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ABSTRACT

MODELLING AND IMPLEMENTATION OF LOCAL VOLATILITY SURFACES

Animoku, Abdulwahab

M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Yeliz Yolcu Okur

Co-Supervisor : Assoc. Prof. Dr.̈Omür Uğur

September 2014, 85 pages

In this thesis, Dupire local volatility model is studied in details as a means of model-
ing the volatility structure of a financial asset. In this respect, several forms of local
volatility equations have been derived: Dupire’s local volatility, local volatility as con-
ditional expectation, and local volatility as a function ofimplied volatility. We have
proven the main results of local volatility model discussedin the literature in details.
In addition, we have also proven the local volatility model under stochastic differential
equation of the forward price dynamics of asset prices. Consequently, we have studied
the two main approaches to obtaining the local volatility surfaces: parametric meth-
ods and non-parametric methods. For the parametric method,we have used Dumas
parametrization for the implied volatility function whichproduces implied volatility
surface, which in turn is used in obtaining local volatilitysurface. While in the non-
parametric approach for local volatility surfaces, we haveused both implied volatilities
and option prices data sets with some numerical techniques that are well-founded in
literature. As an outlook, we have also discussed several paths this thesis could take
for future studies, one of which is using Tikhonov regularization to obtain solutions of
local volatilities by solving a regularized Dupire equation.

Keywords: Dumas parametrization, Dupire local volatility model, implied volatility,
local volatility surface, parametric method, non-parametric method, Tikhonov regular-
ization
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ÖZ

YEREL VOLATILITE Y ÜZEYLERININ MODELLENMESI VE UYGULANMASI

Animoku, Abdulwahab

Yüksek Lisans, Finansal Matematık Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Yeliz Yolcu Okur

Ortak Tez Ÿoneticisi : Doç. Dr.Ömür Uğur

Eylül 2014, 85 sayfa

Bu tezde, finansal varlıkların volatilite yapılarının modellenmesi amacıyla Dupire yerel
volatilite modeli detaylı olarak çalışılmıştır. Bu yüzden, birçok yerel volatilite denk-
lemi incelenmiş ve ẗuretilmiştir: Dupire yerel volatilite, koşullu beklenen dĕger olarak
yerel volatilite, zımni dalgalanma fonksiyonu. Literatürde detaylı olarak incelenen
yerel volatilite modelinin ana sonuçları ispatlanmıştır. Ayrıca varlık fiyatlarının gele-
cek fiyat (forward price) dinamiklerinin stokastik diferansiyel denklemleri çerçevesinde
yerel volatilite modeli kanıtlanmıştır. Sonuç olarak yerel volatilite yüzeylerini elde et-
mek için parametrik ve parametrik olmayan yöntemler çalışılmıştır. Parametrik yön-
temlerde, yerel volatilite ÿuzeyi elde etmek için kullanılan ve zımni dalgalanma yüzeyi
meydana getiren zımni dalgalanma fonksiyonu için Dumas parametrizasyonu kulla-
nılmıştır. Yerel volatilite ÿuzeyleri için parametrik olmayan yöntemlerde, literaẗurde
săglam temelleri olan bazı sayısal teknikler ile birlikte zımni dalgalanma fonksiyonları
ve opsiyon fiyatları ile ilgili veriler kullanılmıştır. Genel olarak, bu tezin gerçekleş-
tirilebilecĕgi dĕgişik yollar ileriki çalışmalar için tartışılmıştır. Bunlardan biri yerel
volatilite çözümleri elde etmek için Dupire denklemi çözülerek elde edilen Tikhonov
düzenlemesidir.

Anahtar Kelimeler: Dumas parametrizasyonu, Dupire yerel volatilite modeli,zımni
dalgalanma fonksiyonu, yerel volatilite yüzeyi, parametrik ÿontem, parametrik ol-
mayan ÿontem, Tikhonov d̈uzenlemesi
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contributed greatly to the success of this project with his openness to share ideas and
experience.
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CHAPTER 1

INTRODUCTION

The financial crisis that caused many economies to go into recession took place in
1987, and ever since continual joint efforts are being made by the practitioners, who
are active on the financial market, and the academic researchers, to understand the ef-
fective usage of financial instruments including derivatives. In fact, in 1994, Dupire
as well as Derman and Kani, and Rubinstein, independently, contributed to the foun-
dation of modeling volatility structure of financial assetsby local volatility model.
Dupire, Derman and Kani gave proofs based on stochastic calculus while Rubinstein
approached it using implied volatility tree. As Gatheral J.duly noted, it was unlikely
at the time that Dupire and others ever thought of local volatility as representing a
model on how volatilities actually evolve, rather they werelikely to view it as a way
of finding an average over all instantaneous volatilities [18]. In addition, the financial
sectors have increased their level of resources to help improve the pricing of financial
instruments and considerate amount of research have been done and still ongoing to
develop models that can replicate the market prices accurately.

Specifically, exotic options are being priced with the use ofmodels such as local
volatility models, stochastic volatility models as well aslocal stochastic volatility mod-
els and jump-diffusion models. Since this project is mainlyconcerned with the mea-
sure and estimation of volatility parameter, it becomes incumbent to give brief details
on it. Volatility of a financial asset is the measure of the market risk as a result of the
spread of the outcome of the returns of the asset, which is taken to be a random vari-
able. This volatility which is a form of the risk inherent to the asset is very important
when valuating financial derivatives (resp. options) and hence, it becomes necessary
to accurately measure it in order to avoid discrepancies between the theoretical prices
obtained from the models used and market option prices.

This thesis aims at dealing with local volatility surfaces that exhibit the “smile” effect
that are consistent with the market’s underlying asset’s volatility structure. As will be
shown and explained later on, Black-Scholes model which assumes a constant volatil-
ity in its option valuation does not provide a framework thatexplains the volatility
skew (or sneer) nor does it explain the term structure of volatility that are observed
in the market since the financial crash. As a result, there is aneed for more realistic
models that produce prices that can accurately represent market prices. Consequently,
this project aims at presenting the tools of local volatility model and its local volatility
surfaces to demonstrate a better performance in exhibitingthe “smile effect”.
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In the sequel, in Chapter 1, the motivation behind the use of local volatility model will
be addressed by examining its crucial model assumptions andBlack-Scholes model.
Also, some crucial terminologies that help to grasp the tenets of this model will be ex-
plained as well as some other concepts and terminologies in financial mathematics that
are essential for comprehending this thesis. In Chapter 2, the various theoretical deriva-
tions of local volatility will be deeply dealt with, essentially, Dupire local volatility,
local volatility as a function of implied volatility, and local volatility as a conditional
expectation. Chapter 3 explores various numerical methods that are used in literature
to obtain local volatility surfaces: the parametric methodand non-parametric methods.
The motivation and explanations of novel numerical techniques we have proposed un-
der the above methods will be given. Consequently, the analysis and interpretations
of the local volatility surfaces obtained will be discussedin connection with its finan-
cial implications. Finally, in Chapter 4, we will explain theforeseeable future work of
this thesis, essentially, how to improve the numerical techniques implemented in this
thesis.

1.1 Preliminaries

In this part, the mathematical and financial structures thatdrive the main results as
well as some important terminologies that are used in financial mathematics will be
explained. The organization of this part begins with explanation of financial termi-
nologies in Section 1.1.1, then in Section 1.1.2, mathematical framework that would
help the reader understand the mathematics behind the modelderivations will be dis-
cussed.

1.1.1 Financial Terminologies

According to Chance M., afinancial derivativeis a contract between two parties pro-
viding for a payoff from one party to the other determined by the price of an asset, an
exchange rate, a commodity price or an interest rate [5]. In other words, the value of
the derivative depends on the value of some other financial asset (underlying asset).
Derivatives are used as a way to offset undesirable financialrisk an individual is ex-
posed to in the market. As we see above, a derivative depends on the performance
of some other financial asset, called the underlying asset, whose value is a random
variable. The meaning of an underlying (asset) could be anything from stock, bonds,
interest rate to another derivative like forward contracts, futures and it could even be the
weather in Ankara, which is not a tradeable asset. There are several types of financial
derivatives in the market, one of which is an option. An option is a contract between
two parties –a buyer and a seller– that gives the buyer the right but not the obligation,
to purchase or sell something at a later date at a price agreedupon today [6]. A call
option gives the buyer the right to buy while a put option gives the right to sell. The
simplest form of options is the European type which do not allow one to exercise until
maturity. However, the American type of option allows the buyer to exercise at any-
time between the initiation of the contract till the option’s maturity. The above two are

2



referred to as Vanilla options.

Other types of options also exist such as the Bermudan option and the Exotic option.
Bermudan options are types of options that can be exercised atsome specific points in
time from the onset of the contract till maturity while Exotic options are family of op-
tions with non-standard payoff structure and exercise possibilities which are different
from those of standardized European and American options. These derivatives (resp.
options) are traded on a large part in over-the-counter (OTC)market as well as in an
organized foreign exchange (FTX) market.

1.1.2 Mathematical Background

In this part, the mathematical tools that will enable easy understanding of the model
derivations and basic stochastic calculus concepts will becomprehensively explained.
In general, the concepts in Mathematical Finance are definedover a probability space
(Ω,F ,P); Ω denotes the total sample space,Ft denotes theσ-algebra of all the infor-
mation known up till timet, andP denotes the objective probability measure, which
guides the probability of events happening in this probability space where the domain
of P is F .

A real valued random variable is defined as a function that assigns real values to the
set of outcomes of a probabilistic experiment. Its future values are unknown, hence,
they are also referred to as stochastic variables. In addition, the collectionX, of Ft-
measurable random variables,{Xt; 0 ≤ t ≤ T}, is a stochastic process. Further more,
a stochastic processX is adapted to the filtration{Ft}0≤t≤T if it behaves such that for
every realizationXt is Ft-measurable.

To give an example for practical purpose; let us consider thetossing of a fair coin.
The sample space denotes byΩ = {head, tail}. A real-valued random variableY (w)
defined on this space such that it models a payoff of $1 if a head shows up and $0, if a
tail shows up.

Y (ω) =

{

1 if ω = head
0 if ω = tail

Since the coin is fair, its probability distribution functionfY is given by

fY (y) =

{

1
2

if y = 1
1
2

if y = 0

that is, there is equal probability of a head and tail showingup with each toss.

Another important concept is the conditional expectation of a random variable in a
given probability space. A conditional expectation is the expected value of a random
variable given an amount of information. To give a more mathematical definition, let
(Ω,F ,P) be a probability space and letG be a sub-σ-algebra contained inF . We de-
noteL2(Ω,G,P) to be the subspace ofL2(Ω,F ,P) of equivalent class ofG-measurable
random variables under the Hilbert space. We identifyPG to be the restriction ofP to
G. Hence,
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Definition 1.1 (see [25]). The conditional expectation of a random variableX ∈
L2(Ω,F ,P) with respect toG is the projection ofX ontoL2(Ω,G,P) or rather any
G-measurable random variable belonging to thePG-equivalent class of this projection.
Hence,

∀G ∈ G,
∫

G

E[X|G]dP =

∫

G

XdP.

Another concept that is very important in studying financialinstrument is theMartin-
gale property. As in the previous definition, suppose(Ω,F ,P) is a probability space
with filtration {Ft}t≥0 underF , then a stochastic process,Xt, under(Ω,F ,P) is a
martingale if,

(a) Xt is adapted to the filtration{Ft}t≥0;

(b) E[|X|] < ∞;

(c) E[Xt|Fs] = Xs for 0 ≤ s ≤ t < ∞.

It is worth noting that condition (c) is typical of martingale processes, because it says
the best predictor of the processXt after times, given that we have the whole in-
formation ofX up to times is Xs. Also note that the condition in (b) imposes the
integrability of the process. Other related concept worth mentioning are the concepts
of SubmartingalesandSupermartingales. The definitions are same with the martin-
gale property except in condition (c) wheresubmartingalessatisfiesE[Xt|Fs] ≥ Xs

andsupermartingalessatisfiesE[Xt|Fs] ≤ Xs.

Note that ifXt is a martingale then each continuous time step is a martingale and we
can write:

1. E[X0] = E[X1] = · · · = E[Xt];

2. The sum of two martingales is a martingale.

Another important aspect of financial mathematics is to describe the valuation of op-
tions. Hence, in a complete market (that is every contingentclaim is attainable by a
self-financing portfolio), the valueVt of an option at timet, with payoff functionφ(ST )
at timeT , is defined to be the expectation ofφ(ST ) under the risk-neutral probability
measureP∗, discounted at the risk-free rate to timet, conditional on the information
known upto timet: namely,Vt = E

∗
[

e−
∫ T

t
rsdsφ(ST )

∣

∣ Ft

]

.

Valuation of an option depends on the dynamics of the asset price process under which
the option is written. Stochastic differential equations (SDEs) describe the evolution
of stochastic processes and they are usually of the form:

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (1.1)

with a(t,Xt) and b(t,Xt) Ft−measurable.Wt is standard Brownian motion (also
known as a Wiener process). This is a random process that describes a motion begin-
ning atW0 = 0. In each time periodt2−t1, its increment,Wt2−Wt1 , is independent of
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everything that happened beforet1 (stationarity property), and its values are normally
distributed with mean 0 and variancet2 − t1, that is,Wt2 −Wt1 ∼ N (0, t2 − t1).

Another important concept in financial mathematics, is theItô formula, which plays a
very important role in stochastic calculus. If a stochasticprocessXt follows an SDE
of the form in Equation (1.1), then a functionf ∈ C1,2 of this processXt and time
t is described by theItô’s formula (refer to Appendix A for details). Asset pricesSt

are generally assumed to follow the dynamics in Equation (1.1) under a geometric
Brownian motionWt, and that is why theItô formula plays such an essential role in
option pricing.

We now have the necessary tools to highlight another important concept that describes
the price of an option,V, over timet, the Black-Scholes partial differential equation
(BS-PDE). The PDE arises from the fact that discounted optionprices are martingales
and subsequent application ofItô formula on the discounted prices. The following
theorem summarizes the above idea.

Theorem 1.1. If X = h(ST ) is the terminal payoff of an option, then there exist a
functionV : [0, T ]× (0,∞) → R such that

Vt = V (t, St),

which is a solution to the Black-Scholes partial differential equation

∂V (t, s)

∂t
+

1

2
σ2s2

∂2V (t, s)

∂s2
+ rs

∂V (t, s)

∂s
− rV (t, s) = 0 (1.2)

with the terminal condition
V (T, s) = h(s)

for anys > 0 andt ∈ [0, T ]. Here,V is the option price,s is the asset price, andr is
the risk-free rate.

Proof. The proof to the theorem can be found in introductory stochastic calculus text-
books, for instance [27].

1.2 Black-Scholes and Local Volatility Models

In this part, Black-Scholes model as well as local volatilitymodel will be discussed in
details. Black-Scholes model will be presented in Section 1.2.1 with its basic assump-
tions and the extent at which these assumptions hold in reality. In Section 1.2.2, the
basic terminologies that help us understand local volatility model will be defined.

1.2.1 Black-Scholes Model

The model has its origin traced back to the original paper “The Pricing of Option
and Corporate Liabilities” in the 1973 written by Fischer Black and Myron Scholes.
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Robert Merton more or less independently derived the same equation with its current
mathematical structure. The first method used by both Black and Scholes to derive the
option pricing formula was through a financial approach by the “Capital Asset Pricing
model (CAPM)”, a well accepted model in finance and the other approach was via
stochastic calculus [5]. This model has some main assumptions which are enumerated
below.

1. Short selling of the underlying stock is allowed.

2. Trading stocks is continuous.

3. Arbitrage opportunities are not allowed.

4. No transaction costs or taxes.

5. All securities are perfectly divisible (meaning you can sell or buy a fraction).

6. It is possible to borrow or lend cash at a constant risk-free rate.

7. The stock does not pay dividend.

8. Stock prices are random and log-normally distributed.

9. Volatility of the log return on the stock is constant over time.

10. The options are of European type.

Let the price of a stockS be driven by a geometric Brownian motion(Bt)(t≥0) under
the probability measureP and follows the stochastic differential equation (SDE):

dSt = µtStdt+ σStdBt. (1.3)

To be able to price an option under the Black-Scholes model, a risk neutral world is
needed, hence a risk-neutral probability measure denoted by P

∗ is entailed. Firstly,
usingGirsanov theorem(see Appendix A), an SDE driving the stock price is derived
with risk-free return driving the interest rate given by

dSt = rtStdt+ σStdWt, (1.4)

whereWt is a Wiener process under the risk-neutral probability measureP∗. Hence,
with the above assumptions, the following theorem holds:

Theorem 1.2 (Black-Scholes Call Price). Let the asset priceS follow the SDE in
Equation (1.4) withσ = σBS andrt = r, then the price of a call option written on this
asset at timet is given by

CBS(t, St;T,K, σBS, r) = StN(d1)−Ke−r(T−t)N(d2) (1.5)

with d1 =
ln(

St
K

)+
σ2
BS

T

2

σBS

√
T

andd2 = d1 − σBS

√
T

whereSt is the spot price at timet, K is the strike price,σBS is annualized volatility
of the continuously compounded (log) return on the stock, and r is the continuously
compounded risk-free interest rate.
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To calibrate the option price of the Black-Scholes model to the market prices, a set of
parameters have to be specified in the model to give a theoretical price that conforms
to the market. However, all the parameters in Black-Scholes model can be directly
observed in the market except the volatility,σ. There are two different approaches to
determine the volatility parameter. One approach is to carry out a time series analysis
of historical data of asset prices and the other is to invert the Black-Scholes formula for
the unique volatility. The volatility in the former approach is called historical volatility
while it is called implied volatility in the latter. A problem lies in modeling the volatil-
ity structure of financial asset under the Black-Scholes framework because it assumes
the volatilities specified in the model have to be the same foroptions written on the
same asset, with the same maturities but different strike prices. This assumption has
been falsified with the market data as it can often be found that options written on
the same asset, although, with the same maturities, have different volatilities for dif-
ferent strike prices. Indeed, the volatility inherent in pricing these options depend on
both strike price and maturity of the options. Practitioners term this dependence as the
market phenomenon. The dependence of volatility on strike is calledvolatility skew
while on maturity is calledterm structure of volatility. In the next section, this will be
elaborated on.

1.2.2 Local Volatility Model

The motivation behind the idea of local volatility is to find aless computationally
engaging model unlike stochastic volatility, with more simplifying assumptions such
that the market prices are consistent with the prices withinthe Black-Scholes frame-
work [18]. To better understand why this is necessary for adequate pricing of exotic
options, the next section provides explanation for volatility skew and how it affects
pricing of options.

