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ABSTRACT

KALMAN FILTER BASED APPLICATIONS FOR HELICOPTERS

Okatan, Merve
M.S., Department of Aerospace Engineering

Supervisor : Assoc. Prof. Dr. İlkay Yavrucuk

September 2014, 99 pages

The study in this thesis comprises Kalman Filter based applications for helicopters.
In the first part of this thesis, a Kalman filter for a helicopter is designed to inte-
grate micro-electromechanical sensors with the Global Navigation Satellite Systems
to achieve desired accuracy levels. It is implemented to a non-linear helicopter model
and its performance is shown through simulations. In the second part of this thesis,
Kalman Filter approach is adopted to neural network based adaptive controllers as a
modification term in the update law. In order to control the attitude of the helicopter, a
linear model inversion based controller with a neural network adaptive element is im-
plemented, and its modification term is designed using a Kalman Filter approach. The
approach is compared with other existing modification terms in the literature through
simulations.

Keywords: helicopter, Kalman filter, navigation, adaptive control
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ÖZ

HELİKOPTERLERDE KALMAN FİLTRE UYGULAMALARI

Okatan, Merve
Yüksek Lisans, Havacılık ve Uzay Mühendislig̈i Bölümü

Tez Yöneticisi : Doç. Dr. İlkay Yavrucuk

Eylül 2014 , 99 sayfa

Bu tez, helikopterler için Kalman Filtre tabanlı uygulamaları içermektedir. Bu tezin
ilk kısmında, bir Kalman Filtresi, hedeflenen doğruluk hassasiyetini sağlamak ama-
cıyla mikro-elektromekanik sensörleri ve Küresel Konumlama Sistemlerini tümleş-
tirmek için tasarlanmıştır. Bu tümleşim algoritması doğrusal olmayan bir helikopter
modeline entegre edilmiş ve performansı simülasyon ortamında gösterilmiştir. Bu te-
zin ikinci kısmında ise Kalman filtresi yaklaşımı, yapay sinir ağı tabanlı bir adaptif
kontrolcünün güncelleme kuralında, modifikasyon terimi olarak kullanılmıştır. He-
likopterin yönelimini kontrol edecek doğrusal model çevrimi tabanlı bir kontrolcü,
yapay sinir ağı tabanlı adaptif eleman ile birlikte uygulanmış ve modifikasyon terimi
Kalman filtresi yaklaşımı ile tasarlanmıştır. Bu yaklaşım literatürde bulunan modifi-
kasyon terimleri ile simülasyon ortamında karşılaştırılmıştır.

Anahtar Kelimeler: helikopter, Kalman filtresi, navigasyon, adaptif kontrol
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CHAPTER 1

INTRODUCTION

Control systems together with navigation systems of airborne vehicles are of primary

interest of research in aviation. Many improvements are being presented throughout

the literature. In navigation systems, some improvements are on inertial sensors and

on the navigation algorithms to enhance the precision. In control systems, recent

research has focused on the control of nonlinear systems, to deal with uncertainties

of nonlinear systems and to achieve autonomous flights.

A development achieved in recent years on sensors are the Micro-Electromechanical

Sensors (MEMS) which replace big, heavy and expensive systems. However, these

advantages come with a drawback: Accuracy of MEMS is less compared to its coun-

terparts. Thus, to use MEMS, additional work is needed in software, and this is a

challenging task when the system is nonlinear and the uncertainties exist in the sys-

tem and noise in measurements.

In control systems, various techniques are developed to deal with nonlinearities and

uncertainties. Some well-known popular techniques are Robust Control and Adaptive

Control. Adaptive control is an efficient method dealing with uncertainties. Often it

does not require prior information about the bounds of uncertainties. Recently, perfor-

mance enhancements in adaptive control have been achieved by developing different

neural network structures and augmenting the baseline adaptation law with modifica-

tion terms. The ultimate goal of the modifications in adaptive control is to enhance

the baseline adaptive law to achieve an optimum modeling error compensation.

In this thesis work, a high-fidelity helicopter is used to develop navigation and con-
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trol system by using Kalman Filter optimization algorithm. Each application is a

challenging task due to helicopter’s nonlinear nature and the uncertainties present in

the system.

Firstly, a navigation system for a helicopter is developed. Sensor models are con-

structed by considering the error characteristics and their contribution to the error

budget. The navigation algorithms are developed to obtain attitude, velocity and po-

sition of the helicopter from the sensor outputs, namely specific forces and angular

rotations. The main objective of the study is to obtain an accurate navigation solution

with low cost inertial sensors. Therefore, a Kalman Filter is designed to integrate the

Inertial Navigation System solution with the Global Navigation Satellite System.

Another objective of this thesis is the use of Kalman Filter approach in neural network

based adaptive control. For this purpose, a controller is designed for the helicopter’s

attitude control. The helicopter control inputs are obtained by implementing the linear

model inversion method. However, due to linearization and modelling errors, uncer-

tainties arise in the system. To compensate for those uncertainties, the controller is

augmented with neural networks. Kalman Filter approach is implemented to the mod-

ification term of the adaptive weight update law of neural networks. The purpose is to

demonstrate the improvement of the Kalman Filter approach in the system response

and in control input compared to its alternatives.

All algorithms are tested in simulations. The model used in simulations is a high-

fidelity helicopter model. Component build-up is used to generate a nonlinear 6

degree-of-freedom (DOF) simulation model. Models for each helicopter component,

such as the main rotor, tail rotor, fuselage, landing gear, etc. are formed by using ge-

ometric, inertial and aerodynamic parameters of that component. Main rotor model

was modeled using Peters- He Finite State Dynamic Wake model with second order

flapping dynamics. Tail rotor was constructed using Blade Element Momentum The-

ory. The model combines the external forces and moments of each component at the

center of gravity of the aircraft. From the non-linear model, trim conditions can be

found and the model can be linearized around the equilibrium points [1].
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1.1 Literature Survey

Use of Kalman Filter to integrate different sensors have been studied and imple-

mented for several applications in the past decades. In 1999, Jun et al. [2] studied

Kalman Filtering to combine inertial sensors, inclinometers and Global Positioning

Systems (GPS) to estimate the accurate navigation solution of a robot helicopter. Two

Kalman Filters were used in this study which avoids dynamic modeling of the sys-

tem. In 2004, Choukroun et al. [3] presented a novel Kalman Filter to estimate

attitude errors and gyroscope drifts for spacecraft applications by constructing the

error equations with quaternions. The study results showed that the proposed fil-

ter is efficient when the initial estimation errors are high, where typical extended

Kalman Filter fails. Godha and Cannon [4] used Differential Global Positioning Sys-

tem (DGPS) to aid the MEMS-based navigation solution and to estimate the errors

for a land vehicle application. In this study [4], performance of MEMS type sensors

in integrated navigation were compared with tactical grade sensors and it was shown

that sub-meter level performance can be achieved also with low cost sensors when

there is no signal outage. Another study was carried out for the attitude determi-

nation of hovering and vertical take-off, landing systems (VTOL) [5]. In this paper

[5], Gao et al. combined accelerometer and gyroscope outputs based on extended

Kalman Filter. Another study including the integration of only the inertial sensors

based on Kalman Filter was conducted for Unmanned Aerial Vehicle (UAV) appli-

cations [6]. YongLiang et al. [7], used Kalman Filter to combine inertial sensors

with magnetometers for accurate estimation of attitude of a VTOL UAV. By Lau et

al. [8], Kalman Filter based GPS/INS integration method was applied to unmanned

miniature helicopter in 2010. In this study [8], new method was proposed against

GNSS signal outages. Seung-Min Oh [9] proposed a new method for multisensor

fusion by using unscented Kalman Filter. The new approach was analyzed with a

6-DOF UAV simulations and seen to be efficient in terms of accuracy and the ease

of combining different types of sensors. In 2011, Pan et al. [10], proposed an un-

scented Kalman Filter for attitude estimation of a Miniature Unmanned Helicopter.

Electronic compass was used with MEMS accelerometer and gyroscopes and it was

shown that the proposed method is computationally efficient. Hieu et al. [11] applied

loosely coupled GPS/INS integration for land vehicles in 2012. The results showed

3



that integrated navigation provides meter-level precision even if signal outages occur

in short intervals. Another study concerning the GPS signal outage was carried out

by Nakanishi et al. [12] for autonumous unmanned helicopter. In this paper, Kalman

Filter was proposed for integration of INS, GPS and barometric altimeter to improve

the reliability of the system on vertical channel and in case of signal outages.

In neural network based adaptive control the fundamental approach was established

by Narendra et al. [13, 14] in 1970s. In 1984, Ioannou and Kokotovic [15] proposed

a modification term called σ-modification. In this paper, σ-modification was shown

to improve the damping of the baseline adaptive law to compensate for the weight

drift when the neural network inputs are not persistently exciting. However, when the

tracking error gets small, performance of this modification degrades. Narendra and

Annaswamy [16] proposed a new term called e-modification to overcome this prob-

lem in 1987. With this modification term, norm of the tracking error is used to scale

the damping of σ-modification. Q-modification was developed to use the integral of

the tracking error over a finite time window by K. Y. Volyanskyy [17] and shown

to be computationally intensive. An optimal control modification was introduced in

2010 by Nguyen et al. [18]. In this paper, it was shown that fast adaptation can be

achieved without resulting in high gain control when the minimization of the squares

of the tracking error is formulated as an optimal control problem [18]. Around the

same times, K-modification was proposed by Kim et al.. In this study, stiffness term

was added to the baseline adaptation law which can also be combined with damping

terms like σ- and e-modification. This modification improves the transient perfor-

mance. Moreover, in cases like control input delays, robustness of the adaptation is

increased. In another study reported by the same authors, K-modification was com-

bined with H2 approach which provides an optimal variable gain [19, 20].

Another recent update to the method is proposed by Chowdhary et al. [21, 22]. It uses

both recorded and instantaneous data in the update law. This approach is called con-

current learning. The method guarantees bounded weights around the optimal values

for linearly parameterized uncertainty, even if the states are not persistently excited.

Least square modification was used for concurrent learning. With this modification,

an optimal estimate of the ideal weights can be achieved with smooth convergence.
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Recently, it is shown that the modification terms that are summarized above can be

expressed by taking the gradient of a norm of the constraint violation [23]. In this

study, a new approach which forms an alternative method to the well-known existing

modifications was proposed. In the method, a Kalman Filter optimization was used

to reduce the violation of a linear constraint. This approach provides required track-

ing performance with less control effort especially for the case of high learning gain

adaptation and existing sensor noise.

Recent research has focused on the control of the rotorcraft due to its nonlinearities

and uncertainties. The controls and states are cross-coupled, hence, it is a challeng-

ing control problem. It is well known that the cross-coupled states in a helicopter

can be controlled with model inversion and neural networks [24, 25, 26, 27]. These

control strategies were applied to F/A-18 airplane [28], an AH-64 helicopter [29] and

a tiltrotor aircraft [26].

1.2 Contribution of this Thesis

A comprehensive application of the Kalman Filter is applied to a high fidelity heli-

copter simulation. A Kalman Filter is designed to integrate MEMS inertial sensors

and GNSS. Its performance is tested using a high-fidelity helicopter simulation to

achieve accurate states. Similar work has been carried out in literature for small, un-

manned helicopters. Moreover, attitude control system is developed for a full size

helicopter. Adaptive control is applied by using neural networks to compensate for

the uncertainties existing in the system. Kalman Filter approach is implemented as a

modification term to the adaptation law as an original contribution, which is a novel

technique in literature and has not been implemented to a helicopter yet.

