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ABSTRACT

QUANTUM HALL EFFECT ON GRASSMANN MANIFOLDS

BALLI, FAT�H

M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Seçkin Kürkçüo§lu

September 2014, 74 pages

In this work we formulate Quantum Hall E�ect(QHE) on Grassmann manifolds

Gr2(CN). We, �rst give a self-contained reviews of integer QHE on R2, S2 ≡ CP 1

and CP 2 which are oriented towards our purposes. Then, we set up the Landau

problem on Gr2(CN) and discuss and formulate the wave functions, energy levels,

degeneracy, incompressibility and spatial density properties. Group theoretical

techniques are used to explore these properties for both abelian and non-abelian

backgrounds and the wave functions are expressed in terms of suitably restricted

subset of Wigner-D functions. For the simplest case of QHE on Gr2(C4) with

pure U(1) gauge �elds, we introduce Plücker coordinates and express the wave

functions and the gauge �elds in these coordinates. We calculate the two-point

correlation function and deduce the incompressibility of Quantum Hall liquid

on Gr2(C4). We indicate how these formulation in local coordinates may be

generalized to all Gr2(CN).

Keywords: Hall E�ect, Landau Problem, Higher Dimensions, Grassmann Mani-
v



fold, Abelian charge, Non-Abelian Charge, Plücker, Young Diagram.
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ÖZ

GRASSMANN MAN�FOLDLARINDA KUANTUM HALL ETK�S�

BALLI, FAT�H

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Seçkin Kürkçüo§lu

Eylül 2014 , 74 sayfa

Bu tezde Grassmann manifoldlar�nda,Gr2(CN), kuantum Hall etkisi formule edildi.

Ba³lang�ç olarak, R2, S2 ≡ CP 1 ve CP 2 manifoldlar�nda tam say� kuantum Hall

etkisi, tez konusu olan çal�³maya referans olacak seviyede özetlendi. Akabinde,

Gr2(C4) manifoldunda Landau problemi olu³turuldu ve kuantum Hall sistemle-

rinde önemli olan dalga denklemi, enerji seviyeleri, dejenere durumu, s�k�³t�r�la-

bilirlik ve yo§unluk gibi özellikler tart�³�ld� ve formalize edildi. Bu özelliklerin

abelyen ve abelyen olmayan ayar alanlar�nda aç�klamak ad�na grup teori teknik-

leri kullan�ld� ve dalga denklemleri Wigner-D fonksiyonlar�n�n uygun bir ³ekilde

s�n�rland�r�lm�³ alt kümeleri cinsinden tari�endi. Grassmann manifoldlar�n�n en

basit hali olan Gr2(C4) formunda ve U(1) ayar alan� alt�nda Plücker koordinatlar�

tari�endi ve bu koordinatlar kullan�larak dalga denklemi ve ayar alan� ifade edildi.

�ki parçac�k için korelasyon denklemi hesapland� ve Gr2(CP 4) manifoldunda Ku-

antum Hall sistemlerinin s�k�³t�r�lamazl�k özelli§i ortaya kondu.
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Anahtar Kelimeler: Hall Etkisi, Landau Problemi, Yüksek Boyutlar, Grassmann

Manifoldu, Abelyen Yük, Abelyen olmayan Yük, Plücker, Young �emas�
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CHAPTER 1

INTRODUCTION

Quantum Hall e�ect (QHE) is essentially described as the quantization of the

resistivity, R, in 2-D electron systems in low temperatures and under the per-

pendicular external magnetic �eld,B⊥. In classical QHE, resistivity R depends

on the applied magnetic �eld linearly as was �rst discovered by E. Hall in 1879

[1]. In 1980 von Klitzing discovered that at certain intervals of the magnetic �eld,

resistivity value remains the same while it changes discontinuously at the spesi�c

values of B⊥. This variation forms a ladder-like shapes on the graph of R versus

B⊥ that we call Hall plateaux.

The formulation of the QHE on planar systems is given by R. B. Laughlin [2].

He constructed a multi-particle wave function (Laughlin-wave functions) which

describe 2D planar electron systems under the in�uence of strong perpendicular

magnetic �eld. Laughlin-wave functions propose that QH liquid systems have

a incompressibility property due to Pauli exclusion principle. In this system,

probability of �nding any electron pair in the same locations is zero, which is the

main reason for the incompressibility. An important consequence of the Laughlin

description is that the wave functions are not invariant under the translation. In

1983 F.D.M Haldane proposed a electron gas system on S2 which are under the

in�uence on the Dirac magnetic monopole located at the center of S2 [3] . He

obtained the energy spectrum of the system and single- and multi particle wave

functions which are translationally invariant.

In 2000, J. Hu and S.C. Zhang constructed the 4-dimensional generalization of

the QHE under SU(2) gauge �eld background [4]. The authors solved the Lan-

dau problem for the fermions with additional SU(2) degrees of freedom. They
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expressed the spatial density of fermionic particles in the thermodynamic limit.

In order to obtain �nite spatial density, they attached in�nite SU(2) degrees of

freedom which gives massless particles with all spin values. They forged a new

way to study higher spin massless �elds such as photons and gravitons as the

edge excitations of QH liquids. However, occurrence of other massless higher spin

states is not the desired property of the system. In 2001, D. Nair and V.P. Kara-

bali proposed a new higher dimensional generalization of the QHE [5]. These

authors solved the Landau problem on complex projective spaces. They formu-

late the problem on CP 1, which is reformulation of the work of F.D.M Haldane

in a mathematical language and adaptable to higher dimension. They solved the

Landau problem by taking CPN as the coset realization CPN ∼ SU(N+1)
U(1)×SU(N)

. In

this realization, wave functions are the suitable subsets of the Wigner-D functions

on SU(N + 1) in a manner that certain restrictions are imposed due to abelian

,U(1), and/or non-abelian ,SU(N), gauge �eld backgrounds. In this manner, the

wave functions can be thought as the U(1) and SU(N) bundles over CPN . D.

Nair and V.P. Karabali achieved to express the energy spectrum of the system

under the U(1) and/or SU(N) gauge �eld backgrounds. In this approach, degen-

eracy of the system is expressed as the dimension of the representation on which

restricted Wigner−D functions belong. An important achievement of their work

is that �nite spatial density is obtained in the thermodynamic limit without intro-

ducing in�nite SU(2) degrees of freedom. Another important achievement of this

work is to show incompressibility property of the system. For this purpose, they

calculated the two-point correlation function that basically gives the probability

of the �nding any two particles at the given coordinate pairs. Result gives zero

when the given coordinates refers to the same point, as expected.

In this thesis we focus our attention on the formulation of QHE on Grass-

mann manifolds. Building upon the ideas of D. Nair and V.P. Karabali [5],

we solve the Landau problem on Grassmanians which are the generalization of

CPN and de�ned as the 1-dimensional complex subspaces through origin in CN

and shown as Gr2(CN). The coset realization may be expressed as Gr2(CN) ∼
SU(N)

U(1)×SU(2)×SU(N−2)
which implies the wave functions may be de�ned for three dif-

ferent cases: i) single U(1) ii) SU(2) and U(1) iii) SU(2)× SU(N − 2) and U(1)

gauge �eld backgrounds. In chapter 3 we �rst construct the Landau problem on

2



the simplest form of the Grassmanians, Gr2(C4). Then, we formulate the wave

functions in terms of Wigner-D functions and give the energy spectrum for these

three cases. We also express the two-point correlation function and prove the

incompressibility property of the QH system in Grassmannians. In addition we

calculate spatial density in thermodynamic limit. We generalize the results for

Gr2(CN).

Grassmannian manifold Gr2(C4) may be parametrized by Plücker coordinates.

The parametrization can be shown as ψ : Gr2(C4) ↪→ P
(∧2 CN

)
where ψ is in

fact an embedding since the image is the totally decomposable vectors in
∧2 CN

[6]. The embedding is given by a homogeneous equation called Klein quadric. We

formulate the local form of the wave functions in terms of Plücker coordinates.

First, by using the transformation properties of the Wigner-D functions and gauge

�eld we write the explicit form of the wave functions for the single electron. Then,

we express the many-particle wave function by forming the appropriate Slater

determinants. In order to analyse the incompressibility property of the system

we calculate the two-point correlation function in terms of Plücker coordinates.

In the thermodynamic limit, that gives zero if the two particle coordinates are

selected as identical. This result is in coherence with incompressibility property of

the QH liquid. As a �nal note, the generalization of the formulation for Gr2(CN)

is also possible by de�ning homogeneous conditions in a proper form for N > 4.
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CHAPTER 2

INTEGER HALL EFFECT

In this chapter we give a short review of Integer Quantum Hall E�ect following

the exposition of [7].

2.1 Classical Hall E�ect

Hall e�ect was �rst observed in 1879 by E. Hall. Some 18 years before the

discovery of the electron, E. Hall conducted some experiments to analyse the

e�ect of the magnetic �eld on the electric current. He observed that a voltage

di�erence occurs on the current carrying plate which is exposed to the external

perpendicular magnetic �eld.

Figure 2.1: Basic Representation of the Hall's Experiment

As can be seen from �gure 2.1 a 2D conducting plate is located in xy-plane and
5



a current is passing through the plate in y-direction. Hall observed that if one

applies the magnetic �eld which has a component perpendicular to the plate, a

non-zero potential di�erence is observed in the voltmeter. This is called the Hall

voltage and it is proportional to the applied magnetic �eld as can be seen from

the �gure 2.2.

Figure 2.2: Dependence of Hall Resistivity on Perpendicular Magnetic Field re-
garding Classical Hall E�ect versus Integer Quantum Hall E�ect

After the discovery of the electron, Hall e�ect is explained by the Maxwell theory

and Lorentz force law. According to the Lorentz force law, a net force acts on

a charged particle which is exposed to the external magnetic and electric �elds.

The law can be expressed in the form

Fnet = mv̇ = −e(E + v ×B) . (2.1)

When the external magnetic �eld is switched on, electrons which move in +y

direction will be de�ected toward −x direction by the magnetic �eld. De�ection

of the electrons causes a polarization between the two edges of the plate, which

causes a electrical �eld in the −x direction. This electric �eld gives an electrical

force on electrons in the +x direction. After a certain amount of time, these two

forces balance each other. This steady-state condition can be expressed as:

Fnet = 0 = mv̇ = −e(E + v ×Bext) , (2.2)
6



where Bext is in +z direction. For simplicity, we may write Bext = B⊥k̂. (2.2)

gives us:

vy =
−Ex
B⊥

. (2.3)

We can relate the current with the charge velocity as

J = eρ0v , (2.4)

where ρ0 is the charge density of the plate. By using (2.4) and (2.3), we may

write
Ex
Jy

= −B⊥
eρ0

. (2.5)

If we assume that the charge density is constant over the plate, this equation will

give:
Ex`

Jy`
=
Vx
Iy

= −B⊥
eρ0

= Ryx , (2.6)

where Ryx is called Hall resistivity with Ryy = Rxx = 0 and ` is the cross-sectional

length of the plate kx, ky. From (2.6) it is clear that Hall resistivity depends on

the external magnetic �eld linearly and does not depend on the shape of the plate.

As will be discussed in the following sections, (2.6) will no longer hold and the

relation between Hall resistivity and the magnetic �eld will be modi�ed.

2.2 Integer Quantum Hall E�ect

2.2.1 Landau Problem on the Plane

Landau problem on a plane is described as an electron under the in�uence of

constant magnetic �eld which is perpendicular to the system. In order to trap

electrons in a thin layer, interface between the semiconductors or between semi-

conductors and insulators can be used. If the interface is located on the xy-plane,

then electrons may be considered to be trapped in a potential well in the z-

direction, which con�nes the motion of the electrons to two-dimensions. The

interface is thin enough and the system is cooled to almost absolute zero tem-

perature so that the interactions between the electrons can be neglected. Under

these conditions an isolated charged particle makes a cyclotron motion.
7



Hamiltonian for a single electron under the in�uence of the electromagnetic �eld

[8] is

H =
1

2M

(
p +

eA

c

)2

+ eφ , (2.7)

where M , p, A and c are the electron mass, canonical momentum and magnetic

potential and speed of light respectively. If the only external e�ect is perpendic-

ular magnetic �eld and we use the unit system in which c = 1, H reads

H =
1

2M

[
(−i~∂x + eAx)

2 + (−i~∂y + eAy)
2] =

1

2M
(P 2

x + P 2
y ) , (2.8)

where Pi is called as kinematical momentum with

Px = (−i~∂x + eAx) , Py = (−i~∂y + eAy) . (2.9)

Even though the components of the canonical momentum commute with each

other, i.e, [pi, pj] = 0, commutator of kinematical momentum gives the non-zero

value

[Px, Py] = i~eB⊥ = i
~2

`2
B

, (2.10)

where B = ∇×A and `B
(

=
√

~
eB

)
is called the magnetic length which is going

to be identi�ed as the fundamental scale for the QHE. We may decompose the

electron coordinate into two pieces as x = R + X where X = (X, Y ) and R =

(Rx, Ry) are called guiding center and relative coordinate with the form

X = x+
Py
eB⊥

, Y = y − Px
eB⊥

, Rx = − Py
eB⊥

, Ry =
Px
eB⊥

. (2.11)

Heisenberg equation of motion reads

dX

dt
=

1

i~
[X,H] = 0,

dY

dt
=

1

i~
[Y,H] = 0

dPx
dt

=
1

i~
[Px, H] = wcPy,

dPy
dt

=
1

i~
[Py, H] = −wcPx , (2.12)

where wc = ~
M`2B

is called as cyclotron frequency. By using 2.11 and 2.12 we may

write
d

dt
(Rx + iRy) = −iwc(Rx + iRy) . (2.13)

Therefore, we obtain

Rx = R0
xcoswct+R0

ysinwct, Ry = −R0
xsinwct+R0

ycoswct , (2.14)

which implies that as a semi-classical approach the system can be seen as an
8



Figure 2.3: Cyclotron Motion of the Electron in an external Magnetic Field

electron which makes a circular motion around the guiding center with a radius

R as shown in the �gure 2.3. Commutator of the guiding center coordinates gives

[X, Y ] = −i`2
B , (2.15)

and the commutator of the kinematical momentum and guiding center compo-

nents give

[X,Px] = [X,Py] = [Y, Px] = [Y, Py] = 0 . (2.16)

Commutation relations,(2.15) and (2.16), allow us to de�ne two sets of uncoupled

harmonic oscillator annihilation and creation operators in terms of the kinematical

momentum and the guiding center coordinates

a =
`B√
2~

(Px + iPy), a† =
`B√
2~

(Px − iPy) (2.17)

b =
1√
2`B

(X − iY ), b† =
1√
2`B

(X + iY ) , (2.18)

where

[a, a†] = [b, b†] = 1, [a, b] = 0 . (2.19)

We can de�ne the number operators

N̂ = a†a, n̂ = b†b . (2.20)
9



Since the commutator of these two number operators is zero we can diagonalize

them simultaneously and they will span the Fock states labelled by |N, n〉:

N̂ |N, n〉 = N |N, n〉 , n̂ |N, n〉 = n |N, n〉 , (2.21)

where N and n are the corresponding eigenvalues. The annihilation and creation

operator pairs act on the Fock states and give

a† |N, n〉 =
√
N + 1 |N + 1, n〉 , a |N, n〉 =

√
N |N − 1, n〉 , (2.22)

b† |N, n〉 =
√
n+ 1 |N, n+ 1〉 , b |N, n〉 =

√
n |N, n− 1〉 . (2.23)

The ground state,|0, 0〉, satis�es the condition:

a |0, 0〉 ≡ b |0, 0〉 ≡ 0 . (2.24)

By acting creation operators on the ground state we can create the generic state

as:

|N, n〉 =
(a†)N(b†)n√

N !n!
|0, 0〉 . (2.25)

The Hamiltonian of the system is:

H = (a†a+ aa†)
~wc

2
= (a†a+

1

2
)~wc = (N +

1

2
)~wc , (2.26)

where wc is interpreted as the cyclotron frequency as

wc =
eB⊥
M

. (2.27)

We note that H depends only on the set (a, a†). Energy levels may be written in

the form

EN = (N +
1

2
)~wc = (N +

1

2
)

~2

M`2
B

. (2.28)

These are called the Landau levels.

