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ABSTRACT

GRAVITOMAGNETISM IN GENERAL RELATIVITY AND MASSIVE
GRAVITY

Özen, Gökçen Deniz

M.S., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

SEPTEMBER 2014, 61 pages

In this thesis gravitomagnetic effects are analysed in some detail. Einstein’s

equations for weak gravitational fields are derived. Using appropriate gauge fix-

ings, metric perturbation is decomposed and degrees of freedom are identified.

Physical degrees of freedom are chosen and it is proven that they character-

ize the propagation of gravitational waves. Production of gravitational waves

is demonstrated as well as their effects on the polarization of test particles.

Analogs of the Maxwell’s equations are derived for gravity. From the analysis

of the scattering amplitude, potential energy is found for massive and massless

gravity theories, the appropriate spin alignment for minimum potential energy is

calculated and the difference between general relativity and the massive gravity

for this spin alignment is shown. In the Appendix, some useful calculations are

given. Save for some details in the computations, no originality in this thesis

is claimed. Somewhat standard material about weak field gravity, gauge fixings

and degree of freedom counting follows closely the discussion in Chapter 7 of
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Carroll’s excellent book. Chapter 2 of the thesis closely follows Harris’s paper

"Analogy between general relativity and electromagnetism for slowly moving

particles in weak gravitational fields". Chapter 3 of this thesis is a review of

the paper Güllü-Tekin "Spin–spin interactions in massive gravity and higher

derivative gravity theories".

Keywords: Gravitomagnetism, Linearized Gravity, Gravity Waves, Spin Align-

ment in Massive Gravity
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ÖZ

KÜTLELİ ÇEKİM VE GENEL GÖRELİLİKTE ÇEKİMSEL MANYETİZMA

Özen, Gökçen Deniz

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bayram Tekin

Eylül 2014 , 61 sayfa

Bu tez çalışmasında, çekimsel manyetik etki ayrıntılı olarak analiz edildi. Zayıf

çekim alanları için Einstein denklemleri türetilmiştir. Uygun ayar dönüşümleri

kullanılarak metrik tedirgemeleri ayrıştırılmış ve serbestlik dereceleri tanımlan-

mıştır. Bu serbestlik derecelerinin fiziksel olanları seçilmiş, ve gravitasyonel dal-

gaların yayılmasını tanımladıkları ispatlanmıştır. Gravitasyonel dalgaların nasıl

meydana geldiği ve bu dalgaların test parçacıklarını nasıl polarize ettiği gös-

terilmiştir. Çekimsel alan için Maxwell denklemlerinin analogları bulunmuştur.

Saçılma genliği kullanılarak, kütleli ve kütlesiz teori için potansiyel enerji bu-

lunmuş, bu potansiyel enerjiyi minimum yapan spin uyumu hesaplanmış ve bu

uyumun genel görelilik ve kütleli teori için farklı olduğu gösterilmiştir. Ek bö-

lümde bazı yararlı hesaplar verilmiştir. Hesaplamalardaki bazı ayrıntılar dışında,

bu tezde özgünlük iddia edilmemektedir. Zayıf alan kütleçekimi, ayar sabitleme-

leri ve serbestlik derecesi sayımı ile ilgili oldukça standard konular, Carroll’un

mükemmel kitabının 7. bölümünü yakından takip etmektedir. Bu tezin 2. bö-
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lümü Harris’in "Analogy between general relativity and electromagnetism for

slowly moving particles in weak gravitational fields" makalesini takip etmekte,

3. bölümü de Güllü-Tekin "Spin–spin interactions in massive gravity and higher

derivative gravity theories" makalesini incelemektedir.

Anahtar Kelimeler: Çekimsel Manyetizma, Linerize Kütleçekimi, Kütleçekim

Dalgaları, Kütleli Teoride Spin Uyumu
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To women with great laughs
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CHAPTER 1

INTRODUCTION

1.1 Introduction

"If we pick up a stone and then let it go, why does it fall to the ground ?" [1].

Newton’s reply to this question was the attraction between the earth and stone.

In his book Principia in 1687, he formulated the force between two masses as

F =
−Gm1m2

r2
, (1.1)

where G is the Newton’s gravitational constant andm1 andm2 are the masses of

the particles. Minus sign indicates that the force is attractive. In the following

centuries, Newton’s law (1.1) gave successful explanations of the motion of the

moon and the planets [2]. The discovery of Uranus was one of the examples of

this success [3]. Over the years, some irregularities in its orbit emerged. It was

detected that Uranus insistently moved away from its expected Newtonian path.

It was suggested that, the deviation between the calculation and the observation

could be the result of the perturbation of an unknown planet [4]. Using the

Newton’s law, the location of this new planet, Neptune, was predicted and it was

observed at that location [3, 5]. This resolution could also give an explanation

about precession of Mercury’s perihelion precession. It was calculated that, the

observed precession was faster than the expected one according to Newton’s

theory. This discrepancy would exist because of small planets between Mercury

and the Sun, but these planets were never observed [2]. Fortunately, there

was a remedy for this trouble. The explanation came with the replacement of

Newtonian theory with the Einsteinian one [5].
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General Relativity (GR) is the theory of space, time and gravitation [6]. As the

matter bends its vicinity; it creates curvature which is the source of gravitation.

Matter is energy, hence we can say that there is a relationship between energy

and the curvature. Curvature is defined by the Riemann tensor and energy mo-

mentum tensor is an attribute of matter; in other words it is a measure of energy,

momentum, pressure and stress of the matter. Mathematical interpretation of

these information leads us to Einstein’s equation:

Rµν −
1

2
gµνR = 8πGTµν (1.2)

which is the basic equation of the GR. Rµν , gµν , R, Tµν are Ricci tensor, metric

of the space-time, Ricci scalar and the covariantly conserved energy momentum

tensor, respectively. Ricci tensor is calculated from contraction of Riemann

tensor; therefore, left-hand side of (1.2) represents the curvature of space time

whereas the right-hand-side is the measurement of the energy and its partners.

Similar to the other field equations, Einstein’s equation is postulated and can

not be proven by using any other principles. We can reach it by the motivation

of some arguments. We can find the equation of motion by using the least

principle action; therefore varying the Einstein-Hilbert action is a route to reach

the Einstein’s equation [7].

After Einstein’s equation was proposed, it was immediately applied to the prob-

lem of Mercury’s orbit. By the guidance of the Schwarzschild solution, the

perihelion precession of Mercury was calculated and the answer from the calcu-

lation precisely matched the observed value [2, 3, 5, 6, 7, 14]. Also, by passing

the tests such as the bending of light by the Sun and the gravitational redshift

of light, it was proven that the power of GR was not limited to the Mercury’s

orbit.

Gravitomagnetism, which is a natural consequence of general relativity, can be

described as an analogy between the equations of electromagnetism and those

in general relativity, precisely between Maxwell and Einstein’s field equations

[8]. We know that a charge generates an electric field which is proportional to

1/r2, where r is the distance between the charge and the point chosen. We also

know that, we will experience a magnetic field, if this charge starts to move and
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mathematical expression of this relationship is given by Maxwell’s equations.

Thanks to Newton, we have no doubt in the existence of gravitational field due

to a mass. We know that almost every object in the heavens rotate around itself

and revolve around another object. Therefore it will not be weird to say that

like a magnetic field in electromagnetism, we can describe a gravitomagnetic

field when a massive object rotates or moves. If there exists such an analogy,

then it has to be supported by equations. In Chapter 1, we will show that the

time component of the metric is responsible from the gravitoelectro field [6, 9].

In Chapter 2, we will derive this set of equations in general relativity, which

are analogs of Maxwell equations in electromagnetism. To do this, we will use

the Einstein’s equation. For an isolated, slowly moving object in a weak grav-

itational field, we can linearize the field equations by decomposing the metric

into flat metric plus a perturbation. With these linearized equations and the

appropriate components of the metric perturbation, the analogous equations of

electromagnetism can be derived easily in gravity [10].

Despite these successful solutions and predictions, like Newton’s theory, there

are some observations that GR cannot explain without recourse to additional

(dark) matter and (dark) energy in the Universe [5]. The data taken from the

supernova explosions point out that the Universe has an acceleration in its ex-

pansion and it leads us to the cosmological constant Λ [5, 11, 12, 13]. If GR is

totally accurate, then we have to experience a dark energy component which can

be represented by the cosmological constant, Λ, added to the Einstein-Hilbert

action. If we compare the values of energy density ρ emerged from the exper-

iments and the theory, we will see that a contradiction occurs between these

results. The inconsistency between theory and experiments shows that GR is

not the whole story, hence it must be modified [2, 5, 13, 15].

A theory of massive gravity is a way to modify the theory of general relativity

by adding a mass term to the Einstein- Hilbert action. It was first studied by

Pauli-Fierz in 1939, therefore the the added mass is called as "Fierz-Pauli (FP)

mass" [13], which alters the interaction between two massive objects as well as

the interaction between a massive one and the light. But there was a difference

between this massive theory and GR in the prediction of the bending of light.

As GR reduces to Newton’s theory in some limits, we expect that in the limit
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of zero mass, results of FP theory should match with those of GR since it is

a massless theory. Instead, an inconsistency arises, which is known as the van

Dam–Veltman–Zakharov (vDVZ) discontinuity. We know that experiments on

the bending of light coincides with GR, therefore FP theory needs a correction

[15, 16]. This discontinuity can be removed if we first introduce a cosmological

constant and take the limit M2
G

Λ
→ 0 [17]. But clearly this is not a satisfactory

solution. We can describe the interaction between two massive objects by de-

termining the hµν . We can accomplish it by using FP theory whose equations

are

Rµν −
1

2
gµνR +

m2

2
(hµν − gµνh) = 8πGTµν . (1.3)

We still require that the energy-momentum tensor is covariantly conserved

(∇µT
µν = 0). Therefore, because of the Bianchi identity ∇µ(Rµν − 1

2
gµνR) = 0,

we have m2(∇µh
µν −∇νh) = 0. As we can derive Einstein’s equation from the

Einstein-Hilbert action by using calculus of variations, we can also derive the

FP equation from the FP action. One important note about the FP equation

is that it necessarily is linear in hµν which is not a full tensor in spacetime but

only a tensor with respect to the background metric ḡµν = gµν − hµν . Therefore
in some sense FP theory is not a complete non-linear theory of massive gravity.

It should be considered as a linear theory whose non-linear extension must be

found. Recently, such a non-linear extension of FP massive gravity was found

in [18, 19]. All non-linear extensions of FP theory eventually are built upon FP

theory, hence at the linear level massive gravity is FP theory. In this thesis,

gravitomagnetic effects at the linear order are studied, therefore we will not say

much about the non-linear ones.

The outline of the thesis is as follows: In the next sections of this chapter

linearized gravity is discussed in detail. In a weak field, metric is written as

gµν = ηµν + hµν , where hµν is the metric perturbation. By using this metric, we

calculate the tools to write Einstein’s equations in this weak field. After that, we

examine the perturbation by decomposing it into the scalar, vector and tensor

components. Using the appropriate gauge transformations, we finally reach the

degrees of freedom and prove that some of them are not physical, in other words,

they do not represent the propagation of gravitational waves. Then gravitational
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waves are studied. To find the gravitational wave solutions, we use transverse

traceless gauge and find that the propagating degrees of freedom are the tensor

components of the metric perturbation. By studying them, we understand the

polarization of the test particles due to gravitational waves. The second chapter

is devoted to gravitomagnetic effect. If there is a relation between gravity and

electromagnetic theory, then we must find the analogs of Maxwell’s equations in

the gravitation theory. By studying the linearized field equations of gravity, we

will reach this analogy. In the third chapter, FP theory is studied up to a point.

Adding the mass to Einstein-Hilbert theory gives us to FP action [5]. Instead

of this, we will use the scattering amplitude which tells the whole story of the

interaction between two masses. We skip the calculation of the scattering am-

plitude and use it to find the potential for massive and the massless cases. After

that, we show the spin alignments for the minimum energy configuration and

prove that they are different for GR and massive gravity. Then the conclusion

part comes. Also, an appendix part is added for some useful calculations.

