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ABSTRACT 

 

DETECTION OF THE DISTRIBUTION AND PARAMETER ESTIMATION 

FOR THE DEPARTING CONNECTIVITY IN BIOLOGICAL NETWORKS 

 

 

Odunsi, Omolola Dorcas  

M.S., Department of Statistics 

Supervisor: Assoc. Prof. Dr .Vilda Purutçuoğlu 

September 2014, 90 pages  

 

The connectivity density is one of the characteristics features in the topology of the 

network. This density describes the total number of the in-degree and out-degree of a 

node in a system.  

In a network, the in-degree or arriving connectivity represents the number of links 

coming to a target gene and the out-degree or departing connectivity stands for the 

number of links departing from the target gene. 

For biological networks, the density of the in-degree is represented by the 

exponential distribution and the distribution of the out-degree is generally referred by 

the power-law density. But the truncated power-law, generalized pareto law, 

stretched exponential, geometric and combination of these densities can  be also 

strong alternatives for the  out-degree  densities which satisfy the centrality and 

small-world properties without the scale-free feature of the biological networks. 

In this study we investigate the out-degree of the biological network within the 

Pearson curves. For the detection, we use both real and simulated datasets and 

compute the moments of the data for the plausible classification of the density. 

Moreover we investigate the application of the three-moment chi-square and four-

moment F approximations for the out-degree distributions. 
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Keywords: Out-degree distribution, Biological network, Topology of the network, 

Pearson system, Moment estimation, Three-moment chi-square approximation, Four-

moment F approximation.  
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ÖZ 

 

BİYOLOJİK AĞLARDA AYRILMA BAĞLATISININ DAĞILIMINI BULMA 

VE PARAMETRE TAHMİNİ 

 

 

Odunsi, Omolola Dorcas  

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Doç. Dr. Vilda Purutçuoğlu 

Eylül 2014,  90 sayfa  

 

Bağlantı dağılımı, ağ topolojisinde, karakteristik özelliklerden biridir. Bu dağılım, 

sistemdeki düğümün dış-derece ve iç-derece toplam sayısını ifade eder. Ağ için, iç-

derece veya gelen bağlantı, hedef gene gelen bağların sayısını ve dış-derece veya 

ayrılma bağlantısı, hedef genden çıkan bağların sayısını gösterir. Biyolojik ağlarda, 

iç-derece dağılımı üstel dağılımla belirtilir ve dış-derece dağılımı güç-yasası dağılımı 

ile ifade edilir. Fakat kesilmiş güç-yasası, genelleştirilmiş pareto-yasası, gergin üstel, 

geometrik ve bu dağılımların kombinasyonları, merkezcilik, öldürücülük ve küçük-

dünya özelliklerini serbest-ölçek özelliği olmaksızın sağlayan, biyolojik ağlar için 

kuvvetli dış-derece alternatif dağılımlardandır.  

 

Bu çalışmada, biyolojik ağda dış-dereceyi Pearson eğrileri içinde araştıracağız. Bu 

incelemede, ağ analizlerinde hem gerçek hem de simülasyon veri setlerini 

kullanacağız ve dağılımın muhtemel sınıflandırması için verilerin momentlerini 

hesaplayacağız. Ayrıca dış-derece dağılımlarında üç-moment ki-kare ve dört-

moment F yaklaşımlarının uygulamalarının inceleyeceğiz.  

 

Anahtar Kelimeler: Dış-derece dağılımı, Biyolojik ağ, Ağ topolojisi, Pearson sistemi, 

Moment tahmini, Üç-moment ki-kare yakınsaması, Dört-moment F yakınsaması. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

In the past decades, the term network is one of the most popular terms used in 

different disciplines including sciences from engineering to biology. In all these 

fields the concepts and ideas vary, thereby, the theories and properties have distinct 

assumptions. In simple word, it is a structure that devices a mechanism specialized 

on various functions. For example, the brain is a network of nerve cells joined by 

axons. Here the cell is a network of molecules connected by biochemical reactions.  

The networks can be extended to societies, families, friendship and also professional 

ties. The large networks can be described on food webs, ecosystem, internet, power 

grids and so on. We can also describe the language that we are using here as 

networks in such a way that every though is a network which is made up of 

connected words. 

Despite the usefulness and importance of networks, scientists had little knowledge of 

understanding their structures and properties. For instance how some systems 

(networks) function after the important nodes in the system have failed. Recently, the 

investigations from various field discovered that the most large networks (e.g. 

biological networks) has relatively small number of nodes that are connected while 

few has numerous connected nodes. These highly connected nodes are also named as 

hubs. The networks featured with such important nodes and hubs are referred to as 

the scale-free. Various biological networks, namely, gene interactions (Tong et al., 

2004), gene expression networks by various scholars (Featherstone and Broadie, 

2002; Agrawal 2002; Bergmann et al., 2004; Van Noort et al., 2004), protein- protein 

networks  (Jeong et al., 2004), yeast transcriptional regulatory network (Nabil Guezli 

et al., 2002) and many others have been described to have a scale-free nature. 
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Many say biological networks are scale-free; it is the degree (i.e the number of 

connections per node) distribution that has this scale-free nature and not the network 

itself.  Hereby, a particular importance is the degree distribution of nodes in a 

network and it is one of the important measures of the network topology. 

 

1.1 Aim of study 

 

The goal of this study is to establish the degree distribution of the departing 

connectivity in the directed biological networks. In this study, we investigate the out-

degree of the biological networks within the Pearson curves. For the detection, we 

use the real and simulated datasets which are generated under various scenarios. The 

original datasets are from directed networks while the stimulated study contains data 

from undirected networks. Hence in the stimulated study, we assumed the in-degree 

and out-degree are the same. Then we compute the moments of these data for the 

plausible classification of the degree density.  

In the analyses, we compare our results with other alternative distributions in the 

literature for the departing connectivity and consider whether the three-moment chi-

square and four-moment F distribution are suitable for the detection of the 

distributions when the final Pearson densities have undefined forms.  

Lastly, we test if the original datasets follows any of the defined alternative 

distributions for the departing connectivity. 

 

1.2 Motivation 

 

In recent years, the fact that the biological networks are scale-free in nature became 

very clear. It is also clear that the biological networks have a modular topology with 

a high clustering coefficient. The presence of these topology features restates the role 

of the degree in biological networks. Past works, such as the study of the hierarchical 

organization of modularity in metabolic networks (Ravasz et al., 2002),  the 
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topological and the casual structure of the yeast transcriptional regulatory network 

(Guelzim et al., 2002), the network biology for understanding the cell´s functional 

organization (Barabasi and Oltvai, 2004) and the effects of the sampling on the 

predictions of the topology for the  protein-protein interaction networks (Jing-Dong 

et al., 2005) and many others show that the out-degree distribution follows a  power- 

law distribution with hubs at the tail of the distribution which plays a crucial role in 

scale-free networks. 

However, the study of Khanin and Wit (2006) contradicts the assumed distribution. 

They studied 10 published different biological datasets and found out that the degree 

(i.e. the number of connections) distribution significantly differs from the power-law 

distribution and more so not scale-free. In their work, they suggested four alternative 

distributions, namely, the truncated power-law, the generalized pareto-law, the 

stretched exponential and the geometric distribution which may best describe the out-

degree distribution. 

Hence our interest is on these listed distributions. This analysis will help us to 

understand the structure of a biological network which helps for discovery the hidden 

features and more topological properties.  

Accordingly the remaining chapters of this study are structured as follows: Chapter 2 

presents the literature review on networks. It entails the type of networks, its 

classification based on different approaches and also the topological features which 

include the degree distribution, clustering coefficient, characteristic path length and 

diameter, presence of hubs and the network robustness. Also Chapter 3 reviews the 

methodology used in this study. In this chapter we discuss the Pearson system; some 

common approximation methods to find distributions under this system. 

Furthermore, we define two of the alternating densities for scale-free networks and 

how these alternating densities are defined in the Pearson system. We estimate their 

parameters by using the moments and moment generating functions.  

Chapter 4 contains the results of real datasets, Monte Carlo runs, three and four 

moment’s approximations. Moreover, we present the summary of each analytical 
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finding and graphical output. Finally in Chapter 5 we describe the summary of our 

study in the form of conclusions and give recommendations for the future research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Network 

A network is a series of points or nodes interconnected by communication paths or 

genes constructing multiple modules to perform one or more biological processes. 

The term node refers to a point in a network topology at which lines intersect. While 

genes are a set of instructions that decide what the organism is like, how it survives, 

and how it behaves in its environment.  

 

 

 

 

Figure 1: Example of the view  of a biological network. 

Networks can be classified based on their 

i. Components, 

ii. Links or connections and  

iii. Distribution of the links. 

 

Networks can be further simplified based on the above classification as summarized 

below: 

 

http://searchnetworking.techtarget.com/definition/node
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Intersection_(set_theory)


6 
 

Classification based on components: 

a. Networks on the microscopic scale 

1. Transcription regulation networks 

2. Signal transduction networks 

i. Protein interaction networks  

ii. Metabolic networks 

b. Networks on the macroscopic scale  

1. Food webs 

      2.  Ecological networks 

            3.  Phylogenetic networks 

Classification based on links: 

a. Directed networks 

b. Undirected networks 

 

Classification based on the distribution of links 

a. Homogenous networks 

1. Random networks 

b. Non homogenous networks 

1. Scale-free networks 

2. Hierarchical networks 

3. Modular networks 

The focus of this work is on the type of networks based on the distribution of links. 

 

2.2.1 Homogenous (Erdös-Renyi) network 

This is also known as the random network. The homogenous network is a network in 

which each node has almost the same numbers of connections (i.e. links). The model 

of a random network begins with N nodes and links each pair of nodes with 

probability p, which gives a graph with approximately pN(N-1) randomly placed 

links.  
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Figure 2: A figure of random network. 

The random network model is a set of Nv nodes with each pair of nodes connected 

with an equal probability of p≤1. The number of edges Nt is the random variable and 

its expected value is found as NE = p Nv(Nv-1)/2. 

Moreover, the degree distribution of the model is given by the binomial distribution 

that becomes approximately the poisson density in the limit of large networks. (i.e. 

Nv→∞). The probability of a node that has a degree k is p(k) ≈ e
-k

(k)
k
/k!. The 

poisson distribution shows that most nodes have approximately the same number of 

connections or links. 

Furthermore the tail (i.e. the degree distribution P(k)) decreases exponentially.  This 

shows significantly that the nodes rarely deviate from the average and the clustering 

coefficient is independent on a node´s degree. Additionally the mean path length (L) 

is proportional to the logarithm of the network size (N), i.e.      logN, which indicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

the small-world property. (Wit et al. 2010) 

 

2.2.2 Non-homogenous network 

In these networks each node has different number of links. These networks are 

grouped into the three branches as stated below: 

i. Scale-free,  also called the Barabasi –Albert, networks, 

ii. Hierarchical networks, 

iii. Modular networks. 
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2.2.2.1 Scale-free (Barabasi – Albert )network

The term scale-free means a system defined by a functional form f(x) that remains 

unchanged within a multiplicative factor under a rescaling of the independent 

variable x. The scale-free networks are characterized by a power-law degree 

distribution. In other words, the probability that a node has k links connections or 

links follows  (k)   k
-y

 where y is the degree exponent. A special property of the 

scale-freeness is invariance to changes in the scale. The scale invariance property is 

mostly interpreted as the self-similarity. Any part of the scale-free network is 

stochastically similar to the whole network and the parameters are assumed to be 

independent of the system size (Jeong et al., 2000). 

 

Figure 3: A figure of scale-free network. 

A scale-free network has some intriguing properties. 

a. There are a lot of hubs in the biological networks and a large number of 

nodes with few connections.  

b. It belongs to the class of the small world networks (Amaral et al., 2000), 

which allows fast communication between different nodes. 

c. It is robust to random breakdowns. 

