

 MISSION PLANNING FOR UNMANNED AERIAL VEHICLE (UAV) TEAMS

 A THESIS SUBMITTED TO

 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

 OF

 MIDDLE EAST TECHNICAL UNIVERSITY

 BY

 SERDAR YILGIN

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR

 THE DEGREE OF MASTER OF SCIENCE

 IN

 COMPUTER ENGINEERING

 SEPTEMBER 2014

 Approval of the thesis:

MISSION PLANNING FOR UNMANNED AERIAL VEHICLE (UAV) TEAMS

submitted by SERDAR YILGIN in partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences _______________

Prof. Dr. Adnan Yazıcı

Head of Department, Computer Engineering _______________

Prof. Dr. Faruk Polat

Supervisor, Computer Engineering Dept., METU _______________

Examining Committee Members:

Prof. Dr. Ahmet Coşar

Computer Engineering Dept., METU _______________

Prof. Dr. Faruk Polat

Computer Engineering Dept., METU _______________

Prof. Dr. Veysi İşler

Computer Engineering Dept., METU _______________

Assoc. Prof. Dr. Halit Oğuztüzün

Computer Engineering Dept., METU _______________

Assist. Prof. Dr. Mehmet Tan

Computer Engineering Dept., TOBB ETU _______________

 Date: 04.09.2014

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last Name: SERDAR YILGIN

 Signature :

 iv

 ABSTRACT

MISSION PLANNING FOR UNMANNED AERIAL VEHICLE (UAV) TEAMS

 Yılgın, Serdar

 M.S., Department of Computer Engineering

 Supervisor: Prof. Dr. Faruk Polat

 September 2014, 71 pages

In recent years, use of Unmanned Aerial Vehicle (UAV) especially for

reconnaissance and combat missions has become very popular in worldwide. There

is no onboard human operator exists for UAVs and they are generally controlled by

remote human operators. Depending on the operational environment; sometimes it

becomes nearly impossible to provide optimal or an acceptable UAV – target

assignment and scheduling, satisfying the constraints required to accomplish the

mission, for the operators in control center. In this scheme, computer support became

inevitable to be able to acquire more suitable scheduling and assignments for the

missions, involving more than a few UAVs and targets, in shorter durations. In this

thesis, we study different approaches for UAV mission planning problem and

analyze their performances. We designed a genetic algorithm instance with

customized encoding, crossover and fitness calculation that all these algorithm

components are somehow related to problem domain. A brute – force and a greedy

algorithm are also developed for this problem with the aim of comparison. As the

result, by utilizing developed algorithms, it has become possible to evaluate

effectivity and efficiency of the proposed genetic algorithm.

Keywords: Unmanned Aerial Vehicle, Genetic Algorithm, Mission Planning, UAV –

Target Assignment and Scheduling, Operational Environment

 v

 ÖZ

 İNSANSIZ HAVA ARACI (İHA) TAKIMLARI İÇİN GÖREV PLANLAMA

 Yılgın, Serdar

 Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

 Tez Yöneticisi: Prof. Dr. Faruk Polat

 Eylül 2014, 71 sayfa

Son yıllarda, özellikle keşif ve çarpışma görevlerinde İnsansız Hava Aracı (İHA)

kullanımı dünya çapında fazlaca tercih edilir bir hale gelmiştir. İHA’lar için hava

aracı üzerinde bir insan operatör bulunmaz ve bu araçlar genellikle uzak kontrol

merkezlerindeki insan operatörler tarafından kontrol edilirler. Operasyonel ortam

şartları doğrultusunda; kontrol merkezindeki operatörlerin, görevin başarıyla

sonuçlanmasını sağlayacak gereksinimleri en uygun veya kabul edilebilir uygunlukta

yerine getiren bir İHA – hedef eşleşmesi ve zaman planlaması yapabilmeleri bazen

neredeyse imkânsız bir hal alır. Bu durumda özellikle birkaç İHA ve birkaç hedeften

fazlasını içeren görevlerde, daha kısa bir zaman dilimi içerisinde daha uygun zaman

planlamaları ve atamalar sağlayabilmek için bilgisayar desteği almak kaçınılmaz

olmuştur. Bu tezde, İHA görev planlaması için farklı yaklaşımlar üzerinde çalıştık ve

bu yaklaşımların başarılarını analiz ettik. Özelleştirilmiş çaprazlama, kodlama ve

değerlendirme yöntemlerini içeren ve bileşenlerinin alan bilgisi doğrultusunda

belirlendiği bir genetik algoritma örneği tasarladık. Bu problem için karşılaştırma

amaçlı, kaba kuvvet ve açgözlülük yöntemleri üzerine kurulmuş 2 algoritma daha

geliştirildi. Sonuç olarak, geliştirilen bu algoritmalar kullanılarak, önerilen genetik

algoritmanın yürürlük ve etkinliğini değerlendirebilmemiz mümkün oldu.

Anahtar Kelimeler: İnsansız Hava Aracı, Genetik Algoritmalar, Görev Planlama,

İHA – Hedef Ataması ve Zaman Planlaması, Operasyonel Ortam

 vi

 To Computer Science

 vii

 ACKNOWLEDGMENTS

I would like to present my deepest thanks to my thesis supervisor Prof. Dr. Faruk

Polat for his valuable guidance, motivation and support throughout this thesis study.

I am very grateful to my family and colleagues in Havelsan A.Ş. for all their patience

and tolerance.

 viii

 TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTERS

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK . 5

2.1 Problem Formulation . 5

2.2 Related Work . 6

2.3 Resource – Target Assignment and Scheduling Methodologies . 11

 2.3.1 Exhaustive (Brute – Force) Search Algorithm 11

 2.3.2 Greedy Algorithm . 12

 2.3.3 Integer Linear Programming . 12

 2.3.4 Genetic Algorithm . 13

3. OUR WORK . 21

3.1 Problem Formulation and Constraints . 21

3.2 Operational Environment Assumptions . 24

3.3 Framework Architecture . 25

 ix

3.4 Input Set Generation . 29

3.5 Algorithm Implementations and Customizations 30

3.5.1 Exhaustive (Brute – Force) Search Algorithm 30

 3.5.2 Greedy Search Algorithm . 31

 3.5.3 Genetic Algorithm . 32

 3.5.3.1 Encoding . 33

 3.5.3.2 Population Initialization 34

 3.5.3.3 Crossover . 35

 3.5.3.4 Mutation . 38

 3.5.3.5 Selection . 39

 3.5.3.6 Fitness Calculation . 39

4. EVALUATION OF THE RESULTS . 41

 4.1 Testing Procedures and Configuration of the Algorithms 42

 4.1.1 Exhaustive Search Algorithm Implementation 42

 4.1.2 Greedy Search Algorithm Implementation 42

 4.1.3 Genetic Algorithm Implementation 43

 4.2 Results of Experiments 44

 4.2.1 Results of Small Sized Input Set . 45

 4.2.1.1 Results of Randomly Composed Input Set 46

 4.2.1.2 Results of Consciously Composed Input Set . . 49

 4.2.2 Results of Large Sized Input Set . 50

 4.2.2.1 Results of Randomly Composed Input Set 51

 4.2.2.2 Results of Consciously Composed Input Set . . 53

 4.2.3 Objective Based Evaluation of Test Results 55

 x

 4.2.4 Comparison of Genetic Algorithms’ Performances 58

 4.2.4.1 Fitness Based Comparison 58

 4.2.4.2 Objective Based Comparison 63

5. CONCLUSION AND FUTURE WORK . 65

5.1 Conclusions . 65

 5.2 Future Work . 67

REFERENCES . 69

 xi

 LIST OF TABLES

TABLES

Table 4.1: Variations of Genetic Algorithm . 43

 xii

 LIST OF FIGURES

FIGURES

Figure 2.1: Roulette Wheel Selection Probability Distribution 15

Figure 2.2: Rank Selection Probability Distribution . 16

Figure 2.3: Single Point Crossover Procedure . 17

Figure 2.4: Two Point Crossover Procedure . 18

Figure 2.5: (a) One-bit Mutation Procedure, (b) Multi-bit Mutation Procedure . . 19

Figure 3.1: An Operational Environment with Target Configuration 23

Figure 3.2: Parameter Configuration for the Algorithms . 23

Figure 3.3: An Optimal Solution Instance of the Problem 24

Figure 3.4: UAV Mission Planning Scenario Sample # 1 27

Figure 3.5: UAV Mission Planning Scenario Sample # 2 27

Figure 3.6: XML – formatted Scenario File Sample . 28

Figure 3.7: GUI of Automatic Test Scenario Generation Tool 29

Figure 3.8: Chromosome Structure with Encoding Format 33

Figure 3.9: Target Level Single Point Crossover Scheme 36

Figure 3.10: Target Level Two Point Crossover Scheme . 36

Figure 3.11: UAV Level Single Point Crossover Scheme 37

Figure 3.12: UAV Level Two Point Crossover Scheme . 37

Figure 4.1: Test Results of Input Subset 1 . 45

Figure 4.2: Elapsed Time of Brute Force Algorithm for Input Subset 1 46

Figure 4.3: Elapsed Time of the Algorithms for Input Subset 1 47

Figure 4.4: Fitness Values of the Algorithms for Input Subset 1 47

Figure 4.5: Test Results of Input Subset 2 . 48

 xiii

Figure 4.6: Elapsed Time of Brute Force Algorithm for Input Subset 2 49

Figure 4.7: Elapsed Time of the Algorithms for Input Subset 2 49

Figure 4.8: Fitness Values of the Algorithms for Input Subset 2 50

Figure 4.9: Test Results of Input Subset 3 . 51

Figure 4.10: Elapsed Time of the Algorithms for Input Subset 3 51

Figure 4.11: Fitness Values of the Algorithms for Input Subset 3 52

Figure 4.12: Test Results of Input Subset 4 . 53

Figure 4.13: Elapsed Time of the Algorithms for Input Subset 4 53

Figure 4.14: Fitness Values of the Algorithms for Input Subset 4 54

Figure 4.15: Objective Based Test Results of the Algorithms for Input Subset 3 . 55

Figure 4.16: Objective Based Test Results of the Algorithms for Input Subset 4 . 56

Figure 4.17: Elapsed Time of Genetic Algorithms for Input Subset 1 59

Figure 4.18: Fitness Values of Genetic Algorithms for Input Subset 1 59

Figure 4.19: Elapsed Time of Genetic Algorithms for Input Subset 2 60

Figure 4.20: Fitness Values of Genetic Algorithms for Input Subset 2 60

Figure 4.21: Elapsed Time of Genetic Algorithms for Input Subset 3 61

Figure 4.22: Fitness Values of Genetic Algorithms for Input Subset 3 61

Figure 4.23: Elapsed Time of Genetic Algorithms for Input Subset 4 62

Figure 4.24: Fitness Values of Genetic Algorithms for Input Subset 4 62

Figure 4.25: Objective Based Test Results of Genetic Algorithms for Subset 3 . . 63

Figure 4.26: Objective Based Test Results of Genetic Algorithms for Subset 4 . . 64

 xiv

 CHAPTER 1

 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are somehow autonomous aircrafts and do not

require onboard human controller (pilot) for management. The idea of using UAVs

for various military missions receives growing attention day to day, especially in last

two decades. Lack of dependency for an onboard controller provides some other de-

sirable features such as having less weight compared to traditional airplanes and ac-

cordingly need for lesser fuel amount for flying same distances. Also, some equip-

ment used for safety and surveillance of human controller are not necessary for

UAVs. So, for some type of missions, it is possible to lower cost of operation by us-

ing UAVs instead of traditional airplanes. As the result, having cost advantage and

no need for human intervention encourage the use of UAVs for realization of D-cube

(Dull, Dirty, Dangerous) missions [19].

UAV mission planning is a kind of resource allocation problem requiring assignment

of scarce resources to relatively big amount of targets by taking time constraints of

targets into consideration. Workload variety of targets is also an important issue that

number of UAVs needed by any target is directly proportional to size of the area

covered by that target and inversely proportional to time interval that the target re-

quired to be served for. In this thesis, additional to these mentioned requirements, we

also consider fuel consumption of UAVs. Accordingly, fuel levels of UAVs need to

be checked to be able make them to return to base location safely. Regarding to this

described scenario, it is possible to classify UAV mission planning problem as a

combinatorial optimization problem, which requires finding the best or an acceptable

solution, with respect to predefined requirements, from a big solution set. So, this

 1

scheduling and planning task is NP – Hard (Non – deterministic Polynomial – time

hard) [21].