2.2.2 Density of States

Density of states(DOS) can be thought as the number of states per unit energy

per unit volume as:

ρ(ε) =
H(ε)

V
. (2.29)

H(ε) is the number of states per unit energy and V is the volume of the system.

We will calculate the DOS with and without external magnetic �eld.
10



2.2.2.1 Density of States in the Absence of the Magnetic Field

In the absence of the external magnetic �eld, the system can be thought as a

collection of free particles in an in�nite potential well with a square cross-section

having side length L. The wave function of an electron may be written as

ψ(x) =

√
2

L
sinkx , (2.30)

where k is the wave number. It has the energy eigenvalues and wave numbers

ε =
p2
x + p2

y

2m
=

~2(k2
x + k2

y)

2m
, (2.31)

kx =
2π

L
nx, ky =

2π

L
ny , (2.32)

which implies that the degenerate states form a circle with the radius k =√
k2
x + k2

y in k-space as shown in the �gure (2.4).

Figure 2.4: States of Electrons at k-space in the absence of the Perpendicular
Magnetic Field

From (2.32) we may assume that the side length of each lattice is 2π
L

and then

each state is localized in a square lattice having side length 2π
L
. Number of the

states between the energy levels ε and ε+4ε may be expressed in the form

H(ε)dε =
1

(2π
L

)2
2πkdk . (2.33)

By using (2.31), H(ε) may be written such that

H(ε) =
1

(2π
L

)2
2πk

dk

dε

=
1

(2π
L

)2
2πk

m

~2k

=
L2m

2π~2
. (2.34)
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The electrons are con�ned in a 2D box with the volume L2. DOS is therefore

given as

ρΦ =
m

2π~2
. (2.35)

This result implies that the density of the states is constant independent of every

energy level and location.

2.2.2.2 Density of States in the Presence of the Magnetic Field

In the presence of the magnetic �eld, the Hamiltonian and energy eigenvalues

can be read from (2.8) and (2.28), respectively. By using Pi = ~ki, these two

equations give

(k2
x + k2

y)N =
2N + 1

`2
B

, (2.36)

where subscript N is the Landau level index. The equation implies that the

degenerate states of a given Landau level are distributed over a circle in k-space.

This can be observed from the �gure 2.5. Unlike the free particle case, energy

spectrum is discrete and labelled by N . In k-space, area between two successive

Landau levels may be written as

π| kN |2 − π| kN−1 |2 =
2π

`2
B

. (2.37)

Figure 2.5: States in k-space under the in�uence of the perpendicular magnetic
�eld

If the number of the particles and volume of the system is kept �xed, a state

occupies an area
(

2π
L

)2
in k-space. This gives the number of states per unit

12



energy H(ε) in the form

H(ε) =
1(

2π
L

)2

2π

`2
B

, (2.38)

Using (2.29) , density of states takes the form

ρΦ =
1

2π`2
B

. (2.39)

This result implies that DOS changes as `2
B changes. DOS increases linearly by

the applied magnetic �eld. If we keep increasing the magnetic �eld, there will be

more states available at the lowest Landau level.

2.2.3 Single Electron Wave Function

In the previous sections Landau levels were written in terms of Fock states which

are labelled by two quantum number, N and n. Energy eigenvalues are given in

terms of the quantum number N and the degeneracy of the states are controlled

by the quantum number n. Depending on our gauge choice we can �nd several

di�erent observables apart from n̂ = b†b, which commute with the Hamiltonian

and therefore simultaneously diagonalized together with the Hamiltonian.

(2.15) implies that we can not diagonalize X and Y simultaneously. This forces

us to diagonalize combinations of them. (X2 + Y 2) is the proper choice if the

Hall system has the disk geometry. This operator can be expressed in terms of

the operators given in (2.18) and gives eigenvalues as:

(X2 + Y 2) |N, n〉 = (2b†b+ 1)`2
B |N, n〉

= (2n+ 1)`2
B |N, n〉 . (2.40)

(2.9) and (2.11) imply that X and Y are gauge dependent, which forces us to

make a gauge choice to proceed. The possible choice is the symmetric gauge as

A = (
1

2
B⊥y,−

1

2
B⊥x) . (2.41)

In this gauge, the angular momentum operator can be written as

xpy − ypx =
eB⊥

2
(X2 + Y 2)− 1

2eB⊥
(P 2

x + P 2
y ) = (b†b− a†a)~ . (2.42)

13



and can be diagonalized simultaneously with the Hamiltonian and gives the eigen-

values

(b†b− a†a) |N, n〉 = (n−N) |N, n〉 . (2.43)

We write kinematical momentum and guiding center operators in this gauge in

the form

Px = −i~∂x +
1

2

~
`2
B

y, Py = −i~∂y −
1

2

~
`2
B

x (2.44)

X =
1

2
x− i`2

B∂y, Y =
1

2
y + i`2

B∂x .

De�ning the dimensionless complex coordinates as

z =
1

2`B
(x+iy), z∗ =

1

2`B
(x−iy),

∂

∂z
= `B(

∂

∂x
−i ∂

∂y
),

∂

∂z∗
= `B(

∂

∂x
+i

∂

∂y
) .

(2.45)

we can write the harmonic oscillator operators

a ≡ − i√
2

(z+
∂

∂z∗
), a† ≡ i√

2
(z∗− ∂

∂z∗
), b ≡ 1√

2
(z∗+

∂

∂z
), b† ≡ 1√

2
(z− ∂

∂z∗
) .

(2.46)

Now, we are ready to �nd the wave function of the system. We start with the

lowest Landau level(LLL). In LLL we have

a |0〉 = 0 . (2.47)

and

〈x| a |0〉 =

∫ ∞
−∞
〈x| a |x′〉 〈x′|0〉 dx′

= a(x)ψ0(x) (2.48)

= − i√
2

(z +
∂

∂z∗
)ψ0(x) = 0 ,

where ψ0(x) = 〈x′|0〉 is the LLL wave function. Solving this di�erential equation

gives

ψ0(x) = λ(z)exp(−zz∗) , (2.49)

where λ(z) is the holomorphic function of z. In a similar manner we can act

annihilation operator b on ψ0(x). Finally, we obtain the LLL wave function as

ψ0(x) =
1√

2π`2
B

exp(−zz∗) =
1√

2π`2
B

exp(
−r2

4`2
B

) , (2.50)

14



where r2 = x2 + y2. By using (2.25), wave function of a generic state in LLL is

found to be

ψn(x) = 〈x|n〉 =
1√
n!

(b†)n |0〉

=

√
1

2nn!
(z − ∂

∂z∗
)nexp(−zz∗) (2.51)

=

√
2n

2π`2
Bn!

znexp(−| z |2) .

It is worth to write down the probability density in LLL in order to explore the

disk geometry. The probability density is:

| ψn(x) |2 = ψn(x)(ψn(x))∗ =
2n

2π`2
Bn!

(| z |)2nexp(−2(| z |)2) (2.52)

∼ rnexp(
−r2

2`2
B

) ,

with an extremum at rn =
√

2n`B . This implies that the most probable points

where electrons are con�ned form a ring structure. According to (2.43) , each

state is represented by a ring which has angular momentum n~ . Area between

the rings may be written as

∆S = πr2
n+1 − πr2

n = 2π`2
B . (2.53)

This means each Landau site occupies an area 2π`2
B .

2.2.4 Incompressibility of the Hall Liquid

One of the most important feature of the quantum Hall systems is the incom-

pressibility. To discuss this property, it is worth to calculate compressibility factor

which is the relative change in volume against change in pressure as

κ =
−1

V

∂V

∂P

∣∣∣∣
N
, (2.54)

whereN , V and P are the number of particles, volume and pressure of the system,

respectively. For an isentropic process, pressure can be thought as the change in

internal energy as a response to the change in volume such that

P = −∂E
∂V

, (2.55)
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where E is the internal energy of the system.

QH systems are constructed as a 2-D thin layer between two semiconductors as

indicated in previous sections. That means volume of the system refers the area

of layer for QH systems so that we should take surface area, S, for the volume,

V . Therefore, by combining (2.54) and (2.55) we obtain

κ−1 = −S ∂

∂S

∂E

∂S

∣∣∣∣
N

= −S∂
2E

∂S2

∣∣∣∣
N
. (2.56)

We can relate number of the particle, N , and the surface area of the system, S,

as ρ = N
S
where ρ is called as the number density. In the thermodynamic limit

energy is an extensive property and can be written in terms of energy density as

E = N ε(N /S) = N ε(ρ) . (2.57)

Now, (2.56) reads:

κ−1 = −S ∂

∂S

∂N ε(N /S)

∂S

∣∣∣∣
N

= −SN ∂

∂S

(
−N
S2

∂ε(N /S)

∂S

)
= N 2

(
2

S2

∂ε(N /S)

∂S
+
N
S3

∂2ε(N /S)

∂S

)
= ρ2d

2(ρε)

dρ2
. (2.58)

The chemical potential may be written as

µ =
∂E

∂N

∣∣∣∣
V

. (2.59)

Since we measure the potential in a volume, the number of the particle is the

function of ρ as N = N (ρ) . By using (2.59) and (2.58) , we may write

µ =
1

S

∂

∂ρ
(ρSε(ρ)) (2.60)

=
∂

∂ρ
(ρε) ,

and

κ−1 = ρ2dµ

dρ
. (2.61)
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The condition for the incompressibility is κ = 0, which implies the chemical

potential changes discontinuously as a response to change in number density. We

may conclude that change in the number of particles would cause a abrupt change

in the energy if the QH system is incompressible. However, the classical approach

does not allow any discontinuous change on the chemical potential. As an ansatz

we may update the resistivity formula (2.6) as

Rxy =
Ey
Jx

=
B⊥
eρ

=
1

ν

2π~
e2

=
1

ν

ΦD

e
, ν =

2π~ρ0

eB⊥
, (2.62)

where ν and ΦD are called as the �lling factor and Dirac �ux quantum, respec-

tively. By using (2.39) We may write

ν =
ρ0

ρΦ

=
Ne

NΦ

=
Number of Electrons

Number of States
, (2.63)

in which Ne and NΦ are the number of the electrons and the number of the states

in the system with area S. As will be explained in the following section, there is

a discontinuous jump in the chemical potential if ν is quantized.

2.3 Many Particle Wave Functions

Totally antisymmetric wave function of N electrons can be represented by the

Slater determinant. To eliminate some complexities we assume that all electrons

are spin-polarized by Zeeman e�ect. In other words, we work in a spin frozen

system.

Single particle wave function in the quantum Hall sample of disc geometry at the

ground state has been given as (2.51)

ψn =

√
2n

2π`2
Bn!

znexp(−| z |2) . (2.64)

If the �lling factor ν is 1, say total number of electrons is N ,then each state is

occupied by one electron, only. N -particle wave function is composed of single

particle states ,|0, n〉, where n goes from 0 to N −1. Therefore, we may write the

N -particle wave function in the form

Ψ(1, 2, . . . ,N ) =

√
1

N !

∣∣∣∣∣∣∣∣∣∣∣

ψ0(1) ψ1(1) · · · ψN−1(1)

ψ0(2) ψ1(2) · · · ψN−1(2)
...

...
. . .

...

ψ0(N ) ψ1(N ) · · · ψN−1(N )

∣∣∣∣∣∣∣∣∣∣∣
(2.65)
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By using (2.64), the determinant can be expressed as

Ψ(1, 2, . . . ,N ) =

√
1

N !
ρ
N/2
0

∣∣∣∣∣∣∣∣∣∣∣

1 z1 · · · zN−1
1

1 z2 · · · zN−1
2

...
...

. . .
...

1 zN · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
exp(−

N∑
i=1

| zi |2) , (2.66)

where ρ0 = 2N

2π`2BN !
. We can simplify this expression in the concise form

Ψ(1, 2, . . . ,N ) = ρ
N/2
0

∏
i<s

(zi − zs)exp(−
N∑
i=1

| zi |2) . (2.67)

This is the Laughlin-wave function for integer QHE. When we add one electron in

this system, electron is placed in higher energy levels, which cause a discontinuous

change in chemical potential energy. This implies there is a sudden change in the

chemical potential if all states are occupied with the electrons ,i.e, ν = 1, 2, 3, · · · .
Therefore, system is incompressible (κ = 0) if the �lling factor,ν, takes integer

values.
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CHAPTER 3

QHE ON CP 1 ∼= S2 AND CP 2

3.1 Landau Problem and Haldane Treatment

Momentum operator ,p, is the generator of the translations. For a given wave

functions ψ(x, t) we have that [8]

exp
(
−ip · a

~

)
ψ(x, t) = Daψ(x) = ψ(x + a, t) . (3.1)

If ψ(x, t) are energy eigenstates we further have that

Hψ(x, t) = Eψ(x, t) . (3.2)

Commutator of the H and Da is

[H, Da]ψ(x, t) = (HDa −DaH)ψ(x, t) (3.3)

= Hψ(x + a, t)− Eψ(x + a, t) .

We observe that if the translated wave functions ψ(x + a, t) are eigenstates of

the Hamiltonian with the same eigenvalue, then the commutator vanishes. As a

consequence, the Hamiltonian is translationally invariant. However, the Hamil-

tonian of the Landau problem (2.8) does not commute with p, so we conclude

that the Hamiltonian is not translationally invariant. We note that although the

planar QHE system treated in the previous chapter is translationally invariant, its

Hamiltonian given in 2.7 involves the gauge potential A, which for a uniform and

perpendicular magnetic �eld has the general form A =
(
Ax(y)̂i, Ay(x)ĵ, Az(z)k̂

)
.

From this fact, it can easily be shown that change in the Hamiltonian under

translation is equivalent to a gauge transformation [10].
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F.D.M Haldane considered QH system on S2 where electron wave functions are

translationally invariant [3]. In this system, electrons are con�ned to move on

S2 under the in�uence of the perpendicular magnetic �eld. On S2, the normal

vector is radially outward, which implies the perpendicular magnetic �eld should

have only radial component ,i.e, B = Br̂ . An obstacle of the Landau problem

on S2 is to obtain magnetic �eld which has purely radial component. Since the

divergence of the magnetic �eld gives zero (∇ · B = 0), there is no standard

way to write such �eld. Nevertheless, such a �eld may be generated by a mag-

netic monopole proposed by Dirac in 1931. If a magnetic monopole exists in the

universe, Dirac quantization rule explains why the electric charge is quantized

according to quantization rule,

eg =
n

2
(3.4)

in units c = ~ = 1. In this expression, e, g are the electron and magnetic monopole

charges and n is an integer.

A magnetic monopole with the charge g creates a magnetic �eld

B =
g

R2
r̂ =

n

2eR2
r̂ . (3.5)

The Hamiltonian of the system can be written as a rigid rotor

H =
|Λ|2

2mr2
, (3.6)

where r is radius of S2 and Λ is the dynamical angular momentum

Λ = r× (−i~∇+ eA(r)) = r×P . (3.7)

The commutator of the components of the dynamical angular momentum gives

[Λα,Λβ] = εαβγi~(Λγ − ~
n

2
rγ) , (3.8)

which implies that the dynamical angular momentum is not the generator of

rotations since it does not satisfy the angular momentum algebra. This leads us

to de�ne new operators that satisfy the angular momentum commutation relation.