This thesis is based on the papers by Harris "Analogy between general relativity

and electromagnetism for slowly moving particles in weak gravitational fields"

and by Güllü-Tekin "Spin–spin interactions in massive gravity and higher deriva-

tive gravity theories" respectively. The standard material on linearized gravity

heavily depends on Carroll’s excellent book [6].

1.2 Linearized Gravity

In this section, the linearization of the Einstein’s equation about flat background

and a gauge transformation, which ensures that the linearized theory is invariant

under infinitesimal diffeomorphisms, are discussed. By linearization we mean

that we are studying the weak field regime of the theory. In this weak field, we

can decompose our metric into background metric and a small perturbation. By

using this decomposition, linearized equations are discussed first. At the end of

this part, a suitable gauge choice is introduced.
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1.2.1 Linearized Einstein Theory

What we mean by weak gravitational field is that the exact spacetime metric

can be written as a sum of flat background metric and a perturbation,

gµν = ηµν + hµν , | hµν |<< 1. (1.4)

We assume that the perturbation hµν is so small that we can ignore terms higher

than the first order in the relevant quantities. Smallness of a tensor quantity is

somewhat ambiguous, but what we mean here is that there is a set of coordinate

systems where the statement is valid. We take the flat background metric as

ηµν = diag(−1, 1, 1, 1). To find the inverse of the metric we take gµν = ηµν+αhµν ,

then we have

gµνg
νσ = (ηµν + hµν)(η

νσ + αhνσ)

δσµ = δσµ + αηµνh
νσ + ηνσhµν + αhνσhµν . (1.5)

Since the last term is in the second order, it vanishes at the lowest order, hence

α = −1. Therefore, we obtain the inverse of the metric as gµν = ηµν − hµν

at this order. It is crucial to note that hµν is not a tensor because it does not

transform like a tensor under general coordinate transformation. Instead, we can

define it as a symmetric tensor field propagating on a flat background spacetime.

Therefore, in the weak field regime the metric perturbation transforms as h′µν =

∧α µ ∧β ν hαβ, which means that linearized gravitational theory is invariant under

Lorentz transformations [20].

We want to find the linearized Einstein’s equation in this weak gravitational

field. To do this, we have to compute the Christoffel symbols first, which are

Γρµν =
1

2
gρλ (∂µgλν + ∂νgλµ − ∂λgµν) ,

=
1

2
(ηρλ − hρλ) [∂µ(ηνλ + hνλ) + ∂ν(ηµλ + hµλ)− ∂λ(ηµν + hµν)] . (1.6)

Multiplication of hµν to itself is the second order in perturbation. Then by

neglecting all the second terms in (1.6) we get

Γρµν =
1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) , (1.7)
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from which we conclude that Γ2 has the second order terms. Therefore only the

derivative of the connection coefficient appears in the Riemann tensor, which is

Rµνρσ = gµλR
λ
νρσ

= ηµλ(∂ρΓ
λ
νσ − ∂σΓλνρ). (1.8)

By inserting (1.7) in (1.8), one is left with the linearized Riemann tensor

Rµνρσ =
1

2
(∂ρ∂νhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂σ∂νhµρ). (1.9)

Contracting Riemann tensor over the indices µ and ρ with the flat metric gives

us the linearized Ricci tensor as

Rµν =
1

2
(∂λ∂µh

λ
ν + ∂ν∂ρh

ρ
µ − ∂ν∂µh−�hµν), (1.10)

where we have defined h = ηµνhµν = hµ µ and the d’Alambertian operator as

� ≡ ∂µ∂
µ = −∂2

t + ∂2
x + ∂2

y + ∂2
z . Contracting the linearized Ricci tensor gives

us the linearized Ricci scalar,

R = ηµνRµν = ∂µ∂νh
µν −�h. (1.11)

Putting all these objects together gives the Einstein’s tensor as

Gµν = Rµν −
1

2
gµνR

=
1

2
(∂λ∂µh

λ
ν + ∂ν∂ρh

ρ
µ − ∂ν∂µh−�hµν)

− 1

2
(ηµν + hµν)(∂µ∂νh

µν −�h). (1.12)

If we omit all the second order terms in (1.12), we finally obtain the linearized

Einstein’s tensor as,

Gµν =
1

2
(∂λ∂µh

λ
ν + ∂ν∂ρh

ρ
µ − ∂ν∂µh−�hµν − ηµν∂ρ∂λhρλ + ηµν�h). (1.13)

Therefore the linearized Einstein’s equation in the weak gravitational field is

Gµν = 8πGTµν , where Gµν is given by (1.13) and Tµν is the energy momentum

tensor.

1.2.2 Gauge Transformation

When Einstein formulated General Relativity, coordinate invariance (implicitly)

played a major role: Namely, physics should not depend on the choice of the
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coordinates. For example, a measurable quantity in the xµ coordinates should

be left invariant or should transform as a tensor under a change of coordinates

xµ −→ x′µ = fµ(xµ). (1.14)

Specifically the metric transforms as a (0, 2) rank tensor as

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). (1.15)

We can now ask what is left from this coordinate transformation when we de-

compose the metric as

gµν = ηµν + hµν . (1.16)

Let us assume a small coordinate transformation of the form x′µ = xµ − εµ(x),

where εµ is small. Then

g′µν(x
′) = (δαµ + ∂µε

α)(δβν + ∂νε
β)gαβ

= gµν(x) + ∂νε
βgµβ + ∂µε

αgαν +O(ε2)

= gµν(x) + ∂µεν + ∂νεµ. (1.17)

Expanding the left hand side as g′µν(x − ε) = g′µν(x) − εα∂αgµν(x) and writing

g′µν(x) = ηµν + h′µν(x), we get at this order how hµν(x) transforms

h′µν(x) = hµν(x) + ∂µεν(x) + ∂νεµ(x). (1.18)

In what follows we define εµ = εξµ. This formula is called a gauge transformation

along a vector field ξµ for weak gravitational fields. It shows how the metric

perturbations in different coordinate systems differ from each other. Now, let us

verify that curvature of a spacetime is invariant under this gauge transformation.

To do this, we define the Riemann tensor in the new coordinate system as R′µνρσ,

which is

R′µνρσ =
1

2
(∂ρ∂νh

′
µσ + ∂µ∂σh

′
νρ − ∂µ∂ρh′νσ − ∂σ∂νh′µρ)

=
1

2
[∂ρ∂ν(hµσ + 2ε∂(µξσ)) + ∂µ∂σ(hρν + 2ε∂(ρξν))

− ∂µ∂ρ(hσν + 2ε∂(σξν))− ∂σ∂ν(hµρ + 2ε∂(µξρ))], (1.19)
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where h′µν is obtained by transforming hµν according to (1.18). Therefore the

change in the Riemann tensor, R′µνρσ −Rµνρσ = δRµνρσ, is

δRµνρσ = ∂ρ∂νε∂(µξσ) + ∂σ∂µε∂(ρξν) − ∂ρ∂µε∂(σξν) − ∂σ∂νε∂(µξρ)

= 0. (1.20)

This result tells us that different metric perturbations which are related to (1.18)

have the same curvature, therefore the same physical situation [21].

1.3 Degrees of Freedom

The existence of gauge transformations suggest that not all ten components of

the symmetric tensor hµν are physical or true degrees of freedom. In this sec-

tion, we obtain these degrees of freedom using algebraic and additional decom-

positions. With the former we decompose the metric perturbation into scalar,

vector and tensor pieces, which transform into themselves under spatial trans-

formations. Then by the latter, we decompose the elements of these pieces such

that none of them can be further decomposed, namely they become irreducible

representations of the rotation group. Therefore we obtain the irreducible com-

ponents of hµν , hence the ten degrees of freedom. We rewrite the Einstein’s

equation in terms of the components of hµν , from which we can pick the physi-

cal degrees of freedom. We also introduce some examples of gauges which can be

suitable for different circumstances. We examine this section in three parts. In

the first part, we introduce the algebraic decomposition and identify the physical

degrees of freedom. After that we obtain the Einstein’s equation for different

gauges which will be handy in the following sections. In the last part, we intro-

duce additional decomposition and obtain all degrees of freedom which can not

be decomposed any other small pieces. We use the notations and conventions

of Caroll’s book [6].

1.3.1 Components of The Metric Perturbation

As we have mentioned above, we decompose the metric perturbation hµν into

three parts: The 00 component is a spatial scalar, the 0i components are spatial

9



three vectors and the ij components are the symmetric spatial tensors, which

are

h00 ≡ −2Φ

h0i ≡ wi

hij ≡ 2sij − 2Ψδij. (1.21)

Where Ψ contains the trace of hij and sij is the strain tensor which is traceless.

Hence it can be found as

Ψ = −1

6
δijhij

sij =
1

2
(hij −

1

3
δklhklδij). (1.22)

We know that the full metric is defined as,

ds2 = gµνdx
µdxν = (ηµν + hµν)dx

µdxν . (1.23)

If we use the decomposition of metric and put the corresponding components

into the equation , we obtain

ds2 = −(1 + 2Φ)dt2 + wi(dtdx
i + dxidt) + ((1− 2Ψ)δij + 2sij) dx

idxj. (1.24)

If we examine the geodesic equation, we can find the fields which determine the

motion of the test particles moving in gravitational field. In the previous section,

we derived the Christoffel symbols. If we use the corresponding perturbation

components, we obtain

Γ0
00 =

1

2
η0λ(∂0h0λ + ∂0h0λ − ∂λh00). (1.25)

It survives only for λ = 0, otherwise η0λ = 0, which means that only h00 appears

in the equation. Since h00 ≡ −2Φ, we get

Γ0
00 = ∂0Φ. (1.26)

For µ, σ, ρ = i, 0, 0, the Christoffel connection becomes,

Γi00 =
1

2
ηiλ(∂0h0λ + ∂0h0λ − ∂λh00), (1.27)

which survives only for λ = i. With the related components of the perturbation,

it reads

Γi00 = ∂iΦ + ∂0ωi. (1.28)
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From (1.7), the 0j0 component of the connection coefficient is,

Γ0
j0 =

1

2
η0λ(∂jh0λ + ∂0hjλ − ∂λh0j). (1.29)

As it is noticed easily, h00 is the only survivor then one has

Γ0
j0 = ∂jΦ. (1.30)

If we carry on this procedure, we obtain the rest of the connection coefficients

as,

Γij0 = ∂[jωi] +
1

2
∂0hij

Γ0
jk = −∂(jωk) +

1

2
∂0hjk

Γijk = ∂(jhk)i −
1

2
∂ihjk, (1.31)

where A[iBj] =
1

2
(AiBj −AjBi) and A(iBj) =

1

2
(AiBj +AjBi). These equations

will be very useful in computing the geodesic equation.