1.3 Thesis Structure

The organization of the thesis is as follows. The INS/GNSS integration algorithm

is presented in Chapter 2. MEMS and GNSS sensor models, inertial navigation al-

gorithm and Kalman Filter algorithm are explained in detail. Simulation results of
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the navigation system are also provided in this chapter. Kalman Filter approach in

adaptive control as modification term is described in detail in Chapter 3. Structure

of the controller and neural networks are detailed and e-modification is derived with

Kalman Filter approach for two neural network structures. The simulation results of

the KF-based e-modification are presented and compared with baseline adaptive law

and standard e-modification for different maneuvers in this chapter. Finally, conclu-

sions are summarized in Chapter 4 and future works are stated.
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CHAPTER 2

KALMAN FILTER FOR HELICOPTER NAVIGATION

Inertial Measurement Units (IMU) have been one of the frequently used sensors in

navigation applications. Various IMU sensors with different grades of accuracy are

available for aviation, naval and land applications. The emerging technology in the

area of IMUs is Micro-Electromechanical Systems (MEMS). MEMS sensors meet the

demand for small, light sensors with low power consumption and low costs. These

parameters make the inertial sensors suitable for a wide range of applications with

limited space, payload capacity or budget.

The accuracy of the MEMS sensors are less compared to other traditional sensors.

However, it is expected that the accuracy of the MEMS sensors will improve and will

have a similar performance to its counterparts in future. Since inertial navigation is

a dead-reckoning system, even the most accurate sensors will diverge from the real

solution in time.

Other widely used technology in the navigation systems in recent years is Global

Navigation Satellite Systems (GNSS). GNSS has global coverage and it provides

high accuracy. Moreover, GNSS receiver prices are low compared to IMU sensors

which have equivalent precision. The main drawback of the GNSS; however, is its

dependency to external sources. The stand-alone use of GNSS generally does not

meet the requirements of reliability for many applications due to signal outages or

jamming conditions especially for military applications.

The drawbacks of these two navigation systems are overcome by combining the In-

ertial Navigation System (INS) and GNSS. By integrating these systems, drifting of
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the INS solution and discontinuity in GNSS solution in case of signal outages are

prevented. Thus, continuous solution is obtained while high accuracy is maintained.

Due to its convenience in terms of size and cost, MEMS inertial sensors are preferred

in helicopters; therefore, GNSS aiding is necessary to improve the performance. In

this chapter, INS/GNSS integration applied to a non-linear helicopter model is pre-

sented. First, detailed explanation over the Inertial Navigation System of the heli-

copter model is given. Second, the main concept of Global Navigation Satellite Sys-

tems is described. Finally, integration of these two systems is explained with detailed

mathematical models of the systems.

2.1 Navigation Systems Preliminaries

2.1.1 Coordinate Systems

This section provides the coordinate systems that are used in the context of this the-

sis. Four different coordinate systems are used to define and represent the attitude,

velocity and the position of the helicopter.

Earth-Centered Inertial Frame

This frame is a non-accelerating and non-rotating frame with respect to the fixed stars,

which has its origin at the center of the Earth. The z-axis points through the North

Pole, while the x- and y-axis lies in the equatorial plane. The inertial frame is denoted

by ‘i’.

Earth-Centered Earth-Fixed Frame

The origin of this frame is at the center of the Earth and it rotates with the Earth.

Z-axis points through the North Pole, x-axis lies in the equatorial plane and points the

reference zero (Greenwich) meridian and the y-axis completes the frame according

to the right-hand rule. The Earth frame is denoted by ‘e’.

Body Frame

The body frame is centered at the center of gravity of the helicopter. It moves and
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rotates with the helicopter. X-axis points through the nose of the aircraft and z-axis

points through the center of the Earth. Y-axis points to the right to form an orthogonal

frame. The body frame is denoted by ‘b’.

Navigation Frame

Navigation frame moves with the helicopter but it does not rotate with the helicopter.

X-axis points through north, y-axis points through east and z-axis points through

down direction. The navigation frame is denoted by ‘n’.

Notation: For describing position and velocity, following notation is used throughout

this work.

xγαβ

Here, x is the kinematic property of frame β with respect to frame α, expressed in the

frame γ.

2.1.2 Inertial Navigation System

Inertial Navigation System (INS) consists of 3 accelerometers and 3 gyroscopes (IMU)

and a navigation processor. Accelerometers measure specific force (fib) which can be

defined as non-gravitational acceleration and gyroscopes measure angular rate (ωib)

of the body frame with respect to the inertial frame. Navigation processor computes

the position, velocity and attitude of the vehicle (P, V, Ψ) by using the IMU sensor

measurements, on the basis of an integration-based algorithm. Figure 2.1 shows the

schematic of the Inertial Navigation System.

Navigation algorithm comprises of three main stages; namely attitude update, veloc-

ity update and position update. In addition, gravity model is necessary to obtain the

total acceleration from the specific force. Attitude update is performed basically by

integrating the angular rate measurements, velocity update is performed by integrat-

ing the total acceleration while position update is obtained by integrating the velocity.

Navigation algorithm is an iterative process; therefore, initialization of the parameters

is necessary.

Since the navigation solutions are obtained by integrating the sensor measurements,

9



Figure 2.1: Schematic of INS

errors exhibited in sensors grow within time and this phenomenon causes drift in time

from the true solution. Therefore, for long term applications, usage of solitary INS

will result in incorrect navigation solution.

Below, advantages and disadvantages of the INS are summarized [30].

Advantages:

• It operates continuously,

• It provides high-bandwidth and high rate output,

• It operates everywhere without any need for external sources.

Disadvantages:

• Accuracy degrades with time,

• Initialization is necessary, (initial values of attitude, velocity and position)

• High accuracy systems are expensive and bulky.

2.1.3 Global Navigation Satellite System

Global Navigation Satellite Systems (GNSS) refer to navigation systems which pro-

vide the user three dimensional position and velocity solution by measuring ranges

from satellite to user. Satellites and user receivers have accurate clocks which are
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synchronized to transmit and receive the time-tagged signals, respectively. With the

help of the difference between transmitted time and received time of the signals, range

between the satellites and the user receiver can be calculated.

GNSS consists of three main segments which are space segment, control and ground

segment and the user segment. Space segment consists of satellites which broad-

cast signals. Control segment monitor and control the satellites to synchronize and

calibrate the clocks and to perform satellite maneuvers whenever necessary. User seg-

ment is the unit consisting of receivers and antennas which receives the signals and

processes them to obtain navigation solution [30]. Figure 2.2 shows the architecture

of the GNSS.

Figure 2.2: GNSS System Architecture

In order to calculate three-dimensional position and the clock error of the receiver,

at least four satellites should be tracked by the GNSS receiver. The navigation solu-

tions provided by GNSS are expressed in Earth Centered Earth Frame (ECEF). GNSS

solutions are vulnerable to intentional or unintentional signal losses and jamming.

Advantages and drawbacks of the usage of GNSS are given below [30].

Advantages:

• It provides global coverage,

• It provides high long term accuracy (a few meters),
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• Accuracy does not degrade with time,

• Receiver prices are relatively low.

Disadvantages:

• It depends on external signals to operate,

• Output rate is low,

• It does not provide attitude solution,

• Signal outages may occur easily.

2.1.4 INS/GNSS Integration

Advantages and drawbacks of the INS and GNSS stated in previous sections are com-

plementary; therefore, integrating their solution provides continuous and accurate so-

lution in short and long term with high output rate. GNSS prevents the INS solution

diverging from the true solution and INS provides continuous output in case of signal

outages. This integration also makes possible to use low cost inertial sensors such as

MEMS which cannot provide acceptable accuracy levels when used alone.

Multi-sensor fusion is generally performed by using Kalman filter. Kalman filter is a

complementary filter used in order to separate the error from the signal by using more

than one measurements of the same signal. It gives optimal estimations for linear

Gaussian systems. Figure 2.3 demonstrates the basic principle of the Kalman filter.

Figure 2.3: Complementary Filtering
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In complementary filtering, it is important to identify the characteristics of the param-

eters that are desired to be separated. Since the errors in the signals are demanded to

be eliminated in INS/GNSS integration, error characteristics of the signals should be

defined to the filter properly. By the filter, errors are estimated based on the defined

characteristics and they are eliminated from the original signal.

2.1.5 Helicopter Simulation Application

As an example application, Kalman Filter is implemented to a helicopter model which

is a non-linear 6 degree-of-freedom (DOF) simulation model. Model is constructed

by using component build-up method and the main components are such as main ro-

tor, tail rotor, fuselage and landing gear [27]. For this work, the model is linearized

around the 60 knots forward flight equilibrium point and the Kalman Filter is inte-

grated to this model to analyze the performance.

In the helicopter model, a Flat Earth assumption is used, which means that the gravita-

tional acceleration is constant regardless of the position of the vehicle. Moreover, the

rotation of Earth is also neglected and therefore the earth frame becomes the inertial

frame. Navigation and Kalman Filter algorithms are modeled, accordingly.

The overall system is illustrated with a block diagram in Figure 2.4.

Figure 2.4: Block Diagram of the System
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2.2 Theory

Integrated navigation system consists of IMU sensor model, algorithms to obtain nav-

igation solutions and Kalman filter algorithm to perform INS/GNSS integration. In

this section, methods and formulations used to form the integrated navigation system

of the helicopter model are given in detail.

2.2.1 Sensor Model

Accelerometers and gyroscopes contain characteristic errors which can be constant or

random. All types of sensors exhibit those errors, even the most accurate ones. How-

ever, order of the errors differs according to the type of the sensor. The most effective

errors which contribute to the error budget are bias, scale-factor, axis misalignment

and random noise. In this subsection, error types are explained and their contribution

to the total error is investigated.

2.2.1.1 Bias Error

Bias error is a constant error independent of the output of the sensors. In most cases,

it is the dominant error type.

bacc = [bacc,x bacc,y bacc,z] (2.1)

bgyr = [bgyr,x bgyr,y bgyr,z] (2.2)

Bias drift is assumed to be zero (ie, ḃ = 0). Bias error may change turn-on to turn-on;

however, it remains constant during the run.

Errors are represented in body-axis frame and subscripts ‘acc’ and ‘gyr’ refer to ac-

celerometer and gyroscope, respectively.

2.2.1.2 Scale-Factor and Misalignment Errors

Scale-factor error is the deviation of the sensor input-output gradient from the unity.

It is represented with ‘parts per million (ppm)’. For instance, a sensor having 1 ppm
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scale factor error gives the output 1.000001 times the actual measurement.

Misalignment errors occur due to the deterioration of the orthogonality of the sensitive

axis due to manufacturing limitations. Scale-factor and misalignment errors can be

expressed as the below matrices.

Macc =


sacc,x macc,xy macc,xz

macc,yx sacc,y macc,yz

macc,zx macc,zy sacc,z

 (2.3a)

Mgyr =


sgyr,x mgyr,xy mgyr,xz

mgyr,yx sgyr,y mgyr,yz

mgyr,zx mgyr,zy sgyr,z

 (2.3b)

2.2.1.3 Random Noise

All inertial sensors exhibit random noise due to various sources like electrical or

mechanical instabilities.

The contribution of the aforementioned error sources is modeled by Groves [30] as

given in equations 2.4 and 2.5 for accelerometers and gyroscopes, respectively.

f̃ bib = bacc + (I3 +Macc)f
b
ib + wacc (2.4)

ω̃bib = bgyr + (I3 +Mgyr)ω
b
ib + wgyr (2.5)

f bib and ωbib represent the true counterparts of the measurements, while f̃ bib and ω̃bib

represent the actual outputs. Superscripts represent the resolving axis system which

is the body frame.

Inertial sensors are chosen as MEMS for helicopter model due to its advantages in

size, weight and budget. In Table 2.1, specifications of the sensors are given.

Inertial sensors’ output rate is 100 Hz.

Accelerometer and gyroscope outputs of the helicopter model having above charac-

teristics are illustrated in figure 2.5(a) and 2.5(b).
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Table 2.1: Inertial Sensor Error Characteristics
Error Characteristics Gyroscopes Accelerometers

Bias 200 deg/hr 50 mg
Scale Factor 1400 ppm 1500 ppm

Misalignment 0.5 mrad 0.5 mrad
Random Walk 7 deg/hr/

√
Hz 1000 µg/

√
Hz
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Figure 2.5: Helicopter Accelerometer and Gyroscope Outputs

2.2.2 GNSS Model

GNSS provides navigation solution in the order of a few meters which does not de-

teriorate with time. With this point of view, GNSS model is constructed by adding

zero mean Gaussian noise to the true navigation solution for simulation purposes. Be-

sides, GNSS provides the position and velocity solutions in ECEF frame; therefore,

coordinate transformation should be performed before using them in the algorithms,

if necessary.