Meanwhile the properties stated above are not unique for scale-free networks, as 

other networks can exhibit some of the properties as well. (Barabasi and Oltvai, 

2004 and Wit et al. 2010) 

2.2.2.2    Hierarchical network 

This is a  network consists of nodes and links interconnecting the nodes. The network 

consists of disjoint sets of nodes, denoted as clusters. In addition, each cluster 
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contains at least one hub node. In hierarchical networks, the degree of clustering 

characterizing the different groups follows a strict scaling law, which can be used to 

identify the presence of a hierarchical organization in real networks. 

Many real networks, such as the www(worldwideweb), actor network, the Internet at 

the domain level, and the semantic web obey this scaling law, indicating that the   

hierarchy is a fundamental characteristic of many complex systems. 
If a scale-free network has clusters or modules connected to each other iteratively, 

giving a tree like structure, the system is referred to as hierarchical network. A 

hierarchical architecture implies that sparsely connected nodes are part of highly 

clustered areas with communications between different highly clustered 

neighborhoods being maintained by a few hubs. (Barabasi and Oltvai, 2004., Wit et 

al. 2010, and Davis and Barabasi, 2003). 

 

Figure 4: Example of the view of a hierarchal network. 

 

2.2.2.3  Modular network 

A module is topologically defined as a subset of highly inter-connected nodes which 

are relatively sparsely connected to nodes in other modules.  

In the literature, often the terms hierarchy and modularity have been used almost 

interchangeably, although, they represent distinct properties of  network. However, it 

is interesting to note that these two networks have been found to have similar 

network properties. Most of the complex systems seen in real life have associated 

dynamics and the structural properties of modular networks. The networks have been 

sought to be linked with their dynamical behaviour. 
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Figure 5: A figure of modular network 

 

In hierarchical network, if the modularity seems non-hierarchical, it is called as the 

modular network. Both hierarchical and modular networks have clear modularity 

designs, but, they are not necessary to be scale-free. (Barabasi and Bonabeau 2003., 

Barabasi and Oltvai, 2004., Wit et al, 2010. And Han et al, 2004) 

 

2.3 Topology of network 

In the determination of the network topology, the configuration of its nodes and the 

connecting edges are relevant for the assessing network stability, dynamics and 

function and ultimately for being able to design and reengineer the networks of 

interest. Only recently has it become possible to discern the topology of large 

complex networks. 

The biological networks are different in terms of connections and structures of nodes 

like their modularities and randomness. In order to differentiate them, we need to 

define some measures which are quantitative criteria describing the pattern of the 

genomic connectivity.  These criteria, as listed below, are the topological features or 

topological measures. (Barabasi and Oltvai, 2004., Junker and Schreiber, 2008.) 

1. Degree distribution, 

2. Clustering coefficient, 

3. Characteristic path length and diameter, 

4. Presence of hubs and network robustness. 

Topological features can indicate differences based on the directed and undirected 

networks. The degree of distribution, flux of the reaction and presence of hierarchical 
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modularity can be computed through direct networks since the calculations are found 

by directions of connections. While other measures such as clustering coefficient, 

characteristics path length and diameter, presence of hubs and the  network 

robustness can used for both directed and undirected networks. (Wit et al., 2004) 

 

2.3.1 Degree distribution 

The degree distribution       is one of the most prominent characteristics of network 

topology. The degree distribution ki is defined as the number of arcs adjacent to the 

nodes. In a network without self loops, which are the arcs connecting a node to itself, 

and multiple links which indicate two nodes connected by more than one arc, the 

degree equals to the number of neighbours of the nodes. 

The degree distribution     gives the probability that a chosen node has exactly k 

links. In a system, the number of connections of each node can be described by a 

probability distribution.      is obtained by counting the number of nodes N(k) with 

k links (connections) and dividing by the total number of nodes N. The degree 

distribution helps to identify different classes of networks. For example, a peaked 

degree distribution shows that the system has a characteristic degree and that there 

are no highly connected nodes. On the other hand, a power-law degree distribution 

shows that a few hubs bind together to many small nodes. 

If our focus is on directed networks, two types of connectivity can be observed. 

These are one from the number of links coming to the target gene and one from the 

number of links departing from the target gene.  If the number of gene which 

regulates is observed, this is called the incoming connectivity or arriving connectivity 

or in-degree denoted by kin. On the other hand, if the number of genes which are 

regulated is observed, this is called the outgoing connectivity or departing 

connectivity or out-degree denoted by Kout.. (Junker and Schreiber, 2008., Wit et al, 

2010.) 
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Figure 6: Figures of degree distribution. 

In biological networks, the distribution of Kout is generally referred by the power-law 

density denoted by      

      
  ,                     (1) 

where ϒ is referred to the power-law exponent, and K  represents the average 

distance between any two nodes in a system. 

In every directed networks, the calculation of the degree distribution has different 

form, we can write k in an undirected network as k = Kin + Kout..  

Otherwise, other strong alternative density such as the truncated power-law 

distribution  can be considered  as shown in Equation (2). 

            
     

              

        

       (2) 

In Equation (2), C1 (ϒ, kc) is the normalizing factor, ϒ represents the power-law 

exponent while kc is the cut-off parameter. (Khanin and Wit, 2006) 

The studies on analyses of benchmark network datasets revealed that besides power-

law and truncated power-law distributions, the stretched exponential, the generalized 

pareto law distribution and combination of these densities satisfy some 

characteristics of biological networks, that is, the centrality and lethality (small world 

properties) without the scale-free features. 
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On the other hand, the information on the number of connectivity can also be 

computed by the average number of degrees for both directed and undirected 

systems.  This topological measure is known as the average degree or connectivity of 

the network that is computed by  µ in Equation (3). 

µ  = ∑   
   ki / N                                                                                (3)  

where N shows the total number of nodes and ki presents the number of links 

associated to the ith node or gene. 

Also, if our interest is on the undirected networks in which the connection doesn’t 

specify the targets of transcriptional factors, the probability distribution of links for a 

node can be found by giving to k other nodes. This conditional probability is called 

the connectivity distribution denoted by pk and the total number of links attached to 

the ith gene or node (i= 1, ...,N), this is named as the degree or connectivity of the 

node i shown by k. 

The degree or the  average degree distribution of a system enables us to distinguish 

different networks via their connectivities by using the following approaches. 

 

1. The first approach is to draw a Q-Q plot between the connectivity relative 

distributions pk. after which the number of the nodes k is observed. We check the 

density of the graph by observing the graph on a log-log scale; if it’s a straight line 

then we conclude as the power-law density. Another way to use the graphical test is 

by observing the correlation coefficient R
2
 between the numbers of connection (k) on 

a log scale.  If the value of R
2 

obtained is high (close to 1), then we conclude that 

there is evidence of the power- law density. 

2. The second approach is by estimating the power-law exponent ϒ in pk α k 
–
 
ϒ 

where k ≥ 1 for the dataset. ϒ is derived by the maximum likelihood method under 

the independence assumption of the connectivity for the node i (i= 1,..,N) in a large 

network. 

  L(
ϒ

 
) =ᴨi=1Ki

-
 
ϒ
 /  (ζ/ϒ). 
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Here, N-1 is the maximum number of connectivity in an N-dimensional system, C0 in 

Equation  (1) is also called the Riemann zeta function (ζ/ϒ). 

ϒ in the power-law distribution cannot be easily computed, hence an iterative 

techniques such as Newton-Raphson is used to compute the estimate of ϒ, i.e   ϒ̂.  

Once the estimate ϒ̂ is computed, the scale-freeness property is checked by the chi-

square goodness of fit test under the power-law with exponent ϒ as shown in 

Equation (4). Here, the estimated connectivity Ek and the observed connectivity Ok 

can be computed from the data  

 Χ*
2
= ∑k=1(Ok -  Ek)

2
/k ˜ Χ

2
α,j*-2    where j

*
 = j≥5.                                            (4) 

In Equation (4), χ
 2
α, ,j*-2  gives the chi-square  critical value with j*

-2
 degree of 

freedom for a  given significance level α. (Wit et al, 2010., Stefano et al, 2009.) 

 

 

2.3.2 Clustering coefficient 

Another basic measure of the network topology is the clustering coefficient Ci. The 

clustering coefficient relates to the local cohesiveness of a network and measures the 

probability that two nodes with a common neighborhood are connected (Junker and 

Schreiber, 2007). 

More precisely, the clustering coefficient of a node is the ratio of existing links 

connecting a node's neighbors to each other to the maximum possible number of 

such links. The clustering coefficient for the entire network is the average of the 

clustering coefficients of all the nodes. For the node i, it is formulated as 

 
  

   
  (    )

 , 

where ki is the number of neighbours of the i
th

 node and ei  is the number of 

connections between these neighbours. Accordingly, the maximum possible number 

of connections between neighbors is found as 

( 
 
)  

      

 
 . 
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In this expression, Ci lies between 0 and 1. If Ci= 0, it means that the nodes are not 

connected or totally dispensed, while Ci= 1 shows that the nodes are totally 

connected. Moreover, the  high clustering coefficient for a network is an indication 

of a small world property of the system. (Wit  et al, 2010) 

On the other side, the clustering coefficient depends on the total number of links 

which is based on network types, i.e. directed or undirected.  For instance, if the 

network is directed but no self-loops, Ci can be computed as 

   
  

        
 . 

As we compute the clustering coefficient for individual nodes, a unique value for 

whole system can be computed by averaging these coefficients. Hereby, the average 

clustering coefficient is characterized by the overall tendency of nodes to form 

clusters of groups and is denoted by µc. For example, if the network is directed and 

has no self loops, µc is represented as 

   ∑
   

            . 

Strictly speaking, the clustering coefficient Ci is not a property of node ni itself, but 

rather a property of its neighbours. The global or mean clustering coefficient C = Ci 

of the network is the average cluster coefficient of all vertices. Many empirical 

networks exhibit a rather high clustering coefficient, indicating a local cohesiveness 

and a tendency of nodes to form clusters or groups. (Junker and Schreiber, 2008., 

Wit et al., 2010.) 

 

2.3.3 Characteristics path  length and  diameter 

The distance in networks is measured with the path length, which tells us how many 

links we need to pass through to travel between two nodes. The characteristic path 

length or shortest path length, denoted by L, represents the shortest distance between 

any two nodes. As there are many alternative paths between two nodes, the shortest 

path, that is the path with the smallest number of links between the selected nodes, 

has a special role.  In a graphical representation, the characteristic path length as 
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described in Equation (5) refers to the minimum number of links or edges to move 

from one node to other node. 

   ∑ ∑
   

         ,                                               (5) 

where Ɩij is the shortest distance between the two nodes i and j. 

In a direct network, the distance from node A to node B (ƖAB) can be different from 

the distance between node B and A (ƖBA).   So the shortest distance (L) between the 

nodes is the min { ƖAB, ƖBA }. In the undirected network, ƖAB  and  ƖBA can be the same, 

i.e, ƖAB= ƖBA,   because the destination is not considered. 

 

Accordingly, the mean or the average path length represents the average over the 

shortest paths between all pairs of nodes and offers a measure of a network´s overall 

navigability. 

The average path length is calculated by finding the shortest path between all pairs of 

nodes, adding them up, and then dividing by the total number of pairs. This shows 

us, on average, the number of steps it takes to get from one member of the network to 

another. 

On the other hand, if our concern is on the longest distance, rather than the shortest 

path, this measure is known as the diameter D. It can be computed by D= max { Ɩij}. 

In other words, we can define the diameter as the longest of all the calculated 

shortest paths in a network. That is, once the shortest path length from every node to 

all other nodes is calculated, the diameter is the longest of all the calculated path 

lengths. The diameter is representative of the linear size of a network. Biologically, 

for both L and D, the small values present the fast actions and the big ones refer to 

slower actions within intermediate stages of the system. (Wit et al, 2010). The 

shortest path grows proportionally in logarithm  to the number of nodes in the 

network, i.e    α logN. (Bing Zhang, 2009). Specifically there is no mathematical 

definition for the  L and D in networks.  