In an inertial frame, components of the four momentum are

p0 =
dx0

dλ
= E

pi =
dxi

dλ
= Evi. (1.32)

If we rewrite the geodesic equation in terms of the components of momentum,

we obtain

dpµ

dλ
+ Γµρσp

ρpσ = 0. (1.33)

If we manipulate the first term, we get
dpµ

dλ
=
dt

dλ

dpµ

dt
. Plugging this result into

(1.33) gives

dpµ

dλ
= −Γµρσ

pρpσ

E
. (1.34)

For µ = 0, (1.34) describes the evolution of the energy (or power),

dE

dt
= − 1

E
(Γ0

0σp
0pσ + Γ0

iσp
ipσ) (1.35)

with the related Christoffel symbols and components of the momentum tensor,

this equation becomes,

dE

dt
= −E[∂0Φ + 2(∂kΦ)vk − (∂(jωk) −

1

2
∂0hjk)v

jvk]. (1.36)
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For µ = i, (1.34) describes the spatial components of the geodesic equation,

which are

dpi

dt
= −Γiρσ

pρpσ

E
. (1.37)

Inserting the appropriate terms gives us,

dpi

dt
= −E[∂iΦ + ∂0ωi + 2(∂[iωj] + ∂0hij)v

j + (∂(jhk)i −
1

2
∂ihjk)v

jvk]. (1.38)

Let us define the gravitoelectric and the gravitomagnetic three vector fields as

Gi = −∂iΦ− ∂0ωi

H i = (~∇× ~ω)i = εijk∂jωk. (1.39)

Then (1.38) becomes,

dpi

dt
= E[Gi + (~v × ~H)i − 2(∂0hij)v

j − (∂(jhk)i −
1

2
∂ihjk)v

jvk]. (1.40)

It is easily noticed that (1.40) looks like the Lorentz force in electromagnetism,

which shows that the motion of a charged particle is affected by both electric

and magnetic fields. As we see from (1.39), we have similar expressions in weak

gravitational fields. Therefore we infer from (1.40) tells that the motion of a

particle in a weak gravitational field is determined by the gravitoelectric field

as well as gravitomagnetic one. Let us continue with the linearized Einstein’s

tensor. As we know the components of hµν , we can rewrite (1.13) in terms of

them. We follow the same procedure used in the previous section. As we have

already determined the Christoffel symbols, we carry on the discussion with the

Riemann tensor. If we put the appropriate components of hµν into (1.9), we find

the components of the Riemann tensor as

R0j0l = ∂j∂lΦ + ∂0∂(jωl) −
1

2
∂0∂0hjl

R0jkl = ∂j∂[kωl] − ∂0∂[khl]i

Rijkl = ∂j∂[khl]i − ∂i∂[khl]j. (1.41)

Contracting on two of the indices, one gets

Rµν = ηρσRµρνσ = −Rµ0ν0 + δijRµiνj, (1.42)
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from which we reach the components of the Ricci tensor, which are

R00 = ~∇2Φ + ∂0∂kω
k + 3∂2

0Ψ

R0j =
1

2
∂j∂kω

k − 1

2
~∇2ωj + 2∂0∂jΨ + ∂0∂ks

k
j

Rij = −∂i∂j(Φ−Ψ)− ∂0∂(iωj) +�Ψδij −�sij + 2∂k∂(isj)k , (1.43)

where we have defined ~∇2 = δij∂i∂j in three dimensional flat space. If we express

the Ricci scalar as R = ηρσRρσ, we can rewrite the Einstein’s tensor as

Gµν = Rµν −
1

2
ηµνη

ρσRρσ

= Rµν +
1

2
ηµνR00 −

1

2
ηµνη

ijRij. (1.44)

With (1.21) and (1.43), the components of (1.44) become

G00 = 2~∇2Ψ + ∂k∂ls
kl

G0j = −1

2
~∇2ωj +

1

2
∂j∂kω

k + 2∂0∂jΨ + ∂0∂ks
k
j

Gij = (δij ~∇2 − ∂i∂j)(Φ−Ψ) + δij∂0∂kω
k − ∂0∂(iωj) + 2δij∂

2
0Ψ

−�sij + 2∂k∂(isj)k − δij∂k∂lskl. (1.45)

As we have mentioned in the beginning of this section, not all ten components

are physical degrees of freedom. We can show this by using (1.45) in Einstein’s

equation. Let us begin by equating the first equation of (1.45) to 8πGT00, which

gives us

~∇2Ψ = 4πGT00 −
1

2
∂k∂ls

kl. (1.46)

It is seen that (1.46) is not a wave equation therefore Ψ does not propagate. We

can determine it in terms of T00 and skl for any time. In other words, we solve

(1.46) for Ψ(t, ~x) using the three dimensional Green’s function.

Next, if we use the second equation of (1.45) in the 0j component of Einstein’s

equation and raise the index of ωj, we obtain

(δjk ~∇2 − ∂j∂k)ωk = −16πGT0j + 4∂0∂jΨ + 2∂0∂ks
k
j, (1.47)

which does not depend on time either, so ωj is not a propagating degree of

freedom. Similar to Ψ, it is determined by T0j and the strain tensor sij. Finally,

13



the ij component of the Einstein’s equation gives

(δij ~∇2 − ∂i∂j)Φ = 8πGTij + (δij ~∇2 − ∂i∂j − 2δij∂
2
0)Ψ− δij∂0∂kω

k

+ ∂0∂(iωj) +�sij − 2∂k∂(isj)k − δij∂k∂lsjl, (1.48)

which shows that the above explanations are valid also for Φ, so we conclude

that it is not a propagating degree of freedom, either.

As we understand from the above discussions, scalar and vector components of

hµν are determined in terms of the strain and the energy momentum tensors;

therefore they are not true degrees of freedom. Propagating degrees of freedom

come only from the tensor piece of hµν . By propagating degrees of freedom, we

mean that they contain all the information about the gravitational radiation.

At the end of this section, we will describe these degrees of freedom.

1.3.2 Gauge Transformations

In the previous section, we obtained the linear gauge transformation which leaves

the Riemann tensor invariant. Under this transformation, components of the

metric perturbation change as,

Φ→ Φ + ∂0ξ
0

ωi → ωi + ∂0ξ
i − ∂iξ0

Ψ→ Ψ− 1

3
∂iξ

i

sij → sij + ∂(iξj) −
1

3
∂kξ

kδij. (1.49)

In electromagnetism, there are some gauges which fit for different cases. The

same situation is valid also in gravity. By constructing some analogies with

electromagnetism, we define analogous gauges in gravity.

Let us start with the "transverse gauge", which looks like the Coulomb gauge,

∂iA
i. We first assume that the strain tensor satisfies this, which we mean the

equation

∂is
ij = 0. (1.50)

If we manipulate the last equation of (1.49) according to (1.50), we get

~∇2ξj +
1

3
∂j∂iξ

i = −2∂is
ij. (1.51)
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Here, there is no boundary condition given; instead of specifying a solution we

are interested in whether it exists or not. We know that the solution of (1.51)

is written in terms of Green’s function, so we can choose such ξj that it satisfies

(1.50). Still we have to determine ξ0. To do this we assume that the condition

on (1.50) is also valid for ωi, by which we mean

∂iω
i = 0, (1.52)

which leads us to

~∇2ξ0 = ∂iω
i + ∂0∂iξ

i. (1.53)

Similarly, we can choose ξ0 which satisfies the above equation. As we can deter-

mine ξµ from the corresponding differential equations, we define the transverse

gauge by (1.50) and (1.52). If we use these conditions on (1.45), the components

of the Einstein’s equation for the transverse gauge becomes,

G00 = 2~∇2Φ = 8πGT00

G0j = −1

2
~∇2ωj + 2∂0∂jΨ = 8πGT0j

Gij = (δij ~∇2 − ∂i∂j)(Φ−Ψ)− ∂0∂(iωj) + 2δij∂
2
0Ψ−�sij = 8πGTij. (1.54)

We use these equations to determine the gravitational waves in the following

section.

Let us continue with the "synchronous gauge", which looks like the temporal

gauge, A0 = 0. We assume that it is valid for the scalar potential Φ, which

means

Φ = 0, (1.55)

If we use it in (1.49), we get

∂0ξ
0 = −Φ. (1.56)

Just as the first example, we can find some ξ0 which satisfies (1.56) by direct

integration; therefore if we find ξi then we are done. If all the vector components

vanish,

ωi = 0. (1.57)
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If we use it in the second equation of (1.49), we obtain

∂0ξ
i = −ωi + ∂iξ

0. (1.58)

As we have already determined ξ0, we can also choose ξi which satisfies (1.58).

Again, since we can determine ξµ by differential equations above therefore the

conditions (1.55) and (1.57) together define the synchronous gauge.

"Lorenz gauge" is the last example of the gauges we discuss, which is defined as

∂µh
µ
ν −

1

2
∂νh = 0. (1.59)

As we show in the last section of this chapter, this gauge is used to calculate

the production of gravitational waves.

1.3.3 Further Reduction

The decomposition of the metric perturbation into scalar, vector and tensor

components is known as algebraic decomposition. By additional decomposition,

we can determine the physical degrees of freedom more directly. It is based

on the idea that a vector field ~ω can be decomposed into transverse ~ω⊥ and

longitudinal ~ω‖ parts:

ωi = ωi⊥ + ωi‖, (1.60)

where a transverse vector is divergenceless and a longitudinal vector is curl-free,

which are described by

∂iω
i
⊥ = 0 and εijk∂jω‖k = 0, (1.61)

respectively. Since the divergence of curl is zero, then we can represent the

transverse part as a curl of some other vector ξi, which means

ωi⊥ = εijk∂jξk. (1.62)

Similarly, a longitudinal vector is the divergence of a scalar λ,

ω‖i = ∂iλ. (1.63)
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It is clear that λ represents one degree of freedom. If we take the divergence of

(1.62), to satisfy the first equation of (1.61), we have to set

∂jξ
j = 0, (1.64)

which means that ξj is transverse. Although ξj represents three vectors, from

(1.62) and (1.64) we can find only two of them. So one of them is determined by

the other two. Therefore with the scalar λ, the vector field ωi has three degrees

of freedom.

If we apply the similar procedure for the strain tensor, we get

sij = sij⊥ + sijS + sij‖ , (1.65)

where the terms in the right hand side of (1.65) are known as transverse,

solenoidal and longitudinal parts, respectively. Transverse part is divergence-

less, i.e. ∂is
ij
⊥ = 0. Divergence of the solenoidal part is a transverse vector,

which is divergenceless and is written as

∂is
ij
S = sij⊥

∂j∂is
ij
S = ∂js

ij
⊥ = 0, (1.66)

and the divergence of the longitudinal vector is again a longitudinal vector,

which is curl-free,

∂is
ij
‖ = sij‖

εjkl∂i∂ks
i
‖j = 0. (1.67)

The curl of the gradient is zero, therefore longitudinal part can be expressed in

terms of a scalar θ, and the solenoidal part can be derived from a transverse

vector ζ i as

sij‖ = (∂i∂j −
1

3
δij ~∇2)θ

ssij = ∂(iζj), (1.68)

where ∂iζ i = 0 and the round bracket represents symmetrization.

It is clear that the scalar θ describes one degree of freedom. The explanation for

ξi is also valid for ζj, which means that ζj represents two degrees of freedom.

Therefore there are two degrees of freedom left which the transverse traceless
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tensor sij⊥ represents. We finally describe the ten components of hµν in terms

of four scalars (Φ,Ψ, λ, θ) with one degree of freedom each; two vectors (ηi, ζj)

with two degrees of freedom each and one transverse traceless tensor sij⊥ with

two degrees of freedom, which are the physical ones.

1.4 Gravitational Waves

In this section, we examine the gravitational radiation by using the propagating

degrees of freedom we found in section 1.3. We prefer to study in vacuum to

neglect the effects of the source, therefore all components of the energy momen-

tum tensor vanish. If we use this in (1.54), we obtain the 00 component of the

Einstein’s tensor as

G00 = 2∇2Ψ = 0. (1.69)

from which we get Ψ = 0, assuming that Ψ = 0 at infinity, this follows. If we

use it, we obtain the 0j components as

G0j = −1/2∇2ωj = 0, (1.70)

which again imply wj = 0. Finally, with the condition Ψ = wj = 0, the ij

components become

Gij = (δij∇2 − ∂i∂j)Φ−�sij = 0. (1.71)

We know that sij is traceless, so if we take the trace of (1.71), we obtain

δij(δij∇2 − ∂i∂j)Φ = 0

∇2Φ = 0, (1.72)

which gives us Φ = 0. If we plug it into (1.71), the ij equation becomes

�sij = 0, (1.73)

which emerges a wave equation for sij. Instead of solving this, we prefer to

continue with hµν in which Ψ,Φ and wi vanish and sij is transverse. This form
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of hµν is known as the "transverse traceless gauge". Under this gauge, (1.21)

can be rewritten as

hTT00 = hTT0i = 0

hTTij = 2sij. (1.74)

We therefore write the transverse traceless gauge hTTµν in the matrix form, which

is

hTTµν = 2


0 0 0 0

0 s11 s12 s13

0 s21 s22 s23

0 s31 s32 s33

 . (1.75)

It is easy to see that with the above matrix, (1.73) implies,

�hTTµν = 0, (1.76)

which is the wave equation whose solutions help us to understand the charac-

terization of the gravitational waves. Before finding these solutions, if we dig

hTTµν more, we reach the following results: As it is understood from (1.75), hTTµν
is purely spatial,

hTT0ν = 0. (1.77)

If we take the trace of (1.77), we get

ηµνhTTµν = 0. (1.78)

Since sij is a transverse traceless tensor, this leads us to

∂µh
µν
TT = 0. (1.79)

Now we are ready to solve the wave equation in (1.76). We know that the

solutions of this kind of equations are the plane waves, therefore we have

hTTµν = Cµνe
ikσxσ , (1.80)

where Cµν represents the symmetric amplitude matrix with (complex) constant

components and kσ represents the constant (real) wave-four vector. We take the
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real part of (1.80) because we are interested in the physical solutions [20, 22]. We

can find the components of the amplitude matrix Cµν from (1.80). For µ = 0,

it becomes

hTT0ν = C0νe
ikσxσ . (1.81)

which is true for all kσxσ, therefore with (1.77) we reach that Cµν is purely

spatial, which is

C0ν = 0. (1.82)

If we take the trace of (1.80) and use (1.78), we reach that Cµν is also traceless,

which is

ηµνCµν = 0. (1.83)

We introduce (1.80) as the solution of the wave equation; hence it has to satisfy

(1.76), which gives

−kσkσhTTµν = 0. (1.84)

From (1.75), it is seen that all components of hTTµν are not zero, so above is true

for

kσkσ = 0, (1.85)

which indicates that (1.80) can be accepted as a solution of the wave equation

if the wave vector is null; that is the wave vector is propagating at the speed of

light.