It is not always possible for UAV operators to reach acceptable level of optimality in

assignment and scheduling, especially for the operational environments involving

many UAVs and targets. For some scenarios in which available UAVs are scarce and

just a few more than the number required for accomplishing the mission with an op-

timal assignment and scheduling, probability of failure for the mission is very high

without computer support. Even in case of success for those typical scenarios, cost of

the operation will probably become more than the cost resulted from computer sup-

ported one. Requirement for such an algorithm meeting the requirements and provid-

ing optimal or more suitable solutions in shorter durations constitutes the motivation

of this study.

In this thesis, we focus on genetic algorithm formulations for UAV mission planning

problem. Problem specific encoding, crossover and fitness calculation schemes are

proposed for genetic algorithm solution of this assignment and scheduling problem

through this thesis. Customized genetic algorithm approaches are implemented and

examined through experiments.

Greedy and exhaustive search algorithms are also implemented for the UAV mission

planning problem. Since exhaustive search algorithm requires long time to terminate,

it is not implemented in a standard manner but including a preprocessing procedure

to be able to provide early elimination for the cases showing unfeasibility or lesser

suitability obviously. Solutions of greedy and exhaustive algorithms are used for

evaluating implemented genetic algorithm customizations.

We also implemented a framework by utilizing Qt and OpenGL technologies with

C++ programming language, to be able to create, configure and visualize problem

instances. This framework also enables users to export produced scenarios to text

files in xml format and they can also import saved scenarios into framework envi-

ronment by loading already saved text files. Running any of the algorithms for the

 2

current scenario is possible with this framework and evaluation of them becomes

very easy. A 2D simulation of any solution instance, resulted from the implemented

algorithms, is also possible in this framework to be able ease feasibility detection

especially for the scenarios involving interaction of several UAVs and targets in op-

erational environment.

The remainder of the thesis is organized as follows:

Chapter 2 – Background and Related Work provides base information about Un-

manned Aerial Vehicles and planning of their cooperative mission in a previously

analyzed operational environment. Then, related studies in literature are introduced

and analyzed. A detailed comparison, illustrating pros and cons of the approaches, is

also provided. Lastly, algorithms for target assignment and scheduling are mentioned

briefly.

Chapter 3 – Our Work presents our study in details. Components of the genetic

algorithm, designed in the context of this research, and their customizations are de-

scribed. Brute – force and greedy algorithms, that are also designed to work on the

same scenarios on which the genetic algorithm works, are also introduced. Details of

the framework, which is implemented to be able to compose various mission scenar-

ios and run the algorithms for these scenarios, are illustrated in this chapter.

Chapter 4 – Evaluation of the Results provides an outline of the test results gath-

ered by running the genetic, brute – force and greedy algorithms on specified scenar-

io sets. Analysis and evaluation of acquired test results are also provided in this chap-

ter.

Chapter 5 – Conclusion and Future Work includes gained acquisition remarks and

concluding points. Statements about the future work are also provided in this chapter.

 3

 4

 CHAPTER 2

 BACKGROUND AND RELATED WORK

This chapter aims to present an overview of the UAV mission planning problem with

all its subcomponents. It also includes current studies in literature and the approaches

proposed in these studies. Main algorithms and formulations used to solve assign-

ment and scheduling problems are described briefly in this chapter.

2.1 Problem Formulation

Key components of the UAV mission planning problem are described briefly as fol-

lows:

 Base: It is the initial location of all UAVs. The UAVs are going to depart that

location and also they all are expected to return there after completion of their

missions.

 Fleet: It is a group of UAV constituting a taskable unit. Size of a fleet varies

according to the aim of the UAVs. It is also possible to let several fleets to

operate cooperatively for the same mission.

 Target: It is the entity that requires some predefined number of UAVs for the

mission to be accomplished. In general, there is less number of UAVs than

the number required to be able to fulfill all targets’ needs. That’s why, an ef-

ficient assignment and scheduling scheme is needed.

 5

 Operational Environment: It stands as the area of the interest together with

logical and physical factors playing some roles in this area during the opera-

tion. There are also some virtual factors of operational environment which are

also important for operations. These factors can be listed as follows:

a. Radar Zones and Prohibited Areas: They are specified fields which

are already known to be somehow in the sensor coverage of enemies’

defense forces.

b. Safe Graph: It is the graph connecting all targets (nodes) in the oper-

ational area to base point of the fleet by taking already known radar

zones and prohibited areas into consideration and guaranteeing no in-

tersection with them. This graph also contains distance values be-

tween each neighbor target pair available in the operational area.

 The Goal: It is the aim of providing availability of desired number of UAVs

in desired time interval for each target exists in operational environment.

2.2 Related Work

UAVs do not require an onboard human controller but they need to follow some sort

of control logic, and degree of autonomy varies according to provided scheme of that

logic. Basically, there are two main approaches in controlling UAVs: First one is

centralized approach and the second one is decentralized (distributed) approach. A

hybrid application of centralized and decentralized approaches is also possible. In

centralized approach, all UAVs involved in the mission are controlled by a central

algorithm and mission planning scheme is based on this central logic [1, 2, 6, 8, 11,

12, 13]. Conversely, decentralized approach offers more and sometimes full autono-

my. Each UAV is generally controlled by one operator but sometimes it can be nec-

essary to assign more than one operator for each UAV. Because of the situation, it is

difficult to afford cooperative missions involving UAV swarms. So, the need for

 6

decentralized approaches, aiming to use fully autonomous agents, aroused [3, 4, 5, 7,

9, 10, 16]. In this logic, each UAV is supposed to have same situational awareness to

decide about its next step; and a strong communication among the UAVs is also an

important requirement to be able to accomplish cooperative missions. In hybrid (cen-

tralized – distributed) approach, not fully but partially autonomous UAV usage is

proposed. The idea is to provide some level of abstraction to the central controller;

that it is rather preferable to be able to control a UAV team instead of a single UAV

for an UAV operator [14].

Mission completion of each observed target requires classification, attack and verifi-

cation tasks to be accomplished for that target in specified order. This ordering

comes from the nature of the mission; and so, the order has to be preserved. As stat-

ed, task precedence is also an important issue that needs to be considered in UAV

mission planning [4, 13, 15, 16].

UAV mission planning algorithms should take the constraints coming from opera-

tional environment and nature of UAVs into consideration and behave accordingly.

The algorithms are supposed to handle two core components of the planning proce-

dure, which are path planning and target assignment. Especially the ones, focusing

on path planning issue, consider about UAV movement capabilities (e.g. minimum

turning radius, maximum speed to be reached) and no – fly zones located in opera-

tional environment. Accordingly, the algorithms are designed to handle the problem

by also caring about these constraints [7, 11, 12]. The other ones, focusing on target

assignment issue, also consider about some constraints; but for instance, coming

from designed strategy (e.g. target dependency and target priority) and nature of the

problem (e.g. task precedence). So, these kinds of algorithms are designed to include

priority, dependency and precedence requirements into problem definition set and

behave accordingly [13, 15]. Also there are some full mission planning algorithms

aiming to deal with path planning and target assignment issues together [1, 4, 5, 9,

16].

 7

There are also some other constraints, such as heterogeneity of UAVs, fuel capacity

of UAVs and heterogeneity of targets forming operational environments, that should

be considered by mission planning algorithms. Fuel capacity constraint is considered

in many mission planning algorithms both with and without regarding type of the

UAVs [4, 7, 9, 13, 14, 16]. Heterogeneity is also an important concept for both of the

UAVs and the targets. It is because some features, such as fuel capacity, operational

capability and average speed, pose differences according to the type of an UAV. In

addition, UAVs are generally specialized and equipped according to the mission

type, the UAV is intended to realize, that task assignment is required to be done ac-

cording to the type of the UAVs [4, 13, 15]. In a similar way, each target does not

need same amount of resource to be handled. This constraint is included in [5] to be

able to provide higher degrees of reality by designing the assignment and scheduling

scheme with taking specific target resource need into account. Heterogeneity of tar-

gets has also introduced another important constraint, known as time – window in the

literature, and involving for each target to be served in previously specified time in-

terval with an affordable delay [5, 11, 26, 27].

Most of the proposed mission planning algorithms assume the scenarios, going to be

realized, to be based on a certain and static environment. In parallel to this intuition,

the algorithms are run once and the scenario continues in an offline fashion accord-

ing to the command set decided in initialization phase [5, 8, 11, 13]. But in real life,

changes for operational environments are frequent. So, to be able to provide model-

ing of the scenario as close as possible to real life, there are also some dynamic algo-

rithms, generally proposed in relatively near history, aiming to provide acceptable

and quick responses to the changes, which are happening in the current scenario and

requiring immediate update of situational awareness [1, 4, 6, 7, 9, 14, 16].

It is possible to grasp feasible and acceptable solutions for UAV mission planning

problem both using exact and heuristic – based approaches. The choice of which

approach to use is basically related to problem domain and the specified require-

ments to be provided. In the case that number of targets is more than a few, exact

approaches generally terminate after a substantial amount of time, which is not

 8

between limits of acceptation in general; but the appealing result of these kinds of

approaches is to reach the optimal solution. On the other hand, deterministic and / or

stochastic heuristic – based algorithms generally terminate in an acceptable time

amount and result with the optimal or nearly optimal feasible solutions for the prob-

lem. As it can be inferred, for heuristic – based algorithms it is not guaranteed to

reach the optimal solution.

Proposed exact algorithms work in a straightforward manner and aim to pick up the

best solution, maximizing (multi)objective function, from the pool of all possible

solutions generally enumerated in offline time. To be able to incorporate the con-

straints into the problem environment, this kind of algorithms generally use problem

– based specified tree structures with the leaf nodes containing feasible solutions for

the processed scenario. Another advantage of the tree structure is the feature of lend-

ing itself for efficient and quick search techniques. In spite of structural advantages

of this so – called decision trees, necessity of enumerating all feasible solutions gen-

erally requires unacceptable CPU time for most of the mission planning scenarios

including many agents. In [8] a new exact algorithm not using decision tree but some

kind of linear formulations with polynomial number of binary variables is intro-

duced. By using a new set of properties and inequalities, such as symmetric breaking

inequalities, boundaries on profits, generalized subtour eliminations and clique cuts

from graphs of incompatibilities, the algorithm achieves to be competitive with the

best performing literature algorithms in both of effectivity and efficiency aspects. On

the other hand, the algorithms introduced in [4] and [15] utilize decision tree struc-

ture like many of the exact mission planning algorithms do. By using advantages of

this specified tree structure, enumerating only feasible solutions not all possible per-

mutations of UAV and target sets, and utilizing best – first and depth – first search

procedures on final decision tree; these algorithms also have potential of planning

mission scenarios including higher number of instances in acceptable time limits.

There are so many heuristic – based algorithms proposed for UAV mission planning

problem compared to the exact ones. Simulated Annealing (SA), Genetic Algorithms

(GA), Tabu Search (TS) and Neighborhood Search (NS) heuristics and somehow

 9

varied versions of them are mostly used heuristics in UAV mission planning problem

for both or individually handling of path planning and target assignment issues [5, 7,

12, 13, 14]. In some heuristic – based algorithms, constraints and requirements are

represented by inequalities where all these inequalities together with the objective

function constitute a Mixed Integer Linear Programming (MILP) instance, which is

known as NP – hard. After construction of this MILP instance, according to the op-

erational environment and the specifications of the problem, the algorithms start to

enumerate feasible solution sets by changing order and match of scenario elements

according to the rules implied by predefined heuristic(s) aimed to be utilized in algo-

rithm design phase. Typically, heuristic – based algorithms either incorporate a gen-

eral mechanism for restoring feasibility of the system after each move or use the

problem structure to guide the search effectively by eliminating constraints [10]. The

most important issue for this kind of algorithms is avoidance of sticking on local

optimality causing the algorithm to terminate without covering entire solution space.

Main advantage of heuristic – based approaches is that they are generally capable of

resulting with a good feasible solution in an acceptable time period, which enables

the algorithms to be up to date with respect to changing operational environment

situations and behave accordingly.