We can choose the generators as

L = Λ + ~
n

2
r̂ , (3.9)

and the commutator gives

[Lα, Xβ] = i~εαβγXγ , (3.10)
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where X can be chosen as L, r and Λ . Since the commutation relations satisfy

SU(2) algebra, L can be thought as the generator of the rotations on S2 . Gen-

erators of the SU(2) algebra ful�ll L2 = ~2l(l+ 1). (3.9) implies that L has both

radial and tangential components. Radial component of L is Lr = L·r̂ = ~n
2
. This

suggests that we should have ` = q+ n
2
where q is a positive integer. Consequently,

the spectrum becomes L2 = ~2(q + n
2
)(q + n

2
+ 1) which gives

Eq =
Λ2

2mR2
=

1

2mR2

(
| L |2 − ~2n2

4

)
=

~2

2mR2
(q +

n

2
)(q +

n

2
+ 1) (3.11)

=
e~B
2m

(2q + 1) +
~2

2mR2
q(q + 1) ,

in which q is the LL index. The degeneracy of a given LL may be expressed as

2`+ 1 = n+ 1 + 2q. The LLL can be obtained by taking q = 0

ELLL =
e~B
2m

. (3.12)

Since the ` value is composed of two parts, n and q, we can think of it as the total

angular momentum. This enables us to establish an analogy between spin-part

of the total angular momentum and the radial component of L . We introduce

the radial part with the spinor coordinates as

χ ≡

 u

v

 =

 cos θ
2
exp( iψ

2
)

sin θ
2
exp(− iψ

2
)

 , (3.13)

where ri = χ† σi
2
χ and σi are the Pauli matrices .

The gauge potential can be selected as

A =
~S
eR

cot θψ̂ . (3.14)

From Schwinger construction angular momentum operators can be written in

terms of the annihilation and creation operators

Li =
~
2

(
a†1 a†2

)
σi

 a1

a2

 , (3.15)

where a,b are two uncoupled harmonic oscillation annihilation operators. The al-

gebra has already been explained in (2.19). This enables us to write the operators
21



in di�erential form as

a1 → ∂u, a†1 → u (3.16)

a2 → ∂v, a†2 → v . (3.17)

These give the angular momentum operators

Lx =
~
2

(u∂v + v∂u), Ly = −i~
2

(u∂v − v∂u), Lz =
~
2

(u∂u − v∂v) . (3.18)

The eigenvalue equation we need to solve is

(r̂ · L)Ψ(u, v)(n) = ~
n

2
Ψ(u, v)(n) , (3.19)

where Ψ(u, v)(n) are the LLL wave functions. Both the operator (r̂ · L) and the

wave functions are written in terms of the spinor coordinates u and v which

transform under the action of spin 1
2
irreducible representation(IRR) of SU(2) .

We may parametrize the spin-1
2
IRR of SU(2) as g =

 α∗ β∗

−β α

 , where α2 +

β2 = 1  γ1

γ2

 =

 α∗ β∗
−β α

 u

v

 (3.20)

In order to solve 3.19 diagonalize the operator r̂ · L by applying Jacobian trans-

formation ∂u

∂v

 =

 ∂γ1
∂u

∂γ2
∂u

∂γ1
∂u

∂γ2
∂u

 ∂γ1

∂γ2

 =

 α∗ −β
−β∗ α

 ∂γ1

∂γ2

 . (3.21)

By using (3.18) , r̂ · L maybe expressed in the form

r̂ · L =
1

2
(α∗v + β∗v)∂γ1 −

1

2
(αv + βu)∂γ2 (3.22)

=
1

2
γ1∂γ1 −

1

2
γ2∂γ2 . (3.23)

This result implies that the problem gives two di�erent eigenvalue (+n
2
and −n

2
)

and the eigenfunction as

Ψ+
αβ(u, v) = γ

(n)
1 = (α∗u+ β∗v)n (3.24)

Ψ−αβ(u, v) = γ
(n)
2 = (αu− βv)n . (3.25)

That means we have two wave functions which yield di�erent eigenvalues. Desired

wave function is Ψ+
αβ(u, v) which yields eigenvalue n

2
.
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3.2 QHE on S2, Treatment of D. Nair and V.P. Karabali

Landau problem on complex spaces has been analysed by D. Karabali, V. P.

Nair [5]. They used group theoretical approach to solve the Landau problem on

S2 ≡ CP 1 with the motivation of generalizing this result to all complex projective

spaces CPN . Before reviewing their approach we will give a brief de�nitions on

complex projective spaces.

Complex projective spaces CPN can be thought as the set of all complex lines

through origin in CN+1. From this de�nition we can say that the set of points

z = (z1, z2, · · · , zN+1) di�ering by λ = C are identi�ed in the form [11]

z = λz λ 6= 0, λ ∈ C . (3.26)

We know that CN+1 has 2N + 2 real dimensions and each complex line in CN+1

through 0 intersects the S2N+1. With this information we express the equivalence

relation as

z = λz | λ |= 1, λ ∈ eiθ . (3.27)

Action of λ on the complex numbers is a U(1) group action.

CP 1 can be parametrized by two complex coordinates u1, u2 with the relations

uα ∼ eiθuα, | u1 |2 + | u2 |2 = 1, α = 1, 2 . (3.28)

Semiclassicaly, Landau problem on CP 1 can be seen as an electron which moves

on S2. At the center of the S2 a magnetic monopole is located with a charge g.

Electron is under the in�uence of this magnetic monopole whose vector potential

is

A = −inu∗αduα , (3.29)

where ~ and c take as unity. Corresponding �eld strength tensor is

Fij = ∂iAj − ∂jAi

εijkFij = εijk∂iAj − εijk∂jAi

= 2Bk , (3.30)

where we have used Bk = εijk∂jAk. We know that the magnetic �eld is radially

outward as given in (3.5)

Br =
1

2
εij3Fij =

1

2
(F12 − F21) =

1

2
(F12 + F12) = Fθφ , (3.31)

23



where Br is at radial direction. Since there is only one component of the magnetic

�eld, we can drop the index in further calculations. The integral of the �eld

strength tensor gives ∫
Ω

F =

∫
Ω

dA = (4π`2)B = 2πn , (3.32)

where we have used Stoke's theorem and the integral is taken over S2(≡ CP 1).

The coset realization of CP 1 is

CP 1 ≡ S2 =
SU(2)

U(1)
, (3.33)

which implies that the functions on CP 1 can be thought as the functions on SU(2)

which are invariant under the action of U(1). According to Peter-Weyl theorem

any function on SU(2) can be written in terms of Wigner-D functions which may

be represented as D(j)
L3R3

(g). Trivial right action of U(1) gives spherical harmonics

as D(j)
L30(g) =

√
4π

2l+1
Y ∗lm(θ, φ) where R = 0.

Let Li and Ri be the ith component of the left and right invariant vector �elds.

They satisfy the SU(2) algebra

[Li, Lj] = −εijkLk, [Ri, Rj] = εijkRk . (3.34)

From SU(2) algebra we may write
3∑
i=1

R2
i =

3∑
i=1

L2
i = j(j + 1) . (3.35)

We can parametrize the SU(2) elements in the form

g =

 u∗2 u1

−u∗1 u2

 , (3.36)

and consider the group elements near the identity e(= I) as (I + 1
2
εσi) where ε

is small and σi are Pauli matrices. The right action of the group elements on g

will push forward the group elements of the g and induces the right translation

vectors as a di�erential operator [12]. The right action of (I + 1
2
εσ+) on g may

be expressed as

g(I +
1

2
εσ+) =

 u∗2 u1

−u∗1 u2

 1 0

0 1

+ ε

 0 0

−1 0

 (3.37)

=

 u∗2 − εu1 u1

−u∗1 − εu2 u2

 . (3.38)
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Change on the parameters can be shown in the form

δ


u1

u2

u∗1

u∗2

 = ε


0

0

u2

−u1

 , (3.39)

where ui on the RHS may be thought as the vector components of the ∂
∂ui

and

therefore we can write

R+ = −u1
∂

∂u∗2
+ u2

∂

∂u∗1
. (3.40)

By applying the same procedure we can also write

R− = u∗1
∂

∂u2

− u∗2
∂

∂u1

, R3 =
1

2

(
u1

∂

∂u1

+ u2
∂

∂u2

− u∗1
∂

∂u∗1
− u∗2

∂

∂u∗2

)
. (3.41)

The left actions of the matrix group elements induce the left rotations. We have

left rotation vectors in the form

Li =
1

2

[
uβσ

i
αβ

∂

∂uα
− u∗βσiαβ

∂

∂u∗α

]
. (3.42)

We have that [Ri, Lj] = 0. As easily noticed left rotations remain invariant under

the action of U(1) group, i.e., uα ∼ eiθuα, while right invariant vector �elds

transform with a phase factor (R± → R±e
∓2iθ). We know that the commutator

of the covariant derivatives is equal to the �eld strength tensor which is equal to

magnetic �eld [D+, D−] = B. We may write the covariant derivatives in the form

D± = i
R±
`
. (3.43)

The Hamiltonian may be written in the form

H = − 1

4M
(D+D− +D−D+) (3.44)

=
1

2m`2

(
3∑
i=1

R2
i −R2

3

)
. (3.45)

From (3.51) we know that the eigenvalue of the R3 is n
2
which is also a possible

value of j. In order to ensure this condition we need to express eigenvalues as

j = n
2

+ q where q is an integer. Therefore, energy eigenvalues read

E =
1

2M`2

[
(
n

2
+ q)(

n

2
+ q + 1)− n2

4

]
(3.46)

=
B

2M
(2q + 1) +

q(q + 1)

2M`2
. (3.47)
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Energy levels can be labelled by q and the LLL energy is obtained by setting

q = 0 which is equal to B
2M

.

The left rotations commute with the covariant derivatives, i.e., [Di, Lj] = 0 and

therefore with the Hamiltonian. This implies that left quantum number L3 con-

trols the degeneracy. That means for di�erent L3 values and �xed R3 we have

same eigenvalue. IRR label j restricts the L3 as −j ≤ L3 ≤ j. Therefore, we say

L3 takes 2j+ 1 di�erent values. When we combine this condition with j = n
2

+ q,

we obtain 2j+ 1 = n+ 2q+ 1 which is nothing but the degeneracy of the system.

This result is in agreement with F.D.M Haldane.

In the absence of U(1) gauge �eld background Wigner-D functions are in the form

DL30(g) which are nothing but the spherical harmonics. In the presence of the

magnetic monopole, Wigner-D functions transform as

D(gh) = D(g)D(h) (3.48)

Dmm′(gh) = Djmm′′(g)Djm′′m′(h) ,

where h = eiθR3 ∈ U(1). This gives

Dmm′(gh) = Dj
mm′′(g)Dj

m′′m′(e
iθR3) (3.49)

= Dj
mm′′(g) 〈m′′| eiθR3 |m′〉

= Dj
mm′′(g)eiθm

′
δm′′m′

= Dj
mm′(g)eiθm

′

= Dj
mn

2
(g)ei

n
2
θ . (3.50)

Gauge transformation of the wave functions may be expressed in the form

D(gh) = D(g)ei
n
2
θ , (3.51)

where they are the sections of U(1) bundle over CP 1. We noted that LLL is

obtained if j = n
2
. By using (3.36), R3 = n

2
and (3.51) in LLL condition, wave

functions for IRR (1
2
) are in the form

D
1
2 (g) ∼ uα1 . (3.52)

In LLL, IRR (n
2
) is n-fold symmetric tensor product of n

2
representation. This

can be shown as symmetric tensor product of tableau as

⊗S ⊗S · · · ⊗S −→
n︷ ︸︸ ︷
· · · .
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Local form of the LLL wave functions are

D
n
2 (g) ∼ uα1 · · ·uαn , . (3.53)

Degeneracy of LLL is n+1 fold. If the �lling factor ν = 1, then we have N = n+1

fermions. Slater determinant for the N + 1 particle state is in the form

ΨN (1, 2, · · · , n+ 1) = εA1A2···ANΨA1(u
(1))ΨA2(u

(2)) · · ·ΨAN (u(N )) . (3.54)

The two-point correlation function may be written as 1

Ω(1, 2) =

∫
dµ(3, 4, · · · ,N )Ψ∗NΨN ∼| Ψ(1) |2| Ψ(2) |2 − | Ψ(1)

A Ψ
∗(2)
A |2 , (3.55)

where the dµ terms are the measure of the integration. To calculate Ω(1, 2) we

work in a non-homogeneous coordinate system in which

u(i)
α =

1√
1 + |z(i)|2

 1

z(i)

 , (3.56)

where (i) is the label of ith particle coordinate and z ∈ C . It is also possible to

write LLL wave function in the form

Ψ = (uα)n . (3.57)

Inserting this equation and 3.56 into (3.55) we may obtain

Ω(1, 2) ∼ 1−

[
(1 + z∗(1)z(2))(1 + z∗(2)z(1))

(1 + |z(1)|2)(1 + |z(2)|2)

]n
. (3.58)

We may write

z(i) =
x(i) + iy(i)

`
, (3.59)

with x, y ∈ R. Inserting this into (3.56) yields

Ω(1, 2) ∼ 1−
[
1− (x(1) − x(2))2 + (y(1) − y(2))2

`2 (1 + `−2|x(1)|2 + `−2|x(2)|2 + `−4|x(1)|2|x(2)|2)

]n
∼ 1−

[
1− 1

`2

(
|x(1) − x(2)|2 +O(

1

`2
)

)]n
. (3.60)

In the thermodynamic limit `→∞ and n→∞ we may obtain

lim
`→∞

{
1−

[
1− |x

(1) − x(2)|2

`2

]n}
−→ 1− exp

[
−2B|x(1) − x(2)|2

]
, (3.61)

1 The details of the calculation and explanation of the terms are given at the section 3 of the next

chapter. For the detailed calculation one can refer the part between the equations (4.122) and (4.131) .
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where we have used n = 2B`2. This means if the distance between two particle

coordinates is close enough, then the two-point function goes to zero and the

probability of locating two particles at the same point approaches to zero, as

expected. This shows the incompressibility property of the system on CP 2.

As a �nal discussion, the thermodynamic limit can be obtained by N → ∞ and

`→∞. In this limit the number density reads

ρ =
N
V

=
N

4π`2
−→

`→∞ ,N→∞

n

4π`2
=

B

2π
, (3.62)

which is �nite.

3.3 Landau Problem on CP 2

In this section, we follow the original work of D. Nair and V.P. Karabali [5].

CP 2 can be parametrized by three complex coordinates (u1, u2, u3) ∈ C3 with the

relations

uα ∼ eiθuα, | u1 |2 + | u2 |2 + | u3 |2 = 1 . (3.63)

The coset realization of the CP 2 is

CP 2 ≡ S3 =
SU(3)

U(2)
=

SU(3)

SU(2)× U(1)
, (3.64)

which implies that the functions on CP 2 can be thought as the functions on SU(3)

which are invariant under the action of U(1) and SU(2). Functions on SU(3) can

be written in terms of the Wigner-D functions in the form D(p,q)
LL3L8;RR3R8

where

R8 is the generator of the U(1) subgroup and its eigenvalue is the U(1) charge.

Ri and Li are right and left generators of SU(2) subgroup. Consequently, they

satisfy the SU(2) algebra such as

[Ri, Rj] = εijkRk, [Li, Lj] = εijkLk , (3.65)

and we have

R2
i = L2

i = j(j + 1) i = 1, 2, 3 . (3.66)

R4,R5,R6 and R7 span right invariant tangent vector �elds on CP 2. As such, they

form a basis for derivatives on CP 2, which allows us to write Hamiltonian of a
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charged particle on CP 2 as

H =
1

2M`2

7∑
i=4

R2
i

=
1

2M`2

(
C2(p, q)−R(R + 1)−R2

8

)
, (3.67)

where C2(p, q) is the quadratic Casimir of SU(3) in the IRR (p,q) with the eigen-

value

C2(p, q) =
1

2
[p(p+ 3) + q(q + 3) + pq] . (3.68)

We expect that certain restricted subsets of Wigner−D functions are the wave

functions corresponding to this Hamiltonian.

For a pure U(1) gauge �eld background, wave functions must carry the trivial

(spin-0) representation of the SU(2) subgroup (i.e. R = 0, Ri = 0). wave

functions then have the form

D(p,q)
LL3L8;00R8

(g) .

