there are significant discrepancies. However, since the sufficiently accurate uptake 

rates are aimed to be calculated, the whole profile is not important, instead, the slope 

at the interface is of prime value. The numerical solutions to Equation-(102) are 

obtained via first transforming the problem into an initial value problem by applying 

the shooting method, then integrating numerically by an adaptive Runge-Kutta 

algorithm.  

   

Figure 31. Concentration profiles calculated for different n at corresponding Λ�: 
exact vs. approximate. Straight lines: numerical solution. Dotted lines: HAA 

solution. Red: n = 1, blue: n = 2, green: n = 0.5, purple: n = − 0.5. 

 

It is also important to note that HAA yields accurate results for fractional orders less 

than unity, whereas such cases may lead to instabilities in numerical solutions. 

Problems originate from the fast changes in the reaction rate near zero concentration. 
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This property leads to a distinct penetration front during the transient period, where 

the front concentration is exactly zero. The fractional order case may be encountered 

in homogeneous catalysis. 

Although the hypergeometric function is embedded in many CAS, simple exact 

solutions can be used for n = 0 and 1. They are given in Appendix-B. Thiele [198] 

and Bischoff [115] provided solutions for  n = 2 and various others, but these are 

also implicit and usually more complicated than Equations  (103) and (104). 

In addition, the effectiveness factor can be obtained when the surface flux is known: 

η =
average rate

maximum rate at surface conditions
= � u�

�

�

dξ=
1

Λ�
du

dξ
�
ξ= 1

  (111) 

The plots of η has been given by Mehta and Aris [195, 199] in detail, which 

deliberately shows multiplicities and η > 1 for negative order reactions. 

 

4.1.2.4. Slow Reactions 

 

In Figure 30, the applicability limits are drawn for sufficiently fast reactions. These 

have Λ values that lie above the plots given in Figure 30. Therefore, the cases 

corresponding to such moduli can be accurately treated by HAA. For slower 

reactions, or generally for smaller Λ that lies beneath curves of Figure 30, HAA may 

still be useful. Up to a certain time, during which the accumulation at the wall is not 

so serious, HAA should give accurate uptake rates. That gives rise to a critical Fo 

number, Fo� . 

Finding Fo� for any Λ that lies below the curves of Figure 30 and also for any 

reaction order is not a simple task and cannot be accomplished exactly. However, by 

numerical experiments, this case can be simplified and resolved with good accuracy. 

First of all, from MOL solutions of Equation-(100) for plug flow can be provided for 

0 < n < 3 and 0 < Λ < Λ�. What immediately obtained is that for Λ < 0.7, the 

system almost behaves as physical absorption for all orders. Hence the Fo limits of 

PT for physical absorption should apply. When dealing with the effects of flow fields 
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it was noted that first and second order reactions behaved almost the same for low Λ, 

under any flow field. This is further expected from Figure 30, since for low errors, 

the n vs Λ� curve is almost flat. Thus, one may represent the interval of orders 

1 < n < 3 as first order with good accuracy. Moving from here, one may solve 

Equation-(100) for plug flow and for the interval Λ ∈ [0.7,Λ�] corresponding to first 

order reaction. Then one can solve for the Fo� when ratio of the fluxes between the 

numerical solution and the HAA are in a predefined error limit. The Λ  interval is 

divided into eight and the error limit is assumed as 5 %. So for each Λ, one obtains a 

Fo� . These then can be regressed, to give Fo� as a function of Λ. For first order 

reaction: 

Fo�
� = 1.941 ∙ 10�� exp(2.78Λ)+ 0.275   (112) 

Since the interval 0 < n < 1 behaves quite differently, as can be seen from Figure 

30, a fit for zero order reaction is also accomplished. 

Fo�
� = 2.106 ∙ 10�� exp(6.4Λ)+ 0.362   (113) 

The parameter 1 − ℛ�, where ℛ is the Pearson correlation coefficient, is smaller than 

10�� in both cases. The correlations show that the Fo� increases exponentially with 

Λ. 

To sum up, now one may say that if the velocity field is appropriate, slow reactions, 

i.e. Λ < 0.7, can be treated as physical absorption up to a certain exposure time. This 

exposure time is closely predicted by Figure 28 for different flow fields. For Λ ⪎ 1, 

PT can provide acceptable prediction for all contact times. This leaves a narrow 

interval for Λ, which is not accessible by simple solutions. 

 

4.1.2.5. Non-Isothermal Cases and Heat Coupling 

 

The fractional, negative and high integer orders may emerge when heat transfer 

effects are lumped into the reaction term. At steady state, the dimensionless 

equations of heat and mass transfer 

∆u = Λ�r(u,v)

∆v = −β�Λ
�r(u,v)

    (114) 
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can be combined into a single equation of concentration only. Here β� is the Prater 

modulus given as 

β� =
(−∆H���)DC

∗

k�T�
    (115) 

β� > 0 denotes exothermic reaction. The modulus is on order of 10-2 for CO2 

absorption in concentrated NaOH solutions [200]. For gas-liquid reactions, it 

probably lies around such magnitudes.  

Upon multiplying the upper equation with β and summing up the equations: 

∆u = Λ�f(u)

v = β�(1 − u)+ 1
    (116) 

This is valid only when Biot numbers are large. In order words, only BCs of the first 

kind are allowed. Otherwise, the formulation is not so simple [201]. For the nth order 

reaction, the function f(u) in Equation-(116), becomes:  

f(u)= u�exp �
β�γ�(1 − u)

1 + β�(1 − u)
�    (117) 

γ� = E� RT�⁄   is the Arrhenius number. In some cases, the exponential term can be 

approximated with a function of the type u�. This is first demonstrated by Mann and 

Clegg [202] for the absorption of chlorine in toluene. They experimentally found a 

reaction order of 5 due to lumping of heat effects.  

If the power law approximation, f(u)= u���, can be accomplished, the HAA can 

also be further utilized for non-isothermal conditions32 [203]. This is especially 

possible when the factor β�γ� is sufficiently low, and the reasons for this will be 

discussed. Fortunately, low β�γ� values should be prevalent for many gas-liquid 

reactions. Actually, even for gas-solid reactions, β� rarely exceeds 0.2 and γ� is 

around 20 [204]. 

At significantly exothermic conditions, the form of the rate given by Equation-(117) 

can take values higher than one and holds a peak on u ∈ [0,1]. Thus, there occurs a 

theoretical need for a condition involving β�, which would render f(u) as 

                                                
32 The results achieved in steady-state is aimed to be applied to unsteady cases. This may seem 
inappropriate, but the derivation of HAA also lies on an analysis at steady-state. 
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monotonically increasing, because the power law approximating function is a 

monotonically increasing one. By using simple calculus, one may investigate the 

derivative of f(u), to explore the conditions for a peak to occur on the interval u ∈

[0,1]. The only term of df(u) du⁄  with possible alternating signs is the 

polynomial u� − �2 + γ� nβ�
� + 2 nβ�⁄⁄ �u+ (1+ 2 nβ� + 1 β�⁄⁄ ). Equating this 

polynomial to zero and looking for roots is straight forward. The condition to be 

seeked is the one to keep the peak concentration out of the interval [0,1]. The 

analysis leads to a very neat result: 

β� ≤
n

γ�
     (118) 

If the above criterion holds, one may find the approximate m value from the 

equation: 

d

dm
� �u� exp �

β�γ�(1 − u)

1+ β�(1 − u)
� − u����

�

du
�

�

= 0  (119) 

and it can be simplified into: 

� u������ exp �
β�γ�(1 − u)

1+ β�(1 − u)
�du

�

�

=
1

2(n +m)
  (120) 

A close form solution of the integral in Equation-(120) is given by Tavera [205], but 

it is not simpler than the integral itself. However, a CAS can easily solve for m, by 

evaluating the integral numerically. Such a procedure is employed for obtaining m. 

As a test case, β� is taken as  0.05 and −0.05  with γ� = 20 and n = 2, which can 

be considered as significantly thermic. With these values, m is found to be −0.716 

and 0.860. This results in new orders as 1.284 and 2.86. Exothermicity decreases the 

order, while endothermicity increases it.  

Now one may test the modified HAA with numerical solutions. The nonlinearly 

coupled equations of heat and mass diffusion must be solved. The equations are 

nondimensionalized as given below: 
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∂u

∂τ
=
∂�u

∂ξ�
− Λ�u�exp �−γ� �

1 − v

v
��

1

Le

∂v

∂τ
=
∂�v

∂ξ�
+ Λ�β� u

�exp�− γ� �
1 − v

v
��

         

at τ= 0
at ξ= 0
at ξ= 1

           
u = 0
u = 1
du dξ= 0⁄

at τ= 0
at ξ= 0
at ξ= 1

           
v = 1
v= 1
dv dξ= 0⁄

  (121) 

These are solved with MOL. Le= α D⁄  is the Lewis number and it is taken as 10. 

For liquids, α~10�� − 10�� usually. Since D~10�� − 10���, now the choice for the 

Lewis number can be justified. For Le > 1, which is likely, the results would be quite 

the same. The comparison of numerical and HAA solutions are displayed in Figure 

32, Figure 33 and Figure 34. From Figure 32, it is evident that the steady-state 

temperature profile is almost flat. But this does not mean that temperature is 

ineffective on the concentration profile. Actually the slopes at the interface change 

significantly and the power law approximation captures this effect.  

The deviation from the isothermal solution shows that thermal effects are significant. 

Figure 33 and Figure 34 can show this on a time basis, where the modified HAA 

closely approximates to the exact values of the surface flux, but the isothermal HAA 

does not. The errors rise to a few percent but they decay out to almost zero deviation. 

Note that the systematic error of the isothermal solution may lead to large errors in 

total uptake amounts. Although the power law approximation comes from a steady-

state analysis, it is shown that its use in unsteady-analysis may be assumed as 

acceptable.  

Non-isothermal behavior is observed in microreactors, for the FFMR, there exists a 

20℃  difference between the side and bottom plates in Rebrov et al.’s study [143]. 
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Figure 32. Results of MOL solutions for steady-state concentration (red) and 
temperature (blue) profiles for exothermic (left) and endothermic (right) cases. 

Straight line: non-isothermal; dotted line: power law approximation; dashed line: 
isothermal. 

 

 

Figure 33. Dimensionless surface flux for exothermic (red) and endothermic (blue) 
cases. Straight lines: numerical solution; dotted lines: HAA with power law 

approximation. Dashed line is isothermal HAA. 
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Figure 34. Relative percent errors for surface flux. Straight lines: HAA with power 
law approximation; dotted lines: isothermal HAA. 

 

4.1.2.6. Gas-Phase Resistance, Complex and Second Order Reactions 

 

In case of a significant gas-phase resistance, additional complications occur. 

Danckwerts [206] presents a solution for the uptake in the presence of first order 

reaction and linear resistance under isothermal conditions:  

∂u

∂ξ
=

1

1 − (Λ Bi⁄ )�
�erf�Λ√τ� +

Bi

Λ
erfc�Bi√τ� exp[τ(Bi� − Λ�)] −

Λ

Bi
�  (122) 

But the HAA cannot be applied in this case, since the interfacial concentrations 

change with time. Algebraic complications do not allow the derivation of a new 

Hikita-Asai-like  linearization also. If n = 1, then Equation-(122) can be used 

directly. Otherwise, this case does not have an analytical solution, unlike the no-

resistance case. Mehta and Aris [199] also solved the ODE given by Equation-(102) 

with surface resistance, and established a connection between the solutions where 

Bi= kgδ/D is finite and Bi→ ∞ , which is the solution of the Equation-(102). Thus, 

the critical modulus found above for no resistance, can be translated into the case 

with a gas phase resistance, by using the following formula: 
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Λ�� = Λ�

⎝

⎛1+
Λ��

2
n + 1

Bi

⎠

⎞

���/�

   (123) 

It can be seen from Equation-(123) that as Bi decreases, the tolerance limits for Λ 

widens, since the relative speed of internal transport increases with respect to the 

speed of interfacial transport. It is also clear that as Bi→ 0, Λ�� → 0 also. As 

expected, as Bi gets larger, Λ�� → Λ�. If a variant of HAA with gas-phase resistance 

existed, then Equation-(123) would be utilized more effectively. 

The reasoning developed above can be translated to some cases of complex 

reactions. If the slowest reacting (pseudo nth order reaction) and the fastest diffusing 

absorbed substance does not accumulate on the wall and the velocity field beneath 

the interface does not have any maximums close to the surface, then PT combined 

with the HAA may be employed for many cases with acceptable error. These may 

involve non-isothermal cases with the utilization of the power law approximation. 

For parallel reactions, an explicit expression is available for the critical Thiele 

modulus: 

Λ��� = √2�
Λ�

n� + 1

�

���

    (124) 

However, for series reactions analysis gets complicated. The number of regimes and 

variations of the cases involving mass transfer with chemical reaction are very large, 

so that a general encapsulation is not possible. It is evident that the methodology also 

cannot be extended to second order reactions. Therefore, for systems which are not 

fit here, special methods of analysis are necessary. 

 

4.1.3. Saturation-Depletion in Finite Films 

 

4.1.3.1. Physical Absorption 

 

The approximate analysis of Pohorecki [103], summarized by Equations-(39) to (45), 

can be put in an exact form. One may calculate the total uptake amounts for diffusion 

into plug, film and Couette flows, from: 
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n� = � Ndt
����

�

     (125) 

then the time yielding 95% saturation can be extracted. The dimensionless surface 

flux expressions are provided in Appendix-A by Equations(A2), (A4) and   

 (A14). However, their use in an integral has been found to be erroneous. 

Since the uptake rates are maximized in the initial stages, series solutions are cannot 

capture it accurately, because their convergence for small times is very slow. Many 

additional terms are necessary to obtain accurate values. Therefore, the analysis is 

conducted numerically. The diffusion equations are solved by MOL, then the five 

point difference formula is employed for the surface flux (Equation-(101)). This 

formula is integrated by an adaptive quadrature embedded in Mathcad, and finally 

the numerical integral expression is solved for the Fo� that gives 95% saturation. The 

results are given in Table 7. From the beginning, all the analysis was based on 

scaling the contact length with interfacial velocity to get the exposure time. One may 

also use average velocity for this purpose. The relevant saturation Fourier number is 

denoted as Fo�
� can be easily obtained by: 

Fo�
� = Fo�

� v���

v�
     (126) 

In both film and Couette flow cases, v��� = v�. 

 

Table 7. Saturation Fourier numbers for diffusion into plug, film and Couette flow. 

  Fo�
� (scaled wrt v�) Fo�

� (scaled wrt v�) 

Plug Flow  1.13 1.13 

Film Flow  0.54 0.81 

Couette Flow a= 1 0.35 0.69 

 a= 0.5 0.72 0.96 

 a= 0.2 0.95 1.05 

 

 

The laminar film saturates much quicker than plug flow, almost in half-time. It seems 

that knowing the profile in the film is important when Fo is relatively high. 
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Considering Taylor bubbles, Pohorecki assumes that the surrounding film is in 

laminar or in plug flow, which does not make any difference in his analysis. 

However, if the film is in laminar flow, it will get saturated by a bubble of halved 

length when compared to a film flowing which is stagnant (or in plug flow). For 

cases involving physical absorption or slow reaction, approximating laminar flow 

with plug flow may induce serious error in calculations. Therefore, knowing the 

velocity field is indeed important. The analysis can similarly be extended to other 

flow profiles given in Appendix-D. 

 

4.1.3.2. Absorption with Bimolecular Reaction 

 

Pohorecki’s result [103] for the minimum depletion time (Equation-(45)) in 

instantaneous reactions can also be put on more distinct grounds. Consider the 

system given in Equations- (57), but in a finite domain with no-flux BC’s on x=

δ. Assuming equal diffusivities, multiplying the equation for species A with z and 

then subtracting it from the equation for B results in: 

∂p

∂t
= D

∂�p

∂x�
     (127) 

where p = C� − bC�, subject to the following BC’s: 

at x= 0,   p = C�� − bC�
∗ ;   at x= δ,   

dp

dx
= 0 ;   at t = 0,   p = C��   (128) 

This problem cannot be solved, since the interfacial concentration of B, C�� , is not 

known. However a companion problem can be solved, which can approximate to the 

exact case under some asymptotic conditions. So suppose a thin layer beneath the 

interface acts as a batch reactor. Since the concentration of A is always constant on 

the interface: 

dC��
dt

= −bkC�
∗�C��    (129) 

Unlike Equations- (57), a more general mth order reaction in terms of A is 

assumed. This condition immediately yields: 

C�� = C�� exp�− bkC�
∗�t�    (130) 
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For an instantaneous reaction, interface cannot be significantly fed by the diffusing B 

from deeper layers. Thus, B depletes according to the classical mass-action kinetics 

on the interface, its value with time given by Equation-(130). So for very fast 

reactions this assumption should almost be exact. On the other hand, for slow 

reactions in a thin layer of fluid, the concentration profile of B and A would almost 

be flat, thus the interfacial concentration of B would almost equal to the 

concentrations that lie deeper to the wall. In that case, the whole system acts as a 

batch reactor. 

