GRAVITOMAGNETISM IN GENERAL RELATIVITY AND MASSIVE
GRAVITY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GOKCEN DENIZ OZEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
PHYSICS

SEPTEMBER 2014






Approval of the thesis:

GRAVITOMAGNETISM IN GENERAL RELATIVITY AND
MASSIVE GRAVITY

submitted by GOKCEN DENIZ OZEN in partial fulfillment of the require-
ments for the degree of Master of Science in Physics Department, Middle
East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Zeyrek
Head of Department, Physics

Prof. Dr. Bayram Tekin
Supervisor, Physics Department, METU

Examining Committee Members:

Prof. Dr. Atalay Karasu
Physics Department, METU

Prof. Dr. Bayram Tekin
Physics Department, METU

Prof. Dr. Altug Ozpineci
Physics Department, METU

Assoc. Prof. Dr. Aykutlu Dana
Institute of Materials Science and Nanotechnology;,

Bilkent University

Dr. Ibrahim Giillii
Physics Department, METU

Date:




I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: GOKCEN DENIZ OZEN

Signature

v



ABSTRACT

GRAVITOMAGNETISM IN GENERAL RELATIVITY AND MASSIVE
GRAVITY

Ozen, Gokcen Deniz
M.S., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

SEPTEMBER 2014, [61] pages

In this thesis gravitomagnetic effects are analysed in some detail. Einstein’s
equations for weak gravitational fields are derived. Using appropriate gauge fix-
ings, metric perturbation is decomposed and degrees of freedom are identified.
Physical degrees of freedom are chosen and it is proven that they character-
ize the propagation of gravitational waves. Production of gravitational waves
is demonstrated as well as their effects on the polarization of test particles.
Analogs of the Maxwell’s equations are derived for gravity. From the analysis
of the scattering amplitude, potential energy is found for massive and massless
gravity theories, the appropriate spin alignment for minimum potential energy is
calculated and the difference between general relativity and the massive gravity
for this spin alignment is shown. In the Appendix, some useful calculations are
given. Save for some details in the computations, no originality in this thesis
is claimed. Somewhat standard material about weak field gravity, gauge fixings

and degree of freedom counting follows closely the discussion in Chapter 7 of



Carroll’s excellent book. Chapter 2 of the thesis closely follows Harris’s paper
"Analogy between general relativity and electromagnetism for slowly moving
particles in weak gravitational fields". Chapter 3 of this thesis is a review of
the paper Giillii-Tekin "Spin—spin interactions in massive gravity and higher

derivative gravity theories".

Keywords: Gravitomagnetism, Linearized Gravity, Gravity Waves, Spin Align-

ment in Massive Gravity
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KUTLELI CEKIM VE GENEL GORELILIKTE CEKIMSEL MANYETIZMA

Ozen, Gokcen Deniz
Yiiksek Lisans, Fizik Boliimii
Tez Yoneticisi : Prof. Dr. Bayram Tekin

Eylil 2014 |, [61] sayfa

Bu tez calismasinda, ¢ekimsel manyetik etki ayrintili olarak analiz edildi. Zayif
¢ekim alanlari i¢in Einstein denklemleri tiiretilmigtir. Uygun ayar doniigtimleri
kullanilarak metrik tedirgemeleri ayristirilmig ve serbestlik dereceleri tanimlan-
mistir. Bu serbestlik derecelerinin fiziksel olanlari se¢ilmis, ve gravitasyonel dal-
galarin yayilmasini tanimladiklar: ispatlanmigtir. Gravitasyonel dalgalarin nasil
meydana geldigi ve bu dalgalarin test parcaciklarini nasil polarize ettigi gos-
terilmistir. Cekimsel alan i¢in Maxwell denklemlerinin analoglari bulunmustur.
Sagilma genligi kullanilarak, kiitleli ve kiitlesiz teori i¢in potansiyel enerji bu-
lunmus, bu potansiyel enerjiyi minimum yapan spin uyumu hesaplanmis ve bu
uyumun genel gorelilik ve kiitleli teori i¢in farkli oldugu gosterilmistir. Ek bo-
liimde baz1 yararh hesaplar verilmistir. Hesaplamalardaki bazi ayrintilar diginda,
bu tezde 6zgiinliik iddia edilmemektedir. Zayif alan kiitlegekimi, ayar sabitleme-
leri ve serbestlik derecesi sayimu ile ilgili oldukg¢a standard konular, Carroll'un

miikemmel kitabinin 7. bolimiinii yakindan takip etmektedir. Bu tezin 2. bo-
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limii Harris’in "Analogy between general relativity and electromagnetism for
slowly moving particles in weak gravitational fields" makalesini takip etmekte,
3. boliimii de Giillii-Tekin "Spin—spin interactions in massive gravity and higher

derivative gravity theories" makalesini incelemektedir.

Anahtar Kelimeler: Cekimsel Manyetizma, Linerize Kiitlecekimi, Kiitlecekim

Dalgalari, Kiitleli Teoride Spin Uyumu
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CHAPTER 1

INTRODUCTION

1.1 Introduction

"If we pick up a stone and then let it go, why does it fall to the ground 7" [I].
Newton’s reply to this question was the attraction between the earth and stone.

In his book Principia in 1687, he formulated the force between two masses as

—Gm1m2
F = s (1.1)

where G is the Newton’s gravitational constant and m; and my are the masses of
the particles. Minus sign indicates that the force is attractive. In the following
centuries, Newton’s law gave successful explanations of the motion of the
moon and the planets [2]. The discovery of Uranus was one of the examples of
this success [3]. Over the years, some irregularities in its orbit emerged. It was
detected that Uranus insistently moved away from its expected Newtonian path.
It was suggested that, the deviation between the calculation and the observation
could be the result of the perturbation of an unknown planet [4]. Using the
Newton’s law, the location of this new planet, Neptune, was predicted and it was
observed at that location [3, [5]. This resolution could also give an explanation
about precession of Mercury’s perihelion precession. It was calculated that, the
observed precession was faster than the expected one according to Newton’s
theory. This discrepancy would exist because of small planets between Mercury
and the Sun, but these planets were never observed [2|. Fortunately, there
was a remedy for this trouble. The explanation came with the replacement of

Newtonian theory with the Einsteinian one [5].
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General Relativity (GR) is the theory of space, time and gravitation [6]. As the
matter bends its vicinity; it creates curvature which is the source of gravitation.
Matter is energy, hence we can say that there is a relationship between energy
and the curvature. Curvature is defined by the Riemann tensor and energy mo-
mentum tensor is an attribute of matter; in other words it is a measure of energy,
momentum, pressure and stress of the matter. Mathematical interpretation of
these information leads us to Einstein’s equation:

1
R, — EQWR = 8nG1T,, (1.2)

which is the basic equation of the GR. R,,, 9w, R,T,, are Ricci tensor, metric
of the space-time, Ricci scalar and the covariantly conserved energy momentum
tensor, respectively. Ricci tensor is calculated from contraction of Riemann
tensor; therefore, left-hand side of represents the curvature of space time
whereas the right-hand-side is the measurement of the energy and its partners.
Similar to the other field equations, Einstein’s equation is postulated and can
not be proven by using any other principles. We can reach it by the motivation
of some arguments. We can find the equation of motion by using the least
principle action; therefore varying the Einstein-Hilbert action is a route to reach

the Einstein’s equation [7].

After Einstein’s equation was proposed, it was immediately applied to the prob-
lem of Mercury’s orbit. By the guidance of the Schwarzschild solution, the
perihelion precession of Mercury was calculated and the answer from the calcu-
lation precisely matched the observed value [2], 3] [5, 6] [7, 14]. Also, by passing
the tests such as the bending of light by the Sun and the gravitational redshift
of light, it was proven that the power of GR was not limited to the Mercury’s
orbit.

Gravitomagnetism, which is a natural consequence of general relativity, can be
described as an analogy between the equations of electromagnetism and those
in general relativity, precisely between Maxwell and Einstein’s field equations
[8]. We know that a charge generates an electric field which is proportional to
1/r%, where r is the distance between the charge and the point chosen. We also

know that, we will experience a magnetic field, if this charge starts to move and



mathematical expression of this relationship is given by Maxwell’s equations.
Thanks to Newton, we have no doubt in the existence of gravitational field due
to a mass. We know that almost every object in the heavens rotate around itself
and revolve around another object. Therefore it will not be weird to say that
like a magnetic field in electromagnetism, we can describe a gravitomagnetic
field when a massive object rotates or moves. If there exists such an analogy,
then it has to be supported by equations. In Chapter 1, we will show that the
time component of the metric is responsible from the gravitoelectro field [6l, 9].
In Chapter 2, we will derive this set of equations in general relativity, which
are analogs of Maxwell equations in electromagnetism. To do this, we will use
the Einstein’s equation. For an isolated, slowly moving object in a weak grav-
itational field, we can linearize the field equations by decomposing the metric
into flat metric plus a perturbation. With these linearized equations and the
appropriate components of the metric perturbation, the analogous equations of
electromagnetism can be derived easily in gravity [10].

Despite these successful solutions and predictions, like Newton’s theory, there
are some observations that GR cannot explain without recourse to additional
(dark) matter and (dark) energy in the Universe [5]. The data taken from the
supernova explosions point out that the Universe has an acceleration in its ex-
pansion and it leads us to the cosmological constant A [5 11, 12] 13]. If GR is
totally accurate, then we have to experience a dark energy component which can
be represented by the cosmological constant, A, added to the Einstein-Hilbert
action. If we compare the values of energy density p emerged from the exper-
iments and the theory, we will see that a contradiction occurs between these
results. The inconsistency between theory and experiments shows that GR is
not the whole story, hence it must be modified [2, [5, 13}, [15].

A theory of massive gravity is a way to modify the theory of general relativity
by adding a mass term to the Einstein- Hilbert action. It was first studied by
Pauli-Fierz in 1939, therefore the the added mass is called as "Fierz-Pauli (FP)
mass" [13], which alters the interaction between two massive objects as well as
the interaction between a massive one and the light. But there was a difference
between this massive theory and GR in the prediction of the bending of light.

As GR reduces to Newton’s theory in some limits, we expect that in the limit



of zero mass, results of FP theory should match with those of GR since it is
a massless theory. Instead, an inconsistency arises, which is known as the van
Dam-—Veltman—Zakharov (vDVZ) discontinuity. We know that experiments on
the bending of light coincides with GR, therefore FP theory needs a correction
[15, [16]. This discontinuity can be removed if we first introduce a cosmological
constant and take the limit MTE; — 0 [I7]. But clearly this is not a satisfactory
solution. We can describe the interaction between two massive objects by de-
termining the h,,. We can accomplish it by using F'P theory whose equations
are

m2

1
RMV — égle + T(hwj — gwjh) = 87TGTMV. (13)

We still require that the energy-momentum tensor is covariantly conserved
(VI = 0). Therefore, because of the Bianchi identity V,(R* — 1g" R) =0,
we have m?(V,h** — V”h) = 0. As we can derive Einstein’s equation from the
Einstein-Hilbert action by using calculus of variations, we can also derive the
FP equation from the FP action. One important note about the FP equation
is that it necessarily is linear in h,, which is not a full tensor in spacetime but
only a tensor with respect to the background metric §,, = g — hy. Therefore
in some sense FP theory is not a complete non-linear theory of massive gravity.
It should be considered as a linear theory whose non-linear extension must be
found. Recently, such a non-linear extension of FP massive gravity was found
in [I8], 19]. All non-linear extensions of FP theory eventually are built upon FP
theory, hence at the linear level massive gravity is FP theory. In this thesis,
gravitomagnetic effects at the linear order are studied, therefore we will not say
much about the non-linear ones.

