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                                                       ABSTRACT 

 

MISSION PLANNING FOR UNMANNED AERIAL VEHICLE (UAV) TEAMS 

 

                                                      Yılgın, Serdar 

                                M.S., Department of Computer Engineering 

                                Supervisor: Prof. Dr. Faruk Polat 

 

                                              September 2014, 71 pages 

 

In recent years, use of Unmanned Aerial Vehicle (UAV) especially for 

reconnaissance and combat missions has become very popular in worldwide. There 

is no onboard human operator exists for UAVs and they are generally controlled by 

remote human operators. Depending on the operational environment; sometimes it 

becomes nearly impossible to provide optimal or an acceptable UAV – target 

assignment and scheduling, satisfying the constraints required to accomplish the 

mission, for the operators in control center. In this scheme, computer support became 

inevitable to be able to acquire more suitable scheduling and assignments for the 

missions, involving more than a few UAVs and targets, in shorter durations. In this 

thesis, we study different approaches for UAV mission planning problem and 

analyze their performances. We designed a genetic algorithm instance with 

customized encoding, crossover and fitness calculation that all these algorithm 

components are somehow related to problem domain. A brute – force and a greedy 

algorithm are also developed for this problem with the aim of comparison. As the 

result, by utilizing developed algorithms, it has become possible to evaluate 

effectivity and efficiency of the proposed genetic algorithm. 

 

Keywords: Unmanned Aerial Vehicle, Genetic Algorithm, Mission Planning, UAV – 

Target Assignment and Scheduling, Operational Environment 
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                                                                  ÖZ 

 

 İNSANSIZ HAVA ARACI (İHA) TAKIMLARI İÇİN GÖREV PLANLAMA 

 

                                                         Yılgın, Serdar 

                               Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

                               Tez Yöneticisi: Prof. Dr. Faruk Polat 

 

                                                    Eylül 2014, 71 sayfa 

 

Son yıllarda, özellikle keşif ve çarpışma görevlerinde İnsansız Hava Aracı (İHA) 

kullanımı dünya çapında fazlaca tercih edilir bir hale gelmiştir. İHA’lar için hava 

aracı üzerinde bir insan operatör bulunmaz ve bu araçlar genellikle uzak kontrol 

merkezlerindeki insan operatörler tarafından kontrol edilirler. Operasyonel ortam 

şartları doğrultusunda; kontrol merkezindeki operatörlerin, görevin başarıyla 

sonuçlanmasını sağlayacak gereksinimleri en uygun veya kabul edilebilir uygunlukta 

yerine getiren bir İHA – hedef eşleşmesi ve zaman planlaması yapabilmeleri bazen 

neredeyse imkânsız bir hal alır. Bu durumda özellikle birkaç İHA ve birkaç hedeften 

fazlasını içeren görevlerde, daha kısa bir zaman dilimi içerisinde daha uygun zaman 

planlamaları ve atamalar sağlayabilmek için bilgisayar desteği almak kaçınılmaz 

olmuştur. Bu tezde, İHA görev planlaması için farklı yaklaşımlar üzerinde çalıştık ve 

bu yaklaşımların başarılarını analiz ettik. Özelleştirilmiş çaprazlama, kodlama ve 

değerlendirme yöntemlerini içeren ve bileşenlerinin alan bilgisi doğrultusunda 

belirlendiği bir genetik algoritma örneği tasarladık. Bu problem için karşılaştırma 

amaçlı, kaba kuvvet ve açgözlülük yöntemleri üzerine kurulmuş 2 algoritma daha 

geliştirildi. Sonuç olarak, geliştirilen bu algoritmalar kullanılarak, önerilen genetik 

algoritmanın yürürlük ve etkinliğini değerlendirebilmemiz mümkün oldu.  

 

Anahtar Kelimeler: İnsansız Hava Aracı, Genetik Algoritmalar, Görev Planlama, 

İHA – Hedef Ataması ve Zaman Planlaması, Operasyonel Ortam 
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                                                      CHAPTER 1 

 

 

                                                  INTRODUCTION 

 

 

 

Unmanned Aerial Vehicles (UAVs) are somehow autonomous aircrafts and do not 

require onboard human controller (pilot) for management. The idea of using UAVs 

for various military missions receives growing attention day to day, especially in last 

two decades. Lack of dependency for an onboard controller provides some other de-

sirable features such as having less weight compared to traditional airplanes and ac-

cordingly need for lesser fuel amount for flying same distances. Also, some equip-

ment used for safety and surveillance of human controller are not necessary for 

UAVs. So, for some type of missions, it is possible to lower cost of operation by us-

ing UAVs instead of traditional airplanes. As the result, having cost advantage and 

no need for human intervention encourage the use of UAVs for realization of D-cube 

(Dull, Dirty, Dangerous) missions [19]. 

 

UAV mission planning is a kind of resource allocation problem requiring assignment 

of scarce resources to relatively big amount of targets by taking time constraints of 

targets into consideration. Workload variety of targets is also an important issue that 

number of UAVs needed by any target is directly proportional to size of the area 

covered by that target and inversely proportional to time interval that the target re-

quired to be served for. In this thesis, additional to these mentioned requirements, we 

also consider fuel consumption of UAVs. Accordingly, fuel levels of UAVs need to 

be checked to be able make them to return to base location safely. Regarding to this 

described scenario, it is possible to classify UAV mission planning problem as a 

combinatorial optimization problem, which requires finding the best or an acceptable 

solution, with respect to predefined requirements, from a big solution set. So, this  
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scheduling and planning task is NP – Hard (Non – deterministic Polynomial – time 

hard) [21]. 

 

It is not always possible for UAV operators to reach acceptable level of optimality in 

assignment and scheduling, especially for the operational environments involving 

many UAVs and targets. For some scenarios in which available UAVs are scarce and 

just a few more than the number required for accomplishing the mission with an op-

timal assignment and scheduling, probability of failure for the mission is very high 

without computer support. Even in case of success for those typical scenarios, cost of 

the operation will probably become more than the cost resulted from computer sup-

ported one. Requirement for such an algorithm meeting the requirements and provid-

ing optimal or more suitable solutions in shorter durations constitutes the motivation 

of this study. 

 

In this thesis, we focus on genetic algorithm formulations for UAV mission planning 

problem. Problem specific encoding, crossover and fitness calculation schemes are 

proposed for genetic algorithm solution of this assignment and scheduling problem 

through this thesis. Customized genetic algorithm approaches are implemented and 

examined through experiments. 

 

Greedy and exhaustive search algorithms are also implemented for the UAV mission 

planning problem. Since exhaustive search algorithm requires long time to terminate, 

it is not implemented in a standard manner but including a preprocessing procedure 

to be able to provide early elimination for the cases showing unfeasibility or lesser 

suitability obviously. Solutions of greedy and exhaustive algorithms are used for 

evaluating implemented genetic algorithm customizations. 

 

We also implemented a framework by utilizing Qt and OpenGL technologies with 

C++ programming language, to be able to create, configure and visualize problem 

instances. This framework also enables users to export produced scenarios to text 

files in xml format and they can also import saved scenarios into framework envi-

ronment by loading already saved text files. Running any of the algorithms for the  
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current scenario is possible with this framework and evaluation of them becomes 

very easy. A 2D simulation of any solution instance, resulted from the implemented 

algorithms, is also possible in this framework to be able ease feasibility detection 

especially for the scenarios involving interaction of several UAVs and targets in op-

erational environment. 

 

The remainder of the thesis is organized as follows: 

 

Chapter 2 – Background and Related Work provides base information about Un-

manned Aerial Vehicles and planning of their cooperative mission in a previously 

analyzed operational environment. Then, related studies in literature are introduced 

and analyzed. A detailed comparison, illustrating pros and cons of the approaches, is 

also provided. Lastly, algorithms for target assignment and scheduling are mentioned 

briefly. 

  

Chapter 3 – Our Work presents our study in details. Components of the genetic 

algorithm, designed in the context of this research, and their customizations are de-

scribed. Brute – force and greedy algorithms, that are also designed to work on the 

same scenarios on which the genetic algorithm works, are also introduced. Details of 

the framework, which is implemented to be able to compose various mission scenar-

ios and run the algorithms for these scenarios, are illustrated in this chapter. 

 

Chapter 4 – Evaluation of the Results provides an outline of the test results gath-

ered by running the genetic, brute – force and greedy algorithms on specified scenar-

io sets. Analysis and evaluation of acquired test results are also provided in this chap-

ter. 

 

Chapter 5 – Conclusion and Future Work includes gained acquisition remarks and 

concluding points. Statements about the future work are also provided in this chapter. 
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                                                      CHAPTER 2 

 

 

                               BACKGROUND AND RELATED WORK 

 

 

 

This chapter aims to present an overview of the UAV mission planning problem with 

all its subcomponents. It also includes current studies in literature and the approaches 

proposed in these studies. Main algorithms and formulations used to solve assign-

ment and scheduling problems are described briefly in this chapter. 

 

 

2.1 Problem Formulation 

 

Key components of the UAV mission planning problem are described briefly as fol-

lows: 

 

 Base: It is the initial location of all UAVs. The UAVs are going to depart that 

location and also they all are expected to return there after completion of their 

missions. 

 

 Fleet: It is a group of UAV constituting a taskable unit. Size of a fleet varies 

according to the aim of the UAVs. It is also possible to let several fleets to 

operate cooperatively for the same mission. 

 

 Target: It is the entity that requires some predefined number of UAVs for the 

mission to be accomplished. In general, there is less number of UAVs than 

the number required to be able to fulfill all targets’ needs. That’s why, an ef-

ficient assignment and scheduling scheme is needed. 
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 Operational Environment: It stands as the area of the interest together with 

logical and physical factors playing some roles in this area during the opera-

tion. There are also some virtual factors of operational environment which are 

also important for operations. These factors can be listed as follows: 

 

a. Radar Zones and Prohibited Areas: They are specified fields which 

are already known to be somehow in the sensor coverage of enemies’ 

defense forces. 

 

b. Safe Graph: It is the graph connecting all targets (nodes) in the oper-

ational area to base point of the fleet by taking already known radar 

zones and prohibited areas into consideration and guaranteeing no in-

tersection with them. This graph also contains distance values be-

tween each neighbor target pair available in the operational area. 

 

 The Goal: It is the aim of providing availability of desired number of UAVs 

in desired time interval for each target exists in operational environment. 

 

 

2.2 Related Work 

 

UAVs do not require an onboard human controller but they need to follow some sort 

of control logic, and degree of autonomy varies according to provided scheme of that 

logic. Basically, there are two main approaches in controlling UAVs: First one is 

centralized approach and the second one is decentralized (distributed) approach. A 

hybrid application of centralized and decentralized approaches is also possible. In 

centralized approach, all UAVs involved in the mission are controlled by a central 

algorithm and mission planning scheme is based on this central logic [1, 2, 6, 8, 11, 

12, 13]. Conversely, decentralized approach offers more and sometimes full autono-

my. Each UAV is generally controlled by one operator but sometimes it can be nec-

essary to assign more than one operator for each UAV. Because of the situation, it is 

difficult to afford cooperative missions involving UAV swarms. So, the need for  
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decentralized approaches, aiming to use fully autonomous agents, aroused [3, 4, 5, 7, 

9, 10, 16]. In this logic, each UAV is supposed to have same situational awareness to 

decide about its next step; and a strong communication among the UAVs is also an 

important requirement to be able to accomplish cooperative missions. In hybrid (cen-

tralized – distributed) approach, not fully but partially autonomous UAV usage is 

proposed. The idea is to provide some level of abstraction to the central controller; 

that it is rather preferable to be able to control a UAV team instead of a single UAV 

for an UAV operator [14]. 