In parallel to that growing demand for the use of UAVs, essentiality of robust algo-

rithms to solve the target assignment problem for a UAV team in an effective way

becomes inevitable. It is because; the real environment and the equipments used to

raise the level of autonomy are quite noisy. However, uncertainty of the operational

time environment should also be taken into consideration and normalized to be able

to need minimum level of control, required to manage the UAVs, for providing com-

pletion of a mission with an acceptable rate of success. Based on this reality, in [2, 3,

6, 7] uncertain and noisy conditions are tried to be handled by introducing alternative

strategies and delta values enabling compensation of the aimed strategy by keeping

the key attributes of the strategy in a predefined range. Specifically in [2] , some del-

ta values are injected to the formulations used in realization of mission planning al-

gorithm. Also, by enabling span of these delta values according to predefined factor,

the algorithm allows the controller to tune sensitivity according to uncertainty level

 10

of operational environment. As another approach, [3] offers use of decentralized au-

tonomous agents with the same central algorithm deployed to be able to need mini-

mum level of communication while realizing cooperative missions. It also introduces

availability of a backup (second) algorithm for all UAVs, enabling them to operate in

a sensible manner in case of loss of communication. In [7], replanning of the mission

is considered when a change is detected in situational awareness; and it is required to

be handled in current scenario. Lastly, [6] serves as a combination of [2] and [7] with

the aim of reducing imperfectness of individual algorithms by normalizing negative

effects of the situations with utilization of the relatively powerful strategies.

2.3 Resource – Target Assignment and Scheduling Methodologies

Main algorithms and formulations used for resource – target assignment and schedul-

ing problem are described briefly in this part. The algorithms with possible modifica-

tions are listed as follows:

2.3.1 Exhaustive (Brute – Force) Search Algorithm

This kind of algorithms work by enumerating all possible solutions and checking

which of them yielding the best rank. Because of the need for covering all work-

space, time consumption of the algorithms is generally too high to accept for most of

the problems especially for the ones required to be solved in online fashion. So, some

kind of elimination mechanisms and heuristics are introduced to be able to lower

time consumption of exhaustive search algorithms. Main variations of exhaustive

search algorithms are:

 Branch and Bound: Main idea is to branch the problem space to adequate

number of levels and provide upper and lower bounds for every sub branches

in each level. Deciding about the number of levels to branch the problem

structure is an important issue for this kind of algorithms. Because, over

 11

depth may require extra time to terminate searching while less depth may

cause the solutions to diverge from optimality. After an acceptable branching

is provided, the idea is to decide to continue to process or stop processing for

a solution candidate, by forecasting its potential to perform better or worse

than the current best solution, using lower and upper bounds.

 Greedy Bound: Unaffordable operations are detected greedily and they are

not performed for solution candidates. In this scheme, the candidates are pro-

cessed with the expectation of reaching better result quality at the end.

2.3.2 Greedy Algorithm

These kinds of algorithms work by utilizing locally optimum solutions to be able to

reach globally optimum solution. The algorithms try to increase total profit for each

step by proceeding with possibly maximum profit of the scenario for that step. So,

greedy algorithms generally suffer from being stuck in local optimality. Accordingly,

it is not possible to grasp best solution using greedy algorithms in general but it is

common to reach an acceptable solution in relatively short time compared to tradi-

tional exhaustive search algorithms. It is also possible for greedy algorithms to use

some heuristics and bounding strategies, like the ones mentioned in exhaustive

search algorithms, to be able to boost effectivity and shorten execution time.

2.3.3 Integer Linear Programming

Linear programming is a method of solving problems by using the mathematical

model which is inferred from problem domain. All of the constraints are represented

as mathematical equations in this model. Specifically, integer linear programming is

a linear programming instance in which all or some of the problem domain variables

are restricted to be integers. The method is generally used to solve optimization prob-

lems.

 12

A standard linear programming instance consists of a linear objective function con-

taining the values to be maximized, a set of inequalities keeping consistency of prob-

lem domain constraints for candidate solutions and non – negative decision variables,

which both linear objective function and constraints are based on.

Three possible outcomes are possible for a standard linear programming instance. It

may be impossible to find proper values for decision variables satisfying all of the

constraints. Inversely, as another result it may be possible to find optimal values for

decision variables satisfying all of the constraints. As the last result, the instance may

be unbounded that given constraints are not enough for bounding decision variables’

value range in solution space of the problem.

2.3.4 Genetic Algorithm

The elements of a standard genetic algorithm are listed and described briefly as fol-

lows:

 Chromosome: It is the data structure in which an individual solution is en-

coded.

 Population: It is the set of solutions (chromosomes) which is also serving as

the pool of chromosomes to be selected for crossover procedure in genetic al-

gorithm context.

 Fitness: It is the rank value associated to each chromosome. This value indi-

cates in which degree the chromosome fits to the predefined criterions.

 Selection: It is the process of selecting (mating) two parent chromosomes for

crossover operation.

 13

 Crossover: It is the process of generating a new chromosome by applying

some kind of split – and – merge procedure for genetic information of two se-

lected parent chromosomes.

 Mutation: It is the operation of replacing some randomly chosen bits of a

chromosome with the ones already existing in problem specification.

The following procedures have substantial importance in the design of a genetic al-

gorithm; and so, they should be organized by taking problem specific details into

consideration:

 Chromosome Encoding: Main aim is to encode any possible solution of the

problem into a data structure called chromosome. It is one of the most im-

portant procedures for a genetic algorithm. Because chromosome structure is

the core component of a genetic algorithm that the following procedures are

all subject to variance according to determined chromosome structure. Wide-

ly used encoding schemes are binary, real number, permutation and data

structure encodings. However, use of binary and real number encodings are

more frequent.

 Population Initialization: It is another important procedure in genetic algo-

rithm aiming to provide initial population for the algorithm. All new chromo-

somes are generated by realizing crossover and mutation operators on current

population members. So, it is obvious that fitness of a child directly related

with fitness of its parents. In this direction, it is common to run another algo-

rithm, terminating fast like greedy ones, to provide an initial population hav-

ing higher level of fertility.

 Fitness Calculation: It is the procedure of evaluation for each solution by

measuring how much rank the solution provides regarding to the predefined

objectives of the mission. The issue here is to find the objective set aimed to

optimize in final solution. If there is only one objective it would be easier and

 14

quicker to reach an optimal or acceptable solution. But in the case of availa-

bility of multiobjective scheme, it wouldn’t be easier and quicker to provide

the acceptable solution; even in some problems, depending on the objectives’

nature, it wouldn’t be possible. This is because in a multiobjective design, ob-

jectives are often contradictory to each other and to be able to find a solution

satisfying all the objectives is really a difficult procedure.

 Selection Operator Determination: In literature, mostly used selection

techniques are given below:

1. Roulette Wheel Selection: In this selection method, all chromosome fit-

ness values are summed up and total fitness value (TF) is obtained. Then,

a random number (R) in range [1 - TF] is generated. After that, while go-

ing through all the population in a loop, fitness values of all chromosomes

are summed up as partial fitness value (PF) and current chromosome is

selected as a parent when PF is greater than R. In this scheme, the scenar-

io depicted in Figure 2.1 has Chromosome5 to be selected as one parent

with about 61% probability.

 Figure 2.1: Roulette Wheel Selection Probability Distribution

2. Rank Selection: It is somehow a normalization of Roulette Wheel Selec-

tion technique. At first, according to fitness values they have, some kind

of ranking procedure is applied to all chromosomes in the population

without violating their respective fitness position. Then, same selection

 15

procedure, utilized for Roulette Wheel Selection method, is utilized for

this method but this time not based on fitness values but based on rank

values of the chromosomes. This method is proposed with the aim of

providing variety by hindering excessive dominance of a few individuals

to the rest in current population. Compared to Roulette Wheel Selection

method, with the same scenario illustrated above, for this scheme Chro-

mosome5 has about 33% selection probability as shown in Figure 2.2.

 Figure 2.2: Rank Selection Probability Distribution

3. Tournament Selection: This selection type involves realizing some tour-

naments on some randomly chosen chromosomes. After all tournaments

held, the one achieving the highest score is selected. Similar to the rela-

tion between Roulette Wheel Selection and Rank Selection techniques,

increasing number of tournaments decreases variety by allowing domi-

nant chromosomes to reach stability for this method.

4. Steady State Selection: Main aim of this selection method is to transfer

big portion of the population to the next generation by only allowing a

few least fit chromosomes of the population to be replaced by new off

springs. However, this method only allows a few best fit chromosomes to

be selected as parents for crossover procedure.

 16

5. Elitism: In this method some number of best fit chromosomes is directly

copied to next generation to be able to provide availability of fertile

members for next generations.

 Crossover Scheme Determination: Crossover scheme design is very im-

portant for a genetic algorithm; that the scheme can influence performance of

the algorithm in either negative or positive directions. In general, there exist

two schemes mostly used in literature which are single and multi point cross-

over schemes. Although the schemes can be grouped in two main titles, they

generally vary based on the subcomponent structure decided in chromosome

encoding phase of the algorithm.

1. Single Point Crossover Scheme: In this crossover scheme, crossing two

parent chromosomes at one specific point is realized. After crossing oper-

ation of parents’ genetic information, two off springs are generated by ex-

changing grasped trailing parts between parents and merging them with

heading parts. Procedure for single point crossover operation is depicted

in Figure 2.3.

 Figure 2.3: Single Point Crossover Procedure

 17

2. Multi Point Crossover Scheme: In this crossover scheme, crossing two

parent chromosomes at more than one specific point is realized. After

crossing operation of parents’ genetic information, two off springs are

generated by exchanging grasped even – numbered parts between parents

and merging them with odd – numbered parts. Procedure for multi point,

two point for instance, crossover operation is depicted in Figure 2.4.

 Figure 2.4: Two Point Crossover Procedure

 Mutation Scheme Determination: Mutation scheme is also an important is-

sue in a genetic algorithm design. Although mutation is not a must operation

in a genetic algorithm, availability of a useful mutation enriches diversity in

current population and let the solution set not to converge to local optimality

and stuck around that point.

In general one or more randomly chosen atomic component change is used as

the mutation scheme. In this changing procedure, inclusion of logic to hinder

violation of solution’s feasibility is also a common practice [23, 24, 25]. An-

other remarkable point about mutation scheme is the mutation rate specified

 18

to determine whether mutation should be applied or not for current chromo-

some. This rate is important, because introducing very high possibility for

mutation may cause the algorithm to converge late whereas introducing very

low possibility may cause the algorithm stuck in local optimality and produce

results further from global optimality. Also, this mutation rate need not stay

same that it is possible to use changing mutation rate according to intermedi-

ate results of the algorithm [22]. Best values for mutation rate are reported to

be between %0.5 and 1% [22]. Procedures for one – bit and multi – bit muta-

tion operations are depicted in Figure 2.5.a and Figure 2.5.b respectively.

 Figure 2.5: (a) One-bit Mutation Procedure, (b) Multi-bit Mutation Procedure

As a combination of the components and procedures introduced in this section, a

standard genetic algorithm consists of the following steps:

1. Encoding of the chromosome structure

2. Initialization of the first population

3. Fitness calculation of the current population

4. Test of the current population to find out whether any chromosome satisfying

end condition or not. If such a solution exists, the algorithm is terminated.

 19

5. Generating new candidate solutions using crossover and mutation operators.

6. Replacement of old chromosomes by the new ones.

7. Go back to step 3. (Loop until fail criterion is not met)

 20

 CHAPTER 3

 OUR WORK

This section presents details of our study on UAV – target assignment and schedul-

ing procedures in UAV mission planning problem. First, problem formulation with

requirements and operational environment assumptions are defined. Then, input set

generation procedure and generated input sets’ features are explained. Finally, the

architecture of our framework, details of implementations and customizations of de-

veloped algorithms are described.

3.1 Problem Formulation and Constraints

In this study, UAV mission planning problem is solved by specifying which UAVs

to operate on which routes and serve for which targets at which time periods of the

mission. However, the key point here is to provide a feasible solution with respect to

all requirements and constraints coming from problem domain. The requirements and

constraints specified for the problem can be listed as follows:

1. UAV Count Requirement: Number of UAVs needed to handle a target may

vary according to features of that target. This number is specified for each

target by the user in scenario development phase and can be updated before

each execution of that scenario.

2. Time Window Requirement: For a target, beginning and ending of service

time may vary according to current internal and external factors the target is

 21

subject to. So, it is required to serve that target during this time interval. This

time interval is specified by the user in scenario development phase and can

be updated before each execution of that scenario.

3. Radar Zone Avoidance Requirement: Radar zones and prohibited areas,

which are known to exist in some specific locations in the operational envi-

ronment, are assumed to be cared by the user during scenario development

phase and linkages of targets are provided accordingly. However, existence

of such a linkage procedure entails indirect transmissions among targets; and

so, shortest path usage is required to be able to save resources by letting

UAVs to go through the shortest paths.