Volatility Skew

As explained earlier, the concept of volatility skew (or sneer) started to develop after
the 1987 financial crisis. The idea was to build a model that will be able to explain
this phenomenon since the Black-Scholes model fails to address this. If the Black-
Scholes model was an exact description of reality, it would suggest that every option
price written on an underlying asset price,(St)(t≥0) follows a different price dynamics,
which is arguably not the case. It would also suggest that when using binomial trees
to build an option price process, a different tree would be needed each time for the
asset price process for different options written on the asset. Over the years, different
models have been proposed to explain the volatility skew among them are: stochastic
volatility, jump diffusion, and local volatility models.

Stochastic volatility was first introduced by Hull and White [24]. The idea behind
this is that volatility also has a source of randomness of itsown called the volatility
of volatility. The most famous stochastic volatility models are Heston model [23] and
SABR model [20]. How these models cause the volatility skew isexplained in [12, 20].
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Another idea was to introduce processes with jumps which emanated from the work
of Merton [28]. The basic principle behind this is the assumption that the underly-
ing asset undergoes a jump-diffusion process which is better representation of reality.
Sometimes we have sudden price movement due to some events like insider informa-
tion in practice. How this model performs better in reality is being described in [2].
Lastly, local volatility model also tries to account for thevolatility skew by assuming
volatility is a deterministic function of time,t, and asset priceSt. Consistent option
prices with the market can be built if the asset price followsan SDE of the following
nature:

dSt = µtStdt+ σ(t, St)StdWt,

whereµt = rt − qt, rt is the continuously compounded interest rate, andqt is the
dividend yield. The above SDE is called the asset price dynamics under local volatility
and the risk-neutral probability measureP∗.

The Local Volatility

As mentioned earlier, volatility measures the level of riskinherent in a financial as-
set, and it is one of the parameters needed in the valuation ofoption prices. Local
volatility is perceived to be an average of all future instantaneous volatilities of the
asset from the onset of the option till maturity, provided that the option ends at-the-
money (see [4, 18]). As Dupire rightly recognized in his original paper, one of the
motivations in developing this method was because local volatility model stays close
to Black-Scholes model as option valuation is still under thecompletion of the market
which ensures unique prices [14]. As a result, it gives an advantage over more complex
models like stochastic volatility and jump-diffusion models that introduce new sources
of randomness into the dynamics of asset prices which are nottraded in the market.
However, critics have also pointed out the downsides of the model as being too close
to Black-Scholes model with some relaxations into the assumption of the volatility [3].

1.3 Numerical Methods for Pricing under Local Volatility

In the literature as well as in practice, several numerical methods have been described
for pricing options under local volatility. These methods try to reconcile the option
prices obtained theoretically from local volatility modelwith the observed market
prices with the aim of minimizing the difference in measure of those two option prices
over a range of strikes and maturities. Depending on the intended purpose, several
approaches have been devised in estimating volatility parameter. One approach used
frequently is to predict the future movement of asset pricesfrom past behaviors to
project expected future volatilities (see [13, 26]). Although this method could be use-
ful, it could be misleading. Another approach is to calibrate the prices of the option
model to the market prices of the actively traded derivativesecurities (options) since
the option prices contain information about expected future volatilities [13]. However,
the latter is more computationally intensive and could be handled usingFinite Differ-
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ence Method(FDM). For instance, it can account forLocal Volatility Function(LVF)
by adjusting the algorithm [4].

In this thesis, two disparate numerical methods of obtaining local volatility surfaces
will be rigorously explored: parametric and non-parametric methods. They volatility
surfaces from the methods will also be compared with one anoother in terms of their
performance and accuracy in measuring volatilities.
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CHAPTER 2

DERIVATION OF LOCAL VOLATILITY MODEL

To be able to price options with local volatility model, an appropriate method to de-
vice the volatility function must be determined. In Section2.1, the derivation of local
variance in terms of partial derivatives of actively tradedcall option prices with respect
to strikeK and maturityT will be done. In other words, the Dupire’s local volatility
equation will be derived. Local variance as a conditional expectation will be derived
in Section 2.2. For convenient use of Dupire’s equation in our numerical computation
of local volatility later on, in Section 2.3, Dupire’s localvolatility function in terms of
forward price will be derived. In Section 2.4, the challenges encountered while using
Dupire’s equation will be explained. Sometimes in practice, the Black-Scholes implied
volatilities of the option prices are quoted directly, therefore, its necessary to derive lo-
cal volatility function in terms of implied volatilities. In Section 2.5, local volatility
will be derived as a function of Black-Scholes implied volatility.

2.1 Dupire Local Volatility Model

A stepwise approach in deriving local volatility equation will be used and with this
approach, a build up problem solving process will be carriedout.

Consider a local volatility model, in which the risky asset priceSt satisfies

dSt = µ(t)Stdt+ σ(t, St)StdBt, (2.1)

whereB = (Bt)t≥0 is a standard Brownian motion, defined on(Ω,A,P), µ : R+ → R

is a (deterministic) continuous function andσ : R+ ×R → R is a continuous function
such that∀t ≥ 0, ∀(x, y) ∈ R

2,

|xσ(t, x)− yσ(t, y)| ≤ M |x− y| ,

and∀(t, x) ∈ R+ × R, σ(t, x) ≥ m, where m and M are positive constants. For
simplicity, we assume that the interest rate is null. The natural filtration of (Bt)t≥0 is
denoted byF = (Ft)t≥0.

Theorem 2.1.LetS be the dynamics of the asset defined in Equation (2.1) andC(T,K)
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be the European call option with strikeK and maturityT . Then, we have

σ2(T,K) = 2
∂C(T,K)

∂T

K2 ∂
2C(T,K)
∂K2

, (2.2)

for 0 < T < T̄ andK > 0.

Remark2.1. Equation (2.2) is termed as the Dupire local variance equation. Taking
the square-root of both sides gives the local volatility.

Proof. The proof to the theorem is long, thus, some parts of the proofwill be stated as
lemma for easy following.

Step 1. First, show that for everyx ∈ R, Equation (2.1) has a unique solution such
thatS0 = x:

1. First, is to show that the SDE satisfies the Lipschitz condition. That is,

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K |x− y| ,
whereK ∈ R and finite. This leads to

|xµ(t)− yµ(t)|+ |xσ(t, x)− yσ(t, y)| ≤ |µ(t)| |x− y|+M |x− y| ,
where|xσ(t, x)− yσ(t, y)| ≤ M |x− y| , ∀t ≥ 0 and∀(x, y) ∈ R

2. Sinceµ(t)
is deterministic, let|µ(t)| = M1 < ∞. Then

|xµ(t)− yµ(t)|+ |xσ(t, x)− yσ(t, y)| ≤ |M1| |x− y|+M |x− y|
|xµ(t)− yµ(t)|+ |xσ(t, x)− yσ(t, y)| ≤ (M1 +M) |x− y|
|xµ(t)− yµ(t)|+ |xσ(t, x)− yσ(t, y)| ≤ K |x− y| ,

(2.3)

whereK = M1 +M < ∞. Hence, the Lipschitz condition is satisfied.

2. Next, show that the SDE satisfies polynomial growth condition, that is,

|b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|).
That is to show that

|xµ(t)|+ |xσ(t, x)| ≤ |x| |µ(t)|+ |xσ(t, x)| ≤ K(1 + |x|). (2.4)

Note that:
|xσ(t, x)− yσ(t, y)| ≤ M |x− y| ,
y = 0 implies |xσ(t, x)| ≤ M |x| .

Substituting this back into Equation (2.4),

|xµ(t)|+ |xσ(t, x)| ≤ |x| (M1 +M),

whereM1 = |µ(t)| . This implies that

|xµ(t)|+ |xσ(t, x)| ≤ K |x| ≤ K(1 + |x|),
where the last inequality is true forK = M +M1 ∈ R

+. Therefore, the polyno-
mial growth condition is satisfied.
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3. And lastly, check if the SDE satisfiesE[S2
0 ] < ∞ whereS0 is the initial value.

In our case,S0 = x hence,E[x2] < ∞ is trivially satisfied.

Thus, we conclude that Equation (2.1) has a unique solution.

Step 2.Secondly, show that ifS is a solution of Equation (2.1), fort ≥ 0, then

St = S0 exp

(
∫ t

0

µ(s)ds+

∫ t

0

σ(u, Su)dBu −
1

2

∫ t

0

σ2(u, Su)du

)

.

To show this, apply theItô formula (see Appendix A) tof(x) = ln x with f ′(x) = 1
x

andf ′′(x) = − 1
x2 . This leads to

lnSt = lnS0 +

∫ t

0

1

Ss

(µ(s)Ssds+ σ(s, Ss)SsdBs)

− 1

2

∫ t

0

1

S2
s

σ2(s, Ss)S
2
sds

lnSt = lnS0 +

∫ t

0

µ(s)ds+

∫ t

0

σ(s, Ss)dBs −
1

2

∫ t

0

σ2(s, Ss)ds

ln (St/S0) =

∫ t

0

µ(s)ds+

∫ t

0

σ(s, Ss)dBs −
1

2

∫ t

0

σ2(s, Ss)ds

St = S0 exp

(
∫ t

0

µ(s)ds+

∫ t

0

σ(s, Ss)dBs −
1

2

∫ t

0

σ2(s, Ss)ds

)

(2.5)

as desired.

Step 3.Thirdly, show that the natural filtration of the process(St)t≥0 is equal toF (the
natural filtration of(Bt)t≥0).

To show this, writeBt as a stochastic integral with respect to the process(St)t≥0. Let
(Ft)(t≥0) and(F ′

t)(t≥0) be the filtration ofBt andSt respectively. From Equation (2.1),
St is measurable with respect to the filtration ofBt, that is,St ∈ Ft. It remains to show
thatBt ∈ F ′

t.

From Equation (2.1), we have

σ(t, St)StdBt = µ(t)Stdt− dSt (2.6)

and thence,

dBt =
1

σ(t, St)St

(µ(t)Stdt− dSt)

=
µ(t)dt

σ(t, St)
− dSt

σ(t, St)St
∫ t

0

dBs =

∫ t

0

µ(s)ds

σ(s, Ss)
−
∫ t

0

dSs

σ(s, Ss)Ss

Bt −B0 =

∫ t

0

µ(s)ds

σ(s, Ss)
−
∫ t

0

dSs

σ(s, Ss)Ss

.

(2.7)
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The right hand side isF ′
t-measurable, so is the left hand side. Therefore,Bt ∈ F ′

t,
and the conclusion follows thatFt = F ′

t.

Lemma 2.2. LetL be the martingale defined byLt = exp
(

−
∫ t

0
θudBu − 1

2

∫ t

0
θ2udu

)

,

with θt = µ(t)
σ(t,St)

. Fix the horizonT̄ of the model(0 < T̄ < ∞) and letP∗ be the

probability given bydP∗/dP = LT . GivenT ∈ [0, T̄ ], let C(T,K) be the price of a
call option with maturityT and strike priceK. The following equations hold:

1. σ(t, x) ≤ M for (t, x) ∈ R+ × R and

E
∗[Sp

t ] ≤ Sp
0 exp

(

p2 − p

2
M2t

)

for p ≥ 1, 0 ≤ t ≤ T̄ .

2. T 7−→ C(T,K) is non-decreasing on[0, T̄ ] for K ≥ 0 and(T,K) 7−→ C(T,K)
is continuous on[0, T̄ ]× R

+.

3. E∗[(ST −K)+]
2 = 2

∫ +∞
K

C(T, y)dy.

Proof. The proof of the lemma will be shown step-wise.

1. First, show thatσ(t, x) ≤ M for σ(t, x) ∈ R+ × R.

From

|xσ(t, x)− yσ(t, y)| ≤ M |x− y| , ∀t ≥ 0, σ(x, y) ∈ R
2,

we takey = 0, to get

|xσ(t, x)| ≤ M |x| ∀x ∈ R

|xσ(t, x)| = |x| |σ(t, x)| ≤ M |x|
|σ(t, x)| ≤ M, ∀σ(t, x) ∈ R+ × R.

(2.8)

Now apply Itô formula to f(x) = ln xp with f ′(x) = p
x

andf ′′(x) = − p
x2 to

attain

lnSp
t = lnSp

0 +

∫ t

0

p

Ss

(σ(s, Ss)SsdBs)−
1

2

∫ t

0

p

S2
s

σ2(s, Ss)S
2
sds

lnSp
t = lnSp

0 +

∫ t

0

pσ(s, Ss)dBs −
1

2

∫ t

0

pσ2(s, Ss)ds

ln

(

Sp
t

Sp
0

)

=

∫ t

0

pσ(s, Ss)dBs −
1

2

∫ t

0

pσ2(s, Ss)ds

Sp
t

Sp
0

= exp

(
∫ t

0

p(s, Ss)dBs −
1

2

∫ t

0

pσ2(s, Ss)ds

)

Sp
t = Sp

0 exp

(
∫ t

0

pσ(s, Ss)dBs −
1

2

∫ t

0

pσ2(s, Ss)ds

)

.

(2.9)
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Using the properties of exponential functions in combination with σ(s, Ss) ≤
M , we have

exp

(
∫ t

0

pσ(s, Ss)dBs

)

≤ exp

(

pM(

∫ t

0

dBs)

)

,

and

exp

(

−1

2

∫ t

0

pσ2(s, Ss)ds

)

≤ exp

(

−1

2
pM2

∫ t

0

ds

)

. (2.10)

Substitute Equation (2.10) into Equation (2.9) to get

Sp
t ≤ Sp

0 exp

[(

pM

∫ t

0

dBs

)

−
(

1

2
pM2

∫ t

0

ds

)]

Sp
t ≤ Sp

0 exp

[

pMBt −
1

2
pM2t

]

E
∗[Sp

t ] ≤ E
∗
[

Sp
0 exp

(

pMBt −
1

2
pM2t

)]

E
∗[Sp

t ] ≤ Sp
0E

∗
[

exp

(

pMBt −
1

2
pM2t

)]

.

(2.11)

Since1
2
pM2t is a deterministic function of time, it follows that

E
∗[Sp

t ] ≤ Sp
0 exp

(

−1

2
pM2t

)

E
∗ [exp (pMBt)] . (2.12)

Using the moment generating function of a Brownian motion,

E
∗ [exp(pMBt)] = exp

(

p2M2t

2

)

,

which leads the inequality in Equation (2.12) to

E
∗[Sp

t ] ≤ Sp
0 exp

(

−(
1

2
pM2t)

)

exp

(

p2M2t

2

)

E
∗[Sp

t ] ≤ Sp
0 exp

(

p(p− 1)

2
M2t

)

.

(2.13)

2. Let a functionf be defined as follows;f : T 7−→ C(T,K). Then,f(T1) ≤
f(T2).

Let FT1
be theσ-algebra of information up to timeT1. S̃ is a martingale under

P
∗. Then,

E
∗
[

S̃T2
| F1

]

= S̃T1

E
∗ [ST2

| F1] = er(T2−T1)ST1
≥ ST1

,
(2.14)
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sinceT2 − T1 > 0 implieser(T2−T1) ≥ 1 with equality whenr = 0. So,

E
∗ [ST2

| F1]−K ≥ ST1
−K

E
∗ [ST2

−K | F1] ≥ ST1
−K

E
∗ [E∗ [ST2

−K | F1]] ≥ E
∗ [ST1

−K] .

(2.15)

By Tower propertyof conditional expectation, we have

E
∗ [ST2

−K] ≥ E
∗ [ST1

−K]

E
∗ [ST2

−K] ≥ E
∗ [ST1

−K] ≥ 0

E
∗ [ST2

−K]+ ≥ E
∗ [ST1

−K]+

(2.16)

with equality whenr = 0. Therefore,f(T1) ≥ f(T2).

Lemma 2.3. If g : (T,K) 7−→ C(T,K) is a mapping of(T,K) ∈ R
+ × R

+

intoC(T,K) ∈ R
+, theng is a continuous function.

Proof. Show that functiong is continuous by ascertaining that it satisfies the
three conditions of continuity:

(a) g(T,K) = C(T,K) = E
∗[ST − K]+ is well defined in domaing ∈ R,

sincemax(0, ST −K) < ∞ impliesE∗[ST −K]+ < ∞.

(b) limT→T1
g(T,K) = limT→T1

E
∗[ST −K]+ = E

∗[ST1
−K]+, sinceS is a

continuous variable onT ∈ [0, T̄ ].

(c) limT→T1
g(T,K) = g(T1, K) = E

∗ [ST1
−K]+ as consequence of(a) and

(b) being true.

Therefore,g is continuous.

3. Lastly, show thatE∗[(ST −K)+]
2 = 2

∫ +∞
K

C(T, y)dy. To prove this, we know
that

E
∗ [(ST −K)2+

]

=

∫ ∞

−∞
(x−K)2+p(x)dx,

wherep(x) is the density ofST . Therefore,

∂

∂K
E

∗ [(ST −K)2+
]

= −
∫ ∞

−∞
2(x−K)+p(x)dx

= −2

∫ ∞

−∞
(x−K)+p(x)dx

= −2E∗ [(ST −K)+]

= −2C(T,K).

(2.17)

Taking the integral of both sides with respect toK, we get
∫ ∞

K

∂

∂K
E

∗ [(ST −K)2+
]

=

∫ ∞

K

−2C(T, y)dy

E
∗ [(ST −∞)2+

]

− E
∗ [(ST −K)2+

]

= −2

∫ ∞

K

C(T, y)dy

E
∗ [(ST −K)2+

]

= 2

∫ ∞

K

C(T, y)dy.

(2.18)
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Note thatE∗ [(ST −∞)2+
]

= 0, since the call option will end out-of-the-money
whenK → ∞.

The proof is completed.

Lemma 2.4. Letf0(x) = (x+)
2 and, forǫ > 0,

fǫ(x) =











0 if x < 0
x
3ǫ

if x ∈ [0, ǫ]

x2 − ǫx+ ǫ2

3
if x > ǫ

The following hold:

1. fǫ is of classC2 and lim
ǫ 7→0

fǫ(x) = f0(x) for everyx ∈ R;

2. 0 ≤ fǫ(x) ≤ f0(x), 0 ≤ fǫ
′(x) ≤ 2x, 0 ≤ fǫ

′′(x) ≤ 2 for every∀x ≥ 0 and
ǫ > 0;

3. E∗ [fǫ(ST −K)] = fǫ(S0−K)+ 1
2
E

∗
[

T
∫

0

fǫ
′′(Su −K)S2

uσ
2(u, Su)du

]

for K ≥
0 andT ∈ [0, T̄ ].

Proof. 1. First we obtain thatfǫ ∈ C2 ∀ǫ > 0: Taking the 1st and 2nd derivatives
of fǫ(x), we obtain

fǫ
′(x) =











0 if x < 0
3x2

3ǫ
= x2

ǫ
if x ∈ [0, ǫ]

2x− ǫ if x > ǫ

fǫ
′′(x) =











0 if x < 0
2x
ǫ

if x ∈ [0, ǫ]

2 if x > ǫ

Sincefǫ′′(x) exists∀x ∈ R, fǫ ∈ C2.