 

Mission completion of each observed target requires classification, attack and verifi-

cation tasks to be accomplished for that target in specified order. This ordering 

comes from the nature of the mission; and so, the order has to be preserved. As stat-

ed, task precedence is also an important issue that needs to be considered in UAV 

mission planning [4, 13, 15, 16]. 

 

UAV mission planning algorithms should take the constraints coming from opera-

tional environment and nature of UAVs into consideration and behave accordingly. 

The algorithms are supposed to handle two core components of the planning proce-

dure, which are path planning and target assignment. Especially the ones, focusing 

on path planning issue, consider about UAV movement capabilities (e.g. minimum 

turning radius, maximum speed to be reached) and no – fly zones located in opera-

tional environment. Accordingly, the algorithms are designed to handle the problem 

by also caring about these constraints [7, 11, 12]. The other ones, focusing on target 

assignment issue, also consider about some constraints; but for instance, coming 

from designed strategy (e.g. target dependency and target priority) and nature of the 

problem (e.g. task precedence). So, these kinds of algorithms are designed to include 

priority, dependency and precedence requirements into problem definition set and 

behave accordingly [13, 15]. Also there are some full mission planning algorithms 

aiming to deal with path planning and target assignment issues together [1, 4, 5, 9, 

16]. 
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There are also some other constraints, such as heterogeneity of UAVs, fuel capacity 

of UAVs and heterogeneity of targets forming operational environments, that should 

be considered by mission planning algorithms. Fuel capacity constraint is considered 

in many mission planning algorithms both with and without regarding type of the 

UAVs [4, 7, 9, 13, 14, 16]. Heterogeneity is also an important concept for both of the 

UAVs and the targets. It is because some features, such as fuel capacity, operational 

capability and average speed, pose differences according to the type of an UAV. In 

addition, UAVs are generally specialized and equipped according to the mission 

type, the UAV is intended to realize, that task assignment is required to be done ac-

cording to the type of the UAVs [4, 13, 15]. In a similar way, each target does not 

need same amount of resource to be handled. This constraint is included in [5] to be 

able to provide higher degrees of reality by designing the assignment and scheduling 

scheme with taking specific target resource need into account. Heterogeneity of tar-

gets has also introduced another important constraint, known as time – window in the 

literature, and involving for each target to be served in previously specified time in-

terval with an affordable delay [5, 11, 26, 27]. 

 

Most of the proposed mission planning algorithms assume the scenarios, going to be 

realized, to be based on a certain and static environment. In parallel to this intuition, 

the algorithms are run once and the scenario continues in an offline fashion accord-

ing to the command set decided in initialization phase [5, 8, 11, 13]. But in real life, 

changes for operational environments are frequent. So, to be able to provide model-

ing of the scenario as close as possible to real life, there are also some dynamic algo-

rithms, generally proposed in relatively near history, aiming to provide acceptable 

and quick responses to the changes, which are happening in the current scenario and 

requiring immediate update of situational awareness [1, 4, 6, 7, 9, 14, 16].    

 

It is possible to grasp feasible and acceptable solutions for UAV mission planning 

problem both using exact and heuristic – based approaches. The choice of which 

approach to use is basically related to problem domain and the specified require-

ments to be provided. In the case that number of targets is more than a few, exact 

approaches generally terminate after a substantial amount of time, which is not  
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between limits of acceptation in general; but the appealing result of these kinds of 

approaches is to reach the optimal solution. On the other hand, deterministic and / or 

stochastic heuristic – based algorithms generally terminate in an acceptable time 

amount and result with the optimal or nearly optimal feasible solutions for the prob-

lem. As it can be inferred, for heuristic – based algorithms it is not guaranteed to 

reach the optimal solution. 

 

Proposed exact algorithms work in a straightforward manner and aim to pick up the 

best solution, maximizing (multi)objective function, from the pool of all possible 

solutions generally enumerated in offline time. To be able to incorporate the con-

straints into the problem environment, this kind of algorithms generally use problem 

– based specified tree structures with the leaf nodes containing feasible solutions for 

the processed scenario. Another advantage of the tree structure is the feature of lend-

ing itself for efficient and quick search techniques. In spite of structural advantages 

of this so – called decision trees, necessity of enumerating all feasible solutions gen-

erally requires unacceptable CPU time for most of the mission planning scenarios 

including many agents. In [8] a new exact algorithm not using decision tree but some 

kind of linear formulations with polynomial number of binary variables is intro-

duced. By using a new set of properties and inequalities, such as symmetric breaking 

inequalities, boundaries on profits, generalized subtour eliminations and clique cuts 

from graphs of incompatibilities, the algorithm achieves to be competitive with the 

best performing literature algorithms in both of effectivity and efficiency aspects. On 

the other hand, the algorithms introduced in [4] and [15] utilize decision tree struc-

ture like many of the exact mission planning algorithms do. By using advantages of 

this specified tree structure, enumerating only feasible solutions not all possible per-

mutations of UAV and target sets, and utilizing best – first and depth – first search 

procedures on final decision tree; these algorithms also have potential of planning 

mission scenarios including higher number of instances in acceptable time limits. 

 

There are so many heuristic – based algorithms proposed for UAV mission planning 

problem compared to the exact ones. Simulated Annealing (SA), Genetic Algorithms 

(GA), Tabu Search (TS) and Neighborhood Search (NS) heuristics and somehow  
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varied versions of them are mostly used heuristics in UAV mission planning problem 

for both or individually handling of path planning and target assignment issues [5, 7, 

12, 13, 14]. In some heuristic – based algorithms, constraints and requirements are 

represented by inequalities where all these inequalities together with the objective 

function constitute a Mixed Integer Linear Programming (MILP) instance, which is 

known as NP – hard. After construction of this MILP instance, according to the op-

erational environment and the specifications of the problem, the algorithms start to 

enumerate feasible solution sets by changing order and match of scenario elements 

according to the rules implied by predefined heuristic(s) aimed to be utilized in algo-

rithm design phase. Typically, heuristic – based algorithms either incorporate a gen-

eral mechanism for restoring feasibility of the system after each move or use the 

problem structure to guide the search effectively by eliminating constraints [10]. The 

most important issue for this kind of algorithms is avoidance of sticking on local 

optimality causing the algorithm to terminate without covering entire solution space. 

Main advantage of heuristic – based approaches is that they are generally capable of 

resulting with a good feasible solution in an acceptable time period, which enables 

the algorithms to be up to date with respect to changing operational environment 

situations and behave accordingly. 

 

In parallel to that growing demand for the use of UAVs, essentiality of robust algo-

rithms to solve the target assignment problem for a UAV team in an effective way 

becomes inevitable. It is because; the real environment and the equipments used to 

raise the level of autonomy are quite noisy. However, uncertainty of the operational 

time environment should also be taken into consideration and normalized to be able 

to need minimum level of control, required to manage the UAVs, for providing com-

pletion of a mission with an acceptable rate of success. Based on this reality, in [2, 3, 

6, 7] uncertain and noisy conditions are tried to be handled by introducing alternative 

strategies and delta values enabling compensation of the aimed strategy by keeping 

the key attributes of the strategy in a predefined range. Specifically in [2] , some del-

ta values are injected to the formulations used in realization of mission planning al-

gorithm. Also, by enabling span of these delta values according to predefined factor, 

the algorithm allows the controller to tune sensitivity according to uncertainty level  
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of operational environment. As another approach, [3] offers use of decentralized au-

tonomous agents with the same central algorithm deployed to be able to need mini-

mum level of communication while realizing cooperative missions. It also introduces 

availability of a backup (second) algorithm for all UAVs, enabling them to operate in 

a sensible manner in case of loss of communication. In [7], replanning of the mission 

is considered when a change is detected in situational awareness; and it is required to 

be handled in current scenario. Lastly, [6] serves as a combination of [2] and [7] with 

the aim of reducing imperfectness of individual algorithms by normalizing negative 

effects of the situations with utilization of the relatively powerful strategies. 

 

  

2.3 Resource – Target Assignment and Scheduling Methodologies 

 

Main algorithms and formulations used for resource – target assignment and schedul-

ing problem are described briefly in this part. The algorithms with possible modifica-

tions are listed as follows: 

 

 

2.3.1 Exhaustive (Brute – Force) Search Algorithm 

 

This kind of algorithms work by enumerating all possible solutions and checking 

which of them yielding the best rank. Because of the need for covering all work-

space, time consumption of the algorithms is generally too high to accept for most of 

the problems especially for the ones required to be solved in online fashion. So, some 

kind of elimination mechanisms and heuristics are introduced to be able to lower 

time consumption of exhaustive search algorithms. Main variations of exhaustive 

search algorithms are: 

 

 Branch and Bound: Main idea is to branch the problem space to adequate 

number of levels and provide upper and lower bounds for every sub branches 

in each level. Deciding about the number of levels to branch the problem 

structure is an important issue for this kind of algorithms. Because, over  
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depth may require extra time to terminate searching while less depth may 

cause the solutions to diverge from optimality. After an acceptable branching 

is provided, the idea is to decide to continue to process or stop processing for 

a solution candidate, by forecasting its potential to perform better or worse 

than the current best solution, using lower and upper bounds. 

 

 Greedy Bound: Unaffordable operations are detected greedily and they are 

not performed for solution candidates. In this scheme, the candidates are pro-

cessed with the expectation of reaching better result quality at the end. 

 

 

2.3.2 Greedy Algorithm 

 

These kinds of algorithms work by utilizing locally optimum solutions to be able to 

reach globally optimum solution. The algorithms try to increase total profit for each 

step by proceeding with possibly maximum profit of the scenario for that step. So, 

greedy algorithms generally suffer from being stuck in local optimality. Accordingly, 

it is not possible to grasp best solution using greedy algorithms in general but it is 

common to reach an acceptable solution in relatively short time compared to tradi-

tional exhaustive search algorithms. It is also possible for greedy algorithms to use 

some heuristics and bounding strategies, like the ones mentioned in exhaustive 

search algorithms, to be able to boost effectivity and shorten execution time. 

 

 

2.3.3 Integer Linear Programming 

 

Linear programming is a method of solving problems by using the mathematical 

model which is inferred from problem domain. All of the constraints are represented 

as mathematical equations in this model. Specifically, integer linear programming is 

a linear programming instance in which all or some of the problem domain variables 

are restricted to be integers. The method is generally used to solve optimization prob-

lems. 
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A standard linear programming instance consists of a linear objective function con-

taining the values to be maximized, a set of inequalities keeping consistency of prob-

lem domain constraints for candidate solutions and non – negative decision variables, 

which both linear objective function and constraints are based on. 

 

Three possible outcomes are possible for a standard linear programming instance. It 

may be impossible to find proper values for decision variables satisfying all of the 

constraints. Inversely, as another result it may be possible to find optimal values for 

decision variables satisfying all of the constraints. As the last result, the instance may 

be unbounded that given constraints are not enough for bounding decision variables’ 

value range in solution space of the problem.    

