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ABSTRACT

MODELLING AND IMPLEMENTATION OF LOCAL VOLATILITY SURFACES

Animoku, Abdulwahab
M.S., Department of Financial Mathematics

Supervisor . Assist. Prof. Dr. Yeliz Yolcu Okur
Co-Supervisor : Assoc. Prof. D&miir Ugur

September 2014, 85 pages

In this thesis, Dupire local volatility model is studied irtdils as a means of model-
ing the volatility structure of a financial asset. In thispest, several forms of local
volatility equations have been derived: Dupire’s locaktibity, local volatility as con-
ditional expectation, and local volatility as a functioniofplied volatility. We have
proven the main results of local volatility model discussethe literature in details.
In addition, we have also proven the local volatility modetlar stochastic differential
equation of the forward price dynamics of asset prices. Gpresgtly, we have studied
the two main approaches to obtaining the local volatilityfates: parametric meth-
ods and non-parametric methods. For the parametric met@dhave used Dumas
parametrization for the implied volatility function whigiroduces implied volatility
surface, which in turn is used in obtaining local volatilgyrface. While in the non-
parametric approach for local volatility surfaces, we hased both implied volatilities
and option prices data sets with some numerical technidquesate well-founded in
literature. As an outlook, we have also discussed sevethshis thesis could take
for future studies, one of which is using Tikhonov regulatian to obtain solutions of
local volatilities by solving a regularized Dupire equatio

Keywords Dumas parametrization, Dupire local volatility model,pled volatility,
local volatility surface, parametric method, non-paramehethod, Tikhonov regular-
ization
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YEREL VOLATILITE Y UZEYLERININ MODELLENMESI VE UYGULANMASI

Animoku, Abdulwahab
Y uksek Lisans, Finansal Matemati®Bmi
Tez Yoneticisi : Yrd. Dog. Dr. Yeliz Yolcu Okur

Ortak Tez Yoneticisi : Dog. Dr.Omiir Ugur

Eylul 2014[85 sayfa

Bu tezde, finansal varliklarin volatilite yapilarinin mddamesi amaciyla Dupire yerel
volatilite modeli detayh olarak calisiimistir. Buigden, bir¢cok yerel volatilite denk-
lemi incelenmis veiiretilmistir: Dupire yerel volatilite, kosullu beklenalgjer olarak
yerel volatilite, zimni dalgalanma fonksiyonu. Liteiate detayll olarak incelenen
yerel volatilite modelinin ana sonugclari ispatlannmsByrica varlik fiyatlarinin gele-
cek fiyat (forward price) dinamiklerinin stokastik difesayel denklemleri cercevesinde
yerel volatilite modeli kanitlanmistir. Sonug olarakeevolatilite yiizeylerini elde et-
mek icin parametrik ve parametrik olmayaantemler calisiimistir. Parametrikog-
temlerde, yerel volatilite §zeyi elde etmek icin kullanilan ve zimni dalgalanniagyi
meydana getiren zimni dalgalanma fonksiyonu i¢cin Dumasrpatrizasyonu kulla-
nilmistir. Yerel volatilite yizeyleri i¢cin parametrik olmayandytemlerde, literdirde
sajlam temelleri olan bazi sayisal teknikler ile birlikte mndalgalanma fonksiyonlari
ve opsiyon fiyatlari ile ilgili veriler kullaniimistir. Geel olarak, bu tezin gercekles-
tirilebilecedi degisik yollar ileriki calismalar icin tartisiimigti Bunlardan biri yerel
volatilite gozimleri elde etmek i¢in Dupire denklemdzgilerek elde edilen Tikhonov
duzenlemesidir.

Anahtar Kelimeler Dumas parametrizasyonu, Dupire yerel volatilite modaimni
dalgalanma fonksiyonu, yerel volatiliteligeyi, parametrik yntem, parametrik ol-
mayan yntem, Tikhonov dzenlemesi
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CHAPTER 1

INTRODUCTION

The financial crisis that caused many economies to go intessgan took place in
1987, and ever since continual joint efforts are being madtné practitioners, who
are active on the financial market, and the academic ressatdb understand the ef-
fective usage of financial instruments including derivedgiv In fact, in 1994, Dupire
as well as Derman and Kani, and Rubinstein, independenthyribated to the foun-
dation of modeling volatility structure of financial assétg local volatility model.
Dupire, Derman and Kani gave proofs based on stochastialaalevhile Rubinstein
approached it using implied volatility tree. As Gatheradidly noted, it was unlikely
at the time that Dupire and others ever thought of local \ldlaas representing a
model on how volatilities actually evolve, rather they wékely to view it as a way
of finding an average over all instantaneous volatilitied].[1n addition, the financial
sectors have increased their level of resources to helpweghe pricing of financial
instruments and considerate amount of research have beenathal still ongoing to
develop models that can replicate the market prices aatyrat

Specifically, exotic options are being priced with the usemafdels such as local
volatility models, stochastic volatility models as welllasal stochastic volatility mod-
els and jump-diffusion models. Since this project is maodycerned with the mea-
sure and estimation of volatility parameter, it becomesiinicent to give brief details
on it. Volatility of a financial asset is the measure of the kearisk as a result of the
spread of the outcome of the returns of the asset, which entakbe a random vari-
able. This volatility which is a form of the risk inherent toetasset is very important
when valuating financial derivatives (resp. options) andclke it becomes necessary
to accurately measure it in order to avoid discrepanciesdsat the theoretical prices
obtained from the models used and market option prices.

This thesis aims at dealing with local volatility surfackattexhibit the “smile” effect
that are consistent with the market’s underlying assetatiity structure. As will be
shown and explained later on, Black-Scholes model whichnagsa constant volatil-
ity in its option valuation does not provide a framework teaplains the volatility
skew (or sneer) nor does it explain the term structure oftilityathat are observed
in the market since the financial crash. As a result, thereniseal for more realistic
models that produce prices that can accurately represeketmaices. Consequently,
this project aims at presenting the tools of local volatilitodel and its local volatility
surfaces to demonstrate a better performance in exhilihimgsmile effect”.



In the sequel, in ChaptEl 1, the motivation behind the useaail eolatility model will
be addressed by examining its crucial model assumption8&uk-Scholes model.
Also, some crucial terminologies that help to grasp thetgeokthis model will be ex-
plained as well as some other concepts and terminologiesandial mathematics that
are essential for comprehending this thesis. In Chaptee2ahous theoretical deriva-
tions of local volatility will be deeply dealt with, esseaity, Dupire local volatility,
local volatility as a function of implied volatility, and éal volatility as a conditional
expectation. Chaptét 3 explores various numerical methwatsare used in literature
to obtain local volatility surfaces: the parametric metlod non-parametric methods.
The motivation and explanations of novel numerical techesgwe have proposed un-
der the above methods will be given. Consequently, the aisadysl interpretations
of the local volatility surfaces obtained will be discussedonnection with its finan-
cial implications. Finally, in Chaptéd 4, we will explain tfiereseeable future work of
this thesis, essentially, how to improve the numerical négplres implemented in this
thesis.

1.1 Preliminaries

In this part, the mathematical and financial structures dnae the main results as
well as some important terminologies that are used in fimoathematics will be

explained. The organization of this part begins with exataom of financial termi-

nologies in Sectiof 1.1.1, then in Sectlon 1.1.2, matherakbfiamework that would

help the reader understand the mathematics behind the medehtions will be dis-

cussed.

1.1.1 Financial Terminologies

According to Chance M., inancial derivatives a contract between two parties pro-
viding for a payoff from one party to the other determined oy price of an asset, an
exchange rate, a commaodity price or an interest fate [5].therovords, the value of
the derivative depends on the value of some other financsgt ganderlying asset).
Derivatives are used as a way to offset undesirable finariskabn individual is ex-
posed to in the market. As we see above, a derivative depantisegperformance
of some other financial asset, called the underlying asdsbse value is a random
variable. The meaning of an underlying (asset) could behamytfrom stock, bonds,
interest rate to another derivative like forward contraitiires and it could even be the
weather in Ankara, which is not a tradeable asset. Thereeasga types of financial
derivatives in the market, one of which is an option. An opti® a contract between
two parties —a buyer and a seller— that gives the buyer tieé Iigt not the obligation,
to purchase or sell something at a later date at a price agieadtoday([6]. A call
option gives the buyer the right to buy while a put option gitlee right to sell. The
simplest form of options is the European type which do nawvalbne to exercise until
maturity. However, the American type of option allows the/éuto exercise at any-
time between the initiation of the contract till the optismaturity. The above two are
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referred to as Vanilla options.

Other types of options also exist such as the Bermudan optidriree Exotic option.

Bermudan options are types of options that can be exercisadrat specific points in
time from the onset of the contract till maturity while Exotptions are family of op-

tions with non-standard payoff structure and exerciseipiigies which are different

from those of standardized European and American optiohesd derivatives (resp.
options) are traded on a large part in over-the-counter (Om&ket as well as in an
organized foreign exchange (FTX) market.

1.1.2 Mathematical Background

In this part, the mathematical tools that will enable easgenstanding of the model
derivations and basic stochastic calculus concepts witidmeprehensively explained.
In general, the concepts in Mathematical Finance are defimeda probability space
(Q, F,P); Q denotes the total sample spage,denotes ther-algebra of all the infor-
mation known up till timef, andP denotes the objective probability measure, which
guides the probability of events happening in this proligisipace where the domain
of Pis F.

A real valued random variable is defined as a function thagasseal values to the
set of outcomes of a probabilistic experiment. Its futurliea are unknown, hence,
they are also referred to as stochastic variables. In addithe collectionX, of F;-
measurable random variabldsy;; 0 < ¢ < T}, is a stochastic process. Further more,
a stochastic process is adapted to the filtratiof\F; } o<;<r if it behaves such that for
every realizationX, is F;-measurable.

To give an example for practical purpose; let us considertdssing of a fair coin.
The sample space denotes®y= {head, tai}. A real-valued random variablg(w)
defined on this space such that it models a payoffidf & head shows up and)$if a

tail shows up.
1 if w=head
Y(w) = {o if w = tail

Since the coin is fair, its probability distribution funati fy- is given by

fr(y) = {

that is, there is equal probability of a head and tail showipgvith each toss.

ify=1
ify=20

D= D=

Another important concept is the conditional expectatiba scandom variable in a
given probability space. A conditional expectation is tkpexted value of a random
variable given an amount of information. To give a more mathtecal definition, let
(Q, F,P) be a probability space and l6tbe a subs-algebra contained ift. We de-
noteL, (€2, G, P) to be the subspace 6 (£2, F, P) of equivalent class af-measurable
random variables under the Hilbert space. We ideritifyto be the restriction of to
G. Hence,



Definition 1.1 (see [25]) The conditional expectation of a random varialile €
L5(92, F,P) with respect tog is the projection ofX onto £,(2, G, P) or rather any
G-measurable random variable belonging tolEigeequivalent class of this projection.
Hence,

VG € g, /E[X|g]dIP’:/XdIP>.
G G

Another concept that is very important in studying finangiatrument is théviartin-
gale property As in the previous definition, suppo§@, F,P) is a probability space
with filtration {F}}:>, underF, then a stochastic process,, under (2, F,P) is a
martingale if,

(a) X;is adapted to the filtratiofiF; };>o;
(b) E[[X]] < oc;
(€) E[Xi|Fs] = X for0 < s <t < oc.

It is worth noting that conditiohd]] is typical of martingale processes, because it says
the best predictor of the proces§ after times, given that we have the whole in-
formation of X up to times is X,. Also note that the condition ifb] imposes the
integrability of the process. Other related concept woréntioning are the concepts
of Submartingaleand Supermartingales The definitions are same with the martin-
gale property except in conditig){wheresubmartingalesatisfieskE[ X, | F] > X,
andsupermartingalesatisfiesE[ X, |F;| < X.

Note that if X, is a martingale then each continuous time step is a marérayad we
can write:

1. E[Xo] = E[X{] = --- = E[X}];

2. The sum of two martingales is a martingale.

Another important aspect of financial mathematics is to idesc¢he valuation of op-
tions. Hence, in a complete market (that is every contingkm is attainable by a
self-financing portfolio), the valug, of an option at time, with payoff functions(Sr)

at timeT', is defined to be the expectation ®fS;) under the risk-neutral probability
measureP*, discounted at the risk-free rate to timeconditional on the information

known upto time: namely,V; = E* [6_ T rdsg(Sy) | ]:t}-

Valuation of an option depends on the dynamics of the asi&et process under which
the option is written. Stochastic differential equatioBOES) describe the evolution
of stochastic processes and they are usually of the form:

dXt = a(t, Xt>dt + b(t7 Xt)th7 (11)

with a(t, X;) and b(t, X;) F;—measurable.lV, is standard Brownian motion (also
known as a Wiener process). This is a random process thailoesa motion begin-
ning atiV, = 0. In each time period, —t1, its incrementJV,, — W,, , is independent of
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everything that happened befdre(stationarity property), and its values are normally
distributed with mean 0 and variante— t¢,, thatis,W,, — W;, ~ N (0,t5 — t1).

Another important concept in financial mathematics, islthéormula, which plays a
very important role in stochastic calculus. If a stochagtmcessX; follows an SDE
of the form in Equation[(I]1), then a functigh € C? of this processX, and time

t is described by théo's formula (refer to AppendiX_A for details). Asset prices
are generally assumed to follow the dynamics in Equafiofi) (dnder a geometric
Brownian motionl¥;, and that is why théto formula plays such an essential role in
option pricing.

We now have the necessary tools to highlight another impbc@ncept that describes
the price of an optionV, over timet, the Black-Scholes partial differential equation
(BS-PDE). The PDE arises from the fact that discounted opfares are martingales

and subsequent application b6 formula on the discounted prices. The following
theorem summarizes the above idea.

Theorem 1.1.1f X = h(Sy) is the terminal payoff of an option, then there exist a
functionV : [0, 7] x (0, 00) — R such that

‘/t - V(tu St)7
which is a solution to the Black-Scholes partial differehéiguation

V(t,s) 1 ,,0°V(ts) IV (t,s) B
T 508 —pa + e rV(t,s) =0 (1.2)

with the terminal condition

V(T,s) = h(s)

foranys > 0 andt € [0, 7. Here,V is the option prices is the asset price, andis
the risk-free rate.

Proof. The proof to the theorem can be found in introductory staithaalculus text-
books, for instance [27]. O

1.2 Black-Scholes and Local Volatility Models

In this part, Black-Scholes model as well as local volatititgdel will be discussed in
details. Black-Scholes model will be presented in Sedti@aliwith its basic assump-
tions and the extent at which these assumptions hold intye#&fi Sectio 1.2.12, the
basic terminologies that help us understand local vaiatiiodel will be defined.

1.2.1 Black-Scholes Model

The model has its origin traced back to the original papere*Hricing of Option
and Corporate Liabilities” in the 1973 written by Fischer Bdland Myron Scholes.

5



Robert Merton more or less independently derived the samatiequwith its current
mathematical structure. The first method used by both Bladksaholes to derive the
option pricing formula was through a financial approach ®/thapital Asset Pricing
model (CAPM)”, a well accepted model in finance and the oth@r@gch was via
stochastic calculu§ [5]. This model has some main assungptitich are enumerated
below.

Short selling of the underlying stock is allowed.

Trading stocks is continuous.

Arbitrage opportunities are not allowed.

No transaction costs or taxes.

All securities are perfectly divisible (meaning you cafi er buy a fraction).

It is possible to borrow or lend cash at a constant risk-fege.

The stock does not pay dividend.

Stock prices are random and log-normally distributed.

© 0 N o g bk~ 0w DdPRF

Volatility of the log return on the stock is constant overd.

[ERN
©

The options are of European type.

Let the price of a stock be driven by a geometric Brownian motigf, )~y under
the probability measur@ and follows the stochastic differential equation (SDE):

dSt = Mtstdt ‘I— O'StdBt. (13)

To be able to price an option under the Black-Scholes modeskaneutral world is
needed, hence a risk-neutral probability measure denotekt lis entailed. Firstly,
usingGirsanov theorenfsee AppendiX’A), an SDE driving the stock price is derived
with risk-free return driving the interest rate given by

dSt = TtStdt -+ UStth, (14)

wherelV, is a Wiener process under the risk-neutral probability mesB*. Hence,
with the above assumptions, the following theorem holds:

Theorem 1.2 (Black-Scholes Call Price)Let the asset price follow the SDE in
Equation [1.4) withr = o35 andr; = r, then the price of a call option written on this
asset at time is given by

Cps(t,Sy;T,K,opg,7) = S;N(dy) — Ke "T"YN(dy) (1.5)

U%ST

« In St
with d; = (l[;B)S;\/T? anddg =d; — UBS\/T

whereS; is the spot price at time, K is the strike priceggs is annualized volatility
of the continuously compounded (log) return on the stocH,ais the continuously
compounded risk-free interest rate.