4. Fuel Level Consistency Requirement: Fuel capacity of UAVs may also

vary; and so, planning of UAVs’ missions is required to happen accordingly.

Since safety of resources has the highest priority, mission plans have to check

fuel level of each UAV before deciding to direct it to serve for a target. In this

work, UAVs are assumed to be generic; accordingly, fuel capacity is only al-

lowed to be specified for all UAVs not individually. This fuel capacity is

specified by the user in scenario development phase and can be updated be-

fore each execution of that scenario.

5. Base Station Return Requirement: As stated before, safety is one of the

most important issues for this kind of missions. So, it is required to consider

about return of UAVs to base station and compose mission plans accordingly.

Although main issue is to provide availability of desired number of UAVs in desired

time interval for each of the targets exists in operational environment, providing the

solution as optimal as possible regarding to some predefined objectives is also an

important issue. There are mainly three objectives; which are minimizing total dis-

tance covered by UAVs, maximizing number of targets to be served during the mis-

sion and minimizing number of UAVs required to be used for the mission by maxim-

izing UAV reuse. Approaches to the objectives are described in detail in Section 3.5.

 22

An operational environment instance with target configurations, placed near of each

target, is shown in Figure 3.1. Common and algorithm specific parameters and their

specified values for the scenario can be seen in Figure 3.2.

 Figure 3.1: An Operational Environment with Target Configuration

 Figure 3.2: Parameter Configuration for the Algorithms

 23

Optimal solution of the problem instance given in Figure 3.1 and Figure 3.2 is shown

in Figure 3.3. As can be seen from the figure, red cross marks are available to indi-

cate which UAVs served for which targets during the mission. For the UAVs serving

more than one targets, it is obvious that scheduling (serving order) is the order of

beginning points of time windows of the targets in increasing order.

UAV / Target Target # 1 Target # 2 Target # 3 Target # 4

UAV # 1 X

UAV # 2 X

UAV # 3 X

UAV # 4 X X

UAV # 5 X X

UAV # 6 X

UAV # 7

UAV # 8 X X

UAV # 9

 Figure 3.3: An Optimal Solution Instance of the Problem

3.2 Operational Environment Assumptions

It is an obligation to introduce some limitations and make some assumptions about

some parameters of the problem to be able to acquire a platform enabling comparison

of developed algorithms’ performances fairly and easily. So, in the context of this

study about UAV mission planning, some aspects related to elements of operational

environments are exposed to some assumptions to be able to deal with a limited and

well – defined problem domain. Assumptions concerning operational environment

can be listed as follows:

1. Radar zones and prohibited areas are assumed to be taken into consideration

by the user and scenario elements are placed and linked accordingly.

2. UAVs are assumed to be homogenous in the aspects of maximum speed, fuel

level they can carry at most and fuel consumption / distance rate.

 24

3. All UAVs are assumed to be stabilized to different altitudes and accordingly

it is assumed that no crash is going to happen during missions.

4. Maximum / minimum turning radius limits of UAVs are not taken into con-

sideration and they are assumed to turn any radius on any path defined by the

user.

5. Targets are assumed to be handled with all – or – nothing principle regarding

to requirement of providing needed number of UAVs to targets. So, it is not

possible to handle any target partially by assigning less number of UAVs to

that target.

6. It is assumed that no real – time change is going to happen for any of the user

designed scenarios.

7. Weather condition related aspects, like visibility, temperature, contamination,

cloud density and cloud altitude, which are affecting aerodynamics and / or

flight capability of UAVs, are assumed to be stable regardless of the time

scenario created.

8. Altitudes of landforms and buildings are not taken into consideration and all

UAVs are always assumed to be flying at higher altitudes. So, no crash

among landforms, buildings and UAVs is going to happen during missions.

3.3 Framework Architecture

A graphical framework, letting users to solve and manage problem instances easily,

is implemented by utilizing Qt and OpenGL technologies with C++ programming

language in MS Visual Studio 2008 platform. Main features provided by this frame-

work can be listed as follows:

 25

1. It enables users to create, update, delete and visualize scenarios involving

mission planning of UAVs. Two sample scenarios (problem instances), de-

signed using this framework, can be seen in Figure 3.4 and Figure 3.5.

2. It is possible to save any designed problem instance in XML format and users

can load any available scenario in anytime required to resolve the problem in-

stance available in that scenario. An XML – formatted scenario file of the

problem instance shown in Figure 3.5 can be seen in Figure 3.6.

3. All algorithms, developed in the context of this thesis study, are designed to

work on the same input format. So, this graphical framework eases perfor-

mance test procedures of developed algorithms by enabling execution of any

developed algorithm on the same scenario without need of any extra configu-

ration change.

4. Once a feasible solution is grasped, by using any of the developed algorithms,

for any predesigned problem instance; the framework enables users to simu-

late motions of the UAVs, according to timeline and coordinates provided by

the solution, in 2D virtual operational environment.

5. A user – friendly graphical interface, enabling users to work with easily, is

available for the framework.

6. It allows users to change configuration of any developed algorithm before ex-

ecution. Algorithm specific parameters are arranged to be configurable as

much as possible through this framework.

7. The framework enables users to collect test results of implemented algo-

rithms in a file, which is outputted in text format.

8. It also enables generation of randomly configured problem instances with re-

spect to limit values of configurable parameters where these parameters can

 26

be seen in the graphical interface depicted in Figure 3.7. Users are allowed to

configure the parameters via this graphical interface.

 Figure 3.4: UAV Mission Planning Scenario Sample # 1

 Figure 3.5: UAV Mission Planning Scenario Sample # 2

 27

 Figure 3.6: XML – formatted Scenario File Sample

 28

 Figure 3.7: GUI of Automatic Test Scenario Generation Tool

3.4 Input Set Generation

Generation of input sets is realized by using the framework implemented in the con-

text of this study. It is so easy to work with the architecture; that various problem

instances can be created on this framework both manually and automatically. Once

the problem instances are created and saved, it is possible to use them again and

again.

As the framework is designed generically to serve for each implemented algorithm,

so is the input whose format is illustrated before in Figure 3.6. Hence, it becomes

easy to compare implemented algorithms’ performances for same scenarios.

For input set generation procedure, one of the key concepts is variety of problem

instances regarding to problem domain, configuration parameters and requirements

specified for the problem. For this problem, scenarios having target number variety,

 29

UAV number variety with respect to target number, time window variety of targets,

fuel level variety of UAVs and UAV need variety of targets are provided for all of

the implemented algorithms by using the framework.

As the result, by changing user configurable parameters, mentioned above, two input

sets containing high degree of variation are obtained for the test procedure automa-

tion of this study. Details and features of these input sets are given in Chapter 4.

3.5 Algorithm Implementations and Customizations

This part explains the algorithms and customizations made for them in the context of

this thesis study.

As a preprocessing procedure shortest paths among targets are computed according

to graphs of the operational environments given in scenarios. Dijkstra’s shortest path

algorithm is used for computing shortest paths among targets which are assumed to

be linked according to radar zone and prohibited area locations so that UAVs would

not be noticed by enemies.

3.5.1 Exhaustive (Brute – Force) Search Algorithm

Conventional exhaustive search algorithm is implemented with an additional early

elimination procedure. This elimination procedure is applied for all solution candi-

dates, enumerated by the conventional exhaustive search algorithm, to be able short-

en execution time by eliminating obviously non – feasible or lesser suitable ones

without proceeding with any other operations for them. For this problem, the elimi-

nation procedure is to check availability of solution candidates having more infeasi-

ble targets compared to the one marked as the current best solution. After detection

of such a situation, obviously there is no need to continue with the other steps for that

solution candidate.

 30

We implemented this algorithm with the aim of acquiring optimum solutions for

small sized input sets, and use them as reference solutions in comparison with out-

puts of the other developed algorithms. Main steps of this algorithm can be given as

follows:

1. Try to enumerate one different solution candidate, if there is no different so-

lution candidate, terminate and return with best solution if one exists other-

wise return null.

2. Apply early elimination procedure to the current solution candidate, if the

procedure results with failure for this candidate then discard it and go back to

step 1.

3. Check for feasibility of each target for current solution candidate; if it is fully

infeasible, then discard the candidate and go back to step 1.

4. Compute fitness value of solution instance.

5. Mark the current solution instance as the best solution if the fitness value is

higher than the fitness value of current best solution. Go back to step 1.

3.5.2 Greedy Search Algorithm

A greedy algorithm based solution is provided for this UAV – target assignment and

scheduling problem to be able compare performances of this algorithm with ones of

genetic algorithm solution. Although exhaustive search algorithm is implemented

with the same aim, for the scenarios including more than a few UAVs and targets it

is totally impractical to use exhaustive algorithm because of its huge running time.

So, greedy algorithm is intended to be used in performance comparison of genetic

algorithm especially for large sized input set.

 31

It is generally not possible to reach optimal solutions by using greedy algorithms

because of their working principles, which impose proceeding with locally optimum

solutions instead of looking the whole picture and behaving accordingly. But these

principles provide the feature of terminating in shorter time durations compared to

almost all other algorithms in literature. For this study, the same conditions are also

valid that our greedy algorithm provides nearly optimal solutions in shortest time

durations compared to exhaustive search and genetic algorithms. Main steps of this

algorithm can be given as follows:

1. Sort the targets according to their beginning points of time windows in in-

creasing order and insert them into a list in that order.

2. Get next target from sorted target list. If there is no target available in the list,

return the existing solution.

3. For the current target, look for available and nearest UAVs in operational en-

vironment greedily and try to reserve required number of UAVs to meet the

need of current target. If there is not enough number of UAVs available for

current target mark it as infeasible.

4. For current target, compute local fitness by taking feasibility into considera-

tion and sum up this value to global fitness. Go back to step 2.

With the aim of increasing UAV reuse instead of using an unused UAV from base, a

penalty distance is included additional to current distance, specified in the scenario,

in the case of a new UAV is intended to be used.

3.5.3 Genetic Algorithm

A genetic algorithm based solution is also provided for UAV – target assignment and

scheduling procedures in UAV mission planning problem. Main aim of this study is

 32

to implement this genetic algorithm to be able to reach an acceptable level of opti-

mality for the problem in shorter times compared to manual and other possible com-

puter assisted solutions.

Genetic algorithm design is substantially related to the problem domain and it re-

quires modifying the components of a genetic algorithm according to the domain

requirements. Accordingly, for this problem instance; we have approached critical

components, like encoding, crossover and fitness computation, of genetic algorithm

with a customized fashion. Main components of the genetic algorithm with customi-

zations are explained in detail as follows:

3.5.3.1 Encoding

Use of real number encoding scheme is chosen regarding to this optimization prob-

lem’s nature. As it is possible to assign more than one UAV to one specific target,

some kind of hierarchical encoding, providing abstraction where necessary, is

planned to use. In this encoding structure, targets are located into first hierarchy level

and the UAVs are located below them as the second hierarchy level. Visualization of

the encoding is provided in Figure 3.8.

 Figure 3.8: Chromosome Structure with Encoding Format

The encoding illustrated in Figure 3.8 represents a solution instance for a scenario in

which the operational environment is designed to contain 4 targets, which are t1, t2, t3

and t4, and number of UAVs needed to be able to cover the targets are 4, 3, 5 and 2

respectively. When looking at the second level of hierarchy, there are 7 different

UAVs which are indexed from 1 to 7; and UAV – target assignment has taken place

 33

as depicted below. Accordingly, the encoding implies the UAVs, which are assigned

to any target (i.e. located below that target in the figure) to be serving for that target

in specified time window of the target.

t1 = {u1, u2, u3, u4}

 t2 = {u5, u6, u7}

t3 = {u5, u7, u2, u6, u4}

 t4 = {u3, u1}

As the problem specification does not allow real time change in operational envi-

ronment of the scenario, fixed length of chromosome usage is encouraged. However,

fixed length chromosome encoding has provided easiness for application of genetic

algorithm operators. In addition, two – level hierarchic encoding scheme has also

made customizations of the other operators easy.

3.5.3.2 Population Initialization

Population initialization is an important issue for a genetic algorithm design. Alt-

hough initialization procedure is not one of the key operations, an efficient initializa-

tion directly affects running time required to find optimal solutions. It is because

starting execution with a population consisting of highly fertile members (i.e. mem-

bers having higher fitness values) is expected to enhance overall fertility during algo-

rithm running process. So, in this genetic algorithm design procedure, population

initialization procedure is realized by caring about following conditions and remov-

ing negative effects of them if possible.