 

 

2.3.4 Genetic Algorithm 

 

The elements of a standard genetic algorithm are listed and described briefly as fol-

lows: 

 

 Chromosome: It is the data structure in which an individual solution is en-

coded. 

 

 Population: It is the set of solutions (chromosomes) which is also serving as 

the pool of chromosomes to be selected for crossover procedure in genetic al-

gorithm context. 

 

 Fitness: It is the rank value associated to each chromosome. This value indi-

cates in which degree the chromosome fits to the predefined criterions. 

 

 Selection: It is the process of selecting (mating) two parent chromosomes for 

crossover operation. 
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 Crossover: It is the process of generating a new chromosome by applying 

some kind of split – and – merge procedure for genetic information of two se-

lected parent chromosomes. 

 

 Mutation: It is the operation of replacing some randomly chosen bits of a 

chromosome with the ones already existing in problem specification. 

 

The following procedures have substantial importance in the design of a genetic al-

gorithm; and so, they should be organized by taking problem specific details into 

consideration: 

 

 Chromosome Encoding: Main aim is to encode any possible solution of the 

problem into a data structure called chromosome. It is one of the most im-

portant procedures for a genetic algorithm. Because chromosome structure is 

the core component of a genetic algorithm that the following procedures are 

all subject to variance according to determined chromosome structure. Wide-

ly used encoding schemes are binary, real number, permutation and data 

structure encodings. However, use of binary and real number encodings are 

more frequent. 

 

 Population Initialization: It is another important procedure in genetic algo-

rithm aiming to provide initial population for the algorithm. All new chromo-

somes are generated by realizing crossover and mutation operators on current 

population members. So, it is obvious that fitness of a child directly related 

with fitness of its parents. In this direction, it is common to run another algo-

rithm, terminating fast like greedy ones, to provide an initial population hav-

ing higher level of fertility. 

  

 Fitness Calculation: It is the procedure of evaluation for each solution by 

measuring how much rank the solution provides regarding to the predefined 

objectives of the mission. The issue here is to find the objective set aimed to 

optimize in final solution. If there is only one objective it would be easier and 
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quicker to reach an optimal or acceptable solution. But in the case of availa-

bility of multiobjective scheme, it wouldn’t be easier and quicker to provide 

the acceptable solution; even in some problems, depending on the objectives’ 

nature, it wouldn’t be possible. This is because in a multiobjective design, ob-

jectives are often contradictory to each other and to be able to find a solution 

satisfying all the objectives is really a difficult procedure. 

 

 Selection Operator Determination: In literature, mostly used selection 

techniques are given below: 

 

1. Roulette Wheel Selection: In this selection method, all chromosome fit-

ness values are summed up and total fitness value (TF) is obtained. Then, 

a random number (R) in range [1 - TF] is generated. After that, while go-

ing through all the population in a loop, fitness values of all chromosomes 

are summed up as partial fitness value (PF) and current chromosome is 

selected as a parent when PF is greater than R. In this scheme, the scenar-

io depicted in Figure 2.1 has Chromosome5 to be selected as one parent 

with about 61% probability. 

 

     Figure 2.1: Roulette Wheel Selection Probability Distribution 

 

2. Rank Selection: It is somehow a normalization of Roulette Wheel Selec-

tion technique. At first, according to fitness values they have, some kind 

of ranking procedure is applied to all chromosomes in the population 

without violating their respective fitness position. Then, same selection  
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procedure, utilized for Roulette Wheel Selection method, is utilized for 

this method but this time not based on fitness values but based on rank 

values of the chromosomes. This method is proposed with the aim of 

providing variety by hindering excessive dominance of a few individuals 

to the rest in current population. Compared to Roulette Wheel Selection 

method, with the same scenario illustrated above, for this scheme Chro-

mosome5 has about 33% selection probability as shown in Figure 2.2.  

 

 

             Figure 2.2: Rank Selection Probability Distribution 

 

3. Tournament Selection: This selection type involves realizing some tour-

naments on some randomly chosen chromosomes. After all tournaments 

held, the one achieving the highest score is selected. Similar to the rela-

tion between Roulette Wheel Selection and Rank Selection techniques, 

increasing number of tournaments decreases variety by allowing domi-

nant chromosomes to reach stability for this method. 

 

4. Steady State Selection: Main aim of this selection method is to transfer 

big portion of the population to the next generation by only allowing a 

few least fit chromosomes of the population to be replaced by new off 

springs. However, this method only allows a few best fit chromosomes to 

be selected as parents for crossover procedure.  

 

 

 

       16 



                                                          

5. Elitism: In this method some number of best fit chromosomes is directly 

copied to next generation to be able to provide availability of fertile 

members for next generations. 

 

 Crossover Scheme Determination: Crossover scheme design is very im-

portant for a genetic algorithm; that the scheme can influence performance of 

the algorithm in either negative or positive directions. In general, there exist 

two schemes mostly used in literature which are single and multi point cross-

over schemes. Although the schemes can be grouped in two main titles, they 

generally vary based on the subcomponent structure decided in chromosome 

encoding phase of the algorithm. 

 

1. Single Point Crossover Scheme: In this crossover scheme, crossing two 

parent chromosomes at one specific point is realized. After crossing oper-

ation of parents’ genetic information, two off springs are generated by ex-

changing grasped trailing parts between parents and merging them with 

heading parts. Procedure for single point crossover operation is depicted 

in Figure 2.3. 

 

 

 

                        Figure 2.3: Single Point Crossover Procedure 
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2. Multi Point Crossover Scheme: In this crossover scheme, crossing two 

parent chromosomes at more than one specific point is realized. After 

crossing operation of parents’ genetic information, two off springs are 

generated by exchanging grasped even – numbered parts between parents 

and merging them with odd – numbered parts. Procedure for multi point, 

two point for instance, crossover operation is depicted in Figure 2.4. 

 

 

 

                            Figure 2.4: Two Point Crossover Procedure 

 

 Mutation Scheme Determination: Mutation scheme is also an important is-

sue in a genetic algorithm design. Although mutation is not a must operation 

in a genetic algorithm, availability of a useful mutation enriches diversity in 

current population and let the solution set not to converge to local optimality 

and stuck around that point.  

 

In general one or more randomly chosen atomic component change is used as 

the mutation scheme. In this changing procedure, inclusion of logic to hinder 

violation of solution’s feasibility is also a common practice [23, 24, 25]. An-

other remarkable point about mutation scheme is the mutation rate specified 

        

       18 



                                                          

to determine whether mutation should be applied or not for current chromo-

some. This rate is important, because introducing very high possibility for 

mutation may cause the algorithm to converge late whereas introducing very 

low possibility may cause the algorithm stuck in local optimality and produce 

results further from global optimality. Also, this mutation rate need not stay 

same that it is possible to use changing mutation rate according to intermedi-

ate results of the algorithm [22]. Best values for mutation rate are reported to 

be between %0.5 and 1% [22]. Procedures for one – bit and multi – bit muta-

tion operations are depicted in Figure 2.5.a and Figure 2.5.b respectively. 

 

 

             

           Figure 2.5: (a) One-bit Mutation Procedure, (b) Multi-bit Mutation Procedure 

 

As a combination of the components and procedures introduced in this section, a 

standard genetic algorithm consists of the following steps: 

 

1. Encoding of the chromosome structure 

 

2. Initialization of the first population  

 

3. Fitness calculation of the current population 

 

4. Test of the current population to find out whether any chromosome satisfying 

end condition or not. If such a solution exists, the algorithm is terminated. 
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5. Generating new candidate solutions using crossover and mutation operators. 

 

6. Replacement of old chromosomes by the new ones. 

 

7. Go back to step 3. (Loop until fail criterion is not met) 
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                                                      CHAPTER 3 

 

 

                                                      OUR WORK 

 

 

 

This section presents details of our study on UAV – target assignment and schedul-

ing procedures in UAV mission planning problem. First, problem formulation with 

requirements and operational environment assumptions are defined. Then, input set 

generation procedure and generated input sets’ features are explained. Finally, the 

architecture of our framework, details of implementations and customizations of de-

veloped algorithms are described. 

 

 

3.1 Problem Formulation and Constraints 

 

In this study, UAV mission planning problem is solved by specifying which UAVs 

to operate on which routes and serve for which targets at which time periods of the 

mission. However, the key point here is to provide a feasible solution with respect to 

all requirements and constraints coming from problem domain. The requirements and 

constraints specified for the problem can be listed as follows: 

 

1. UAV Count Requirement: Number of UAVs needed to handle a target may 

vary according to features of that target. This number is specified for each 

target by the user in scenario development phase and can be updated before 

each execution of that scenario. 

 

2. Time Window Requirement: For a target, beginning and ending of service 

time may vary according to current internal and external factors the target is 
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subject to. So, it is required to serve that target during this time interval. This 

time interval is specified by the user in scenario development phase and can 

be updated before each execution of that scenario. 

 

3. Radar Zone Avoidance Requirement: Radar zones and prohibited areas, 

which are known to exist in some specific locations in the operational envi-

ronment, are assumed to be cared by the user during scenario development 

phase and linkages of targets are provided accordingly. However, existence 

of such a linkage procedure entails indirect transmissions among targets; and 

so, shortest path usage is required to be able to save resources by letting 

UAVs to go through the shortest paths. 

 

4. Fuel Level Consistency Requirement: Fuel capacity of UAVs may also 

vary; and so, planning of UAVs’ missions is required to happen accordingly. 

Since safety of resources has the highest priority, mission plans have to check 

fuel level of each UAV before deciding to direct it to serve for a target. In this 

work, UAVs are assumed to be generic; accordingly, fuel capacity is only al-

lowed to be specified for all UAVs not individually. This fuel capacity is 

specified by the user in scenario development phase and can be updated be-

fore each execution of that scenario. 

 

5. Base Station Return Requirement: As stated before, safety is one of the 

most important issues for this kind of missions. So, it is required to consider 

about return of UAVs to base station and compose mission plans accordingly. 

 

Although main issue is to provide availability of desired number of UAVs in desired 

time interval for each of the targets exists in operational environment, providing the 

solution as optimal as possible regarding to some predefined objectives is also an 

important issue. There are mainly three objectives; which are minimizing total dis-

tance covered by UAVs, maximizing number of targets to be served during the mis-

sion and minimizing number of UAVs required to be used for the mission by maxim-

izing UAV reuse. Approaches to the objectives are described in detail in Section 3.5. 
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An operational environment instance with target configurations, placed near of each 

target, is shown in Figure 3.1. Common and algorithm specific parameters and their 

specified values for the scenario can be seen in Figure 3.2.   

 

 
 

          Figure 3.1: An Operational Environment with Target Configuration 

 

    
 

                  Figure 3.2: Parameter Configuration for the Algorithms  

 

       23 



                                                          

Optimal solution of the problem instance given in Figure 3.1 and Figure 3.2 is shown 

in Figure 3.3. As can be seen from the figure, red cross marks are available to indi-

cate which UAVs served for which targets during the mission. For the UAVs serving 

more than one targets, it is obvious that scheduling (serving order) is the order of 

beginning points of time windows of the targets in increasing order. 

