
RECO, A HYBRID VIDEO RECOMMENDATION SYSTEM USING USER
BEHAVIOURS AND FEATURES OF VIDEOS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

�ÜKRÜ BEZEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2014

Approval of the thesis:

RECO, A HYBRID VIDEO RECOMMENDATION SYSTEM USING
USER BEHAVIOURS AND FEATURES OF VIDEOS

submitted by �ÜKRÜ BEZEN in partial ful�llment of the requirements for
the degree ofMaster of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yaz�c�
Head of Department, Computer Engineering

Prof. Dr. �smail Hakk� Toroslu
Supervisor, Computer Engineering Department,
METU

Assoc. Prof. Dr. P�nar Karagöz
Co-supervisor, Computer Engineering Department,
METU

Examining Committee Members:

Assoc. Prof. Dr. Ahmet Co³ar
Computer Engineering Department, METU

Prof. Dr. �smail Hakk� Toroslu
Computer Engineering Department, METU

Assoc. Prof. Dr. P�nar Karagöz
Computer Engineering Department, METU

Dr. Onur Tolga �ehito§lu
Computer Engineering Department, METU

Dr. Güven Fidan
CEO, ArGeDor Information Technologies

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: �ÜKRÜ BEZEN

Signature :

iv

ABSTRACT

RECO, A HYBRID VIDEO RECOMMENDATION SYSTEM USING USER
BEHAVIOURS AND FEATURES OF VIDEOS

BEZEN, �ükrü

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. �smail Hakk� Toroslu

Co-Supervisor : Assoc. Prof. Dr. P�nar Karagöz

September 2014, 69 pages

If you are talking about video content on the internet, you have to think in big

scales. That is why we need a system that handles the constant streaming of

user behaviour on video content without delaying its recommendation system at

the background. We approach to this problem by combining collaborative and

content based recommendation algorithms on a framework which is completely

scalable.

In the thesis, we explain how we combine behaviours of users and features of

videos. In what ways a change on user behaviours e�ects the recommendation

and how is meta data mapped to user behaviours for creating the recommenda-

tion.

Keywords: Recommendation Systems, Weighted Hybrid Recommendation Sys-

v

tems, Video Recommendation Systems, Data Mining

vi

ÖZ

RECO, KULLANICI DAVRANI�LARINI VE V�DEOLARIN
ÖZELL�KLER�N� KULLANAN B�R H�BR�T V�DEO TAVS�YE S�STEM�

BEZEN, �ükrü

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. �smail Hakk� Toroslu

Ortak Tez Yöneticisi : Doç. Dr. P�nar Karagöz

Eylül 2014 , 69 sayfa

�nternet üzerindeki video içeri§inden bahsetti§imizde büyük ölçeklerde dü³ün-

memiz gerekmektedir. Bu sebeple video tavsiye sistemlerinin gerçek zamanl� ol-

mas� ve sürekli artan video içeri§i kar³�s�nda performans kayb� ya³amadan cevap

verebilmesi gerekmektedir. Bu sorun kar³�s�nda hem video içeriklerini kullanan

hem de benzer kullan�c�lar aras�ndaki ili³kiler üzerinden ilerleyen ve tamamen

ölçeklenebilen, video verisinin veya kullan�c� say�s�n�n büyüklü§ünden etkilene-

rek performans kayb� ya³amayan bir video tavsiye sistemi öne sürerek çözüm

buluyoruz.

Tezimizde kullan�c� ili³kilerini ve videolar�n içerik özelliklerini nas�l birle³tirerek

kulland�§�m�zdan bahsediyoruz. Kullan�c�lar�n davran�³lar�ndaki bir de§i³ikli§in

tavsiye sistemimizi nas�l etkiledi§ini ve kullan�c� verisi ile video içerik verilerinin

nas�l bir arada kullan�ld�§�ndan detayl� bir ³ekilde bahsediyoruz.

vii

Anahtar Kelimeler: Tavsiye Sistemleri, A§�rl�kl� Hibrit Tavsiye Sistemleri, Video

Tavsiye Sistemleri, Veri Madencili§i

viii

To my parents

Halil BEZEN, Tülay BEZEN

ix

ACKNOWLEDGMENTS

I would like to thank to my supervisor Professor �smail Hakk� Toroslu for his

support, guidance, friendship. It was a great honor to work with him for the

last 4 years and his cooperation in�uenced my view of academical world highly.

I would also like to thank my ex-workfellows in Nokta Internet Technologies, Er-

dem A§ao§lu and Soner Büyükatalay for their technical mentorship and friend-

ship that they provided to me for one year. I wouldn't be able to �nish my

thesis without them.

Finally I would like to thank to my friends for their friendship and trust, Asl�han

Bener, U§ur Do§an Gül, Ozan �ener, Sencer Burak Okumu³, Umut Bali, U§ur

Dönmez.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

CHAPTERS

I INTRODUCTION . 1

I.1 Thesis organization . 3

II RELATED WORK . 5

II.1 Content Based . 5

II.2 Collaborative Filtering 8

II.2.1 Neighbourhood Methods 10

II.2.2 Latent Factor Models 12

II.2.2.1 Explicit Feedback 13

II.2.2.2 Implicit Feedback 13

xi

II.2.2.3 Matrix Factorization 14

II.2.3 Memory Based Collaborative Filtering Algorithms 15

II.2.4 Model Based Collaborative Filtering Algorithms 16

II.3 Knowledge Based . 16

II.4 Hybrid Recommendation Systems 17

II.4.1 Weighted . 19

II.4.2 Switching . 19

II.4.3 Mixed . 20

II.4.4 Feature Combination 21

II.4.5 Feature Augmentation 21

II.4.6 Cascade . 22

II.4.7 Meta Level . 22

II.5 Problems in Recommendation Systems 23

III TECHNOLOGIES USED . 25

III.1 Databases . 25

III.1.1 Key � Value Stores 26

III.1.2 Big Table . 27

III.1.3 Document Databases 31

III.1.4 Graph Databases 32

III.2 Analyzing Tools . 38

III.2.1 Scalding . 38

xii

III.2.2 Python libraries 41

III.2.2.1 Pandas 41

III.2.2.2 Matplotlib 42

III.2.2.3 Scikit-learn 42

IV RECO . 43

IV.1 Myrrix . 43

IV.2 Reverse engineering Youtube 44

IV.3 Weights . 46

IV.4 Algorithms . 47

IV.4.1 Collaborative Filtering Algorithm 47

IV.4.2 Content Based Algorithm 49

IV.4.3 Music Algorithm 50

IV.4.4 Boosted Algorithm 50

IV.4.5 Unseen Algorithm 51

V EVALUATION . 53

V.1 Accuracy . 53

V.1.1 CTR . 54

V.1.2 NUVR . 55

V.2 Execution . 56

V.3 E�ects of Time on Recommendations 58

V.4 E�ects of Age Groups and Gender 59

xiii

VI CONCLUSION AND FUTURE WORK 61

VI.1 Conclusion . 61

VI.2 Future Work . 62

REFERENCES . 65

xiv

LIST OF TABLES

TABLES

Table II.1 A song database example . 5

Table II.2 User � item matrix based on movie ratings 9

Table II.3 Types of Hybrid Recommendation Systems 18

Table V.1 A sample algorithm-category CTR spanning �ve days and all

categories versus each algorithm . 54

Table V.2 Unique generated recommendations / Total generated recom-

mendations ratio . 55

Table V.3 Number of users based on age group and gender 60

xv

LIST OF FIGURES

FIGURES

Figure II.1 User based neighbourhood method 11

Figure II.2 Latent factor method illustration 13

Figure III.1Data Modeling in Neo4j . 33

Figure III.2Gremlin Query Example Visualized 37

Figure III.3Word count example of Map-reduce and Cascading concepts 40

Figure III.4Word count example of Scalding 40

Figure IV.1Relation between the videos and their recommendations . . . 45

Figure V.1 Histogram of load-times of the recommendations on the video

pages . 57

Figure VI.127 August 2013 Genre based radio plays 62

xvi

CHAPTER I

INTRODUCTION

WorldWide Web was �rst introduced by Tim Berners-Lee [12] When we compare

the state of web now and when it was �rst introduced, we see huge di�erences

in terms of scalability, usability, analytics, content and etc.

Web 1.0 brought us hyperlinks. Hyperlinks provided linking pages to each other.

Hyperlinks enabled us to reference to other pages from our own pages. Later

PageRank algorithm [41] was introduced. It was a way of ranking pages accord-

ing to incoming and outgoing links of the page had. This enabled us to search

for speci�c results of pages based on a query. But still it was not dynamic.

Web 2.0 brought us dynamicly loading content on pages. Users needed to load

the whole page content when even a small part of it was changed, but not

anymore. Web 2.0 brought the ajax technology which enabled loading a small

part of a page without loading it whole. This reduced the total time spent when

a user wanted to reach to a content. In addition, now users could publish their

own content on the internet. Users were not only reading but they were also

contributing to the content on the web. The web was growing so fast with user

generated content, text, videos, photos, etc.

Web 3.0 is about making the web semantic. Machines process the content on

the web and give users personalized results. Every page contains speci�c meta

tags that describe what the page does and what kind of content it contains. But

this is just the data, it is nothing if the machine can not understand it. That

is why we have our algorithms, architectures, state of the art methods to create

1

the desired personalized outcome to the user on a speci�c topic.

Personalization is important. A webpage should be able to collect the data users

leave behind intentionally or unintentionally and process it to further provide

personalized content to the user. The key part here is how to process it with a

high success rate. In 2006, Net�ix announced a competition about recommenda-

tion systems, Net�ix Prize [11], which called for competitors around the world to

further improve Net�ix's recommendation system. It was a huge success because

the world started to understand the importance and value of recommendation

systems. This competition was the trigger of it.

Lots of sites use recommendation systems in their systems heavily. For example,

LinkedIn uses it to recommend jobs to user which are related to user's skillset

or people to connect to such that user may know them based on his/her skillset,

school, job history and etc. Youtube uses it to recommend videos to the user

based on the watch history of the user, artist of the video, genre of the video,

geolocation of the video and etc. Twitter uses it to recommend accounts to the

user to follow based on their tweet topics similarity, their distance to the user

on the following/followed social network structure and etc. Spotify uses it to

recommend songs to user based on listening history of the user, genre of the cur-

rently playing song, nationality of the artist and etc. And many more . . . Those

examples have all in common that they use the data generated by users, either

by creating a content or sur�ng on the existing content, to produce personalized

recommendations to the user. Popular websites have millions of active users

nowadays and the data, content generated by those users are enormous. Those

enormous amounts of content and data can be type of texts, images, videos,

audios, etc. In this thesis we are going to focus on video content. Videos are

much more e�ective on users when compared with other types of contents be-

cause it is visual and it provides a sequence of images that tells a story. In this

thesis we will be introducing a video recommendation system, RECO. RECO is

a state of the art, hybrid, scalable video recommendation system and it gives

recommendations based on user behaviours and details of the video content.

2

I.1 Thesis organization

In Chapter 2, we will be talking about the related work. Various recommenda-

tion system algorithms will be explained here with advantages and disadvantages

of them and also the algorithms that are being used in daily life will also be pro-

vided.

In Chapter 3, we will be talking about the technologies used for analyzing the

performance of and building RECO. Some of

In Chapter 4, we will be talking about RECO itself. We will discuss why we

built RECO and what algorithms we used in it.

In Chapter 5, we will be talking about the evaluation of RECO. Possible future

work will also be discussed there.

3

4

CHAPTER II

RELATED WORK

In this chapter, we are going to explain various recommendation system algo-

rithms in the literature. We are going to talk about advantages and disadvan-

tages of each algorithm and later we will discuss which disadvantages of those

algorithms are solved with RECO and what RECO adds into the literature.

II.1 Content Based

Websites consists of items. For example for an e-commerce site items are the

products sold, for a video streaming site items are the videos, for a music stream-

ing site items are the songs and etc. Websites keeps detailed information of the

items in their database. You can reach to name of the artist, release date of the

video, the place this video was recorded, length of the video, name of the video

and etc. on a video item for instance.

