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ABSTRACT 

MINIMUM ORDER LINEAR SYSTEM IDENTIFICATION AND PARAMETER 

ESTIMATION WITH APPLICATION 

 

Erdoğan, Onur Cem 

 

M.S., Department of Mechanical Engineering 

 Supervisor : Prof. Dr. Tuna Balkan 

         Co-Supervisor : Prof. Dr. Bülent E. Platin 

 

September 2014, 172 pages 

 

Design, control, and investigation of complex systems require a tool to understand 

and model system behavior. This tool is the system identification, which convert the 

system response to a mathematical formulation. During the identification phase, the 

utilized model is important to convey system behavior. In this study, a number of 

minimum order and non-parametric system identification algorithms are 

implemented for the identification of linear time invariant mechanical systems. For 

this purpose, impulse response determination methods are investigated to obtain 

system behavior. State space modeling and special models used in the identification 

process of physical systems are investigated. Two system realization algorithms 

implementing minimum order non-parametric linear system identification are 

presented. A transformation based method for the extraction of physical system 

parameters from a real system model is represented. The suggested methods are 

implemented on both simulation and test data for different system models to 

investigate their effectiveness and performance.  

 

Keywords: Linear System Identification, State Space Modeling, Minimum Order 

System Identification, Inverse Vibration Problem, Wavelet Analysis, Parameter 

Estimation in Physical Systems  
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ÖZ 

DOĞRUSAL SİSTEMLERİN EN AZ DERECELİ MODELLER İLE 

UYGULAMALI OLARAK TANILANMASI VE PARAMETRELERİNİN 

TAHMİNİ  

 

Erdoğan, Onur Cem 

 

Yüksek Lisans, Makina Mühendisliği Bölümü 

          Tez Yöneticisi : Prof. Dr. Tuna Balkan 

Ortak Tez Yöneticisi : Prof. Dr. Bülent E. Platin 

 

Eylül 2014, 172 sayfa 

 

Karmaşık sistemlerin tasarımı, kontrolü ve incelenmesi sistem davranışını anlayacak 

ve modelleyecek bir aracı gerektirmektedir. Sistem tepkilerini matematiksel bir 

formülasyona çevirecek bu araç sistem tanılamasıdır. Sistem tanılamasında 

kullanılacak model, tanılama işleminin performansında en önemli role sahiptir. Bu 

çalışmada, doğrusal ve parametreleri zamanla değişmeyen mekanik sistemler için en 

az mertebeli ve parametrik olmayan tanılama yöntemleri kullanılmıştır. Bu amaçla, 

sistemin dürtü yanıtını bulan yöntemler incelenmiştir. Fiziksel sistemlerin durum 

uzayında modellenmesi incelenmiş ve tanılamaya özel kullanılan modellere yer 

verilmiştir. Doğrusal sistemler için en az mertebeli ve parametrik olmayan sistem 

tanılaması gerçekleştiren iki yöntem sunulmuştur. Gerçek bir sistemin 

parametrelerini dönüşüm matrisleri yardımıyla saptayan bir yöntem önerilmiştir. 

tanıtılmıştır. Önerilen yöntemlerin etkinlikleri ve başarımları değişik sistem 

modellerinin benzetim ve test verilerine uygulanarak değerlendirilmiştir. 

Anahtar kelimler: Doğrusal Sistem Tanılaması, Durum Uzayında Modelleme, En Az 

Mertebeli Tanılama, Ters Titreşim Problemi, Dalgacık Analizi, Fiziksel Sistemlerde 

Parametre Kestirimi   
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CHAPTER 1  

 

 INTRODUCTION 

Mechanical design, construction, investigation, and control of complex systems 

always become the main objective of engineering practice. Moving objects always 

attracted the engineers’ attention and their will to manipulate them is getting more 

and more demanding. During this course, engineers try to understand static and 

dynamic characteristics of the plant of their interest. Understanding the system, 

provides engineers to better optimize system parameters according to the design 

requirements which derives design for lighter, smaller and more agile systems. In 

addition to that, understanding real system provides a feedback and a mathematical 

model to the design engineer about how good their initial design meets the 

requirements and enables them to predict system behavior under different operating 

conditions. Additionally, monitoring system behavior under operational conditions 

conveys information about the health of the system.  

System identification is the name given to the process devoted to mathematically 

representing real system behavior and it is defined by Juang as "Identification is the 

course of developing mathematical models for physical system by using 

experimental data" [1]. In the literature, there are various methods and 

implementations of system identification techniques and their growth followed a 

similar progress with the demand on control action. Although for structural design 

considerations, the finite element method provides accurate models and these 

models can be further improved by implementing static and dynamic testing, this 

traditional approach to obtain system models generally is not accurate enough to be 
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used in the control design application. This is why system realization became a key 

component in the system identification application.  

Identification procedures are generally dependent on the purpose of the 

identification application. Different requirements like control implementation, finite 

element model correction/updating and health monitoring/damage detection may 

require different identification schemes and additional procedures. 

Identification problem also incorporates the model selection criteria and there are 

some techniques that work with pre-defined models during system identification 

application. However as defining model for a complex system is a complicated and 

tedious task, non-parametric modeling is generally preferred depending on the type 

of the identification problem.  

1.1 AIM OF THESIS  

This study is resulted from the identification and modeling requirement of the 

stabilized gun platforms developed at ASELSAN. Those stabilized machine gun 

platforms are designed for remote control of machine guns to compensate the 

disturbances resulting from the motion of the hull vehicles. Some examples of such 

platforms are shown in Figure 1.1. Those platforms are capable to move in the 

azimuth and elevation directions and have gyroscopes as inertial speed measuring 

sensors on the both axes of their line of fire such that they can counteract against the 

disturbances coming from the base platform movements. Those base platforms can 

be naval or land vehicles as well. 

In order for these stabilized platforms to counteract against disturbances coming 

from their base, they require a mean of control action. For this reason, the degree of 

control action directly determines the performance of those systems and in order to 

make these stabilized platforms more agile and precise, more compact designs and 

better control implementations are the key requirements. For this purpose, by finding 

mass and stiffness distribution of the system, the best possible sensor locations and 
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effective control action over the lumped masses can be determined. In addition to 

that, model based design can be implemented on those systems by realizing a state 

space system model as nearly whole modern control techniques utilize state space 

system representation. Finally, the identified models can be used to monitor the 

health of the system by repeating realization application over time and comparing 

results with the initial realization results. 

 

 

 

Figure 1.1 Stabilized Machine Gun Platforms Developed by ASELSAN [2] 

For the reasons stated above, a system identification procedure is required in the 

development of such stabilized platforms. The main objective is to find minimum 

order system model, so that the physical system will be represented mathematically 

and physical system parameters are obtained from the measured system input and 
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output data in terms of the mass, stiffness, and damping matrices. During developing 

those models, the main assumption is the linear time-invariant (LTI) system 

characteristics. In order to conserve physical system interpretation and minimize the 

requirement on the user expertise, non-parametric and deterministic modeling 

approaches will be implemented. Non-parametric modeling means that the physical 

domain of the system is known, which is the mechanical system represented by 

second order differential equations. However, in this study, the actual order or model 

length is unknown in non-parametric modeling and the order of the system should 

also be determined during the identification implementation. In addition to that, 

deterministic modeling approaches will be utilized in this study in order to simplify 

the identification process and decrease dependence on statistical analysis. By 

implementing deterministic identification approach, the system order can be 

determined in a more analytical and systematic way.  

1.2 HISTORY OF SYSTEM IDENTIFICATION 

The term system identification was first coined by Lotfi Zadeh in 1962. His 

definition for system identification was that, "Identification is the determination, on 

the basis on input and output of a system within a specified class of systems, to 

which the system under test is equivalent" [3]. This definition was implying high 

dependency on the system under test and it does not convey the statistical content of 

system identification. However, it became the standard terminology in the control 

community since then. Additionally, the terminology and methods of identification 

spread out of control community to other fields like, statistics, econometrics, 

geophysics, signal processing, etc.  

Starting with Gauss (1809) up to 1960s, explicit parametric models, in which a pre-

determined model is utilized, were the major concern of the control community.  

Several methods in system identification rely on variants of time series analysis, and 

further development on spectral and parametric methods for time series was started 
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by Yule (1927) [3]. During this period of time, nearly all the essential statistical 

concepts used in system identification had appeared. Linear regression, least squares 

method (Wald 1943), and maximum likelihood methods (Fisher 1912), (Wald 

1949), (Cramer 1946) constitute the foundations of modern system identification 

theory [3]. According to Ljung, stochastic approximation, (Robbins and Monro 

1951) was developed in the beginning of 1950s and then it gave inspiration to 

recursive identification techniques [3]. Up until late 1950’s much of control design 

relied on classical methods like Bode, Nyquist or Ziegler-Nichols charts, or on step 

response analyses. Also these methods were only limited to single input single 

output (SISO) systems. 

Number and depth of system identification studies have grown with the demand and 

development of feedback control applications over time. Around 1960, the demand 

for control activities increased significantly so that, parametric modeling and 

estimation activities gain acceleration [4]. Around 1960’s Kalman introduced the 

state-space realization and stated the foundations of state-space based optimal 

filtering and optimal control theory with Linear Quadratic (LQ) optimal control as a 

cornerstone of the model based control design [4].  

At the third IFAC (International Federation of Automatic Control) Congress in 

London in 1966, a survey paper on the current status of system identification was 

presented by Eykhoff et al. [3]. A year later, in 1967, the first IFAC Symposium on 

system identification was organized in Prague. Since then, system identification has 

been an important subject of automatic control with regular sessions at all general 

control meetings like the CDC and IFAC Congress. 

The status of identification field was described by Åström and Eykhoff (1971) in 

their survey paper by the following quotation [5] : "The field of identification is at 

the moment rather bewildering, even for the so-called experts. Many different 

methods are being analyzed and treated. ’New Methods’ are suggested en masse, 

and, on the surface, the field looks more like a bag of tricks than a unified subject. " 
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The reason why there was not much improvement and comparison between the 

models was because there was not enough computing power and access to other 

methods. In addition to that, there were no common models used in various 

identification algorithms. Each researcher was using their own model sets with 

varying noise and distortion models, and after they implement their own model 

structure and find good results, their own suggested algorithms were being superior 

among all the other identification schemes. However, there were not enough 

evidence and comparison between the model structures and their implementations 

such that, most of the suggested methods could not go further than implementing 

different noise models and model structures on specific problems rather than being 

different methods. 

In the year 1965 there appeared two landmark papers of Åström and Bohlin (1965) 

[6], and Ho and Kalman (1965) [7], which gave birth to two main streams of 

research areas that dominated the development of system identification in the control 

community even until today.  

Åström and Bohlin (1965) revealed the foundations of maximum likelihood methods 

based on parametric single input, single output models in their paper [6]. Their 

theory depends on the analysis of time series for estimation of parameters included 

in the difference equations. In the statistical literature, they are known as ARMA 

(Auto Regressive Moving Average) or ARMAX (Auto Regressive Moving Average 

with eXogeneous input) models. These models and the maximum likelihood 

methods later evolved into the successful prediction error identification framework, 

which relies on the statistical aspect of the identification implementation [4]. 

In their paper Åström and Bohlin (1965) introduced the maximum likelihood 

method for parameter estimation of models in ARMAX form as follows [4]. 

 1 1 1( ) ( ) ( )t t tA z y B z u C z e     (1.1) 
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where 
te  is a sequence of identically distributed normalized (0,1) random variable, 

where z  denotes the shifting operator. The maximum likelihood method has been 

extensively examined and studied in statistics for its application to various time 

series models [4]. Beyond the success of this methodology, Åström and Bohlin 

(1965) gave the complete algorithmic derivations and development of the  maximum 

likelihood method for ARX and ARMAX models. In addition to that, they 

performed and presented the whole asymptotic consistency, efficiency, and 

normality analyses for the validation of the estimated parameters with model order. 

Furthermore, the concepts and notations used by Åström and Bohlin (1965) were 

accepted by the whole identification community, so that they are even used in 

today's analyses in the same form. Therefore, Åström and Bohlin (1965) constructed 

the foundation for the parametric identification. They gave the fundamentals of 

maximum likelihood approach and the foundations of prediction error framework 

with slight improvements in the noise models. However, as this approach is 

concentrated on representing the system model with the best approximation, the real 

system parameters do not have any significance. As the main objective of this thesis 

is determination of the actual system parameters, the maximum likelihood and 

prediction error like methodologies are not appropriate in this manner.  

Whereas in 1965 Ho and Kalman introduced the first solution to the challenging 

minimum order realization concept in the complete contrast to  maximum likelihood 

framework [7]. In their analysis, the state space representation of the input-output 

model is given by the following general expression. 

 

 



1t t t

t t

x Ax Bu

y Cx
 (1.2) 

The above expression was simplified by using the shifted impulse response history 

matrix, called as Hankel matrix , kH  as the following. 
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The problem here is to replace the infinite description of 
p m

kH   with the 

expression for A , B , and C  matrices where , ,n n n m p nA B C     providing 

that 

 1( ) ( )H z C zI A B   (1.5) 

with the dimension of A  being minimal. They separated the problem into two parts, 

first part is finding the McMillan degree of ( )H z , which then provides the 

minimum dimension for matrix A . Second problem is the computation of A , B , 

and C  matrices. 

Here, the solution brought by Ho and Kalman is the utilization of the Hankel matrix, 

and its factorization into the product of controllability and observability matrices as 

follows. 
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 (1.6) 
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If the McMillan degree of ( )H z  is determined as n , then, the ( )rank H n , and 

there exist a solution for A , B , and C  matrices such that 
1k

kH CA B . 

Although Ho and Kalman introduced the theory underneath the minimum order 

system realization algorithm in 1965, researchers could understand their theory years 

later. With their approach, Ho and Kalman formed the basis for linear system 

identification and realization theory. The solution of the minimum order realization 

problem was then extended by Akaike (1974) [8] and others to be used in stochastic 

realization, where a Markovian model is utilized for a purely random process. This 

methodology then extended in the early 90’s to also include control input and 

became known as the subspace identification [4]. In this thesis as the major concern 

is to find the model of the "true system", therefore minimum order realization 

algorithms that are further improved versions of Ho and Kalman's algorithm will be 

utilized. 

Box and Jenkins published a book in 1970 [9], which provided momentum on the 

real life application of identification. In fact, that book explained the whole 

identification process starting from the initial data analysis up to the estimation of a 

model. The methodology involved in that book is mainly based on the time series 

methods and correlation analysis for determination of the model structures. The 

book remained as a major reference book in the identification area for about two 

decades. In addition to the book of Box and Jenkins, the other references were the 

survey paper published by Åström and Eykhoff in 1971 [5] and a paper by Akaike  

involving other special topics on system identification and time series analysis  

published in 1974 [8]. 

According to Gevers from the middle seventies, the prediction error framework 

dominated identification theory and its applications. The main concern was the 

identifiability problem for both multivariable and closed loop systems. Again, nearly 

all the focus was concentrated on the search of "true system" [4]. 
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As Gevers stated, in the seventies, around 1978, Anderson et al, Ljung and Caines 

were started research on the best possible approximation of the "true system", rather 

than searching for the "true system" [4]. This concept guided the identification 

community searching from "true system" to characterization of the best possible 

approximation. Therefore, the error utilized in the identification process became the 

main research objective. Later in 1986, Ljung and Wahlberg [10] provided a theory 

for investigating model bias and variance, which guided researchers to move on to 

the transfer function errors rather than dealing with bias and variance errors. During 

this period of time, Ljung's one of the major contribution was eliminating vast 

majority of identification techniques suggested by different researchers. Ljung also 

separated and pointed two major concepts as the choice of parametric model 

structure and the choice of an identification criterion. After Ljung's approach, most 

of the existing parametric identification techniques were found out to be the 

particular cases of the prediction error framework. 

The work on bias and variance analysis lead researchers to a new concept of 

considering identification as a "design problem". Starting from the experiment 

design, the choice of model structure, the criteria for choosing model and other 

parameters became design criterion so that one can adjust those parameters in the 

objective of identification [11].  

In the year 1984, Juang and Pappa [12] improved the minimum order state space 

realization technique, which was originally developed by Ho and Kalman so that, 

they revealed the eigensystem realization algorithm (ERA). They also presented 

application of ERA to Galileo spacecraft. In the preceding years, Juang proposed 

further improvements for ERA with other researchers [13].  

A book published by Ljung [11] in 1987 made a major impact on the identification 

community by emphasizing the view of system identification as a design problem, 

where selected models plays the crucial role. In this book, the statistical and system 



11 

 

identification point of views are clearly differentiated by pointing the main objective 

that, the model must explain the data in hand as accurate as possible. 

Being able to design system identification, model qualities were improved 

significantly so that a model based identification concept had appeared starting from 

the beginning of 90’s [11]. In the preceding years, in addition to the model based 

robust controller design, the concept of designing system identification opened new 

research areas as closed-loop identification, frequency domain identification and 

uncertainty analysis [4]. 

As Gevers stated, around 90’s, the identification of multiple input multiple output 

(MIMO) systems became the major concern. With the development of numerically 

robust procedures based on singular value decomposition (SVD) and least squares 

techniques, subspace based algorithms could manage to solve identification for 

MIMO systems. In the early 90’s, different research groups (Larimore,1990; Van 

Overschee and De Moor 1994; Verhaegen,1994; Viberg,1995) provided closely 

related methodologies for Subspace identification algorithms [4]. Subspace 

algorithms started from the minimum order realization concept coined by Ho and 

Kalman (1965) [7], then they evolved by incorporating the stochastic 

methodologies. Until today, subspace algorithms continued their improvement with 

various other improved versions like the famous numerical algorithms for subspace 

state space system identification (N4SID) algorithm. However, the order 

determination became less straightforward over the development of subspace 

methods, such that oversized model structures generally results from subspace 

identification techniques, because of their stochastic implementation, so that 

subspace identification techniques are not utilized in this study. 
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1.3 RELEVANT IDENTIFICATION TECHNIQUES AND THEIR 

IMPLEMENTATIONS 

In this study the main objective is to find a minimum order system realization so 

that, physical system parameters can be obtained from this representation. For this 

reason, when the history of system identification is investigated, Ho and Kalman's 

minimum order realization theory best suits to the solution of stated problem. 

However, due to vulnerability of Ho and Kalman's theory to measurement noise, an 

improved version of their original theory is required. At this point, the eigensystem 

realization algorithm (ERA) which is developed by Juang and Pappa, seems like the 

best solution as their implementation of minimum order realization problem is 

capable to suppress measurement noise. In addition to that, Juang and Pappa 

revealed real life implementation of ERA on Galileo spacecraft, which proves 

effectiveness of their algorithm. To sum up, since ERA has a straightforward 

implementation and it is a numerically robust algorithm, it will be implemented as 

the main realization algorithm in this study.  

1.3.1 Eigensystem Realization Algorithm (ERA) 

In 1984, Jer-Nan Juang and Richard Pappa [12], as researchers at NASA Langley 

Research Center, working on large space structures developed ERA by adopting and 

improving the state space formulation given by Ho and Kalman. Their main focus 

was to develop an algorithm to accurately determine modal parameters and identify 

reduced system model in order to better interact structures with the control 

discipline. They observed that, Ho and Kalman's algorithm is susceptible to noise on 

the analyzed data, and noise can adversely affect the order of the realized system 

model. Juang and Pappa incorporated SVD into the Ho and Kalman's algorithm to 

determine the true order of the system and to improve noise suppression and 

accuracy in the realized system models. The computational details of ERA are given 

in Chapter 4.  
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In addition to the ERA, Juang and Pappa [12] developed performance measures of 

the realized model by using modal amplitude coherence ( ) and modal phase 

collinearity (  ) as will be discussed in the Chapter 4.  

In order to verify their algorithm, Juang and Pappa, used Galileo spacecraft shown in 

Figure 1.2, which was later sent to Jupiter's orbit. All the appendages including SXA 

(S-/X-Band Antenna) were fixed to the vehicle at their stowed positions. In addition 

to that, all the structure was cantilevered from its base by bolting its bottom adapter 

ring to a massive seismic block. In order to give dynamic excitation, several shakers 

all with 100 N capacity were attached to many different locations. In addition to that 

responses were recorded from 162 accelerometers that were distributed over the 

whole test structure. 

In order to compare test data, a finite element model of the Galileo Spacecraft was 

constructed and from the identified model, 45 modes of vibration below 50 Hz were 

obtained with the lowest frequency at about 13 Hz. However, according to the 

amplitude and collinearity considerations, only about 15 modes were major 

contributors, the others did not contribute significantly to the dynamic behavior of 

the spacecraft in its launch configuration.  