The outline of the thesis is as follows: In the next sections of this chapter
linearized gravity is discussed in detail. In a weak field, metric is written as
9y = Ny + Ny, where hy,, is the metric perturbation. By using this metric, we
calculate the tools to write Einstein’s equations in this weak field. After that, we
examine the perturbation by decomposing it into the scalar, vector and tensor
components. Using the appropriate gauge transformations, we finally reach the
degrees of freedom and prove that some of them are not physical, in other words,

they do not represent the propagation of gravitational waves. Then gravitational
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waves are studied. To find the gravitational wave solutions, we use transverse
traceless gauge and find that the propagating degrees of freedom are the tensor
components of the metric perturbation. By studying them, we understand the
polarization of the test particles due to gravitational waves. The second chapter
is devoted to gravitomagnetic effect. If there is a relation between gravity and
electromagnetic theory, then we must find the analogs of Maxwell’s equations in
the gravitation theory. By studying the linearized field equations of gravity, we
will reach this analogy. In the third chapter, FP theory is studied up to a point.
Adding the mass to Einstein-Hilbert theory gives us to FP action [5]. Instead
of this, we will use the scattering amplitude which tells the whole story of the
interaction between two masses. We skip the calculation of the scattering am-
plitude and use it to find the potential for massive and the massless cases. After
that, we show the spin alignments for the minimum energy configuration and
prove that they are different for GR and massive gravity. Then the conclusion
part comes. Also, an appendix part is added for some useful calculations.

This thesis is based on the papers by Harris "Analogy between general relativity
and electromagnetism for slowly moving particles in weak gravitational fields"
and by Giillii-Tekin "Spin—spin interactions in massive gravity and higher deriva-
tive gravity theories" respectively. The standard material on linearized gravity

heavily depends on Carroll’s excellent book [6].

1.2 Linearized Gravity

In this section, the linearization of the Einstein’s equation about flat background
and a gauge transformation, which ensures that the linearized theory is invariant
under infinitesimal diffeomorphisms, are discussed. By linearization we mean
that we are studying the weak field regime of the theory. In this weak field, we
can decompose our metric into background metric and a small perturbation. By
using this decomposition, linearized equations are discussed first. At the end of

this part, a suitable gauge choice is introduced.



1.2.1 Linearized Einstein Theory

What we mean by weak gravitational field is that the exact spacetime metric

can be written as a sum of flat background metric and a perturbation,
Guv = Muw + hw/a | h;w |<< 1. (14)

We assume that the perturbation h,, is so small that we can ignore terms higher
than the first order in the relevant quantities. Smallness of a tensor quantity is
somewhat ambiguous, but what we mean here is that there is a set of coordinate
systems where the statement is valid. We take the flat background metric as
N = diag(—1,1,1,1). To find the inverse of the metric we take g"* = n**+ah!”,

then we have

99" = M + Py ) (0”7 + ah™?)
87 = 67 + anu "™ + 1"y + b by, (1.5)

Since the last term is in the second order, it vanishes at the lowest order, hence
a = —1. Therefore, we obtain the inverse of the metric as g = n** — h*
at this order. It is crucial to note that h,, is not a tensor because it does not
transform like a tensor under general coordinate transformation. Instead, we can
define it as a symmetric tensor field propagating on a flat background spacetime.
Therefore, in the weak field regime the metric perturbation transforms as h’W =
A AP, hapg, which means that linearized gravitational theory is invariant under
Lorentz transformations [20].

We want to find the linearized Einstein’s equation in this weak gravitational

field. To do this, we have to compute the Christoffel symbols first, which are

1
FZV = §gp>\ (augx\u + 8Vg)\u - a)xg;w) )

1
= S = 1) [0u(hr + ) + 00 (s + hyun) = O\(r + )] - (1.6)

Multiplication of h,, to itself is the second order in perturbation. Then by

neglecting all the second terms in (|1.6) we get

1
FZV = 57710)\ (a,uh‘l/)\ + al/h/\y, - a)\hp,z/) X (17)



from which we conclude that I'? has the second order terms. Therefore only the

derivative of the connection coefficient appears in the Riemann tensor, which is

= nlﬁ\(apri\a - aUFip)’ (18)
By inserting (1.7]) in (1.8)), one is left with the linearized Riemann tensor
1
Rvpe = 5(6,)8,,%0 + 0,0,hup — 0,0,he — 05,0,Ry). (1.9)

Contracting Riemann tensor over the indices p and p with the flat metric gives

us the linearized Ricci tensor as
1
R, = 5(@@6@ + 8,0,h — 8,0,h — Ohyy), (1.10)

where we have defined h = n*"h,, = h* , and the d’Alambertian operator as
0= 0,0" = =0} + 02 + 0] + 07. Contracting the linearized Ricci tensor gives

us the linearized Ricci scalar,
R =n"R,, = 0,0,h" —Oh. (1.11)

Putting all these objects together gives the Einstein’s tensor as

1
G/W = Rﬂl’ — ig“l/R
1
= S (OhDuh) + 0,0, — 0,0,h — Dhy)
1
- 5(7]#1/ + hyu)(auauh/w - Dh) (1.12)

If we omit all the second order terms in ([1.12]), we finally obtain the linearized

Einstein’s tensor as,
1
G = 5(020uhy + 0,0,hf; = 0,0l — Oy = 0 0p0ah" + 1, 0R). (1.13)

Therefore the linearized Einstein’s equation in the weak gravitational field is
G = 87GT,,, where G, is given by (1.13)) and 7, is the energy momentum

tensor.

1.2.2 Gauge Transformation

When Einstein formulated General Relativity, coordinate invariance (implicitly)

played a major role: Namely, physics should not depend on the choice of the

7



coordinates. For example, a measurable quantity in the z* coordinates should

be left invariant or should transform as a tensor under a change of coordinates
ot — o = fr(a). (1.14)

Specifically the metric transforms as a (0, 2) rank tensor as

. 0z 02
guy(x) = o'k Wgaﬁ)(x) (115)

We can now ask what is left from this coordinate transformation when we de-

compose the metric as

Guv ::nuu‘+'huu~ (1.16)

Let us assume a small coordinate transformation of the form z/* = z# — e#(x),

where €* is small. Then

G () = (83 4 04€*) (8] + 06" ) gas
= G () + &,eﬁgw + Ou€” o + O(¢?)
= g (x) + 0u€, + Op€,,. (1.17)

Expanding the left hand side as g, (v —€) = g,,,(z) — €*0ag,. () and writing

9y (%) = Ny + R, (), we get at this order how h,,(z) transforms
W, () = hy () + Opey () + 0peu(). (1.18)

In what follows we define €, = €§,. This formula is called a gauge transformation
along a vector field £, for weak gravitational fields. It shows how the metric
perturbations in different coordinate systems differ from each other. Now, let us

verify that curvature of a spacetime is invariant under this gauge transformation.

/

To do this, we define the Riemann tensor in the new coordinate system as R,,,, .,

which is

nvpo

1
R/ = é(apayh;w. + a,u,aoh:/p - aﬂaph;”" o agayh'/up)
1
= 510500 (hyio + 2€0065)) + 0o (B + 26001)

— 3,0, (how + 2€0(561)) — 0Oy (hyp + 2€0,E)], (1.19)



where A/, is obtained by transforming h,, according to (1.18). Therefore the

/

change in the Riemann tensor, R, ,,

— Rvpe = ORpo, 18
5R,Wpa = 6,,8V68(M£U) + 808M66(p§,,) - 3paM€8(af,,) - 6081/68(#5,0)
= 0. (1.20)

This result tells us that different metric perturbations which are related to ([1.18|)

have the same curvature, therefore the same physical situation [21].

1.3 Degrees of Freedom

The existence of gauge transformations suggest that not all ten components of
the symmetric tensor h,, are physical or true degrees of freedom. In this sec-
tion, we obtain these degrees of freedom using algebraic and additional decom-
positions. With the former we decompose the metric perturbation into scalar,
vector and tensor pieces, which transform into themselves under spatial trans-
formations. Then by the latter, we decompose the elements of these pieces such
that none of them can be further decomposed, namely they become irreducible
representations of the rotation group. Therefore we obtain the irreducible com-
ponents of Ay, hence the ten degrees of freedom. We rewrite the Einstein’s
equation in terms of the components of h,,,, from which we can pick the physi-
cal degrees of freedom. We also introduce some examples of gauges which can be
suitable for different circumstances. We examine this section in three parts. In
the first part, we introduce the algebraic decomposition and identify the physical
degrees of freedom. After that we obtain the Einstein’s equation for different
gauges which will be handy in the following sections. In the last part, we intro-
duce additional decomposition and obtain all degrees of freedom which can not
be decomposed any other small pieces. We use the notations and conventions

of Caroll’s book [6].

1.3.1 Components of The Metric Perturbation

As we have mentioned above, we decompose the metric perturbation h,, into

three parts: The 00 component is a spatial scalar, the 0i components are spatial



three vectors and the 77 components are the symmetric spatial tensors, which

are
hoo = —20
hoi = w;
hij = 2s;5 — 2W0;;. (1.21)

Where ¥ contains the trace of h;; and s;; is the strain tensor which is traceless.
Hence it can be found as
1 ...
U = —ééw hij

1 1
Sij = §(hz‘j - §5klhkz5zj)- (1.22)

We know that the full metric is defined as,
ds? = Gudxtdz” = (nu, + hy)datdx” . (1.23)

If we use the decomposition of metric and put the corresponding components

into the equation , we obtain
ds® = —(1 4 2®)dt* + w;(dtdz’ + dx'dt) + ((1 — 2W)d;; + 2s;5) da'da’.  (1.24)

If we examine the geodesic equation, we can find the fields which determine the
motion of the test particles moving in gravitational field. In the previous section,
we derived the Christoffel symbols. If we use the corresponding perturbation

components, we obtain

1
TG = énw(aohox + dohox — Oxhoo). (1.25)

It survives only for A = 0, otherwise n°* = 0, which means that only hg appears

in the equation. Since hgy = —2P, we get
I'h, = 0. (1.26)
For p,o,p =1,0,0, the Christoffel connection becomes,

1
Lo = 577M(3ohox + Gohox — Oxhoo), (1.27)

which survives only for A = 7. With the related components of the perturbation,

it reads

10



From ((1.7)), the 070 component of the connection coefficient is,
1
F?o = 5770>\(8jh0/\ + Oohjx — Orho;). (1.29)
As it is noticed easily, hgy is the only survivor then one has

1% = 0,®. (1.30)

If we carry on this procedure, we obtain the rest of the connection coefficients

as,
i 1
I = Owy + §3ohij
0 1
L = —0ywr) + §8Ohjk
; 1
I = Oilwy — §aihjk, (1.31)
1 1
where A;Bj) = §(AiBj —A;B;) and A;Bj) = E(AiBj + A, B;). These equations

will be very useful in computing the geodesic equation.