PGNSS = Ptrue + εP (2.6)

VGNSS = Vtrue + εV (2.7)

For the helicopter model, GNSS accuracies are taken as in Table 2.2. GNSS receiver’s

output rate is 1 Hz.
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Table 2.2: GNSS Accuracy Characteristics
Position Velocity

Horizontal 5 m 0.1 m/s
Vertical 10 m 0.1 m/s

2.2.3 INS Frame Mechanizations

Navigation solutions (position, velocity and orientation of the vehicle) are computed

from the specific force and angular rate measurements coming from the inertial sen-

sors through algorithms. These algorithms can be formed by using different coordi-

nate frame mechanizations. They differ only in the means of simplicity and desired

resolving coordinate frame of the navigation solution. In the context of this the-

sis, Navigation-frame Mechanization is implemented to obtain navigation solution.

This form is preferred because position and velocity resolved in navigation frame are

widely used in applications. Thus, need for additional coordinate frame transforma-

tions are prevented.

Navigation solutions are obtained from the inertial sensor outputs in three stages,

namely attitude update, velocity update and position update. Flow chart of the nav-

igation frame mechanization is illustrated in Figure 2.6. Detailed explanations and

mathematical formulations of navigation algorithms are given in the following sub-

sections (Section 2.2.3.1, Section2.2.3.2 and Section 2.2.3.3).

Figure 2.6: Navigation Frame Mechanization

17



2.2.3.1 Attitude Update

Attitude update can be performed by updating Direction Cosine Matrix (DCM) from

body-axis frame to the navigation-axis frame (Cn
b ) given in equation 2.8 [30].

Ċn
b = Cn

b (ωbnb×) = Cn
b (ωbib×)− (ωnin×)Cn

b (2.8)

where (ωbnb×) is the skew-symmetric matrix of the rotation rate of the body frame

according to the navigation frame and Cn
b can be obtained from Euler angles as;

Cn
b =

cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ


(2.9)

φ, θ and ψ are the roll, pitch and yaw angles of the helicopter, respectively.

By integrating above formula in discrete time, attitude update equation can be found

as;

Cn
b (+) = Cn

b (−)Cb−
b+ − [ωnin×](−)Cn

b (−)dt (2.10)

where ωnin is the rotation rate of navigation frame according to the inertial frame and

defined as in Equation 2.11.

ωnin =


Vib,E
R0+h

− Vib,N
R0+h

−Vib,E tanL

R0+h

 (2.11)

Cb−
b+ defines the attitude update matrix in terms of the attitude increment, αbib ≈ ωbibdt,

and it is given in the below form [30]. (Equation 2.12)

Cb−
b+ = I3 +

sin |αbib|
|αbib|

(αbib×) +
1− cos |αbib|
|αbib|

2

(αbib×)2 (2.12)
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2.2.3.2 Velocity Update

Velocity update is performed by adding acceleration components which are specific

forces measured by accelerometers and gravitational acceleration as well as acceler-

ations due to transport rates between axis frames like Coriolis acceleration. Then,

integrating the total acceleration, velocity is obtained. Detailed formulation of veloc-

ity update is given below.

According to Coriolis acceleration, variation of the position in inertial frame in terms

of navigation frame can be expressed as,

d2r

dt2
|i =

dV

dt
|i =

dV

dt
|n + ωin × V (2.13)

Total acceleration in the inertial frame is the sum of the specific force and the gravi-

tational acceleration.
d2r

dt2
|i = f + g (2.14)

Finally, substituting equation 2.14 into equation 2.13, total acceleration of the heli-

copter in navigation frame is found to be:

dV

dt
|n = f + g − ωin × V (2.15)

Specific acceleration is measured in the body axis frame; therefore, it is needed to

be transformed to the navigation frame. Finally, velocity update equation takes the

following form.

V̇n = Cn
b f

b + gn − ωnin × V n (2.16)

2.2.3.3 Position Update

Position in navigation frame is represented as latitude, longitude and altitude (L, λ, h).

Time derivative of curvilinear positions are given below.

L̇ =
V n
ib,N

R0 + h
(2.17a)
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λ̇ =
V n
ib,E

R0 + h cosL
(2.17b)

ḣ = −V n
ib,D (2.17c)

Where R0 is the equatorial radius of the Earth defined by WGS84 (World Geodetic

System).

By integrating time derivative of the positions in discrete time, updated positions are

obtained as,

L(+) = L(−) + (
V n
ib,N(−)

R0 + h(−)
+

V n
ib,N(+)

R0 + h(+)
)
dt

2
(2.18a)

λ(+) = λ(−) + (
V n
ib,E(−)

R0 + h(−) cosL(−)
+

V n
ib,E(+)

R0 + h(+) cosL(+)
)
dt

2
(2.18b)

h(+) = h(−)− (V n
ib,D(−) + V n

ib,D(+))
dt

2
(2.18c)

2.2.4 INS/GNSS Integration

Integration of INS and GNSS is performed by Kalman Filter (KF). KF is an optimal

estimation algorithm. It estimates the states, in agreement with the defined system dy-

namics and error characteristics of the systems. States are determined by the designer

according to the requirements of the application. The estimation is performed by KF

mainly in two stages. First stage is the time update of the states. Here, the mean and

the covariance of the states are propagated in time. In second stage, measurement

update is performed by using the auxiliary measurements, in this case; GNSS mea-

surements. By using the difference between new measurements and the estimated

ones by KF according to the system dynamics, errors are estimated in this stage.

Kalman filter can be a total-state or an error-state whether the estimated medium is

state itself or only the errors of the states. In this work, error-state Kalman filter is

implemented. Errors are estimated in KF and used to correct the primary means of

navigation which is the INS solution.
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In the following subsection (Section 2.2.4.1) the INS/GNSS integration algorithm

(Kalman Filter algorithm) is explained in detail.

2.2.4.1 Kalman Filter Algorithm

A 15-state Kalman filter is designed for the helicopter application.

States are determined to be;

• 9 navigation error states

– 3 Euler Angle errors,

– 3 Velocity errors in navigation frame,

– 3 Position errors in navigation frame,

• Sensor bias errors

– 3 accelerometer bias errors

– 3 gyroscopes bias errors

Nine navigation error states are fed back to the INS solutions to correct them. Esti-

mation of the bias errors is significant not only for their contribution to sensor error

budget but also the estimation of the attitude errors; therefore, their estimation im-

proves the performance of the Kalman filter considerably. The state vector is as given

below in equation 2.19.

x = [δφ δθ δψ δVn δVe δVd δL δλ δh δbacc,x δbacc,y δbacc,z δbgyr,x δbgyr,y δbgyr,z]
T

(2.19)

In order to define the system dynamics, error propagation of the states should be

modeled properly. The formulation of the error equations are obtained in detail for

this purpose.

Attitude Error Equations

Time derivative of attitude angle error can be represented with the time derivative of

its corresponding direction cosine matrix, Cn
b .

[δΨ̇×] ≈ δĊn
b (2.20)
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where [δΨ̇×] represents the skew-symmetric matrix of the Euler angle errors. Error

in the Cn
b can be defined as in equation 2.21.

δCn
b = I − Cn

b C̃
nT
b (2.21)

C̃n
b defines the navigation solution, while Cn

b represents its true counterpart. When its

time derivative is taken,

δĊn
b = −Ċn

b C̃
nT
b − Cn

b
˙̃CnT
b (2.22)

Ċn
b can be expressed as the following equation.

Ċn
b = Cn

b [ωbib×]− [ωnin×]Cn
b (2.23)

When Ċn
b and ˙̃Cn

b are substituted into equation 2.22 and rearranged, Euler angle error

propagation equation is given in the form of equation 2.24 [30].

δΨ̇ = Ĉn
b δω

b
ib − [ωnin×]δΨ− (ω̃nin − ωnin) (2.24)

Ĉn
b refers to Kalman estimate of the DCM and ωnin is the rotation of the navigation

frame with respect to the inertial frame and it is expressed in navigation frame.

(ω̃nin − ωnin) can be obtained as below (Equation 2.25) when some trigonometric for-

mulation is applied and the small angle theory is assumed [30].

ω̃nin − ωnin =


δV n

ib,E

R0+h

− δV n
ib,N

R0+h

− δV n
ib,E tanL

R0+h

−


0

0
V n
ib,E

R0+h
cos2L

 δL+


−δV n

ib,E

(R0+h)2

δV n
ib,N

(R0+h)2

δV n
ib,E tanL

(R0+h)2

 δh (2.25)

Velocity Error Equations

Time derivative of velocity error is expressed as in equation 2.26.

δV̇ n = ˙̃V n − V̇ n

= C̃n
b f̃

b + g̃n − ω̃in × Ṽ n − [Cn
b f

b + gn − ωin × V n]
(2.26)

When the necessary substitutions and the arrangements are made, velocity error prop-

agation can be found from equation 2.26 as below.

δV̇ n = −[C̃n
b f̃

b]δΨ− ωin × δV n + [V n×](ω̃nin − ωnin)− 2g

R0

δh+ Cn
b δf

b (2.27)
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Position Error Equations

Position error propagation equations are obtained by neglecting small terms by Groves

[30] as in equations 2.28a, 2.28b and 2.28c.

δL̇ =
δV n

ib,N

R0 + h
−

δV n
ib,Nδh

(R0 + h)2
(2.28a)

δλ̇ =
δV n

ib,E

(R0 + h) cosL
+

V n
ib,E sinLδL

(R0 + h) cos2 L
−

V n
ib,Eδh

(R0 + h)2 cosL
(2.28b)

δḣ = −δV n
ib,D (2.28c)

Accelerometer and Gyroscope Error Equations

Accelerometer and gyroscope instrument error terms can be defined respectively as,

δf b = ∆f̃ b −∆f b (2.29)

δωb = ∆ω̃b −∆ωb (2.30)

Instrument errors and its estimation are modeled in Ref. [31] as,

∆f b = Fvaccbacc + vacc ∆ωb = FΨgyrbgyr + vgyr (2.31)

∆f̃ b = Fvaccb̃acc ∆ω̃b = FΨgyrb̃gyr (2.32)

Finally, instrument errors were obtained as below.

δf b = Fvaccδbacc + vacc δωb = FΨgyrδbgyr + vgyr (2.33)

δfn = Cn
b Fvaccδbacc + Cn

b vacc δωn = FΨgyrδbgyr + Cn
b vgyr (2.34)

Here vacc and vgyr represent the measurement noise error, while Fvacc and FΨgyr which

are the submatrices of the system matrix, are identity matrices for bias errors [31].

Furthermore, bias error time derivatives are modeled as [31],

δḃacc = Faccaccδbacc + ωacc (2.35)

δḃgyr = Fgyrgyrδbgyr + ωgyr (2.36)

Sensor errors are assumed to be random walk, therefore; Faccacc and Fgyrgyr are taken

as zero matrices and ωacc and ωgyr are random noises.
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When the error equations are arranged, general state-space model is obtained for error

propagation of the states.

ẋ = Fx+Gw (2.37)

System matrix F is formed in continuous time and needs to be converted in discrete

time. This can be performed by Taylor series expansion but another method is applied

which is believed to be more stable, stated by Farrell [31].

Σ =

−F GQGT

0 F T

 dt (2.38)

The Q matrix is the system noise covariance matrix in continuous form; it defines

the system noise to the Kalman filter which are mainly accelerometer and gyroscope

random walks. Q is a diagonal matrix and diagonal elements are; velocity random

walk, angular random walk, accelerometer bias random walk and gyroscope random

walk.

By taking the exponential of the matrix in equation 2.38, discrete system noise matrix

(Qd) and state transition matrix (Φ) are obtained as in equations 2.40 and 2.41, [31].

eΣ =

−X Φ−1Qd

0 ΦT

 dt (2.39)

Φ = eΣ[(n+ 1) : 2n, (n+ 1) : 2n]T (2.40)

Qd = ΦeΣ[1 : n, (n+ 1) : 2n]T (2.41)

Where n is the number of the states.