Note that, for C�� to not to change much, bkC�
∗�t ≪ 1. This condition reduces to 

Danckwerts’ pseudo first order criterion for b = m = 1. For FT, this criterion 

approximately takes the form for m-,nth order as [109]: 

√M = �
2DkC��

�C�
∗���

(n + 1)k�
� > 3    (131) 

which is also due to Hikita and Asai. So, one may re-write the boundary condition at 

the interface as: 

at x= 0,   p = C�� exp�− bkC�
∗�t� − bC�

∗   (132) 

Now the problem is transformed into a linear PDE with a time-dependent boundary 

condition. One may employ Laplace transform, but its inversion would be difficult. 

However, by using Duhamel’s integral the problem can be solved with ease [175]. 

The integral is given as: 

p� = f(0)θ(x,t)+ � θ(x,t)
df(τ)

dτ
dτ

�

�

   (133) 

where function f is the time dependent boundary condition of the 1st kind at the wall. 

θ is the solution of the corresponding diffusion problem with a unit-step boundary 

condition instead of function f. The theory and the solution steps are given in 

Appendix-C. The final result is tested over large range of parameters, and seen to be 

very close to the exact numerical solution for long times, near the depletion of 

reactant B. 
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The solution is quite bulky, but it can be simplified, especially for the wall 

concentration. Similar to the criteria given by Table 3 and Equation-(131), one may 

develop three regimes with Thiele modulus: 

Λs
� =

bkC�
∗�δ�

D
     (134) 

The regimes are given in Table 8, on which the reaction rates are compared with 

diffusion rates. Note that the table is quite similar with Table 3. 

The simplified solution for the value of p at the wall can be given as: 

π

4
φ =

E�
E� − 1

exp �−
π�

4
Fo�� + exp�−Λs

�Fo���
π

4
−
3.876Λs

�

π�
�   (135) 

E� is the enhancement factor for equal diffusivities: 

E� = 1 +
C��
bC�
∗     (136) 

 

Table 8. Regimes for the depletion solution given by Equation-(135). 

Regime Λ� Condition φ 

1 

Reaction is very fast, 

hence B depletes before A 

starts to accumulate on the 

wall. 

10 ⪍ Λs p���� = − 0.01C�� 0.99 + 0.01E�
E� − 1

 

2 

Reaction is of moderate 

speed, hence B depletes 

while A accumulates on 

the wall. 

3 ⪍ Λs⪍ 10 p���� = −0.5zC�
∗ 

0.5

E� − 1
 

3 

Reaction is slow, hence A 

significantly accumulates 

on the wall, then B 

depletes 

Λs⪍ 3 p���� = −0.99zC�
∗ 

0.01

E� − 1
 

4 

Reaction is very slow, 

concentration gradients 

almost vanish 

Λs⪍ 0.5 - - 
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Since the solution is implicit, the depletion Fourier number, Fo�, must be solved for 

the governing regime. Regimes are implemented into the solution by parameter φ. 

The solved Fo� usually gives the time at which 90-99 percent of B has been 

depleted. If both the depletion of B and the saturation of A is wanted, then regime 3 

always works. In regime 4, one may simply approximate the depletion time with the 

batch reactor solution given in Equation-(130). For 90% depletion: 

t� =
4.61

bkC�
∗�     (137) 

The solution for regime 3 also works for this case.  

Unequal diffusivities cannot be treated with this solution. For slow reactions, it is 

seen that unequal diffusivities have negligible effect on the depletion time. The 

laminar flow field does not seem to have any influence at all.  

One can also provide a solution for the mth-nth order reaction Duhamel’s integral, but 

it cannot be presented in a simple form. 

 

4.1.4. Diffusion into a Flowing Film with Arbitrary Homogeneous Reaction 

 

In section 4.1.2, it has been shown that sufficiently for fast reactions of pseudo-nth 

order, the HAA can be used effectively. In addition, HAA can also be employed for 

slow reactions, if exposure times are sufficiently small. However, like any PT model, 

HAA does not it involves velocity field in its formulations. For flow fields where the 

interfacial velocity is a maximum, the results given by HAA are quite accurate. But 

for fields, in which a velocity maximum lies within the film, HAA significantly 

deviates from the exact result. In section 4.1.2.2, film flow with counter-current shear 

was given as an example. The aim of this section is to derive an alternative solution 

in place of the HAA, which can treat various flow fields, also with an nth order 

reaction. The problem can be given as: 

f(x)
∂C

∂t
= D

∂�C

∂x�
− k r(C)                      

at t = 0,   

at x= 0,

at x= δ,

        

C = 0

C = C∗

∂C ∂x⁄ = 0

   (138) 
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Initial concentration is taken as zero for simplicity. With r(C), usually nonlinear 

forms are considered. The solution of Equation- (138) will be accomplished in an 

approximate sense, similar to HAA. Approximate integral balance method (AIBM) 

will be used to obtain the general solution. One may first nondimensionalize the 

problem: 

f(ξ)
∂u

∂τ
=
∂�u

∂ξ�
− Λ�r(u)                      

at τ= 0,   

at ξ= 0,

at ξ= 1,

        

u = 0

u = 1

∂u ∂ξ⁄ = 0

   (139) 

First the straight alternative to HAA will be derived. Then incorporation of velocity 

fields will be considered. As explained by an example in section 3.2, AIBM solutions 

are mostly used for semi-infinite geometries. Therefore these two parts of analysis 

will be based on the cases where reaction is sufficiently fast, so that concentration 

fronts do not significantly reach the wall. However, in addition to these solutions, the 

AIBM will also be applied to a finite film, in the last part of the analysis, which 

would suit for slow reactions. 

 

4.1.4.1. An Alternative Formulation to Hikita-Asai Approximation 

 

The fundamentals of AIBM provided in section 3.2 can be directly applied: For       

f(ξ)= 1, the IMBE can be written as: 

�
∂u

∂τ
dξ

��

�

=
∂u

∂ξ
�
����

−
∂u

∂ξ
�
���

− Λ� � r(u)
��

�

dξ   (140) 

where the first term on the right hand side is considered to be zero. Note that ξ= x δ⁄  

and δ� = δ�/δ. By using Leibnitz’s rule, the derivative at left hand side can be taken 

out: 

�
∂u

∂τ
dξ

��

�

=
d

dτ
� udξ
��

�

    (141) 

Letting φ = ∫ f(u)
��

�
dξ:  
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−
∂u

∂ξ
�
���

− Λ�φ =
d

dτ
� u

��

�

dξ    (142) 

Assuming a second order polynomial for the concentration profile, 

u = a+ bξ+ cξ�     (143) 

the constants can be found by applying the following boundary conditions: 

at ξ= 0

at ξ= δ�

at ξ= δ�
 ,

u = 1
u ≅ 0
du dξ⁄ ≅ 0

    (144) 

which results in: 

a= 1, b = 
−2

δ
, c=

1

δ�

u = �1 −
ξ

δ�
�
�     (145) 

The concentration profile can be substituted into Equation-(142), to obtain: 

dδ�

dt
=
6 − 3Λ�δ�φ

δ�
     (146) 

This ODE has the initial condition δ(0)= 0. For some forms of φ, the ODE may be 

integrated analytically. However, the reaction rate expression in φ, must be 

composed of the absorbed component only. Therefore, pseudo order reactions are 

most general that can be treated with the AIBM formulation. So, for a pseudo nth 

order reaction 

φ = � u�dξ
��

�

=
δ�

2n + 1
    (147) 

and with u� = 0, the ODE can be solved to give the expression for the penetration 

thickness. For n > − 0.5: 

δ� =
�2(2n + 1)

Λ
�1 − exp�−

6Λ�τ

2n + 1
��

� �⁄

   (148) 

One may use higher order polynomials, but then additional constants must be 

evaluated by using derived boundary conditions. For each term of the mth order 

polynomial one may use: 
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at ξ= δ�,
d���u

dξ���
≅ 0     (149) 

Thus, a result for arbitrary polynomial order can be obtained by using the binomial 

Analysis yields: 

u = �1 −
ξ

δ�
�
�

     (150) 

δ� =
�m(mn+ 1)

Λ
�1 − exp�−

2(m+ 1)Λ�τ

mn+ 1
��

� �⁄

  (151) 

and 

−
du

dξ
�
���

=
m

δ�
     (152) 

It has been observed that the quadratic profile works as the best. It captures the 

surface flux quite well, and on its penetration front, C C∗⁄ ≈ 0.01 which is a suitable 

value. Profiles which combine exponential functions with polynomials are also 

checked for accuracy, for example: 

u = �1 −
ξ

δ�
�
�

exp �−
ξ

δ�
�

u = �1 −
ξ

δ�
�
�

exp ��1 −
ξ

δ�
�
���

− 1�

   (153) 

These satisfy the boundary conditions, but they cannot give an explicit expression for 

δ� when n ≠ 1. In addition they are not as accurate as the quadratic profile in terms of 

surface flux predictions. Therefore, these profiles are discarded. The solution given 

by Equation-(148) was first given by Tarzia [207] in the context of heat transfer with 

absorption. However, his main interests were focused on the mathematical behavior 

of the solution. Here, much more additional information will be extracted from 

Equation-(148). 

First, the surface flux may be given explicitly as: 

−
du

dξ
�
���

=
2

δ�
= Λ�

2

(2n+ 1)
�1 − exp�−

6Λ�

2n + 1
τ��

��/�

  (154) 

Then penetration thickness may be investigated. For large times, δ tends to a 

constant value, giving the steady state penetration thickness as: 
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δ�� =
�2(2n + 1)

Λ
=
1

λ
    (155) 

If δ�� < 1, then the concentration front does not reach the surface. Thus, for the 

applicability of this semi-infinite AIBM solution, the criterion below emerges: 

Λ ≥ �2(2n + 1)     (156) 

Otherwise, accumulation on the wall is initiated. λ will be used in the second part of 

the analysis.  

Note that if the above criterion holds, a part of the film will be unused. If a stacked 

setup of microfilms is considered (stacked FFMR is an example), then the unused 

liquid film will be wasted and has to be recycled back to the reactor to decrease 

excess loss of the liquid solution. This constitutes a constraint for efficient 

production and Equation-(155) forms an upper limit for the liquid flow rate. The 

lower limit was discussed to be the flow rate associated with the minimum wetting 

thickness, in Section 2.8.6. For gravitational flows, expressions like Equation-(66) 

may be used, but under the shear effects of the gaseous phase, suitable expressions 

may not exist. It is important to punctuate that this discussion does not apply to fast 

second-order bimolecular reactions. 

One may utilize the condition given by Equation-(156) further. When it does not 

hold, then one may extract the time to reach the wall from Equation-(148). By setting 

δ� = 1 and solving for τ yields: 

τ� =
2n + 1

6Λ�
ln�

4n + 2

4n + 2 − Λ�
�    (157) 

It is observed that the flux expression provided by the AIBM is initially positively 

erroneous, but just with a few percent. However, once steady-state begins to settle, 

static errors are noted. At this point AIBM yields smaller steady-state fluxes. The 

reason for this is that the solution tends to a wrong steady-state. This can be easily 

mended. Since AIBM predicts with positive deviation, one may find the time when it 

equals to the steady-state flux given by Equation-(106). The result is: 

τs=
2n + 1

6Λ�
ln�

2n + 1

n
�, δ�s=

�2(n + 1)

Λ
   (158) 
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This amendment needs n ≥ 0. Finally, one can calculate the amounts absorbed 

approximately as:  

n�� =
δ�

3
−

Λπ�δ��

90�2(2n + 1)
+ Λ�

2

2n+ 1
τ   (159) 

To obtained the above equation, an approximation used in chromatography, which is 

due to Vermeulen [268], is applied during the integration: 

�1 − exp (−x)≅ 1 −
6

π�
�

exp(−n�x)

n�

�

���

   (160) 

Equation-(159) is valid for the transient state. For τ > τ� it simply becomes: 

n�� =
δ�s
3
−

Λπ�δ�s
�

90�2(2n + 1)
+ Λ�

2

2n + 1
τs+ Λ�

2

n + 1
(τ− τs)   (161) 

All the equations above are formed from elementary functions and they are relatively 

simple to evaluate. When compared to HAA, the accuracy is quite good. A 

demonstration is given by Figure 35. 

When calculating the uptake rates with HAA, the following equation is used: 

n����� = �
2Λ�

n + 1
τ+

1

2
�erf�Λ�

2τ

n + 1
� + Λ�

2τ

π(n + 1)
exp�−

2Λ�

n + 1
τ�  (162) 

This is the result obtained from time integration of Equation-(99). 
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Figure 35. Comparison of HAA with Equation-  (161) forn = 2 and 
Λ = 4. Straight line: HAA, dotted line: Equation-  (161), dashed line: 

relative percent error when compared to HAA. 

 

4.1.4.2. Velocity Fields 

 

Now, functions other than unity can be substituted in place of f(ξ). Assuming it to be 

a general quadratic polynomial, 

f(ξ)= a� − a�ξ− a�ξ
�    (163) 

 the integral can be evaluated: 

� (a� − a�ξ− a�ξ
�)�1 −

ξ

δ�
�
�

dξ
��

�

=
a�
3
−
a�
6
δ� −

a�
10

δ��  (164) 

Then the regular analysis of AIBM can be resumed. Solving the ODE yields: 

τ=
a�δ�

12λ�
+
a�δ�

�

40λ�
+
5a�λ − 10a�λ

� + 3a�
120λ�

ln�1 − λ�δ��� −
a�δ�

12λ�
ln�1+ λδ��  (165) 

λ was defined in Equation-(155). Although the expression in implicit in δ�, it will 

allow further investigation. For example, substituting δ� = 1 would yield τ� like in 

the plug flow case. For τs, the same approach used for plug flow can be applied. The 
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velocity field can indeed be represented by higher order polynomials or by other 

functions. Still, the ODE of the IMBE can be integrated analytically for many cases. 

However, a general form of the integration does not seem to be derivable. Such a 

generalization is accomplished for diffusion with heterogeneous reaction in Section 

4.2.2. 

To find the amounts absorbed, integrating the IMBE is integrated in time: 

� −
du

dξ
�
���

dτ
�

�

= �
2

δ�
dτ

�

�

= � �Λ� � u�dξ
��

�

+
d

dt
� f(ξ)u
��

�

dξ�dτ
�

�

 

=
Λ�

2n + 1
� δ�dτ
�

�

+ � f(ξ)u
��

�

dξ    (166) 

Note that the second integral is already evaluated before, therefore: 

n�� =
Λ�

2n + 1
� δ�dτ
�

�

+
a�
3
−
a�
6
δ� −

a�
10

δ��   (167) 

By inverting the remaining integral, one obtains: 

n�� =
Λ�

2n + 1
�δ�τ− � τdδ�

��

�

� +
a�
3
−
a�
6
δ� −

a�
10

δ��  (168) 

If specific value is wanted, one must solve for δ� from its implicit definition first and 

then apply the equations above. However, obtaining the general trend is simple. 

Since the above equation applies until τ= τs, and since at that time δ� = δ�s for all 

fields; one may then form a set for the dimensionless penetration thickness as �0,δ�s� 

in order to plot n�� versus τ, which is also a function of δ�. 

The example treated in the beginning of section 4.1.2.2 is reprised here to show the 

deficiency of HAA and the proficiency of the new solution. The film flow with 

counter-current shear case is solved again, but this time with much higher shear: 

S = −0.6. The shear flow profile yields a� = 0.4, a� = −0.6, a� = 1. The 

calculation of n�� is then straightforward. The results of AIBM and HAA are 

compared with the MOL solution of the problem and relative percent errors are 

displayed in Figure 36. AIBM is especially successful and its errors are less than 

10%. But on the other hand, HAA leads to larger and consistent errors. 
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This AIBM solution can be regarded as general solution to mass transfer with fast 

pseudo nth
 order reaction. It can apply to many other problems, such as Graetz 

problems [208] or some more delinquent ones like membrane assisted gas-liquid 

microcontactors [209]. In both cases, the velocity is zero on the interface where the 

solute is released into the stream. The AIBM solution should adapt to these cases 

well. 

 

Figure 36. Comparison of AIBM and HAA with numerical solutions for the 
countercurrent shear flow case, S = −0.6, n = 2 and Λ = 4. Dotted line: AIBM, 

straight line: HAA. 

 

Finally, one can now find the enhancement factor, by dividing Equation-(168) by the 

PT expression for amounts absorbed in dimensionless form: 

n���� = 2�
τ

π
     (169) 

where for τ is already given by Equation-(165) for τ < τs. 
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4.1.4.3. The Finite Film 

 

AIBM can be applied to a finite film also. Mathematically, the finite film solution 

will complement the semi-infinite solution, which gets terminated at τ�. Thus for 

τ > τ�, the problem has a new boundary condition: 

at ξ= 1, u = u�    (170) 

where u� is the time-dependent wall concentration. In this period, the time 

dependent penetration thickness vanishes and it equals to one. The quadratic 

equation which satisfies the boundary conditions is: 

u = 1+ (1 − u�)(ξ
� − 2ξ)    (171) 

The rest of the analysis is straightforward, but only if the reaction is of first order. 