Websites also store user data. The moment a user visits a webpage, whether

the user is a member or not, this webpage logs the user based on his/her loca-

TableII.1: A song database example

Id Name Genre Year Artist

1 Deep Doom Metal 1999 Anathema
2 I Want To Break Free Rock 1984 Queen
3 Seperate Ways Rock 1983 Journey
4 Stronger Pop 2000 Britney Spears

5

tion, time of his/her visit, browser s/he uses, operating system s/he uses, ip of

his/her computer and etc. Later if the user wants to register to the site, s/he

gives voluntarily some speci�c personal info such as his/her email, telephone,

city/country s/he lives in, interests and etc. This registration process creates

a unique entry for the user on the database that user informations are kept.

One can say that, being a member of a website is like carrying an id badge on

them all the time while sur�ng on that speci�c site so that every action they

trigger are processed on their behalf. Item descriptions are not always entered

manually into the databases. Think of a song database that needs to update

the lyrics of songs as a feature for each song but system has millions of songs

so entering manually is not an option. Solution here is using one of the lyric

services that provide the lyrics of a song when queried by the name of the song

and singer. One can use external services also to gather extra information on

items or users to provide better content based recommendations. Using exter-

nal, trusted sources to gather data for content based recommendation is a great

way of constructing the database.

Some popular platforms that we use frequently and have pro�les on, such as

Facebook, Twitter, Google+, Github, store our personal data. By using those

sites we can also log into some third party sites by using our membership info.

If we grant access to this third party site to read our personal data on those

sites, then this third party site achieves gathering lots of information about us

from trusted sources.

A great example of this is introduced in [30]. They simply analyze the tweets

of Twitter users and later provide us the ability to query for some spesi�c set

of users interested in some speci�c area. Their approach is based on classifying

the tweets of users and also tweets of people those users follow. That's because

following someone means sharing at least one interest area with them. This is a

hybrid approach actually which we will be talking about in the further sections

but for now lets just concentrate on content based part. They use information

retrival methods in their work. They take the twitter pro�le of people as an

unstructured text and use TF-IDF to �nd matches between pro�les on a speci�c

interest area provided by the query.

6

Now let's look at applications such as Shazam or SoundHound which identi�es

songs when you provide 20-30 seconds of any song to them. As described in

[60], Shazam takes �ngerprints of audio �les, with a kind of hash function, and

records them into their database based on their �ngerprint, song name and artist

and etc. When a user queries with a partial song they search in the database

for a similar �ngerprint and when a match is found they provide the answer to

the user.

Advertising business also uses content based recommendation very frequently.

In this speci�c area items are found after processing unstructured text, the

webpahe itself as a whole, and they are processed by text classi�cation, tf-idf and

various other unstructured text analysis methods. When users are introduced

advertisements which they are not interested in, it just annoys them and makes

the brand lose its impact on the user. To stop this and give the user desired

advertisement, advertisers use cookies stored in the user's computer and achieve

a higher success rate. Content-targeted advertising uses keyword matching [46].

The most successful example of this is Google Adwords. Since Google have a

huge amount of webpages on the Internet in their datacenters as indexed, Google

Adwords can target users based on their interests and keywords on a page.

Decision trees are also used in content based recommendation systems . In [15],

they create an ontology-based decision tree learner which predicts item ratings

by semantically generalizing the item features by using the domain knowledge.

Bayesian classi�ers are also another commonly used method in content based

recommendation systems. In [27], they create a knowledge base which consists

of products and their semantic attributes. They use text learning algorithms

like naïve bayesian classi�er to create this knowledge base from product data.

In [44], they use naïve bayesian classi�er to �nd out which World Wide Web

pages on some speci�c topic would be interested to the user. They show naïve

bayessian classi�er method is at least as successful as other methods in the

evaluation part.

Personalized television recommendation systems usually gives recommendations

based on watch history of the user. In [32], they use activities, interests,

7

moods, experiences and demographic information of a user to recommend shows

to him/her. They create a neural network and feed it with the data of the

users. Later they predict the users' tv program preferences. They show that

this method increases recommendation accuracy signi�cantly.

Association rules �nd relationships between items which does not seem to be

related at �rst sight. It �nds probabilities of relations of items. There are two

important concepts, support and con�dence. Lets assume we have a database

of lots of items. Lets assume X and Y are two items in this database and lets

say that we have a rule such that X => Y, meaning whenever there is X there

is a Y. Now lets de�ne support and con�dence by using X and Y. Support is the

percentage of X and Y appearing together in the whole database and con�dence

is the percentage of Y appearing in the rows that X appear. Association rule

mining takes a database of items and gives supports and con�dences of itemsets

that have a relation between. In [2] they provide an algorithm to apply the

association rule mining on large databases in a fast way. When you think about

it, content based recommendation systems also �nd relations between items so

that it can give recommendations. Association rule mining is a method used in

content based recommendation systems. We can �nd examples of association

rules being used to provide recommendations in [37] and [24].

Content based recommendation systems has emerged from information retrieval

research [7] [48]. The importance of texts was realized when information re-

trieval researchers found the knowledge that can be extracted from texts with

using numerous text mining methods. Since then content based recommenda-

tion systems have been using text data such as web pages, documents and any

kind of related unstructed text.

II.2 Collaborative Filtering

Colloborative �ltering is the most commonly used approach in recommender

systems as mentioned in [4]. Colloborative �ltering basically �nds users which

have similar behaviour patterns in the context of rating a movie or giving a

8

TableII.2: User � item matrix based on movie ratings

User Id Hobbit LOTR-1 LOTR-2 LOTR-3 Saw Hostel-1 Hostel-2 Rec

1 4 5 2 ? 2 1 1 5
2 ? 5 3 4 1 2 2 4
3 5 5 4 5 1 1 1 5
4 2 2 ? 2 5 5 4 2
5 1 2 2 1 4 5 5 1
6 2 2 2 2 5 5 5 2

feedback or giving an opinion on a topic, and use these similarity relations to

recommend them content by using each others' past behaviours. To simply put

it, if there two persons X and Y and they have a history of going together or

enjoying the same type of movies in the past, then there is a big chance that in

the future they will be sharing a common taste pattern on movies as well.

For example think of a movie recommendation system in which users rate movies

in a scale of one to �ve. In this system there will be two types movies in di�erent

genres and two kind of user pro�les each liking a di�erent genre. Based on these

assumptions, we will be trying to �gure a future behaviour of users whose data

is missing meaning they have not yet seen the movie and a perfect candidate to

give a recommendation to.

In table 2.2, you can see six users and their ratings on eight di�erent movies

and with some ratings missing. This is just a simulation of a real life scenario

actually because sites that recommend movies to users based on ratings such as

IMDB [39] (www.imdb.com) and Net�ix (www.net�ix.com) deal with cases like

this one.

When we look into the ratings given by users in table 2, we see that there are

two user groups. First user group consists of User 1,2 and 3 who like Hobbit,

LOTR-1, LOTR-3 and Rec. Second user group consists of User 4,5 and 6 who

like Saw, Hostel-1, Hostel-2. Missing ratings in table 2 can be found by using

ratings of other users in the table who have similar taste of movies with the

owner of the missing rate. For example User-2's rating on Hobbit is missing.

We know that User-2 have similar movie taste with User-1 and User-3. We can

9

use User-1's and User-3's rating on Hobbit to �nd User-2's missing rating on

Hobbit. Taking the average of two values, User-2's rating on Hobbit becomes

4,5 .

When we look into the Table 2.2, we can �nd missing entries and see similarities

but what if the table was much bigger and similarities were not so easy to

�nd? We need a way of automating these steps, we need an algorithm. Firstly

we need to be able to create a matrix consisting of M rows and N columns

(in our case M rows were Users and N columns were Movies) and creating a

MxN matrix. In this matrix rows will be Users and columns will be Items, this

generalization is important because various kinds and quantities of items can be

used in colloborative �ltering systems. Now we have our data storing schema

set, we can insert values into our data store by simply saying go to Mth row

and Nth column and store the value there. But we have a problem, sites like

our big video website where number of registered users and items the site store

are counted with millions would make a big matrix and the most important of

all, a big percentage of this matrix would be empty. If you think about it makes

sense since not every user in a website gives his/her opinion about every item

that this website stores. This problem is introduced and discussed in [1].

Colloborative �ltering have two primary areas neighbourhood methods and la-

tent factor models [34]. In addition, according to [16], colloborative �ltering can

be grouped into two general classes, memory based and model based. Now lets

discuss those areas and classes in detail.

II.2.1 Neighbourhood Methods

Neighbourhood methods takes relations into consideration. User watching a

movie is a relation between the user and the movie, actor playing in a movie

is a relation between the actor and the movie, user liking an actor is a relation

between the actor and the user and etc. Lets assume we have a user U and U

wants to watch a movie today that s/he did not watch before. To be able to

recommend a movie to U, we look into U's ratings on other movies, actors U

liked, directors U follows and etc. Each choice of U is a relation which helps

10

Figure II.1: User based neighbourhood method

us to �nd the movie that we will be recommending. In a way, what we are

trying to accomplish is to predict the missing relations of U with items. This

prediction depends on other users' relations as well. If there is a group of users

that watched some of the movies U watched and watched some other �lms U

never heard until now, then we can recommend those new movies to U as well

based on neighbourhood level.

Neighbourhood methods can be divided into two as well. In [34] it is told

that those sub methods are user based neighbourhood method and item based

neighbourhood method. Item based neighbourhood methods simply tries to �nd

neighbours of items such that those items would get similar ratings if they would

be rated by the same user. If our items are movies then director, genre, actors of

a movie and various other features of the movie would be used to �nd neighbours

of this movie. Eventhough this looks like a content based method, actually it

is not because let's assume the movie we want to �nd neighbours of is �Lord of

the Rings� and when we say �Orlando Bloom� was an actor in this movie we are

not talking about a feature of the movie but a relation of the movie with the

actor node labeled with �Orlando Bloom�. This means that now we are dealing

with item nodes as primary entities and relations between them and also some

11

properties of those item nodes and thus making a big connected graph structure

(Being connected is not mandatory).

On the other hand, user based neighbourhood methods tries to �nd likeminded

users who have common relations on a set of items. For example in the Figure

1 we can see users and their relations with movies. We see that MOVIE-A

is watched by three users so when we want to recommend a movie to one of

those users we can use other two user's movie relations because those three are

like-minded based on MOVIE-A.

II.2.2 Latent Factor Models

Latent factor is an alternative to the neighbourhood methods. Based on the

the data on user-item matrix, we �nd patterns on the data and characterize it

for both users and items. Movie genres like drama, action, horror and etc and

song genres like pop, rock, metal and etc. can be found by latent factor models.

Those things are not the only ones that can be found but kind of relations we

can not even think about or explain can also be found with latent factor models.

In Figure 2.2 we can see four hypothetical axes named Pop, Rock, 30 or older

and Younger than 30. Pop and Rock will be patterns for genres of music items

and 30 or older and Younger than 30 will be a pattern for users illustrating

their age. On the Figure 2 there are both items and users on the matching

quarters according to their features. For example Justin Bieber is younger than

30 and he is producing songs on pop genre. But beware of the fact that this is

a hypothetical two dimensional factor example because in reality there can be a

hundred or more factors.

To be able to �nd those hundreds of di�erent factors, one needs data to �ll the

user-item matrix. In general, there are two ways of gathering data, by using

explicit feedback or implicit feedback from users [34].

12

Figure II.2: Latent factor method illustration

II.2.2.1 Explicit Feedback

Explicit feedback is the method of gathering data from user in such a way that

user triggers the action, that creates the data, on purpose. Lets look at some

real life examples. A user can rate movies on Net�ix, rate videos on Youtube,

star sound tracks on Spotify, thumbs up webpages on StumbleUpon and etc.