After obtaining the state transition matrix and system noise matrix in discrete time,

time update of Kalman filter is performed.

Time update of states:

x−k+1 = Φkx
+
k (2.42)

Time update of covariance matrix:

P−k+1 = ΦkP
+
k ΦT

k +Qd (2.43)
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Subscripts k and k+1 indicate the time indices, while superscripts (+) and (−) means

after and before the measurement update, respectively. State estimates are initialized

from zero and error covariances are initialized according to the state uncertainties in

the application.

Time update is performed at 100 Hz which is the output rate of the inertial sensors.

On the other hand, measurement update is performed at 1 Hz when the GNSS data is

available.

At times when the GNSS data is available, firstly Kalman gain is computed. Kalman

gain is a measure of whether GNSS solution or INS solution will be weighted for the

estimation of states and it is computed as,

Kk+1 = P−k+1H
T
k+1(Hk+1P

−
k+1H

T
k+1 +Rk+1)−1 (2.44)

Kalman gain being large means that states are estimated towards the new measure-

ments, while Kalman gain being small means that states are estimated towards the

previous estimations.

H is the measurement matrix. It defines how the measurement vector relates with the

state vector. In this application, position and velocity of GNSS are used as auxiliary

measurement; therefore, measurement matrix is chosen to be;

H =


03 03 −I3 . . . 03

03 −I3 03 . . . 03

03 03 03 . . . 03

 (2.45)

Minus signs are due to sign convention.

R is the measurement noise covariance matrix. It defines the error characteristics

of the GNSS measurements to the Kalman Filter. R is a diagonal matrix having

the diagonal elements as; GNSS horizontal position accuracy, GNSS vertical positon

accuracy, GNSS horizontal velocity accuracy and GNSS vertical velocity accuracy.

Measurements are modeled as,

z =

PGNSS − PINS
VGNSS − VINS

 (2.46)
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Measurement update of states:

x+
k+1 = x−k+1 +Kk+1(z −Hk+1x

−
k+1) (2.47)

Measurement update of the covariance matrix:

P+
k+1 = (I −Kk+1Hk+1)P−k+1 (2.48)

This algorithm can be summarized with a flowchart as in Figure 2.7.

Figure 2.7: Flowchart of Kalman Filter Algorithm

After estimating the errors of the states, they are fed back to the INS solution to obtain

the integrated navigation solution. Kalman filter is designed as closed loop which

means corrected INS solutions are fed back to the navigation algorithms. With this

way, navigation algorithm errors are kept small. This is necessary for low accuracy

inertial sensors since small angle approximation is assumed in the propagation of
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the errors. With this configuration, raw INS solution cannot be obtained with the

integrated navigation solution.

2.2.4.2 Kalman Filter Performance

While illustrating the performance of the Kalman filter in the simulation, true values

of the navigation solutions are used to compare the KF and INS results, and drifts

and errors are calculated accordingly. However, in real time applications, it is diffi-

cult to verify KF’s estimated states since true navigation solutions are not available.

In real time, KF performance can be verified by using the measurement innovations.

The measurement innovations of a Kalman filter is the difference between the actual

observation and the predicted observation. It gives an indication of whether the mea-

surements and state estimates are consistent. The measurement innovation is defined

as [32],

δz−k = zk −Hkx
−
k (2.49)

The measurement innovation covariance is,

C−k = HkP
−
k H

T
k +Rk (2.50)

If the innovation sequence has a zero mean white noise characteristic within the co-

variance given, then the Kalman filter is working properly.
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2.3 Simulation Results

In this section, the performance of the INS/GNSS integration is shown via simula-

tions. Algorithms derived in previous sections are modeled in Matlab/Simulink. Sta-

bility and performance of the Kalman filter is shown using a maneuvering helicopter.

Moreover, analyses are done when GNSS signal outage exists.

The control inputs of the helicopter are decided such that helicopter performs both

longitudinal and lateral maneuvers during the flight simulation. Flight duration is

taken as 300 seconds. In Figure 2.8 control inputs commanded to helicopter are given.

In Figures 2.9, 2.10 and 2.11, Kalman Filter performance illustrated for the attitude,
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Figure 2.8: Helicopter Control Inputs

velocity and position of the helicopter, respectively. Kalman filter is formed as closed

loop and pure INS solution is not available since the corrected navigation solution

is fed back to the INS in this form. However, pure INS solution is also obtained

separately to compare the solutions and illustrate the effectiveness of Kalman filter.

The results of the pure INS are given in the same figures.

It can be seen from the figures (Figures 2.9, 2.10 and 2.11) that INS solution deviates
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from the actual solution due to the integration of the MEMS sensor errors in time.

In such a short time (300 s), INS solution accumulates large errors which makes

impossible the use of MEMS as the only navigational source.
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Figure 2.9: Comparison of INS and KF Attitude Solutions

However; its integration with the GNSS improves the solution significantly. The

errors are estimated at 1 Hz and kept small by correcting the inertial solution but

they are propagated in time at 100 Hz which is the inertial sensor output rate. This

phenomenon can be observed from 2.12 which shows the difference between actual

velocity of the helicopter and KF solution more clearly. From this figure, it can be

seen that errors grow until the new GNSS measurement is available. When the new

measurement is taken, errors are estimated and compansated from the system forming

this sawtooth view.
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Figure 2.10: Comparison of INS and KF Velocity Solutions

Errors between the actual values and the integrated navigation solution are shown in

Figures 2.13, 2.14 and 2.15 for attitude, velocity and position, respectively with red

solid lines. The black dotted lines represent the corresponding covariances.

As it can be seen from the covariances, the errors are zero mean and less than 1.5 deg

for roll and pitch channel and less than 4 deg for yaw channel which is more difficult

to observe. On the other hand, velocity errors are less than 2 ft/s while position

errors are less than 15 ft. Moreover, errors are in the covariances during the flight as

expected. From Figure 2.14 which shows the error covariances of velocity, trend of

the covariance propagation can be seen more closely. it can be observed that error

covariances are tend to grow like errors when measurements are not available. When

the new measurement is taken, errors and error covariances are estimated. Thus,
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Figure 2.11: Comparison of INS and KF Position Solutions

uncertainty of the system is decreasing with every new measurement.

Since the analysis are performed in simulation environment, actual attitude, velocity

and position values are available. However; in real-life applications, actual values are

not known. Therefore; performance and stability analysis of Kalman filter is veri-

fied through the measurement innovations (Section 2.2.4.2). Therefore; measurement

innovations are also examined for the stability in this study. Figure 2.16(a) and Fig-

ure 2.16(b) show the measurement innovations of the KF with the covariances for

position and velocity measurements, respectively.

As it can be seen from the figures, measurement innovations are zero-mean Gaussian

and their deviations are within the covariances for both position (Figure 2.16(a)) and

velocity (Figure 2.16(b)). As a result, this indicates that Kalman filter is working

properly.
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Figure 2.12: Appearance of Kalman Filter Velocity Solution

Beside of attitude, velocity and position of the helicopter, accelerometer and gyro-

scope bias errors are also estimated by Kalman filter. Bias estimations are not fed

back to the sensor inputs; however, their effects are taken into consideration by the

filter when estimating the errors from system dynamics. The accelerometer bias and

gyroscope bias errors are 50 mg and 200 deg/hr, respectively as given before in Table

2.1. The estimations are given in Figure 2.17(a) and 2.17(b) with black lines.
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Figure 2.13: Attitude Errors and Error Covariances

Figure 2.14: Velocity Errors and Error Covariances
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Figure 2.15: Position Errors and Error Covariances
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Figure 2.16: Measurement Innovations and Innovation Covariances
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Figure 2.17: Inertial Sensor Bias Estimations
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One of the most critical disadvantages of GNSS is its dependency on external signals.

Signal outage may occur due to several reasons and INS/GNSS integration bridges

those outages. In the simulation, GNSS signal is cut off between the 50th and 150th

seconds to analyze the performance of the Kalman filter when signal outage occurs

during the flight.

Integrated navigation solution and the actual values are given in Figures 2.18, 2.19

and 2.20 for the case of signal outage. From the figures, it can be seen that errors

grow when there is no signal available from the GNSS. However, when the signal is

reacquired Kalman filter estimates the accumulated error and compansates them from

the system.
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Figure 2.18: Attitude of the Helicopter when Signal Outage Occurs
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Figure 2.19: Velocity of the Helicopter when Signal Outage Occurs
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Figure 2.20: Position of the Helicopter when Signal Outage Occurs
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For illustration, covariances of attitude and velocities are given in Figures 2.21 and

2.22 for the case of signal outage. As expected, covariances are expanding during

the signal outage and errors are always in the covariance limits which indicates that

Kalman filter works properly.
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Figure 2.21: Attitude Errors and Covariances when Signal Outage Occurs
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Figure 2.22: Velocity Errors and Covariances when Signal Outage Occurs
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CHAPTER 3

KALMAN FILTER BASED APPROACH IN ADAPTIVE

CONTROL

Adaptive control is an approach to accommodate for uncertainties. In many appli-

cations, uncertainties exist due to linearization errors, modeling errors, assumptions

or external disturbances, etc. Research focuses on the performance improvement of

adaptive control.

Adaptive control using neural networks is an approach used for many aerospace ap-

plications. In this method, typically a linear model is inverted for the design of a

model inversion controller. A neural network is used to compensate for the model

uncertainty. A linear controller is wrapped around the inverted model for stability.

The update law of the neural network is derived using Lyapunov Theory [26, 33].

The neural network update law is later updated with modification terms for various

reasons, mainly to improve boundedness [15, 16, 17, 19, 23]. Yucelen et al. state in

their study [23] that in general, these modification terms are found by taking the gra-

dient of a norm of the constraint violation and proposed a new approach which forms

an alternative method to the well-known existing modifications. It is reported that

Kalman Filter optimization can be used to reduce the violation of a linear constraint.

In this thesis work, proportional-derivative (PD) controller is used to control the ro-

tational states of a helicopter which are roll, pitch and yaw channels, and Linear

Model Inversion is used to obtain helicopter control inputs [21, 26]. Both Linear-

in-Parameter Neural Network and Single Hidden Layer Neural Network adaptation

laws are implemented to take the uncertainties into consideration and Kalman Filter
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approach as a modification term is adopted in neural networks. In this chapter, con-

troller structure is explained, theory of the Kalman Filter approach is discussed and

this approach is applied as the well-known e-modification term.

3.1 Adaptive Control Preliminaries

Many applications present model uncertainties and controllers of air vehicles are ex-

pected to operate reliably under these conditions. As mentioned earlier, adaptive

control is an effective way to fulfill the requirements in the presence of uncertainties.

To improve the performance of the baseline adaptation law and ensure the bounded-

ness, modification terms have been used. Some of these widely used modification

terms are illustrated below with their contribution.

Adaptive control can be formed by using neural networks. Linear in Parameter Neu-

ral Network (LPNN) is a simple kind of neural network which consists of a single

layer. Single layer means that the inputs are connected directly to the outputs through

weights. In this form, adaptive control input is obtained as the linear combination of

the selected inputs.

LPNN baseline weight update law is a gradient based parameter update law. It can

be obtained by taking the negative gradient of a cost function chosen as the enforcing

constraint on the weight estimates. It is defined in the following well-known form as

in equation 3.1 [34].
˙̂
W (t) = γβ(x(t))eT (t)PB (3.1)

where γ is called the positive learning rate,

β(.) is a known vector of basis functions,

x(t) is the input vector,

e(t) is the tracking error vector and

P is a positive-definite matrix which is the solution of the following Lyapunov

equation.

ATmP + PAm +Q = 0 (3.2)

for any Q > 0, ensures that Ŵ remains bounded and that e(t)→ 0 as t→∞.
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Adaptive control element is obtained as linear combinations of the estimated weights.

Gradient based methods have been widely used to solve linearly parameterized pa-

rameter identification problems [21].

uad(t) = Ŵ Tβ(x(t)) (3.3)

Figure 3.1 illustrates the block diagram of the adaptive controller.