To calibrate the option price of the Black-Scholes model &rttarket prices, a set of
parameters have to be specified in the model to give a theakgtice that conforms
to the market. However, all the parameters in Black-Scholedeincan be directly
observed in the market except the volatility, There are two different approaches to
determine the volatility parameter. One approach is toycaut a time series analysis
of historical data of asset prices and the other is to inherBiack-Scholes formula for
the unique volatility. The volatility in the former apprdais called historical volatility
while it is called implied volatility in the latter. A probie lies in modeling the volatil-
ity structure of financial asset under the Black-Scholes éwaark because it assumes
the volatilities specified in the model have to be the samejtions written on the
same asset, with the same maturities but different strikeegr This assumption has
been falsified with the market data as it can often be fountddp#tons written on
the same asset, although, with the same maturities, hdesafht volatilities for dif-
ferent strike prices. Indeed, the volatility inherent imncprg these options depend on
both strike price and maturity of the options. Practitiaterm this dependence as the
market phenomenon. The dependence of volatility on stekealledvolatility skew
while on maturity is callederm structure of volatility In the next section, this will be
elaborated on.

1.2.2 Local Volatility Model

The motivation behind the idea of local volatility is to findless computationally
engaging model unlike stochastic volatility, with more plifying assumptions such
that the market prices are consistent with the prices witenBlack-Scholes frame-
work [18]. To better understand why this is necessary foqaeee pricing of exotic
options, the next section provides explanation for vatgtskew and how it affects
pricing of options.

Volatility Skew

As explained earlier, the concept of volatility skew (or enestarted to develop after
the 1987 financial crisis. The idea was to build a model th#itlvei able to explain
this phenomenon since the Black-Scholes model fails to addtes. If the Black-
Scholes model was an exact description of reality, it woulgigest that every option
price written on an underlying asset pri¢s;) >0 follows a different price dynamics,
which is arguably not the case. It would also suggest thanwiseng binomial trees
to build an option price process, a different tree would bedeel each time for the
asset price process for different options written on thetas3ver the years, different
models have been proposed to explain the volatility skewrantibem are: stochastic
volatility, jump diffusion, and local volatility models.

Stochastic volatility was first introduced by Hull and Whi&]. The idea behind
this is that volatility also has a source of randomness obuia called the volatility
of volatility. The most famous stochastic volatility modelre Heston modé€l [23] and
SABR model[20]. How these models cause the volatility skesxgained in[[12, 20].
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Another idea was to introduce processes with jumps whichnabea from the work
of Merton [28]. The basic principle behind this is the asstiompthat the underly-
ing asset undergoes a jump-diffusion process which is hefpresentation of reality.
Sometimes we have sudden price movement due to some exenissider informa-
tion in practice. How this model performs better in real#ybieing described in[2].
Lastly, local volatility model also tries to account for thelatility skew by assuming
volatility is a deterministic function of time, and asset pricé;. Consistent option
prices with the market can be built if the asset price foll@amsSDE of the following
nature:

dSt = ,utStdt + O'(t, St)Stth,

whereu, = r;, — q;, r; iS the continuously compounded interest rate, anis the
dividend yield. The above SDE is called the asset price dyceomder local volatility
and the risk-neutral probability meastite

The Local Volatility

As mentioned earlier, volatility measures the level of riskerent in a financial as-
set, and it is one of the parameters needed in the valuati@aptain prices. Local
volatility is perceived to be an average of all future insémeous volatilities of the
asset from the onset of the option till maturity, providedttthe option ends at-the-
money (seel[4, 18]). As Dupire rightly recognized in his oré& paper, one of the
motivations in developing this method was because localtity model stays close
to Black-Scholes model as option valuation is still underdbmpletion of the market
which ensures unique prices [14]. As a result, it gives amathge over more complex
models like stochastic volatility and jump-diffusion mdslthat introduce new sources
of randomness into the dynamics of asset prices which ar&raabd in the market.
However, critics have also pointed out the downsides of tbdahas being too close
to Black-Scholes model with some relaxations into the assiompf the volatility [3].

1.3 Numerical Methods for Pricing under Local Volatility

In the literature as well as in practice, several numericethmds have been described
for pricing options under local volatility. These methodg tio reconcile the option
prices obtained theoretically from local volatility modelth the observed market
prices with the aim of minimizing the difference in measuréose two option prices
over a range of strikes and maturities. Depending on thendi®e purpose, several
approaches have been devised in estimating volatilityrpater. One approach used
frequently is to predict the future movement of asset pricesn past behaviors to
project expected future volatilities (see [13] 26]). Altlgb this method could be use-
ful, it could be misleading. Another approach is to calibrdte prices of the option
model to the market prices of the actively traded derivasigeurities (options) since
the option prices contain information about expected futulatilities [13]. However,
the latter is more computationally intensive and could bedked usingFinite Differ-
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ence MethodFDM). For instance, it can account fbocal Volatility Function(LVF)
by adjusting the algorithm [4].

In this thesis, two disparate numerical methods of obtgihatal volatility surfaces
will be rigorously explored: parametric and non-paraneetniethods. They volatility
surfaces from the methods will also be compared with one thieodn terms of their
performance and accuracy in measuring volatilities.
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CHAPTER 2

DERIVATION OF LOCAL VOLATILITY MODEL

To be able to price options with local volatility model, anpappriate method to de-
vice the volatility function must be determined. In Secfiad, the derivation of local
variance in terms of partial derivatives of actively tradadl option prices with respect
to strike K and maturityl” will be done. In other words, the Dupire’s local volatility
equation will be derived. Local variance as a conditiongdestation will be derived
in Sectiof Z.2. For convenient use of Dupire’s equation inmumerical computation
of local volatility later on, in Sectioh 2.3, Dupire’s locablatility function in terms of
forward price will be derived. In Sectidn 2.4, the challemgacountered while using
Dupire’s equation will be explained. Sometimes in practibe Black-Scholes implied
volatilities of the option prices are quoted directly, #fere, its necessary to derive lo-
cal volatility function in terms of implied volatilities. nl Sectio 2.5, local volatility
will be derived as a function of Black-Scholes implied vdigti

2.1 Dupire Local Volatility Model

A stepwise approach in deriving local volatility equatioillwe used and with this
approach, a build up problem solving process will be caroet

Consider a local volatility model, in which the risky assatersS; satisfies
dSt = [L(t)Stdt + U(t, St)StdBt, (21)

whereB = (B;):>o is a standard Brownian motion, defined@n A, P), p: RT — R
is a (deterministic) continuous function and R* x R — R is a continuous function
such that/t > 0, V(z,y) € R?,

[zo(t,z) —yo(t,y)| < M|z —yl,
andV(t,z) € Ry x R, o(t,z) > m, where m and M are positive constants. For
simplicity, we assume that the interest rate is null. Therafiltration of (B;):> is

denoted byl = (F}):>o.
Theorem 2.1.LetS be the dynamics of the asset defined in Equalion (2.1)4fdd K)
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be the European call option with strik€ and maturity?’. Then, we have
oC(T,K)

2 _ oT
0K?

for0<T < TandK > 0.

Remark2.1 Equation [2.R) is termed as the Dupire local variance eqoatiaking
the square-root of both sides gives the local volatility.

Proof. The proof to the theorem is long, thus, some parts of the priblbe stated as
lemma for easy following.

Step 1 First, show that for every € R, Equation[(2.11) has a unique solution such
thatSy, = x:

1. First, is to show that the SDE satisfies the Lipschitz ciomdli That is,
[b(t,z) = b(t, y)| + |o(t,x) — o(t,y)| < K|z —y|,
whereK € R and finite. This leads to
[zpu(t) — yu()| + zo(t,x) —yo(t,y)| < |[p®)| |z —y| + M|z —y],

where|zo(t, ) — yo(t,y)| < M |z —y|, V> 0andV(z,y) € R?. Sincepu(t)
is deterministic, letu(t)| = M; < co. Then

[wp(t) — yu(t)| + |zo(t,x) —yo(t, y)| < [Mi] |z — y[ + M |z —y|
[zu(t) — yu(t)| + rvo(t, ) — yo(t,y)| < (My+ M) |z —y| (2.3)
[zp(t) —yut)| + zo(t,z) —yo(t,y)| < K|z —yl,
whereK = M; + M < oo. Hence, the Lipschitz condition is satisfied.
2. Next, show that the SDE satisfies polynomial growth coowljtthat is,
t,2)| + o (t.2)] < K(1+ [z,
That is to show that
[wp(t)| + |zo(t, z)| < |of [p(t)| + |zo(t, z)| < K(1+[z]).  (2.4)

Note that:
lzo(t,z) —yo(t,y)| < Mz —yl,

y = 0 implies |zo(t,z)| < M |z|.
Substituting this back into Equation (2.4),
zp(t)] + |zo(t, 2)| < [z] (My + M),
whereM; = |u(t)|. This implies that
[zp(t)] + |zo(t, 2)| < Kz] < K(1 4 [z]),
where the last inequality is true féf = M + M, € R*. Therefore, the polyno-
mial growth condition is satisfied.
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3. And lastly, check if the SDE satisfi@SZ] < oo wheresS is the initial value.
In our caseS, = = henceE[z?] < o is trivially satisfied.

Thus, we conclude that Equatidn (2.1) has a unique solution.

Step 2.Secondly, show that i is a solution of Equatiori(Z2.1), far> 0, then

¢ ¢ 1t
Sy = Sy exp (/ p(s)ds +/ o(u, S,)dB, — 5/ o*(u, Su)du> :
0 0 0

To show this, apply th&o formula(see AppendiXA) tof (z) = Inz with f/(z) = 1
andf”(z) = —-%. This leads to

S

t
1
InS; =InSy+ / g (1u(s)Ssds 4 (s, Ss)SsdBs)
0

/1, )
- 5 §O' (S, SS>SSdS
0 s

t t t
InS; =1n Sy +/ w(s)ds +/ o(s,Ss)dBs — %/ o?(s,Ss)ds (2.5)
0 0 0

In (S,/S0) :/Ot,u(s)ds+/0ta(s, SS)dBS—%/Otaz(s,Ss)ds

t t 1 t
Sy = Spexp (/ w(s)ds +/ o(s,Ss)dBs — 5/ o?(s, Ss)ds>
0 0 0

as desired.

Step 3.Thirdly, show that the natural filtration of the procgs$),~, is equal toF’ (the
natural filtration of( B );>o).

To show this, writeB; as a stochastic integral with respect to the pro¢&ss-,. Let
(F}) >0y and(F";) >0y be the filtration ofB, andS, respectively. From Equation (2.1),
S, iIs measurable with respect to the filtration/)f that is,S; € F;. It remains to show
thatBt € F/t.

From Equation[(2]1), we have

O'(t, St>StdBt == /,L(t)Stdt - dSt (26)
and thence,
1
dB; = o[t 55, (1u(t)Spdt — dS})
N O'(t, St) O'(t, St)St
/ 4B, = / Cu(s)ds / s, @7
0 o o(s, Sy) o 0(s,Ss)Ss
t t
o p(s)ds _/ dS
Bt BO B 0 O_(S’SS) 0 0-(8758)55‘



The right hand side i$”;-measurable, so is the left hand side. Therefétec F’,,
and the conclusion follows that, = ;.

Lemma 2.2. Let L be the martingale defined By = exp <— 3 0.dB, — 5 [} Hidu),

with 6, = Uf;(ts)t). Fix the horizonT of the model0 < T < oo) and letP* be the
probability given bydP*/dP = Ly. GivenT € [0,7], letC(T, K) be the price of a

call option with maturityl” and strike pricei’. The following equations hold:

1. o(t,z) < M for (t,z) € Ry x Rand

2 _
E*[SP] < S exp (p 5 pM2t>

forp>1,0<t<T.

2. T+ C(T, K) is non-decreasing of), 7] for K > 0 and(7, K) — C(T, K)
is continuous or0, 7] x R™.

3. B*[(Sr — K).J> =2 [ C(T, y)dy.
Proof. The proof of the lemma will be shown step-wise.

1. First, show that(t,z) < M foro(t,z) € Ry x R.
From

lzo(t,z) —yo(t,y)| < M|z —y|, Vt>0, o(z,y) € R?

we takey = 0, to get

|zo(t,z)] < M|z| VxeR
jwo(t,2)| = |z||o(t, z)| < M |z (2.8)
lo(t,z)| < M, Vo(t,x) € Ry x R.
Now applylto formulato f(x) = Inz? with f'(z) = 2 and f"(z) = —% to
attain
“p 1 ["p
2 2
In S} = 1nsg+/0 5 (o(s,Ss)SsdBs) — 3/, S—ga (s,85)S5ds
t 1 t
In S} = 1nS§+/ po(s, Ss)dBs — 5/ po?(s, S,)ds
0 0
SP t 1 t
In (25 =/ pa(s,Ss)st——/ po(s, Ss)ds (2.9)
SO 0 2 0

5t t L
<5 = eXp p(s,Ss)dBs — = | po©(s,Ss)ds
So 0 2 Jo

t t
SP = S exp (/ po(s,Ss)dBs — %/ paz(s,SS)ds) :
0 0
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Using the properties of exponential functions in combativith o (s, S5) <
M, we have

exp </0 po(s, SS)dBS) < exp (pM(/O dBS)) ,
exp (—%/0 paQ(s,Ss)ds) < exp (—%pM2/O ds). (2.10)

Substitute Equatio (2.110) into Equatidn (2.9) to get
t 1 t
Sp < S{exp {(pM/ dBS) — (§pM2/ ds)}
0 0

1
SP < Sfexp {pMBt — EpMzt]

and

. (2.11)
E*[Sf] < E* [S{)’ exp (pMBt — épM2t>]

E*[Sf] < SpE” [exp <pMBt — %pMzt)] .
SincespM?t is a deterministic function of time, it follows that
E*[S}] < S§ exp (—%pM%) E* [exp (pM By)] . (2.12)
Using the moment generating function of a Brownian motion,

i M3t
E* [exp(pM By)] = exp (p 5 > ,

which leads the inequality in Equatidn(2112) to

E*[SY] < 5§ exp <_(%pM2t)> exp <p2M2t)
(2.13)

E*[S] < S§ exp (@M%) :

2. Let a functionf be defined as followsf : 7' — C(T, K). Then, f(T}) <
f(Ty).

Let F7, be theos-algebra of information up to timé;. S is a martingale under
P*. Then,

E* Sy | Fy| =S
[ 7| 1} n (2.14)
E* [Sp, | Fi] = eT(T2—T1)ST1 > STy,
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sinceT, — T; > 0 impliese”™>~T1) > 1 with equality when- = 0. So,
E*[St, | Fi]— K > S, — K
E*[Sp, — K| Fi] > S, — K (2.15)
E*[E* [Sr, — K | Fi]] > E* [S, — K].
By Tower propertyof conditional expectation, we have
E*[Sy, — K| > E* [Sp, — K]
E*[Sp, — K| > E*[Sp, — K] >0 (2.16)
[E* [STz - K]+ > [£* [STl - K]+

with equality when- = 0. Therefore f(1}) > f(13).

Lemma 2.3.1f g : (T, K) — C(T,K) is a mapping of 7, K) € R™ x R*
into C(T, K) € R, theng is a continuous function.

Proof. Show that functiory is continuous by ascertaining that it satisfies the
three conditions of continuity:

@ g(T,K) = C(T,K) = E*[Sr — K], is well defined in domairy € R,
sincemax(0, St — K) < oo impliesE*[S; — K|, < oc.
(b) limT%Tl g(T, K) = limT%Tl E* [ST — K]+ = [E* [STl — K]+, sinceS is a

continuous variable of € [0, T].
() limy,, 9(T, K) = g(T1, K) = E* [S1, — K], as consequence 6f) and
(b) being true.

Thereforeg is continuous. n

. Lastly, show thal*[(Sr — K),]? = 2 [1° C(T,y)dy. To prove this, we know
that

o0

E* [(Sr— K)%] = /_ (x — K)%p(z)dz,

o0

wherep(z) is the density of5. Therefore,

B (5 - 2] == [ 20— K plo)is

—0o0

=2 /_OO (x — K)yp(x)dx (2.17)
= —2E" [(Sr — K)4]
= —2C(T,K).

Taking the integral of both sides with respectifowe get

: 8%1@* [(Sr — K)2] = /K T o0(T )y
E* [(Sr —00)3] —E* [(Sr — K)%] = -2 /K C(T,y)dy (2.18)

E* [(Sr— K)2] =2 /K (T, y)dy.
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Note thatE* [(Sr — 00)% ] = 0, since the call option will end out-of-the-money
whenK — co.

The proof is completed. n
Lemma 2.4. Let fo(x) = (x,)* and, fore > 0,
if x <0

0
fe(x) = z if 2 € [0, ¢

€2

?—ex+ S ifr>e
The following hold:
1. f.is of classC? andliné fe(x) = fo(x) for everyz € R;
€—>

2.0 < fo(z) < fo(z), 0 < f/(x) <2z, 0 < f/(x) < 2foreveryVz > 0 and

e > 0;
T
3. E* [f(Sr — K)] = fe(So— K)+ 3B | [ £"(Su — K)S20*(u, S,)du| for K >
0
0andT € [0, 7).

Proof. 1. First we obtain thaf. € C? Ve > 0: Taking the 1st and 2nd derivatives
of f.(x), we obtain

0 if v <0
fla)=3 % =2 if g c0,¢
20 —e  fx>e
0 ifxz<O
f(x) =02 ifzel0
2 ifox>e

Sincef.”(z) existsVz € R, f. € C.