Next, we will show thatlimǫ→0 fǫ(x) = f0(x). To do this, consider a number of
cases as shown below:

Case 1(x < 0) :

limǫ→0 fǫ(x) = 0

Case 2(x ∈ [0, ǫ)) :

Observe that asǫ → 0 andx → 0, x acts like anǫ. Hence,

limǫ→0 fǫ(x) = limǫ→0
x3

3ǫ
= limǫ→0

ǫ2

3
= 0

Case 3(x > ǫ) :

limǫ→0 fǫ(x) = limǫ→0

(

x2 − ǫx+ ǫ2

3

)

= x2
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Therefore,

lim
ǫ→0

fǫ(x) = f0(x) =

{

0 if x ≤ 0

x2 if x > 0

2. Next, show that∀x ≥ 0, we have0 ≤ fǫ(x) ≤ f0(x) :

It is trivial thatfǫ(x) ≥ 0, since

fǫ(x) =











0
x
3ǫ

≥ 0 sincex ≥ 0, ǫ > 0

x2 − ǫx+ ǫ2

3
> 0 sincex2 > ǫx

It remains to show thatfǫ(x) ≤ f0(x). To show this, compare the terms in both
functions.

x3

3ǫ
≤ x2 impliesx ≤ 3ǫ implies

x

3
≤ ǫ.

Similarly,

x2 − ǫx+
ǫ2

3
< x2 implies

ǫ2

3
< ǫx.

Thence, we have0 ≤ fǫ(x) ≤ f0(x).

Next, show that0 ≤ fǫ
′(x) ≤ 2x :

It is trivial thatfǫ′(x) ≥ 0, since

fǫ
′(x) =











0
x2

ǫ
≥ 0 sincex ≥ 0, ǫ > 0

2x− ǫ > 0 sincex > ǫ implies2x > ǫx

It therefore remains to show thatfǫ′(x) ≤ 2x. This can be shown however by
comparing again the terms in both functions.

x2

ǫ
≤ 2x impliesx ≤ 2ǫ

which is true sincex ≤ ǫ impliesx ≤ 2ǫ. Also,

2x− ǫ < 2x impliesǫ > 0.

Therefore,0 ≤ fǫ
′(x) ≤ 2x.

Finally, we show that0 ≤ fǫ
′′(x) ≤ 2.

Clearlyfǫ′′(x) ≥ 0, since

fǫ
′′(x) =











0
2x
ǫ

sincex ≥ 0, ǫ > 0

2

It remains to show thatfǫ′′(x) ≤ 2, but this results from

2x

ǫ
≤ 2 implies2x ≤ 2ǫ impliesx ≤ ǫ.

Hence, conclude that0 ≤ fǫ
′′(x) ≤ 2.
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3. By Itô formula, letXt = St −K anddXt = dSt.

fǫ(St −K) = fǫ(S0 −K) +

∫ t

0

fǫ
′(Ss −K)dSs

+
1

2

∫ t

0

fǫ
′′(Ss −K)S2

sσ
2(u, Su)du.

(2.19)

E
∗ [fǫ(St −K)] = E

∗ [fǫ(S0 −K)] +

E
∗
[
∫ t

0

fǫ
′(Ss −K)dSs +

1

2

∫ t

0

fǫ
′′(Ss −K)S2

sσ
2(u, Su)du

]

.

(2.20)

Since(S0 −K) is constant,fǫ(S0 −K) is constant, hence,

E
∗ [fǫ(S0 −K)] = fǫ(S0 −K).

Also, S is a martingale underP∗ which means
(

∫ t

0
fǫ

′(Ss −K)dSs

)

has con-

stant expectation by the property of a martingale. Thus,

E
∗
[
∫ t

0

fǫ
′(Ss −K)dSs

]

= E
∗
[
∫ 0

0

fǫ
′(Ss −K)dSs

]

= 0. (2.21)

Therefore, Equation (2.20) becomes

E
∗ [fǫ(St −K)] = E

∗ [fǫ(S0 −K)] +
1

2
E

∗
[
∫ t

0

fǫ
′′(Ss −K)S2

sσ
2(u, Su)du

]

.

(2.22)

Hence, the proof is completed.

Step 4.Let p(t, ·) be the density function of the random variableST underP∗.

1. We will show thatp(T,K) = ∂2C(T,K)
∂K2 :

Knowing that

C(T,K) = E
∗[ST −K]+

= E
∗ [(ST −K)1(ST>K)

]

=

∫ +∞

K

(ST −K)p(T, S)dS;

(2.23)

we take the partial derivative of both sides with respect toK to obtain

∂C

∂K
=

∂

∂K

∫ +∞

K

(ST −K)p(T, S)dS. (2.24)
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By Fubini theorem, we have

∂C

∂K
=

∫ +∞

K

∂

∂K
(ST −K)p(T, S)dS

= −
∫ +∞

K

p(T, S)dS.

(2.25)

Taking the second partial derivative with respect toK now gives

∂2C

∂K2
= − ∂

∂K
(

∫ +∞

K

p(T, S)dS) = −
(

p(T, S) |S=+∞
S=K

)

= −(0− p(T,K)) = p(T,K)

∂2C

∂K2
= p(T,K).

(2.26)

For simplicity, we have assumed thatlimS→∞ p(T, S) = 0.

2. Next, we will show that

E
∗ [(ST −K)+]

2 = [(S0 −K)+]
2 +

∫ T

0

(
∫ +∞

K

y2p(u, y)2(u, y)dy

)

du.

Fortunately, using Equation (2.22) we get

E
∗ [fǫ(ST −K)] = fǫ(S0 −K) +

1

2
E

∗
[
∫ T

0

fǫ
′′(Su −K)S2

uσ
2(u, Su)du

]

.

Let fǫ(ST , K) = fǫ(ST −K) = [(ST −K)+]
2 , wherefǫ′′(ST −K) = ∂2fǫ

∂S2 = 2.
Substituting this into Equation (2.22) gives

E
∗ [(ST −K)+]

2 = [(S0 −K)+]
2 +

1

2
E

∗
[
∫ T

0

2(1Su>K)S
2
uσ

2(u, Su)du

]

.

By Fubini theoremagain, we have

E
∗ [(ST −K)+]

2 = [(S0 −K)+]
2 +

∫ T

0

(

E
∗ [(1Su>K)S

2
uσ

2(u, Su)
])

du

= [(S0 −K)+]
2 +

[
∫ T

0

(
∫ +∞

K

S2
up(u, Su)σ

2(u, Su)dSu

)

du

]

.

(2.27)

TakingSu = y, Equation (2.27) becomes

E
∗ [(ST −K)+]

2 = [(S0 −K)+]
2 +

∫ T

0

(
∫ +∞

K

y2p(u, y)σ2(u, y)dy

)

du.

(2.28)
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3. Lastly, we will deduce the Dupire local variance equation:

From Equation (2.18), we have

E
∗ [(ST −K)+]

2 = 2

∫ +∞

K

C(T, y)dy.

Equating the right hand side of Equation (2.18) to the right hand side of Equa-
tion (2.28), we get

2

∫ +∞

K

C(T, y)dy = [(S0 −K)+]
2 +

∫ T

0

(
∫ +∞

K

y2p(u, y)σ2(u, y)dy

)

du.

(2.29)
Taking the derivative of both sides with respect toT , Equation (2.29) gives

2

∫ +∞

K

∂C(T, y)

∂T
dy =

∂

∂T
[(S0 −K)+]

2

+
∂

∂T

[
∫ T

0

(
∫ +∞

K

y2p(u, y)σ2(u, y)dy

)

du

]

= 0 +

∫ +∞

K

y2p(T, y)σ2(T, y)dy.

(2.30)

This leads to

2
∂C(T, y)

∂T
|y=+∞
y=K = y2σ2(T, y)p(T, y) |y=+∞

y=K

0− 2
∂C(T,K)

∂T
= 0−K2σ2(T,K)p(T,K)

2
∂C(T,K)

∂T
= K2σ2(T,K)p(T,K)

∂C(T,K)

∂T
=

1

2
K2σ2(T,K)p(T,K).

(2.31)

For simplicity, we have assumed

lim
y→∞

2
∂C(T, y)

∂T
= 0 and lim

y→∞
y2σ2(T, y)p(T, y) = 0.

Therefore,

∂C(T,K)

∂T
=

K2σ2(T,K)

2

∂2C(T,K)

∂K2
for 0 < T < T̄ and K > 0. (2.32)

for 0 < T < T̄ andK > 0. Thus, we can obtain the local variance function from
Equation (2.32) as

σ2(T,K) = 2
∂C(T,K)

∂T

K2 ∂
2C(T,K)
∂K2

(2.33)

for 0 < T < T̄ andK > 0
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This completes the proof of the theorem.

Equation (2.33) was derived by Derman and Kani [11], although the idea and the
method was developed by Dupire [15]. The formula says that atany point in time,
the local volatility of the underlying asset can be determined for market option prices
across all strike prices and maturities.

Remark2.2. In the case the interest rate,r 6= 0, and the dividend yield,q 6= 0, the
Dupire local variance equation becomes:

σ2(T,K) = 2
∂C
∂T

(T,K) + (r(T )− q(T ))K ∂C
∂K

+ q(T )C

K2 ∂2C
∂K2 (T,K)

(2.34)

for 0 < T < T̄ andK > 0 andC(S0, T,K).

2.2 Local Volatility as a Conditional Expectation

In this section, we will derive local volatility as an expected value.

Theorem 2.5.LetS be the dynamics of the asset under

dSt = µtStdt+ σ(t, St)StdWt, (2.35)

whereµt = rt − qt, andWt is the Brownian motion under the risk-neutral probability

measureP∗. LetC(T,K) = P (t, T )E∗(ST−K)+,whereP (t, T ) = exp
(

−
∫ T

t
rsds

)

.

Then,

E
∗ [σ2

T | ST = K
]

=

(

2
[

∂C
∂T

+K(rT − qT )
∂C
∂K

+ qTC
])

(

K2 ∂2C
∂K2

) . (2.36)

Remark2.3. Equation (2.36) is termed as the Dupire local variance equation as an
expected value. Taking the square-root of both sides gives the local volatility.

Table 2.1: Partial Derivatives

∂
∂S
(S −K)+ = 1(S−K)

∂
∂S
(1(S−K)) = δ(S −K)

∂
∂K

(S −K)+ = −1(S−K)
∂
∂K

(1(S−K)) = −δ(S −K)
∂C
∂K

(S −K)+ = −P (t, T )E∗[1(S−K)]
∂2C
∂K2 (S −K)+ = P (t, T )E∗[δ(S −K)]

whereδ(·) denotes the Dirac delta function.

Proof. Shown in Table 2.1 are the necessary partial derivatives used in the proof of the
theorem.
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Let f : R × R 7−→ R be a function such thatf(ST , T ) = P (t, T )(ST −K)+. By Itô
formula,

fT = f0 +

∫ T

0

fu
′du+

∫ T

0

fSu

′dSu +
1

2

∫ T

0

fSu

′′S2
uσ

2(u, Su)du

= f0 +

∫ T

0

fu
′du+

∫ T

0

fSu

′ (µuSudu+ σ(u, Su)SudBu)

+
1

2

∫ T

0

fSu

′′S2
uσ

2(u, Su)du

(2.37)

Therefore,

df =

[

∂f

∂T
+

∂f

∂ST

µTST +
1

2
σ2
TS

2
T

∂2f

∂S2
T

]

dT +

[

σTST
∂f

∂ST

]

dBT , (2.38)

where the partial derivatives in Equation (2.38) are given explicitly as:

∂f

∂T
= −rTP (t, T )(ST −K)+

∂f

∂ST

= P (t, T )1(S>K)

∂2f

∂S2
T

= P (t, T )δ(S −K).

(2.39)

Substitute Equation (2.39) into Equation (2.38) to obtain

df = P (t, T )[−rT (ST −K)+ + µTST1(S>K) +
1

2
σ2
TS

2
T δ(S −K)]dT

+ P (t, T )σTST1(S>K)dBT .
(2.40)

ForBT ∼ N (0, T ), it follows that

E(BT ) = 0 impliesdE(BT ) = 0 impliesE(dBT ) = 0.

Taking the expectation of both sides of Equation (2.40) yields

E
∗(df) = P (t, T )E∗

([

−rT (ST −K)+ + µTST1(S>K) +
1

2
σ2
TS

2
T δ(S −K)

]

dT

)

,

(2.41)
and byFubini theorem, we have

E
∗(df) = dE∗(f) = d (P (t, T )E∗(ST −K)+) = dC. (2.42)

Thus,

dC = P (t, T )E∗
([

−rT − (ST −K)+ + µTST1(S>K) +
1

2
σ2
TS

2
T δ(S −K)

]

dT

)

∂C

∂T
= P (t, T )E∗

([

−rT (ST −K)1(S>K) + µTST1(S>K) +
1

2
σ2
TS

2
T δ(S −K)

])

.

(2.43)
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Simplifying the first two terms in Equation (2.43) gives

−rT (ST −K)1(S>K) + µTST1(S>K) = 1(S>K) (−rT (ST −K) + (rT − qT )ST )

= rTK1(ST>K) − qTST1(ST>K).
(2.44)

so that Equation (2.43) becomes

∂C

∂T
= P (t, T )E∗

([

rTK1(ST>K) − qTST1(ST>K) + +
1

2
σ2
TS

2
T δ(S −K)

])

.

(2.45)
Furthermore, we have

C = P (t, T )E∗ [(ST −K)1(ST>K)

]

= P (t, T )E∗ [ST1(ST>K)

]

− P (t, T )E∗[K1(ST>K)],
(2.46)

which implies that

P (t, T )E∗ [ST1(ST>K)

]

= C + P (t, T )E∗ [K1(ST>K)

]

. (2.47)

Substitute Equation (2.47) into Equation (2.45) to get

∂C

∂T
= P (t, T )E∗[rTK1(ST>K)]− qT

(

C + P (t, T )E∗[K1(ST>K)]
)

+
1

2
P (t, T )E∗[σ2

TS
2
T δ(S −K)]

∂C

∂T
= P (t, T )K(rT − qT )E

∗[1(ST>K)]− qTC

+
1

2
P (t, T )E∗ [σ2

TS
2
T δ(S −K)

]

∂C

∂T
= P (t, T )K(rT − qT )E

∗[1(ST>K)]− qTC

+
1

2
P (t, T )E∗ [σ2

TS
2
T δ(S −K)

]

.

(2.48)

By Markov propertyof conditional expectation, the last term in Equation (2.48) can be
calculated as

1

2
P (t, T )E∗ [σ2

TS
2
T δ(S −K)

]

=
1

2
P (t, T )E∗ [δ2TS

2
T | ST = K

]

E
∗ [δ(S −K)]

=
1

2
P (t, T )K2

E
∗ [δ2T | ST = K

]

E
∗ [δ(S −K)]

=
1

2
K2

E
∗ [σ2

T | ST = K
] ∂2C

∂K2
,

(2.49)

so that EquationEquation (2.48) reads as follows:

∂C

∂T
= −K(rT − qT )

∂C

∂K
− qTC +

1

2
K2

E
∗ [σ2

T | ST = K
] ∂2C

∂K2
, (2.50)
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where we have substitutedP (t, T )E∗[1(ST>K)] for ∂C
∂T

. Hence,

E
∗ [σ2

T | ST = K
]

=

(

2
[

∂C
∂T

+K(rT − qT )
∂C
∂K

+ qTC
])

(

K2 ∂2C
∂K2

) .

giving us the desired formula.

Corollary 2.6. WhenrT = qT = 0 in Equation (2.36), we get

E
∗ [σ2

T | ST = K
]

=
2∂C
∂T

(T,K)

K2 ∂2C
∂K2 (T,K)

.

The above equation is equivalent to what we obtained in Equation (2.33).

Comparing Equation (2.36) and Equation (2.33) shows that local volatility can be inter-
preted as the expected volatility of the asset under the condition that the option ends at-
the-money. In other words, it is the average of all instantaneous future spot-volatilities
until the maturity of the option. Although, this does not mean that the expected value
will be realized, trading of different financial instruments makes it possible to lock into
this value at the current time.

2.3 Local Volatility in terms of Forward Price

Let C(T,K) = C(FT , T,K, σLV (T,K)) andFt = F (t, T ) = Ste
µt(T−t), whereµt =

rt − qt. Write the SDE in Equation (2.35) under the dynamics of the forward price,

dFt = eµt(T−t)dSt + Ste
µt(T−t)(−µt)dt

= eµt(T−t) (µtStdt+ σ(t, St)StdBt)− µtFtdt

= µtFtdt+ σ(t, St)FtdBt − µtFtdt

= σ(t, Fte
−µt(T−t))FtdBt

= σ̃(t, Ft)FtdBt,

(2.51)

whereσ̃(t, x) = σ(t, xe−µt(T−t)). Note thatFT = ST .

Theorem 2.7. Let Ft be the dynamics of the forward price of the asset in Equa-
tion (2.51) andC(T,K) be the European call option with strikeK and maturityT .
The following equation holds:

σ2(T,K) =
∂C(T,K)

∂T

1
2
K2 ∂

2C(T,K)
∂K2

. (2.52)

Remark2.4. Equation (2.52) is termed as the Dupire local variance underthe forward
price dynamics. Taking the square-root of both sides gives the local volatility.

25



Proof. The price of a call option under Equation (2.51) is given as

C(T,K) = E
∗[ST −K]+ =

∫ ∞

K

(ST −K)p(T, ST )dST , (2.53)

wherep(t, ·) is the density function ofST underP∗. Thus,

∂2C

∂K2
= p(T,K).

p(T, ·) satisfies the forward equation below (see Theorem A.2).

∂p

∂t
=

1

2

∂2

∂x2
(σ2(t, x)x2p). (2.54)

Hence,

∂C(T,K)

∂T
=

∫ ∞

K

(ST −K)
∂p(T, ST )

∂T
dST

=
1

2

∫ ∞

K

∂2

∂S2
T

(

σ2(T, ST )S
2
Tp
)

(ST −K)dST .

(2.55)

Using integration by parts twice on the right hand side of Equation (2.55), we obtain

∂C(T,K)

∂T
= −1

2

∫ ∞

K

∂

∂ST

(

σ2(T, ST )S
2
Tp
)

dST

=
1

2
σ2(T,K)K2p(T,K)

=
1

2
σ2(T,K)K2 ∂

2C

∂K2
.

(2.56)

It follows that

σ2(T,K) =
∂C(T,K)

∂T

1
2
K2 ∂

2C(T,K)
∂K2

holds as desired.