 

UAV / Target Target # 1 Target # 2 Target # 3 Target # 4 

UAV # 1   X  

UAV # 2 X    

UAV # 3 X    

UAV # 4 X   X 

UAV # 5  X X  

UAV # 6   X  

UAV # 7     

UAV # 8  X X  

UAV # 9     

 

                   Figure 3.3: An Optimal Solution Instance of the Problem 

 

 

3.2 Operational Environment Assumptions 

 

It is an obligation to introduce some limitations and make some assumptions about 

some parameters of the problem to be able to acquire a platform enabling comparison 

of developed algorithms’ performances fairly and easily. So, in the context of this 

study about UAV mission planning, some aspects related to elements of operational 

environments are exposed to some assumptions to be able to deal with a limited and 

well – defined problem domain. Assumptions concerning operational environment 

can be listed as follows: 

 

1. Radar zones and prohibited areas are assumed to be taken into consideration 

by the user and scenario elements are placed and linked accordingly. 

 

2. UAVs are assumed to be homogenous in the aspects of maximum speed, fuel 

level they can carry at most and fuel consumption / distance rate. 

 

       24 



                                                          

3. All UAVs are assumed to be stabilized to different altitudes and accordingly 

it is assumed that no crash is going to happen during missions. 

 

4. Maximum / minimum turning radius limits of UAVs are not taken into con-

sideration and they are assumed to turn any radius on any path defined by the 

user. 

 

5. Targets are assumed to be handled with all – or – nothing principle regarding 

to requirement of providing needed number of UAVs to targets. So, it is not 

possible to handle any target partially by assigning less number of UAVs to 

that target. 

 

6. It is assumed that no real – time change is going to happen for any of the user 

designed scenarios. 

 

7. Weather condition related aspects, like visibility, temperature, contamination, 

cloud density and cloud altitude, which are affecting aerodynamics and / or 

flight capability of UAVs, are assumed to be stable regardless of the time 

scenario created. 

 

8. Altitudes of landforms and buildings are not taken into consideration and all 

UAVs are always assumed to be flying at higher altitudes. So, no crash 

among landforms, buildings and UAVs is going to happen during missions. 

 

  

3.3 Framework Architecture 

 

A graphical framework, letting users to solve and manage problem instances easily, 

is implemented by utilizing Qt and OpenGL technologies with C++ programming 

language in MS Visual Studio 2008 platform. Main features provided by this frame-

work can be listed as follows: 

 

 

       25 



                                                          

1. It enables users to create, update, delete and visualize scenarios involving 

mission planning of UAVs. Two sample scenarios (problem instances), de-

signed using this framework, can be seen in Figure 3.4 and Figure 3.5. 

 

2. It is possible to save any designed problem instance in XML format and users 

can load any available scenario in anytime required to resolve the problem in-

stance available in that scenario. An XML – formatted scenario file of the 

problem instance shown in Figure 3.5 can be seen in Figure 3.6. 

 

3. All algorithms, developed in the context of this thesis study, are designed to 

work on the same input format. So, this graphical framework eases perfor-

mance test procedures of developed algorithms by enabling execution of any 

developed algorithm on the same scenario without need of any extra configu-

ration change. 

 

4. Once a feasible solution is grasped, by using any of the developed algorithms, 

for any predesigned problem instance; the framework enables users to simu-

late motions of the UAVs, according to timeline and coordinates provided by 

the solution, in 2D virtual operational environment. 

 

5. A user – friendly graphical interface, enabling users to work with easily, is 

available for the framework. 

 

6. It allows users to change configuration of any developed algorithm before ex-

ecution. Algorithm specific parameters are arranged to be configurable as 

much as possible through this framework. 

  

7. The framework enables users to collect test results of implemented algo-

rithms in a file, which is outputted in text format. 

 

8. It also enables generation of randomly configured problem instances with re-

spect to limit values of configurable parameters where these parameters can  
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be seen in the graphical interface depicted in Figure 3.7. Users are allowed to 

configure the parameters via this graphical interface. 

 

 

                     Figure 3.4: UAV Mission Planning Scenario Sample # 1 

 

 

                   Figure 3.5: UAV Mission Planning Scenario Sample # 2 
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                        Figure 3.6: XML – formatted Scenario File Sample 
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                 Figure 3.7: GUI of Automatic Test Scenario Generation Tool 

 

 

3.4 Input Set Generation 

 

Generation of input sets is realized by using the framework implemented in the con-

text of this study. It is so easy to work with the architecture; that various problem 

instances can be created on this framework both manually and automatically. Once 

the problem instances are created and saved, it is possible to use them again and 

again. 

 

As the framework is designed generically to serve for each implemented algorithm, 

so is the input whose format is illustrated before in Figure 3.6. Hence, it becomes 

easy to compare implemented algorithms’ performances for same scenarios.  

 

For input set generation procedure, one of the key concepts is variety of problem 

instances regarding to problem domain, configuration parameters and requirements 

specified for the problem. For this problem, scenarios having target number variety,  
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UAV number variety with respect to target number, time window variety of targets, 

fuel level variety of UAVs and UAV need variety of targets are provided for all of 

the implemented algorithms by using the framework. 

 

As the result, by changing user configurable parameters, mentioned above, two input 

sets containing high degree of variation are obtained for the test procedure automa-

tion of this study. Details and features of these input sets are given in Chapter 4. 

 

 

3.5 Algorithm Implementations and Customizations 

 

This part explains the algorithms and customizations made for them in the context of 

this thesis study. 

 

As a preprocessing procedure shortest paths among targets are computed according 

to graphs of the operational environments given in scenarios. Dijkstra’s shortest path 

algorithm is used for computing shortest paths among targets which are assumed to 

be linked according to radar zone and prohibited area locations so that UAVs would 

not be noticed by enemies. 

 

 

3.5.1 Exhaustive (Brute – Force) Search Algorithm 

 

Conventional exhaustive search algorithm is implemented with an additional early 

elimination procedure. This elimination procedure is applied for all solution candi-

dates, enumerated by the conventional exhaustive search algorithm, to be able short-

en execution time by eliminating obviously non – feasible or lesser suitable ones 

without proceeding with any other operations for them. For this problem, the elimi-

nation procedure is to check availability of solution candidates having more infeasi-

ble targets compared to the one marked as the current best solution. After detection 

of such a situation, obviously there is no need to continue with the other steps for that 

solution candidate. 
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We implemented this algorithm with the aim of acquiring optimum solutions for 

small sized input sets, and use them as reference solutions in comparison with out-

puts of the other developed algorithms. Main steps of this algorithm can be given as 

follows: 

 

1. Try to enumerate one different solution candidate, if there is no different so-

lution candidate, terminate and return with best solution if one exists other-

wise return null. 

 

2. Apply early elimination procedure to the current solution candidate, if the 

procedure results with failure for this candidate then discard it and go back to 

step 1. 

 

3. Check for feasibility of each target for current solution candidate; if it is fully 

infeasible, then discard the candidate and go back to step 1. 

 

4. Compute fitness value of solution instance. 

 

5. Mark the current solution instance as the best solution if the fitness value is 

higher than the fitness value of current best solution. Go back to step 1. 

 

  

3.5.2 Greedy Search Algorithm 

 

A greedy algorithm based solution is provided for this UAV – target assignment and 

scheduling problem to be able compare performances of this algorithm with ones of 

genetic algorithm solution. Although exhaustive search algorithm is implemented 

with the same aim, for the scenarios including more than a few UAVs and targets it 

is totally impractical to use exhaustive algorithm because of its huge running time. 

So, greedy algorithm is intended to be used in performance comparison of genetic 

algorithm especially for large sized input set. 
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It is generally not possible to reach optimal solutions by using greedy algorithms 

because of their working principles, which impose proceeding with locally optimum 

solutions instead of looking the whole picture and behaving accordingly. But these 

principles provide the feature of terminating in shorter time durations compared to 

almost all other algorithms in literature. For this study, the same conditions are also 

valid that our greedy algorithm provides nearly optimal solutions in shortest time 

durations compared to exhaustive search and genetic algorithms. Main steps of this 

algorithm can be given as follows: 

 

1. Sort the targets according to their beginning points of time windows in in-

creasing order and insert them into a list in that order. 

 

2. Get next target from sorted target list. If there is no target available in the list, 

return the existing solution. 

 

3. For the current target, look for available and nearest UAVs in operational en-

vironment greedily and try to reserve required number of UAVs to meet the 

need of current target. If there is not enough number of UAVs available for 

current target mark it as infeasible. 

 

4. For current target, compute local fitness by taking feasibility into considera-

tion and sum up this value to global fitness. Go back to step 2. 

 

With the aim of increasing UAV reuse instead of using an unused UAV from base, a 

penalty distance is included additional to current distance, specified in the scenario, 

in the case of a new UAV is intended to be used.  

 

 

3.5.3 Genetic Algorithm 

 

A genetic algorithm based solution is also provided for UAV – target assignment and 

scheduling procedures in UAV mission planning problem. Main aim of this study is  
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to implement this genetic algorithm to be able to reach an acceptable level of opti-

mality for the problem in shorter times compared to manual and other possible com-

puter assisted solutions. 

 

Genetic algorithm design is substantially related to the problem domain and it re-

quires modifying the components of a genetic algorithm according to the domain 

requirements. Accordingly, for this problem instance; we have approached critical 

components, like encoding, crossover and fitness computation, of genetic algorithm 

with a customized fashion. Main components of the genetic algorithm with customi-

zations are explained in detail as follows: 

 

 

3.5.3.1 Encoding 

 

Use of real number encoding scheme is chosen regarding to this optimization prob-

lem’s nature. As it is possible to assign more than one UAV to one specific target, 

some kind of hierarchical encoding, providing abstraction where necessary, is 

planned to use. In this encoding structure, targets are located into first hierarchy level 

and the UAVs are located below them as the second hierarchy level. Visualization of 

the encoding is provided in Figure 3.8. 

 

 

                   Figure 3.8: Chromosome Structure with Encoding Format 

 

The encoding illustrated in Figure 3.8 represents a solution instance for a scenario in 

which the operational environment is designed to contain 4 targets, which are t1, t2, t3 

and t4, and number of UAVs needed to be able to cover the targets are 4, 3, 5 and 2 

respectively. When looking at the second level of hierarchy, there are 7 different 

UAVs which are indexed from 1 to 7; and UAV – target assignment has taken place  
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as depicted below. Accordingly, the encoding implies the UAVs, which are assigned 

to any target (i.e. located below that target in the figure) to be serving for that target 

in specified time window of the target. 

 

t1 = {u1, u2, u3, u4} 

    t2 = {u5, u6, u7} 

t3 = {u5, u7, u2, u6, u4} 

    t4 = {u3, u1} 

 

As the problem specification does not allow real time change in operational envi-

ronment of the scenario, fixed length of chromosome usage is encouraged. However, 

fixed length chromosome encoding has provided easiness for application of genetic 

algorithm operators. In addition, two – level hierarchic encoding scheme has also 

made customizations of the other operators easy. 

 

 

3.5.3.2 Population Initialization 

 

Population initialization is an important issue for a genetic algorithm design. Alt-

hough initialization procedure is not one of the key operations, an efficient initializa-

tion directly affects running time required to find optimal solutions. It is because 

starting execution with a population consisting of highly fertile members (i.e. mem-

bers having higher fitness values) is expected to enhance overall fertility during algo-

rithm running process. So, in this genetic algorithm design procedure, population 

initialization procedure is realized by caring about following conditions and remov-

ing negative effects of them if possible. 