Moreover, both L and D can be used in the evaluation of the flux of interactions that 

is for the interpretation of the speed of communication between nodes.  If a system 

has very small D and L, with large clustering coefficient and the power exponent of 

the out-degree distribution ϒ satisfies ϒ > 3, we can say that the system satisfies the 
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small-world property. But this is not the case in the biological networks. In biological 

networks, Ɩ is always shorter results in ϒ lying between 2 and 3. This feature is called 

as the ultra small-world property. Both the small-world and the ultra small-world 

properties stand for the modular structure in a system. This is another common 

feature of biological networks. (Junker and Schreiber, 2008., Barabsi and Oltvai, 

2004.) 

 

2.3.4 Presence of hubs 

The number of connections for nodes shows a heterogeneous structure in biological 

networks.  That is, most of the genes have very few links with other nodes and few of 

these genes possess many links with others.  The highly connected nodes are called 

the hubs or global regulators. If the shortest path L is small, then the validity of this 

feature in a system is sure. 

In addition, the network robustness can be observed if there exists hubs in the 

network.  In networks, if the hubs are kept, they help to maintain the modules, i.e. the 

major functional groups. Otherwise, the network can be divided into the isolated 

node clusters which may bring about a lethal disability in some functions. 

Therefore, the existence of hubs in a network controls the actual connectivity of the 

pathway and this feature can be remarked as the centrality principle.  Because its 

presence in network has the abilities to direct the overall system, which can also be 

remarked by the  lethality principle. 

On the other hand, the network robustness can be detected through different 

approaches. For this purpose, one can compute the characteristic path length since it 

shows the connectivity in a system. Thereby, if the system maintains the same path 

length after the  removal of random nodes, this is an evidence of robustness. Also the 

entropy measure can be implemented to observe the change in the system after the 

random attacks. (Han et al. 2005., Guelzim et al, 2002., Wit et al, 2010.) 
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2.4. Characteristics of different networks 

The network types are quite different in their topological features. Their differences 

can be described and contrasted based on the distribution of their links. Major 

topological properties of different network types are discussed below. 

 

2.4.1 Random (Erdös Renyi) network 

This network belongs to the homogenous type of networks. Here, each node in the 

system has a similar number of interactions K. The network starts with N nodes and 

connects every pair of nodes with probability p. This creates a graph with 

approximately pN(N-1)/2 randomly distributed edges. Accordingly, the distribution 

follows a poisson distribution and consequently, the average degree k of the network 

describes the properties of a typical node.  The poisson distribution has mean µk  

with the following distribution function. 

              .                                                                                                 (6) 

In Equation (6), λ is the mean number of connections per node. 

On the other hand, for totally N number of nodes in a system (i=1,…,N), the random 

networks have clustering coefficients Ci’s, which are invariant to the degree of the 

node and most of Ci’s is approximately close to each other. This makes random 

networks different from most of the non-homogenous networks. 

Moreover in random networks, there are no hubs and clusters due to the fact that the 

nodes are not so connected. Also the number of connections k, in the system is not 

related to the average clustering coefficient µk . In other words, they are independent. 

Hence the plot of C(k)  against k shows a horizontal straight line when it is drawn on 

the original scale. This reveals that there is an essential modularity in the 

construction of the network. 

Furthermore, in random networks, there is a proportional relationship between the 

mean path length µL and the logarithm of the total number of nodes N, i.e. µL α logN. 

The proportionality relation indicates that the random networks do not exhibit the 
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small world property.  This may be as a result of the links that are poisson 

distributed. Finally of metabolic reactions in random networks have a linear pathway 

when there are stable concentrations in all metabolites and we cannot observe any 

traces of the power- law property in the distributions of the fluxes. (Junker and 

Schreiber, 2008., Wit et al, 2010.) 

 

2.4.2 Scale-free (Barabasi-Albert) network 

A scale-free network was discovered by Albert-Laszlo Barabasi, and two of his 

students. They mapped the topology of a small part of the World Wide Web and they 

discovered that some group of nodes (hubs) had many more connections than others.  

This structure did not map the model of random networks. Thus, they concluded that 

the network had a power-law distribution of the number of links connecting to a 

node. (Almaas et al, 2007) 

We can simply say that in scale-free networks the nodes are not randomly nor evenly 

connected. But it includes many "very connected" nodes, i.e. hub and these 

connectivity’s shape the operation of the network. On the other hand, the ratio of 

connected nodes to the number of nodes in the rest of the network remains fixed even 

as the network expands. As a result, the scale-free networks cannot be easily 

degraded as random nodes fail. Because they are very highly connected and a lot of 

random failure can be realized before the hubs disappear. Whereas, if the hubs are 

chosen, then the major regulation of the network can fail. Thus, the connections in 

the scale-free networks are maintained under random conditions. 

Additionally, the scale-free networks have two main ingredients. These are the 

growth and preferential attachment.(Barabasi et al, 2002.).  The growth means that 

the number of nodes increases in the network by time while the preferential 

attachment refers to the assumption that new nodes will connect with nodes with 

large degrees.  In summary,  the scale-free networks are made up of many nodes, but 

with only a few connections and the network is held together by a few highly 
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connected hubs. Hereby, mathematically, we assume that the probability P that a new 

node will be connected to the node i depends on the degree ki   of the node i via  

  
  

∑    
 .                                                                                                      (7) 

The numerical simulations and analytic results indicate that this sort of networks 

evolves into a scale-invariant state with the probability that a node has k edges 

following a power-law with an exponent γ=3 (Hidalgo and Barabasi, 2008). 

Furthermore, another important topology of scale-free networks can be seen in the 

distribution of their clustering coefficients, which decreases as the node degree 

increases. This distribution follows a power-law density. Accordingly, it shows that 

the low-degree nodes belong to very dense sub-graphs and those sub-graphs are 

connected to each other through hubs. In directed networks, the degree distribution 

of nodes explained by the different number of nodes connected to each node via an 

exponential function. This function explains the highly connected and sparsely 

connected nodes with heavy tail densities. (Wit et al, 2010.) 

For the in-degree, i.e. incoming connectivity 

 ρk= Noexp
- αk

.                                                                                                  (8) 

In Equation (8), No is the normalization factor and α refers to the exponential 

exponent and also describes the number of the regulating genes which arrive at the 

same gene or node.  The higher α means a higher number of genes that is directed or 

linked to a target gene. This reduces the number of target genes and increases the 

number of regulators in the network. 

 

Also for the out-degree density, it is described by the power-law distribution.  As 

discussed earlier, the power-law density is not unique for all biological networks. 

Previous works suggest the geometric, stretched exponential, truncated power-law, 

generalized pareto distribution and combinations of these distributions as alternatives 

for the power-law distribution. (khanin and Wit, 2006.). Because they maintain the 

characteristics of biological networks such as centrality and lethality except for the 

scale-free networks.  In this sense, maybe it can be assumed that the scale –free data 

http://en.wikipedia.org/wiki/Clustering_coefficient
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are not scale-free indeed, but only satisfies the exponential probability function in 

relation to the number of connections per mode. 

 

With the assumption that the scale-free networks have the power-law distribution, 

the degree of each node is proportionally formulated by k
-ϒ

, where ϒ is the degree 

exponent of the power-law and k is the number of links. The possible range of ϒ can 

be found in biological networks although ϒ can take any value from 2 to ∞.  When it 

lies between 2 and 3 (2< ϒ<3), it means that the system has the ultra-small world 

characteristics and most of  the biological network satisfies this condition.  ϒ can 

also be 3. In this case the nodes are relatively less densely connected and the shortest 

path length becomes proportional to log /log (logN). When ϒ > 3, the nodes are 

moderately less connected and the shortest path length is proportional to log N. 

Furthermore, due to the dense connections in scale-free networks, we cannot estimate 

the average number of links per node, µk, unlike the random networks. This also 

implies that the presence of hubs in such structures. As there are different numbers of 

connections for each node and they are also invariant in changes of scale, a linear 

decreasing function on the logarithm scale is found showing that even though most 

of nodes have few links, very dense connections belong to only a small amount of 

nodes. Finally in this type of networks, the clustering coefficient for every node Ci is 

equal to the total number of connections  k of the system. (Wit et al, 2010., Tolba, 

2010.) 

 

2.4.3 Hierarchical and modular networks 

The hierarchical and modular networks are the non-homogenous type of networks. 

These networks are grouped based on the distribution of their links. When  the 

system possess iterative connections of clusters or modules linked to each other 

resulting in a tree structure, this type of network can generate hierarchical systems 

without the  scale-freeness. Meanwhile, if the nodes are connected to each other 

iteratively in absence of the hierarchy as well as the scale-freeness, a modular 

network is observed. 
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Moreover, the hierarchical network has a network topology in which a central "root" 

node is connected to one or more other nodes that are one level lower in the 

hierarchy with a point-to-point link between each of the second level nodes and the 

top level central "root" node. In a simpler word, it is a network that consists of small 

groups of nodes organized in a hierarchical manner into increasingly large groups, 

while maintaining the scale-free topology. Furthermore the network is  significantly 

differs from the other similar models, i.e. Erdos Renyi and Barabási–Albert, in the 

distribution of the nodes and clustering coefficients. Other networks predict a 

constant clustering coefficient as the function of the degree of the node, while in 

hierarchical models nodes with more links are predicted to have a lower clustering 

coefficient. 

More so, the Barabasi-Albert model predicts that the average clustering coefficient 

decreases as the number of nodes increases. While in hierarchical models there is no 

relation between the average clustering coefficient and the size of the network. 

Additionally, unlike other scale-free models, the clustering coefficient does not 

depend on the degree of a specific node. In hierarchical models, the clustering 

coefficient is a function of the degree and can be expressed as  C(K) ~ K
- β

.  

Accordingly, the degree distribution follows the power-law meaning that a randomly 

chosen node in the network has k edges with a probability 

P(K)  ~ ck
-ϒ   

.
    

                                                                                    (9) 

In Equation (9), c is a constant and ϒ is the degree exponent such that ϒ [2, 3]. 

Many real networks are expected to be fundamentally modular, meaning that the 

network can be seamlessly partitioned into a collection of modules where each 

module performs an identifiable task, separable from the function(s) of other 

modules  Therefore, the scale-free property must be reconciled with potential 

modularity. In order to account for the modularity as reflected in the power-law 

behavior of C(k) and a simultaneous scale-free degree distribution, there is an 

assumption that the clusters are combined in an iterative manner, generating a 

hierarchical network. Such a network emerges from a repeated duplication and an 

integration process of the clustered nodes, which can be repeated indefinitely. 

http://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
http://en.wikipedia.org/wiki/Distribution_(mathematics)
http://en.wikipedia.org/wiki/Degree_(graph_theory)
http://en.wikipedia.org/wiki/Degree_distribution
http://en.wikipedia.org/wiki/Power_law
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On the other hand, the hierarchical and modular networks are different from scale-

free networks in the sense that the average clustering coefficients µk are linearly 

proportional to the total number of connections K with a ratio 1/k when they are 

plotted on the logarithmic scale.  This relation shows that the most clustered areas 

have nodes that are sparsely connected.  Also, the graph of Ck against K shows a 

straight line with a slope of -1.  In scale-free networks the case is the reverse due to 

the fact that the values of Ci are non-homogenous. (Wit et al, 2010.) 

 

In the next chapter, we deal with only the scale-free networks and its degree 

distributions which are taken as the power-law density. Also other alternatives 

densities like the generalized pareto law, the geometric and stretched the exponential 

distribution will be discussed. 
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CHAPTER 3 

 

METHODOLOGY 

 

 

In this chapter, we defined a unit of distribution families for several networks by 

using the Pearson system.  Here, we explain this system, alternative densities for 

scale-free networks and how these alternative densities are defined in this system. 

Also, three and four-moment approximation of chi-square and F distributions are 

discussed for cases where there is no unique Pearson family. 

Moreover, we discuss stimulation study. The study which we will conduct, aims to 

compare the results of real datasets so as to arrive at reasonable conclusion. 

Finally, we test the original datasets for the alternative distributions of departing 

connectivity of biological networks as suggested by the literature. 

 

3.1 Pearson system 

The Pearson system is a parametric family of distributions. The system was 

introduced by Karl Pearson in 1985. He worked out a set of four-parameter 

probability density functions as a solution to its differential equation (Andreew et al., 

2005) as shown in Equation (10). 