Next, we will show thatim,_,, f.(z) = fo(x). To do this, consider a number of
cases as shown below:

Case 1(z < 0) :

limeﬁo fe(x) =0

Case 2(x € [0,¢)) :

Observe that as— 0 andz — 0, x acts like are. Hence,
. . 3 . 2

hme—>0 fe('m) = hms—>0 % = hme—>0 % =0

Case 3(x > ¢) :

1im6—>0 fe(-r) = hme_>0 <x2 —€ex + %) — .,1:2
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Therefore,

lim f,(x) = fo<x>:{02 <0

e—0 z¢ fxz>0

. Next, show thatz > 0, we have) < f.(z) < fo(z) :
It is trivial that f.(z) > 0, since

0
fe(x) = + >0 sincex > 0,e > 0
72 —ex + % >0 sincezr? > ex
It remains to show thaf.(z) < fo(x). To show this, compare the terms in both
functions.
3

x 9 T4

— < z7 impliesz < 3e implies = < e.

3e 3
Similarly,

2 2
2 6 2 - - 6
r° —€exr + 3 <72 |mpI|es§ < ex.
Thence, we have < f.(z) < fo(x).
Next, show thad < f./(z) < 2z :
Itis trivial that f./(x) > 0, since

0
fl@)y=<{ >0 sincezr > 0,e>0
2r —e >0 sincex > e impliex > ex

It therefore remains to show thgt' (z) < 2z. This can be shown however by
comparing again the terms in both functions.

x? N
— < 2z impliesz < 2¢
€

which is true since: < e impliesx < 2e. Also,

2x — e < 2z impliese > 0.

Thereforep < f./(z) < 2.
Finally, we show that < f.”(z) < 2.
Clearly f.”(z) > 0, since

o

J'(x) =<2 sincex >0,e>0
2
It remains to show that.”(z) < 2, but this results from
2x : . . .
— < 2 implies2x < 2e impliesz < e.
€

Hence, conclude that< f.”(z) < 2.
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3. Bylto formula let X; = S; — K anddX; = dS;.

(S — K) = f.(So— K) + /O 1(S, — K)ds,
(2.19)

- % /0 t 1 (Ss — K)S20*(u, S,,)du.
E* [fE(St - K)] =E* [fE(SO - K)] +

* ! / 1 ! " o 202 U
E VO £ (SS—K)dSS+2/O £7(S, — K)S? (u,Su)d].
(2.20)

Since(S, — K) is constantf. (S, — K) is constant, hence,
E* [f.(So — K)] = f(So — K).

Also, S is a martingale undepP* which means(fot 1 (Ss — K)dSS> has con-
stant expectation by the property of a martingale. Thus,

t 0
E* { / £/ (S5 — K)dSS} —E* { / £(S, — K)dss} = 0. (2.21)
0 0
Therefore, Equatiori (2.20) becomes

B (50— 0] = B 5o~ K1+ 387 | [ £7(5. ~ K)S20%(u, S0

(2.22)
Hence, the proof is completed. O
Step 4.Let p(¢, -) be the density function of the random varialSte underP*.
: 02C(T\K) .
1. We will show thap(T', K) = SR
Knowing that
C(T,K)=E"[Sr — K|+
_ / (Sr — K)p(T, 5)dS:
K
we take the partial derivative of both sides with respedt’tto obtain
o9 /m(s — K)p(T, S)dS (2.24)
0K 0K [, T P m)ae '
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By Fubini theoremwe have

oC 9

— = — (St — K)p(T, S)dS
oK K +ZK (2.25)
= —/ p(T,S)dS.
K
Taking the second partial derivative with respeckimow gives
0*C 0 oo o
0°C
OK? = p(T7 K)-

For simplicity, we have assumed thatg_,., p(T,S) = 0.

. Next, we will show that

/ - y*p(u, y)*(u, y)dy) du.

K

B (5~ K0 = (5= 0+ [ (

Fortunately, using Equatioh (2]22) we get

B 1(Sr — K0 = £.(80— )+ 3| [ 47150 = K)Stou, S

Let f(Sr, K) = fo(Sy — K) = [(Sr — K).J*, wheref."(Sp — K) = 24 = 2.
Substituting this into Equatioh (2.22) gives

E*[(Sy — K) > = [(So — K)]* + %E* UO 2(1g,~x)S20%(u, Su)du} .

By Fubini theoremagain, we have

E*[(Sr— K)+]" = [(So — K)+ )" + /0 (E* [(1s,5x)S50%(u, Su)]) du

= [(So — K)4)* + [ /0 ' ( /K - S2p(u, S, )02 (u, Su)dSu) du} .
(2.27)

Taking S, = y, Equation[[2.2]7) becomes

(5 - K0 = (5= 0+ [ ([ vt wniy)
(2.28)
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3. Lastly, we will deduce the Dupire local variance equation
From Equation[(Z2.18), we have

EW@%—KhF—2ijC@wwy

Equating the right hand side of Equatign (2.18) to the rigirichside of Equa-
tion (Z.28), we get

400 T “+o00o
2 [ ewmpan=is- 0.0+ [ ([ e do
K 0 K
(2.29)
Taking the derivative of both sides with respecfitoEquation[(2.29) gives

oc(Ty) 0 2
2/}( a7 W=7 (50— K)4

+ a%’ [/OT (/:O y2p(u,y)02(u,y)dy) dU} (2.30)

+oo
= 0+/ y’p(T,y)o*(T,y)dy.

K
This leads to
80 Tay =400 =T00
2% v =P (Typ(Ty) 12K
0— 2M =0— K?c*(T, K)p(T, K)
80(31?}() (2.31)
28—T’ = K?*¢*(T, K)p(T, K)
0C(T, K) 1 5 5
) K T K)p(T, K).
For simplicity, we have assumed
lim 2w =0and lim y*c*(T,y)p(T,y) = 0.
Y—+00 Y—00
Therefore,
oC(T,K) K?0*(T,K)0*C(T,K) _
5T = 5 K2 forO<T <Tand K >0. (2.32)

for0 < T < T andK > 0. Thus, we can obtain the local variance function from
Equation[[2.3R) as
dC(T,K)

2 _ oT

0K?

for0<T <TandK >0
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This completes the proof of the theorem. n

Equation [(2.3B) was derived by Derman and Kanil [11], althotlie idea and the
method was developed by Dupire [15]. The formula says thangtpoint in time,
the local volatility of the underlying asset can be deteedifor market option prices
across all strike prices and maturities.

Remark2.2 In the case the interest rate,# 0, and the dividend yieldg # 0, the
Dupire local variance equation becomes:

o (T, K) + (r(T) — q(T)) K gz +¢(T)C

T,K) =29 .
7 K288(T, K)

(2.34)

for0 < T <TandK > 0andC(S,, T, K).

2.2 Local Volatility as a Conditional Expectation

In this section, we will derive local volatility as an expedtvalue.

Theorem 2.5. Let S be the dynamics of the asset under
dSt = ILLtStdt + O'(t, St)Stth, (235)

wherey; = r; — q;, and W, is the Brownian motion under the risk-neutral probability
measuré®*. LetC(T, K) = P(t, T)E*(Sy—K ), whereP(t, T) = exp (- s rsds>.
Then,

258 + K(rr — ar) 3% + qrC])

(K*55)

E* [0} | Sr = K] = ( (2.36)

Remark2.3. Equation [[2.36) is termed as the Dupire local variance éguats an
expected value. Taking the square-root of both sides ghestotal volatility.

Table 2.1: Partial Derivatives

%(S_K)+:]1(S—K) %( (s-k)) = 0(S — K)
(S — K)t = =15k ap(Ls-r)) = —0(5 — K)
(S —K)y = —P(t, T)E*[I5_x)] 870(5 K)y = P(t, T)E*[6(S — K)

whered(-) denotes the Dirac delta function.

Proof. Shown in Tablé 2]1 are the necessary partial derivativessinsbe proof of the
theorem.

22



Let f : R x R — R be a function such that(Sy, T) = P(t,T)(Sr — K),. By Ito

formula,
T T 1 /7
Ir Ifo+/ fu'du—i-/ fgu’dSu+§/ fs.,”S20*(u, S, )du
oT oT 0
:f0+/ fu/du+/ fs," (puSudu + o(u, S,)S,dB,) (2.37)
0 0
1 ’ nQ2 2
+ = fs,” S50 (u, S,)du
2 /o
Therefore,
[ of D*f of
df: |:8T + aSTMTST+ O'TS%aSQ dT + O'TSTa—ST dBT7 (238)

where the partial derivatives in Equatidn (2.38) are giveplieitly as:

ﬁ == —TTP(t, T)(ST — K)+

oT
aof
FIe P(t, T)1 (s> 5 (2.39)
% f

957 P(t,T)5(S — K).

Substitute Equatior (2.B9) into Equatidn (2.38) to obtain
1
df = P(t,T)[—rr(St — K)1 + urSrlssx) + 50%5%5(5 — K)]dT (2.40)
+ P(t, T)O'TSTIL(S>K)dBT.

For By ~ N(0,T), it follows that
E(Br) = 0 impliesdE(Br) = 0 impliesE(dBr) = 0.

Taking the expectation of both sides of Equation (2.40)dgel

1
E*(df) = P(t,T)E* (|i—7’T(ST — K)+ —+ ,UTST]I(S>K) -+ 50’%5’%5(5 — K) dT s
(2.41)

and byFubini theoremwe have
E*(df) = dE*(f) = d (P(t, T)E*(Sr — K),) = dC. (2.42)

Thus,

1
dC = P(t,T)E* l—'f’T — (S — K)y + prSrlssk) + 50%5%5(5 - K)] dT>

oC 1
T P(t, T)E* (l—rT(ST — K)1(s>k) + prStlssk) + 50%5%5(5 — K)]
(2.43)
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Simplifying the first two terms in Equatioh (2143) gives

—rp(St — K)L(s>k) + prStl(s>k) = Lis>k) (=0 (St — K) + (17 — qr)St)
=rrK1(s;>x) — qrS11(s7>K)-

(2.44)
so that Equatior{(2.43) becomes
oC . L 5o
7 P, T)E"  \re KL (sp>k) — arSrl(sr>x) + +§UTST5(S —K)|)-
(2.45)
Furthermore, we have
C = P(t, T)E* [(Sy — K)L(spx)] (2.46)
= P(t,T)E* [Sr1(s,>K)] — P(t, T)E*[K1(s,>k)), '
which implies that
P(t, T)E* [Sr1l(s,>x)] = C + P(t, T)E* [K1(3,>1)] - (2.47)
Substitute Equatioh (2.#7) into Equatign (2.45) to get
oC
T P(t,T)E* rr K L(s,>r)) — gr (C+ P(t, T)E*[KL(s,>1)])
+ %P(t, TE[02.526(S — K)]
oC .
3T = P, T)K(rr — qr)E* [L(s;>10)] — qrC
) (2.48)
+ 5P(t, T)E* [07.576(S — K)]
oC .
T P, T)K(rr — qr)E* [1(s;>x)] — arC
1
+ 5P(t, T)E* [07.576(S — K)] .

By Markov propertyof conditional expectation, the last term in Equation (}? ¢&h be
calculated as
1

SP(LTIE [03530(5 — )] = %P(t, T)E* [5252 | Sy = K] E* [§(S — K)

= Pt T)K’E" [} | Sy = K] E* [5(S — K)

1 . 0*C
= §K2E [U% | ST = K] m,
(2.49)
so that Equatiorquation (2.48]) reads as follows:
oC oC 1 . 0*C
a—T:—K(TT—qT)a—K—qTO+§K2E [O’%|STIK} aKQ, (250)
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where we have substitutg®(t, 7)E*[1 s, )] for 2. Hence,

(2[5F + K(rr — qr) 5% + arC1)

(K*5)

E* [07 | Sr = K] =

giving us the desired formula. n
Corollary 2.6. Whenr = ¢ = 0 in Equation [Z.3b), we get
25(T, K)

- K229(T, K)

E* [07 | S = K]

The above equation is equivalent to what we obtained in EqugBd&3).

Comparing Equatio (2.86) and Equatibn (2.33) shows that kaxiatility can be inter-
preted as the expected volatility of the asset under theittondhat the option ends at-
the-money. In other words, it is the average of all instastas future spot-volatilities
until the maturity of the option. Although, this does not mehat the expected value
will be realized, trading of different financial instrumembakes it possible to lock into
this value at the current time.

2.3 Local Volatility in terms of Forward Price

LetC(T,K) = O(Fp,T,K, oy (T, K)) andF, = F(t,T) = S;e* (T~ whereyu; =
r; — q;. Write the SDE in Equatiori (2.85) under the dynamics of the &dnprice,

dF; = "I9S, + Syt T (—p,)dt
= e T=D (1, S,dt + o (t, ;) S:dBy) — py Fydt
= i Fydt + o(t, S,)FydBy — e Fydt (2.51)
= o(t, Fe " T FdB,
= 5(t, F,)F,dB,,

whered (¢, z) = o(t, ze (T~ Note thatF’r = Sr.

Theorem 2.7. Let F, be the dynamics of the forward price of the asset in Equa-
tion (Z51) andC (T, K') be the European call option with strik€ and maturity7".
The following equation holds:

o0C(T,K)
2 _ oT
2 OK?

Remark2.4. Equation[[2.5R) is termed as the Dupire local variance utigeforward
price dynamics. Taking the square-root of both sides givesdcal volatility.
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Proof. The price of a call option under Equatidn (2.51) is given as

Cr ) =Elsr - Kl = [ (S0~ KT Sn)dsr. (259)

wherep(t, -) is the density function ob; underP*. Thus,
0*C
OK?
p(T, -) satisfies the forward equation below (see Thedrem A.2).

=p(T,K).

0 1 0?
8_]25? = 5@(02(t,x)x2p). (2.54)
Hence,
80%7;[() :/ (S — K)ﬁp(ngT)dST
K (2.55)

IE:
-2 / o (0(T, S1)3p) (St — K)dSr.
K T

Using integration by parts twice on the right hand side ofd&mun (Z.55), we obtain
oC(T, K) 1 /°° 0

(02(T, Sr)S2p) dSr

oT 2 [ OSt
1
= 5aQ(T, K)K?*p(T,K) (2.56)
I , 0°C
=T, KK .
20 ( ? ) aKQ
It follows that
OC(T,K)
2 _ oT
o (T7 K) - lKQ 62C(T,K)
2 OK?
holds as desired. ]

2.4 Challenges of using Dupire’s Local Volatility Equation

With the local volatility derivation in Section 2.1, locabhatility surface can be ob-
tained from the option prices observed in the market. A @uwssumption is that the
option price belongs to the class of twice continuouslyedéhtiable functiong!?,
known over all maturities and strikes. However, even if gtsumption holds, there
is still a problem with option price function being unknowmadytically which makes
taking their partial derivatives difficult. Therefore, tpartial derivatives of the call
function have to be estimated numerically. Due to the ingmrhature of numerical
methods, the algorithm used in estimating local volatifitpction may be unstable.
That is, small changes in the input data may result in large @r the function values.
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Observe that in the denominator of Equatibn (2.33), smatirerin the partial deriva-
tive can be magnified by the square of the strike price. Tmde&ad to negative values
of local volatility, which is unacceptable.

Also, the continuity assumption of option prices is un&adi In practice, limited
number of option values are known for finite number of maiesiand strike prices
which makes the local volatility equation ill-posed. Théadls to a local volatility
function that is not unique and stable. To solve this problene can smoothen the
option price data using Tikhonov regularizatioh[9), 21] gmbhinimizing the function’s
entropy. Another viable method is to use smoothing cubimephterpolation to ob-
tain arbitrage-free option prices [17]. These methods rbasable to guarantee the
convexity of the option prices in the strike direction whigtids extra complexity to
the model. Also, the call option function must be monotoltycdecreasing in strike
and increasing in maturity to avoid calender arbitrage sway, arbitrage-free prices
can be ensured.

2.5 Local Volatility as a Function of Implied Volatility

In this section, the relationship between local volatitgd Black-Scholes implied
volatility will be shown.

Lemma 2.8. For the Black-Scholes model described in Theorem 1.2, &Biack-
Scholes total variance be defined as

w(Sy, T, K) = 0%4(So, T, K)T

and the log-strikey be defined as

y—Og FT )

wherefr = Sy exp {fOT rsds} is the forward price of the stock at time 0.

The Black-Scholes price in termswfandy is therefore given by
Cps(Fr,w,y) = Fr (N(di) — e'N(dz))

with d; = 2L + Y2 andd, = <2 + 3% — \/w.

Proof. Under the forward price dynamics of the asset price, Bladieis formula
becomes
Cps(Fr,T,K) = FrN(dy) — KN(dy) (2.57)

UQBST

F
with d;, = IH(TT)—J:F? andd, = d; — o55V/T. Also, we have
opsVT

KY . .
y = log (—) implies K = e’ Fr.
Fr
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Equation[Z.57) can be written as
CBS(FT, w, y) = FT (N(dl) — eyN(dz)) (258)
with
_ ln(%) 05T
opsVT  20psVT
()T onT
v 2 (2.59)

dy

+

and

dy = dy — opsV'T
—Y \/E \/E

= — 4+ — —

Jo 2
_ Ty Vw

Jo 2

as desired. O

(2.60)

Theorem 2.9. If the call option written on an asset is described by the Bl&ckoles
formula derived in Lemma 2.8, then the local variance of tsgeican be obtained in
terms ofw andy as

(T, K) = 0 1 (1 3_Tl 0 2w |
- (- ) G+ )

Proof. First substitute Equatiof (2.59) and Equation (P.60) iqod&ion (2.517).