Finally if we take the divergence of (1.80) and use (1.79), we get

(ikµ)Cµνeikσx
σ

= 0, (1.86)

which implies

Cµνkµ = 0, (1.87)

which shows that the wave vector and Cµν are orthogonal.

To be more specific on the wave vector, let us set its timelike component to its

angular frequency and choose the direction of propagation in the z direction

kµ = (ω, 0, 0, k) = (ω, 0, 0, ω), (1.88)
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where k = ω because kµ is null. The conditions on (1.77), (1.87) and (1.88)

together imply

C3ν = 0. (1.89)

Therefore we conclude that the non-vanishing components of Cµν are only C11, C12, C12, C22.

But Cµν, is traceless and symmetric, therefore we can write it in the matrix form

as

Cµν =


0 0 0 0

0 C11 C12 0

0 C21 −C11 0

0 0 0 0

 . (1.90)

Hence under this gauge, these two components characterize the plane wave prop-

agating in the z direction.

Gravitational waves may have some physical effects on the test particles, which

are initially at rest. It is not enough to consider the path of a single particle

only, because it stays stationary in the transverse traceless gauge, regardless

of the wave’s propagation. To obtain a coordinate independent measure of its

effects, we consider the relative motion on the test particles [6, 20]. To de this,

we examine the equation of the geodesic deviation, which is

D2

dτ 2
Sµ = Rµ

νρσU
νUρSσ, (1.91)

where Uµ is the four-velocity of these particles and Sµ is the separation vector.

We want to write the right hand side of (1.91) to the first order in hTTµν . If we

study with slowly moving particles, we can write Uµ as a sum of unit vector with

timelike component and higher order terms in hTTµν , which we neglect. Therefore

Uµ can be expressed by

Uµ = (1, 0, 0, 0), (1.92)

which implies that we only need Rµ00σ. In transverse traceless gauge, (1.9) turns

to

Rµ00σ =
1

2
(∂0∂0h

TT
µσ + ∂µ∂σh

TT
00 − ∂0∂σh

TT
µ0 − ∂0∂µh

TT
0σ ). (1.93)
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If we use (1.75) and contract (1.93), we rewrite the Riemann tensor as

Rµ
00σ = ηµλRλ00σ

=
1

2

∂2

∂t2
hTTµσ . (1.94)

We know τ = t for slowly moving particles. So with the above equation, one

can obtain (1.91) as

∂2

∂t2
Sµ =

1

2
Sσ

∂2

∂t2
hTTµσ . (1.95)

We have chosen that the wave is passing in the z direction. For µ = 3, (1.95) van-

ishes so we infer that only S1 and S2, which are perpendicular to the travelling

wave, will be affected in the presence of the wave. Therefore the gravitational

wave is transverse in both its mathematical formulation and physical effects [20].

As we have mentioned before, Cµν represents the characterization of the wave.

We can rename its components as

h+ = C11 and h× = C12, (1.96)

so we can replace (1.90) by,

Cµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (1.97)

Let us begin with discussing the effects of h+ only, by setting h× = 0. For µ = 1,

(1.95) becomes

∂2

∂t2
S1 =

1

2
S1hTT11 +

1

2
S2hTT12 . (1.98)

For h× = h12 = 0, if we use (1.80), (1.98) is rewritten as

∂2

∂t2
S1 =

1

2
S1(h+e

ikσxσ). (1.99)

If we apply the same procedure for µ = 2, we obtain

∂2

∂t2
S2 = −1

2
S2(h+e

ikσxσ). (1.100)
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Solutions of the differential equations in (1.99) and (1.100)are found as

S1 = (1 +
1

2
h+e

ikσxσ)S1(0),

S2 = (1− 1

2
h+e

ikσxσ)S2(0). (1.101)

Thus, particles with initial separation in the x direction will oscillate in the same

direction; similar to those with initial y separation. Consider these particles form

a circle in the xy plane and for some time we have h+ > 0. Then (1.101) shows

that particles oscillate in the x direction move apart, while those in y direction

comes closer; which means that the circle formed by particles will be squashed.

Later h+ becomes zero so the circle turns to its original form. After h+ becomes

negative, the procedure for positive h+ will be reversed [23]. This is known as

+ polarization, which is shown in the Figure 1.1. If we examine the case where

Figure 1.1: The effect of a gravitational wave with + polarization.

h+ = 0 but h× 6= 0, we get
∂2

∂t2
S1 =

1

2
S2(h×e

ikσxσ),

∂2

∂t2
S2 =

1

2
S1(h×e

ikσxσ). (1.102)

which yield the solutions

S1 = S1(0) +
1

2
h×e

ikσxσS2(0),

S2 = S2(0) +
1

2
h×e

ikσxσS1(0). (1.103)

It seems that these solutions are rotated. Hence the test particles oscillate in

the same forms but in the rotated axis [23]. This is known as × polarization,

which is shown in the Figure 1.2.

As it is understood from the figures, h+ and h× represent the plus and the

cross polarizations, which are the independent modes of linear polarization of

23



Figure 1.2: The effect of a gravitational wave with × polarization.

the gravitational waves. As we have mentioned in section 1.3, h+ and h× are

the propagating degrees of freedom, which are obtained from sij⊥ and we have

shown that they characterize the gravitational radiation.

We can also describe the modes of right and left handed polarizations as

hR =
1√
2

(h+ + ih×),

hL =
1√
2

(h+ − ih×). (1.104)

The effect of a pure hR and hL wave is seen in Figure 1.3.

Figure 1.3: The effect of a gravitational wave with R polarization that rotates
test particles in a right handed sense.

1.5 Gravitational Wave Production

In electromagnetism, electromagnetic radiation originates from the accelerated

charges. In gravity, there are analogous waves which are generated from the

accelerated massive objects. Although we expect that this radiation rises from

the dipole term, because of the conservation of momentum we see that the

gravitational radiation is proportional to the second derivative of the quadrupole

moment tensor; which is the scope of this section [22]. For this purpose, we
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couple Einstein’s equation to matter, which means that the energy momentum

tensor does not vanish anymore. It implies that the scalar and vector components

as well as the strain tensor will appear in the solutions of this equation. Therefore

gravitational radiation can not be in the transverse traceless form. Instead, we

introduce the trace-reversed perturbation, which reduces to hTTµν far from the

sources. If we plug it into the linearized field equations and solve them under

the Lorenz gauge, we obtain a wave equation whose solutions can be written in

terms of Green’s function. If we apply Fourier transform to these solutions, we

will see that the spatial components of the trace-reversed perturbation contains

the gravitational radiation. We examine this section in two parts. In the first

part we introduce the trace-reversed perturbation and its properties. By using

Lorenz gauge, we solve the Einstein’s equation in terms of the new perturbation.

In the second part, we apply Fourier transform to these solutions to show that the

gravitational radiation produced by an isolated massive object is proportional

to the second derivative of the quadrupole moment tensor of the energy density.

1.5.1 Einstein’s Equation in the Presence of Matter

Let us begin by introducing the trace-reversed perturbation,

h̄µν = hµν −
1

2
hηµν . (1.105)

It is a reasonable name for this perturbation, since

h̄ = −h. (1.106)

We have shown that, in vacuum gravitational waves are in transverse traceless

form. Hence trace-reversed perturbation has to reduce to this form away from

the source. If we remove the trace of (1.105) and take the transverse of what is

left, we obtain

h̄TTµν = hTTµν . (1.107)

Under a gauge transformation defined in (1.18), we transform (1.105) as

h̄′µν = h′µν −
1

2
h′ηµν , (1.108)
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in which we need to find what h′ is, since it is trivial to obtain h′µν by using

(1.18). If we take the trace of h′µν , we get

h′ = h+ 2∂λξ
λ. (1.109)

If we put the result of h′µν and (1.109) into (1.108), we obtain

h̄′µν = hµν −
1

2
hηµν + 2∂(µξν) − ∂λξληµν . (1.110)

As it is easily seen that, the first two terms of the right hand side of the above

equation give h̄µν , therefore (1.110) becomes,

h̄′µν = h̄µν + 2∂(µξν)− ∂λξληµν . (1.111)

If we take the partial derivatives of each side and use the identities ηµλξλ = ξµ

and ηµν∂µ = ∂ν , we get

∂µh̄′µν = ∂µh̄µν +�ξν . (1.112)

If we introduce ξµ as a gauge parameter, which satisfies

�ξµ = −∂λh̄λ µ. (1.113)

Therefore we have the Lorenz gauge as

∂µh̄µν = 0, (1.114)

which is the analog of the ∂µAµ = 0 gauge in electromagnetic theory. As (1.114)

shows the trace-reversed perturbation is transverse. For convenience, we drop

the primed notation in the rest of the section.

We should note that, the original perturbation hµν is not transverse under the

Lorenz gauge. To see this, we take the divergence of both sides of (1.105), which

gives

∂µh̄µν = ∂µh
µν − 1

2
∂µhη

µν . (1.115)

Left hand side of the above equation vanishes because of (1.114), hence we obtain

(1.115) as

∂µh
µν =

1

2
∂µhη

µν . (1.116)
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As it is seen from (1.13), we have expressed Gµν in terms of the original pertur-

bation. So if we rewrite (1.105) as

hµν = h̄µν +
1

2
hηµν (1.117)

and plug it into (1.13), under the Lorenz gauge we obtain the Einstein’s tensor

as

Gµν = −1

2
�h̄µν . (1.118)

Therefore, the Einstein’s equation takes the form

�h̄µν = −16πGTµν , (1.119)

whose solution is written in terms of Green’s function. If the Green’s function

satisfies

�xG(xσ − yσ) = δ(4)(xσ − yσ), (1.120)

then we can write the general solution of (1.119) as

h̄µν = −16πG

∫
G(xσ − yσ)Tµν(y

σ)d4y. (1.121)

We should note that solutions of (1.121) can be advanced or retarded [24]. We

are seeking for the effects of waves which propagate forward so we study with

the retarded Green’s function, which is given by

G(xσ − yσ) = − 1

4π|~x− ~y|
δ[|~x− ~y| − (x0 − y0)]θ(x0 − y0), (1.122)

where the θ function is 1 when x0 > y0, otherwise it is zero. If we put (1.122)

into (1.121) and take the integral with respect to y0, we get

h̄µν(t, ~x) = 4G

∫
1

|~x− ~y|
Tµν(t− |~x− ~y|, ~y)d3y, (1.123)

where t = x0 and tr = t − |~x − ~y| is called as retarded time. As it is seen from