 

 Infeasible Operational Environment Checking: An early checking 

of designed operational environment, whether specified number of 

UAVs is enough to meet minimum needs of targets or not. If it is not, 

an early termination of the algorithm resulting with failure occurs. 

 

 

       34 



                                                          

 Time Window Feasible Assignment Providing: Main aim here is to 

provide UAV – target assignment feasibility with respect to time win-

dow requirements of the targets. In this context, without caring about 

paths and distances among targets, just infeasible scheduling (i.e. 

scheduling requiring any UAV to be serving for at least two targets at 

the same time) is avoided as much as possible for each member of ini-

tial population. 

  

 Keeping Used UAV Set Minimal: Reuse of UAVs is tried to be 

maximized while generating initial population. In this context, with-

out losing local and global feasibility, number of UAVs to be used is 

kept as minimum as possible. 

 

 

3.5.3.3 Crossover 

 

Crossover is the key operation for a genetic algorithm since solution space variation 

and diversity are provided by this operation. In the context of this study, based on the 

hierarchy provided in chromosome encoding phase, two crossover techniques are 

used together. First of them, realizing crossover operation for the first hierarchy level 

(i.e. target level), is Target Level Crossover technique and the second one is UAV 

Level Crossover technique which is realizing crossover operation for the second hi-

erarchy level (i.e. UAV level). Both of these crossover techniques are explained in 

detail below: 

 

1. Target Level Crossover: In this crossover technique, abstraction provid-

ed by the chromosome encoding is utilized. Hence, it has become possible 

to think the chromosome as if just including one level (first hierarchy lev-

el) containing targets as atomic elements. Accordingly, with this new 

structure, crossover is applied using both one – point and two – point 

schemes which are shown in Figure 3.9 and Figure 3.10 respectively. 
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Decision of which scheme to use is left to user by allowing choice of 

scheme before execution. 

 

 

 

       Figure 3.9: Target Level Single Point Crossover Scheme 

 

 

 

 

           Figure 3.10: Target Level Two Point Crossover Scheme 
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2. UAV Level Crossover: In this crossover technique, abstraction provided 

by the chromosome encoding is utilized. Hence, it has become possible to 

think the chromosome as if just including one level (second hierarchy 

level) containing UAVs as atomic elements. Accordingly, with this new 

structure, crossover operation is applied using both one – point and two – 

point schemes which can be seen in Figure 3.11 and Figure 3.12 respec-

tively. Decision of which scheme to use is left to user by allowing choice 

of scheme before execution. 

 

                      Figure 3.11: UAV Level Single Point Crossover Scheme 

 

 

                       Figure 3.12: UAV Level Two Point Crossover Scheme 
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In this algorithm, both of the UAV Level Crossover and Target Level Crossover 

techniques are used during the same session (execution). For each iteration, decision 

of which technique to be utilized is made randomly but with equal probability. By 

using this customized crossover technique, both the two levels of the encoding are 

exploited for the sake of generating strong members having higher fertility. 

 

Specifically, utilization of Target Level Crossover provides generating members 

without losing subchromosome (i.e. target) fitness and enabling integration of highly 

fertile subchromosomes into one specific chromosome. However, utilization of UAV 

Level Crossover provides generating subchromosomes having higher level of fertility 

by just dealing with UAVs in subchromosomes. So, it becomes best idea to utilize 

both of the techniques to acquire more fertility for subchromosomes and accordingly, 

acquire highly fertile chromosomes by gathering these subchromosomes together. 

 

A more standard version of this genetic algorithm utilizing only UAV Level Crosso-

ver technique is also provided with the aim of comparison. Hence, it becomes possi-

ble to evaluate efficiency and effectivity of two – level crossover operation in a com-

parative manner. 

 

 

3.5.3.4 Mutation 

 

Single and multibit mutation is used in the implementation of the genetic algorithm 

designed in the context of this study. The mutation scheme to be used is left to the 

user and can be specified before each execution of the algorithm. In application of 

multibit mutation, number of points to be mutated is restricted by a specific number, 

which is randomly chosen between one and half of the target count available in the 

scenario. 

 

Both single and multibit mutation procedures are only applied for UAV level of the 

chromosome according to the rate specified by the user. For both of the mutation 

schemes, some kind of logic, trying to avoid from mutation of any chosen bit with an 
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already existing bit for that target, is also inserted into implementation procedure of 

the mutation operator. 

 

 

3.5.3.5 Selection 

 

Rank and Roulette Wheel selection techniques are both used in the implementation 

of the genetic algorithm and decision of which selection technique to be used is left 

to user. 

 

 

3.5.3.6 Fitness Calculation 

 

Multiobjective fitness function, mainly aiming to asses three objectives, is used in 

the implementation of the genetic algorithm. As it is easier and quicker to find opti-

mal solution using singleobjective fitness functions, multiobjectivity is an unavoida-

ble real life practice. Accordingly, we have tried to include as many problem related 

objectives as possible into our solution model. In the context of this study we care 

about following objectives: 

 

1. Minimizing total distance covered by all involved UAVs. 

 

2. Minimizing number of UAVs to be used for the mission. 

 

3. Maximizing number of targets to be served during the mission. 

 

4. Fuel levels of UAVs are also taken into consideration and planning of 

their missions is realized accordingly. 

 

The multiobjective fitness function, used for assessing fitness of chromosomes (i.e. 

solutions) generated by all the algorithms, can be mathematically formulized as fol-

lows: 
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where k is the total number of targets available in operational environment, s is the 

number of targets served during the mission, t is the total number of UAVs available 

in operational environment, n is the number of UAVs used for the mission, dmi is the 

maximum distance ith UAV can travel using available fuel and dtj is the distance trav-

elled by jth used UAV during the mission. 

 

Here in this fitness function: 

 

 First part, which is the difference of total distance to be covered using all 

UAVs and the distance covered during the mission, is available to keep first 

objective. 

 

 Second part, which is the difference of total number of UAVs available and 

the number of UAVs used for the mission, is available to keep second objec-

tive. 

 

 Third part, which is the difference of twice of the number of targets served 

during the mission and total number of targets available, is available to keep 

third objective. 

 

However, fourth objective is kept logically by directing UAVs according to their 

current fuel level and providing their safe return to base station. Also note that in 

fitness function, the second and the third parts are multiplied by 100 and 500 re-

spectively to be able to boost their relative effectivity in total fitness. These val-

ues are determined according to relative importance of the objectives in the mis-

sion and configuration of the input scenarios. In addition, first variable of third 

part is multiplied by 2 with the aim of providing positive fitness for each served 

target. 
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                                                      CHAPTER 4 

 

 

                                    EVALUATION OF THE RESULTS 

                                                    

 

 

This chapter provides experimental results obtained by realizing test procedures for 

all the implemented algorithms. Graphical visualizations of these results are also 

given in a comparative manner. 

 

Mainly there are two input sets, which are small sized and large sized sets, and both 

of their two subsets. These subsets are produced based on randomness of operational 

environment composition; that one randomly (automatically) and one consciously 

(manually) composed input subsets are provided for testing phase. Main aim of con-

sciously composing is to provide some fully feasible missions which are hard to get 

by randomly composing, especially for large sizes. 

 

Evaluations and comparisons of the algorithms are performed according to objective 

function output values acquired for each of 4 input subsets. Objective based test re-

sults are also given with the aim of enabling evaluation and comparison of the algo-

rithms’ performances based on a single objective or combination of some of them. 

 

All the tests are run on a laptop computer having 4 GB RAM, 2.53 GHz Intel(R) 

Core(TM) i5 CPU and 64 bit Windows 7 Home Premium operating system. Howev-

er, testing framework is compiled to work as a 32 bit application. 

 

Although, configuration change is allowed for each different execution of the algo-

rithms, some default values, which are determined according to similar studies in the 

literature, are also provided for some of them. 
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4.1 Testing Procedures and Configuration of the Algorithms 

 

Testing configurations and evaluation procedures of the implemented algorithms are 

given below: 

 

 

4.1.1 Exhaustive Search Algorithm Implementation 

 

This algorithm is used to find optimum solutions for small sized problem instances. 

These optimum solutions are used as reference to assess quality of solutions generat-

ed by the proposed methods. However, elapsed time values are very high for this 

algorithm. So, it is impractical to compare efficiency of the algorithm and use it for 

solution of this problem in real life. 

 

No bounding logic is available for this algorithm but some logic providing early 

elimination of useless solution candidates is included to the implementation of the 

algorithm. In addition, maximum fitness based sorting method is applied to all feasi-

ble solution candidates to be able to find best performing solution(s). 

 

 

4.1.2 Greedy Search Algorithm Implementation 

 

Greedy search algorithm is applied to all problem instances. The aim is to provide 

solutions to be able to evaluate effectivity and efficiency of the genetic algorithm, by 

comparing the solutions with ones resulted from the genetic algorithm, especially for 

the large sized input set. 

 

As this algorithm tries to assign UAVs to targets greedily, elapsed time values are 

generally shorter compared to other algorithms. Elapsed time values of the algorithm 

given in Section 4.2 show that this algorithm terminates in acceptable time for the 

problem instances of this study. 
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No bounding logic is provided for this algorithm. However, maximum fitness based 

sorting method is applied to all feasible target assignment candidates to be able to 

find best performing ones with the aim of reaching best performing solution by 

merging them. 

 

 

4.1.3 Genetic Algorithm Implementation 

 

This is the main algorithm developed for UAV mission planning problem with the 

aim of acquiring best or acceptable results in reasonable time. All problem instances 

available in both of the input sets are solved by using variations of this algorithm. 

 

Variations of the algorithm, evaluated in this study, can be listed in Table 4.1 as fol-

lows: 

 

                              Table 4.1: Variations of Genetic Algorithm 

 

GA Algorithm Specification 

GA_Single_Rank (GA_1) Genetic algorithm with two – level single 

random point crossover and rank selection 

GA_Multi_Rank (GA_2) Genetic algorithm with two – level two ran-

dom point crossover and rank selection 

GA_Single_Roulette (GA_3) Genetic algorithm with two – level single 

random point crossover and roulette selection 

GA_Multi_Roulette (GA_4) Genetic algorithm with two – level two ran-

dom point crossover and roulette selection 

GA_Simple_Multi_Rank(GA_5) Genetic algorithm with one – level (UAV 

level) two random point crossover and rank 

selection 
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It is possible to say that genetic algorithm is the most preferable algorithm for this 

problem when looking at the overall results reflecting algorithms’ performances in 

both of the effectivity and efficiency aspects. 

 

Main configuration parameters of the genetic algorithm and the values specified for 

them, according to similar studies in literature, are given below: 

 

 Crossover probability = 0.85 

 Mutation probability = 0.05 

 Population count = 1 

 Population size = 50 

 Number of generations = 200  

 

 

4.2 Results of Experiments 

 

One of the two most important differences of the algorithms is the elapsed time 

change according to input size and configuration. This change is directly related with 

time complexities of the algorithms. The other most important difference is the effec-

tivity, which is directly related with design of the algorithms. All of the algorithms 

are compared in both of these two differing aspects using both of the input sets. 