For other orders (except zero) the problem becomes analytically intractable. One 

may try to linearize this terms, but both first order Taylor series expansion and error 

integral linearization failed to yield accurate results. Therefore, this case solved for 

the first order case only, with the same general quadratic velocity field given by 

Equation-(163). The wall concentration can be found explicitly as: 

u� =
6 − Λ�

2 + 2Λ�
�1 − exp �−

6 + 2Λ�

3ϑ
(τ− τ�)��   (172) 

Note that for u� > 0, Λ� < 6, which conforms to the criterion given by Equation-

(156). 

ϑ is the modifier for the velocity field: 

ϑ =
2a�
3

−
5a�
12

−
3a�
10

    (173) 

The rest of the quantities can be obtained simply, for example flux: 

−
du

dξ
�
���

= 2(1 − u�)    (174) 

For the amounts absorbed, the above equation can be integrated from τ� to τ. The 

amounts absorbed up to τ� can be found from Equation-(168), where δ� = 1. 

The solution is however still flexible, and it can provide various information. For 

example one may investigate the effect of wall slip or gas shear on mass transfer 
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rates by finding the derivatives with respect to the flow parameters investigated and 

then by comparing them. In addition, the solution is general for many flow fields, 

and when compared with available the exact solutions comprising special functions 

and implicit eigenvalue equations, it is relatively simple to handle. 

 

4.1.4.4. Summary: Mass Transfer with Homogeneous Reaction 

 

From the previous developments it has been shown quantitatively that penetration 

formulations can be used for fast reactions in flowing films with good accuracy, if 

the interfacial velocity is the maximum velocity in the film. PT is also valid for slow 

reactions if contact times are sufficiently short. Furthermore, it has been shown that 

microcontactors are efficient only when they do not saturate or deplete.  

The new solution presented via AIBM can treat the velocity fields that HAA cannot 

handle. The finite solution also provides an explicit solution to investigate the effect 

of velocity profile of mass transfer for times after the molecules started to 

accumulate at the wall. For slow reactions, AIBM can provide the solution for long 

times, albeit for first order only. The unused film concept is punctuated, since a 

general limit is provided by the new solution. During pseudo order reactions, this 

would implement a constraint on liquid flow rate for more efficient production. Note 

that, when a pseudo or direct nth order reaction is considered, for n ≥ 0, Equation-

(111) suggests that the effectiveness factor go to 1 as Λ goes to zero. Thus, 

decreasing the film thickness and conserving this over large numbers of contacting 

microunits will theoretically yield the highest amount of production. In other words, 

films may saturate to the highest degree when there is a pseudo order reaction, and 

film thickness may be decreased as much as it is possible. Although this would be 

limited by the flow rate requirements for complete wetting, in would also be limited 

to the applicability of pseudo-order reaction assumption for bimolecular reactions. In 

addition, there would be serious evaporation, when films are very thin. Normally the 

gas is saturated with the vapor of the liquid before sending it to the contactor, to 

prevent liquid loss [210]. But with slight disturbances like temperature evolution on 

the surface during absorption, evaporation may be a serious issue for very thin films. 
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Therefore, considering fast reactions, microreactors should be efficient. This is 

because they can contact large amounts of phases in short times due to their large 

interfacial areas. For slow reactions, they should also work well, since they may 

remove diffusional resistances to a large extent for such cases. The batch reactor 

limit of the second order reaction is an example. Since the provided interfacial area 

per unit volume is also large in stacked microreactors, this may mean also a 

significant reduction in total unit volume when total production amounts are 

compared. 

Interfacial resistance is neglected through the whole section of 4.1. If the time 

constant for saturation is much smaller than the one of diffusion, then neglecting 

interfacial resistance is appropriate. Details for interfacial resistance are given in 

Appendix-E. 
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4.2. Gas-Liquid-Solid Systems 

 

4.2.1. Fischer-Tropsch Synthesis and Unsteady-State Operation in a Conceptual 

Microreactor 

 

As from this section, heterogeneous reactions in liquid films will be treated. The 

physics will involve the physical absorption of gaseous reactants in the liquid film, 

which is then followed by diffusion towards a catalytic wall. Usually these walls are 

monolithic or PDMS based supports which are washcoated with a catalyst [16, 163]. 

The diffusion of reactants is finally confronted by a complex surface reaction 

mechanism, which usually involves various adsorption, desorption, bond breaking-

formation and surface diffusion steps. Low temperature Fischer-Tropsch synthesis on 

a ruthenium or cobalt catalyst will be considered. 

 

4.2.1.1. Reactant Fluxes and Transportation through the Wax Film 

 

First, one may check the magnitudes of absorption flux at gas-wax interface for 

hydrogen and carbonmonoxide. This should be important, since it may provide clues 

on the relative amounts of the feed gases transported to the catalyst surface. The 

poisoning effects of species then may be controlled via adjusting either the film 

thickness or interfacial concentrations by reactor operation. 

In order to present a numerical comparision, one needs the solubility and diffusivity 

data. For solubility, the data of Albal et. al. [211] is used. Their data are correlated 

from their experimentation range to yield: 

C��

∗ = 2.281 ∙ 10�� T�.��� P

C��
∗ = 2.615 ∙ 10�� T�.��� P

    (175) 

These expressions yield in terms of kmol/m3. It is important to note that solubilities 

of the reactants in the paraffinic wax increase with temperature. On the other hand, 

the ratio of solubilities decreases with temperature. Their data covers the pressure 

range 1 to 3 MPa and a temperature range from 348 to 523 K. This range covers the 

low temperature operation range of FTS. 
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For diffusivities, the data of Erkey et. al. [212] is used. At 1.4 MPa, their results for 

temperatures between 475 and 536 K are fitted to yield: 

D��
∙ 10� = 0.35862 T − 133.44483

D�� ∙ 10
� = 8.60644 ∙ 10�� T�.�����

   (176) 

Now for very short times of contact, one may resort to penetration model for the 

fluxes. The model suggests: 

N� = C�
∗�
D�

πt
     (177) 

describing the instantaneous surface flux for species “i”. For long times, one may use 

the simple equations of the film model, with an instantaneous reaction rate: 

N� =
D�

δ
C�
∗     (178) 

The instantaneous reaction rate means a zero concentration at the catalyst surface, 

which necessitates a very active catalyst with high loading or high dispersion. This 

formula shows that in a diffusion controlled scenario, hydrogen gradually enhances 

the advantage of being a better diffusant, as it approaches the surface.  
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Figure 37. Variation of solubilities with temperature and pressure and the solubility 

ratio at 1.5 MPa. The ratio does not change much with pressure. 

 

The reason is that the exponent of D, described as n below in Figure 39 increases 

from 0.5 and finally reaches 1, which represents the film model. Actually, this is the 

unification brought by the film-penetration model. 
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Figure 39 presents that the flux of hydrogen increases as it reaches the surface, 

comperatively to carbonmonoxide. A clearer way to picture this is to plot the fluxes 

predicted by both models  and for both species at different temperatures. These are 

given in Figure 40. 

 

 

 

Figure 38. Diffusivities and diffusivity ratios of FTS reactants at 1.5 MPa. 
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Figure 39. H2 to CO diffusivity ratios as H2 accumulates on the surface (as n 

increases). 

 

Figure 40 shows that at 450 K, the initial surface fluxes of both species are almost 

the same. But at higher temperatures, for example at 550 K, significantly more 

hydrogen is transported through the wax. The reason is, the slopes for both the 

diffusivity and solubility of hydrogen are steeper and more sensitive to temperature, 

than the slopes of carbon monoxide. At long contact times, the transport rate of 

carbon monoxide decreases much more than the rate of hydrogen, in scenario of 

diffusional control. Hence hydrogen diffuses much faster than carbon monoxide does 

in almost any case, so if their relative flux is to be controlled, the feed, thus 

interfacial concentrations should be manipulated. That is, to adjust the ratio of 

adsorbed hydrogen and carbon monoxide on the surface, the ratio of their amounts in 

the gas phase must be modified accordingly. 
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Figure 40. Reactant fluxes. Top: Penetration theory, bottom: film theory. Blue 

describes CO and red describes H2. 
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4.2.1.2. Steady-State Effectiveness Factors for Bimolecular Power-Law Surface 

Reactions 

 

Unlike homogeneous reactions considered before, a unique steady-state may not 

exist for surface reactions. This can occur even in isothermal systems, due to the 

highly nonlinear reaction rate expressions. Here, steady-state distributions and 

possible multiplicities will be demonstrated. 

Inside a wax film, which is dilute in terms of the diffusants, one can write the species 

transport equations for hydrogen and carbon monoxide at steady state: 

d�C��
dx�

= 0,
d�C��

dx�
= 0    (179) 

Since the reaction occurs at the boundary, reaction term is included in the boundary 

conditions: 

at x= 0, C�� = C��
∗   and  C��

= C��

∗

at x= δ, −D��

dC��

dx
= k"C��

�C��
�

at x= δ, −D��

dC��
dx

= νk"C��

�C��
� 

   (180) 

where k" is the surface reaction rate. Here, a general power law kinetic expression is 

used. It is also shown that general power law relations can easily represent various 

forms of LHHW kinetics, if the applied pressure range is not more than an order of 

magnitude [213, 214]. The stoichiometric coefficient, ν, can be obtained from the 

general form of the Fischer-Tropsch reaction: 

(2n+ 1) H� + n CO → C�H���� + n H�O   (71) 

Upon unitizing the coefficient of hydrogen, the stoichiometric coefficient for carbon 

monoxide, for paraffin formation only, would be: 

ν =
n

2n+ 1
     (181) 

Sole methane formation is usually not desired, therefore n ≠ 1. For  n = 2, ν = 0.4 

and for large n, ν approaches 0.5. When n is around 20, ν ≅ 0.48. This value will be 

used for the stoichiometric coefficient. For sole olefin production, ν = 0.5 for carbon 

chains of any length. Equations-(179) and (180) can now written as: 
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D��

C��

∗ − C���

δ
= k"C��s

�C��s
�

D��

C��
∗ − C���

δ
= νk"C��s

�C��s
�

   (182)  

Subscript “s” stands for surface concentration. The number of parameters in the 

equations above can be reduced by using the second Damköhler number for species 

“i”: 

Da��� =
k"δ

D�
     (183) 

The use of the Damköhler number is not for non-dimensionalization, but for 

parameter lumping only. Also, one may define the diffusivity ratio as: 

Da����
Da����

=
D��

D��
= γ    (184) 

Now, the Equations-(182) become: 

f� �C��s,C��s� = Da����
 C��s

�C��s
� − �C��

∗ − C��s� = 0

f� �C��s,C��s� = νγDa����
 C��s

�C��s
� − �C��

∗ − C��s� = 0
   (185) 

At 500 K, numerical values for equilibrium concentrations and the diffusivity ratio 

can be substituted into Equations- (185). Then, they can be solved for any Da����
. 

The algebraic Equations- (185) are mostly nonlinear for various values of a and 

b. They can be solved for species’ surface concentrations with a code using Newton-

Raphson (NR) root solving algorithm and combined L-U decomposition. The 

resulting surface concentrations will yield the effectiveness factor, which can be 

defined as: 

η =
reaction rate at the surface

reaction rate with interfacial conditions
 

η =
k"C���

�C���
�

k"C��

∗ �
C��
∗ �

= �
C���

C��

∗ �

�

�
C���
C��
∗ �

�

   (186) 

Da����
 is varied between 10-6 to 103. For low Da����

, the physics represents almost 

physical absorption and saturation in the film is inevitable, since the reaction is very 

slow. High Da����
 should mean very fast reactions and therefore the reaction is 
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diffusion controlled. The results for effectiveness factor are plotted in Figure 41. A 

more conditioned solver is necessary to resolve cases with negative orders, due to the 

existence of multiple roots, even at isothermal conditions. 

  

Figure 41. Effectiveness factors for various reaction orders. a: order of H2, b: order of 
CO. 

 

Since CO is a poisoning species, its order must be negative, similar to the literature 

data given in Table 5. For a =  1 and b < 0, effectiveness factors may take values 

higher than 1 at some Da����
 values. This is shown on Figure 42 below. Such a 

behavior was also shown by Roberts and Satterfield [215, 216] in isothermal LHHW 

1 2 3 4 5 6 7 8 9 10 

11 
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kinetics and by Rajadhyaksha et. al. [217] in nonisothermal LHHW and general 

power law kinetics, both for homogeneous reactions. The possible multiplicity 

regions will be shown exactly, since these regions are not displayed clearly by the 

authors. 

 

Figure 42. The formation of the peak in effectiveness factor and transition into 
multiple steady-states. Numbers define the order of CO, i.e. b. 

 

As b decreases, the peak in the effectiveness factor vs Da����
 plot gets curved 

backwards. In this case, multiple steady states occur, and their formation depends on 

initial conditions [218]. The roots of the multiplicity cases above were found by 

reducing the system into a single equation: 

f�C��s�= νγ �C��

∗ − C��s�− �C��
∗ − �

C��

∗ − C��s
Da����

C��s
��

�
�

� = 0   (187) 

with  

-1

-1.1

-1.25

-1.35 

-1.39 
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C��s = �
C��

∗ − C��s
Da����

C��s
��

�
�

    (188) 

Then a bracketed NR method is used to find the first root, C��s
�. After that, the 

found root is eliminated by employing: 

g�C��s� =
f�C��s�

C��s− C��s
�    (189) 

 

Figure 43. Effectiveness factors with negative orders. 

 

This is followed by using an open NR formalism to find the second root. The same 

procedure is again applied in finding the third root. The code for this program is 

given in Appendix-F. The results are given on Figure 43. Multiplicities, according to 

the situation when the physical constants, i.e. Da����
, are known, are marked with 

oval circles. From the perspective of experimentation with unknown kinetic data,  

η > 1 would directly mean multiplicity, since the effectiveness factor can be 

experimentally obtained. 

 

  

Multiplicity
regions 

 

Regions of no-steady-state 

For n = -2 and n = -2.5 
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It should also be noted that there occurs to be a limiting Da����
 for each negative b 

value where a steady-state condition does not exist below it. The exact boundaries of 

this region may be overshadowed by the tolerances set in the NR algorithm. 

Nevertheless, the regions for b = −2 and − 2.5 are roughly displayed in Figure 43. 

Such behavior may indirectly mean oscillatory kinetics. 

 

4.2.1.3. Step 1: Conceptual Periodic Operation with General Negative Order 

Kinetics 

 

Moving on from the steady-state solutions and effectiveness factors of a general 

power-law surface reaction in a film, one may suggest employing high Da�� numbers 

to bring effectiveness up to values larger than one. From the definition of Da��, one 

may suggest thicker liquid films, but it is logical to keep the film thickness small as 

possible for a fast reaction, since large films would lead to higher diffusional 

resistances and therefore higher residence times. This is due to an increase in times 

spent by the molecules to reach the catalyst. So, thinner films should lead to smaller 

reactors with short residence times. This is valid as long as there is no recycle, in 

accordance with the hypothesis of microreactors. 

At this instance, a special case of a surface reaction can be investigated, which 

approximately represents the FTS. With the knowledge that CO poisons the catalyst 

surface, CO should have a negative degree in the reaction rate expression. Similar to 

the previously given rate expressions, one may assume: 

r��
= k"

C��s
C��s

�     (190) 

This forecasts that rates can be enhanced, when CO is kept at low concentrations 

near the surface. This may be accomplished by operating the reactor in unsteady-

state, since steady-state rates would be rather low. An option is to feed H2 and CO in 

a sequential and periodic manner. With a predefined switching period, t��, a realistic 

description of such an operation would be a smoothed square wave for interfacial 

concentrations. This means a frequency of 2t��. The corners of the square wave are 
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smoothed by a logistic function, which has an s-shaped sigmoid geometry. The width 

of the smoothed region is selected as t��/2.  For H2, the mathematical translation is: 

f����,��
(t)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1

1+ e−(8e/t��)t
 ,                 for  0 < t < t��/4

1,                                                 for  t��/4 < t < 3t��/4

1 −
1

1+ e− (8e/t��)t
 , for  3t��/4 < t < 5t��/4

0,                                                 for  5t��/4 < t < 7t��/4
1

1 + e−(8e/t��)t
 ,                 for    7t��/4 < t < 2t��

  (191) 

and f����(t + 2t��)= f����(t), since 2t�� is the period of the wave. For CO: 

f����,��(t)=

⎩
⎪
⎨

⎪
⎧

1

1+ e− (8e/t��)t
,                  for  0 < t < t��/4

1,                                                for  t��/4 < t < 3t��/2

f����,��
(t − t��),                   for    3t��/2 < t

  (192) 

An example is given in Figure 44. A smoothed function is also need for attaining 

convergence in the numerical solutions that follow. Now for both species, the 

problem can be defined as: 

D�

d�C�
dx�

=
dC�
dt

 ,

at x = 0,             C� = f����,�(t)C�
∗

at x = δ, −D�

dC�
dx

= r�

at t = 0,      C� = C��

   (193) 

where f����,�(t)C�
∗ represents the time dependent fluctuating interfacial 

concentrations. As numerical values, δ is taken as 50μm, C���
= C��� = 5 mol/m3. 