Cps(Fr,y,w) = Fr {N (\;—% \/TE) _e'N (;—% - @) } . (61

From Equation[(2.34), Dupire’s local volatility with= 0 andg = 0 is given as
oC(T,K) o*(T, K)K262C(T, K) Kac(T, K)

or 2 oKz "7 oK (2.62)
Calculate the partial derivatives in Equatién (2.62):
OC(T.K) _9C(T.y) dy _ 19C(T.y) (2.63)

0K oy 0K K Oy
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Consequently,

POT,K) 1[0 (9C(T,y) oC(T,y) [ 1
OK> _E(f?—K( Ay ))+ Ay (_ﬁ) (269

Since the call function is continuous jnand iK', we get

0 (8C(T,y)) B <60<T,y>)

0K oy Oy oK
9 (00 oy
o (Locy_ 1oy
oy \Koy) K 0y

Substitute Equation (2.65) into Equatién (2.64) to obtain

’C(T.K) 1 (PC(T,y) 0C(T.y) (2.66)
OK2 K2\ 02 oy ) '
Furthermore, we have
OC(T,K) _9C(T,y)  9C(T,y) dy
or T dy 0T
L 9C(Ty)  9C(T,y) (260
- or Ty
which leads to
0C(T,y) _ 0C(T.K)  9C(T,y) (2.68)

o or "oy

We should remark that derivatives pfeads as follows:
dy 0 K
= are (= (7))

=<F—;>(FLT>:% (2.69)

and

Fr 0
I a_T( T) (2.70)
_ Fr —rr\ _
—KK(FT)— rr



Thence, Equatiori (2.68) becomes

o0(T,y) 0C(T,K) oC(T,y)

o or "oy
 PK20°0(T, K) OC(T,K)  OC(T,y)
=Ty ke T Ty,
2 2
=5 K {K2 ( 0 s (2.71)
1 0C(T,y) oC(T,y)

TTK{K dy }—HnT dy
_d? [&PC(T,y)  IC(T,y)
2 Oy? dy '

Calculate the partial derivatives in Equatién (2.71):

0C(T.y) _ 9C(w,y)  9C(w,y) ow

2.72
oy oy ow Oy’ (2.72)
and
PC(Ty) _ PClwy)  P*Clw,y) dw
o2 Oy? dyow 0y (2.73)
L0 (C(w,y) 0w |
Ay ow oy)’
where the last term in Equation (2173) is
9 (9C(wy) o\ _ () [FCluy)  PCluwy)dw
Ay ow oy) \ Oy dyow ow? Oy (2.74)
N oC(w,y) (0*w '
ow oy? )’
Substitute Equatio (2.¥4) into Equati¢n (2.73) to get
PC(Ty) _ PClwy)  ,0°Clw,y) dw
o2 Oy? dyow 0y (2.75)
+32C(w,y)(3_w)2+ aC’(w,y)y—w .
ow? oy ow Oy
Also, we have
0C(T.y) _ 9C(w,y)  9C(w,y)ow (2.76)

or or or or
Then, substituting Equatio (2172), Equatign (2.75), anddion [2.7b) into Equa-
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tion (Z.71) yields

0C(w,y)  9C(w,y)ow _ o° {820(T7y) B 5C(T,y)}
oT ow O0T 2 0y? dy
_a {820<w’y) i 282C(w’y) ow M(@f}
2 Oy? oyow Oy ow? dy
s {aO(w,y) Pw  0C(w,y) 3C(w7y)3_w}
2 ow  Oy? dy ow dy )
(2.77)

Calculating what each partial derivative in Equation (2 r/Epresents under the Black-
Scholes formula,

9C(w,y) [ I S B v 1
_ Erp®(dy)
2w

where® is the probability distribution function of standard nodrdastribution andV
is the cumulative distribution function of standard normiskribution. Here also note
that

1
(dy) = e~z (d=vw)?)

\ 2T
1 1
_ (=5d7) J(divVw—T3
= #27re 27e ? (2.79)
= ‘b(dl)e(%Jr@)ﬁi%
= @(dl)e*y
Furthermore,
PC(w,y) 0 (FrP(di)
owr  ow \ 2yw
(2vtye — =)
= Fr
4w

- (am—dl@(dl) (gi) ) %))

B —1 1 od,
= Fro(d) (4\/53 B 2\/wd1 aw)




which can be simplified to

PC(w,y) _ FrP(di) (—1 y NV y 1
o~ 2w (2 (% 2)(%3*4@))
+

(v Ly oy ]
2w 2w2 4w 4w 8 (2.80)

() - (o en ()

= Ir (—M —eYN(dy) + 63”%) (2.81)

while

__p <N(d2)ey " eyq><42><—ﬁ>) (2.82)
Cb(dl)

Vuw
Subtracting Equation (2.81) from Equatidn(2.82), we get

= —FTeyN(dg) + FT

’C(w,y)  9C(w,y)

o(d) _0C(w.y)
Oy? oy '

Vw ow

Besides, the mixed partial derivative reads as

PC(w,y) 0 (8C(w,y))

=Fr

(2.83)

oyow Oy ow

0 dd,
~ 5y (Frave)

Fr 0

Fr

- (amar)
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which can be further simplified to
*C(w,y)  Fr 1
NG (—dﬂ’(dﬂ(—ﬁ))
o

_ FTCI)(dl) ) w 1
2w ((\/E+ 2 ) (ﬁ)) .84
_ 9C(w,y) (_g+1)
ow w2
oC (w,y) (1 B g)
ow 2w
The trivial relation 50
a—T(w,y) =0 (2.85)

holds, since the Black-Scholes call function does not depiedtly on7 anymore
but rather depend ofif implicitly.

Substitute Equation (2.80), Equatidn (2.81), Equatio@q®. Equation[(2.84), and
Equation [[2.8b) into Equatiof (2177) to write

D)o _ *oCny) [, (1 v\ v Fu_ow
ow 0T 2 Ow 2 w) dy Oy: Oy
o? 9C(w, y)

Loy (owY
2 Ow 8 2w 2uw? dy ’

1 y)\ ow 1 1 > ow\”
1+<2_w> 8y—i_(_16_4w+4w2 oy
Pw _ Ow
20y% 20y

yow 1 11 2 ow\® 0w
-2 (- =+ 2 ) (5] +525],
wdy 4\ 4 w  w? oy 20y?

(2.86)

ow
a—T—O' (T,K)

+0*(T, K) {

=o*(T,K)

which implies that

o*(T,K) = or (2.87)

as desired. Ol

Corollary 2.10. In the special case where the volatility smile is flat, narr%}y: 0,
for each maturityl’, Equation [2.8V) is simplified to
9 ow . T,
o(T,K) = —, equivalentlyw(T) = o-ds.
orT 0
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CHAPTER 3

NUMERICAL METHODS OF OBTAINING LOCAL
VOLATILITY SURFACES

In this chapter, fundamental concepts of moneyness and sphbine interpolation will
be addressed. Also, different methods of obtaining lockltiity surfaces via option
price and implied volatility data will be discussed.

In general, we can classify these methods into paramettioan-parametric methods.
In the parametric method, an initial implied volatility fciion is specified and this is
used to obtain the implied volatility surface with a regresslgorithm. Consequently,
with additional numerical techniques, the local volatisurface can be obtained. On
the other hand, the non-parametric method allows the lomlatility surface to take
any form while an optimization procedure is carried out teedmine the particular
form of the surface. Each of these methods has its strengthevaaknesses depend-
ing on the trade-off involved. The trade-off is usually beem fitting the model prices
to the observed market prices and attainment of stabilittheflocal volatility func-
tion/surface through time.

In Sectior 3.1, the concept afoneyneswill be discussed and in Sectién B&jbic-
spline polynomial interpolatiomill be addressed. In Sectign 8.3, parametric method
will be explained as well as how it is used in obtaining loaalktility surfaces. Conse-
quently, Sectiof 314 will deal with some profound numerteahniques from literature
on how to obtain local volatility surfaces via non-parantetnethods. In addition, the
re-construction of local volatility surfaces using bothiop prices and implied volatil-

ity data via non-parametric method will be carried out.

3.1 Moneyness

Moneynes®f an option describes the relative position of the curremdepor future
price of an underlying asset relative to the strike priceefiects the degree to which
an option is in-the-moneyTM) or out-of-the-money@TM). Thus, it helps investors
evaluate how valuable their options are at any given poiritnme. Conventionally
speaking, moneyness should also depend on time to matynétst &om the strike
price as the following example demonstrates: a call optiah & strike price of 110
would be classified as de€pl'M if the current underlying price is 105 and the time
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to maturity is 1day. However, the same call having a time ofumig of 1year would
be reasonably rated at-the-mong&yr ) since the probability that the underlying price
reaches or exceeds the strike price is much higher thamitlieifirst case [19]. Below
Is a mathematical definition of moneyness.

Definition 3.1 (Moneyness) Let m(¢, s, K,T,r) be a function of time, underlying
price, strike price, maturity date, and interest rate. TlmeynessV/; at timet €
[0, 7*] is generally defined as

Mt == m(t, St,K, T, T). (31)

The functionm is referred to as the moneyness function. It is required todreasing
in K.

Definition 3.2 (Valid Moneyness) We call m a valid moneyness function ant;
defined as
Mt = m(t, St7 K, T, 'I"),

a valid moneyness for our financial market modehifhas the following proper-
ties [19]:

1. m(t, S, K, T, T) - Cz([O,T*} X R++ X R++ X (t,T*] X R+)7

2. limy o m(t, Sy, K,T,r) < oo, P—a.s.,and

3. limy_,p %—T(t, Sy, K,T,r) < oo P—a.s.,whereS, evolves under the probability
measureP.

3.1.1 Moneyness Terms

Definition 3.3 (At the Money) An option is said to be at-the-money (ATM) when the
strike price of the underlying asset equals the spot pridatares pricel[6]. However,
options are usually expressed as being near-the-monegse-tb-the-money because
they are rarely exactly at-the-money.

Definition 3.4 (In the Money) A call (put) option is in-the-money (ITM) when the
current price or forward price of the underlying asset egsdés less than) the strike

price [7].

Definition 3.5 (Out the Money) A call (put) option is out-of-the-money (OTM) when
the current price or forward price of the underlying assdess than (exceeds) the
strike price [7].

3.1.2 Choice of Moneyness Measure

Different choices of moneyness measure have been docutnientiee literature and
these choices will be discussed below:
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1. Simple moneyness:This represents the ratio of strike price to the underlying

3.2

asset price, i.e.K/S;, or the inverse of it[[19]. Conventionally speaking, the
constant term is in the denominator while the term that inedBt changes is
in the numerator. The choices of numerator and denomin&tperttd on what
interpretations one would like to give to the options at hateince, for a specific
option, if K is fixed then different spot prices yield different moneysfs that
option. This is useful for option pricing and understandihg Black-Scholes
model. Conversely, if one has different options at a givemfpii time, the
spot price is fixed and the options have different strikegwjdhence, different
moneyness.

. Log-simple moneynessThis is a linearized modification of simple moneyness

done by taking it's natural logarithm. It is defined to be

K K )
Mt:hl (W) =In <E), Vit € [07T]

for vS, > 0, T € (t,T7*], » > 0, andVK > 0. As can be verified, simple
moneyness as well as the log-simple moneyness are validymes® measures.

. Time-Dependent moneynessAs previously argued, moneyness is affected by

the maturity date of an option. Hence, a moneyness dependitighe to matu-
rity is defined as
In (£>
M, = _\ft)

T—+t

Note thaty/T" — t is used in the division to normalize time to maturity since th
dispersion of Brownian motion is proportional to square mfdime [30]. This
measure of moneyness makes the volatility smile to be karigelependent of
time to maturity.

. Standardized moneynessUnlike the other parameters, volatility can not be ob-

tained directly from the market data but must be computeah faonodel. Since
dispersion is proportional to volatility, standardizingneyness with volatility

yield gives
v In (%)

ovVT —t
This is termed as the forward standard moneyness and measoreeyness in
standard deviation units [B1]. Nevertheless|in [31] TompIR. uses spot price
rather than forward price.

Interpolation with Spline Functions

In this thesisspline interpolationhas been used as part of the numerical techniques
in obtaining local volatility surfaces via non-parametmethod. Hence, it becomes
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necessary to explain the fundamentals of this numericahogetIn particular, inter-
polation of given data points usintatural cubic spline functionvill be explored in
details.

3.2.1 Cubic Spline Interpolation

Firstly, the use of cubic spline functions for interpolatis important because they
produce smooth interpolating functions that are twice iomatusly differentiable. In
Dupire’s equation, the order of the partial differentiabation is two which makes
using these functions in interpolating the call option fim suitable. The following
gives a proper definition for any spline function:

Definition 3.6 (see[8]) A function S is called aspline of degree K:

1. The domain of' is an intervala, b]
2..8,5,8" 8" .. S%1 are all continuous functions dn, b].
3. There are points, the knots of S, suchthat=1t, <ty <t3 < ---<t, =0
and such that' is a polynomial of degreg & on each sub-intervad;, ¢, 1].
In the case of a cubic spline functioh= 3. Assume we want to interpolate by a cubic

spline function whose knots coincide with the values;isfin the table below:

xZ tl t2 tn
Yy oy Y2 o 1y

The t;'s are the knots and are assumed to be arranged in an ascemderg The
function S consists of. — 1 cubic polynomial pieces, such as

Sl(l’) tl S xr S t2
SQ(Q?) t2 S x S tg
Snfl('r> tnfl S x S tn
wheresS; denotes the cubic polynomial that will be used on the suéwitat [¢;. ¢,4].

The interpolation conditions are

1. S(t;) =y; for1 <i<n,and

2. lim,_, - S®(t;) = lim,_,, + S®(t;) fork =0,1,2.

These continuity conditions are imposed only at the intéantst,, t5, ..., t, 1
because at each of these knots, two different cubic polyalsmeets.
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Since we haver — 1 spline functions and there are 4 parameters in each, there ar
4(n — 1) parameters to be determined. From each condition statec atieere are a
total of 3(n — 2) +n = 4n — 6 equations to solve for these parameters. Hence, there
are(4n — 4) — (4n — 6) = 2 free parameters left to choose. fatural cubic spline
these parameters are chosen to satisfy

S"(ty) = S"(t,) = 0.

Complete documentation ofibic spline interpolatioran be found, for instance in/[8].

3.3 Numerical Parametric Method

As discussed earlier, parametric method deals with arairspecification of a func-
tional form for the parameter to be estimated and with a s=ive algorithm, such
function can be estimated for in and out of the sample datatpoiln other words,
it's a priori estimation of a parameter since an initial variational fior@al form is
given to the parameter. This section will be organized dsvia: Sectiori3.3]1 will
deal with literature survey gparametric methodSectiori 3.3.2 will deal with some of
the assumptions that were used in obtaining the local Vioyaturfaces. Section 3.3.3
will deal with the mathematical structures involved withrgraetric method via using
Dumas parametrization as a choice of parametrizing thei@ghplolatility function.
Sectior 3.3 will address the mathematical structuresvied with parametrizing the
implied volatility function in terms of moneyness rathearhstrike price. In addition,
the detailed algorithm used in obtaining the local volgtiburfaces via parametric
method will be given. Consequently, analysis of the surfadeained will be made.
Section[3.3b will be about the challenges involved in abitej local volatility sur-
faces via parametric method. Suggestions on how to tackkettifficulties will also
be proposed.

3.3.1 Dumas Parametric Method

In one of the prolific papers written by Dumas B., Fleming Jd #haley R.E.[[13],
several functional forms for deterministic volatility function (DVFere tested by
using “S&P 500 stock index” data. The performance of eaclnefftinctional forms
were compared against each other and conclusions were drawn

The following functional forms were focused on

1. Model 0:0;,,,(T", K') = by

2. Model 1:0,,, (T, K) = by + b1 K + by K*

3. Model 2:0,,, (T, K) = by + b1 K + by K* + b3T + bs KT

4. Model 3:04,, (T, K) = by + b1 K + by K2 + b3T + b,T? + bs KT
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As we can observe from the various specified functions, MOdelpresents the case
of Black-Scholes model with constant volatility; Model leito capture the variation
in volatility inherent in the asset price; Models 2 and 3 captadditional variation
attributable to maturity [14]. The quadratic forms of DVF ¢hlels 2 & 3) were found
to be particularly robust and stable through time, hencewilldbase our polynomial
parametrization on Model 2. This method of parametrizaisowidely used to deter-
mine the “Practitioner’s Black-Scholes” (PBS) prices|[14BSinvolves the use of
implied volatility function to determine the correspongliBlack-Scholes prices [4].
Calculating PBS prices can be summarized in three steps as/folkee[4]):

1. Invert the Black-Scholes equation for the available datatp and obtain the
implied volatilitieso;,,,, (T, K);

2. The implied volatilities are regressed against a quadipatynomial,

3. The fitted implied volatilities are then plugged back itite Black-Scholes equa-
tion to get the practitioner’s price.

To be able to use PBS above in obtaining local volatility stefa additional numerical
computations are necessary:

1. Take thelst partial derivative of call option function under local voligy with
respect to maturity’;

2. Take thelst partial derivative of call option function under local voligy with
respect to strike pricek’;

3. Take the2nd partial derivative of call option function under local vily with
respect to strike pricek’;

4. Plug these derivatives into the Dupire’s local volatigquation to obtain the
local volatilities.

5. For a mesh grid7", K, LV') created, that is, for maturitiés, strike pricesk,
and local volatilitiesL V' respectively, obtain the local volatility surface.