 

Mainly there exist two input sets for the evaluation, which are small and large sized 

input sets, regarding to requirement of providing requested number of UAVs to the 

targets of the operational environment in specified time intervals. Also, for each of 

the input sets, there exist two subsets, which are randomly and consciously com-

posed subsets, regarding to need for evaluating the effect of randomness factor, 

which highly exists in real life.  

 

Experiments are realized using subsets of both of the input sets whose detailed speci-

fications are given below: 
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4.2.1 Results of Small Sized Input Set 

 

Main issue here is to avoid time complexity of exhaustive search algorithm which is 

highly impractical for the scenarios providing huge number of possible assignment 

schemes. So, some specific scenarios, not having potential of generating more than 

65 million assignment schemes, are generated in order to be able to compare perfor-

mances of the implemented algorithms. For all of the scenarios of this set, number of 

UAVs to be available in operational environment is decided to be same and equals to 

8. Number of targets to be available in operational environment is also decided to be 

same and equals to 5. Variation of the scenarios is provided by varying number of 

possible assignment schemes. Additionally, fuel level of UAVs is set to 300 distance 

units for all members of this input set. 

 

This input set is divided into two subsets, which are randomly composed subset (In-

put subset 1) and consciously composed subset (Input subset 2) and each of which 

containing 12 different scenarios. 

 

 

Scenario Exhaust. GA_1 GA_2 GA_3 GA_4 Greedy 

Assignment Targets Gain Time Gain Time Gain Time Gain Time Gain Time Gain Time 

802816 
5 

4169 70 4167 .078 4169 .094 4167 .094 4169 .109 4167 
.001 

1404928 
5 

4828 73 4828 .062 4828 .063 4828 .062 4828 .079 4828 
.001 

2508800 
5 

3496 113 3496 .109 3496 .122 3489 .110 3496 .109 2864 
.001 

5619712 
5 

2822 380 2822 .093 2822 .093 2822 .082 2822 .093 2822 
.001 

5619712 
5 

3916 104 3916 .064 3916 .081 3916 .094 3916 .103 3916 
.001 

5619712 
5 

4138 35 3938 .078 4138 .124 4138 .156 4138 .171 3938 
.001 

9834496 5 4564 284 4362 .078 4563 .106 4358 .094 4362 .109 3950 .001 

9834496 
5 

3114 198 3114 .109 3114 .116 2816 .106 3114 .156 2816 
.001 

9834496 
5 

3910 60 3910 .081 3910 .092 3910 .111 3910 .127 3910 
.001 

19668992 
5 

3504 1402 3504 .093 3504 .094 3504 .092 3504 .112 3504 
.001 

34420736 
5 

4172 1102 4172 .094 4172 .096 4172 .109 4172 .110 3972 
.001 

49172480 
5 

3282 2811 3266 .124 3282 .167 3082 .140 3266 .164 2850 
.001 

 

                                   Figure 4.1: Test Results of Input Subset 1 
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4.2.1.1 Results of Randomly Composed Input Set 

 

This input subset includes 12 small sized and randomly composed scenarios. In this 

subset number of possible assignment schemes varies from 802816 to 49172480. 

Scenarios of this subset are generated automatically by the framework. 

 

Both of elapsed time and fitness values measured for each algorithm, using this input 

subset, can be seen in Figure 4.1. 

 

   

 

            Figure 4.2: Elapsed Time of Brute Force Algorithm for Input Subset 1 

 

 

For the traditional application of exhaustive search algorithm, time complexity of the 

algorithm is directly proportional to number of possible assignments. However, with 

early elimination, it is not the only factor affecting time complexity; occurrence and 

count of early eliminations are also important. Main issue here is the time, the algo-

rithm reached to best solution while enumerating all possibilities. It is possible to 

observe mentioned situation samples in Figure 4.2 that time complexity tends to in-

crease proportionally but exceptional scenarios are available because of the situation.  
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                 Figure 4.3: Elapsed Time of the Algorithms for Input Subset 1 

 

  

   

                   

                Figure 4.4: Fitness Values of the Algorithms for Input Subset 1 

 

 

As it can be seen in Figure 4.3, for this randomly composed subset, rank selection 

yields better time complexity compared to roulette selection for genetic algorithm 

variations on the average. However, multi (two) point crossover operation takes more 

time compared to single point one. Besides, we can see that efficiency of greedy al-

gorithm is the best as expected. 
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Figure 4.3 also shows that elapsed time change of greedy algorithm and genetic algo-

rithm variations is not directly related with possible number of assignments. Really, 

this is another expected result because of the fact that main factor affecting these 

algorithms’ efficiency is the size of the chromosome data structure, which is deter-

mined according to number of targets available in operational environment and num-

ber of UAVs needed to serve for those targets. 

 

As expected, exhaustive search algorithm is the most effective algorithm for this ran-

domly composed input subset according to fitness values given in Figure 4.4. On the 

contrary, greedy algorithm yields the worst of all the algorithms on the average; but 

it is not so far from the reference. However, genetic algorithm variations provide 

close fitness values to ones provided by the reference algorithm. It is possible to see 

that variations of genetic algorithm applying multi point crossover operation are 

slightly better than the ones applying single point. Additionally, rank selection out-

performs roulette selection for a few scenarios. So, GA_Multi_Rank algorithm ap-

plying multi point crossover operation for two levels and using rank selection reach-

es to top effectivity, which is almost same with the reference, among all the genetic 

algorithm variations. 

 

 

Scenario Exhaust. GA_1 GA_2 GA_3 GA_4 Greedy 

Assignment Targets Gain Time Gain Time  Gain Time Gain Time Gain Time Gain Time 

7024640 
5 

4166 311 4166 .152 4166 .156 4166 .156 4166 .187 3966 
.001 

7024640 
5 

4608 113 4608 .093 4608 .094 4608 .092 4608 .109 4608 
.001 

7024640 
5 

4200 112 4000 .118 4196 .126 4000 .134 4000 .140 4000 
.001 

11239424 
5 

4398 766 4392 .114 4398 .124 4392 .127 4398 .141 4382 
.001 

12293120 
5 

4434 87 4434 .092 4434 .096 4434 .102 4434 .114 4434 
.001 

12293120 
5 

3440 287 3440 .148 3440 .161 3240 .146 3440 .125 3040 
.001 

19668992 5 4646 276 4646 .093 4646 .094 4646 .091 4646 .101 4646 .001 

24586240 
5 

4816 1978 4816 .107 4816 .109 4816 .108 4816 .117 4816 
.001 

24586240 
5 

3966 156 3966 .108 3966 .109 3966 .124 3966 .127 3966 
.001 

49172480 
5 

4767 2771 4767 .107 4767 .118 4767 .122 4767 .140 4762 
.001 

49172480 
5 

4832 2482 4832 .097 4832 .107 4832 .098 4832 .112 4832  
.001 

61465600 
5 

4236 1983 4234 .138 4236 .148 4233 .140 4236 .156 4035 
.001 

 

                                  Figure 4.5: Test Results of Input Subset 2 
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4.2.1.2 Results of Consciously Composed Input Set 

 

This input subset includes 12 small sized and consciously composed scenarios. In 

this subset number of possible assignment schemes varies from 7024640 to 

61465600. Scenarios of this subset are generated manually by us. 

 

Both of elapsed time and fitness values measured for each algorithm, using this input 

subset, can be seen in Figure 4.5. 

 

   

           Figure 4.6: Elapsed Time of Brute Force Algorithm for Input Subset 2 

 

 

   

                  Figure 4.7: Elapsed Time of the Algorithms for Input Subset 2 
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                  Figure 4.8: Fitness Values of the Algorithms for Input Subset 2 

 

For this consciously composed subset, we have 11 fully feasible scenarios which are 

7 for randomly composed one. Although higher fitness values are observed because 

of this difference, this situation does not make a substantial change in relative effi-

ciency and effectivity of the algorithms. So, regarding to test results depicted in Fig-

ure 4.6, Figure 4.7 and Figure 4.8, efficiency and effectivity evaluation of the algo-

rithms occurs similar to the previous one occurred for randomly composed input set. 

 

 

4.2.2 Results of Large Sized Input Set 

 

This input set consists of some specific scenarios having more than 65 million differ-

ent assignment schemes. Because of high time complexity of exhaustive search algo-

rithm and availability of large sized inputs, evaluation of this input set is realized 

without this algorithm. Main aim for this evaluation is to analyze quality of outputs 

for the genetic algorithm by comparing fitness and elapsed time values of this algo-

rithm with the ones resulted from the greedy algorithm. For all of the scenarios of 

this set, number of UAVs to be available in operational environment is decided to be 

same and equals to 20. But this time, number of targets is increased by one from sce-

nario to scenario. Additionally, fuel level of UAVs is set to 400 distance units for all 

members of this input set. 
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This input set is also divided into two subsets, which are randomly composed subset 

(Input subset 3) and consciously composed subset (Input subset 4) and each of which 

containing 12 different scenarios. 

 

Scenario GA_1 GA_2 GA_3 GA_4 Greedy 

UAVs Targets Gain Time  Gain Time Gain Time Gain Time Gain Time 

20 6 
10261 .234 10461 .280 10259 .264 10461 .491 9957 .016 

20 7 
10116 .265 10116 .281 10116 .265 10116 .281 9810 .017 

20 8 
9662 .249 9871 .265 9653 .267 9799 .267 9244 .019 

20 9 
10245 .737 10450 .972 10215 .749 10250 .827 9935 .021 

20 10 
9832 .499 9848 .671 9832 .501 9848 .686 9832 .022 

20 11 
12143 .567 12238 .599 12138 .571 12229 .608 12029 .024 

20 12 
9796 .873 9827 .951 9813 .902 9830 1.295 9430 .027 

20 13 
10035 1.108 10267 1.488 10013 1.201 10075 1.328 9843 .032 

20 14 
11628 .637 11819 .662 11614 .688 11631 .714 11304 .034 

20 15 
9849 .780 10077 .812 9849 .795 9998 .842 9466 .034 

20 16 
8682 .1186 8682 .1216 8682 .1199 8682 .1277 8270 .036 

20 17 
9873 .694 9956 1.748 9873 .697 9956 1.860 9651 .037 

 

                                  Figure 4.9: Test Results of Input Subset 3 

 

 

4.2.2.1 Results of Randomly Composed Input Set 

 

This input subset includes 12 large sized and randomly composed scenarios. In this 

subset number of targets varies from 6 to 17. Scenarios of this subset are generated 

automatically by the framework. 

 

   

                Figure 4.10: Elapsed Time of the Algorithms for Input Subset 3 
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Both of elapsed time and fitness values measured for each algorithm, using this input 

subset, can be seen in Figure 4.9. 

 

   

                 Figure 4.11: Fitness Values of the Algorithms for Input Subset 3 

 

As stated before, there is no reference algorithm available for this input subset. So, 

comparison of just greedy and variations of genetic algorithms is provided in this 

section. Because of varying number of targets, size of the chromosome data structure 

grows and shrinks accordingly. Mainly, both of greedy and genetic algorithms’ 

elapsed time values are directly related to that size as shown in Figure 4.10. Howev-

er, there are also some other factors, such as relative locations of targets, relative 

conditions of target time windows and number of distinct UAVs to be used, that are 

also affecting time complexity. Accordingly, it is possible to see in Figure 4.10 that 

time complexity of all algorithms tends to increase as the number of targets increase; 

but for genetic algorithm, there are also some scenarios affected from these men-

tioned factors and caused some extra points to emerge in the graph. 