2.4 Challenges of using Dupire’s Local Volatility Equation

With the local volatility derivation in Section 2.1, local volatility surface can be ob-
tained from the option prices observed in the market. A crucial assumption is that the
option price belongs to the class of twice continuously differentiable functionsC1,2,
known over all maturities and strikes. However, even if thisassumption holds, there
is still a problem with option price function being unknown analytically which makes
taking their partial derivatives difficult. Therefore, thepartial derivatives of the call
function have to be estimated numerically. Due to the imperfect nature of numerical
methods, the algorithm used in estimating local volatilityfunction may be unstable.
That is, small changes in the input data may result in large error in the function values.
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Observe that in the denominator of Equation (2.33), small errors in the partial deriva-
tive can be magnified by the square of the strike price. This can lead to negative values
of local volatility, which is unacceptable.

Also, the continuity assumption of option prices is unrealistic. In practice, limited
number of option values are known for finite number of maturities and strike prices
which makes the local volatility equation ill-posed. This leads to a local volatility
function that is not unique and stable. To solve this problem, one can smoothen the
option price data using Tikhonov regularization [9, 21] or by minimizing the function’s
entropy. Another viable method is to use smoothing cubic spline interpolation to ob-
tain arbitrage-free option prices [17]. These methods mustbe able to guarantee the
convexity of the option prices in the strike direction whichadds extra complexity to
the model. Also, the call option function must be monotonically decreasing in strike
and increasing in maturity to avoid calender arbitrage. This way, arbitrage-free prices
can be ensured.

2.5 Local Volatility as a Function of Implied Volatility

In this section, the relationship between local volatilityand Black-Scholes implied
volatility will be shown.

Lemma 2.8. For the Black-Scholes model described in Theorem 1.2, let the Black-
Scholes total variance be defined as

w(S0, T,K) = σ2
BS(S0, T,K)T

and the log-strikey be defined as

y = log

(

K

FT

)

,

whereFT = S0 exp
{

∫ T

0
rsds

}

is the forward price of the stock at time 0.

The Black-Scholes price in terms ofw andy is therefore given by

CBS(FT , w, y) = FT (N(d1)− eyN(d2))

with d1 =
−y√
w
+

√
w
2

andd2 =
−y√
w
+

√
w
2

−√
w.

Proof. Under the forward price dynamics of the asset price, Black-Scholes formula
becomes

CBS(FT , T,K) = FTN(d1)−KN(d2) (2.57)

with d1 =
ln(

FT
K

)+
σ2
BS

T

2

σBS

√
T

andd2 = d1 − σBS

√
T . Also, we have

y = log

(

K

FT

)

impliesK = eyFT .
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Equation (2.57) can be written as

CBS(FT , w, y) = FT (N(d1)− eyN(d2)) (2.58)

with

d1 =
ln(FT

K
)

σBS

√
T

+
σ2
BST

2σBS

√
T

=
ln(( K

FT
)−1)

√
w

+
σBST

2

= −
ln( K

FT
)

√
w

+

√
w

2

=
−y√
w

+

√
w

2

(2.59)

and

d2 = d1 − σBS

√
T

=
−y√
w

+

√
w

2
−√

w

=
−y√
w

−
√
w

2

(2.60)

as desired.

Theorem 2.9. If the call option written on an asset is described by the Black-Scholes
formula derived in Lemma 2.8, then the local variance of the asset can be obtained in
terms ofw andy as

σ2(T,K) =
∂w
∂T

[

1− ( y
w
)∂w
∂y

+ 1
4

(

−1
4
− 1

w
+ y2

w2

)

(∂w
∂y
)2 + ∂2w

2∂y2

] .

Proof. First substitute Equation (2.59) and Equation (2.60) into Equation (2.57).

CBS(FT , y, w) = FT

{

N

( −y√
w

+

√
w

2

)

− eyN

( −y√
w

−
√
w

2

)}

. (2.61)

From Equation (2.34), Dupire’s local volatility withr 6= 0 andq = 0 is given as

∂C(T,K)

∂T
=

σ2(T,K)

2
K2∂

2C(T,K)

∂K2
− rTK

∂C(T,K)

∂K
. (2.62)

Calculate the partial derivatives in Equation (2.62):

∂C(T,K)

∂K
=

∂C(T, y)

∂y

∂y

∂K
=

1

K

∂C(T, y)

∂y
. (2.63)
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Consequently,

∂2C(T,K)

∂K2
=

1

K

(

∂

∂K

(

∂C(T, y)

∂y

))

+
∂C(T, y)

∂y

(

− 1

K2

)

. (2.64)

Since the call function is continuous iny andK, we get

∂

∂K

(

∂C(T, y)

∂y

)

=
∂

∂y

(

∂C(T, y)

∂K

)

=
∂

∂y

(

∂C

∂y

∂y

∂K

)

=
∂

∂y

(

1

K

∂C

∂y

)

=
1

K

∂2C(T, y)

∂y2
.

(2.65)

Substitute Equation (2.65) into Equation (2.64) to obtain

∂2C(T,K)

∂K2
=

1

K2

(

∂2C(T, y)

∂y2
− ∂C(T, y)

∂y

)

. (2.66)

Furthermore, we have

∂C(T,K)

∂T
=

∂C(T, y)

∂T
+

∂C(T, y)

∂y

∂y

∂T

=
∂C(T, y)

∂T
− rT

∂C(T, y)

∂y
,

(2.67)

which leads to
∂C(T, y)

∂T
=

∂C(T,K)

∂T
+ rT

∂C(T, y)

∂y
. (2.68)

We should remark that derivatives ofy reads as follows:

∂y

∂K
=

∂

∂K

(

log

(

K

FT

))

=
1

(

K
FT

)

(

1

FT

)

=
1

K
.

(2.69)

and

∂y

∂T
=

∂

∂T

(

log

(

K

FT

))

=
FT

K
K

∂

∂T

(

1

FT

)

=
FT

K
K

(−rT
FT

)

= −rT .

(2.70)
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Thence, Equation (2.68) becomes

∂C(T, y)

∂T
=

∂C(T,K)

∂T
+ rT

∂C(T, y)

∂y

=
σ2K2

2

∂2C(T,K)

∂K2
− rTK

∂C(T,K)

∂K
+ rT

∂C(T, y)

∂y

=
σ2

2
K2

{

1

K2

(

∂2C(T, y)

∂y2
− ∂C(T, y)

∂y

)}

− rTK

{

1

K

∂C(T, y)

∂y

}

+ rT
∂C(T, y)

∂y

=
σ2

2

{

∂2C(T, y)

∂y2
− ∂C(T, y)

∂y

}

.

(2.71)

Calculate the partial derivatives in Equation (2.71):

∂C(T, y)

∂y
=

∂C(w, y)

∂y
+

∂C(w, y)

∂w

∂w

∂y
, (2.72)

and

∂2C(T, y)

∂y2
=

∂2C(w, y)

∂y2
+

∂2C(w, y)

∂y∂w

∂w

∂y

+
∂

∂y

(

∂C(w, y)

∂w

∂w

∂y

)

,

(2.73)

where the last term in Equation (2.73) is

∂

∂y

(

∂C(w, y)

∂w

∂w

∂y

)

=

(

∂w

∂y

){

∂2C(w, y)

∂y∂w
+

∂2C(w, y)

∂w2

∂w

∂y

}

+
∂C(w, y)

∂w

(

∂2w

∂y2

)

.

(2.74)

Substitute Equation (2.74) into Equation (2.73) to get

∂2C(T, y)

∂y2
=

∂2C(w, y)

∂y2
+ 2

∂2C(w, y)

∂y∂w

∂w

∂y

+
∂2C(w, y)

∂w2
(
∂w

∂y
)2 +

∂C(w, y)

∂w

∂2w

∂y2
.

(2.75)

Also, we have
∂C(T, y)

∂T
=

∂C(w, y)

∂T
+

∂C(w, y)

∂T

∂w

∂T
. (2.76)

Then, substituting Equation (2.72), Equation (2.75), and Equation (2.76) into Equa-
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tion (2.71) yields

∂C(w, y)

∂T
+

∂C(w, y)

∂w

∂w

∂T
=

σ2

2

{

∂2C(T, y)

∂y2
− ∂C(T, y)

∂y

}

=
σ2

2

{

∂2C(w, y)

∂y2
+ 2

∂2C(w, y)

∂y∂w

∂w

∂y
+

∂2C(w, y)

∂w2
(
∂w

∂y
)2
}

+
σ2

2

{

∂C(w, y)

∂w

∂2w

∂y2
− ∂C(w, y)

∂y
− ∂C(w, y)

∂w

∂w

∂y

}

.

(2.77)

Calculating what each partial derivative in Equation (2.77)represents under the Black-
Scholes formula,

∂C(w, y)

∂w
= FT

(

Φ(d1)

(

−y

2
√
w

3 +
1

4
√
w

)

− eyΦ(d2)

(

−y

2
√
w

3 − 1

4
√
w

))

=
FTΦ(d1)

2
√
w

,

(2.78)

whereΦ is the probability distribution function of standard normal distribution andN
is the cumulative distribution function of standard normaldistribution. Here also note
that

Φ(d2) =
1√
2π

e(−
1

2
(d1−

√
w)2)

=
1√
2π

e(−
1

2
d2
1
)e(d1

√
w−w

2
)

= Φ(d1)e
( −y√

w
+

√
w

2
)
√
w−w

2

= Φ(d1)e
−y.

(2.79)

Furthermore,

∂2C(w, y)

∂w2
=

∂

∂w

(

FTΦ(d1)

2
√
w

)

= FT

(

2
√
w ∂Φ(d1)

∂w
− Φ(d1)√

w

)

4w

=
FT

4w

(

2
√
w(−d1Φ(d1)

(

∂d1
∂w

)

− Φ(d1)√
w

)

= FTΦ(d1)

(

−1

4
√
w

3 − 1

2
√
w
d1

∂d1
∂w

)

= FTΦ(d1)

(

−1

4
√
w

3 − 1

2
√
w

( −y√
w

+

√
w

2

)

(

y

2
√
w

3 +
1

4
√
w

))

,
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which can be simplified to

∂2C(w, y)

∂w2
=

FTΦ(d1)

2
√
w

(

−1

2w
+

(

y√
w

−
√
w

2

)

(

y

2
√
w

3 +
1

4
√
w

))

=
∂C(w, y)

∂w

(

− 1

2w
+

(

y2

2w2
+

y

4w
− y

4w
− 1

8

))

=
∂C(w, y)

∂w

(

− 1

2w
+

y2

2w2
− 1

8

)

=
∂C(w, y)

∂w

(

−1

8
− 1

2w
+

y2

2w2

)

;

(2.80)

and

∂C(w, y)

∂y
= FT

((

−Φ(d1)√
w

)

−
(

eyN(d2) + eyΦ(d2)

(

− 1√
w

)))

= FT

(

−Φ(d1)√
w

− eyN(d2) + ey
Φ(d2)√

w

)

= −FT e
yN(d2).

(2.81)

while

∂2C(w, y)

∂y2
=

∂

∂y
(−FT e

yN(d2))

= −FT

(

N(d2)e
y + eyΦ(d2)(−

1√
w
)

)

= −FT e
yN(d2) + FT

Φ(d1)√
w

.

(2.82)

Subtracting Equation (2.81) from Equation (2.82), we get

∂2C(w, y)

∂y2
− ∂C(w, y)

∂y
= FT

Φ(d1)√
w

= 2
∂C(w, y)

∂w
. (2.83)

Besides, the mixed partial derivative reads as

∂2C(w, y)

∂y∂w
=

∂

∂y

(

∂C(w, y)

∂w

)

=
∂

∂y

(

FT
Φd1
2
√
w

)

=
FT

2
√
w

∂

∂y
(Φ(d1))

=
FT

2
√
w

(

−d1Φ(d1)
∂d1
∂y

)

,
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which can be further simplified to

∂2C(w, y)

∂y∂w
=

FT

2
√
w

(

−d1Φ(d1)(−
1√
w
)

)

=
FTΦ(d1)

2
√
w

(( −y√
w

+

√
w

2

)(

1√
w
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=
∂C(w, y)

∂w

(

− y

w
+

1

2

)

=
∂C(w, y)

∂w

(

1

2
− y

w

)

.

(2.84)

The trivial relation
∂C

∂T
(w, y) = 0 (2.85)

holds, since the Black-Scholes call function does not dependdirectly onT anymore
but rather depend onT implicitly.

Substitute Equation (2.80), Equation (2.81), Equation (2.82), Equation (2.84), and
Equation (2.85) into Equation (2.77) to write

∂C(w, y)

∂w

∂w

∂T
=

σ2

2

∂C(w, y)

∂w

[

2 + 2

(

1

2
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w

)
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∂y

]
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σ2

2
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∂w
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(

−1

8
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2w
+
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2w2
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∂w

∂y
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]

,
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∂w
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(2.86)

which implies that

σ2(T,K) =
∂w
∂T

[

1− ( y
w
)∂w
∂y

+ 1
4

(

−1
4
− 1

w
+ y2

w2

)(

∂w
∂y

)2

+ ∂2w
2∂y2

] (2.87)

as desired.

Corollary 2.10. In the special case where the volatility smile is flat, namely∂w
∂y

= 0,
for each maturityT, Equation (2.87) is simplified to

σ2(T,K) =
∂w

∂T
, equivalently,w(T ) =

∫ T

0

σ2ds.
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CHAPTER 3

NUMERICAL METHODS OF OBTAINING LOCAL
VOLATILITY SURFACES

In this chapter, fundamental concepts of moneyness and cubic spline interpolation will
be addressed. Also, different methods of obtaining local volatility surfaces via option
price and implied volatility data will be discussed.

In general, we can classify these methods into parametric and non-parametric methods.
In the parametric method, an initial implied volatility function is specified and this is
used to obtain the implied volatility surface with a regressive algorithm. Consequently,
with additional numerical techniques, the local volatility surface can be obtained. On
the other hand, the non-parametric method allows the local volatility surface to take
any form while an optimization procedure is carried out to determine the particular
form of the surface. Each of these methods has its strengths and weaknesses depend-
ing on the trade-off involved. The trade-off is usually between fitting the model prices
to the observed market prices and attainment of stability ofthe local volatility func-
tion/surface through time.

In Section 3.1, the concept ofmoneynesswill be discussed and in Section 3.2,cubic-
spline polynomial interpolationwill be addressed. In Section 3.3, parametric method
will be explained as well as how it is used in obtaining local volatility surfaces. Conse-
quently, Section 3.4 will deal with some profound numericaltechniques from literature
on how to obtain local volatility surfaces via non-parametric methods. In addition, the
re-construction of local volatility surfaces using both option prices and implied volatil-
ity data via non-parametric method will be carried out.

3.1 Moneyness

Moneynessof an option describes the relative position of the current price or future
price of an underlying asset relative to the strike price. Itreflects the degree to which
an option is in-the-money (ITM) or out-of-the-money (OTM). Thus, it helps investors
evaluate how valuable their options are at any given point intime. Conventionally
speaking, moneyness should also depend on time to maturity apart from the strike
price as the following example demonstrates: a call option with a strike price of 110
would be classified as deepOTM if the current underlying price is 105 and the time
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to maturity is 1day. However, the same call having a time of maturity of 1year would
be reasonably rated at-the-money (ATM) since the probability that the underlying price
reaches or exceeds the strike price is much higher than it is in the first case [19]. Below
is a mathematical definition of moneyness.

Definition 3.1 (Moneyness). Let m(t, s,K, T, r) be a function of time, underlying
price, strike price, maturity date, and interest rate. The moneynessMt at time t ∈
[0, T ∗] is generally defined as

Mt = m(t, St, K, T, r). (3.1)

The functionm is referred to as the moneyness function. It is required to beincreasing
in K.

Definition 3.2 (Valid Moneyness). We call m a valid moneyness function andMt

defined as
Mt = m(t, St, K, T, r),

a valid moneyness for our financial market model ifm has the following proper-
ties [19]:

1. m(t, s,K, T, r) ∈ C2([0, T ∗]× R++ × R++ × (t, T ∗]× R+),

2. limt→T m(t, St, K, T, r) < ∞, P− a.s., and

3. limt→T
∂m
∂t
(t, St, K, T, r) < ∞ P−a.s., whereSt evolves under the probability

measureP.

3.1.1 Moneyness Terms

Definition 3.3 (At the Money). An option is said to be at-the-money (ATM) when the
strike price of the underlying asset equals the spot price orfutures price [6]. However,
options are usually expressed as being near-the-money or close-to-the-money because
they are rarely exactly at-the-money.

Definition 3.4 (In the Money). A call (put) option is in-the-money (ITM) when the
current price or forward price of the underlying asset exceeds (is less than) the strike
price [7].

Definition 3.5 (Out the Money). A call (put) option is out-of-the-money (OTM) when
the current price or forward price of the underlying asset isless than (exceeds) the
strike price [7].

3.1.2 Choice of Moneyness Measure

Different choices of moneyness measure have been documented in the literature and
these choices will be discussed below:
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1. Simple moneyness:This represents the ratio of strike price to the underlying
asset price, i.e.,K/St, or the inverse of it [19]. Conventionally speaking, the
constant term is in the denominator while the term that relatively changes is
in the numerator. The choices of numerator and denominator depend on what
interpretations one would like to give to the options at hand. Hence, for a specific
option, ifK is fixed then different spot prices yield different moneyness for that
option. This is useful for option pricing and understandingthe Black-Scholes
model. Conversely, if one has different options at a given point in time, the
spot price is fixed and the options have different strike prices, hence, different
moneyness.

2. Log-simple moneyness:This is a linearized modification of simple moneyness
done by taking it’s natural logarithm. It is defined to be

Mt = ln

(

K

Ster(T−t)

)

= ln

(

K

Ft

)

, ∀t ∈ [0, T ∗]

for ∀St > 0, T ∈ (t, T ∗], r ≥ 0, and∀K > 0. As can be verified, simple
moneyness as well as the log-simple moneyness are valid moneyness measures.

3. Time-Dependent moneyness:As previously argued, moneyness is affected by
the maturity date of an option. Hence, a moneyness dependingon time to matu-
rity is defined as

Mt =
ln
(

K
Ft

)

√
T − t

.

Note that
√
T − t is used in the division to normalize time to maturity since the

dispersion of Brownian motion is proportional to square rootof time [30]. This
measure of moneyness makes the volatility smile to be largely independent of
time to maturity.

4. Standardized moneyness:Unlike the other parameters, volatility can not be ob-
tained directly from the market data but must be computed from a model. Since
dispersion is proportional to volatility, standardizing moneyness with volatility
yield gives

Mt =
ln
(

K
Ft

)

σ
√
T − t

.

This is termed as the forward standard moneyness and measures moneyness in
standard deviation units [31]. Nevertheless, in [31] Tompkins R. uses spot price
rather than forward price.