Inspecting the branching of the IRR (p, q) of SU(3) under SU(2)× U(1) we see

that 2

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

q︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

,

where the Young tableaux on the branching represent SU(3), SU(2) and U(1)

IRRs, respectively. When we combine this condition with the standard formula

for obtaining U(1) charges of a branching given in terms of a Young tableaux

(4.10), we obtain

n := q − p, n ∈ Z , (3.69)

where n is the unnormalized U(1) charge. We need to relate n with R8. In order

to write the matrix realization of R8 we choose the fundamental representation

(1, 0) of SU(3) with the branching

−→
(
· ⊗

)
−1

⊕
(

⊗ ·
)

1
2

, (3.70)

2 Young tableaux representation and branching rules are explained in Appendix A.
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where subscripts stand for the U(1) charges. The dimension of IRR (1, 0) is 3.

Matrix realization of R8 is R8 = 1
2
√

3
diag(1, 1,−2) and taking the trace normal-

ization as Tr(RαRβ) = 1
2
δαβ. Corresponding group element is

h ≡ exp(iR8θ) = diag(exp(
i

2
√

3
θ), exp(

i

2
√

3
θ), exp(

−i√
3
θ)) . (3.71)

A wave function in this representation has the property

D
(1,0)
LL3L8;00R8

(gh) = 〈LL3L8|(gh)|00R8〉

= 〈LL3L8|(g)|RR3R8〉 〈RR3R8|(h)|00R8〉

= 〈LL3L8|(g)|RR3R8〉 exp
(
−iθ√

3
(R8)

)
δR0δR30

= D
(1,0)
LL3L8;00R8

(g)e
(−iθ√

3
)
, (3.72)

which means Wigner-D functions transform with a phase factor e
−iθ√

3 under the

action U(1). Now, we can write the relation between the n and R8

R8 =
n√
3

=
q − p√

3
. (3.73)

By using (3.67), (3.68) and (3.73), spectrum of the Hamiltonian gives

Eq,n =
1

2M`2
(q(q + n+ 2) + n) . (3.74)

By setting q = 0, the LLL energy eigenvalue may be found as ELLL = n
2M`2

.

Degeneracy is equal to the dimension of the (p, q) representation3 Therefore, the

degeneracy may be expressed as

dim(p, q) =
(p+ 1)(q + 1)(p+ q + 2)

2
. (3.75)

In the LLL the degeneracy is dim(n, 0) = 1
2
(n + 1)(n + 2), which is equal to

number of fermions N at ν = 1. In the thermodynamic limit spatial density is

obtained as

ρ =
N
V

=
N

8π2`4
−→

`→∞ ,N→∞

n2

8π2`4
=

(
B

2π

)2

, (3.76)

which is �nite.

Let us now turn our attention on obtaining the gauge potential

A = i
2n√

3
Tr(R8g

−1dg)

= i
2n√

3
((R8)αβg

−1
βγ dgγl) . (3.77)

3 The dimension may be found by Hooks law explained in Appendix A.
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By using the matrix realization of R8 and the identity Tr(g−1dg) = 0 we may

write

A = i
2n√

3
((R8)11g

−1
1γ dgγ1 + (R8)22g

−1
2γ dgγ2 + (R8)33g

−1
3γ dgγ3)

=
in

3
(g−1

1γ dgγ1 + g−1
2γ dgγ2 − 2g−1

3γ dgγ3) (3.78)

= −ing−1
3γ dgγ3 = −ing∗γ3dgγ3

= −inu∗αduα ,

where α, β, γ are the matrix indices. In the last line we have used a parametriza-

tion of g ∈ SU(3) in the de�ning representation with its last column taken as

gn3 = uα. This is related to Berry connection studied in literature [26].

The wave functions under U(1) action transform with a phase as shown in (3.72).

Let us show it explicitly for (1, 0) representation. By using the matrix realization

of R8, we may write

geiR8θ =


...

...

u1

u2

u3


e

i
2
√
3
θ

0 0

0 e
i

2
√
3
θ

0

0 0 e
− i√

3
θ

 (3.79)

=


...

...

e
− i√

3
θ
u1

e
− i√

3
θ
u2

e
− i√

3
θ
u3

(3.80)

Local form of the wave functions in LLL for (1, 0) IRR are

D(1,0) ∼ gn3 = uα . (3.81)

In LLL (p, 0) IRR can be thought as the p−fold symmetric tensor product of

(1, 0) representation (p, 0).

⊗S ⊗S · · · ⊗S −→
p︷ ︸︸ ︷
· · · ,

where ⊗S stands for the symmetric tensor product. Branching implies LLL wave

functions are in the form

D(p,0)

LL3L8;00−n√
3

∼ gi13gi23 · · · gip3

∼ uα1uα2 · · ·uαp , (3.82)
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which is holomorphic in the variables uα as expected.

Under g → geiR8θ where g ∈ SU(3), the gauge potential transforms as

A(geiR8θ) = i
2n√

3
Tr(R8(geiR8θ)−1d(geiR8θ)

= i
2n√

3
Tr
[
(R8e

−iR8θg−1)(eiR8θdg + gd(eiR8θ))
]

= A+ i
2n√

3
Tr(i(R8)2dθ) (3.83)

= A− d
(
nθ√

3

)
.

We may write uα in non-homogeneous coordinate system as

u =
1√

1 + | zi |2


1

z1

z2

 , (3.84)

where z1, z2 ∈ C . The corresponding �eld strength is

F = dA = −indu∗αduα (3.85)

= −in
[
dz̄idzi

1 + z̄ · z
− dz̄ · zz̄ · dz

(1 + z · z̄)2

]
(3.86)

Let us continue to analyse the Landau problem with both U(1) and SU(2) back-

ground gauge �elds. Relying on the Young tableaux for the branching of SU(3)

representation, we now have an interval of possible SU(2) IRRs occurring in the

branching

q+k′︷ ︸︸ ︷
· · ·

p+k︷ ︸︸ ︷
· · · −→

q︷ ︸︸ ︷
· · ·

k+k′︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

k′︷ ︸︸ ︷
· · ·

−→

q+k′−x︷ ︸︸ ︷
· · ·

k−k′+2x︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

k′︷ ︸︸ ︷
· · ·

−→

q+k′︷ ︸︸ ︷
· · ·

k′−k︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

k′︷ ︸︸ ︷
· · ·
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This branching shows that spin R of SU(2) takes values in the interval

R =
| k − k′ |

2
· · · k + k′

2
, (3.87)

where we have assumed 0 < x < k.

Using (4.10), R8 may be written in the form

R8 =
1

2
√

3
[−2(p− q) + (k − k′)] = − n√

3
. (3.88)

Now, we are ready to write energy eigenvalues (3.67)

E =
1

2M`2
(C2(p+ k, q + k′)−R(R + 1)−R2

8)

=
1

2M`2

(
q2 + q(2k −m+ n+ 2) + n(k + 1)

+ k2 + 2k +m2 −m(k + 1)−R(R + 1)

)
, (3.89)

where we have introduced k−k′
2

= m ∈ Z in order to ensure that n takes only

integer values. In LLL, R reads

R =
k + k′

2
= k −m. (3.90)

By inserting this condition into (3.89) we obtain the energy spectrum which have

maximum R value in the form

E =
1

2M`2

(
q2 + q(2R + n+m+ 2) + n(R +m+ 1) + (R +m)(m+ 1)

)
.

(3.91)

If we take q = 0 and m = 0 at �xed background charges n and R, this expression

gives the LLL energy eigenvalues

ELLL =
1

2M`2
(nR +R + n) . (3.92)

The degeneracy of LL is given as dim(R+n,R) = 1
2
(n+R+1)(R+1)(n+2R+1).

In order to obtain �nite density either n or R should scale like `2. In particular,

we may choose n ∼ `2. Then, the spatial density gives

ρ ∼ dim(R + n,R)

(2R + 1)`2
−→

`→∞ ,N→∞

n2

4`4
→ finite , (3.93)

in which SU(2) degrees of freedom is �nite. In case of pure SU(2) background

�eld, we need to scale R ∼ `2 to have �nite spatial density. The degeneracy is

dim(R,R) = 1
2
(R + 1)(R + 1)(2R + 2). Then, the spatial density is

ρ ∼ dim(R,R)

(2R + 1)`2
−→

`→∞ ,N→∞

R3

2R`4
→ finite (3.94)
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The calculation of the correlation function is very similar to the CP 1 case. We

omit the details of the calculation here and give the result as

Ω(1, 2) ∼ 1−
[
1− | x

(1) − x(2) |2

`2

]n
. (3.95)

In the planar limit `→∞ we obtain

lim
`→∞

{
1−

[
1− | x

(1) − x(2) |2

`2

]n}
−→ 1− exp

[
−2B | x(1) − x(2) |2

]
, (3.96)

where the probability of the �nding two particle at same point is zero, as expected.

This result shows the incompressibility property of the Hall liquid on CP 2.
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CHAPTER 4

QUANTUM HALL EFFECT ON GRASSMANN

MANIFOLDS

This chapter is the review of [9].

Grassmanians Grk(CN) are generalizations of the complex projective spaces.

Grassmann manifolds Grk(CN) are the set of all k-dimensional complex subspaces

through origin in CN . They have the coset realization

Grk(CN) =
SU(N)

S[U(N − k)× U(k)]
∼ SU(N)

SU(N − k)× SU(k)× U(1)
. (4.1)

In this chapter, we will focus on the Landau problem and subsequently QHE on

Grassmannians with k = 2, i.e. Gr2(C4). We will �rst analyse the problem on

Gr2(C4), which is the simplest of all Gr2(CN), and generalize it to any N ≥ 4.

In section 3 we will give the local forms of the wave functions in terms of the

Plücker coordinates.

4.1 Landau Problem on Gr2(C4)

In this section we will study the Landau problem on Gr2(C4) by employing and

generalizing the group theoretical techniques which were used to analyse the cor-

responding problems on CP 1 and CP 2 in the previous chapter.

Gr2(C4) has the coset realization

Gr2(C4) =
SU(4)

S[U(2)× U(2)]
∼ SU(4)

SU(2)× SU(2)× U(1)
. (4.2)

This suggests that the functions on Gr2(C4) may be written in terms of a subset of

SU(4) Wigner-D functions which transform trivially under the action of SU(2)×
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SU(2) and U(1). General form of the SU(4) Wigner-D functions may be written

as

D(g)(p,q,r) , (4.3)

where g ∈ SU(4) and p, q, r are positive integers labelling the IRRs SU(4). As we

did for SU(3), we may label the right and left invariant vector �elds on SU(4) with

Rα and Lα (α = 1, · · · 15) . We may also label the left and right generators of the

SU(2)×SU(2) subgroup with Lα ≡ (L
(1)
i , L

(2)
i ) and Rα ≡ (R

(1)
i , R

(2)
i ), respectively

(i = 1, 2, 3,α = 1, · · · , 6). The latter satisfy the commutation relations[
L

(1)
i , L

(1)
j

]
= εijkL

(1)
k ,

[
L

(2)
i , L

(2)
j

]
= εijkL

(2)
k (4.4)[

R
(1)
i , R

(1)
j

]
= εijkR

(1)
k ,

[
R

(2)
i , R

(2)
j

]
= εijkR

(2)
k . (4.5)

and all the other commutators vanish. We write the Wigner-D functions

D(g)
(p,q,r)

L(1),L
(1)
3 ,L(2),L

(2)
3 ,L15;R(1),R

(1)
3 ,R(2),R

(2)
3 ,R15

. (4.6)

The generators Rα (α = 7, · · · , 14) are tangent vector �elds on Gr2(C4) and we

may write the Hamiltonian in terms of these tangents as

H =
1

2M`2

14∑
i=7

R2
i

=
1

2M`2

15∑
i=1

(
R2
i −R(1)(R(1) + 1)−R(2)(R(2) + 1)−R2

15

)
(4.7)

=
1

2M`2

(
C2(p, q, r)−R(1)(R(1) + 1)−R(2)(R(2) + 1)−R2

15

)
,

where C2(p, q, r) is the quadratic Casimir of SU(4) in the (p, q, r) representation.

Now, we will �nd the spectrum and eigenfunctions of this Hamiltonian in the

following three cases:

i) Pure U(1) background

ii) Pure SU(2)× SU(2) background

iii) Both U(1) and SU(2)× SU(2) background

Before going into this analysis, let us list a few facts regarding the branching of

SU(N1 + N2) under SU(N1) × SU(N2) × U(1) that we will make use of in our

discussions:
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We may embed SU(N1)× SU(N2)× U(1) into SU(N1 +N2) in the form [15] eiN2φU1 0

0 e−iN1φU2

 , (4.8)

where U1 ∈ SU(N1), U2 ∈ SU(N2). The branching of SU(N1+N2) can be written

in the compact form as

J =
⊕
J1,J2

mJJ1,J2(J1,J2)n , (4.9)

in which J1 , J2 and J represent the IRRs of SU(N1) , SU(N2) , SU(N1 +N2),

respectively. mJJ1,J2 are the multiplicities of the IRR (J1,J2)n. We label the U(1)

charge with n and it can be found by using

n =
1

N1N2

(N2J1 −N1J2) (4.10)

in which J1 and J2 represent the number of boxes on IRR of the SU(N1) and

SU(N2), respectively.

4.1.1 Pure U(1) Gauge Field

In the pure U(1) gauge �eld background D(p,q,r)(g) transform as a singlet under

the action of SU(2)× SU(2). To derive the energy spectrum in this background

we need trivial right action of SU(2) × SU(2). For an SU(2) IRR to be trivial,

i.e. spin−0 representation, we must have the Young tableau of SU(2)

α︷ ︸︸ ︷
· · ·

︸ ︷︷ ︸
α

In other words, number of boxes at both rows should be equal to each other.

Trivial SU(2) × SU(2) action on the Wigner−D functions D(p,q,r)(g) is possible

under the branching

r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · ·

r︷ ︸︸ ︷
· · ·

︸ ︷︷ ︸
p

, (4.11)
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where RHS is SU(2) × SU(2) IRR's. Therefore, branching which keeps the

SU(2) × SU(2) in the singlet representation demands that p = r From (4.10)

U(1) charge is

n =
1

4
[2(2p+ 2q1)− 2(2q2 + 2p)] = q1 − q2 . (4.12)

Now, we need to �x relation between R15 and n. For this purpose we may choose

the (1, 0, 0),(0, 1, 0) and (0, 0, 1) fundamental representation of SU(4). It can be

easily seen that we can not obtain trivial representation of SU(2) × SU(2) in

the branching (1, 0, 0) and (0, 0, 1). Branching of the 6−dimensional fundamental

IRR (0, 1, 0) of SU(4) under SU(4)→ SU(2)× SU(2)× U(1) reads

−→
(
· ⊗

)
−1

⊕
(

⊗ ·
)

1

⊕
(

⊗
)

0

, (4.13)

where subscripts stand for U(1) charges. In this representation, R15 is the di-

agonal matrix in the form R15 = 1√
2
diag(0, 0, 0, 0,−1, 1). The normalization

constant, 1√
2
, can be found by using the formula (C.8) in appendix C. Matrix

realization of the corresponding group element has the form

exp(iR15θ) = diag

(
0, 0, 0, 0, exp(

−i
2
√

3
θ), exp(

i

2
√

3
θ)

)
. (4.14)

Now, we may write the relation between the U(1) charge and R15

R15 =
n√
2

=
q1 − q2√

2
. (4.15)

In the pure U(1) background, wave functions corresponding to the Hamiltonian

(4.7) take the form

D(p ,q=q1+q2 ,p)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,0 ,0 , n√

2

(g) (4.16)

and the spectrum of the Hamiltonian is

H =
1

2M`2

(
3

8
(r2 + p2) +

1

2
q2 +

1

8
(2pr + 4pq + 4qr + 12p+ 16q + 12r)−R2

15

)
=

1

2M`2

(
p2 + 3p+ np+ 2q2

2 + 4q2 + 2pq2 + 2n(1 + q2)
)
, (4.17)

where we have used equation (B.4) for the quadratic Casimir of SU(4) in an IRR

labelled by (p, q, r). The LLL energy can be found by taking p = q2 = 0

ELLL =
n

M`2
=

2B

M
. (4.18)
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Spatial density may be written in the form

ρ =
N

vol(Gr2(C4))
, (4.19)

where vol(Gr2(C4)) = π4`8

12
1. If ν = 1, then each state is occupied with one

fermion. In the LLL with �lling factor ν = 1, number of particles, N , is equal to

degeneracy of the system which is equal to dim(0, n, 0) = 1
12

(n+1)(n+2)2(n+3).