 

Relative performances of the algorithms stay similar to the one happened for small 

sized scenarios that greedy algorithm is the most efficient and the least effective al-

gorithm again. According to the results depicted in Figure 4.10 and 4.11, genetic 

algorithms applying multi point crossover operation are more effective and less effi-

cient in average when compared to ones applying single point. Also, rank selection is 

again performing slightly better than roulette selection, for both aspects, in average.   
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4.2.2.2 Results of Consciously Composed Input Set 

 

This input subset includes 12 large sized and consciously composed scenarios. In this 

subset number of targets varies from 6 to 17. The scenarios available in this subset 

are generated manually by us. 

 

Both of elapsed time and fitness values measured for each algorithm, using this input 

subset, can be seen in Figure 4.12. 

 

Scenario GA_1 GA_2 GA_3 GA_4 Greedy 

UAVs Targets Gain Time  Gain Time Gain Time Gain Time Gain Time 

20 6 
11336 .099 11336 .113 11336 .104 11336 .121 11336 .016 

20 7 
11329 .234 11329 .265 11329 .343 11329 .406 10931 .017 

20 8 
11389 .711 11589 .742 11387 .717 11585 .787 10366 .018 

20 9 
12090 .436 12290 .733 12082 .530 12282 .792 11690 .020 

20 10 
12096 .484 12099 .577 12096 .492 12096 .543 11896 .022 

20 11 
12359 .327 12558 .342 12359 .327 12359 .406 12354 .024 

20 12 
12750 .343 12854 .674 12750 .436 12754 .468 12650 .026 

20 13 
13616 1.030 13617 1.112 13427 .827 13427 .967 12806 .028 

20 14 
12242 .921 12444 .942 12047 .967 12244 1.404 11644 .031 

20 15 
12092 .936 12242 1.397 12238 1.498 12238 1.575 12038 .033 

20 16 
14912 1.249 15112 1.260 14889 1.311 15101 1.370 14291 .036 

20 17 
12796 1.716 12796 1.732 12796 1.606 12797 2.171 11825 .041 

 

                                   Figure 4.12: Test Results of Input Subset 4 

 

 

   
 

                  Figure 4.13: Elapsed Time of the Algorithms for Input Subset 4 
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                 Figure 4.14: Fitness Values of the Algorithms for Input Subset 4 

 

 

 

For this consciously composed subset, we have 9 fully feasible scenarios which are 3 

for randomly composed one. Although, higher fitness values are observed because of 

this difference, this situation does not make a substantial change in relative efficiency 

and effectivity of the algorithms. So, regarding to test results depicted in Figure 4.13 

and Figure 4.14, efficiency and effectivity evaluation of the algorithms occurs similar 

to the previous one occurred for randomly composed input subset of this set. 

 

According to all of the test results gathered for 4 input subsets, remarkable inferences 

are listed as follows: 

 

 Although evaluated only for small sized set, exhaustive search algorithm with 

early elimination provides the best effectivity and the worst efficiency. 

 

 Greedy algorithm performs the worst effectivity and the best efficiency. 

 

 For genetic algorithms implemented for this problem, multi point crossover 

reaches more effective fitness values compared to single point ones that the 

situation is also emphasized in [28], which also deals with a similar problem. 

However, single point crossover is more efficient than the multi point one. 
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 For genetic algorithms implemented for this problem, rank selection is more 

efficient than roulette selection in general. Moreover, it achieves better effec-

tivity for some specific scenarios. 

 

 As a consequence of third and fourth conclusions, GA_Multi_Rank algorithm 

provides highly appealing results when evaluated for both of effectivity and 

efficiency aspects together. Although time complexity of the algorithm is not 

even best of genetic algorithm variations, it presents nearly optimal solutions 

in terms of effectivity. Moreover, the average time complexity of the algo-

rithm is in acceptable range to be utilized for this problem. 

 

 

4.2.3 Objective Based Evaluation of Test Results 

 

Availability of three different objectives in fitness function lets us to present objec-

tive based test results in addition to fitness based test results with the aim of analyz-

ing objective based performances of the algorithms. However, these objective based 

test results are only given for large sized input set because of the reality that perfor-

mances of the algorithms for small sized input set do not pose substantial differences. 

 

 

     Figure 4.15: Objective Based Test Results of the Algorithms for Input Subset 3 
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Scenario GA_1 GA_2 GA_3 GA_4 Greedy 

UAV Targets Dis. U Tar. Dis. U Tar. Dis. U Tar. Dis. U Tar. Dis. U Tar. 

20 6 
1439 13 6 1339 12 6 1441 13 6 1339 12 6 1643 14 6 

20 7 
1584 8 6 1584 8 6 1584 8 6 1584 8 6 1690 10 6 

20 8 
2338 10 7 2229 9 7 2347 10 7 2301 9 7 2556 12 7 

20 9 
2555 17 9 2450 16 9 2585 17 9 2550 17 9 2665 19 9 

20 10 
2368 18 9 2352 18 9 2368 18 9 2352 18 9 2368 18 9 

20 11 
1957 14 11 1962 13 11 1962 14 11 1971 13 11 1971 15 11 

20 12 
2404 18 10 2373 18 10 2387 18 10 2370 18 10 2570 20 10 

20 13 
2565 19 11 2433 18 11 2587 19 11 2525 19 11 2657 20 11 

20 14 
2572 18 13 2481 17 13 2586 18 13 2569 18 13 2696 20 13 

20 15 
2051 16 11 1923 15 11 2051 16 11 1902 16 11 2234 18 11 

20 16 
2618 17 11 2618 17 11 2618 17 11 2618 17 11 2730 20 11 

20 17 
2627 20 13 2644 19 13 2627 20 13 2644 19 13 2849 20 13 

Average: 2257 
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Objective based performances of the algorithms for large sized randomly and con-

sciously composed subsets can be seen in Figure 4.15 and Figure 4.16 respectively. 

With the aim of providing objective based comparison, total distance covered by all 

UAVs (Dis.), total number of UAVs used for the mission (Uav) and total number of 

targets served during the mission (Tar.) are given regarding to first, second and third 

objectives respectively. 

 

As can be seen in Figure 4.15, for randomly composed subset, there is no difference 

for performances of the algorithms in target coverage aspect. But, for distance cover-

age issue, effectivity of genetic algorithms is superior to effectivity of greedy one; 

that the difference varies from %5.2 to %7.8 on the average and GA_Multi_Rank 

algorithm provides the highest effectivity. In addition, it is possible to lower total 

covered distance up to %18.5 and save corresponding level of fuel for some specific 

scenarios. For UAV usage issue, again genetic algorithms outperform greedy algo-

rithm from %8.7 to %12.8 on the average and GA_Multi_Rank algorithm reaches to 

top effectivity again. Besides, for some specific scenarios, it is possible to save 

UAVs up to %25 using genetic algorithm variations. As the result, it can be conclud-

ed for this input subset that the genetic algorithms yield more effective results com-

pared to ones of the greedy algorithm on the average for two of the three objectives. 

 

 

     Figure 4.16: Objective Based Test Results of the Algorithms for Input Subset 4 
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Scenario GA_1 GA_2 GA_3 GA_4 Greedy 

UAV Targets Dis. Uav Tar. Dis. Uav Tar. Dis. Uav Tar. Dis. Uav Tar. Dis. Uav Tar. 

20 6 
864 8 6 864 8 6 864 8 6 864 8 6 864 8 6 

20 7 
1171 10 7 1171 10 7 1171 10 7 1171 10 7 1369 12 7 

20 8 
1511 11 8 1311 11 8 1513 11 8 1315 11 8 1934 17 8 

20 9 
1310 11 9 1110 11 9 1318 11 9 1118 11 9 1510 13 9 

20 10 
1704 12 10 1701 12 10 1704 12 10 1704 12 10 1704 14 10 

20 11 
1741 14 11 1642 13 11 1741 14 11 1741 14 11 1746 14 11 

20 12 
1850 14 12 1746 14 12 1850 14 12 1846 14 12 1850 15 12 

20 13 
1584 13 13 1683 12 13 1573 15 13 1673 14 13 1994 17 13 

20 14 
2158 16 13 2056 15 13 2253 17 13 2256 15 13 2356 20 13 

20 15 
2408 20 14 2358 19 14 2362 19 14 2362 19 14 2462 20 14 

20 16 
1688 14 16 1688 12 16 1711 14 16 1699 12 16 2009 17 16 

20 17 
2704 20 16 2704 20 16 2704 20 16 2703 20 16 2675 20 15 

Average: 
1724 

13.
6 

11.
2 1670 

13.
1 

11.
2 1730 

13.
7 

11.
2 1704 

13.
3 

11.
2 1873 

15.
6 

11.
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As can be seen in Figure 4.16, for consciously composed subset, there is only one 

scenario posing difference in target coverage aspect; that genetic algorithms cover 

one more target compared to greedy algorithm in that scenario. For distance coverage 

issue, effectivity of genetic algorithms is superior to effectivity of greedy one; that 

the difference varies from %7.6 to %10.8 on the average and GA_Multi_Rank algo-

rithm provides the highest effectivity. In addition, it is possible to lower total covered 

distance up to %32.2 and save corresponding level of fuel for some specific scenari-

os. For UAV usage issue, again genetic algorithms outperform greedy algorithm 

from %12.2 to %16 on the average and GA_Multi_Rank algorithm reaches to top 

effectivity again. Besides, for some specific scenarios, it is possible to save UAVs up 

to %35.3 using genetic algorithm variations. As the result, it can be concluded for 

this input subset that the genetic algorithms yield more effective results compared to 

ones of the greedy algorithm on the average for all of the three objectives. 

 

For large sized and randomly composed subset, although fitness based test results 

show superiority of genetic algorithms’ average effectivity from %2.8 to %4.1 com-

pared to average effectivity of greedy algorithm, objective based evaluation shows 

that the reason of the small difference is relative effectivity of the third objective in 

fitness; that the objective is achieved equally well by all of the algorithms. However, 

there are substantial performance differences in terms of first and second objectives. 

 

For large sized and consciously composed subset, although fitness based test results 

show superiority of genetic algorithms’ average effectivity from %3.4 to %4.5 com-

pared to average effectivity of greedy algorithm, objective based evaluation shows 

that the reason of the small difference is relative effectivity of the third objective in 

fitness; that the objective is achieved almost equally well by all of the algorithms. 

However, there are substantial performance differences in terms of first and second 

objectives. 

 

As the general result, it is possible to conclude for two subsets of large sized input set 

that the genetic algorithms yield reasonably more effective results compared to ones 

of the greedy algorithm on the average especially for the first and second objectives. 
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4.2.4 Comparison of Genetic Algorithms’ Performances 

 

As stated before; another genetic algorithm, applying crossover operation only for 

UAV level of the chromosome data structure, is also implemented with the aim of 

making efficiency and effectivity comparison of two – level crossover operation pos-

sible. Hence, two genetic algorithms, applying specified crossover operation to one 

level and two levels of the chromosome structure, are obtained for comparison pro-

cess. 

 

Both of the algorithms are arranged to use multi point crossover scheme and rank 

selection technique, which constitute the best performing genetic algorithm configu-

ration of this problem, together. 