3.2 Interpolation with Spline Functions

In this thesis,spline interpolationhas been used as part of the numerical techniques
in obtaining local volatility surfaces via non-parametricmethod. Hence, it becomes
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necessary to explain the fundamentals of this numerical method. In particular, inter-
polation of given data points usingnatural cubic spline functionwill be explored in
details.

3.2.1 Cubic Spline Interpolation

Firstly, the use of cubic spline functions for interpolation is important because they
produce smooth interpolating functions that are twice continuously differentiable. In
Dupire’s equation, the order of the partial differential equation is two which makes
using these functions in interpolating the call option function suitable. The following
gives a proper definition for any spline function:

Definition 3.6 (see [8]). A functionS is called aspline of degree kif:

1. The domain ofS is an interval[a, b]

2. S, S ′, S ′′, S ′′′, . . . , S(k−1) are all continuous functions on[a, b].

3. There are pointsti, the knots of S, such thata = t1 < t2 < t3 < · · · < tn = b
and such thatS is a polynomial of degree≤ k on each sub-interval[ti, ti+1].

In the case of a cubic spline function,k = 3. Assume we want to interpolate by a cubic
spline function whose knots coincide with the values ofti’s in the table below:

x t1 t2 · · · tn
y y1 y2 · · · tn

The ti’s are the knots and are assumed to be arranged in an ascendingorder. The
functionS consists ofn− 1 cubic polynomial pieces, such as

S(x) =



















S1(x) t1 ≤ x ≤ t2
S2(x) t2 ≤ x ≤ t3

...
Sn−1(x) tn−1 ≤ x ≤ tn

whereSi denotes the cubic polynomial that will be used on the sub-interval [ti, ti+1].

The interpolation conditions are

1. S(ti) = yi for 1 ≤ i ≤ n, and

2. limx→ti− S(k)(ti) = limx→ti+ S(k)(ti) for k = 0, 1, 2.

These continuity conditions are imposed only at the interior knotst2, t3, . . . , tn−1

because at each of these knots, two different cubic polynomials meets.
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Since we haven − 1 spline functions and there are 4 parameters in each, there are
4(n − 1) parameters to be determined. From each condition stated above, there are a
total of 3(n − 2) + n = 4n − 6 equations to solve for these parameters. Hence, there
are(4n − 4) − (4n − 6) = 2 free parameters left to choose. Innatural cubic spline,
these parameters are chosen to satisfy

S ′′(t1) = S ′′(tn) = 0.

Complete documentation ofcubic spline interpolationcan be found, for instance in [8].

3.3 Numerical Parametric Method

As discussed earlier, parametric method deals with an initial specification of a func-
tional form for the parameter to be estimated and with a regressive algorithm, such
function can be estimated for in and out of the sample data points. In other words,
it’s a priori estimation of a parameter since an initial variational functional form is
given to the parameter. This section will be organized as follows: Section 3.3.1 will
deal with literature survey onparametric method. Section 3.3.2 will deal with some of
the assumptions that were used in obtaining the local volatility surfaces. Section 3.3.3
will deal with the mathematical structures involved with parametric method via using
Dumas parametrization as a choice of parametrizing the implied volatility function.
Section 3.3.4 will address the mathematical structures involved with parametrizing the
implied volatility function in terms of moneyness rather than strike price. In addition,
the detailed algorithm used in obtaining the local volatility surfaces via parametric
method will be given. Consequently, analysis of the surfacesobtained will be made.
Section 3.3.5 will be about the challenges involved in obtaining local volatility sur-
faces via parametric method. Suggestions on how to tackle these difficulties will also
be proposed.

3.3.1 Dumas Parametric Method

In one of the prolific papers written by Dumas B., Fleming J., and Whaley R.E. [13],
several functional forms for adeterministic volatility function (DVF)were tested by
using “S&P 500 stock index” data. The performance of each of the functional forms
were compared against each other and conclusions were drawn.

The following functional forms were focused on

1. Model 0:σimp(T,K) = b0

2. Model 1:σimp(T,K) = b0 + b1K + b2K
2

3. Model 2:σimp(T,K) = b0 + b1K + b2K
2 + b3T + b5KT

4. Model 3:σimp(T,K) = b0 + b1K + b2K
2 + b3T + b4T

2 + b5KT
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As we can observe from the various specified functions, Model0 represents the case
of Black-Scholes model with constant volatility; Model 1 tries to capture the variation
in volatility inherent in the asset price; Models 2 and 3 capture additional variation
attributable to maturity [14]. The quadratic forms of DVF (Models 2 & 3) were found
to be particularly robust and stable through time, hence, wewill base our polynomial
parametrization on Model 2. This method of parametrizationis widely used to deter-
mine the “Practitioner’s Black-Scholes” (PBS) prices [14]. PBS involves the use of
implied volatility function to determine the corresponding Black-Scholes prices [4].
Calculating PBS prices can be summarized in three steps as follows (see [4]):

1. Invert the Black-Scholes equation for the available data points and obtain the
implied volatilitiesσimp(T,K);

2. The implied volatilities are regressed against a quadratic polynomial;

3. The fitted implied volatilities are then plugged back intothe Black-Scholes equa-
tion to get the practitioner’s price.

To be able to use PBS above in obtaining local volatility surfaces, additional numerical
computations are necessary:

1. Take the1st partial derivative of call option function under local volatility with
respect to maturityT ;

2. Take the1st partial derivative of call option function under local volatility with
respect to strike pricesK;

3. Take the2nd partial derivative of call option function under local volatility with
respect to strike pricesK;

4. Plug these derivatives into the Dupire’s local volatility equation to obtain the
local volatilities.

5. For a mesh grid(T i,Ki, LV ) created, that is, for maturitiesT , strike pricesK,
and local volatilitiesLV respectively, obtain the local volatility surface.

The surface obtained can then be used as a first-hand estimation or in conjunction with
other more complex models on pricing exotic options as well as hedging purposes.

3.3.1.1 Alternative Method for Local Volatility Surface using Dumas Parametriza-
tion

Another effective method that could be used in obtaining thelocal volatilities depend-
ing on the intent of application involves the use of moneyness in the parametrized
implied volatility function instead of strike price. This is the method used in [4]. The
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choice of moneyness that will be used is

M =
log
(

K
FT

)

√
T

.

Hence, in the application of PBS, the parameters in Model 2 aredetermined by regress-
ing the implied volatility data against the choice of quadratic function. Consequently,
the practitioner’s Black-Scholes prices can then be calculated for the implied volatility
surface obtained. This will be implemented in Section 3.3.4of this thesis.

3.3.2 Proposed Assumptions for Local Volatility Surfaces using Dupire’s Equa-
tion

In this section, the implied volatility data used in the algorithmic procedures will be
described. Also, the main assumptions used in this thesis incalculating the partial
derivatives in Dupire’s equation as compared to the ones used in [4] will be empha-
sized.

Firstly, let’s describe the data that will be used to test ouralgorithm. The data was taken
from [2], which is a collection of bid-ask spreads of Black-Scholes implied volatilities
of European call options on“S&P 500 stock index”in April, 1999. The spread consists
of 161 observations all together across 18 strikes and 12 maturities. The raw data was
refined for effective integration into our algorithm. This was done by averaging the bid
and ask implied volatilities for each strike priceK and maturityT.

Secondly, let us compare the crucial assumption Cerrato M. used in [4] to obtain local
volatility surface and the one proposed in this thesis. He had directly used Black-
Scholes call option price function as the call function while taking the partial deriva-
tives in Dupire’s equation. However, we have taken the appropriate steps in calculating
these partial derivatives by considering that the call option functions of Black-Scholes
and local volatility are different but with the same functional values at some data points.
To summarize this mathematically, we assume that

C(FT , T, σLV (T,K), K) = CBS(FT , T, σimp(T,K), K)

for the given data samples, whereC(FT , T, σLV (T,K), K) is the call option function
from the local volatility model andCBS(FT , T, σimp(T,K), K) is the call option func-
tion from the Black-Scholes model. With this assumption, thepartial derivatives of the
local volatility call option function with respect to maturity T and strikeK are taken by
relating the dependence of both call option functions on those independent variables.

To illustrate the importance of this assumption in the one-dimensional case, consider
two real valued functions

f : R → R, for i = 1, 2.

such thatf1(x) = x2 andf2(x) = 2x. Although forx = 2, f1(2) = f2(2), but their
derivatives with respect tox at the pointx = 2 are not equal. That is,f1′(2) = 4 and
f2

′(x) = 2. With this in mind, we constructed our method accordingly.
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3.3.3 Obtaining Local Volatility Surface using Dupire’s Equation

In this part, the explicit mathematical formulations used in the algorithm in obtaining
the local volatility surface will be derived. This method involves using the Dupire’s
equation described in Equation (2.52),

σ2(T,K) =
∂C(FT ,T,K)

∂T

1
2
K2 ∂

2C(FT ,T,K)
∂K2

,

where the call option is a function of forward priceFT : C(FT , T, σLV (T,K), K).
Hence, it’s necessary to explicitly determine what each partial derivative in Equa-
tion (2.52) represents. Since we will use these derivativesin conjunction with Du-
mas parametric method, it is important to specify our choiceof parametric function
and write out the various partial derivatives necessary. The choice of Black-Scholes
implied volatility function is given below:

σimp(T,K) =
n
∑

i,j=0

aiBij(T,K) = a0 + a1K + a2K
2 + a3T + a4KT, (3.2)

where theai’s are the unknown parameters to be determined using some numerical
techniques with the available data samples andBij(T,K) are basis functions in terms
of the independent variablesT andK. This choice of parametrization is due to the
assumption that the implied volatility is directly dependent on maturityT and the strike
priceK.

Lemma 3.1. If the implied volatility function takes the form of Equation (3.2), then its
partial derivatives are

∂σimp(T,K)

∂K
= a1 + 2a2K + a4T.

∂σimp(T,K)

∂K2
= 2a2.

∂σimp(T,K)

∂T
= a3 + a4K.

Proof. The proof of the above lemma is easy and straightforward. Thereader can
verify that the following calculations:

∂σimp(T,K)

∂K
= a1 + 2a2K + a4T, (3.3)

∂σimp(T,K)

∂K2
= 2a2, (3.4)

and
∂σimp(T,K)

∂T
= a3 + a4K (3.5)

to complete the proof.
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Proposition 3.2. For local volatility option prices calibrated to Black-Scholes option
prices via implied volatilities such that

C(FT , T, σLV (T,K), K) = CBS(FT , T, σimp(T,K), K)

for some data samples, the following partial derivatives hold:

∂C

∂T
=

∂CBS

∂T
+

∂CBS

∂σimp

∂σimp

∂T
,

∂C

∂K
=

∂CBS

∂K
+

∂CBS

∂σimp

∂σimp

∂K
,

∂2C

∂K2
=

∂2CBS

∂K2
+

∂2σimp

∂K2

(

∂CBS

∂σimp

)

+

(

∂σimp

∂K

)2(
∂2CBS

∂σ2
imp

)

+
∂σimp

∂K

(

∂

∂σimp

(

∂CBS

∂K

)

+
∂

∂K

(

∂CBS

∂σimp

))

,

(3.6)

whereFT is taken to be without dividends, that is,FT = S0e
rT .

Proof. First, determine the partial derivative of the call option with respect to maturity
T.

∂C

∂T
=

∂CBS

∂T
+

∂CBS

∂σimp

∂σimp

∂T
. (3.7)

Each partial derivative can be calculated from the Black-Scholes model and from Equa-
tion (3.5).

Next, determine the partial derivative of the call option with respect to strikeK.

∂C

∂K
=

∂CBS

∂K
+

∂CBS

∂σimp

∂σimp

∂K
. (3.8)

Each partial derivative term can be calculated from the Black-Scholes model and from
Equation (3.3).

Finally, determine the 2nd partial derivative of the call option with respect to strikeK.

∂2C

∂K2
=

∂

∂K

(

∂CBS

∂K

)

+
∂

∂σimp

(

∂CBS

∂K

)

∂σimp

∂K

+
∂σimp

∂K

(

∂

∂K

(

∂CBS

∂σimp

)

+
∂2CBS

∂σ2
imp

∂σimp

∂K

)

+
∂CBS

∂σimp

∂2σimp

∂K2

=
∂2CBS

∂K2
+

∂2σimp

∂K2

(

∂CBS

∂σimp

)

+

(

∂σimp

∂K

)2(
∂2CBS

∂σ2
imp

)

+
∂σimp

∂K

(

∂

∂σimp

(

∂CBS

∂K

)

+
∂

∂K

(

∂CBS

∂σimp

))

.

(3.9)

This is quite long to calculate in one equation, therefore, each partial derivative will
be determined separately and the reader can put them together in the algorithms by
defining each as a variable.
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Starting with the partial derivative of Black-Scholes call function with respect toK,
we get

∂CBS

∂K
= FTΦ(d1)

∂d1
∂K

−
(

N(d2) +KΦ(d2)
∂d2
∂K

)

. (3.10)

To determine explicitly what∂d1
∂K

and ∂d2
∂K

represent, we have

∂d1
∂K

=
σimp

√
T
(

−1
K

+ σimpT
∂σimp

∂K

)

−
(

ln
(

FT

K

)

+
σ2
impT

2

)(√
T

∂σimp

∂K

)

σ2
impT

=

σ2
impT

3
2

2

∂σimp

∂K
− ln

(

FT

K

)√
T

∂σimp

∂K
− σimp

√
T

K

σ2
impT

=

√
T

2

∂σimp

∂K
− ln

(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
− 1

Kσimp

√
T

(3.11)

and

∂d2
∂K

=
∂d1
∂K

−
√
T
∂σimp

∂K

= −
(

ln
(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
+

1

Kσimp

√
T

+

√
T

2

∂σimp

∂K

)

.
(3.12)

Substituting Equation (3.11) and Equation (3.12) into Equation (3.10) and usingΦ(d1) =
K
FT

Φ(d2), we obtain

∂CBS

∂K
= FTΦ(d1)

√
T

2

∂σimp

∂K
− FTΦ(d1)

ln
(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
− FTΦ(d1)

Kσimp

√
T

−N(d2) +
KΦ(d2) ln

(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
+

KΦ(d2)

Kσimp

√
T

+
KΦ(d2)

√
T

2

∂σimp

∂K

=
∂σimp

∂K

(

FTΦ(d1)

√
T

2
− FTΦ(d1)

ln
(

FT

K

)

σ2
imp

√
T

∂σimp

∂K

)

+
∂σimp

∂K

(

FTΦ(d1)
ln
(

FT

K

)

σ2
imp

√
T

∂σimp

∂K

)

−N(d2) +
KΦ(d2)

√
T

2

∂σimp

∂K

=
∂σimp

∂K

(

FTΦ(d1)
√
T
)

−N(d2).

(3.13)

Taking the partial derivative of Equation (3.13) with respect to strikeK gives

∂2CBS

∂K2
=

∂σimp

∂K
FT

√
T
∂Φ(d1)

∂K
+ FTΦ(d1)

√
T
∂2σimp

∂K2
− Φ(d2)

∂Φ(d2)

∂K
. (3.14)
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Thence, to Determine what∂Φ(d1)
∂K

represents, we calculate

∂Φ(d1)

∂K
= −Φ(d1)d1

∂d1
∂K

= −Φ(d1)d1

(√
T

2

∂σimp

∂K
− ln

(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
− 1

Kσimp

√
T

)

= −Φ(d1)d1
√
T

2

∂σimp

∂K
+

Φ(d1)d1 ln
(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
+

Φ(d1)d1

Kσimp

√
T
.

(3.15)

Substituting Equation (3.15) into Equation (3.14) resultsin

∂2CBS

∂K2
= −FT

√
Td1Φ(d1)

2

(

∂σimp

∂K

)2

+
FT

√
Td1Φ(d1) ln

(

FT

K

)

σ2
imp

(

∂σimp

∂K

)2

+
FTΦ(d1)d1
Kσimp

∂σimp

∂K
+ FT

√
TΦ(d1)

∂2σimp

∂K2

+
Φ(d1)d1 ln

(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
+

Φ(d2)

Kσimp

√
T

+
Φ(d2)

√
T

2

∂σimp

∂K
.

(3.16)

Note here, that

∂Φ(d1)

∂K
=

∂

∂K

(

1√
2π

e−(
d2
1
2
)

)

=
1√
2π

e−(
d2
1
2
)

(−1

2
2d1

)

∂d1
∂K

= −Φ(d1)d1
∂d1
∂K

.

(3.17)

It remains to calculate the partial derivatives∂CBS

∂σimp
,

∂2Cimp

∂σ2
imp

, ∂
∂K

(

∂CBS

∂σimp

)

, as well as
∂

∂σimp

(

∂CBS

∂K

)

:

∂CBS

∂σimp

= FTΦ(d1)
∂d1
∂σimp

−KΦ(d2)
∂d2
∂σimp

, (3.18)

where

∂d1
∂σimp

=
σimp

√
T (σimpT )−

(

σ2
impT

2
+ ln

(

FT

K

)

)√
T

σ2
impT

=
σ2
impT

3

2 − σ2
impT

3
2

2
− ln

(

FT

K

)√
T

σ2
impT

=

σ2
impT

3
2

2
− ln

(

FT

K

)√
T

σ2
impT

=

√
T

2
− ln

(

FT

K

)

σ2
imp

√
T

(3.19)
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and

∂d2
∂σimp

=
∂d1
∂σimp

−
√
T

=

√
T

2
− ln

(

FT

K

)

σ2
imp

√
T

−
√
T

= − ln
(

FT

K

)

σ2
imp

√
T

−
√
T

2
.

(3.20)

Substitute Equation (3.19) and Equation (3.20) into Equation (3.18) to get

∂CBS

∂σimp

= FTΦ(d1)

(√
T

2
− ln

(

FT

K

)

σ2
imp

√
T

)

+KΦ(d2)
ln
(

FT

K

)

σ2
imp

√
T

+
KΦ(d2)

√
T

2

= FTΦ(d1)
√
T .

(3.21)

Taking the partial derivative of Equation (3.21) with respect toσimp, we have

∂2CBS

∂σ2
imp

= FT

√
T
∂Φ(d1)

∂σimp

= −FT

√
TΦ(d1)d1

∂d1
∂σimp

= −FT

√
TΦ(d1)d1

(√
T

2
− ln

(

FT

K

)

σ2
imp

√
T

)

=
−FTTΦ(d1)d1

2
+

FTΦ(d1)d1 ln
(

FT

K

)

σ2
imp

.

(3.22)

Also, taking the partial derivative of Equation (3.21) withrespect toK yields

∂

∂K

(

∂CBS

∂σimp

)

= FT

√
T
∂Φ(d1)

∂K
= −Φ(d1)d1FT

√
T
∂d1
∂K

= −Φ(d1)d1FT

√
T

(√
T

2

∂σimp

∂K
− ln

(

FT

K

)

σ2
imp

√
T

∂σimp

∂K
− 1

Kσimp

√
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)

= −Φ(d1)d1FTT

2

∂σimp

∂K
+

Φ(d1)d1FT

σ2
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ln

(

FT

K

)

∂σimp

∂K

+
Φ(d1)d1FT

Kσimp

.