Diffusivities and solubilities are calculated at T = 500 K and P = 1.5 MPa. The 

values of γ and ν are kept as the same. The reaction rate constant is taken as 1 

mol/m2s, which leads to Da����
= 1090. In steady-state, the system is clearly in the 

multiplicity region, as can be seen from Figure 43.  

The physics may be considered to represent annular flow. When clock time is 

replaced with exposure time, the interfacial concentrations change as hydrogen and 

carbon monoxide are periodically blown through the gas core. If the core is fast and 

concentrated with hydrogen and carbon monoxide, one may assume that interfacial 

concentrations switch according to the wave function all along the contact line. The 
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velocity field in the wax film is omitted since the aim is to demonstrate rate 

enhancements only qualitatively. For further analysis, a 2D model may be employed. 

 

Figure 44. Smooth variations of H2 and CO with tsw = 0.05 s. Both species are fed in 
the first time period, and then H2 feed is interrupted. 

 

The problem numerically solved with COMSOL (version 4.3b). The solution is 

obtained by taking fixed time steps. This is done since freely taken time steps lead to 

numerical errors in this problem since there are sharp changes in the reaction rate. 

Free time steps lead to a large number of dents on the time trends of the reaction rate. 

The eventual steady-state depends on the initial concentrations. In Figure 45, they are 

shown by points 1, 2 and 3 for the selected Da����
 It is observed that for high C���

 

and very low C��� the system tends to state 3, and as C��� increases, the system 

tends to state 2 and then to state 1. 

For t�� = 0.05,0.1,0.2 s, the unsteady case given by Equation-(193) is solved. The 

time trend of reaction rate is given in Figure 46 and concentrations above the surface 

for a single switching period is given on Figure 47. 
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Figure 45. Multiplicity at Da����
= 1090 . 

 

Figure 46 shows that 1000 fold rate enhancements are possible. The dents in this 

figure are due to numerical errors coming from faulty time stepping, which are not 

completely prevented by taking fixed time steps. But these errors neither change the 

characteristics, nor the accuracy of the results that come after them. As demonstrated 

by Figure 47, there are secondary peaks of H2 on the surface. The reason may be 

attributed to multiplicity, since the system may tend quickly to another state (akin to 

Figure 45), thereby giving an additional response.  

By calculating the area below the time trend curves, one can obtain the total amounts 

reacted. The total amounts reacted between time periods t1 and t2 , 

n��
= � r��

��

��

dt     (194) 

can provide a better quantitative judgment on the improvement of reaction rate. 

These results are shown by Figure 48. The figure shows that an optimal switching 

time with respect to the magnitudes of the reaction rate constant and the total 

exposure time must exist. Upon determining it, significant rate enhancements may be 

obtained. 

     1  

     2 
     3  
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Figure 46. Time trend of reaction rate with different switching periods. 

 

 

Figure 47. Concentrations above the surface for t��  =  0.05 s . 
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Figure 48. Total amounts of H2 reacted over time with different switching periods. 

 

The reaction rates are adjusted to prevent the occurrence of negative concentrations 

and almost infinitely fast rates. This is done by assuming the reaction rate as zero 

when the CO concentrations are less than 0.01C��
∗ . Decreasing this limiting value 

tends the system to negative concentrations, thus smaller time steps are needed. It has 

been observed that selecting the limiting value does not change the physics much. 

For smaller limiting values, reaction rate peaks become sharper and have higher 

values, otherwise they get broader and their maximum decreases. However the total 

amounts reacted do not change much, and the general characteristics is preserved. 

One may also provide the average rates for different switching times. For t�� equal 

to 0.05, 0.1 and 0.2 s, the average rates (in mol/m2) become 6.702, 13.350 and 

19.612 respectively, where the unmodified steady-state rate is 0.055 mol/m2 only. 

The order of CO was selected as − 2 for this section to demonstrate the behavior 

vividly. The rate enhancements are expected to be still prevalent, when the order of 

CO is smaller than −1. 
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4.2.1.4. Step 2: Periodic Operation with Realistic Kinetics and No Diffusion 

 

In this section, now realistic kinetics will be employed to demonstrate the rate 

enhancements in a semi-batch setup without any effects diffusion. The mechanism of 

Kellner and Bell [162] is used by Uner [219] to explain the effects of alkali 

promoters on the selectivity of FTS products. In this work, pseudo equilibrium 

expressions of methane formation rates are given. When the reaction product is 

mostly methane: 

r�� = �k��K�K�
�K�K�K� �k��K�P��

�
�.�

+ k�K�P��� K�
�� �

�.� P��

P��
�.�  (195) 

Although there are many rate and equilibrium constants, they can be lumped to get: 

r�� = k��P��

�.� + γP���
�.� P��

P��
�.�   (196) 

where 

k� = �
k��k�K�K�

�.�K�K�K�

K�
� �

�/�

, γ =
k�K�

k�K�
�.�  (197) 

γ shows the relative rates of CO2 and H2O formation. Higher γ means that CO2 

formation dominates and vice versa. The value of γ depends on the nature of the 

catalyst. First, methane formation is considered, so from reaction stoichiometry: 

r��
= −3r�� = r��    (198) 

When longer hydrocarbons dominate, methane formation rates take the form: 

r�� = k�� �(1 − α)K�K�
�.�K�K�K�

� �k��K�P���
�.�

+ k�K�P��� k�K�
�� �

� �⁄ P��
� �⁄

P��
� �⁄

  (199) 

Lumping results in: 

r�� = k���(1 − α)�/��P��

�.� + γP���
�/� P��

� �⁄

P��
� �⁄

  (200) 

with 

k��� = k�� �
k�K�K�

�.���K�K�K�
�

k�K�
� �

�/�

   (201) 

The chain growth probability is given in implicit form: 
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(1 − α)�/�

α

=
k�� + k���K�P���

�/�

�k�
�K�K�K�

�.�K�K�K�
�� �k��K�P���

�.�
+ k�K�P��� k�K�

�� �
� �⁄

1

P��
� �⁄ P��

� �⁄
  (202) 

It can be simplified by neglecting k�� and lumping parameters: 

(1 − α)�/�

α
= k�

P��

�/�

�P��

�.� + γP���
�/�

P��
� �⁄

   (203) 

Here: 

k� = �
k��K�

�K�

k�k�K�K�K�
�.�K�K�

�    (204) 

Hence, α is solved for each P��
and P�� to get the reaction rate at that instant. 

Without considering diffusion, the stoichiometric consumption of CO and H2 is 

investigated, in order to see if the behavior is the same with the previous section. 

Thus, a semi-batch reactor is selected, where again the reactants are fed periodically. 

For H2, one may give the equation to be solved: 

dP��

dt
= r��

+ pf(t��,t)    (205) 

The pf (periodic forcing) function is the periodic feed function, which is time 

dependent. The function is a smoothed square wave, similar to the one presented in 

the previous subsection, but this time, the feed is based on stoichiometric ratios given 

by Equation-(198). It is presented by Figure 49.  
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Figure 49. Square wave with stoichiometric ratios. 

 

Note that when the relative domination of CO2 and H2O formation is predefined, 

there are two rate constants for longer hydrocarbon formation. The first one, k���, 

can always be compounded with time as a Damköhler number: Da= k���t. This 

means that if k� is known, which is to be found from experiments, one may run an 

analysis based on the dimensionless time described by Da and see the response of 

kinetics. The speed and behavior of the response will then be quantified with respect 

to the relative speed of kinetics and the amount of periodic feed.  

Here, the rate constants are taken as 1. Thus, time has also taken as a unitless 

quantity. Chain growth probability is solved with an NR algorithm at each time step. 

The oscillations in partial pressures and reaction rates are given in Figure 50 and 

Figure 51. 

The main result from simulations is that Figure 50 and Figure 51 show a similar 

trend with Figure 46 and Figure 47. A steady-state rate for comparison is not possible 

in this case. In addition, the simulations show that the H2/CO ratio should be smaller 

than 3. In the simulations, CO started to accumulate and reaction rates started to fall. 

Therefore the CO partial pressure was limited to 1, only then a periodic steady-state 
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in reaction rate was obtained. Variation of  k� might give the H2/CO ratios according 

to chain propagation probability. 

 

Figure 50. Oscillations in partial pressures. 

 

 

Figure 51. Oscillations in reaction rate. 
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4.2.1.5. Step 3: A Compartment Model of Taylor Flow for FTS 

 

In the previous sections, periodic operation of FTS was investigated first by solving 

the diffusion-reaction problem with negative order power law kinetics and then by 

solving the more realistic rate equations in a batch system without diffusion. Now the 

methodology can be compounded into a more realistic setup.  

This part will implement FTS into Taylor flow with help of a conceptual model. 

Since Taylor flow is naturally periodic, its coupling with FTS seems quite 

interesting. Although the feasibility and possibility is not known, it will be assumed 

that sequential bubbles of almost pure hydrogen and carbon dioxide are fed to the 

microchannel. The feed gases for FTS in conventional reactors are usually mixed as 

syngas. If the flow parameters of Taylor flow, like film thickness, bubble length, 

bubble velocity and liquid slug size, can be tuned, one may increase the selectivity 

and/or conversion of the process. The flow parameters depend on the geometry of the 

gas-liquid micro-contactor, the gas holdup and physical properties of the gas and 

liquid. 

Since coupling multiphase flow fields with reactions involving many species is very 

laborious in CFD simulations, one may only run multiphase flow simulations with 

where hydrogen and carbon monoxide are fed into liquid paraffinic wax. This would 

give the flow parameters, like bubble and liquid slug lengths for example. In 

addition, CFD may mark out the region of feed velocities where Taylor flow reigns, 

akin to Figure 2.  However, to resolve the film thickness in numerical simulations, a 

very dense mesh with aspect ratios close to unity is needed. It is also important to 

note that microchannels with non-circular cross-sections lead to different bubble 

shapes, lengths and film thicknesses.  

Assuming that the flow and kinetic data is available, one may create a relatively 

simple model for Taylor flow. A representative scheme for a circular channel is 

given in Figure 52. The model is discrete in space and time. Compartments are 

defined to encapsulate the bubble and the liquid slug. The compartments are like unit 

cells that are lined up along the flow direction. Each comprises the film surrounding 

the bubble, the front cap of the bubble, the liquid slug and the rear cap of the bubble 

ahead. The bubble length is taken as the film length, L�, and the slug length also 
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comprises the length of two bubble caps, which are assumed as spherical. It is given 

as L�. So, length of each compartment would be L���� = L� + L�. L� and L� can be 

obtained from CFD simulations. 

Next, an important simplification is made on discretizing the time. Although the 

model is transient, time is divided into periods in which the bubbles and liquid slugs 

are assumed as stationary and confined to the compartment. After each period, they 

leave their compartment and move into the next one. As bubbles leave their previous 

compartments, they shrink instantly due to gases absorbed by the wax. The period for 

switching compartments is given as t� = L����/v�. v� is the translational velocity of 

the bubbles. The velocity of the bubbles is assumed as constant throughout the 

compartments. The velocity and the lengths of the bubbles may vary slightly for 

bubbles of hydrogen and carbon monoxide. Therefore bubble collision and 

coalescence may occur for various gas holdups and channel lengths in reality. Such 

phenomena are neglected. 

 

Figure 52. The compartment model of Taylor flow 

 

In each compartment there are three regions: the film, the bubble and the liquid slug. 

These interact with each other by exchanging mass by diffusion and convection. 

According to the mass fluxes indicated by dotted arrows in Figure 52, the film is fed 

via reactants that are dissolved from the bubble (ṅ�) and loses volatile products to the 

bubble (ṅ��). It is also fed by the wax coming from the liquid slug in front of the 

bubble (ṅ��) and loses it to the slug behind (ṅ�). For the bubble, additional mass 
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transport occurs via the front and rear caps, in addition to the dissolution-

vaporization dynamics that occur on the film interface. The reactants also dissolves 

from the caps (ṅ���) and join the contents of the liquid slug. Considering the liquid 

slug, it is fed by the wax leaving the film that surrounds the bubble ahead of it (ṅ�); 

and loses its contents to the film behind (ṅ��). In addition, the slug is enriched in 

terms of the reactants that dissolve from bubble caps (ṅ���). 

Now that the formulation is almost complete, one may write the equations to be 

solved. During the start-up of Taylor flow, only a single compartment exists. The 

dissolution and reaction that occur during bubble formation is neglected. Let “i” 

denote the reactants, “j” denote the products and “k” denotes both for simplicity. 

Subscripts F,B and S denote film, bubble and slug. Superscripts denote the 

compartment number. So for the time period 0 < t < t�, the equations for the film 

can be given as: 

∂C�
�
�

∂t
+ v� �1 −

x

δ
�
∂C�

�
�

∂z
= D�

∂�C�
�
�

∂x�
 

at x= 0, C�
�
�
= C�

�
�

∗

at x= δ, −D�

∂C�
�
�

∂x
= r�

at z= 0, C�
�
�
= 0

at t = 0, C�
�
�
= 0

    (206) 

Assume that the first bubble is filled with hydrogen. The velocity profile is taken as 

Couette flow, and a plug flow assumption is not made since in Section 4.2.2.5 it will 

be shown to be important for the diffusion to the catalytic wall. The interfacial 

velocity and the exact shape of the velocity profile are to be determined from CFD 

simulations. The boundary condition at the wall corresponds to the surface reaction 

rate. This may be bulk kinetics or it may be defined a microkinetic model, which 

brings its own set of ODEs along. Note that the boundary condition on the interface 

is given for reactants only. For products, it becomes: 

at x= 0, −D�

∂C�
�
�

∂x
= k� �C�

�
�

∗
− C�

�
�
�   (207) 
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k� is the mass transfer coefficient to the vaporization of volatile products. It is not 

yet known, but ways of estimating it are available. One may solve the area averaged 

form of the diffusion equation for evaporation into the bubble. In order to solve the 

equation, the velocity field in the bubble has to be known. For many flow fields, a 

simple solution is possible for the average concentration in the bubble [220]. Note 

that the interfacial concentrations are actually functions of the species’ concentration 

inside the bubble. For the reactants, simple solubility data can be correlated and used, 

as done with Equations (175) and (176). But for the volatile products, the dynamics 

are governed by the thermodynamics of liquid-vapor equilibria, which induce some 

complexity. The last boundary condition denotes that the liquid phase is initially free 

of reactants. 

For the bubble, one can write an equation analogous to the transient stirred tank: 

V�
dC�

�
�

dt
= − 2A�C�

�
�

∗
�
D�

πt
− 2π(R − δ)� �−D�

∂C�
�
�

∂x
�
���

�
��

�

dz   (208) 

The first and the second terms on the right hand side denote the loss through 

dissolution from the caps and the lateral surface respectively. V� is the volume of the 

bubble: 

V� =
πh�
3

�3(R − δ)� + h�
�� + π(R − δ)�L�   (209) 

 and A� is the surface area of the caps: 

A� = 2π(R − δ)h�    (210) 

h� is the length of the sphere cap. It depends on surface tension and the amount of 

liquid flow. h� may be determined from CFD results or approximated from 

Bretherton’s lubrication solution [221]. 

For the products, the equation for the bubble can be given as: 

V�
dC�

�
�

dt
= 2π(R − δ)k� �C�

�
�

∗
− C�

�
�
�   (211) 

The re-dissolution from caps is neglected and the above equation is considered as to 

be indicating the net change. At t = 0, C�
�
�
= 0 where C�

�
�
= C�

�
��

, the initial 

concentration of the reactant inside the bubble. 
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And finally, one can write the equations for the liquid slug, in a similar fashion: 

V�
dC�

�
�

dt
= A�C�

�
�

∗
�
D�

πt
− 2πv�(R − δ)�C�

�
�
   (212) 

with C�
�
�
= 0 at t = 0. V� is the volume of the liquid slug: 

V� = πR�L� −
πh�
3

�3(R − δ)� + h�
��   (213) 

The size of the liquid slug in front of the first bubble is actually much larger that its 

periodic value. However, bounds are kept as it is defined before. It would not affect 

the long time solution of this problem, when the duct is filled with bubbles and liquid 

slugs. 

Note that both the bubble and the liquid slug are represented as well mixed systems. 

Such behavior is expected due to the possible circulations in both phases. At the 

same time, it is a necessary modification to simplify the model. 