 

Performances of the GA_Multi_Rank and GA_Simple_Multi_Rank algorithms are 

compared with respect to both of the fitness and objective based test results. Howev-

er, the objective based comparison is only given for large sized input set because of 

the reality that performances of the algorithms for small sized input set do not pose 

substantial differences. 

 

 

4.2.4.1 Fitness Based Comparison 

 

Fitness based comparison of the genetic algorithms is provided in this section. The 

algorithms, GA_Multi_Rank and GA_Simple_Multi_Rank, are both tested with al-

ready composed small sized and large sized input sets and both of their randomly and 

consciously composed subsets. For this time, gathered fitness and elapsed time re-

sults are not tabulated but graphically visualized in a comparative manner. 

 

With respect to efficiency and effectivity aspects, evaluations of the algorithms, for 

all input subsets, are given below: 
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          Figure 4.17: Elapsed Time of Genetic Algorithms for Input Subset 1 

 

 

   

           Figure 4.18: Fitness Values of Genetic Algorithms for Input Subset 1 

 

 

As it can be seen in Figure 4.17 and Figure 4.18, for the small sized and randomly 

composed input subset, both of the algorithms perform very close to each other with 

respect to both of the evaluation criterions. Accordingly, it is possible to say that two 

– level crossover scheme does not make any substantial difference for this input sub-

set. 
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          Figure 4.19: Elapsed Time of Genetic Algorithms for Input Subset 2 

 

 

   

          Figure 4.20: Fitness Values of Genetic Algorithms for Input Subset 2 

 

 

Figure 4.19 and Figure 4.20 show that, for the small sized and consciously composed 

subset, GA_Multi_Rank algorithm achieves better effectivity for one specific scenar-

io and also results with slightly better average elapsed time compared to 

GA_Simple_Multi_Rank algorithm. However, it is not realistic enough to declare 

GA_Multi_Rank algorithm as the better one for small sized input set, because there 

is no obvious outperforming situation available especially for effectivity aspect. 
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              Figure 4.21: Elapsed Time of Genetic Algorithms for Input Subset 3 

 

 

   

            Figure 4.22: Fitness Values of Genetic Algorithms for Input Subset 3 

 

 

According to graphical representations of test results given in Figure 4.21 and Figure 

4.22, for input subset 3, average elapsed time values of both genetic algorithms are 

very close to each other again. However, GA_Multi_Rank algorithm obviously pro-

vides better fitness values for 4 of 12 scenarios for this time. Also, there exist extra 6 

scenarios in which performance difference happen so slightly. 
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            Figure 4.23: Elapsed Time of Genetic Algorithms for Input Subset 4 

 

 

   

          Figure 4.24: Fitness Values of Genetic Algorithms for Input Subset 4 

 

For input subset 4, comparison of the algorithms occurs similar to the previous one, 

occurred for large sized and randomly composed subset, as can be seen in Figure 

4.23 and Figure 4.24. Again very close performances are available for efficiency 

aspect, but GA_Multi_Rank algorithm outperforms for some specific scenarios of 

this input subset in terms of effectivity. 

 

According to all fitness based test results for 4 input subsets, it may be concluded 

that the two – level crossover operation is more effective than the one – level one for 

this problem, especially for large sized input subsets regardless of composition way. 
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4.2.4.2 Objective Based Comparison 

 

Objective based comparison of the genetic algorithms is provided in this section. The 

algorithms, GA_Multi_Rank and GA_Simple_Multi_Rank, are both tested with al-

ready composed large sized input set and its randomly and consciously composed 

subsets. For this time, gathered fitness results are not graphically visualized in a 

comparative manner but presented in tabular form. 

 

Objective based performances of the algorithms for large sized randomly and con-

sciously composed subsets can be seen in Figure 4.25 and Figure 4.26 respectively. 

With the aim of providing objective based comparison, total distance covered by all 

UAVs, total number of UAVs used for the mission and total number of targets served 

during the mission  are given regarding to first, second and third objectives respec-

tively. 

 

 

 

 

 

 

 

 

 

 

 

 

      

      Figure 4.25: Objective Based Test Results of Genetic Algorithms for Subset 3 

 

As can be seen in Figure 4.25, for randomly composed subset, there is no difference 

for performances of the genetic algorithms in target coverage aspect. But, for dis-

tance coverage issue, effectivity of GA_Multi_Rank algorithm is better than effectiv-

ity of GA_Simple_Multi_Rank algorithm; that the difference is about %1.8 on the       
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Scenario GA_Multi_Rank GA_Simple_Multi_Rank 

UAVs Targets Distance Used UAVs Targets Distance Used UAVs Targets 

20 6 
1339 12 6 1457 13 6 

20 7 
1584 8 6 1584 8 6 

20 8 
2229 9 7 2247 9 7 

20 9 
2450 16 9 2530 17 9 

20 10 
2352 18 9 2368 18 9 

20 11 
1962 13 11 1971 13 11 

20 12 
2373 18 10 2404 18 10 

20 13 
2433 18 11 2563 19 11 

20 14 
2481 17 13 2574 18 13 

20 15 
1923 15 11 1923 16 11 

20 16 
2618 17 11 2618 17 11 

20 17 
2644 19 13 2627 20 13 

Average: 2199 15 9,75 2239 15.5 9,75 



                                                          

average and about %8.1 at maximum. For the aspect of UAV usage, again 

GA_Multi_Rank algorithm outperforms GA_Simple_Multi_Rank algorithm about 

%3.2 on the average and about %7.7 at maximum. As the result, it can be concluded 

for this input subset that GA_Multi_Rank algorithm provides more effective results 

compared to ones of the GA_Simple_Multi_Rank algorithm on the average for two 

of the three objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

      Figure 4.26: Objective Based Test Results of Genetic Algorithms for Subset 4 

 

 

As can be seen in Figure 4.26, for consciously composed subset, there is only one 

scenario posing difference in target coverage aspect; that GA_Multi_Rank algorithm 

covers one more target compared to GA_Simple_Multi_Rank algorithm in that sce-

nario. However, for distance coverage issue, effectivity of GA_Multi_Rank algo-

rithm is better than effectivity of GA_Simple_Multi_Rank algorithm; that the differ-

ence is about %0.7 on the average and about %6 at maximum. For the aspect of 

UAV usage, again GA_Multi_Rank algorithm outperforms GA_Simple_Multi_Rank 

algorithm for about %3 on the average and about %14.3 at maximum. As the result, 

it can be concluded for this input subset that the GA_Multi_Rank algorithm provides 

more effective results compared to ones of the GA_Simple_Multi_Rank algorithm 

on the average for all of the three objectives. 
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Scenario GA_Multi_Rank GA_Simple_Multi_Rank 

UAVs Targets Distance Used UAVs Targets Distance Used UAVs Targets 

20 6 
864 8 6 864 8 6 

20 7 
1171 10 7 1171 10 7 

20 8 
1311 11 8 1316 11 8 

20 9 
1110 11 9 1114 11 9 

20 10 
1701 12 10 1700 14 10 

20 11 
1642 13 11 1746 14 11 

20 12 
1746 14 12 1850 15 12 

20 13 
1683 12 13 1584 13 13 

20 14 
2056 15 13 2156 16 13 

20 15 
2358 19 14 2358 19 14 

20 16 
1688 12 16 1788 13 16 

20 17 
2704 20 16 2534 18 15 

Average: 
1670 13.1 11,25 1682 13.5 11.17 



                                                          

 

 

                                                      CHAPTER 5 

 

 

                                  CONCLUSION AND FUTURE WORK 

 

 

 

5.1 Conclusions 

 

In this thesis, we analyzed UAV mission planning problem especially for UAV – 

target assignment and scheduling aspects. We formulated the problem as a combina-

torial optimization problem and served it in a generic way that all available algo-

rithms can be easily designed for. 

 

Genetic, greedy and exhaustive search algorithms are designed and implemented for 

this problem. Additionally, some customizations are made to these implementations 

regarding to specific features coming from problem domain. A graphical framework, 

easing scenario management and allowing a generic testing procedure regardless of 

which algorithm to be tested, is also developed in the context of this study. Each im-

plemented algorithm is tested in both of effectivity and efficiency aspects and its 

performance is compared to the rest ones’. 

 

Two main input sets and subsets posing different problem domain related features 

are composed for evaluation of all implemented algorithms and their possible varia-

tions. Finally, resulting comparable values, such as fitness and elapsed time, are 

tabulated for each of 4 input subsets. Also, for large sized input set, objective based 

performances of the algorithms are also given for all of the three objectives in tabular 

form. 
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Exhaustive search algorithm gives the best solutions for all kind of scenarios in terms 

of solution quality. However, the algorithm provides the worst efficiency, especially 

for operational environments including more than a few infeasible targets, when 

compared to efficiency of the other algorithms. Because of this huge running time of 

the algorithm, it is not preferable to use especially for real time problem domain. 

Also, regardless of real time requirement of the problems, it is also not practical for 

some problems, waiting decisions not in real time but in acceptable time, like this 

UAV mission planning problem. 

 

Greedy algorithm gives the most efficient solutions requiring the least elapsed time 

for execution; but effectivity of this algorithm is low compared to the other algo-

rithms. Also, the solutions tend to diverge more from optimality, as complexity of 

operational environment increases. So this algorithm is not also suitable enough for 

UAV mission planning problem. 

 

After comparison of all experimental data, we can conclude that genetic algorithm is 

practically the best algorithm for our problem by keeping both effectivity and effi-

ciency criterions in acceptable interval. Solutions of genetic algorithms are produced 

nearly as quickly as greedy algorithm (smaller than 2.2 seconds for all input scenari-

os) for all customizations of the problem. Also fitness values are not much worse 

than the ones produced by exhaustive search algorithm and they differs less than %1 

at maximum. In addition, objective based evaluation, which is realized only for large 

sized input set, shows us superiority of genetic algorithm variations to greedy algo-

rithm in terms of effectivity, especially for the first and second objectives of the 

problem. 

 

Finally, we can say that the genetic algorithm GA_Multi_Rank, which is utilizing 

UAV and Target Level Crossover techniques together with two point scheme and 

using rank selection operator, stands as the most preferable algorithm for this as-

signment and scheduling problem. This algorithm finds good quality solutions in 

preferable and acceptable levels with respect to requirements emerging from nature 

of the UAV mission planning problem. 
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5.2 Future Work 

 

In this thesis, three main objectives are cared about and gain related to these objec-

tives are tried to be maximized. It is possible to increase number of objectives related 

to problem domain such as priority of targets regarding to configurations of opera-

tional environments. 

 

It would be more realistic to think operational environment in a dynamic fashion 

instead of static which is done in this thesis. Because, it is very common to face with 

unexpected factors for this type of missions. Accordingly, it would be a good prac-

tice to care about extra targets popping up in operational time and design algorithm 

to react operational time changes. 

 

This study has assumed availability of homogenous UAVs for each implemented 

algorithm but it would be more realistic to be cared about UAV types and managing 

them according to hard and soft features associated with them. In this context, it can 

also be possible to divide the mission into three main stages which are classification, 

attack and verification as stated in [4] and manage accordingly. 

 

It can also be a good practice to modify 2D graphical framework to be able to make 

it working in 3D fashion. Then, it would become more useful and realistic for the 

users, especially in simulation phase to see what would happen during scenarios.  
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