(3.23)
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Finally,

∂

∂σimp
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(3.24)

Plugging all these derivatives into their respective places completes the proof.

3.3.3.1 Obtaining Local Volatility Surface Using Partial Derivatives of Equa-
tion (2.87)

As a way to compare the local volatility surfaces obtained using Equation (2.52) with
the one that will be obtained using Equation (2.87), it becomes necessary to also de-
termine the analytic derivations of the partial derivatives in the latter.

Proposition 3.3. For local volatility option prices calibrated to Black-Scholes prices
via implied volatilities such that

C(FT , T, σLV (T,K), K) = CBS(FT , T, σimp(T,K), K)

for some data samples, the following partial derivatives hold using Equation (2.87):

∂w

∂T
= σ2

imp + 2Tσimp
∂σimp

∂T
;
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∂w

∂y
= 2TKσimp

∂σimp
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r
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)σ2
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(3.25)

wherew is the total variance,y is the log-strike andFT is taken to be without dividends,
that is,FT = S0e

rT .

Proof. First, determine the partial derivative of total variancew with respect to matu-
rity T as

∂w

∂T
= σ2

imp + 2Tσimp
∂σimp

∂T
. (3.26)

Next, determine the partial derivative of total variancew with respect to log-strikey as
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(3.27)

Finally, determine the 2nd partial derivative of total variancew with respect to log-
strikey as
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;
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this can further be simplified to give
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(3.28)

Note that the use of∂T
∂y

= −1
r
, ∂FT

∂y
= −Ke−y, and ∂K

∂y
= FT e

y = K completes the
proof.

3.3.3.2 Algorithm

Having found all the necessary partial derivatives in Section 3.3.3, they will be used in
the algorithm. In this section, detailed algorithm of how toobtain the implied volatility
surface and local volatility surfaces will be given. The algorithm adopted for this
method is one originally used in the book of Cerrato M. (see [4]) with modifications
on the codes.

The notations for all the algorithms are:T is the time to maturity,K andX represents
the strike prices,S is the asset spot price,IV is the implied volatility,r is the risk-free
rate,q is the dividend yield,FT is the forward price,mn is the moneyness,w is the
Black-Scholes total variance, andy is the log-strike.

The algorithmic steps are given below:

1. Load data consisting ofT,K, S, IV, r, q.

2. CalculateFT = Se(r−q)T andmn = log (K/FT )√
T

for eachT andK.

3. Define a function(func1(pars, X, T, IV )) containing the choice of the para-
metric function.

σimp = pars(1)+pars(2)X+pars(3)X2+pars(4)T+pars(5)XT

and returnse, the error as the output, which is the difference in the values of σ
andIV (i.e. e=σimp-IV).
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4. Using a starting value, solve(func1(pars, X, T, IV )) non-linearly in least-
squares using the MATLAB built-in function “lsqnonlin”.

This step as a whole solves the problem and its outputs are theminimizing pa-
rameters,pars(1),. . ., pars(5) with the norm of its residuals.

5. DiscretizeK into Ki andT into Ti values and create a mesh grid of the dis-
cretized values, (i.e.[Km, Tm] = meshgrid(Ki, Ti)).

6. Re-calculateFT = Se(r−q)Tm andMn = log (Km/FT )√
Tm

for the mesh grid created.

7. Define a function (func2(pars, Km, Tm)) that contains the choice of parametriza-
tion and with the input above, calculates theIVm for the grid created.

8. Using mesh(Tm, Km, IVm), obtain the implied volatility surface.

9. Interpolateq andr − q across allTi andKi.

10. Calculate the corresponding Black-Scholes prices from the implied volatilities
obtained.

11. Calculate the derivative of local volatility call optionfunction with respect toT
as derived in Equation (3.7).

12. Calculate the 1st derivative of local volatility call option function with respect to
K as derived in Equation (3.13).

13. Calculate the 2nd derivative of local volatility call option function with respect
toK as derived in Equation (3.16).

14. Using the Dupire equation, calculate the local varianceand local volatility. Some
values of local variance matrix may be negative which makes taking square root
impossible. For such values, use either of the following:

(a) Take the absolute value of the matrix in local variance.

(b) Make the negative values of the matrix in the local variance zero.
In this thesis, the two were tested. However, method 2 was preferred for
all the plots solely because this only considers the points where the local
volatility is defined. In other words, where the surfaces arefree of arbitrage
opportunities.

15. Usingmeshgrid (Tm, Km, LV ), obtain the local volatility surface for each
method described above.

3.3.3.3 Detailed Algorithm for an Alternative Method

Alternatively, the local volatility surface obtained fromthe above algorithm can also
be done using Equation (2.87). Following the determinationof the implied volatility
surface above, below highlights the additional steps needed to complete the algorithm.
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1. Calculate the partial derivative ofσimp with respect toT as in Equation (3.5).

2. Calculate the partial derivative ofσimp with respect toK, as in Equation (3.3).

3. Calculate the 2nd partial derivative ofσimp with respect toK as in Equation (3.4).

4. Calculate the partial derivative ofw with respect toT as in Equation (3.26).

5. Calculate the partial derivative ofw with respect toy, as in Equation (3.27).

6. Calculate the 2nd partial derivative ofw with respect toy as in Equation (3.28).

7. Calculate the local variance and local volatility in Equation (2.87). However,
some of the values of local variance may be negative which makes taking square
root impossible. For such values, use either of the following:

(a) Take the absolute value of the variance matrix.

(b) Make the negative values of the variance matrix zero.

8. Usingmeshgrid (Tm, Km, LV ), obtain the local volatility surface for each
method described above.

3.3.3.4 Results and Analysis of the Volatility Surfaces Obtained in Section 3.3.3.2
and Section 3.3.3.3

In this section, the surfaces obtained from implementing the algorithms described in
Section 3.3.3.2 and Section 3.3.3.3 will be shown and properanalysis of them will be
given. With the data described in Section 3.3.2 and the algorithm in Section 3.3.3.2,
the implied volatility surface obtained is shown in Figure 3.1.
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Figure 3.1: Implied Volatility Surface as a Function of Strike and Maturity

The corresponding local volatility surface using the implied volatility surface in Fig-
ure 3.1 is shown in Figure 3.2 As we can see from Figure 3.1 withthe parametrization
choice given, the implied volatility surface exhibits some“smile” effect at lower ma-
turitiesT and strikesK. This shows that indeed, the volatility function is dependent
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Figure 3.2: Local Volatility Surface under Implied Volatility Surface in Figure 3.1 and
Equation (2.52)

on maturityT and strikeK. Although, in this case we do not have a well pronounced
“smile” in the local volatility function. This is because ofthe numerical difficulties as-
sociated with using Dupire’s equation coupled with the factthat obtaining local volatil-
ity surface with implied volatilities does not form a good fitwith Dupire’s equation
which is based on call option prices. We would expect a graph of local volatility sur-
face to exhibit better “smile” effect when we use Equation (2.87) because this equation
directly links local volatilities with implied volatilities.
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Figure 3.3: Local Volatility Surface under Implied Volatility Surface in Figure 3.1 and
Equation (2.87)

As can be seen in Figure 3.3, the local volatility surface exhibits more “smile” effect
than in Figure 3.2 especially across lower maturities for all strike prices. Therefore,
one would prefer to use Equation (2.87) to Equation (2.52) inobtaining local volatility
surfaces since we are dealing directly with Black-Scholes implied volatility data.
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3.3.4 Parametrization of Implied Volatility Function using Moneyness

One can also consider the implied volatility to be a functionof maturityT and money-
nessM . In this case, implied volatility is also indirectly dependent on strike since mon-
eyness is a function of the strike priceK. This idea was originally used in [4] which
has been adopted in this thesis. It’s worth checking how thisform of parametrization
performs against the parametrization in Equation (3.2). Therefore, let the new choice
of parametrization for the implied volatility function be

σimp(T,M) =
n
∑

i,j=0

biBij(T,M) = b0 + b1M + b2M
2 + b3T + b4MT. (3.29)

Analogously, similar explanations for the parameters in Equation (3.2) can be made
for Equation (3.29) except that instead of strikeK, moneynessM = log (K/FT )√

T
is

used. Since moneyness is a function of strike and it is directly dependent on strike,
one can easily compare the graphs of the implied volatility surfaces obtained using
Equation (3.29) and Equation (3.2). Like in Section 3.3.3, we will determine the ap-
propriate partial derivatives of the implied volatility function with respect to maturity
T and strikeK.

Lemma 3.4. If the implied volatility function takes the form of Equation (3.29), then
the partial derivatives below hold:

∂σimp

∂M
= b1 + 2b2M + b4T ;

∂M

∂K
=

1√
T
.
FT

K
.
1

FT

=
1

K
√
T
;

∂M

∂T
=

−r
√
T − 0.5M

T
.

Proof. First, determine the partial derivative ofσimp with respect toM.

It is quite straight-forward from Equation (3.29) and this gives

∂σimp

∂M
= b1 + 2b2M + b4T. (3.30)

Next, determine the partial derivative ofM with respect toK.

Given thatM = log (K/FT )√
T

, we get

∂M

∂K
=

1√
T
.
FT

K
.
1

FT

=
1

K
√
T
. (3.31)
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Finally, determine the partial derivative ofM with respect toT :

∂M

∂T
=

∂

∂T

(

ln
(

FT

K

)

√
T

)

=
∂

∂T

(

ln(K
S
)− rT√
T

)

=

√
T (−r)− ln

(

FT

K

)

(

1
2
√
T

)

T

=
−r

√
T − 0.5M

T
,

(3.32)

sinceM = ln
(

FT

K

)

(

1√
T

)

and this completes the proof.

Proposition 3.5. If the implied volatility function takes the form of Equation (3.29),
then the partial derivatives below hold:

∂σimp

∂T
=

−(b1 + 2b2M + b4T )(r
√
T + 0.5M)

T
+ (b3 + a4M);

∂σimp

∂K
=

b1 + 2b2M + b4T

K
√
T

;

∂2σimp

∂K2
=

2b2 − ((b1 + 2b2M + b4T )
√
T )

K2T
.

Proof. First, determine the partial derivative ofσimp with respect toT. From Equa-
tion (3.29), we have that

∂σimp

∂T
= (b3 + a4M) +

∂σimp

∂M

∂M

∂T
. (3.33)

Using Lemma 3.4, Equation (3.33) turns to be

∂σimp

∂T
=

−(b1 + 2b2M + b4T )(r
√
T + 0.5M)

T
+ (b3 + a4M). (3.34)

Next, determine the partial derivative ofσimp with respect toK. From Equation (3.29),
we have that

∂σimp

∂K
=

∂σimp

∂M

∂M

∂K
. (3.35)

Hence, using Lemma 3.4, the partial derivative in Equation (3.35) becomes

∂σimp

∂K
=

b1 + 2b2M + b4T

K
√
T

. (3.36)
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Finally, calculate the 2nd partial derivative ofσimp with respect toK :

∂2σimp

∂K2
=

∂

∂K

(

b1 + 2b2M + b4T

K
√
T

)

=
K
√
T
(

2b2
1

K
√
T

)

− (b1 + 2b2M + b4T )
√
T

K2T

=
2b2 − ((b1 + 2b2M + b4T )

√
T )

K2T
,

(3.37)

and this completes the proof.

Coupling the partial derivatives obtained in Proposition 3.5 with the ones in Sec-
tion 3.3.3, one would obtain a new sets of local volatility surfaces.

3.3.4.1 Algorithm

The necessary partial derivatives derived in Section 3.3.3and Section 3.3.4 will be
used in this algorithm. The algorithmic steps are given below:

1. Load the data comprising ofT,K, P, S, IV, r, q.

2. CalculateFT = Se(r−q)T andmn = log (K/FT )√
T

for eachT andK.

3. Define a function(func1(pars, X, T, IV )) containing the choice of the para-
metric function:

σimp = pars(1)+pars(2)X+pars(3)X2+pars(4)T+pars(5)XT

and returnse, the error as the output, which is the difference in the values of σ
andIV (i.e. e=σimp-IV).

4. Using a starting value, solve(func1(pars, X, T, IV )) non-linearly in least-
squares using the MATLAB built-in function “lsqnonlin”. This step as a
whole solves the problem and its outputs are the minimizing parameters,

pars(1),. . ., pars(5)
with the norm of its residuals.

5. DiscretizeK into Ki andT into Ti values and create a mesh grid of the dis-
cretized values, (i.e.[Km, Tm] = meshgrid(Ki, Ti)).

6. Re-calculateFT = Se(r−q)Tm andMn = log (Km/FT )√
Tm

for the mesh grid created.

7. Define a function (func2(pars,Mn, Tm)) that contains the choice of the para-
metrization and with the input above, calculates theIVm for the grid created.

8. Using mesh(Tm, Km, IVm), obtain the implied volatility surface. Notice that
Mn is directly replaced byKm in the plotting becauseMn is a simple function of
strikeK.
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9. Interpolateq andr − q across allTi andKi.

10. Calculate the corresponding Black-Scholes prices from the implied volatilities
obtained.

11. Calculate the derivative of local volatility call optionfunction with respect toT
as derived in Equation (3.7).

12. Calculate the 1st derivative of local volatility call option function with respect to
K as derived in Equation (3.13).

13. Calculate the 2nd derivative of local volatility call option function with respect
toK as derived in Equation (3.16).

14. Using the Dupire equation, calculate the local varianceand local volatility. Some
values of local variance matrix may be negative which makes taking square root
impossible. For such values, use either of the following:

(a) Take the absolute value of the matrix in local variance.
(b) Make the negative values of the matrix in the local variance zero.

15. Usingmeshgrid (Tm, Km, LV ), obtain the local volatility surface for each
method described above.

3.3.4.2 Detailed Algorithm for an Alternative Method

Alternatively, the local volatility surface obtained fromthe above algorithm can be also
done using Equation (2.87). Following the determination ofimplied volatility surface
in the algorithm above, below highlights the additional steps needed to complete the
algorithm.

1. Calculate the partial derivative ofσimp with respect toT as in Equation (3.33).

2. Calculate the partial derivative ofσimp with respect toK as in Equation (3.36).

3. Calculate the 2nd partial derivative ofσimp with respect toK as in Equation (3.37).

4. Calculate the partial derivative ofw with respect toT as in Equation (3.26).

5. Calculate the partial derivative ofw with respect toy as in Equation (3.27).

6. Calculate the 2nd partial derivative ofw with respect toy as in Equation (3.28).

7. Calculate the local variance and local volatility as in Equation (2.87). Some
values of local variance matrix may be negative which makes taking square root
impossible. For such values, use either of the following:

(a) Take the absolute value of the matrix in the numerator.
(b) Make the negative values of the matrix in the numerator zero.

8. Usingmeshgrid (Tm, Km, LV ), obtain the local volatility surface for each
method described above.
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3.3.4.3 Results and Analysis of the Volatility Surfaces Obtained in Section 3.3.4.1
and Section 3.3.4.2

In this section, the surfaces obtained from implementing the algorithm described in
Section 3.3.4.1 and Section 3.3.4.2 will be shown and properanalysis will be given.
Based on the data described in Section 3.3.2 and the algorithmspecified in Section 3.3.4.1,
the implied volatility surface is given in Figure 3.4.
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Figure 3.4: Implied Volatility Surface as a Function of Moneyness and Maturity but
Obtained with Strike and Maturity
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Figure 3.5: Local Volatility Surface under Implied Volatility Surface in Figure 3.4 and
Equation (2.52)

The corresponding local volatility surface using the implied volatility surface in Fig-
ure 3.4 is shown in Figure 3.5. As can be seen from Figure 3.4 with the parametrization
choice given, the implied volatility surface exhibits a well pronounced “smile” at lower
maturitiesT for all strikesK. For higher maturities, the “smile” is not so pronounced
except at lower strikes. This shows again that option volatilities are dependent on ma-
turities and strike prices. Also, in this case, we do have a well pronounced “smile” in
the local volatility surface. As can be observed, the local volatility surface exhibits less
“smile” effect in Figure 3.6 than in Figure 3.5.

57



0
2

4
6

8
10

50

100

150

200
0

0.2

0.4

0.6

0.8

Time to Maturity

Local Volatility Surface as a function of Implied Volatility

Strike Price

Lo
ca

l V
ol

at
ili

ty

Figure 3.6: Local Volatility Surface under Implied Volatility Surface in Figure 3.4 and
Equation (2.87)

3.3.5 Deficiency of the Parametric Methods

Parametric method of obtaining local volatility surfaces poses several challenges in
practice. These challenges will be addressed below with various justifications on how
we have tackled them.

1. Firstly, we will address the choice of parametric function: The reason for choos-
ing Dumas parametrization for the implied volatility function is based on the
empirical studies by Dumas B., Fleming J., and Whaley R. in [13] carried on
S&P 500. This parametric function was preferred in this study since the data
used is also from the same underlying as the one used in [13]. However, other
parametric functions could be a better fit for some other underlying asset. Hence,
the objectivity of selecting a parametric function might depend on the underly-
ing. In addition, other complex parametric functions whichwere not considered
in [13] are also possible. Although, this does not in any way nullify the effec-
tiveness of the parametric function chosen in this study. This is because it still
captures most of the variations that might be caused by the variables (T andK).

2. Secondly, we will address the difficulty of obtaining local volatility surfaces:
There is a difficulty with how to deal with the negative valuesof local variances
that make it impossible to obtain the local volatility surface. There are various
ways in literature to tackle this shortcoming which is peculiar to most numerical
methods, one of such isabsorptionwhich involves equating local volatility (LV)
process to zero whenever it takes a negative value (i.e.LV + = max(LV, 0)).
Another way is calledreflectionwhich involves reflecting the negative values
through the origin and continuing from there, (i.e.|LV |). There are other ways
that are not mentioned in this thesis but can be found in [4]. In our framework,
the absorptionwas used because it only accounts for the part of the surface
that are positive which are the parts that can be used for pricing and/or hedging
purposes.
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3.4 Numerical Non-Parametric Method

In this section, the numerical non-parametric methods usedin obtaining local volatility
surfaces will be discussed in details. In addition, the results and analysis of the surfaces
will be made based on the data used.

The section is arranged as follows: Section 3.4.1 deals withthe most prominent nu-
merical techniques in the literature on how to obtain local volatility surfaces via non-
parametric methods. Section 3.4.2 and Section 3.4.3 involve the description of the data
and explanation of the techniques used in obtaining local volatility surfaces via non-
parametric methods. Finally, Section 3.4.4 explains the deficiencies of this method and
suggestions on possible improvements for further studies.