The surface obtained can then be used as a first-hand estinoain conjunction with
other more complex models on pricing exotic options as weledging purposes.

3.3.1.1 Alternative Method for Local Volatility Surface using Dumas Parametriza-
tion

Another effective method that could be used in obtaininddhal volatilities depend-
ing on the intent of application involves the use of monegniasthe parametrized
implied volatility function instead of strike price. This the method used ial[4]. The
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choice of moneyness that will be used is

log (FET)
M = T

Hence, in the application of PBS, the parameters in Model etermined by regress-
ing the implied volatility data against the choice of quadidréunction. Consequently,
the practitioner’s Black-Scholes prices can then be cdledltor the implied volatility
surface obtained. This will be implemented in Seclion 33 this thesis.

3.3.2 Proposed Assumptions for Local Volatility Surfaces usg Dupire’s Equa-
tion

In this section, the implied volatility data used in the altfomic procedures will be
described. Also, the main assumptions used in this thestslpulating the partial
derivatives in Dupire’s equation as compared to the oned umsfd] will be empha-
sized.

Firstly, let's describe the data that will be used to testadgorithm. The data was taken
from [2], which is a collection of bid-ask spreads of BlackaBles implied volatilities
of European call options di$&P 500 stock index’in April, 1999. The spread consists
of 161 observations all together across 18 strikes and 1@rities. The raw data was
refined for effective integration into our algorithm. Thisgswdone by averaging the bid
and ask implied volatilities for each strike prié@and maturity7".

Secondly, let us compare the crucial assumption Cerrato &4l ims[4] to obtain local
volatility surface and the one proposed in this thesis. He dieectly used Black-
Scholes call option price function as the call function wheking the partial deriva-
tives in Dupire’s equation. However, we have taken the gmjpeite steps in calculating
these partial derivatives by considering that the call@ptunctions of Black-Scholes
and local volatility are different but with the same funct& values at some data points.
To summarize this mathematically, we assume that

C(FT7T7 ULV<T7 K)7 K) - CBS(FT7T7 O-imp(Ta K)7 K)

for the given data samples, wheté ', T, oy (T, K), K) is the call option function
from the local volatility model and'ss(Fr, T', 04y (T, K), K') is the call option func-
tion from the Black-Scholes model. With this assumption gaeial derivatives of the
local volatility call option function with respect to mattyr 7" and strikek are taken by
relating the dependence of both call option functions os¢hindependent variables.

To illustrate the importance of this assumption in the omeetsional case, consider
two real valued functions
f:R—=R, fori=1,2.

such thatf,(z) = z? and fo(x) = 2z. Although forx = 2, f1(2) = f»(2), but their
derivatives with respect to at the pointz = 2 are not equal. That ig;’(2) = 4 and
fo'(x) = 2. With this in mind, we constructed our method accordingly.
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3.3.3 Obtaining Local Volatility Surface using Dupire’s Equation

In this part, the explicit mathematical formulations usedhe algorithm in obtaining
the local volatility surface will be derived. This methodiaives using the Dupire’s
equation described in Equatidn (2.52),

oC(Fr,T,K)
2 _ orT
o (T7 K) - 1K2820(FT,T7K) )
2 OK?

where the call option is a function of forward pridé&: C(Fr,T,o.v (T, K), K).
Hence, it's necessary to explicitly determine what eachigdaderivative in Equa-
tion (2.52) represents. Since we will use these derivatimesonjunction with Du-
mas parametric method, it is important to specify our cheatparametric function
and write out the various partial derivatives necessarye dioice of Black-Scholes
implied volatility function is given below:

Timp(T. K) = > a;Bij(T, K) = ag + a1 K + a,K* + a5T + a, KT,  (3.2)

1,j=0

where theq;’s are the unknown parameters to be determined using someriaain
techniques with the available data samples BpdT', K) are basis functions in terms
of the independent variablés and K. This choice of parametrization is due to the
assumption that the implied volatility is directly depentien maturityl” and the strike
price K.

Lemma 3.1. If the implied volatility function takes the form of Equati8.2), then its
partial derivatives are

00 (T, K)

B)e =ay + 20, K + a4T.

00 imp(T, K)

oT :a3+a4K.

Proof. The proof of the above lemma is easy and straightforward. réader can
verify that the following calculations:

00im T,K
% =a; + ZCLQK + (l4T, (33)
0 imp (T, K)
W = 2as, (3.4)
and 5 (7. K)
Oim )
g—T = a3 + as K (3.5)
to complete the proof. O
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Proposition 3.2. For local volatility option prices calibrated to Black-Sales option
prices via implied volatilities such that

C(FT7 T7 ULV<T7 K)7 K) - CBS(FT7 T7 Jimp(Tu K)7 K)
for some data samples, the following partial derivativesdhol
a_c o aCVBS aC(BS aO_imp
or T  0oimy OT '

oC B 8035 aOBS aUimp
OK 0K 00y, OK '

820_8QCBS+820imp 8035 4 8aimp 2 82035
OK2  OK® ' OK2 \00im, K do

mp
i aO'imp 0 8035 i i 6035
8K 3Uimp 3K 3K ao-imp 7

whereF is taken to be without dividends, that 15; = Sye’” .

(3.6)

Proof. First, determine the partial derivative of the call optiomhwespect to maturity
T.
oC  0Cps N 0CBs OTimy
or — OT  00ipy OT
Each partial derivative can be calculated from the Blackefsmodel and from Equa-
tion (3.8).
Next, determine the partial derivative of the call optiorthwiespect to strikes'.

0C  9Cps  OCps 00y
OK 0K = 00y, OK

Each partial derivative term can be calculated from the Blackoles model and from

Equation[(3.B).
Finally, determine the 2nd partial derivative of the caltiop with respect to strike'.
0?C 0 (6(;‘35) n 0 (8035) 0T imp

(3.7)

(3.8)

K2~ 0K \ 0K ) ' Ooump \ OK ) 0K
aO'imp i aC(BS 82035’ 8Uimp + aC’BS 820'1'mp
0K \ 0K \ 00imy doz,., OK 00 imp OK?

(3.9)

_aQCBS+820imp 0Cps n imp \~ [ *Cis
- OK? OK2 \ 00imyp 0K do?

mp
1 8Uimp 0 OCBS 1 i aCBS
0K \00imp \ OK OK \O00imp) )
This is quite long to calculate in one equation, therefoeshepartial derivative will

be determined separately and the reader can put them togettie algorithms by
defining each as a variable.

43



Starting with the partial derivative of Black-Scholes calhtion with respect td<,
we get

JCps
0K

= FTcp(dl)% - (N(d2) + ch(dZ)gf?) (3.10)

To determine explicitly wha$Z and %% represent, we have

od, mmp\/T (_71 +0impTagi%> <ln (7T) ”np ) <\/—aalmp>

0K 02T
U7527TLPT 8Uimp F 8Uimp O'imp\/f
_ TR —In () VTR — T (3.11)
a?mpT
VT 00imp I (%) 0 imp 1

and

_ (I (%5) 00y 1 N VT 00 iy | (3.12)
o2 VT 0K Kow VT =~ 2 OK

Substituting Equation (3.11) and Equatibn (3.12) into Higue(3.10) and using(d;) =
#:®(dy), we obtain

8035 \/_6crzmp 111( ) 6crzmp FT@(dl)
aK B FTq)(dl) 2 aK FT(I)(dl)Uimp\/— aK - Ko'imp\/T
Kq)(dg) In (%) 80imp K@(dg) K@(dg)ﬁaa,mp
— N(dg) + +
2 VT 0K ' KouyV/T 2 0K
aO-imp ﬁ 11’1( ) aazmp
80imp In (%) 8aimp K@(dg)ﬁaglm},
55 (FT(D(dl)afmp\/T—aK — N(dy) + 5 FTe
0 m,
- ;Kp <FT<I>(d1)\/ZF) — N(dy)
(3.13)

Taking the partial derivative of Equation (3]113) with resp strike K gives

2
(9 Oimp

82035 . aO'Z'mp é@(dl)
FpNT i

0D (dy)
oK? oK T 0K '

+ Fr®(d)VT e

— B(dy)—2. (3.14)
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Thence, to Determine wh&2\2 represents, we calculate
0P (dy)

3d1

= —0(dy)dy (fa""mp

(%) 0imy
2 0K o2 T OK

_(I)(dl)dlﬁ aJimp + (I)(d1>d1 In (
2

1
3.15
KUimpﬁ) ( )
) 0T imp

oK Jz'zmp ﬁ

_ ErVTdyd(dy)
OK?2

1 aO'imp 2 + FT\/le
2 oK

Substituting Equatio (3.15) into Equatidn (3.14) resinlts
0*Cyg

(dy) In ()

O (dy)dy
Kaimp\/T.

FT(I)(dl)dl 802mp (9 Oimp
+ FrvT o
T T Kowy 0K VTR(ch) OK?
N ®(dy)di In (52) 90y ®(dy)
afmp\/f

0K

g:

80imp 2
0K

Kgimp\/T
Note here, that

0(dy)

_ 9 (1
0K — 0K \\or

2
_ L (Tl ) 24
= e 2/ | —2d; | =—
V2T ( )

0K

sy (1) -

P aafmp » 0K
JCps

B od; 0ds
. = Fr®(dy) oo K®(ds)
where

Gaimp

(dg)ﬁ aaimp

oK

(3.16)

(3.17)

8035) , as well as
mp

(3.18)

(3.19)



and

= VT (3.20)

Substitute Equation (3.19) and Equatibn (3.20) into Equaf8.18) to get

9Cps VT In(%f) In () K®(dy)VT
Do Fr®(dy) < 5~ Uzzmp\/T + K(I)(dQ)U?mp\/T B (3.21)
= Fr®(di)VT.

Taking the partial derivative of Equation (3121) with resp® o;,,,,,, we have

2
Cps _ g7 _ 5 T, ;dl

2 . .
80-7;mp Oimp Oimp

- VT In(Zx)
= —FpVTd(dy)d, ( > %) (3.22)
_ —FTTq)(dl)dl + FT(I)(d1>d1 ln (%)

2
2 Timp

Also, taking the partial derivative of Equatidn (3.21) withspect taX yields

0 (9Cps\ 00(dy) ddy
ﬁ(aaimp)_FTﬁ s @(dl)leTﬁaK

 ln(fr) oo,
:—®<d1>d1FTﬁ<ﬁ 00y 10 (52) Oy 1 )

2 0K o2 VT 0K  Koy/T
. _(b(dl)leTT aO'imp i (I)(dl)leT ] & 60imp
- 9 0K o2 "\K ) ok

imp

&(dy)d, F
 )Fy
imp
(3.23)
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Finally,

ajm,, <3§;S) _ ajmp @}T;p (Fro(@)VT) - N<d2>)
AP (ds)

. aO'Z'mp 8<I>(d1)
= FpVT K o D (dy) Forr
Od4

o ao-imp
= FpVT o (—@(dl)dlao_mp) — ®(dy)

_ I imp VT I (%)
= —PrVT—% @(dl)dl( > o2 T

In (£z VT
o (-85 )
T T
_ _Fle(I)(d1>T (9aimp + Fle(I)(dl) In (&) aO'imp

ddy

aO'Z'mp

2 0K Onp
®(dy) In (L) . ®(dy)V'T
O-Z’Qmpﬁ 2
_ 0 [(9Cs N ®(dz) | (Fr
3K Gaimp ngp\/T K
O(d)VT  Frdi®(dy)
2 Ko—imp
0 [0Cps N ®(d)Fr | (Fr
- 8K &Tmp O-izmpKﬁ K
N Fr@(d)VT  Frd,®(dy)
2K Kaimp

Plugging all these derivatives into their respective pbazmpletes the proof. [

_|_

3.3.3.1 Obtaining Local Volatility Surface Using Partial Deivatives of Equa-

tion (2.87)

As a way to compare the local volatility surfaces obtainddgi&quation[(2.52) with
the one that will be obtained using Equatifn (2.87), it beesmecessary to also de-
termine the analytic derivations of the partial derivasiue the latter.

Proposition 3.3. For local volatility option prices calibrated to Black-Sales prices
via implied volatilities such that

O(FTa T> ULV(T7 K)a K) = C(Bb“(}71T7 T, Jimp(Ta K), K)
for some data samples, the following partial derivativesihading Equation{Z.87):

ow
= Ui2mp + 2T0imp

3T =

8al-mp .

T’
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ow Gaimp -1 Gaimp 1 2

O AT Koy, 22ime 4 o (== —(5)o?
oy Ty | ( r ) oT (r)glmp ’
aQ_w - M —AK o 1 +OTK? % i
2 0K imp | 5, oK
O imp 00; 0 (0o
—2TK TP TP L 9T K 6y — “mp 3.25
(r) 9K oT ”mpay< oK ) (3.25)

1\ 0 (0o; Jo; 20; 2
o 2T mp mp mp “
()8y(8T)+ oT <T2 +r2>’
wherew is the total variancey is the log-strike and"; is taken to be without dividends,
that is, Fp = Spe’” .

Proof. First, determine the partial derivative of total varianc&vith respect to matu-
rity 7" as
ow 9

= 02, + 2T iy

55 = oy (3.26)

Next, determine the partial derivative of total variamcwith respect to log-strikg as

oW _ o oy, o T

- ay imp ay

B OCimp OK 00y OT 1,
- 2T"””’( oK oy | oT ay> 7 imp

00im, iy 1

OCimp -1\ 0oimmp 1 ,

(3.27)

Finally, determine the 2nd partial derivative of total wartew with respect to log-
strikey as

+ 2€yT0imp% (—Ke_y)

Jdo; OCimp O Oy, OT
T eV imp imp V1A imp Y4
et e (aK <aK oy~ oT ay))

vante (g (52) ) +2 (57) 5 (%)

—1 ﬁaimp GT —1 aaimp 8K Gaimp BT i
TS )< o )(ay)”( : )"“"p( oK by = oT ay)’
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this can further be simplified to give

Pw 0y 1 0 imp \
7 m —4F Y - 2TF2 2y mp
s = o (e (1)) s (2)

e (_) Oty O0ine 1 9T et Uzmpg (agimp>

r) 0K OT

1 3 80_imp a@’z‘mp 20imp
2T< >8y( T )+ or ( e
o aazmp 1 2 ao—imp ’
==z ( AK iy (T)>+2TK (aK)

1 &nmp 8almp 0 (00imp
QTK(T) 9K 0T +2TK0mpa (OK)

1\ 0 [(Jo; 0o, 20, 2
_op (1) L (9Timp | OTimp [ ZOimp 2
(r) dy ( oT ) * oT ( 72 + 7"2)

Note that the use o%% =L %P;T = —KeV, and%—’; = FreY = K completes the

proof. ]

(3.28)

3.3.3.2 Algorithm

Having found all the necessary partial derivatives in ®&¢8.3.3, they will be used in
the algorithm. In this section, detailed algorithm of hovotdain the implied volatility

surface and local volatility surfaces will be given. Thealthm adopted for this
method is one originally used in the book of Cerrato M. ($é&\Mih modifications

on the codes.

The notations for all the algorithms arg:is the time to maturity/ and X represents
the strike pricess$ is the asset spot pricé) is the implied volatility,r is the risk-free
rate,q is the dividend yield Fr is the forward pricemn is the moneynessy is the

Black-Scholes total variance, apds the log-strike.

The algorithmic steps are given below:

1. Load data consisting af, K, S, IV, r,q.
2. CalculateFy = Se9T andmm = % for eachT and K.

3. Define a functiorif uncl1( pars, X, T, IV)) containing the choice of the para-
metric function.

Timp = Par s( 1) +pars(2) X+pars(3) X*+pars(4) T+pars(5) XT

and returnse, the error as the output, which is the difference in the \alfer
and/lV (i.e. e=0,,,- | V).
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10.

11.

12.

13.

14.

15.

Using a starting value, solMé uncl1( pars, X,T,1V)) non-linearly in least-
squares using the MLAB built-in function “l sgnonl i n”.

This step as a whole solves the problem and its outputs amaithienizing pa-
rameterspars(1), ..., pars(5) with the norm of its residuals.

DiscretizeK into K; andT into 7; values and create a mesh grid of the dis-
cretized values, (. K,,,T,,| = meshgri d(K;,T;)).

Re-calculaté’; = Se 9T andvh = M for the mesh grid created.

Define a functionf(lunc2( par s, K,,, T,,)) that contains the choice of parametriza-
tion and with the input above, calculates tHe, for the grid created.

Using mesiT,,, K,,, I'V,,), obtain the implied volatility surface.
Interpolate; andr — ¢ across alll; and K;.

Calculate the corresponding Black-Scholes prices framirttplied volatilities
obtained.

Calculate the derivative of local volatility call optidunction with respect t@’
as derived in Equation (3.7).

Calculate the 1st derivative of local volatility call et function with respect to
K as derived in Equatiof (3.11.3).

Calculate the 2nd derivative of local volatility call @pt function with respect
to K as derived in Equation (3.1.6).

Using the Dupire equation, calculate the local variamzklocal volatility. Some
values of local variance matrix may be negative which ma&kinig) square root
impossible. For such values, use either of the following:

(a) Take the absolute value of the matrix in local variance.