With these facts spatial density takes the form

ρ =
dim(0, n, 0)

π4`8

12

(4.21)

In the thermodynamic limit, `→∞ and N →∞, it is �nite and given as

ρ −→
`→∞ ,N→∞

n4

π4`8
=

(
2B

π

)4

(4.22)

4.1.2 U(1) and Single SU(2) Gauge Field

In case of U(1) and single SU(2) gauge �elds, D(p,q,r) transform as singlet under

the action of one of the SU(2). This is possible under the branching

r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · ·

p+r︷ ︸︸ ︷
· · ·

(4.23)

−→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · ·

p+r−2x︷ ︸︸ ︷
· · ·

−→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · · · · ·

︸ ︷︷ ︸
r

p−r︷ ︸︸ ︷
· · ·

in which we assume p > r. On the branching, x stands for expressing the interval

of non-trivial SU(2) IRRs where 0 ≤ x ≤ r. From this branching, U(1) charge is
1 As a general formula, the volume of the Grassmannian reads [19]

vol(Grk(CN )) =
0!1! · · · (k − 1)!

(N − k)! · · · (N − 2)!(N − 1)!
πk(N−k) . (4.20)
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computed as (4.10)

n =
1

4
[2(2r + 2q1)− (2q2 + 2x+ p+ r − 2x)] =

1

2
(r − p+ 2q1 − 2q2) . (4.24)

and using (C.8) yields

R15 =
1√
2
n . (4.25)

As stated before n should take only integer values, which imposes that p−r should
be even numbers. This constraint may be satis�ed if we de�ne a parameter m

such that

m =
p− r

2
,

 m = 0, · · · , p
2
, if p is even

m = 0, · · · , p−1
2
, if p is odd

 (4.26)

Possible spin values are given as

R(1) = 0, R(2) =
p− r

2
· · · p+ r

2
. (4.27)

Then, Wigner-D functions take the form

D(p ,q=q1+q2 ,r)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,R(2) ,R

(2)
3 , n√

2

(g) . (4.28)

Spectrum of the Hamiltonian (4.7) becomes

H =
1

2M`2

(
C2(p, q1 + q2, p)−R(2)(R(2) + 1)−R2

15

)
E =

1

2M`2

(
2q2

2 + 2q2(n+ p+ 2) + n(p+ 2) + p2 + 3p+m2 −m(p+ 1)

−R(2)(R(2) + 1)

)
, (4.29)

where we have used formulas (B.4) , (4.24) and (4.82). The minimum energy

eigenvalue may be obtained if we maximize the R(2) value. (4.27) and (4.82)

gives R(2)
max = p+r

2
= p−m. Then,we have

E =
1

2M`2

(
2q2

2 + 2q2(n+R(2) +m+ 2) + n(R(2) +m+ 2) + (R(2) +m)(2 +m)
)
.

(4.30)

It is clear that the LLL energy is obtained by taking q2 = m = 0

ELLL =
1

2M`2

(
n(R(2) + 2) + 2R(2)

)
. (4.31)

In a possible pure SU(2) gauge �eld background, the degeneracy of the system is

dim(R(2), 0, R(2)) =
1

12
(R(2) + 2)2(2R(2) + 3)(R(2) + 1)2 , (4.32)
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which is equal to number of fermions, N , at ν = 1. Then, the spatial density is

ρ ∼ N
(2R(2) + 1)vol(Gr2(C4))

. (4.33)

When compared with (4.19) we have 2R(2) + 1 factor on denominator of this

equation. This may be seen as the SU(2) degrees of freedom at each point of

Gr2(C4). In thermodynamic limit (`→∞ and N →∞) R(2) should scale like `2

in order that the density is �nite. In this limit, we obtain

ρ ∼ N
π4`8

12
(2R(2) + 1)

−→
`→∞ ,N→∞

(
R(2)

)4

π4`8
→ finite (4.34)

In case of both U(1) and SU(2) gauge �elds, the degeneracy of LLL at ν = 1

reads

dim(R(2) , n , R(2)) =
1

12
(R(2) + n+ 2)2(2R(2) + n+ 3)(R(2) + 1)2(n+ 1) , (4.35)

which is equal to number of fermions, N , at ν = 1. We now have the option to

scale n like `2 an keep R2 �nite. Doing so, we �nd �nite spatial density in the

thermodynamic limit as

ρ ∼ N
π4`8

12
(2R(2) + 1)

−→
`→∞ ,N→∞

n4

2π4`8R(2)
(4.36)

4.1.3 SU(2)× SU(2) Gauge Field

In this case, D(p,q,r) transforms non-trivially under the right action of SU(2) ×
SU(2) and U(1). Branching yields non-trivial SU(2) representations and gener-

ally non-zero U(1) charge. In this part there are two kind of branchings which

di�ers from each other with respect to U(1) charge.

For q2 = 0, maximal R(2) may be obtained by aligning all boxes at the totally

symmetric representation. The corresponding branching may be shown as

r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · ·→

r︷ ︸︸ ︷
· · ·

q1︷ ︸︸ ︷
· · ·

x+p1︷ ︸︸ ︷
· · · ⊗

r︷ ︸︸ ︷
· · ·

p2︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · ·

(4.37)

This branching reads the R(1), R(2) and the U(1) charge in the form

R(1) =
p1 + x

2
, 0 ≤ x ≤ q, 0 ≤ p1 ≤ p (4.38)
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R(2)
max =

r + p2 + x

2
(4.39)

n =
1

2
(2q1 − (p2 − p1 − r)) . (4.40)

We may also align the boxes of second SU(2) IRR with antisymmetry property,

which gives us minimum R2 value in the form

R
(2)
min =

| 2M− S |
2

, (4.41)

whereM = max(p2 + x+ r) and S = p2 + x+ r.

Consider now the case q2 6= 0. In this case, we should have p1 = 0 due to

branching rule limitations. The branching under these conditions may be given

as

r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

r︷ ︸︸ ︷
· · ·

q1︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · · ⊗

( q2︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · ⊗

r+x︷ ︸︸ ︷
· · ·

)

(4.42)

U(1) charge is

n =
1

2
(2(q1 − q2)− (p2 − r)) (4.43)

When we combine q2 6= 0 and q2 = 0 cases, we obtain an interval for R(1) in the

form

R(1) =
p1 + x

2
, 0 ≤ x ≤ q , 0 ≤ p1 ≤ p. (4.44)

R(2) interval may be expressed by using (4.39) and (4.41) and by �xing p = p2 as

| 2M− S |
2

≤ R(2) ≤ S

2
, S = p2 + x+ r . (4.45)

Due to the Young Tableaux branching limitations we have separated the the

problem into two parts: q2 = 0 and q2 6= 0. First, let us �nd the energy eigenvalues

in q2 = 0 case. As we did in the previous subsection, we start with de�ning a

parameter, m̃, which ensures that n given in (4.40) takes only integer values

m =
p2 − p1 − r

2
. (4.46)
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m can take both positive and negative integer values. We may assume m can

take only positive integer values, then we have p2 > p1 +r, which induces the fact

that R(2) > R(1). Using

r = R(2) −R(1) − 2m (4.47)

p2 = R(2) −R(1) + p1 +m (4.48)

q1 = m+ n (4.49)

x = 2R(1) − p1 . (4.50)

we may write the Hamiltonian (4.7) as

E =
1

2M`2

(
C2

(
R(2) −R(1) + 2p1 +m,n+m+ 2R(1) − p1 , R

(2) −R(1) −m
)

−R(1)(R(1) + 1)−R(2)(R(2) + 1)− n2

2

)
=

1

2M`2

(
p2

1 + p1(m+R(2) −R(1) + 1) +m2 +m(R(1) +R(2) + n+ 2)

+ n(R(1) +R(2) + 2) + 2R(2)
)
. (4.51)

At �xed n,R(1), R(2) values, energy spectrum depends on the two integers p and

m. The LLL energy value is obtained by taking p1 = m = 0 and gives

ELLL =
1

2M`2

(
n(R(1) +R(2) + 2) + 2R(2)

)
. (4.52)

For p2 < p1 + r, we should change the sign of m as m→ −m in (4.51) to �nd the

correct energy spectrum. If R(1) = R(2) = R(2), then we have p1 = p2 + r. When

we combine this result with the Dirac quantization condition, we obtain

m̃ :=
p1 + r − p2

2
= r , (4.53)

where m̃ takes only positive integer values. As a consequence, energy eigenvalues

read

E =
1

2M`2

(
C2 (2p1 − r , n− r + 2R− p1 , r)− 2R(R + 1)− n2

2

)
=

1

2M`2
(2R + p1(1 + p1 − m̃) + (n− m̃)(2 + 2R− m̃)) , (4.54)

where p1 and m̃ appear as the energy level indices. LLL energy eigenvalue may

be obtained by taking p1 = m̃ = 0 and the result is the same as obtained from

(4.52) when R := R(1) := R(2) .
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For the case q2 6= 0, we �rst ensure that the Dirac quantization condition holds

for every type of branching and we de�ne a parameter m as

m =
p− r

2
, (4.55)

where we impose the condition that m is an integer to ensure that n is so. We

also assume that p > r so that m is positive. In a similar manner to q2 = 0 case

we now use,

x = 2R(1) (4.56)

q1 = n+m+ q2 (4.57)

r = R(2) −R(1) −m (4.58)

p = R(2) −R(1) +m. (4.59)

We write the energy eigenvalue spectrum as

E =
1

2M`2

(
C2

(
R(2) −R(1) +m, 2q2 + 2R(1) + n+m,R(2) −R(1) −m

)
−R(1)(R(1) + 1)−R(2)(R(2) + 1)− n2

2

)
=

1

2M`2

(
2q2

2 + 2q2(n+R(1) +R(2) +m+ 2) + n(R(1) +R(2) + 2) +m2

+m(R(1) +R(2) + n+ 2) + 2R(2)
)
, (4.60)

where q2 and m appear as the energy level indices. By setting p2 = m = 0, we

obtain LLL energy value which is the same as that in (4.52) . In case of p < r we

may interchange R(1) and R(2) and replace the n with −n, which gives

ELLL =
1

2M`2

(
−n(R(2) +R(1) + 2) + 2R(1)

)
. (4.61)

In case of pure SU(2)×SU(2) gauge �eld background (i.e. n = 0), the degeneracy

of the system at LLL may be expressed as

dim(R(2) −R(1) , 2R(1) , R(2) −R(1)) ∼ 4R(1)5
R(2) , (4.62)

which is equal to number of fermions,N , at ν = 1. We may de�ne the spatial

density as

ρ =
N

vol(Gr2(C4))(2R(1) + 1)(2R(2) + 1)
∼ 4R(1)5

R(2)

π4`8(2R(1) + 1)(2R(2) + 1)
(4.63)
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in which SU(2) degrees of freedom is �nite. In the thermodynamic limit, we need

to scale both R(1) and R(2) like `2 to ensure a �nite value for ρ,

ρ ∼ 4R(1)5R(2)

π4`8(2R(1) + 1)(2R(2) + 1)
−→

`→∞ ,N→∞
�nite . (4.64)

In case of both U(1) and SU(2)×SU(2) gauge �eld backgrounds, the degeneracy

may be expressed as

dim(R(2) −R(1) , 2R(1) + n ,R(2) −R(1)) , (4.65)

which is nothing but the number of fermions at ν = 1. In thermodynamic limit,

we may scale n like `2, while keeping R(1) and R(2) �nite. Then, spatial density

reads

ρ ∼ n4

π4`8(2R(1) + 1)(2R(2) + 1)
−→ �nite. (4.66)

4.2 Landau Problem on Gr2(CN)

In this section we will analyse the Landau problem on Gr2(CN). From (4.1), we

recall the coset realization of the Grassmannians

Gr2(CN) =
SU(N)

S[U(N − 2)× U(2)]
∼ SU(N)

SU(N − 2)× SU(2)× U(1)
. (4.67)

Functions on Gr2(CN) may be represented as the Wigner−D functions which

transform trivially under the action of SU(N−2)×SU(2) and U(1). The general

form of the Wigner−D functions on SU(N) is

D(P1,P2··· ,PN−1)(g) , (4.68)

where P1, P2 · · · , PN−1 are the IRR labels of SU(N) and g ∈ SU(N). We may

label the left- and right-invariant vector �elds with Lα and Rα, respectively (α =

1, 2 · · · , N − 1). In particular, we may label the right- and left- invariant vector

�elds of SU(N − 2) as LSU(N−2) and RSU(N−2), respectively. In this chapter, we

will analyse the Landau problem in U(1) and SU(2) �eld background. We will not

be concerned with the SU(N − 2) background. As a consequence, the generators

which span SU(N − 2) may be out of the discussion. The general form of the

SU(N) Wigner-D functions is

D(P1,P2,P3,...,PN−2,PN−1)

LSU(N−2) ,L ,L3 ,LN2−1 ,R
SU(N−2) ,R ,R3 ,RN2−1

(g), g ∈ SU(N) . (4.69)
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LSU(N−2) and RSU(N−2) are the suitable sets of the left and right quantum num-

bers, which we will not need in what follows.

The real dimension of Gr2(CN) is 4N−8 and the tangent vector �elds on Gr2(CN)

may be spanned by Lα and Rα, (α = N2 − 4N + 7, · · · , 4N − 8). We may write

the Hamiltonian in terms of tangents as

H =
1

2M`2

N2−2∑
α=N2−4N+7

R2
α

=
1

2M`2

(
CSU(N)

2 − CSU(N−2)
2 − CSU(2)

2 −R2
N2−1

)
. (4.70)

=
1

2M`2

(
CSU(N)

2 − CSU(N−2)
2 −R(R + 1)−R2

N2−1

)
.

The formula for the eigenvalues of the quadratic Casimir of SU(N) (C(SU(N))
2 ) is

given in (B.4).

As indicated before, we will deal with U(1) and SU(2) gauge �eld backgrounds.

This means we need to restrict to Wigner-D functions that transform trivially

under the action of SU(N−2). In the language of Young diagram, the branching

SU(N)→ SU(N −2)×SU(2)×U(1) should yield the singlet IRR of SU(N −2).

At a �rst glance, one can see that the singlet representation of SU(N − 2) is

not possible if any of P3, P4 or PN−3 are non-zero. To prove it we may use

"Reductio ad absurdum" method. Let us assume that we may obtain a trivial

SU(N − 2) representation if any of P3, P4 or PN−3 are non-zero. First, let us

de�ne the possible trivial representations of SU(N−2) which are (0, 0, · · · , PN−2)

and (0, 0, · · · , 0). If we want to obtain a trivial SU(N − 2) representation, we

should move all the boxes of SU(N) labelled by P3, P4 or PN−3 in its Young

diagram to the SU(2) slot in the branching. In particular, we may choose the

(P1, P2, P3, 0, 0 · · · , 0, PN−2, PN−1). In the language of Young diagrams, this can

be shown as

where the �rst slot in the RHS is for SU(N − 2) and the second slot is for
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SU(2) representations. P3 in the SU(2) slot is not allowed since number of boxes

on each column cannot exceed 2. Therefore, we may conclude that the singlet

representation of SU(N − 2) cannot be obtained if any of P3, P4 or PN−3 are

non-zero.

4.2.1 Pure U(1) Gauge Field

Now, we will analyse the Landau problem on Gr2(CN) in pure U(1) gauge �eld.