In an inertial frame, components of the four momentum are

dax®
0
= - E
P
) dz? )
f = = Ev'. 1.32
p=—r =B (1.32)
If we rewrite the geodesic equation in terms of the components of momentum,
we obtain
dp*
— 4+ T% pp? = 0. 1.33
o T LeeP'p (1.33)
dp*  dt dp*
If we manipulate the first term, we get % = 5% Plugging this result into
(1.33) gives
dp” pp°
— =—I* . 1.34
B~y (134
For =0, (1.34]) describes the evolution of the energy (or power),
dE 1 :
—:——FO 0,0 FQ’LO’ 1.
dt E( ocP P + icP D ) ( 35)

with the related Christoffel symbols and components of the momentum tensor,
this equation becomes,

dE

1 )
— = —E[0o® + 20 @)0" — (e — SO0l )0 ") (1.36)
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For pn = 4, (1.34) describes the spatial components of the geodesic equation,

which are

dp’ . pPp°
B, . 1.
dt TR (1.37)

Inserting the appropriate terms gives us,

)

dp
dt

. 1 )
= —E[@Q) + 80wi + 2(8[2003] + 80hij)vj -+ (8(]hk)l - §8ihjk)vjvk]. (138)
Let us define the gravitoelectric and the gravitomagnetic three vector fields as

Gi = —8Z(I) — 80wi

H = (V x @) = €9, (1.39)
Then (|1.38) becomes,
dpi i - 1V j 1 ik
di = E[G + (’U X H) - 2(80}11']‘)1)3 - ((9(]hk)z - §8ihjk)vjv ] (140)

It is easily noticed that looks like the Lorentz force in electromagnetism,
which shows that the motion of a charged particle is affected by both electric
and magnetic fields. As we see from , we have similar expressions in weak
gravitational fields. Therefore we infer from tells that the motion of a
particle in a weak gravitational field is determined by the gravitoelectric field
as well as gravitomagnetic one. Let us continue with the linearized Einstein’s
tensor. As we know the components of h,,, we can rewrite in terms of
them. We follow the same procedure used in the previous section. As we have
already determined the Christoffel symbols, we carry on the discussion with the
Riemann tensor. If we put the appropriate components of h,, into , we find

the components of the Riemann tensor as

1
ROjOl = 830@ + aoﬁ(jwl) - éagaohﬂ
Rojkl = aja[kwl] - aoa[khl]i

Contracting on two of the indices, one gets
R/W - npgRupua = _RMOVO + (Sinm'Vj, (1.42)

12



from which we reach the components of the Ricci tensor, which are

Roo = 62q) + 808kwk + 363\11
1 J
Ry = §aj3kwk - §v2%‘ +2000; + 9oOhs" ;
R;j = —0,0;(® — V) — aOa(i‘"}j) + 0Wo;; — Usij + 2aka(i8j)k, (1.43)

where we have defined V2 = §% 0,0, in three dimensional flat space. If we express

the Ricci scalar as R = n?° R,,, we can rewrite the Einstein’s tensor as

1 o
Guy = R/uz - §’r]uy’r/p Rpo‘

1 1 .
=R, + 577;WR00 - 5%1/77”3@‘- (1.44)

With (1.21)) and (1.43)), the components of ([1.44) become

G()o = 262\1’ + akélskl
1= 1
Goj = —§V2wj + §8j8kwk + 28033\1/ + 3oak8kj
Gij = (5@'62 — &@)((I) — \I/) + 5ij808kwk — 80(9(iwj) + 2(2]83\1/
- Dsij + QQka(iSj)k - 5Z~j8,§815“. (145)
As we have mentioned in the beginning of this section, not all ten components
are physical degrees of freedom. We can show this by using ((1.45)) in Einstein’s

equation. Let us begin by equating the first equation of (1.45]) to 87GTp, which

gives us
- 1
VAU = 47GTy — 5akals’“l. (1.46)

It is seen that is not a wave equation therefore ¥ does not propagate. We
can determine it in terms of Ty and s* for any time. In other words, we solve
for W(t,Z) using the three dimensional Green’s function.

Next, if we use the second equation of in the 05 component of Einstein’s

equation and raise the index of w;, we obtain
(5jk€2 - 8j8k)wk = —167TGTOj + 480(9]‘1/ + 2808ksk gs (147)

which does not depend on time either, so w; is not a propagating degree of

freedom. Similar to U, it is determined by Tp; and the strain tensor s”. Finally,

13



the 75 component of the Einstein’s equation gives
(61752 - 818])(@ = 87TGT,']‘ + (5,7‘62 - 818J — 25,]83)‘11 — 5Z~j808kw’“
+ 808(iwj) + DSZ']‘ — 20k6(28j)k — (5ij8k813jl, (148)

which shows that the above explanations are valid also for ®, so we conclude
that it is not a propagating degree of freedom, either.

As we understand from the above discussions, scalar and vector components of
h,. are determined in terms of the strain and the energy momentum tensors;
therefore they are not true degrees of freedom. Propagating degrees of freedom
come only from the tensor piece of h,,. By propagating degrees of freedom, we
mean that they contain all the information about the gravitational radiation.

At the end of this section, we will describe these degrees of freedom.

1.3.2 Gauge Transformations

In the previous section, we obtained the linear gauge transformation which leaves
the Riemann tensor invariant. Under this transformation, components of the

metric perturbation change as,

D — O+ 9
w; = wi + & — 0;€°
1
Sij —> Sij + 0uéj) — gakfkfsij- (1.49)

In electromagnetism, there are some gauges which fit for different cases. The
same situation is valid also in gravity. By constructing some analogies with
electromagnetism, we define analogous gauges in gravity.

Let us start with the "transverse gauge", which looks like the Coulomb gauge,
0;A*. We first assume that the strain tensor satisfies this, which we mean the

equation
95" = 0. (1.50)
If we manipulate the last equation of ([1.49) according to (1.50)), we get

Vi + é%&" = —20;5". (1.51)
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Here, there is no boundary condition given; instead of specifying a solution we
are interested in whether it exists or not. We know that the solution of
is written in terms of Green’s function, so we can choose such &’ that it satisfies
. Still we have to determine £°. To do this we assume that the condition

on ([1.50)) is also valid for w?, by which we mean
ow' =0, (1.52)
which leads us to
V20 = i’ + y0;E (1.53)

Similarly, we can choose £° which satisfies the above equation. As we can deter-

mine " from the corresponding differential equations, we define the transverse

gauge by ([1.50]) and ([1.52)). If we use these conditions on ([1.45]), the components

of the Einstein’s equation for the transverse gauge becomes,
GQO = 262(1) = 87TGT00
1~

Goj = —§V2wj + 2608J\I/ = 87TGTO]‘

Gij = (5@'62 — &@)(@ — \I/) - (308@%-) + 26”03\1’ - DS,‘]‘ = 87TGEJ (154)
We use these equations to determine the gravitational waves in the following
section.

Let us continue with the "synchronous gauge", which looks like the temporal

gauge, A° = 0. We assume that it is valid for the scalar potential ®, which

means
b =0, (1.55)

If we use it in (|1.49)), we get
006’ = — . (1.56)

Just as the first example, we can find some £° which satisfies (1.56)) by direct
integration; therefore if we find £ then we are done. If all the vector components

vanish,

w' = 0. (1.57)



If we use it in the second equation of ([1.49)), we obtain
0o€" = —w' + 0;€°. (1.58)

As we have already determined £°, we can also choose £ which satisfies ((1.58)).

Again, since we can determine £# by differential equations above therefore the

conditions (|1.55)) and ([1.57]) together define the synchronous gauge.

"Lorenz gauge" is the last example of the gauges we discuss, which is defined as
1
o, — éé’yh = 0. (1.59)

As we show in the last section of this chapter, this gauge is used to calculate

the production of gravitational waves.

1.3.3 Further Reduction

The decomposition of the metric perturbation into scalar, vector and tensor
components is known as algebraic decomposition. By additional decomposition,
we can determine the physical degrees of freedom more directly. It is based
on the idea that a vector field & can be decomposed into transverse w)] and

longitudinal wj parts:
W :wi—i—wﬁ, (1.60)

where a transverse vector is divergenceless and a longitudinal vector is curl-free,

which are described by
Ow’ =0 and €7* 0wy =0, (1.61)

respectively. Since the divergence of curl is zero, then we can represent the

transverse part as a curl of some other vector £, which means
W = €7%9,¢;. (1.62)

Similarly, a longitudinal vector is the divergence of a scalar A,
wiji = O\ (1.63)
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It is clear that A represents one degree of freedom. If we take the divergence of

(1.62), to satisfy the first equation of ([1.61)), we have to set
9,6 =0, (1.64)

which means that & is transverse. Although &’ represents three vectors, from
and we can find only two of them. So one of them is determined by
the other two. Therefore with the scalar A, the vector field w; has three degrees
of freedom.

If we apply the similar procedure for the strain tensor, we get
s = s 4 sY —i—sH ) (1.65)

where the terms in the right hand side of (1.65) are known as transverse,
solenoidal and longitudinal parts, respectively. Transverse part is divergence-
less, i.e. 8isij = 0. Divergence of the solenoidal part is a transverse vector,

which is divergenceless and is written as
0,5 = 5"
00,589 = 0,57 =0, (1.66)

and the divergence of the longitudinal vector is again a longitudinal vector,

which is curl-free,

O 3| = Sn

The curl of the gradient is zero, therefore longitudinal part can be expressed in
terms of a scalar #, and the solenoidal part can be derived from a transverse

vector (' as
1. -

Ssij = a(zgj), (168)

where 9;¢* = 0 and the round bracket represents symmetrization.
It is clear that the scalar 6 describes one degree of freedom. The explanation for
€% is also valid for (7, which means that (7 represents two degrees of freedom.

Therefore there are two degrees of freedom left which the transverse traceless
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tensor sij represents. We finally describe the ten components of h,, in terms

of four scalars (®, ¥, )\, 6) with one degree of freedom each; two vectors (1", ¢/)
with two degrees of freedom each and one transverse traceless tensor sij with

two degrees of freedom, which are the physical ones.