             
     

    
  

    

    
   

    

               ,                                                                    (10) 

where f is a density function and a, bo, b1 and b2 indicate the parameters of the 

distributions in the Pearson´s four-parameter system as the direct correspondence of 

the parameters and the central moments (µ1, µ2, µ3, µ4) of the distribution (Stuart and 
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Ord, 1994). The explicit forms of these parameters are presented in the following 

expressions. 

           b1 =  a =  
            

   

 
   =  

   
   

            

  
  ,                                                    (11) 
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 ,                                                         (12) 

           b2 =  
             

     
   

 
 

           
     

  
   ,                                                    (13) 
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                                                                                                            (15) 

In Equation (14) and (15),    
  and β2 present the skewness and the kurtosis, 

respectively. In these expressions, the scaling parameters  A and A
’
 are found as 

below. 

     = 10µ4µ2  - 18µ2
3

   - 12µ3
2
 ,                                                                                  (16) 

     = 10β2 – 18  -  12β1
2
  .                                                                                        (17)     

As alternative to the basic four-parameter system, various extensions have been 

proposed using higher order polynomials. The typical extension modifies Equation 

(10) by setting P(x)  = a0+a1x.   Thus, we have 

     
    

     
  

    

    
   

       

             .                                                                              (18) 

This parameterization has the advantage that a1  can be zero and the values of the 

parameter are bound when the fourth cumulant exists (Karvanen, 2002). One of the 

ways to classify the distribution generated by the roots in Equation (10) – (17) is by 

using the  earson´s table.  earson provides a solution to the equations with a table of 

12 classes which are identified in Table I in Appendix. 

Another alternative approach is to use two statistics as shown in Equation (19) and 

(20) that are the functions of the four-parameter. 
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   D  = bob2 – b1
2  
=  αβ – (α + β)

2
   ,                                                                         (19)  

   λ = b1
2
/ bob2 = (α + β)

2
/ αβ  .                                                                                  (20) 

Here Equation (18)  can be rewritten as 

     
    

     
  

    

    
   

       

             

                         =  
       

            
    if        

                         =  
       

          
  

                         = 
 

   
 

 

   
 , 

where  

         m=   
        

    
                                                                                                  (21) 

and 

         n = 
   –    

    
  ,                                                                                                    (22) 

in which the signs of D and λ are obtained for different supports of x as given below. 

i. If  x  ⦋ α, β⦌ , α < 0 < β   then  αβ < 0  leading to  λ < 0 and D < 0. 

ii. If  x   ⦋-∞, α⦌,  α < β < 0   or x   ⦋ β,∞ ⦌, 0 < α < β ,                            

then 0 < αβ < (α+ β)
2 

 causing  λ > 0 and D < 0. 

This approach is more useful because of its simplicity and it can be easily 

implemented in order to 

1. Estimate the moments from the data, 

2. Calculate the Pearson parameters (a0, b1, and b2), 

3. Use the parameter to compute the selection criteria (D and λ) and 

4. Select an appropriate distribution from the Pearson table based on the criteria 

given in Table II in Appendix. 
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Hence, our aim is to investigate whether the alternative distributions for the degree 

distribution of the protein- protein interaction network belongs to one of the Pearson 

system’s families. 

 

3.2 Classification and selection of distributions under the Pearson system 

There are basically two ways to classify the distribution generated by the roots of the 

polynomial in Equation (11) - (17). One of these ways is to classify the distribution 

generated by the roots of the equation using the Pearson table.  Pearson proposes 

solution to this set of equations by identifying 12 classes of distribution which are the 

variant of three major distributions. Because actually the Pearson family of 

distributions consists of seven distributions, called as Type I to Type VII. Figure (38) 

and (39) in the appendix show this classification (Lahcene, 2013). On the other hand 

the alternative approach, as stated beforehand, is to identify the distribution via the 

two statistics which are the functions of the four Pearson parameters as given in 

Table 14 in the appendix. 

 

3.3 Alternative degree distributions and parameter estimation 

As declared previously, the scale-free feature can be described under the following 

list of distributions. The derivations of necessary moments in order to investigate the 

true Pearson family are also presented under each density separately. 

 

3.3.1 Generalized Pareto distribution 

The probability and the  cumulative distribution functions of the generalized Pareto 

distribution are given as below. 

     f(x) = 
   

      
   

for  k   > 0,   a   > 0 and x   ≥ k.  Hereby, 
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    F(x) =   (
 

 
)
 

, 

where a and k are the scale and shape parameter, respectively. 

On the other hand, the estimation of its parameters
 
via the moment estimation 

method is  shown as follows (Quandt, 1966). 

        k* = 
         

 

   
          and       a*= 

  ̅   
 

   ̅   
  

. 

If the parameters are inferred by the method of the maximum likelihood, then the 

following loglikelihood function and associated estimators can be obtained. 

    L= ∏
   

  
      

 
     for  0  < k ≤  min{  } a  > 0, 

where 

    ̂  
 

[∑     (
  
 ̂
) 

   ]
 , 

    ̂= min{  } =   . 

Therefore, the moment estimators for the parameter a and k can be written via their 

maximum likelihood estimators by the following form. 

a* =           ̂      and     k* = [           ̂   ] ̂. 

On the other side, if the parameter estimation is implemented by using the Pearson 

condition, the rth moment under the pareto distribution can be derived as below. 

              
 =     

   

   
     where  r < a. 

Accordingly,  

              
 =     

   

   
, 

             
    

   

   
, 
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 =    

   

   
  and  

               
 =  

   

   
. 

Hereby, the associated expectation and  the variance are found as follows.         

           E(  =   
 =  

   

   
    where  a   >  1. 

          V(      
  - (  

 )
2
 

        = 
    

   
  - (

   

   
)
 

 = 
                  

           
 = 

   

           
 . 

So the following equation can be solved by  

         3  =    
     

    
      

 )
3
 

            =  
   

   
  [

   

     
  

  

     
 ]   [(

  

   
)
 

] . 

Considering only the numerator of the above expression, we can get 

           = 
                

 
  -  

                

 
 + 

                

 
 

        a =                           

           =                               . 

        b =    [                 ]  

           =   [                     ]  

          =                               . 

        c = (               ) 

          =                 

          =                    . 
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Then by combining a, b and c in          , we can obtain the following formulas. 

 3    =    
         

               
  . 

 4     =       
     

   
        

    
 )

2
      

 )
4
 

       =     
    

   
  [

   

     
  

  

     
 ]   [

   

     
  

     

      
 ]   [(

  

   
)
 

] 

       =
    

   
  [

    

          
]   [

    

           
]   [

    

      
] 

  =

   (
                 [                    ] 

 [                     ]  [                   ]
)

                     
. 

Later, if we consider merely the numerator, we can find the expressions below. 

a =                     , 

b =   [                    ], 

c =   [                     ] and  

d =   [                   ]. 

Finally, we combine a,b,c and d as follows                and get  

            4=   
              

                     
 =  

             

                     
 . 

Then, we obtain the skewness  

         β1     =   
     

 

      
  =     [

          

                
]2  [

   

          
]3

 

                 =    
      

   
  √

   

 
    for a>3 

and the kurtosis   

          β2  = 
    

      
   =  [

             

               
]3 [

   

           
]2
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               = 
           

          
 
     

 
  = 

               

           
      for  a>4.  

Here, as a       β1    and β2    . 

  

3.3.2 Geometric distribution 

There are two cases for the geometric distribution which are as below. 

1. The probability that the kth trial (out of k trials) is the first success is found as 

below. 

Pr(x=k) = (1- P)
k-1

P    for  k=1, 2,3....... and 

F(x)= ∑         . 

2. The number of failures until the first success 

Pr(Y=k) = (1- P)
k
P      for   k=1, 2,3....... 

Hereby, considering the first case, the parameters estimation using the moment 

generating function is obtained via 

G (t) = ∑             
     , 

         = ∑         
    , 

         =    ∑        
    , 

         = 
   

     
 , 

and its derivatives is 

                                       
   

        
. 

Thereby, the mean E(.) and the variance V(.) of the random variable x are calculated 

as below. 

           E(  =       = 
 

 
 . 

           V(  =                  when        
   

    
 

                   = 
   

    
  

 

    
. 
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Here,        and        show the first and second derivative of the given function 

respectively. 

On the other hand, the second case can be described as follows. 

         P(k) =        =       for  0<p<1 and q= 1-p. 

        F(    ∑             
   . 

By using the moments to estimate the parameters, 

              
  =∑        

    = ∑         
     . 

Therefore, the first four moments are found by 

          
    ∑         

    = 
   

 
 , 

            
  =∑         

     =
           

    
 , 

            
  =∑         

     =                 

and 

            
  =∑         

     =                       as 

           
  =∑        

   

 
   

     

In these derivations, the kurtosis and skewness of both cases are the same. Hence, we 

choose the second case in order to derive the skewness and kurtosis when the mean is   

   

 
 and the variance is  

   

  
  

 

  
. Thus, for  3 = 

          

  
 and U4=

               

  
, 

the skewness and the kurtosis are found as 

   β1 = 
    

 

      
  [

          

      
]2   

, 

    √      = 
     

√   
  , 
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   β2 = 
    

      
  = 

               

  
 . 

     

           
, 

respectively. 

 

3.3.3 Stretched exponential distribution 

The stretched exponential function which has the following probability density 

function (pdf) 

          
 

is derived by replacing a functional power-law into an exponential function with the 

assumption that k lies within the range of [0, + ]  (Kohlrausch, R,1854). In this pdf 

,when  =1, the result gives the usual exponential function with a stretching exponent 

  between 0 and 1. When the graph of the logarithm of   is plotted against k, it is 

characteristically stretched that gives the name of the function. 

On the other hand, the case of     has little practical usefulness with the exception 

of     which gives the normal distribution. 

More so, the stretched exponential is also known as the complementary cumulative 

Weibull distribution, (Berberan-Santos et.al, 2005). The higher moments of this 

function is given as 

〈  〉  ∫               
  

 
   

   
 

 
 . 

where   is the gamma function. For the exponential decay 〈 〉 =     is recovered in 

which   shows the shape parameter and   indicates the scale parameter. But in the 

practical purpose, most of the researchers refers to  the stretched exponential to be 

same as the Weibull distribution, (Mohammad A. Al-Fawzan,2000). The following 

expression is the probability density function of a Weibull random variable.  

         {
 

 
 
 

 
       

 

 
  

              
               and    when     . 
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In this equation,   >0 presents the scale parameter and k> 0 denotes the shape 

parameter of the distribution. Accordingly, the moment generating function of the 

Weibull distributed random variable X=x  in the logarithmic scale is computed as  

E[      ]= λΓ(
 

 
      

where  Γ represents the gamma function as used beforehand. Hence, the mean E(x), 

variance V(x), the skewness    and the kurtosis    of this function are listed as 

below, in order.  

E(x) =μ=  Γ(1+
 

 
). 

V(x) =σ
2   

= E(            

=  [ (  
 

 
)       

 

 
  ] . 

   =   
     

 

      
 . 

where   = V(x)       and          =    
     

    
      

 )
3
 .   So,  

    
  [   (  

 

 
)      (  

 

 
)      

 

 
            

 

 
   ]

 

 

and         
  [  [ (  

 

 
)       

 

 
  ]]

 

 

Hence, 

   
     

 

       
 

 (  
 

 
)          

   . 

Furthermore, the kurtosis           = 
    

      
      while  

 4     =       
     

   
        

    
 )

2
      

 )
4
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 4 =    (  
 

 
)      (  

 

 
)    (  

 

 
)      (  

 

 
)     

 

 
        

 

 
  . 

  
   [  [ (  

 

 
)       

 

 
  ]]

 

. 

  = 
    

      
 = 

   
          

         
            

[          
  ] 

  . 

In the expressions, 

       
 

 
   for i=1,..,k. 