Figure 3.1: Block Diagram of LPNN based Adaptive Controller

To improve the boundedness of the weights for the performance and stability consid-

erations, modification terms are added to the baseline adaptive law.

In 1984, Ioannou and Kokotovic [15] proposed a modification term called σ- mod-

ification. This term improves the damping of the ideal adaptive law by adding the

weight itself to adaptation law by multiplying it with a gain called modification learn-

ing rate. σ-modification adaptive law is given in equation 3.4.

˙̂
W (t) = γ(β(x(t))eT (t)PB − σŴ (t)) (3.4)

When the tracking error gets small, adaptive weight of σ-modification have a ten-

dency to go back to zero which means that learnt adaptive gain is lost which is ac-

tually the cause of the small tracking error [35]. In 1987, Narendra and Annaswamy

[16] proposed the e-modification to overcome this problem. E-modification adds a

tracking error related term to the modification learning rate in σ-modification. The
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adaptation law with e-modification is given in equation 3.5.

˙̂
W (t) = γ(β(x(t))eT (t)PB − σ|e(t)|Ŵ (t)) (3.5)

Since these systems are non-linear, the stability analysis depends on Lyapunov Stabil-

ity Theory. Accordingly, system is stable if the states remain bounded in the response

of a bounded reference command [35].

These modification terms (σ- and e-modification) ensure that the adaptive weights

remain bounded. However; there is a tradeoff between damping and adaptation rate,

meaning that additional damping slows down the rate of the tracking error becoming

small.

3.2 Model Reference Adaptive Control

In Ref. [23], Yucelen et al. proposed a new method which forms an alternative to

previously mentioned well-known modification terms. In this paper, Model Refer-

ence Adaptive Control (MRAC) is presented and LPNN adaptive law is applied to

compensate for the linearization errors of the system. Furthermore, new KF opti-

mization approach for modification terms is proposed for the LPNN adaptive law. In

this section, this approach is investigated first.

Consider the following uncertain system where ∆(.) represents the unknown uncer-

tainty,

ẋ(t) = Ax(t) +B[u(t) + ∆(x(t))] (3.6a)

y(t) = Cx(t) (3.6b)

where x(t) is the state vector, u(t) is the control input and y(t) is the output vector. In

nonlinear systems, A, B and C matrices are usually found by linearizing the nonlinear

system dynamics around certain equilibrium points. For the given system, uncertainty

can be thought of as linearization error.

Baseline controller for the given system is defined in the form of equation 3.7.

un(t) = −Kxx(t) +Krr(t) (3.7)
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Where r(t) is the bounded reference command, Kx and Kr are the feedback gain ma-

trices and un(t) represents the nominal control input. These feedback gains adjust the

states of the open-loop system to achieve the states of the reference model (Equations

3.8a and 3.8b).

ẋm(t) = Amxm(t) +Bmr(t) (3.8a)

ym(t) = Cmxm(t) (3.8b)

The uncertainty ∆(.) is assumed as structured uncertainty in the form of,

∆(x(t)) = W Tβ(x(t)) (3.9)

In order to compensate this uncertainty, baseline controller is augmented with the

adaptive controller.

u(t) = un(t)− ua(t) (3.10)

ua(t) = Ŵ Tβ(x(t)) (3.11)

Where β(.) is the basis function and Ŵ represents the estimation of the adaptive

weights. Adaptation law is applied as linear-in-parameter neural network (LPNN)

with the e-modification.

˙̂
W (t) = γ(β(x(t))eT (t)PB − σ|e(t)|Ŵ (t)) (3.12)

Block diagram of the system can be seen in previous section in Figure 3.1.

In the following section (Section 3.3), Kalman Filter approach presented in Refs.

[23, 36] is detailed.

3.3 Kalman Filter Approach in Adaptive Control

It is reported that adaptive control modification terms can be obtained by taking the

gradient of a norm of the constraint violation [23]. This constraint can be imposed

to the system and can be re-formulated as an optimization problem. The idea behind

this approach is that instead of defining a high modification learning rate to satisfy all
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possible conditions, optimizing the gain with a variable gain can produce better re-

sults. Because, fixed modification learning rate can magnify the unmodeled dynamics

and the effect of sensor noise.

An optimal estimation algorithm produces estimates of the states of the dynamic sys-

tem on the basis of noisy measurements and an uncertain model of the system dy-

namics. To transform the weight update law into optimization problem, adaptive

weight should be considered and defined as a stochastic process. Similar to auxil-

iary measurements that aid to estimate the states in navigational Kalman Filter, linear

constraint on the weight estimation can be defined as measurement; thus, weight es-

timation can be performed on the basis of satisfying the constraint.

This approach is constructed with both linear-in-parameter neural networks and single

hidden layer neural networks structure.

3.3.1 Linear-in-Parameter Neural Network

The linear constraint on the weight estimate is assumed in the following form.

Ŵ T (t)φ(t, x(t), u(t)) = 0 (3.13)

φ(.) is a known function determined by the designer according to the desired modifi-

cation type. It can be expressed in the equivalent vector form,

vec(Ŵ T (t)φ(t, x(t), u(t))) = ΦT (t, x(t), u(t))w = 0 (3.14)

w is the vector containing the columns of the W matrix, while Φ is the Kronecker

product of the φ function with the identity matrix, I . (ie,Φ = Imxm ⊗ φ)

Now, stochastic process can be defined as in equations 3.15 and 3.16. q(t) and r(t) are

zero-mean Gaussian, white noise processes with covariances Q and R, respectively.

ẇm = q(t) (3.15)

z(t) = ΦT (t, x(t), u(t))w + r(t) (3.16)

Here, z(t) is regarded as measurement and its estimation is given in equation 3.17.

ẑ(t) = ΦT (t, x(t), u(t))ŵ (3.17)
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After defining the stochastic system, Kalman Filter which is an optimal estimation

algorithm, is applied to the optimization problem.

˙̂wm(t) = S̄(t)Φ(t, x(t), u(t))R̄−1(z(t)− ẑ(t)), ŵm(0) = 0 (3.18a)

˙̄S(t) = −S̄Φ(t, x(t), u(t))R̄−1ΦT (t, x(t), u(t))S̄(t) + Q̄, S̄(0) = S0 (3.18b)

ie, R̄ = Ilxl ⊗R

‘S’ is the so-called covariance of the weight estimation. Kalman gain is the expres-

sion given as S̄Φ(t, x(t), u(t))R̄−1 in equation 3.18b. Since our aim is to satisfy the

constraint on the weight estimation, measurement is chosen as z(t) = 0. Substituting

the measurement and the estimation of the measurement into equation 3.18a, final

form of the Kalman Filter equation is obtained and reduced to the following form

(Equations 3.19a and 3.19b). The proof of the reduction can be found in Ref. [23].

˙̂
Wm(t) = −S(t)φ(t, x(t), u(t))R−1φT (t, x(t), u(t)), Ŵm(0) = 0

(3.19a)

Ṡ(t) = −S(t)φ(t, x(t), u(t))R−1φT (t, x(t), u(t))S(t) +Q, S(0) = S0

(3.19b)

Augmenting with the KF modification term, the baseline adaptation law becomes

˙̂
W (t) = γ(β(x(t))eT (t)PB − σkfS(t)φ(t, x(t), u(t))R−1φT (t, x(t), u(t))) (3.20)

Here, σkf is a positive modification gain and σkfS(t) can be interpreted as variable

gain. KF approach ensures the boundedness of the weights and the proof can be found

in Ref. [23].

This method can be used to reformulate new or the existing modification terms to

form a modification term with variable learning rate. Traditional e-modification in

LPNN structure is given in Equation 3.21.

˙̂
W (t) = γ(β(x(t))eT (t)PB − σe|e(t)|Ŵ (t)) (3.21)

This modification term can be obtained with KF approach by selecting the constraint

as follows, indicates that φ(.) is |e(t)|1/2Is where Is is the identity matrix.

|e(t)|1/2Ŵ = 0 (3.22)
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By substituting the φ(.) into Equations 3.19a and 3.19b, e-modification with KF ap-

proach is obtained.

˙̂
W (t) = γ(β(x(t))eT (t)PB − σkf |e(t)|S(t)R−1Ŵ (t)) (3.23)

Ṡ(t) = −|e(t)|S(t)R−1S(t) +Q (3.24)

3.3.2 Single Hidden Layer Neural Network

There exist many types of neural networks, but the basic principles are similar. In this

work, single hidden layer neural network (SHL-NN) is adopted instead of linear-in-

parameter neural network (LPNN) discussed in Section 3.3.1. SHL-NN is preferred to

LPNN since even one hidden layer improves the approximation of nonlinear function,

significantly [37].

In multi-layer neural networks, first layer is the inputs, last layer is the outputs and the

layers between them are called the hidden layers which are not connected directly to

the system. These layers are connected through weight coefficients which represent

the degree of importance of the given connection in the neural network. Structure of

the SHL neural network is illustrated in Figure 3.32.

Figure 3.2: Structure of Single Hidden Layer Neural Network

The output of SHL neural network can be defined as:

UNN = Ŵ (t)Tβ(V T (t)(x(t))) (3.25)

48



Kalman Filter approach as an alternative to e-modification is adapted to neural net-

work controller. Similar to Section 3.3.1 linear constraint is assumed on the weight

estimations of the SHL neural network weights [36].

Ŵ Tφ1(t, x(t), u(t)) = 0 (3.26)

V̂ Tφ2(t, x(t), u(t)) = 0 (3.27)

The problem of estimating W and V can be formulated as an optimization problem.

˙̂wm = q1(t) (3.28)

z1(t) = ΦT
1 (t, x(t), u(t))w + r1(t) (3.29)

˙̂vm = q2(t) (3.30)

z2(t) = ΦT
2 (t, x(t), u(t))v + r2(t) (3.31)

Here, z1(t) and z2(t) are regarded as measurements. The estimates of z1(t) and z2(t)

are given by equations 3.32 and 3.33

ẑ1(t) = ΦT
1 (t, x(t), u(t))ŵ (3.32)

ẑ2(t) = ΦT
2 (t, x(t), u(t))v̂ (3.33)

And measurements are taken as z1(t) = 0 and z2(t) = 0 to satisfy the constraints.

When the measurements and the estimation of the measurements are substituted into

Kalman Filter algorithm in continuous time given in equation 3.18a in Section 3.3.1,

Kalman filter associated with this problem is obtained as follows.

˙̂
Wm(t) = −S1(t)φ1(t, x(t), u(t))R−1

1 φT1 (t, x(t), u(t)) (3.34a)

Ṡ1(t) = −S1φ1(t, x(t), u(t))R−1
1 φT1 (t, x(t), u(t))S1(t) +Q1 (3.34b)

˙̂
Vm(t) = −S2(t)φ2(t, x(t), u(t))R−1

2 φT2 (t, x(t), u(t)) (3.35a)

Ṡ2(t) = −S2φ2(t, x(t), u(t))R−1
2 φT2 (t, x(t), u(t))S2(t) +Q2 (3.35b)

Baseline adaptive law using single hidden layer neural network is given below.

˙̂
W (t) = −(β(t)− β′(t)V̂ T (t)(x(t))eT (t)Pb)Γw − ˙̂

Wm (3.36)
˙̂
V (t) = −Γv(x(t)eT (t)PbŴ T (t)β′(t))− ˙̂

Vm (3.37)
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Traditional e-modification in SHL structure can be formed as:

˙̂
W (t) = −(β(t)− β′(t)V̂ T (t)(x(t))eT (t)Pb)Γw − σwe‖eTPb‖Ŵ (3.38)
˙̂
V (t) = −Γv(x(t)eT (t)PbŴ T (t)β′(t))− σve‖eTPb‖V̂ (3.39)

Well-known e-modification with Kalman Filter approach can be achieved by enforc-

ing a linear constraint on the weights as in equations 3.40 and 3.41[36].

Ŵ T‖eTPb‖1/2 = 0 (3.40)

V̂ T‖eTPb‖1/2 = 0 (3.41)

Such that φ(.) is selected as ‖eTPb‖1/2Is which is the Frobenius norm of the track-

ing error related term. By substituting φ(.) into Kalman filter formulation (equations

3.34a,3.34b and 3.35a, 3.35b) KF-based e-modification is obtained as given in equa-

tion 3.42a, 3.42b and 3.43a, 3.43b.