 Infeasible Operational Environment Checking: An early checking

of designed operational environment, whether specified number of

UAVs is enough to meet minimum needs of targets or not. If it is not,

an early termination of the algorithm resulting with failure occurs.

 34

 Time Window Feasible Assignment Providing: Main aim here is to

provide UAV – target assignment feasibility with respect to time win-

dow requirements of the targets. In this context, without caring about

paths and distances among targets, just infeasible scheduling (i.e.

scheduling requiring any UAV to be serving for at least two targets at

the same time) is avoided as much as possible for each member of ini-

tial population.

 Keeping Used UAV Set Minimal: Reuse of UAVs is tried to be

maximized while generating initial population. In this context, with-

out losing local and global feasibility, number of UAVs to be used is

kept as minimum as possible.

3.5.3.3 Crossover

Crossover is the key operation for a genetic algorithm since solution space variation

and diversity are provided by this operation. In the context of this study, based on the

hierarchy provided in chromosome encoding phase, two crossover techniques are

used together. First of them, realizing crossover operation for the first hierarchy level

(i.e. target level), is Target Level Crossover technique and the second one is UAV

Level Crossover technique which is realizing crossover operation for the second hi-

erarchy level (i.e. UAV level). Both of these crossover techniques are explained in

detail below:

1. Target Level Crossover: In this crossover technique, abstraction provid-

ed by the chromosome encoding is utilized. Hence, it has become possible

to think the chromosome as if just including one level (first hierarchy lev-

el) containing targets as atomic elements. Accordingly, with this new

structure, crossover is applied using both one – point and two – point

schemes which are shown in Figure 3.9 and Figure 3.10 respectively.

 35

Decision of which scheme to use is left to user by allowing choice of

scheme before execution.

 Figure 3.9: Target Level Single Point Crossover Scheme

 Figure 3.10: Target Level Two Point Crossover Scheme

 36

2. UAV Level Crossover: In this crossover technique, abstraction provided

by the chromosome encoding is utilized. Hence, it has become possible to

think the chromosome as if just including one level (second hierarchy

level) containing UAVs as atomic elements. Accordingly, with this new

structure, crossover operation is applied using both one – point and two –

point schemes which can be seen in Figure 3.11 and Figure 3.12 respec-

tively. Decision of which scheme to use is left to user by allowing choice

of scheme before execution.

 Figure 3.11: UAV Level Single Point Crossover Scheme

 Figure 3.12: UAV Level Two Point Crossover Scheme

 37

In this algorithm, both of the UAV Level Crossover and Target Level Crossover

techniques are used during the same session (execution). For each iteration, decision

of which technique to be utilized is made randomly but with equal probability. By

using this customized crossover technique, both the two levels of the encoding are

exploited for the sake of generating strong members having higher fertility.

Specifically, utilization of Target Level Crossover provides generating members

without losing subchromosome (i.e. target) fitness and enabling integration of highly

fertile subchromosomes into one specific chromosome. However, utilization of UAV

Level Crossover provides generating subchromosomes having higher level of fertility

by just dealing with UAVs in subchromosomes. So, it becomes best idea to utilize

both of the techniques to acquire more fertility for subchromosomes and accordingly,

acquire highly fertile chromosomes by gathering these subchromosomes together.

A more standard version of this genetic algorithm utilizing only UAV Level Crosso-

ver technique is also provided with the aim of comparison. Hence, it becomes possi-

ble to evaluate efficiency and effectivity of two – level crossover operation in a com-

parative manner.

3.5.3.4 Mutation

Single and multibit mutation is used in the implementation of the genetic algorithm

designed in the context of this study. The mutation scheme to be used is left to the

user and can be specified before each execution of the algorithm. In application of

multibit mutation, number of points to be mutated is restricted by a specific number,

which is randomly chosen between one and half of the target count available in the

scenario.

Both single and multibit mutation procedures are only applied for UAV level of the

chromosome according to the rate specified by the user. For both of the mutation

schemes, some kind of logic, trying to avoid from mutation of any chosen bit with an

 38

already existing bit for that target, is also inserted into implementation procedure of

the mutation operator.

3.5.3.5 Selection

Rank and Roulette Wheel selection techniques are both used in the implementation

of the genetic algorithm and decision of which selection technique to be used is left

to user.

3.5.3.6 Fitness Calculation

Multiobjective fitness function, mainly aiming to asses three objectives, is used in

the implementation of the genetic algorithm. As it is easier and quicker to find opti-

mal solution using singleobjective fitness functions, multiobjectivity is an unavoida-

ble real life practice. Accordingly, we have tried to include as many problem related

objectives as possible into our solution model. In the context of this study we care

about following objectives:

1. Minimizing total distance covered by all involved UAVs.

2. Minimizing number of UAVs to be used for the mission.

3. Maximizing number of targets to be served during the mission.

4. Fuel levels of UAVs are also taken into consideration and planning of

their missions is realized accordingly.

The multiobjective fitness function, used for assessing fitness of chromosomes (i.e.

solutions) generated by all the algorithms, can be mathematically formulized as fol-

lows:

 39

where k is the total number of targets available in operational environment, s is the

number of targets served during the mission, t is the total number of UAVs available

in operational environment, n is the number of UAVs used for the mission, dmi is the

maximum distance ith UAV can travel using available fuel and dtj is the distance trav-

elled by jth used UAV during the mission.

Here in this fitness function:

 First part, which is the difference of total distance to be covered using all

UAVs and the distance covered during the mission, is available to keep first

objective.

 Second part, which is the difference of total number of UAVs available and

the number of UAVs used for the mission, is available to keep second objec-

tive.

 Third part, which is the difference of twice of the number of targets served

during the mission and total number of targets available, is available to keep

third objective.

However, fourth objective is kept logically by directing UAVs according to their

current fuel level and providing their safe return to base station. Also note that in

fitness function, the second and the third parts are multiplied by 100 and 500 re-

spectively to be able to boost their relative effectivity in total fitness. These val-

ues are determined according to relative importance of the objectives in the mis-

sion and configuration of the input scenarios. In addition, first variable of third

part is multiplied by 2 with the aim of providing positive fitness for each served

target.

 40

005)2(100)()(
11

ksntdtdmFitness
n

j

j

t

i

i

 CHAPTER 4

 EVALUATION OF THE RESULTS

This chapter provides experimental results obtained by realizing test procedures for

all the implemented algorithms. Graphical visualizations of these results are also

given in a comparative manner.

Mainly there are two input sets, which are small sized and large sized sets, and both

of their two subsets. These subsets are produced based on randomness of operational

environment composition; that one randomly (automatically) and one consciously

(manually) composed input subsets are provided for testing phase. Main aim of con-

sciously composing is to provide some fully feasible missions which are hard to get

by randomly composing, especially for large sizes.

Evaluations and comparisons of the algorithms are performed according to objective

function output values acquired for each of 4 input subsets. Objective based test re-

sults are also given with the aim of enabling evaluation and comparison of the algo-

rithms’ performances based on a single objective or combination of some of them.

All the tests are run on a laptop computer having 4 GB RAM, 2.53 GHz Intel(R)

Core(TM) i5 CPU and 64 bit Windows 7 Home Premium operating system. Howev-

er, testing framework is compiled to work as a 32 bit application.

Although, configuration change is allowed for each different execution of the algo-

rithms, some default values, which are determined according to similar studies in the

literature, are also provided for some of them.

 41

4.1 Testing Procedures and Configuration of the Algorithms

Testing configurations and evaluation procedures of the implemented algorithms are

given below:

4.1.1 Exhaustive Search Algorithm Implementation

This algorithm is used to find optimum solutions for small sized problem instances.

These optimum solutions are used as reference to assess quality of solutions generat-

ed by the proposed methods. However, elapsed time values are very high for this

algorithm. So, it is impractical to compare efficiency of the algorithm and use it for

solution of this problem in real life.

No bounding logic is available for this algorithm but some logic providing early

elimination of useless solution candidates is included to the implementation of the

algorithm. In addition, maximum fitness based sorting method is applied to all feasi-

ble solution candidates to be able to find best performing solution(s).

4.1.2 Greedy Search Algorithm Implementation

Greedy search algorithm is applied to all problem instances. The aim is to provide

solutions to be able to evaluate effectivity and efficiency of the genetic algorithm, by

comparing the solutions with ones resulted from the genetic algorithm, especially for

the large sized input set.

As this algorithm tries to assign UAVs to targets greedily, elapsed time values are

generally shorter compared to other algorithms. Elapsed time values of the algorithm

given in Section 4.2 show that this algorithm terminates in acceptable time for the

problem instances of this study.

 42

No bounding logic is provided for this algorithm. However, maximum fitness based

sorting method is applied to all feasible target assignment candidates to be able to

find best performing ones with the aim of reaching best performing solution by

merging them.

4.1.3 Genetic Algorithm Implementation

This is the main algorithm developed for UAV mission planning problem with the

aim of acquiring best or acceptable results in reasonable time. All problem instances

available in both of the input sets are solved by using variations of this algorithm.

Variations of the algorithm, evaluated in this study, can be listed in Table 4.1 as fol-

lows:

 Table 4.1: Variations of Genetic Algorithm

GA Algorithm Specification

GA_Single_Rank (GA_1) Genetic algorithm with two – level single

random point crossover and rank selection

GA_Multi_Rank (GA_2) Genetic algorithm with two – level two ran-

dom point crossover and rank selection

GA_Single_Roulette (GA_3) Genetic algorithm with two – level single

random point crossover and roulette selection

GA_Multi_Roulette (GA_4) Genetic algorithm with two – level two ran-

dom point crossover and roulette selection

GA_Simple_Multi_Rank(GA_5) Genetic algorithm with one – level (UAV

level) two random point crossover and rank

selection

 43

It is possible to say that genetic algorithm is the most preferable algorithm for this

problem when looking at the overall results reflecting algorithms’ performances in

both of the effectivity and efficiency aspects.

Main configuration parameters of the genetic algorithm and the values specified for

them, according to similar studies in literature, are given below:

 Crossover probability = 0.85

 Mutation probability = 0.05

 Population count = 1

 Population size = 50

 Number of generations = 200

4.2 Results of Experiments

One of the two most important differences of the algorithms is the elapsed time

change according to input size and configuration. This change is directly related with

time complexities of the algorithms. The other most important difference is the effec-

tivity, which is directly related with design of the algorithms. All of the algorithms

are compared in both of these two differing aspects using both of the input sets.

Mainly there exist two input sets for the evaluation, which are small and large sized

input sets, regarding to requirement of providing requested number of UAVs to the

targets of the operational environment in specified time intervals. Also, for each of

the input sets, there exist two subsets, which are randomly and consciously com-

posed subsets, regarding to need for evaluating the effect of randomness factor,

which highly exists in real life.

Experiments are realized using subsets of both of the input sets whose detailed speci-

fications are given below:

 44

4.2.1 Results of Small Sized Input Set

Main issue here is to avoid time complexity of exhaustive search algorithm which is

highly impractical for the scenarios providing huge number of possible assignment

schemes. So, some specific scenarios, not having potential of generating more than

65 million assignment schemes, are generated in order to be able to compare perfor-

mances of the implemented algorithms. For all of the scenarios of this set, number of

UAVs to be available in operational environment is decided to be same and equals to

8. Number of targets to be available in operational environment is also decided to be

same and equals to 5. Variation of the scenarios is provided by varying number of

possible assignment schemes. Additionally, fuel level of UAVs is set to 300 distance

units for all members of this input set.

This input set is divided into two subsets, which are randomly composed subset (In-

put subset 1) and consciously composed subset (Input subset 2) and each of which

containing 12 different scenarios.

Scenario Exhaust. GA_1 GA_2 GA_3 GA_4 Greedy

Assignment Targets Gain Time Gain Time Gain Time Gain Time Gain Time Gain Time

802816
5

4169 70 4167 .078 4169 .094 4167 .094 4169 .109 4167
.001

1404928
5

4828 73 4828 .062 4828 .063 4828 .062 4828 .079 4828
.001

2508800
5

3496 113 3496 .109 3496 .122 3489 .110 3496 .109 2864
.001

5619712
5

2822 380 2822 .093 2822 .093 2822 .082 2822 .093 2822
.001

5619712
5

3916 104 3916 .064 3916 .081 3916 .094 3916 .103 3916
.001

5619712
5

4138 35 3938 .078 4138 .124 4138 .156 4138 .171 3938
.001

9834496 5 4564 284 4362 .078 4563 .106 4358 .094 4362 .109 3950 .001

9834496
5

3114 198 3114 .109 3114 .116 2816 .106 3114 .156 2816
.001

9834496
5

3910 60 3910 .081 3910 .092 3910 .111 3910 .127 3910
.001

19668992
5

3504 1402 3504 .093 3504 .094 3504 .092 3504 .112 3504
.001

34420736
5

4172 1102 4172 .094 4172 .096 4172 .109 4172 .110 3972
.001

49172480
5

3282 2811 3266 .124 3282 .167 3082 .140 3266 .164 2850
.001

 Figure 4.1: Test Results of Input Subset 1

 45

4.2.1.1 Results of Randomly Composed Input Set

This input subset includes 12 small sized and randomly composed scenarios. In this

subset number of possible assignment schemes varies from 802816 to 49172480.