Those data are generated by the user willingly. User shows his/her interest level

to us. This kind of data gives us a direct approach when we are trying to identfy

interests of users on items. In addition, the user-item matrix constructed from

explicit feedback is a highly sparse matrix because users can only rate a small

group of items which they are interested in.

II.2.2.2 Implicit Feedback

Implicit feedback is the method of gathering data from user in such a way that

user is not aware that his/her data is being gathered but the site logs user's

13

mouse behaviours, ip, time spent on a page, percentage of video watched, page

sur�ng behaviour and etc. All those data can be gathered to identify the user

based on his/her behavioural patterns. Implicit feedbacks are necessary when

explicit data we gathered is not enough or implicit data contains some valuable

information for our potential future factors. The user-item matrix constructed

from implicit data is a dense matrix because every user has those data since

they are creating it without being aware of it.

II.2.2.3 Matrix Factorization

Matrix factorization is one of the most widely used methods in latent factor

analysis. It simply �nds latent factors of users and items by using the data

gathered by explicit and/or implicit feedback before.

Firstly, users and items each are represented with vectors. For an item, this

vector shows the factors this item resembles of and for a user this vector shows

the factors of items interested to the user. When a user vector and item vector's

dot product is taken interest of a user for an item can be found and by using

this value we can create recommendations. The challenge here is to match all

user vectors with item vectors and this can be a huge problem since user-item

matrix can be really large like 1 million x 4 million in our website's case.

Another serious problem is the sparsity of the user-item matrix. This e�ects the

amount of time it takes to apply matrix factorization. Sparsity problem can be

solved by using dimensionality reduction. Since not all features of an item are

really important when giving recommendations (number of vowels in the name

of the video for instance) to the user and maybe there are some features that

are sub-features of a feature (consider we hold the name of the video and the

length of the name of the video in two seperate features for instance), then if

we can reduce the dimensionality of user-item matrix then we could lower the

time for matrix factorization and give better recommendations since redundant

features could e�ect negatively our recommendations.

SVD, Singular Value Decomposition, is one of the most used methods in matrix

14

factorization to �nd latent factors. SVD is used in dimensionality reduction

too[13]. In SVD three matrices are generated. First one holds the singular

vectors corresponding to the columns of the user-item matrix, second one is a

dioganal matrix containing corresponding singular values and third one holds

the singular vectors corresponding to the rows of the user-item matrix. Singu-

lar values resembles the variance in original vector data. This is important in

dimensionality reduction because the amount of information that is gonna be

lost when features are discarded can be calculated now. For example in [40],

e�ects of di�erent tag similarity techniques are analyzed on three dimensional

SVD recommendation systems. Another example of using SVD in geo-activity

recommendations can be seen in [50].

II.2.3 Memory Based Collaborative Filtering Algorithms

In memory based recommendation systems, whole user-item matrix is stored.

Neighbourhood methods are an example of memory based recommendation sys-

tem. In neighbourhood methods, user based or item based, we needed to �nd

relations and to be able to �nd those relations in real time, we need to store the

user-item matrix. Firstly, we analyze the user-item matrix in terms of which

objects are in relation with the object that we would like to �nd similars of and

then we �nd neighbours of the object that we would like to �nd similars of based

on some similarity metrics. Similarity metrics are at utmost importance here

because it changes the neighbours of our current object directly and that's why

it changes the performance of the system directly.

There are various kinds of similarity metrics that we can �nd on literature such

as Pearson's correlation coe�cient, Cosine similarity, Spearman's rank correla-

tion coe�cient, Mean squared di�erence, Euclidean distance, Jaccard coe�cient,

Tanimoto coe�cient and etc. One have to choose the similarity metric carefully

because it will directly in�uence the performance of the recommendation.

15

II.2.4 Model Based Collaborative Filtering Algorithms

In model based recommendation systems user-item matrix is not stored but

instead a model is constructed from user-item matrix. By using this model, we

can give recommendations to the user based on the previous data and update

the system later with the current data for future recommendations. This model

learns from the previous data in spare time not in run time. This approach makes

it easier in terms of space complexity. Not storing user-item matrix provides us

a huge storage bene�t but on the other hand realtime recommendations gets

delay because this system does not work in real time.

To create a model we can use matrix factorization or probabilistic models. In

2.2.2.3 we explained matrix factorization in detail. Probabilistic models use

proven formalities of probabilistic theory. Bayesian belief networks[17], markov

decision processes[51] are examples of methods used.

An example to probabilistic models would be Google news personalization en-

gine. �Google News is a free news aggregator provided and operated by Google

Inc., selecting most up-to-date information from thousands of publications by

an automatic aggregation algorithm� [61].

II.3 Knowledge Based

We have been discussing content based and collaborative based recommendation

systems so far. They cover a large percentage of recommendation systems area

but not all. Weak part of collaborative recommendation systems are lack of

user preference data cases. Some rare life events, buying a house or changing

the car does not happen so frequently on life time. That is why collaborative

systems are weak in situations like this. Weak part of content based systems

are their lack of tracking user pro�le changes. For example consider a user who

was a runner and bought lots of Adidas branded shoes but later he had a tra�c

accident and lost his legs. If content based system recommends more shoes to

this user it would be a big failure.

16

Knowledge based systems can handle the situations discussed in the previous

paragraph. In [57] and [25] it is stated that �Recommenders that rely on knowl-

edge sources not exploited by collaborative and content-based approaches are

by default de�ned as knowledge-based recommenders� .

An example of knowledge-based application is VITA. VITA is a �nancial service

recommendation engine. VITA is developed by CWAdvisor method discussed

in [26]. In sales dialogs, VITA serves as a sales representative to customers.

Knowledge-based recommendation systems are superior to collaborative systems

in terms of user-item matrix data at the beginning. Knowledge-based systems

operates on the data gathered by data mining systems and that is why cold-start

problem seen in collaborative systems is not a problem for it.

II.4 Hybrid Recommendation Systems

In knowledge base part we mentioned about the weak parts of collaborative �l-

tering and content based methods with examples and also we discussed their

advantages and disadvantages by using various examples from the literature. As

discussed in [57], hybrid recommendation systems are combination of various

recommendation systems(at least two) and bene�t from strength of each one

of them. Since strength of one of them can be weakness of another one, hy-

brid recommendation systems' performance usually overcomes them in terms of

performance and accuracy.

According to [19], types of hybrid recommendation systems can be separated

into seven categories based on their mixture type.

In our recommendation system framework, RECO, we are using weighted hybrid

recommendation system. As seen on Table 3, weighted hybrid recommendation

systems works by combining the scores of various di�erent recommendation sys-

tems and that is what we are doing. We are combining 12 di�erent recommen-

dation algorithms based on their scores and producing an output accordingly.

17

TableII.3: Types of Hybrid Recommendation Systems

Type of Hybrid
Recommendation System Description

Weighted Di�erent recommendation systems are
combined based on their score numerically

Switching One of the recommendation systems is
chosen by the system and applied

Mixed Di�erent recommenders' recommendations
are presented together

Feature Combination Features taken from various sources
are combined and used by one algorithm

Feature Augmentation A computed set of features by a recommendation
system is input to another

Cascade With the property of strict priority on
recommenders, lower prioritized ones

break the ties of higher
prioritized ones in scoring.

Meta Level A computed model by a recommendation
system is input to another

18

II.4.1 Weighted

Weighted hybrid recommendation system combines scores of all the output of

various recommendation systems that are actively used in the whole platform. In

[22], Claypool uses a weighted hybrid recommendation system, PTango system.

At �rst, PTango starts by assigning equal weights to the content based and

collaborative based systems but later starts to adjust the weights according

to the predictions on being con�rmed or discom�rmed of the users. In [45],

Pazzani combines not the scores but he represents outputs of various di�erent

recommendation systems as votes and then he chooses the �nal output based

on a consensus.

In [18], It is said that the bene�t of the weighted hybrid recommendation systems

are their straightforward approach to the problem. The system itself can be

analyzed quickly in terms of di�erentiating the weights easily and see which

recommendation system is giving better results and which is not. The downside

of this type as mentioned in [18] is it assumes all the algorithms used in the

system are gives uniformly accurate results in the itemset but we know that is

not the case unfortunately. A collaborative recommendation system can give

weak results if cold-start problem has risen at the start.

II.4.2 Switching

Switching hybrid recommendation system uses di�erent types of recommenda-

tion system algorithms based on item-level criterias. For instance in [14], Dai-

lyLearner, a switching hybrid recommendation system, is introduced. It �rstly

tries a content based recommendation approach and if it can not give results

that are above a threshold in terms of con�dence then collaborative �ltering

approach is tried.

What switching enables is providing results for which the previous algorithm

could not have provided. For instance switching from content based system to

collaborative system enables us to have results extracted by using relations be-

tween like minded users but only items that are similar to each other. For a user

19

owning a Swatch branded watch, content based could only recommend another

similar valued watches but collaborative �ltering approach could recommend

Lacoste branded shoes or Diesel branded trousers because that is a general user

behaviour.

In DailyLearner case, the system needed to apply an algorithm to see if it satis�es

the conditions or not but in [56] the data and past given recommendations of each

algorithm are being used to select the algorithm to apply on without applying

each of them one after another.

Eventhough switching hybrid recommendation systems needs to pre-calculate

which algorithm to use and thus use more resources than the others, they can

outcome weaknesses of various recommendation algorithm by analyzing the data

and applying the corresponding algorithm.

II.4.3 Mixed

Mixed hybrid recommendation system uses di�erent kinds of recommendation

system algorithms together to create a recommendation set as an output. Im-

portant thing to focus on in this method is it uses all the di�erent algorithms

together to create a result set not one by one.

In [52] a television viewing recommendation system, PTV is introduced. PTV

uses content based and collaborative �ltering together. At the beginning when

users did not rated programs yet content based gives most of the recommenda-

tions and later when users start rating programs collaborative �ltering starts to

have its percentage of recommendations provided to the result set.

Other examples of mixed hybrid recommendation systems can be seen on [3] as

ProfBuilder and PickAFlick in [20]. Lastly, it is important to mention that in

this method a ranking system must be used at the last stage because di�erent

algorithms will be producing lots of result sets and we need to sort them with a

ranking algorithm to prensent it to the last user.

20

II.4.4 Feature Combination

Feature Combination hybrid recommendation system uses the information from

one algorithm in another one as a feature and by doing this it combines features

and creates a merged version of algorithms. In [10], it is shown that a recom-

mender both using user ratings and content features gave much better results

when compared with a purely collaborative based system in terms of precision.

Hydra [53] is an example of this method used for movie recommendations. Hydra

basically combines MovieLens rating data with IMDB content information data

and later gives recommendations to users from one single system.

II.4.5 Feature Augmentation

Feature Augmentation hybrid recommendation system uses the output of an

algorithm, ratings or classi�cations, as an input and produces result set accord-

ingly. This method is popular because it enables to improve the core part of a

system by taking its output as an input and further improve the results. The

di�erence between Feature Combination and this method is, in feature combi-

nation raw data was being added but in this method processed data is being

used.

In [36], content boosted collaborative �ltering system is shown. First content

based recommendation is done and after collaborative �ltering makes predictions

about users' ratings with extra data coming from content based's result set.

In [49], Usenet news �ltering case is introduced. Gro�upLens research team is

using feature augmentation to improve the performance of Usenet news �lter-

ing. Firstly they are creating a knowledge based system. This knowledge base

includes rules based on size of the messages or number of spelling errors made

in a message and etc. Arti�cial bots that use this knowledge base are then sent

to the system as users so that number of ratings of users are increases. And as

a result they �nd that this method improves the email �ltering.

21

II.4.6 Cascade

Cascade hybrid recommendation system is based prioritized recommendation

algorithms. After the �rst one runs on data and produces an output, other

algorithms can only change the ranking of this output but not the content adding

or removal. There can also be cases like not needing other algorithms to run

besides the �rst one if �rst one made an excellent job and there is no need to

re-rank or �rst one failed hard and whatever the ranking is this result set will

not be used.