We need wave functions to be singlet under SU(N−2) and SU(2). Wave functions

are singlets if and only if P1 = PN−1. We may show the branching with the help

of Young diagrams as

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·
⊗

P1+P2︷ ︸︸ ︷
· · ·

︸ ︷︷ ︸
PN−1

From the branching and (4.10), we may write the U(1) charge as

n =
1

2(N − 2)
(2JN−2 − (N − 2)J2)

= PN−2 − P2 , (4.71)

where JN−2 is the number of boxes of SU(N − 2) IRR and J2 is the number of

boxes in the SU(2) IRR. The relation between the U(1) charge and the eigenvalues

of RN2−1 is derived in appendix C and it is given as

RN2−1 = −
√

1− 2

N
n . (4.72)

Using (4.72) and P1 = PN−1, the Wigner−D functions in pure U(1) gauge �eld

backgrounds take the form

D(P1 ,P2 ,0 ,··· ,0 ,Pn−2=P2+n ,Pn−1=P1)

LSU(N−2) ,L ,L3 ,LN2−1 ,0 ,0 ,0 ,−
√

1− 2
N
n
(g) (4.73)

and the Hamiltonian given in (4.71) reduces to

H =
1

2M`2

(
CSU(N)

2 − (1− 2

N
)n2

)
. (4.74)
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Using (B.4) to evaluate C(SU(N))
2 in the (P1, P2, 0, · · · , 0, PN−2, P1) representation,

the energy spectrum takes the form

E =
1

2M`2

(
P 2

1 + (2− 4

N
)P 2

2 + (N − 1 + 2n)P1 + 2(n+N − 2 +
2

N
)P2

+ 4P1P2 + n(N − 2)

)
. (4.75)

In this expression P1 and P2 appear as the energy level indices. The LLL energy

may be written by taking P1 = P2 = 0 and it is

ELLL =
n(N − 2)

2M`2
. (4.76)

The degeneracy of the LLL is

dim(0 , · · · , n , 0) =
(n+N − 3)!(n+N − 4)!(n+N − 2)2(n+N − 1)(n+N − 3)

(N + 1)!(N − 2)!n!(n+ 1)!
,

(4.77)

which is equal to the number of fermions N at ν = 1. The spatial density is

ρ =
N

vol(Gr2(CN))
=
dim(0, 0, · · · , n, 0)

π2(N−2)

(N−2)!(N−1)!
`4N−8

, (4.78)

where we have used (4.20). Then, the thermodynamic limit can be obtained by

letting N → ∞, ` → ∞ and the spatial density in the thermodynamic limit is

�nite:

ρ =
N

π2(N−2)

(N−2)!(N−1)!
`4N−8

−→
`→∞ ,N→∞

n2N−4

`4N−8
=

(
B

2π

)2N−4

. (4.79)

4.2.2 SU(2) Gauge Field

Now, we discuss the Landau problem with SU(2) gauge �eld background. We will

�nd the branching of SU(N) IRRs where SU(N − 2) IRRs is in the singlet while

SU(2) IRRs may take on a range of possible values. We have the representation

of SU(N) in the form (P1, P2, 0, · · · , 0, PN−2, PN−1) to ensure that SU(N − 2)

remains in the singlet representation. The branching of this representation

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·
⊗

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

PN−1︷ ︸︸ ︷
· · ·
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PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·
⊗

P2+x︷ ︸︸ ︷
· · ·

P1+PN−1−2x︷ ︸︸ ︷
· · ·

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·
⊗

P2+PN−1︷ ︸︸ ︷
· · ·

P1−PN−1︷ ︸︸ ︷
· · ·

,

where 0 ≤ x ≤ PN−1 and PN−1 ≤ P1. The second slot in the product is for

the SU(2) IRRs and it implies that there is an interval of possible SU(2) IRRs.

These three branchings represent maximum, generic and minimum R values of

SU(2), respectively. Therefore, we read that the SU(2) IRRs are in the interval

R =
P1 − PN−1

2
, · · · , P1 + PN+1

2
(4.80)

and the U(1) charge is

n =
1

2
(2PN−2 − 2P2 + PN−1 − P1) . (4.81)

Due to the Dirac quantization condition, P1−PN−1 should take only even integer

values. We may be de�ne the integer m as

m :=
P1 − PN−1

2
,

 m = 0, · · · , P1

2
, if P1 is even

m = 0, · · · , P1−1
2
, if P1 is odd

 (4.82)

Spectrum of the Hamiltonian (4.71) may be written as

E =
1

2M`2

(
CSU(N)

2 −R(R + 1)− (1− 2

N
)n2

)
. (4.83)

Using (4.83), (4.82) and (4.81), we may express this in terms of P1, P2, m and n

in the form

2M`2E = (
N − 2

N
)P 2

2 + (
N − 2

N
)(n2 +m2 + 2nm+ P 2

2 + 2nP2 + 2mP2)

+ (
N − 1

2N
)P 2

1 + (
N − 1

2N
)(4m2 + P 2

1 − 4mP1) + (
N − 2

N
)P1P2

+
2

N
P1(n+m+ P2)− 1

N
(2mP1 − P 2

1 )
4

N
P2(n+m+ P2) + (N − 2)P2

− 2

N
P2(2m− P1)− (

N − 2

N
)(2m− P1)(n+m+ P2) + (

N − 1

2
)P1

+ (N − 2)PN−2 + (
N − 1

2
)(−2m+ P1)− (

N − 2

N
)n2 −R(R + 1)(4.84)
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In order to obtain LLL energy value, we select the maximum value of R as

R =
PN−1 + P1

2
= P1 −m. (4.85)

The reason why we select the maximum value of R is obvious in the equation

(4.83). In order to minimize the E value, we select the Rmax on interval (4.80).

Substituting this in (4.84), we obtain

E =
1

2M`2

(
N − 2

N
(2P 2

2 +mn+ 2nP2 + 2RP2 + 2mP2 +Rn+Rm)

+
1

N
(2Rn+ 4RP2 + 2mn+R2 +m2 + 2Rm+ 4P2n+ 4P2m+ 4P 2

2 )

+ (
N − 1

2
)(2R) + (N − 2)(2P2 + n+m) + (

N − 1

2N
)(2R2 + 2m2)

)
− R(R + 1) , (4.86)

where the energy spectrum is controlled by two integers P2 and m at �xed R and

n. LLL can be found by taking P2 = m = 0 as

ELLL =
1

2M`2
(nR + (N − 2)(n+R)) . (4.87)

The degeneracy in case of pure SU(2) background, i.e. n = 0, is

dim(R, 0, · · · , 0, R) = ζ((R +N − 3)!(N − 4)!(R +N − 3)!(R +N − 2)

× (R + 1)(2R +N − 1)(N − 3)(R +N − 2)) , (4.88)

where ζ = 1
(N−1)!(N−2)!(N−3)!(R+1)!R!

. This equation is equal to number of fermions

N at ν = 1. The spatial density in case of pure SU(2) background reads

ρ =
N

vol(Gr2(CN))
=
dim(R, 0, · · · , , R)

π2(N−2)

(N−2)!(N−1)!
`4N−8

. (4.89)

In the thermodynamic limit (`→∞,N →∞) R ρ is �nite if R scales like `2:

ρ −→
`→∞ ,N→∞

R2N−3

k`4N−8(2R + 1)
→ finite (4.90)

In case of both U(1) and SU(2) gauge �eld backgrounds, the degeneracy is equal

to dim(R, 0, · · · , n, R) which is the number of fermions at ν = 1. In the thermo-

dynamic limit, may choose the scaling n ∼ `2 while R is kept �nite. Then, spatial

density in the thermodynamic limit is

ρ −→
`→∞ ,N→∞

n2N−4

k`4N−8(2R + 1)
→ finite , (4.91)
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where we have dim(R, 0, · · · , n, R)→ n2N−4 when N →∞.

Due to the pedagogical reasons, we have �rst analyzed the Landau problem on

Gr2(C4). Then, we have generalized our results for Gr2(CN) in this section.

For N = 4, the results of this section collapse to those of section 1 with the

correspondence

(p, q = q1 + q2, r) −→ (P1, P2 = q2, 0, · · · , PN−2 = q1, PN−1) . (4.92)

4.3 Local Form of the Wave Functions and the Gauge Fields

Complex Grassmanians are de�ned as the set of k-dimensional complex subspaces

of N -dimensional complex space. This de�nition implies that we may parametrize

the Grassmanians in the language of projective spaces. This construction was �rst

done by Julius Plücker in late 19th century. Working on real Grassmannians, he

introduced a way to de�ne lines on R3 with homogeneous coordinates on RP3

which are called Plücker coordinates [27]. Here we �rst give a brief exposition of

his approach adopted to complex Grassmanians [21]:

Let us pick two generic vectors on C4 as S = Siei = S1e1 + S2e2 + S3e3 + S4e4 ,

Q = Qiei = Q1e1 +Q2e2 +Q3e3 +Q4e4. The wedge product of the vectors gives

S ∧Q = (S4Q1 − S1Q4)e41 + (S4Q2 − S2Q4)e42 + (S4Q3 − S3Q4)e43

+ (S2Q3 − S3Q2)e23 + (S3Q1 − S1Q3)e31 + (S1Q2 − S2Q1)e12 . (4.93)

Wedge product represents the planes in C4 whose normal vector is perpendicular

to both S and Q and spans the vector space(
∧2C4

)
:= span

{
v1 ∧ v2; v1, v2 ∈ C4

}
. (4.94)

Setting S4 = Q4 = 1 we may consider the vectors as the homogeneous coordinates

on C3. Let us impose this on (4.93) and inspect the coe�cients of (4.93). We call

the 6 components of (4.93) as the Plücker coordinates and write

Pαβ = SαQβ −QαSβ, α, β = 1, 2, 3, 4 . (4.95)

A complex line L in C3 may be represented as L = {S −Q;S ×Q} . The �rst

three coe�cient represent the displacement vector components as

P41 = Q1 − S1, P42 = Q2 − S2, P43 = Q3 − S3 , (4.96)
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and the last three components represent the moment bi-vector components in the

form

P23 = S2Q3 − S3Q2, P31 = S3Q1 − S1Q3, P12 = S1Q2 − S2Q1 . (4.97)

Therefore, we may conclude that homogeneous form of the lines in C3 represents

the projective planes in C4. In other words, the coordinates of the 2 dimensional

subspaces in C4 represent the coordinates of the lines in C3. If we choose di�erent

set of points such that

S ′ = λS + (1− λ)Q, Q′ = µS + (1− µ)Q . (4.98)

then, we have

S ′ −Q′ = (λ− µ)(S −Q), S ′ ×Q′ = (λ− µ)(S ×Q) . (4.99)

That means the coordinates are unique up to scale factor [22]. This conclusion

implies that the Plücker coordinates, {P12, P13, P14, P23, P24, P34}, represent the
homogeneous coordinates on CP 5.

All the discussions above imply that there is a embedding between Gr2(C4) and

P (∧2C4) ≡ CP 5 as

ψ : Gr2(C4)→ CP 5 (4.100)

span(v1, v2) ↪→ [v1 ∧ v2] , (4.101)

where ψ is called as Plücker embedding. A vector v ∈ ∧kRN is de�ned to be

totally decomposable if it can be written as x = v1 ∧ v2 ∧ · · · ∧ vk [6]. If x is

decomposable, then we have that v ∧ v = 0 . Applying this on (4.93) gives

(S ∧Q) ∧ (S ∧Q) = (P12P34 − P13P24 + P14P23) = 0 . (4.102)

The image of ψ(Gr2(C4)) is the projective space of the bivectors spanned by v1∧v2

which are totally decomposable [6]. That means not all the elements on CP 5 are

the image of CP 5, so ψ is an injective map. We have also stated that Plücker

coordinates are the homogeneous coordinates on CP 5. However, (4.102) restricts

the Plücker coordinates such that they cannot take all the values on CP 5. That

means span(v1, v2) ↪→ [v1 ∧ v2] is an embedding in CP 5. We call the ψ Plücker

embedding and algebraic variety speci�ed by the homogeneous condition (4.102)

is called as Klein quadric.
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We are going to provide expressions for the U(1) background gauge �eld and

wave functions in terms of Plücker coordinates. We may start with de�ning

the matrix realization of the group element g ∈ SU(4) in the IRR (0, 1, 0). We

parametrize the last two columns of the matrix in terms of the Plücker coordinates

as gN6 := Pαβ and gN5 = εNMP
∗
M = εαβγδP

∗
γδ where N = (1, · · · , 6) and αβ =

(12, 13, 14, 23, 24, 34). We may show the realization in explicit form

g :=




...

...
...

...

P ∗34 P12

−P ∗24 P13

P ∗23 P14

P ∗14 P23

−P ∗13 P24

P ∗12 P34

, (4.103)

where we have used the fact that the column vectors of unitary matrices are

orthogonal to each other and the equation (4.102) in order to express �fth column .

For U(1) gauge �eld we may write the gauge potential in the form

A =
−in√

2
Tr
(
R15g

−1dg
)
, (4.104)

where g ∈ SU(4). By using matrix realization of R15 and (4.103) we �nd

A = − in√
2

(
λ15

(6)

)
LM

(
g−1
)
MN

(dg)NL

= −in
2

(
−
(
g−1
)

5N
(dg)N5 +

(
g−1
)

6N
(dg)N6

)
= −in

2
(−g∗N5 (dg)N5 + g∗N6 (dg)N6)

= −in
2

(−PNdP ∗N + P ∗NdPN)

= −inP ∗NdPN , (4.105)

where we have used d(P ∗NPN) = 0. Under the U(1) gauge transformation g →
geiR15θ, the potential transforms as

A(geiR15θ) = i
−n√

2
Tr(R15(geiR15θ)−1d(geiR15θ)

= i
−n√

2
Tr
[
(R15e

−iR15θg−1)(eiR15θdg + gd(eiR15θ))
]

= A+ i
−n√

2
Tr(i(R15)2dθ)

= A+ d

(
nθ√

2

)
(4.106)
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. We also noted that the gauge potential may be expressed as Berry connection

A =
1√
2
nψ∗αdψα . (4.107)

Wave functions transform under the U(1) action as

D(p,q,r)

L(1)L
(1)
3 L(2)L

(2)
3 L15;0,0,0,0, n√

2

(geiR15θ) = 〈L(1)L
(1)
3 L(2)L

(2)
3 L15|eiR15θ|0, 0, 0, 0, n√

2
〉

= 〈L(1)L
(1)
3 L(2)L

(2)
3 L15|g|R(1)R

(1)
3 R(2)R

(2)
3

n√
2
〉

×e(iθR15)δL(1)0δL(1)
3 0
δL(2)0δL(2)

3 0

= D
(1,0)

L(1)L
(1)
3 L(2)L

(2)
3 L15;0,0,0,0, n√

2

(g)× e
inθ√

2 (4.108)

Therefore, we conclude that the wave functions transform with a phase under the

U(1) action. Due to pedagogical reasons it would be useful to show transformation

properties of the wave functions explicitly for the (0, 1, 0) representation:

geiR15θ =




...

...
...

...

P ∗34 P12

−P ∗24 P13

P ∗23 P14

P ∗14 P23

−P ∗13 P24

P ∗12 P34



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 e
−i√
2
θ

0

0 0 0 0 0 e
i√
2
θ



=




...

...
...

...

e
−i√
2
θ
P ∗34 e

i√
2
θ
P12

−e
−i√
2
θ
P ∗24 e

i√
2
θ
P13

e
−i√
2
θ
P ∗23 e

i√
2
θ
P14

e
−i√
2
θ
P ∗14 e

i√
2
θ
P23

−e
−i√
2
θ
P ∗13 e

i√
2
θ
P24

e
−i√
2
θ
P ∗12 e

i√
2
θ
P34

(4.109)

This transformation shows that gn6(= Pαβ) terms satisfy the transformation prop-

erties. Therefore, the wave functions are in the form

D(0,1,0)(g) ∼ Pαβ . (4.110)

The Wigner-D functions in the (0, q, 0) IRR may be also expressed in terms of

Plücker coordinates. (0, q, 0) representation is the symmetric tensor product of
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the (0, 1, 0) IRRs

⊗S ⊗S · · · ⊗S −→

q︷ ︸︸ ︷
· · · ,

where ⊗S stands for the symmetric tensor product. From (4.15) we observe that

n = q1 − q2. Combining this fact with (4.108) we may write

D(0,q1+q2,0)(gh) = D(0,q1+q2,0)(g)e
i(q1−q2)θ√

2 , (4.111)

which implies that the wave functions have the local form

D(0 ,q1+q2 ,0)(g) ∼ Pα1β1Pα2β2 · · ·Pαq1βq1P
∗
γ1δ1

P ∗γ2δ2 · · ·P
∗
γq2δq2

. (4.112)

Taking q2 = 0, LLL wave functions are obtained as

D(0 ,q1 ,0)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,0 ,0 , n√

2

(g) ∼ Pα1β1Pα2β2 · · ·Pαq1βq1 . (4.113)

Casimir operator of SU(4) may be written in the form CSU(4)
2 = L

SU(4)
k L

SU(4)
k

where LSU(4)
k are the left invariant vector �elds. From [23] we may write

Lk = −vj(λk)ij
∂

∂vi
− wj(λk)ij

∂

∂wi
+ v∗i (λk)ij

∂

∂v∗j
+ w∗i (λk)ij

∂

∂w∗j
, (4.114)

where λk is the kth component of the Gell-mann matrices of SU(4) and vα, wα are

the two sets of complex coordinates,(α = 1, · · · , 4), that is one set for each C4.