Scenarios of this subset are generated automatically by the framework.

Both of elapsed time and fitness values measured for each algorithm, using this input

subset, can be seen in Figure 4.1.

 Figure 4.2: Elapsed Time of Brute Force Algorithm for Input Subset 1

For the traditional application of exhaustive search algorithm, time complexity of the

algorithm is directly proportional to number of possible assignments. However, with

early elimination, it is not the only factor affecting time complexity; occurrence and

count of early eliminations are also important. Main issue here is the time, the algo-

rithm reached to best solution while enumerating all possibilities. It is possible to

observe mentioned situation samples in Figure 4.2 that time complexity tends to in-

crease proportionally but exceptional scenarios are available because of the situation.

 46

 Figure 4.3: Elapsed Time of the Algorithms for Input Subset 1

 Figure 4.4: Fitness Values of the Algorithms for Input Subset 1

As it can be seen in Figure 4.3, for this randomly composed subset, rank selection

yields better time complexity compared to roulette selection for genetic algorithm

variations on the average. However, multi (two) point crossover operation takes more

time compared to single point one. Besides, we can see that efficiency of greedy al-

gorithm is the best as expected.

 47

Figure 4.3 also shows that elapsed time change of greedy algorithm and genetic algo-

rithm variations is not directly related with possible number of assignments. Really,

this is another expected result because of the fact that main factor affecting these

algorithms’ efficiency is the size of the chromosome data structure, which is deter-

mined according to number of targets available in operational environment and num-

ber of UAVs needed to serve for those targets.

As expected, exhaustive search algorithm is the most effective algorithm for this ran-

domly composed input subset according to fitness values given in Figure 4.4. On the

contrary, greedy algorithm yields the worst of all the algorithms on the average; but

it is not so far from the reference. However, genetic algorithm variations provide

close fitness values to ones provided by the reference algorithm. It is possible to see

that variations of genetic algorithm applying multi point crossover operation are

slightly better than the ones applying single point. Additionally, rank selection out-

performs roulette selection for a few scenarios. So, GA_Multi_Rank algorithm ap-

plying multi point crossover operation for two levels and using rank selection reach-

es to top effectivity, which is almost same with the reference, among all the genetic

algorithm variations.

Scenario Exhaust. GA_1 GA_2 GA_3 GA_4 Greedy

Assignment Targets Gain Time Gain Time Gain Time Gain Time Gain Time Gain Time

7024640
5

4166 311 4166 .152 4166 .156 4166 .156 4166 .187 3966
.001

7024640
5

4608 113 4608 .093 4608 .094 4608 .092 4608 .109 4608
.001

7024640
5

4200 112 4000 .118 4196 .126 4000 .134 4000 .140 4000
.001

11239424
5

4398 766 4392 .114 4398 .124 4392 .127 4398 .141 4382
.001

12293120
5

4434 87 4434 .092 4434 .096 4434 .102 4434 .114 4434
.001

12293120
5

3440 287 3440 .148 3440 .161 3240 .146 3440 .125 3040
.001

19668992 5 4646 276 4646 .093 4646 .094 4646 .091 4646 .101 4646 .001

24586240
5

4816 1978 4816 .107 4816 .109 4816 .108 4816 .117 4816
.001

24586240
5

3966 156 3966 .108 3966 .109 3966 .124 3966 .127 3966
.001

49172480
5

4767 2771 4767 .107 4767 .118 4767 .122 4767 .140 4762
.001

49172480
5

4832 2482 4832 .097 4832 .107 4832 .098 4832 .112 4832
.001

61465600
5

4236 1983 4234 .138 4236 .148 4233 .140 4236 .156 4035
.001

 Figure 4.5: Test Results of Input Subset 2

 48

4.2.1.2 Results of Consciously Composed Input Set

This input subset includes 12 small sized and consciously composed scenarios. In

this subset number of possible assignment schemes varies from 7024640 to

61465600. Scenarios of this subset are generated manually by us.

Both of elapsed time and fitness values measured for each algorithm, using this input

subset, can be seen in Figure 4.5.

 Figure 4.6: Elapsed Time of Brute Force Algorithm for Input Subset 2

 Figure 4.7: Elapsed Time of the Algorithms for Input Subset 2

 49

 Figure 4.8: Fitness Values of the Algorithms for Input Subset 2

For this consciously composed subset, we have 11 fully feasible scenarios which are

7 for randomly composed one. Although higher fitness values are observed because

of this difference, this situation does not make a substantial change in relative effi-

ciency and effectivity of the algorithms. So, regarding to test results depicted in Fig-

ure 4.6, Figure 4.7 and Figure 4.8, efficiency and effectivity evaluation of the algo-

rithms occurs similar to the previous one occurred for randomly composed input set.

4.2.2 Results of Large Sized Input Set

This input set consists of some specific scenarios having more than 65 million differ-

ent assignment schemes. Because of high time complexity of exhaustive search algo-

rithm and availability of large sized inputs, evaluation of this input set is realized

without this algorithm. Main aim for this evaluation is to analyze quality of outputs

for the genetic algorithm by comparing fitness and elapsed time values of this algo-

rithm with the ones resulted from the greedy algorithm. For all of the scenarios of

this set, number of UAVs to be available in operational environment is decided to be

same and equals to 20. But this time, number of targets is increased by one from sce-

nario to scenario. Additionally, fuel level of UAVs is set to 400 distance units for all

members of this input set.

 50

This input set is also divided into two subsets, which are randomly composed subset

(Input subset 3) and consciously composed subset (Input subset 4) and each of which

containing 12 different scenarios.

Scenario GA_1 GA_2 GA_3 GA_4 Greedy

UAVs Targets Gain Time Gain Time Gain Time Gain Time Gain Time

20 6
10261 .234 10461 .280 10259 .264 10461 .491 9957 .016

20 7
10116 .265 10116 .281 10116 .265 10116 .281 9810 .017

20 8
9662 .249 9871 .265 9653 .267 9799 .267 9244 .019

20 9
10245 .737 10450 .972 10215 .749 10250 .827 9935 .021

20 10
9832 .499 9848 .671 9832 .501 9848 .686 9832 .022

20 11
12143 .567 12238 .599 12138 .571 12229 .608 12029 .024

20 12
9796 .873 9827 .951 9813 .902 9830 1.295 9430 .027

20 13
10035 1.108 10267 1.488 10013 1.201 10075 1.328 9843 .032

20 14
11628 .637 11819 .662 11614 .688 11631 .714 11304 .034

20 15
9849 .780 10077 .812 9849 .795 9998 .842 9466 .034

20 16
8682 .1186 8682 .1216 8682 .1199 8682 .1277 8270 .036

20 17
9873 .694 9956 1.748 9873 .697 9956 1.860 9651 .037

 Figure 4.9: Test Results of Input Subset 3

4.2.2.1 Results of Randomly Composed Input Set

This input subset includes 12 large sized and randomly composed scenarios. In this

subset number of targets varies from 6 to 17. Scenarios of this subset are generated

automatically by the framework.

 Figure 4.10: Elapsed Time of the Algorithms for Input Subset 3

 51

Both of elapsed time and fitness values measured for each algorithm, using this input

subset, can be seen in Figure 4.9.

 Figure 4.11: Fitness Values of the Algorithms for Input Subset 3

As stated before, there is no reference algorithm available for this input subset. So,

comparison of just greedy and variations of genetic algorithms is provided in this

section. Because of varying number of targets, size of the chromosome data structure

grows and shrinks accordingly. Mainly, both of greedy and genetic algorithms’

elapsed time values are directly related to that size as shown in Figure 4.10. Howev-

er, there are also some other factors, such as relative locations of targets, relative

conditions of target time windows and number of distinct UAVs to be used, that are

also affecting time complexity. Accordingly, it is possible to see in Figure 4.10 that

time complexity of all algorithms tends to increase as the number of targets increase;

but for genetic algorithm, there are also some scenarios affected from these men-

tioned factors and caused some extra points to emerge in the graph.

Relative performances of the algorithms stay similar to the one happened for small

sized scenarios that greedy algorithm is the most efficient and the least effective al-

gorithm again. According to the results depicted in Figure 4.10 and 4.11, genetic

algorithms applying multi point crossover operation are more effective and less effi-

cient in average when compared to ones applying single point. Also, rank selection is

again performing slightly better than roulette selection, for both aspects, in average.

 52

4.2.2.2 Results of Consciously Composed Input Set

This input subset includes 12 large sized and consciously composed scenarios. In this

subset number of targets varies from 6 to 17. The scenarios available in this subset

are generated manually by us.

Both of elapsed time and fitness values measured for each algorithm, using this input

subset, can be seen in Figure 4.12.

Scenario GA_1 GA_2 GA_3 GA_4 Greedy

UAVs Targets Gain Time Gain Time Gain Time Gain Time Gain Time

20 6
11336 .099 11336 .113 11336 .104 11336 .121 11336 .016

20 7
11329 .234 11329 .265 11329 .343 11329 .406 10931 .017

20 8
11389 .711 11589 .742 11387 .717 11585 .787 10366 .018

20 9
12090 .436 12290 .733 12082 .530 12282 .792 11690 .020

20 10
12096 .484 12099 .577 12096 .492 12096 .543 11896 .022

20 11
12359 .327 12558 .342 12359 .327 12359 .406 12354 .024

20 12
12750 .343 12854 .674 12750 .436 12754 .468 12650 .026

20 13
13616 1.030 13617 1.112 13427 .827 13427 .967 12806 .028

20 14
12242 .921 12444 .942 12047 .967 12244 1.404 11644 .031

20 15
12092 .936 12242 1.397 12238 1.498 12238 1.575 12038 .033

20 16
14912 1.249 15112 1.260 14889 1.311 15101 1.370 14291 .036

20 17
12796 1.716 12796 1.732 12796 1.606 12797 2.171 11825 .041

 Figure 4.12: Test Results of Input Subset 4

 Figure 4.13: Elapsed Time of the Algorithms for Input Subset 4

 53

 Figure 4.14: Fitness Values of the Algorithms for Input Subset 4

For this consciously composed subset, we have 9 fully feasible scenarios which are 3

for randomly composed one. Although, higher fitness values are observed because of

this difference, this situation does not make a substantial change in relative efficiency

and effectivity of the algorithms. So, regarding to test results depicted in Figure 4.13

and Figure 4.14, efficiency and effectivity evaluation of the algorithms occurs similar

to the previous one occurred for randomly composed input subset of this set.

According to all of the test results gathered for 4 input subsets, remarkable inferences

are listed as follows:

 Although evaluated only for small sized set, exhaustive search algorithm with

early elimination provides the best effectivity and the worst efficiency.

 Greedy algorithm performs the worst effectivity and the best efficiency.

 For genetic algorithms implemented for this problem, multi point crossover

reaches more effective fitness values compared to single point ones that the

situation is also emphasized in [28], which also deals with a similar problem.

However, single point crossover is more efficient than the multi point one.

 54

 For genetic algorithms implemented for this problem, rank selection is more

efficient than roulette selection in general. Moreover, it achieves better effec-

tivity for some specific scenarios.

 As a consequence of third and fourth conclusions, GA_Multi_Rank algorithm

provides highly appealing results when evaluated for both of effectivity and

efficiency aspects together. Although time complexity of the algorithm is not

even best of genetic algorithm variations, it presents nearly optimal solutions

in terms of effectivity. Moreover, the average time complexity of the algo-

rithm is in acceptable range to be utilized for this problem.

4.2.3 Objective Based Evaluation of Test Results

Availability of three different objectives in fitness function lets us to present objec-

tive based test results in addition to fitness based test results with the aim of analyz-

ing objective based performances of the algorithms. However, these objective based

test results are only given for large sized input set because of the reality that perfor-

mances of the algorithms for small sized input set do not pose substantial differences.