(b) Make the negative values of the matrix in the local vaseéarero.

In this thesis, the two were tested. However, method 2 waempesl for
all the plots solely because this only considers the poititsreythe local
volatility is defined. In other words, where the surfacesfeee of arbitrage
opportunities.

Usingnmeshgri d (7,,, K,,, LV), obtain the local volatility surface for each
method described above.

3.3.3.3 Detailed Algorithm for an Alternative Method

Alternatively, the local volatility surface obtained frotine above algorithm can also
be done using Equatioh (ZJ87). Following the determinatibthe implied volatility
surface above, below highlights the additional steps ntegmleomplete the algorithm.
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Calculate the partial derivative of,,,, with respect td" as in Equation(3]5).
Calculate the partial derivative of,,, with respect tak’, as in Equation(3]3).
Calculate the 2nd partial derivativeaf,,, with respect tds as in Equatior(3]4).
Calculate the partial derivative af with respect tdl" as in Equation[(3.26).
Calculate the partial derivative af with respect tqy, as in Equation(3.27).
Calculate the 2nd partial derivative ofwith respect ta; as in Equation[(3.28).

L

Calculate the local variance and local volatility in Eqoat(2.87). However,
some of the values of local variance may be negative whictestking square
root impossible. For such values, use either of the follgwin

(a) Take the absolute value of the variance matrix.
(b) Make the negative values of the variance matrix zero.

8. Usingmeshgrid (7,,, K,,, LV, obtain the local volatility surface for each
method described above.

3.3.3.4 Results and Analysis of the Volatility Surfaces Olained in Sectiori 3.3.3.2
and Section3.3.313

In this section, the surfaces obtained from implementirgalgorithms described in
Sectior3.3.3]2 and Sectibn 3.3]3.3 will be shown and prapalysis of them will be
given. With the data described in Sectlon 3.3.2 and the #kgorin Sectior{ 3.3.312,
the implied volatility surface obtained is shown in Fightd.3

implied Volatility surface via Dumas parametric Method

-

8

plied Volatility

E 02

100 4

Strike Price Time to Maturity

Figure 3.1: Implied Volatility Surface as a Function of 8&riand Maturity

The corresponding local volatility surface using the iraglivolatility surface in Fig-
ure[3.1 is shown in Figuife_3.2 As we can see from Figure 3.1 théhparametrization
choice given, the implied volatility surface exhibits sofsenile” effect at lower ma-
turities 7" and strikesK'. This shows that indeed, the volatility function is depertde
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Local Volatility Surface via Dumas Parametric Method

Local Volatility

Strike Price

Figure 3.2: Local Volatility Surface under Implied Volaiyl Surface in Figuré 3]1 and
Equation [[2.5P)

on maturity7’ and strikeK . Although, in this case we do not have a well pronounced
“smile” in the local volatility function. This is because thfe numerical difficulties as-
sociated with using Dupire’s equation coupled with the taat obtaining local volatil-

ity surface with implied volatilities does not form a goodyitth Dupire’s equation
which is based on call option prices. We would expect a grdpboal volatility sur-
face to exhibit better “smile” effect when we use Equat[o@872 because this equation
directly links local volatilities with implied volatiligs.

Local Volatility Surface as a function of Implied Volatility

Strike Price

Figure 3.3: Local Volatility Surface under Implied Volaiyl Surface in Figuré 3]1 and
Equation [2.8]7)

As can be seen in Figufe 8.3, the local volatility surfaceilgiihmore “smile” effect

than in Figurd_3.2 especially across lower maturities fostike prices. Therefore,
one would prefer to use Equatidn (2.87) to Equation (2.5®pimining local volatility

surfaces since we are dealing directly with Black-Scholgdigd volatility data.
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3.3.4 Parametrization of Implied Volatility Function using Moneyness

One can also consider the implied volatility to be a functidmaturity’7” and money-
ness) . In this case, implied volatility is also indirectly depeamd on strike since mon-
eyness is a function of the strike priéé This idea was originally used inl[4] which
has been adopted in this thesis. It's worth checking howftri®m of parametrization
performs against the parametrization in Equation] (3.2r&fore, let the new choice
of parametrization for the implied volatility function be

Uz’mp<T7 M) - Z blBZ]<T, M) - bo -+ blM -+ b2M2 + b3T + b4MT (329)

1,j=0

Analogously, similar explanations for the parameters indipn [3.2) can be made
for Equation [(3.2B) except that instead of strike moneyness\/ = % is
used. Since moneyness is a function of strike and it is dyrelgpendent on strike,
one can easily compare the graphs of the implied volatilisfaxes obtained using
Equation[(3.2B) and Equation (8.2). Like in Section 3.3.8,will determine the ap-
propriate partial derivatives of the implied volatilityrfation with respect to maturity
T and strikeK.

Lemma 3.4. If the implied volatility function takes the form of Equati8.29), then
the partial derivatives below hold:

ao_im
aMp:b1+2b2M—|—b4T,
8M_ 1 Fr 1 B 1 ‘
0K T K Fr KT
OM  —ryT —0.5M
or T '

Proof. First, determine the partial derivative @f,,, with respect tal/.

It is quite straight-forward from Equatioh (3]29) and thiges

aO'imp

oM

= by + 2bo M + byT. (3.30)
Next, determine the partial derivative df with respect tak.
Given that)/ = 2eW/fr) e get

VT

il . (3.31)



Finally, determine the partial derivative &f with respect tdl" :

oM 0 ln(F—KT)
or — oT \ T

0 (ln(%) — rT)
or\ VT (3.32)
V(=) - (%) ()
B T
VT —05M
= . ,
sinceM = In (1) (%) and this completes the proof. O

Proposition 3.5. If the implied volatility function takes the form of Equati@.29),
then the partial derivatives below hold:

O0imp  —(by + 205 M + byT)(rv/T + 0.5M)

8T = T +(b3+a4M);
8Uimp . b1 -+ 2b2M -+ b4T
oK KNT
O*Gimp _ 2by = ((bs + 20,M + 0, T)V'T)
OK? K2T ’

Proof. First, determine the partial derivative of,,, with respect tal. From Equa-
tion (3.29), we have that

aUimp aO-Z'mp a_M

Using Lemma 3}, Equation (3133) turns to be
0imp _ — (b1 +20oM + 0, T)(rV'T +0.5M) (b al). (3.34)

orT T

Next, determine the partial derivative @f,,, with respect tax’. From Equation[(3.29),

we have that
8O'Z'mp o aO'Z'mp oM

0K — OM 0K’ (3.35)
Hence, using Lemnia_3.4, the partial derivative in Equaf®8%) becomes
8aimp _ b1 + 2b2M + b4T (336)

0K KT
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Finally, calculate the 2nd partial derivative @f,,, with respect tax :

820_imp . 0 (b1 + 2b2M + b4T>

OK?2 0K KVT
KT <2bzﬁ) — (by + 2bsM + bTINT (3.37)
B K°T
20y — ((by + 2b,M + by T)VT)
KT ’
and this completes the proof. O

Coupling the partial derivatives obtained in ProposificB @®ith the ones in Sec-
tion[3.3.3, one would obtain a new sets of local volatilityfaoes.

3.3.4.1 Algorithm

The necessary partial derivatives derived in Sedfion 338 Sectiorl_3.314 will be
used in this algorithm. The algorithmic steps are givenwwelo

1.
2.

Load the data comprising @f K, P, S, IV,r,q.

CalculateF; = Se™ 9T andm = % for eachT and K.

. Define a functiorif unc1( par s, X, T, IV)) containing the choice of the para-

metric function:
Timp = Par s(1) +pars(2) X+pars(3) X*+pars(4) T+pars(5) XT

and returnse, the error as the output, which is the difference in the \alfer
andlV (i.e. e=0jy,- | V).

. Using a starting value, sol& uncl1( pars, X,T,1V)) non-linearly in least-

squares using the MLAB built-in function “l sgnonl i n”. This step as a

whole solves the problem and its outputs are the minimizergumeters,
pars(1), ..., pars(5)

with the norm of its residuals.

. DiscretizeK into K; andT" into T; values and create a mesh grid of the dis-

cretized values, (. K,,,T,,| = meshgri d(K;, T;)).

. Re-calculatg = Se("~9Tn andvh = 22 En/Fr) for the mesh grid created.

VTm

. Define a functionf(unc2( par s, Mn, T,,)) that contains the choice of the para-

metrization and with the input above, calculates thg for the grid created.

. Using mesh7,,, K,,, IV,,), obtain the implied volatility surface. Notice that

IVh is directly replaced byx,, in the plotting becaus#/,, is a simple function of
strike K.
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10.

11.

12.

13.

14.

15.

Interpolate; andr — ¢ across alll; and K;.

Calculate the corresponding Black-Scholes prices framrtiplied volatilities
obtained.

Calculate the derivative of local volatility call optidunction with respect t@’
as derived in Equation (3.7).

Calculate the 1st derivative of local volatility call mpt function with respect to
K as derived in Equation (3.113).

Calculate the 2nd derivative of local volatility call mgt function with respect
to K as derived in Equation (3.1.6).

Using the Dupire equation, calculate the local variamzklocal volatility. Some
values of local variance matrix may be negative which ma&kinig square root
impossible. For such values, use either of the following:

(a) Take the absolute value of the matrix in local variance.
(b) Make the negative values of the matrix in the local vazearero.

Usingneshgrid (7,,, K,,, LV'), obtain the local volatility surface for each
method described above.

3.3.4.2 Detailed Algorithm for an Alternative Method

Alternatively, the local volatility surface obtained frdire above algorithm can be also
done using Equation (2.B7). Following the determinatiomydlied volatility surface
in the algorithm above, below highlights the additionapsteeeded to complete the
algorithm.

N o g bk~ w0 N PE

Calculate the partial derivative of,,, with respect td" as in Equation(3.33).
Calculate the partial derivative of,,,, with respect tak” as in Equation(3.36).
Calculate the 2nd partial derivativeaf,,, with respect td{ as in Equatior(3.37).
Calculate the partial derivative af with respect tdl" as in Equation[(3.26).
Calculate the partial derivative of with respect tq; as in Equation(3.27).
Calculate the 2nd partial derivative ofwith respect tq, as in Equation(3.28).

Calculate the local variance and local volatility as in &ipn (2.87). Some
values of local variance matrix may be negative which ma&kinig square root
impossible. For such values, use either of the following:

(a) Take the absolute value of the matrix in the numerator.
(b) Make the negative values of the matrix in the numeratoo.ze

Usingneshgri d (7,,, K,,, LV'), obtain the local volatility surface for each
method described above.
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3.3.4.3 Results and Analysis of the Volatility Surfaces Olatined in Sectior 3.3.4]1
and Section3.3.42

In this section, the surfaces obtained from implementirgalyorithm described in
Section3.3.4]1 and Sectién 3.314.2 will be shown and prapatysis will be given.
Based on the data described in Sedfion 3.3.2 and the algasjiboified in Section 3.3.4.1,
the implied volatility surface is given in Figufe_3.4.

Implied Volatility surface via Dumas parametric Method

plied Volatility

£04

Strike Price Time to Maturity

Figure 3.4: Implied Volatility Surface as a Function of Mgness and Maturity but
Obtained with Strike and Maturity

Local Volatility Surface via Dumas Parametric Method

Local Volatility

Strike Price Time to Maturity

Figure 3.5: Local \olatility Surface under Implied \Volaiyl Surface in Figuré_3]4 and
Equation[[Z.5R)

The corresponding local volatility surface using the iraglvolatility surface in Fig-
ure[3.4 is shown in Figuie 3.5. As can be seen from Figute 3hithe parametrization
choice given, the implied volatility surface exhibits a iebnounced “smile” at lower
maturities? for all strikesK . For higher maturities, the “smile” is not so pronounced
except at lower strikes. This shows again that option Vdles are dependent on ma-
turities and strike prices. Also, in this case, we do have lprvenounced “smile” in
the local volatility surface. As can be observed, the loc#tility surface exhibits less
“smile” effect in Figurd_3.b than in Figute 3.5.
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Local Volatility Surface as a function of Implied Volatility

Local Volatility

50 0
Strike Price Time to Maturity

Figure 3.6: Local Volatility Surface under Implied Volaiyl Surface in Figuré 314 and
Equation [(Z2.8I7)

3.3.5 Deficiency of the Parametric Methods

Parametric method of obtaining local volatility surfaceses several challenges in
practice. These challenges will be addressed below witbwsjustifications on how
we have tackled them.

1. Firstly, we will address the choice of parametric funetidhe reason for choos-
ing Dumas parametrization for the implied volatility fuimet is based on the
empirical studies by Dumas B., Fleming J., and Whaley RL in [HE3fied on
S&P 500. This parametric function was preferred in this gtsithice the data
used is also from the same underlying as the one used |in [18kelktkr, other
parametric functions could be a better fit for some other tyig asset. Hence,
the objectivity of selecting a parametric function mighpded on the underly-
ing. In addition, other complex parametric functions whiaére not considered
in [13] are also possible. Although, this does not in any walify the effec-
tiveness of the parametric function chosen in this studys &hbecause it still
captures most of the variations that might be caused by tti@bles (" and K).

2. Secondly, we will address the difficulty of obtaining lbealatility surfaces:
There is a difficulty with how to deal with the negative valuwdé$ocal variances
that make it impossible to obtain the local volatility swéa There are various
ways in literature to tackle this shortcoming which is pé&uio most numerical
methods, one of such &bsorptionwhich involves equating local volatility (LV)
process to zero whenever it takes a negative value [ilét = max(LV,0)).
Another way is calledeflectionwhich involves reflecting the negative values
through the origin and continuing from there, (i|&V|). There are other ways
that are not mentioned in this thesis but can be foundlin #pur framework,
the absorptionwas used because it only accounts for the part of the surface
that are positive which are the parts that can be used fangrand/or hedging
purposes.
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3.4 Numerical Non-Parametric Method

In this section, the numerical non-parametric methods irseltaining local volatility
surfaces will be discussed in details. In addition, theltesund analysis of the surfaces
will be made based on the data used.

The section is arranged as follows: Secfion 3.4.1 deals téhmost prominent nu-
merical techniques in the literature on how to obtain loadatility surfaces via non-
parametric methods. Section 3]4.2 and Se¢fion13.4.3 ietbkr description of the data
and explanation of the techniques used in obtaining locktiity surfaces via non-
parametric methods. Finally, Section 3]4.4 explains tlieidacies of this method and
suggestions on possible improvements for further studies.

3.4.1 Literature Survey on Ways to Obtain Local Volatility Surfaces via Non-
Parametric Method

In this section, three important prominent approaches tdioimg local volatility sur-
faces via non-parametric method will be discussed: LagmadioOsher, Elisabeth R.
and Hanke M., and Achdou Y. and Pironneau O. approacheswdt'th noting that
these methods are based on obtaining the local volatibyetirectly using the market
quoted option prices rather than implied volatilities. $&eapproaches are discussed
below:

3.4.1.1 Method of Lagnado R. and Osher S.

This method involves solving the parabolic partial diffeial equation (PDE) associ-
ated with arbitrage-free derivative security prices. Tdaal volatility function will be
estimated by solving the inverse problem associated withi2is equation for some
discrete and finite set of observed option prices. The \ibyafunction to be deter-
mined appears to be a coefficient of the second-order pddialative in the pricing
PDE. In theory, it can be determined if given enough contirsudata of option prices
to solve the PDE. However, the market has limited number Gbogprices available
which makes the problem ill-posed and requires a regul@sizéechnique to produce
a stable and consistent solution through time. Hence, srttathodology, the gradi-
ent of local volatility function is minimized inC?> norm over an appropriate space of
smooth functions subject to constraints that ensure thdisob of the pricing PDE
match with the observed option prices.

So, if V(S,t;T, K, o) is the option price at time¢ ando(t,.S) is the choice of the
volatility function, then the option pric& follows the stochastic Black-Scholes-PDE

shown below: o1 2y o
1 2Q2 _
5 T 20(5,25) S 52 +7’SaS rV =0 (3.38)
whereS is the asset current level, is the maturity,K is the strike pricey is the con-

tinuously compounded risk-free rate, ani the continuous dividend yield. Hence, if
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the forma(t, S) is specified, then the option pridé(Sy, 0; 7', K, o) can be uniquely
determined by solving Equation (3138) given the initial dindary conditions. Since
we are dealing with standard European options, the ap@tepnitial and boundary
conditions are;

V(S,T;T,T,0) = max(Sr — K,0) forS >0
V(0,t;T,K,0) =0 for0<t<T (3.39)
g—‘g(S,t;T,K,J):e“f(T_t) as S — oo for0<t<T

In the general context set above, market calibration ire@hknding a local volatility
functiono that solves the PDE in Equatidn (3138) such that the obtaipédn prices
fall in between the corresponding bid and ask option pri¢ést is,

Vi <V(S,0;T,K,0) <V

fori = 1,2,3,..., N denoting the sets of maturitie¥;'s andj = 1,2,3,..., M de-
noting the sets of strike priceds;’s for each maturity. Satisfying these inequality
constraints, a functiotv(o) is to be minimized with respect toand possibly making
it approach zero:

N M,

o) = 3 S WV (S0.0: T3, Kypoo) — Vi (3.40)

i=1 j=1

whereV;; = 5 (V2 + V) is the average of the bid and ask prices. To this extent,
minimizing the functionG over a general space of admissible functions is ill-posed,
essentially because a finite and discrete number of obderegabion prices. Hence,
the functions can not be uniquely determined with guaranteed continuepsmtence

on market option prices. And as a consequence of this, a gmslirbation in price
data can lead to a large change in the minimizing functiorerd@tore, a regularization
technique (Tykhonov regularization) is necessary to asthg well-posedness of the
problem and to obtain an optimal solution which is numeljcedbust [32]. For full
documentation of this method, refer to [26].