 

 3.3.4 Truncated Power-law 

A  truncated distribution simply means a conditional distribution.  The truncation 

emerges  from restricting the domain of  the probability distribution. In practical 

sense, it results from cases where the ability to get full detail is limited or limited to 

values which should be between a given range. (Dodge, Y. 2003) 

The power-law is a kind of distribution that has special probability distribution. It has 

many ways of defining it mathematically. It is mostly used in Geoscience. In the past 

the empirical evidence of the power-law has not been strong.  

Hereby, the probability density function or the mass function for a power-law can be 

written as           

       
 

   

given that x ≥ a  and a > 0 with the normalization factor which depends on the nature 

of x (discrete or continuous). In whatever form (discrete or continuous), the 

normalization gives  a > 1. Sometimes the power-law distributions are referred to as  

Pareto distributions (Evans et al., 2000; Johnson et al., 1994) also referred it to be  

Riemann zeta distributions when it is in a discrete for, (Johnson et al., 2005). 

http://en.wikipedia.org/wiki/Conditional_distribution
http://en.wikipedia.org/wiki/Probability_distribution
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In the recent work of Clauset et al (2011), a method is suggested to find the range at 

which certain distributions can be power-law. But this method failed as the 

stimulated power-law data are not recognized. There is a noticeable and non-

statistical properties of this distribution in the sense it has the  divergence of 

moments and also the scale invariance. 

The first one implies that only the first moment of the   power-law distribution exists 

and all of the rest are infinite (Clauset. (2011). Hence, when 1 < α < 2, the mean and 

other moments are finite. When 2 < α < 3, the mean but other moments are infinite. 

This is in contrast with other pdf.  On the other hand, the second property is that 

when the function is defined between 0 and ∞, it has  no characteristic scale. 

Then because of the problematic nature of the power-law when 2 < α < 3, the simple 

solutions are the truncation of the tail, (Aban et al., 2006; Burroughs and Tebbens, 

2001; Johnson et al., 1994). 

As a result, this gives the birth of the  truncated power-law distribution which is  

defined as  

     
 

       under  a ≤ x ≤ b   

where b is the normalizing factor. The existence of a finite upper cut-off b gives a 

well-behaved moment.   

However, as in the biological literature, the percentage of the truncatıon of the data 

has not been defined so that the remaining datasets fits the power-law, we do not use 

the truncated power law as one of the alternative degree distribution in our analyses. 

 

3.4   Three moment Chi-Square and Four moment F approximation 

In the analysis, we further check for the chi-square and F-distributions assumption 

under the third and the four moment approximations. In the  earson’s family of 

distribution, there are zones with no defined distribution family, therefore if any of 

the result falls in this zone we can investigate it further under the third and the  fourth 

-moment approximations. 
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3.4.1 Three-Moment Chi-Square Approximation 

Given the first four moments,     
 ,   ,         which are the mean, the variance, the 

third moment and the fourth central moment as well as the Pearson coefficients    

and       that indicate the skewness and kurtosis, the following inequality can be 

satisfied 

   -(3+1.5  ) │                                                                                                 (23) 

with 

   
   

 

..
 

Here y is the random variable and v shows the degree of freedom while the values of  

i, j and v are obtained by equating the first three moments on both sides of the 

expression in Equation (23) via                                                                                 

  
 

  
  ,               √

  

  
       and          

 . 

Then, we can conclude that the distribution is a central chi-square (Moti L Tiku, 

1998) with degree of freedom v. On a Pearson curve, the chi-square distribution is 

defined on the line 

  = (3+1.5  ),                                                                                                       (24) 

which is defined as the Type III distribution (Pearson and Tiku, 1970). The three-

moment         chi –square provides a good approximation given that the difference in 

   and 3+1.5   does not exceed 0.5 

 

 3.4.2 Four-moment F approximation 

Also the approximation of the four-moment F distribution approximation is defined 

by the first four moments,    
 ,    ,       , the procedure is similar to the three-

moment chi-square approximation. By equating the first four moments on both sides 

of  Equation (23)  (Tiku and Yip, 1978), 
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    ,                                                                    (25) 

  
  

    
    

  , 

  √{
               

   
          

  }   , 

    
 

 
      (   √  

                

                   
) , 

    [  
    

            
]. 

For valid Equation (25), the          of Y must satisfy Equation (26) as given 

below. 

   
        

       
       and         > 3+1.5  .                                      (26) 

The inequalities in Equation (26) determine the F-region in the Pearson       ) 

plane in such a way that it is bounded by a chi-square line and the reciprocal of the 

chi-square line ( Pearson and Tiku, 1970). 

Tiku and Yip (1978), further explains that whenever          point the random 

variable Y  lying within  the  F-region, the four-moment F approximation gives an  

accurate approximation for the probability integral and the percentage points of Y. 

 

3.5 Stimulation study 

A Monte Carlo runs stimulation study is performed in order to compare result with 

the results of real datasets. The aim of this study is to check the out-degree of the 

directed networks. But due to the default of the available package for constructing 

the networks and analyzing the degree distribution (the packages focus only on 

undirected networks), we can only work on undirected networks under the 

stimulation study. Here we  assumed the in-degree and out-degree to be the same in 

the calculation. The huge package in R is used. 
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The huge package provides a general framework for the high-dimensional undirected 

graph estimation, (Zhao et al, 2012.). In the package, huge.generator is used to 

generate the network under different nodes  sizes namely 500, 1000, 5000, 10000 

and 15000.  Here the nodes are assumed to be genes. Furthermore, the package does 

not make provision for feed forward loop (FFL). (Barabasi and Oltvai, 2004., Wit et 

al, 2010.).  Therefore,  we assume that each gene has a single function.  The 

dimension of the systems is also referred to as the number of genes. Moreover, in our 

analysis, we check three graphical structures which are assumed to be biological 

networks namely, scale-free, clusters and hubs networks. We used the default 

settings of the package to calculate clusters in the network. The cluster value is 

about p/20 if p ≥ 40 and  if p < default value is 1, while  p is the variable number, i.e 

the number of genes. Hence, the limitation of this package is that, it focuses only on 

undirected networks. Thus the in-degree and out-degree are the same. 

After generating the networks, we further used another package in R called 

PearsonDS. This is a package that fit the probability distribution and also Pearson 

family via moments and the maximum likelihood of the data. This package is used to 

identify suitable Pearson family. ( Becker et al, 2014.) 

The codes and further explanation are given in the Appendix. B.2 

 

3.6  Measures of goodness of fit 

In other to test for the alternative degree distributions of the departing connectivity of 

the real dataset, we perform goodness of fit test. 

The Goodness of fit test indicates whether or not it is reasonable to assume that a 

random sample comes from a specific distribution. They are a form of hypothesis 

testing where the null and alternative hypotheses are. This can be described as below. 

H0: The data comes from the specified distribution 

H1: The null hypothesis is not true. 

The chi-square test is the oldest goodness of fit test dating back to Karl Pearson 

(1900). In this work, we apply chi-square test. Hereby, we reject the null hypothesis 

when the specified  significant level α value is greater than the calculated p value. 
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CHAPTER 4 

 

 

RESULTS OF ANALYSES 

 

 

 

All the datasets used are from directed networks. The data are taken from the 

Biod2rdf project which is one of the largest databases in bioinformatics. Bio2RDF is 

an open-source project that uses Semantic Web technologies to build and provide the 

largest network of Linked Data for the Life Sciences. Hereby, this project aims to 

transforms silos of life science data into a globally distributed network of linked data 

for the discovery of the biological knowledge (Michel DumontieR, 2014).  

 

Bio2RDF defines a set of simple conventions to create RDF(S) compatible Linked 

Data from a diverse set of heterogeneously formatted sources which are obtained 

from providers of the multiple data, (Michel Dumontier, 2014). 

Hence, in order to investigate the degree distribution of the biological networks, we 

control both real systems and stimulated systems under different topologies. For the 

real systems, we check 10 realistically complex biological pathways which are 

described via directed networks. Among them, the first six datasets are the gene-gene 

interaction networks which are extracted from the gene-disease relations and are 

taken from the OMIM (Online Mendelian Inheritance in Man) database. OMIM is a 

comprehensive, authoritative and timely compendium for the human genes and 

genetic phenotypes (McKusick-Nathans, et al, 2014) and the selected networks are 

constructed by connecting the genes having relation with the same disease. On the 

other hand, the last four real datasets are taken from the HIV-1 human Protein 

Interaction database (Fu et al, 2009). This database contains the HIV human protein 

reactions that are created to catalog all interactions between HIV-1 genes. 

http://bio2rdf.org/
https://github.com/bio2rdf/
http://linkeddata.org/
https://github.com/bio2rdf/bio2rdf-scripts/wiki/RDFization-Guide
http://download.bio2rdf.org/release/2/omim/omim.html
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Finally, Cytoscape is used to visualize and to analyze the code which is presented in 

Appendix B.1.  

 

4.1 Description of the real datasets and their network graphs 

In this study, we apply 6 different dimensional real datasets from human diseases 

interactions. Data 1 to 6 consist of 724, 223, 1008, 987 643 and 188 genes 

interactions, respectively. Data 7-10 are the HIV diseases interactions with different 

number of genes. Data 7 are composed of 1469 genes. Data 8 and 9 have 1152 and 

722 genes, in order. Finally, Data 10 consist of 306 genes. The graphical 

representation of each network is shown in the following figures. 

 

Data 1 

The Paget disease is a metabolic bone disease known by the abnormalities of the 

focal which increases the bone turnover and thereby, affecting one or more sites 

throughout the skeleton, majorly, the axial skeleton. The network of this disease is 

described via 724 genes whose graphical representation is shown in Figure 6. 

 

 

 

 

 

Figure 7: Graphical representation of the Paget disease taken from the OMIM 

database. 

 

Data 2 

Menkes disease is an X-linked recessive malfunctioning caused by the copper 

deficiency. The associated network is presented via 223 genes whose graph is given 

in Figure 7. 
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Figure 8: Graphical representation of the Menkes disease taken from the OMIM 

database. 

 

Data 3 

The Inflammatory bowel disease is caused by a severe degenerating intestinal 

infection and it is displayed by 1008 genes as visualized in Figure 8. 

 

 

 

 

 

 

Figure 9: Graphical representation of the inflammatory bowel disease taken from the 

OMIM database. 

 

Data 4 

The Glycogen storage disease is related with Glycogen the deficiency and is 

described via 987 genes in the database as seen in Figure 9. 
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Figure 10: Graphical representation of glycogen storage disease taken from the 

OMIM database. 

Data 5 

The data belong to a particular muscle disease, called the hereditary rippling muscle 

disease. This illness is an autosomal dominant disorder characterized by 

mechanically triggered contractions of skeletal muscle. The network of this disease is 

described via 643 genes in Figure 10. Similar to previous datasets, these data are also 

taken from the OMIM database. 

 

 

 

 

 

 

Figure 11: Graphical representation of Muscle disease taken from the OMIM 

database. 

Data 6 

The dataset 6 is from the Lafora type of the progressive myoclonic epilepsy. This 

Lafora disease is an autosomal recessive disorder characterized by the insidious onset 

of progressive neurodegeneration between 8 and 18 years of age. The network of this 

disease is presented via 188 gene interactions in the OMIM database. 
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Figure 12: Graphical representation of Lafora disease taken from the OMIM 

database. 

 

Data 7-10 

The data from 7 to 10 belong to the human immunodeficiency virus or shortly HIV 

disease. HIV, as simply shown in Figure 12, is a virus that attacks the human 

immune system.  The immune system protects human from germs that cause 

infections. But, if HIV is in the system, overtime, it reduces the immune cells (CD4). 

People get infected with HIV through bodily fluids such as blood, semen, breast milk 

and vaginal fluids. People do not get HIV through insect bites, casual contact such as 

hugging, shaking hands, or living with someone who has HIV. 

Hereby, HIV can damage the immune system to such a degree that infections may 

begin to occur as a result of a weakened immune system. Eventually, one may 

acquire various illnesses due to the damage done by the virus. The networks in 

Figures 13 -16 show the related illnesses and diseases acquired as a result of HIV. 

 

 

 

 

Figure 13: Three dimensional illustration of HIV (Country Awareness Network 

Victoria Inc; www.can.org.au/Pages/About.aspx) 
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Figure 14: Graphical representation of the HIV disease’s interactions with 306 

genes. 