 Figure 4.15: Objective Based Test Results of the Algorithms for Input Subset 3

 55

Scenario GA_1 GA_2 GA_3 GA_4 Greedy

UAV Targets Dis. U Tar. Dis. U Tar. Dis. U Tar. Dis. U Tar. Dis. U Tar.

20 6
1439 13 6 1339 12 6 1441 13 6 1339 12 6 1643 14 6

20 7
1584 8 6 1584 8 6 1584 8 6 1584 8 6 1690 10 6

20 8
2338 10 7 2229 9 7 2347 10 7 2301 9 7 2556 12 7

20 9
2555 17 9 2450 16 9 2585 17 9 2550 17 9 2665 19 9

20 10
2368 18 9 2352 18 9 2368 18 9 2352 18 9 2368 18 9

20 11
1957 14 11 1962 13 11 1962 14 11 1971 13 11 1971 15 11

20 12
2404 18 10 2373 18 10 2387 18 10 2370 18 10 2570 20 10

20 13
2565 19 11 2433 18 11 2587 19 11 2525 19 11 2657 20 11

20 14
2572 18 13 2481 17 13 2586 18 13 2569 18 13 2696 20 13

20 15
2051 16 11 1923 15 11 2051 16 11 1902 16 11 2234 18 11

20 16
2618 17 11 2618 17 11 2618 17 11 2618 17 11 2730 20 11

20 17
2627 20 13 2644 19 13 2627 20 13 2644 19 13 2849 20 13

Average: 2257

15.

7

9.8 2199

15.

0

9.8 2262

15.

7

9.8 2227

15.

3

9.8 2386 17.

2

9.8

Objective based performances of the algorithms for large sized randomly and con-

sciously composed subsets can be seen in Figure 4.15 and Figure 4.16 respectively.

With the aim of providing objective based comparison, total distance covered by all

UAVs (Dis.), total number of UAVs used for the mission (Uav) and total number of

targets served during the mission (Tar.) are given regarding to first, second and third

objectives respectively.

As can be seen in Figure 4.15, for randomly composed subset, there is no difference

for performances of the algorithms in target coverage aspect. But, for distance cover-

age issue, effectivity of genetic algorithms is superior to effectivity of greedy one;

that the difference varies from %5.2 to %7.8 on the average and GA_Multi_Rank

algorithm provides the highest effectivity. In addition, it is possible to lower total

covered distance up to %18.5 and save corresponding level of fuel for some specific

scenarios. For UAV usage issue, again genetic algorithms outperform greedy algo-

rithm from %8.7 to %12.8 on the average and GA_Multi_Rank algorithm reaches to

top effectivity again. Besides, for some specific scenarios, it is possible to save

UAVs up to %25 using genetic algorithm variations. As the result, it can be conclud-

ed for this input subset that the genetic algorithms yield more effective results com-

pared to ones of the greedy algorithm on the average for two of the three objectives.

 Figure 4.16: Objective Based Test Results of the Algorithms for Input Subset 4

 56

Scenario GA_1 GA_2 GA_3 GA_4 Greedy

UAV Targets Dis. Uav Tar. Dis. Uav Tar. Dis. Uav Tar. Dis. Uav Tar. Dis. Uav Tar.

20 6
864 8 6 864 8 6 864 8 6 864 8 6 864 8 6

20 7
1171 10 7 1171 10 7 1171 10 7 1171 10 7 1369 12 7

20 8
1511 11 8 1311 11 8 1513 11 8 1315 11 8 1934 17 8

20 9
1310 11 9 1110 11 9 1318 11 9 1118 11 9 1510 13 9

20 10
1704 12 10 1701 12 10 1704 12 10 1704 12 10 1704 14 10

20 11
1741 14 11 1642 13 11 1741 14 11 1741 14 11 1746 14 11

20 12
1850 14 12 1746 14 12 1850 14 12 1846 14 12 1850 15 12

20 13
1584 13 13 1683 12 13 1573 15 13 1673 14 13 1994 17 13

20 14
2158 16 13 2056 15 13 2253 17 13 2256 15 13 2356 20 13

20 15
2408 20 14 2358 19 14 2362 19 14 2362 19 14 2462 20 14

20 16
1688 14 16 1688 12 16 1711 14 16 1699 12 16 2009 17 16

20 17
2704 20 16 2704 20 16 2704 20 16 2703 20 16 2675 20 15

Average:
1724

13.
6

11.
2 1670

13.
1

11.
2 1730

13.
7

11.
2 1704

13.
3

11.
2 1873

15.
6

11.
1

As can be seen in Figure 4.16, for consciously composed subset, there is only one

scenario posing difference in target coverage aspect; that genetic algorithms cover

one more target compared to greedy algorithm in that scenario. For distance coverage

issue, effectivity of genetic algorithms is superior to effectivity of greedy one; that

the difference varies from %7.6 to %10.8 on the average and GA_Multi_Rank algo-

rithm provides the highest effectivity. In addition, it is possible to lower total covered

distance up to %32.2 and save corresponding level of fuel for some specific scenari-

os. For UAV usage issue, again genetic algorithms outperform greedy algorithm

from %12.2 to %16 on the average and GA_Multi_Rank algorithm reaches to top

effectivity again. Besides, for some specific scenarios, it is possible to save UAVs up

to %35.3 using genetic algorithm variations. As the result, it can be concluded for

this input subset that the genetic algorithms yield more effective results compared to

ones of the greedy algorithm on the average for all of the three objectives.

For large sized and randomly composed subset, although fitness based test results

show superiority of genetic algorithms’ average effectivity from %2.8 to %4.1 com-

pared to average effectivity of greedy algorithm, objective based evaluation shows

that the reason of the small difference is relative effectivity of the third objective in

fitness; that the objective is achieved equally well by all of the algorithms. However,

there are substantial performance differences in terms of first and second objectives.

For large sized and consciously composed subset, although fitness based test results

show superiority of genetic algorithms’ average effectivity from %3.4 to %4.5 com-

pared to average effectivity of greedy algorithm, objective based evaluation shows

that the reason of the small difference is relative effectivity of the third objective in

fitness; that the objective is achieved almost equally well by all of the algorithms.

However, there are substantial performance differences in terms of first and second

objectives.

As the general result, it is possible to conclude for two subsets of large sized input set

that the genetic algorithms yield reasonably more effective results compared to ones

of the greedy algorithm on the average especially for the first and second objectives.

 57

4.2.4 Comparison of Genetic Algorithms’ Performances

As stated before; another genetic algorithm, applying crossover operation only for

UAV level of the chromosome data structure, is also implemented with the aim of

making efficiency and effectivity comparison of two – level crossover operation pos-

sible. Hence, two genetic algorithms, applying specified crossover operation to one

level and two levels of the chromosome structure, are obtained for comparison pro-

cess.

Both of the algorithms are arranged to use multi point crossover scheme and rank

selection technique, which constitute the best performing genetic algorithm configu-

ration of this problem, together.

Performances of the GA_Multi_Rank and GA_Simple_Multi_Rank algorithms are

compared with respect to both of the fitness and objective based test results. Howev-

er, the objective based comparison is only given for large sized input set because of

the reality that performances of the algorithms for small sized input set do not pose

substantial differences.

4.2.4.1 Fitness Based Comparison

Fitness based comparison of the genetic algorithms is provided in this section. The

algorithms, GA_Multi_Rank and GA_Simple_Multi_Rank, are both tested with al-

ready composed small sized and large sized input sets and both of their randomly and

consciously composed subsets. For this time, gathered fitness and elapsed time re-

sults are not tabulated but graphically visualized in a comparative manner.

With respect to efficiency and effectivity aspects, evaluations of the algorithms, for

all input subsets, are given below:

 58

 Figure 4.17: Elapsed Time of Genetic Algorithms for Input Subset 1

 Figure 4.18: Fitness Values of Genetic Algorithms for Input Subset 1

As it can be seen in Figure 4.17 and Figure 4.18, for the small sized and randomly

composed input subset, both of the algorithms perform very close to each other with

respect to both of the evaluation criterions. Accordingly, it is possible to say that two

– level crossover scheme does not make any substantial difference for this input sub-

set.

 59

 Figure 4.19: Elapsed Time of Genetic Algorithms for Input Subset 2

 Figure 4.20: Fitness Values of Genetic Algorithms for Input Subset 2

Figure 4.19 and Figure 4.20 show that, for the small sized and consciously composed

subset, GA_Multi_Rank algorithm achieves better effectivity for one specific scenar-

io and also results with slightly better average elapsed time compared to

GA_Simple_Multi_Rank algorithm. However, it is not realistic enough to declare

GA_Multi_Rank algorithm as the better one for small sized input set, because there

is no obvious outperforming situation available especially for effectivity aspect.

 60

 Figure 4.21: Elapsed Time of Genetic Algorithms for Input Subset 3

 Figure 4.22: Fitness Values of Genetic Algorithms for Input Subset 3

According to graphical representations of test results given in Figure 4.21 and Figure

4.22, for input subset 3, average elapsed time values of both genetic algorithms are

very close to each other again. However, GA_Multi_Rank algorithm obviously pro-

vides better fitness values for 4 of 12 scenarios for this time. Also, there exist extra 6

scenarios in which performance difference happen so slightly.

 61

 Figure 4.23: Elapsed Time of Genetic Algorithms for Input Subset 4

 Figure 4.24: Fitness Values of Genetic Algorithms for Input Subset 4

For input subset 4, comparison of the algorithms occurs similar to the previous one,

occurred for large sized and randomly composed subset, as can be seen in Figure

4.23 and Figure 4.24. Again very close performances are available for efficiency

aspect, but GA_Multi_Rank algorithm outperforms for some specific scenarios of

this input subset in terms of effectivity.

According to all fitness based test results for 4 input subsets, it may be concluded

that the two – level crossover operation is more effective than the one – level one for

this problem, especially for large sized input subsets regardless of composition way.

 62

4.2.4.2 Objective Based Comparison

Objective based comparison of the genetic algorithms is provided in this section. The

algorithms, GA_Multi_Rank and GA_Simple_Multi_Rank, are both tested with al-

ready composed large sized input set and its randomly and consciously composed

subsets. For this time, gathered fitness results are not graphically visualized in a

comparative manner but presented in tabular form.

Objective based performances of the algorithms for large sized randomly and con-

sciously composed subsets can be seen in Figure 4.25 and Figure 4.26 respectively.

With the aim of providing objective based comparison, total distance covered by all

UAVs, total number of UAVs used for the mission and total number of targets served

during the mission are given regarding to first, second and third objectives respec-

tively.

 Figure 4.25: Objective Based Test Results of Genetic Algorithms for Subset 3

As can be seen in Figure 4.25, for randomly composed subset, there is no difference

for performances of the genetic algorithms in target coverage aspect. But, for dis-

tance coverage issue, effectivity of GA_Multi_Rank algorithm is better than effectiv-

ity of GA_Simple_Multi_Rank algorithm; that the difference is about %1.8 on the

 63

Scenario GA_Multi_Rank GA_Simple_Multi_Rank

UAVs Targets Distance Used UAVs Targets Distance Used UAVs Targets

20 6
1339 12 6 1457 13 6

20 7
1584 8 6 1584 8 6

20 8
2229 9 7 2247 9 7

20 9
2450 16 9 2530 17 9

20 10
2352 18 9 2368 18 9

20 11
1962 13 11 1971 13 11

20 12
2373 18 10 2404 18 10

20 13
2433 18 11 2563 19 11

20 14
2481 17 13 2574 18 13

20 15
1923 15 11 1923 16 11

20 16
2618 17 11 2618 17 11

20 17
2644 19 13 2627 20 13

Average: 2199 15 9,75 2239 15.5 9,75

average and about %8.1 at maximum. For the aspect of UAV usage, again

GA_Multi_Rank algorithm outperforms GA_Simple_Multi_Rank algorithm about

%3.2 on the average and about %7.7 at maximum. As the result, it can be concluded

for this input subset that GA_Multi_Rank algorithm provides more effective results

compared to ones of the GA_Simple_Multi_Rank algorithm on the average for two

of the three objectives.