So now the problem consists a PDE and 2 ODE’s for each species. For further 

periods of time, the ducts will be full of bubbles and number of equations will then 

be multiplied with number of compartments too. At first sight, the number of 

compartments may be found from L/L����. However, L���� will be shown to be 

changing when bubbles shrink. Furthermore, number of compartments will not be 

equal to an integer, but for ducts that are long enough to contain few bubbles, the 

production rates should be proportioned well enough. 

For the next time period, t� < t < 2t�, the equations for the bubble and the liquid 

slug evolve slightly, so as the boundary conditions. For the first compartment, the 

initially zero concentrations of the film and liquid slug will be non-zero. This is 

because of the products of the film and the dissolved reactants from rear sphere cap 

of the previous bubble will be present in the film and in the slug. Here, another 

perfect mixing assumption is made. The new initial values at t = t� will be the 

average of the amounts of species that are lost from the film and from the back of the 

bubble during 0 < t < t�: 
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C�
�
�
= C�

�
�
=
∫ A�C�

�
�

∗
� D�
πt
dt +

��
�

∫
2π(R − δ)�v�

δ ∫ �1 −
x
δ
�

�

�

��
�

C�
�
�
�
����

dxdt

V� + V�
  (214) 

V� = 2πRδL� is the volume of the film. 

For the film, the equations are the same, but the initial concentration changes since 

the new bubble is now full of carbon monoxide. For the bubble, the equations are 

also the same. But for the liquid slug, there is a slight change, since now there is a 

bubble ahead in compartment 2: 

V�
dC�

�
�

dt
= A�C�

�
�

∗
�
D�

πt
+ A�

��C�
��
�

∗
�
D�

πt
− 2πv�(R − δ)�C�

�
�

+
2π(R − δ)�v�

δ
��1 −

x

δ
�

�

�

C�
��
�
�
����

dx    (215) 

For the products: 

V�
dC�

�
�

dt
= − 2πv�(R − δ)�C�

�
�
+
2π(R − δ)�v�

δ
��1 −

x

δ
�

�

�

C�
��
�
�
����

dx  (216) 

A�
�� is the area of the rear cap of the bubble ahead. This is an important point, since 

the bubble in compartment 2 has now shrinked. The size can be taken as proportional 

to contents: 

L����
L����

=
δ���
δ���

=

∑ CB
I
k
�
t = n tp

�

∑ CB
I
k
�
t = (n − 1) tp

�

   (217) 

n and n-1 denotes the beginning and end of time periods  

From now on, one needs to solve the above equations. Starting from the first bubble, 

the simulation must tend to a periodic steady-state in terms of production after the 

duct has been filled with bubbles. With different flow characteristics, one should 

track the changes in overall reaction rate. By using n as the compartment number: 

total rate= 2πR�� rate�
��

�

�

dz

�

   (218) 

Solving the rigorously coupled equations, one needs programming as well as PDE-

ODE solvers. A possible tool is the joint COMSOL-Matlab platform, where the 
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solvers of COMSOL can be programmed with Matlab. Thereby, the outputs of each 

compartment may be fed as initial values and their data can be collected as desired. 

 

4.2.2. Diffusion into a Flowing Liquid Film With Reaction on Solid Surface 

 

In this section, the AIBM will be applied to heterogeneous reaction-diffusion 

problems. The aim is to obtain a formulation for arbitrary surface kinetics involving 

the diffusion and reaction of a single species in an arbitrary velocity field. This 

would imply a general resolution for the reaction-diffusion dynamics in thin flowing 

films, which may constitute a gas-liquid-solid or a liquid-liquid-solid system. The 

general formulation is then expected to cover a large class of microfluidic mass 

transfer cases, coupled with heterogeneous reactions. 

In presence of homogeneous reactions, flow fields were found to be of minor 

importance in Section 4.1.2.2. However, in heterogeneous reactions there exists an 

initial period that involves the diffusion of absorbed species to the catalytic wall. 

This period is purely physical absorption. The sensitivity of physical absorption rates 

to different flow fields has been demonstrated in Section 4.1.2.1. 

Since the general treatment is analytical, in addition to providing quantitative and 

qualitative predictions, it would also present ease in solving inverse problems 

(parameter estimation) or in optimization. At least, it can be a precursor or an 

initiator before running rigorous numerical analysis on these subjects. Besides, it will 

be shown that the AIBM solution also presents some extra results which cannot be 

obtained from standard analytical or numerical methods explicitly.  

In this section, like the ones before, it is assumed that the resistance lies in the liquid 

phase. Unlike gas-liquid systems, this seems to be a very stringent condition for 

liquid-liquid synthesis. For a gas-liquid-solid system, Taylor flow in a wall coated 

monolith can be given as an example [222]. It will be seen that the general problem 

is very similar to the cases solved in Section 4.1.4. Here, only a single species is 

treated again. Such a model would be applicable to problems where the adsorption 

step of the modelled species is rate determining, which is abundant in the field of 

heterogeneous reactions, from ammonia synthesis to CVD operations [213]. 
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4.2.2.1. Plug Flow: Zero and First Order Reaction 

 

Starting from the first order reaction, the problem can be described as 

∂C

∂t
= D

∂�C

∂x�
                      

at t = 0,   C = 0

at x= 0,   C = C∗

at x= δ,   
∂C

∂x
= −

k

D
C

   (219) 

Since the film is in plug flow, t = z/v�. This linear problem is analyzed first, since it 

is one of the rare cases with an exact solution. Steady state solution is: 

C�
C∗

=
1

1+ Da��
�1 + Da�� �1 −

x

δ
��   (220) 

with Da�� = kδ D⁄ = k k�⁄  33. As Da�� → ∞  the solution tends to C� C∗⁄ = 1 − x δ⁄  

as expected; infinitely fast reactions lead to zero wall concentration. On the other 

hand for Da�� → 0 the profile becomes flat: C� C∗⁄ = 1. The transient solution can 

be obtained via separation of variables: 

C�
C∗

=
1

1+ Da��
�1 + Da�� �1 −

x

δ
�− �B�exp�− λ�

� Dt

δ�
� sin�λ�

x

δ
�

�

���

�  (221) 

where  

B� =
(1+ Da��)∫ sin(λ�ξ)dξ

�

�
− Da�� ∫ ξsin(λ�ξ)dξ

�

�

∫ sin�(λ�ξ)dξ
�

�

  (222) 

with eigenvalues obtained from Da�� = − λ�cot(λ�). Moving on to AIBM, one 

should note that the PT solution can be used up to a certain time for physical 

absorption, before which one can assume that the wall concentration is 

approximately zero. After that, chemical reaction takes place at the wall, and the 

profile is given by the AIBM. This is time to reach to the wall, t�, the same given in 

the penetration thickness concept. From Equation-(21), one may expect t� = δ�/16 . 

But not only this value is devised on a pre-determined dimensionless concentration; 

it will also not work for films flowing with velocity profiles different than plug flow.  

                                                
33 Similar to Part-C, Da�� is taken as a grouping parameter. Hence it is not always dimensionless, for 
example for an nth order reactions. This would provide simplicity during reactions of arbitrary type. 
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To obtain the IMBE, the PDE is integrated, but this time from 0 to δ, with δ as the 

constant film thickness. In the following equation, wall concentration, C�, is time 

dependent. This leads to: 

d

dt
� C dx
�

�

= D
∂C

∂x
�
���

− D
∂C

∂x
�
���

= − kC� − D
∂C

∂x
�
���

  (223) 

A second order polynomial is chosen and the boundary conditions given in Equation-

(219) are applied, along with the boundary condition at x= δ,C = C� . C� is the 

concentration above the catalytic wall. The profile becomes: 

C = C∗+ (C∗− C�)��
x

δ
�
�

− 2
x

δ
�+

k

D
C� �x−

x�

δ
�  (224) 

and the surface flux: 

N = 2D
(C∗− C�)

δ
− kC�    (225) 

After substituting the profile into the integral balance, an ODE for C� is obtained: 

C∗ − C�(1 + Da��)=
δ�

12D
(4 + Da��)

dC�
dt

   (226) 

This equation is to be integrated. But the time at when the concentration front 

reaches the wall is needed for the integration. Note that the factor in front of the 

bracket of the right hand side describes time. For now, this factor will be taken as the 

time to reach the surface arbitrarily: 

t� =
δ�

12D
     (227) 

The solution of this linear ODE is simple, with C�(t�)= 0, it yields: 

C� =
C∗

(1+ Da��)
�1 − exp �−

(1 + Da��)

(4 + Da��)
�
t

t�
− 1���  (228) 

Comparison with the exact solution (Figure 53) shows that the solution has good 

accuracy, especially near the interface. Furthermore, as t → ∞ , the quadratic profile 

gets a linear form and tends to the exact steady state solution. The accuracy of the 

AIBM solution decreases as Da decreases. However the error in surface flux 

expressions does not usually exceed 20%, before approximately reaching the steady-

state. There seems to be a hump of error near steady-state, but this can be avoided if 
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steady-state fluxes are used when steady-state is near. Hence, an approximate time to 

reach steady state may be necessary, and it will be provided. For Da�� > 1, the 

solution is very accurate, especially in terms of surface flux. 

 

 

Figure 53. Exact versus AIBM comparison for the concentration profiles of a first 
order surface reaction. 

 

From Equation-(220), one can see that for Da�� < 0.01, C� C∗⁄ > 0.99 ; thus the 

film gets almost saturated. If the contact times are not very short, then one may use 

simple batch reactor expressions in such a case, since concentration gradients vanish 

rapidly. 

 

Fo = 0.2
Da�� = 25

 

Fo = 0.2
Da�� = 1

 

Fo = 0.6
Da�� = 0.1
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Figure 54. Relative percent error in surface flux predicted by AIBM for a first order 
reaction. 

 

An immediate advantage of the AIBM solution is that it can handle a zero order 

surface reaction. A zero order reaction is actually an asymptote of Langmuir kinetics, 

in the case of complete kinetic control. Analytically and numerically, implementing 

the zero order surface reaction is difficult, since the BC becomes: 

at x = δ,   
∂C

∂x
= −kΦ(C)    (229) 

where Φ is the Heaviside step function. This renders analytical solutions impossible, 

and negative concentrations arise at initial contact times when Φ is not used. In 

numerical calculations, the step function is smoothed (as in Section 4.2.1) for ease in 

convergence. Physically, the step function should always be smooth since zero order 

reactions are never exactly zero order. An initial nth
 order regime must prevail at 

sufficiently low concentrations. Thus, smoothing is not just a mathematical 

adjustment. Nevertheless, this ensures additional complication and needs additional 

verification in numerical calculations. 

On the AIBM side, these difficulties vanish, since the initial sole diffusional period is 

not solved. Following the steps of the previous problem, one obtains the profile as: 

C = C∗+ (C∗− C�)��
x

δ
�
�

− 2
x

δ
�+ Da�� �

x

δ
− �

x

δ
�
�

�  (230) 
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and the wall concentration comes out as: 

C� = (C∗− Da��)�1 − exp �−
1

4
�
t

t�
− 1���   (231) 

Note that as t → ∞ , C� = C∗− Da��, which is exact. 

 

4.2.2.2. Arbitrary Surface Reaction 

 

In this case, the third boundary condition is replaced with 

at x= δ,   
∂C

∂x
= −

k

D
r(C�)    (232) 

This converts the PDE into a formidable nonlinear problem. Similar problems are 

also encountered in radiative heat transfer coupled with conduction. One may apply 

Laplace transform [223], but this would lead to singular Volterra integral equations, 

which are quite difficult to solve, even numerically. Moreover one can apply the 

theory of integral transforms [224, 225], but the visual form of the solution does not 

tell anything about the physics of the problem and one needs many numerical 

implementations for solving the integrals. 

The general profile can be written as: 

C = C∗+ (C∗− C�)��
x

δ
�
�

− 2
x

δ
�+ Da��r(C�)�

x

δ
− �

x

δ
�
�

�  (233) 

For a higher order polynomial, one cannot derive additional boundary conditions for 

this problem, in contrast to diffusion and diffusion with homogenous reaction 

problems. Hence, one may use moment equations of the type [226]: 

� x�(DC�� − C�)dx= 0
�

�

 , j = 0,1,⋯ ,n − 1  (234) 

� C(x,0)dx
�

�

= � x�
�

�

g(x)dx= 0 , j = 0,1,⋯ ,n − 1  (235) 

Although non-uniform initial distributions are allowed and a significant improvement 

in accuracy is possible always guaranteed, the application of the moment equations 

(i.e. the method of moments) may lead to intractable ODE’s for surface 
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concentrations.34 Therefore, one may resume the analysis by using Equation-(233) in 

Equation-(223). The ODE generated by the AIBM can be partially integrated. The 

integral is not simple, but the result can be presented in a separable form. Therefore, 

it is implicit with respect to C�: 

I(C�)= �
4 + Da��(dr dC�

�⁄ )

C∗− C�� − Da��r(C�� )
dC�

� = t
t�� − 1

��

�

  (236) 

Equation-(236) actually describes time inversely, in terms of surface concentration. 

In brief: 

t = t�[I(C�)+ 1]     (237) 

For a non-zero initial condition, Equation-(236) takes the form: 

�
4 + Da��(dr dC�

�⁄ )

C∗− C�� − Da��r(C�� )
dC�

� = t
t��

��

��

   (238) 

In this case, t� loses its physical meaning. The analysis in this part will be focused on 

fresh films with zero initial amounts of the reactant. So back to Equation-(236), 

instead of solving for C� for each time, one may numerically solve the integral I(C�) 

up to the steady-state concentration, C�
� , which is found from: 

(C∗− C�
� )= Da��r(C�

� )    (239) 

then inversely plot the values found for time to get the evolution of surface 

concentration. For a CAS, like Mathcad, this is a very easy task, and actually even a 

spreadsheet can handle it. Thus, the number of roots to be solved is decreased to one. 

Solving Equation-(239) for C� is usually a very simple task.  

Note that both the first two terms and the last term of the denominator approach to 

the steady-state surface flux as time progress. Thus, the denominator tends to zero. 

This means an infinite time to the get the exact steady state wall concentration, which 

is physically and mathematically sound. At different Da��, surface concentration are 

given for Freundlich and Langmuir type surface reaction rates: 

r�(C�)= C�
� , 0 < n < 1    (240) 

                                                
34 AIBM is related with the method of moments. Method of moments is actually a limited version  of 
method of weighted residuals, which is also a subset of FEM. Hence, AIBM can also be seen as a 
single grid overly simple finite element application. 
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r�(C�)=
C�

1+ KC�
     (241) 

 

 

Figure 55. Dimensionless concentrations on the wall for Freundlich type reaction rate 

for different orders. Straight lines: AIBM, dots: numerical solution. 

 

Figure 56. Dimensionless concentrations on the wall for Langmuir type reaction rate     

(K = 0.05). Straight lines: AIBM, dots: numerical solution. 

n = 0.3
Da�� = 0.5

 

n = 0.6
Da�� = 5

 

n = 0.8
Da�� = 10

 

Da�� = 40 

Da�� = 4 

Da�� = 0.4 
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In Figure 55 and Figure 56, the AIBM solutions are drawn up to a point where the 

steady-state is almost exactly reached.  

 

4.2.2.3. Times to Reach Steady State 

 

One advantage of this approximate analytical solution is the possibility to extract an 

explicit time to reach steady state. To accomplish this aim, the integral in Equation-

(236) must be resolved approximately. Since the denominator tends to zero, one may 

first choose a near steady state value for surface concentration, C�
• . This would be the 

upper limit in evaluating I(C�). C�
•  may be assumed as the point when difference 

between the first two and the third terms of the denominator decrease to 1% of the 

steady state surface flux, i.e. 0.01(C∗− C�
• ). Furthermore, it is a fact that quantities 

in linear parabolic and elliptic diffusion problems decay exponentially if a stable 

steady-state exists35. Thus, one may find the average of the denominator over the 

interval 0 to C�
• , then take it out of the integral. Since the denominator is equal to C∗ 

at  t = 0 and defined to be equal to 0.01(C∗− C�
• ) at t = t��, one may assume it as 

having the form: 

De= C∗exp(−αt)    (242) 

where α is an unknown decaying parameter. At the assumed steady-state, t = tst, 

one may isolate αtst: 

αtst = ln�
100 C∗

 C∗− C�•
�    (243) 

On the other hand, time averaging of the denominator gives: 

De���� =
1

tst
� C∗exp(−αt)
���

�

dt =
C∗

αtst
[1 − exp(−αtst)]  (244) 

After substituting the value of αt�� from Equation-(243): 

De���� =
C∗

ln�
100 C∗

 C∗− C�•
�
�1 −

C∗− C�
•

100 C∗
� ≅

C∗

ln�
100 C∗

C∗− C�•
�
  (245) 

                                                
35 This is evident in linear problems, where usual solutions obtained from classical methods like 
separation of variables have decaying exponential factors. 
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The behavior of the denominator is given Figure 57. As C�
• → C∗ the actual 

denominator tends to zero, and the averaged denominator De���� also shows this 

characteristic. 