 

 

 

 

 

Figure 15: Graphical representation of the HIV disease’s interactions with 1152 

genes. 

 

 

 

 

 

 

Figure 16: Graphical representation of the HIV disease’s interaction with 722 genes. 
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Figure 17: Graphical representation of the HIV disease’s interactions with 1469 

genes. 

 

4.2 Results of the real datasets analyses 

The results of analyses give a four- parameter distribution in the sense that a and b in 

this distribution present the shape parameters for the left and right sides, respectively. 

On the other hand, for the remaining two parameters, it uses the location and the 

scale parameters. Here, the former is the minimum and is shown via l and the latter 

indicates the difference in the maximum and the minimum of the range and is 

displayed by s. 

Thereby, in the following tables, the estimation of these parameters, their means, 

variances, skewness and kurtosis values are reported and finally, the associated 

Pearson families are declared regarding their first four moments. 

 

Table 1:  Summary of the network analysis for the Paget disease. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

Family 

Parameters 

 

Paget 

disease 

724 16.58 300.37 2.50 4.97 I a:  1.07 

b: 39.54 

l: -0.83 

s: 630.03 
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Table 2:  Summary of the network analysis for the Menkes disease. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

Menkes 

disease 

 

223 11.62 134.18 5.60 7.58 I a:  0.60 

b: 4.21 

l: 1.03 

s: 84.26 

 

Table 3:  Summary of the network analysis for the Inflammatory bowel disease. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

Inflam- 

matory 

bowel 

disease 

 

1008 2.05 11.3

3 

1.03 4.78 VI a:  5.72 

b: 44.24 

l: 0.51 

s: 19.37 

 

Table 4:  Summary of the network analysis for the Glycogen storage disease. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

Family 

Parameters 

 

Glycoge

n storage 

disease 

 

987 21.02 464.33 12.26 23.79 VI a:  1.14 

b: 12.80 

l: 0.02 

s: 217.87 
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Table 5:  Summary of the network analysis for the Muscle disease. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

Muscle 

disease 

 

643 

 

104.82 996.51 1.57 4.84 I a:  0.81 

b: 7.08 

l: 4.23 

s: 981.16 

 

Table 6:  Summary of the network analysis for the Lafora disease. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

Lafora 

disease 

188 48.47 1867.86 1.34 4.31 I a:  0.57 

b: 2.71 

l: 7.27 

s: 235.41 

 

Table 7:  Summary of the network analysis for the HIV disease with 1469 gene 

interactions. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

HIV 

interaction 

1469 83.28 590.19 0.90 2.91 I a:  0.66 

b: 1.87 

l: -2.67 

s:328.56 
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Table 8:  Summary of  HIV 1152 disease  interaction  analysis 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

HIV 

interaction 

1152 11.51 140.80 3.84 7.37 I a:  0.78 

b: 11.86 

l: 0.28 

s: 182.26 

 

Table 9:  Summary of the network analysis for the HIV disease with 722 gene   

interactions. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

HIV 

interaction 

 

 

722 7.56 67.83 7.6 13.04 I a:  0.88 

b: 13.68 

l: 0.70 

s: 136.46 

 

 

Table 10:  Summary of the network analysis for the HIV disease with 306 gene  

interactions. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Parameters 

 

HIV 

interaction 

306 3.53 709.38 2.95 5.9 I a:  0.001 

b: 1.09 

l: 1.96 

s: 947.72 
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From the results in Tables 1-10, it is shown that the majority (8 out of 10) of the data 

falls into the Pearson Type I distribution which presents the beta family. On the other 

side, two datasets follow the Pearson Type VI distribution. 

The beta family belongs to a family of the continuous probability distributions 

parameterized by two positive shape parameters (a and b), location (l) and scale (s). 

In beta family, the location parameter controls the position of the distribution on the 

x-axis and the scale parameter controls the spread of the distribution on the x-axis. 

One of the most common applications of the beta distribution is to model the 

uncertainty about the probability of successes in an experiment. 

Accordingly, from the tabulated results of analyses, it is observed that the second 

shape parameter ( b ) is greater than the first shape parameter ( a ) in all analyses. 

Thus, the graphs, as represented in Figures 12-19, are found to be right-skewed. Also 

the values of the variance values affect the scale values. 

 

Figure 18:  Graph of the beta distribution  for the network analysis of the Paget 

disease. 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Parametrization
http://en.wikipedia.org/wiki/Shape_parameter
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Figure 19: Graph of the beta distribution for the network analysis of the Menkes 

disease. 

 

Figure 20:  Graph of the beta distribution for the network analysis of the Muscle 

disease. 

 

Figure 21:  Graph of the beta distribution for the network analysis of the Lafora 

disease. 
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Figure 22: Graph of the beta distribution for the network analysis of the HIV  

disease with 306 gene interactions. 

 

Figure 23:  Graph of the beta distribution for the network analysis of the HIV  

disease with 1152 gene interactions. 

 

Figure 24: Graph of the beta distribution for the network analysis of the HIV  

disease with 722 gene interactions. 
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Figure 25:  Graph of the beta distribution for the network analysis of the HIV 

disease with 1469 gene interactions. 

On the other hand, as stated previously, the network of the Inflammatory bowel 

disease and the network of the Glycogen storage disease fall in the Pearson Type VI 

family of distribution.  This type of distribution indicates an area defined as the 

region between the gamma and the Pearson Type V family. The major cases in this 

family can be the beta distribution of the second kind and the Fisher F distribution 

(Lahcene, 2013). From our results based on four parameters, we detect these two 

networks indicate the beta distribution of the second kind. 

 

Figure 26:  Graph of the beta distribution for the network analysis of the 

inflammatory bowel disease. 
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Figure 27: Graph of the beta distribution for the network analysis of the Glycogen 

storage disease. 

 

4.3 Results of the stimulated data analysis 

In order to verify and compare the results from the real datasets, we conduct different 

stimulation studies by using Monte Carlo runs. In each run, we compute 1000 

iterations (which is the count). In the stimulation, genes are assumed to be nodes and 

also, the dimension of the systems is the same as total number of genes, which are 

chosen as 500, 1000, 5000, 10000 and 15000, respectively. Once the networks are 

generated, the detection for the suitable Pearson family is found. 

Below is the summary of the results and also attached in Appendix B.2 is the code 

used in the stimulation studies. 
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Note: in the table number of genes indicate number of nodes and count refers to the 

iteration times in Monte carlo runs 

Table 11:  Summary of the 1000 Monte Carlo iterations. 

Name 

of 

network 

No 

of 

genes 

Mean Variance Skewness Kurtosis Pearson 

family 

Count 

 

Scale-

free 

500 

1000 

5000 

 

10000 

15000 

2.8000 

2.0123 

2.1245 

 

2.9996 

2.2344 

1.7333 

5.6718 

12.2815 

 

13.9644 

12.4761 

6.6594 

10.8285 

9.9095 

 

9.1401 

9.9998 

 

 

57.9493 

167.5472 

121.2844 

 

107.3029 

124.6722 

I 

I 

I 

VI 

I 

I 

1000 

1000 

994 

6 

1000 

1000 

Cluster 500 

1000 

5000 

 

10000 

15000 

6.7000 

6.5200 

7.000 

 

6.2400 

6.5600 

4.6881 

3.2861 

4.5859 

 

3.0433 

3.4211 

0.3545 

0.1537 

1.8343 

 

0.1127 

0.1631 

0.1733 

-0.2046 

1.2371 

 

-0.6946 

0.0035 

No family 

No Family 

I 

No family 

No family  

No family 

1000 

1000 

12 

988 

1000 

1000 

Hub 500 

1000 

5000 

10000 

15000 

2.86 

2.90 

2.88 

2.90 

2.23 

15.5848 

15.5455 

12.3935 

15.6509 

15.4443 

4.0986 

4.1083 

4.1171 

4.0267 

4.0023 

14.8726 

14.9325 

14.9805 

14.4559 

14.6785 

No family 

No Family 

No family 

No family 

No family 

1000 

1000 

1000 

1000 

1000 

 

From the results in Table 11, it is shown that for the scale-free networks,  almost all 

the observed networks belong to the  earson’s Type I family while just 6 out of 1000 

runs  under the 5000 dimensional networks belong to the Pearson Type VI family. 

Furthermore, from the outputs of the cluster and hub networks, the results of 

stimulations present that there is no  earson’s family for the observed gene numbers, 

apart from the clusters network under 5000 dimensional networks. Under this 

condition, we detect 12 out of the 1000 systems belonging to the Pearson Type I 

family. In the study of Bachioua Lahcene (2013), it is presented that there is no 

Pearson family if the kurtosis values are very small. Moreover, Pearson  does not 
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define any family for the values of the  kurtosis less than 1. Accordingly, in our 

stimulation studies, all the generated kurtosis values for the cluster type for networks 

are computed as less than one. 

Finally, for the hub networks, the kurtosis falls in the region of the limit of the 

 earson’s distribution with no define family. 

 

4.4 Three-moment chi-square and four-moment F approximations’ results 

In order to verify and make better conclusion as regard tothe result of our analyses, 

we further investigate the networks with no Pearson family under the three-moment 

chi-square and four-moment F approximations. Table 12 and 13 give the summary of 

analysis.     and      show the skewness and kurtosis,  respectively, as used 

previously, while     in Table 13 presents the second degree of the freedom in the F-

distribution. The explicit form of this term is given in Equation ( 22) and (23 ). 

In the analyses, again, we consider three types of networks, which are scale-free, 

hubs and clusters, i.e. modular, due to the fact that the biological networks can 

satisfy all these cases, as used beforehand. . Then, we detect the practical application 

of the approximations under distinct dimensional systems. For the calculations, we 

use the systems with 500, 1000 and 5000 genes, respectively, as still applied in 

previous analyses and then, check the validity of the inequalities for the three and 

four - moment approximations.  
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Table 12: Results  of the three-moment chi-square approximations which are 

detected by the inequality given in the third column  

Name of 

Network 

No of 

genes 
   -(3+1.5  ) │     

Scale-free  500 

1000 

5000 

44.960281  >  0.5 

148.30440  >  0.5 

103.42015   >  0.5 

Cluster 500 

1000 

5000 

3.358483 >  0.5 

3.435096 >  0.5 

3.378627 >  0.5 

Hub 500 

1000 

5000 

5.724734 >  0.5 

5.769201 >  0.5 

5.804839 >  0.5 

 

Table 13: Results of the four-moment F approximation which is detected by the 

inequalities given in the third and the  fourth column 

Name of 

network 

No of 

genes 
   

        

       
 

   > 3+1.5   

Scale –free 500 

1000 

5000 

6.659373 < 8.711253 

10.82853 > 8.299961 

9.90950  > 8.403485 

57.94934  >12.98906 

167.5472 > 19.24279 

121.2844 >17.86425  

Cluster 500 

1000 

5000 

0.354513 < 0.988266 

0.153672 < 4.498817 

0.094327 < 4.360671 

0.173287  < 3.531770 

-0.204588 < 3.230508 

-0.237136 < 3.141491 

Hub 500 

1000 

5000 

4.098551 > 1.759712 

4.108853 < 6.803525 

4.117101 < 6.833076 

14.87256 > 9.147827 

14.93248 > 9.163280 

14.98049 > 9.175652 

 

From Table 12 and 13, the results indicate that the scale-free networks satisfy the F 

distribution inequalities and hub networks under 500 genes. This finding shows that 
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the distribution is most likely to be in  the F-region in the Pearson  table and the area 

is  bounded by the chi –square line, i.e.   = 3+1.5  , and the reciprocal of the chi-

square line (Pearson and Tiku 1970). 

 

4.5 Test for alternative distributions 

As stated earlier in the literature that the degree of the departing connectivity in 

biological networks follows the generalized pareto, the geometric and the Weibull 

distribution (alternative to the stretched exponential). We test the original 10 datasets 

under each of these distributions. A chi-square goodness of fit test is used and below 

is the summary. Accordingly the associate hypotheses are constructed as below. 

Hypothesis: 

H0: The data come from the (geometric, pareto, or Weibull distribution). 