 Figure 4.26: Objective Based Test Results of Genetic Algorithms for Subset 4

As can be seen in Figure 4.26, for consciously composed subset, there is only one

scenario posing difference in target coverage aspect; that GA_Multi_Rank algorithm

covers one more target compared to GA_Simple_Multi_Rank algorithm in that sce-

nario. However, for distance coverage issue, effectivity of GA_Multi_Rank algo-

rithm is better than effectivity of GA_Simple_Multi_Rank algorithm; that the differ-

ence is about %0.7 on the average and about %6 at maximum. For the aspect of

UAV usage, again GA_Multi_Rank algorithm outperforms GA_Simple_Multi_Rank

algorithm for about %3 on the average and about %14.3 at maximum. As the result,

it can be concluded for this input subset that the GA_Multi_Rank algorithm provides

more effective results compared to ones of the GA_Simple_Multi_Rank algorithm

on the average for all of the three objectives.

 64

Scenario GA_Multi_Rank GA_Simple_Multi_Rank

UAVs Targets Distance Used UAVs Targets Distance Used UAVs Targets

20 6
864 8 6 864 8 6

20 7
1171 10 7 1171 10 7

20 8
1311 11 8 1316 11 8

20 9
1110 11 9 1114 11 9

20 10
1701 12 10 1700 14 10

20 11
1642 13 11 1746 14 11

20 12
1746 14 12 1850 15 12

20 13
1683 12 13 1584 13 13

20 14
2056 15 13 2156 16 13

20 15
2358 19 14 2358 19 14

20 16
1688 12 16 1788 13 16

20 17
2704 20 16 2534 18 15

Average:
1670 13.1 11,25 1682 13.5 11.17

 CHAPTER 5

 CONCLUSION AND FUTURE WORK

5.1 Conclusions

In this thesis, we analyzed UAV mission planning problem especially for UAV –

target assignment and scheduling aspects. We formulated the problem as a combina-

torial optimization problem and served it in a generic way that all available algo-

rithms can be easily designed for.

Genetic, greedy and exhaustive search algorithms are designed and implemented for

this problem. Additionally, some customizations are made to these implementations

regarding to specific features coming from problem domain. A graphical framework,

easing scenario management and allowing a generic testing procedure regardless of

which algorithm to be tested, is also developed in the context of this study. Each im-

plemented algorithm is tested in both of effectivity and efficiency aspects and its

performance is compared to the rest ones’.

Two main input sets and subsets posing different problem domain related features

are composed for evaluation of all implemented algorithms and their possible varia-

tions. Finally, resulting comparable values, such as fitness and elapsed time, are

tabulated for each of 4 input subsets. Also, for large sized input set, objective based

performances of the algorithms are also given for all of the three objectives in tabular

form.

 65

Exhaustive search algorithm gives the best solutions for all kind of scenarios in terms

of solution quality. However, the algorithm provides the worst efficiency, especially

for operational environments including more than a few infeasible targets, when

compared to efficiency of the other algorithms. Because of this huge running time of

the algorithm, it is not preferable to use especially for real time problem domain.

Also, regardless of real time requirement of the problems, it is also not practical for

some problems, waiting decisions not in real time but in acceptable time, like this

UAV mission planning problem.

Greedy algorithm gives the most efficient solutions requiring the least elapsed time

for execution; but effectivity of this algorithm is low compared to the other algo-

rithms. Also, the solutions tend to diverge more from optimality, as complexity of

operational environment increases. So this algorithm is not also suitable enough for

UAV mission planning problem.

After comparison of all experimental data, we can conclude that genetic algorithm is

practically the best algorithm for our problem by keeping both effectivity and effi-

ciency criterions in acceptable interval. Solutions of genetic algorithms are produced

nearly as quickly as greedy algorithm (smaller than 2.2 seconds for all input scenari-

os) for all customizations of the problem. Also fitness values are not much worse

than the ones produced by exhaustive search algorithm and they differs less than %1

at maximum. In addition, objective based evaluation, which is realized only for large

sized input set, shows us superiority of genetic algorithm variations to greedy algo-

rithm in terms of effectivity, especially for the first and second objectives of the

problem.

Finally, we can say that the genetic algorithm GA_Multi_Rank, which is utilizing

UAV and Target Level Crossover techniques together with two point scheme and

using rank selection operator, stands as the most preferable algorithm for this as-

signment and scheduling problem. This algorithm finds good quality solutions in

preferable and acceptable levels with respect to requirements emerging from nature

of the UAV mission planning problem.

 66

5.2 Future Work

In this thesis, three main objectives are cared about and gain related to these objec-

tives are tried to be maximized. It is possible to increase number of objectives related

to problem domain such as priority of targets regarding to configurations of opera-

tional environments.

It would be more realistic to think operational environment in a dynamic fashion

instead of static which is done in this thesis. Because, it is very common to face with

unexpected factors for this type of missions. Accordingly, it would be a good prac-

tice to care about extra targets popping up in operational time and design algorithm

to react operational time changes.

This study has assumed availability of homogenous UAVs for each implemented

algorithm but it would be more realistic to be cared about UAV types and managing

them according to hard and soft features associated with them. In this context, it can

also be possible to divide the mission into three main stages which are classification,

attack and verification as stated in [4] and manage accordingly.

It can also be a good practice to modify 2D graphical framework to be able to make

it working in 3D fashion. Then, it would become more useful and realistic for the

users, especially in simulation phase to see what would happen during scenarios.

 67

 68

 REFERENCES

[1] J. S. Bellingham, M. J. Tillerson, A. G. Richards and J. P. How, “Multi-Task As-

signment and Path Planning for Cooperating UAVs,” Conference on Cooperative

Control and Optimization, Nov. 2001.

[2] L. F. Bertuccelli, M. Alighanbari and J. P. How, “Robust Planning for Coupled

Cooperative UAV Missions,” 43rd IEEE Conference on Decision and Control Dec.

14 – 17, 2004, Vol. 3, pp. 2917 – 2922.

[3] Mehdi Alighanbari and Jonathan P. How, ”Decentralized Task assignment for

Unmanned Aerial Vehicles,” 44th IEEE Conference on Decision and Control, and

the European Control Conference Dec. 12 – 15, 2005, pp. 5668 – 5673.

[4] S. J. Rasmussen, T. Shima, J. W. Mitchell, A. G. Sparks and P. Chandler, “State-

Space Search for Improved Autonomous UAVs Assignment Algorithm,” 43rd IEEE

Conference on Decision and Control Dec. 14 – 17, 2004, Vol. 3, pp. 2911 – 2916.

[5] Adam J. Pohl and Gary B. Lamont, “Multi-Objective UAV Mission Planning

Using Evolutionary Computation,” Proceedings of the 2008 Winter Simulation Con-

ference Dec. 7 – 10, 2008, pp. 1268 – 1279.

[6] Mehdi Alighanbari, Luca F. Bertuccelli and Jonathan P. How, “A Robust Ap-

proach to the UAV Task Assignment Problem,” Proceedings of the 45th IEEE Con-

ference on Decision and Control Dec. 13 – 15, 2006, pp. 5935 – 5940.

[7] David Rathbun, Sean Kragelund, Anawat Pongpunwattana and Brian Capozzi,

“An Evolution Based Path Planning Algorithm for Autonomous Motion of a UAV

through Uncertain Environments,” Proceedings of the 21st IEEE Digital Avionics

System Conference 2006, Vol. 2, 8D2-1 - 8D2-12.

[8] Duc-Cuong Dang, RachaEl-Hajj and Aziz Moukrim, “A Branch-and-Cut Algo-

rithm for Solving the Team Orienteering Problem,” C. Gomes and M. Sellmann

(Eds.): CPAIOR 2013, LNCS 7874, pp. 332 – 339, 2013.

[9] Domenico Pascarella, Salvatore Venticinque and Rocco Aversa, “Agent Based

Design for UAV Mission Planning,” 2013 Eighth International Conference on P2P,

Paralleled, Grid, Cloud and Internet Computing Oct. 28 – 30, 2013, pp. 76 – 83.

[10] Stephen Leary, Markus Deittert and John Bookless, “Constrained UAV Mission

Planning: A Comparison of Approaches,” 2011 IEEE International Conference on

Computer Vision Workshops Nov. 6 – 13, 2011, pp. 2002 – 2009.

 69

[11] Pieter Vansteenwegen, WouterSouffriau, Greet Vanden Berghe and Dirk Van

Oudheusden, “Iterated local search for the team orienteering problem with time win-

dows,” Computers and Operations Research Dec. 2009, Vol. 36, Issue 12, pp. 3281 –

3290.

[12] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe and Dirk Van

Oudheusden, “A guided local search metaheuristic for the team orienteering prob-

lem,” European Journal of Operational Research July 2009, Vol. 196, Issue 1, pp.

118 – 127.

[13] Tal Shima, Steven J. Rasmussen and Andrew G. Sparks, “UAV Cooperative

Multiple Task Assignments using Genetic Algorithms,” 2005 American Control

Conference Portland, OR, USA, June 8 – 10, 2005, Vol. 5, pp. 2989 – 2994.

[14] Yi Wei, M. Brian Blake and Gregory R. Madey, “An Operation-time Simulation

Framework for UAV Swarm Configuration and Mission Planning,” 2013 Interna-

tional Conference on Computational Science, 2013, Vol. 18, pp. 1949 – 1958.

[15] Steven J. Rasmussen and Tal Shima, “Branch and Bound Tree Search for As-

signing Cooperating UAVs to Multiple Tasks,” Proceedings of the 2006 American

Control Conference Minneapolis, Minnesota, USA, June 14 – 16, 2006.

[16] Christoph Rasche, Claudius Stern, Willi Richert, Lisa Kleinjohann and Bernd

Kleinjohann, “Combining Autonomous Exploration, Goal-Oriented Coordination

and Task Allocation in Multi-UAV Scenarios,” 2010 Sixth International Conference

on Autonomic and Autonomous Systems, ICAS 2010, Cancun, Mexico, March 7 –

13, 2010.

[17] Phillip R. Chandler, Meir Pachter, Dharba Swaroop and Jeffrey M. Fowler,

“Complexity in UAV Cooperative Control,” Proceedings of the American Control

Conference Anchorage, AK May 8 – 10, 2002, Vol. 3, pp. 1831 – 1836.

[18] Ibrahim H. Osman, “Heuristics for the generalised assignment problem: simu-

lated annealing and tabu search approaches,” OR Spektrum 1995, Vol. 17, Issue 4,

pp. 211 – 225.

[19] L. A. Ingham, “Considerations for a roadmap for the operations of Unmanned

Aerial Vehicles (UAV) in South African airspace,” PhD thesis in Stellenbosch Uni-

versity, 2008.

[20] Bahram Alidaee, Haibo Wang and Frank Landram, “On the Flexible Demand

Assignment Problems: Case of Unmanned Aerial Vehicles,” IEEE Transactions on

Automation Science and Engineering Oct. 2011, Vol. 8, Issue 4, pp. 865 – 868.

[21] A. Schrijver, “A course in combinatorial optimization,” CWI and University of

Amsterdam, 2006.

 70

[22] Matthias Kühn, Thomas Severin, Horst Salzwedel, “Variable Mutation Rate at

Genetic Algorithms: Introduction of Chromosome Fitness in Connection with Multi

– Chromosome Representation,” International Journal of Computer Applications

(0975 – 8887) June 2013, Vol. 72, No. 17.

[23] P. Victer Paul, P. Dhavachelvan, R. Baskaran, “A Novel Population Initializa-

tion Technique for Genetic Algorithm,” 2013 International Conference on Circuits,

Power and Computing Technologies March 20 – 21, 2013, pp. 1235 – 1238.

[24] Rakesh Kumar, Sudhir Narula, Rajesh Kumar, “A Population Initialization

Method by Memetic Algorithm,” International Journal of Advanced Research in

Computer Science and Software Engineering April 2013, Vol. 3, Issue 4.

[25] Shahryar Rahnamayan, Hamid R. Tizhoosh, Magdy M. A. Salama, “ A Novel

Population Initialization Method for Accelerating Evolutionary Algorithms,” Com-

puters and Mathematics with Applications May 2007, Vol. 53, Issue 10, pp. 1605 –

1614.

[26] Beatrice Ombuki, Brian J. Ross, Franklin Hanshar, “Multi-Objective Genetic

Algorithms for Vehicle Routing Problem with Time Windows,” Applied Intelligence

2006, Vol. 24, pp. 17 – 30.

[27] Marius M. Solomon, “Algorithms for the vehicle routing and scheduling

problems with time window constraints,” Operations Research 1987, Vol. 35, pp.

254 – 265.

[28] Jorge Mendes, “A Comparative Study of Crossover Operators for Genetic

Algorithms to Solve the Job Scheduling Problem,” WSEAS Transactions on

Computers April 2013, Vol. 12, Issue 4, pp. 164 – 173.

 71