Now since the denominator is a constant, and can be eliminated from the integral, 

Equation-(236) reduces to:  

 

Figure 57. De������ as a function of C�. 

 

I(C�)≅
1

De����
� 4 + Da��(dr dC�

�⁄ )dC�
� ≅ t

t�� − 1
��

�

  (246) 

However to evaluate it, one needs to specify C�
• . A rough approximation should be 

enough. For Freundlich type surface rates, one may use the following formulas 

obtained via successive substitution: 

C�
• = �

C∗− (C∗ Da��⁄ )� �⁄

Da��
�

�/�

 , for  C∗
(���) ��⁄

< Da��  (247) 

C�
• = C∗− Da���C∗− Da��C∗

�
�
�
 , otherw ise.  (248) 

For Langmuir, one may utilize its zero and first order asymptotes respectively: 

C�
• = C∗− Da�� K⁄  , for K > 5   (249) 

C�
• = C∗ (1+ Da��)⁄  , for K < 0.1   (250) 

C� 

De������ 
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or just go for Equation-(239). Thus, the approximate times to reach steady state for 

Freundlich and Langmuir type reactions can be given respectively as: 

tst = t� �
1

De����
(4C�

• + Da��C�
• �)+ 1�   (251) 

tst= t� �
1

De����
�4C�

• +
Da��C�

•

1 + KC�•
� + 1�   (252) 

or simply in general: 

tst = t� �
1

De����
�4C�

• + Da��r(C�
• )�+ 1�   (253) 

Equations (251) and (252) are applied for Freundlich and Langmuir expressions and 

results are presented in Figure 58. The intersecting linear lines are Equations (251) 

and (252), where curves are plotted from Equation-(236). The intersection point is 

the approximate steady-state.  

 

Figure 58. Finding approximate times to reach steady state. C∗ = 100. Blue: 

Langmuir (K = 0.5,Da= 30), red: Freundlich (n = 0.8,Da= 0.5). Straight: 

Equation-(236), dotted: Equations (251) and (252). 

It is observed that for Langmuir rates, the formulation underpredicts, and for 

Freundlich, the formulation overpredicts. For the test case presented above, 

Equations (251) and (252) yields the steady state time as 0.58 and 0.23 s for 

C� 

I(C�) 
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Freundlich and Langmuir respectively. The values exactly predicted by Equation-

(236) are 0.42 and 0.32. Although errors can be high as 50%, the formulation gives 

correct-to-the-order-of-magnitude results. The different behavior with respect to 

reaction rate expression comes from the simplifications done on the denominator 

term, whereby the characteristic of the rate expression is completely neglected. 

Nevertheless, one may add that as Da�� decreases, C�
•  increases. This suggests, when               

Da�� ≪ 4C∗ r(C∗)⁄ , Equation-(253) would simply reduce to: 

t�� = t� �
4C�

•

De����
+ 1�    (254) 

Numerical experiments show that, this is quite valid when Da�� is around 50 times 

smaller than 4C∗ r(C∗)⁄ . 

 

4.2.2.4. Fluxes and the Amounts Absorbed 

 

Using the general profile leads to the following equations: 

− D
∂C

∂x
�
���

= C∗�
D

πt
 , for t < t�

−D
∂C

∂x
�
���

=
2D

δ
(C∗− C�)− kr(C�) , for t > t�

  (255) 

n� = 2C∗�
Dt

π
 , for t < t� ;otherw ise:

n� = �−D
∂C

∂x
�
���

dt =

�

�

2C∗�
Dt�
π

+
2DC∗

δ
(t − t�)−

2D

δ
�C� dt

�

��

− k �r(C�) dt

�

��

 (256) 

Alternatively, by using Equation-(237) with I(C�) given by Equation-(236) and by 

applying the theory of inverse functions, the integrals of Equations-(256) can be 

inverted. This removes the necessity to solve I(C�) for C� at each time. Such root 

finding operations would be costly. Especially near steady state, good guesses would 

be necessary for convergence. Therefore, for t > t�, the following equation is simpler 

to use: 



153 
 

n� = 2C∗�
Dt�
π

+
2DC∗

δ
(t − t�)−

2D

δ
�tC� − � t dC�

��

�

�

− k�tr(C�)− � t �
dr

dC�
� dC�

��

�

�     (257) 

A sample result for the surface flux and the amount absorbed is provided in Figure 

58. The accuracy is quite good for both quantities. 

 

  

Figure 59. Left: surface fluxes, right: amounts absorbed. Straight line: AIBM, dotted 

line: numerical solution. The plots are given for Freundlich type reaction rate with             

n = 0.8,Da= 2.5 

     

4.2.2.5. Arbitrary Velocity Field 

 

All the analysis above was for plug flow, which is not always realistic for laminar 

microflows. In this part of the analysis, a stationary velocity field will be assumed: 

v(x)= v� �a� + a�
x

δ
+ a� �

x

δ
�
�

+ ⋯�= v�f(x)   (258) 

Now the inspected PDE becomes, 

f(x)
∂C

∂t
= D

∂�C

∂x�
     (259) 

subject to the first two boundary conditions of Equation-(219) and to Equation-

 (232). As before, v� has vanished according to the substitution t = z/v�. To 

t (s) t (s) 

N �
mol

m�s
� n� �

mol

m�
� 
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use in kinetic studies, this problem was investigated and solved by Katz [227] in 

tubular geometry for arbitrary kinetics and velocity profile. Here, it will be shown 

that the AIBM solution is much simpler, more straightforward and much more 

general. Here, the function f(x) is considered as a polynomial, actually a general 

power series representation: 

f(x)= �a� �
x

δ
�
�

�

���

    (260) 

Since power series are known for their capability for representing many functions, 

f(x) encompasses a relatively large family of velocity fields. The AIBM suggests the 

following integral “I�” to be evaluated: 

� f(x)
∂C

∂t
dx

�

�

=
d

dt
� f(x) C dx
�

�

=
dI�
dt

   (261) 

For all kinds of polynomial f(x), the integral on the right can be evaluated via 

integration by parts. But for a generally valid plug-it-in formula, one may pursue 

further analysis. The integral can be expressed as successive integrations by parts in 

indefinite form [228]: 

I� = f�Cdx−
df

dx
�Cdx� +

d�f

dx�
�Cdx� − ⋯  (262) 

Each derivative of f(x) and each integral, considering “m” as the integration order of 

C, can be evaluated by using Equation-(260). Then, their multiplications can be 

evaluated at 0 and δ. This leads to constant multipliers for the terms obtained in the 

previous problem. The integral can be solved in a general form as: 

I = γ�C
∗δ − γ�(C

∗− C�)δ+ γ�
kr(C�)

D
δ�   (263) 

Since the time derivative in Equation-(261) will eliminate the first term above, it is 

not necessary to calculate γ�. The ODE of the AIBM comes out as: 

C∗− C� − Da��r(C�)=
γ�δ

�

2D
�
γ�
γ�

+ Da��
dr

dC�
�
dC�
dt

  (264) 

Note that, under any velocity field, time to reach the surface is predicted by: t� =

γ�δ
� 2D⁄ . Naturally, considering a finite sum of N elements to describe f(x), the 

modifiers γ� and γ� can be given as: 
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   (265) 

These can be implemented into a CAS system with ease. As an example, Nusselt 

film flow profile can be used: 

f(x)= 1 − �
x

δ
�
�

     (266) 

which yields � = [1,0,− 1]. Using these parameters one obtains γ� = 11/30 and 

γ� = 7/60. When compared to plug flow, the first term in the parenthesis of 

Equation-(264) becomes 22/7 instead of 4, and the first factor on the right hand side, 

which is t�, becomes 7δ� 120D⁄  instead of δ� 12D⁄ . This decrease in t� is physically 

correct. Since flow gets slower near the wall, molecules reach it in shorter times, or 

in other words, in shorter axial distances. This behavior of t� and the accuracy of the 

solution show that the method is self-sufficient and no rigorous exact solution is 

necessary to model the initial diffusion stage of the reactant in an arbitrary flow field. 

Since such solutions are overly complex and needs treating the corresponding Graetz 

problems [208] or numerical implementations, the approximate formulation is quite 

easy to use. The wall concentrations for the film flow case are provided in Figure 60. 

Film flow solutions are compared with the plug flow solution, which is scaled to 

have the same average velocity. For low Da��, velocity profile becomes more 

effective. 
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Figure 60. Wall concentration for a Freundlich type reaction(n = 0.6,Da= 0.01)  in 

film flow. Straight line: AIBM, dotted line: numerical solution, dashed line: 

numerical plug flow solution. 

 

Due to the power law formulation, many types of steady flow fields can be 

incorporated into the AIBM solution. To show possible applications of the theory, 

various velocity profiles are given in Appendix-D.  

The general form 

t� = γ�δ
� 2D⁄      (267) 

bestows an important criterion. Pohorecki’s discussion [103] on the existence of a 

minimum Fourier number for heterogeneous reactions (especially slow ones) can be 

enhanced. Pohorecki suggested Fo≫ 1 for heterogeneous reactions. This condition 

can be made more to the point by using the definition of t� to express the minimum 

Fourier number Fo���, since t� is accepted by AIBM as the time that reaction starts 

on the wall: 

Fo��� =
t�D

δ�
=
γ�
2

    (268) 

Thus, for feasible synthesis: 

Fo > γ� 2⁄      (269) 

t (s) 

C� 

(mol m�⁄ ) 
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where γ� introduces the effects of the velocity field. So, considering the Taylor 

model described in section 4.2.1.5, the above criterion must be satisfied for 

significant amounts of production. This is critical since the regime of gas-liquid 

superficial velocities that allow Taylor flow is quite large, as can be seen from Figure 

2.  

 

4.2.2.6. Time Dependent Velocity Fields and Moving Boundaries 

 

The solution provided by AIBM to diffusion with heterogeneous reaction can be 

extended to suit many more problems. It can also handle time-dependent flow fields 

to a certain extent. For such a field, the integral in Equation-(261) can be simplified 

if function f is separable in terms of x and t: 

� f(x,t)
∂C

∂t
dx

�

�

= � g(x)h(t)
∂C

∂t
dx

�

�

= h(t)
d

dt
� g(x)C dx
�

�

  (270) 

Physically, this can correspond to many types of flow fields. One of the exact 

matches is oscillatory flow fields, whose long time solutions36 are exactly of the form            

f(x,t)= g(x)h(t) [229]. The integral can be treated as before, as long as power 

series expansions are valid. Using Equation-(263), integration leads to: 

I(C�)= �
(γ� γ�⁄ )+ Da��(dr dC�

�⁄ )

C∗− C�� − Da��r(C�� )
dC�

� = �
dt′

t�h(t)

�

��

��

�

  (271) 

Usually h(t) only a trigonometric function, it most likely involves sine and e��� type 

functions. These can be integrated with ease, and time can usually be expressed in 

explicit form as before. Therefore, oscillating flow fields can theoretically 

incorporated into analysis. Some difficulties may occur with  g(x) since it may 

involve trigonometric functions also. Trigonometric functions have economized 

power series [230], which are accurate over a defined region. For example on[− 1,1]: 

sin �
1

2
πx� = 1.5706268x− 0.6432292x� + 0.0727102x�  (272) 

which has an error lower than 0.1%. 

                                                
36 i.e. the periodic steady-state, initial transients are neglected. 
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A more general situation would be developing flows. Since their solutions are 

derived from classical Sturm-Liouville theory, they will be expressed as series. Each 

term of the series is separable in terms of time and space; however multiple terms 

render the middle integral in Equation-(261) intractable. As discussed in the Theory 

section under boundary layer theory, in liquid films velocity fields will develop much 

faster than concentration fields in liquids. This is determined by the Schmidt number, 

Sc= ν D⁄ . In liquids, ν~10�� and D~10�� − 10��, thus Sc~10� − 10�. 

Nevertheless, in an extreme case, the first term of the series solution can be used. But 

for gaseous transport this is not possible since Sc~1. Therefore different paths of 

analysis must be followed, an example is provided by Lopes et.al. [231] for 

heterogeneous reactions in microchannels, albeit only for first order. 

And lastly, slightly non-flat geometries can also by treated with AIBM. As an 

example one may give the example of a thinning film, or a loosely corrugated wall. 

This resembles the quasi-steady state approximation in moving boundary problems, 

but in a general sense, it resembles the lubrication approximation [232]. So in such a 

case, one may denote: 

t� = γ�δ(t)
� 2D⁄      (273) 

where the thickness of the film slightly changes with exposure time. 

Although many further extensions and applications to AIBM analysis seem to be 

possible, their importance is vague. 

 

4.2.2.7. Summary: Mass Transfer with Heterogeneous Reaction 

 

With Equation-(269), an important constraint for the effective use of a microfluidic 

film in heterogeneous synthesis is introduced. In addition, the AIBM formulation is 

shown to be quite general. 

To compute the amounts absorbed in general, Equations (255) and (256) should be 

modified with respect to the velocity fields, since they were given for plug flow. 

Although the surface flux expression for t > t� will remain as the same in any 

velocity field, now for t < t�, the expressions for flux and the amounts absorbed will 
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not be available, since the expressions for physical absorption are not known. One 

may similarly use AIBM for pure physical absorption, but it is known from Part-B 

that a general encapsulation of velocity fields is not possible for moving 

concentration fronts. However, this does not seem to be of utmost importance, and 

does not hinder the construction of the general equation for the enhancement factor. 

Equation-(256) must be modified for the initial period pf physical absorption. One 

may directly integrate the concentration profile (Equation-(233)) over the film at 

t = t�. Since C� = r(C�)= 0 at that time, 

� Cdx=
C∗δ

3
=

�

�

2C∗�
Dt�
π

�
π

18γ�
   (274) 

Where the last term square root is inferred Equation-(267) and serves as a correction 

factor to PT. Now Equation-(256) becomes: 

n� = 2C∗�
Dt�
π

�
π

18γ�
+
2DC∗

δ
(t − t�)−

2D

δ
�tC� − � t dC�

��

�

�

− k�tr(C�)− � t �
dr

dC�
� dC�

��

�

�     (275) 

 

Like the results presented in Section 4.1.4, the integrals can be evaluated with a 

CAS. 
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CHAPTER 5 

 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5.1. Summary 

 

In this study, the absorption of NO in aqueous solutions was experimentally studied 

in a novel contactor first. Then, the validity of penetration theory in microflow 

conditions was tested on mathematical grounds. Saturation of thin liquid films during 

physical absorption was demonstrated and the depletion limits in case of a second 

order bimolecular reaction was discussed. This was followed by the development of 

a general reaction-diffusion solution that describes mass transfer accompanied with 

homogeneous chemical reaction. These steps formed the first part of this thesis on 

gas-liquid systems. In the second part, dealing with gas-liquid-solid systems, Fischer-

Tropsch synthesis in microreactors was investigated conceptually. A novel operation 

strategy was proposed and its implementation into Taylor flow was elaborated with a 

mathematical model. Finally, a general solution for mass transfer with heterogeneous 

reaction, which is applicable to microreactor scenarios, was presented. 
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5.2. Conclusions 

 

In NO experiments, it was seen that the chemicals added for mass transfer 

intensification had led to an additional resistance, called as surface poisoning akin to 

heterogeneous reactions, on the interface of unmixed liquid layers; thereby 

decreasing uptake rates. This phenomenon may be attributed to Marangoni-like 

effects due to the changes in composition and/or temperature. Another explanation 

would be the surfactant-like behavior of reaction products or ions. In 

macrocontactors with active or passive mixing, this drawback of gas absorption 

accompanied by reactions may be concealed. However, in contactors with stable 

streamline flows, this effect may render chemical absorption attempts as useless. 

Since microreactors are ideal tools of such regular laminar flows, their proficiency in 

chemical absorption may not be as good as it is thought to be. 

The analysis done on the validity of penetration theory proposes that theory leads to 

significant errors for physical absorption into finite flowing films and may be 

considered roughly to be valid for Fo < 0.3. However the theory is valid for all 

contact times if Λ ⪎ 1 in presence of a positive pseudo nth order reaction, as long as 

the maximum velocity occurs on the gas-liquid interface. Furthermore, it has been 

observed that when approximately Λ < 0.7, the system can be well described by 

physical absorption, up to Fo~0.3. The validity and constraints of coupling heat 

effects into the species transport equation are discussed. Considering saturation in 

thin films, the relevant magnitude of Fo with respect to certain flow fields is given. 

The depletion Fo has been provided via an implicit equation. The new solution 

obtained for diffusion into a flowing film with homogeneous reaction via 

approximate integral balance method covers a wide range of scenarios. It is shown to 

be accurate at least in terms of determining surface fluxes. A constraint on the 

maximum liquid flow rate has been provided. The solution can explain the 

interconnection of various flow fields with nonlinear reaction terms in an analytical 

way. 