By choosing complex vectors w and w as complex unit vectors and orthonormal

to each other,i.e.,

viw
∗
i = 0 , |v|2 = |w|2 = 1 , (4.115)

and using the identity
N2−1∑
k=1

λkijλ
k
mn =

1

2
δinδjm −

1

2N
δijδmn . (4.116)

for N = 4, we may write the CSU(4)
2 in the explicit form

CSU(4)
2 =

15

8

(
vi
∂

∂vi
+ wi

∂

∂wi
+ v∗i

∂

∂v∗i
+ w∗i

∂

∂w∗i

)
+

3

8

(
vivj

∂

∂vi

∂

∂vj
+ wiwj

∂

∂wi

∂

∂wj
+ c.c.

)
− 2

8

(
viwj

∂

∂vi

∂

∂wj
− viw∗j

∂

∂vi

∂

∂w∗j
+ c.c.

)
+

1

8

(
viv
∗
j

∂

∂vi

∂

∂v∗j
+ wiw

∗
j

∂

∂wi

∂

∂w∗j
+ c.c.

)
+ viwj

∂

∂vj

∂

∂wi
+ v∗iw

∗
j

∂

∂v∗j

∂

∂w∗i
− ∂

∂vj

∂

∂v∗j
− ∂

∂wj

∂

∂w∗j
. (4.117)
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A short calculation gives

CSU(4)
2 Pαβ =

5

2
Pαβ , (4.118)

where the eigenvalue is equal to that obtained from B.4 for SU(4) in the IRR

(0, 1, 0), as expected. We may express the wave function for N particles as

ΨMP =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ΨΛ1(P
1) · · · ΨΛN (P 1)

ΨΛ1(P
2) · · · ΨΛN (P 2)

...
. . .

...

ΨΛ1(P
N ) · · · ΨΛN (PN )

∣∣∣∣∣∣∣∣∣∣∣
=

1√
N !

εΛ1Λ2 ···ΛnΨΛ1(P
(1))ΨΛ2(P

(2)) · · ·ΨΛN (P (N)) , (4.119)

where ΨΛj(P
(i)) is the wave function of the ith particle at Λj one-particle state.

From (4.110) one-particle state may be expressed as

ΨΛj(P
i) = P i

αβ . (4.120)

We may also express the LLL wave function in the form (4.113) as

ΨΛi(P
i) ∼ (P i

αβ)n . (4.121)

As discussed in the previous chapter we may write the two point correlation

function in the form

Ω(1, 2) =

∫
dµ(3)dµ(4) · · · dµ(N)Ψ∗MPΨMP , (4.122)

where dµ(i) is the measure of integration (or the volume form of the Grassman-

nian) in terms for the ith particle coordinates. For a short-hand notation, we will

sometimes show the integration measure as dµ(3, 4, · · · , N). Using (4.119) we

may write the two-point function in the form

1

N

∫
dµ(3)dµ(4) · · · dµ(N )ζΨi1(P (1))Ψi2(P (2)) · · ·ΨiN (P (N ))Ψ∗j1(P (1))Ψ∗j2(P (2)) · · ·Ψ∗jN (P (N )) ,

(4.123)

where ζ = εi1i2 ···iNεj1j2 ···jN . By e− δ identity [20] we may write

εi1i2 ···iNεj1j2 ···jN = δi1i2···iNj1j2···jN , (4.124)

where LHS of the equation is called the generalized Kronecker delta and is given
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by the determinant

δi1i2···iNj1j2···jN = δ′ = det


δi1j1 · · · δiNj1

δi1j2 · · · δiNj2
...

. . .
...

δi1jN · · · δiNjN


(4.125)

As an example, we may handle the calculation of two-point function at N = 3 as

Ω(1, 2) =
1

N

∫
dµ(3)δ′

[
Ψi1(P

(1))Ψi2(P
(2))Ψi3(P

(3))Ψ∗j1(P
(1))Ψ∗j2(P

(2))Ψ∗j3(P
(3))
]
.

(4.126)

The integrand may be expressed as

Ψ∗MPΨMP = A
(

Ψ∗i1(P
(1))Ψ∗i2(P

(2))Ψ∗i3(P
(3))−Ψ∗i1(P

(1))Ψ∗i3(P
(2))Ψ∗i2(P

(3))

−Ψ∗i2(P
(1))Ψ∗i1(P

(2))Ψ∗i3(P
(3)) + Ψ∗i2(P

(1))Ψ∗i3(P
(2))Ψ∗i1(P

(3))

+ Ψ∗i3(P
(1))Ψ∗i1(P

(2))Ψ∗i3(P
(2))−Ψ∗i3(P

(1))Ψ∗i2(P
(2))Ψ∗i1(P

(3))

)
.

(4.127)

where A = Ψi1(P
(1))Ψi2(P

(2))Ψi3(P
(3)). We may use the notation

| Ψ(P (1)) |2 = Ψi1(P
(1))Ψ∗i1(P

(1)) (4.128)

= Ψ1(P (1))Ψ∗1(P (1)) + Ψ2(P (1))Ψ∗2(P (1)) + Ψ3(P (1))Ψ∗3(P (1))

and

Ψi1(P
(1))Ψi2(P

(2))Ψ∗i2(P
(1))Ψ∗i1(P

(2)) =| Ψ(P (1))Ψ∗(P (2)) |2=| Ψ∗(P (1))Ψ(P (2)) |2 .

From the conservation of probability, we have the identity∫
dµ(i)| Ψ(i) |2 = 1 . (4.129)

Using previous three successive equations obtain∫
dµ(3)Ψ∗MPΨMP =

∫
M
|ΨMP |2dµ(3) = |Ψ1|2|Ψ2|2 − |Ψ∗1Λ Ψ2

Λ|2. (4.130)

We may immediately generalize the result for two-point correlation function for

the N−particle states

Ω(1, 2) =

∫
M
|ΨMP |2dµ(3)dµ(4) · · · dµ(N ) = |Ψ1|2|Ψ2|2 − |Ψ∗1Λ Ψ2

Λ|2. (4.131)
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Let us choose a non-homogeneous coordinate system as

P =
1√

1 + |γa|2
(1, γ1, . . . , γ5)T :=

1√
1 + |γa|2

(1 , γ) , (4.132)

where γi :=
Pαβ
P12

and P12 6= 0 . Now, the LLL wave functions (4.121) take the

form

Ψα(P i) ∼ (P iα)n . (4.133)

We may use this expression to �nd (4.131) in the explicit form

Ω(1, 2) ∼ 1− (P1
αP2

α)n

∼ 1−
[

(1− γ∗1a γ2a )(1− γ1b γ∗2b )

1 + |γ1a |
2 + |γ2a |

2 + |γ1a |
2 |γ2a |

2

]n
∼ 1−

[
1− |γ1 − γ2|2

1 + |γ1a |
2 + |γ2a |

2 + |γ1a |
2 |γ2a |

2

]n
. (4.134)

By de�ning a parameter X = γ` we may express the (4.134) in the form

Ω(1, 2) = 1−
[
1−

∣∣X1 −X2
∣∣2 [`2 +

∣∣X1
∣∣2 +

∣∣X2
∣∣2 + `−2

∣∣X1
∣∣2 ∣∣X2

∣∣2]−1
]n

∼ 1−

[
1− |X1 −X2|2

`2
(
1 + `−2 |X1|2 + `−2 |X2|2 + `−4 |X1|2 |X2|2

)]n
∼ 1−

[
1− 1

`2

(∣∣X1 −X2
∣∣2 +O(

1

`2
)

)]n
= 1−

[
1− 2B

n

(∣∣X1 −X2
∣∣2 +O(

1

`2
)

)]n
(4.135)

In the thermodynamic limit N →∞ and n→∞, this gives

lim
`→∞

{
1−

[
1− 2B |X1 −X2|2

n

]n}
−→ 1− exp

[
−2B

∣∣X1 −X2
∣∣2] (4.136)

as the probability of �nding two particles at the positions X1 and X2. However,

X1 and X2 are on CP 5, rather being on Gr2(C4). Using (4.139) we may show

that the �fth component of the Xi as

X i
5 := `(γ2γ3 − γ1γ4) := `

 γi2 γi1

γi4 γi3

 := `detΓi . (4.137)

As a consequence, we may write X1
5 − X2

5 = `
(
det Γ1 − det Γ2

)
and express

(4.136) as

1− e−2B|X1−X2|2 = 1− e−2B(x1−x2)
2

e−2B`2(det Γ1−det Γ2)
2

,
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where x1 and x2 are coordinates on Gr2(C4). This result indicates that if the

distance between two particles approaches zero, then the two-point function goes

to zero as well and the probability of locating two particles at the same point

approaches to zero, as expected.

Let us also discuss the U(1) gauge �eld and the associated �eld strength in some-

what more detail. We may show the last column of the (4.103) as a column vector

as P̃ ≡ (P1, . . . P6)T . We may also de�ne the non-homogeneous coordinate chart

on Gr2(C4) as Q ≡ P̃
P1
, P1 6= 0 in the form

Q = (1, γ1, γ2, γ3, γ4, γ5) , (4.138)

which is subject to Klein quadric equation (4.102) that can be written in terms

of γi as

γ5 = γ2γ3 − γ1γ4 . (4.139)

With these notations have the gauge potential

A = −inP†dP

= −inP ∗1Q†(QdP1 + P1dQ)

= −in
(
|Q|2P ∗1 dP1 + |P1|2Q†dQ

)
. (4.140)

From P1Q = P we may write |Q|2|P1|2 = |P|2. Using the fact that Plücker

coordinates is normalized, this equation reduces to |Q|2|P1|2 = 1. By inserting

this condition in (4.140) we may write

A = −in|Q|−2Q†dQ− inP ∗1 |P1|−2dP1

= −in|Q|−2Q†dQ− inP−1
1 dP1

= −in∂ ln(|Q|2)− ind ln(P1)

= −in∂K − ind ln(P1) , (4.141)

where K is the CP 5 Kähler potential given by

K = ln |Q|2 ≡ ln(1 + |γi|2) . (4.142)

It is worth to note that we may also express the �eld strength as

F = dA = −indP ∗N ∧ dPN , (4.143)
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where we have used (4.105). We note that F is an antisymmetric, gauge invariant,

closed 2-form on Gr2(C4) and proportional to the Kähler 2-form Ω over Gr2(C4).

Using (4.141) we may write the �eld strength as

F = dA = d(−in∂K)

= (∂ + ∂∗)(−in∂K)

= in∂∂∗K = nΩ , (4.144)

where ∂ and ∂∗ are the Dolbeault operators, d = ∂ + ∂∗ and Ω is the Kähler

two-form over CP 5, which is proportional to F . By using (4.142) we may express

the �eld strength as

F = in∂∂∗ ln
(
1 + |γi|2

)
= in∂

(
γi

1 + γ∗i γi
dγ∗i

)
= −in

(
dγ∗i ∧ dγi
1 + |γ|2

−
γidγ

∗
i ∧ γ∗j dγj

(1 + |γ|2)2

)
, (4.145)

which is subject to Klein quadric equation (4.139). We may rewrite the �eld

strength tensor in the form

F =
−in

(1 + |γ|2)2

(
δij(1 + |γ|2)− γ∗i γj

)
dγ∗i ∧ dγj , (4.146)

which allow us to write Kähler two-form as

Ω = −iNγ

(
δij(1 + |γ|2)− γ∗i γj

)
dγ∗i ∧ dγj , (4.147)

where Nγ = (1 + |γ|2)
−2. We can impose the Klein quadric constraint (4.139) on

(4.147). For instance, we have

dγ5 = (∂ + ∂∗)(γ2γ3 − γ1γ4) = γ2dγ3 + γ3dγ2 − γ1dγ4 − γ4dγ1

dγ∗5 = (∂ + ∂∗)(γ∗2γ
∗
3 − γ∗1γ∗4) = γ∗2dγ

∗
3 + γ∗3dγ

∗
2 − γ∗1dγ∗4 − γ∗4dγ∗1 (4.148)

Now, we may write Ω11 by considering the contributions from Ω15∗ , Ω51∗ and

Ω55∗ . For instance, contributions of Ω15∗ is

Ω15∗ → −iNγ(γ1γ
∗
4γ
∗
2γ
∗
3 − |γ1|2γ∗4γ∗4) . (4.149)

Summation of three contributions gives

γ11∗ = iNγ

[
1 + |γ2|2|γ3|2 + (1 + |γ4|2)(|γ2|2 + |γ3|2 + |γ4|2)

]
. (4.150)
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Solving for Ωii∗ gives

Ωii∗ = iNγ

1 +
4∏

α=1,α 6=i,̂i

|γα|2 + (1 + |γî|
2)

4∑
α=1,α 6=i

|γα|2
 , (4.151)

where γî is the second factor which appears in (4.139) in the form γiγî. For

instance, 1 and 2 are dual to 4 and 3, respectively. We may follow the same

steps to �nd the other components. After straightforward but somewhat long

calculations we obtain

Ωij∗ = −iNγ
(

1 + |γî|
2 + |γĵ |

2
)(

γ∗i γj + γîγ
∗
ĵ

)
, i < j , j 6= î (4.152)

Ωîi∗ = −iNγ

γ∗i γî
(

4∑
α=1

|γα|2 − |γi|2 − |γî|
2

)
− 1

2
(γ∗i )2

∏
j 6=i ,̂i

γjγĵ −
1

2
(γî)

2
∏
j 6=i ,̂i

γ∗j γ
∗
ĵ

 ,

where summation over repeated indices is not implied and i < î is valid for the

second expression.

The integral of F over non-contractible 2-surface Σ on Gr2(C4) gives [25]∫
Σ

F

2π
= n , (4.153)

which is the analogue of the Dirac quantization condition with n
2
identi�ed as the

magnetic monopole charge. As a �nal remark, we may discuss the generalization

of the results for higher dimensions. For Gr2(C4) case, both vector potential A

and �eld strength F are subject the Plücker relations

γikγjl = γijγkl − γilγkj, 1 ≤ i < k < j < l ≤ 2(N − 2) , (4.154)

where γi are the non-homogeneous coordinates as γij := Pij/P12.
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CHAPTER 5

CONCLUSION

In this thesis we have formulated the QHE on Grassmann manifolds. We have

�rst discussed the QH system in 2D spatial geometries and written the single-

and multiparticle-wave functions and described the incompressibility property of

the QH liquid. Then, we have reviewed the Landau problem on two-sphere [3].

We have summarized the work of D. Nair and V.P. Karabali [5] since their work

is the main guide during the preparation process of this thesis. For this purpose,

we have given the short review of QHE on CP 1 and CP 2.

In the last chapter we give our analysis results in a detailed manner. First, we

have given the energy spectrum Due to the pedagogical reasons, we �rst give the

detailed analysis of Landau problem on Gr2(C4). In this part, we have given

the energy spectrum under the three di�erent gauge �eld backgrounds. We have

de�ned the wave functions in terms of suitable subsets of the Wigner-D func-

tions. Next, we have generalized our results for Gr2(CN). Then, we have given

the local forms of the wave functions and two-point functions in terms of Plücker

coordinates, explicitly. We have shown that �nite spatial density in case of U(1)

gauge �eld background is achieved in the thermodynamic limit without introduc-

ing in�nite SU(2) degrees of freedom. Calculating 2-point correlation function,

we have shown that the probability of �nding two particles at the same point is

zero, which associate the incompressibility of the QH systems.