In [18], EntreeC, a restaurant recommender system, uses cascaded hybrid recom-

mendation system with knowledge based and collaborative �ltering algorithms.

EntreeC creates recommendations of restaurants by using its knowledge base and

preferences of users. After �nding the set of restaurants to be recommended,

collaborative �ltering is used to break the ties and further rank restaurants.

II.4.7 Meta Level

Meta level hybrid recommendation system uses a model generated by one of

the recommendation system algorithms as input and sequentially goes like that.

The di�erence of this method from feature augmentation is that in this model

input from one algorithm is the model itself not the features extracted from the

output of the algorithm.

Balabanovic created the �rst meta level hybrid recommendation system [8] [9],

a web �ltering system, Fab. Fab uses Rocchio's method [47] to perform a term

vector model based on interests of user in content based �ltering. The system

gathers documents from the web based on the model generated from the interests

of the users. In addition, Fab used cascade hybrid method with collaborative

and content based recommendation systems.

In [35], a content based model is introduced. Each user describing the features

for predicting the restaurants a user likes of. In [23], a two stage bayesian

mixed-e�ects scheme: a content based naïve Bayes classi�er is introduced. This

22

classi�er is built for each user and then parameters of classi�ers are linked across

di�erent users using regression.

Advantage of meta level hybrid recommendation is that speci�cally on con-

tent/collaborative coupled systems from the side of collaborative system, work-

ing on a model is faster when compared with raw data.

II.5 Problems in Recommendation Systems

Various hybrid recommendation systems exist and we explained them in detail.

Those methods eliminate weaknesses of recommendation algorithms by combin-

ing various algorithms together. On the other hand, hybrids that use content

based and collaborative �ltering su�er from cold start problem regardless of their

type. That is because they both need data at the start to give recommendations.

Eventhough such a weakness exists, that kind of hybrids are popular because

users of that hybrid method have the starting data already in their system usu-

ally. And of course knowledge based hybrid model can always be used as well

for those who su�er from cold start problem since this method does not have

the weakness of it.

Sparsity of the data is another serious problem. In [28] it is shown that sparsity

of the data directly e�ects the collaborative �ltering based systems' performance.

Meta level hybrid recommendation model avoids sparsity problem. Meta level

model compresses ratings over many examples and by doing that it enables to

comparing between users easier.

23

24

CHAPTER III

TECHNOLOGIES USED

In this chapter we will be introducing the technologies used on the site, the web-

site where RECO runs currently on. Those technologies are important because

analysis of RECO and also performance metrics that we used also depends on

those technologies. We will be also talking about why we chose them, their

advantages and in what areas they helped us to solve which kind of problems.

III.1 Databases

First let's discuss types of databases. We can seperate databases into two groups,

relational databases and non-relational databases. Relational databases appies

ACID properties to themselves. A holds for atomicity. It applies all or nothing

approach. If a transaction completes partially then that transaction is assumed

not to be existed. Atomicty needs to be applied in every condition including

power failures, crashes and etc. C holds for consistency. Consistency ensures

that any valid transaction will change the state of the database from one state to

another. That ensures that any data written into the database is valid. I holds

for isolation. Isolation ensures that all transactions whether concurrently or se-

rially applied, must result with the same state of the database. Isolation enables

concurrency control. D holds for durability. Durability ensures that when a

transaction is committed into the database, it should remain there whatever

happens such as power loss or crashes.

Relational databases can be queried using SQL language. SQL is the short ver-

25

sion of Structured Query Language. SQL has been used many years frequently

on the internet but not so frequent lately. Relational databases were even named

SQL databases in the common talk. But when the internet started to be used

in large scales, the data generated got larger exponentially and then the need

for other kinds of databases arisen.

When the need of storing larger and larger data and accessing that data faster

and faster started to become a problem, NOSQL databases were born. NOSQL

holds for Not only SQL. As mentioned in [58], when the data grew bigger,

additional columns were needed in relational databases but this caused sparsity

in the databases because not all rows of data needed that extra column. Also

the increased connectedness of the data was a weakness on relational databases

because relations were getting larger and larger proportional with the big data

and relational databases were using becoming very ine�cient in terms of storage

and time spent on per process.

NOSQL is a recent solution to those weaknesses of relational databases. It has

four di�erent types[54].

• Key � Value Stores

• Big Table

• Document Databases

• Graph Databases

III.1.1 Key � Value Stores

In this NOSQL type, each data is matched with a key. Keys are the index of

tis type. Bene�ts of this type is its speed. If you know python programming

language then key-value stores are like dictionaries, every key is mapped top a

value. This type of NOSQL is mostly suitable when there is a need for very

frequent number of reads are necessary and concurrency is needed.

Redis is extremely fast because it does not guarantee the durability of the data.

26

In traditional relational databases, durability is a mandatory property(D in

ACID) but redis favors speed rather than durability.

In our website, we use redis, a key�value store, as a cache layer. We use it

at cache level because its speed enables us to decrease response times of some

speci�c tasks in large amounts. On the other hand we do not store any data

that has utmost importance in redis because in a system failure, redis can lose

data because it stores the mappings inside the memory.

Redis also supports master-slave replication. That enables scaling in redis. In

our website, we run redis on a cluster of machines and use replication property

frequently.

III.1.2 Big Table

A big table is a storage system designed to handle very large amounts, petabytes,

of structured data. In big table, data is indexed by using row and column

names which can be arbitrary strings. In [21], a big table is de�ned as �sparse,

distributed, persistent multidimensional sorted map�. Handling petabytes of

data is not an easy job and that is why it works with clusters of machines

and it depends on cluster management systems to manage resources on shared

machines, handling machine failures, monitoring the status of machines and job

scheduling. Big Table is implemented by Google and it uses GFS, Google File

System, to store logs and data �les in a distributed way.

Just like the Big Table that Google implemented, HBase is also a distributed,

scalable, big data store implemented by Apache. HBase is a Hadoop database

and just like BigTable runs on GFS, Hbase runs on HDFS, Hadoop FileSystem.

[5] de�nes Hadoop as, �The Apache Hadoop software library is a framework that

allows for the distributed processing of large data sets across clusters of comput-

ers using simple programming models�. Hadoop is a really popular framework

used by sites like Facebook, Twitter, Google and etc. Hbase takes advantage

of Hadoop's simple distributing power of Hadoop. In [6], features of Hbase are

mentioned as:

27

• Linear and modular scalability

• Strictly consistent reads and writes

• Automatic and con�gurable sharding of tables

• Automatic failover support between RegionServers.

• Convenient base classes for backing Hadoop MapReduce jobs with Apache

HBase tables.

• Easy to use Java API for client access.

• Block cache and Bloom Filters for real-time queries.

• Query predicate push down via server side Filters

• Thrift gateway and a REST-ful Web service that supports XML, Protobuf,

and binary data encoding options

• Support for exporting metrics via the Hadoop metrics subsystem to �les

or Ganglia; or via JMX

HDFS is a �lesystem used by Hbase and it is robust and fault-tolerant. HDFS

was written with the inspiration from GFS. In [55] it is mentioned that Hadoop

streaming enables users to create and run mappers or reducers on HDFS by

using any programming language they want. Bene�ts of running map-reduce

tasks on Hadoop is, Hadoop sorts the data according to the data needed by

mappers and it improves data locality and thus improves the performance and

decreases the amount of time spent. We said HDFS is fault tolerant and what

that means is that if a crash occurs on one of the nodes, Hadoop restarts the

related task in another node. That works because fault-tolerant system means

share nothing principled architecture with the exception of relation between

mappers and reducers.

Hbase is just a open source project built on Hadoop. There are other projects

that works on Hadoop also[55]. You can see them below.

• Hive, a datawarehouse framework developed by Facebook used for ad hoc

querying using SQL like language

28

• Pig, a high level data-�ow language that produces sequences of map-

reduce programs

• Cascading, a programming API for de�ning and executing fault-tolerant

data processing work�ows

• Hbase, a Apache Hadoop based project which is modeled on Google's Big

Table database.

In the website we use Hbase too. We store logs in HBase to further analyze them

later and to monitor realtime charts of various systems that have logging system

embedded in. In the next section we will be discussing what kind of analytical

solutions we are using on our Hbase database. Some examples of systems that

have logging enabled and thus we have the ability of analyzing are:

• Visiting a page

• Percentage of video that the user currently watched so far on a video page

• Referral page of a visited page

• Type of recommendation system algorithm that generated the recommen-

dation that user clicked on

• Loading more recommendations on a video page

• Sharing on social media actions on a video page

• Type of player and platform the user is using

• Recommendations generated on a video page

In the previous chapters we mentioned that in this big video website have 4

million videos and have 15000 active users on the site on average. Amount of

logs generated are huge. 30-35 gb of log data is being generated and stored on

hbase daily. Hbase provides realtime writing to the database not to disturrb the

�ow of logs and also realtime reading for monitoring. Below you can �nd an

example log sent from the site to the Hbase.

http://logger.virgul.com/count?

29

• m = alive&

• g = h&

• o=websitename:n:25:5:7165777:52aa4330-861d-4a9e-a4ce-9bb5adac8ed3&

• iv = 111374684.853925677.1383504173.1389663450.1389795867.23&

• wVID= 111374684.853925677.1383504173.1389663450.1389795867.237165777.84&

• info= 7165777@31585974@31585974@5:5@;111374684.853925677.1383504173.1389663450

Each parameter type and related value of the parameter are bulleted above.

Bold ones are representing the type of the parameters. �logger.virgul.com� is

the backend server that takes our event requests, preprocesses the data before

entering it accordingly to the Hbase. �m� holds for method name and in our

example it is alive which is responsible for percentage of video that the user

currently watched so far on a video page.

�g� holds for granularity and in our case it is �h� meaning hourly. It could be

�m� or �d� meaning minutely or daily also. This de�nes the counting part in

Hbase. Hbase stores counts of some table properties on some time levels and

that parameter is an input to Hbase for that speci�c job.

�o� holds the parametric information related with the currently active method

and in our case it means this event is from the website and the currently active

user who triggered this event watched 25% of the video whose id is 7165777 and

whose category is 5.

�iv� holds for a unique number generated by the system based on the user.

Unique user sessions can be identi�ed based on this variable. This variable is

generated by using Google Analytics cookies and identi�cation of the user on

the site.

�wVID� holds for a unique number generated for a video and a user. This

number identi�es unique video watches of unique users. This can be thougth as

an extension of iv with video information.

30

All the events that are logged behave similarly. Each have their own parameters

de�ning the data and event info they hold. Logging every event triggered is

really important. It helps analyzing various features or parts of the site. We can

have answers to questions like �Which videos have been shared most on some

speci�c social media site in a speci�c date� or �How many videos are watched

by mothers on average�. We can answer those questions because we have all

the events of video watches, social media sharings and also we have the data of

surveys asking like �are you a mother?� and by combining those data, Hbase can

provide us all the answers that we need. But beware of the fact that Hbase is

just a storage, we need to extract the data from there and analyze it accordingly

to be able to answer those questions. In the next chapter we will be talking

about this.

III.1.3 Document Databases

Primary concern of document databases are to be able to store the big data and

achieve good query performance[29]. Unlike Big Table case, document databases

does not try to achieve high performances on reading in a frequent way and

writing concurrently.

Right now there are two major examples of document database systems, CouchDB

and MongoDB.

CouchDB is a fault tolerant and �exible document database system and it works

with JSON data formats. CouchDB comply with ACID properties that we

mentioned before. It only provides a HTTP REST interface to read and write

data.

MongoDB is a non-relational document database system but it includes lots of

functionalities of relational databases as well. MongoDB uses indexing and also

it has a powerful query language just like the SQL in relational databases.Mongo

DB uses BSON data format. BSON is binary encoded serialization of JSON

data format. In [54], it is mentioned that if the data stored is bigger than 50GB

then access speed of MongoDB is ten times greater than traditional relational

31

database and that is why companies dealing with large amounts of data are

prefering MongoDB.