˙̂
Wm(t) = −S1‖eTPb‖1/2R−1

1 ‖eTPb‖1/2Ŵ , Ŵ (0) = 0 (3.42a)

Ṡ1(t) = −S1(t)‖eTPb‖1/2R−1
1 ‖eTPb‖1/2S1(t) +Q1, S1(0) = S10 (3.42b)

˙̂
Vm(t) = −S2‖eTPb‖R−1

2 V̂ , V̂ (0) = 0 (3.43a)

Ṡ2(t) = −S2(t)‖eTPb‖R−1
2 S2(t) +Q2, S2(0) = S20 (3.43b)

3.4 Application of Kalman Filter Modification

A Kalman Filter approach as modification term in adaptive control is applied to a

helicopter model. PD controller is implemented to control the rotational states of

the helicopter, which are roll, pitch and yaw channels. In addition, command filter

is used to slow down the reference signal so that helicopter can follow the given

command. Linear model inversion is applied to obtain the helicopter control inputs

and this controller is augmented with neural networks to take into consideration of

the errors arise from model inversion and linearization.
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3.4.1 Command Filter

Command filter is a second order low pass filter used in order to transform the refer-

ence input into desired aircraft response [27]. Command filters are implemented to

all channels to slow down the reference input to the frequency range that helicopter

can follow. Figure 3.3 illustrates the output of the command filter for given step input

for roll channel.
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Figure 3.3: Response of Command Filter

The natural frequency and damping ratio of the command filter are chosen as 1 rad/s

and 0.8, respectively. Command filter also provides the first and second derivative of

that channel which are used to obtain derivative error and used as command acceler-

ator, respectively.

3.4.2 Controller

As stated before, PD controller is applied to control the roll, pitch and yaw channels of

the helicopter. The output of the PD controller is augmented with the neural network

(Section 3.3). In equation 3.44, dynamics of the PD controller for roll channel is
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given.

UPD,φ = KP (φcom − φsys) +KD(φ̇com − φ̇sys) (3.44)

UPD,φ is the output of PD control, φcom represents the desired roll input reference

coming from command filter, φsys represents the system response and KP and KD

are the feedback gains. The output of the PD controller together with the Euler angle

accelerations and neural network control inputs (Section 3.3) form the pseudo con-

trols. Pseudo controls of other two channels, pitch and yaw, are formed in the same

way as the roll channel.

Uφ = φ̈com + UPD,φ − UNN,φ (3.45)

Linear model inversion is used to generate the helicopter control inputs [26, 21].

Consider the nonlinear system representing the dynamics of the helicopter.

ẍ = f(x, ẋ, u) (3.46)

The dynamics can be approximated as in Equation 3.47, which is assumed to be

invertible. ν represents the pseudo control inputs.

ν = f̂(x, ẋ, u) (3.47)

In order to obtain the control inputs, approximate model is inverted.

u = f̂−1(x, ẋ, ν) (3.48)

However, approximating the actual dynamics results in a modeling error which is

defined as;

∆(x, ẋ, u) = f(x, ẋ, u)− f̂(x, ẋ, u) (3.49)

Model tracking error can be defined in the form of;

e =

xm − x
ẋm − ẋ

 (3.50)

Taking the derivative of Equation 3.50 and using a proportional-derivative controller,

the following error dynamics can be constructed [21, 38].

ė = Ame+B[νad −∆] (3.51)
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where νad is the output of the adaptive control. In order to cancel the modeling uncer-

tainty, νad−∆ = 0 should be satisfied. In other words, modeling error is compansated

with the adaptive element. νad is named throughout this work as UNN .

Model inversion is performed for the linearized dynamics at 60 knots forward flight.

However; in order to invert the model, control matrix B should be invertible. In our

case, system consists of 8 states while there exists 4 controls which means that B

matrix is not a square matrix, in other words B matrix is not invertible. In order to

obtain the inversion of the model system is reduced such that B matrix is invertible.

This can be performed without generating significant loss of dynamic characteristics

of the system by decoupling the rotational and translational dynamics. Since the

rotational states are fast while the translational dynamics are slow in dynamics, errors

that occur due to cross coupling of the dynamics can be neglected.

Full linear state-space system is given in equation 3.52.

ẋ = Ax+Bu (3.52)

If the dynamics of rotational and translational states are decoupled, full system matrix

can be separated as in equation 3.53,[26, 27].

ẋ1 = A1x1 + A′x′ +B1u1 (3.53)

In equation 3.53, x1 vector consists of rotational states p, q and r, A1 matrix contains

the relation of the rotational states with themselves, x′ is the vector which consists

of translational states u, v and w and A′ matrix contains the relation of translational

matrix with the rotational states. Control inputs are chosen as δlong, δlat and δped,

which are longitudinal, lateral and pedal inputs, respectively. B1 matrix contains the

relation between the controls with the rotational states. Collective control is also

added to the x′ vector since its effect on rotational states is slower than other control

inputs. Finally, decoupled system equations take the following form.


ṗD

q̇D

ṙD

 = A1


∆p

∆q

∆r

 + A2


∆u

∆v

∆w

∆δcoll

 +B1


∆δlong

∆δlat

∆δped

 (3.54)
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When the control input (u1) matrix is left alone from the decoupled system dynamics,

linear model inversion is obtained.


∆δlong

∆δlat

∆δped

 = B−1
1 {


ṗD

q̇D

ṙD

− A1


∆p

∆q

∆r

− A2


∆u

∆v

∆w

∆δcoll

} (3.55)

ṗD, q̇D and ṙD can be obtained from the pseudo controls. Transformation equations

are given as equations 3.56a, 3.56b and 3.56c, [26].

ṗD = Uφ − Uψ sin θ − ψ̇θ̇ cos θ (3.56a)

q̇D = Uθ cosφ− θ̇φ̇ sinφ+ Uψ sinφ cos θ + ψ̇φ̇ cosφ cos θ − ψ̇θ̇ sinφ sin θ

(3.56b)

ṙD = −Uθ sinφ− θ̇φ̇ cosφ− Uψ cosφ cos θ − ψ̇φ̇ sinφ cos θ − ψ̇θ̇ cosφ sin θ

(3.56c)

Adaptive element is augmented with the system by using neural networks detailed in

Section 3.3.

The block diagram of the whole system is given in Figure 3.4.
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3.5 Simulation Results

The Kalman Filter approach in adaptive control as a modification term is demon-

strated using a simplified aircraft model and a high fidelity helicopter simulation.

The attitude controller and e-modification term derived as given in Section 3.3 by

using KF optimization algorithm is modeled in Simulink/Matlab. Firstly, KF-based

e-modification is implemented on the rolling motion of an aircraft to stabilize this

motion, then it is implemented to the helicopter to control the rotational states.

Rolling motion which is called as Wing Rock dynamics is used in Ref. [23] to il-

lustrate the performance of the KF approach. This sample dynamics is also used

in this work with different reference model and uncertainty characteristics to fully

understand the effect of the KF approach.

Helicopter model is used as the original work and the actual application. KF based

e-modification is implemented by using both LPNN and SHL-NN structure to the

helicopter. Performance of the KF based e-modification when the helicopter is under

longitudinal and lateral maneuver is examined independently.

Neural network parameters which are common in every simulation are given below.

P matrix which is the solution of a Lyapunov function is used as in 3.57 [33].

P =

KD

KP
+ 1

2KD

1
2KP

1
2KP

1+KP

2KPKD

 (3.57)

And vector b is given as;

b =

0

1

 (3.58)

Moreover, basis function is selected to be sigmoidal basis function for both LPNN and

SHL-NN which is in the given form (Equation 3.59) where x̄ is the neural network

input vector and a is the activation potentials. Activation potentials are the design

parameters.

β(x̄) =
1

1 + e−ax̄
(3.59)

In the following sections, simulation results of the mentioned applications are pro-
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vided for various scenarios.

3.5.1 Wing Rock Dynamics

Wing Rock dynamics is the rolling motion of a aircraft. This motion occurs in air-

crafts with highly swept wings at high angle of attack and side-slip angles. If it is

not be controlled the oscillations can grow unboundedly. Similar to [21, 23], the

dynamics can be simplified as follows:

φ̇(t) = p(t) (3.60a)

ṗ(t) = u(t) + ∆(φ, p) (3.60b)

where ∆(.) is the uncertainty and defined in this work as below.

∆(φ, p) = 0.1278φ(t) + 0.7579p(t)− 0.4245|φ(t)|p(t) + 0.5195|p(t)|p(t)

Effect of the uncertainty on the system is given in Figure 3.5, it is clearly seen that

uncertainty worsened the performance of the system significantly.
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Figure 3.5: Nominal Control Performance with and without Uncertainty

The reference model mentioned in Section 3.2 is selected such that natural frequency

and damping ratio of the desired model is 0.7 rad/s and 0.6, respectively. In this
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application, Kalman Filter parameters are chosen to be S0 = I, R = 0.05I and

Q = I where I is the identity matrix. Since the aim is to stabilize the rolling motion,

reference inputs of the roll angle and roll rate are taken to be zero. System states and

control input are obtained by using baseline adaptive law, standard e-modification and

KF-based e-modification for different learning rates.
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Figure 3.6: Performance Comparison of Adaptive Laws (γ = γσe = γσkf = 1)

In Figure 3.6, 3.7 and 3.8, KF approach in modification term improves the damp-

ing performance of the system significantly. Blue dash-dot lines represent the results

of baseline adaptive law, red dashed lines represent the standard e-modification and

black solid lines represent the KF-based e-modification in figures. Both baseline law

and standard e-modification result in high oscillatory responses. Moreover, high con-

trol effort is necessary to achieve the tracking. On the other hand, due to its variable

modification gain, control effort is optimal for KF approach. Modification gain is

adjusted as the tracking error gets small and unnecessary control effort is eliminated

with this approach. As a result of this adjustment, system produces smoother response

in response to the small and unoscillatory control input.

This approach is effective especially when there are oscillations or noise in the system

when its effects amplify with learning rates in baseline law and standard modification
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Figure 3.7: Performance Comparison of Adaptive Laws (γ = γσe = γσkf = 20)

terms. Therefore, performance is also investigated when the system is under sensor

noise with learning rate 20. E-modification with Kalman approach also provides

better results according to its alternatives in this case. The performance comparison

is given in Figure 3.9 when the system is under sensor noise.
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Figure 3.8: Performance Comparison of Adaptive Laws (γ = γσe = γσkf = 100)
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Figure 3.9: Performance Comparison of Adaptive Laws Under Sensor Noise

(γ = γσe = γσkf = 20)
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3.5.2 Helicopter Model Application

In this section, Kalman filter based e-modification is implemented to a high fidelity

helicopter model. Helicopter application is the original work of this thesis. Neural

network adaptive controller is constructed by using LPNN and SHL-NN structure

and implemented to the helicopter model. Performance of the adaptive controller

with baseline law and with e-modification terms are investigated.

LPNN adaptive controller is implemented to a single channel of the helicopter. The

analyses are performed for both longitudinal and lateral channels while other channels

are kept at zero reference with proportional-integral-derivative (PID) controller.

SHL-NN adaptive controller which is a multi-input multi-output neural network struc-

ture is implemented to all channels (roll, pitch and yaw). In other words, the output of

the neural network is a vector containing the adaptive elements of the three channels.

3.5.2.1 Results with LPNN

Adaptive controller constructed with LPNN is implemented to a single channel of the

helicopter. Controller of the theta channel (θ) is augmented with LPNN in longitudi-

nal channel while controller of the psi channel (ψ) is augmented with LPNN in lateral

channel. In both applications, other two channels are kept at zero reference with PID

controller. The block diagram of the controller is given for longitudinal channel in

Figure 3.10.

Figure 3.10: Block Diagram of the Longitudinal Controller Augmented with LPNN
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Performance of the channels are analyzed for two different input references, which

are step signal input and sine signal input.