The excitation given to the system was limited to the frequency interval of 10 to 45 

Hz, and at each measurement, two output data sets for both vehicle axes were 

recorded. The sampling frequency of the measurement system was at 102.4 Hz and 

each test approximately took 5 seconds. Therefore at each test approximately 500 

free response data was recorded. 
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Figure 1.2 Galileo Spacecraft in the launch configuration [12] 

After the tests were completed, an ERA analysis were conducted using all 162 

response measurements and one initial condition for each test run. In this 

configuration the Hankel matrix (Hrs) was formed by 324 rows and 500 columns of 

data in the analysis. The summary of the test results for x axis can be found in Table 

1.1. Identified frequencies, damping factors and accuracy indicators for each mode 

are given in Table 1.1. According to the authors, the identified results closely agree 

with the other experimental identification techniques.  

In the ERA implementation, the major accuracy indicator was stated as the model 

amplitude coherence ( ) which is also given in Table 1.1. The modal amplitude 

coherence represents the purity of each individual modal amplitude time history. For 

each identified eigenvalue, a corresponding modal amplitude time sequence is 

obtained depending on each initial condition. The obtained time sequence of modal 

amplitudes provide a direct indication of the strength of identification for each mode 
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in the ERA analysis. For strongly identified modes, the modal amplitude history 

becomes an exponentially decaying function over time, however for the weakly 

identified modes, the history becomes distorted. Examples of modal amplitude 

history for strongly and weakly identified mode were given in the study of Juang 

and Pappa. To sum up, Juang and Pappa visualized the dynamic response of the 

reconstructed system model and verified that the identified system exhibited a good 

agreement as shown in Figure 1.3. 

 

Figure 1.3 ERA Reconstruction Comparison with Test Data [12] 
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Table 1.1 X Axis ERA Results for Galileo Spacecraft [12]  
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1.3.2 Eigensystem Realization Algorithm with Data Correlation 

(ERA/DC) 

After a successful application of ERA, in order to improve noise suppression of the 

methodology, a data correlation improvement was obtained by Juang [1]. In the data 

correlated version, the auto and cross correlations over a defined number of lag 

values was considered on the system output data. ERA/DC also requires a pulse-

response history as its primary input about system characteristics.   

In order to verify the success of the suggested data correlation procedure, Lew, 

Juang, and Longman [14] conducted a comparison study among four different 

identification techniques including both ERA  and ERA/DC. The comparison was 

made on the simulated model of mini mast  structure obtained from a finite element 

analysis [14]. The mini mast structure which is shown in Figure 1.4, is a benchmark 

problem on which both European and American researchers tested different 

identification algorithms.  

On their comparison, Lew, Juang and Longman tested different algorithms for 

analyzing the system data with the addition of different noise characteristics. In 

addition to the characteristics of the algorithms, comparison is also made on their 

computational performances. 

According to their test results, ERA and ERA/DC gave the best and close results for 

the noise free case. With the addition of noise, ERA/DC outperformed ERA and the 

other two algorithms as expected.  
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Figure 1.4 Mini-Mast Structure [14] 

After Juang and Pappa had exhibited a superior performance of their ERA for non-

parametric minimum order system realization, lots of researchers investigated 

performance of their realization algorithm on both simulation and test data. Chuang, 

Chen and Tsuei [15] investigated performance of both ERA and ERA/DC on both 2 

DOF and 7 DOF simulation models and they performed a modal test on an acrylic 

beam. Their simulation models are shown in Figure 1.5 and Figure 1.6. 

 

Figure 1.5 2DOF Simulation Model [15] 

 

Figure 1.6 7DOF Simulation Model [15] 
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They presented results of identified natural frequencies and modal damping values 

from both realization algorithms, as tabulated in Table 1.2 and Table 1.3, 

respectively.  

Table 1.2 Realization Results for 2 DOF Simulation System [15] 

 

Table 1.3 Realization Results for 7 DOF Simulation System [15] 

 

When the results of identification applied are investigated, it is observed that both 

algorithms are capable to yield good approximation; however, ERA/DC computes 

slightly improved results, as expected. 

In another study, Sanchez-Gasca [16] investigated torsional modes of turbine 

generator shown in Figure 1.7 by using ERA.  
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Figure 1.8 Tested Turbine Generator [16] 

In his study, Sanchez-Gasca implemented modal testing on the actual generator and 

he represented torsional modes identified with ERA for 7 different testing and 

compared them with the torsional modes computed from exponential fitting method 

as given in Table 1.4. 

Table 1.4 Torsional Modes Identified by ERA [16] 

 

Therefore, once again, the superior performance of the ERA is verified in [16]. 

Another important study is conducted by Petsounis and Fassois [17], in which they 

compared four stochastic and three deterministic (including ERA) time domain 
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identification methods, to identify the simplified model of railway vehicle shown in 

Figure 1.9. 

 

Figure 1.9 Simplified Railway Vehicle Model [17] 

In their study, they simulated the response of the railway vehicle and tested 

identification algorithms with varying noise models. In their study Petsounis and 

Fassois [17], compared these seven algorithm in terms of model order determination, 

modal parameter estimation, sensitivity analysis, and computational complexity. 

Their results are too comprehensive so that they will not be presented here. But in 

the end of their analysis, as their problem was a parametric one, the prediction error 

method yielded good results among other stochastic approaches. However, when the 

ERA was evaluated, it was observed that, it solved the same problem in the non-

parametric methodology, which does not require an estimate of model structure. In 

addition to that ERA was found to be superior in terms of its minimum order system 

identification capability and its computational simplicity. 
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On the other hand, in recent years, the application of ERA and ERA/DC in civil 

engineering structures became more popular for health monitoring applications and 

some examples of them can be found in [18], [19], [20], and [21]. 

1.4 OUTLINE OF THE THESIS  

In Chapter 1, the aim of this study brief history of the system identification is 

presented and significant publications are briefly mentioned. In addition to that, 

relevant applications in the literature and their results are briefly mentioned. 

In Chapter 2, the impulse response determination by utilizing direct time domain 

approaches, Fourier transforms and Wavelet transforms are presented. These 

methods are compared in terms of their performances. Improvements on them 

developed to enhance the extraction of system impulse response data are given. 

Details of wavelet transforms and their algorithmic implementations are presented. 

In Chapter 3, a second order mechanical system representation is presented and the 

transformation from second order system models into first order state space models 

is given. In those first order representations, special cases are constructed and their 

special use is explained.  

In Chapter 4, fundamental concepts in system realization are introduced, and 

controllability and observability properties of linear time invariant systems are 

investigated. Two realization methods implementing minimum order state space 

realization is introduced and their formulations are investigated. 

In Chapter 5, the inverse vibration problem is solved using first order realized state 

space models via transformation based methodology. The physical system 

parameters like mass, stiffness, and damping matrices are obtained as a result of this 

analysis. 

In Chapter 6, simulation and test results are given. The realization and physical 

system parameter extraction methodologies explained in the previous chapters are 
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applied on the two different simulation models. These results also evaluated 

regarding performances of the selected methods. The test setup is introduced and 

same identification procedure is applied to the input and output data of the test setup. 

In Chapter 7, a general summary of the present work is presented. Conclusions and 

comments on the performance obtained from the applied identification methods are 

stated. Intended future improvements on the identification process are suggested.  
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CHAPTER 2  

 

IMPULSE RESPONSE DETERMINATION 

The identification of modal parameters from the measurements of input and output 

data is a must in a system realization process. This complex extraction can be 

whether performed in the frequency domain or in the time domain. In the frequency 

domain, modal parameters can be determined by using frequency response functions 

(FRF). Equivalently in the time domain, the modal parameters can be extracted by 

using impulse response functions in the system identification applications. 

Dynamic properties of a linear time invariant (LTI) system can be described by its 

impulse response function ( )h t  in continuous time domain. For any applied input 

( )u t , the output of the system ( )y t  can be computed by using the following 

convolution integral. 

 ( ) ( ) ( )dy t h u t  




   (2.1) 

Traditional realization methods generally utilize FRFs in order to obtain system 

characteristics because of its ease to represent system behavior and the existence of 

various frequency domain identification schemes. For this purpose FRFs are 

obtained by using the ratio of discrete Fourier transform of the input and output data. 

The continuous Fourier transform ( )X f  of a continuous signal ( )x t  is obtained as 

   2( ) ( ) ( ) j ftX f F x t x t e dt







    (2.2) 
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The discrete counterpart of the continuous Fourier transform is given as follows. 
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where ( )kX f  is the discrete Fourier transform of a discrete signal ( )nx k  and N is 

the length of the discrete signal. 

In order to solve Equation (2.1), Fourier transforms ( )Y f  and ( )U f  of the input 

and output signals are used, which are related in the frequency domain as follows. 

 ( ) ( ) ( )Y f H f U f  (2.4) 

where ( )H f  is the FRF. Therefore, the convolution integral in time domain, 

becomes simply a multiplication in the frequency domain in term of extracting FRF 

by a simple division. However, due to the noise involved in the measurement data, 

Equation (2.4) is slightly changed by introducing new correlation variables 

( , ) and ( , , )uu k yu kG f r G f m r  as follows. 

 

*

*
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ˆ ˆ( , , ) ( , ). ( , )
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G f r u f r u f r

G f m r y f m u f r




 (2.5) 

where ˆ( , )ku f r  and ˆ( , )ky f m  are the discrete Fourier transforms of the input and 

output signals, respectively, and, *ˆ ( , )ku f r  and *ˆ ( , )ky f m  are their complex 

conjugate pairs. After correlated variables are obtained, the FRF of the system can 

simply be obtained by dividing the output correlation variable to input correlation 

variable as follows. 
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The discrete impulse response of the system can then be obtained by using inverse 

discrete Fourier transform to return back to time domain, which is simply denoted 

by 

 1( ( , , ))n kh F H f m r  (2.7) 

The determination of discrete impulse response function using Fourier transform is a 

computationally efficient method as described above. However, in order to catch the 

whole system behavior, the input signal must span the entire frequency range of 

interest, which makes the data in hand impractically large. Besides large data 

processing, there are other drawbacks of frequency domain analysis as well. One of 

them is the leakage, which is the corruption of spectral densities due to forward and 

inverse Fourier transforms. The leakage occurs due to the non-periodicity of the 

signal and this disturbs the Fourier transform of the signal. This problem can be 

eliminated with the implementation of windowing, which smoothens the ends of the 

signal so that the signal is forced to behave like periodic. Introducing windows in the 

Fourier analysis called short time Fourier transform (STFT) and it is the most widely 

utilized Fourier based analysis tool on the finite interval discrete signals. However, 

the windowing itself also adversely affects the damping properties of the system 

estimate because of the phase lags introduced by the windowing filters. Another 

disadvantage of using FRFs is that, during the identification procedure, the input 

signal should be rich in terms of frequency content, otherwise sparse input signals 

cause ill conditioning in the analysis. For online system identification, the input 

signal becomes the disturbance itself and generally its frequency content is at a 

single frequency or in limited range, which makes frequency analysis impractical. 

Another disadvantage of implementing Frequency Domain identification scheme is 

the requirement of an inverse Fourier transform to go back to time domain 

representation. 

Due to stated problems with the discrete forward and inverse Fourier transforms, 

researchers seek for direct time domain methods which solve the deconvolution 
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problem by using matrix algebra. For this purpose, the convolution equation is 

represented in matrix form in time domain as follows. 

 Y hU  (2.8) 

where, U  is the convolution operation applied to input matrix, Y is the output 

matrix, and h  is the time domain impulse response matrix. They can also be 

explicitly expressed as 
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 (2.9) 

where m , r , s , and p  are the number of output signals, number of input signals, 

number of output measurement samples and the desired length of impulse response 

function respectively. 

A direct method for solving Equation (2.8) is the multiplication of both sides with 

1U  . However, depending on the type of input used, the matrix U  may become ill 

conditioned, such that impulse response cannot be obtained directly. For this reason 

mostly pseudo inverse of U  is used in order to obtain impulse response function. 

Another improvement on the direct time domain methods is the utilization of auto 

and cross correlated variables like in the case of frequency domain approach 

described in the preceding section. The correlated variables are defined as following. 
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By using Equation (2.10), the impulse response function h  can be obtained as 

follows. 

 
1

YU UUh R R  (2.11) 

which is analytically equivalent to the pseudo inverse implementation.   

In order to solve the ill conditioned deconvolution matrix problem, least square 

techniques and observer based techniques are suggested by different researchers. 

However, due to noise and distortions, the identified system response again could 

not meet the requirements of the researchers. 

In order to cope with most of the problems stated in the preceding section, another 

method called wavelet transform is suggested [22]. The wavelet transform processes 

the data only in time domain as opposed to frequency domain approaches and it was 

originated from analysis requirement of finite interval signals with varying spectral 

properties [23]. Its implementation involves forward and inverse discrete wavelet 

transform and an inversion operation, which is preferable in certain cases. In 

addition to that, its unique property is being able to catch the whole response 

properties even under a single frequency input. All these make the use of wavelets as 

a primary tool in the health monitoring applications, where disturbances with single 

frequency content are acting on the system.  

In 1970s J. Morlet, who is a geophysical engineer, was faced with analyzing signals 

which had low frequency components with long time intervals and high frequency 

components with short time periods [20]. In such analysis, the problem associated 

with using Fourier transform is the use of same basis function over the whole signal. 

In order to solve this problem, Morlet came up with the idea of using different 

window functions for analyzing different frequency bands. In addition to that, these 

windows were generated by dilation and compression of a selected Gaussian 

function, which later Morlet named it as wavelets of constant shape [20]. After his 

ingenious idea, Morlet and several mathematicians improved wavelet theory with 
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revealing orthogonal wavelet basis functions, which had good frequency and time 

localization characteristics. Later in the late 1980's, Ingrid Daubechies, developed 

the wavelet frames for discretization of time and scale parameters. After the arrival 

of wavelet frames, there appeared more options on the selection of basis functions. 

Daubechies with Mallat, developed the basis for the transformation from continuous 

to discrete signal analysis [24]. Later on, Mallat introduced the multi resolution 

analysis for the discrete wavelet transform [21]. His idea was breaking up a discrete 

signal into its frequency bands by using series of lowpass and highpass filters to 

compute discrete wavelet transform of the signal at different levels. His theory later 

called as Mallat's pyramid.  

In order to better understand wavelets, its comparison with Fourier transform will be 

beneficial. Wavelet and Fourier transforms both represent any selected signal 

through linear combinations of their basis functions. In the case of Fourier 

transforms, basis functions are dilations of sinusoidal functions sine and cosine. In 

addition to that, in the Fourier analysis these basis functions spans the entire time 

interval, which means they are assumed to be infinite in length. In the case of 

wavelet transforms, basis functions are translations and dilations of the selected 

basis function called as the mother wavelet. Also in the wavelet analysis, each basis 

function spans logarithmically reduced subintervals making them finite in length. 

Additionally, the dilations of both mother wavelet and scaling function is possible, 

and due to their frequency localization, information about the frequency content of 

the analyzed signal can be obtained directly. This enables the time localization and 

as a matter of fact this is the most important difference between the Fourier analysis 

and wavelet analysis. Sine and cosine functions as the basis functions of Fourier 

transform, are not finite; however, basis functions of the wavelet transform are 

compact and finite in time. This enables wavelet transforms to obtain both time and 

frequency information of the analyzed signal. 
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Although, a direct implementation of Fourier transform does not convey time 

localization information, it can be obtained when a windowing is applied in the 

STFT analysis. The window is a square wave which is applied to the basis sine or 

cosine function to fit the signal into the particular width of the time interval. In the 

STFT, the same square window is used for all frequencies, which results in the same 

resolution over the whole time and frequency ranges, and this is again not 

appropriate to the solution of Morlet's problem. On the other hand, the discrete 

wavelet transform (DWT) has a window size which is getting smaller with 

increasing frequencies. A comparison of the STFT and DWT in terms of their 

windowing characteristics is visualized in Figure 2.1. As seen in Figure 2.1, by 

increasing the scale of DWT, the window size gets smaller, as opposed to STFT 

where the window size remains constant. 

 

Figure 2.1. STFT and DWT Time Frequency Windowing [22] 

This property of DWT analysis makes it advantageous when analyzing signals 

including both discontinuities and smooth components as encountered mostly in real 

life applications. Note that short length and high frequency range basis functions are 

required for analyzing discontinuities, but long length and low frequency range ones 

are required for the analysis of smooth components. Because of its prescribed 

advantages, the DWT is an appropriate tool to analyze system response data.  
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A function ( )f t  can be approximated by using DWT as [26] 

 /2

0 ( , ) 0 0

,

( ) ( )m wav m

m n

m n

f t a f a t nb     (2.12) 

where ( , )

wav

m nf  is the wavelet transform coefficients, 0 0( )ma t nb    is the wavelet 

basis function, 
0a  and 

0b  are the scaling and shifting constants, respectively, and m  

and n  are the constants representing level of wavelet transform and shifting 

respectively. An examination of Equation (2.12) reveals, that 0 0( )ma t nb    consists 

of orthogonal basis functions based on the specific choice of mother wavelet 

functions. However, these basis functions cannot be explicitly expressed; rather they 

are computed as a part of the transformation process. 

In the selection of basis functions, although there are a number of choices, for the 

analysis of physical system response, the basis function should satisfy certain 

properties like conservation of area, accuracy, orthogonality, and so on. Among 

these properties, the most important one is the orthogonality; because, most other 

properties are satisfied by nearly all basis functions. Considering the orthogonality 

property, for a vibration analysis, generally Daubechies basis functions are selected 

among various options as they both satisfy orthogonality and second order or higher 

accuracy when representing signals [25]. 

The scaling function ( )t  for Daubechies' N coefficient description can be obtained 

from the following dilation equation [23]. 

 

1

0

/2

,

( ) (2 )

( ) 2 (2 )

N

k

k

m m

m k

t c t k

t t k

 

 





 

 

 


 (2.13) 

where m  and k  are the level of wavelet transform and shifting operation. By using 

the scaling functions in Equation (2.13), the wavelet functions can be expressed as 
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1

0

/2

,

( ) ( 1) (2 1)

( ) 2 (2 )

N
k

k

k

m m

m k

t c t k N

t t k

 

 





 

    

 


 (2.14) 

The above scaling and wavelet functions satisfy normalization and orthogonalization 

constraints. In order to better understand the nature of the wavelet transform, 
wavf  

can be explicitly shown as follows [21] 

   0 1 2 3 4 5 6 7

(2 )

(4 )

(2 ) (4 1)
( ) ( ) ( )

(2 1) (4 2)

(4 3)

(2 )j

wav

j

k

t

t t
f t a t a t a a a a a a

t t

t

a t k



 
 

 






 
    

      
    

  

  

 (2.15) 

where 0 (2 )
,..., j k

a a


 are the wavelet transform coefficients, which are computed as 

 

1 1

0 (2 )

0 0

( ) ( ) and 2 ( ) (2 )j

j j

k
a f t t dt a f t t k dt 


     (2.16) 
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Figure 2.2 Daubechies-1 Wavelet (a.k.a Haar Wavelet)  
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Figure 2.3 Daubechies-2 Wavelet  
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Figure 2.4 Daubechies-4 Wavelet  
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Figure 2.5 Daubechies-8 Wavelet  

From Figure 2.2 to Figure 2.5 the Daubechies-1, 2 , 4, and 8 wavelets are given by 

using Matlab's Wavelet Toolbox [24] to better illustrate forms and properties of the 

Daubechies wavelet functions. In those figures, scaling and wavelet functions 

belonging to each Daubechies wavelet forms are given together with the 

decomposition and reconstruction filter coefficients. Here in the above figures, a 
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Daubechies- N form wavelet has 2N  number of filter coefficients shown with blue 

dots.  

Here it should be noted that in Equation (2.15), the first two terms associated with 

the scaling function ( )t  and the mother wavelet function ( )t spans the entire time 

interval 0 1t  . Similarly the functions associated with the next two terms (2 )t  

and (2 1)t   span the intervals 
1

0
2

t   and 
1

1
2

t   respectively and, in the same 

manner, each subsequent term spanning smaller and smaller intervals without 

overlapping as a result of the orthogonality property for the local bases. 

At this point, Mallat considered frequency information of each term given in 

Equation (2.15) in the multi resolution analysis (MRA). Then MRA is developed to 

obtain discrete wavelet transform of a discrete signal iteratively applying lowpass 

and highpass filters and down sampling them by 2 after each step. In Figure 2.6, the 

schematic representation of the MRA is shown, here [ ]g n  and [ ]h n  are the highpass 

and lowpass filters respectively and in this figure at each level the frequency bands 

are shown as well.  