In our website, we use MongoDB as well. One of the down sides of relational

databases was when the data got larger, relational databases started becoming

more sparse and that is because not all data have all the properties in each

sample. This is exactly the reason we preferred MongoDB in our website because

we are using MongoDB for storing recommendations and not all videos have the

same amount of recommendations and even they are the same they do not have

the same amount of information about the recommended videos and that is why

we preferred MongoDB.

III.1.4 Graph Databases

Graph databases have three main components. Nodes, Edges and properties as-

signed to nodes and edges as key-value stores. By using these three components

any relation can be de�ned in an optimized way and also accessing data gets

a lot easier because database does not need to fetch all the indexes and cross

check them but only traverse along the graph and that's all.

In daily life, graphs can be applied to many areas such as:

• Social Networks (Relationships with other people)

• Route �nding (Shortest paths on tra�c)

• Recommendations (Online shopping, watching movies, etc)

• Logistics (Optimizing the paths)

As seen on examples, graphs can be applied nearly everywhere. It is the structure

of relations in real life. So by using it in our applications we are simply copying

from the best, the nature.

One of the leading graph databases on the market currently is Neo4j. It is being

developed by Neo Technologies and it has proven itself with its performance and

32

Figure III.1: Data Modeling in Neo4j

ease of use. Eventhough it is developed with java, there are lots of ports to other

languages as well. Neo4j introduces two ways of interaction with the database.

First one is through directly accessing to the �les of the database and modify

it by using the preferred programming language with the api Neo4j provides or

access to the database via http interface and insert delete according to the need

of use. One thing to mention is http REST interface is very slow when compared

with the direct access because of extra layers. On the other hand if it is being

used in a dynamic site http REST interface can have more advantage.

Now lets look into the data modeling of Neo4j. We will be introducing the

abilities of this graph database and show some query examples from it.

As seen on Figure 3.1, Neo4j have nodes and relations and they both have prop-

erties assigned to them. These properties can be used on queries to di�erentiate

the nodes. And as seen above, di�erent nodes can have di�erent types of prop-

erties as well. This reduces the amount of data stored because just the info

that's needed and associated with the related node or relation is saved. This

is a property of NOSQL databases unlike relational databases we do not need

to store empty values on samples of data just because we have that table and

that is why the sparseness of the database is eliminated on NOSQL databases

in general. On the other hand, we may not have sparseness in our data but we

may have duplicates of data because of denormalization. Denormalization is a

trade o� to improve query processing time while incresing the space complexity

of the system.

33

Now let's look into the query part of Neo4j. Cypher is the name of the query

language Neo4j uses by default. But it is not the only type of language that can

be used for querying. There are various graph traversal languages which gives

a more abstract and improved ease of use solutions for graph databases. One

of them which we are also using in RECO is Gremlin graph traversal language

developed by Tinkerpop. As mentioned in [31], Gremlin is less friendlier for a

SQL type of person when compared with Cypher but Gremlin beats the Cypher

in terms of FOAF(friends of a friend) type queries.

Now let's give some examples of Cypher queries by using the graph from Figure

3.1 .

MATCH (movie:Movie title:"Matrix")

RETURN movie;

In the above query, we are trying to �nd nodes with Movie type and having the

title �Matrix�. MATCH and RETURN are constants used in every Cypher query

like SELECT, FROM, WHERE in SQL. MATCH identi�es a �ltering rule on

the graph and RETURN returns the entities given after applying the �ltering

rule on the graph.

MATCH (movie:Movie title:"The Matrix")

RETURN movie.id, movie.title;

In the above query, we are trying to �nd nodes with Movie type and having the

title �Matrix� and we want �id� and �title� properties of those nodes only. This

example shows properties of nodes can be accessed like �node.property� as we

do in classes in object oriented languages.

MATCH (m:Movie title:"Matrix")<-[:ACTS_IN]-(actor)

RETURN actor;

In the above query, we are trying to get all the actors in the graph which acted

34

in a movie with the title �Matrix�. Here we are �ltering according to a speci�c

relation named �:ACTS_IN� between actor and movie nodes. The syntax is

standart. The arrow shows the �ow of the relation path. One can read it like

�Actors -> acts_in -> movies�

MATCH (m:Movie title:"The Matrix")<-[:ACTS_IN]-(actor)

RETURN count(*);

In the above query, we are trying to get number of actors who acted in the movie

whose title is �Matrix�. This is an example of aggregation in Cypher. After

�ltering the graph, in the RETURN statement we are counting the number of

results.

Those examples shows the basic work logic of the Cypher. We said that Cypher

is not the only query language for Neo4j and Gremlin can also be used to query

Neo4j databases, which we used in RECO also. Gremlin uses pipes to perform

graph traversals. Pipes enable the traversals of complex graphs easily. Below

you can see some databases that are supported by Gremlin.

• TinkerGraph � In memory graph

• OrientDB � Graph database

• Neo4j � Graph database

• DEX � Graph database

• Titan � Graph database

• Faunus � Graph analytics engine

• In�niteGraph � Graph database

• Rexster � Graph server

• Sesame 2.x � Compliant RDF stores

35

Gremlin can be used for graph query, analysis, manipulation cases. By default

Gremlin supports Java and Groovy implementations and the examples that we

will be showing below are Groovy based examples.

m = [:]

g.v(1).out('likes').in('likes').out('likes').groupCount(m)

m.sort-it.value

In the above query, �rst we are creating an dictionary named �m�. �g� is our

graph and �g.v(1)� is returning the node in the graph with id 1. Remember

the pipeline structure, now we have one node in our pipe and we are deliver-

ing it to the next cycle of computation. �out� and �in� are relational type of

methods. �out� method only gets nodes which are connected to the source node

with edges going out from the source node and �in� method only gets nodes

which are connected to the source node with edges coming in to the source

node. �out(some_property)� will get nodes which are connected to the source

node with edges going out from the source node and having �some_property�.

�groupCount(m)� works like groupby in sql and it groups nodes and counts them

and writes them into m. And at the end we are sorting our dictionary descend-

ing.

Actually the query above is a simple collaborative �ltering algorithm in three

lines. In Figure 3.2, there is a graph that we can use this code on and simulate

the execution.

• First of all we get the node with id attribute 1 and it is a user node on the

left-bottom of the Figure 4.

• Then we �nd nodes which have edges coming from node-id-1 and there is

only one and it is the node with the id attribute 2 and it is a video node.

(user-item graph)

• Then we �nd nodes which have edges going into node-id-2 and there are 3

nodes that satisfy this property and they are node-id-1, node-id-3, node-

id-5.

36

Figure III.2: Gremlin Query Example Visualized

• Then we �nd nodes which have edges coming from node-id-1, node-id-3,

node-id-5. There are 6 nodes satisfying this rule and if we group them

according to their id we �nd that we have three node-id-2, two node-id-4,

one node-id-4. At the end we sort this dictionary of node results and �nd

the ranking of the collaborative �ltering.

• Titan � Graph database

• Faunus � Graph analytics engine

• In�niteGraph � Graph database

• Rexster � Graph server

• Sesame 2.x � Compliant RDF stores

In our website, we use Neo4j and Gremlin for RECO's collaborative �ltering

part (remember RECO is a weighted hybrid recommendation framework). In

the example we used here collaborative �ltering was being applied at one level.

By one level, we mean videos that my friends watched and by two level, we

mean videos that friends of my friends watched. It can be thought as the depth

of search in collaborative �ltering, the deeper we go, the larger and diverse the

result set would be.

37

III.2 Analyzing Tools

In the databases part, we mentioned that in the website we store our event logs

in Hbase. 15.000 real-time active users on the site on average and 4 million video

pages being visited by those users creates lots of event data. Since every new

feature or algorithm we create needs to be evaluated to decide whether it is a

better version or not, we need some analytical evaluation metrics and tools to

extract those metrics from the big data being generated, 30-40 TB daily. Now

let's give explanations of these tools.

III.2.1 Scalding

Scalding is a Scala library that makes it easy to create and run Hadoop map-

reduce jobs. In databases part and in Big Tables sub part, we mentioned about

Cascading which was a programming API for de�ning and executing fault-

tolerant data processing work�ows. What Cascading simply does is abstracting

Hadoop's low level details. Scalding is built on top of Cascading and thus it

abstracts the low level details of Hadoop and also it has the resources of scala

behind it. Scalding can be used for custom ad targeting algorithms, market in-

sight, click prediction, tra�c quality to pagerank on the related website's page

graph, ad-hoc data analysis jobs and etc ..

Scalding is an open source project, developed by Twitter. It has two types of

APIs, �eld based and type based. In our website we are using �eld based type

of APIs of scalding. The main reason we chose scalding on our site is because

scalding have the features below:

• Functional programming and it's natural way of implementing data �ows

• Power of Scala which runs on JVM

• Statistically typed meaning there will be no type errors on runtime

Scalding is already being used by large companies which can be seen below for

38

their Hadoop related data anaylsing work�ows. Some companies using Scalding

are: Twitter, Etsy, eBay, SoundCloud, LinkedIn, Stripe and etc.

Just like Gremlin, Scalding also works with pipes. Since scalding is used for

analysing big data, it uses map-reduce algorithms. Map-reduce is simply di-

viding a computation into two, mapping and reducing parts. In mapping part,

the data that needs to be processed are assigned to di�erent entities for com-

putation so a paralel execution of tasks run side by side and when all of them

are �nished, reducer takes the processed data, gathers them and produces the

expected output. If big data needs to be processed, map-reduce allows us to do

the same computation in a short amount of time.

Now to understand Scalding, one needs to understand Cascading �rst. Cas-

cading consists of �ows. A �ow consists of a source tap, a sink tap and pipes

connecting them. Pipes hold a particular transformation on the input data. One

can create new complex pipes by combining them. Figure 3.3 taken from [43]

shows this.

In �gure 3.4 that's taken from [59], you can see a word count example in scalding.

TextLine creates the �rst pipe and it includes the input. FlatMap method takes

the �rst pipe as input and it splits each line in �rst pipe according to tokenize

function and creates the second pipe. GroupBy method creates a third pipe and

groups words and by using size attribute it counts each unique words' appearance

in the second pipe and creates a third pipe. Write method takes third pipe as

input and writes it into the output sink. As you see scala embedds java libraries

by default and scalding has the power of huge java libraries behind it also.

In our website, we use scalding for analyzing daily event logs to understand

the behaviours of users, observing results of a test, getting performance metrics

of our recommendation system RECO, number of unique videos recommended

that day and etc.

39

Figure III.3: Word count example of Map-reduce and Cascading concepts

Figure III.4: Word count example of Scalding

40

III.2.2 Python libraries

Python is an scripting language and it is really easy to read and write programs

with it. There are some general tools to deal with speci�c areas like R language

for statiscal analysis, Matlab for image processing, machine learning, Excel for

table structured data and etc. Python has a library for dealing with each of

those. It is like a handset of researcher one can say. It is really import to be

able to deal with all those areas in one language because output of one tool can

be an input to another and also readability, maintainability is easier and the

time it takes to learn the required tool takes much less time.

III.2.2.1 Pandas

Pandas is an open sourced and BSD licenced open source library of python

providing easy to use data analysis tools and data structures. It enables one to

focus on the research rather than programming. It can read various formatted

�les and process them intelligently such as handling missing data automatically

or reshaping the arrays in a fast and robust way since it uses numpy arrays. In

addition, pandas is really fast because some critical area codes are written in

Cython or C to improve performance.

As mentioned in [42], pandas is really well suited for:

• Tabular data with heterogeneously-typed columns, as in an SQL table or

Excel spreadsheet

• Ordered and unordered (not necessarily �xed-frequency) time series data.