3.4.1 Literature Survey on Ways to Obtain Local Volatility Surfaces via Non-
Parametric Method

In this section, three important prominent approaches of obtaining local volatility sur-
faces via non-parametric method will be discussed: Lagnadoand Osher, Elisabeth R.
and Hanke M., and Achdou Y. and Pironneau O. approaches. It’sworth noting that
these methods are based on obtaining the local volatilitiesby directly using the market
quoted option prices rather than implied volatilities. These approaches are discussed
below:

3.4.1.1 Method of Lagnado R. and Osher S.

This method involves solving the parabolic partial differential equation (PDE) associ-
ated with arbitrage-free derivative security prices. The local volatility function will be
estimated by solving the inverse problem associated with Dupire’s equation for some
discrete and finite set of observed option prices. The volatility function to be deter-
mined appears to be a coefficient of the second-order partialderivative in the pricing
PDE. In theory, it can be determined if given enough continuous data of option prices
to solve the PDE. However, the market has limited number of option prices available
which makes the problem ill-posed and requires a regularization technique to produce
a stable and consistent solution through time. Hence, in this methodology, the gradi-
ent of local volatility function is minimized inL2 norm over an appropriate space of
smooth functions subject to constraints that ensure the solutions of the pricing PDE
match with the observed option prices.

So, if V (S, t;T,K, σ) is the option price at timet andσ(t, S) is the choice of the
volatility function, then the option priceV follows the stochastic Black-Scholes-PDE
shown below:

∂V

∂t
+

1

2
σ(S, t)2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (3.38)

whereS is the asset current level,T is the maturity,K is the strike price,r is the con-
tinuously compounded risk-free rate, andq is the continuous dividend yield. Hence, if
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the formσ(t, S) is specified, then the option priceV (S0, 0;T,K, σ) can be uniquely
determined by solving Equation (3.38) given the initial andboundary conditions. Since
we are dealing with standard European options, the appropriate initial and boundary
conditions are;











V (S, T ;T, T, σ) = max(ST −K, 0) for S ≥ 0

V (0, t;T,K, σ) = 0 for 0 ≤ t ≤ T
∂V
∂S

(S, t;T,K, σ) = e−q(T−t) as S → ∞ for 0 ≤ t ≤ T

(3.39)

In the general context set above, market calibration involves finding a local volatility
functionσ that solves the PDE in Equation (3.38) such that the obtainedoption prices
fall in between the corresponding bid and ask option prices.That is,

V b
ij ≤ V (S0, 0;T,K, σ) ≤ V a

ij

for i = 1, 2, 3, . . . , N denoting the sets of maturities,Ti’s andj = 1, 2, 3, ...,M de-
noting the sets of strike prices,Kj ’s for each maturity. Satisfying these inequality
constraints, a functionG(σ) is to be minimized with respect toσ and possibly making
it approach zero:

G(σ) =
N
∑

i=1

Mi
∑

j=1

[V (S0, 0;Ti, Kij , σ)− Ṽij]
2, (3.40)

where Ṽij = 1
2
(V a

ij + V b
ij) is the average of the bid and ask prices. To this extent,

minimizing the functionG over a general space of admissible functions is ill-posed,
essentially because a finite and discrete number of observable option prices. Hence,
the functionσ can not be uniquely determined with guaranteed continuous dependence
on market option prices. And as a consequence of this, a smallperturbation in price
data can lead to a large change in the minimizing function. Therefore, a regularization
technique (Tykhonov regularization) is necessary to assure the well-posedness of the
problem and to obtain an optimal solution which is numerically robust [32]. For full
documentation of this method, refer to [26].

3.4.1.2 Method of Achdou Y. and Pironneau O.

This method involves similar setting and arguments in re-construction of the local
volatility function as in the previous method. However, it is less computationally in-
tensive compared to the method in Section 3.4.1.1 in that it solves for the option prices
only once. Due to the assumption made onσ(t, S), that is to be deterministic, one can
not find an explicit formula for the option prices as in the case of constant volatility.
Thus, this will be done numerically. Just like in Section 3.4.1.1, the aim is to determine
a good estimate forσ such that the theoretical prices produced by the BS-PDE matches
the market prices. Stating the problem mathematically:

Given a set of times{ti}, stock prices{Si}, strikes{Kj}, for j = 1, 2, 3, . . . ,M for
each maturity{Ti} and given the market prices{Cij} of call options corresponding to
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these parameters, can one obtain a functionσ(t, S) such that

V (Si, ti, Ti, Kj, σ) = Cij

holds for eachi = 1, 2, 3, . . . , N? This is also an ill-posed inverse problem. In this
method, the solution of the above problem involves solving the PDE associated with
Dupire’s equation usingregularized least squares approximationmethod. Also, in de-
termining the minimizing volatility parameter,gradient descent methodwas used. The
idea behind solving the ill-posed problem proposed by thesetwo authors are basically
as the same as that in the problem settings of Section 3.4.1.1except that they used
different numerical techniques. For full documentation ofthis method, refer to [1].

3.4.1.3 Method of Hanke M. and Elisabeth R.

In this approach, anatural smoothing cubic splineis used to interpolate the option
prices in strikeK and then partial derivative of the option prices with respect to strike
K are taken on the interpolated curve. Also,finite difference methodis used to calcu-
late the partial derivative of the option price with respectto maturityT . Consequently,
regularized least squares method is used to solve for the local volatilities in Dupire’s
equation. The regularization is necessary because of the unstable nature of solving the
ill-posed problem as previously explained. This amount to minimizing

‖Ax − b‖22 + λ ‖Lx‖22 overx ∈ R
n

whereA is the denominator in Dupire’s equation,x is the local volatility,b is the
numerator in Dupire’s equation,λ is the regularization parameter, andL is a differential
operator.L could be chosen to be the identity matrix (I) but this does not guarantee a
solution that yields non-negative local volatilities [21]. Several methods also exist for
determining the regularization parameterλ. Some of these methods are: Discrepancy
principle [22], L-criterion (see [16], Section 4.5), and AIC-criterion.

These approaches of obtaining local volatilities are not carried out in this thesis. How-
ever, they will be explored in further studies where regularization schemes will be used
in solving Dupire’s equation. For full documentation of this method, refer to [21].

3.4.2 Non-Parametric Method of Obtaining Local Volatility Surface via Implied
Volatility Data

There are two different approaches of obtaining local volatility surfaces via non-para-
metric method implemented in this study. The two approachesare through the use of
implied volatility data and market quoted option prices. Inthis section, obtaining local
volatility surface via the use of implied volatility data will be explored. Consequently,
the algorithm used for obtaining the surfaces will be given and analysis of the surfaces
will be made.

With the Black-Scholes implied volatility data, a local volatility surface will be con-
structed. This involves usingcubic spline functionsto interpolate the call option prices
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in maturity T and strikeK. The idea behind cubic spline interpolation in the 1-
dimensional case was explained in Section 3.2. However, oneshould note that this
interpolation was done without any constraints that forcesthe whole interpolated sur-
face to be arbitrage-free. Therefore, there is a possibility of having grid points that
exhibit negative local variances. This will be handled by keeping the local variances at
those grid points zero.

The following basic steps are used in this method:

1. Calculate the Black-Scholes call options prices of the given implied volatilities.

2. Interpolate the Black-Scholes call option prices as a function of maturityT and
strikeK.

3. Take the appropriate derivatives of the option price function as derived in Equa-
tion (3.7), Equation (3.13), and Equation (3.16).

4. Determine the local volatilities using the Dupire’s equation.

5. Obtain the local volatility surface in terms of maturityT and strikeK.

It can be easily observed from the above steps that the out-of-sample data points will be
accounted for in the interpolated surface. In the algorithms under parametric method,
grid points were used when maturitiesT and strikesK were discretized. However, we
will see in Section 3.4.2.2 that the interpolated surface obtained with the use of cubic
spline functions does not cover all the grid points. For thisreason, the mesh-grid for
this section is smaller so that all the sample points will have call option values on the
surface.

3.4.2.1 Algorithm

The detailed algorithm on how to implement the steps given inSection 3.4.2 will be
carried out here. The algorithmic steps are given below:

1. Load data comprising ofT,K, S, IV, r, q.

2. CalculateFT = Se(r−q)T .

3. Calculate the corresponding forward Black-Scholes call option prices, using the
call option price function “blsprice” on MATLAB .

4. Determine the 2-dimensional cubic spline interpolationof Black-Scholes call
price surface in terms of maturityT and strikeK. This can be done on the
“cftool” on MATLAB undercurve fitting.

5. DiscretizeT andK into Ti andKi.

6. Make a meshgrid ofTi andKi (i.e [Tm, Km] = meshgrid(Ti, Ki)).
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7. Calculate the Black-Scholes call option prices of the meshgrid above.

8. Calculate theIVm of the Blcak-Scholes call option prices at those grids.

9. Calculate the partial derivatives ofIVm with respect toT andK using thefinite
(central) difference method.

10. Calculate the partial derivatives in the Dupire’s equation by using Equation (3.7),
Equation (3.13), and Equation (3.16).

11. Calculate the local variance and local volatilities fromthe Dupire’s equation.

12. Usingmeshgrid (Tm, Km, LV ), obtain the local volatility surface.

3.4.2.2 Results and Analysis of the Surfaces Obtained from Implementing Sec-
tion 3.4.2.1

In this section, the surfaces obtained from the implementation of the algorithm in Sec-
tion 3.4.2.1 will be given as well as their analysis.

The three surfaces obtained after the implementation of thealgorithm in Section 3.4.2.1
are: Cubic spline interpolation of the Black-Scholes call option prices, Implied volatil-
ity surface via spline interpolation, and Local volatilitysurface via spline interpolation
respectively. The surface of Cubic Spline Interpolation of the Black-Scholes Call Op-
tion is given in Figure 3.7. Consequently, the correspondingimplied volatility surface
for the parts of the interpolated surface that give positiveimplied volatilities is shown
in Figure 3.8.
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Figure 3.7: Cubic Spline Interpolation of the Black-Scholes Call Option Data Obtained
from Implied Volatilities

It can clearly be observed that the implied volatility surface is not available for lower
maturitiesT and strikesK. This is because at those lower values, the implied volatility
surface is unrealized due to attainment of negative values at those grid points. How-
ever, to have a full picture of the implied volatility surface, cubic spline interpolation
of implied volatility data is carried out. This surface is shown in Figure 3.9. As can be
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Figure 3.8: Implied Volatility Surface Obtained from Interpolation of Black-Scholes
Call Option Data

seen, this surface provides more values for the grid points than shown in Figure 3.8.
Also, with the implied volatility surface in Figure 3.8, we do not observe much of
a “smile” and this is attributed to the fact that we do not havethe surface for lower
maturities and lower strikes where the “smile” effect is usually observed. The corre-
sponding local volatility surface for the implied volatility surface in Figure 3.8 is given
in Figure 3.10.
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Figure 3.9: Implied Volatility Surface Obtained from Spline Interpolation of Implied
Volatility Data

This local volatility surface exhibits some local extrema of volatilities with no obvious
“smile” effect. This is also due to the fact that the surface does not include lower
maturitiesT and strikesK.

To enhance this method, it is necessary to first find an interpolating scheme that pro-
duces option surfaces that are arbitrage-free. This amounts to solving a constrained
cubic spline interpolation of the option prices where the constraints are a combination
of linear and non-linear inequalities. This inherently deals with the negative values that
we obtained for the implied volatilities at some grid points. This subject is well-dealt
with in [17]. This concept of obtaining a whole local volatility surface that is arbitrage-
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Figure 3.10: Local Volatility Surface via Cubic Spline Interpolation of Black-Scholes
Option Prices

free usingarbitrage-free implied volatility surfacewill be emphasized in Chapter 4.
This will be a continuous work for further studies.

Secondly, another interpolating scheme could have performed better. For example, the
use ofThin-plate splinesproduced a call option surface that covers the lower maturities
and strikes as depiced in Figure 3.11.
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Figure 3.11: Thin-Plate Spline Interpolation of the Black-Scholes Call Option Data
Obtained from Implied Volatilities

3.4.3 Non-Parametric Method of Obtaining Local Volatility Surface via Option
Price Data

In this section, local volatility surface from option prices data rather than implied
volatility data will be obtained. This involves usingnatural cubic splinein the inter-
polation of market option prices and with the aid offinite (central) difference method,
the appropriate partial derivatives in the Dupire’s equation will be taken on the inter-
polated surface. The detailed algorithm for obtaining the local volatility surface using
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market prices will be given in Section 3.4.3.1 and the results and analysis of the surface
obtained will be made in light of the new data in Section 3.4.3.2.

Firstly, we will describe the new data obtained. The data wastaken from [10]. It’s
call options of SPX observable on 8th February, 2006. It contains 126 sets of different
options observed in the market across all maturitiesT and strike pricesK. The stock
had a spot price of $1265.65 and interest rate of 5.25% with nodividends.

3.4.3.1 Algorithm

The algorithm used in constructing the local volatility surface from the market option
prices will be given here. The following steps are used in obtaining the local volatility
surface.

1. Load data comprising ofT,K, S, P, IV, r, q.

2. Determine thecubic spline interpolationand thin-plate spline interpolationof
call prices in terms ofT andK. This can be done in the “cftool” on MATLAB

undercurve fitting. Let this surface be named “Surface”.

3. DiscretizeT andK into Ti andKi

4. Make a meshgrid ofTi andKi (i.e [Tm, Km] = meshgrid(Ti, Ki)).

5. Calculate the option prices only at those grid points from the interpolated sur-
face, that is,C(T,K) = Surface(Tm, Km).

6. Using finite (central) difference method, calculate the following:

(a) The partial derivative of the call optionC(T,K) with respect to maturity
T .

(b) The partial derivative of call optionC(T,K) with respect to strikeK.

(c) The 2nd partial derivative ofC(T,K) with respect to strikeK.

7. Using the above derivatives, calculate the local variance in the Dupire equation.

8. Make the grid points with negative local variances zero using LV(LV<0)=0
since the local volatilities at those points are not feasible.

9. Calculate the local volatilities,σ(T,K).

10. Usingmeshgrid (Tm, Km, LV ), obtain the local volatility surface.

3.4.3.2 Results and Analysis of the Surfaces Obtained by Implementing Sec-
tion 3.4.3.1

Here, two methods of spline interpolations are used; one is based oncubic spline
interpolation and the other onthin-plate spline interpolation. The basic difference
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between both interpolation methods from the surfaces they produce is that the latter
produces a surface for more grid points than the former.
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Figure 3.12: Cubic Spline Interpolation of the Market OptionData
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Figure 3.13: Thin Plate Spline Interpolation of the Market Option Data

The cubic spline interpolation surface of the market call option data is shown in Fig-
ure 3.12 while that of thin-plate spline interpolation is shown in Figure 3.13. The
differences can be easily observed from the two surfaces.

Consequently, the local volatility surfaces of the two spline interpolated surfaces can
be viewed in Figure 3.14 and Figure 3.15, where the former is the local volatility
surface via thin-plate interpolation of market option dataand the latter is via cubic
spline interpolation of market option data. These surfacesexhibit some local extrema
of high local volatilities and the “smile” effect can be faintly observed along lower
maturities for all strikes and lower strikes for all maturities.
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Figure 3.14: Local Volatility Surface via Thin-Plate Interpolation of Market Option
Data
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Figure 3.15: Local Volatility Surface via Cubic Spline Interpolation of Market Option
Data

3.4.4 Deficiency of Numerical Non-Parametric Method

In this section, some important issues that arise when dealing with non-parametric
methods of obtaining local volatility surfaces will be discussed. Firstly, the key im-
portant deficiency of using this method to re-construct local volatility function is that
this method does not take into account how to make the whole interpolated volatility
surfaces arbitrage-free. However, we have considered in this thesis only those points
that are arbitrage-free on the local volatility surface that can be used for application
purposes. Several suggestions can be given to handle this problem. One of such
suggestions involves the non-arbitrage interpolation (cubic spline) of the call options,
which in turn gives non-negative values of local variance when the Dupire’s equation
is solved.

Another suggestion is to solve the Dupire’s equation with Tikhnov regularization. The
setting involves solving

Ax = b,
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whereA is the diagonal matrix consisting of the denominator valuesin Dupire’s equa-
tion at the diagonals;x is a column matrix consisting of the local variance values tobe
solved for; andb is a column matrix consisting of the numerator values in the Dupire’s
equation. In fact, this solves for local variances with non-negative values in the pres-
ence of negative values in the matricesA and/orb.

Secondly, there is a question of which spline interpolationfunction is more suitable
for our purpose. We generally use the cubic/thin-plate splines partly because in most
studies for instance [21], they were used and also because the Dupire’s equation is a
differential equation of order two. Moreover, a spline function that is twice continu-
ously differentiable is needed to ensure the smoothness of the call option’s interpolated
surface.
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CHAPTER 4

CONCLUSION

In this concluding chapter, summary of what have been done inthis thesis will be
highlighted and the outlook for further studies will be discussed.

The aim of this thesis was to emphasize the importance and usefulness of local volatil-
ity model in modeling the “volatility smile” of the underlying assets. Broadly speak-
ing, we have investigated the local volatility model in details: from understanding
its financial stand point to its mathematical model derivations. Consequently, various
numerical techniques used in obtaining local volatility surfaces have been explored.
Some as used in the literature and some as proposed and implemented in this thesis.

There are several paths this thesis could take for further studies. First, the volatility
surfaces obtained can be used as a first hand estimation in pricing exotic options like
barrier, look back, and asian. In fact the surfaces obtainedare important because it is
crucial for practitioners to have a stable algorithm to determine the volatility structure
for the underlying assets that exotic options will be written on. Without a proper pric-
ing mechanism, the market for these options could be raided with arbitrage prices that
could lead to mis-pricing of financial derivatives. In addition, the volatility surfaces
could also be used to hedge positions in exotic options.

Another important idea whose exploration is very useful is the comparison of the per-
formances of the surfaces obtained against the ones produced from other complex mod-
els used in modeling an asset’s volatility structure. Thesecomplex models are stochas-
tic volatility, jump-diffusion, local stochastic volatility models, etc. Furthermore, to be
able to compare, these complex volatility models need to be studied in details as well.
Consequently, it will be a good approach to study a model basedon jump diffusion
process and one based on stochastic process to be able to compare across disparate
models. So far, we have dealt with a deterministic model (local volatility model).