The numerical procedure at each level can be represented as 

 

[ ] [ ] [2 ]

[ ] [ ] [2 ]

high

n

low

n

y k x n g k n

y k x n h k n

  

  




 (2.17) 

where, 

 [ 1 ] ( 1) [ ]nh N n g n     (2.18) 

with N being the total number of samples of signal [ ]x n .  
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Figure 2.6 Implementation of DWT by MRA [20] 

Therefore the original signal can be reconstructed by using outputs of highpass and 

lowpass filters( ,high lowy y ) in the MRA analysis as follows. 

 

[ ] ( [ ] [2 ]) ( [ ] [2 ])high low

k

x n y k g k n y k h k n     
 (2.19) 

2.1 BASIC WAVELET ALGORITHM FOR IMPULSE 

RESPONSE FUNCTION DETERMINATION 

After a short review on the discrete wavelet transform, it can be observed that, the 

wavelet analysis is an appropriate tool to inspect system response in terms of 

vibration analysis [21]. Therefore the convolution problem given in the very 

beginning of this chapter, can be solved with using wavelet transform and the 

discrete wavelet transform defines the same problem as follows. 
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0

( ) ( ) ( )

T

y t h u t d     (2.20) 

where ( )h   is the impulse response function. Here the system of interest is assumed 

to be linear time-invariant so that the at any discrete time nt  the output is only 

affected by the nature of the input. Therefore the temporal impulse response ( )h   

can be expanded by using wavelet basis functions over the whole response 

measurement time interval, and   represent the normalized time variable through 

the adoption of  0 0 1t T       as 

 
0 (2 )

( ) (2 )j

DWT DWT j

k
j k

h h h k  


    (2.21) 

In Equation (2.21), impulse response function ( )h   is represented by using the 

wavelet function and in this equation, DWTh  is the discrete wavelet transform of the 

impulse response function. For the similar discrete wavelet transform representation 

of the term ( )u t  , first input ( )u   is reversed in time to obtain ( )u  , then it is 

shifted over the positive time axis by t  amount where  ( ) 0, foru t   . With 

the described convention, the discrete wavelet transform(DWT) of ( )u t   can be 

expressed as follows. 

 
0 (2 )

( ) (2 )j

DWT DWT j

k
j k

u t u u k  


     (2.22) 

where DWTu  is the discrete wavelet transform of ( )u t  . At this point, in order to 

solve the convolution integral given in Equation (2.20), the discrete wavelet 

transform of the impulse response function and input signals can be substituted, 

however, in order to do this, orthogonality condition for the selected mother 

wavelets must be provided as follows. 

 
1

0
(2 ) 0j k d     (2.23) 
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1

0

1
when  and 

(2 ) (2 ) 2

0 otherwise

j r j
r j s k

k s d    


 

  


  (2.24) 

After the substitution of wavelet transform of the input signal and impulse response 

function with considering the orthogonality property stated in Equation (2.24), 

response at a specific time 
0t  can be computed in the discrete time as follows. 

 
0 0 0 (2 ) (2 )

1
( )

2
j j

DWT DWT DWT DWT

j k k
j k

y t h u h u
 

   (2.25) 

Combining scaling function and wavelet function coefficients, the Equation (2.25), 

can be expressed as follows. 

 0( ) DWT DWTy t h u  (2.26) 

where  

 
0 1 2 3 1

3 12
0 1

[ ]

( ) [ ]
2 2 2

DWT

n

DWT T n

j

h h h h h h

u uu
u u u








 (2.27) 

Here again, DWTh  and DWTu  are the discrete wavelet transforms of ( )h   and 

( )u t   respectively and j  is computed as 2log ( )j n , which conveys the level of 

wavelet transformation. 

It should be noted that, Equation (2.26), computes the system response at a 

particular time instant 0t . In order to compute the whole response series 

 0 1 2( ) ( ) ( )y t y t y t , the input and output relation can be arranged in the 

following matrix equation as 

 ( ) ( ) ( )

DWT DWT

m s m rl rl sy h U     (2.28) 
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where  

 
 

 

(0) (1) (2)

(0) (1) (2)DWT DWT DWT DWT

y y y y

U u u u




 

with m , s , r , and l  are the number of measurement points, the number of 

measurement samples, the number of input signals and the depth of wavelet 

transform level respectively. 

Here solving the discrete wavelet transform of the impulse response function DWTh

from Equation (2.28), yields the following expression. 

 
1

( ) ( )DWT DWT T DWT DWT Th y U U U


      (2.29) 

Finally the inverse discrete wavelet transform of the DWTh  yields the desired impulse 

response data as follows. 

  1

0 1 ( 1)( )  for , ,DWT

sh t DWT h t t t t

   (2.30) 

At this point there are a few remarks to be to pointed out, first the wavelet 

transformed input coefficients ( )DWTu k , consist of a set of orthogonal basis 

functions; therefore, when rl s  the rank of DWTU  becomes rl  and this results in 

that, ( 1)r   input vectors included in the input vector ( )u t  must be linearly 

independent. When the input vectors are linearly independent, the 

1

( )DWT DWT TU U


    expression in Equation (2.29) is invertible. On the other hand, 

when rl s , which may be the case for a higher or full depth wavelet resolution 

analysis, 
1

( )DWT DWT TU U


    cannot be inverted directly and least square solution 

implementing pseudo-inverse shall be applied to solve Equation (2.29). 

The second and final remark can be done on the major drawback of the discrete 

wavelet transform which is the computation time and resource requirement. During 
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the solution of the impulse response function, each row of the input U  matrix must 

be transformed with total of rl times. Besides this transformation takes time, it also 

requires large storage space depending on the size of rl , as it makes operations on a 

rl rl square matrix. However, in the system identification implementation, the time 

required for discrete wavelet transformation is not significantly large when the 

whole identification process time is taken into consideration. In terms of the 

resource requirement, thanks to the ability of wavelet transform to determine 

impulse response even under a single tone input signal, data length can be kept 

minimum without compromising from the determined system response. 

2.2 IMPROVEMENTS ON WAVELET ALGORITHM VIA 

ENSEMBLE AVERAGING 

The impulse response determination via discrete wavelet transform, explained in the 

preceding section can be referred as the basic wavelet algorithm as the collected 

input and output signals are not conditioned in any sense. On the other hand, in the 

case of traditional impulse response determination methods like the spectral methods 

explained previously, they rely heavily on the data conditioning by implementing 

both filtering and ensemble-averaging. Considering these extensions for the spectral 

methods, implementing ensemble averaging to the basic wavelet algorithm can 

result in similar improvement as stated in [19]. 

Although the main interest is focused on linear time-invariant systems, most of the 

real-life systems do not posses these properties exactly, rather they are assumed to 

behave under specific conditions. The ensemble averaging is a method of recording 

repetitive input and output series over time and averaging them together to find an 

averaged system response. Each time series used in the ensemble procedure are 

either recorded in a one long input/output time history or they are obtained as a 

result of multiple tests. In the wavelet analysis process, there are various ways to 

include ensemble averaging on the actual or correlated matrices. 
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The starting point for extending the basic wavelet method with ensemble averaging 

is the description of the wavelet transformed matrices as follows. 

 

DWT T

DWT

h h W

U W U

 

 
 (2.31) 

where W  and TW  are the wavelet transformation matrix that is applied to the 

columns and rows of the selected matrices respectively. As these matrices perform 

the wavelet transform, their rows or columns consists of the basis functions of the 

selected wavelets. Descriptions of these matrices can be substituted into the 

convolution integral in Equation (2.20) to obtain the system response as follows. 

 DWT T DWT DWT DWTy h W W U h D U        (2.32) 

This equation is the same with Equation (2.28), with D  being a diagonal matrix 

composed of scaling values which are resulted from the multiplication of TW W . 

This diagonal matrix results when the wavelet matrix is orthogonal, but not 

orthonormal. Ensemble averaging procedure then start with Equation (2.32), by 

multiplying both sides of the equation by the transpose of the input matrix  
T

DWTU  

to create auto  ( )DWT DWT TU U , and cross  ( )DWT Ty U  correlation matrices as 

    
T T

DWT DWT DWT DWTy U h D U U      (2.33) 

Again this equation gives the correlation functions for response at a specific time, 

and in order to obtain the whole response series, they are summed together as 

    
T T

DWT DWT DWT DWTy U h D U U       
         (2.34) 

Therefore the wavelet generated impulse response h  can be calculated as follows. 
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      
1

1. . .
T T

DWT DWT DWT DWTh y U U U D


    
         (2.35) 

 1therefore,  ( )DWTh DWT h  

As noted before, representation of the time correlation function in the wavelet 

domain is not unique and there are other possibilities like, transforming y  in place 

of transforming either input matrix U or impulse response history h ; or there exists 

two dimensional transformations, or wavelet transformations of the auto and cross 

correlations directly.  

2.2.1 Auto And Cross Correlation Approach 

The final improvement on the wavelet analysis is the utilization of auto and cross 

correlations directly in the time domain by multiplying both sides of the direct time 

relation by TU as follows [19]. 

 
T T

y h U

y U h U U

 

   
 (2.36) 

Here implementation of wavelet transform to the auto and cross correlations in the 

wavelet domain results in as 

 

DWT
T T T

DWT
T T T

y U y U W

U U U U W

     

     

 (2.37) 

Then the wavelet transformed auto and cross correlation variables can be substituted 

back into the Equation (2.36) , to obtain system response as 

 

DWT DWT
T T T T

DWT DWT
T T

y U W h U U W

y U h U U

           

         

 (2.38) 
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Finally the ensembling process can also be applied to the response obtained in 

Equation (2.38), as follows. 

 

   
1

DWT DWT
T T

DWT DWT
T T

y U h U U

h y U U U


         

         

 

 
 (2.39) 

Here, when the results are examined, it is noted that no scaling matrix D  appears in 

this case since there exists the multiplication of 1( )T TW W   , not the TW W term. 

Although, these two methods converge to the same result for infinitely large 

ensembling, results of these two methods may differ slightly in the case of a few 

ensembling application. 

In this study, the selected system realization algorithms are all working on the time-

domain. Which makes impulse response as the key tool to analyze the response of 

the system under test. In the following section, ERA and ERA/DC are explained in 

details and their primary input is described to be the impulse response function. 

Therefore, the Fourier and wavelet analyses will be utilized to determine impulse 

response functions of the systems of interest.  
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CHAPTER 3  

 

STATE SPACE FORMULATION FOR LINEAR 

STRUCTURAL SYSTEM IDENTIFICATION 

In this study, the structural system identification will be performed by using state 

space representation of the system dynamics. The state space or the first order 

equation form is the fundamental tool to uniquely express damped structural 

behavior of the realized system model by using experimental data. In this chapter, 

theoretical basis for the equations of motion for structures and their transformation 

to first order state space forms will be explained [25].  

3.1  STATE SPACE FORMULATIONS OF STRUCTURAL 

DYNAMICS 

For a typical linear time invariant mechanical system, the equilibrium conditions can 

be discretized through finite spatial displacement variables, which results in a n  

dimensional set of second order linear differential equations in the matrix form. 

 
ˆ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

amp

d v a

M q t D q t K q t Bu t

y t H q t H q t H q t

  

  
 (3.1) 

where M , D , and K  are the mass, damping, and stiffness matrices respectively; q  

is the n  number of state vector, u  is the r number of input force vector,  and y  is 

the m  number of sensor output vector, which can either be displacement, velocity or 
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acceleration; B̂  is the input state influence matrix whereas 
dH , 

vH , and 
aH  are 

state output influence matrices for displacement, velocity and acceleration 

respectively. Here B̂ , dH , 
vH , and aH  consists of binary value (0 or 1) because 

they map the input and output locations to the physical degrees of freedom. For 

simplified analysis, the undamped portion of the second order equation (3.1), can be 

decoupled through and eigenvector change of basis ( ) ( )q t t , which results in as 

follows. 

 
ˆ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

amp

d v a

t D t t Bu t

y t H t H t H t

  

  

   

     
 (3.2) 

where   represents the normal eigenvalues and   is the mass normalized 

eigenvector, which is orthogonal and satisfy the following generalized undamped 

eigenproblem as 

 K M    (3.3) 

where 

 

2

1

2

2

2

0

0

T

n n

n

T n

ni

T

amp

M I

w

w
K

w

D

  

 
 
    
 
 
 

   

 (3.4) 

Here niw  is the undamped natural frequency for mode i  and   is the modal 

damping matrix in the case of proportional Rayleigh damping ( D M K    or 

more generally p sD M K   ) and it can be expressed as 
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
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 
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 
 
 

 (3.5) 

Here 
i  is the modal damping ratio for mode i . The modal damping ratio varies 

from 0% for undamped system response up to 100% for critically damped system 

response. 

Here it should be noted that the second order system representations in Equation 

(3.1) and (3.2) have different coordinate bases, but they are equivalent 

representations of the same mechanical system. In order to examine the equivalent 

realization concept, a general solution to Equation (3.1) can be considered by 

implementing the Laplace transform. 

 

2

2

ˆ[ ] ( ) ( )

[ ] ( ) ( )

amp

d v a

M s D s K q s Bu s

H H s H s q s y s

  

  
 (3.6) 

Therefore the input output relationship in the s-domain can be expressed in matrix 

form as 

 ( ) ( ) ( )y s H s u s  (3.7) 

 

2 2 1

0

0

ˆ( ) ( )( )

( ) ( )

( ) ( )

d v a amp

st

st

H s H H s H s M s D s K B

u s u t e dt

y s y t e dt











    









 

here ( )H s  is the transfer function matrix from input to output. By using Laplace 

transform again, the transfer function relationship can also be obtained from the 

modal coordinate model in (3.2) as follows. 
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2 2 1

2 2 1

ˆ( ) ( ) [ ( ) ] ( )

ˆ( ) ( )( ) ( )

( ) ( ) ( )

T T

d v a amp

d v a amp

y s H H s H s M s D s K Bu s

y s H H s H s M s D s K Bu s

y s H s u s





        

    



 (3.8) 

Therefore, from Equations (3.8) and (3.7), the model equivalence can be defined as 

the same input output relationship remains regardless of the definition of the internal 

dynamical states, where in this case the second order model variables are q  and  . 

3.1.1 General State Space Formulation 

As a result of the model equivalence phenomenon defined above, the equation of 

motion can also be transformed from second order representation into the first order 

differential form. The general form of a linear, time invariant state space realization 

is defined as 

 
( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 

 
 (3.9) 

where x  is the 1n state vector, A  is the n n  state transition matrix, B  is the 

n m  input-state influence matrix, C  is the r n  state-output influence matrix, and 

D is the r m  direct input output influence matrix. For structural dynamics, input 

( )u t  are generally the externally applied inputs as in the case of Equation (3.1). 

Similarly, output array ( )y t  includes the physical sensor measurements like 

displacement, velocity or acceleration, and C  matrix is an array that extracts the 

outputs from the internal variables ( )x t . In the special case of ( )x t  being a subset of 

physical displacements and velocities of degrees of freedom driven by ( )u t  and 

measured by ( )y t , then vectors B  and C  are typically consisting of binary values (0 

or 1) to map the input and output measurement locations to internal states similar to 

second order representation. 
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Here an important property related with the model equivalence concept is the 

similarity transformation [25]. In the application of similarity transformation the 

basis state vector x  can be transformed into a different basis v  as follows. 

 x T v  (3.10) 

where T  is a nonsingular transformation matrix. Then using this transformation the 

state space model in Equation (3.9) becomes as  

  
( )

T v AT v Bu

y t CT v Du

 

 
 (3.11) 

or can be simplified as follows. 

 

1 1

( )

v T AT v T Bu Av Bu

y t Cv Du

    

 
 (3.12) 

where the new variables are expressed as 

 

1

1

A T AT

B T B

C CT











 (3.13) 

Therefore Equation (3.12) is a new realization of general state space model given in 

Equation (3.9), which is obtained by changing the state definition v . The state 

transformation via utilization of T  is termed as the similarity transformation 

because  , the eigenvalues of the realization satisfy the following relationship as 

 0I A I A      (3.14) 

Both representations are the same under this similarity transformation. As the 

similarity transformation assures model equivalence, the transfer function H  from 

input to output, remains same for both representations and it can be proved by 

applying Laplace transform to Equation (3.12) as 
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1

1 1 1 1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

y s C sI A B u s

y s CT sT T T AT T Bu s

y s C sI A Bu s



   



 

 

 

 (3.15) 

As stated before, the similarity transformation in Equation (3.10), provides an 

equivalent model realization as well. Therefore, an infinite number of equivalent 

realization of the general state space model given in Equation (3.9) can be obtained. 

3.1.2 State Space Formulation for Structural Dynamics via Physical 

Variables 

A family of state space realizations for the general state space model given in 

Equation (3.9), can be obtained by using the similarity transformation with 

generalized momentum variable v  which can be defined as 

 1 2( ) ( ) ( )v t E M q t E q t   (3.16) 

and the state space basis is transformed as follows. 

 
( )

( )
( )

q t
x t

v t

 
  
 

 (3.17) 

At this point, instead of determining the general state space equations for x , there 

are a number of special alternatives for 1 2 and E E  to be selected accordingly.  

Case I is selecting 1

1 2 and 0E M E   and in this case ( ) ( )v t q t  is the selected 

state space basis which is also termed as physical displacement-velocity(PDV) 

model [25]. The resultant state space model is obtained as 

 
( ) ( ) ( )

( ) ( ) ( )

I I I I

I I

x t A x t B u t

y t C x t Du t

 

 
 (3.18) 

where 
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      

1 1

1

2

1 1

1

0

0

ˆ

0 0 0

ˆ

I

amp

I

I d v I a I

I d a v a amp

a

I
A

M K M D

B
M B

C H H A H A

C H H M K H H M D

D H M B

 



 



 
    

 
  
 

  

    



 (3.19) 

Similarly for the case II, selecting 
1 2 and ampE I E D  , the generalized momentum 

variable becomes 
ampv Mq D q   and the state basis definition given in Equation 

(3.17), results in the physical displacement-momentum(PDM) model. The canonical 

representation for Case II can be obtained as follows. 

 
( ) ( ) ( )

( ) ( ) ( )

II II II II

II II

x t A x t B u t

y t C x t Du t

 

 
 (3.20) 

where 

 

     

1 1

2

1

0

0

ˆ

0 0 0

ˆ

amp

II

II

II d v II a II

a

M D M
A

K

B
B

C H H A H A

D H M B

 



 
  

 

 
  
 

  



 (3.21) 

Here as previously stated and proved, similarity transformation results in an 

equivalent model which preserves the same transfer function H  for each realization. 

This is also valid for realizations given in Equations (3.18) and (3.20) which are 

equivalent state space realizations of the equation of motion given in Equation (3.1). 
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3.1.3 State Space Formulation for Structural Dynamics via Normal 

Modal Variables 

Equivalent state space realizations are represented in the preceding section and their 

implementation to second order modal form given in Equation (3.2) is also possible 

through similarity transform with generalized variable v  defined as 

 1 2( ) ( ) ( )v t E t E t    (3.22) 

and the state basis is similarly defined as follows. 

 
( )

( )
( )

t
x t

v t

 
  
 

 (3.23) 

Two other special state space models of the general form can be obtained, through 

the following selection of variables. 

Case III is obtained through selecting 1E I , 2 0E  , and in this case ( ) ( )v t t  is 

the selected state space basis which is also termed as modal displacement-

velocity(MDV) model. The resultant state space model is obtained as 

 
( ) ( ) ( )

( ) ( ) ( )

III III III III

III III

x t A x t B u t

y t C x t Du t

 

 
 (3.24) 

where  

      

 

2

1

0

0

ˆ

0 0 0

ˆ ˆ

III

III T

III d v III a III

III d a v a

T

a a

I
A

B
B

C H H A H A

C H H H H

D H B H M B

 
    

 
  

 

     

      

  

 (3.25) 
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Finally, Case IV is obtained through selecting 
1 2 and E I E   and in this case 

( ) ( ) ( )v t t t    is the selected state space basis which is also termed as modal 

displacement-momentum(MDM) model. The resultant state space model is obtained 

as  

 
( ) ( ) ( )

( ) ( ) ( )

IV IV IV IV

IV IV

x t A x t B u t

y t C x t Du t

 

 
 (3.26) 

where 

       2

2

1

0

0

ˆ

0 0 0

ˆ ˆ

IV

IV T

IV d v IV a IV

IV d a a v a

T

a a

I
A

B
B

C H H A H A

C H H H H H H

D H B H M B

 
   

 
  

 

     

            

  

 (3.27) 

Similarly, the model equivalence of Equations (3.24) and (3.26) with the general 

modal form in Equation (3.2) is provided by the similarity transformation. Each 

model among the 2 model and 2 modal equivalent representation family has 

particular advantages for whether using for simulation, control design, or system 

identification purposes [25].  