3.4.1.2 Method of Achdou Y. and Pironneau O.

This method involves similar setting and arguments in nestmiction of the local
volatility function as in the previous method. However,stléss computationally in-
tensive compared to the method in Seclion 3.4.1.1 in thaties for the option prices
only once. Due to the assumption madeogn S), that is to be deterministic, one can
not find an explicit formula for the option prices as in theeca$ constant volatility.
Thus, this will be done numerically. Just like in Secfion. 8.2, the aim is to determine
a good estimate far such that the theoretical prices produced by the BS-PDE rastch
the market prices. Stating the problem mathematically:

Given a set of timegt¢;}, stock prices(S;}, strikes{ K}, for j = 1,2,3,..., M for
each maturity{7; } and given the market pricgs”;; } of call options corresponding to
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these parameters, can one obtain a functigns) such that
V(Si,ti, Ti, Kj, 0) = Cj;

holds for eachh = 1,2,3,..., N? This is also an ill-posed inverse problem. In this
method, the solution of the above problem involves solviiyRPDE associated with
Dupire’s equation usingegularized least squares approximatiorethod. Also, in de-
termining the minimizing volatility parametegradient descent methodas used. The
idea behind solving the ill-posed problem proposed by tiwseauthors are basically
as the same as that in the problem settings of SeCfion 3.dxtdpt that they used
different numerical techniques. For full documentationhi$ method, refer td [1].

3.4.1.3 Method of Hanke M. and Elisabeth R.

In this approach, aatural smoothing cubic splines used to interpolate the option
prices in strikeK” and then partial derivative of the option prices with respestrike
K are taken on the interpolated curve. Alfajte difference methoi$ used to calcu-
late the partial derivative of the option price with respeatnaturity?’. Consequently,
regularized least squares method is used to solve for tla Votatilities in Dupire’s
equation. The regularization is necessary because of gtahla nature of solving the
ill-posed problem as previously explained. This amount teimizing

|AX — b||2 4+ \||Lx|)> overx € R"

where A is the denominator in Dupire’s equatior,is the local volatility,b is the
numerator in Dupire’s equation,is the regularization parameter, ahds a differential
operator.L could be chosen to be the identity matri¥ put this does not guarantee a
solution that yields non-negative local volatilitiés [2Heveral methods also exist for
determining the regularization paramedeiSome of these methods are: Discrepancy
principle [22], L-criterion (se€ [16], Section 4.5), and@\triterion.

These approaches of obtaining local volatilities are noi@d out in this thesis. How-
ever, they will be explored in further studies where rega&tion schemes will be used
in solving Dupire’s equation. For full documentation ofgmethod, refer ta [21].

3.4.2 Non-Parametric Method of Obtaining Local Volatility Surface via Implied
Volatility Data

There are two different approaches of obtaining local Vidiasurfaces via non-para-
metric method implemented in this study. The two approaeheshrough the use of
implied volatility data and market quoted option pricestHis section, obtaining local
volatility surface via the use of implied volatility dataliWbe explored. Consequently,
the algorithm used for obtaining the surfaces will be gived analysis of the surfaces
will be made.

With the Black-Scholes implied volatility data, a local vitity surface will be con-
structed. This involves usingubic spline functions interpolate the call option prices
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in maturity 7' and strike K. The idea behind cubic spline interpolation in the 1-
dimensional case was explained in Secfiod 3.2. Howevershpald note that this
interpolation was done without any constraints that fotbeswhole interpolated sur-
face to be arbitrage-free. Therefore, there is a possitofithaving grid points that
exhibit negative local variances. This will be handled bgiag the local variances at
those grid points zero.

The following basic steps are used in this method:

1. Calculate the Black-Scholes call options prices of thergingplied volatilities.

2. Interpolate the Black-Scholes call option prices as atfanof maturity7” and
strike K.

3. Take the appropriate derivatives of the option price fiemcas derived in Equa-

tion (3.7), Equation[(3:313), and Equatidn (3.16).
4. Determine the local volatilities using the Dupire’s et

5. Obtain the local volatility surface in terms of maturityand strikek .

It can be easily observed from the above steps that the esaraple data points will be
accounted for in the interpolated surface. In the algorgtumder parametric method,
grid points were used when maturiti€sand strikesK” were discretized. However, we
will see in Section 3.4.212 that the interpolated surfadaiokd with the use of cubic
spline functions does not cover all the grid points. For teesson, the mesh-grid for
this section is smaller so that all the sample points willeheall option values on the
surface.

3.4.2.1 Algorithm

The detailed algorithm on how to implement the steps give8dation 3.4.2 will be
carried out here. The algorithmic steps are given below:

1. Load data comprising df, K, S, IV, r, q.

2. CalculateF’; = Se(r—9T,

3. Calculate the corresponding forward Black-Scholes caibogprices, using the
call option price functionbl spri ce” on MATLAB.

4. Determine the 2-dimensional cubic spline interpolatdrBlack-Scholes call
price surface in terms of maturity and strike K. This can be done on the
“cf t ool " on MATLAB undercurve fitting

5. Discretizel’ and K into T; and K ;.
6. Make a meshgrid df; and K (i.e [T}, K,,| = meshgri d(T;, K;)).
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7. Calculate the Black-Scholes call option prices of the megtadpove.
8. Calculate thd'V,, of the Blcak-Scholes call option prices at those grids.

9. Calculate the partial derivatives 6V, with respect tdl” and K using thefinite
(central) difference method

10. Calculate the partial derivatives in the Dupire’s equrably using Equation (3.7),
Equation[(3.1B), and Equation (3]16).

11. Calculate the local variance and local volatilities friva Dupire’s equation.

12. Usingneshgrid (7,,, K,,, LV'), obtain the local volatility surface.

3.4.2.2 Results and Analysis of the Surfaces Obtained frommplementing Sec-
tion

In this section, the surfaces obtained from the implemantatf the algorithm in Sec-
tion[3.4.2.1 will be given as well as their analysis.

The three surfaces obtained after the implementation altmithm in Section 3.4.2.1
are: Cubic spline interpolation of the Black-Scholes callapprices, Implied volatil-
ity surface via spline interpolation, and Local volatilgyrface via spline interpolation
respectively. The surface of Cubic Spline Interpolationhef Black-Scholes Call Op-
tion is given in Figuré_3]7. Consequently, the correspondmglied volatility surface
for the parts of the interpolated surface that give positivglied volatilities is shown
in Figure[3.8.

The cubic spline interpolation of Option prices through T and K

Figure 3.7: Cubic Spline Interpolation of the Black-Scholel Option Data Obtained
from Implied Volatilities

It can clearly be observed that the implied volatility sedas not available for lower
maturities?” and strikeg<'. This is because at those lower values, the implied vdhatili
surface is unrealized due to attainment of negative valti#soae grid points. How-
ever, to have a full picture of the implied volatility surlgccubic spline interpolation
of implied volatility data is carried out. This surface iogn in Figurd 3.p. As can be
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Implied Volatility Surface via Cubic Spline

Implied Volatility

Strike Price

Figure 3.8: Implied Volatility Surface Obtained from Inpetation of Black-Scholes
Call Option Data

seen, this surface provides more values for the grid polrets shown in Figure_3.8.
Also, with the implied volatility surface in Figule_3.8, we dhot observe much of
a “smile” and this is attributed to the fact that we do not htwe surface for lower
maturities and lower strikes where the “smile” effect isalguobserved. The corre-
sponding local volatility surface for the implied volatylisurface in Figure 318 is given

in Figure[3.10.

The Cubic Spline interpolation of Implied Volatility through T and K

Tcurvefit

* C2vs. T, K]

Implied Volatility

50 1

Time to Maturity

Figure 3.9: Implied Volatility Surface Obtained from Sgiinterpolation of Implied
Volatility Data

This local volatility surface exhibits some local extrenfaalatilities with no obvious
“smile” effect. This is also due to the fact that the surfacesinot include lower
maturities?” and strikesx'.

To enhance this method, it is necessary to first find an inlatipg scheme that pro-
duces option surfaces that are arbitrage-free. This aredargolving a constrained
cubic spline interpolation of the option prices where thestmaints are a combination
of linear and non-linear inequalities. This inherentlyldewdth the negative values that
we obtained for the implied volatilities at some grid pointdis subject is well-dealt
with in [17]. This concept of obtaining a whole local volétilsurface that is arbitrage-
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Local Volatility Surface via Cubic Spline

Local Volatility

Strike Price

Figure 3.10: Local Volatility Surface via Cubic Spline Irqpetation of Black-Scholes
Option Prices

free usingarbitrage-free implied volatility surfacwill be emphasized in Chaptet 4.
This will be a continuous work for further studies.

Secondly, another interpolating scheme could have peddipetter. For example, the
use ofThin-plate splineproduced a call option surface that covers the lower magarit
and strikes as depiced in Figlre 3.11.

The Thin Plate Spline Interpolation of Option prices through T and K

[Jcurvefitting1

+ C2vs. T, K

Option prices

00 54009 %7 °
o
0/60000009°

Strike

Figure 3.11: Thin-Plate Spline Interpolation of the BlaaiSles Call Option Data
Obtained from Implied Volatilities

3.4.3 Non-Parametric Method of Obtaining Local Volatility Surface via Option
Price Data

In this section, local volatility surface from option prcelata rather than implied
volatility data will be obtained. This involves usimgtural cubic splinan the inter-

polation of market option prices and with the aidfiofite (central) difference method
the appropriate partial derivatives in the Dupire’s equatvill be taken on the inter-
polated surface. The detailed algorithm for obtaining teal volatility surface using
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market prices will be given in Section 3.4.8.1 and the resaiid analysis of the surface
obtained will be made in light of the new data in Secfion 32.3

Firstly, we will describe the new data obtained. The data ta&en from [10]. It's
call options of SPX observable on 8th February, 2006. lt@iost126 sets of different
options observed in the market across all maturitieend strike priceds. The stock
had a spot price of $1265.65 and interest rate of 5.25% wittividends.

3.4.3.1 Algorithm

The algorithm used in constructing the local volatility fawe from the market option
prices will be given here. The following steps are used iraivlig the local volatility
surface.

10.

Load data comprising of, K, S, P, IV, r, q.

Determine theubic spline interpolatiorandthin-plate spline interpolatiorof
call prices interms of'and K. This can be done in thef t ool ”on MATLAB
undercurve fitting Let this surface be name&tir f ace”.

Discretizel’ and K into T; and K;
Make a meshgrid df; and K, (i.e [T}, K,,] = meshgri d(T;, K;)).

Calculate the option prices only at those grid points frominterpolated sur-
face, thatisC(T, K) = Sur f ace(T,,, K,,).

Using finite (central) difference method, calculate thitofving:

(a) The partial derivative of the call optiari(7, K') with respect to maturity
T.

(b) The partial derivative of call optio@'(7', K') with respect to strikes.
(c) The 2nd partial derivative @f' (7', K') with respect to strikex'.

Using the above derivatives, calculate the local vagand¢he Dupire equation.

Make the grid points with negative local variances zenogi&V( LV<0) =0
since the local volatilities at those points are not feasibl

Calculate the local volatilities;(7", K).

Usingmeshgri d (7,,, K,,, LV'), obtain the local volatility surface.

3.4.3.2 Results and Analysis of the Surfaces Obtained by Ingmenting Sec-

tion 3.4.3.1

Here, two methods of spline interpolations are used; oneaged oncubic spline
interpolation and the other onthin-plate spline interpolation The basic difference
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between both interpolation methods from the surfaces thegiyze is that the latter
produces a surface for more grid points than the former.

The Cubic Spline Interpolation of Option prices through T and K
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Figure 3.12: Cubic Spline Interpolation of the Market Optidata

The Thin Plate Spline Interpolation of Option prices through T and K

curvefittingl

* C2vs.T,K

60!

500—

400—

300—

200—

Option prices

100—

0— o ) 15

-10( 0.5
1600 1500 1400 1300 1200 1100 1000

900 800
Time to Maturity
Qwrita

Figure 3.13: Thin Plate Spline Interpolation of the MarkettiOn Data

The cubic spline interpolation surface of the market catl@pdata is shown in Fig-
ure[3.12 while that of thin-plate spline interpolation isogim in Figure[3.18. The
differences can be easily observed from the two surfaces.

Consequently, the local volatility surfaces of the two splinterpolated surfaces can
be viewed in Figuré_3.14 and Figure 3.15, where the formehasldcal volatility
surface via thin-plate interpolation of market option datel the latter is via cubic
spline interpolation of market option data. These surfasdsbit some local extrema
of high local volatilities and the “smile” effect can be finobserved along lower
maturities for all strikes and lower strikes for all matig#.
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Local Volatility Surface via Non Parametric Method with Call Option Data
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Figure 3.14: Local Volatility Surface via Thin-Plate Inpetation of Market Option
Data

Local Volatility Surface via Cubic Spline Interpolation of Call Option Data
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Figure 3.15: Local Volatility Surface via Cubic Spline Irpefation of Market Option
Data

3.4.4 Deficiency of Numerical Non-Parametric Method

In this section, some important issues that arise whenrdgalith non-parametric
methods of obtaining local volatility surfaces will be dissed. Firstly, the key im-
portant deficiency of using this method to re-constructllecatility function is that
this method does not take into account how to make the whidepolated volatility
surfaces arbitrage-free. However, we have consideredsritibsis only those points
that are arbitrage-free on the local volatility surfacet tten be used for application
purposes. Several suggestions can be given to handle thiidepr. One of such
suggestions involves the non-arbitrage interpolatiomi@apline) of the call options,
which in turn gives non-negative values of local variancewthe Dupire’s equation
Is solved.

Another suggestion is to solve the Dupire’s equation witthiiov regularization. The
setting involves solving
AX = b,
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whereA is the diagonal matrix consisting of the denominator valnd3upire’s equa-
tion at the diagonalss is a column matrix consisting of the local variance valuesgo
solved for; and is a column matrix consisting of the numerator values in thpiie’s
equation. In fact, this solves for local variances with magative values in the pres-
ence of negative values in the matricégand/orb.

Secondly, there is a question of which spline interpolafiamction is more suitable
for our purpose. We generally use the cubic/thin-platengglipartly because in most
studies for instance [21], they were used and also becaesBuhire’s equation is a
differential equation of order two. Moreover, a spline ftioo that is twice continu-
ously differentiable is needed to ensure the smoothnes& @il option’s interpolated
surface.
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CHAPTER 4

CONCLUSION

In this concluding chapter, summary of what have been dorteignthesis will be
highlighted and the outlook for further studies will be dissed.

The aim of this thesis was to emphasize the importance aridinsss of local volatil-
ity model in modeling the “volatility smile” of the underlyg assets. Broadly speak-
ing, we have investigated the local volatility model in distafrom understanding
its financial stand point to its mathematical model derovagi Consequently, various
numerical techniques used in obtaining local volatilityfaoes have been explored.
Some as used in the literature and some as proposed and ierginn this thesis.

There are several paths this thesis could take for furtheliest. First, the volatility
surfaces obtained can be used as a first hand estimatiorcingpaxotic options like
barrier, look back, and asian. In fact the surfaces obtaamedmportant because it is
crucial for practitioners to have a stable algorithm to detee the volatility structure
for the underlying assets that exotic options will be writta. Without a proper pric-
ing mechanism, the market for these options could be raidddanbitrage prices that
could lead to mis-pricing of financial derivatives. In adufit, the volatility surfaces
could also be used to hedge positions in exotic options.

Another important idea whose exploration is very usefuhes¢omparison of the per-
formances of the surfaces obtained against the ones pradfhoce other complex mod-
els used in modeling an asset’s volatility structure. Tluweseplex models are stochas-
tic volatility, jump-diffusion, local stochastic volaity models, etc. Furthermore, to be
able to compare, these complex volatility models need tdumied in details as well.
Consequently, it will be a good approach to study a model basgdmp diffusion
process and one based on stochastic process to be able tarecagposs disparate
models. So far, we have dealt with a deterministic model(loolatility model).

Another rational and well-founded approach is to figure ostadle numerical tech-
nique and algorithm that will be able to produce non-ariggranplied volatility sur-

face. This surface in turn is used to obtain local volatiityface. This approach can
be done using either parametric method or non-paramettiicods. Under parametric
method, obtaining arbitrage-free implied volatility sagé involves an algorithm that
solves the parametrized implied volatility function in atbirage-free way. There-
fore, when the Black-Scholes prices are computed for thepgpidts in maturities”
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and strike priceg(, non-arbitrage prices will be obtained. This will in turrelgethe lo-
cal volatilities in Dupire’s equation positive becauseitadge-free options prices (for
fixed t, and.Sy) conform to the following rule:

1. Monotonically decreasing and convex in strike
2. Monotonically increasing in maturity.
For non-parametric method, consider the method explor&atior 3.4.8. It's possi-

ble to write a stable algorithm that will produce the splinesrpolation of the option
prices in an arbitrage-free way. This is the key idea in thekvab Fengler M.R[[17].