• Arbitrary matrix data (homogeneously typed or heterogeneous) with row

and column labels

• Any other form of observational / statistical data sets. The data actually

need not be labeled at all to be placed into a pandas data structure

Pandas have three main data structures, Series, DataFrames and Panels. Se-

ries is a one dimensional data structure which includes not only data but also

41

axis labels too. DataFrame is a two dimensional, tabular data structure which

includes axis labels on both rows and columns. DataFrame is much more than

R languages' �data.frame� thanks to abilities of numpy integrated by default in

pandas. Lastly Panel is a three dimensional data structure used less commonly

when compared with DataFrame and Series but if one needs it, pandas provide

it.

In our website, we use pandas for analyzing the data we got after running scald-

ing on Hbase. It makes our job much easier. Instead of dealing with �le prob-

lems, missing data problems we focus on the research, the algorithm. The time

complexity of our analyzing jobs also is faster because of pandas.

III.2.2.2 Matplotlib

Matplotlib is a python 2D plotting library[33].It can be used in python scripts.

With just few lines of code, one can draw plots, histograms, power spectra, bar

charts, errorcharts, scatterplots, etc.

In our website, we use matplotlib for plotting the results. Not everyone have

the ability to read numeric values and make a statement about it so visual

representation of data matters a lot. We are using matplotlib for that. Pandas

library has a direct connection to matplotlib such that every data structure

except Panel (remember 2D) can be plotted directly by calling plot method of

them.

III.2.2.3 Scikit-learn

Scikit-learn is a machine learning library for python. It is built on numpy, scipy

and matplotlib libraries of python. It can be used for data mining, data analysis

and various machine learning methods to apply on the related data.

In our website, we use scikit-learn for �nding weights of di�erent recommenda-

tion algorithms by using regression analysis methods. We will be talking about

this in the next chapter in detail.

42

CHAPTER IV

RECO

RECO is the name of our weighted hybrid recommendation system framework

currently running on our website. In this chapter, we are going to talk about

the recommendation system used in website before RECO and why we needed

to change it and in what ways RECO is better than the old system.

IV.1 Myrrix

Before RECO, Myrrix was being used in the website. As mentioned in [38],

Myrrix is a complete, real-time, scalable clustering and recommender system,

evolved from Apache Mahout. Currently myrrix is migrated into Cloudera but

in summer of 2012 Myrrix was a standalone recommendation engine and it was

still in very early versions and it was lacking documentation at the time. In

addition, it was not open sourced.

In �zlesene, Myrrix was being fed by user-watched_video matrix and recom-

mendations for a video were being taken from it. The challenge was that the

time that myrrix completed a cycle of computation was taking nearly a day and

that is why our daily recommendations were static. We could only change the

recommendations of a video manually which was a serious amount of job when

one consider that we have 4 million videos. When the person responsible for

handling Myrrix left the company, we did not have any know-how about myrrix

and when recommendations were not as successful as possible, we could not

tweak algorithm parameters in Myrrix.

43

Our metric for evaluating the success of recommendation system in �zlesene is

CTR, click through rate and it basically calculates for the case of a video being

watched by a user, how many times we succeeded making the user click to the

recommendations of that video as a percentage. When we were using Myrrix,

this value for the whole �zlesene was %15.

We wanted to increase this CTR value. In addition we also wanted various al-

gorithms running with di�erent weights on di�erent categories since not every

category is in the same level of recommendation with each other. For example

animals category can use content based recommendation because generic type

of animal videos are already known and people do not make playlists of speci�c

types of animals and watch them in general. On the other hand in music cate-

gory every person's taste is di�erent and this category needs a heavy weighted

collaborative �ltering algorithm.

Myrrix was using latent factor analysis and more speci�cally a modi�ed version

of alternating least squares algorithm for matrix factorization. We wanted to

use open sourced, well-documented, scalable (Myrrix was not scalable at that

moment or our know-how didn't allow us because we could not see the codes)

and fast system. That is why we started searching for technologies being used

by other companies that are using real-time recommendation systems just like

what we need.

IV.2 Reverse engineering Youtube

Youtube is the leader website in terms of video and it uses recommendation sys-

tems for video content heavily. So before constructing our own recommendation

system, we wanted to investigate the way Youtube gives recommendations to its

users.

We wrote a script that runs through Youtube and gets viewcount and name of

recommendations of a video. Result of our script showed that Youtube gives 20

- 25 recommendations per video at �rst, if user clicks on �show more recommen-

dations� (for videos that have more than 20-25 recommendations) user can get

44

Figure IV.1: Relation between the videos and their recommendations

more recommendations but we just analyzed the �rst part because they are the

ones user is mostly interested in just like the �rst page of a resultset a search

engine returns. Firstly our script ran on 500 unique videos by jumping from

one video's recommendation into another. But when we ran the same script on

again and again, we realized that Youtube gives di�erent videos and even di�er-

ent rankings on the same set of videos for the same video as recommendations.

That information made us change the script in such a way that the script takes

the recommendations of a video 20 times with 30 second gaps between them.

With that approach we got all the possible recommendations Youtube was pro-

viding for a speci�c video and we got 500*20*20 sized dataset. We were trying

to �nd a pattern on the source video and the recommendations Youtube given.

We tried various approaches on linear level but we could not �nd a pattern.

Later we tried log scale of view counts and we found a pattern.

In Figure 4.1, we are looking into a histogram and on x axis we have logarithm

of recommended videos' viewcounts divided with logarithm of source videos's

viewcounts and on y axis we have the amount of videos for a speci�c range or

frequency of related bin on that histogram. We can easily see that this looks

like a gaussian distribution, good news! Con�dence levels of histogram in �gure

45

4.1 can be seen below.

[0.5 � 1.5] %99.6196705184

[0.6 � 1.4] %98.9122050324

[0.7 � 1.3] %97.6309220126

Now we got our con�dence levels, we found our pattern. This was the the

inspiration for us to create a speci�c algorithm in RECO. The algorithm works

with content based approach and �lters according to viewcount relation between

source video and candidate recommendations by checking if their viewcounts'

logarithms' dvision are in range [0.5 � 1.5] or not.

We ran the the script we wrote time to time to see if there was a di�erence on

our results and when were doing that we realized that Youtube was sometimes

recommending videos outside of [0.5-1.5] range and more speci�cally videos that

have just been uploaded in the recommendations of some popular videos. That

was another inspiration for us to create a speci�c algorithm. The reason Youtube

was doing this was to give a chance to the video that have just been uploaded

to be part of the user-video graph in terms of connectedness and also not to

disqualify newly uploaded videos under popular ones. If the video did not suc-

ceeded being a popular video or could not attract users' attention then Youtube

was no more providing that video in recommendations.

IV.3 Weights

RECO is a weighted recommendation system framework and that is why it has

two major important structures which are its algorithms and these algorithms'

weights. Before, we mentioned that we use scikit-learn library for regression

analysis on weights. Time to time, we update weights and for updating we either

use machine learning or manually change some weights in terms of adapting to

a strict change.

For example once a year in Turkey, Ramadan is celebrated and in this bairam

46

people stop eating till evening and that is why housewives concentrate on meals

to create great foods. In Ramadan, in the website, our meal-recipes category

jumps like %400 just in a moment and goes like that for one month. To adapt to

those changes accurately sometimes we also manually change the weights. That

is a feature of RECO, being able to manipulate the weights fast and easy to

adapt to fast changes.

IV.4 Algorithms

Earlier we mentioned that RECO is a weighted hybrid recommendation sys-

tem framework thus it has various algorithms running inside. Each of those

algorithms provide di�erent abilities to the RECO. In this part we are going

to explain each of them in detail about how they operate and what advantages

they provide to the RECO.

IV.4.1 Collaborative Filtering Algorithm

As we mentioned before, in the website we use neo4j for storing user behaviours

of video watching and amount of time they watch each video. These two are

really valuable for us because our collaborative �ltering algorithm makes use

of them heavily. When we need to �nd candidate recommended videos for a

source video, we look into the source video's FOAF(friend of a friend) related

videos and do that twice because in our �rst attempt the videos we get are

in a potentially biased area (we experimented that in our �rst attempt of this

algorithm) and types of videos do not change a lot and that is the reason we go

one more level of FOAF relation and get a huge dataset of candidate videos. The

reason we stop at second level is because we reached to the point where cost of

computation exceeding the bene�ts because of the size of the graph. One can go

further on the level of computation if s/he does not care about the fetching time

of the recommendations. We did not have that luxury because RECO stands as

a robust and fast recommendation framework.

In addition, there is a term called trueview which means the percentage of video a

47

user has watched after visiting that video from another video's recommendations.

This is important because it is an e�ective metric to calculate whether user was

pleased with the recommendation or not. That is why we keep trueview value

on edges in our graph and while we are traversing we only select edges that are

equal or more than %50 (this value also is a result of experimentation. We tried

%25 and we had lots of videos with low quality and we tried %75 and quality of

videos were really high but quantity was really low) video completion rate. That

makes our collaborative �ltering algorithm really powerful because we eliminate

the videos users came across to and watched some time but did not like. This

is the major power of this algorithm. In our graph we only select videos that a

user liked while watching it.

Our collaborative �ltering algorithm runs on AKKA which is a toolkit for highly

concurrent, distributed and fault tolerant applications on JVM. We use AKKA

because concurrency and being distributed are really important key points for

us. There are 15000 active users at a moment on our website and the system

needs to be able to provide the same quality of service to each one of them and

also if this number increases, system must be able to be scale so that quality of

service would not fall down.

AKKA handles concurrency with actor-based model. In actor-based models

there are instances of di�erent types of actors and they communicate by sending

message to each other. AKKA is fault-tolerant because if a message never arrives

to its destination this is not a problem because I/O blocking is not an issue.

In AKKA, neo4j communicates with mysql and redis to create or update new

nodes and relations. Every video in Neo4j have one week timeout by default and

for every video-watch-event happening for that video we decrease this timeout

variable. When this value hits zero we update its viewcount, relations and etc

by making queries to our backend services. This delay mechanism enables us not

to check for not used, not popular videos and focus on the popular, up-to-date,

the ones users are mostly interested in kind of videos. That is a feature of this

algorithm, e�cient distribution of the resources.

48

IV.4.2 Content Based Algorithm

Content based recommendation uses the features extracted from the content of

the item and in our case items were videos. Features we used were:

1. Name of the video

2. Artist of the video

3. Category of the video

4. View-count of the video

5. Likes of the video from social networks

6. Genre of the video . . .

We imported those features of every video uploaded into �zlesene into the Solr.

Solr uses indexes and it enables to query large amounts of data sets and retrieve

the data in a short time. Solr also have the ability to boost some speci�c �elds in

the query which means we can ask Solr to fetch us results in the way we prioritize

them. For instance we can say that "Bring me the videos that have 'dance' in

its name with %80 priority and 'garden' in its name with %20 priority" and Solr

will give put videos having "dance" keyword in front of videos having "garden"

in its name in the rankings. It is a way of boosting our query �elds which we

used a lot in �zlesene.

For content based recommendation we used two algorithms. First algorithm just

directly queries Solr according to the related video's name, artist, view-count

and etc. On the other hand, our second algorithm queries Solr by boosting videos

whose view-count's logarithm divided by source video's view-count's logarithm

is between [0.5 - 1.5]. We mentioned about this algorithm before in Reverse

engineering Youtube part.

In evaluation phase we will show that that second algorithm really works better

than the �rst one. Boosting the right �eld makes the search results much more

successful and accurate.

49

IV.4.3 Music Algorithm

Music is a major category in the website. %80 of videos belong to music category

in �zlesene. We have genres, lyrics, artist info of a large amount of videos in our

database and every music piece has one artist at least but that artist may not

be in the related video's feature set. That is why we crawl various sites by

cross-matching lyrics of the video, name of the video and query those sites to

retrieve the artist of the video.

This crawling and retrieving the artists of the videos process works as a job at

the background and �lls the feature set of music category videos. What this

algorithm does is to simply search for that artist's other trending or popular

songs. Trend is measured by calculating the ratio of increase of the view-count

of the related video. Popularity is simply the amount of view-count a video has.

Trending metric is superior to the popular metric for music videos in ranking

because a new video being watched in an increasing speed is always better to

push to the end user rather than an old trending song. This enables us to move

higher on search engines and also to be part of that viral view-count increase of

that speci�c video.