3.1.4 State Space Formulation for Non-Proportionally Damped 

Systems 

As stated in the preceding section, modal form is decoupled from the general second 

order differential equation for proportional (Rayleigh) damping case. This form of 

damping is either called as diagonal, proportional, classical, or modal damping and 

in this case modal damping matrix ( ) is obtained as diagonal. On the other hand, 
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most of the real life systems do not have proportional damping characteristics and, 

the generalized modal damping matrix  , is not diagonal for this case, which is 

termed as non-classical or non-proportional damping. In this case damping matrix 

ampD  cannot be represented as a proportional combination of M  and K . The 

physical interpretation of the non-proportional damping is that, the modes that 

decouples the system equations are complex in this case which results from the 

phase relationship between displacement of each structural mode. 

For the non-proportional damping case, because the second order equation of motion 

cannot be decoupled by normal modes anymore, the governing eigenvalue problem 

for non-proportional damping must be formulated from equivalent first-order 

equations of motion. In order to reformulate the expression, the PDV model given in 

Equation (3.18) with displacement output is stated in a symmetrical companion form 

as follows. 

 

 

ˆ0

0 0 0

0

amp

d d

D M q K q B
u

M q M q

q
y H

q

        
         

        

 
  

 

 (3.28) 

which leads to the symmetric eigenvalue problem as 

 
0

0 0

ampK X D M X

M X M X

       
                

 (3.29) 

providing the following expression. 

 
0

0

0

T

amp

T

X D M X
I

X M X

X K X

X M X

     
           

     
            

 (3.30) 

where, 
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1 1

2 2

0

0

, ( ) ( ),

i i

i i

jw

jw

jw

X X X







 
 
  
 
 

 

     

 (3.31) 

Here   and X  are the complex eigenvalues and complex damped mode shapes 

normalized with respect to the physical properties of the structure.  

As the system realization given in Equation (3.28) is a general one for the 

proportional damping case, the complex mode shapes and eigenvalues can still be 

obtained; however, for each mode the complex and real mode shapes are directly 

related to one another as observed in the follows. 

 

21

1
( )

2

1
( )

2

i i ni

i ni i

i i

i

i i

i

w

w w

X
w

X
w

 







 

 

 

  

 (3.32) 

where i  and iX  are normalized mode shapes as given in Equations (3.4) and (3.30) 

respectively. The contributions of real and imaginary parts of the frequency response 

function to a typical displacement response with two closely spaced modes for both 

proportionally damped and non-proportionally damped cases are visualized in 

Figure 3.1 for better understanding. 
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Figure 3.1 Frequency Response Function Components with Proportional and Non-

Proportional Damping [28] 

Briefly, in this chapter, transformation from second order mechanical system 

representation, into first order state space model is introduced for realization 

purposes. Moreover, special cases used for transformation of the state space model 

and modal forms are presented to be utilized in the realization process.  
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CHAPTER 4  

 

LINEAR SYSTEM REALIZATION THEORY 

System realization is the determination of system characteristics in the state space 

representation by using the excitation and response data. The basis is formed onto 

modern state space system theory that enables investigation of complex systems. 

There are two main approaches which are frequency domain and time domain 

realization methods. In this study, the main focus is concentrated on time-domain 

analysis techniques.  

System realization property and its effectiveness depends on two fundamental 

aspects which are, observability and controllability. Observability is the ability of a 

system to convey its state information involved in its output over a finite time 

interval. On the other hand, controllability is the ability of a system to get its states 

controlled by an external input. 

The observability and controllability concepts are first introduced by Kalman [26], 

who then introduced the basis for the minimum order realization concept with Ho 

[27]. Observability and controllability concepts play important role in the design of 

control systems as well. In the control implementations, the observability and 

controllability conditions affect the existence of the complete and unique solution. 

Although most physical systems are both controllable and observable, their 

mathematical representations may not possess the same abilities. 

When the discrete time state space model of any system is considered as  
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n n n n n r r

m m n n n m r r

x k A x k B u k

y k C x k D u k
    

    

  

 

1 1 1

1 1

( 1) ( ) ( )

( ) ( ) ( )
 (4.1) 

where A  is the system state transition matrix, B  is the state input matrix, C is the 

state output matrix and D  is the direct input output coupling matrix. In addition to 

that n  is the number of states, m  is the number of outputs, and r  is the number of 

inputs applied to the system. Initially, assuming that there is no external excitation 

except the initial condition, ( )x 0 0 , the corresponding output y  for the 

successive discrete time steps, , , ,...,t t t t k t    2 3  can be expressed as 

follows. 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )k

y C x

y C x C Ax

y k C x k C A x



 

    1

0 0

1 1 0

1 1 0

 (4.2) 

 

( )

,

k
k mk n

y C

y CA

P x where Py CA

y CA 

 

   
   
   
    
   
   
     

0

1

2
02

1
1

 (4.3) 

Where P  is the observability matrix with dimensions mk n where k  is the length 

of the expressed time series, where it might be truncated at any sufficiently long 

time duration. 

Secondly, if the train of excitations ( ) { ( ), ( ), ( ),... ( )}u s u u u u s 0 1 2 1  is applied, 

then the internal state variable can be expressed as 
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( )

( )

( )

, [ ]

( )

( )

s s
s s s n rs

u s

u s

x A x Q where Q B AB A B A B

u

u





 
 


 
   
 
 
  

2 1
0

1

2

1

0

 (4.4) 

where sQ  is the controllability matrix.  

In a system identification application, in order to obtain the unique solution, again 

system states must be both controllable and observable. Further details and 

properties of observability and controllability concepts can be found in [29] and 

[11]. 

4.1 CONCEPTS OF REALIZATION 

When the basic system characteristics is examined in the discrete time domain, the 

state space formulation can be obtained as follows. 

 ( 1) ( ) ( )x k Ax k Bu k    (4.5) 

 ( ) ( ) ( )y k Cx k Du k   (4.6) 

Here, for an impulse input, let ( ) ( , , , ..., )iu i r 0 1 1 2 3  and 

( ) 0( 1, 2, 3.. .)iu k k   with zero initial conditions(  (0) 0x  ) be substituted into 

Eqs. (4.5) and (4.6). When the input is substituted into the above equations the 

outputs can be assembled into the impulse-response matrix Y , with the dimensions  

m r  as 

 , , , k
kY D Y CB Y CAB Y CA B    1

0 1 2  (4.7) 

The constant impulse response matrices are also known as Markov parameters. 

These Markov parameters are used as the building bricks of identification for 

discrete time models. In Equations (4.5) and (4.6) there are four represented 
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unknown matrices as A , B , C , and D . In equation (4.7) as D Y 0  is determined, 

only remaining three matrices A , B , and C  are required to be computed. 

Computation of the system triplet A , B , and C  from Markov parameters, which 

satisfy Equation (4.7) is called realization. It can be predicted that, any system has 

infinite number of realizations that has the identical impulse-response behavior. This 

is because with higher order models, same impulse-response characteristics can be 

obtained as well. However, a unique solution can be obtained by using a minimum 

order realization. The minimum order realization means the smallest state space 

model that represents the impulse-response history uniquely. All the minimum order 

realization models include the same system characteristics which are eigenvalues 

and modal parameters of the actual system.  

Assuming the state transition matrix A  has a complete set of linearly independent 

eigenvectors [ , , ]n    1 2  and corresponding eigenvalues 

diag( , , )n    1 2  of the order n , then the realization of the system triplet A , 

B , and C  can be transformed to realization of  , 
1B , and C . In this 

transformation the diagonal matrix  contains the modal damping and damped 

natural frequency information. Here by transforming  from discrete time to 

continuous time by applying ln( ) /c t    , the desired modal damping rate and 

the damped natural frequency can be found simply from the real and imaginary parts 

of the eigenvalues c . Whereas the matrix 
1B  defines the initial modal 

amplitudes and Cmatrix defines the mode shapes at the sensor locations which 

will be discussed in details in the next section. 

There is one important thing to noted that, conversion of the eigenvalues from 

discrete time domain to continuous time domain is not unique. Because the 

imaginary part of the natural logarithm of a complex number can be adjusted by 

adding any multiple of 2 , which allows c  to take different values. This is 
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because of the fact that, when observing from the same sample time, two frequencies 

that differ by multiples of 2 / t   are indistinguishable. Therefore avoiding this 

problem, in order to find natural frequencies of the system, either the sample time 

t  must be selected sufficiently short or a filter must be applied to prevent the 

frequencies beyond the Nyquist frequency from being folded into a lower 

frequencies in the realization. 

The system realization process starts by forming the generalized Hankel matrix 

which includes Markov parameters from Equation (4.7). 

 

1 1

1 2

1 2

( 1)

k k k

k k k

k k k

Y Y Y

Y Y Y
H k

Y Y Y





   

  

  

     

 
 
  
 
 
  

 (4.8) 

For the case when 1k  , the Hankel matrix can be obtained as follows. 

 

1 2

2 3 1

1 1

(0)

Y Y Y

Y Y Y
H

Y Y Y





   



  

 
 
 
 
 
  

 (4.9) 

It should be again mentioned that 0Y D , which is previously stated in Equation 

(4.7), is not included in the (0)H . If n   and n  (where n is the order of the 

system), the matrix ( 1)H k   can be found of rank n. In order to confirm this, 

Markov parameters in Equation (4.7) can be substituted into Equation(4.8) as 

 

1 2

1 1

2 1 3

( 1)

k k k

k k k

k k k

CA B CA B CA B

CA B CA B CA B
H k

CA B CA B CA B





   

  

  

      

 
 
  
 
 
  

 (4.10) 
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and decomposing ( 1)H k   into three matrices gives the following expression. 

 
1( 1) kH k P A Q 

   (4.11) 

where P  is the observability matrix and Q
is the controllability matrices as 

follows. 

 
2 12

1

and

C

CA

P Q B AB A B A BCA

CA



 







 
 
 

     
 
 
  

 (4.12) 

As previously stated for a controllable and observable system of order n, P  and Q

matrices must be of rank n as well. Based on the controllability and observability  

properties of the Hankel matrix, two modal parameter realization methodologies will 

be discussed in the preceding sections. 

4.2 EIGENSYSTEM REALIZATION ALGORITHM (ERA) 

The development of state space realization began with the study of the Ho and 

Kalman [27], who introduced the principles of minimum realization theory. The Ho 

and Kalman procedure utilize the generalized Hankel matrix in Equation(4.10) to 

identify modal parameters of a linear system from noise-free measurement data. 

This methodology was modified and extended by Juang and Pappa [12] to realize 

modal parameters of a linear system from noisy measurement data. 

Unlike the classical system realization methods that utilize the generalized Hankel 

matrix given in (4.10), the ERA begins by forming a block data matrix which is 

obtained by deleting some row and columns of the generalized Hankel matrix, by 

keeping the first block matrix kY  untouched. In addition to that, the standard 

ordering of the Markov parameters in the Hankel matrix does not need to be 
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maintained in the ERA. The schematic representation of the implementation of ERA 

is shown in Figure 4.1. 

 

Figure 4.1 ERA Algorithm Flowchart [12] 

When r  is the number of inputs and m  is the number of outputs, the input and 

output matrices can be defined as  

  

1

2

1 2 andr

m

c

c
B b b b C

c

 
 
  
 
 
 

 (4.13) 
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where the column vector ib  is the control influence vector for the thi control input 

and the row vector 
jc is the measurement influence vector for the thj sensor output. 

In this representation, column submatrices of B  can be denoted by ( 0,1,... )iB i 

and row submatrices of C can be denoted by ( 0,1,..., )jC j  . 

Then the ERA data block matrix can be expressed by incorporating the submatrices 

as follows. 

 
1

( 1) where i j

i j i j

s k t

s k t s k t j iH k Y Y C A B
  

   
   
 

 (4.14) 

Where 0 0 0s t  , and is  and 
jt  are any arbitrary integers. Although this matrix 

looks more complex, it represents the matrix shown in Equation (4.10) with some 

rows and columns are deleted, but the first block 1Y  is maintained the same. 

The ERA block data matrix, in Equation (4.14), enables including only good or 

strongly measured impulse response data without losing any capability if the number 

of measurement sensors or actuators are sufficiently oversized. This is especially 

useful when more noisy measurement data or output of malfunctioning sensor data 

is involved in the test output. The advantage of this capability is minimizing noise 

distortion on the identified system parameters. Here the columns of ( )H k  can be 

formed as independently as possible by properly selecting the data samples to use as 

entries of the Hankel matrix. This effort substantially decreases the size of the 

Hankel matrix in dealing with large sized problems. This method also gets the true 

order of the state matrix A  for substantially low noise level. This fact can be 

obtained by examining the observability and controllability matrices as given blow. 

From Equation (4.14) Hankel matrix can be formed as follows. 

 ( ) kH k P A Q   (4.15) 

where 
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1

1
1

1and

s

tt

s

C

C A
P Q B A B A B

C A





  



 
 
    

  
 
 

 (4.16) 

again is  and 
jt  are arbitrary integers. As previously stated P  and Q

 are 

generalized observability and controllability matrices, which are slightly different 

from the ones shown above. 

Assuming that there exists a matrix 
†H ,which satisfies the following relation as 

 
†

nQ H P I    (4.17) 

 
† †(0) (0) (0)H H H P Q H P Q P Q H         (4.18) 

where nI  is an identity matrix of order n . Therefore the matrix 
†H  is thus the 

pseudo-inverse of the Hankel matrix (0)H  in general. 

The ERA implementation starts with the factorization of the block Hankel matrix, 

which is the general case independent of the selection of is  and it , using singular 

value decomposition, the block Hankel matrix can be partitioned as 

 (0) TH R S   (4.19) 

where the columns of the left and right unitary matrices R and S are orthonormal 

and  is a rectangular matrix, whose diagonal elements contain the eigenvalues as 

follows. 

 
0

0 0

n 
   

 
 (4.20) 
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Where 1 2 1diag[ , , , , , , ]n i i n       and ( 1,2,..., )i i n   are monotonically 

non increasing n  ( system order) number of eigenvalues as follows. 

 1 2 1 0i i n        
 (4.21) 

Next, nR and nS  matrices can be formed by using the first n columns of R and S

matrices. By using the singular value decomposition from the rank of the block 

Hankel matrix, as the order of the realized system ( n ) is determined, then the matrix 

(0)H  and its pseudo-inverse can be represented by the smallest sized matrix that 

contains the same information as follows. 

 (0) whereT T T

n n n n n n n nH R S R R I S S     (4.22) 

 † 1 T

n n nH S R   (4.23) 

The above reduced matrices convey the same information with the original matrices 

as, beyond the rank of the block Hankel matrix, the contribution of eigenvalues are 

insignificant. 

Here Equation (4.23) can be easily proven by investigating Equation (4.18). Also 

when Equation (4.22) and Equation (4.15) are compared with 0k  , it can be 

observed that P  and Q  are related to nR and 
T

nS  respectively. Therefore one 

possible choice can be 
1/2

n nP R    and 
1/2 T

n nQ S   . Also this selection gives a 

balanced result for both P  and Q . In addition to that from Equation (4.16), it is 

apparent that first r columns of Q , form the input matrix B  meanwhile, the first 

m rows of P , constitute the output matrix C . It can be further examined by 

selecting 1k   in Equation (4.15) as follows. 

 
1/2 1/2(1) T

n n n nH P AQ R A S      (4.24) 
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Therefore one obvious solution for the state transition matrix A is as follows. 

 
1/2 1/2(1)T

n n n nA R H S     (4.25) 

Defining iO  as a null matrix of order i , iI  as an identity matrix of order i , then 

construct [ ]T

m m m mE I O O  where m  is the number of outputs and 

[ ]T

r r r rE I O O  where r  is the number of inputs. Then using above 

equations, a minimum order realization can be found as follows. 

 

1

† 1 †

1 1 1

1/2 1/2 1/2 1 1/2

1/2 1/2 1

( 1)

[ ] [ ]

(0)[ ] [ ] (0)

(0) [ (1) ] (0)

[ (1)

T

k m r

T k

k m r

T k

k m r

T T k T

k m n n n n n n r

T T k T

k m n n n n n n n n r

T T

k m n n n n n n

Y E H k E

Y E P A Q E

Y E P Q H P A Q H P Q E

Y E H S R P A Q S R H E

Y E H S R H S R H E

Y E R R H S

 

     

 





  

    

 

 





  

    

    /2 1 1/2]k T

n n rS E 

 (4.26) 

This is the fundamental formula of realization for the ERA. Therefore the system 

triplet can be obtained as 

 
1/2 1/2 1/2 1/2ˆˆ(1) , ,T T

n n n n n n r m n nÂ R H S B S E C E R         (4.27) 

which is the minimum order realization for system triplet . Here the quantities with 

over head like Â , represents estimated quantities or matrices. Here the order of the 

Â  matrix is n  again, which is the true order of the actual system, determined via 

singular value decomposition analysis for sufficiently low noise data.  

  



70 

 

4.3 EIGENSYSTEM REALIZATION ALGORITHM WITH DATA 

CORRELATION (ERA/DC) 

The problem with ERA is that, when the input and output measurements includes 

higher noise level, determined order of the system gets larger than the true order of 

the system. In order to overcome this problem, suggested method is to use correlated 

Hankel Matrices. The computational flowchart for the Eigensystem Realization 

Algorithm with Data Correlation (ERA/DC) can be seen in Figure 4.2.  

 

Figure 4.2 ERA / DC Algorithm Flowchart [1] 
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In order to get benefit from the ERA method with data correlations, the definition of 

a square matrix of order m  , where m  is the number of outputs and   is the 

selected number of rows of Hankel matrix, is required as follows. 
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
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1
1

1 1 1 1 1
1 1 1

 (4.28) 

For the case when 0k  , the correlation matrix (0)hhR  becomes as following. 
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 (4.29) 
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As previously stated, ( )Y k  is a m r  matrix whose rows are the Markov parameters 

corresponding to the each output. It can be recognized that the size of ( )H k  and 

(0)H is m r  , whereas the size of ( )hhR k  is m m  . When the number of 

rows of the Hankel Matrix ( )H k  is smaller than the number of columns, then the 

data correlation matrix ( )hhR k  is smaller in the size than the Hankel Matrix. 

The matrix (0)hhR  consists of auto-correlations of Markov parameters such as 



 T
i ii
YY
1

 and cross correlations between the outputs such as 


 T
i ii
YY 11

 

accumulated over the r inputs. In case of correlated noise in the Markov Parameters, 

the correlation matrix (0)hhR  will be containing less noise than the Hankel Matrix 

(0)H . 

Substitution of Equation (4.15), into Equation (4.28) gives the following expression. 

 ( ) ( ) (0)T k T T k

hh cR k H k H P A Q Q P P A Q        (4.30) 

Where 
T T

cQ Q Q P   . When the Correlation Matrix ( ) k

hh cR k P A Q  is compared 

with the Markov Parameter 
1( ) kY k CA B , it can be observed that both matrices are 

the products of three matrices with discrete time state transition matrix in the 

middle. The ERA, explained in the above section, solves A, B, and C matrices based 

on the Hankel Matrices (0)H  and (1)H . Similarly, a block correlated Hankel 

Matrix can be constructed to solve for A , cQ  and P . 

In fact, a   block correlation Hankel Matrix can be formed as follows. 
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 
 
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 (4.31) 

Again when 0k  , the correlated Hankel matrix is obtained as  
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 
       
 
 

 

 (4.32) 

where k  is an integer chosen to avoid correlation terms that give rise to bias when 

noise is present in the data, and  is an integer chosen to represent an interval to 

prevent significant overlapping of the adjacent hhR  blocks. The integers   and  are 

defined in order to define the amount of lag values included in the analysis. The 

matrices P  and Q  can be called block correlation observability and controllability 

matrices of dimension ( 1)m n     and ( 1)n m    respectively, which are 

basically reflect the relationship between the system matrices A , B , C , and the 

Correlation Hankel Matrix (0) . 
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Similar to the ERA, the ERA/DC procedure continues with the factorization of the 

block Correlation Hankel Matrix (0)  , using singular value decomposition as 

follows. 