1.4 Gravitational Waves

In this section, we examine the gravitational radiation by using the propagating
degrees of freedom we found in section 1.3. We prefer to study in vacuum to
neglect the effects of the source, therefore all components of the energy momen-
tum tensor vanish. If we use this in (1.54]), we obtain the 00 component of the

Einstein’s tensor as
Goo = 2V = 0. (1.69)

from which we get ¥ = 0, assuming that ¥ = 0 at infinity, this follows. If we

use it, we obtain the 05 components as
ng = —]_/ZVZCOJ‘ = 0, (170)

which again imply w; = 0. Finally, with the condition ¥ = w; = 0, the ij

components become
We know that s;; is traceless, so if we take the trace of (1.71)), we obtain

5ij (%-VQ - 828])(19 = O
Vi = 0, (1.72)

which gives us ® = 0. If we plug it into ([1.71)), the ij equation becomes
Osy; = 0, (1.73)

which emerges a wave equation for s;;. Instead of solving this, we prefer to

continue with h,, in which ¥, ® and w; vanish and s;; is transverse. This form
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of h,, is known as the "transverse traceless gauge". Under this gauge, (|1.21])

can be rewritten as

hgo = hgi =0

hih = 2s;;. (1.74)
We therefore write the transverse traceless gauge hfg in the matrix form, which

18

0 0 0 o0
0 s11 S12 s
hZVT _ o 11 S12 S13 (1.75)
0 s21 S22 823
[0 S31 Sz s33
It is easy to see that with the above matrix, (1.73)) implies,
T
ORIT =0, (1.76)

which is the wave equation whose solutions help us to understand the charac-
terization of the gravitational waves. Before finding these solutions, if we dig
h,. more, we reach the following results: As it is understood from (1.75), b/}

is purely spatial,
h{T = 0. (1.77)
If we take the trace of , we get
n"hl = 0. (1.78)
Since s;; is a transverse traceless tensor, this leads us to
by = 0. (1.79)

Now we are ready to solve the wave equation in (1.76). We know that the

solutions of this kind of equations are the plane waves, therefore we have
T koo
h,, = Cuwe™", (1.80)

where €}, represents the symmetric amplitude matrix with (complex) constant

components and k, represents the constant (real) wave-four vector. We take the
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real part of (1.80]) because we are interested in the physical solutions [20, 22]. We
can find the components of the amplitude matrix C}, from (1.80). For p = 0,

it becomes
hIT = Cp, ek’ (1.81)

which is true for all k,27, therefore with (1.77) we reach that C,, is purely

spatial, which is
Co, = 0. (1.82)

If we take the trace of ((1.80]) and use (1.78)), we reach that C,, is also traceless,

which is
" Cu = 0. (1.83)

We introduce ((1.80)) as the solution of the wave equation; hence it has to satisfy
(1.76]), which gives

—kkohl, = 0. (1.84)

From ([1.75)), it is seen that all components of A/l are not zero, so above is true

for
k°k, =0, (1.85)

which indicates that can be accepted as a solution of the wave equation
if the wave vector is null; that is the wave vector is propagating at the speed of
light.

Finally if we take the divergence of and use ((1.79), we get

(ik, ) O '™ =0, (1.86)
which implies
C"Ek, =0, (1.87)

which shows that the wave vector and C*” are orthogonal.
To be more specific on the wave vector, let us set its timelike component to its

angular frequency and choose the direction of propagation in the z direction

k' = (w,0,0,k) = (w,0,0,w), (1.88)
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where k = w because k* is null. The conditions on (1.77)), (1.87) and (1.88])

together imply
Cs, = 0. (1.89)

Therefore we conclude that the non-vanishing components of C,,,, are only C11, Ci2, Cia, Coa.

But C,,,, is traceless and symmetric, therefore we can write it in the matrix form

as
0 0 0 0]
0 Cy Cu 0
Cp = o . (1.90)
0 Cy —Cii O
0 0 0 0

Hence under this gauge, these two components characterize the plane wave prop-
agating in the z direction.

Gravitational waves may have some physical effects on the test particles, which
are initially at rest. It is not enough to consider the path of a single particle
only, because it stays stationary in the transverse traceless gauge, regardless
of the wave’s propagation. To obtain a coordinate independent measure of its
effects, we consider the relative motion on the test particles [6, 20]. To de this,

we examine the equation of the geodesic deviation, which is

D2
—_SH =Rt _U'UPS°, (1.91)

dr? veo

where U* is the four-velocity of these particles and S* is the separation vector.
We want to write the right hand side of 1’ to the first order in hZVT . If we

study with slowly moving particles, we can write U* as a sum of unit vector with

TT

v » which we neglect. Therefore

timelike component and higher order terms in i

U* can be expressed by
U* =(1,0,0,0), (1.92)

which implies that we only need R,,00,. In transverse traceless gauge, (1.9)) turns

to

1
Ryu000 = §<aoaoh53 + 0,0:hdy — 000shlT — 9o0,hg)). (1.93)
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If we use (|1.75) and contract (1.93)), we rewrite the Riemann tensor as

woo_ A
Rgo, = 1" Rxo00

— % pITu 1.94
5 g (1.94)

We know 7 = t for slowly moving particles. So with the above equation, one

can obtain ((1.91)) as

2 2
%S“ = %S"%hf”. (1.95)
We have chosen that the wave is passing in the z direction. For p = 3, van-
ishes so we infer that only S* and S?2, which are perpendicular to the travelling
wave, will be affected in the presence of the wave. Therefore the gravitational
wave is transverse in both its mathematical formulation and physical effects [20].

As we have mentioned before, €}, represents the characterization of the wave.

We can rename its components as
h+ == CH and hX == 012, (196)

so we can replace ((1.90]) by,

0 0 0 0]
0 he hy O
Ch = A, . (1.97)
0 hy —hy 0
0 0 0 o

Let us begin with discussing the effects of h, only, by setting h, = 0. For u =1,

(1.95) becomes

o _layrr, Larr
For hy = his = 0, if we use ([1.80]), (1.98) is rewritten as
62 1 1 1 ikox?

If we apply the same procedure for p = 2, we obtain

82 2 ]‘ 2 ikox?
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Solutions of the differential equations in (1.99) and (1.100)are found as

1 , fon
St=(1+ §h+e“w )S*(0),
1

S?=(1- 5h+ei’W")82(0). (1.101)

Thus, particles with initial separation in the x direction will oscillate in the same
direction; similar to those with initial y separation. Consider these particles form
a circle in the zy plane and for some time we have h; > 0. Then (1.101)) shows
that particles oscillate in the x direction move apart, while those in y direction
comes closer; which means that the circle formed by particles will be squashed.
Later h, becomes zero so the circle turns to its original form. After h, becomes
negative, the procedure for positive h, will be reversed [23]. This is known as

+ polarization, which is shown in the Figure 1.1. If we examine the case where

)OQQ@@@@

Figure 1.1: The effect of a gravitational wave with + polarization.

hy =0 but hy # 0, we get

82 1 1 2 ikox?
@S = ES <h><€ ),
2
1 —
%52 = ESl(hXe““"x ). (1.102)

which yield the solutions

S = S1(0) + %hxeikaw"’S?(O),

1 > {og
S? = 5%(0) + §hxe’k"x SH(0). (1.103)

It seems that these solutions are rotated. Hence the test particles oscillate in
the same forms but in the rotated axis [23]. This is known as x polarization,

which is shown in the Figure 1.2.

As it is understood from the figures, h, and h, represent the plus and the

cross polarizations, which are the independent modes of linear polarization of
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Figure 1.2: The effect of a gravitational wave with x polarization.

the gravitational waves. As we have mentioned in section 1.3, h, and hy are
the propagating degrees of freedom, which are obtained from sf and we have
shown that they characterize the gravitational radiation.

We can also describe the modes of right and left handed polarizations as

1
hi = —(hy + ihy),
R \/5( + )
hi = ——(hy —ihy). (1.104)

The effect of a pure hg and hy, wave is seen in Figure 1.3.

QQO@Q

Figure 1.3: The effect of a gravitational wave with R polarization that rotates
test particles in a right handed sense.

1.5 Gravitational Wave Production

In electromagnetism, electromagnetic radiation originates from the accelerated
charges. In gravity, there are analogous waves which are generated from the
accelerated massive objects. Although we expect that this radiation rises from
the dipole term, because of the conservation of momentum we see that the
gravitational radiation is proportional to the second derivative of the quadrupole

moment tensor; which is the scope of this section [22]. For this purpose, we

24



couple Einstein’s equation to matter, which means that the energy momentum
tensor does not vanish anymore. It implies that the scalar and vector components
as well as the strain tensor will appear in the solutions of this equation. Therefore
gravitational radiation can not be in the transverse traceless form. Instead, we
introduce the trace-reversed perturbation, which reduces to hl:fVT far from the
sources. If we plug it into the linearized field equations and solve them under
the Lorenz gauge, we obtain a wave equation whose solutions can be written in
terms of Green’s function. If we apply Fourier transform to these solutions, we
will see that the spatial components of the trace-reversed perturbation contains
the gravitational radiation. We examine this section in two parts. In the first
part we introduce the trace-reversed perturbation and its properties. By using
Lorenz gauge, we solve the Einstein’s equation in terms of the new perturbation.
In the second part, we apply Fourier transform to these solutions to show that the
gravitational radiation produced by an isolated massive object is proportional

to the second derivative of the quadrupole moment tensor of the energy density.

1.5.1 Einstein’s Equation in the Presence of Matter

Let us begin by introducing the trace-reversed perturbation,
- 1
h,uz/ = h;w - §h77;w- (1105)
It is a reasonable name for this perturbation, since
h = —h. (1.106)

We have shown that, in vacuum gravitational waves are in transverse traceless
form. Hence trace-reversed perturbation has to reduce to this form away from
the source. If we remove the trace of (1.105]) and take the transverse of what is

left, we obtain

ITT _ 3 TT

b =h, (1.107)
Under a gauge transformation defined in ([1.18]), we transform ([1.105)) as

- 1
h‘,/uz/ = h;u/ - §h/nw/; (1108)
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in which we need to find what h' is, since it is trivial to obtain hj, by using

(1.18). If we take the trace of hj,,, we get
B = h+ 20,6 (1.109)
If we put the result of A, and into , we obtain
Wy =y — %hn,w +20(,60) — E - (1.110)

As it is easily seen that, the first two terms of the right hand side of the above
equation give 1_1#,,, therefore (|1.110]) becomes,

Ry = Py + 20(uE,) — NEN™. (1.111)

If we take the partial derivatives of each side and use the identities 7,,* = &,

and 7, 0" = 0,, we get
N, = 0"y, + 08, (1.112)
If we introduce §, as a gauge parameter, which satisfies
0€, = —O\h* .. (1.113)

Therefore we have the Lorenz gauge as

Ty, = 0, (1.114)

which is the analog of the 9, A* = 0 gauge in electromagnetic theory. As
shows the trace-reversed perturbation is transverse. For convenience, we drop
the primed notation in the rest of the section.

We should note that, the original perturbation A, is not transverse under the
Lorenz gauge. To see this, we take the divergence of both sides of , which

gives
A v 1 v
Oy = O™ = S Ouhap™ (1.115)

Left hand side of the above equation vanishes because of ([1.114)), hence we obtain
(1.115) as

1
Ouh = S8,hup”. (1.116)
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As it is seen from ({1.13]), we have expressed G, in terms of the original pertur-

bation. So if we rewrite ({1.105]) as
- 1
h,uu = h;w + 5}”7#1/ (1117)

and plug it into ([1.13)), under the Lorenz gauge we obtain the Einstein’s tensor

as

1 -
G = =50 (1.118)

Therefore, the Einstein’s equation takes the form

Ok = —167GT,

Nz

(1.119)

whose solution is written in terms of Green’s function. If the Green’s function

satisfies
.G (27 —y°) = 6W (27 —y7), (1.120)
then we can write the general solution of as
o = —167TG/G<IU —y7) T (y7)d y. (1.121)

We should note that solutions of (1.121)) can be advanced or retarded [24]. We
are seeking for the effects of waves which propagate forward so we study with

the retarded Green’s function, which is given by

G(2” —y°) =

! SO0 =0 ) (L12)

CAn|i—
where the 0 function is 1 when 2° > ¢°, otherwise it is zero. If we put (1.122)
into (1.121)) and take the integral with respect to y°, we get

; 1
bul.7) = 4G [ =Tt = 7= P, (1.123)
r—y

where t = 2% and t, = t — |Z — y] is called as retarded time. As it is seen from
(1.123)), the gravitational radiation, l_z#,,, can be thought as a sum of the effects

of the sources, T,

v, at the points (¢,, £ —¢). Here, & represents the points where

h, is determined and ¥ represents the points where the source is located from

which we conclude that |# — ] is the distance between them [22].
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1.5.2 Fourier Transform and The Quadrupole Moment

To have a better understanding of the gravitational waves, we should dig (|1.123))
more. For this purpose, let us introduce the Fourier transforms to make calcu-
lations simpler. For a a function ®(¢, Z) Fourier and inverse Fourier transforms

are defined as

1 )
O(w,7) = — [ dte™'®(t, 7
(w.) = <= [ (e,
1 e
(I)(t, f) = E / dwe_’m@(w, .f) (1124)

Under these transformations, the metric perturbation becomes

>

1 -
(W, ) = \/—Q_W/dte’“thw(t,f). (1.125)

If we use the definition of h,,(t, %) and change t to ¢,, we have

- T 7
o (w, T) = 4G / dgye“‘)lm_y'M. (1.126)

|7 =]

We study with a source such that it is isolated, slowly moving and far from
eiw|i"7§/’| eiwr

—— by , where r is the distance
7=y r

between the source and the observer. Hence we write (|1.126]) as

the observer. Therefore we can replace

(w0, T) = 4GS / &y T, (w, 7). (1.127)
r
If we apply Lorenz gauge condition in Fourier space, we obtain
1 ——
—0 /dwe“"th‘“’ w,T) =0, 1.128
N (@, (112
which implies,
h = — Lo, (1.129)
w

It is easily understood that, instead of all components of l:z’“’, it is enough to
compute only the spacelike components. Here is our strategy: If we set u =i
and v = j in (1.127) we can determine h;;, therefore h%. To accomplish this, we
play with the right hand side of to have a simpler form. If it is integrated
by parts, we get

/d3y(8kyi)fkj = /dgyc?k(yi’f’kj) — /d3yyi8kfkj. (1.130)
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First term is a surface integral which will vanish for an isolated source. By using

the Bianchi identity, 9,7"" = 0 in Fourier space, second term becomes,

—OR T = iwT™. (1.131)

ooy - .
Also we write 0; = Jo_ Ory’, hence under these circumstances ([1.130)) turns

oyk

to
/ dyT = / dyiwT% . (1.132)

If we divide 7% into its symmetric and anti symmetric parts and use the inte-
gration by parts once more, after setting the surface terms to zero we are left

with,

/d?’yfij = —i?w/yiyj(alTOI)d?’y, (1.133)
and by the condition stated in ([1.131]), above equation becomes

/ ByTv = —%w / Y (0T dy. (1.134)

If we define I;;(t) = [y'y/T%(¢,y)dy as the quadrupole moment tensor of the
energy density of the source, (|1.127)) takes the form

wwr
e

;Lij(w,f> = —2Gw2 , flJ(W) (1135)

We can also express it in Fourier space. If we use t, =t — r, we obtain

_ 226G 2I(t,)

Therefore we have accomplished to show that the gravitational radiation, Bij,
is generated from the second derivative of the quadrupole moment tensor of an

isolated source.
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CHAPTER 2

GRAVITOMAGNETISM IN ANALOGY WITH
ELECTROMAGNETISM

2.1 Introduction[]

When we compare the electromagnetic theory and gravity, we see the close
resemblance which starts from the basic equations of these theories. It is obvious
that in both theories, force, potential and the potential energy have the same
forms which only differ in the mass and the charge terms. Also, as we have
proven in Chapter 1 just as the electromagnetic radiation, the gravitational
waves propagate at the speed of light. Moreover in electromagnetism the dipole
moment of the charge density, in gravity the quadrupole moment of the energy
density give rise to these radiations. Therefore the similarities cause a natural
question: It is known that a single charge produces only an electric field around
itself. If the charge starts to move, it also generates a magnetic field. Is it possible
to obtain such a field which occurs due to a moving mass? The answer is yes,
but we must pay the price. Electromagnetic theory is linear whereas gravity is
not. Therefore if we want to construct such a field, we accomplish this only in
weak gravitational fields. This analogous field is called "gravitomagnetic field",
which is an extra field produced by a moving mass. In this section we derive
the Maxwell type equations from starting the linearized field equations, which
we have already calculated in Chapter 1. Also, not the Maxwell equations but
the Lorentz force describes the motion of a charged particle in electromagnetic

field. So to understand the motion of a massive particle in the gravitational field,

1 This chapter closely follows the paper [25] and expands upon some of the computations.
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from starting the geodesic equation we derive the Lorentz type force in gravity.
Also we examine the effect of the gravitomagnetic field on the motion of a
gyroscope. In fact, for the static case there is already a precession, but changes
in its angular momentum reveals that there exists a force which adds some
additional terms into the precession [26]. We divide this chapter in four parts.
In the first part we give motivation by introducing the equations which we use in
the remaining parts of the chapter. By analogy, we introduce the gravitational
analog of the electromagnetic field tensor as f,g, in which "gravitoelectric" and
"gravitomagnetic" fields come to the stage for the first time. As we see later
fap obeys the Bianchi identity from which we obtain two of the Maxwell type
equations. In the second part we specialize the calculations in static fields and
obtain time independent Maxwell type equations. Also we derive the Lorentz
force for a charged massive particle in the presence of both electromagnetic and
the gravitational field. In the third part, we generalize the equations found in
section 2 and write these analogous equations in the most general case. Also we
show that there is no difference between the Lorentz forces in time independent
and the dependent fields because we omit the extra terms in the latter because we
see that they all in second order. In the last part, we define the analogs of some
quantities in electromagnetism, from which we introduce the angular momentum
in linearized theory. If we examine the change of the angular momentum, we
see that the gravitomagnetic field creates the force which adds extra terms to

precession of a gyroscope, hence affects its motion.

2.2 Gravitomagnetic Fields

For a particle with mass m and charge e, which is moving in the presence of

electromagnetic and gravitational fields, we write the equations of motion as

A2t L dz® dxﬁ] " dz?
————] =eF",—,
dr? B dr dr dr

m| (2.1)
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where F* , is the electromagnetic field tensor whose components are

0O E, E, E.
~E, 0 B. —-B,
-E, -B. 0 B,
~E. B, -B, 0.

v

and is the four velocity; for slowly moving objects which can be defined as
T
dz,,
—= = (1,7). 2.3

By lowering the index of (1.7]) one can obtain

1
Loop = 5(30%5 + 0ghoo — Oshog),

o 80hgﬁ

1
5 é(ao—hoﬂ — Ogheo) (2.4)
Let us introduce a new quantity f,s as the gravitational analog of F),,, which is

n2
aohOB — 8BhUO
L

By using the analogy between f,g and F),,, we can write f,3 in its matrix form

= —f30- (2.5)

as

0 _2990 _29y _292-
102, 0 —H. H,
fa,B = 5

29, H. 0 —H,
2. —-H, H, 0

(2.6)

As it is easily understood, g and H are the gravitational analogs of E and B
respectively.
If we differentiate ([2.5)) with respect to i, o and [ separately and add the results,

we obtain

a,ufoﬂ + aafﬁu + aﬁf,ua = 07 (27)

from which we understood that, similar to F},,, f,3 obeys the linearized Bianchi
identity.
For p, 0,5 = 1,2,3, with the relevant components of (2.6]), one can see that (2.7))

takes the form

V-H=0. (2.8)
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If we apply the remaining choices of the indices to (2.7), we obtain

- OH
IV X G4+ — = 2.

where ¢ is called gravitoelectric field, which is produced by a static mass, whereas
H is called gravitomagnetic field, which is an additional field which is produced
by the moving mass [20].

2.3 Static Fields

Before introducing the gravitational analogs of the Maxwell equations, let us
focus on the case of static fields.

In static fields, it is seen that (2.4) changes to

FUOB = _faﬁ- (210)

We can easily obtain the matrix form of I'j; from (2.6) and (2.10), which is
[ 0 _299& _2gy _292_

1l2¢, 0 H -H
R v (2.11)
2129, —H. 0 H,

2. H, —-H, O

To understand the motion of a charged massive particle, we turn back to (2.1)).

If we use ((1.7), we have

B dr dr
If we insert (2.12) to (2.1) and use the relevant components of (2.11)), for u =1
one can write (2.1 as

~ T + 20407 (2.12)

d*at

m_
dr?

dxz”

T + 2mIg07 = eF',
+mlyy +2mlo,v e i

(2.13)

If we expand the summations in both sides and use the corresponding compo-

nents of (2.2)) we obtain

23 , .
mEL — (B +dx B) +m(+dx H), (2.14)



It is clear that the first part of represents the Lorentz force in electro-
magnetism, which identifies the motion of a charged particle in electromagnetic
field. By constructing an analogy, we can infer that the second part of is
the Lorentz type force in gravity; which shows that the motion of a particle is
affected not only the gravitoelectric field g but also the gravitomagnetic field H.

Let us continue with Einstein’s field equation, which is

R, =81GS,, (2.15)
where we defined S, as
1
S/w =T — §gu,,T (2.16)

To make calculations simpler we set pressure and other terms which are relevant
to internal energies to 0 in 7),,, which finally becomes T" = pu*u,. Therefore

from ([2.16]), we obtain the components to the first order as

Soo = L. (2.17)
2
and

In the weak field limit, for © = 0 the Ricci tensor becomes
Ry, = 0,1'G, — 0,17, (2.19)

From ([2.11)), it is easily seen that the first term of the right hand side of (2.19))
vanishes. If we also use (2.15)), we get

Ry, = —0,T9, = 87GSo,. (2.20)

If we put v = 0 and apply the suitable coordinates of (2.11]) and the result of
(2.17), we obtain

V-G = 4n(=Gp), (2.21)
and for v = ¢ from ([2.20)) we have

V x H = 47 (—4Gpil). (2.22)
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In static fields, (2.9) reduces to
V xg§=0. (2.23)

Therefore we conclude that (2.8]), (2.21), (2.22) and (2.23) together represent

the Maxwell type equations for static fields in gravity. We should also point
out that (—Gp) and (—4Gpu) are the analog of the electric charge density and

electric current density in Maxwell equations.

2.4 Time Dependent Fields

As we have mentioned in the previous chapter, we can introduce gauge conditions

to simplify the linearized field equations. Let us choose
N 1
Ouh® 5 — 585}’ =0. (2.24)
If we impose this condition to ([1.10]), with (2.15)) we obtain
1

R, = _EDh”V =81GS,,, (2.25)
with a little effort which turns to

(82 — V?)h,, = 167GS,,. (2.26)

From (2.16) we have S;; = pu;u; ~ 0. For ¢ = j (2.16|) gives S;; = p/2. From
(2.17) we therefore conclude that Soy = S;;. Hence by using (2.26]) we infer that
hoo = hi; and h;; = 0 when 7 # j. If we combine these objects, we define h,, in

its matrix form as

O —A, —A, —A,

—A, & 0 0

hyy = (2.27)
—A4, 0 ® 0

—A, 0 0o .

Therefore for u = v, (2.26) changes to

(82 — V)® = 8nGp (2.28)
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and
(82 — VA = 167Gpii (2.29)

for the other choices of the indices. If insert the corresponding components of

fo5 and hy,, in ; for =0 and o = 1, 2, 3 respectively, we obtain
27 = 00 A+ V. (2.30)
and for the other choices of the indices gives
H=V-A (2.31)
Also if we expand the summation in and use ,We obtain
V.A+ 20,0 = 0, (2.32)
and
A = 0. (2.33)

In the previous section, we did the calculations in static fields hence obtained the
time independent Maxwell type equations in gravity. In this section we want to
write the more general equations which reduces to , , and
in static fields. Hence we need the general form of such that it becomes
valid in time dependent fields. To do this, we take the curl of ,which is

-, —

x A) =V(V-A) - V4. (2.34)

<

VxH=Vx(

If we insert ([2.33)) into (2.29)), we obtain

V2A = —167Gpil (2.35)
From , it is straightforward to obtain
V(V - A) = —2V(0,®) (2.36)
From the condition on , one can obtain as
2§ = V. (2.37)
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If we combine these equations, we finally obtain ([2.34) as
= = 07 H
VxH-— 45 = 4dn(—4Gpi). (2.38)

Therefore, the most general form of the Maxwell type equations in gravity be-

comes
V- §=—4rGpi
V-H=0
o
9 g2t
V xXg+ 5 0
= 5 .09 q
V-H-— 45 = 4dn(—4Gpi). (2.39)

Before completing this section, we should determine the Lorentz type force for

time dependent fields. To do this, we use (2.4) and (2.5)). For o = j and g = k,
with the appropriate conditions in (2.6 and (2.27)), we have

) . 1 ..
o = =" fir + 577]1307%7
1
= _ijlHl + 580@(5]k (240)

If we put this into (2.13]) and use the relevant components, we obtain the Lorentz
type force for a massive charged particle as

d*z - L = A N,
meog = e(E+7xB)+m(g+0x H)+ 33(](1)11. (2.41)
If we take the ratio of time derivative term to mg and use ([2.37)), we have

Jmo®  —0%/0t _
2 mg  0®/0f

(2.42)

But we neglect the terms higher that first order, therefore we can conclude that

the Lorentz type force in time dependent fields is the same as it is in static fields.

2.5 Application to Rotating Bodies

In the previous section, we have constructed an analogy between gravity and
electromagnetism. We also showed that when a massive object moves, it creates
an additional field called gravitomagnetic field. In the last section of this chap-

ter and the following one, we discuss its effects. In this section we study the
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precession of a gyroscope due to the gravitomagnetic field. Since there exists
an analogy, we start with modifying some familiar results of magnetostatics to
gravity. In electromagnetic theory, we have defined the force and the torque on

a magnetic dipole as

F=(m-V)B=VY(m-B)
N =mx B, (2.43)
where m is the magnetic moment,
— 1 3 — A
m=g d°x (¥ x J) (2.44)

and J is the electrical current. In gravity, for a rotating body we infer that the

above results may take the form as

o (gﬁ)ﬁ_ﬁx(gxﬁ)
2 2
- SxH
§o2x (2.45)
2
where
S = / PrZ x pi (2.46)
is the angular momentum. We know that the magnetic field due to a magnetic
dipole is
- 3n(n-m)—m
B(z) = - , (2.47)

Therefore we can write that the gravitomagnetic field as

—

(3a(n - S) - S)

H=-2G
273

. (2.48)

Torque is the rate of change of the angular momentum, which is formulated as

_§xﬁ
2

S

. (2.49)

As a compact object such as the earth rotates, it creates a gravitomagnetic field
which we have formulated in (2.48]) and (2.46)) tells us how much a gyroscope

precesses in this field. To determine this, we write the relativistic equation of
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motion of a particle in terms of S* whose timelike component vanishes in the
rest frame of the particle. Let us define it as

dsr da
_ [ LR —
T8 =0, (2.50)

It is easy to see that for ;1 = 0 (2.47)) vanishes because in the rest frame the four
velocity u* = (1,0) and we choose the angular momentum vector as S* = (0, S ).

For = 4, with the conditions we stated above we only have

e +I0S57 = 0. (2.51)
If we use ((1.7) and put the corresponding components, we obtain

s 1- -

—=-SxH 2.52

o =30 < H, (2.52)

which means that (2.50)) is an acceptable solution since it reduces to (2.49)) in the
non relativistic limit, as it has to. Therefore we play with (2.50) to determine
the geodetic precession. If we rewrite it for a covariant vector S,, we obtain

ds
d—T“ =I7,5.u”, (2.53)

where we set S, = (—5, 5’) and u” ~ (1, 7). If we expand the sums and calculate

I['75 in terms of ® and A, the spatial part of (2.53)) gives us

g - %(si x H) — %(25- SV + 57-VP — 75 - V) — %5@0@ (2.54)
which causes a trouble. Angular momentum of a gyroscope should be constant,
but as we see from the above equation, it is not; which means that we reach
another unacceptable solution. To solve this problem, we can define a vector S’

related to S by

—

S=01-3/2)5+37-5)/2. (2.55)

When we omit second order terms, we see that S is a constant quantity. To

obtain a similar equation to (2.50)), we differentiate (2.55). If we equate this

result to (2.54)) and use (2.37]), we obtain
s’ o
where the term ¢ X § represents the geodetic precession which is caused by

gravitomagnetic field.
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CHAPTER 3

SPIN-SPIN INTERACTIONS IN GENERAL
RELATIVITY AND MASSIVE GRAVITY

3.1 Introductionl

As we have seen in the previous chapter, in the weak field limit (|h,,| << 1)
and for small velocities (v/c << 1), the field equations of GR have a similar
form as Maxwell’s theory. In addition to the field equations, geodesic equation
also can be recast in the form of the Lorentz force. One natural question arises:
In electrodynamics, we know that electric or magnetic dipole moments interact
with each other. What is the similar situation in GR and massive gravity. More
concretely, we can ask the following question: Consider two massive spherically
symmetric objects such as two galaxies or even compact objects such as two black
holes that spin around their own axis, that interact with each other. In the weak
field limit what is the force between them and how does this force change whether
graviton has a mass or not? First of all, it is clear that according to Newton these
two objects will not see each other’s spin or their angular momentum around

their own axis. The Newton’s force is

P Gmm (3.1)

r2
no matter how fast or slow these objects rotate. In General Relativity, the
picture is quite different as we have seen in Chapter 2. Because, just like a spin-
ning electric charge creates magnetic fields with which it affects other spinning

or moving mass, creates gravitomagnetic fields and these fields will affect other

1 This chapter closely follows the paper [27] and expands upon some of the computations.
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spinning objects giving rise to spin-spin forces. This gravitomagnetic field was
given in ([2.48]) which we repeat here

2G(3nn - Jy — J)

.
7"3

: (3.2)

where J; is the spin of one of the objects that we noted above. The potential

energy of our system will be

—

1 —
Uspinfspin = _§J2 : H7

3G(n - J) (i o) — JiJy
r3 ’

(3.3)

We should note that, in this section we shall prove this formula from a differ-
ent point of view. General Relativity at the lowest order represents the static

Newton’s force (3.1]). Clearly the force, coming from

Fipin-spin = =V Uspin-spin (3.4)
will not be a lot in magnitude compared to the Newton’s force for distances
where the weak field gravity is valid. So one might mistakenly conclude that we
have computed an irrelevant force but this is not correct since the spin-spin force
is the strongest force that acts on the orientation of spins. Namely, Newton’s
force does not act on the spin orientations. The next question is the effect of
introducing a small graviton mass on these two forces. Before one carries out
the analogous calculations for massive gravity, one might guess that the effects
of a tiny mass would be tiny. But this is indeed not correct at all: Even for the

static Newtonian force, massive gravity yields

4 —mgr
p o _AGmimecT (3.5)

3 72

for which the massless limit m, — 0, does not go to the Newton’s force. This
is called the van Dam-Veltman-Zakharov (vDVZ) discontinuity which has been
a non-trivial problem to solve. For m, # 0, the exponential decay is expected,
and called the Yukawa type force. Equation (3.5) will be derived in this chapter.
Having hit this surprise in massive gravity, we can ask what would the spin-
spin interaction look like in massive gravity. Interestingly, this question was

only asked and answered recently in [27]. It turns out that in addition to the
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experimental decay of the spin-spin force, massive gravity predicts a different
spin orientation for interacting spinning objects. The details will be given in
this chapter. But suffices it to say here that at separations myr > 1.62, massive
gravity predicts parallel spin alignments with spins perpendicular to the axis

joining the spinning sources. For mg,r < 1.62, (more correctly instead of 1.62,

+5
9

golden number ~ 1.62 appears) massive gravity and GR predict the
same configuration that is spins are anti-parallel and they lay in the axis joining
the sources. Let us note that the spin-spin potential energy for massive gravity
is
Ge ™" (m2r® + mgr + 1)

3
I 14+ mgr +m2r?/3 -

Jy -y - 7. (3.6)

Uspin—spin = -

mZr? + mgr + 1
We divide this chapter in three parts: In the first two sections, we obtain the
potential energy in both massless and massive cases. To do this, we write the
potential energy in terms of the Green’s function and the energy momentum
tensor. As we see in the following two sections just the Green’s functions differs
in the calculations, which leads us to different potential energies in massless and
the massive theories, respectively. It is easily seen that the force due to the
spin-spin potential energy is small in magnitude, but it is the strongest force
over the spin alignments. In the last section, we discuss these alignments for
the minimum potential energy in detail. As we show, it differs in GR and the
massive cases. As the calculations reveal, unlike GR, the spin configuration in
massive gravity depends on the distance between the massive objects. Up to
mgyr < 1.62, spin alignments for massive gravity and GR are the same: Spins
are pointed to each other in the direction of the line joining two sources. But
beyond this distance, while this configuration will not change in GR, we observe
a dramatic change in massive gravity where spin directions abruptly become

perpendicular to the line joining two sources.
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3.2 Potential Energy Calculation in the Massless Theory

Given two conserved sources, we can define the gravitational potential energy

in the weak field limit as
U=—— [ d'zd*'s’ T" () Guap(x,s") T (2"), (3.7)

where G a5(z,2") is the Green’s function of the theory and ¢ is a large time
that does not appear at the end of the calculation [27]. The Green’s function

has four indices because linearized gravity equation is in the form
Oapwh®® = 167GTH, (3.8)

where O is an operator whose inverse is the Green’s function. For both massive
and massless gravity theories, the relevant computation was given in [28|, but we
can summarize the procedure as follows: We obtain the field equations by using
the least action principle. More explicitly, by varying the action we can reveal the
field equations which make this action minimum. If we apply this to Einstein-
Hilbert action with added mass terms, we reach the FP equations. In weak
gravitational fields, we linearize the FP equations around the flat background
metric. If we play with these linearized equations, we obtain (3.8|) which leads us
to . Without giving the proof of this result, which is beyond the scope of this
thesis, let us quote the final answer for massless and massive case respectively.

( The proof is in [2§8]). In the massless case, we have
AUt = —=2kT,,(0%) 1T 4+ kT"(0%)7'T,
= =230 (9%) 1T — 26T, (%)M T — 26T, (0%) 1T
— 26T7;(0%) 1T + kT"(8%)7'T, (3.9)
where we have dropped the integral signs to simplify the notation. The non zero

components of the energy momentum tensor of the masses m; and my take the

form in 4 dimensions,
3/ = —
T()O == m25 (ZL’ — 1'2),
/! 3/ = —
Too = m16°(Z — 2y),
Ti _ _1Jb1 iblja‘ég(ﬁ— —’)
0= 52 € ;07 (T — Xy),

. —1 .
T/’LO — 7Jf162a1k8;€53<f/ . fl); (31())
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where J; and Jy represent the spins of the masses. If we take the integral of

both sides of (3.10]), one can easily see that

m = /de Too(f),
J' = /d% T o(%). (3.11)
We know that T" = n**T,,,. By using (3.10)), we obtain T" = —Ty, and 7" = —T,.
If we combine all these objects, we rewrite (3.9) as
AUt = —26mymy> (7 — 17)(0%) 7 16% (% — 1)
) 1 o
+ wJP kg 53 (7 — fl)(GZ)*l[(§J§162b198j53(f — )]
+ kmp 0 (7 — 71)(0%) T med® (T — ), (3.12)
where we define the Green’s function in four dimensions as,

L(1/2)

A3/2p7

(0%)7 = Gr(z,2) =

(3.13)

1 1 1
in which F(§> = /mand — = = Foa
ro |-

third terms of -, whose sum gives the potential energy. If we plug (3

into these equations and take the integrals, after adding them we obtain

We start with computing the first and

1
—kmime (& — 7)(0%) (T — ) = — A2 D (3.14)
A |2 — 2|
If we change |¥; — Z5| to r and impose k = 167G, (3.15)) becomes
G
— kmmed® (@ — £1)(0%) 1T — Ty) = —— 2 (3.15)
r

which is the potential energy as promised. Although it seems that there must
be a 4 in the nominator, it disappears because of the 4 in the left hand side of
(3.12). Therefore we write the final answer in the rest of the calculations.

The second term of the equation is more tricky. For the sake of our
calculation, let us label the second part by *. If we use integration by parts, we
obtain,

K al 1 ial ilA / =/ — —

I R (84 ) 0,07 — )

1

_ 4_Ja1Jb1 za1k‘ Zblj[(akr' _’/‘53(5/ . 51)335 ({f— fz))] (316)
s
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It is clear that first term of the equation vanishes. If we use integration by parts

once more, after dropping the surface terms, we obtain

/-e 1 ; 1
* = —J1J3 0,0, ————— — J]Jka@'ﬁ 3.17
]]’$1—$2‘ A 12]k’l’1—1’2‘ ( )
The last thing we have to do to obtain the exact form of (3.12) is to compute the
derivatives. For convenience, we describe AR = (£ — T2)m (T1 — T2) ] V2,
L1 — T2
then the derivatives become,
0 1 _ (fl — fg)j
Ox |T1 — 2| |7y — T)?
o 0 1 _0
Ozl 0] |71 — 7o 7
o 0 1 5k;j (fl - fQ)k
- = o3 — 35— X T2);. 3.18
0x 0 [T — Do [T —o® |71 — T (1 = 2); (3.18)
Therefore, we can finally express * as,
Okj (Th — o)
* = J]J’k J o 3 2 2.
C4pi Tt [\I1 — 5|3 T — T3 1= )il
4G =
= r3 [J JQ — 3J1 TJQ : 7“], (319>

which is the spin-spin potential energy. As we discuss in the last section, even
the force due to this potential energy is small in magnitude, it governs the spin
orientation in massless theory. If we add (3.15)) to (3.19)), we obtain the potential

energy for the massless theory as
Gm1m2 G

—

U=— Ji - Jy —3Jy - 7y - 7). (3.20)

3.3 Potential Energy Calculation in the Massive Theory

In this section, we examine the situation which we give a mass to graviton. In

this case (3.9) takes the form
2
AUt = 26T, {—0° + m2} 'T" + gliTl{82 —m2}'T. (3.21)
If we insert the conditions in (3.10)) to (3.21]), we obtain
4Ut = —2/<am1m263(a_:" - :i"l)((92 - m3)71(53(f— fg)
— kJPENRY (7 — 7)) (0% — mé)_l[(]gleibljaﬁ?)(f — )]

P L e
+ gmnlmQé?’(:c — 1) (8% —m) 0% (T — Ty), (3.22)
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2

)~ denotes the Green’s function for the massive case. In four

where (0> —m
dimensions, it is defined as,

(my/r)"/?
(27)3/2

e~ Mg

— ) 3.23
4rr ( )

Gr(z,2') = Kija(rmy),

We follow the same procedure used in the previous section. Therefore we rewrite
the sum of the first and third equations of (3.22)) as,

4 —4G Mg
_§nm1m253(f’ — ) (0% —ml) 0T - 1) = ?lmz ¢ , (3.24)
r

which is the Newtonian potential energy in massive theory.
Just as in the previous section, let us label the second part of (3.22)) by *. After
integrating by parts, it becomes

o 0 0o 0

% = RJNJN —— —_GRr(,Ts) — kJ JF—— —_Gp(T1, ). 3.25

KJdp Jo 03, 0] r(T1, T2) — kJ] 203332 D r(T1,72) ( )

Now we are left with derivatives which are,
8. 0 | e~ "My _ e 22
oxl ox) T rd
a 8 emeg e*T'mg e*’l“mg
: = rmyOg; + O] — ——(T1 — To)p (%1 — T
8x{ 8:6'5 r 3 [ 9Ykj k]] 73 ( 1 2>k< 1 2)]
2 3
X [mz—i—ﬂ—l—%%——]. (3.26)

r r 72

If we put them together, we can write * as

GefT'mg
* = — o (m§r2—|—mgr—|—1)
- o 1+ myr +m?r?/3 - -
X [J-Jy—3 J g /Jl-fjg-f], (3.27)

mZr? + mgr + 1
which is the spin-spin potential energy in massive case. Just as GR, although
it seems negligible when compared to (3.5]), the force rising from (3.27)) governs

the spin orientations in massive theory.

If we add (3.24) to (3.27)), we finally obtain the potential energy for massive

theory, which is

—4Gmimoe s —Ge M

U= 3 3 (mr? 4+ mgr + 1)
L. 1+mer +m2r?/3 - -
X [Jy - Jy — J Tl Jy - iy - 7. (3.28)

mf]r2 +mgr +1
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3.4 Spin Orientations in GR and Massive Gravity

As we have shown in the previous section, the force coming from the potential
energy due to the spin spin interactions is negligible compared to the Newton’s
force for distances where the weak field gravity is valid. In this section we show
that the spin-spin force is the strongest force that affects the orientation of spins.
We also show that the minimum energy configuration changes whether graviton
has a mass or not. It is clear that to minimize the potential energies in ([3.20))

and ((3.28)), we should maximize the function h, which is
h=J - Jy— f(x)J iy 7 (3.29)

where © = myr. When we compare the potential energies in GR and in massive
1+z+2%/3

1+ 2 + 22
We should note that, in the limits, for massive gravity f(z) € [3,1). We use

gravity, it is easily seen that f(z) = 3 and f(z) = 3 respectively.

the spherical coordinates, and choose the plane of fl and 7 as the zy plane, and
choose the direction of 7 as the x axis. Therefore, in this coordinate system, we

have

J=J (cos V11 + sin wﬁ),
Jo = Jo (cos 1) sin 091 + Sin 1 sin 5] + cos 62/2:). (3.30)

Then, the relevant scalar products are,
Ji -7 = Jicos i,

Jo - 7 = Jy cos g sin Oy,

jl . jg = JyJo(cos 1y cos by sin Oy + sin 1)y sin 1y sin Oy). (3.31)
Therefore, (3.29)) can be rewritten as,

h = JyJa(cos 1y cos g sin 0y + sin wlj) — f(z)Jy cos 1y Jy cos g sin Oy,
= Jy1Jo(cos 1y cos by sin By (1 — f) + sin ¢y sin 1) sin 6,). (3.32)

Let us start with ;. Since we are searching for the conditions which make h
. Oh )
maximum, —— = (0 must be satisfied. Hence,

00,

J1Jo[(cos by coshg cos Oo(1 — f) + sin by sin g cos 5] = 0, (3.33)
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which leads us that 6, = +g and 6y = —g. For the maximum h, 0y = —{—g

must be chosen. If we put it into (3.29), we obtain
h = JyJa(cos iy cosha(1 — f) + sine)y sinhg). (3.34)

Extremization with respect to two angles gives us,

o = —siny cos (1 — f) 4 costhy sinehs =0 (3.35)
O

oh . .

—— = —cos Yy sine(1 — f) + sinthy coshy = 0. (3.36)
O

It is clear from the above equations that our discussion depends whether f is 1
or not. Let us carry on the calculation with the first case. Then above equations

become,

cos Yy sinyy = 0,
sin 1y cos 1y = 0. (3.37)

We can easily conclude that the solutions of above equations are,

wl = ¢2 =0,
wl = wQ = 7T/2 (338)

If we put them into (3.33]), we obtain the followings:

h(¥r =1 = 0) = 0. (3.39)

h(@bl == ¢2 == 7T/2) == Jljg. (340)

We are searching for the maximum h, which is given by (3.40)). Notice that, ¢
and 1, are the angles of J; and .J; with the plane, which means that J; and .J,
are in the same direction and perpendicular to axis joining the sources.

We continue with the second case, which is f # 1. Multiplying the first equation
of (3.35) with 1 — f and adding it to (3.36) gives us

—sin; cos (1 — f)? 4 sine)y cos by = 0, (3.41)
with a little effort which changes to

[(1— f)? — 1] sine); coshy = 0. (3.42)
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It is seen that we have again two cases. One is
(1—f)?—-1=0, (3.43)

which shows that f can be either 0 or 2. Since we have f € [3,1), we reach that
it is 2. It means that f can be 2 or siny cosv, = 0 to satisfy (3.41). If we

examine the first case in which we equate f to 2, we obtain the equation
-2 -1=0, (3.44)

1++5 1-+5
2

and z9 =

with the roots z; = . Since x5 < 0, it is not a physical

solution, so it is ignored. At x = x1 ~ 1.62, h becomes

h = J1Ja(— cos )y cos Py + sin i)y sinhy),
= —JiJycos(¢1 + 1a). (3.45)

It is easily seen that h is maximum for cos(y + 12) = —1, which is satisfied for
Y1 + o = w. That is the same as the GR case, which is spins are anti-parallel

and they lay in the axis joining the sources as seen in the figures 3.1 and 3.2.

Y, L7
N

1 2

Figure 3.1: Minimum energy configuration in GR, as long as the weak field limit
is applicable.

Now we can examine the second case which is sin ¢ cos1, = 0. For this case,
we again have two possibilities which are v can be 0 or 7 and ), is arbitrary;
or ¢, can be m/2 or 37/2 and v is arbitrary. Notice that putting ¢, = 0 or
Yy = m into only matters a minus sign which will be gone when we take

the derivatives. Hence if we put ¢; = 0 into (3.32]), we obtain
h = J1J2<1 — f) COS ’QDQ. (346)
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Figure 3.2: Minimum energy configuration in massive gravity for mgr < 1.62.

If we take the derivative with respect to 15, we get

on
O,

Which leads us 99 = 0 or 1y = 7. If we put these results separately into (3.32)),

we get

= —J1Jo(1 — f)sinahy = 0. (3.47)

h(r = Yo = 0) = J1Jo(1 — f),
h(hr = 0,4 = m) = —J1Jo(1 = f). (3.48)

Since f € [3,1), (1 — f) < 0. Thus, h is maximum for the second equation of
(3.48). The second possibility is ¢, = 7/2, which makes

h = J1J2 sinwl. (349)

Taking the derivative with respect to v, gives us

oh
— = JiJycosy =0, 3.50
G = b cos vy (3.50)

which leads us ¥; = 7/2 or ¢; = 37/2. If we put these results separately into
the equation ([3.49)), we obtain,

h(r = o = /2) = J1Ja,
]’L(I/Jl :71'/2,’(/}2 :7'('/2) = —J1J2. (351)
For this case, h is maximum for the second equation of (3.51]). We can conclude
that, when myr > 1.62, massive gravity predicts parallel spin alignments with

spins perpendicular to the axis joining the spinning sources as shown in the

figure 3.3

o1



&
=l

Figure 3.3: Minimum energy configuration in massive gravity for mgr>1.62
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CHAPTER 4

CONCLUSION

In this thesis, the gravitomagnetic field and its effect on the spin configurations
for the minimum potential energy due to this field are discussed in both GR
and the massive gravity theory. It is verified that this configuration differs in
these theories. Gravitomagnetic field is the analog of the magnetic field in elec-
tromagnetism, which is a linear theory. Since GR is nonlinear, such an analogy
can only be constructed in the weak gravitational fields in which we linearize
the gravity.

In Chapter 1 we have derived the linearized field equations in weak field regimes.
We also studied the gravitational waves and their production.

In Chapter 2, we studied the analogy between GR and electromagnetism in de-
tail and obtain the Maxwell type equations in gravity. It is easily seen that the
expressions in both theories are closely related to each other. For example, equa-
tions of force, potential and the potential energy are in the same form except for
the mass and the charge are replaced with each other. Also, gravitational and
the electromagnetic radiation propagate at the speed of light and the former is
produced when the massive particle accelerates while the latter originates from
the accelerated charges.

It is also known that a single charge produces only an electric field around itself.
If the charge moves, it also generates a magnetic field. Because of the analo-
gies we stated above, it is natural to ask whether we can find a field similar to
the magnetic field in electromagnetism when the mass starts to move. Actually
we can, but only in the weak gravitational field. From starting the linearized

equations found in Chapter 1, we have derived the Maxwell type equations in
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linearized gravity. In fact these equations can be thought as a proof of the
analogies between these theories. We have defined f,g, which is the backbone of
the calculations, as the gravitational analog of the electromagnetic field tensor.
Therefore, its components are the gravitoelectric and the gravitomagnetic fields
instead of the electric and the magnetic fields. If we apply the Bianchi identity
to fap, with the proper choices of the indices we obtain two of the Maxwell type
equations. We have also obtained the Lorentz type force to understand the mo-
tion of the particles in the presence of the gravitational fields. It shows that the
particle’s motion is described by both gravitoelectric and the gravitomagnetic
fields. Then we specialize the calculations in static fields, which leads us to
the time independent Maxwell type equations. In the third part of this chapter
we have obtained the general forms of these equations. It is important to note
that we observe no difference between the Lorentz type forces in static and time
dependent fields. It follows from the fact that we omit the extra terms in the
latter because they are second order.

In the last part, we have studied the effect of the gravitomagnetic field on the
precession of a gyroscope. To do this, we define the analogs of some quantities
in electromagnetism and we define the angular momentum using these them.
From the change of the angular momentum, we see that the gravitomagnetic
field produces a force which adds extra terms in the precession of a gyroscope
and affects its motion.

In Chapter 3, we have studied how two spherically symmetric massive objects
spinning around their own axes interact each other. In Newton’s theory they
are interacted by the Newton’s force regardless from their velocities or angular
momentums. As we have shown in Chapter 2, these spinning masses generate
a gravitomagnetic field and affect each other via this field in GR. When we
compute the spin spin force from the spin spin potential energy, we see that
it is negligible compared to Newton’s force. We have the same situation in
massive gravity. Therefore we conclude that although ﬁspin—spin is negligible
compared to Newton’s force in GR and Yukawa type force in massive gravity, it
is the strongest force which determines the spin configuration of these massive
objects. To find this force, we write the potential energy in terms of Green’s

function. We do not give any calculations but the final answer of the poten-
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tial energy formulation we have mentioned above. Therefore we obtained the
following results: In GR, we write the potential energy as a sum of Newton’s
potential energy and Usgpin—spin, Which rises from the gravitomagnetic filed. It is
valid also for the massive case, but this time Newton’s potential energy changes
to Yukawa type potential energy. As we have mentioned before, gravitomagnetic
field affects the spin configuration which we study for the minimum potential
energy. Calculations reveal this configuration differs in massless and the massive
cases. In GR, as long as the weak field limit is acceptable the spin orientation,
that is spins are anti parallel and they lay in the axis joining the sources, does
not depend on the distance between these sources. On the other hand, distance
plays an important role in massive gravity. At separations mgr > 1.62, massive
gravity predicts parallel spin alignments with spins perpendicular to the axis
joining the sources. For myr < 1.62, massive gravity and GR predict the same

configuration.
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CHAPTER 5

APPENDIX

HELMHOLTZ THEOREM]

In section 1.3, we used the Helmholtz theorem which was based on the idea that
a vector field can be decomposed into a transverse and longitudinal parts. In
this section, we will give the proof. Let us begin with the definition of Helmholtz
theorem. A vector field V' whose divergence and curl vanishes at infinity can
be decomposed into the sum of the irrotational (curl-free) and the solenoidal

(divergence-free) vector fields. We can express its mathematical form as
V=-Vo+VxA, (5.1)

where —§¢ and V x A represent the irrotational and solenoidal vector fields
respectively. We have to justify that this decomposition is always valid. Let us

begin the proof by taking the divergence and curl of ‘7, which are

V-V =s(P)
V x V =&/, (5.2)

where s(7) and ¢(7) are the functions of position. By using these functions, we

can construct a scalar potential ¢(7) and vector potential A(7}) as

o) = = [

R

T12
S 1 (s
A(ry) = E/%d%. (5.3)

! This chapter closely follows Arfken’s book [29].
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It is easy to see that if s = 0, then V is divergence-free, therefore implies
that ¢ = 0. Similarly if ¢ = 0, then V is curl-free which implies A=0. Here,
71 with (21,41, 21) and 7 with (29, ya, 29) denote the field and the source point
respectively. We noted that V is such a vector field that its divergence (s) and
curl (¢) vanishes at infinity, therefore above integrals exist.

We claim that V is uniquely specified by its divergence s and curl ¢. The proof
of this claim can be followed by the Chapter 1 of Arfken’s book [29]. If we return
to (5.1]), we obtain

- -

V.-V =-V-Vg, (5.4)

since the divergence of the curl vanishes, and

-

VxV=Vx(VxA), (5.5)

since curl of a gradient is zero. If we can show the following equations

V x (V x A(r)) = &7), (5.6)

then we can say that V in ‘) has the proper divergence and curl hence we are
done. Let us begin with the divergence of V. If we use 1} and l) we will
have
I I 1 - - 7
V-V:—V-ng:——V-V/Mdgm. (5.7)
4 T12

We should note that V2 operates on the field of 77, and it can commute with

the integral, therefore we obtain

= — 1 d 1
V-V =—-— [ s(H)Vi(—)ds. (5.8)

47 12

We should be careful that our source is at 7, not at the origin, which means

that the above integral takes the form

V() = ﬁg(i) = —Amo () — 72)

12 12
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With the above condition, (5.8]) becomes

> =1 e s
V.-V = ypm s(7% 2(7“12 d
1 o
=~ [ stEami - ) s
= s(7). (5.10)

We finally reach that the assumed form of V and ¢ are consistent with 1D
To complete the proof of Helmholtz’s theorem, we need to show that curl of 1%

is equal to ¢(ry). We can write (5.5)) as

{— V%A, (5.11)
If we use (5.3), we will obtain the first part of the above equation as

ATVV - A = /5(7?2) : 6161(r)d3x. (5.12)
12
Again, if we replace the second derivatives with respect to 7 by the second

derivatives with respect to 7 and then integrate each sides of (5.12)) by parts,

we have
o 1
I S 3,. I S 3
/Vz ar 83:2 rlz)}d x /[V2 (7 )]8x2(r12>]d (5.13)

The second integral vanishes because of (5.2). By using Gauss’s theorem, we
can transform the first integral to a surface integral. We noted that ¢ would
vanish for large r. If we choose such a large surface, then the first integral also
vanishes, which leads us that VV - A = 0. Therefore 1' turns to

— — — — 1 —f

VxV=-VA=—-— [ &r)V] (—)d3 (5.14)

A7 T12

Again, if we use |j then the curl of V becomes,

= c(r1), (5.15)

which indicates that ((5.1) and (5.3]) are in harmony with (5.2]). This completes
the proof.
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