In this thesis we have not considered the formulation of branching rules ofGr2(CN)

in case of SU(N−2)×SU(2) gauge �eld background. This point is an open ques-

tion that one can try to formulate.
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APPENDIX A

YOUNG TABLEAUX

The young tableaux is a technique to describe irreducible representations(IRR).

It was �rst described by Alfred Young in 1900. Young tableaux can be extended

for many kind of groups. However, In this part we will only deal with the SU(N)

with English convention.

In this technique every IRR is represented by a series of boxes. Some examples

are:

, , etc.

We label each tableau with respect to number of repetitive columns which have

same number of boxes. For example, in the �rst diagram there are 2 columns

with 1 box, 0 column with 2 boxes and 1 column with 3 boxes. Then, we can

label it by (2, 0, 1, 0), say it is IRR of SU(5) group. The rest of the tableaux can

be labeled as (1, 1, 1, 0) and (2, 1, 0, 1).

Young tableaux technique has some common rules:

I) From right to left, number of boxes on each column should not exceed the

the boxes on preceding one. That means When we read the numbers on

a label from left to right, each number should be less than or equal to the

following one.

II) For a generic IRR of SU(N) group, the number of boxes on any column

should be less than or equal to N .

III) Dimension of the any IRR can be found from factor over hooks law [13] .
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The rule gives the dimension as follow: First label the left corner box as N .

Then, with each box from left corner to the right increase the number by

1 as N + 1,N + 2 · · · From left corner to the bottom decrease the number

by 1 as N − 1,N − 2 · · · . Then, starting from the box labeled by N − 1

increase the number by 1 from left to right and do it for rest of the rows.

De�ne a number H which is product of all numbers on the boxes. As an

example, F for (1, 1, 1) representation is:

F = N(N + 1)(N + 2)(N − 1)N(N − 2) . (A.1)

Second, choose a generic box. Then, note all the boxes which are located

on left or below of the generic box. Call the total number of boxes as h

(include generic one). Do it for every box and call then as h. Finally, take

the product of all hs and label this product as H. As an example, H for

(1, 1, 1) representation is 45. Dimension of the IRR (1, 1, 1) may be written

as H
F
. For (1, 1, 1) it is equal to

dim(1, 1, 1) =
F

H
=
N(N + 1)(N + 2)(N − 1)N(N − 2)

45
. (A.2)

Young tableaux technique allows us to decompose a SU(N + M) into SU(N)⊗
SU(M)[13] [14]. Decomposition rules are based on the symetry and antisymmetry

properties on the Young Tableaux. Any pair of boxes which are located on a row

are in symmetry relation relative to each other. If they are located on a columns

they have antisymmetry relations. This allow us to represent the young tableaux

in a simple tensor form. In this representation we will label the symmetric boxes

with a letter. As an example the Young tableau representation of (2, 2) is

(A.3)

The corresponding tensor representation is as φ(A1A2A3A3A4)(B1B2). During brach-

ing of the IRR of SU(N +M), we pick a box from the young tableau of SU(N +

M) and place it to the young tableau of SU(M) and the rest of the boxes of

SU(N + M) represent SU(N). We will label the SU(N) (SU(M)) boxes with

upper case (roman letters). We can continue to that process until no box is

left on SU(N + M). During placement we should notice that any symmetric

pair(antisymmetric) of boxes can not be placed in a column(row).
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During the branching we write all possible representations and then eliminate the

ones that disturbs that general rules and symmetry-antisymmetry properties.

As an example, the all possible branching of the φ(A1A2A3A3A4)(B1B2) under the

branching of SU(4)→ SU(2)⊗ SU(2) is as:

φ(A1A2A3A4)(B1B2) → φ(a1a2a3a4)(b1b2) ⊕ φ(a1a2a3)(α4)(b1b2) ⊕ φ(a1a2)(α3α4)(b1b2)

⊕ φ(a1)(α2α3α4)(b1b2) ⊕ φ(α1α2α3α4)(b1b2) ⊕ φ(a1a2a3a4)(b1β2)

⊕ φ(a1a2a3)(α4)(b1β2) ⊕ φ(a1a2)(α3α4)(b1β2) ⊕ φ(a1)(α2α3α4)(b1β2)

⊕ φ(α1α2α3α4)(b1β2) ⊕ φ(a1a2a3a4)(β1β2) ⊕ φ(a1a2a3)(α4)(β1β2)

⊕ φ(a1a2)(α3α4)(β1β2) ⊕ φ(a1)(α2α3α4)(β1β2) ⊕ φ(α1α2α3α4)(β1β2)

In this branching fourth, �fth and tenth elements from the left disturb the branch-

ing rules, so we eliminate them. The branching in terms of the young diagram

can be shown as:

−→
(

⊗ ·
)
⊕
(

⊗
)
⊕
(

⊗
)

⊕
(

⊗
)
⊕
(

⊗
)
⊕
(

⊗
)

⊕
(

⊗
)
⊕
(

⊗
)
⊕
(

⊗
)

⊕
(

⊗
)
⊕
(

⊗
)
⊕
(

⊗
)

⊕
(

⊗
)
⊕
(

⊗
)

⊕
(

⊗
)
⊕
(

⊗
)

⊕
(

⊗
)
⊕
(
· ⊗

)
,

where the �rst (second) box stands for SU(N) (SU(M)) representation in every

paranthesis. By using hooks law we can �nd the total dimension of the branching.

As can be checked easily both the dimension of SU(N + M) and the branching

are equal to 126.
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APPENDIX B

QUADRATIC CASIMIR C2 AND DIMENSION OF SU(N)

The general form of the eigenvalue of the quadratic Casimir of SU(N) [17] may

be written as

〈C2〉 =
N∑
i=1

(`ki − ρki ), ρi = n− i, `i = mi + n− i (B.1)

and

mi = λi −
λ

N
, λ =

N∑
i

λi (B.2)

in which λi represents number of the boxes at ith row of the young diagram of

SU(N) IRR. Our most general SU(N) representation is in the form

(P1, P2, 0, · · · , 0, PN−2, PN−1). (B.3)

When we adopt the labeling of [17] into our convention, we obtain

C2(P1, P2, 0, . . . , 0, PN−2, PN−1) = (
N − 1

2N
)P 2

1 + (
N − 2

N
)P 2

2 + (
N − 2

N
)P 2

N−2

+ (
N − 1

2N
)P 2

N−1 + (
N − 2

N
)P1P2 +

2

N
P1PN−2

+
1

N
P1PN−1 +

4

N
P2PN−2 +

2

N
P2PN−1

+ (
N − 2

N
)PN−2PN−1 + (

N − 1

2
)P1 (B.4)

+ (N − 2)PN−2 + (
N − 1

2
)PN−1 + (N − 2)P2 .

The (p, q, r) representation of SU(4) would seem not suitable for the general for-

mula. SU(N) representation requires al least 4 parameters to label IRRs.However,

we label the IRR of SU(4) with three parameter (p, q, r). To overcome this mis-

matching we may split the q parameters into two pieces as

(p, q = q1 + q2, r)←→ (P1, q2, q1, PN−1) , (B.5)
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where splitting is controlled by the branching of SU(4).

By using hook's law (described on Appendix A), dimension of the IRR given in

(B.3) may be written as

dim(P1, P2, 0, . . . , PN−2, PN−1) =
1

j

(
(PN−2 + PN−1 +N − 3)!(PN−2 +N − 4)!

× (P1 + P2 +N − 3)!(PN−2 + PN−1 + P2 +N − 2)

× (PN−1 + 1)(P1 + P2 + PN−2 + PN−1 +N − 1)

× (PN−2 + P2 +N − 3)(P1 + P2 + PN−2 +N − 2)

× (P1 + 1)(P2 +N − 4)!
)
, (B.6)

where j is

j = (N−1)!(N−2)!(N−3)!(N−4)!P2!PN−2!(PN−2+PN−1+1)!(P1+P2+1)!. (B.7)
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APPENDIX C

COEFFICIENT OF RN2−1

For Gr2(C4) and Gr2(CN) we have used the relation between eigenvalues of the

generators R15, RN2−1 and U(1) charges. Now, we give a short derivation of this

relation. We start by taking the trace normalization as Tr(RαRβ) = 1
2
δαβ for

generators of SU(N) in the N -dimensional de�ning representation.

It is known that any choice of trace normalization of the generators of SU(N) in

an IRR �xes the trace normalization in all other IRR's of SU(N) as [18]

Tr(T (R)
a T

(R)
b ) = κab , (C.1)

where κab is a rank-2 tensor invariant under SU(N) transformations. We know

that the only rank-2 invariant SU(N) tensor is Kronecker delta, δab. Then we

may write

κab = X(R)δab , (C.2)

where X(R) is the Dynkin index of the representation R of the group SU(N) and

given as [18]

X(R) =
dim(R)

dim(SU(N))
C2(R) . (C.3)

We have that dim(SU(N)) is equal to N2 − 1 and CR2 is the quadratic Casimir

of the IRR R given in (B.4). For either (0 , 1 , 0 , · · · , 0 , 0) or (0 , 0 , · · · , 1 , 0) of

SU(N) IRR this gives

X(R) =
N − 2

N
, (C.4)

and the (C.1) reads

Tr(TaTb) =
N − 2

N
δab, (C.5)

in either of the N(N−1)
2

-dimensional IRR. Our aim is to �nd the coe�cient of

RN2−1 in these representations. In terms of the Young diagrams, the branching
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of, say, (0 , 1 , 0 , · · · , 0 , 0) representation under SU(N − 2)× SU(2)×U(1) gives

=

(
· ⊗

)
−1

⊕
(

⊗ ·
)

2
N−2

⊕
(

⊗
)

4−N
2(N−2)

, (C.6)

where the subscripts represent the U(1) charge. Therefore we may write the

RN2−1 as

RN2−1 = ζ diag
(

N − 4

2(N − 2)
, . . . ,

N − 4

2(N − 2)︸ ︷︷ ︸
2(N−2)

,
−2

N − 2
, . . . ,

−2

N − 2︸ ︷︷ ︸
(N−2)(N−3)

2

, 1

)
, (C.7)

where ζ represents the coe�cient of RN2−1 and the dimensions of the IRR in the

branching (C.6) are given in the underbraces. Finally, using (C.7) in ((C.5)) gives

ζ =

√
N − 2

N
. (C.8)

72



REFERENCES

[1] E. Hall, On a New Action of the Magnet on Electric Currents, American
Journal of Mathematics vol. 2 (1879).

[2] R. B. Laughlin, Anomalous Quantum Hall E�ect: An Incompressible Quan-

tum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50, 1395
(1983).

[3] F. D. M. Haldane, Fractional Quantization of the Hall E�ect: A Hierarchy

of Incompressible Quantum Fluid States, Phys. Rev. Lett. 51, 605 (1983).

[4] J. Hu and S. C. Zhang, A Four Dimensional Generalization of the Quantum

Hall E�ect, Science 294, 823 (2001), [cond-mat/0110572].

[5] D. Karabali, V. P. Nair, Quantum Hall E�ect in Higher Dimensions, Nucl.
Phys. B 641, 533 (2002), [hep-th/0203264].

[6] D. Ranganathan, A Gentle Introduction to Grassmannians, [Online] Avail-
able: www.math.hmc.edu/∼ursula/teaching/math189/�nalpapers/dhruv.pdf
[Accessed 18 April 2014]

[7] Z. F. Ezawa, Quantum Hall E�ects: Field Theoretical Approach and Related

Topics, 2nd ed. World Scienti�c Pub. Co. (2003).

[8] J.J. Sakurai, J. Napolito, Modern Quantum Mechanics, 2nd ed.
Boston:Addison-Wesley (2011)

[9] F. Ball�, A. Behtash, S. Kürkçüo§lu, G. Ünal Quantum Hall E�ect on Grass-

mannians Gr2(C)N , Phys.Rev. D89 (2014) 105031 [hep-th arXiv:1403.3823]

[10] S. M. Girvin, The Quantum Hall E�ect: Novel Excitations and Broken

Symmetries, arXiv:cond-mat/9907002 [cond-mat.mes-hall]

[11] S. Karigiannis, Algebra and Geometry: Spheres and Projective Spaces,
[Online] Available: http://www.math.uwaterloo.ca/ karigian/talks/CUMC-
2010.pdf [Accessed 02 May 2014]

[12] M. Stone, Mathematics for Physics II, Cambridge University Press (2003)

[13] H. Georgi, Lie Algebras in Particle Physics, 2nd ed. Westview Press (1999)

[14] A. B. Balantekin and I. Bars, Branching Rules for the Supergroup SU(N/M)

from those of SU(N +M), J. Math. Phys. 23, 1239 (1982).
73



[15] B. P. Dolan and O. Jahn, Fuzzy complex Grassmannian spaces and their

star products, Int. J. Mod. Phys. A 18, 1935 (2003), [hep-th/0111020].

[16] Young Diagrams and SU(N) representations, [Online] Available:
www.phys.washington.edu/users/ellis/Phys5578/Young.pdf [Accessed
15 May 2014]

[17] F. Iachello, Lie Algebras ad Applications, 1st ed. Springer (2006).

[18] J. Fuchs and C. Schweigert, Symmetries, Lie algebras and Representations:

A Graduate Course for Physicists, 2nd ed. Cambridge Univ. Press (2003).

[19] K. Fuji, Introduction to Grassmann Manifolds and Quantum Computation,
J. Appl. Math. 2, 371 (2002), [quant-ph/0103011v5].

[20] Introduction to Tensor Calculus, [Online] Available:
www.math.odu.edu/ jhh/part2.PDF [Accessed 20 May 2014]

[21] E. Lengyel, Fundamentals of Grassmann Algebra, [Online] Available:
www.terathon.com/gdc12/lengyel.pdf. [Accessed 25 May 2014]

[22] R. Gro�, Notes on Plücker Coordinates [Online] Available:
orb.olin.edu/plucker.pdf [Accessed 20 May 2014]

[23] S. Murray, C. Sämann, Quantization of Flag Manifolds and their Super-

symmetric Extensions, Adv. Theor. Math. Phys. 12, 641 (2008) [hep-
th/0611328].

[24] X. Wen, Topological Orders and Edge Excitations in FQH States, Advances
in Physics 44, 405 (1995)

[25] V. P. Nair, Quantum Field Theory: A Modern Perspective (Graduate Texts

in Contemporary Physics), Springer (2005).

[26] M. Nakahara, Geometry, Topology and Physics, 2nd ed. Institute of Physics
Publishing (2003).

[27] J. Plücker, Analytisch-geometrische Entwicklungen, 2nd ed. (1831)

74


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Integer Hall Effect
	Classical Hall Effect
	Integer Quantum Hall Effect
	Landau Problem on the Plane
	Density of States
	Density of States in the Absence of the Magnetic Field
	Density of States in the Presence of the Magnetic Field

	Single Electron Wave Function
	Incompressibility of the Hall Liquid

	Many Particle Wave Functions

	QHE on CP1.5-.5.5-.5.5-.5.5-.5S2 and CP2
	Landau Problem and Haldane Treatment
	QHE on S2, Treatment of D. Nair and V.P. Karabali
	Landau Problem on CP2

	QUANTUM HALL EFFECT ON GRASSMANN MANIFOLDS
	Landau Problem on Gr2(C4)
	Pure U(1) Gauge Field
	U(1) and Single SU(2) Gauge Field
	 SU(2) SU(2) Gauge Field

	Landau Problem on Gr2(CN)
	Pure U(1) Gauge Field
	SU(2) Gauge Field

	Local Form of the Wave Functions and the Gauge Fields

	CONCLUSION
	APPENDICES
	Young Tableaux
	Quadratic Casimir C2 and Dimension of SU(N)
	Coefficient of RN2-1
	REFERENCES