Step Input

A step input is given as the reference input in simulations for both longitudinal and

lateral channels.

Longitudinal Channel

15 degree step input is fed to the system meaning that helicopter performs pull-up

push-down maneuver. Neural network inputs chosen for longitudinal channel are

given below, where b1 is the neural network bias term.

x̄long = [θ q θq b1]T (3.61)

Activation potentials of the neurons are selected to be:

a = [1 1 0.1]

Feedback gains of the PD controller are chosen such that natural frequency of the

desired dynamics is 1 rad/s and its damping ratio is 0.8. Kalman Filter parameters for

longitudinal channel are chosen to be S0 = I, R = 0.1I and Q = 0.001I and for the

case which sensor noise is taken into consideration, these parameters are tuned to be

S0 = I, R = 0.1I and Q = 0.01I . I is the identity matrix.

Simulations are performed for different learning rates and baseline law, standard e-

modification and KF-based e-modification are compared in terms of tracking perfor-

mance and control efficiency. Helicopter longitudinal input is the control signal of

interest in this case. In Figure 3.11, response of the helicopter can be seen when the

controller is not augmented with neural networks. The modelling error existing in the

system degrades system performance significantly.
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Figure 3.11: Controller Performance in Longitudinal Channel without Adaptive

Control

Figures 3.12 and 3.13 show the performance comparison of the adaptive laws for

learning rate 5 and 10, respectively. Kalman Filter approach gives smoother response

among the adaptive laws. Moreover, it achieves the required tracking performance

with less control effort. Its effectiveness is more obvious when the learning rate is

higher (Figure 3.13) since higher gains cause the amplification of modelling errors

and sensor noises. In addition, high control inputs are necessary to achieve the track-

ing in these cases. Kalman Filter approach optimizes the modification gain according

to tracking error.
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Figure 3.12: Longitudinal Performance Comparison of Adaptive Laws with LPNN

(γ = γσe = γσkf = 5)
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Figure 3.13: Longitudinal Performance Comparison of Adaptive Laws with LPNN

(γ = γσe = γσkf = 10)
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Sensor noise is added to the system to evaluate the performance of the KF approach.

Similar to previous results, KF approach provides less oscillatory system response

with smaller control effort. The comparison of the adaptive laws when the system is

under sensor noise is shown in Figure 3.14.
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Figure 3.14: Longitudinal Performance Comparison of Adaptive Laws under Sensor

Noise (γ = γσe = γσkf = 10)

Adaptive weight norms are also investigated for different adaptive laws. Figure 3.15

shows this comparison for system with and without sensor noise. It can be seen from

the figure that weight norm is small for KF approach indicating that its control effort

is minimum among the others.

The body velocities of the helicopter during pull-up push-down maneuver are given

in Figure 3.16.
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Figure 3.15: Comparison of Adaptive Weight Norms (a)Without Sensor Noise

(b)With Sensor Noise
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Figure 3.16: Body Velocities of the Helicopter During Longitudinal Maneuver
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Lateral Channel

30 degree step input is given to the yaw angle (ψ) for lateral channel simulations.

Neural network inputs chosen for lateral channel (ψ) are given below where b1 is the

neural network bias term.

x̄lat = [ψ r ψr b1]T (3.62)

Activation potentials of the neurons are chosen to be:

a = [1 1 1]

Feedback gains of the PD controller are chosen such that natural frequency of the

desired dynamics is 1 rad/s and its damping ratio is 0.8. Kalman Filter parameters for

lateral channel are chosen to be S0 = 10I, R = I and Q = 0.1I .

In Figure 3.17, system response without adaptive control is given. Control signal is

the helicopter pedal input in this case.
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Figure 3.17: Controller Performance in Lateral Channel without Adaptive Control

In Figures 3.18 and 3.19 system response can be seen for adaptive control learning

rates 10 and 20, respectively. Similar to longitudinal simulation results, KF approach

provides the best results with less control effort. However, adding damping to the

system is a compromise with tracking performance. Although KF approach tracking

error is bigger than the alternatives, it satisfies the required level of tracking.
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Figure 3.18: Lateral Performance Comparison of Adaptive Laws with LPNN

(γ = γσe = γσkf = 10)

Simulation with sensor noise is performed for learning rate 20. As expected, e-

modification with Kalman Filter approach provides less oscillatory response with less

control input. Results are given in Figure 3.20.

Adaptive control effort is compared for different adaptive laws in terms of adaptive

weight norms. From Figure 3.21, it can be seen that norm of the weights is the

smallest for KF approach.

The body velocities of the helicopter during yaw maneuver are given in Figure 3.22.
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Figure 3.19: Lateral Performance Comparison of Adaptive Laws with LPNN

(γ = γσe = γσkf = 20)
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Figure 3.20: Lateral Performance Comparison of Adaptive Laws under Sensor Noise

(γ = γσe = γσkf = 20)
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Figure 3.21: Comparison of Adaptive Weight Norms (a)Without Sensor Noise

(b)With Sensor Noise
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Figure 3.22: Body Velocities of the Helicopter During Lateral Maneuver
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Sine Signal Input

In this part, sine signal input is given as the reference input in simulations for both

longitudinal and lateral channels to investigate the system performance with different

command inputs.

Longitudinal Channel

10 degree sine input is fed to the longitudinal channel (θ) of the system in this case

to analyze the performance of KF approach with a different command input. Kalman

Filter parameters for sine input simulation are chosen to be S0 = 10I, R = 0.1I and

Q = 0.01I .

In Figure 3.23 and 3.24 performance comparisons of the adaptive laws for learning

rate 10 are given for the system with and without sensor noise. From the results,

it is observed that KF approach performs better in terms of control effort relative

to standard e-modification in the nominal case as well as when the system is under

sensor noise. System response with KF-based e-modification requires less control

input to achieve the required level of tracking while providing system response almost

without oscillations.
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Figure 3.23: Performance Comparison of Adaptive Laws with Longitudinal Sine

Input (γ = γσe = γσkf = 10)
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Figure 3.24: Performance Comparison of Adaptive Laws with Longitudinal Sine

Input under Sensor Noise (γ = γσe = γσkf = 10)

Adaptive control efficiency is evaluated in terms of adaptive weight norms in Figure

3.25 for nominal system and for the system when the sensors are noisy. KF approach

provides smooth control input with smaller magnitude for both case.

Body velocities of the helicopter are given in Figure 3.26.
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Figure 3.25: Comparison of Adaptive Weight Norms (a)Without Sensor Noise

(b)With Sensor Noise
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Figure 3.26: Body Velocities of the Helicopter with Longitudinal Sine Input
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Lateral Channel

30 degree sine input is fed to the yaw channel (ψ) of the system in this case to analyze

the performance of the KF approach with a different command input in lateral dynam-

ics. Similar to previous case, Kalman Filter parameters for lateral channel simulations

are chosen to be S0 = 10I, R = 0.1I and Q = 0.01I .

Comparison of adaptive laws for lateral channel is performed for learning rates 10

and 20. Tracking performance and the control effort of the helicopter can be seen

in Figures 3.27 and 3.28 when the learning rates are 10 and 20, respectively. The

baseline adaptive law and standard e-modifications result in high control input to

satisfy the tracking, leading to an oscillatory system response. On the other hand,

KF-based e-modification provides smooth system response and control input with

little oscillations. Besides, with this approach tracking error is kept small during the

flight simulation.
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Figure 3.27: Performance Comparison of Adaptive Laws with Lateral Sine Input

(γ = γσe = γσkf = 10)
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Figure 3.28: Performance Comparison of Adaptive Laws with Lateral Sine Input

(γ = γσe = γσkf = 20)

System is analyzed with sensor noise for learning rate 20. Tracking and control effort

performances are compared for baseline, standard e-modification and KF-based e-

modification in Figure 3.29. Similar to the nominal case, KF-based e-modification

provides the best results.
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Figure 3.29: Performance Comparison of Adaptive Laws with Lateral Sine Input

under Sensor Noise (γ = γσe = γσkf = 20)

Adaptive weight norms are compared for nominal case and the case with the sen-

sor noise taken into consideration in Figure 3.30. It can be seen from the figure

that control effort is less when the neural network is augmented with KF-based e-

modification.

Body velocities of the helicopter during this maneuver are given in Figure 3.31.
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Figure 3.30: Comparison of Adaptive Weight Norms (a)Without Sensor Noise

(b)With Sensor Noise
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Figure 3.31: Body Velocities of the Helicopter with Lateral Sine Input
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3.5.2.2 Results with SHL-NN

Adaptive controller constructed with single hidden layer neural network is imple-

mented to the attitude control of the helicopter in this section. This structure of neural

networks is preferred for more complex applications like multi-channel control since

even one hidden layer improves the nonlinear function approximation significantly.

The output of the adaptive control is a vector containing the adaptive elements of at-

titude channels (φ, θ, ψ). With this structure, uncertainties in all three channels are

compensated with a neural network. The system is illustrated with a block diagram

in Fig. 3.32.

Figure 3.32: Block Diagram of the System with SHL

Input layer of SHL-NN is composed of 14 inputs including the bias term, and all the

inputs are scaled to the same order. Number of hidden neurons are chosen to be 10

and there are 3 outputs which are adaptive control elements of roll, pitch and yaw

channel. Neural network inputs are chosen to be;

x̄ = [φcom θcom ψcom φ θ ψ u v w p q r ||Z|| b1]T (3.63)

where ||Z|| represents the Frobenius norm of matrix Z, which is defined as

Z =

W 0

0 V

 (3.64)
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Activation potentials of the neurons are chosen to be:

a = [110 100 50 20 1 0.1 0.01 0.001 0.0001 0.0001]

Feedback gains of the PD controller are chosen such that natural frequency of the

desired dynamics is 1 rad/s and its damping ratio is 0.8. In addition, Kalman Filter

parameters for SHL-NN structure are chosen to be S10 = S20 = I, R1 = R2 = 0.1I

and Q1 = Q2 = 0.01I for all maneuvers.

Simulations are performed for longitudinal and lateral channels with step input simi-

lar to the case with LPNN.

Longitudinal Channel

15 degree step input is fed to the longitudinal channel which is the pitch channel.

Other channels (φ, ψ) are kept at zero reference. Figure 3.33 shows the attitude

channels and the pitch rate (q) of the helicopter with baseline adaptive law, stan-

dard e-modification and KF-based e-modification. The improvement of the KF-based

e-modification is clearly seen from the pitch angle (θ) and the pitch rate (q) which is

the result of the variable modification gain obtained with Kalman approach.

Helicopter control inputs (longitudinal, lateral and pedal inputs) are shown in Fig-

ure 3.34. Improvement of the KF-based e-modification on control effort is observed

from the longitudinal control input. The result of KF-based e-modification is less

oscillatory compared to its alternatives which relieves the load at the swashplate.

Sensor noise is taken into account and a performance evaluation is performed for

longitudinal maneuver. The system responses are provided in Figure 3.35 and the

control inputs are provided in Figure 3.36. Similar to the nominal case, results with

KF-based e-modification are less oscillatory in terms of both system response and

control effort. In addition, it achieves the required tracking.
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Figure 3.33: Helicopter Response to Longitudinal Input with and without

Modification (SHL) (γ = γσe = γσkf = 5)
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Figure 3.34: Helicopter Control Inputs with and without Modification for

Longitudinal Maneuver (SHL)
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Figure 3.35: Helicopter Response to Longitudinal Input under Sensor Noise with

and without Modification (SHL) (γ = γσe = γσkf = 5)
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Figure 3.36: Helicopter Control Inputs under Sensor Noise with and without

Modification for Longitudinal Maneuver (SHL)
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Adaptive control effort is compared in terms of weight norms in Figure 3.37 for nom-

inal case and when the system is under sensor noise. The norm of the neural network

weights with KF-based e-modification is smaller compared to its alternatives illus-

trating its efficiency.
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Figure 3.37: Comparison of Adaptive Weight Norms for SHL-NN (a)Without

Sensor Noise (b)With Sensor Noise

Body velocities of the helicopter during longitudinal maneuver are given in Figure

3.38.
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Figure 3.38: Body Velocities of the Helicopter During Longitudinal Maneuver (SHL)
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Lateral Channel

In order to analyze the performance of KF approach in lateral channel, 15 degree step

input is fed to the phi channel (φ). Other channels (θ, ψ) are kept at zero reference.