It has been demonstrated that manipulating the reactant mass fluxes of Fischer-

Tropsch synthesis via changing hydrodynamic conditions is not likely. Therefore a 

periodic operation scheme of the synthesis suitable for microreactors has been shown 
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to be appropriate and effective, by numerical solutions. 1000 fold of rate 

enhancements are predicted with the new operation strategy. In addition, the 

behavior of effectiveness factors for general power law kinetics in presence of 

surface poisoning species is demonstrated. The regions of multiplicity and their 

effect on reaction-diffusion dynamics are displayed. A relatively simple model of 

Taylor flow accompanied by mass transfer and heterogeneous reactions is presented. 

Finally, a general solution for diffusion into flowing films with surface reaction is 

given, again by using the approximate integral balance method. The solution is 

shown to be accurate for various flow fields and nonlinear heterogeneous rate forms. 

An explicit criterion is derived for the times necessary for the initiation of the surface 

reaction after the initial diffusion period. This phenomenon is discussed on Taylor 

flow, considering it as a gas-liquid-solid synthesis system. 

 

5.3. Recommendations 

 

In order to show the existence of surface poisoning during gas absorption with 

chemical reaction into unmixed liquid films in microreactors, further 

experimentation with smaller contactors is necessary. 

The mathematical analysis on penetration theory and diffusion-reaction in thin 

flowing films has been made by considering the film as isothermal. Coupling heat 

transfer with mass transfer and reaction would be a good multiphysics study, if 

temperature dependent data for physical and chemical properties are used. This 

would show the importance of heat transfer in microfluidic mass transfer cases. 

The periodic operation of an heterogeneous reaction with poisoning species should 

be also demonstrated experimentally. The optimum switching time with respect to 

the given rate constant and reaction rate expression may be extracted by further 

analysis. 

The model of Taylor flow can be simulated and it should be validated by 

experiments. Such models would be useful if they could attain predictive capabilities 

since complete numerical solutions have been discussed to be burdensome.  
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APPENDIX A 

 

 

DIFFUSION INTO FLOWING FILMS 

 

 

 

The dimensionless solution to Equation-(94) under plug flow or quiescent conditions 

is: 

u = 1 −
4

π
�

1

(2n + 1)
exp �− �

2n + 1

2
�
�

π�τ� sin 

�

���

�
2n + 1

2
πξ�  (A1) 

τ  is exactly the same with Fo. Dimensionless surface flux can be given as37: 

F���� =
Nδ

DC∗
= 2�exp �− �

2n + 1

2
�
�

π�τ�  

�

���

   (A2) 

Integrating with respect to time yields the dimensionless amounts absorbed: 

n������ = 2�
�1 − exp �− �

2n+ 1
2 �

�

π�τ��

�
2n+ 1
2 �

�

π�
 

�

���

   (A3) 

For diffusion into laminar film flow, the surface flux expression expressed generally, 

such as: 

F��� = �A�exp (− λ�τ) 

�

���

    (A4) 

where A� are the series coefficients and λ� are the eigenvalues. Up to n = 10, these 

values are provided by Olbrich and Wild [233] and given in Table 9. As in plug flow, 

integration with respect to time yields: 

                                                
37 For τ= Fo > 0.2, a first term approximation in the series is satisfactory, the error is less than 2%. 
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n����� = �
A�
λ�

[1 − exp (− λ�τ)] 

�

���

   (A5) 

For generalized Couette flow, the PDE becomes: 

(1 − aξ)
∂C

∂τ
= D

∂�C

∂ξ�
                      

at τ= 0,   

at ξ= 0,

at ξ= 1,

        

u = 0

u = 1

∂u ∂ξ⁄ = 0

  (A6) 

The PDE is linear, thus one may apply superposition to shift the non-homogeneity to 

the initial condition and then separation of variables can be used. One of the ODE’s 

that appear after separation of variables is: 

d�G

dξ�
+ λ�

�G − λ�
�aξG = 0    (A7) 

The solution can be obtained in terms of Airy functions38 [234]. 

G = c�Ai��
λ�
a
�
�/�

(aξ− 1)� + c�Bi��
λ�
a
�
�/�

(aξ− 1)�  (A8) 

Upon solving for the constants and superposing the solutions, the general solution is 

obtained as: 

u = 1 − �C�exp �− λ�
�τ� �Ai��

λ�
a
�
�/�

(aξ− 1)� + ϑ Bi��
λ�
a
�
�/�

(aξ− 1)�� 

�

���

  (A9) 

Eigenvalues are found from: 

DAi��
λ�
a
�
�/�

(a− 1)� − ϑ DBi��
λ�
a
�
� �⁄

(a− 1)� = 0  (A10) 

where  

ϑ =

Ai�− �
λ�
a�

�/�

�

Bi�− �
λ�
a�

�/�

�

    (A11) 

and DAi and DBi are derivatives of Airy functions. Airy functions and their 

derivatives are well implemented into various CAS. The series coefficients are 

solved from: 

                                                
38 Airy functions are related to Bessel functions [2], but such a transformation seems to be more 
complicated. 
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C� =
∫ (1 − aξ)f(ξ)dξ
�

�

∫ (1 − aξ)
�

�
f(ξ)�dξ

    (A12) 

f(ξ) is the function given in the braces of Equation-(A9). In Table 9 the first 15 

values for series coefficients and eigenvalues are provided for a= 0.2,0.5 and 1. 

The surface flux can be given as: 

F�� = �a�/�λ�
�/�C�exp �− λ�

�τ� �DAi�− �
λ�
a
�
�/�

� − ϑ DBi�− �
λ�
a
�
� �⁄

��  

�

���

  (A13) 

All the equations related to generalized Couette flow is rather complicated. But the 

above equation surface flux equation can be presented in the form of Equation-(A4), 

thereby simplifying it as: 

F�� = �S�exp �− λ�
�τ� 

�

���

     (A14) 

The first 15 values of S� are given in Table 9 for a= 0.2,0.5 and 1. Integration in 

time yields: 

n���� = �
S�

λ�
� �1 − exp �− λ�

�τ�� 

�

���

   (A15) 

Now Equations (A2), (A4) and    (A14) can be compared with the 

dimensionless amounts absorbed predicted by PT via the equation: 

F�� = 2�
τ

π
     (A16) 

The error 

Err=
F�� − F�����

F�����
∙ 100    (A17) 

where F����� denotes numerical plug, film or Couette flow solutions, is plotted on 

Figure 28. 
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APPENDIX B 

 

 

SOLUTIONS OF THE STEADY-STATE REACTION-DIFFUSION 

EQUATIONS 

 

 

 

B.1. Aris’ Problem 

 

Aris’ treatment [195] will be reprised here with additions of critical Thiele moduli. 

One should solve the equation: 

d�u

dξ�
= Λ�u�     (B1)  

with boundary conditions: 

at ξ= 1, u = 1

at ξ= 0, du/dξ= 1
    (B2) 

When n ≠ 1  or n ≠ 0 the above equation is nonlinear. Therefore instead of a 

solution for the concentration profile in closed form, an expression for Λ is aimed. 

Multiplication of Equation-(B1)  with 2(du/dξ), then integrating from 0 to ξ gives: 

�
du

dξ
�
�

= Λ�
2

n + 1
(1 − u�

���)     (B3) 

Taking the square root of the above equation, then separation and integration results 

in: 
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Λξ= �
2

n + 1
� (u��� − u�

���)��/�
�

��

du    (B4) 

Since  u = 1 at ξ= 1, 

Λ = �
2

n+ 1
� (u��� − u�

���)��/�
�

��

du     (B5) 

The integral can be put in a valuable form by letting z= 1 − (u�/u)
��� and 

substituting it to get an incomplete beta function. The incomplete beta function can 

also be expressed as a Gauss hypergeometric function, which allows easier analysis 

and computation. 

Bx(p,q)= � t���(1 − t)���dt =
x�

p
F(p,1 − q; p + 1; x)

x

�

    (B6) 

The Gauss hypergeometric function39 is given as: 

F(a,b; c; x)= �
(a)�(b)�
(c)�

x�

n!

�

���

     (B7) 

with the Pochhammer symbol (q)� : 

(q)� = �
1
q(q + 1)…(q + n − 1)

 , for n = 0
 , for n > 0

  (B8) 

The hypergeometric function is always positive. The equation for Λ results in: 

Λ = �
2

n+ 1
 u�

�(���)/� (1 − u�
���)�.� F(0.5 ,0.5 + q ; 1.5 ; 1 − u�

���)    (B9) 

with q = 1 n+ 1⁄ . This expression is valid for n ≥ 1,  and it has to be modified for 

−1 < n ≤ 1. One may apply the identity, 

F(a,b; c; x)= (1 − x)����� F(c− a,c− b; c; x)   (B10) 

which converges at x = 1 only when Re(c− a− b)> 0. Thus, Equation- (B9) 

becomes, 

Λ = �
2

n+ 1
  (1 − u�

���)�.� F(1 ,1 − q ; 1.5 ; 1 − u�
���)   (B11) 

                                                
39 Also shown as F�

.
�(a,b;c; x). 
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Mehta and Aris also give solutions for n = −1 and n < − 1, for these are not 

provided here, since they are assumed to be irrelevant for gas-liquid reactions. 

 

B.2. The Unused Film 

 

As discussed in section 4.1.2.3, the wall concentration for −1 < n < 1 does not tend 

to infinity as  Λ increases, and it also does not go to zero like reactions with n < −1. 

This indicates that beyond certain Λ, there exists a dead region. In catalysts, the 

equivalent phenomenon is recently analyzed by York. et al. [197]. For the pseudo 

order reaction in a falling film, similar analysis can be provided for quantitative 

results. By considering no reaction at the wall, i.e. u� → 0, Equation-(B11) can be 

simplified into: 

Λ = �
2

n+ 1
   F(1 ,1 − q ; 1.5 ; 1)    (B12) 

By using the property: 

F(a,b; c; 1)=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
    (B13) 

and some relations attributed to the gamma function Γ: 

Γ(1/2)= √π, Γ(3 2⁄ )=
√π

2
, Γ(m+ 1)= mΓ(m)  (B14) 

Equation-(B12)  leads to: 

Λ� =
1+ n

1 − n
�

2

n + 1
     (B15) 

Now Equation-(B15) can be used to obtain an exact penetration thickness, ξ�, by 

integrating Equation-(B3) from ξ� to 1. 

Λ(1 − ξ�)= Λ�      (B16) 

Via translating the coordinates to the ones used in section 4.1.2.3, one may find the 

condition for the existence of an unused liquid layer near the wall: 
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ξ� =
δ�

δ
=
Λ�
Λ
< 1    (B17) 

which means 

Λ >
1+ n

1 − n
�

2

n + 1
     (B18) 

If the above criterion is satisfied for −1 < n < 1, then an exactly unused liquid film 

appears. In dimensional form, the result can be expressed as: 

2(n + 1)D

(1 − n)�kδ�C�
����

< 1     (B19) 

 

B.3. Standard solutions for zero and first order reaction: 

 

The zero order form or Equation-(B1) can be solved simply to give: 

u = 1+
Λ�

2
(ξ� − 1)    (B20) 

At ξ= 0: 

u� = 1 −
Λ�

2
     (B21) 

which leads to: 

Λ� = �2(1 − u�)     (B22) 

For a prescribed error, u� can be found from Equation-(108), and then Λ� can be 

found from the equation above. For 5% error,  Λ� = 1.347. It exactly matches with 

the curve given in Figure 30. 

For a first order reaction, solution can also be easily obtained as: 

u =
cosh(Λξ)

cosh(Λ)
     (B23) 

Similarly, 

u� =
1

cosh(Λ)
     (B24) 
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Λ� = acosh(u�
��)    (B25) 

For 5 % error, Λ� = 1.856. This value also matches exactly with Figure 30. 
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APPENDIX C 

 

 

THE DUHAMEL SOLUTION 

 

 

 

The problem described by Equations (127), (128) and (132) can be restated as: 

∂p

∂t
= D

∂�p

∂x�
 ,

at x= 0,   p = C�� exp�− zkC�
∗�t� − zC�

∗

at x= δ,   
dp

dx
= 0

at t = 0,   p = C��

  (C1) 

By convention, shift the nonhomogeneity in the initial condition to the boundary by 

letting:  

p� =
C� − zC�

C��
− 1    (C2) 

Now the new problem becomes: 

∂p�

∂t
= D

∂�p�

∂x�
 ,

at x= 0,   p� = exp�− zkC�
∗�t� −

E�
E� − 1

= f(t)

at x= δ,   
dp

dx
= 0

at t = 0,   p = 0

   (C3) 

This solution to Equation set  (C3) is given by Duhamel’s integral as [175]: 

p� = f(0)θ(x,t)+ � θ(x,t)
df(τ)

dτ
dτ

�

�

   (C4) 

θ(x,t) is called as the auxiliary problem. This is the solution for the case of diffusion 

into a finite layer subjected to a unit step concentration at one of the boundaries. The 
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solution is already given in Appendix-A by Equation- (A1). Evaluating 

Equation-(C4) gives the solution as: 

p� =
−1

E� − 1
θ(x,t)− 1 + exp�−Λ�

�Fo�

+
4

π
�

1

(2n + 1)

�

���

sin �λ�
x
δ
�

1 − λ�
� Λ�

��
�exp�− λ�

�Fo� − exp�−Λ�
�Fo��  (C5) 

 

The eigenvalues are given as λ� = [π(2n+ 1) 2⁄ ]. The value of  p� at the wall can be 

found by setting x = δ. Then according to the regimes dictated by Λ�, as given in 

Table 8, one may set p as p����. Thus, Equation-(C5) reduces to: 

π

4
φ =

1

E� − 1
�

(−1)�

(2n + 1)

�

���

exp�− λ�
�Fo�� +�

(−1)�

(2n + 1)

�

���

exp�− λ�
�Fo��

1 − λ�
� Λ�

��

+ exp�−Λ�
�Fo�� �

π

4
− �

(−1)�

(2n + 1)

�

���

1

1 − λ�
� Λ�

��
�   (C6) 

One may now simplify the series. We are expecting to solve for Fo�, and it is certain 

that Fo� will be large for the case of depletion of B. This is true for any regime, since 

for all regimes, C� is expected to accumulate near the wall up to a significant degree. 

This argument gets invalidated when B diffuses much faster than A, but here, only 

equal diffusivities are considered. Therefore, the first term of the first series can be 

taken and the rest can be disregarded with quite good accuracy (see footnote 37 in 

Appendix A). 

�
(−1)�

(2n+ 1)

�

���

exp�− λ�
�Fo�� ≅ exp �−

π�

4
Fo��  (C7) 

For Λ� ≪ π� 4⁄ , the second series can be approximated as: 

�
(−1)�

(2n+ 1)

�

���

exp�− λ�
�Fo��

1 − λ�
� Λ�

��
≈ −Λ�

��
(−1)�

(2n+ 1)

�

���

exp�− λ�
�Fo��

λ�
�   (C8) 

For Λ� ≫ π� 4⁄ , 

�
(−1)�

(2n + 1)

�

���

exp�− λ�
�Fo��

1 − λ�
� Λ�

��
≈ exp �−

π�

4
Fo��  (C9) 
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One may use both, according to the magnitude of Λ�. However, it is observed by 

numerical experimentation that the use of Equation-(C9) for all Λ� is suitable, and 

does not induce significant error in calculations. In addition, low Λ� values make the 

series sum usually very small, such that it can be discarded in many cases. Therefore 

Equation-(C9) is a good approximation. 

The third term goes to zero if Λ� is very large, due to the exponential term in front of 

the square brackets. Thus, considering small Λ�, the third series can be simplified as: 

�
(−1)�

(2n+ 1)

�

���

1

1 − λ�
� Λ�

��
≅
4Λ�

�

π�
�

(−1)�

(2n+ 1)

�

������������
≅�.���

≅
3.876Λ�

�

π�
  (C10) 

Hereby, by using Equations (C7), (C9) and (C10), Equation-(135) is obtained: 

π

4
φ =

E�
E� − 1

exp �−
π�

4
Fo�� + exp�−Λ�

�Fo���
π

4
−
3.876Λ�

�

π�
�   (C11) 
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APPENDIX D 

 

 

STEADY VELOCITY FIELDS FOR FILMS WITH A FREE SURFACE 

 

 

 

D.1. Generalized Couette Flow: 

 

v(x)= v� �1 − a
x

δ
�    (D1) 

This may be a simplification for many flows, when mean velocity is v�(1 − a 2⁄ ). v� 

is the interfacial velocity. The parameter "a" can be a fitting parameter or may 

signify wall slip. It lies between 0 and 1. As a → 0, plug flow is approached, as 

a → 1 simple Couette flow is obtained. When penetration thickness is small, using 

such a flow field is called as the Leveque approximation [235]. It also represents a 

mobile interface, which can occur if one of the flowing phases is almost stagnant, 

and the other flowing fluid phase drags the interface [236, 237]. 