Another rational and well-founded approach is to figure out astable numerical tech-
nique and algorithm that will be able to produce non-arbitrage implied volatility sur-
face. This surface in turn is used to obtain local volatilitysurface. This approach can
be done using either parametric method or non-parametric methods. Under parametric
method, obtaining arbitrage-free implied volatility surface involves an algorithm that
solves the parametrized implied volatility function in an arbitrage-free way. There-
fore, when the Black-Scholes prices are computed for the gridpoints in maturitiesT
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and strike pricesK, non-arbitrage prices will be obtained. This will in turn keep the lo-
cal volatilities in Dupire’s equation positive because arbitrage-free options prices (for
fixed t0 andS0) conform to the following rule:

1. Monotonically decreasing and convex in strikeK;

2. Monotonically increasing in maturityT.

For non-parametric method, consider the method explored inSection 3.4.3. It’s possi-
ble to write a stable algorithm that will produce the spline interpolation of the option
prices in an arbitrage-free way. This is the key idea in the work of Fengler M.R [17].

Another well founded idea is to obtain the non-negative local volatilities by solving
the regularized Dupire’s equation in the least squares sense over the space of positive
real numbers. To explore this idea further, Section 3.4.4 might be of help.
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APPENDIX A

DEFINITIONS AND THEOREMS

In this Appendix, some of the theorems that were used in this thesis are highlighted:

Definition A.1 (Itô process). Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and
(Bt)t≥0 an Ft-Brownian motion. (Xt)0≤t≤T is anR-valued It̂o process if it can be
written as

P a.s. ∀t ≤ T Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs,

where

• X0 is F0-measurable.

• (Kt)0≤t≤T and(Ht)0≤t≤T areFt-adapted processes.

•
∫ T

0
|Ks| ds < +∞ P a.s.

•
∫ T

0
|Ks|2 ds < +∞ P a.s.

Theorem A.1 (Itô formula). Let (Xt)0≤t≤T be an It̂o process as in Definition A.1, and
f be a twice continuously differentiable function. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f
′′
(Xs)d < X,X >s

where by definition

d 〈X , X〉t =
∫ t

0

H2
sds

and
∫ t

0

f ′(Xs)dXs =

∫ t

0

f ′(Xs)Ksds+

∫ t

0

f ′(Xs)HsdBs.

Likewise, if(t, x) → f(t, x) is a function that is twice differentiable with respect tox
and once with respect tot, and if these partial derivatives are continuous with respect
to (t, x) (i.e. f is a function of classC1,2), the It̂o formula becomes

f(t,Xt) = f(0, X0) +

∫ t

0

f ′
s(s,Xs)ds

+

∫ t

0

f ′
x(s,Xs)dXs +

1

2

∫ t

0

f
′′

xx(s,Xs)d 〈X , X〉s .
(A.1)
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Theorem A.2(Forward equation). LetYt represents a diffusing particle that follows a
stochastic differential equation as in

dYt = b(t, Yt)dt+ σ(t, Yt)dBt,

then for a fixedx and s, a smooth transition densityp(x, s; .; .), of Xt, satisfies the
forward equation

∂tp = A∗
y,tp, t > s

whereA∗
y is the adjoint operator defined by

A∗
y,tg :=

1

2

∑

ij

∂2

∂yi∂yj
(aij(y, t)g)−▽y. (b(y, t)g)

andaij(y, t) = σσT . This describe the evolution of the density forward in time.

Theorem A.3 (Uniqueness Theorem). Let Yt represents a diffusing particle that fol-
lows the stochastic differential equation

dYt = b(t, Yt)dt+ σ(t, Yt)dBt, (A.2)

with Y0 = Z.

If b andσ are continuous functions, and if there exist constantK < +∞ such that

1. |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K |x− y| ,
2. |b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|),
3. E(Z2) < +∞,

then for anyT ≥ 0, Equation Equation (A.2) admits a unique solution in the interval
[0, T ].

Theorem A.4 (Girsanov Theorem). Let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability
space and(Bt)0≤t≤T an(Ft)−standard Brownian motion. Let(θt)0≤t≤T be an adapted
process satisfying

∫ T

0
θ2sds < ∞ a.s such that the process(Lt)0≤t≤T defined by

Lt = exp

(

−
∫ T

0

θsdBs −
1

2

∫ T

0

θ2sds

)

is a martingale. Then under the probabilityP(L) with densityLT with respect toP,
the process(Wt)0≤t≤T defined byWt = Bt +

∫ t

0
θsds is an (Ft)−standard Brownian

motion.
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APPENDIX B

REGULARIZATION SCHEMES

In this appendix, fundamental concepts of inverse problem as well as regularization
schemes will be discussed as a fore study into the numerical techniques that will be
used in future work.

B.1 Fundamental Concepts in Inverse Problem

Most of the subjects that will be discussed in this section can be found in [29].

B.1.1 Condition of Function Evaluation

A function to be evaluated at a given point can be well or ill-conditioned.

Definition B.1. An evaluation of a well defined function,f : R → R is well-conditioned
if a small error (a ballBδ(x) aroundx, ∀δ > 0) in the point where the function is eval-
uated does not greatly affect the value of the function.

Definition B.2. An ill-conditioned function is the one in which the evaluation of the
function in a neighborhood of a point leads to a large error.

To illustrate these ideas presented above, let’s consider asimple example.

Example B.1(Evaluation of a rational function). Consider the evaluation of the func-
tion f(x) = 1/(1− x). The computation off(x) is:

1. ill-conditioned, ifx is closer to 1 (but differs from 1)

2. well-conditioned, otherwise

To illustrate the two cases:

1. Whenx is near 1.

77



Let x = 1.00049 and in the computation let’s use an approximate valuex∗ =
1.0005. Hence, absolute error of the evaluation is:

eabs = f(x∗)− f(x) = −103/24.5.

While we have an error of10−5 = x∗ − x in the data that led to an evaluation
error of−103/24.5. This is magnified by the multiplication factor

m =
error in the result (of the evaluation)

error in the point (of the domain)
= −103/24.5

10−5
,

which in absolute values gives the condition number,c = |m| > 106.

2. Whenx is far from 1.

We observe that whenx is far from 1 the previous magnification does not occur.
Let’s say we takex = 1998 andx∗ = 2000 as an approximation forx. Then, the
absolute error in the evaluation is

eabs =
1

1− 2000
− 1

1− 1998
=

2

1999.1997
.

Hence, the magnification factor of the error is(1999.1997)−1 < 10−6, effectively
reducing the error.

Definition B.3. Givenf : D ⊂ R → R of classC1, cf (x) = |f ′
(x)| is the condition

number of the (evaluation) off atx. We also say that the evaluation of a function off
atx is well-conditioned ifcf (x) ≤ 1 and ill-conditioned ifcf (x) > 1.

NOTE: Consider the quotient below (multiplication factor)

m =
error in the result (of the evaluation)

error in the point (of the domain)
=

f(x∗)− f(x)

x∗ − x
. (B.1)

Equation (B.1) isNewton quotientof f, a primary step in defining the derivative of a
function at a point. In the limiting case, asx∗ → x, we have thatm → f

′
(x) andf

′
(x)

is defined to be theerror multiplication factorof f at pointx.

B.1.2 Types of Multiplication Factors

1. f ′(x): the (usual) derivative off atx;

2. f ′(x)/f(x): the logarithmic derivativeof f at x (indeed, it is the derivative of
ln(f(x)));

3. xf ′(x): derivative (differential operator) without a special name;

4. xf ′(x)/f(x): theelasticityof f atx (very well used in economics).
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B.2 Analysis on the Existence and Uniqueness

Some of the difficulties plaguing inverse problems are related to the available infor-
mation (data): both quantity (not sufficient or over-abundance data) and quality of
information. Let’s explain this point with the help of an example.

Suppose that the function that truly generates a phenomenonis

f(x) = 2x+ 1.

In the inverse problem, we assume this function is unknown tous. However, let’s
suppose we can determine the form to which the function belongs, namely:

fa,b(x) = ax+ b,

wherea andb are arbitrary constants. From the available data, we then try to determine
what these values ofa andb are. We will consider 3 cases each of which depends on
the type/nature of data observed or available to us.

B.2.1 Exact Data

1. Not sufficient data. Assume we know the point(1, 3) belongs to the graph off.
It is trivial that the datum available is not enough to determine a andb. Hence,
we only know that

f(1) = 3 or a+ b = 3,

It is then impossible to determine the unique values ofa andb, which make the
model indeterminable.

2. Sufficient data. Now, let’s say we know(1, 3) and(2, 5). Thus,a + b = 3 and
2a+ b = 5, from which we can determine thata = 2 andb = 1 solving the two
equations simultaneously, hence we select the modelf(x) = 2x+ 1.

3. Too much data. Suppose now that the points(0, 1), (1, 3), and(2, 5) belong to
the graph off. Then

a = 2 andb = 1.

Note that in case of exact data, having too much data does not affect the unique-
ness of the chosen model, however, any two of the available data above would
have been sufficient to determine the unique function that solves the given in-
verse problem.

B.2.2 Real Data

In practice, we do not have exact data, due to the methods usedin acquiring those data.
Hence, these types of data can also be called noisy data because they contain some
errors. We still have three possibilities just as discussedabove:
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1. Insufficient data. Datum (1, 3.1) has an error-as we can tell, for our “phe-
nomenon”f(1) = 3 and not 3.1. Moreover, this datum is insufficient because
we obtain only one equation betweena andb,

a+ b = 3.1,

which can not determinea andb uniquely, not even approximately. Additional
information must be given to ensure the unique solution of the inverse problem.

2. Sufficient data. Suppose we have the following data:(1, 3.1) and(2, 4.9). Then,
an approximate values fora andb can be determined by solving the following
equations obtained by substituting the above data into the choice of model. This
leads to

a+ b = 3.1,

2a+ b = 4.9.
(B.2)

Solving Equation (B.2) givesa = 1.8 andb = 1.3.

Note: It is not always possible to estimate the parameters by imposing that the
model fits or interpolates the data even with a sufficient noisy data. And it is
often advised to solve the above problem in least squares sense where the error
function is being minimized. As a result, the parameters that minimizes the error
function are being determined. In case of the example above,the error function
E(a, b) becomes

E(a, b) =
1

2

[

(fa,b(1)− 3.1)2 + (fa,b(2)− 4.9)2
]

=
1

2

[

(a+ b− 3.1)2 + (2a+ b− 4.9)2.
]

(B.3)

The minimum ofE is given by its critical points, that is, the points where the
gradient ofE is null. This involves taking the partial derivative with respect to
each variable the error function is dependent on. Therefore, the critical points
are determined as follows:

0 =
∂E

∂a
= (a+ b− 3.1) + 2(2a+ b− 4.9);

0 =
∂E

∂b
= (a+ b− 3.1) + (2a+ b− 4.9).

(B.4)

Simplifying the equations above, we obtain

a+ b = 3.1 and2a+ b = 4.9.

It is coincidental that due to the form of the functionfa,b, the system in Equa-
tion (B.2) and just the one obtained are the same. Sometimes, the system in
Equation (B.2) does not have a solution while the system in thesecond case
does. In real inverse problems, solving in the least squaressense is a way to
reach a solution.
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3. Too much data.Assume that

(x1, y1), (x2, y2), . . . , (xn, yn) with n ≥ 3,

are several experimental data points that are associated with the “phenomenon”
f(x) = 2x+ 1.
It is inevitable that the data contains errors which makes itimpossible to solve
for a andb in the system below:

y1 − fa,b(x1) = y1 − (ax1 + b) = 0;

y2 − fa,b(x2) = y2 − (ax2 + b) = 0;

...
yn − fa,b(xn) = yn − (axn + b) = 0.

(B.5)

Usually one would say that the system has no solution becausethere aren −
equations and2 − unknowns. However, in general, one should say that the
given data can not be fitted by the model. Thence, the above system of equations
can be re-written in this form:

a















x1

x2
...
xn















+ b















1
1
...
1















=















y1
y2
...
yn















We introduce the notationx = (x1, x2, . . . , xn)
T , 1 = (1, 1, . . . , 1)T andy =

(y1, y2, . . . , yn)
T . The above vector equation can be written as

ax+ b1 = y.

Using the method of least squares, define the error of residual vector by

r = y − (ax+ b1),

given as the difference between the experimental measurements (y) and the pre-
dictions of the model with the coefficientsa andb (i.e ax+ b1). In this method,
one tries to choose appropriatea andb such that the functional error

E(a, b) =
1

2
‖r‖2 = 1

2
‖y − ax+ b1‖ =

1

2

n
∑

i=1

(yi − (axi + b))2,

is minimized. This is requiring that the inner product of thevectorsx and1 span-
ning the subspaceR2 ⊂ R

n with the error vectorr are0 (sincer is orthogonal
to the plane spanned byx and1). Hence,

〈x , y − ax+ b1〉 = 0 and 〈1 , y − ax+ b1〉 = 0.

This can be written as

xT (y − ax+ b1) = 0 and1T (y − ax+ b1) = 0,
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which leads to

axTx+ bxT
1 = xTy;

a1Tx+ b1T
1 = 1

Ty.
(B.6)

Thence,
(

xTx xT
1

1
Tx 1

T
1

)(

a
b

)

=

(

xTy
1
Ty

)

.

DefiningA = (x,1) and an-n× 2 matrix, Equation (B.6) can be re-written as

ATA

(

a
b

)

= ATy, (B.7)

which is usually called thenormal equation. Note that even ifATA is not invert-
ible, Equation (B.7) will still have solution which will not be discussed further
here. However, if it is invertible, then the solution to the inverse problem can be
shown to be equivalent to

(

a
b

)

= (ATA)−1ATy. (B.8)

This is the solution to the inverse problem given by theleast squares method
which is equivalent to the evaluation of the function

y 7→ (ATA)−1ATy.

Computing this might be unstable depending on matrixA and also computation-
ally inefficient. Assuming thatA is invertible, then,AT is also invertible since

(AT )−1 = (A−1)T ,

which leads to
(

a
b

)

= A−1(AT )−1ATy = A−1y. (B.9)

Note that this result obtained in Equation (B.9) is valid if the data is exact or not.

As a closure to this section, the definition of a well-posed problem will be given
according to Hadamard

Definition B.4. A well-posed problem is defined as one which has the following
properties:

(a) has a unique solution (existence);

(b) the solution is unique (uniqueness);

(c) the solution depends “smoothly” on the given data (regularity).

When any of these is not satisfied we say that the problem is ill-posed.

82



B.2.3 Spectral Analysis of Inverse Problems

In this section, an example of a problem will be given and its properties will be checked
with Hadamard’s specifications for well-posedness. Also, Regularization schemes will
be discussed (Tikhonov regularization). This section is largely inspired by [29].

Example B.2. Given the matrix

(

1 0
0 1

1024

)

, and the vectory = (1, 2−10)T , it is clear

thatx = (1, 1)T is the solution of the system

Kx = y. (B.10)

Problems like this could be fairly difficult to solve since small perturbation iny could
lead to large change in the solution inx. Let’s say we perturby by p = (0, 2−10)T .
Then, we obtain a solution that differs fromx by r = (0, 1)T , given rise to

K

((

1
0

)

+

(

1
0

))

= K(x+ r) = y + p

=

(

1
2−10

)

+

(

0
2−10

)

.

(B.11)

Hence, the multiplication factorm = |r| / |p| = 1024 which makes the problem ill-
conditioned. This is not true for all perturbations. We observe that ifp = (2−10, 0)T ,
thenr = (0, 2−10, 0)T , which in-turn makes the multiplication factorm = |r| / |p| = 1.
We realize that evaluations of inverse ofK at some points are more sensitive than other
points, thus, we change the problem a little bit by solving a perturbed problem of the
form:

Kαx = yα, α > 0, (B.12)

in that Equation (B.12) behaves like Equation (B.10) as much aspossible but with
additional advantage of being better conditioned to certain small alterations iny. Thus,
we call Equation (B.12) as being the regularization of the original problem presented
in Equation (B.10). Hence, choose

Kα =

(

1 0
0 1

(1−α)10
1
210

)

, andyα = y, 0 < α < 1, (B.13)

and note that
Kα → K, as α → 0.

Choosing an appropriateα, one can solve Equation (B.10) using Equation (B.12) for
different perturbations ofy.

Definition B.5. The familiesKα and bα, α > 0, constitute alinear regularization
schemefor the linear problemKx = y, if the following conditions hold:

Kα → K, |bα| ց 0 and
∣

∣K−1
α

∣

∣ր
∣

∣K−1
∣

∣ , asα ց 0. (B.14)

Here,α is called theregularization parameter. The perturbed problemKαx = y+bα is
called theregularized problem,Kα is theregularized matrixandxα is theregularized
solution.
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Theorem B.1. The following theorem gives some consequences of a linear reg-
ularization scheme.

1. If the pairKα andbα, constitute a linear regularization scheme, we have

xα → x andα → 0. (B.15)

2. The evaluation’s condition of the regularized problem solution is less than the
evaluation’s condition of the unperturbed problem

The proof of this theorem will be omitted in this thesis. However, interested readers
could refer to [29].

B.2.4 Tikhonov Regularization

In this section, we will discuss and analyze a classical regularization scheme, the
Tikhonov regularization scheme. The analysis here will depend on the classical spec-
tral theory of linear operators in finite dimension vector spaces (this is out of the scope
of this thesis, however one can refer to [29] for details.)

We noted earlier that solving Equation (B.10) can be replacedwith the problem of
minimizing the functional

f(x) =
1

2
‖Kx− y‖2 , (B.16)

givenK andy.

Theorem B.2. LetK be an invertible matrix. The following hold:

1. x∗ is the minimum point off if and only ifx∗ is the solution of Equation (B.10);

2. The critical point equation off is KTKx = KTy;

3. The critical point equation off is equivalent to Equation (B.10).

Also, the proof of this will not be given here, but can be foundin [29]. To avoid am-
plification of error in the solution of Equation (B.10), a natural notion is to penalize
the distance from the solution to a reference value or the norm of the solution vec-
tor (the distance with respect to the origin). Here, a reference value means a known
approximate solution to the problem denoted byxr.

In the case of Tikhonov’s method, this idea involves a regularization that penalizes
the growth of the distance from the reference value. For the problem of the form in
Equation (B.10) under consideration, it consists of solvingthe critical point equation
of the function

fα(x) =
1

2
‖Kx− y‖2 + α

2
‖x− xr‖2 , (B.17)
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with α > 0, the so-called regularization parameter. The minimum pointxα satisfies
the critical point equation

α(xα − xr) +KTKxα = KTy, (B.18)

which can be re-written as
(

αI +KTK
)

xα = KTy + αxr. (B.19)

We will verify that Equation (B.19) provides a regularization scheme for the normal
equationKTKx = KTy. Care should be taken that the problem that is being regular-
ized is the normal equation above and not Equation (B.10). Hence, let

Aα = αI +KTK andbα = αxr, α > 0. (B.20)

Theorem B.3. The familiesAα, bα, α > 0, are a linear regularization scheme for
equationKTKx = KTy.

The proof of this is omitted, but can be found in [29] as well.

RemarkB.1. The definitions, notions and theorems in this section statedfor the linear
regularization schemes can also be derived for the non-linear case.
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