 (0) TR S    (4.33) 

Where the columns of the matrices R and S are orthonormal, so that they satisfy 

TR R I , and TS S I  where I  is the identity matrix. In addition to that,   is a 

rectangular matrix as 

 
0

0 0

n 
   

 
 (4.34) 

where 1 2 1diag[ , , , , , , ]n i i n       and ( 1,2,..., )i i n   are monotonically 

non increasing n  ( system order) number of eigenvalues as follows. 

 1 2 1 0i i n        
 (4.35) 

Next, nR  and nS  matrices can be formed by using first n  columns of R  and S  

respectively. The columns of ( ( 1) )nR m n     and ( ( 1) )nS m n     are 

orthonormal and   is a diagonal matrix containing the first n  singular values that 

are considered as significant, based on the same truncation procedure explained in 

the ERA procedure. Here there is an important point to be highlighted that, when the 

noise is present in the data, the above factorization becomes approximate, because 

the discarded singular values becomes nonzero in the presence of noise. 

Hence, the correlation Hankel Matrix (0)  and its pseudo inverse becomes as 

follows. 

 
† 1(0) T T

n n n n n nR S and S R       (4.36) 

Here Equation (4.36) can be proven by investigating the following expression.  
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†(0) (0) (0)     (4.37) 

Then using Equation (4.31) and (4.37), the above relationship can be rewritten as 

follows. 

 

†

† † †[ ]P Q P Q P Q or P Q Q P P Q P Q             



    (4.38) 

 
†

nQ P I    (4.39) 

Here the condition is that both P  and Q  are of rank n, so that they are invertible. 

In order to obtain correct size of the correlation matrix, O  as a null matrix, I  as 

an identity matrix of order  , and [ 0 0 ]TE I     shall be defined. Then 

following a similar approach to that is given in the ERA section, a minimum order 

realization of dimension n  can be derived as follows. 
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 (4.40) 

Indeed, this is the basic formulation of minimum realization for the ERA/DC.  

Therefore observability and controllability matrices can be computed as follows. 

 1/2T

n nP E R    (4.41) 
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† 1/2 †(0) [ ] (0)    T

n nQ P H E R H  (4.43) 

Here it is clear that the output matrix C and the input matrix B  can be obtained 

from Equation (4.42) by using first m  rows of P  and the first r  columns of Q  

respectively. Hence a realization for the system triplet ˆˆ[ , , ]Â B C  can be found as 

follows. 
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ˆ [ ] (0)
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T
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T

n n r
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m n n
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B E R H E

C E R

 (4.44) 

As in the case of ERA, the natural frequencies and damping values belongs to 

system can be computed from the realized state transition matrix. In addition to that, 

with suitable transformation matrix, eigenvectors can be transformed into modal 

space so that, damped mode shapes and initial modal amplitudes can be determined.  

Here another important point to note is that, ERA/DC involves a fit to the output, 

auto-correlations and cross-correlations over a defined number of lag values and 

measurement noise can be eliminated by properly selecting k  integer number of lag 

values in Equation (4.31). On the other hand, ERA provides a least-squares fit so 

that, it is vulnerable to bias terms and measurement noise.  
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4.3.1 Performance Measures of System Realization with ERA or 

ERA/DC 

In order to distinguish realized true system modes from false modes, two 

performance measures are introduced by Juang and Pappa [10]. These are the Modal 

Amplitude Coherence (MAC) and the Mode Singular Value (MSV). In order to 

compute performance measures, first identified discrete time state space in modal 

form shall be considered as 

 
ˆ ˆ( 1) ( ) ( )

ˆ( ) ( ) ( )

m m m

m m

x k x k B u k

y k C x k Du k

   

 
 (4.45) 

here ̂  is a diagonal matrix, containing eigenvalues of discrete state transition 

matrix, ˆ
mB  and ˆ

mC  are the modal input-state and state-output matrices respectively. 

In this case the modal matrices can be computed as follows. 
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 (4.46) 

 Then the complex modal system matrices can be partitioned as follows. 
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 (4.47) 

Therefore, the identified modal amplitude time history for each mode can be 

obtained as follows. 

 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ l

i i i i i i i iq b b b b    
 

 (4.48) 
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In order to asses, how good modal amplitude time history is identified, the real 

modal time history belonging to system must be computed. In this case, the real 

modal time history can be computed from controllability. For this purpose the 

Hankel matrix can be partitioned as 
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2

1 2

1

1

(0)

(0)

(0)

l

m m m m m m
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m m m m m m
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 





  
 

   
 
 

   

 
 
       
 

 

 (4.49) 

Here it should be noted that actual system matrices  , mB , and mC  are expressed in 

modal coordinates. Therefore, the actual modal time history can be computed from 

controllability matrix as follows. 
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1 1 1 1 1
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
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 

 

 

 
 
        
 
 

      
         
   
         

 (4.50) 

Here when equations (4.48) and (4.50) are compared, it can be observed that the 

identified modal time history is equivalent to the real modal time history in the 

absence of noise. 
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After the real and identified modal time histories are obtained, performance 

measures, which are MAC and MSV can be computed. 

MAC measures correspondence of identified modal time history to real modal time 

history. In its computation, it can be considered as a dot product of the real and 

identified modal time histories. In this case dot product in the MAC computation can 

also be considered as cosine of the angle between the identified and the real modal 

time histories which is computed for each mode as  

 

*

* *

ˆ

ˆ ˆ

i i

i

i i i i

q q
MAC

q q q q
  (4.51) 

where * corresponds to transpose and complex conjugate operation. 

Here it should be noted that, when the identified and real modal time histories are 

identical for a specific mode, MAC value is computed as 1, which is the limiting 

value for MAC. 

On the other hand, MSV defines contribution of each identified mode to the realized 

impulse response history. Therefore a well identified mode has large contribution on 

the realized impulse response history and its MSV value is computed higher. 

Therefore, MSV values of each mode can be computed as 

  2 2ˆ ˆ ˆ ˆˆ 1 l

i i i i i iMSV c b         (4.52) 

for sufficiently large number of data and when ˆ
i  is less than 1, the MSV value can 

be approximated as follows. 

 

 

ˆˆ

ˆ1

i i

i

i

c b
MSV





 (4.53) 
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Therefore for large number of data and when ˆ
i  is less than 1, the limiting value of 

MSV can be computed by using Equation (4.53). 

4.3.2 Damped Modal Realization from Output of ERA or ERA/DC 

Here the realized model represented by Â , B̂ , and Ĉ  is in the discrete time and it 

can be converted to continuous time, so that system frequencies and damping can be 

computed. 

First transformation of the discrete system matrix Â  into its continuous case A  can 

be performed by using the following relation as 

 
1 1ˆ t

cA e A          (4.54) 

where   and   are the eigenvectors and eigenvalues of the matrix A . Then the 

continuous system eigenvalues, for zero order hold discretization assumption, can be 

obtained as 

 ln( ) / { , 1, , }c i it diag jw i n        (4.55) 

here i  and iw  are the real and imaginary parts of the continuous state-space 

system characteristic roots. In addition to that, in Equation (4.55), imaginary roots 

represent the damped natural frequencies and by finding utilizing the following 

formulas the undamped natural frequencies ( niw ) and modal damping ratio ( i ) can 

be computed as follows. 

 21i ni iw w    (4.56) 

 i
i

niw


    (4.57)  

Therefore the continuous state transition matrix can be obtained as follows. 
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1

cA    (4.58) 

Secondly, it can be recalled that, as long as A  is nonsingular, the discrete operator 

B̂ can be computed as 

 
1ˆˆ ( )B A I A B   (4.59) 

where I  is a n n  identity matrix. From Equation(4.59), the following expression 

can be obtained by replacing Â  as follows. 

 
1 1ˆ ( )c t

cB e I B
        (4.60) 

Therefore the continuous input-state influence matrix can be computed from (4.59) 

as 

 
1ˆ ˆ( )B A A I B   (4.61) 

Moreover, it is known that the continuous and discrete forms of state-output 

influence matrix C  and direct transmission matrix D are the same as they provide 

mapping between system states, inputs and outputs, which is not dependent on the 

time. 

After the continuous time model is obtained, then continuous modal, state-space 

realization can also be obtained as follows 

 
( ) ( ) ( )

( ) ( )

cz t z t B u t

y t C z t





  


 (4.62) 

In Equation (4.62), it can be observed that internal variable ( )z t is associated with an 

arbitrary basis vector which can be obtained via ( ) ( )z t x t  transformation. On 

the other hand, the input vector ( )u t , and output vector ( )y t  are based on the same 

basis vector, which are measured from the experiments. Therefore the system  
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Therefore the modal excitation matrix B  can be written as follows. 

 1 1 1 1 ˆ( )tB B e I B

          (4.63) 

On the other hand, the modal measurement matrix C , can be obtained by using 

different sensor outputs as  

 
2[ 0] [ 0] [ 0]d v aC H H A H A    (4.64) 

In practice, output of each sensor types are treated separately. This results that the 

modal output matrix becomes different according to sensor type as follows. 

  

 

1

2

{ for displacement sensor output}

{ for velocity sensor output}

{ for acceleration sensor output}

{ Real(C ) Imaginary(C ) }where 1, for each node
i i

d

v c

a c

C H

H

H

i n



 





 

 

 

  

 (4.65) 

To sum up in this chapter, two powerful realization algorithms, which are ERA and 

ERA/DC are investigated in terms of their formulations and formulations of realized 

system matrices are stated. In addition to that, transformation from discrete realized 

system matrices, into continuous form are given in the last section. Finally, 

transformation to the continuous damped modal form is explained, which will be 

mainly used in the extraction of physical system parameters chapter.  
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CHAPTER 5  

 

EXTRACTION OF PHYSICAL SYSTEM PARAMETERS 

The first order modeling approach explained in the above sections are generally 

preferred and utilized by the researchers in the control field. In order to obtain first 

order state space models, methodologies like ERA and ERA/DC explained in the 

preceding sections are also sufficient. In those models or realizations, physical 

system properties like mass, stiffness or damping cannot be obtained directly. A 

transformation from the first order models, into second order models is required to 

determine mechanical system properties. The main idea behind obtaining the system 

properties is to whether find the best sensor locations for control purposes or 

validate finite element modeling of the system, or damage detection and localization 

for health monitoring purposes. 

In literature, obtaining system properties from the measured input-output signals is 

called the inverse vibration problem [28], [29]. On the other hand obtaining first 

order models from the second order differential equations is a rather straightforward 

task and called the forward vibration problem. As expected, the inverse vibration 

problem is more complex such that, it attracted attention of various researchers with 

different methodologies. Some of those examples are published by Ibrahim(1983), 

Zhang and Lallement(1987), Yang and Yeh(1990), Alvin (1993), Alvin and 

Park(2003) [22] and De Angelis(2002) [28]. 

In this section a transformation based method for converting first order system 

model into second order structural dynamic model will be presented. The 

implemented methodology is called Common Basis-Normalized Structural 
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Identification (CBSI) which is developed by Alvin [25] and reformulated by Bernal 

and Güneş [30] and further examined by Luş et al. [28]. The main selection criterion 

among other methodologies are starting with the first order model obtained from the 

realization algorithms, being able to utilize all types of sensors (displacement, 

velocity and acceleration) and being able to of identify nonproportional damping 

properties as well. 

Here there are two important points to be addressed. First, in the solution of inverse 

vibration problem, the number of sensors and actuators play crucial role in the size 

of identified physical system parameters. Different methodologies require, whether 

full set of actuators, or full set of sensors, or either an actuator or sensor at each 

degree of freedom. Actually CBSI method requires full set of sensors which means 

that, there must be a number of sensors at each degree of freedom of the system. 

However, utilizing lacking actuators is sufficient for CBSI implementation. 

Second important issue is having at least one collocated (Having both sensor and 

actuator at the same degree of freedom) sensor and actuator pair. This requirement 

exists to obtain mass matrix from the mass normalized undamped modes or to scale 

complex eigenvectors. Actually, the collocated sensor and actuator requirement is 

general to all methodologies solving the inverse vibration problem. In the CBSI case 

as there exists sensors at all the degrees of freedom, by applying even a single input 

to the system satisfies the collocation requirement.   

The CBSI procedure start with the realized discrete system model given in Equation 

(4.5).  

 
ˆ ˆ( 1) ( ) ( )

ˆ ˆ( ) ( ) ( )

z k Az k Bu k

y k Cz k Du k

  

 
 (5.1) 

where Â , B̂ , Ĉ , and D̂  are the identified discrete system matrices obtained from 

any of the realization algorithms explained in the Chapter 4.  
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Similarly, the continuous counterpart of the Equation (5.1) can be obtained, as 

follows.  

 
( ) ( ) ( )

( ) ( ) ( )

c c

c c

z t A z t B u t

y t C z t D u t

 

 
 (5.2) 

with 
cA , 

cB , 
cC , and 

cD  are the continuous system matrices and here D  can be 

omitted for displacement output representation. 

 Finally, the damped modal continuous form can be obtained by following the 

transformation ˆ( ) ( )z t z t  where 1

c cA     as follows. 

 
1ˆ ( ) ( )

( ) ( )

c c

c

z z t B u t

y t C z t

  

 
 (5.3) 

 Here again it should be noted that, the cD  matrix is omitted because of the 

displacement-output equivalent model representation. 

At this point, for a N degree of freedom system, in order to transform first order 

arbitrary based model given in Equation (5.3), into physical displacement-velocity 

model (PDV) described in Equation (3.18) which is again represented as 

 
( ) ( ) ( )

( ) ( )

I I I I

I I

x t A x t B u t

y t C x t

 


 (5.4) 

where  

 

 

1 1

1

0

0

ˆ

0

I

amp

I

I d

I
A

M K M D

B
M B

C H

 



 
    

 
  
 



 (5.5) 
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There must be a transformation matrix  of dimension 2 2N N  as 

 ˆ( ) ( )x t z t   (5.6) 

provides the following relationship as  

 

1

1 1

1

1 1

c

c

c

A

B B

C C

 

  

  

  

 (5.7) 

In the above expression, the transformation for matrix 
1A  indicates that the 

transformation matrix must consist of the complex eigenvalues c  and complex 

valued eigenvectors d , which are obtained from the eigensolution of the 

displacement velocity expression given in Equation(5.4)), and a diagonal matrix   

which contains some scaling values for the eigenvectors as follows. 

 

d d

d d

c c

 

 

   
      

     
 (5.8) 

Therefore the solution for the transformation matrix is developed by utilizing the 

transformation for the output matrix in the expression (5.7). As there exists full set 

of displacement sensors, dH  in IC  is an identity matrix with full rank (rank N ) so 

the d   expression stated above can be evaluated as 

 1

1 1

d d

c d d cC C H H C            (5.9) 

In addition to that, as both c  and   are diagonal, the following expression for the 

transformation matrix can be obtained as follows. 

 

1

1

d

d c

d

c d c c

H C

H C









   
      

    
 (5.10) 
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Here all the expressions on the right hand side of the above equation are known, 

therefore the transformation matrix can be obtained easily but the eigenvectors d  

and diagonal scaling matrix  cannot be explicitly known at the moment and as will 

be stated below, they are not required to be known individually. 

At this point, the state matrix 
IA  can be evaluated from eigensolution of the 

displacement velocity (DV) model, which is expressed as follows. 

 1 1

0 d d

cd d
amp c c

I

M K M D

 

 
 

    
             

 (5.11) 

 

1

1 1

0 d d

cd d
amp c c

I

M K M D

 

 



 

    
             

 (5.12) 

 

1

1

1 1

0 d d

cd d
amp c c

I

M K M D

 

 





 

    
              

 (5.13) 

Here the expression above still holds as the   matrix is diagonal. As stated before, 

the eigenvectors and scaling functions are not required to be determined 

individually. After the state matrix in Equation (5.13) is determined, the undamped 

eigenvalues and undamped eigenvectors of the second order system model can be 

obtained by solving the following eigenproblem as 

 
1 2ˆ ˆ  where 1,2,...,i i iM K i N      (5.14) 

where ˆ
i  is the arbitrarily scaled undamped eigenvectors and 

1M K
 can be 

obtained from the partition of the IA  matrix given above. Finally, the collocation 

requirement is essential in order to obtain mass matrix M  from displacement 

velocity model. Here the mass normalized eigenvectors i , can be obtained from 
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arbitrarily scaled undamped eigenvectors ˆ
i , by utilizing the collocation 

requirement through a scaling matrix S  as 

 ˆ S   (5.15) 

where eigenvectors are constructed such that 
1 2

ˆ ˆ ˆ ˆ
N

      
 and the 

scaling function is a diagonal matrix constructed such that 
1 2( , , , )NS diag s s s .  

Therefore using the mass normalization property the inverse of the mass matrix 
1M 
 

can be obtained as follows. 

 
1 TM    (5.16) 

 1 2 2 2 2

1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( )T T T T T

N N NM S S S s s s                 (5.17) 

In addition to that, considering the scaling function for the input matrix in Equation 

(5.7), the 1 1

1 cB B    expression can be expanded as 

 
1

1 1

1 1

0

ˆ

d

d c

c cd

c d c c

H C
B B

H C M B







 

 

    
        

      
 (5.18) 

where B̂  is the binary input matrix given in Equation (3.1). Then lower partition of 

the above expression gives the following relation. 

 

1 1 2 2 2

1 1 1 2 2 2
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2

1 1 2

1 1 2 2
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
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d c c c N N N

T T T

d c c c N N

N

H C B s B s B s B

s

s
H C B B B B

s

 

 

           

 
 
             
 
 

 (5.19) 

Therefore, assuming only a single input is applied to the system, the solution of the 

scaling factors can be found as follows. 
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 
 

 (5.20) 

If there are more than one input, then the B̂  and 
cB  matrices have r  many 

columns, and as the above expression is valid individually for each column, 

Equation (5.20) is required to be solved for each input set, which imply that, there 

appears r  set of scaling functions obtained, but one set of scaling function is 

sufficient and the rest will be equivalent to each other in the absence of noise. 

After the scaling functions are obtained from the Equation (5.20), then the mass 

normalized eigenvectors ˆ S   can be obtained and then the mass matrix can be 

obtained as 1( )TM   . Therefore using the mass matrix and the 
1M K  and 

1

ampM D  expressions obtained from Equation (5.13), the stiffness and damping 

matrices can be obtained as 

 1( )K M M K    (5.21) 

 
1( )amp ampD M M D    (5.22) 

To sum up, the transformation based methodology described above successfully 

transforms the first order realized system model into second order system of 

equation and then mechanical system parameters which are composed of mass, 

stiffness and damping matrices can be obtained correctly. However, it should be 

noted that the above formulation is given for the displacement equivalent system 

model given in Equation (5.4). However, it can also be generalized for the other 

output measurements like, velocity or acceleration in the formulation of DV model.  
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For the case of velocity measurement, the output can be obtained as  

  ( ) 0 ( )v Iy t H x t  (5.23) 

then using the eigenvalue decomposition of the 
IA , it is possible to express the 

transformation relation as follows. 

 1 1d

v c cH C      (5.24) 

Similarly, for the acceleration measurement case, the output can be obtained as  

    ( ) 0 ( ) 0 ( ) ( )a I a I I cy t H x t H A x t D u t    (5.25) 

and similarly, the transformation relation for acceleration measurement becomes the 

following. 

 1 2d

a c cH C      (5.26) 

Therefore, as the relationships of all types of measurements are obtained, any mixed 

kinds of sensors can be used during testing and the transformation methodology 

proceeds in the similar way with only changing the expressions for transformation 

matrix. 
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CHAPTER 6  

 

SIMULATION AND TEST RESULTS 

6.1  IDENTIFICATION IMPLEMENTATION FOR 1 DOF 

SIMULATED SYSTEM  

In order to verify identification scheme described in the preceding sections, firstly 

simulations are used, as the model to be identified is known at the beginning, so that 

results can be easily compared and verified. For this purpose first a single degree of 

freedom model shown in Figure 6.1 is constructed. 

 

Figure 6.1 Single DOF System Model [1] 

Here the system consists of a mass, spring, and damper and input and output is at the 

same location. In addition to that, acceleration is measured as the system output. The 

selected values for the mass, spring and damper are 1M kg , 1 /K N m  and 

0.01 /Ns m  . 

k1 

c1 

m1 

( )x t

 

( )u t  

x 
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Therefore the second order equation of motion can be stated as follows. 