(1.123), the gravitational radiation, h̄µν , can be thought as a sum of the effects

of the sources, Tµν , at the points (tr, ~x−~y). Here, ~x represents the points where

h̄µν is determined and ~y represents the points where the source is located from

which we conclude that |~x− ~y| is the distance between them [22].
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1.5.2 Fourier Transform and The Quadrupole Moment

To have a better understanding of the gravitational waves, we should dig (1.123)

more. For this purpose, let us introduce the Fourier transforms to make calcu-

lations simpler. For a a function Φ(t, ~x) Fourier and inverse Fourier transforms

are defined as

Φ̃(ω, ~x) =
1√
2π

∫
dteiωtΦ(t, ~x)

Φ(t, ~x) =
1√
2π

∫
dωe−iωtΦ̃(ω, ~x). (1.124)

Under these transformations, the metric perturbation becomes

˜̄hµν(ω, ~x) =
1√
2π

∫
dteiωth̄µν(t, ~x). (1.125)

If we use the definition of h̄µν(t, ~x) and change t to tr, we have

˜̄hµν(ω, ~x) = 4G

∫
d3yeiω|~x−~y|

T̃µν(ω, ~y)

|~x− ~y|
. (1.126)

We study with a source such that it is isolated, slowly moving and far from

the observer. Therefore we can replace
eiω|~x−~y|

|~x− ~y|
by

eiωr

r
, where r is the distance

between the source and the observer. Hence we write (1.126) as

˜̄hµν(ω, ~x) = 4G
eiωr

r

∫
d3yT̃µν(ω, ~y). (1.127)

If we apply Lorenz gauge condition in Fourier space, we obtain

1√
2π
∂µ

∫
dωe−iωt˜̄hµν(ω, ~x) = 0, (1.128)

which implies,

˜̄h0ν = − i
ω
∂i

˜̄hiν . (1.129)

It is easily understood that, instead of all components of ˜̄hµν , it is enough to

compute only the spacelike components. Here is our strategy: If we set µ = i

and ν = j in (1.127) we can determine hij, therefore h0i. To accomplish this, we

play with the right hand side of (1.128) to have a simpler form. If it is integrated

by parts, we get∫
d3y(∂ky

i)T̃ kj =

∫
d3y∂k(y

iT̃ kj)−
∫
d3yyi∂kT̃

kj. (1.130)
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First term is a surface integral which will vanish for an isolated source. By using

the Bianchi identity, ∂µT µν = 0 in Fourier space, second term becomes,

−∂kT̃ kν = iωT̃ 0ν . (1.131)

Also we write δik =
∂yi

∂yk
= ∂ky

i, hence under these circumstances (1.130) turns

to ∫
d3yT̃ ij =

∫
d3yiωT̃ 0j. (1.132)

If we divide T̃ 0j into its symmetric and anti symmetric parts and use the inte-

gration by parts once more, after setting the surface terms to zero we are left

with, ∫
d3yT̃ ij = −iω

2

∫
yiyj(∂lT̃

0l)d3y, (1.133)

and by the condition stated in (1.131), above equation becomes∫
d3yT̃ ij = −iω

2

∫
yiyj(∂lT̃

00)d3y. (1.134)

If we define Iij(t) =
∫
yiyjT 00(t, y)d3y as the quadrupole moment tensor of the

energy density of the source, (1.127) takes the form

˜̄hij(ω, ~x) = −2Gω2 e
iωr

r
Ĩij(ω). (1.135)

We can also express it in Fourier space. If we use tr = t− r, we obtain

h̄ij =
2G

r

d2Iij(tr)

dt2
. (1.136)

Therefore we have accomplished to show that the gravitational radiation, h̄ij,

is generated from the second derivative of the quadrupole moment tensor of an

isolated source.
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CHAPTER 2

GRAVITOMAGNETISM IN ANALOGY WITH

ELECTROMAGNETISM

2.1 Introduction1

When we compare the electromagnetic theory and gravity, we see the close

resemblance which starts from the basic equations of these theories. It is obvious

that in both theories, force, potential and the potential energy have the same

forms which only differ in the mass and the charge terms. Also, as we have

proven in Chapter 1 just as the electromagnetic radiation, the gravitational

waves propagate at the speed of light. Moreover in electromagnetism the dipole

moment of the charge density, in gravity the quadrupole moment of the energy

density give rise to these radiations. Therefore the similarities cause a natural

question: It is known that a single charge produces only an electric field around

itself. If the charge starts to move, it also generates a magnetic field. Is it possible

to obtain such a field which occurs due to a moving mass? The answer is yes,

but we must pay the price. Electromagnetic theory is linear whereas gravity is

not. Therefore if we want to construct such a field, we accomplish this only in

weak gravitational fields. This analogous field is called "gravitomagnetic field",

which is an extra field produced by a moving mass. In this section we derive

the Maxwell type equations from starting the linearized field equations, which

we have already calculated in Chapter 1. Also, not the Maxwell equations but

the Lorentz force describes the motion of a charged particle in electromagnetic

field. So to understand the motion of a massive particle in the gravitational field,
1 This chapter closely follows the paper [25] and expands upon some of the computations.
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from starting the geodesic equation we derive the Lorentz type force in gravity.

Also we examine the effect of the gravitomagnetic field on the motion of a

gyroscope. In fact, for the static case there is already a precession, but changes

in its angular momentum reveals that there exists a force which adds some

additional terms into the precession [26]. We divide this chapter in four parts.

In the first part we give motivation by introducing the equations which we use in

the remaining parts of the chapter. By analogy, we introduce the gravitational

analog of the electromagnetic field tensor as fαβ, in which "gravitoelectric" and

"gravitomagnetic" fields come to the stage for the first time. As we see later

fαβ obeys the Bianchi identity from which we obtain two of the Maxwell type

equations. In the second part we specialize the calculations in static fields and

obtain time independent Maxwell type equations. Also we derive the Lorentz

force for a charged massive particle in the presence of both electromagnetic and

the gravitational field. In the third part, we generalize the equations found in

section 2 and write these analogous equations in the most general case. Also we

show that there is no difference between the Lorentz forces in time independent

and the dependent fields because we omit the extra terms in the latter because we

see that they all in second order. In the last part, we define the analogs of some

quantities in electromagnetism, from which we introduce the angular momentum

in linearized theory. If we examine the change of the angular momentum, we

see that the gravitomagnetic field creates the force which adds extra terms to

precession of a gyroscope, hence affects its motion.

2.2 Gravitomagnetic Fields

For a particle with mass m and charge e, which is moving in the presence of

electromagnetic and gravitational fields, we write the equations of motion as

m[
d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
] = eF µ

ν
dxν

dτ
, (2.1)
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where F µ
ν is the electromagnetic field tensor whose components are

F µ
ν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0.

 (2.2)

and
dxν

dτ
is the four velocity; for slowly moving objects which can be defined as

dxµ
dτ

= (1, ~v). (2.3)

By lowering the index of (1.7) one can obtain

Γσ0β =
1

2
(∂0hσβ + ∂βhσ0 − ∂σh0β),

=
∂0hσβ

2
− 1

2
(∂σh0β − ∂βhσ0) (2.4)

Let us introduce a new quantity fσβ as the gravitational analog of Fµν , which is

fσβ =
∂σh0β − ∂βhσ0

2
= −fβσ. (2.5)

By using the analogy between fσβ and Fµν , we can write fσβ in its matrix form

as

fαβ =
1

2


0 −2gx −2gy −2gz

2gx 0 −Hz Hy

2gy Hz 0 −Hx

2gz −Hy Hx 0

 . (2.6)

As it is easily understood, ~g and ~H are the gravitational analogs of ~E and ~B

respectively.

If we differentiate (2.5) with respect to µ, σ and β separately and add the results,

we obtain

∂µfσβ + ∂σfβµ + ∂βfµσ = 0, (2.7)

from which we understood that, similar to Fµν , fσβ obeys the linearized Bianchi

identity.

For µ, σ, β = 1, 2, 3, with the relevant components of (2.6), one can see that (2.7)

takes the form

~∇ · ~H = 0. (2.8)
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If we apply the remaining choices of the indices to (2.7), we obtain

2~∇× ~g +
∂ ~H

∂t
= 0, (2.9)

where ~g is called gravitoelectric field, which is produced by a static mass, whereas
~H is called gravitomagnetic field, which is an additional field which is produced

by the moving mass [20].

2.3 Static Fields

Before introducing the gravitational analogs of the Maxwell equations, let us

focus on the case of static fields.

In static fields, it is seen that (2.4) changes to

Γσ0β = −fσβ. (2.10)

We can easily obtain the matrix form of Γµ0β from (2.6) and (2.10), which is

Γµ0β =
1

2


0 −2gx −2gy −2gz

2gx 0 Hz −Hy

2gy −Hz 0 Hx

2gz Hy −Hx 0.

 (2.11)

To understand the motion of a charged massive particle, we turn back to (2.1).

If we use (1.7), we have

Γµαβ
dxα

dτ

dxβ

dτ
≈ Γµ00 + 2Γµ0jv

j (2.12)

If we insert (2.12) to (2.1) and use the relevant components of (2.11), for µ = i

one can write (2.1) as

m
d2xi

dτ 2
+mΓi00 + 2mΓi0jv

j = eF i
ν
dxν

dτ
(2.13)

If we expand the summations in both sides and use the corresponding compo-

nents of (2.2) we obtain

m
d2~x

dt2
= e( ~E + ~v × ~B) +m(~g + ~v × ~H), (2.14)
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It is clear that the first part of (2.14) represents the Lorentz force in electro-

magnetism, which identifies the motion of a charged particle in electromagnetic

field. By constructing an analogy, we can infer that the second part of (2.14) is

the Lorentz type force in gravity; which shows that the motion of a particle is

affected not only the gravitoelectric field ~g but also the gravitomagnetic field ~H.

Let us continue with Einstein’s field equation, which is

Rµν = 8πGSµν , (2.15)

where we defined Sµν as

Sµν = Tµν −
1

2
gµνT (2.16)

To make calculations simpler we set pressure and other terms which are relevant

to internal energies to 0 in Tµν , which finally becomes T = ρuµuµ. Therefore

from (2.16), we obtain the components to the first order as

S00 =
ρ

2
. (2.17)

and

S0i = −ρui. (2.18)

In the weak field limit, for µ = 0 the Ricci tensor becomes

R0ν = ∂νΓ
α
0α − ∂αΓα0ν (2.19)

From (2.11), it is easily seen that the first term of the right hand side of (2.19)

vanishes. If we also use (2.15), we get

R0ν = −∂αΓα0ν = 8πGS0ν . (2.20)

If we put ν = 0 and apply the suitable coordinates of (2.11) and the result of

(2.17), we obtain

~∇ · ~g = 4π(−Gρ), (2.21)

and for ν = i from (2.20) we have

~∇× ~H = 4π(−4Gρ~u). (2.22)
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In static fields, (2.9) reduces to

~∇× ~g = 0. (2.23)

Therefore we conclude that (2.8), (2.21), (2.22) and (2.23) together represent

the Maxwell type equations for static fields in gravity. We should also point

out that (−Gρ) and (−4Gρ~u) are the analog of the electric charge density and

electric current density in Maxwell equations.

2.4 Time Dependent Fields

As we have mentioned in the previous chapter, we can introduce gauge conditions

to simplify the linearized field equations. Let us choose

∂αh
α
β −

1

2
∂βh = 0. (2.24)

If we impose this condition to (1.10), with (2.15) we obtain

Rµν = −1

2
�hµν = 8πGSµν , (2.25)

with a little effort which turns to

(∂2
0 − ~∇2)hµν = 16πGSµν . (2.26)

From (2.16) we have Sij = ρuiuj ≈ 0. For i = j (2.16) gives Sii = ρ/2. From

(2.17) we therefore conclude that S00 = Sii. Hence by using (2.26) we infer that

h00 = hii and hij = 0 when i 6= j. If we combine these objects, we define hµν in

its matrix form as

hµν =


Φ −Ax −Ay −Az
−Ax Φ 0 0

−Ay 0 Φ 0

−Az 0 0 Φ.