Another well founded idea is to obtain the non-negative llecéatilities by solving
the regularized Dupire’s equation in the least squaresesever the space of positive
real numbers. To explore this idea further, Sedfion 8.4 ghtribe of help.
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APPENDIX A

DEFINITIONS AND THEOREMS

In this Appendix, some of the theorems that were used in i@si$ are highlighted:

Definition A.1 (Ito process) Let (Q2, F, (F:)i>0, P) be a filtered probability space and
(B:)i>0 an Fi-Brownian motion. (X;)o<;<r iS anR-valued It process if it can be
written as

t t
Pas Vt<T X,=Xo+ / K.ds + / H.dB;,
0 0

where

e X, is Fy-measurable.

o (Ky)o<i<r and(H,;)o<<r areF;-adapted processes.
3 fOT |Ks|ds < +00 P a.s.

o fOT|KS|2ds < 400 Pa.s.

Theorem A.1(It6 formula). Let(X;)o<;<7 be an 16 process as in Definition A.1, and
f be a twice continuously differentiable function. Then

f(Xy) = f(Xo) + /f dX+/f Od < X, X >,

where by definition
d{X, X), / H?ds

/f X, = /f de+/f ) H.,dB,.

Likewise, if(t,x) — f(t, z) is a function that is twice differentiable with respect:ito
and once with respect to and if these partial derivatives are continuous with respect
to (¢, z) (i.e. f is a function of clas§'?), the It formula becomes

and

£t X0) = £(0,X0) + / F1(s, X.)ds
(A1)

! IR
s [ s xpax4 g [ fs X0 X0,
0 0
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Theorem A.2(Forward equation)LetY; represents a diffusing particle that follows a
stochastic differential equation as in

dY, = b(t, Yy)dt + o (1, Y;)dB,

then for a fixedr and s, a smooth transition density(x, s; .;.), of X, satisfies the
forward equation
Op=A,,p, t>s

whereA; is the adjoint operator defined by

1 02

A9 = 3 : @;—ayj (aij(y,t)g) — Vy- (b(y,1)g)

anda;;(y,t) = oo™ This describe the evolution of the density forward in time.

Theorem A.3 (Unigueness Theorem).et Y; represents a diffusing particle that fol-
lows the stochastic differential equation

withY, = Z.

If b ando are continuous functions, and if there exist const&nt +oo such that

L. [b(t, z) = b(t,y)| + |o(t,z) — o(t, y)| < K|z —yl,

2. [b(t, )| + |o(t, z)| < K(1+ [z]),

3. E(Z?%) < +o0,
then for anyl” > 0, Equation Equation[{A]2) admits a unique solution in the rivié
[0, 7.

Theorem A.4 (Girsanov Theorem)Let (2, F, (F;)o<t<, P) be a filtered probability
space and B, )o<;<r an (JF;)—standard Brownian motion. Lé#,),<;<r be an adapted

process satisfying"OT 0?ds < oo a.s such that the procegd.;)o<;<7 defined by

T 1 /7
Li=exp|— 0.,dB; — — 0%ds
2 S
0 0

is a martingale. Then under the probabil B with densitylL; with respect taP,
the procesgV;)o<:<r defined by, = B, + fot 0sds is an (F;)—standard Brownian
motion.
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APPENDIX B

REGULARIZATION SCHEMES

In this appendix, fundamental concepts of inverse problerweall as regularization
schemes will be discussed as a fore study into the numedchhiques that will be
used in future work.

B.1 Fundamental Concepts in Inverse Problem

Most of the subjects that will be discussed in this sectiantmafound in[[29].

B.1.1 Condition of Function Evaluation

A function to be evaluated at a given point can be well ordhditioned.

Definition B.1. An evaluation of a well defined functior,: R — R is well-conditioned
if a small error (a balBs(z) aroundr, Vé > 0) in the point where the function is eval-
uated does not greatly affect the value of the function.

Definition B.2. An ill-conditioned function is the one in which the evalwatiof the
function in a neighborhood of a point leads to a large error.

To illustrate these ideas presented above, let’s consislenale example.

Example B.1(Evaluation of a rational function)Consider the evaluation of the func-
tion f(z) = 1/(1 — z). The computation of (z) is:

1. ill-conditioned, ifx is closer to 1 (but differs from 1)

2. well-conditioned, otherwise
To illustrate the two cases:

1. Whenz is near 1.
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Let z = 1.00049 and in the computation let's use an approximate vaftie-
1.0005. Hence, absolute error of the evaluation is:

abs = f(2*) — f(x) = —10°/24.5.

While we have an error of0~° = z* — z in the data that led to an evaluation
error of —103/24.5. This is magnified by the multiplication factor

_errorin the result (of the evaluation)  10°/24.5
~errorin the point (of the domain) 105

)

which in absolute values gives the condition numbet, |m| > 10°.

2. Whenz is far from 1.

We observe that whenis far from 1 the previous magnification does not occur.
Let’s say we take: = 1998 andx* = 2000 as an approximation far. Then, the
absolute error in the evaluation is

1 12
1-2000 1—1998  1999.1997

€abs =

Hence, the magnification factor of the errof1999.1997)~! < 1079, effectively
reducing the error.

Definition B.3. Givenf : D € R — R of classC?, ¢;(x) = |f (z)| is the condition
number of the (evaluation) gf atz. We also say that the evaluation of a functionfof
atz is well-conditioned ifc;(z) < 1 and ill-conditioned ifc;(x) > 1.

NOTE: Consider the quotient below (multiplication factor)

__error in the result (of the evaluation) f(z*) — f()

error in the point (of the domain) z* —z (B-1)

Equation [B.1) isNewton quotienof f, a primary step in defining the derivative of a
function at a point. In the limiting case, as — =, we have thatn — f'(z) andf’(z)
is defined to be therror multiplication factorof f at pointz.

B.1.2 Types of Multiplication Factors

1. f'(z): the (usual) derivative of atz;

2. f'(z)/f(z): thelogarithmic derivativeof f atx (indeed, it is the derivative of

In(f(x)));

3. zf'(z): derivative (differential operator) without a special rgm

4. zf'(x)/ f(z): theelasticityof f atx (very well used in economics).
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B.2 Analysis on the Existence and Uniqueness

Some of the difficulties plaguing inverse problems are egldb the available infor-
mation (data): both quantity (not sufficient or over-abummadata) and quality of
information. Let’s explain this point with the help of an exale.

Suppose that the function that truly generates a phenomisnon
f(z) =2x+ 1.

In the inverse problem, we assume this function is unknowuasto However, let’s
suppose we can determine the form to which the function lgslomamely:

fap(z) = ax +0b,

wherea andb are arbitrary constants. From the available data, we tlydn ttetermine
what these values af andb are. We will consider 3 cases each of which depends on
the type/nature of data observed or available to us.

B.2.1 Exact Data

1. Not sufficient data. Assume we know the poirt, 3) belongs to the graph of.
It is trivial that the datum available is not enough to deteew andb. Hence,
we only know that

f(l)=3o0ra+b=3,

It is then impossible to determine the unique values ahdb, which make the
model indeterminable.

2. Sufficient data. Now, let’s say we know(1, 3) and(2,5). Thus,a + b = 3 and
2a + b = 5, from which we can determine that= 2 andb = 1 solving the two
equations simultaneously, hence we select the mpdgl= 2z + 1.

3. Too much data. Suppose now that the poins, 1), (1, 3), and(2, 5) belong to
the graph off. Then
a=2andb=1.

Note that in case of exact data, having too much data doedfaot the unique-
ness of the chosen model, however, any two of the availaltéeatzove would
have been sufficient to determine the unique function thiasahe given in-
verse problem.

B.2.2 Real Data

In practice, we do not have exact data, due to the methodsmseduiring those data.
Hence, these types of data can also be called noisy datadgetfay contain some
errors. We still have three possibilities just as discusdeve:
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1. Insufficient data. Datum (1,3.1) has an error-as we can tell, for our “phe-
nomenon”f(1) = 3 and not 3.1. Moreover, this datum is insufficient because
we obtain only one equation betweelandb,

a+b=3.1,

which can not determine andb uniquely, not even approximately. Additional
information must be given to ensure the unique solution efitlkerse problem.

2. Sufficient data. Suppose we have the following data; 3.1) and(2, 4.9). Then,
an approximate values farandb can be determined by solving the following
equations obtained by substituting the above data intoltbize of model. This
leads to

a+b=3.1,
2a +b=4.9. (8.2)

Solving Equation[(B.2) gives = 1.8 andb = 1.3.

Note: It is not always possible to estimate the parameters by imgdbkat the

model fits or interpolates the data even with a sufficientyndesta. And it is

often advised to solve the above problem in least squares selmere the error
function is being minimized. As a result, the parametersriiaimizes the error
function are being determined. In case of the example altbgesrror function

E(a,b) becomes

E(a,b) = = [(fap(1) = 3.1)% + (fap(2) — 4.9)?]

= - [(a+b—=31)%+ (2a+b—4.9)* ]

(B.3)

N =N =

The minimum of E is given by its critical points, that is, the points where the
gradient of £/ is null. This involves taking the partial derivative withspgect to
each variable the error function is dependent on. Thergetheecritical points
are determined as follows:

E

0= 2 _ (asb—31)+220+b—4.9);
da (B.4)
OF

Simplifying the equations above, we obtain
a+b=3.1and2a+b=4.9.

It is coincidental that due to the form of the functigp,, the system in Equa-
tion (B.2) and just the one obtained are the same. Sometilnesystem in
Equation [[B.P) does not have a solution while the system instttond case
does. In real inverse problems, solving in the least squsease is a way to
reach a solution.
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3. Too much data. Assume that

(x1,11), (T2, y2), - -, (T, yn) With n > 3,

are several experimental data points that are associatedhei “phenomenon”
flz) =2x+ 1.

It is inevitable that the data contains errors which makéwsjitossible to solve
for a andb in the system below:

Y1 — fa,b(x1> =y — (ax; +b) = 0;

Yo — fap(22) = y2 — (az2 + b) = 0;
(B.5)

Yn — fa,b(xn> = UYn — (aIn + b) = 0

Usually one would say that the system has no solution bedhese aren —
equations and2 — unknowns. However, in general, one should say that the
given data can not be fitted by the model. Thence, the abowersyd equations
can be re-written in this form:

T 1 Y1
. 33:2 b 1 N y.2
Zn 1 Y
We introduce the notation = (z,79,...,2,)7, 1 = (1,1,...,1)T andy =
(y1,99, - --,yn)T. The above vector equation can be written as
ax + bl = y.

Using the method of least squares, define the error of relsidator by
r=1y— (ax + bl),

given as the difference between the experimental measuaisrfy¢ and the pre-
dictions of the model with the coefficienisandb (i.e az + b1). In this method,
one tries to choose appropriat@ndb such that the functional error

1 1 —

1
Ba,b) =2 |rl* =5 ly —az+ b1 = 5 > (s — (az; + 1))
i=1

is minimized. This is requiring that the inner product of tieetorsr and1 span-
ning the subspack? c R" with the error vector are( (sincer is orthogonal
to the plane spanned hyand1). Hence,

(x,y—ax+bl)=0and (1, y —ax+bl) =0.
This can be written as

¥ (y —ax +b1) =0andl”(y — az + b1) = 0,
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which leads to
ar’x + bx"1 = 2Ty,

alTz + 0171 =17y.

T | a\ [ 2Ty
172 171 b )\ 1Ty )

Defining A = (x, 1) and anr x 2 matrix, Equation[{BJ6) can be re-written as

(B.6)

Thence,

ATA( Z ) = ATy, (B.7)

which is usually called theormal equationNote that even ifA” A is not invert-
ible, Equation[(B.I7) will still have solution which will notebdiscussed further
here. However, if it is invertible, then the solution to tingerse problem can be
shown to be equivalent to

( ) ) — (ATA) ATy, (B.8)

This is the solution to the inverse problem given by kbast squares method
which is equivalent to the evaluation of the function

y (ATA)TATy.

Computing this might be unstable depending on matrend also computation-
ally inefficient. Assuming thatl is invertible, then A7 is also invertible since
(AT = (A7),

which leads to
a
b

Note that this result obtained in Equatigén (B.9) is valid & thata is exact or not.

As a closure to this section, the definition of a well-posezbjgm will be given
according to Hadamard

) = AN AT T ATy = Ay, (B.9)

Definition B.4. A well-posed problem is defined as one which has the following
properties:

(a) has a unigue solution (existence);
(b) the solution is unique (uniqueness);
(c) the solution depends “smoothly” on the given data (ragty).

When any of these is not satisfied we say that the problempeded.
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B.2.3 Spectral Analysis of Inverse Problems

In this section, an example of a problem will be given andiitgprties will be checked
with Hadamard’s specifications for well-posedness. AlsguRaization schemes will
be discussed (Tikhonov regularization). This sectionngdly inspired by[[29].

0 i ) and the vectoy = (1,27197 itis clear
1024

thatr = (1, 1)7 is the solution of the system

Kz =y. (B.10)

Example B.2. Given the matrix( 1

Problems like this could be fairly difficult to solve since alirperturbation iny could
lead to large change in the solutionin Let's say we perturly by p = (0,2719)7.
Then, we obtain a solution that differs framby r = (0, 1)7, given rise to

K((3) (1)) =xtesn=vr -
(2 )+ (5%):

Hence, the multiplication factan = |r| / |p| = 1024 which makes the problem ill-
conditioned. This is not true for all perturbations. We aleehat ifp = (271°,0)7,
thenr = (0,27'%,0)”, which in-turn makes the multiplication factor = |r| / [p| = 1.
We realize that evaluations of inverselgfat some points are more sensitive than other
points, thus, we change the problem a little bit by solvingeeyrbed problem of the
form:

Kyx=1y,, a>0, (B.12)

in that Equation[(B.12) behaves like Equation (B.10) as muchassible but with
additional advantage of being better conditioned to cexaiall alterations im. Thus,
we call Equation[(B.12) as being the regularization of thgingl problem presented
in Equation[[(B.1D). Hence, choose

1 0
Ka:<0 1 L),andya:y,0<a<1, (B.13)
(170[)10 210

and note that
K, — K, asa— 0.

Choosing an appropriate, one can solve Equatioh (BJ10) using Equation (B.12) for
different perturbations af.

Definition B.5. The familiesK, andb,, « > 0, constitute dinear regularization
schemdor the linear problenti<z = y, if the following conditions hold:

Ko = K, |bo] \Oand |K ' ~|K7'], asa \, 0. (B.14)

Here,a is called thaegularization parameterThe perturbed probleli .z = y+b,, is
called theregularized problem/s,, is theregularized matrixandx® is theregularized
solution
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Theorem B.1. The following theorem gives some consequences of a linear reg
ularization scheme.

1. If the pair K, andb,,, constitute a linear regularization scheme, we have

¢ — randa — 0. (B.15)

2. The evaluation’s condition of the regularized problertuson is less than the
evaluation’s condition of the unperturbed problem

The proof of this theorem will be omitted in this thesis. Howe interested readers
could refer to[[29].

B.2.4 Tikhonov Regularization

In this section, we will discuss and analyze a classical lezgation scheme, the
Tikhonov regularization schem@&he analysis here will depend on the classical spec-
tral theory of linear operators in finite dimension vectaasgs (this is out of the scope
of this thesis, however one can refer[tol[29] for details.)

We noted earlier that solving Equatidn (Bl.10) can be replagitid the problem of
minimizing the functional

1
@) =5 1Kz =yl (B-16)
given K andy.

Theorem B.2. Let K be an invertible matrix. The following hold:

1. z, is the minimum point of if and only ifz, is the solution of Equatior (B.10);
2. The critical point equation of is K" Kz = K”y;

3. The critical point equation of is equivalent to Equatiorf_(B.1L0).

Also, the proof of this will not be given here, but can be foumd29]. To avoid am-
plification of error in the solution of Equatiof (BJ10), a nalunotion is to penalize
the distance from the solution to a reference value or thenrafrthe solution vec-
tor (the distance with respect to the origin). Here, a refeeevalue means a known
approximate solution to the problem denotediby

In the case of Tikhonov's method, this idea involves a regzddéion that penalizes
the growth of the distance from the reference value. For thblpm of the form in

Equation [B.ID) under consideration, it consists of solttmgcritical point equation
of the function

1 o
folz) = §|!Kfc—y|!2+§\lw—fcr!\27 (B.17)
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with o > 0, the so-called regularization parameter. The minimum poinsatisfies
the critical point equation

afz® —2,) + KTKz® = Ky, (B.18)
which can be re-written as
(aZ+ K"K)2® = K"y + az,. (B.19)

We will verify that Equation[(B.19) provides a regularizatischeme for the normal
equationk” Kz = K"y. Care should be taken that the problem that is being regular-
ized is the normal equation above and not Equafion (B.10)celdet

A, =aT + KTK andb, = az,, a > 0. (B.20)

Theorem B.3. The familiesA,, b,, a > 0, are a linear regularization scheme for
equationK ' Kz = K™y,

The proof of this is omitted, but can be found in[[29] as well.

RemarkB.1. The definitions, notions and theorems in this section stiatetthe linear
regularization schemes can also be derived for the noalicase.
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