 ( ) 0.01 ( ) ( ) ( )w t w t w t u t    (6.1) 

Then using physical displacement velocity model described in the Chapter 4, the 

equivalent first order state space formulation can be represented as 

 

 

0 1 0

1 0.01 1

1 0.01

c cx A x B u

y Cx Du

w w
u

w w

w
y u

w

 

 

       
                

 
    

 

 (6.2) 

In order to implement identification scheme, first system response is required to be 

determined and system model given above is simulated using Matlab/Simulink [31] 

environment with the model shown in Figure 6.2. As most of the modern data 

collection systems work in digital domain, the collected data is obtained in the 

discrete form with finite sampling intervals. In this study the sampling frequency is 

selected to be 1kHz unless otherwise stated. 

 

Figure 6.2 SDOF System Model in Simulink 

In order to apply ERA and ERA/DC algorithms, first impulse response is required. 

As explained in Chapter 2, direct time domain methods may result in ill conditioned 
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input matrix, therefore rather than direct time domain approach, frequency domain 

and Wavelet transform techniques are implemented. 

For the frequency domain approach, first a single tone input is applied to the system 

with knowing that frequency domain approach may yield bad results. After the 

analysis is carried out, as expected, results ended up with wrong system response, 

results of which are not presented here. Therefore in the second trial a chirp signal is 

applied to the system. In the second case a chirp signal with frequency range starting 

from 0.02 Hz up to 3 Hz in 100 seconds time interval is applied as the input. The 

input force signal applied to the system is shown in Figure 6.3 .a . Additionally in 

Figure 6.3.b the system response is shown for the applied chirp input.  

 

Figure 6.3 SDOF Plant Chirp Input / Output 
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transforms of the input and output signals are obtained, the correlated input and 

output variables described in Chapter 2 are computed and by dividing output 

correlated variable to input correlated variable, the frequency response function 

shown in Figure 6.4 is obtained. After the frequency response function is obtained, 

the remaining task is to return back to time domain via inverse Fourier transform 

and when it is accomplished the impulse response of the single degree of freedom 

system is obtained as shown in the Figure 6.5. Here in order to capture system 

response, instead of a single tone frequency input, a chirp signal with a limited 

frequency range is applied with an educated guess on the range starting from very 

low frequencies. In addition to that as the system model is ideal and does not include 

measurement noise, ensembling is not applied in this case.  

 

Figure 6.4 SDOF Plant Frequency Response Function 
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Figure 6.5 SDOF Plant with Chirp Input, IR Function obtained via Fourier 

Transform 

 

As the second tool to extract impulse response function of the system is the Wavelet 
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computation of impulse response function. Again, as there is no noise or distortion 
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transform, the impulse response function of the single degree of freedom system is 

obtained as shown in Figure 6.6. Here the response is given up to 4,1 seconds, which 

is because the input and output signals are used with 4096 data points, which was 

the initial choice to decrease computation time and as 4096 is the 12
th
 power of 2 

which is utilized for 12 level (full depth) wavelet analysis. 

 

Figure 6.6 SDOF Plant with Chirp Input, IR Function obtained via Wavelet 

Transform 
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and responses computed via Fourier and wavelet analyses are compared as shown in 

Figure 6.7. Additionally, errors of the computed impulse responses, compared with 

the actual system response data are represented in Figure 6.7.b and Figure 6.7.c. 

Here the black line represents the analytical impulse response function computed 

from the state space model of the single degree of freedom system and the green, 

and red dashed lines are the impulse response functions obtained via Fourier and 

Wavelet analyses represented in Figure 6.5 and Figure 6.6 respectively.  

 

Figure 6.7 SDOF Plant Impulse Response Comparison 
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In Figure 6.7.b, from time range [0-1] seconds, it is observed that, the transient 

behavior of the impulse response is computed with high error via Fourier analysis. 

On the other hand, wavelet analysis captures the whole response characteristic, and 

it seems coherent with the analytical response function as seen in Figure 6.7.c. 

Another important advantage of the wavelet analysis is that, it captures true system 

response by using much lower data points than the Fourier analysis case.  

In line with the results obtained from the comparison of Fourier and Wavelet 

analyses, the Wavelet analysis results are selected to be used in the remaining 

realization applications. 

First the ERA is applied to the impulse response function results, obtained from 

Wavelet transforms. Moreover, the ERA analysis start with the formation of Markov 

parameters, which are obtained by using impulse response measurements of all 

system outputs at each sample time. Here in this system, as there is only one output, 

the system impulse response samples are equivalent to the Markov parameters. 

Then, by using Markov parameter, Hankel matrix will be constructed. The size of 

the Hankel matrix can be selected in order to include as much system response as 

possible, while keeping the computation time limited. Here as 4096 impulse 

response measurements (or Markov parameters) available from the results of 

Wavelet analysis, a 1000x1000 square Hankel matrix is formed for the realization 

analysis. After the Hankel matrix is formed using system Markov parameters, 

singular value decomposition is applied to the Hankel matrix and the singular values 

of the Hankel matrix are plotted against their values as shown in Figure 6.8. In this 

figure, non-zero singular values gives the rank information of the Hankel matrix, 

which is equivalent to the selected system order in the ERA analysis as well. As 

shown in Figure 6.8, the system order is computed as 2 from the SVD of the Hankel 

matrix, which is expected because the selected system is represented by one 

differential equation. Afterwards, according to the obtained system order, the left 
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and right unitary matrices are truncated and corresponding observability and 

controllability matrices are computed. 

 

Figure 6.8 Singular Values of Hankel Matrix in ERA Analysis 

Then using the formulation described in the ERA procedure, the discrete time 

system matrices 0Â , 0B̂ , Ĉ , and D̂  for the generalized discrete state space 

representation are computed as follows. 
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 (6.3) 

where  
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 (6.4) 

Then the discrete system model given in Equation (6.3) is converted to continuous 

time by using Matlab's built in "d2c" conversion with zero order hold method, which 

is implementing the same discrete to continuous time conversion explained at the 

end of the Chapter 4. In addition to that, Matlab's "d2c" conversion is verified by 

comparing its results with analytical conversion described in Chapter 4. Then the 

resultant continuous time model is obtained as follows. 

 
ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

x t Ax t Bu t

y t C x t Du t

 

 
 (6.5) 

where  
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 (6.6) 

Here it should be noted that, as expected analytically the ˆ ˆ and C D matrices are the 

same for both discrete and continuous time models. 

After discrete and continuous system models are realized, in order to assess how 

good ERA approximates the impulse response function of the system, two 

performance measures, the MAC and MSV are computed. Here as previously 

mentioned, MAC gives the correspondence between the identified pulse response 
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history and the pulse response used in the identification. When there is no noise 

included in the data, which is the case here, MAC is found as 1 and 1 for the two 

identified eigenvalues, which means these vectors are indeed identical to the pulse 

response history used in the identification. Whereas MSV gives the contribution of 

each mode to the identified impulse response function. In this case MSV is found as 

0.9973 for the both eigenvalues out of 1. Which means very good approximation is 

obtained through the analysis and in order to visualize the performance of ERA, 

impulse response function of the SDOF system and the discrete model expressed in 

Equation (6.4) are compared in Figure 6.9. Therefore, as indicated by MAC and 

MSV, very good realization is obtained through the ERA analysis which is visually 

and analytically confirmed in Figure 6.9.a and Figure 6.9.b.  

 

Figure 6.9 Comparison of SDOF System IR and Discrete System IR by ERA 
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At this point as the system of interest is a single degree of freedom, the transfer 

functions of the analytical system model and the one obtained from the realized 

continuous system model can be compared as following. 

First the analytical transfer function between input and output can simply be 

obtained by taking Laplace transform of the differential equation given in Equation 

(6.1), or it can be computed from the state space model given in Equation (6.2) as 

following. 

 
2

2

( )

( ) 0.01 1
analytical

w s s
H

u s s s
 

 
 (6.7) 

and the transfer function obtained from the continuous time state space realization 

obtained from ERA analysis can be obtained as follows. 

 
2 11 12

2

( ) 4.17*10 1.87*10

( ) 0.01 1
realized

w s s s
H

u s s s

  
 

 
 (6.8) 

Comparison of the analytical transfer function and the one obtained from the ERA 

analysis shows that, the ERA computes the same characteristic polynomial, which 

conveys the resonances of the system, very accurately, however, it can be observed 

that there appeared roots of the numerator which are too close to the origin, in the 

ERA solution. These roots of the numerator appeared due to the residuals in the 

numerical analysis and application of sampling. Still the realized transfer function is 

acceptable as the roots of the numerator are too close to the origin.  

 

Then, proceeding with the identification application, in order to obtain natural 

frequencies and system's physical parameters, the continues model must be 

converted to damped continuous modal displacement equivalent form, which is 

given below for the acceleration output case as  

 
ˆ ( ) ( )

( ) ( )

c z

z

z z t B u t

y t C z t

  


 (6.9) 

where 
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 (6.10) 

Therefore the damped natural frequencies are computed from the imaginary parts of 

the continuous eigenvalues as 1 0.9999 /nw rad s  and 2 0.9999 /nw rad s  , this 

is because the two eigenvalues are the complex conjugates of the same mode and the 

only eigenvalue corresponding to the single mode can be stated as

0.9999 /nw rad s . In this single-degree of freedom system case, as the natural 

frequency can be easily computed analytically, the results can be compared with the 

analytical ones easily. Therefore the analytical damped natural frequency for the 

single degree of freedom system can be computed as 

2

First, the undamped natural frequency  1.000 rad/s

Secondly, the damped natural frequency 1 0.9999 rad/s

ni

n ni

K
w

M

w w 

 

  

 (6.11) 

Therefore the natural frequency computations match with the realized ones, and 

ERA results are verified to be correct. 

Finally, physical system parameters, which are the mass, stiffness and damping 

matrices are obtained through a transformation procedure from the first order state 

space models into second order models, which is explained in Chapter 5. Here CBSI 

procedure is applied to the damped modal continuous form given above to extract 

physical system properties. For this purpose, as there is a single input applied to 

system, single scaling matrix is obtained through the analysis. Therefore, the 

extracted mass, stiffness and damping matrices are computed as following. 
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Mass: 1.000

Stiffness: 1.000 /

Damping: 0.01000 /

M kg

K N m

D N s m







 (6.12) 

Therefore the results exhibit excellent agreement with the physical system 

parameters with less than 1% error. 

Second realization algorithm applied is the ERA/DC. This algorithm again uses the 

system impulse response function as the input and the same impulse response 

function, obtained from wavelet analysis, will be used for ERA/DC analysis. In this 

case the Hankel matrix formed by using Markov parameters is selected to be in the 

size of 500 x 500, because in this case the Correlation Matrices will be constructed 

by multiplication of each shifted Hankel matrix with the initial one (

( ) ( ) (0)T

hhR k H k H ). After the Correlation Matrices are obtained, the Correlation 

Hankel Matrix is constructed by using 5 Correlation Matrices. After Correlated 

Hankel Matrices are constructed, the ERA/DC implementation continues with the 

similar factorization of the Correlated Hankel matrix via SVD. In this case again, the 

system order is obtained from the rank of the Correlated Hankel Matrix as 2, which 

is the number of nonzero singular values shown in Figure 6.10. 

Afterwards, according to the obtained system order, the left and right unitary 

matrices are again truncated and corresponding observability and controllability 

matrices are computed in slightly different computation from the ERA method.  
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Figure 6.10 Singular Values of the Correlated Hankel Matrix in ERA/DC Analysis 

Then using the formulation described in the ERA / DC procedure, the discrete time 

system matrices 0Â , 0B̂ , Ĉ , and D̂  for the generalized discrete state space 

representation, given in Equation (6.5), is computed as 
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 (6.13) 

where 
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 (6.14) 

 The discrete system model found in Equation (6.13) is again converted to 

continuous time by using Matlab's built in "d2c" command with zero order hold 

method and the resultant continuous time model is obtained as follows. 
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where  

 

 

1.513 0.5111
ˆ

6.471 1.523

24.72
ˆ

85.29

ˆ 0.006265 0.001698  

ˆ 1.000

A

B

C

D

 
   

 
  
 





 (6.16) 

Again, it should be noted that, the ˆ ˆ and C D matrices are the same for both discrete 

and continuous time models. 

This time, in order to assess how good ERA / DC approximates the system impulse 

response function, the two performance measures which are modal amplitude 

coherence(MAC) and mode singular value(MSV) are computed again. When there is 

no noise included in the data, which is the case in this example, MAC is found as 1 

and 1 for the two identified eigenvalues, which means these vectors are indeed 

identical to the pulse response history used in the identification. Whereas MSV is 

computed as 0.4992 for the both eigenvalues out of 1. Here the MSV is found less 
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than the previous calculation found in the ERA, however this is expected as the 

Hankel Matrix size is selected to be smaller than the one used in the ERA analysis, 

in this case including more Markov parameters will increase the MSV but they will 

increase the computation time as well. Although modal singular value is found less 

in the ERA/DC case, still very good approximation is obtained through the analysis 

and in order to visualize the performance of ERA/DC, impulse response function of 

the SDOF system and the analytical impulse response function of the discrete model 

expressed in Equation (6.15) are shown in Figure 6.11. In addition to that the 

realization error between the analytical and realized impulse response functions are 

given in Figure 6.11.b. 

 

Figure 6.11 Comparison of SDOF System IR and Discrete System IR by ERA/DC 
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 (6.17) 

Comparing the transfer functions expressed in Equations (6.7), (6.8) and (6.17) 

yields that, the ERA/DC computes very similar results with the ERA analysis even 

in the case of half the size of Hankel matrix is utilized.  

Then, proceeding with the identification application, in order to obtain natural 

frequencies and system's physical parameters, the continues model must be 

converted to damped continuous modal displacement equivalent form, which is 

given below for the acceleration output case as  

 
ˆ ( ) ( )

( ) ( )

c z

z

z z t B u t

y t C z t
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
 (6.18) 

where, 
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 (6.19) 

therefore the damped natural frequencies are computed from the imaginary parts of 

the continuous eigenvalues as 1 0.9999 /nw rad s  and 2 0.9999 /nw rad s  , this 

is because the two eigenvalues are the complex conjugates of the same mode and the 

only eigenvalue corresponding to the single mode can be stated as 

0.9999 /nw rad s . 

Finally, physical system parameters, which are the mass, stiffness and damping 

matrices are obtained through a transformation procedure from the first order state 

space models into second order models, which is explained in Chapter 5. Here CBSI 

procedure is applied to the damped modal continuous form given above to extract 

physical system properties. For this purpose, as there is a single input applied to 
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system, single scaling matrix is obtained through the analysis. Therefore, the 

extracted mass, stiffness and damping matrices are computed as follows. 

 

Mass: 1.000

Stiffness: 1.000 /

Damping: 0.01000 /

M kg

K N m

D N s m







 (6.20) 

which again exhibits excellent agreement with the physical system parameters with 

less than 1% error in. 

To sum up, for a linear time invariant single degree of freedom system, in the 

absence of noise, the wavelet analysis is found to perform well on determining 

system impulse response history. In addition to that, for the single degree of freedom 

system, ERA and ERA/DC are found to be capable of realizing a state space system 

model well enough to capture system response. Finally the CBSI procedure 

performs the correct transformation such that, physical system properties for the 

identified proportionally damped system model are obtained correctly. 
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6.2 IDENTIFICATION IMPLEMENTATION WITH 3 DOF 

SIMULATED SYSTEM 

In order to further investigate performance of the identification methods and 

transformations explained in the preceding chapters, a three degree of freedom 

system model shown in Figure 6.12 is constructed. 

 

Figure 6.13 Three DOF System Model 

In this case, test system consists of three masses, four springs, and four dampers. In 

addition to that, three inputs are applied to each degree of freedom and three 

acceleration measurements are collected from each mass. The selected values for the 

mass, spring and damper parameters are as following. 
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Therefore second order equation of motion can be stated as 

      M x D x K x Bu    (6.21) 

x 

1( )u t  2 ( )u t  

k1 

c1 

k2 k3 

c2 c3 

k4 

c4 

m1 m2 m3 

3( )u t
 

1( )x t
 2 ( )x t

 3( )x t
 

Figure 6.12 Three Degree of Freedom System Model 
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 (6.22) 

Then implementing the proper transformation, described in Chapter 4, physical 

displacement velocity model representation for first order state space model can be 

obtained. However, in this example this representation will not be presented here as 

this model does not contribute directly to find system response. 

In order to start realization procedure, first system response must be obtained by 

simulating the system model in Matlab/Simulink. For this purpose, the Simulink 

model shown in Figure 6.14 is constructed and for each input point, chirp signals are 

applied sequentially, This sequential force application is required to determine 

output of the system for each input individually, which constructs the columns of the 

Markov Parameters Matrix. In order to obtain system response again chirp signal 

with frequency range of 0.1 to 10 Hz within 10seconds simulation time is used as 

the input to the system. From Figure 6.15-a to Figure 6.17-a, the sequential input 

applied to each node is shown in each figure. Additionally, in the b, c and d plots, 

the corresponding system outputs measured at each node is displayed. Combining 

outputs and inputs, system Markov parameters can be obtained by using Wavelet 

transform technique described in Chapter 2. In this case neither direct time domain 

techniques nor Fourier transforms will be used to determine system pulse response 

because, the superior performance of Wavelet transforms is verified even for a 

single degree of freedom system case. Here applying Wavelet transform to the input 

signal, with Daubechies 4 mother wavelet, which has 8 coefficients, then solving the 

convolution equation given in Equation (2.29), the Wavelet transform of the pulse 

response can be obtained. Then applying inverse Wavelet transform, the impulse 

response time histories can be obtained for 3 degree of freedom system.   
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Figure 6.14 Three DOF System Model in Simulink 
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Figure 6.15 Three DOF System Output for Input 1 
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Figure 6.16 Three DOF System Output for Input 2 
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Figure 6.17 Three DOF System Output for Input 3 
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of the system which corresponds to the estimated order of the system, that will be 

modelled as a result of the ERA application. 

 

Figure 6.18 Three DOF System Impulse Response Determined via Wavelet Analysis 

Here as the 3 degree of freedom system is expected to be represented by using 6 first 

order equations, the computed order of the system, shown in Figure 6.19 is correct. 
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Figure 6.19 Singular Values of Hankel Matrix in ERA Analysis for 3DOF System 

After the truncation, the ERA procedure is followed and the realized discrete time 

system matrices 0Â , 0B̂ , Ĉ , and D̂  for the generalized discrete state space 

representation are obtained as follows. 
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 (6.24) 

Then the system model realized in the discrete time domain is transformed into 

continuous time domain. The discrete system model found in Equation (6.23) is 

converted to continuous time by using Matlab's built in "d2c" command with zero 

order hold method, which represents the sampling used to collect system outputs. 

Therefore, the resultant continuous time model is obtained as follows. 

 
ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

x t Ax t Bu t

y t C x t Du t

 

 
 (6.25) 

where 
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 (6.26) 

Here in order to assess how good ERA approximates the system impulse response 

function, the two measures which are the MAC and MSV are computed. As 

previously mentioned, MAC gives the correspondence between the identified pulse 

response history and the pulse response used in the identification and when there is 

no noise included in the data, which is the case in this example, MAC is computed 

as 0.83, 0.83 ; 0.34 ,0.34; and 0.35, 0.35 out of 1 for each identified eigenvectors. 

Here the MAC values appear in pairs, this is expected because the eigenvectors 

corresponding to each mode appear as complex conjugate pairs and each pair has the 

same MAC value. Here for the first mode, the eigenvector correspondence appears 

good, however, for the second and third eigenvector pairs their correspondence 

appear a little lower and it can be further improved by increasing the number of 

Markov parameters used in the Hankel Matrix construction. Whereas MSV gives the 

contribution of each mode to the identified impulse response function. In this case, 

MSV value of the first eigenvector pair is computed as 0.0163 for the both 

eigenvectors out of 0.025. For the second and third eigenvector pairs, the MSV 
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values are computed as 0.57 and 0.77 out of 1. Which yields fairly good 

approximation is obtained through the analysis. Additionally, in order to visualize 

the performance of ERA, impulse response function of the 3DOF system and 

impulse response function of the analytical discrete model expressed in Equation 

(6.23) are shown in Figure 6.20. In Figure 6.20, the dashed red line represented the 

impulse response of the system, computed from wavelet analysis and blue solid line 

represents the analytical impulse response function of the discrete state space model 

realized via ERA analysis. Therefore, as indicated by MAC and MSV, good 

realization is obtained through the ERA analysis. In addition to that, the realization 

error between the analytical and realized impulse response functions are computed 

to be low as given in Figure 6.21. 

 

Figure 6.20 Comparison of 3DOF System IR and Discrete System IR obtained by 
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Figure 6.21 Realization Error for 3DOF Discrete System IR obtained by ERA 

At this point in order to obtain natural frequencies and system's physical parameters, 

the continues model must be converted to damped continuous modal displacement-

equivalent form as stated in Equation (5.3), which is given below for the 

acceleration output case as  
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(6.28) 

Then the damped natural frequencies are obtained from the imaginary parts of the 

continuous eigenvalues, which are obtained above, as 1 4.681 /nw rad s , 

2 1.377 /nw rad s , and the third one is 3 2.420 /nw rad s . As expected, the 

computed eigenvalues appear as complex conjugate pairs on the main diagonal of 

the given eigenvalues matrix. Therefore, finally, the physical system parameters, 

which are the mass, stiffness and damping matrices, are obtained through a 

transformation procedure from first order state space models into second order 

models, as explained in Chapter 5. Here CBSI procedure is applied to the damped 

modal continuous form given above to extract physical system properties. However 

in this example as there are three inputs, three corresponding scaling functions are 

obtained. As the system model is ideal, which is a linear and time invariant one, the 

computed scaling functions appear to be identical and using any of them, the 

extracted mass, stiffness and damping matrices are computed as follows. 
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 (6.29) 

When the estimated physical system parameters given in Equation (6.29) are 

compare with the initial selected system parameters given in Equation (6.22), perfect 

match with less than 1% error is obtained in terms of physical system parameters 

and good realization is obtained as visually and analytically verified. 

Secondly, the ERA/DC is applied to the 3DOF system model. As stated previously, 

ERA/DC also uses system impulse response as the starting point, then Hankel 

matrices are constructed accordingly. In this three degree of freedom system case, as 

the number of input and output is large, constructing square Hankel matrix with 

large number of Markov parameters, increases computation time, for this reason as 

the Correlated Hankel matrices are constructed using ( ) ( ) (0)T

hhR k H k H , a non 

square Hankel matrix may decrease the size of the Correlated Hankel Matrices. For 

this specific reason, Hankel matrices are constructed using 5x3000 Markov 

parameters, each Hankel matrix is obtained in the dimension of 15x9000 and 

Correlation Matrices ( )hhR k  are obtained in the dimension of 15x15, and by doing 

so, computation time dramatically decreased rather than working with a square 

Hankel matrix. Here it can be noted that, as correlation variable are introduce, 

obtaining smaller sized matrices still preserves the whole system response 

information. After 100 small sized Correlation Matrices are computed, Correlated 

Hankel Matrices are constructed. After the Correlated Hankel Matrices are obtained, 

singular value decomposition of the first Correlated Hankel matrix is obtained to 
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determine its effective rank, which corresponds to the estimated system order. In this 

case again, the estimated order of the system, which is obtained from the rank of the 

Correlated Hankel Matrix, is computed as 6, which is the number of nonzero 

singular values shown in Figure 6.22. 

 

Figure 6.22 Singular Values of the Correlated Hankel Matrix in ERA/DC Analysis 

for 3DOF System 

Then the left and right unitary matrices of the initial Correlated Hankel matrix are 
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(6.30) 

Then the system model realized in the discrete time domain is transformed into 

continuous time domain. The discrete system model found in Equation (6.23) is 

converted to continuous time by using Matlab's built in "d2c" command with zero 

order hold method, which represents the sampling used to collect system outputs. 

Therefore, the system matrices of the resultant continuous time model, expressed in 

Equation (6.25), are obtained as follows. 
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 (6.31) 

Again, it should be noted that Ĉ and D̂  are the same for discrete and continuous 

models as they provide mapping between outputs, states and inputs, independent of 

the time.  

In this case, in order to assess how good ERA/DC approximates the system impulse 

response function, the two measures, the MAC and MSV are computed. In this case 

MAC is computed as 0.94, 0.94 ; 0.86 ,0.86; and 0.52, 0.52 out of 1 for each 

identified eigenvectors. Here the MAC values appear as pairs, this is expected 

because the eigenvectors corresponding to each mode appear as complex conjugate 

pairs. Moreover, the MAC values for each complex conjugate pair is equivalent to 

each other. Here for the first two modes, the eigenvector correspondence appears 

good, however, for the third eigenvector pair their contribution appear a little lower 

and it can be further improved by increasing the number of Markov parameters used 

in the Hankel Matrix construction. Whereas MSV gives the contribution of each 

mode to the identified impulse response function. In this case eigenvector pair MSV 
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is computed as 0.024 for the both eigenvectors out of 0.025. For the second and third 

eigenvector pairs, the MSV values are computed as 0.72 and 1 out of 1. Which 

yields that good approximation is obtained through the analysis. Additionally, in 

order to visualize the performance of ERA/DC, impulse response function of the 

3DOF system and the discrete model with parameters expressed in Equation (6.30) 

are shown in Figure 6.23. In Figure 6.23, the dashed red line represented the impulse 

response of the system computed from Wavelet analysis and blue solid line 

represents the analytical impulse response function of the discrete state space model 

realized via ERA analysis. Therefore, as indicated by MAC and MSV, good 

realization is obtained through the ERA analysis. In addition to that, the realization 

error between the analytical and realized impulse response functions are computed 

to be low as given in Figure 6.24. 

 

Figure 6.23 Comparison of 3DOF System IR and Discrete System IR obtained by 
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Figure 6.24 Realization Error for 3DOF Discrete System IR obtained by ERA/DC 

Again, at this point in order to obtain natural frequencies and system's physical 

parameters, the continues model must be converted to damped continuous modal 

displacement-equivalent form as stated in Equation (5.3), which is given below for 

the acceleration output case  
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Then the damped natural frequencies are obtained from the imaginary parts of the 

continuous eigenvalues obtained above as 1 4.681 /nw rad s , 2 1.377 /nw rad s  

and the third one is 3 2.420 /nw rad s  which are exactly the same eigenvalues 

obtained in the ERA analysis. This is because, the natural frequencies are specific to 

the system and both algorithms realize the system with good approximation. As 

expected, the computed eigenvalues appear in complex conjugate pairs on the main 

diagonal of the given eigenvalue matrix. Finally, the physical system parameters, 

which are the mass, stiffness and damping matrices are obtained through a 

transformation procedure from the first order state space models into second order 

models, as explained in Chapter 5. Here CBSI procedure is applied to the damped 

modal continuous form given above, to extract physical system properties, but here 

as there are three inputs, three scaling functions are obtained. As the system model is 

ideal, linear and time invariant one, the computed scaling functions appear to be 

identical and using any of them, the extracted system parameters are computed as 

follows. 
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 (6.34) 

When the estimated physical system parameters given in Equation (6.34) are 

compare with the initial selected system parameters given in Equation (6.22), perfect 

match is obtained in terms of physical system parameters and good realization is 

obtained as visually and analytically verified.  

Finally, in order to observe performance of the whole identification process with a 

single input, the 3 DOF system model is investigated again. In this case only the 

input 1 is used to excite system and all the three system responses are utilized in the 

identification process. For this reason, the measurement data shown in Figure 6.15 is 

used. In a similar wavelet transform derivation, the impulse response of the system 

is the first column of Figure 6.18 indeed. Therefore, as the Markov parameters are 

predetermined, the Hankel matrix is constructed by using 1000 1000  square 

Markov Parameters becomes in the dimension of 3000 3000 . After the Hankel 

matrix is constructed, the SVD is applied, and the singular values of the Hankel 

matrix are plotted against their values are shown in Figure 6.25. In this figure the 

nonzero singular values determines the rank of the system which corresponds to the 

estimated order of the system, that will be realized as a result of the ERA 

application.    

Here as the 3 degree of freedom system is expected to be represented by using 6 first 

order equations, the computed order of the system, shown in Figure 6.25 is correct.  
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Figure 6.25 Singular Values of the Hankel Matrix in ERA Analysis with Single 

Input for 3DOF System 

Then the left and right unitary matrices of the initial Hankel matrix are truncated 

according to the computed system order as the singular values beyond the calculated 

order of the system do not contribute to the solution. 

After the truncation, the ERA procedure is followed and the realized discrete time 

system matrices 0Â , 0B̂ , Ĉ , and D̂  for the generalized discrete state space 

representation are obtained as follows. 
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 (6.35) 

where 
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 (6.36) 

Then the system model realized in the discrete time domain is transformed into 

continuous time domain. The discrete system model found in Equation (6.23) is 

converted to continuous time by using Matlab's built in "d2c" command with zero 

order hold method, which represents the sampling used to collect system outputs. 

Therefore, the resultant continuous time model is obtained as follows. 

 
ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

x t Ax t Bu t

y t C x t Du t

 

 
 (6.37) 

where 
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 (6.38) 

Here in order to assess how good ERA approximates the system impulse response 

function, the two measures which are the MAC and MSV are computed. As 

previously mentioned, MAC gives the correspondence between the identified pulse 

response history and the pulse response used in the identification and when there is 

no noise included in the data, which is the case in this example, MAC is computed 

as 0.87, 0.87 ; 0.66 ,0.66; and 0.30, 0.30 out of 1 for each identified eigenvectors. 

Here the MAC values appear in pairs, this is expected because the eigenvectors 

corresponding to each mode appear as complex conjugate pairs and each pair has the 

same MAC value. Here for the first mode, the eigenvector correspondence appears 

good, however, for the second and third eigenvector pairs their correspondence 

appear a little lower and it can be further improved by increasing the number of 

Markov parameters used in the Hankel Matrix construction. Whereas MSV gives the 

contribution of each mode to the identified impulse response function. In this case, 

MSV value of the first eigenvector pair is computed as 0.023 for the both 

eigenvectors out of 0.025. For the second and third eigenvector pairs, the MSV 

values are computed as 0.75 and 0.95 out of 1. Which yields fairly good 

approximation is obtained through the analysis. Additionally, in order to visualize 
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the performance of ERA, for a single input case, impulse response function of the 

3DOF system and impulse response function of the analytical discrete model 

expressed in Equation (6.35) are shown in Figure 6.26. In Figure 6.26, the dashed 

red line represented the impulse response of the system, computed from wavelet 

analysis and blue solid line represents the analytical impulse response function of 

the discrete state space model realized via ERA analysis. Therefore, as indicated by 

MAC and MSV, good realization is obtained through the ERA analysis. In addition 

to that, the realization error between the analytical and realized impulse response 

functions are computed to be low as given in Figure 6.27. 

 

Figure 6.26 Comparison of Single Input 3DOF System IR and Discrete System IR 

obtained by ERA 

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

0

2

y
1
1

[m
/s

2
]

3DOF System Single Input Impulse Response

 

 

ERA

IR

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

y
2
1

[m
/s

2
]

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.2

0

0.2

y
3
1

[m
/s

2
]

Time[s]



134 

 

 

Figure 6.27 Realization Error for 3DOF Discrete System Single Input IR obtained 

by ERA 

At this point in order to obtain natural frequencies and system's physical parameters, 

the continues model must be converted to damped continuous modal displacement-

equivalent form as stated in Equation (5.3), which is given below for the 

acceleration output case as  
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(6.40) 

Then the damped natural frequencies are obtained, as 
1 1.377 /nw rad s , 

2 2.420 /nw rad s , and the third one is 3 4.681 /nw rad s . Therefore, finally, the 

physical system parameters, which are the mass, stiffness and damping matrices, are 

obtained through CBSI procedure is applied to the damped modal continuous form 

given above to extract physical system properties. However in this example as there 

is a single input, corresponding scaling function is obtained, so that the physical 

system parameters are obtained as following. 
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 (6.41) 

When the estimated physical system parameters are compare with the initial selected 

system parameters, perfect match with less than 1% error is obtained. Therefore, 

effectiveness of the selected identification methodologies are verified for a single 

input case as well. 
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6.3 IDENTIFICATION IMPLEMENTATION TO TEST SYSTEM 

In order to investigate performance of the identification procedure described in the 

preceding sections, a test setup which represents a simplified version of the 

stabilized platforms, shown in Figure 6.28 is constructed. 

 

 

In this setup, an Apex AD064 planetary type zero backlash ( < 1arcmin ) gearbox 

with gear ratio 1:10 is connected to the end of the MOOG D323 servo motor and 

three discs with known inertia values are connected to the output of the gearbox. 

a) Front View 

b) Rear View 

Gyroscope 

 Servo 

 Motor 

Planetary 

Gearbox 

Figure 6.28 Front(a) and Rear(b) View of The Test Setup 

  Discs 
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Then the whole assembly is connected to the stationary black frame. In this setup, 

instead of working with a single spring between the motor and the discs, a real life 

problem is incorporated with using the gearbox, because the gearbox has its own 

stiffness and damping characteristics.  

In this test setup, the MOOG D323 type servo motor is driven by using servo driver 

HERKUL-1D developed by ASELSAN. The torque control loop is running inside 

the HERKUL-1D driver so that the desired torque is developed at the motor with 

nearly 1 kHz torque loop bandwidth. In addition to that, servo motor used in the 

tests has a resolver sensor connected to its shaft, so that angular position and 

velocity of the shaft can be measured. In addition to that, STIM 202 type gyroscope 

is also connected onto disc, to measure angular velocity and it is connected to servo 

driver, for data collection. In this setup, the measurement signals are sampled at a 

frequency of 1kHz. Data Sheets of the used components are given in the Appendix .  

The simplified representation of the test configuration can be shown in Figure 6.29.  

 

It should be noted that, this simplified representation is just to illustrate the test 

system and variables mJ  and lJ  are representing moment of inertia values of the 

Tm 

m 

Servo Motor  Discs Gearbox  

l 

Jm Jl 

Figure 6.29 Equivalent Test System Representation 
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motor shaft and the discs respectively. The servo motor produces the desired torque 

on its shaft which is shown as mT  in Figure 6.29. In this setup, motor torque is not 

directly measured, however, from current feedbacks, effective torque developed by 

the motor is deduced by the servo driver and this torque value is utilized in the 

analysis. In addition to that, angular velocity of motor shaft, which is measured by 

using the resolver sensor is denoted by 
mw  and the load side angular speed, which is 

measured by gyroscope is denoted by 
lw . At the beginning of the tests, only inertia 

values of the motor shaft and discs are known as 
20.004mJ kgm  and 

20.18lJ kgm  respectively, and in this setup due to the gear ratio, inertia value and 

measured response of the motor side are transformed to the load side with proper 

scaling. In addition to the motor and load inertia, the gearbox itself has a inertia 

value of 20.0013gearboxJ kgm , however as its exact contribution on which side is 

not known at the beginning, it is neglected. During testing, a frequency sweeping 

torque signal is commanded to the motor and the sweep signal with the frequency 

range starting from 20Hz and going up to 350Hz with 0.5Hz discrete frequency 

steps is generated inside the digital signal processor chip of the HERKUL-1D driver. 

During sweeping, for ensembling purposes, the sinusoidal signal at each frequency 

is repeated 16 times. Although test is repeated several times, only one of the 

measurement set is used in the analysis. During testing, the sweep signal shown in 

Figure 6.30 is applied to the system. In this figure, the sinusoidal torque signals are 

shown as a solid rectangle, however, zooming in to a specific time internal 

represents the true sinusoidal signal form as shown in Figure 6.31. In addition to 

that, in Figure 6.30, it is observed that actual torque has a disturbed section, which is 

because of coupling between the load and servo motor and it is detailed investigation 

can be find in [32]. In addition to the input applied to the system, the output 

measurements of motor and load side angular velocities are shown in Figure 6.32. 

Again in order to better visualize sinusoidal output velocities, a specific time interval 

is expanded in Figure 6.33.   
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Figure 6.30 Torque Input Applied to Test System 

 

Figure 6.31 Detailed View of Torque Input Applied to Test System 
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Figure 6.32 Measured Response of Test System 

 

Figure 6.33 Detailed View of Measured Response of Test System 

0 20 40 60 80 100
-200

0

200
R

e
s
o

lv
e

r 
S

p
e

e
d

[0
/s

] Measured Response of Test System

0 20 40 60 80 100

-20

0

20

G
yr

o
 S

p
e

e
d

[0
/s

]

0 20 40 60 80 100
0

200

400

Time [s]

F
re

q
u

e
n

c
y 

[H
z]

31.65 31.7 31.75 31.8 31.85 31.9 31.95 32 32.05

-10

0

10

R
e
s
o

lv
e

r 
S

p
e

e
d

[0
/s

] Measured Response of Test System

31.65 31.7 31.75 31.8 31.85 31.9 31.95 32 32.05

-20

0

20

G
yr

o
 S

p
e

e
d

[0
/s

]

31.65 31.7 31.75 31.8 31.85 31.9 31.95 32 32.05

46.8

47

47.2

47.4

47.6

Time [s]

F
re

q
u

e
n

c
y 

[H
z]



141 

 

In order to start with the ERA, as stated in the previous examples, impulse response 

data must be obtained. In this case, Fourier transform method is utilized first to 

obtain system impulse response, in order to visualize performance of the Fourier 

transform method on real test data. In this case total number of 92108 data samples 

are recorded for each response measurement. As Fourier transform methods works 

with the data samples of powers of 2, the closest number of data sample is 2
17

= 

131072, therefore zeros are padded to the end of the measured data. After Fourier 

transform of the input and outputs are obtained, auto and cross correlated variables 

are obtained. After dividing cross correlated output to auto correlated input in the 

frequency domain and back transforming the frequency response function into time 

domain, the impulse response functions of the test system are obtained as shown in 

Figure 6.34.  

 

Figure 6.34 Impulse Response Functions of the Test Setup via Fourier Transform 
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In the Figure 6.34, it is observed that the noise becomes dominant in the impulse 

response data such that, Fourier transform could not convey the true Markov 

parameters of the test system. 

As a second analysis tool to extract impulse response data, Wavelet transform will 

be utilized on the test data. Although there are 92108 number of measurement 

samples are recorded, in this case 2
15 

=32768 samples are used in the Wavelet 

analysis. Again Daubechies 4 wavelet is selected as the mother wavelet, which has 8 

coefficient. In addition to that, full depth wavelet analysis with 15 levels are 

implemented to obtain Markov parameter of the test setup. After implementation of 

wavelet transform to the input and then solving convolution integral and applying 

inverse discrete Wavelet transform to the computed impulse response function, the 

obtained Markov parameters are plotted in Figure 6.35. 

 

Figure 6.35 Impulse Response Functions of the Test Setup via Wavelet Transform 
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In Figure 6.35, although there exist a noise coupled on the extracted impulse 

response, the response of the system characteristics are captured mostly by the 

Wavelet transform method, although the computation time took long as the number 

of data samples are high. Therefore, in the realization application, the Markov 

parameters obtained as a result of the wavelet analysis will be used. 

After impulse response functions are determined, then Eigensystem Realization 

algorithm can be implemented starting by forming Hankel matrices. In this case as 

there is a single input and two corresponding outputs, the Markov parameters at each 

time instant are in the size of 2x1, which is a column matrix. Therefore, in this case 

the Hankel matrices are constructed by using 500x500 square Markov parameters, 

which results in the dimension of 1000x500. After the Hankel matrix is constructed 

the singular values decomposition is applied, and the singular values of the Hankel 

matrix are plotted against their values are shown in Figure 6.36.  

 

Figure 6.36 Singular Values of Hankel Matrix in ERA Analysis for Test System 
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In this figure, the nonzero singular values determines the rank of the system, which 

corresponds to the estimated order of the system as well. However, from Figure 

6.36, it can be observed that none of the drawn singular values are not zero indeed, 

which resulted from the measurement noise involved in the impulse response 

functions. However, it can be observed that, after the 4
th
 singular value, the values 

drop significantly so that effective order of the system can be selected as 4 and the 

remaining singular values can be truncated as they appear due to measurement noise. 

Then the left and right unitary matrices of the initial Hankel matrix are truncated 

according to the estimated system order, as the singular values beyond the selected 

order are considered to be involved due to measurement noise. 

After truncation, the ERA procedure is followed, and the realized discrete time 

system matrices 0Â , 0B̂ , Ĉ , and D̂  for the generalized discrete state space 

representation are obtained as follows. 

 
0 0

ˆ ˆ( 1) ( ) ( )

ˆ ˆ( ) ( ) ( )

x k A x k B u k

y k C x k Du k

  
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 (6.42) 

where 
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 (6.43) 
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Here it should be noted that the direct input-output influence matrix D̂  is a null 

matrix as the utilized feedback on the test system are velocity measurements. 

Then the system model realized in the discrete time domain is transformed into 

continuous time domain. The discrete system model computed in Equation (6.42) is 

converted to continuous time by using Matlab's built in "d2c" command with zero 

order hold method, which represents the sampling used to collect system outputs. 

Therefore, the resultant continuous time model is obtained as following. 

 
ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

x t Ax t Bu t

y t C x t Du t
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 
 (6.44) 

where 
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 (6.45) 

After discrete and continuous system realizations are obtained, in order to assess 

how good ERA approximated the system impulse response function, the two 

measures, the MAC and MSV are computed. In this case MAC is computed as 1, 1 ; 

and 0.67 ,0.67 out of 1 for each identified eigenvectors. Here the MAC values 

appear as pairs, which is expected because the eigenvectors corresponding to each 

mode appear as complex conjugate pairs and, for each pair the MAC value is 
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equivalent. Here for the first and second mode, the eigenvector correspondence 

appears good. Whereas MSV gives the contribution of each mode to the identified 

impulse response function. In this case MSV is computed as 0.84 for the both 

eigenvectors out of 0.84 and for the second eigenvector pair, the MSV is computed 

as 1.1 out of 1.8, which yields that, very good approximation is obtained through the 

ERA analysis. Additionally, in order to visualize the performance of ERA, impulse 

response function of the test system and the impulse response function of the 

discrete model expressed in Equation (6.42) are shown in Figure 6.37. In Figure 

6.37, the blue solid line represents the impulse response of the system computed 

from Wavelet analysis and dashed red line represents the analytical impulse 

response function of the discrete state space model realized via ERA analysis. 

Therefore, as indicated by MAC and MSV and verified in Figure 6.37 and Figure 

6.38, very good realization is obtained through the ERA analysis. 

 

Figure 6.37 Comparison of Test System IR and Discrete System IR Realized by 

ERA 
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Figure 6.38 Realization Error of The Discrete System IR obtained by ERA 
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(6.47) 

Therefore, the damped natural frequencies are obtained from the imaginary parts of 

the continuous eigenvalues obtained as 1 1303 /nw rad s  and the second one is

2 1.680 /nw rad s . Here it should be noted that the second damped natural 

frequency does not correspond to any resonant mode of the system as the natural 

frequency value is too low and mode shapes for the second eigenvalue, shown in zC  

are equivalent, which means rigid body movement rather than deflection. Moreover, 

in the test setup, as neither motor shaft, nor discs are connected to ground, actually 

the second eigenvalue corresponds to the rigid body mode of the test system.  

Finally, the physical system parameters, which are the mass, stiffness and damping 

matrices are obtained through a transformation procedure as explained in the 

preceding sections. Here CBSI procedure is applied to the damped modal continuous 

form given above to extract physical system properties. For this purpose, as there is 

a single input applied to system, single scaling matrix is obtained through the 

analysis. As a result of the CBSI implementation, the extracted mass, stiffness and 

damping matrices are computed as follows. 

      
1

0
J D K u  

 
    

 
 (6.48) 
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 (6.49) 

When the identified inertia matrix is investigated, it is observed that, there exists off 

diagonal inertia elements, which are not expected in any mechanical system. 

However, as their values are small, off diagonal inertia elements can be ignored as 

they may appear due to computational errors coupled through the noise and 

distortions on the measured input and output data. However, comparing the diagonal 

elements with the known inertia values of the motor and discs, there appears 42% 

error in the computation of motor inertia, and 2% error in the computation of the 

load inertia. In the motor inertia calculation, the error percentage may be seem too 

large; however, the actual amount of error is small, but as the inertia values is small 

too, the percent error becomes large. In this case indeed, the inertia of the gearbox, 

which was neglected at the beginning of the analysis, may be coupled to the motor 

inertia which explains the high percentage error and in this case the error gets down 

to 7%. Actually, when the internal structure of a planetary gearbox is considered 

contribution of gearbox inertia to motor side is reasonable, because the stiffness is in 

between the planet and sun gears, therefore, the input side always drives the input 

shaft and all the planet gears. In the stiffness matrix also a numerical error less than 

0.04% is observed between diagonal and off-diagonal elements, which can be 

neglected by selecting the diagonal element is the equivalent stiffness value. In 

addition to that, damping matrix in this system is found to be proportional which is 

better to represent.  

After finding mechanical system properties, the physical test system representation 

given in Figure 6.29, can be extended as shown in Figure 6.39.  
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Here, the abbreviated symbols used in Figure 6.39 and their identified meanings are 

represented in Table 6.1. 

Table 6.1 Equivalent Test Setup Parameters Realized via ERA 

Variable Name Symbol Value 

Motor Inertia mJ  0.005673 kg.m
2 

Load Inertia lJ  0.1838 kg.m
2 

Equivalent Gearbox Stiffness sk  9365Nm/rad 

Equivalent Gearbox Damping sd  0.8268 Nm.s/rad 

Motor Side Damping md  0.4352 Nm.s/rad 

Load Side Damping ld  0.4782 Nm.s/rad 

 

Jm 

Tm 

m ds 

 

Jl 

Servo Motor  Discs Gearbox  

 dl 

ks 

l 

 dm 

Figure 6.39 Realized Test System Representation 
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After the identification procedure with ERA is completed, the second realization 

algorithm which is the Eigensystem Realization Algorithm with Data Correlation 

can be conducted to observe realization performance of the ERA/DC. In this case 

again, the impulse response function obtained via Wavelet analysis is used to form 

the Hankel Matrices. In this case the Hankel Matrices are again constructed using 

500x500 Markov parameters, which results in 1000x500 dimension. Then the 

correlation matrices are obtained in the dimension of 1000x1000. After 100 

Correlation Matrices are computed, Correlation Hankel Matrices are constructed. 

After the Correlated Hankel Matrices are obtained singular value decomposition is 

applied such that the singular values of the Correlated Hankel matrix are plotted 

against their values are shown in Figure 6.40. 

 

Figure 6.40 Singular Values of Correlated Hankel Matrix in ERA/DC Analysis for 

Test System 
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In Figure 6.40, although singular values above the 4
th
 value,

 
are not exactly 0, it can 

be observed that their values much lower than the ones obtained in the ERA 

analysis, which is expected as ERA/DC procedure tries to eliminate noise coupling 

by introducing correlation variables. Therefore again in this case, the effective order 

of the system is selected as 4. Then the left and right unitary matrices of the initial 

Correlated Hankel matrix are truncated according to the estimated system order. 

After truncation, the ERA/DC procedure is followed and the realized discrete time 

system matrices 0Â , 0B̂ , Ĉ , and D̂  for the generalized discrete time state space 

representation are computed as follows. 
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 (6.51) 

Here again, it should be noted that D̂  is a null matrix as the utilized feedbacks on 

the test system are velocity measurements. 
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Then the system model realized in the discrete time domain is transformed into 

continuous time domain. The discrete system model found in Equation (6.50) is 

converted to continuous time by using Matlab's built in "d2c" command with zero 

order hold method. Therefore, the resultant continuous time model is obtained as 

follows. 
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 (6.53) 

After discrete and continuous system realizations are obtained, in order to assess 

how good ERA/DC approximated the system impulse response function, the two 

performance measures which are modal amplitude coherence(MAC) and mode 

singular value(MSV) are computed. In this case MAC is computed as 1, 1 ; and 0.72 

,0.72 out of 1 for each identified eigenvectors. Here the MAC values appear as pairs, 

which is expected because the eigenvectors corresponding to each mode appear as 

complex conjugate pairs and for each pair the MAC value is equivalent. Here for the 

first and second mode, the correspondence between the identified modal time history 

and pulse response history exhibits perfect match and for the second mode, the 
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MAC value is computed slightly better than the ERA case. Whereas MSV gives the 

contribution of each mode to the identified impulse response function. In this case 

MSV is computed as 1.1, out of 1.8 for the first eigenvector pair and for the second 

eigenvector pair, the MSV is computed as 0.8 out of 0.8, which yields that very 

good approximation is obtained through the ERA/DC analysis. Additionally, in 

order to visualize the performance of ERA/DC, impulse response function of the test 

system, and the realized discrete model expressed in Equation(6.50), are shown in 

Figure 6.41. In Figure 6.41, the blue solid line represents the impulse response of the 

test system computed from Wavelet analysis and dashed red line represents the 

analytical impulse response function of the discrete state space model realized via 

ERA/DC analysis. Therefore, as indicated by MAC and MSV and verified in Figure 

6.41 and Figure 6.42, very good realization is obtained through the ERA/DC 

analysis.  

 

Figure 6.41 Comparison of Test System IR and Discrete System IR Realized by 

ERA/DC 
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Figure 6.42 Error of The Discrete System IR obtained by ERA 

At this point in order to obtain, natural frequencies and system's physical 

parameters, the continues model must be converted to damped continuous modal 

displacement equivalent form, which is given below for the velocity output case as 
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Therefore, the damped natural frequencies are obtained from the imaginary parts of 

the continuous eigenvalues as 1 1.670 /nw rad s  and the second one is 

2 1303 /nw rad s . Here it should be noted that, in this case the first damped natural 

frequency does not correspond to any resonant mode of the system as the natural 

frequency value is too low and mode shapes for the first eigenvalue pair, shown in 

zC  are equivalent, which means rigid body movement rather than deflection. 

Moreover, in the test setup, as neither motor shaft, nor discs are connected to 

ground, in this case the first eigenvalue corresponds to the rigid body mode of the 

test system.  

Finally, the physical system parameters, which are the mass, stiffness and damping 

matrices are obtained through a transformation procedure as explained in the 

preceding sections. Here CBSI procedure is applied to the damped modal continuous 

form given above to extract physical system properties. For this purpose, as there is 

a single input applied to system, single scaling matrix is obtained through the 

analysis. Therefore, the extracted mass, stiffness and damping matrices are obtained 

as following. 

      
1

0
J D K u  

 
    

 
 (6.56) 
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ˆ

0.8216 0.8667
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D

K





 
  
 

 
   

 
   

 (6.57) 

When the identified inertia matrix is investigated, it is observed that, there exists 

smaller off diagonal inertia elements, which are not expected in any mechanical 

system. However, as their values are small, off diagonal inertia elements can be 
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ignored as they may appear due to computational errors coupled through the 

measurement noise. However, comparing the diagonal elements with the known 

inertia values of the motor and discs, again there exists 43% error in the computation 

of motor inertia, and 2% error in the computation of the load inertia. In the motor 

inertia calculation, the error percentage may seem too large; however, the actual 

amount of error is small, but as the inertia values is small too, the percent error 

becomes large. Moreover, the inertia of the gearbox, which was neglected at the 

beginning of the analysis may be coupled to the motor inertia which explains the 

high percentage error and in this case the error gets down to 7%. Actually, when the 

internal structure of a planetary gearbox is considered contribution of gearbox inertia 

to motor side is reasonable, because the stiffness is in between the planet and sun 

gears, therefore, the input side always drives the input shaft and all the planet gears. 

In the stiffness matrix also, a numerical error less than 0.04% is observed between 

diagonal and off-diagonal elements, which can be neglected by selecting the 

diagonal element is the equivalent stiffness value. In addition to that, damping 

matrix in this system is found to be proportional which is better to represent, 

however as a result of ERA/DC analysis load side damping is computed less than 

the one found in the ERA analysis. In the reality, as the discs are directly connected 

to the output of the gearbox, excluding the equivalent damping of the gearbox, load 

side damping is expected to be low, which is consistent with identified damping 

value.   

After finding mechanical system properties as a result of the ERA/DC analysis, 

parameters of the equivalent system representation given in Figure 6.39 can be 

tabulated in Table 6.2. 
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Table 6.2 Equivalent Test Setup Parameters Realized via ERA/DC 

Variable Name Symbol Value 

Motor Inertia mJ  0.005672 kg.m
2 

Load Inertia lJ  0.1840 kg.m
2 

Equivalent Gearbox Stiffness sk  9378Nm/rad 

Equivalent Gearbox Damping sd  0.8216 Nm.s/rad 

Motor Side Damping md  0.4574 Nm.s/rad 

Load Side Damping ld  0.04510 Nm.s/rad 

 

To sum up, two different simulation models and a test setup are used to verify the 

performance of the realization and physical parameter determination algorithms 

explained in this study. When the results are investigated, it can be concluded that 

suggested algorithms and theories are working well on both simulation and test data. 

In the simulation case, as the system models are completely linear without any 

measurement noise, perfect match is obtained by the suggested realization and 

structural identification algorithms with less than 1% error. When the real test data is 

used, performance of the suggested methodologies are very good again for fairly low 

noise system measurements. It should be noted that, small deviation is observed on 

the physical system parameters computed as a result of ERA/DC when compared 

with the ones computed from ERA analysis, which is expected as ERA/DC provides 

slightly improved results.  
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CHAPTER 7  

 

SUMMARY AND CONCLUSIONS 

In this study, complete minimum order system identification application and 

physical parameter determination is investigated for linear and time-invariant system 

characteristics. The main idea behind obtaining system realization and physical 

system parameters is finding mass and stiffness distribution of the mechanical 

system, finding best possible sensor locations such that effective control action over 

the lumped masses can be determined. These requirements are resulted from both 

design and control of smaller and more agile stabilized mechanical platforms. 

7.1 SUMMARY 

For the specified purpose, system response determination methods are investigated 

in this study. As the realization algorithms applied in this study are both working in 

the time domain, methodologies obtaining time domain system characteristics are 

investigated. In time domain, system characteristics are represented by using 

impulse response functions and in the second chapter, direct time domain, Fourier 

transform method and Wavelet transform method are presented to obtain time 

domain impulse response function, from input and output measurements of the 

investigated system. In this chapter also basics and some properties of Wavelets are 

explained. However, although direct time domain approach is explained in this 

section, it is not actually implemented in this study as it is known to yield unstable 

impulse response function in most of the cases.  
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After impulse response determination algorithms are investigated, in the third 

chapter, second order system equations in matrix form is expressed for mechanical 

systems first. Then using proper transformation application, two specific first order 

state space model representations of the same system are obtained in the twice the 

size of the original second order representation. These two, first order models have 

their own special applications which are utilized both in system realization and 

control implementation. After state space models are obtained and their properties 

are represented, two more state space representations, which are in modal form, are 

expressed in chapter 3. Similarly, these two modal forms are obtained through 

proper transformations and these modal forms are especially used to determine 

modal characteristics of the system of interest, which are natural frequencies, modal 

damping and mode shapes. 

After general models utilized in system identification are presented, in chapter 4, 

two minimum order, deterministic system realization algorithms which are ERA and 

its improved version, ERA/DC are expressed in details. These two realization 

algorithms, takes the discrete impulse response function of the system as their 

primary input and following through a numerically robust and straightforward 

procedure, they realize a minimum order discrete time state space representation on 

an arbitrary basis. In addition to that, transformation of discrete time domain state 

space system matrices, into continuous time domain are presented in this section as 

well. 

Finally, in the fifth chapter, a transformation based procedure, which is called CBSI 

is presented to obtain physical system parameters from the realized first order state 

space models. In this application, full set of sensors are required at each degree of 

freedom of the system and at least one collocated sensor-actuator pair is required to 

obtain proper scaling matrix. This scaling matrix is important in the parameter 

extraction techniques, because realization algorithms computes arbitrary based 

normalized system models and in order to obtain actual system parameter, 
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transformation from arbitrary base into physical coordinated is a must and 

accomplished by the computed scaling matrix. 

After the theory behind the minimum order, nonparametric and deterministic system 

identification is formulated, its performance and effectiveness is investigated first by 

two different simulation models. In the first model, a single degree of freedom 

translational system is investigated. In order to obtain impulse response function of 

the first model, both Fourier transform and Wavelet transform are implemented and 

in the transient response range, Fourier transform is found to yield wrong response 

whereas Wavelet transform technique yields the exact system impulse response 

characteristics. Therefore, the realization applications are performed by utilizing 

impulse response function obtained via Wavelet transform. Then, by constructing 

proper matrices with sufficient dimension, through singular value analysis, exact 

system order is obtain in a straightforward manner for both of the realization 

algorithms. After realized discrete state space models are obtained and transformed 

into continuous modal form, CBSI method is implemented to results of both of the 

realization algorithms. Finally, the results of the CBSI procedure, which are the 

physical system parameters, are found to perfectly match with the real system 

parameters used in simulation. In order to observe performance of the complete 

analysis, a second translational simulation model is constructed by with three 

degrees of freedom. In this case only Wavelet transforms is applied to extract 

impulse response functions. Then following the similar realization algorithms, true 

order of the system could obtained and from realized state space models, applying 

CBSI method, exact system properties are obtained. Within the simulations, no 

distortion or measurement noise was coupled to the input and output data and in this 

ideal case, the whole suggested identification procedure found to perform well. 

On the other hand, in order to investigate performance of the identification 

procedure on real system data, a test setup, which is a simplified version of the 

stabilized machine gun platforms, is constructed. In the test setup, there is a single 

torque input applied by servo motor and two corresponding angular velocity outputs, 
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which are measured by resolver on the motor shaft and gyroscope on the discs. By 

using measured input and output data, first Fourier transform is utilized to obtain, 

impulse response of the test system; however, when the results are investigated noise 

and distortions on the pulse response identified by Fourier transform was found 

dominant, which resulted in wrong system impulse response characteristics. Then 

Wavelet transform is applied to the measure input and output signal to find impulse 

response characteristics. Moreover, the results of Wavelet transform technique are 

found good enough to represent actual impulse response characteristic of the test 

system. Although measurement noise is coupled to Wavelet generated impulse 

response histories, their magnitude is small compared with the responses obtained as 

a result of Fourier analysis. Then both Eigensystem Realization Algorithm and Then 

both Eigensystem Realization Algorithm with Data Correlations are applied to the 

impulse response function of the test system computed via Wavelet transforms, good 

realizations are obtained as numerically and visually inspected. During realizations, 

system order determination resulted slightly different from the simulation cases. As 

there exists measurement noise coupled to computed impulse response functions, 

from the results of the singular value decomposition, the system order is not directly 

obtained as the true value due to measurement noise, smaller valued singular values 

appear after correct number of nonsingular values. However, as there occurs big 

difference between the correct nonsingular values and the ones resulted due to noise, 

singular values are truncated after selected number of nonsingular values. After 

realizations are obtained, CBSI methodology is implemented to the realized models, 

and physical system parameters are obtained. In order to visualize system model, 

using identified mechanical system parameter, an equivalent system model is 

visualized and their identified parameters are represented for both realization 

algorithms. Although small discrepancy observed in the identified motor inertia 

value, it can be explained by taking the inertia of the gearbox into consideration. To 

sum up, when the results of the realization algorithms and physical parameter 

extraction method are investigated, it can be deduced that very good identification 
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performance is obtained through the suggested identification procedure. Finally, the 

whole identification process is visualized in the flowchart given in Figure 7.1. 

 

Figure 7.1 Identification Process Flowchart 

7.2 CONCLUSION 

When the overall identification process is considered, impulse response calculation 

is the key component to yield true system characteristics, however, Fourier analysis 
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and Direct time domain approach failed in this manner. On the other hand, the 

results of Wavelet transform technique are found good enough to represent impulse 

response characteristics of physical systems. 

The selected realization algorithms, ERA and ERA/DC are computationally 

straightforward and superior in terms of determining true system order, as verified in 

both simulation and test systems. However noise is the primary distortion in a linear 

system identification application and ERA/DC is better at dealing with noise on the 

measurement data. 

The selected physical system parameter determination method, CBSI performs true 

transformation from realized system models into physical system properties, 

however as it requires full set of sensors, in an actual large scale system, number of 

sensors must be high. 

To sum up, whole identification procedure described in this study is evaluated as 

performing good enough to be used in real system development and verification 

application. 

7.3 FUTURE WORK 

In the future, the suggested identification methodology shall be applied to one of the 

actual stabilized platforms with incorporating enough number of measurement 

sensors. In addition to that, as high levels of measurement noise is one of the 

primary problem against linear system identification, by incorporating stochastic 

methods, characteristic of noise can be determined and noise suppression can be 

achieved by incorporating a proper Kalman Filter. Another improvement can be 

achieved by utilizing an observer to extract impulse response characteristics of the 

system rather than using Fourier or Wavelet analysis techniques. In real life as most 

of the mechanical systems exhibit nonlinear characteristic, incorporating 

nonlinearities into state space modeling and realizations is one of the major research 

topic that shall be studied in the future.  
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APPENDIX A 

 

DATA SHEETS OF TEST SETUP COMPONENTS 

SERVO DRIVER HERKUL-1D 

 

Figure A- 3 Data Sheet Of Servo Driver Herkul-1D 
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MOOG D323 SERVO MOTOR 

Figure A- 4 Data Sheet Of Moog D323 Servo Motor 
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APEX AD064 GEARBOX 

 

Figure A- 5 Data Sheet Of Apex AD064 Gearbox 
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STIM 202 GYROSCOPE 

 

Figure A- 6 Data Sheet Of Stim 202 Gyroscope 