 (2.27)

Therefore for µ = ν, (2.26) changes to

(∂2
0 − ~∇2)Φ = 8πGρ (2.28)
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and

(∂2
0 − ~∇2) ~A = 16πGρ~u (2.29)

for the other choices of the indices. If insert the corresponding components of

fσβ and hµν in (2.5); for β = 0 and σ = 1, 2, 3 respectively, we obtain

2~g = ∂0
~A+ ~∇Φ. (2.30)

and for the other choices of the indices (2.5) gives

~H = ~∇ · ~A. (2.31)

Also if we expand the summation in (2.24) and use (2.27),we obtain

~∇. ~A+ 2∂0Φ = 0, (2.32)

and

∂0
~A = 0. (2.33)

In the previous section, we did the calculations in static fields hence obtained the

time independent Maxwell type equations in gravity. In this section we want to

write the more general equations which reduces to (2.8), (2.21), (2.22) and (2.23)

in static fields. Hence we need the general form of (2.22) such that it becomes

valid in time dependent fields. To do this, we take the curl of (2.31),which is

~∇× ~H = ~∇× (~∇× ~A) = ~∇(~∇ · ~A)− ~∇2 ~A. (2.34)

If we insert (2.33) into (2.29), we obtain

~∇2 ~A = −16πGρ~u (2.35)

From (2.32), it is straightforward to obtain

~∇(~∇ · ~A) = −2~∇(∂0Φ) (2.36)

From the condition on (2.33), one can obtain (2.30) as

2~g = ~∇Φ. (2.37)
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If we combine these equations, we finally obtain (2.34) as

~∇× ~H − 4
∂~g

∂t
= 4π(−4Gρ~u). (2.38)

Therefore, the most general form of the Maxwell type equations in gravity be-

comes

~∇ · ~g = −4πGρ~u

~∇ · ~H = 0

2~∇× ~g +
∂ ~H

∂t
= 0

~∇ · ~H − 4
∂~g

∂t
= 4π(−4Gρ~u). (2.39)

Before completing this section, we should determine the Lorentz type force for

time dependent fields. To do this, we use (2.4) and (2.5). For σ = j and β = k,

with the appropriate conditions in (2.6) and (2.27), we have

Γj0k = −ηjifik +
1

2
ηji∂0hik,

= −εjklHl +
1

2
∂0Φδjk. (2.40)

If we put this into (2.13) and use the relevant components, we obtain the Lorentz

type force for a massive charged particle as

m
d2~x

dt2
= e( ~E + ~v × ~B) +m(~g + ~v × ~H) +

m

2
∂0Φ~v. (2.41)

If we take the ratio of time derivative term to m~g and use (2.37), we have

v
m

2

∂0Φ

m~g
≈ −∂Φ/∂t

∂Φ/∂~x
= ~v2. (2.42)

But we neglect the terms higher that first order, therefore we can conclude that

the Lorentz type force in time dependent fields is the same as it is in static fields.

2.5 Application to Rotating Bodies

In the previous section, we have constructed an analogy between gravity and

electromagnetism. We also showed that when a massive object moves, it creates

an additional field called gravitomagnetic field. In the last section of this chap-

ter and the following one, we discuss its effects. In this section we study the

38



precession of a gyroscope due to the gravitomagnetic field. Since there exists

an analogy, we start with modifying some familiar results of magnetostatics to

gravity. In electromagnetic theory, we have defined the force and the torque on

a magnetic dipole as

~F = (~m · ~∇) ~B = ~∇(~m · ~B)

~N = ~m× ~B, (2.43)

where ~m is the magnetic moment,

~m =
1

2

∫
d3x (~x× ~J) (2.44)

and ~J is the electrical current. In gravity, for a rotating body we infer that the

above results may take the form as

~F =
(~S · ~∇) ~H

2
=
~∇× (~S × ~H)

2

~N =
~S × ~H

2
, (2.45)

where

~S =

∫
d3x~x× ρ~u (2.46)

is the angular momentum. We know that the magnetic field due to a magnetic

dipole is

~B(x) =
3n̂(n̂ · ~m)− ~m

r3
, (2.47)

Therefore we can write that the gravitomagnetic field as

~H = −2G
(3n̂(n̂ · ~S)− ~S)

2r3
. (2.48)

Torque is the rate of change of the angular momentum, which is formulated as

d~S

dt
=
~S × ~H

2
. (2.49)

As a compact object such as the earth rotates, it creates a gravitomagnetic field

which we have formulated in (2.48) and (2.46) tells us how much a gyroscope

precesses in this field. To determine this, we write the relativistic equation of
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motion of a particle in terms of Sµ whose timelike component vanishes in the

rest frame of the particle. Let us define it as

dSµ

dτ
+ ΓµνρS

ν dx
ρ

dτ
= 0. (2.50)

It is easy to see that for µ = 0 (2.47) vanishes because in the rest frame the four

velocity uµ = (1,~0) and we choose the angular momentum vector as Sµ = (0, ~S).

For µ = i, with the conditions we stated above we only have

dSi

dτ
+ Γij0S

j = 0. (2.51)

If we use (1.7) and put the corresponding components, we obtain

d~S

dt
=

1

2
~S × ~H, (2.52)

which means that (2.50) is an acceptable solution since it reduces to (2.49) in the

non relativistic limit, as it has to. Therefore we play with (2.50) to determine

the geodetic precession. If we rewrite it for a covariant vector Sµ, we obtain

dSµ
dτ

= ΓσµβSσu
β, (2.53)

where we set Sµ = (−S0, ~S) and uβ ≈ (1, ~v). If we expand the sums and calculate

Γσµβ in terms of Φ and A, the spatial part of (2.53) gives us

d~S

dτ
=

1

2
(~S × ~H)− 1

2
(2~v · ~S~∇Φ + ~S~v · ~∇Φ− ~v~S · ~∇Φ)− 1

2
~S∂0Φ, (2.54)

which causes a trouble. Angular momentum of a gyroscope should be constant,

but as we see from the above equation, it is not; which means that we reach

another unacceptable solution. To solve this problem, we can define a vector S ′

related to ~S by

~S = (1− Φ/2)~S ′ + ~v(~v · ~S ′)/2. (2.55)

When we omit second order terms, we see that ~S ′ is a constant quantity. To

obtain a similar equation to (2.50), we differentiate (2.55). If we equate this

result to (2.54) and use (2.37), we obtain

d~S ′

dt
= ~S ′ × [ ~H − 3(~v × ~g)]/2. (2.56)

where the term ~v × ~g represents the geodetic precession which is caused by

gravitomagnetic field.
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CHAPTER 3

SPIN-SPIN INTERACTIONS IN GENERAL

RELATIVITY AND MASSIVE GRAVITY

3.1 Introduction1

As we have seen in the previous chapter, in the weak field limit (|hµν | << 1)

and for small velocities (v/c << 1), the field equations of GR have a similar

form as Maxwell’s theory. In addition to the field equations, geodesic equation

also can be recast in the form of the Lorentz force. One natural question arises:

In electrodynamics, we know that electric or magnetic dipole moments interact

with each other. What is the similar situation in GR and massive gravity. More

concretely, we can ask the following question: Consider two massive spherically

symmetric objects such as two galaxies or even compact objects such as two black

holes that spin around their own axis, that interact with each other. In the weak

field limit what is the force between them and how does this force change whether

graviton has a mass or not? First of all, it is clear that according to Newton these

two objects will not see each other’s spin or their angular momentum around

their own axis. The Newton’s force is

F = −Gm1m2

r2
, (3.1)

no matter how fast or slow these objects rotate. In General Relativity, the

picture is quite different as we have seen in Chapter 2. Because, just like a spin-

ning electric charge creates magnetic fields with which it affects other spinning

or moving mass, creates gravitomagnetic fields and these fields will affect other
1 This chapter closely follows the paper [27] and expands upon some of the computations.
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spinning objects giving rise to spin-spin forces. This gravitomagnetic field was

given in (2.48) which we repeat here

~H = −2G(3n̂n̂ · ~J1 − ~J1)

r3
, (3.2)

where ~J1 is the spin of one of the objects that we noted above. The potential

energy of our system will be

Uspin−spin = −1

2
~J2 · ~H,

=
3G(n̂ · ~J1)(n̂ · ~J2)− ~J1

~J2

r3
. (3.3)

We should note that, in this section we shall prove this formula from a differ-

ent point of view. General Relativity at the lowest order represents the static

Newton’s force (3.1). Clearly the force, coming from

~Fspin−spin = −~∇Uspin−spin (3.4)

will not be a lot in magnitude compared to the Newton’s force for distances

where the weak field gravity is valid. So one might mistakenly conclude that we

have computed an irrelevant force but this is not correct since the spin-spin force

is the strongest force that acts on the orientation of spins. Namely, Newton’s

force does not act on the spin orientations. The next question is the effect of

introducing a small graviton mass on these two forces. Before one carries out

the analogous calculations for massive gravity, one might guess that the effects

of a tiny mass would be tiny. But this is indeed not correct at all: Even for the

static Newtonian force, massive gravity yields

F = −4

3

Gm1m2e
−mgr

r2
, (3.5)

for which the massless limit mg → 0, does not go to the Newton’s force. This

is called the van Dam-Veltman-Zakharov (vDVZ) discontinuity which has been

a non-trivial problem to solve. For mg 6= 0, the exponential decay is expected,

and called the Yukawa type force. Equation (3.5) will be derived in this chapter.

Having hit this surprise in massive gravity, we can ask what would the spin-

spin interaction look like in massive gravity. Interestingly, this question was

only asked and answered recently in [27]. It turns out that in addition to the
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experimental decay of the spin-spin force, massive gravity predicts a different

spin orientation for interacting spinning objects. The details will be given in

this chapter. But suffices it to say here that at separations mgr > 1.62, massive

gravity predicts parallel spin alignments with spins perpendicular to the axis

joining the spinning sources. For mgr 6 1.62, (more correctly instead of 1.62,

golden number
1 +
√

5

2
≈ 1.62 appears) massive gravity and GR predict the

same configuration that is spins are anti-parallel and they lay in the axis joining

the sources. Let us note that the spin-spin potential energy for massive gravity

is

Uspin−spin = −
Ge−mgr(m2

gr
2 +mgr + 1)

r3

× [~J1 · ~J2 − 3
1 +mgr +m2

gr
2/3

m2
gr

2 +mgr + 1
~J1 · r̂ ~J2 · r̂]. (3.6)

We divide this chapter in three parts: In the first two sections, we obtain the

potential energy in both massless and massive cases. To do this, we write the

potential energy in terms of the Green’s function and the energy momentum

tensor. As we see in the following two sections just the Green’s functions differs

in the calculations, which leads us to different potential energies in massless and

the massive theories, respectively. It is easily seen that the force due to the

spin-spin potential energy is small in magnitude, but it is the strongest force

over the spin alignments. In the last section, we discuss these alignments for

the minimum potential energy in detail. As we show, it differs in GR and the

massive cases. As the calculations reveal, unlike GR, the spin configuration in

massive gravity depends on the distance between the massive objects. Up to

mgr 6 1.62, spin alignments for massive gravity and GR are the same: Spins

are pointed to each other in the direction of the line joining two sources. But

beyond this distance, while this configuration will not change in GR, we observe

a dramatic change in massive gravity where spin directions abruptly become

perpendicular to the line joining two sources.
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3.2 Potential Energy Calculation in the Massless Theory

Given two conserved sources, we can define the gravitational potential energy

in the weak field limit as

U = −4πG

t

∫
d4x d4x′ T µν(x)Gµναβ(x, x′)Tαβ(x′), (3.7)

where Gµναβ(x, x′) is the Green’s function of the theory and t is a large time

that does not appear at the end of the calculation [27]. The Green’s function

has four indices because linearized gravity equation is in the form

Oαβµνhαβ = 16πGT µν , (3.8)

where O is an operator whose inverse is the Green’s function. For both massive

and massless gravity theories, the relevant computation was given in [28], but we

can summarize the procedure as follows: We obtain the field equations by using

the least action principle. More explicitly, by varying the action we can reveal the

field equations which make this action minimum. If we apply this to Einstein-

Hilbert action with added mass terms, we reach the FP equations. In weak

gravitational fields, we linearize the FP equations around the flat background

metric. If we play with these linearized equations, we obtain (3.8) which leads us

to (3.7). Without giving the proof of this result, which is beyond the scope of this

thesis, let us quote the final answer for massless and massive case respectively.