H1: The null hypothesis is not true. 
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 Table 14: Summary of the chi-square test for the three distributions (Weibull, pareto 

and geometric) at 5% level of significance. 

Data P value for 

Chi-square 

 Test 

Conclusion 

1 4.444e-12 

 

Reject all 

2 0.02034 

 

Reject all 

3 0.9933 

 

Do not reject the null hypothesis  

(Pareto) 

4 1.384e-10 

 

Reject all 

5 2.32e-16 

 

  

Reject all 

6 1.2e-16 

 

Reject all 

7 2.64e-16 

 

Reject all 

8 0.005662 

 

Reject all 

9 4.765e-05 

 

Reject all 

10 1.77e-16 

 

Reject all 

 

The results of chi-square goodness of fit test shows that none of the original datasets 

follows any of the tested alternative distribution, except in the case of the 

inflammatory disease network, where the pareto distribution is significant and we 

accept the null hypothesis that the data follow a pareto distribution.  

We further draw the Q-Q plots of the empirical and theoretical distributions, which 

are presented below  

. 
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Figure 28: The Q-Q plot of the pareto distribution against the theoretical 

distribution. 

 

Data 1 
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Data 3 Data 2 
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Figure 29: The Q-Q plot of the weibull distribution against the theoretical 

distribution 

 

 

Data 1 

Data 8 Data 7 

Data 3 Data 2 
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Figure 30: The Q-Q plot of the geometric distribution against the theoretical 

distribution. 

 

 

Furthermore we draw the histogram and the theoretical graphs of each of the 

datasets. 

Data 7 Data 8 Data 9 

Data 6 

Data 10 

Data 4 Data 5 Data 4 

Data 2 

Data 1 

Data 3 
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Figure 31: Histrogram and density plot of the  original data sets. 

 

The Q-Q plots graphs shows that none of the  dataset  is likely to come from the 

observed datasets. Also, the histograms shows that the  all the datasets are rightly 
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Data 1 

Data 9 Data 8 Data 7 

Data 2 Data 3 

Data 4

 
 Data 1 

Data 5 Data 6 

Data 

10 

Data 

10 

Data 

10 

Data 

10 Data 

10 

Data 

10 

Data 

10 

Data 

10 

Data 

10 

Data 

10 

Data 

10 

Data 

10 

Data 

10 



65 
 

skewed,an obervation that is the same as the graph of the  beta family is observed in 

figure 18-27.  

 

Finally, under the data analyses we observe the graphs of the band of the skewness 

and the kurtosis under the Pearson Type I and VI. We observe the datasets under the 

limit defined for the skewness and the kurtosis in the Pearson family. On the other 

hand, the relation of the mean and variance under the Pearson family cannot be 

established just because the relations between skewness-kurtosis and the mean-

variance pairs are non-linear. Thus, we cannot define a unique inequality for the 

borders of the mean and variance separately.  

 

  

Figure 32: Band graph of the skewness under Pearson Type I family. 

 

 

Figure 33: Band graph of the skewness under Pearson Type VI family. 
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Figure 34: Band graph of  the kurtosis under Pearson Type I family. 

 

Figure 35: Band graph of kurtosis under Pearson Type VI family. 
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Figure 36: Location of each of the dataset on the Pearson plane. 

 

Figures 32-36 show that the results of β1 and β2 fit well in the defined Pearson 

boundary for Type I and Type VI family. Also, figure 30 shows the location of each 

of the dataset on the Pearson type of family plane.   

 

 

 

 

 

 

 

Data Skewness  Kurtosis  
1 2.5 4.7 

2 5.6 7.58 

3 1.03 4.78 

4 12.26 23.79 

5 1.57 4.84 

6 1.34 4.31 

7 0.9 2.91 

8 3.84 7.37 

9 7.60 13.4 

10 2.95 5.98 
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CHAPTER 5 

 

DISCUSSION AND CONCLUSION 

 

 

5.1 Discussion 

The goal of this study is to establish the degree distribution of the departing 

connectivity in the directed biological networks. In this study, we have investigated 

the out-degree of the biological networks within the Pearson curves by studying 10 

real datasets. Furthermore, we have checked the real datasets for the alternative 

degree distribution of departing connectivity has suggested in literature. Also, we 

have stimulated data under various scenarios to be able to compare and arrive at 

cogent conclusions. 

For the stimulation study, we have arrived at the following discussion: 

o The Monte Carlo runs are based on the undirected network and not directed 

network as we have aimed to investigate. This is the result of the default of 

the huge.generator package   used in the calculation.  

o Also, one gene is assumed to be one node without multiple functions, 

therefore, the feed forward loop (FFL) function is ignored.  

o The number of clusters in the network is calculated based on the default 

settings of the program. Also in the literature there is no evidence of 

minimum or maximum number of clusters in biological networks.   

For future studies and more clarification, the above observation is subjected to 

improvement. 
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5.2 Conclusion  

In this thesis, shortly, we have aimed to investigate the degree distribution of the 

biological networks. In order to find a suitable distribution in the Pearson family by 

using the moment’s estimators, we have done analyses for 10 real datasets from 

different biological networks and also performed stimulation studies for the distinct 

sorts and dimensional networks.  

With more details, in the calculations, the networks have been represented through 

edges in a graph, where the nodes have represented genes or diseases. The 

collections of the nodes interaction under directed networks have been indicated as  

the networks studied. The structure of the chosen real datasets,  that is their 

topologies, have been assumed as scale-free while in the stimulated datasets, hubs 

and cluster networks are also examined along with the scale-free types of networks. 

In the calculations, the real datasets have been checked for their robustness and then 

conformity before settled for. Because in the networks, there are various nodes with 

less number of connections and just few nodes with numerous connections.  By this 

way, we can assume that the networks satisfy the small world properties, that is, 

there is a short path (d) between nodes, and the centrality as well as lethality 

properties via the presence of hubs. 

Hereby, the goal of this study is to establish the degree distribution of the departing 

connectivity for the directed biological networks by observing the data under the 

Pearson system. The results of real datasets have showed that the degree distributions 

fall under the Pearson Type I family and only few of them are under the Pearson 

Type VI. The Pearson Type I refer to the beta family and the Type VI family 

indicates the region between Gamma and Type V family.  Thereby, we have 

concluded that the major cases in this family are observed as the beta distribution of 

the second kind and the Fisher F distribution. 

Biologically the musculosketal disease (paget and ripping muscle diseases), nervous 

diseases (menkes and lafora disease) and HIV virus disease all belong to Pearson 
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type I family. While digestive (inflammatory disease) and congenital disease 

(glycogen storage diseases) both belong to type VI under Pearson system. 

Also from the Monte Carlo runs, we have showed that the scale-free networks belong 

to the Pearson Type I family when very few ones belonging to the Pearson Type VI 

family. But we have observed other types of biological networks under the 

stimulation studies as well. For instance, 12 out of 1000 runs in the cluster networks 

and with 5000 nodes, we have found also the  Pearson Type I family while the rest of 

the results shows no particular family. On the other hand, the hubs networks are have 

been observed under the stimulation studies. From the outputs it has been seen that 

the entire results give no specific Pearson family. 

Later, we have examined the three types of networks under the three and four- 

moment approximations. It is interesting to note that the scale-free networks satisfy 

the four moment inequalities. The findings also show that for large hub networks, 

Monte Carlo runs satisfy the inequalities of the four-moment approximations. Here 

we have detected that the distribution is most likely to be in the F-region in the 

Pearson table and the area has been bounded by the chi –square line (   = 3+1.5  ) 

and the reciprocal of the chi-square line (Pearson and Tiku 1970). 

Furthermore, we have observed that the results of the four-moment F approximation 

and  the result of real datasets are similar. Both outputs for the scale-free and hub 

networks show that the degree distribution can also lie in the F-region of the Pearson 

curve. On the other side, for the non-Pearson family, the kurtosis values are less than 

1. But the Pearson system does not define any family for values of the  kurtosis less 

than one and for those with values above 1, the kurtosis falls in the region of “ imit 

of  earson´s distribution with no define family” as stated in the study of Lahcene 

(2013). 

Finally, we have checked our datasets under three alternative distributions as 

suggested in the literature. Therefore, the pareto, geometric, and Weibull (alternative 

to stretched exponential) distributions. The result of the chi-square goodness of fit 

tests have revealed that none of these dataset can be assumed to come from any of 

the alternative distribution except in the case of inflammatory disease(Data 3). That 
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result, have shown that the out-degree is likely to follow the pareto distribution. The 

Q-Q plots have also shown the spread of the dataset on the empirical and the 

theoretical distribution. We can see that all the datasets are not well fitted into the 

empirical distributions. We have accepted the result of the chi-square to be superior 

over the Q-Q plot and conclude that the out-degree  of the inflammatory network is 

likely to follow a pareto distribution, the distribution suggested by literature for the  

departing connectivity. 

Moreover, in this work, we have found that the studied datasets share some important 

properties as listed below. 

1. Some nodes have large number of connections to other nodes, whereas, most 

nodes have few. The hubs have hundred (or thousand in bigger network) of 

links. With this, we can assume that the networks have no scale resulting in 

the validity of the scale-free feature. Accordingly, these networks are robust 

to random attacks. However, they can be easily destroyed with coordinated 

attacks as stated in the literature about the biological networks. 

2. Fitting a plausible distribution for the degree distributions of the biological 

networks can be very helpful in order to estimate the structure of the 

networks by different approaches such as the estimation of the interactions 

between genes via the Bayesian approach. In the Bayesian framework, the 

calculation of the model parameters can be applicable if we define a suitable 

prior distribution. Hereby, the distribution family which we detect from 

different network analyses can be a successful choice for the prior density, 

rather than using a non-informative prior for the computation.  

On the other hand, as the progress can be feasible only if analytical and numerical 

works are combined with proper empirical studies, we suggest a further study on the 

topology of biological networks in order to reveal more unexpected window for 

future studies and cogent conclusions. Accordingly, for the extension of these studies 

we consider to detect other types of biological networks such as metabolic networks, 

gene regulatory and cell signaling pathways by focusing on their topological 

features, in particular, their degree distributions. By this way, we can fundamentally 
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find a concluding distribution or alternating distribution of the scale-free networks, 

rather than the assumed power-law distribution. F distribution is also suggested as an 

alternating distribution for large biological networks. Finally, as shortly described 

above, we propose to use these distributions in the estimation of the networks via the 

Bayesian approach where the prior distribution for the departing connectivity 

becomes essential for the further calculations.  
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APPENDIX A 

 

DESCRIPTION FOR THE PEARSON CURVES 

 

 

A.1 Below is the diagram of a Pearson plane. It shows the distributions of the types I, 

III, VI, V, and IV on a  β1 and β2 plane. 

.  

Figure 37: Pearson curve which indicates the relation between the skewness and 

kurtosis 
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A.2 The figure below shows the graph of kurtosis plotted against squared of the 

skewness. The figure shows various distributions covering in different regions of the 

plane. For example, the exponential distribution is located around where the kurtosis 

is 9 and the squared of skewness is 4. Also for the  normal distribution,  the kurtosis 

is 3 and skewness is 0. 