Figure 3.39 shows the attitude channels and the roll rate (p) of the helicopter with

baseline adaptive law, standard e-modification and KF-based e-modification. The

difference between results are not very noticeable in this simulation compared to the

longitudinal channel. However, oscillations occur in roll rate for baseline adaptive law

and standard e-modification, whereas KF approach provides smooth system response

without any oscillations. Figure 3.40 shows the helicopter control input comparison

for different adaptive laws. It is observed from the figure that KF approach eliminates

the oscillations for both longitudinal and lateral control inputs. This expresses the

effectiveness of single hidden neural network over LPNN. Although the maneuver is

lateral, neural network adapts the system also in longitudinal channel.
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Figure 3.39: Helicopter Response to Lateral Input with and without Modification

(SHL) (γ = γσe = γσkf = 5)
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Figure 3.40: Helicopter Control Inputs with and without Modification for Lateral

Maneuver (SHL)

Figures 3.41 and 3.42 show the results when the system is under sensor noise. How-

ever, no significant improvement of KF approach is observed in this scenario. On

the other hand, KF-based e-modification does not perform worse than its alternatives.

There are slight improvements in the results; however, they are not as obvious as the

results of the other cases.
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Figure 3.41: Helicopter Response to Lateral Input under Sensor Noise with and

without Modification (SHL) (γ = γσe = γσkf = 5)
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Figure 3.42: Helicopter Control Inputs under Sensor Noise with and without

Modification for Lateral Maneuver

86



Adaptive control effort is compared in terms of weight norms in Figure 3.43 for nom-

inal case and when the system is under sensor noise.
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Figure 3.43: Comparison of Adaptive Weight Norms for Lateral Maneuver

(a)Without Sensor Noise (b)With Sensor Noise
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Body velocities of the helicopter during lateral maneuver are given in Figure 3.44.
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Figure 3.44: Body Velocities of the Helicopter During Lateral Maneuver (SHL)

Choosing the Kalman Filter parameters may need some tuning to obtain these results.

If these paremeters are not tuned, tracking may not be satisfied in the required level.

However, from the simulation analysis, it is seen that adaptive law with Kalman Filter

based modification term does not induce extra oscillations to the system.
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CHAPTER 4

CONCLUSION

In this thesis, two Kalman Filter based applications are implemented to a high-fidelity

helicopter model. In the first application, a navigation filter using a Kalman Filter

is designed. The objectives are to add a sensor model to the helicopter model, to

simulate the inertial sensors’ error characteristics (accelerometers and gyoscopes), to

add a GNSS model to simulate the characteristics of GNSS solutions and to design

INS/GNSS integration algorithm by using Kalman Filter to obtain an accurate nav-

igation solution. The second application is the use of the Kalman Filter approach

in adaptive control as a modification term. The objectives are to design an attitude

controller for the helicopter, to augment it with neural networks to adapt for the uncer-

tainties existing in the system and to use a Kalman Filter approach in the modification

term of the update law.

In the first part, the error characteristics of a MEMS inertial sensors are modeled.

Then inertial navigation algorithm is designed to obtain attitude, velocity and position

of the helicopter from the inertial sensor outputs. Next, INS solution is aided with a

GNSS to estimate the accumulated sensor errors in inertial navigation solution and

correct them in the system to obtain a reliable navigation solution of the helicopter. A

GNSS model is constructed with a typical position and velocity errors of the receivers

on the market. Kalman filter is designed and navigation errors are estimated (position,

velocity and attitude) as well as sensor bias errors.

The validation of the Kalman Filter algorithm is performed with simulations. Perfor-

mance of the integration algorithm is studied with a flight scenario consisting of both

longitudinal and lateral maneuvers. The results are analyzed in terms of estimation
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errors and error covariances. It is observed that the stand-alone inertial navigation

solutions diverge from the true solution with time. On the other hand, corrected nav-

igation solutions of the Kalman Filter provides a solution with small and bounded

errors. Errors between integrated navigation and true solutions are observed to be

in covariances which are obtained through the Kalman Filter indicating that results

are consistent. Thus, the accuracy of the Kalman Filter algorithm is validated. Fur-

thermore, estimated sensor bias errors reach the actual sensor error values which also

point to the accuracy of the Kalman filter. In addition, a significant disadvantage of

the system is also studied, which is GNSS signal outage. This case is also simulated

and the improvement of GNSS aiding is observed. Accumulated errors during the sig-

nal outage are estimated and compensated by Kalman Filter just after reacquisition.

Moreover, performance of Kalman Filter is also investigated through the difference

between actual observations and predicted observations. The difference between the

measurements and estimated values by Kalman Filter is seen to be zero-mean. This

means that estimation of the Kalman filter is consistent with the measurements indi-

cating that Kalman filter works optimally throughout the simulation.

In the second part, a model inversion based controller with a neural network adaptive

element is designed to control the attitude of the helicopter, namely Euler angles.

Kalman Filter (KF) approach is used in the modification term of the neural networks.

The rather well-known e-modification is reformulated with this approach and added

to the baseline adaptation law. Linear-in-the parameter and single hidden layer neural

networks are adopted as the structure to analyze the performance of the adaptive

controller both in single channel and multi channel.

Performance is evaluated and compared with other traditional update laws in terms

of system response, tracking performance and control effort with simulations. It is

observed that the KF-approach results in a less oscillatory control input. This is a

result of the variable modification gain obtained with KF approach. With variable

modification gain, the network gain is adjusted while the tracking error is compen-

sated for and becomes smaller. Thus, it eliminates the unnecessary control effort

arising due to fixed modification gain. In existing modification terms, this fixed gain

is selected higher in consideration of possible large modeling errors. To achieve the

required tracking, high learning gains result in oscillatory control inputs. These os-
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cillatory inputs can excite the unmodeled dynamics and may lead to instability. On

the other hand, with KF approach, smoother control inputs with less oscillations are

provided through variable modification gain. This is a significant improvement, since

this would relieve control effort and therefore the loads at the swashplate of the he-

licopter. Moreover, as a result of smoother control input, the KF approach provides

smoother system response than its alternatives and also achieves the required track-

ing. From all simulations with different maneuvers and neural network structures,

similar results are observed using the KF-approach.

The performance of the KF-based e-modification is evaluated also when there is sen-

sor noise. The system response, tracking performance and the control effort of the

helicopter are compared for the baseline adaptive law, standard e-modification and

KF-based e-modification. Similar to the cases where there is no sensor noise, it is

observed that KF-based e-modification provides the best results with less oscillatory

system response and control effort in all simulation scenarios.

It is seen that selection of Kalman Filter parameters influences the tracking and it

may be necessary to tune these parameters for the required tracking performance.

However, results have shown that Kalman Filter based modification term does not

cause divergence of the system response.

As a conclusion, integrated navigation and control systems are developed for a high-

fidelity helicopter. With the help of GNSS aiding, helicopter can navigate accurately

with low cost sensors at both short- and long-term missions. Accurate navigation

solution is also critical for the performance of the control system to provide the true

system response to the controller so that the controller is able to produce the nec-

essary control inputs. Attitude control of the helicopter is fulfilled and augmented

with neural networks to sustain the performance of the helicopter under uncertain-

ties. Kalman Filter approach is used in the design of the adaptive controller and less

oscillatory system response and control effort are achieved. Similar results are also

obtained when the system is under sensor noise.

91



4.1 Future Work

The research carried out in this thesis can be extended in the future as follows:

• Kalman Filter designed for INS/GNSS integration can be improved to handle

non-linear system or measurements, unknown system or measurement noise

standard deviations or non-Gausssian measurement distributions by extending

the Kalman Filter to Extended KF, Unscented KF or Adaptive KF.

• Adaptive controller with KF approach can be challenged with different maneu-

vers

• KF approach in adaptive control can be implemented to the modification terms

in literature other than e-modification.

• E-modification obtained in this work with KF approach can be combined with

other adaptive control techniques such as Concurrent Learning.

• KF approach in adaptive control can be adopted not only for modification term

but also for the whole adaptation law. Thus, learning rate of the neural networks

would be variable and this improves the system response and control effort

more effectively.
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APPENDIX A

MATRICES IN KALMAN FILTER FOR NAVIGATION

Error Propagation Matrix:

F =



F11 F12 F13 03 Cn
b

F21 F22 F23 Cn
b 03

03 F32 F33 03 03

03 03 03 03 03

03 03 03 03 03


(A.1)

where

F11 = −
[
ωnin×

]
=


0

Vib,E tanL

R0+h
− Vib,N
R0+h

−Vib,E tanL

R0+h
0 − Vib,E

R0+h
Vib,N
R0+h

Vib,E
R0+h

0

 (A.2)

F12 =


0 − 1

R0(L)+h
0

1
R0(L)+h

0 0

0 tanL
R0(L)+h

0

 (A.3)

F13 =


0 0

Vib,E
(R0+h)2

0 0 − Vib,N
(R0+h)2

Vib,E
(R0+h) cos2 L

0 − Vib,E tanL

(R0(L)+h)2

 (A.4)

F21 = −
[
Cn
b f

b
ib×

]
(A.5)
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F22 =


Vib,D
R0+h

−2Vib,E tanL

R0+h

Vib,N
R0+h

Vib,E tanL

R0+h

Vib,N tanL+Vib,D
R0+h

Vib,E
R0+h

−2Vib,N
R0+h

−2Vib,E
R0+h

0

 (A.6)

F23 =


− (Vib,E)2 sec2 L

R0+h
0

(Vib,E)2 tanL

(R0+h)2
− Vib,NVib,D

(R0+h)2

Vib,NVib,E sec2 L

R0+h
0 −Vib,NVib,E tanL+Vib,EVib,D

(R0+h)2

0 0
(Vib,E)2+(Vib,N )2

(R0(L)+h)2
− 2g

R0

 (A.7)

F32 =


1

R0+h
0 0

0 1
(R0+h) cosL

0

0 0 −1

 (A.8)

F33 =


0 0 − Vib,N

(R0+h)2

Vib,E sinL

(R0+h) cos2 L
0 − Vib,E

(R0+h)2 cosL

0 0 0

 (A.9)

Noise Matrix:

G =



03 Cn
b 03 03

Cn
b 03 03 03

03 03 03 03

03 03 I3 03

03 03 03 I3


(A.10)

Initial Error Covariance Matrix:

P0 =



(∆Att0)2 03 03 03 03

03 (∆V el0)2 03 03 03

03 03 (∆Pos0)2 03 03

03 03 03 (∆Acc0)2 03

03 03 03 03 (∆Gyr0)2


(A.11)

where ∆Att0 :Initial Attitude Uncertainty,
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∆V el0 : Initial Velocity Uncertainty,

∆Pos0 : Initial Position Uncertainty,

∆Acc0 : Initial Accelerometer Uncertainty,

∆Gyr0 : Initial Gyroscope Uncertainty.

System Noise Matrix:

Q =


σ2
Att 03 03 03

03 σ2
V el 03 03

03 03 σ2
Acc 03

03 03 03 σ2
Gyr

 (A.12)

where σ2
Att : Random Noise in Gyroscopes,

σ2
V el : Random Noise in Accelerometers,

σ2
Acc : Bias Drift in Accelerometers,

σ2
Gyr : Bias Drift in Gyroscopes.

Measurement Noise Matrix:

R =



σ2
PosHor 0 0 0 0 0

0 σ2
PosHor 0 0 0 0

0 0 σ2
PosV er 0 0 0

0 0 0 σ2
V elHor 0 0

0 0 0 0 σ2
V elHor 0

0 0 0 0 0 σ2
V elV er


(A.13)

where σ2
PosHor : GNSS Horizontal Position Uncertainty,

σ2
PosV er : GNSS Vertical Position Uncertainty,

σ2
V elHor : GNSS Horizontal Velocity Uncertainty,

σ2
V elV er : GNSS Vertical Velocity Uncertainty.
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