( The proof is in [28]). In the massless case, we have

4Ut = −2κT ′µν(∂
2)−1T µν + κT ′(∂2)−1T,

= −2κT ′00(∂2)−1T 00 − 2κT ′0i(∂
2)−1T 0i − 2κT ′00(∂2)−1T 00

− 2κT ′ij(∂
2)−1T ij + κT ′(∂2)−1T, (3.9)

where we have dropped the integral signs to simplify the notation. The non zero

components of the energy momentum tensor of the masses m1 and m2 take the

form in 4 dimensions,

T00 = m2δ
3(~x− ~x2),

T ′00 = m1δ
3(~x′ − ~x1),

T i 0 =
−1

2
J b12 ε

ib1j∂jδ
3(~x− ~x2),

T ′i 0 =
−1

2
Ja11 εia1k∂′kδ

3(~x′ − ~x1), (3.10)
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where J1 and J2 represent the spins of the masses. If we take the integral of

both sides of (3.10), one can easily see that

m =

∫
d3x T00(~x),

J i =

∫
d3x T i 0(~x). (3.11)

We know that T = ηµνTµν . By using (3.10), we obtain T = −T00 and T ′ = −T ′00.

If we combine all these objects, we rewrite (3.9) as

4Ut = −2κm1m2δ
3(~x′ − ~x1)(∂2)−1δ3(~x− ~x2)

+ κJa11 εia1k∂′kδ
3(~x′ − ~x1)(∂2)−1[(

1

2
J b12 ε

ib1j∂jδ
3(~x− ~x2)]

+ κm1δ
3(~x′ − ~x1)(∂2)−1m2δ

3(~x− ~x2), (3.12)

where we define the Green’s function in four dimensions as,

(∂2)−1 = GR(x, x′) =
Γ(1/2)

4π3/2r
, (3.13)

in which Γ(
1

2
) =
√
π and

1

r
=

1

|~x− ~x′|
. We start with computing the first and

third terms of (3.12), whose sum gives the potential energy. If we plug (3.13)

into these equations and take the integrals, after adding them we obtain

−κm1m2δ
3(~x′ − ~x1)(∂2)−1δ3(~x− ~x2) = −κm1m2

4π

1

|~x1 − ~x2|
. (3.14)

If we change |~x1 − ~x2| to r and impose κ = 16πG, (3.15) becomes

−κm1m2δ
3(~x′ − ~x1)(∂2)−1δ3(~x− ~x2) = −Gm1m2

r
, (3.15)

which is the potential energy as promised. Although it seems that there must

be a 4 in the nominator, it disappears because of the 4 in the left hand side of

(3.12). Therefore we write the final answer in the rest of the calculations.

The second term of the equation (3.12) is more tricky. For the sake of our

calculation, let us label the second part by *. If we use integration by parts, we

obtain,

∗ =
κ

4π
Ja11 J b12 ε

ia1kεib1j[∂′k((δ
3(~x′ − ~x1)

1

|~x− ~x′|
∂jδ

3(~x− ~x2))]

− κ

4π
Ja11 J b12 ε

ia1kεib1j[(∂′k
1

|~x− ~x′|
δ3(~x′ − ~x1)∂jδ

3(~x− ~x2))]. (3.16)
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It is clear that first term of the equation vanishes. If we use integration by parts

once more, after dropping the surface terms, we obtain

∗ =
κ

4π
Ja11 Ja12 ∂j∂

′
j

1

|~x1 − ~x2|
− κ

4π
J j1J

k
2 ∂j∂

′
k

1

|~x1 − ~x2|
. (3.17)

The last thing we have to do to obtain the exact form of (3.12) is to compute the

derivatives. For convenience, we describe
1

|~x1 − ~x2|
= [(~x1−~x2)m(~x1−~x2)m]−1/2,

then the derivatives become,
∂

∂xj1

1

|~x1 − ~x2|
= −(~x1 − ~x2)j

|~x1 − ~x2|3
,

∂

∂xj2

∂

∂xj1

1

|~x1 − ~x2|
= 0,

∂

∂xj2

∂

∂xk1

1

|~x1 − ~x2|
=

δkj
|~x1 − ~x2|3

− 3
(~x1 − ~x2)k
|~x1 − ~x2|5

× (~x1 − ~x2)j. (3.18)

Therefore, we can finally express * as,

∗ = − κ

4pi
J j1J

k
2 [

δkj
|~x1 − ~x2|3

− 3
(~x1 − ~x2)k
|~x1 − ~x2|5

× (~x1 − ~x2)j]],

= −4G

r3
[ ~J1 · ~J2 − 3 ~J1 · r̂ ~J2 · r̂], (3.19)

which is the spin-spin potential energy. As we discuss in the last section, even

the force due to this potential energy is small in magnitude, it governs the spin

orientation in massless theory. If we add (3.15) to (3.19), we obtain the potential

energy for the massless theory as

U = −Gm1m2

r
− G

r3
[ ~J1 · ~J2 − 3 ~J1 · r̂ ~J2 · r̂]. (3.20)

3.3 Potential Energy Calculation in the Massive Theory

In this section, we examine the situation which we give a mass to graviton. In

this case (3.9) takes the form

4Ut = 2κT ′µν{−∂2 +m2
g}−1T µν +

2

3
κT ′{∂2 −m2

g}−1T. (3.21)

If we insert the conditions in (3.10) to (3.21), we obtain

4Ut = −2κm1m2δ
3(~x′ − ~x1)(∂2 −m2

g)
−1δ3(~x− ~x2)

− κJa11 εia1k∂′kδ
3(~x′ − ~x1)(∂2 −m2

g)
−1[J b12 ε

ib1j∂jδ
3(~x− ~x2)]

+
2

3
κm1m2δ

3(~x′ − ~x1)(∂2 −m2
g)
−1δ3(~x− ~x2), (3.22)
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where (∂2 − m2
g)
−1 denotes the Green’s function for the massive case. In four

dimensions, it is defined as,

GR(x, x′) =
(mg/r)

1/2

(2π)3/2
K1/2(rmg),

=
e−rmg

4πr
. (3.23)

We follow the same procedure used in the previous section. Therefore we rewrite

the sum of the first and third equations of (3.22) as,

−4

3
κm1m2δ

3(~x′ − ~x1)(∂2 −m2
g)
−1δ3(~x− ~x2) =

−4Gm1m2

3

e−rmg

r
, (3.24)

which is the Newtonian potential energy in massive theory.

Just as in the previous section, let us label the second part of (3.22) by *. After

integrating by parts, it becomes

∗ = κJa11 Ja12

∂

∂xj2

∂

∂xj1
GR(~x1, ~x2)− κJ j1Jk2

∂

∂xj2

∂

∂xk1
GR(~x1, ~x2). (3.25)

Now we are left with derivatives which are,

∂

∂xj1

∂

∂xj2

e−rmg

r
= −e

−rmg

r3
m2
gr

2,

∂

∂xj1

∂

∂xk2

e−rmg

r
=
e−rmg

r3
[rmgδkj + δkj]−

e−rmg

r3
(~x1 − ~x2)k(~x1 − ~x2)j

× [m2
g +

2mg

r
+
mg

r
+

3

r2
]. (3.26)

If we put them together, we can write * as

∗ = −Ge
−rmg

4πr3
(m2

gr
2 +mgr + 1)

× [ ~J1 · ~J2 − 3
1 +mgr +m2

gr
2/3

m2
gr

2 +mgr + 1
~J1 · r̂ ~J2 · r̂], (3.27)

which is the spin-spin potential energy in massive case. Just as GR, although

it seems negligible when compared to (3.5), the force rising from (3.27) governs

the spin orientations in massive theory.

If we add (3.24) to (3.27), we finally obtain the potential energy for massive

theory, which is

U =
−4Gm1m2

3

e−rmg

r
− −Ge

−rmg

r3
(m2

gr
2 +mgr + 1)

× [ ~J1 · ~J2 − 3
1 +mgr +m2

gr
2/3

m2
gr

2 +mgr + 1
~J1 · r̂ ~J2 · r̂]. (3.28)
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3.4 Spin Orientations in GR and Massive Gravity

As we have shown in the previous section, the force coming from the potential

energy due to the spin spin interactions is negligible compared to the Newton’s

force for distances where the weak field gravity is valid. In this section we show

that the spin-spin force is the strongest force that affects the orientation of spins.

We also show that the minimum energy configuration changes whether graviton

has a mass or not. It is clear that to minimize the potential energies in (3.20)

and (3.28), we should maximize the function h, which is

h = ~J1 · ~J2 − f(x) ~J1 · r̂ ~J2 · r̂, (3.29)

where x = mgr. When we compare the potential energies in GR and in massive

gravity, it is easily seen that f(x) = 3 and f(x) = 3
1 + x+ x2/3

1 + x+ x2
respectively.

We should note that, in the limits, for massive gravity f(x) ∈ [3, 1). We use

the spherical coordinates, and choose the plane of ~J1 and r̂ as the xy plane, and

choose the direction of r̂ as the x axis. Therefore, in this coordinate system, we

have

~J1 = J1(cosψ1î+ sinψ1ĵ),

~J2 = J2(cosψ2 sin θ2î+ sinψ2 sin θ2ĵ + cos θ2k̂). (3.30)

Then, the relevant scalar products are,

~J1 · r̂ = J1 cosψ1,

~J2 · r̂ = J2 cosψ2 sin θ2,

~J1 · ~J2 = J1J2(cosψ1 cosψ2 sin θ2 + sinψ1 sinψ2 sin θ2). (3.31)

Therefore, (3.29) can be rewritten as,

h = J1J2(cosψ1 cosψ2 sin θ2 + sinψ1ĵ)− f(x)J1 cosψ1J2 cosψ2 sin θ2,

= J1J2(cosψ1 cosψ2 sin θ2(1− f) + sinψ1 sinψ2 sin θ2). (3.32)

Let us start with θ2. Since we are searching for the conditions which make h

maximum,
∂h

∂θ2

= 0 must be satisfied. Hence,

J1J2[(cosψ1 cosψ2 cos θ2(1− f) + sinψ1 sinψ2 cos θ2] = 0, (3.33)
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which leads us that θ2 = +
π

2
and θ2 = −π

2
. For the maximum h, θ2 = +

π

2
must be chosen. If we put it into (3.29), we obtain

h = J1J2(cosψ1 cosψ2(1− f) + sinψ1 sinψ2). (3.34)

Extremization with respect to two angles gives us,

∂h

∂ψ1

= − sinψ1 cosψ2(1− f) + cosψ1 sinψ2 = 0 (3.35)

∂h

∂ψ2

= − cosψ1 sinψ2(1− f) + sinψ1 cosψ2 = 0. (3.36)

It is clear from the above equations that our discussion depends whether f is 1

or not. Let us carry on the calculation with the first case. Then above equations

become,

cosψ1 sinψ2 = 0,

sinψ1 cosψ2 = 0. (3.37)

We can easily conclude that the solutions of above equations are,

ψ1 = ψ2 = 0,

ψ1 = ψ2 = π/2. (3.38)

If we put them into (3.33), we obtain the followings:

h(ψ1 = ψ2 = 0) = 0. (3.39)

h(ψ1 = ψ2 = π/2) = J1J2. (3.40)

We are searching for the maximum h, which is given by (3.40). Notice that, ψ1

and ψ2 are the angles of J1 and J2 with the plane, which means that J1 and J2

are in the same direction and perpendicular to axis joining the sources.