 

D.2. Falling Film (Nusselt): 

 

v(x)=
ρgδ�

2μ
�1 − �

x

δ
�
�

�    (D2) 

This profile is the source of the expression given by Equation-(60). 
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D.3. Falling Film with Interfacial Shear: 

 

v(x)=
ρgδ�

2μ
�1 − �

x

δ
�
�

�+
τ�δ

μ
�1 −

x

δ
�   (D3) 

τ� is the interfacial shear, for τ� > 0 the flow is relatively cocurrent, for τ� < 0 the 

flow is relatively countercurrent. 

 

D.4. Falling Film with Wall Slip: 

 

v(x)=
ρgδ�

2μ
�1 −

2b�
δ

− �
x

δ
�
�

�    (D4) 

b� is the slip length. 

 

D.5. Falling Film with Wall Slip and Interfacial Shear: 

 

v(x)=
ρgδ�

2μ
�1 −

2b�
δ

− �
x

δ
�
�

�+
τ�δ

μ
�1 −

b�
δ
−
x

δ
�  (D5) 

 

The following two profiles are given to show the capability of a power series 

expression: 

 

D.6. Non-isothermal Falling Film (or an evaporating component under a linear 

temperature gradient) [96] 

 

v(x)=
ρgδ�

μ�
�e� �

1

α
−

1

α�
� − e�� �⁄ �

x

αδ
−

1

α�
��   (D6) 

The viscosity is temperature dependent: μ = μ�e
��� �⁄ . The exponential term can be 

expanded, yielding: 
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v(x)=
ρgδ�

μ�
�e� �

1

α
−

1

α�
� +

1

α�
−
1

2
�
x

δ
�
�

−
1

6
�
x

δ
�
�

− ⋯�  (D7) 

 

D.7. Power-Law Falling Film [96] 

 

v(x)= �
ρgδ�

μ
�

�/�
δ

1/n+ 1
�1 − �

x

δ
�
�/���

�  (D8) 

where the fluid is pseudoplastic for 0 < n < 1 and dilatant for n > 1. By using a 

CAS, the fractional order can be expanded around δ, the result can be simplified and 

terms can be collected. For n>0.45, a five term expansion is enough.  

v(x)= �
ρgδ�

μ
�

�/�
δ

1/n+ 1
�a� + a� �

x

δ
�+ a� �

x

δ
�
�

+ a� �
x

δ
�
�

+ a� �
x

δ
�
�

�  (D9) 

with 

a� = 1+
6n� − 11n� − 24n+ 6

24n�
 , a� =

20n� − 24n� + 20n� − 20n+ 4

24n�
 

a� = −
36n� + 6n� − 24n+ 6

24n�
,      a� = −

4n� − 12n� + 12n − 4

24n�
 ,

a� =
n� − 2n� + 2n − 1

24n�
      (D10) 

 

The following microfluidic flows are not seem to be used in mass transfer 

cases yet, but since they are interesting and they can also be incorporated into the 

AIBM solutions for heterogeneous reactions, they are included here. 

 

D.8. Electroosmotic Flow with a Free Surface [238]: 

 

v(x)= E� �1 − exp �−
δ − x

De
� −

δ − x

De
e��/���   (D11) 

E� =
εE��ζδ

ρν�
     (D12) 
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E� is the electroosmotic number. ε is the dielectric constant, E�� is the external 

velocity field, ζ is the zeta potential and De is the Debye number, which shows the 

ratio of the Debye screening length40 and film thickness. The exponential term can be 

expanded easily. 

 

D.9. Electrokinetic Flow with a Free Surface [239]: 

 

v(x)= E� �cosh�
δ− x

De
� +

ζ − coshh(1 De⁄ )

sinh(1 De⁄ )
sinh�

δ− x

De
��  (D13) 

The hyperbolic functions can simply be expanded similarly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
40 Shows the effective layer thickness, in which electrostatic effects persist. 
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APPENDIX E 

 

 

NOTES ON INTERFACIAL RESISTANCE 

 

 

 

Since the Statistical Rate Theory of Ward [85] is mathematically complicated 

(singular and nonlinear BC), one may try to extract some information by comparing 

it with the linear resistance case. The approximate solution provided by Gupta and 

Sridhar [91] (Equation-(37)) would be useful. When the resistance is described by 

the linear boundary condition given by Equation-(33), one obtains the following 

result for surface concentration [240] : 

C�
C∗

= 1 − exp (β′�)erfc(β′)     (E1) 

with β� = ks�t D⁄ . The similarities between Equations-(37) and (E1); and the β- β′ 

groups are intriguing. To predict the same saturation times with the nonlinear model, 

the interfacial resistance coefficient ks must approximately be equal to 2 K� C∗⁄ . 

With this modification, β� = 2β. The modified and unmodified predictions of the 

linear model given by Equation-(E1) are plotted below, with the results given by 

Equation-(37). Although the modified linear and nonlinear models meet sufficiently 

early, the unmodified linear model is very different for both short and long times, it 

tends to C∗ very slowly. 
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The proportion between ω� and ω can be verified by evaluating the integral squared 

error41: 

E = � ��1 − exp (β�)erfc(β)− 1 + exp [(nβ)�]erfc(nβ)�
�

dβ
�

�

   (E2) 

1 is the lower limit at which saturation is about 75%, as can be seen in Figure 61.U is 

the higher limit for β. Taking it as 6 as in the previous figure yields Figure 62, 

showing that the error is zero around 2.  The exact value is 2.016.  

 

 

Figure 61. Saturation of the interface with respect to ω predicted by different 
equations. 

 

Such a relation gives a good estimate for the linear Fickian resistance k� in terms of 

known quantities K� and C∗ only. The estimate may gain more importance as it gives 

an approximate value for the Sherwood number for interfacial resistance,           

Sh� = k�δ D⁄ ≅ 2 K�δ C∗D⁄ , which is used regularly for analyzing many problems of 

mass transfer. 

                                                
41 In principle, the relation is equivalent to one given by Equation-(G6), but this time surface 
concentration and a time integral is used. 
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Figure 62. Variation of error with the linear proportionality constant. 

 

The asymptotic formulas given in Figure 61 are series expansions for the exponential 

and error functions [240].  

C�
C∗

= 1 −
1

√π
�
1

β
−

1

2β�
+
1 ∙ 3

2�β�
− ⋯�   (E3) 

The asymptotical formula for the modified linear case may be truncated to its first 

term (given by the blue dotted line), to deduce an explicit saturation time42. 

C�
C∗

= 1 −
1

2β√π
      (E4) 

With the percent interfacial saturation s° = C� C∗⁄ , the time for saturation can be 

given as: 

t�
∗ =

C∗
�
D

4π(1 − s°)Ks
�    (E5) 

Equation-(E5) provides a simple way of calculating saturation times, explicitly and 

accurately. It is valid for saturation percentages higher than 75%. For β = 1, its error 

                                                
42 Expanding Equation-(37) in square brackets and then taking the first term yields to much higher 
errors (15%) in predicting the saturation time. 
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is less than 5% than decays rapidly zero around β = 2. By using an order of 

magnitude approach, C∗~10, K~10�� [91] and D~10��, time for 90% saturation is 

~ 0.1 s.  

Equation-(E5) can also be considered as the time constant for interfacial saturation. 

In absorption into very thin films (or in very short contact times), one should 

compare it with the time constant of diffusion [52]: 

t� =
δ�

D
=

D

k��
� �

     (E6) 

as a check whether Equation-(E5) is applicable or not. Since all the expressions are 

derived on a semi-infinite medium, the diffusion fronts should not reach the wall 

significantly before saturation. This indicates the condition: t� > t�
∗. 

When there is reaction in the fluid, one should solve the transient nonlinear 

problem with a source term, in order to get the interfacial concentration vs. time 

trend. Even numerically, this is difficult, due to the singularity of the nonlinear BC at 

zero concentration. Special integral transform techniques may be necessary [241] and 

it is avoided. But solving the steady state problem can give final value of the 

interfacial concentration. This is valid for any flowing finite film as long the reaction 

proceeds.  

One may solve: 

D
d�C

dx�
− kC = 0,

at x= 0, −D
dC

dx
= Ks�

C∗

C
−

C

C∗
�

at x= δ,
dC

dx
= 0

  (E7) 

to get: 

C� =
C∗

�C
∗√kD
Ks

tanh(Λ)+ 1

    (E8) 

Note that the factor in the denominator is a new dimensionless group. It gives the 

ratio of reaction rate to interfacial saturation rate: 
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C∗√kD

Ks
=
√Da

β
= γ�    (E9) 

For low Thiele modulus, tanh(Λ)→ 0, giving the expected result :C� ≅ C∗. For large 

Λ, , tanh(Λ)→ 1, yielding: 

C� =
C∗

�γ� + 1
     (E10) 

The presence of a very fast chemical reaction prevents the use of β� = 2β  

equivalency of the linear and nonlinear BCs. This can be further proved by solving 

Equation-(E8) with the linear resistance BC for the surface concentration. For low γ� 

or low Λ, the β� = 2β  relation is valid. 

Similar to γ�  in Equation-(E9), one may write down the time constant for diffusion 

with reaction, in order to compare the relative effects of interfacial saturation and 

reaction: 

t�/� =
D

E�k��
� �
      (E11) 

For t�/� ≫ t�
∗, the effects of interfacial saturation can be neglected. 

 

 

 

 

 

 

 

 

 

 



210 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



211 
 

 

APPENDIX F 

 

 

COMPUTER CODE FOR SOLVING NONLINEAR ALGEBRAIC 

EQUATIONS WITH MULTIPLE ROOTS 

 

 

 

A code is written on Mathcad to solve for the roots of Equation- (187). This is not 

a straightforward task since negative reaction orders may lead to very separate 

multiple steady states, or in other words, distant roots. A general solution 

methodology to highly nonlinear algebraic equations with multiple roots still does 

not seem to be well developed. Solving systems is much harder and more case 

specific. Therefore, this code is specific to this equation only, and also it depends on 

the values of parameters in Equation- (187). For example, solubilities and 

diffusivities are calculated from Equations (175) and (176) at 500 K and 1.5 MPa. 

The ratio of hydrogen to carbon monoxide diffusivities, γ, is taken as 2.638 and ν is 

used as 0.48. The lowest Da�� for which a root exists, is found manually for given 

reaction orders and parameters. Similarly the highest Da�� is decided, where η is 

almost zero. Then a set is created between these values. The solver has predefined 

modifiers to enhance convergence for solving 2nd and 3rd roots. The limits of the 

region of multiplicity are also manually and roughly distinguished. In this region, a 

denser set of Da�� values is selected to provide a fine resolution when plotting the 

data. When roots are extracted, a sorting algorithm (or a kind of a path finding 

algorithm) is employed to plot the data. 

The main program is given by Figure 63. The program solves the three sets of 

reaction orders, which are given on Figure 43. The output of the program is a three 
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dimensional matrix, where rows correspond to the number of data points. Columns 

are comprised of three vectors of effectiveness factors which are calculated via the 

extracted roots, and another vector for the values of the Da�� set. Each three 

dimensional layer is for a given set of reaction orders. 

When the matrix is obtained, the sorting algorithm (given by Figure 64) then can 

process each layer of the matrix, where it arranges the effectiveness factors in such a 

path, like from point 1 to point 2 and then to point 3 of Figure 45.  
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Figure 63. Mathcad code to solve Equation- (187) for multiple roots. 

Nonlinneg f Damatrix degree  v length degree
1  

a

b









degree
T  m 



Daseries Damatrix
m

T


end length Daseries 

CH2lim CH2int 0.001

Da Daseries 
n



r1 root f CH2s Da a b  CH2s 10
3

 CH2lim





eta1
r1

CH2int









a

CH2int r1

Da r1
a











1

b

CCOint

















b



g CH2s Da a b 
f CH2s Da a b 

r1 CH2s 


guess
r1

1.5


r2 value i root g guess Da a b( ) guess( )on error

if Im value( ) 0 i value( )



eta2
r2

CH2int









a

CH2int r2

Da r2
a











1

b

CCOint

















b



h CH2s Da a b 
g CH2s Da a b 

r2 CH2s 


Im r2( ) 0if

n 1 endfor

m 1 vfor


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Figure 63 cont’d. Mathcad code to solve Equation- (187) for multiple roots. 

 

guess
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Figure 64. Sorting algorithm 
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APPENDIX G 

 

 

AIBM SOLUTION FOR PENETRATION THEORY AND NOTES ON 

ACCURACY 

 

 

 

Continuing from Equation-(79), one may assume a second order polynomial for the 

concentration profile: 

C = a+ bx+ cx�     (G1) 

The constants can be found by applying the following boundary conditions: 

at x= 0, C = C∗

at x= δ�(t), C ≅ 0

at x= δ�(t), ∂C ∂x⁄ ≅ 0

    (G2) 

resulting in: 

a= C∗, b = −
2C∗

δ�
, c=

C∗

δ�
�

C

C∗
= �1 −

x

δ�
�

�     (G3) 

The concentration profile can be substituted into the IMBE, Equation-(79), to obtain: 

δ�
dδ

dt
= 6D     (G4) 

This ODE has the initial condition δ(0)= 0. Solving δ yields: 
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δ� = √12Dt      (G5) 

  

Figure 65. Comparison of the exact and the approximate solution 

 

Note that this expression is very similar to the penetration thickness expression given 

by Equation-(21). One may increase the accuracy by assuming a different trial 

function, for example a higher order polynomial or an exponential function [242]. 

This would indeed require additional boundary conditions. An option is to use a 

smoothing boundary condition, ∂�C ∂x� = 0⁄  on the penetration front. Higher order 

smoothing conditions, i.e. higher derivatives, can also be used for higher order 

polynomials. But as Goodman states [243], increasing the order (or the exponent in 

collapsible forms) of polynomial solutions does not guarantee an increase in 

accuracy. He punctuates that accuracy would be improved only if the additional 

condition is created on the boundary with the lower derivative. This would imply 

new derived boundary conditions on the fixed surface. For example, if the PDE 

treated above is evaluated at x= 0, the time derivative would be zero due to the 

Dirichlet boundary condition. This would leave ∂�C ∂x� = 0⁄  at x= 0. Like the 

smoothing condition, this derived condition can also be extended to higher orders. 

But its use may bring difficulties in evaluating the IMBE or solving the resulting 

ODE. The results obtained with different profiles for the problem above treated are 

C
C
∗

⁄
 

x √2Dt⁄  
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given in Table 10. Surface fluxes are compared with the exact solution given by 

Equation-(18). Note that the profile has an important impact on accuracy. This is a 

characteristic of such approximate solutions, where profiles are selected a priori 

[244].  

 

Table 10. Errors in surface fluxes via different profiles 

The Profile Surface Flux: Percent Error 

Linear [245] -11.3 % 

Exponential [245] +25.4 % 

Quadratic (Equations (G3) and (G5)) +2.3 % 

Cubic – I [175] -6.2 % 

Cubic – II [175] +8.3 % 

Fourth Degree [175] -3.0 % 

Quadratic – DIM [176] -2.3 % 

Myers’s Best Fit [246] -4.1 % 

 

 

Accuracy can be improved by other means. For example, one may match the 

approximate solution with arbitrary the exponent with a special exact case. Then one 

can determine the exponent according to this equality. Mantelli and Braga [247] 

applied this procedure for time dependent surface temperature and flux problems and 

obtained very good results. Langford [248] established a criterion to minimize the 

overall error. The criterion does not need an exact solution and described by the path 

difference integral: 

Err(t)= � (DC�� − C�)
�dx

��(�)

�

≥ 0   (G6) 

In is important to note that one generally tries to obtain a correct surface flux 

expression. However, Langford’s criterion is based on matching the approximate 

solution to the exact one on the whole solution domain. The overall squared error as 

given by Equation-(G6) can be minimized analytically for simple PDEs [246], but 
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for problems involving physical parameters which cannot be exterminated via 

normalization, like reaction-diffusion, optimization cannot be done by analytical 

methods. The exponent may depend on those additional parameters or maybe also on 

time. A resolution might be obtained via nonlinear and/or multivariate regression, but 

this would be very costly. Optimization of AIBM solutions is currently under 

investigation [249, 250, 251]. 

Note that the method is applied to uniform initial conditions only. Nonuniform initial 

conditions can also be handled; such cases are solved by Thorsen and Landis [252] 

and Bengston and Kreith [226]. They use moment equations, which are given in 

section 4.2.2.1, and computations are heavy. At very short times, or for very rugged 

initial distributions, AIBM is quite erroneous. 

It may also be useful to give some examples on the history and current uses of 

AIBM. The method was applied to biological diffusion problems first by Landahl 

[245].Then Goodman applied it to heat conduction problems with temperature 

dependent properties [243] and established its systematic use [253]. Nowadays the 

AIBM is actively used in solving fractional-subdiffusion equations [254], hyperbolic 

heat conduction [255] and moving boundary problems [256]. In the latter, numerical 

methods are harder to implement and exact solutions are very few. This renders the 

method as especially valuable and it is found to be quite accurate for such problems. 

For moving boundary problems one may give freezing, melting, ablation, shrinking 

core model of gas-solid reactions and dissolution of gas bubbles as examples. 

 