This algorithm only works for music category.

IV.4.4 Boosted Algorithm

We mentioned about the power of boosting in content based algorithm part.

This algorithm is again about boosting but boosting manually the content.

In this big video site, we have a department responsible from the content. Every

video uploaded to our website must be approved by them and also they follow

trends, popular songs in the world and when they see a trend in one song they

can manually tell RECO to put this video in recommendations more than others

by using this algorithm. This is mainly to catch the wind and go viral in a short

amount of time.

This algorithm takes place after every algorithm �nished executing, returned

50

their rankings, merged them and after then this algorithm starts working. We

have a database which stores boosted videos and rules to show them at which

videos' recommendations. If there is a match with the related video and the rules

provided with the boosted videos in the database then we push those boosted

videos into the resulting set of recommended videos. Rules are like:

• Show this boosted video in that speci�c genre

• Show this boosted video in every videos uploaded by that user

• Show this boosted video in that speci�c tagged videos . . .

IV.4.5 Unseen Algorithm

In reverse engineering Youtube part, we mentioned that Youtube gave a chance

to videos that was just uploaded into them in terms of keeping the connectedness

of the graph. We were inspired by this approach and we created unseen algorithm

which detects not connected videos from logs and gathers them in a pool and

feeds the system with those videos. If they join the system after this process,

they are out of pool, if not this keeps going.

If not boosted by boosted algorithm, newly added videos have very low chances

of being shown in recommendations unless they are trending. Unseen algorithm

overcomes this disadvantage. It makes videos which do not have or very low

likes from social media, very low view-counts to be shown on trending or popular

videos' recommendations. It is a way of giving them a chance to be trending or

popular.

Those videos that are being shown on recommendations of popular or trending

videos will be fading by time. If they are not watched by users after we give them

this chance, their edge weights gets lower and lower and when the graph edge

elimination process starts their edge connecting them to the strongly connected

component of �zlesene video graph will be erased unfortunately.

After we started running this algorithm, number of unique recommended videos

daily increased signi�cantly. We will be talking about that in evaluation phase.

51

52

CHAPTER V

EVALUATION

Evaluating a recommendation system is a tough but important job because feed-

ing the system with feedbacks generated from evaluations is a must to further

improve the success rate of the framework. In addition, evaluating a recommen-

dation system for music videos is another tough job because a recommended

video can be liked or not liked based on the taste of the user, so one can say

that di�erent pro�les of users can prefer di�erent recommendations.

We will be evaluating RECO in two main categories, accuracy and execution.

On accuracy part, we will be explaining why results of RECO are more accurate

and on the execution part we will be explaining what bene�ts RECO provides

in terms of execution time and resources.

V.1 Accuracy

As we mentioned RECO uses various algorithms for various categories. Our

evaluation process breaks into each algorithm-category pair so that we can get

independent evaluation results for every algorithm-category pair.

We used two main evaluation metrics in RECO, CTR(Click Through Rate) and

NUVR(Number of Unique Video Recommendations). Scalding framework and

pandas library was used for generating and processing those metrics. Accuracy

of the system can be seen by inspecting the CTR and NUVR metrics which will

be explained in detailed in the subsections below.

53

TableV.1: A sample algorithm-category CTR spanning �ve days and all cate-
gories versus each algorithm

Category Algorithm Day-1 Day-2 Day-3 Day-4 Day-5

All All %17.86 %16.68 %16.68 %16.68 %16.68
All boosted %17.57 %13.89 %15.40 %14.27 %13.87
All Solr-V2 %39.92 %41.44 %42.93 %44.95 %42.86
All Music %10.00 %12.00 %11.50 %13.19 %11.70

All Collaborative Filtering %16.84 %16.21 %16.55 %16.38 %16.92

All Unseen %10.00 %10.06 %10.40 %7.55 %14.21

V.1.1 CTR

The ratio of videos which are recommended to and being watched by the user

and the total amount of videos being watched is called CTR. Basically CTR is a

metric that shows how successful our recommendations are based on the choice

of the users. We can see CTR values of algorithm-category pairs in real-time

therefore we can observe the accuracy of the RECO in real time.

To be more spesi�c, let's assume in a period of time users watched 100 videos

and 20 of those videos were reached by the users from the recommendations

generated from RECO. In this spesi�c case our CTR would be %20.

Below you can see table 5.1 which is a sample from our real-time algorithm-

category pair.

Before RECO, our CTR values were around %15. There is an important issue

that needs to be clari�ed, after old recommendation system was discarded we

added a new feature to the big video site which is radio format on music category

which was showing recommendations as a standart video shows but when the

video was over it was directly going to the next song. This is a very critical

major reason for CTR to fall down. Music category is %80 of whole site, huge

amount. Because users have no time to click on recommendations and what is

worse is users usually open radio and then leave and that causes even a faster

CTR drop rate. Even after that situation we managed to increase CTR by %1-

%2 points, that is a huge success mostly thanks to �ltered content based and

54

TableV.2: Unique generated recommendations / Total generated recommenda-
tions ratio

Days Unique Count Total Count Ratio

Day 1 857391 4792443 %17.89
Day 2 813612 4608384 %17.68
Day 3 830067 4477253 %18.54
Day 4 820124 4327874 %18.95

Day 5 842195 4337502 %19.42

collaborative �ltering algorithms.

Myrrix which was using matrix factorization had a CTR value of %15 while

RECO had %17 CTR rate with radio feature enabled. This clearly shows that

RECO, a hybrid recommendation framework, is giving better results than matrix

factorization methods.

V.1.2 NUVR

This is a metric that started after RECO was born. That is why we have no

past data before RECO to compare with the current data. On the other hand,

we can comment on the current data by looking at the increase and decrease

rate of it.

NUVR is directly related with the unseen algorithm. What unseen algorithm

does is to increase the connectedness of the graph and by doing that making

users watch videos that have never been watched before. A denser graph means

better and more meaningful recommendations. In addition, NUVR itself does

not mean much to us because what matters is ratio of unique videos that were

recommended to users over the set of recommended videos.

Below you can see table 5.2 which is a sample from NUVR metric. As you can

see we are generating %20 of the videos that we generate as recommendation

set to users are unique videos.

55

V.2 Execution

Execution time of the system can be analysed in two ways, the time it takes to

introduce the recommended videos to the user when user clicks on a video and

the time it takes to generate the recommendations of a video at the back-end.

For the �rst part, if the system makes the user wait on the video page for

introducing the recommendations it would be a bad user experience and user

would leave the page. To prevent this, we added a cache layer, redis, to RECO

and it provided nearly instant access(60ms on average) to the recommendations

of a video from the perspective of the user as it can be seen on �gure 5.1.

For the second part, there were lots parameters that is e�ecting the time it

takes to generate a video's recommendations since RECO consists of multiple

algorithms and modules. If the video is a popular one, one could expect that

in our graph database the traversals we need to make to generate the collabo-

rative �ltering would take much more time when compared with a less popular

video but in fact as we mentioned earlier we are saving every recommendation

we generated into our database and until the video reaches a certain number of

video watch count from that moment and so on we are not updating its recom-

mendations (if it does not reach to it in one week, we update it). In addition

if the traversal of the graph takes so much time because of ine�cient resources

on the machine at the moment, we time-out the process, return the old recom-

mendations fetched from the database and push the video to the job queue to

be re-evaluated later. That is why we can say that the performance of RECO is

not a�ected by the overweight of graph traversal or ine�cient resources of the

machine from time to time.

For generating a reliable system and prevent over-�tting of the whole system, we

used cross-validation in RECO's evaluation phase. Since evaluations were being

calculated based on the logs, we were simply creating those cross validations in

real time by providing users di�erently ranked set of videos. Di�erently ranked

set of videos are either same video appearing in a di�erent ranking than before

in the recommended set or a video that has not been recommended before. By

56

Figure V.1: Histogram of load-times of the recommendations on the video pages

57

doing that and logging the ranking of each recommended video in the set, we

tracked and cross validated our results in the processing part of the evaluation.

We made our calculations for each group, which were divided based on each

video's di�erent ranking positions, separately and then compared and merged

them.

Below we will be explaining those two metrics and some other analyses we made

in detail.

V.3 E�ects of Time on Recommendations

As we mentioned earlier, we measure everything in RECO. That includes the

time a user watches a video and if user was directed to the video from a recom-

mended video or not. So we wanted to evaluate the e�ects of time on recom-

mendations to see if we could di�erentiate our recommendations to a user on

di�erent times with di�erent recommendations.

We made an analysis based on our measurements of time and clustered the

videos and compared it with our current system. We used one million lines

of video watch logs and used cross-validation with a percentage of %20. We

found that RECO was already clustering videos based on time since users had

di�erent motives on di�erent times and RECO could cluster those motives very

successfully. For example a worker was watching news videos before s/he goes

to work and a student was watching game videos when s/he comes to home

after school afternoon. RECO could even detect sudden behavioural changes,

for instance in the afternoons general pro�le of housewives are watching TV

shows or fashion videos but in Ramadan bairam they were watching meal recipe

videos. Those general behavioural patterns were already discovered in RECO.

So we started thinking about cases like what if the same video was being watched

by two di�erent users on di�erent motives at the same time. For example a game

video can be a fun time for a gamer but can be a technical issue for a researcher.

We tried to �nd a way to di�er those two motives based on time but we saw

that this is not possible because two di�erent users watching same video with

58

di�erent motives can not be distinguished unless they are generally observed

by patterns on our graph, meaning they create paths with high weighted edges

describing their di�erent behaviours.

We can conclude that RECO favors majority's behaviour over minority.

V.4 E�ects of Age Groups and Gender

In RECO, we also show surveys to users time to time and we save the answers

of users to their speci�c pro�les in HBase. This is totally for the needs of

advertising works. We ask questions like which car brand would you prefer or

are you interested in child related products or which age range do you �t in or

what is your gender and etc.

We wanted to measure the behaviours of users based on gender and age groups

of them by using those survey answers. Since not all of the users answer those

surveys this analysis can not be generalized to all of the users but can guide us

for future analyses.

We had two gender groups male, female and four age groups 16-25, 25-34, 34-45,

45- . First thing we noticed was the huge di�erence of video watch counts for

females having age 34-45 against others in work hours. This was not a surprise

for us because most of our users are housewives. In addition, 16-25 age group of

males were watching lots of game and fashion videos in work hours. This also

was not a surprise because male students' main interest areas are fashion and

game category videos and since they do not work in day time they have the free

time to watch those videos.

Our analysis was based on users who answered survey questions and we used

300.000 users in this analysis. In table 5.3 you can �nd amount of users based

on age group and gender.

59

TableV.3: Number of users based on age group and gender

Gender Age Group Total Count

Male 16-25 34324
Male 25-34 31204
Male 34-45 53047
Male 45- 29204

Female 16-25 28084
Female 25-34 30906
Female 34-45 46806
Female 45- 56168

60

CHAPTER VI

CONCLUSION AND FUTURE WORK

içioz

VI.1 Conclusion

When we were creating RECO our aims were:

• To be able to �nd the video-watch behaviour patterns of users

• Being able to produce fast, accurate recommendations to users

• Creating a recommendation framework for video recommendation by using

up to date technologies and state of the art algorithms

We managed doing these. Our framework is being run on a big video site right

now and results are better than expected.

In this thesis, we explained various recommendation algorithms and focused on

hybrid recommendation algorithms since RECO uses hybrid recommendation

system algorithm. We explained the motives to build RECO, the system that

were being used before and why it did not suit our needs and how we built

RECO to suit those needs.

We talked about the technologies we used. We wanted to use the recent tech-

nologies and in every part of RECO a di�erent recent technology is being used

which were explained in detailed.

61

Figure VI.1: 27 August 2013 Genre based radio plays

Since RECO consists of many di�erent algorithms, we explained each of them

with their bene�ts and reasons for creating them and using in RECO.

In the end, we evaluated RECO based on its results compared with its prede-

cessor and shared some interesting results.