We continue with the second case, which is f 6= 1. Multiplying the first equation

of (3.35) with 1− f and adding it to (3.36) gives us

− sinψ1 cosψ2(1− f)2 + sinψ1 cosψ2 = 0, (3.41)

with a little effort which changes to

[(1− f)2 − 1] sinψ1 cosψ2 = 0. (3.42)
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It is seen that we have again two cases. One is

(1− f)2 − 1 = 0, (3.43)

which shows that f can be either 0 or 2. Since we have f ∈ [3, 1), we reach that

it is 2. It means that f can be 2 or sinψ1 cosψ2 = 0 to satisfy (3.41). If we

examine the first case in which we equate f to 2, we obtain the equation

x2 − x− 1 = 0, (3.44)

with the roots x1 =
1 +
√

5

2
and x2 =

1−
√

5

2
. Since x2 < 0, it is not a physical

solution, so it is ignored. At x = x1 ∼ 1.62, h becomes

h = J1J2(− cosψ1 cosψ2 + sinψ1 sinψ2),

= −J1J2 cos(ψ1 + ψ2). (3.45)

It is easily seen that h is maximum for cos(ψ1 +ψ2) = −1, which is satisfied for

ψ1 + ψ2 = π. That is the same as the GR case, which is spins are anti-parallel

and they lay in the axis joining the sources as seen in the figures 3.1 and 3.2.

Figure 3.1: Minimum energy configuration in GR, as long as the weak field limit
is applicable.

Now we can examine the second case which is sinψ1 cosψ2 = 0. For this case,

we again have two possibilities which are ψ1 can be 0 or π and ψ2 is arbitrary;

or ψ2 can be π/2 or 3π/2 and ψ1 is arbitrary. Notice that putting ψ1 = 0 or

ψ1 = π into (3.32) only matters a minus sign which will be gone when we take

the derivatives. Hence if we put ψ1 = 0 into (3.32), we obtain

h = J1J2(1− f) cosψ2. (3.46)

50



Figure 3.2: Minimum energy configuration in massive gravity for mgr ≤ 1.62.

If we take the derivative with respect to ψ2, we get

∂h

∂ψ2

= −J1J2(1− f) sinψ2 = 0. (3.47)

Which leads us ψ2 = 0 or ψ2 = π. If we put these results separately into (3.32),

we get

h(ψ1 = ψ2 = 0) = J1J2(1− f),

h(ψ1 = 0, ψ2 = π) = −J1J2(1− f). (3.48)

Since f ∈ [3, 1), (1 − f) < 0. Thus, h is maximum for the second equation of

(3.48). The second possibility is ψ2 = π/2, which makes

h = J1J2 sinψ1. (3.49)

Taking the derivative with respect to ψ1 gives us

∂h

∂ψ1

= J1J2 cosψ1 = 0, (3.50)

which leads us ψ1 = π/2 or ψ1 = 3π/2. If we put these results separately into

the equation (3.49), we obtain,

h(ψ1 = ψ2 = π/2) = J1J2,

h(ψ1 = π/2, ψ2 = π/2) = −J1J2. (3.51)

For this case, h is maximum for the second equation of (3.51). We can conclude

that, when mgr > 1.62, massive gravity predicts parallel spin alignments with

spins perpendicular to the axis joining the spinning sources as shown in the

figure 3.3
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Figure 3.3: Minimum energy configuration in massive gravity for mgr>1.62
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CHAPTER 4

CONCLUSION

In this thesis, the gravitomagnetic field and its effect on the spin configurations

for the minimum potential energy due to this field are discussed in both GR

and the massive gravity theory. It is verified that this configuration differs in

these theories. Gravitomagnetic field is the analog of the magnetic field in elec-

tromagnetism, which is a linear theory. Since GR is nonlinear, such an analogy

can only be constructed in the weak gravitational fields in which we linearize

the gravity.

In Chapter 1 we have derived the linearized field equations in weak field regimes.

We also studied the gravitational waves and their production.

In Chapter 2, we studied the analogy between GR and electromagnetism in de-

tail and obtain the Maxwell type equations in gravity. It is easily seen that the

expressions in both theories are closely related to each other. For example, equa-

tions of force, potential and the potential energy are in the same form except for

the mass and the charge are replaced with each other. Also, gravitational and

the electromagnetic radiation propagate at the speed of light and the former is

produced when the massive particle accelerates while the latter originates from

the accelerated charges.

It is also known that a single charge produces only an electric field around itself.

If the charge moves, it also generates a magnetic field. Because of the analo-

gies we stated above, it is natural to ask whether we can find a field similar to

the magnetic field in electromagnetism when the mass starts to move. Actually

we can, but only in the weak gravitational field. From starting the linearized

equations found in Chapter 1, we have derived the Maxwell type equations in

53



linearized gravity. In fact these equations can be thought as a proof of the

analogies between these theories. We have defined fαβ, which is the backbone of

the calculations, as the gravitational analog of the electromagnetic field tensor.

Therefore, its components are the gravitoelectric and the gravitomagnetic fields

instead of the electric and the magnetic fields. If we apply the Bianchi identity

to fαβ, with the proper choices of the indices we obtain two of the Maxwell type

equations. We have also obtained the Lorentz type force to understand the mo-

tion of the particles in the presence of the gravitational fields. It shows that the

particle’s motion is described by both gravitoelectric and the gravitomagnetic

fields. Then we specialize the calculations in static fields, which leads us to

the time independent Maxwell type equations. In the third part of this chapter

we have obtained the general forms of these equations. It is important to note

that we observe no difference between the Lorentz type forces in static and time

dependent fields. It follows from the fact that we omit the extra terms in the

latter because they are second order.

In the last part, we have studied the effect of the gravitomagnetic field on the

precession of a gyroscope. To do this, we define the analogs of some quantities

in electromagnetism and we define the angular momentum using these them.

From the change of the angular momentum, we see that the gravitomagnetic

field produces a force which adds extra terms in the precession of a gyroscope

and affects its motion.

In Chapter 3, we have studied how two spherically symmetric massive objects

spinning around their own axes interact each other. In Newton’s theory they

are interacted by the Newton’s force regardless from their velocities or angular

momentums. As we have shown in Chapter 2, these spinning masses generate

a gravitomagnetic field and affect each other via this field in GR. When we

compute the spin spin force from the spin spin potential energy, we see that

it is negligible compared to Newton’s force. We have the same situation in

massive gravity. Therefore we conclude that although ~Fspin−spin is negligible

compared to Newton’s force in GR and Yukawa type force in massive gravity, it

is the strongest force which determines the spin configuration of these massive

objects. To find this force, we write the potential energy in terms of Green’s

function. We do not give any calculations but the final answer of the poten-
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tial energy formulation we have mentioned above. Therefore we obtained the

following results: In GR, we write the potential energy as a sum of Newton’s

potential energy and Uspin−spin, which rises from the gravitomagnetic filed. It is

valid also for the massive case, but this time Newton’s potential energy changes

to Yukawa type potential energy. As we have mentioned before, gravitomagnetic

field affects the spin configuration which we study for the minimum potential

energy. Calculations reveal this configuration differs in massless and the massive

cases. In GR, as long as the weak field limit is acceptable the spin orientation,

that is spins are anti parallel and they lay in the axis joining the sources, does

not depend on the distance between these sources. On the other hand, distance

plays an important role in massive gravity. At separations mgr > 1.62, massive

gravity predicts parallel spin alignments with spins perpendicular to the axis

joining the sources. For mgr 6 1.62, massive gravity and GR predict the same

configuration.
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CHAPTER 5

APPENDIX

HELMHOLTZ THEOREM1

In section 1.3, we used the Helmholtz theorem which was based on the idea that

a vector field can be decomposed into a transverse and longitudinal parts. In

this section, we will give the proof. Let us begin with the definition of Helmholtz

theorem. A vector field V whose divergence and curl vanishes at infinity can

be decomposed into the sum of the irrotational (curl-free) and the solenoidal

(divergence-free) vector fields. We can express its mathematical form as

~V = −~∇φ+ ~∇× ~A, (5.1)

where −~∇φ and ~∇ × ~A represent the irrotational and solenoidal vector fields

respectively. We have to justify that this decomposition is always valid. Let us

begin the proof by taking the divergence and curl of ~V , which are

~∇ · ~V = s(~r)

~∇× ~V = ~c(~r), (5.2)

where s(~r) and ~c(~r) are the functions of position. By using these functions, we

can construct a scalar potential φ(~r1) and vector potential ~A(~r1) as

φ(~r1) =
1

4π

∫
s(~r2)

r12

d3x

~A(~r1) =
1

4π

∫
~c(~r2)

r12

d3x. (5.3)

1 This chapter closely follows Arfken’s book [29].
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It is easy to see that if s = 0, then ~V is divergence-free, therefore (5.3) implies

that φ = 0. Similarly if c = 0, then ~V is curl-free which implies ~A = 0. Here,

~r1 with (x1, y1, z1) and ~r2 with (x2, y2, z2) denote the field and the source point

respectively. We noted that ~V is such a vector field that its divergence (s) and

curl (c) vanishes at infinity, therefore above integrals exist.

We claim that ~V is uniquely specified by its divergence s and curl c. The proof

of this claim can be followed by the Chapter 1 of Arfken’s book [29]. If we return

to (5.1), we obtain

~∇ · ~V = −~∇ · ~∇φ, (5.4)

since the divergence of the curl vanishes, and

~∇× ~V = ~∇× (~∇× ~A), (5.5)

since curl of a gradient is zero. If we can show the following equations

−~∇φ(~r1) = s(~r1)

~∇× (~∇× ~A(r1)) = ~c(~r1), (5.6)

then we can say that ~V in (5.1) has the proper divergence and curl hence we are

done. Let us begin with the divergence of ~V . If we use (5.3) and (5.4), we will

have

~∇ · ~V = −~∇ · ~∇φ = − 1

4π
~∇ · ~∇

∫
s(~r2)

r12

d3x. (5.7)

We should note that ~∇2 operates on the field of ~r1, and it can commute with

the integral, therefore we obtain

~∇ · ~V = − 1

4π

∫
s(~r2)~∇2

1(
1

r12

) d3x. (5.8)

We should be careful that our source is at ~r2, not at the origin, which means

that the above integral takes the form

~∇2
1(

1

r12

) = ~∇2
2(

1

r12

) = −4πδ(~r1 − ~r2)

= −4πδ(~r2 − ~r1). (5.9)
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With the above condition, (5.8) becomes

~∇ · ~V = − 1

4π

∫
s(~r2)~∇2

2(
1

r12

) d3

= − 1

4π

∫
s(~r2)(−4π)δ(~r2 − ~r1) d3x

= s(~r1). (5.10)

We finally reach that the assumed form of ~V and φ are consistent with (5.2).

To complete the proof of Helmholtz’s theorem, we need to show that curl of ~V

is equal to ~c(r1). We can write (5.5) as

~∇× ~V = ~∇× (~∇× ~A)

= ~∇~∇ · ~A− ~∇2 ~A. (5.11)

If we use (5.3), we will obtain the first part of the above equation as

4π~∇~∇ · ~A =

∫
~c(~r2) · ~∇1

~∇1(
1

r12

)d3x. (5.12)

Again, if we replace the second derivatives with respect to ~r1 by the second

derivatives with respect to ~r2 and then integrate each sides of (5.12) by parts,

we have

4π~∇~∇ · ~A|x =

∫
~c(~r2) · ~∇2

∂

∂x2
(

1

r12

)d3x

=

∫
~∇2 · ~c(~r2)

∂

∂x2
(

1

r12

)]d3x−
∫

[~∇2 · ~c(~r2)]
∂

∂x2
(

1

r12

)]d3x. (5.13)

The second integral vanishes because of (5.2). By using Gauss’s theorem, we

can transform the first integral to a surface integral. We noted that ~c would

vanish for large r. If we choose such a large surface, then the first integral also

vanishes, which leads us that ~∇~∇ · ~A = 0. Therefore (5.11) turns to

~∇× ~V = −~∇2 ~A = − 1

4π

∫
~c(r2)~∇2

1(
1

r12

)d3x. (5.14)

Again, if we use (5.9), then the curl of ~V becomes,

~∇× ~V = − 1

4π

∫
~c(~r2)(−4π)δ(~r2 − ~r1)d3x

= ~c(~r1), (5.15)

which indicates that (5.1) and (5.3) are in harmony with (5.2). This completes

the proof.
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