 

 

Figure 38:  Distributions cover a wide region in the skewness–kurtosis plane                   

(Lahcene, 2013). 
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A.3 The table provides the classification of the Pearson distribution f(x) that satisfies 

the differential equation in Equation (18). The signs and values for the selection 

criteria D and λ are also given in the table (Andrew et al.,2005). 

a0 = b1=  
            

   

 
. 

b0 =  
                

   

 
 .            where   = 10µ4µ2  - 18µ2

3
   - 12µ3

2 
.                                               

b2 =  
             

     
   

 
  

D  = bob2 – b1
2  
=  αβ – (α + β)

2
   .                                                                       

λ = b1
2
/ bob2 = (α + β)

2
/ αβ  .        

 m=   
        

    
        and 

 n = 
   –    

    
   .                                                                               

Table 15: Pearson table of the  distribution function 

 

 Restriction D Λ Support Density 

1. a0< 0 0 o/o ʀ
+
      , γ > 0 

P(x) = a0, Q(x) = b2x(x+α) 

2a.  α >0 < 0 ∞ ⦋- α ,0⦌ m+1  (x+ α)
m
 

                       α
m+1

                     m < -1 

2b. α >0 < 0  ∞ ⦋- α ,0⦌ m+1(x+ α)
m
 

                   α
m+1

                -1 < m < 0 

P(x)= a0, , Q(x) = b0+2b1x +x
2
=(x- α)(x- β), α <β 

3 a0≠0 

0 < α < β 

< 0 > 1 ⦋β, ∞⦌              

             
             

m >-1, n >-1,  m ≠ 0, n ≠ 0 m =-n 

3b a0≠0 

α < β < 0 

< 0 > 1 ⦋- , α ⦌              

             
             

m >-1, n >-1,  m ≠ 0, n ≠ 0 m =-n 
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Table 15 continued 

4 a0≠0 

α < 0 < β 

< 0 < 0 ⦋α ,β⦌               

                      
             

m >-1, n >-1,  m ≠ 0, n ≠ 0 m =-n 

P(x)= a0+a1x , Q(x) = 1 

5 a1≠0 

 

0 0/0    

√   
             

P(x)= a0+a1x , Q(x) = x - α 

 

6 a1≠0 

 

< 0 ∞ ⦋ α ,∞⦌     

      
                

P(x)= a0 + a1 Q(x) = b0+2b1x +x
2
=(x- α)(x- β), α ≠β 

7a a1≠0 

0 < α < β 

< 0  > 1 ⦋ β ,∞⦌              

             
             

m >-1, n >-1,  m ≠ 0, n ≠ 0 m =-n 

7b a1≠0 

α < β < 0 

< 0 > 1 ⦋-∞, α ⦌              

             
             

m >-1, n >-1,  m ≠ 0, n ≠ 0 m =-n 

8 a1< 0 

α <0 < β 

< 0 < 0 ⦋α, β ⦌         

                     
  

           

m >-1, n >-1,  m ≠ 0, n ≠ 0 m ≠ -n 

P(x)= a0 + a1x Q(x) = b0+2b1x +x
2
=(x- α)(x- β), α =β 

9 a1 > 0 

α = β 

0 1 ⦋α, ∞ ⦌ γ
    

      
             

        

P(x)= a0 + a1x Q(x) = b0+2b1x +x
2
, complex roots 

10 a0 =0, a1< 0 

b1= 0, 

b0= β2 

β≠0 

>0 0        

            
          

m > ½ 

11. ao= 0, a1< 

0, b1 = a0/a1 

> 0 0 > 

< 1 

  
               

         
    

 
 
  

m > ½,     β=√     
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APPENDIX B 

 

CODES OF THE REAL DATA SETS 

 

 

B.1   Codes for the network analysis 

The code finds common genes of the KEGG pathway files in the directory given as 

parameter. It is written in the Python programme language. 

__________________________________________________________________________________ 

To draw the graph  

Draw the class Node: 

        def --init--(self, label==none, attr-dict==none, **attr): 

                self.label==label 

                self.attr=={} 

                if attr-dict is none: 

                        attr-dict==attr 

                else: 

                self.attr==attr-dict 

                 

        def equals(self, node): 

                if self.label ==== node.label:  

                        return true 

                else: 

                        return false 

        def to string(self): 

                return Str(self.label)+':'+str(self.attr) 

 

        def clone(self): 

                return node(self.label) 

 

        def getId(self): 

                return self.label 

___________________________________________________________________________ 

To draw the class Edge: 

        def --init--(self, nodefrom, nodeto, attr-dict==none, **attr): 

                self.nodefrom == nodefrom 
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                self.nodeto == nodeto 

                self.attr=={} 

                if attr-dict is none: 

                        attr-dict==attr 

                else: 

                    try: 

                        attr-dict.update(attr) 

                    except  Attribute error: 

                        raise graphXException(\ 

                            "The attr-dict argument must be a dictionary.") 

                self.attr==attr-dict                       

__________________________________________________________________________________ 

   To get all edges connected to another node. 

        def  getEdges fromNode(self, node): 

                if self.transitions fromMap !== None: 

                        return self.transitions fromMap.get(node) 

                return none 

_____________________________________________________________________________ 

   To  get all edges connected between nodes. 

        def get edges from Node toNode(self, node from, nodeto): 

                if len(self.transitions fromMap) ==== 0 or len(self.transitions toMap) ==== 0: 

                        return list[] 

                transFrom == set(self.transitions fromMap.get(nodeFrom)) 

                transTo  == set(self.transitions toMap.get(nodeTo)) 

                return list(transFrom & transTo) 

______________________________________________________________________________ 

To get all edge connected to a node from backend . 

        def getEdges toNode(self, node): 

                if self.transitions toMap !== None: 

                        return self.transitions toMap.get(node) 

                return none 

 

        def add node(self, node): 

                self.nodes.append(node) 

                self.transitions fromMap[node]=={} 

                self.transitions toMap[node]=={} 

                 

        def remove node(self, node): 

                self.node.remove(node) 

                for  in self.getConnectedEdges(node): 

                        self.removeEdge(e) 
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        def add edge(self, edge): 

                node from == edge.nodeFrom 

                nodeTo == edge.nodeTo 

                if  len( self.getEdges fromNode toNode(nodeFrom, nodeTo) ) !== 0 : return 

                self.edges.append(edge) 

                self.transitions fromMap.get(nodeFrom).append(edge) 

                self.transitions toMap.get(nodeTo).append(edge) 

 

        def remove Edge(self, edge): 

                self.edges.remove(edge) 

                l == self.transitions fromMap.get(edge.nodeFrom) 

                l.remove(edge) 

                l== self.transitionsToMap.get(edge.nodeTo) 

                l.remove(edge) 

__________________________________________________________________________________ 

       To get the topology  interconnectivity matrix. 

        def get InterconnectivityMatrix(self): 

                intmat == {} 

                for edge inself.edges: 

                        intmat.append ( [ edge.nodeFrom.getId[], edge.nodeTo.getId[]] ) 

                return Intmat 

 

        def getInterconnMatInt(self): 

                intmat == {} 

                for edge in self.edges: 

                        intmat.append( [int( edge.nodeFrom.getId[]), int(edge.nodeTo.getId[])] ) 

                return intmat 

         

        def getNodeOutdegree(self, node): 

                outdegree==0      

                for edge in self.edges: 

                        if node in [edge.nodeTo, edge.nodeFrom]: 

                                outdegree+==1 

                return outdegree 

         

        Def getNode(self, id-): 

                for n in self.nodes: 

                        if id- ==== n.getId[]: 

                                return n 

 

        Def getNodes(self): 

            return self.nodes 
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        Def getEdges(self): 

            return self.edges 

_______________________________________________________________________________ 

 

To draw the Kegg pathway and the nodes. 

The following function is used 

parse-KGML.KGML2Graph  

To draw to a KeggPathway object from the  KGML file. 

 

     p == KeggPathway[] 

    p.add-node('gene1', data=={'type': 'gene', }) 

    p.get-node('gene1') 

    {'type': 'gene'} 

To obtain the list of the nodes.  

    graph.nodes[][0:5] 

    ['76', '64', '52', '88', '43'] 

    len(graph.nodes[]) 

    201 

    print [graph.get-node(n)['label'] for n in graph.nodes[]][0:6] 

    ---------------------------------------------------------------------------------- 

To get the subgraph of the genes.         

        p == KeggPathway[] 

        p.add-node('gene1', data=={'type': 'gene'}) 

        p.add-node('compound1', data=={'type': 'compound'}) 

 

        subgraph == p.get-genes[] 

        print subgraph.nodes[] 

        ['gene1'] 

        

        subgraph == self.subgraph([node for node in self.nodes if node.attr['type'] ==== 'gene']) 

        genes == {} 

        subgraph.label == self.label + ' (genes)' 

        return subgraph 

 

           re self.title exists 

__________________________________________________________________________________ 

To put  the KGML file into a PyNetworkXgraph. 

graphfile == 'data/hsa00510.xml' 

pathway == KGML2Graph(graphfile) 

 

import xml.etree.CelementTree as Et 

import graph 
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import logging 

import pylab 

logging.Basicconfig(level==logging.DEBUG 

________________________________________________________________________ 

def KGML2Graph(xmlfile, filter-by == []): 

Parse a KGML file and return a Pygraph graph object 

    print type(pathway) 

    class 'KeggPathway.KeggPathway' 

  ________________________________________________________________________ 

To find the pathway with common gene. 

def converKegg2Ensembl(genes): 

    if not os.path.exists("cache"): 

        os.mkdir("cache") 

    ensembl_list=[] 

    for (name1,url1) in genes: 

        names=name1.split[] 

        print names 

        for name in names: 

            fname='cache/'+name.replace(':','-')+ '.txt' 

            print fname 

            url = 'http://www.kegg.jp/dbget-bin/www_bget?'+name 

            if  not os.path.exists(fname): 

                urllib.urlretrieve(url,fname) 

                print "downloaded ",url 

            with open(fname, 'r') as searchfile: 

                for line in searchfile: 

                    if 'Ensembl' in line: 

                        start=line.find('ENSG') 

                        m=line[start:start+15] 

                        print m 

                        ensembl_list.append(m) 

                    #print line 

                    print ensembl_list 

    print len(ensembl_list) 

    return ensembl_list 

     

if __name__ == '__main__': 

 import sys 

 import argparse 

______________________________________________________________________________ 

 To  convert the pathways to the  python image 

 parser.add_argument('-pathwaydir', '--pathway', dest='pathwaydir', type=str, default='data') 
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 args = parser.parse_args[] 

 pathway=[] 

 genelist=[] 

 directory = args.pathwaysdir 

 for graphfile in os.listdir(directory): 

  #graphfile = 'data\hsa04020.xml' 

  (tree, pathway, nodes, genes) 

  gtubles=[ (gene.attr['name'],gene.attr['link']) for gene in pathway.nodes if 

gene.attr['type']=='gene'] 

  pathways.append(pathway) 

  gnams = [x[0] for x in gtubles] 

  genelist.append(gtubles) 

 gname1=genelist[0] 

 commongene= set(gnames1) 

 for i in range(1,len(genelist)): 

  commongene.intersection(set(genelist[i])) 

 print commongene 

 converKegg 2Ensembl(commongenes) 
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B.2   Codes for the stimulation study 

 

 

____________________________________________________________________ 

Required libraries 

library(huge) 

library(e1071) 

library(PearsonDS) 

Codes to stimulate 1000 iterations for scale free, hub and cluster networks 

r <- 1000                          

    m <- rep(NA,r)                 

        v <- rep(NA,r)                  

            sk <- rep(NA,r)                

                ku <- rep(NA,r)                

                      p.type<- rep(NA,r)           

                         for(k in 1:r){ 

                                    d<-500                       

dat<-huge.generator(n = 30, d, graph = "scale-free", vis=TRUE)  

       adj<-1*(round(dat$omega,10)!=0)     

             gene.degree<-apply(adj,1,sum)          

 m[k] <- mean(gene.degree)            

            v[k] <- var(gene.degree)                   

            sk[k] <- skewness(gene.degree)       

           ku[k] <- kurtosis(gene.degree)  

_____________________________________________________________________________ 
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To generate the  Pearson family 

p.dist<-pearsonFitM(m[k], v[k], sk[k], ku[k])  

    p.type[k]<-p.dist$type 

           write(c(r,p.type[k]),"Pearson-500-scalefree.txt",ncol=2,append=T) 

} 

To know the number of times each family appeared  in the iteration 

p.diff.type<-unique(p.type)     

       p.sort<-length(p.diff.type)      

           count.type<-rep(0,p.sort) 

               for(i1 in 1:r){ 

                   for(i2 in 1:p.sort){ 

                     if(p.type[i1]==p.diff.type[i2]){count.type[i2]<-count.type[i2]+1} 

  } 

Output  

p.diff.type<-unique(p.type) 

p.sort<-length(p.diff.type) 

count.type<-rep(0,p.sort) 

__________________________________________________________________________________ 