To sum up, we created a robust and fast hybrid video recommendation frame-

work using recent technologies which can handle one million users and four

million videos easily.

VI.2 Future Work

RECO can be improved in two ways, adding a new successful algorithm or

improving weight distribution method. Since we have enormously big data, we

can easily extract data from our Hbase as shown on �gure 6.1 .

Since that kind of data is accessible and extractable, if that kind of speci�c

distinct types of genres are not a coincidence but a pattern, then we can use

62

latent-factor analysis and further improve RECO with another algorithm.

In addition, new technologies can further improve accuracy and execution of

RECO too. Adding or replacing new technologies with the existing ones can be

a future work too.

63

64

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions.
Knowledge and Data Engineering, IEEE Transactions on, 17(6):734�749,
2005.

[2] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules.
In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, pages
487�499, 1994.

[3] A. M. Ahmad Was�. Collecting user access patterns for building user pro-
�les and collaborative �ltering. In Proceedings of the 4th international con-

ference on Intelligent user interfaces, pages 57�64. ACM, 1998.

[4] X. Amatriain. Mining large streams of user data for personalized recom-
mendations. ACM SIGKDD Explorations Newsletter, 14(2):37�48, 2013.

[5] Apache. Apache hadoop, 2014. [Online; accessed 23-January-2014].

[6] Apache. Apache hbase, 2014. [Online; accessed 23-January-2014].

[7] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, vol-
ume 463. ACM press New York, 1999.

[8] M. Balabanovi¢. An adaptive web page recommendation service. In Pro-

ceedings of the �rst international conference on Autonomous agents, pages
378�385. ACM, 1997.

[9] M. Balabanovi¢. Exploring versus exploiting when learning user models
for text recommendation. User Modeling and User-Adapted Interaction,
8(1-2):71�102, 1998.

[10] C. Basu, H. Hirsh, W. Cohen, et al. Recommendation as classi�ca-
tion: Using social and content-based information in recommendation. In
AAAI/IAAI, pages 714�720, 1998.

[11] J. Bennett and S. Lanning. The net�ix prize. In Proceedings of KDD cup

and workshop, volume 2007, page 35, 2007.

[12] T. Berners-Lee, R. Cailliau, J.-F. Gro�, and B. Pollermann. World-wide
web: the information universe. Internet Research, 2(1):52�58, 1992.

65

[13] D. Billsus and M. J. Pazzani. Learning collaborative information �lters. In
ICML, volume 98, pages 46�54, 1998.

[14] D. Billsus and M. J. Pazzani. User modeling for adaptive news access. User
modeling and user-adapted interaction, 10(2-3):147�180, 2000.

[15] A. Bouza, G. Reif, A. Bernstein, and H. Gall. Semtree: Ontology-based de-
cision tree algorithm for recommender systems. In International Semantic

Web Conference (Posters & Demos). Citeseer, 2008.

[16] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predic-
tive algorithms for collaborative �ltering. In Proceedings of the Fourteenth

conference on Uncertainty in arti�cial intelligence, pages 43�52. Morgan
Kaufmann Publishers Inc., 1998.

[17] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predic-
tive algorithms for collaborative �ltering. In Proceedings of the Fourteenth

conference on Uncertainty in arti�cial intelligence, pages 43�52. Morgan
Kaufmann Publishers Inc., 1998.

[18] R. Burke. Hybrid recommender systems: Survey and experiments. User

modeling and user-adapted interaction, 12(4):331�370, 2002.

[19] R. Burke. Hybrid web recommender systems. In The adaptive web, pages
377�408. Springer, 2007.

[20] R. D. Burke, K. J. Hammond, and B. Yound. The �ndme approach to
assisted browsing. IEEE Expert, 12(4):32�40, 1997.

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer Sys-

tems (TOCS), 26(2):4, 2008.

[22] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and
M. Sartin. Combining content-based and collaborative �lters in an on-
line newspaper. In Proceedings of ACM SIGIR workshop on recommender

systems, volume 60. Citeseer, 1999.

[23] M. K. Condli�, D. D. Lewis, D. Madigan, and C. Posse. Bayesian mixed-
e�ects models for recommender systems. In Proc. ACM SIGIR, volume 99.
Citeseer, 1999.

[24] M. Eirinaki, C. Lampos, S. Paulakis, and M. Vazirgiannis. Web person-
alization integrating content semantics and navigational patterns. In Pro-

ceedings of the 6th annual ACM international workshop on Web information

and data management, pages 72�79. ACM, 2004.

66

[25] A. Felfernig and R. Burke. Constraint-based recommender systems: tech-
nologies and research issues. In Proceedings of the 10th international con-

ference on Electronic commerce, page 3. ACM, 2008.

[26] A. Felfernig, K. Isak, K. Szabo, and P. Zachar. The vita �nancial ser-
vices sales support environment. In PROCEEDINGS OF THE NATIONAL

CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 22, page
1692. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2007.

[27] R. Ghani and A. Fano. Building recommender systems using a knowledge
base of product semantics. In Proceedings of the Workshop on Recommen-

dation and Personalization in ECommerce at the 2nd International Con-

ference on Adaptive Hypermedia and Adaptive Web based Systems, pages
27�29, 2002.

[28] M. Gr£ar, D. Mladeni£, B. Fortuna, and M. Grobelnik. Data sparsity issues
in the collaborative �ltering framework. Springer, 2006.

[29] J. Han, E. Haihong, G. Le, and J. Du. Survey on nosql database. In Perva-

sive computing and applications (ICPCA), 2011 6th international confer-

ence on, pages 363�366. IEEE, 2011.

[30] J. Hannon, M. Bennett, and B. Smyth. Recommending twitter users to
follow using content and collaborative �ltering approaches. In Proceedings

of the fourth ACM conference on Recommender systems, pages 199�206.
ACM, 2010.

[31] F. Holzschuher and R. Peinl. Performance of graph query languages: com-
parison of cypher, gremlin and native access in neo4j. In Proceedings of the

Joint EDBT/ICDT 2013 Workshops, pages 195�204. ACM, 2013.

[32] S. H. Hsu, M.-H. Wen, H.-C. Lin, C.-C. Lee, and C.-H. Lee. Aimed-a
personalized tv recommendation system. In Interactive TV: a Shared Ex-

perience, pages 166�174. Springer, 2007.

[33] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Sci-

ence & Engineering, 9(3):90�95, 2007.

[34] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30�37, 2009.

[35] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.
In Foundations of Computer Science, 1989., 30th Annual Symposium on,
pages 256�261. IEEE, 1989.

[36] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative
�ltering for improved recommendations. In AAAI/IAAI, pages 187�192,
2002.

67

[37] B. Mobasher. Data mining for web personalization. In The Adaptive Web,
pages 90�135. Springer, 2007.

[38] Myrrix. Myrrix, 2014. [Online; accessed 23-January-2014].

[39] A. Oghina, M. Breuss, M. Tsagkias, and M. de Rijke. Predicting imdb
movie ratings using social media. In Advances in Information Retrieval,
pages 503�507. Springer, 2012.

[40] O. Osmanli and I. Toroslu. Using tag similarity in svd-based recommen-
dation systems. In Application of Information and Communication Tech-

nologies (AICT), 2011 5th International Conference on, pages 1�4. IEEE,
2011.

[41] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: bringing order to the web. 1999.

[42] Pandas. Pandas, 2014. [Online; accessed 23-January-2014].

[43] M. Pastorelli. Scalding programming model for hadoop, 2014. [Online;
accessed 23-January-2014].

[44] M. Pazzani and D. Billsus. Learning and revising user pro�les: The identi-
�cation of interesting web sites. Machine learning, 27(3):313�331, 1997.

[45] M. J. Pazzani. A framework for collaborative, content-based and demo-
graphic �ltering. Arti�cial Intelligence Review, 13(5-6):393�408, 1999.

[46] B. Ribeiro-Neto, M. Cristo, P. B. Golgher, and E. Silva de Moura.
Impedance coupling in content-targeted advertising. In Proceedings of the

28th annual international ACM SIGIR conference on Research and devel-

opment in information retrieval, pages 496�503. ACM, 2005.

[47] J. J. Rocchio. Relevance feedback in information retrieval. 1971.

[48] G. Salton. Automatic text processing. Science, 168(3929):335�343, 1970.

[49] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and
J. Riedl. Using �ltering agents to improve prediction quality in the grou-
plens research collaborative �ltering system. In Proceedings of the 1998

ACM conference on Computer supported cooperative work, pages 345�354.
ACM, 1998.

[50] M. Sattari, M. Manguoglu, I. H. Toroslu, P. Symeonidis, P. Senkul, and
Y. Manolopoulos. Geo-activity recommendations by using improved feature
combination. In Proceedings of the 2012 ACM Conference on Ubiquitous

Computing, pages 996�1003. ACM, 2012.

68

[51] G. Shani, R. I. Brafman, and D. Heckerman. An mdp-based recommender
system. In Proceedings of the Eighteenth conference on Uncertainty in arti-

�cial intelligence, pages 453�460. Morgan Kaufmann Publishers Inc., 2002.

[52] B. Smyth and P. Cotter. A personalised tv listings service for the digital
tv age. Knowledge-Based Systems, 13(2):53�59, 2000.

[53] S. Spiegel, J. Kunegis, and F. Li. Hydra: a hybrid recommender system
[cross-linked rating and content information]. In Proceedings of the 1st ACM
international workshop on Complex networks meet information & knowledge

management, pages 75�80. ACM, 2009.

[54] C. J. Tauro, S. Aravindh, and A. Shreeharsha. Comparative study of the
new generation, agile, scalable, high performance nosql databases. Interna-
tional Journal of Computer Applications (0975�888) Volume, pages 7461�
0336, 2012.

[55] R. C. Taylor. An overview of the hadoop/mapreduce/hbase framework and
its current applications in bioinformatics. BMC bioinformatics, 11(Suppl
12):S1, 2010.

[56] T. Tran and R. Cohen. Hybrid recommender systems for electronic com-
merce. In Proc. Knowledge-Based Electronic Markets, Papers from the

AAAI Workshop, Technical Report WS-00-04, AAAI Press, 2000.

[57] S. Trewin. Knowledge-based recommender systems. Encyclopedia of library
and information science, 69(Supplement 32):69, 2000.

[58] B. G. Tudorica and C. Bucur. A comparison between several nosql
databases with comments and notes. In Roedunet International Confer-

ence (RoEduNet), 2011 10th, pages 1�5. IEEE, 2011.

[59] Twitter. Scalding, 2014. [Online; accessed 23-January-2014].

[60] A. Wang et al. An industrial strength audio search algorithm. In ISMIR,
pages 7�13, 2003.

[61] Wikipedia. Google news � wikipedia, the free encyclopedia, 2014. [Online;
accessed 23-January-2014].

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Thesis organization

	RELATED WORK
	Content Based
	Collaborative Filtering
	Neighbourhood Methods
	Latent Factor Models
	Explicit Feedback
	Implicit Feedback
	Matrix Factorization

	Memory Based Collaborative Filtering Algorithms
	Model Based Collaborative Filtering Algorithms

	Knowledge Based
	Hybrid Recommendation Systems
	Weighted
	Switching
	Mixed
	Feature Combination
	Feature Augmentation
	Cascade
	Meta Level

	Problems in Recommendation Systems

	TECHNOLOGIES USED
	Databases
	Key – Value Stores
	Big Table
	Document Databases
	Graph Databases

	Analyzing Tools
	Scalding
	Python libraries
	Pandas
	Matplotlib
	Scikit-learn

	RECO
	Myrrix
	Reverse engineering Youtube
	Weights
	Algorithms
	Collaborative Filtering Algorithm
	Content Based Algorithm
	Music Algorithm
	Boosted Algorithm
	Unseen Algorithm

	EVALUATION
	Accuracy
	CTR
	NUVR

	Execution
	Effects of Time on Recommendations
	Effects of Age Groups and Gender

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES

