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ABSTRACT 

 

 

RECONSTRUCTION OF GENE REGULATORY NETWORKS 

 

 

Balcı, Sibel 

Ph.D., Department of Statistics 

Supervisor: Prof. Dr. Ayşen Akkaya 

Co-supervisor: Assoc. Prof. Dr. Tolga Can 

 

September 2014, 136 pages 

 

 

With the development of microarray technology, it is now possible to obtain the 

concentration levels of thousands of genes at a given time or in a given state. By 

following the changes in the gene expression levels, the responsible genes for cell 

differentiation or certain diseases can be identified. Gene expression changes are 

regulated by the interactions between the genes and their products. Gene 

regulatory networks (GRNs) identify these interactions using the gene expression 

changes. There are a number of statistical methods to infer GRNs, however, most 

of them depend on the normality assumption of noises in the data. This thesis 

considers the multiple linear regression analysis for the reconstruction of GRNs 

when the error term comes from a Weibull distribution. Since nonnormality 

complicates the data analysis and results in inefficient estimators, it is proposed to 

use the modified maximum likelihood (MML) estimation procedure which 

produces efficient and robust estimators. Also, explanatory variables representing 

the gene expression levels come from a Weibull distribution. Therefore, they are 

considered as stochastic and stochastic multiple linear regression analysis is used 

for inferring GRNs by implementing MML method to estimate the model 
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parameters. Robustness and power analyses for both stochastic and nonstochastic 

multiple linear regression model parameters are also given. 

 

Keywords: Gene Regulatory Networks, Weibull Distribution, Multiple Stochastic 

Linear Regression, Modified Maximum Likelihood Estimation. 
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ÖZ 

 

 

GEN DÜZENLEYİCİ AĞLARIN YENİDEN OLUŞTURULMASI 

 

 

Balcı, Sibel 

Doktora, İstatistik Bölümü 

Tez Yöneticisi: Prof. Dr. Ayşen Akkaya 

Ortak Tez Yöneticisi: Doç. Dr. Tolga Can 

 

Eylül 2014, 136 sayfa 

 

 

Mikrodizin teknolojisinin geliştirilmesiyle, binlerce genin konsantrasyon 

düzeylerinin belirli bir zaman ya da belirli bir durum için elde edilmesi artık 

mümkün. Gen ifade düzeylerindeki değişimlerin takibi ile hücre çeşitliliğine ya da 

belirli bir hastalığa neden olan genler belirlenebilmektedir. Gen ifadelerindeki 

değişimler, genler ve gen ürünleri arasındaki etkileşimlerle düzenlenmektedir. 

Gen düzenleyici ağlar (GDA), gen ifadelerindeki değişimlerini kullanarak bu 

etkileşimleri ortaya çıkarmaktadır. GDA’ın çıkarımı için kullanılan çok sayıda 

istatistiksel yöntem mevcuttur ancak birçoğu verideki hataların normallik 

varsayımına dayanmaktadır. Bu tez, GDA’ın yeniden oluşturulması için hata 

terimi Weibull dağılımına sahip olan çoklu doğrusal regresyon analizini ele 

almaktadır. Normal dağılmama durumunun veri analizini zorlaştırmasından ve 

etkin olmayan tahmincilere yol açmasından dolayı, etkin ve güçlü tahminciler 

üreten uyarlanmış en çok olabilirlik (UEÇO) tahmin yönteminin kullanılması 

önerilmektedir. Ayrıca, gen ifade düzeylerini gösteren açıklayıcı değişkenler de 

Weibull dağılımdan gelmektedir. Bu nedenle, bu değişkenlerin olasılıksal olduğu 

düşünülmekte ve GDA’ın çıkarımında model parametrelerini tahmin etmek için 
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UEÇO tahmin yöntemi uygulanarak olasılıksal çoklu doğrusal regresyon analizi 

kullanılmaktadır. Ek olarak, hem olasılıksal hem de olasılıksal olmayan çoklu 

doğrusal regresyon model parametreleri için sağlamlık ve güç analizleri 

verilmiştir. 

 

Anahtar Kelimeler: Gen Düzenleyici Ağlar, Weibull Dağılım, Çoklu Olasılıksal 

Doğrusal Regresyon, Uyarlanmış En Çok Olabilirlik Tahmini. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

In all living organisms, there is a hierarchical organization of small building 

blocks. Cell is the smallest unit of this hierarchy. Combination of cells having a 

special structure and function forms tissues. Different kinds of tissues compose an 

organ. Several different organs work together to perform a certain task as an 

organ system. And finally, different organ systems come together and form the 

organisms.  

 

All genetic information which determines the function of a cell is encoded in the 

Deoxyribonucleic Acid (DNA) sequence. A gene is a sub segment of DNA and all 

genes in the genome composes the set of instructions that organism need to 

survive. The DNA code of genes is converted into Ribonucleic Acid (RNA), 

which codes for protein products. Amount of the products produced by a 

particular gene is the expression level of that gene. While all cells in an organism 

have the same genomic DNA, so the same gene sequences, the expression levels 

of many genes differ in different kinds of cells and under different conditions. 

Cell differentiation and cell function are regulated by differential gene expression. 

If researchers know the conditions under which genes are expressed at high level, 

they can get hints about the function of those genes.  

 

Gene expression levels are also associated with the disease recurrence. When 

there is a malfunction at any of the building blocks, organisms cannot perform 

normally and diseases occur. Most diseases are result from the abnormal activity 

of genes in the cells. While an organism is leading to diseased state from the 
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health state, expression levels of the genes related to the disease change. For 

example, onco genes in the cancer cells are expressed at high levels, but tumor 

suppressor genes are expressed at lower levels. By comparing the expression 

levels of the genes in diseased and normal cells, genes responsible for various 

diseases can be identified and possible therapeutic targets of the drugs can be 

determined. 

 

Quantification of the gene expression level profiles under different conditions is 

an important part of the biological and medical research. With the development of 

high throughput technologies such as DNA microarray and RNA sequencing 

(RNA-Seq) in molecular biology, researchers now can get the information about 

the concentration levels of thousands of genes at a given time or in a given state of 

an organism. However, identification of the responsible genes for cell 

differentiation or certain diseases by measuring the gene expression levels is not 

sufficient alone. It is also important to determine how gene products are governed.  

Cells need every gene product neither at the same time nor in the same amount. In 

a cell, genes work together by interacting with one another and interdependencies 

between them determine which, when and how much product is produced by a 

particular gene, that is, gene expression levels are regulated by these interactions 

between the genes. Hence, inferring gene regulatory networks (GRNs) becomes a 

necessity to understand the molecular mechanism of the life. 

 

GRNs identify the interactions between the genes and their products using gene 

expression data. They describe how the genes are expressed by a cell, which genes 

are transcribed to RNA and which of them in turn are used for the protein 

synthesis. By GRNs, the relationships between the genes and their regulators can 

be visualized mapping the interactions between them onto a graphic. 

 

A large number of studies have been carried out for inferring or reverse-

engineering GRNs. Kauffman (1969) has introduced Boolean networks to obtain 
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GRNs by modeling the gene as a binary device that can realize any one, but only 

one, of the possible Boolean functions of its K inputs. A generalization of the 

Boolean networks which is called the Temporal Boolean Network (TBN) has 

been proposed by Silvescu and Honavar (1997) to examine the dependencies 

among the activity of genes that span for more than one unit of time. Friedman et 

al. (1998) have handled the problem of learning dynamic probabilistic networks 

(DPN) from complete data by the extending Bayesian Information Criterion (BIC) 

scores and from incomplete data by extending structural equation model (SEM) 

algorithm. Liang et al. (1998) have investigated the possibility of inferring a 

complex regulatory network architecture from input/output pattern of its variables 

and implemented Reverse Engineering Algorithm (REVEAL) using mutual 

information measures. Muphy and Mian (1999) have showed that the most of the 

proposed discrete time models in reverse-engineering genetic networks from time 

series data are all special cases of a general class of models called Dynamic 

Bayesian Networks (DBNs) and reviewed the used techniques to learn DBNs. 

Chen et al. (1999) have proposed a differential equation model for gene 

expression and developed two methods, Minimum Weight Solutions to Linear 

Equations (MWSLE) and Fourier Transform for Stable Systems (FTSS), to 

construct model from experimental data.  Shmulevich et al. (2002) have 

introduced the model of Probabilistic Boolean Networks (PBN) which have the 

rule-based properties of Boolean networks, but are robust in the face of 

uncertainty.  Also, Bar-joseph et al. (2003) have developed an algorithm called 

Genetic Regulatory Modules (GRAM) which combines information from 

genome-wide location and expression data sets to explore regulatory networks of 

gene modules. Kikuchi et al. (2003) have improved the method proposed by 

Tominaga and Okamoto (1998) for the dynamic modeling of complex biosystems 

combining a Genetic Algorithm (GA) and the S-system and compared these basic 

and modified methods. Gardner et al. (2003) have constructed a first-order model 

of regulatory interactions in a nine-gene subnetwork of the SOS pathway in 

Escherichia coli and indicated the model to identify correctly the major regulatory 
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genes and transcriptional targets of mitomycin C activity in the subnetwork. 

Perrin et al. (2003) have dealt with the identification of GRNs from experimental 

data using a statistical machine learning approach and proposed a stochastic 

model of gene interactions capable of handling missing variables. They have 

estimated the model parameters by a penalized likelihood maximization method. 

Kao et al. (2004) have handled the complex transcriptional networks and showed 

the utility of network component analysis (NCA) in determining the multiple 

transcription factor activities. Ott et al. (2004) have developed an algorithm to 

obtain the optimal Bayesian networks of considerable size overcoming the 

uncertainties of heuristic approaches that makes it difficult to draw conclusions 

from networks estimated by heuristics. Nachman et al. (2004) have presented 

fine-grained dynamical models of gene transcription and proposed an algorithm 

based on DBNs to reconstruct these models of GRNs. Laubenbacher and Stigler 

(2004) have proposed an approach constructing a regulatory network as a time-

discrete multi-state dynamical system after they have described some of the 

existing reverse-engineering methods. Xing and Laan (2005) have described a 

comprehensive statistical approach to obtain transcriptional regulatory networks 

using gene expression data, transcription factor binding sites and promoter 

sequences. Chen et al. (2005) have introduced a stochastic differential equation 

(SDE) model for the transcriptional regulatory network of the time-course gene 

expression datasets. They have applied this model to the cell-cycle data of 

budding yeast Saccharomyces cerevisiae and tried to fit a generalized linear model 

estimating the transcription pattern of a specific target gene. Boscolo et al. (2005) 

have addressed the NCA on the basis of some aspects. They have used two-stage 

least square iterative procedure in NCA and introduced a framework to 

reconstruct multiple regulatory subnetworks simultaneously. Margolin et al. 

(2006) have introduced the Algorithm for the Reconstruction of Accurate Cellular 

Networks (ARACNE) that is a novel-theoretic algorithm for inferring the 

transcriptional networks from microarray data. Using delayed correlations 

between genes, Li et al. (2006) have developed a toolbox called Time-delayed 
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Gene Regulatory Network (TdGRN) to reconstruct regulatory networks from 

temporal gene expression data. Cho et al. (2006) have given S-tree based genetic 

programming for both the structural and dynamical modeling of a biological 

network and estimating the network parameters. Sabatti and James (2006) have 

introduced a framework which uses DNA sequence information and expression 

arrays data in concert to analyze the effects of a collection of regulatory proteins 

on genomic expression levels. Bansal et al. (2006) have presented Time Series 

Network Identification (TSNI) algorithm which obtain the local network of gene-

gene interactions surrounding a gene of interest by perturbing only one of the 

genes in the network. Bansal et al. (2007) have compared different algorithms 

used to infer gene networks and showed that these algorithms can correctly 

reverse-engineer the gene interactions. Cho et al. (2007) have also presented 

various techniques of reverse-engineering GRNs from gene expression profiles 

and biological information and arranged systematically these techniques based on 

the required information. Kaderali and Radde (2008) have handled several 

approaches given for discovering GRNs and discussed their strengths and 

weaknesses, also provided information on which models are appropriate under 

what circumstances and future developments. Faith et al. (2008) have developed 

context likelihood of relatedness to obtain the transcriptional regulatory relations 

using transcriptional profiles of an organism across a diverse set of conditions. 

Scrutinizing several kinds of computational methods used in predicting GRNs in 

mammalian cells, Lee and Tzou (2009) have showed how the power of different 

knowledge databases of different types can be used to identify modules and 

subnetworks. Emmert-Streib et al. (2012) have reviewed the methods available for 

estimating the GRNs and compared two major approaches with contemporary 

ones. Sparse structural equation models have been used (Cai et al., 2013) to 

integrate both gene expression data and cis-expression quantitative trait loci (cis-

eQTL), for modeling gene regulatory networks in accordance with biological 

evidence about genes regulating or being regulated by a small number of genes. A 
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systematic inference method named sparsity-aware maximum likelihood (SML) 

has been also developed for SEM estimation.  

 

1.1 Motivation of the Study 

 

The motivation of this dissertation comes from the work of Gardner et al. (2003). 

In their study, they develop an algorithm called Network Identification by 

Multiple Linear Regression (NIR) in which a model of the connections and 

functional relations between elements in a network is inferred from measurements 

of system dynamics by applying multiple linear regression analysis. 

 

They use the method of least squares (LS) to estimate the parameters of the 

multiple linear regression model. While constructing the model, they assume that 

the noise term and explanatory variables representing the expression levels of 

genes in the model are normally distributed. However, when the real data used in 

their study is examined, it is seen that the residuals obtained by using LS 

estimators (LSEs) fit Weibull distribution better. Similarly, conditional 

distributions of explanatory variables are obtained as Weibull distribution, too. 

Since the explanatory variables are stochastic, LS estimators of the model 

parameters are not same with the maximum likelihood (ML) estimators anymore. 

In addition, the relations between the explanatory variables are not taken into 

consideration in their study. 

 

In our study, it is proposed to use a stochastic multiple linear regression model 

when error term and explanatory variables come from a Weibull distribution 

considering the dependency between the explanatory variables to construct GRNs. 
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1.2 Aim and Contribution of the Study 

 

The main focus of this dissertation is to obtain a statistical computational method 

that can be used for inferring gene regulatory networks from gene expression data 

by researchers. It is aimed to improve the NIR algorithm by dealing with the 

statistical assumptions needed to apply NIR algorithm. This study makes the 

following contributions: 

 

 It is known that non-normality complicates the data analysis and results in 

inefficient estimators. Therefore, it is very important to improve statistical 

procedures which are efficient and robust to deviations from an assumed 

distribution. This study provides a robust estimation technique for the 

multiple linear regression analysis when the noise has a Weibull 

distribution by estimating the model parameters using the method of 

modified maximum likelihood (MML) estimation.  

 As mentioned at Section 1.1, explanatory variables represent the gene 

expression levels and they are subject to the measurement errors. 

Therefore, they are stochastic and they have a distribution. The parameter 

estimators obtained by using NIR algorithm are not the ML estimators 

anymore when the explanatory variables are stochastic, which means that 

the estimators of the model parameters obtained by using NIR algorithm 

lost their good properties. This study handle this problem using stochastic 

multiple linear regression analysis. 

 Lastly, Gardner et al. (2003) ignore the relationships between the 

explanatory variables in their study. However, some explanatory variables 

are collinear since the gene expression levels are regulated by the 

interactions between genes. Therefore, this study takes into account the 

relationships between the explanatory variables and estimate the partial 

correlation coefficients between the explanatory variables by 
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implementing method of MML in the stochastic multiple linear regression 

model. 

 

1.3 Organization of the Study 

 

This thesis consists of six chapters. In Chapter 1, a brief introduction to gene 

regulatory networks is given by emphasizing the importance of them in molecular 

biology. Also, the publications related to the GRNs are presented 

comprehensively and the motivation of the thesis is described. Furthermore, the 

aim and the contributions of the study are stated. 

 

In Chapter 2, a biological background of gene regulation needed to understand the 

rest of the thesis is provided. It explains the gene expression and mentions some 

high throughput techniques used to measure the gene expression levels. It also 

reviews the existing methods used for inferring gene regulatory networks. 

Especially, NIR algorithm is examined in detail since it is the motivation of this 

study. 

 

Chapter 3 gives the theoretical explanation of the multiple linear regression 

models. Since the expression data used in the regression model fit a Weibull 

distribution, Weibull distribution and its properties are also described in this 

chapter. Then, MML and LS estimators of the parameters in the multiple linear 

regression model with nonstochastic covariates are derived and the test statistics 

based on LS and MML estimators are obtained to test significance of model 

parameters. 

 

In Chapter 4, stochastic linear regression model is used to infer GRNs and model 

parameters are estimated by using MML and LS estimation methods considering 

the relationships between the explanatory variables. Test statistics based on LS 

and MML estimators are also obtained for stochastic linear regression model. 
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In Chapter 5, MML and LS estimation techniques are compared by examining the 

efficiency, robustness and power properties of them through a comprehensive 

simulation study. In addition, a real life application is given in this chapter. 

 

Finally, the last chapter of the thesis concludes the work that has been done, 

suggests some ideas about the gene regulatory networks and gives the related 

future work. 
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CHAPTER 2 

 

 

BIOLOGICAL AND HISTORICAL BACKGROUND 

 

 

 

This chapter presents a biological background to elucidate the gene expression 

and the gene regulation comprehensively by giving the definitions of some 

genetic materials such as cell, genes and DNA etc. Also, it describes the high 

throughput techniques used to measure gene expression levels and explains the 

microarray technology in detail. Furthermore, some commonly used methods for 

inferring gene regulatory networks are reviewed in this chapter. 

 

2.1 Biological Background 

 

Cells are the minimal units of all living organisms that contain a multitude of 

specific chemical transformations providing the energy needed by the cells and 

coordinating all of the events (Lee, 2004). The regulation of gene expression 

levels is maybe the most important task of cells to meet their needs and to adopt 

the environmental changes.  

 

Macromolecules such as DNA, RNA and proteins define the structure of cells and 

govern most of the activities of life (Lee, 2004) and especially play the main roles 

in the process of the expression of the genetic information. 

 

DNA is a double-stranded and helical molecule composed of four nucleotides: 

adenine (A), guanine (G), thymine (T) and cytosine (C). The sequence of these 

four nucleotides encodes the genetic information stored in DNA and hence, gives 

the genetic instructions for the development and the proper functioning of the 
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organisms. Since each strand of the DNA molecule is the complementary of the 

other, the double helix structure of the DNA molecules adds nothing to the 

information contained in a single strand. In DNA, A pairs with T, and C with G.  

 

Genes are segments of DNA and contain specific instructions which allow a cell 

to produce a specific product. Although every cell of an individual organism 

contains the same DNA, carrying the same information, different kinds of cells 

are available. As mentioned in Chapter 1, this differentiation is resulted from that 

all the genes are not expressed in the same way in all cells (Draghici, 2003). 

 

Cells need the products of some kind of genes called housekeeping genes at all 

time. It is assumed that these genes are expressed at constant levels in different 

cell types. However, expression levels of particular genes are affected from their 

circumstances and changes in their expression levels determine the distinct 

biological characteristics and hence cause organismal complexity and diversity. 

 

Differentiation between cells is given by different patterns of gene activations 

which in turn control the production of proteins. A gene is active, or expressed, if 

the cell produces the protein encoded by the gene. If a lot of protein is produced, 

the gene is said to be highly expressed. If no protein is produced, the gene is not 

expressed or unexpressed. The objective of researchers is to detect and quantify 

gene expression levels under particular circumstances (Draghici, 2003). 

 

Gene expression is the most fundamental level at which genotype gives rise to the 

phenotype. It is the entire process that takes the information contained in genes on 

DNA and turns that information into proteins. Gene expression occurs in three 

major stages: Replication, Transcription and Protein Synthesis (or Translation). 

In the replication process, a double-stranded DNA molecule is duplicated to give 

identical copies. RNA, a single-stranded molecule which uses a nucleotide called 

uracil (U) instead of thymine present in DNA, is transcribed from DNA by 

http://www.news-medical.net/health/What-is-DNA.aspx
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enzymes called RNA polymerases and is generally further processed by other 

enzymes. This process is called transcription. In the process of protein synthesis, 

RNA sequence is translated into a sequence of amino acids.  A combination of 20 

different amino acids forms the proteins. Proteins are the complex organic 

compounds consisting of the immediate expression of the genetic information 

stored in DNA and attending various tasks essential for survival of the cell. These 

three stages are all together called the central dogma of molecular biology 

(Watson and Crick, 1958; Crick, 1970) and presented in Figure 2.1.  

 

 

 

Figure 2.1: Central dogma of molecular biology. Figure is adapted from 

“http://users.ugent.be/~avierstr/principles/centraldogma.html”. 

 

 

http://users.ugent.be/~avierstr/principles/centraldogma.html
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2.2 Gene Regulatory Networks 

 

Regulation of gene expression controls the amount and timing of a functional 

gene product. In the process of gene expression, transcription factors (TFs), which 

are the specialized proteins, bind to promoter region of DNA and intervene the 

rate of protein synthesis. An increase in the rate of protein synthesis is called as 

the activation or up-regulation of the gene and a decrease in the rate of protein 

synthesis is called as the inhibition or down-regulation of the gene (Panse and 

Kshirsagar, 2013). 

 

Genes regulate the expression levels by interacting each other through gene 

products. A gene regulatory network is a collection of genes and gene products 

(RNAs and proteins) and describes the regulatory relationships between genes, 

proteins and other cellular components. Gene regulation can be visualized by 

graphs in which nodes show genes or gene products and directed edges 

connecting nodes show the dependency between them. In Figure 2.2, the graphical 

representation of a simple gene regulatory network is illustrated. 

 

 

 

 

Figure 2.2: An example of gene regulatory network: ellipses are TFs; boxes are 

genes; hexagons are the clustered genes. Figure is adapted from 

“http://rulai.cshl.edu/TRED/GRN/HIF.htm”. 

http://rulai.cshl.edu/TRED/GRN/HIF.htm
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Reconstruction of gene regulatory networks holds great importance especially in 

the field of system biology. Accurate prediction of GRNs provides an opportunity 

to study the dynamics of specific gene under particular diseased or experiment 

conditions. It also helps to study diseases that are caused by dysregulated genes. 

Hence, GRNs enables to develop new treatment methods for illnesses and to 

analyze the effects of drugs on genes (Karlebach and Shamir, 2008; Panse and 

Kshirsagar, 2013). 

 

2.3 Microarray Technology 

 

With the development of high throughput technologies, expression levels of 

thousands of genes can be measured simultaneously. Gene expression data allow 

researchers to infer gene regulatory networks by observing changes in gene 

expression profiles under various experiment conditions and under different cell 

cycle stages. Hence, behaviors of genes can be analyzed. 

 

There are several kinds of molecular biology techniques, as listed below, to 

quantify the gene expression and microarrays and next generation RNA 

sequencing are the most current high-throughput techniques: 

 

 Comparative Genomic Hybridization (CGH)  

 Serial Analysis of Gene Expression (SAGE) 

 RNA Sequencing   

 Real Time- Polymerase Chain Reaction (PCR) 

 Microarrays 

 

In this subsection, only microarray analysis of gene expression is handled since it 

is the most widely used technique. 
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A DNA microarray, also known as DNA chip, has been introduced by Schena et 

al. (1995) for the first time and become a very popular technique to identify the 

gene expression changes resulted from a variety conditions such as development, 

aging and diseases or drugs (Alizadeh et al ., 2000; Bilban et al., 2000; Tanaka et 

al., 2000; Young, 2000). It consists of a small membrane or glass slide containing 

samples of many genes arranged in a regular pattern. The surface of a microarray 

is spotted with oligonucleotides that are the small parts of DNA molecules up to 

25 nucleotides, complementary DNA (cDNA) or small fragments of polymerase 

chain reaction products that represent specific gene coding regions. There are 

thousands of microscopic spot known as probes on a microarray and each probe 

corresponds to a particular gene (Amaratunga and Cabrera, 2004). 

 

Microarrays can be classified as single-channel (one-color) and two-channel (two-

color) arrays and both types of microarray are used for the hybridization 

experiments. One-color microarray measures the intensity of only one hybridized 

biological sample while two-color microarray measures expression ratios between 

two hybridized samples. 

 

DNA microarray technology depends on the parallel hybridization of labeled 

target to immobilized probes (Schena et al., 1995). Differential gene expression is 

determined by using a two-color scheme. Firstly, the messenger RNA (mRNA) is 

isolated from the experimental samples such as healthy or tumor tissue sample 

and reverse-transcribed into more stable complementary DNA. Then cDNA 

samples are labeled by a fluorescent dye (generally healthy cDNA is labeled green 

and tumor cDNA is labeled red) and combined sample is hybridized to the 

microarray chip. Target sample binding to a probe generates a signal and its 

strength depends upon the amount of target sample binding to that probe. Then, 

fluorescent intensity on each probe is measured and converted into the raw data 

by using a special scanner. 

 



 

17 
 

 

Active genes produce many mRNA molecules, hence, many labeled cDNA 

samples, and generate a very bright fluorescent spots. Genes that are less active 

produce fewer mRNA molecules, thus, less labeled cDNA samples, and generate 

dimmer fluorescent spots. If there is no fluorescence, none of the messenger 

molecules have hybridized to the DNA which indicates that the gene is inactive. 

 

Application areas of microarrays can be summarized as follows: 

 

 Gene discovery: Microarray technology is used to identify genes and to 

determine their function and expression levels at the particular condition 

(Cho et al., 1998; Chu et al., 1998; Tao et al., 1999; Laub et al., 2000; Wei 

et al., 2001; Chan et al., 2003).  

 Gene regulation studies: Microarray technology is used to infer gene 

regulatory networks describing the regulatory relationships between genes 

and gene products (de Saizieu et al., 2000; Gross et al., 2000; Arfin et al., 

2000; Kuhn et al., 2001; Britton et al., 2002).  

 Disease diagnosis: Microarray technology is used to determine disease by 

the identification of changes in the expression levels of particular genes 

(Gingeras et al., 1998; van’t Veer et al., 2002; Macoska 2002).  

 Drug discovery and toxicology: Microarray technology is used to develop 

treatments for illnesses by studying the therapeutic responses to drugs. It is 

also used to search the impacts of toxins on the cells (Wilson et al., 1999; 

Bammert and Fostel, 2000; Clarke et al., 2001) 

 

2.4 Data Analysis Preparation 

 

As mentioned in Section 2.3, microarray technology measures the labelled 

fluorescent intensities which represent the amount of mRNA molecules isolated 

from the experimental samples and converts these intensities to the gene 

expression data. However, microarray experiments are generally subject to some 
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sources of variations and these variations mask the biological signals of the actual 

interest, which means that fluorescent intensity changes may not always show the 

actual expression changes. 

 

Measurement errors that affect the expression data can be classified into two 

categories: systematic error and random error. Systematic error is a bias resulting 

from array spotting, scanning, labelling, hybridization etc., and it reflects the 

accuracy of experiment measurements (Claverie, 1999; Schuchhardt et al., 2000; 

Lou et al., 2001; Tseng et al., 2001; Yue et al., 2001). For example, a well-known 

systematic error is fluorescent dye bias. When two identical samples are labelled 

with red and green colors and hybridized to same slide, it is expected that green 

intensities and red intensities are at the same level since there is no differential 

expression. However, red intensities generally tend to be lower than green 

intensities (Smyth et al., 2003). Once systematic errors are identified and 

removed, it is considered that the remaining measurement errors are random. 

Random error is a measure of uncertainty in the measurements and reflects the 

precision of expression data. It constitutes a noise which prevents the changes in 

biological signals to be determined correctly. Changes in the expression levels can 

be distinguished from random noise by using some statistical tests. 

 

Systematic errors can be removed or controlled by using strict experimental 

procedures and employing normalization methods. After all background 

corrections are carried out, normalization of microarray data have to be performed 

to make observations comparable each other. In microarray data analysis, it is 

generally aimed to identify the differentially expressed genes by comparing the 

expression levels of genes under different conditions, for this reason, gene 

expressions are represented as the ratio of two florescent intensities (Parmigiani et 

al., 2003). Although ratios provide an intuitive measure of expression changes, 

they treat up-regulated and down-regulated genes differently. The intensity ratios 

usually have a skewed distribution since the ratios of down-regulated genes take 
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the values in the interval 1) (0,  whereas the ratios of up-regulated genes take the 

values in the interval ) (1, . For example, genes up-regulated by a factor of 2 

have an expression ratio of 2 whereas those down-regulated by the same factor 

have an expression level of -0.5. To overcome this disadvantage of the ratios, 

expression data need to be transformed before the normalization. The most 

commonly used transformation is the logarithm base 2 transformation. It provides 

the genes up-regulated and down-regulated by a factor of 2 to have a )ratio(log 2  

of 1 and -1, respectively (Quackenbush, 2002).  

 

A number of normalization approaches have been introduced to remove the 

systematic errors. The most well-known approaches can be listed as  

 

 Global Normalization 

 Total RNA Normalization 

 Self-Normalization 

 Housekeeping Gene Normalization 

 Locally Weighted Regression and Smoothing Scatterplots (LOWESS)  

 

Global normalization is the first proposed method for the normalization of the 

microarray data. This approach relates the red intensity to the green intensity by a 

multiplicative constant and shifts the center of the distribution of transformed 

expression ratios to zero (Yang et al., 2002). Total RNA normalization assumes 

that amount of total RNA carried by each cell does not change over time (Fang et 

al., 2003). The self-normalization method removes the systematic error by 

applying a subtract operation to the data since the error on log scale is assumed to 

be additive. The housekeeping gene normalization evaluates the labelling and 

sample hybridization by spotting a set of housekeeping genes on the array. In this 

approach, it is assumed that the housekeeping genes are expressed at a constant 

level under different experimental conditions (Yang et al., 2002). Transformed 

expression ratios have some intensity-dependent variations and LOWESS 



 

20 
 

 

normalization removes these variations by applying a smoothing adjustment 

(Cleveland, 1979; Quackenbush, 2002).  

 

Unlike systematic errors, random errors cannot be removed entirely but they can 

be estimated from the observed data. By the replication of the experiment, random 

errors can be minimized since it is expected that replicates give same results under 

the same condition except for random error (Nadon and Shoemaker, 2002). 

 

2.5 Historical Background 

 

Since the modelling of gene regulatory networks has become a very useful tool 

for the analysis of the gene interactions, numerous methods have been proposed to 

construct gene regulatory networks in the literature. These methods can be 

classified as physical approach and influence approach. In the physical approach, 

the proteins regulating the transcription and DNA motifs to which they bind are 

identified, and hence, true molecular interactions are determined. However, the 

influence approach does not seek true physical interactions, instead, it describes 

the regulatory influences between RNA transcripts by observing the changes in 

the transcription levels. For the modelling of gene regulatory networks, the 

influence approach is more preferable to the physical approach since the physical 

approach needs more prior knowledge and specific data. Models used for inferring 

gene regulatory networks are also divided into two groups as dynamic and static. 

Dynamic models which contain a time-component are used when the dynamic 

behavior of the network is required (Hecker, 2007). 

 

In this study, the most widely used methods are reviewed. These are listed as 

follows: 
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 Boolean Networks 

 Gaussian Graphical Models 

 Bayesian Networks 

 Ordinary Differential Equations 

 Network Identification by Multiple Linear Regression 

 

2.5.1 Boolean Networks 

 

Boolean networks have been used firstly by Kauffman (1969) to model behavior 

of the large nets of randomly interconnected binary genes.  In the modelling of 

gene regulation by Boolean networks, each node represents a gene and directed 

edge represents biological interaction between two genes. 

 

A Boolean network can be explained by the definition given below: 

 

Definition 1 (Boolean Network): A Boolean network is a tuple )B,X(G   

where n

n },{)x,...,x,x(X 1021   is a vector of Boolean variables, and B  is a set 

of Boolean functions }f,...,f,f{B n21 , },{},{:f n

i 1010   (Kaderali and 

Radde, 2008). 

 

In the gene regulatory networks, ix  represents the state of gene i and if  

represents the interactions between them. It is assumed that each gene can be in 

either state “on” or “off”. State “on” means that gene is expressed above some 

threshold while state “off” means that gene is expressed below that threshold. If 

the gene i is in the state “on”, ix  takes the value of 1 and if the gene i is in the 

state “off”, ix  takes the value of 0.  

 

By using Boolean functions, the states of all genes are updated at a discrete time 

step: 
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))t(x),...,t(x),t(x(f)t(x nii 211                                 (2.1) 

 

Here it is assumed that genes update their states simultaneously. At any given 

time t, the expression or state of the network are represented by the states of all 

nodes as follows: 

 

))t(x),...,t(x),t(x()t(x n21                                          (2.2) 

 

An example of the Boolean networks is shown in Figure 2.3. Here, pointed array 

shows an activation. For example, if gene B is active, then it will activate gene A. 

If gene A is active, then it will activate gene B. Also if either gene A or gene B is 

active, then gene C will be activated. 

 

 

Figure 2.3: A representation of sample Boolean network. 

 

 

Because of the dynamic properties of Boolean networks, this method is quite 

popular for the reconstruction of gene regulatory networks. However, forming an 

accurate network is not an easy issue since it is impossible to determine the values 

A

B

C

   Input  Output 

A   B   C A’  B’  C’ 

0    0    0 

0    0    1 

0    1    0 

0    1    1 

1    0    0 

1    0    1 

1    1    0 

1    1    1 

0    0    0 

0    0    0 

1    0    1 

1    0    1 

0    1    1 

0    1    1 

1    1    1 

1    1    1 
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of n2  states in a Boolean network with n nodes. Instead, Kauffman (1969) have 

introduced NK Boolean networks which studies a class of Boolean networks of n 

nodes. In this approach, each node has a randomly selected k inputs from n nodes 

and has )!kn/(!n   possible combination of k inputs. In addition, there are 
k22  

possible functions for each node. Hence, the number of possible networks is 

obtained as follows: 

 

n

)!kn(

!nk












22                                                    (2.3)  

 

As the number of nodes n increases, the number of the possible networks grows 

exponentially. To solve this problem, the number of edges directed into a node is 

bounded by a constant. 

 

2.5.2 Gaussian Graphical Models 

 

Gaussian graphical model (GGM) is a very popular approach to the reconstruction 

of gene regulatory networks (Dobra et al., 2004). In this approach, it is assumed 

that the available data come from a multivariate Gaussian distribution (Whittaker, 

1990). Hence, the aim is to determine the conditional independencies among 

genes by deriving the partial correlations in the joint probability distribution of 

expression data. 

  

Gaussian graphical models give the direct association between genes but indirect 

associations can also be obtained easily (Wang et al., 2013). GGM is described by 

a graph )E,V(G   where }...,,2,1{ p  V   corresponds to the node sets 

representing the variables and )e(E ij  corresponds to the edge set representing 

conditional independencies between nodes. If there is no edge between two nodes 
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( 0ije ), then these two nodes are conditionally independent given all other 

nodes. 

 

In the GGM, )X,...,X,X(X p21  represents the real valued states of nodes and 

follow a multivariate Gaussian distribution with mean 0 and covariance matrix  . 

Hence, partial correlations can be obtained by the inverse covariance matrix 

}w{ ij 1 . They are obtained as follows: 

 

jjii

ij

ij
ww

w
                                                    (2.4) 

 

where ij  is the partial correlation between gene i and gene j given all other 

genes. If ije  is 0, then ijw  becomes 0 and 0 valued elements in the inverse 

covariance matrix give the conditionally independent genes in the network. 

 

2.5.3 Bayesian Networks 

 

Bayesian network model has been proposed by Friedman et al. (2000) and 

Hartemink et al. (2001) for inferring gene regulatory networks. It determines the 

probabilistic relationships between the nodes of the network by establishing a 

directed acyclic graph. Directed acyclic graph is denoted by )A,X(G   where 

the nodes )X,...,X,X(X n21  correspond to the random variables representing 

the expressions of genes and the directed edges A  represent the probabilistic 

dependencies between the random variables. An edge from jX  to iX  shows the 

dependency of iX  on jX . In this case, jX  is called a parent of iX . Therefore, iX  

has a conditional probability distribution denoted by ))x(parents|x(p ii  where 

)x(parents i  is the set of parents for iX . If iX  does not have a parent, then it is 
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unconditional probability distribution )x(p i . In a Bayesian network, it is 

assumed that each random variable is independent of its non-descendants. Hence, 

the joint probability distribution function of nX,...,X,X 21  can be written as 

follows: 

 

))(|(),...,,(
1

21 



n

i

iin xparentsxpxxxp                                     (2.5) 

 

Figure 2.4 gives a simple Bayesian network consisting of four nodes A, B, C and 

D with discrete states “ 1on ” and “ 0off ”. It is seen that A is the parent of 

both B and C, and C is the parent of D. D is assumed to be conditionally 

independent from A given C. By the given probabilities, joint probabilities can be 

computed from the graph. For example; 

 

)1|0()1|1()1()1,0,1,1(  ACPABPAPDCBAP           (2.6)    

                                                30.035.070.060.0)0|1(  CDP                                                                                            
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Figure 2.4: An example for Bayesian networks. 

 

 

Inferring Bayesian networks consists of two parts. In the first part, the best graph 

G is found given the observed data D. In the second part, the best conditional 

probabilities are obtained given the graph G and observed data D.  

 

Model structure G is sampled from the posterior probability of a network topology 

given by 

 

)D(p

)G(p)G|D(p
)D|G(p                                              (2.7) 

 

where )G(P  is the prior distribution over network structures. Here conditional 

distribution )G|D(p  can be computed as follows: 

 

   dq)G|q(p)G,q|D(p)G|D(p                                (2.8) 

A )|1( ACP    )|0( ACP   

1 

0 

      0.75                 0.35   

      0.95                 0.05     

 
C )|1( CDP    )|0( CDP   

1 

0 

      0.80                 0.20   

      0.30                 0.70     

 

 

 

A

B C

D

A )|1( ABP    )|0( ABP   

1 

0 

      0.70                 0.30   

      0.50                 0.50     

 

A  )(AP      

1 

0 

  0.60 

  0.40  
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in which q is the parameter vector for the conditional distributions p, )G,q|D(p  

is the likelihood function and )G|q(p  is the prior distribution of the parameters. 

 

If the structure of graph G and observed data D are assumed to be given, then the 

details of the conditional distributions can be enhanced by obtaining the values of 

parameters of the conditional distributions. The posterior distribution of the 

parameters q is given by 

 

   
)G|D(p

)G|q(p)G,q|D(p
)G,D|q(p  .                                (2.9) 

 

Bayesian network modelling is a fascinating method to construct gene regulatory 

networks since they are stochastic and thus they can deal with the noisy 

measurements. 

 

2.5.4 Ordinary Differential Equations 

 

Unlike Bayesian networks, ordinary differential equations (ODEs) provide a 

deterministic aspect in the reconstruction of gene regulatory networks. Using 

ordinary differential equations, concentrations of RNAs, proteins and other 

cellular molecules can be modelled by a discrete or continuous time-dependent 

variable. 

 

Changes in the expression level of a gene at a particular time is explained by a 

rate equation which has the mathematical form 

 

   )u,p,x,...,x,x(f
dt

dx
ni

i

21                                            (2.10) 
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in which )ni(xi 1   is the expression level of gene i at time t, n is the number 

of genes, p is the parameter set of the network and u is the external perturbation to 

the network. The function if  can be linear, piecewise linear or nonlinear. 

 

ODEs have been used firstly by Chen et al. (1999) to model gene regulation. They 

form the gene network by a simple linear function  

 

)t(Ax))t(x(f                                                             (2.11) 

 

where A is nn  matrix of elements ija  defining the regulatory relation between 

gene i and gene j.  

 

The most widely used class of the ODEs is S-systems. They have been used to 

reconstruct gene regulatory networks by Kikuchi et al. (2003). S-systems are 

described as follows: 

 

     ijij h

ji

g

ji

i )t(x)t(x
dt

)t(dx
                         (2.12) 

 

Here ijg  and ijh  are the kinetic orders and i  and i  are the rate constants. The 

first and second terms at the right hand side describe the effects of activators and 

inhibitors, respectively. 

 

In Figure 2.5, a linear additive model is given as an example of the linear ordinary 

equations. Nodes represent the expression levels of genes, dashed lines represent 

the inhibiting relations, full lines represent the activating relations and ijq  

represents the strength of effect of gene i on gene j. For example, the expression 

level of gene A at time t+1 can be obtained by the equation  
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)()()()1( txqtxqtxtx DDACCAAA  .                      (2.13) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: An example for a linear additive model. 

 

 

2.5.5 Network Identification by Multiple Linear Regression 

 

Gardner et al. (2003) have developed an algorithm called Network Identification 

by Multiple Linear Regression (NIR) to infer functional relationships between the 

genes. This algorithm models the behavior of a gene regulatory network by first-

order linear equations describing the rate of accumulation of each network species 

resulting from a transcriptional perturbation: 

 

uAxx dt/d                                                 (2.14) 

 

where x  represents the mRNA concentrations of genes, dt/dx  represents the 

rate of accumulation of mRNA concentrations, A  represents the network model 

describing regulatory relations between mRNA concentrations and u  represents 

the set of external perturbations.  
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For each gene in the network, Equation (2.14) can be written in the following 

form: 

 

il

N

j

jlij

il uxa
dt

dx


1

,  N,...,i 1 , M,...,l 1 ,     (2.15) 

        ill

T

i uxa   

 

where ilx  is the mRNA concentration of gene i following the perturbation in 

experiment l; ija  represents the influence of gene j on gene i; and ilu  is an 

external perturbation to the expression of gene i in experiment l. By using matrix 

notation, the rate of accumulation for all N genes in the network is given by 

 

   ll
l ux.

dt

xd
 A ,     M,...,l 1 ,                  (2.16)  

 

where lx  is an 1N  vector of mRNA concentrations of the N genes in 

experiment l, A  is an NN   connectivity matrix, composed of elements ija , and 

lu  is an 1N  vector of the perturbations applied to each of the N genes in 

experiment l.  

 

Near a steady-state point which means that gene expression does not change 

substantially over time ( 0
dt

xd l ), the following equation is obtained:  

 

    UA.X  ,                       (2.17)  

 

where X  is an MN   matrix composed of columns lx ; U  is an MN   with 

each column, l
u .  
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Equation (2.17) can be solved only if NM  . To satisfy this condition, number 

of experiments can be increased, but then, A will be extremely sensitive to noise 

in the perturbations and be unreliable. To overcome this problem, it is assumed 

that the maximum number of regulators of each gene, k, is less than M, i.e., the 

network is not fully connected. 

 

Since the data in both X  and U  are noisy, two noise terms are added to Equation 

(2.17) and the following multiple linear regression model is obtained for each 

possible combination of k out of N weights: 

 

T

i

T

i

T

i
e.by  Z                                                    (2.18) 

 

where 
i

y  is an 1M  vector of measurements of ilil uy  , ib  is a 1k  vector 

representing one of (N choose k) possible combinations of the elements of ia , Z 

is a MK   matrix, where each column is the vector lz  for one of the M 

experiments (
lll xz  , 

l
  represents normally distributed measurement noise 

on the mRNA concentrations in experiment l); and ie  is an 1M  vector of noise  

( l

T

iilil be   , il  represents normally distributed measurement noise on 

perturbations of gene i in experiment l). 

 

By applying method of LS, NIR algorithm obtains the estimator of ib  in the 

multiple linear regression model given by Equation (2.18) as follows: 

 

    
ii y.)(b

~
Z.Z.Z

T 1                                           (2.19) 

 

To obtain the best estimate for ib , ib
~

 is calculated for each of the (N choose k) 

combinations of weights for gene i and the estimate ib
~

 with the smallest sum of 
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squared errors is selected as the best approximation of ia  in Equation (2.15).  

Sum of squared errors (SSE) lost function is defined by 

 





M

l

l

T

iil

M

l

ilil

k

i zbyyySSE
1

2

1

2 ).
~

()~( .       (2.20) 

 

From Equation (2.19), the predictor for 
i

y  given the data matrix Z is  

 

    Z.
~~ T

i

T

i
by  .                                                    (2.21) 

 

Gardner et al. (2003) assumes that the noise term in the model given by Equation 

(2.18) is normally distributed and the least square estimators are the most efficient 

for normal data. They also assume that the regressors are uncorrelated and 

propose to use ridge regression when some of the regressors are collinear. 

Furthermore, they states that ib
~

 is not the maximum likelihood estimator of the 

model parameter ib . 
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CHAPTER 3 

 

 

METHODOLOGY FOR GENE REGULATORY NETWORKS BY 

MULTIPLE LINEAR REGRESSION ANALYSIS UNDER WEIBULL 

DISTRIBUTION 

 

 

 

In this chapter, the algorithm of network identification by multiple linear 

regression developed by Gardner et al. (2003) is considered and it is aimed to 

improve this algorithm by handling the normality assumption needed to apply the 

algorithm. 

 

For the reconstruction of gene regulatory networks, NIR algorithm forms a 

multiple linear regression model for each gene in the network as follows: 

 

  iiqqiii ex...xxy   22110 , n,..,i 1                        (3.1) 

 

in which ii uy   represents the external perturbation to the expression level of a 

particular gene in experiment i, )q,...,,j;n,..,,ixij  2 1  2 1(   represents the 

expression level (with noise) of gene j following the perturbation in experiment i, 

)q,...,,j(j  2 1   represents the effect of gene j on a particular gene and 
ie  

represents the error term. 

 

In the study of Gardner et al. (2003), NIR algorithm is applied to a nine transcript 

subnetwork of the SOS pathway regulating the cell survival and repairing after 

DNA damage in Escherichia coli. This subnetwork is chosen to include the genes 

called lexA, recA, ssb, recF, din, umuDC, rpoD, rpoH and rpoS. It is known that 
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the genes lexA and recA regulate more than 30 genes directly and they are the 

principle mediators of the SOS response. Also, the genes ssb, recF, din and 

umuDC are the other regulatory genes with known involvement in SOS response. 

However, regulatory role of the genes rpoD, rpoH and rpoS in SOS response are 

not completely known.  

 

They apply nine external perturbations to the network by overexpressing different 

one of the genes in each perturbation. Then they form a multiple linear regression 

model for each of nine genes and obtain the regulatory connections in the network 

assuming that the networks are not fully connected. 

 

Table 3.1 gives the expression data for gene i in all perturbation experiments. 

Expression levels are the RNA expression ratios between perturbed and control 

groups. They are obtained by the formula 1 cont

i

pert

ii ]RNA/[]RNA[x  where   

pert

i ]RNA[  and cont

i ]RNA[  represents the expression level of perturbed and 

control groups for gene i, respectively. Table 3.2 gives the external perturbation 

for each gene. Relative magnitude of a perturbation to gene i is computed by the 

formula cont

i

vec

ii ]RNA/[]RNA[u   where vec

i ]RNA[  is the the concentration of 

gene i RNA synthesized from the overexpression vector pBADX53 in each 

training experiment. 
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Table 3.1: Expression data 

 

      Genes     

Training  

Perturbations 

 recA 

 

lexA 

 

ssb 

 

recF 

 

dinI 

 

umuDC 

 

rpoD 

 

rpoH 

 

rpoS 

 

recA 0.906 0.212 0.018 0.104 0.119 0.076 -0.122 0.178 0.072 

lexA -0.132 0.383 -0.107 -0.050 -0.097 -0.189 -0.047 -0.183 -0.128 

ssb -0.139 -0.117 10.524 -0.273 0.056 -0.124 -0.102 0.036 0.073 

recF 0.187 0.064 0.061 0.139 0.315 0.250 -0.107 -0.070 0.081 

dinI 0.291 0.169 0.080 0.180 2.147 0.347 -0.011 -0.034 0.305 

umuDC -0.061 -0.087 0.013 0.146 0.142 2.017 0.104 -0.155 0.051 

rpoD -0.077 0.039 0.064 0.069 -0.068 -0.067 3.068 0.008 -0.061 

rpoH -0.017 0.125 0.089 -0.004 0.135 -0.172 0.365 26.633 0.274 

rpoS -0.025 0.084 -0.07 0.275 0.113 -0.022 0.217 0.087 0.672 

 

 

Table 3.2: Gene perturbed in training perturbations 

 

recA lexA ssb recF dinI umuDC rpoD rpoH rpoS 

0.6529 1.1711 13.412 1.6705 4.5415 2.3555 4.7083 12.8658 4.1089 
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NIR algorithm assumes that the error term in the model (3.1) is normally 

distributed with zero mean and hence the method of least squares gives the most 

efficient estimators. However, the random errors may not have a normal 

distribution and under non-normality LS estimators are known to be neither 

efficient nor robust. Therefore, it is very important to develop statistical 

procedures which are efficient and robust to deviations from an assumed 

distribution.  

 

In the literature, there are several robust estimation methods such as Huber’s and 

Tukey’s estimation and MML estimation. To provide robustness against non-

normality, here it is proposed to use the MML estimation procedure in multiple 

linear regression analysis for inferring GRN when the errors have a Weibull 

distribution. The first reason for preferring the MML estimators is that they have 

explicit forms and they are easily computed. The second one is that Huber’s and 

Tukey’s estimators are robust only for the long-tailed distributions. 

 

In this study, instead of assuming that errors come from a normal distribution, the 

distribution of errors is determined. To decide their distribution, the best multiple 

linear regression model for each gene using the expression data given in Table 3.1 

is obtained and the residuals are computed by using the method of least squares. 

Then, their skewness and kurtosis are matched with the theoretical values of 

different distributions. Also, the Q-Q plots of the obtained residuals for different 

distributions are examined and it is seen that the distribution of residuals fits a 

Weibull distribution better.  

 

To show that the use of MML estimation procedure in multiple linear regression 

analysis leads to an improvement to NIR algorithm, parameters of multiple linear 

regression model are also estimated by using LS estimation method in this study. 
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3.1 Least Squares Estimation under Weibull Distribution 

 

A family of Weibull distributions with shape parameter p is given by  

 

,
x

expx
p

),p;x(f

p

p

p




















 


 1    x0 .                       (3.2) 

 

When 1p , the pdf becomes 

 













x

exp);x(f
1

,    x0                                           (3.3) 

 

which is the pdf of exponential distribution with parameter  . 

 

The mean and variance, respectively, are 

 

  )/11()( pxE  ,                                                                   (3.4) 

 

22 ))/11()/21(()( ppxVar   . 

 

The cumulative distribution function is given by 

 
























p
x

exp),p;x(F


 1 ,   x0 .                               (3.5) 

 

The Weibull family (3.2) represents a wide variety of skewed distributions, both 

with kurtosis greater than as well as less than 3. 
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To get the information about the nature of the Weibull distribution, its skewness 

and kurtosis values for particular shape parameters are given by Table 3.3. 

 

 

Table 3.3: Skewness and kurtosis values of Weibull distribution 

 

p 1.5 2 2.5 3 4 6 8 

Skewness 1.064 0.631 0.358 0.168 -0.087 -0.373 -0.534 

Kurtosis 4.365 3.246 2.858 2.705  2.752  3.036  3.328 

 

 

In this thesis, for the multiple linear regression model given in Equation (3.1), it is 

assumed that ie  have a Weibull distribution with shape parameter p (0). LS 

estimators of )q,...,,j(j  2 1   are same as those in the ordinary least squares 

approach. However, LS estimators of 0  and   need to be bias corrected under 

Weibull distribution. Bias corrected LS estimators of 0  and  are given by 

 

 
11211 2
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1j

ij
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where 

 

  jijij xxX  ,   



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i

ijj x
n

x
1

1
   and 
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  yyY ii  ,    



n

i

iy
n

y
1

1
. 

 

Hence, the estimated variance-covariance matrix of LS estimator 

)~...,,~,~(~
21 q   γ  is obtained as follows: 

 

  )(,~)()~( )(

21

ijqn x   Cov  


XXXγ                                           (3.7) 

 

To test the equality of model parameters, the hypothesis 

 

  q...:H   210     versus                                                  (3.8) 

othersfromdifferentthemofoneleastAt:H        1
, 

 

is used. 

 

The test statistic F  based on LS estimators is defined as follows: 

 

)(),(,~

~

)1()(2 inijqn y   x   
q

F 


  yX
yXγ


.                                  (3.9) 

 

Under the null hypothesis, F  has an F-distribution with degrees of freedom q  

and )qn( 1 . If the null hypothesis is rejected, then individual parameters are 

tested: 

 

   )q,..,,j(:H j  2 1    00     versus                                       (3.10) 

01 j:H   

 

For the hypotheses given above, the test statistic based on the LS estimators is 

given by 
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)~(S

~

T
j

j

j



                                                                                (3.11) 

 

where )~(S j  is the standard error of j
~ . For 20n , jT  has a t-distribution with 

degrees of freedom )qn( 1 . However, for 20n , the null distribution of jT  

is N(0 ,1) and large values of jT  lead to the rejection of the null hypothesis (Islam 

et al., 2001).  

 

The variances of LS estimators of model parameters in multiple linear regression 

analysis are very sensitive to the location and scale of the explanatory variables 

and to data anomalies (outliers). To rectify this problem, the re-parameterized 

model given by (Akkaya and Tiku, 2008) is also considered in this study:  

 

i

q

j

ijji euy  
1

0  ,  n,..,i 1 , q,...,j 1                         (3.12) 

 

where 
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For the re-parameterized model, LS estimators of  q)j(1  j   are given by 

 

)(),(),()(~(~
)1()(

1

inijqnj y   u   )  


yUyUUUγ  .       (3.13) 

 

Bias corrected LS estimators of 0  and  are given by 

 



 

41 
 

 
ppqn

UY
n

i

q

1j

ijji

))/11()/21()(1(

~

~
2

1

2




















 
 



 ,                          (3.14) 

 





q

i

jj puy
1

0
~)/11(~~   

 

where 
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3.2 Modified Maximum Likelihood Estimation under Weibull Distribution 

 

Under the assumption of Weibull distribution for error terms ie , the Fisher 

likelihood function for each gene is 
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where  

 

   






iqqiiii
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x...xxye
z
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22110
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The likelihood equations for estimating 
0 , )q,..,,j(,  2 1 j   and   are  
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where 1

1

 ii z)(zg  and 
1

2

 p

ii z)(zg . 

  

These equations have no explicit solutions since they include non-linear functions 

)(zg i1
 and )(zg i2 . They can be solved by using some iterative methods, 

however, it is enormously problematic to obtain the solutions by iteration since 

the iterations may never converge or converge to wrong values (Puthenpura and 

Sinha, 1986; Akkaya and Tiku, 2008a; Islam and Tiku, 2004). Moreover, there are 

too many equations to iterate simultaneously which is formidable task. Also, it is 

difficult to make any analytical study of the resulting maximum likelihood 

estimators, especially for small samples. Therefore, the method of modified 

maximum likelihood developed by Tiku (1967) is proposed to obtain the explicit 

solutions for the non-linear equations. 

 

MML estimation procedure has very good statistical properties which are listed 

below: 

 

1. MML estimators are the explicit functions of sample observations. Thus, 

they are computed very easily and it is simple to determine their properties 

(Vaughan and Tiku, 2000). 
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2. MML estimators are asymptotically equivalent to the ML estimators when 

some regulatory conditions hold. This means that MML estimators are 

asymptotically fully efficient, i.e., they are unbiased and their variances 

are equal to the minimum variance bound (MVB) (Bhattacharyya, 1985; 

Tiku et al., 1986 and Vaughan and Tiku, 2000). 

 

3. MML estimators are almost fully efficient which means they have no or 

negligible bias and their variances are only marginally bigger than the 

MVBs even for small samples (Smith et al., 1973; Lee et al., 1980; Tan, 

1985 and Tiku et al., 1986). 

 

4. MML method is essentially self-censoring, since it assigns small weights 

to extremes. 

 

In this method, likelihood equations given in Equation (3.16) are written in terms 

of the order statistics since the complete sums are invariant to the ordering. Let 

(n))()( z...zz  21  be the order statistics for n),...,,(izi  2 1   . Then, the ordered 

n),...,,(izi  2 1    variates are obtained as follows: 
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in which     )x,y( jii  are concomitants of (i)z . 

 

The resulting likelihood equations are given by 
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Nonlinear terms in the likelihood equations given in (3.18) can be linearized by 

using the first two terms of Taylor series expansion of )(zg i1  and )(zg i2  around 

)E(zt (i)(i)   as follows: 

 

   n,…1,2,=i   zβα)(zg (i)ii(i) 111  ,                                           (3.19) 
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where 
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The exact values of (i)t  are given by Harter (1964). However, for 10n  , the 

approximated values of (i)t  are given by 
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Replacing nonlinear terms in likelihood equations by their linear approximations, 

the modified likelihood equations are obtained: 
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The solutions of these equations give the MML estimators of 
0 , 

)q,..,,j(,  2 1 j   and  : 
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As mentioned above, MML estimators are fully efficient, i.e., they are unbiased 

and their variances are equal to MVB (Bhattacharyya, 1985; Tiku et al., 1986 and 

Vaughan and Tiku, 2000). Since the modified maximum likelihood equations are 

asymptotically equivalent to the maximum likelihood equations, asymptotic 

variance-covariance matrix of MML estimators are given by the inverse of Fisher 

information matrix. Fisher information matrix is the negative expectation of the 

second derivatives of log-likelihood with respect to the parameters. Hence, for the 
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multiple linear regression model when the errors follow a Weibull distribution, it 

is obtained as follows: 
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To test the hypotheses given in Equation (3.8), *F  statistic based on MML 

estimators is given by 
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Under the null hypothesis, *F  is referred to the F-distribution with degrees of 

freedom q  and )qn( 1 . If the null hypothesis is rejected, then individual 

parameters are tested: 

 

   )q,..,,j(:H j  2 1    00     versus                                       (3.25) 

01 j:H   

 

For the hypotheses given above, the test statistic based on the MML estimators is 

given as follows: 
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where )ˆ(S j  is the standard error of j̂ . For 20n , *

jT  has a t-distribution with 

degrees of freedom )qn( 1 . However, for 20n , the null distribution of *

jT  

is N(0 ,1) and large values of *

jT  lead to the rejection of the null hypothesis (Islam 

et al., 2001).  

 

For the re-parameterized model given in Equation (3.12), MML estimators of 
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where 
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CHAPTER 4 

 

 

METHODOLOGY FOR GENE REGULATORY NETWORKS BY 

STOCHASTIC MULTIPLE LINEAR REGRESSION ANALYSIS UNDER 

WEIBULL DISTRIBUTION 

 

 

 

In the multiple linear regression model constructed to infer gene regulatory 

networks, explanatory variables represent the gene expression levels and hence 

they have a distribution since they are subject to the measurement errors. When 

the distribution of the real expression data given in the study of Gardner et al. 

(2003) is examined, it is seen that the expression levels denoted by the 

explanatory variables in the multiple linear regression model have also a Weibull 

distribution.  

 

There are numerous real-life situations in which the explanatory variables are 

stochastic. Vaughan and Tiku (2000) studied a simple stochastic model assuming 

that the explanatory variable has an extreme-value distribution while the error 

terms have a normal distribution. They obtained the MML estimators of model 

parameters based on both complete likelihood and conditional likelihood 

functions and showed that the estimators based on the conditional likelihood 

function are more efficient. Also, Sazak et al. (2006) considered a simple 

regression model when both the explanatory variable and errors come from a 

generalized logistic distribution. In addition, Oral (2006) dealt with a binary 

regression with a covariate having a generalized logistic distribution. 

Furthermore, Islam and Tiku (2010) studied the multiple linear regression model 

when the errors have a Student’s t and covariates have a generalized logistic 

distribution. Morever, Tiku and Akkaya (2010) worked on the quadratic 
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regression with stochastic variates assuming that the errors and standardized 

covariate have long-tailed symmetric distribution. 

 

Treating the explanatory variables in the multiple linear regression model as 

nonstochastic when, in fact, they are stochastic can yield biased and inefficient 

estimators (Islam and Tiku, 2010). 

 

In this study, the explanatory variables in the multiple linear regression model are 

considered as stochastic since they have a Weibull distribution. To overcome the 

problems mentioned in the preceding paragraph, it is proposed to use stochastic 

multiple linear regression analysis for the reconstruction of GRNs. 

 

As stated in Chapter 3, the variances of LS estimators of model parameters in 

multiple linear regression analysis are very sensitive to the location and scale of 

the explanatory variables and to design anomalies (outliers). To rectify this 

situation, the re-parameterized model given by (Akkaya and Tiku, 2008) is 

considered:  

 

i

q

j
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jij

ij

)x(
u




  n,..,i 1 , q,...,j 1               (4.1) 

 

In a multiple linear regression analysis, it is assumed that the explanatory 

variables are uncorrelated. However, it is known that there are regulatory 

relationships between some of them since they represent the gene expression 

levels.  Therefore, the relationships between the explanatory variables are taken 

into account and the partial correlation coefficients between the explanatory 

variables are estimated by implementing method of MML in the stochastic 

multiple linear regression model in this study. To be able to make efficiency and 

robustness comparisons of parameters, the LS estimators for the stochastic 

multiple linear regression model are also given. 
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The joint pdf of the random variables )X,...X,X( q21  can be written as follows: 

 

   )x,...,x|x(f)...x|x(f)x(f)x,...,x,x(f qqqq 111221121  ,              (4.2) 
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For a multivariate normal distribution, the marginal and conditional distributions 

in Equation (4.2) are all normal and have the following means and variances 

(Islam and Tiku, 2010): 
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   )jl(
lI.jl
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j

jl 11      
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
 . 

 

Here, j  and j  are the location and scale parameter in the distribution of jX , 

respectively, aI  represents the set of integers {1, 2, …, ,a,a 1 1  …, j-1} and 

lI.jl  is the partial correlation coefficient between jX  and lX . 

 

A multitude of non-normal distributions can be obtained by changing some or all 

distributions in Equation (4.2), specifically with the same means and variances. 

 

In the re-parameterized model given by Equation (4.1), it is assumed that 
ie  have 

a Weibull distribution with shape parameter p  and  ijw have a Weibull 

distribution with shape parameter jp  where 
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4.1 Least Squares Estimation for Stochastic Multiple Linear Regression 

 

Least squares estimators of parameters for the re-parameterized multiple linear 

regression model with stochastic covariates are obtained by minimizing 
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Since it is assumed that  wij comes from a Weibull distribution, the least squares 

estimators of 
j , j  and 

ljl.I̂  have to be corrected for bias. The bias corrected 

LS estimators are  
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Also error term in the model is assumed to have a Weibull distribution. Bias 

corrected LS estimators of q)j(1   0 j,   and   are given by 
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4.2 Modified Maximum Likelihood Estimation for Stochastic Multiple Linear 

Regression 

 

Since some of the explanatory variables are correlated in the reconstruction of 

gene regulatory networks by multiple linear regression model, the Fisher 

likelihood function should be written as in the following form: 

 

)x,...,x,x|x(L)...x|x(L)x(L)z(LL qq 121121                                        (4.7) 
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Likelihood equations are obtained as follows: 
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These equations have no explicit solutions since they include non-linear functions 

)(wg ij1 , )(wg ij2 , )(zh i1  and )(zh i2 . Therefore, the method of modified maximum 

likelihood is used to obtain the explicit solutions for the non-linear equations 

given in Equation (4.8). 

 

Likelihood equations are written in terms of the order statistics since the complete 

sums are invariant to the ordering. Let (n))()( z...zz  21  and 
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where ) x...,,x,(y [i]q[i][i]    1
are the concomitant observations associated with the  

)i(e . Similarly, the ordered 
ijw  variates are obtained as follows: 
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where ) x...,,(x [i]q[i]   1
are the concomitant observations associated with the  *
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Likelihood equations in terms of ordered variates are given by 
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The nonlinear terms in the likelihood equations are linearized by using the first 

two terms of Taylor series expansion of )(wg (i)j1 , )(wg (i)j2 , )(zh (i)1  and )(zh (i)2 : 
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For 10n , the approximated values of (i)t  are given by 
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Replacing nonlinear terms in the likelihood equations by their linear 

approximations, the modified likelihood equations are obtained: 
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The solutions of the above equations give the MML estimators of 
j , j  and 

ljl.I̂ : 
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The MML estimators of 0  and q)j(1   j  are  
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The MML estimator of   is  
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4.3 Hypothesis Testing for Stochastic Multiple Linear Regression 

 

To test the hypotheses given in Equation (3.8), F  and *F  statistics based on LS 

and MML estimators, respectively are given by 
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True distribution of F  and *F  are intractable at the present time but they have F 

distribution, approximately (Islam et al., 2010). Therefore, the null distributions of 

F  and *F  are referred to the F-distribution with degrees of freedom q  and 

)qn( 1 . Large values of F  and *F  lead to the rejection of the null 

hypothesis.  

 

In the hypothesis testing procedure for stochastic multiple linear regression 

analysis, the test statistics F  and *F  are obtained at two stages. At the fist stage, 

ijx  is treated as nonstochastic since its distribution complicates obtaining the test 

statistics. At the second stage, j  and j  are estimated by using the distribution 

of ijx  and the stochasticity of ijx  is taken into consideration by this way. 

 

4.4 Asymptotic Covariance Matrix for Stochastic Multiple Linear Regression 

 

As mentioned before, modified maximum likelihood equations are asymptotically 

equivalent to the maximum likelihood equations. Therefore, the variance-

covariance matrix of MML estimators can be obtained by taking the inverse of the 

Fisher information matrix. However it is very difficult to derive the elements of 

Fisher information matrix for 2q . Instead, sample information matrix Î  can be 

used. 

 

The elements of sample information are given by negative of the second 

derivative of log-likelihood computed at the MML estimates of the model 

parameters. 

 

Inverse of Î  gives the approximated values of variances and covariances of MML 

estimators. Since it takes too much space to present the elements of Î  here, just 

some elements of Î  are given for 21012221        
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,)ŵ(gp)ŵ(g)p(
ˆ)ˆ(

ˆ
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iii û)ẑ(hpû)ẑ(h)p(
ˆˆ

ˆˆ
Î
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ˆˆ

ˆ
Î
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CHAPTER 5 

 

 

SIMULATION STUDY AND APPLICATION 

 

 

 

An estimator is said to be a good estimator if it is unbiased, efficient and robust to 

the deviations from an asummed distribution and data anamolies. With the 

estimators having these properties, more reliable results can be obtained in the 

hypothesis testing. Therefore, a comprehensive simulation study is conducted to 

examine these properties of the LS and MML estimators for multiple linear 

regression model with both stochastic and nonstochastic covariates in this chapter. 

For multiple linear regression analysis with nonstochastic covariates, the error 

term is assumed to be Weibull. Similarly, for multiple linear regression analysis 

with stochastic covariates, it is assumed that the error term and explanatory 

variables come from a Weibull distribution. Also, power comparisons of the test 

statistics based on LS and MML estimators are presented for the proposed 

regression models to show that which one of the obtained F  and *F  statistics are 

more powerfull. All simulation results given in this study are based on  

n/100000   Monte Carlo runs. Lastly, applications of these two proposed models 

are given through the expression data presented in Table 3.1. 

 

5.1 Bias and Efficiency Comparisons 

 

To explore whether LS and MML estimators are unbiased or not, the means of 

these estimators are obtained and compared with the true values of the parameters. 

Since it is known that both LS and MML estimators are unbiased, the variances of 

these estimators are obtained and the relative efficiencies (REs) of LS estimators 

are computed to decide which one is better.  REs of LS estimator is obtained by 
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LSofVariance

MMLofVariance
)LS(RE

  

  
100 .                                         (5.1) 

 

Also, the mean squared error (MSE) is used as the performance characterization 

of the estimators. MSE of an estimator ̂  is given by 

 

   2))ˆ(()ˆ()ˆ(  BiasVarMSE  .                                                 (5.2) 

 

Monte Carlo averages, variances and MSEs of LS and MML estimators and REs 

of LS estimators are given in Table 5.1 for the multiple linear regression model 

when the explanatory variables are nonstochastic and errors have a Weibull 

distribution with the shape parameter 6 4 2 ,,p   and 8 and the number of 

explanatory variables q  is 3. Without loss of generality, it is assumed that 1 , 

00   and )q..,,,j(j   2 1  1  . Here, n is taken as 10 since the sample size in 

the real life applications is generally small. Table 5.1 indicates that both LS and 

MML estimators have a negligible bias and variances of MML estimators are 

smaller than those of LS estimators, that is, MML estimators are more efficient. 

Also, the MSEs of MML estimators are smaller than those of LS estimators. 

Therefore, it can be said that MML estimators have better properties in terms of 

unbiasedness and efficiency. 

 

The properties stated above are also examined for the re-parameterized multiple 

linear regression model with nonstochastic covariates. Obtained Monte Carlo 

results are represented in Table 5.2 for 10n  and 3q . When Table 5.1 and 

Table 5.2 are compared with each other, it is seen that re-parameterization reduces 

the variances of the estimators. 
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Table 5.1: Monte Carlo averages, variances, MSEs and REs for multiple linear 

regression with nonstochastic covariates; 10n , 3q , 1 , 00   and 

)q..,,,j(j   2 1  1  . 

 

   2p      4p    

 
0

  
1

  
2

  
3

         

           
Mean 

(LS) 

 

0.044 1.001 0.995 0.995 0.956 0.032 1.002 1.001 1.000 0.964 

Mean 

(MML) 

0.078 1.002 0.994 0.996 0.945 0.052 1.002 1.001 1.000 0.934 

n var 

(LS) 

4.117 4.521 4.529 4.665 0.839 1.723 1.337 1.383 1.379 0.742 

n var 

(MML) 

3.623 4.197 4.132 4.281 0.602 1.571 1.208 1.255 1.251 0.567 

MSE 

(LSE) 

4.119 4.521 4.529 4.665 0.841 1.724 1.337 1.383 1.379 0.743 

MSE 

(MML) 

3.629 4.197 4.132 4.281 0.605 1.574 1.208 1.255 1.251 0.571 

RE(LS) 88 93 91 92 72 91 90 91 91 76 

   6p      8p    

           
Mean 

(LS) 

 

0.038 1.000 0.997 1.003 0.959 0.036 1.001 1.001 0.999 0.961 

Mean 

(MML) 

0.039 0.999 0.998 1.002 0.941 0.032 1.001 1.001 1.000 0.947 

n var 

(LS) 

1.306 0.695 0.688 0.684 0.792 1.167 0.420 0.430 0.417 0.850 

n var 

(MML) 

1.223 0.631 0.631 0.613 0.697 1.106 0.385 0.388 0.383 0.768 

MSE 

(LSE) 

1.307 0.695 0.688 0.684 0.794 1.168 0.420 0.430 0.417 0.852 

MSE 

(MML) 

1.225 0.631 0.631 0.613 0.700 1.107 0.385 0.388 0.383 0.771 

RE(LS) 94 91 92 90 88 95 92 90 92 90 

 

 

 

 

 

 

 

0


1
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2
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3
 
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





 

72 
 

Table 5.2: Monte Carlo averages, variances, MSEs and REs for re-parameterized 

multiple linear regression with nonstochastic covariates; 10n , 3q , 1 , 

00   and )q..,,,j(j   2 1  1  . 

 

   2p      4p    

 
0

  
1

  
2

  
3

         

           
Mean 

(LS) 

 

0.042 1.001 0.997 1.002 0.951 0.039 0.999 1.001 1.000 0.956 

Mean 

(MML) 

0.172 1.000 0.998 1.002 0.895 0.061 0.999 1.001 1.000 0.926 

n var 

(LS) 

0.606 0.305 0.301 0.306 0.818 0.707 0.092 0.091 0.092 0.750 

n var 

(MML) 

0.426 0.285 0.281 0.287 0.688 0.667 0.083 0.082 0.083 0.694 

MSE 

(LSE) 

0.608 0.305 0.301 0.306 0.821 0.709 0.092 0.091 0.092 0.752 

MSE 

(MML) 

0.456 0.285 0.281 0.287 0.699 0.671 0.083 0.082 0.083 0.700 

RE(LS) 70 93 93 94 84 94 90 90 90 93 

   6p      8p    

           
Mean 

(LS) 

 

0.043 1.000 1.000 0.999 0.953 0.039 1.000 1.000 1.001 0.958 

Mean 

(MML) 

0.044 1.000 1.000 0.999 0.935 0.036 1.000 1.000 1.001 0.945 

n var 

(LS) 

0.782 0.044 0.044 0.045 0.802 0.870 0.028 0.029 0.028 0.878 

n var 

(MML) 

0.764 0.038 0.038 0.039 0.755 0.833 0.022 0.022 0.022 0.808 

MSE 

(LSE) 

0.784 0.044 0.044 0.045 0.805 0.871 0.028 0.029 0.028 0.879 

MSE 

(MML) 

0.766 0.038 0.038 0.039 0.759 0.834 0.022 0.022 0.022 0.811 

RE(LS) 98 87 87 87 94 96 77 79 78 92 

 

Given in Table 5.3 are the Monte Carlo averages, variances and MSEs of LS and 

MML estimators and REs of LS estimators for stochastic multiple linear 

regression analysis for 10n  and 3q . It is seen that both LS and MML 

estimators have negligible bias and MML estimators are more efficient than LS 

estimators since they have smaller variances. Also, MML estimators have smaller 

MSEs.  

0


1


2


3
 






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Table 5.3 Monte Carlo averages, variances, MSEs and REs for stochastic  

multiple linear regression; 10n , 3q . 

 

  Mean      Variancen  MSE   

Parameter

 
ValueTrue  

 

LS  MML  LS  MML  LS  MML
 

)(LSRE

 
                                                                    4p , 2

1
p , 4

2
p , 6

3
p    

1
  0 0.025 0.029 0.409 0.401 0.410 0.402 98 

2
  0 0.017 0.018 0.497 0.481 0.497 0.481 97 

3
  0 0.044 0.041 0.658 0.638 0.660 0.640 97 

1
  1 0.972 0.969 0.583 0.555 0.584 0.556 95 

2
  1 0.930 0.929 0.312 0.303 0.317 0.308 97 

3
  1 0.849 0.852 0.206 0.202 0.229 0.224 98 

21
  0.5 0.511 0.521 1.183 1.169 1.183 1.169 99 

231.
  0.5 0.571 0.568 0.292 0.280 0.297 0.285 96 

132.
  0.5 0.434 0.434 0.362 0.358 0.366 0.362 99 

0
  0 0.126 0.118 6.981 6.139 6.997 6.153 88 

1
  1 0.971 0.968 5.162 5.107 5.163 5.108 99 

2
  1 0.935 0.928 3.621 3.554 3.625 3.559 98 

3
  1 0.844 0.857 8.462 8.369 8.486 8.389 99 

  1 0.959 0.962 0.742 0.720 0.744 0.721 97 

                                                            8p , 2
1
p , 4

2
p , 6

3
p    

1
  0 0.024 0.030 0.421 0.390 0.422 0.391 93 

2
  0 0.019 0.018 0.496 0.477 0.496 0.477 96 

3
  0 0.040 0.041 0.671 0.649 0.673 0.651 97 

1
  1 0.974 0.965 0.580 0.554 0.581 0.555 96 

2
  1 0.859 0.879 0.310 0.280 0.330 0.295 90 

3
  1 0.953 0.949 0.211 0.200 0.213 0.203 95 

21
  0.5 0.461 0.478 1.163 1.147 1.165 1.147 99 

231.
  0.5 0.530 0.525 0.295 0.271 0.296 0.272 92 

132.
  0.5 0.432 0.437 0.359 0.326 0.364 0.330 91 

0
  0 0.128 0.134 4.445 4.412 4.461 4.430 99 

1
  1 0.979 0.968 1.901 1.860 1.901 1.861 98 

2
  1 0.930 0.926 1.276 1.218 1.281 1.223 95 

3
  1 0.898 0.897 2.591 2.415 2.601 2.426 93 

  1 0.954 0.957 0.858 0.827 0.860 0.829 96 
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MML estimators are expected to give better results for larger sample sizes. 

Therefore, simulation results of Table 5.1 and Table 5.3 are also obtained for 

30n  and 50n  and represented by Table A.1 and Table A.2, respectively in 

Appendix A. 

 

5.2 Robustness Comparisons of Estimators 

 

In statistical analyses, it is expected that the obtained estimators have an optimal 

properties with respect to the assumed distributions. There are several procedures 

such as graph-plotting methods and goodness of fit tests to get information about 

the underlying distributions, however, these procedures might be unsuccessful in 

determining the shape parameters. Misspecified parameters, contaminations and 

data anomalies (outliers, inliers, etc.) cause the deviations from an assumed 

distribution and this situation brings the issue of robustness in focus.  

 

An estimator is called robust if it is fully efficient (or nearly so) for an assumed 

distribution but maintains high efficiency for plausible alternatives. To examine 

the robustness properties of LS and MML estimators in multiple linear regression 

model with nonstochastic covariates, here it is assumed that the errors come from 

a Weibull distribution with parameter 8p  and the random samples are 

generated from the following plausible models; 

 

i) Misspecification of the distribution 

(1) ),p(Weibull 7  

(2) ),p(Weibull 9  

(3) ).,(Beta 52 4  

ii) Contamination model 

(4) ),p(Weibull.),p(Weibull.  7 1008 900   

(5) 2.5) Beta(4, 1008 900 .),p(Weibull.    
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Table 5.4 gives the Monte Carlo averages and variances of LS and MML 

estimators and REs of LS estimators for the plausible alternatives given above 

when 30n . It indicates that the MML estimators are remarkably efficient and 

robust than the LS estimators and the efficiencies of LS estimators decreases as 

the sample size increases. 

 

 

Table 5.4: Robustness comparisons for multiple linear regression model with 

nonstochastic covariates, 30n , 3q , 1 , 00   and  

)q..,,,j(j   2 1  1  . 

 

   1 Model

 
    2 Model

 
  

 
0

  
1

  
2

  
3

    
0

  
1

  
2

  
3

    

           
Mean 

(LS) 

 

-0.093 0.996 0.998 1.002 0.990 0.064 1.002 0.996 1.000 0.989 

Mean 

(MML) 

-0.097 0.996 0.998 1.002 0.989 0.066 1.002 0.996 1.000 0.990 

n var 

(LS) 

  0.792 0.255 0.268 0.258 0.599 0.868 0.270 0.263 0.264 0.653 

n var 

(MML) 

  0.746 0.234 0.241 0.233 0.557 0.770 0.235 0.229 0.230 0.565 

RE(LS) 94 92 90 90 93 89 87 87 87 87 

   3 Model

 
    4 Model

 
  

 
0

  
1

  
2

  
3

    
0

  
1

  
2

  
3

    

           
Mean 

(LS) 

 

-0.084 1.000 1.000 1.000 0.992 0.001 1.001 0.999 1.003 0.985 

Mean 

(MML) 

-0.086 1.001 1.000 1.001 0.997 0.003 1.000 0.999 1.001 0.978 

n var 

(LS) 

  0.668 0.268 0.267 0.274 0.461 0.812 0.276 0.264 0.266 0.603 

n var 

(MML) 

  0.656 0.244 0.238 0.251 0.447 0.744 0.244 0.238 0.239 0.544 

RE(LS) 98 91 89 92 97 92 88 90 90 90 

 

 

 

 






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Table 5.4 (Continued) 

 

   5 Model    

 
0

  
1

  
2

  
3

    

      
Mean 

(LS) 

 

-0.094 1.001 0.997 1.004 1.118 

Mean 

(MML) 

-0.071 1.001 0.998 1.003 1.106 

n var 

(LS) 

 1.275 0.397 0.396 0.405 0.963 

n var 

(MML) 

 0.975 0.298 0.296 0.304 0.707 

RE(LS) 76 75 75 75 73 

 

 

To examine the robustness properties of LS and MML estimators in stochastic 

multiple linear regression model, it is assumed that ie  comes from a Weibull 

distribution with shape parameter 8p . It is also assumed that, for 3q , 1iw , 

2iw  and 3iw  come from a Weibull distribution with parameters 21 p , 42 p  

and 63 p , respectively. Under these assumptions, the random samples are 

generated from the following plausible models; 

 

i) Misspecification of the distribution 

      (1) ),p(Weibull 7  

      (2) ).,(Beta 52 4  

ii) Contamination model 

          (3) ),p(Weibull.),p(Weibull.  7 1008 900   

          (4) ).,(Beta.),p(Weibull. 52 4 1008 900    

 

Given in Table 5.5 are the Monte Carlo averages and variances of LS and MML 

estimators and REs of LS estimators under the given plausible alternatives for 


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stochastic multiple linear regression model when 30n . It is seen that MML 

estimators are also remarkably efficient and robust than the LS estimators when 

the regression model has stochastic covariates. Also, the table indicates that the 

efficiencies of LS estimators decreases as the sample size increases. 

 

For 50n , simulations of Table 5.4 and Table 5.5 are given in Table A.3 and 

Table A.4, respectively in Appendix A. 

 

 

 

 



 

 
 

7
8

 

Table 5.5: Robustness comparisons for stochastic multiple linear regression model; 30n , 3q . 

 

 

   Model 1                       Model 2 

 Mean      Variancen   Mean   Variancen  

Parameter  ValueTrue   LS  MML  LS  MML  )LS(RE  LS  MML  LS  MML  )LS(RE  

1
  0  0.010  0.009 0.374 0.347 93  0.011  0.005 0.398 0.378 95 

2
  0  0.009  0.008 0.493 0.454 92  0.014  0.006 0.498 0.468 94 

3
  0  0.009  0.009 0.580 0.545 94  0.014  0.006 0.568 0.545 96 

1
  1  0.989  0.989 0.551 0.491 89  0.992  0.993 0.570 0.502 88 

2
  1  0.970  0.971 0.547 0.487 89  0.937  0.959 0.576 0.501 87 

3
  1  0.945  0.944 0.568 0.500 88  0.944  0.953 0.574 0.511 89 

21
  0.5  0.548  0.549 0.255 0.237 93  0.520  0.510 0.253 0.233 92 

231.
  0.5  0.524  0.524 0.283 0.255 90  0.527  0.522 0.269 0.244 91 

132.
  0.5  0.517  0.537 0.422 0.397 94  0.531  0.530 0.437 0.411 94 

0
  0 -0.090 -0.076 4.643 4.272 92 -0.088  -0.111 4.182 3.890 93 

1
  1  0.986  0.988 1.553 1.491 96  0.988  0.995 1.438 1.279 89 

2
  1  0.901  0.900 1.470 1.381 94  0.979  0.982 1.234 1.074 87 

3
  1  0.947  0.949 1.668 1.551 93  0.949  0.952 1.398 1.231 88 

  1 0.990  0.992 1.023 0.910 89  0.993  0.994 0.448 0.439 98 
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Table 5.5 (Continued) 

 

 

   Model 3                       Model 4 

 Mean      Variancen   Mean   Variancen  

Parameter  ValueTrue   LS  MML  LS  MML  )LS(RE  LS  MML  LS  MML  )LS(RE  

1
  0 0.011 0.004 0.412 0.383 93  0.009  0.005 0.397 0.373 94 

2
  0 0.009 0.007 0.508 0.458 90  0.010  0.008 0.497 0.462 93 

3
  0 0.014 0.006 0.549 0.505 92  0.014  0.008 0.585 0.538 92 

1
  1 0.989 0.996 0.583 0.519 89  0.990  0.993 0.562 0.506 90 

2
  1 0.970 0.999 0.589 0.512 87  0.959  0.968 0.541 0.493 91 

3
  1 0.942 0.942 0.566 0.498 88  0.943  0.951 0.535 0.476 89 

21
  0.5 0.525 0.524 0.262 0.234 89  0.527  0.525 0.266 0.250 94 

231.
  0.5 0.532 0.530 0.269 0.243 90  0.522  0.519 0.271 0.252 93 

132.
  0.5 0.526 0.525 0.424 0.373 88  0.523  0.521 0.431 0.410 95 

0
  0 0.033 0.010 4.544 4.226 93 -0.084  -0.082 5.282 4.806 91 

1
  1 0.991 0.999 1.406 1.265 90  0.988  0.998 1.759 1.548 88 

2
  1 0.970 0.975 1.284 1.181 92  0.960  0.973 1.678 1.460 87 

3
  1 0.939 0.941 1.822 1.658 91  0.958  0.962 1.901 1.616 85 

  1 0.991 0.995 0.642 0.597 93  1.120  1.102 0.986 0.868 88 
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5.3 Power Comparisons of Test Statistics 

 

As mentioned in Chapter 3 and 4, the distributions of the test statistics F  and *F  

under the null hypothesis are referred to central F-distribution, )qn,q(F 1 . 

The power function of F  and *F  tests are given by  

 

 )H|)qn,q(FF(P 11 1     and   )H|)qn,q(FF(P *

11 1  ,    (5.3) 

 

respectively, where   denotes the Type I error. Type I error is the probability of 

the rejection of null hypothesis when it is true. In hypothesis testing procedure, it 

is desired that the power of the test is low under the null hypothesis and high 

under the alternative hypothesis.  

 

Since the MML estimators of the model parameters have smaller variances, the 

test statistic *F  is expected to be more powerful than the test statistic F .        

 

Table 5.6 gives the Monte Carlo power values of F  and *F  of the true model 

and plausible alternatives given in Section 5.2 for the multiple linear regression 

analysis with nonstochastic covariates when 2q . In the true model, error terms 

is assumed to be Weibull with the shape parameter 8p . For 01  , the power 

reduces to Type I error which is assumed as 0.05 in this study. This table indicates 

that Type I errors based on MML estimators are close to preassumed 050.

while the test statistic based on LS estimators does not provide the preassumed 

Type I error.  
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Table 5.6: Power of F  and *F tests for multiple linear regression model with nonstochastic covariates; 

true model ),(Wei 8 , 050. , 10n , 2q , 00  , 02   and 1  . 

 

Model True (1) (2) (3) (4) (5) 

1
  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

0.0 0.004 0.052 0.004 0.059 0.005 0.058 0.002 0.059 0.003 0.054 0.003 0.044 

0.2 0.020 0.154 0.013 0.145 0.021 0.149 0.011 0.146 0.017 0.154 0.008 0.097 

0.4 0.063 0.443 0.054 0.440 0.070 0.445 0.038 0.429 0.062 0.443 0.025 0.312 

0.6 0.156 0.764 0.124 0.750 0.170 0.758 0.104 0.749 0.152 0.762 0.066 0.617 

0.8 0.293 0.923 0.253 0.919 0.322 0.928 0.218 0.927 0.295 0.921 0.136 0.843 

1.0 0.452 0.980 0.410 0.977 0.475 0.977 0.366 0.979 0.446 0.976 0.243 0.943 

1.2 0.606 0.994 0.567 0.992 0.631 0.992 0.547 0.994 0.594 0.992 0.361 0.979 

1.4 0.733 0.998 0.708 0.998 0.756 0.998 0.691 0.998 0.731 0.998 0.488 0.994 
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To provide a precise comparison of powers of F  and *F  statistics, the 5% points 

of their distributions are determined exactly by simulation. They are given in 

Table 5.7. 

 

 

Table 5.7: The exact 5% points of the distributions of F  and *F for multiple 

linear regression model with nonstochastic covariates. 

 

 True Model Model 1 Model 2 Model 3 Model 4 Model 5 

F  1.60 1.45 1.59 1.35 1.56 1.26 

*
F  4.83 4.83 4.85 4.89 4.90 4.39 

 

 

Given in Table 5.8 are the Monte Carlo power values of F  and *F  obtained by 

using the simulated critical values. This table indicates that Type I errors based on 

both LS and MML estimators provide the preassumed 05.0 . However, power 

values are higher and converge to 1.0 faster when the MML estimators are used in 

testing procedure. For larger sample sizes, it is expected that the rate of 

convergence will be higher. Figure 5.1 gives the graphs of the power curves for 

various values of parameter 
1 . 
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Table 5.8: Power of F  and *F  obtained by using simulated critical values for multiple linear regression model with 

nonstochastic covariates; true model ),(Wei 8 , 10n , 2q , 00  , 02   and 1 . 

 

Model True (1) (2) (3) (4) (5) 

1
  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.2 0.143 0.169 0.135 0.166 0.142 0.193 0.141 0.174 0.133 0.180 0.114 0.144 

0.4 0.396 0.435 0.397 0.435 0.418 0.434 0.398 0.421 0.403 0.436 0.313 0.349 

0.6 0.651 0.753 0.653 0.748 0.672 0.757 0.670 0.733 0.651 0.750 0.551 0.645 

0.8 0.831 0.922 0.839 0.913 0.845 0.921 0.865 0.917 0.838 0.918 0.735 0.862 

1.0 0.930 0.976 0.942 0.979 0.937 0.978 0.953 0.977 0.935 0.977 0.870 0.952 

1.2 0.977 0.993 0.979 0.991 0.975 0.992 0.988 0.993 0.975 0.994 0.938 0.982 

1.4 0.991 0.998 0.993 0.997 0.992 0.997 0.997 0.998 0.993 0.999 0.975 0.994 
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Figure 5.1: Power graphs of the tests for multiple linear regression model with  

                   nonstochastic covariates; 10n , 00  , 02   and 1 .   
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    Figure 5.1 (Continued) 
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Given in Table 5.9 are the Monte Carlo power values of F  and *F  of the true 

model and plausible alternatives given in Section 5.2 for the stochastic multiple 

linear regression analysis for 2q . In the true model, error terms is assumed to 

be Weibull with the shape parameter 8p . For 01  , the power reduces to 

Type I error which is assumed as 0.05 in this study. This table indicates that Type 

I errors based on MML estimators are close to 050. while the test statistic 

based on LS estimators does not provide the preassumed Type I error.  
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Table 5.9: Power of F  and *F tests for multiple linear regression model with stochastic covariates;  

                true model ),(Wei 8 ,  2q , 21 p , 42 p , 10n ,  00  , 02   and 1  . 

 

Model True (1) (2) (3) (4) 

1
  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

0.0 0.012 0.052 0.007 0.052 0.007 0.053 0.011 0.051 0.005 0.040 

0.2 0.091 0.164 0.051 0.312 0.042 0.309 0.062 0.318 0.028 0.234 

0.4 0.227 0.767 0.193 0.765 0.165 0.758 0.222 0.774 0.110 0.668 

0.6 0.461 0.941 0.432 0.943 0.400 0.939 0.465 0.943 0.275 0.898 

0.8 0.691 0.988 0.661 0.983 0.654 0.986 0.683 0.985 0.458 0.967 

1.0 0.851 0.995 0.826 0.997 0.827 0.997 0.839 0.996 0.649 0.991 

1.2 0.922 0.999 0.917 0.999 0.924 0.999 0.924 0.999 0.783 0.997 

1.4 0.966 1.000 0.964 1.000 0.968 1.000 0.968 1.000 0.881 0.999 
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To provide a precise comparison of powers of F  and *F  statistics, the 5% points 

of their distributions are determined exactly by simulation. They are given in 

Table 5.10. 

 

 

Table 5.10: The exact 5% points of the distributions of F  and *F  for stochastic 

multiple linear regression model. 

 

 True Model Model 1 Model 2 Model 3 Model 4 

F  2.40 2.10 1.90 2.40 1.90 

*
F  4.75 4.75 4.72 4.72 4.30 

 

 

Monte Carlo power values of F  and *F  obtained by using the simulated critical 

values are given in Table 5.11. It is seen that Type I errors based on both LS and 

MML estimators provide the preassumed 05.0 . However, power values are 

higher and converge to 1.0 faster when the MML estimators are used in testing 

procedure. For larger sample sizes, it is expected that the rate of convergence will 

be higher. Figure 5.2 gives the graphs of the power curves for various values of 

parameter 
1 . 
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Table 5.11: Power of F  and *F tests obtained by using simulated critical values for multiple linear regression model with 

stochastic covariates;  true model ),(Wei 8 , 2q , 21 p , 42 p , 10n ,  00  , 02   and 1 .  

 

Model True (1) (2) (3) (4) 

1
  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

F  

 

*F  

 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.2 0.222 0.325 0.228 0.317 0.242 0.302 0.220 0.320 0.181 0.259 

0.4 0.516 0.765 0.546 0.771 0.580 0.759 0.515 0.769 0.436 0.699 

0.6 0.779 0.944 0.805 0.940 0.834 0.941 0.785 0.944 0.697 0.921 

0.8 0.918 0.987 0.933 0.982 0.951 0.988 0.915 0.987 0.865 0.976 

1.0 0.969 0.996 0.979 0.996 0.987 0.997 0.971 0.997 0.939 0.994 

1.2 0.991 0.999 0.992 1.000 0.995 0.999 0.990 0.999 0.975 0.998 

1.4 0.998 1.000 0.998 1.000 0.999 1.000 0.996 0.999 0.992 0.999 
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Figure 5.2: Power graphs of the tests for stochastic multiple linear regression 

model; 10n , 00  , 02   and 1 . 
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    Figure 5.2 (Continued) 
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5.4 Application 

 

In this study, the efficiency properties of LS and MML estimators for proposed 

models are also compared by using the expression and perturbation data given in 

Table 3.1 and Table 3.2, respectively.  

 

In the application part of this study, firstly a multiple linear regression model with 

nonstochastic covariates is constructed for each of the genes in the network using 

LS estimation method to estimate the regulatory influences of genes on one 

another. Since the number of covariates (number of genes in the network) is equal 

to the number of experiments (number of observations), parameter estimates 

cannot be obtained. Therefore, it is assumed that the network is not fully 

connected, that is, some of the model parameters are zero. Also, the constructed 

model must be dynamically stable, i.e., gene expression levels must settle to 

steady state over time. Gardner et al. (2003) states that the multiple linear 

regression model becomes dynamically stable when the maximum number of 

covariates in the model is equal to 5. Hence, it is assumed that 3 of the parameters 

are equal to zero in each regression model. For each gene, it is built 9 chosen 5 

number of regression models and the one with the smallest SSE is selected as the 

best model. When the Q-Q plots of residuals are examined to determine their 

distribution, the distribution of residuals is obtained as Weibull for each model. 

For conciseness, just one of the obtained Q-Q plot of residuals for Weibull 

distribution is given by Figure 5.3.   
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Figure 5.3: Q-Q Plot of residuals for Weibull distribution with 8p . 

 

 

Then, the method of MML is used to estimate the model parameters assuming that 

the error term in the model comes from a Weibull distribution. In Table 5.12, the 

first and second rows shows the influences of genes given in the columns on each 

gene given in the rows estimated by LS and MML methods, respectively. Given 

in the third and fourth rows are the variances of the LS and MML estimators.  

Also, the table gives the p-values of F  and *F  statistics denoted by p  and *p , 

respectively to test significance of the constructed models. In some models, it is 

seen that F  and *F  test statistics are not consistent in testing the equality of 

model parameters. For example, in the model constructed for the gene lexA, *F  

statistic rejects the null hypothesis while the F  statistic fails to reject the null 

hypothesis. Since the MML estimators have smaller variances, it can be 

concluded that the results of *F  statistic are more reliable. 
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Table 5.12: Constructed multiple linear regression model with nonstochastic covariates for every gene in the SOS subnetwork. 

 

Genes 

 

 Estimation 

Method 
recA 

  

lexA 
 

ssb 
 

recF 
 

dinI 
 

umuDC 
 

rpoD 
 

rpoH 
 

rpoS 
 

        p  

 

       *
p  

 

recA  LS -0.666 -0.147 -0.010  0 0.111 0 -0.011 0 0 0.88 0.08 

 
MML -0.677 -0.219 -0.014 0 0.109 0 -0.020 0 0 

  

 
Var(LS) 0.371  1.373  0.003 - 0.070 -  0.029 - - 

  
  Var(MML) 0.008  0.050  0.000 - 0.002 -  0.001  -  - 

  
lexA LS 0.546 -3.565 -0.060 0 0.138 -0.281 0 0 0 0.15 0.02

†
 

 
MML 0.549 -3.537 -0.059 0 0.138 -0.275 0 0 0 

  

 
Var(LS) 0.116 0.471  0.001 - 0.025  0.023 - - - 

  
  Var(MML) 0.010 0.104  0.000 - 0.002  0.004  -  -  - 

  
ssb LS 0.090 -0.285 -1.277 0 0.056 0 0.031 0 0 0.00

†
 0.00

†
 

 
MML 0.094 -0.286 -1.277 0 0.057 0 0.033 0 0 

  

 
Var(LS) 0.083  0.307  0.001 - 0.016 - 0.007 - - 

  
  Var(MML) 0.007  0.044  0.000 - 0.002 - 0.001  -  - 

  
recF LS 0.127   0.897 0 -1.773 0 0 0.203 0 1.120 0.99 0.93 

 
MML 0.121   1.008 0 -1.999 0 0 0.229 0 1.270 

  

 
Var(LS) 3.613 11.838 - 21.246 - - 0.289 - 6.309 

  
  Var(MML) 0.888   3.701  -   5.272  -  - 0.091  - 2.202 

  
dinI LS 0.222 0 0 0 -2.202 0.123 -0.091 0.008 0 0.10 0.01

†
 

 
MML 0.248 0 0 0 -2.197 0.132 -0.082 0.008 0 

  

 
Var(LS) 0.955 - - - 0.207 0.200 0.086 0.001 - 

  
  Var(MML) 0.089 - - - 0.020 0.020 0.009 0.000  - 
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Table 5.12 (Continued) 

 

Genes 

 

 Estimation 

Method 
recA 

  

lexA 
 

ssb 
 

recF 
 

dinI 
 

umuDC 
 

rpoD 
 

rpoH 
 

rpoS 
 

     p  

 

    *
p  

 

umuDC LS 0.247 -0.534 -0.017 0 0.210 -1.179 0 0 0 0.13 0.01
†
 

 
MML 0.258 -0.498 -0.015 0 0.209 -1.171 0 0 0 

  

 
Var(LS) 0.241  0.974  0.002 - 0.051  0.048 - - - 

  
  Var(MML) 0.021  0.217  0.000 - 0.004  0.008  -  -  -     

rpoD LS -0.303 0 -0.025 0 0.009 0 -1.551 0.019 0 0.04
†
 0.00

†
 

 
MML -0.310 0 -0.025 0 0.008 0 -1.552 0.019 0 

  

 
Var(LS)  0.525 - 0.004 - 0.105 -   0.046 0.001 - 

  
  Var(MML)  0.053 - 0.000 - 0.011 -   0.005 0.000  -     

rpoH LS 0.116 0 0.005 0 -0.011 -0.024 0 -0.482 0 0.00
†
 0.00

†
 

 
MML 0.112 0 0.004 0 -0.011 -0.025 0 -0.483 0 

  

 
Var(LS) 0.046 - 0.000 - 0.010  0.010 -  0.000 - 

  
  Var(MML) 0.004 - 0.000 - 0.001  0.001 -  0.000  -     

rpoS LS 0.575 0 0 -2.112 0.789 0 0.007 0 -4.644 0.81 0.16 

 
MML 0.554 0 0 -2.146 0.786 0 0.002 0 -4.662 

  

 
Var(LS) 3.611 - - 22.959 0.800 - 0.307 -  7.336 

  
  Var(MML) 0.902  -  -   5.343 0.188  - 0.093  -  2.168     

 

          †Indicates statistically significant fit for the row.
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As mentioned in Chapter 3, if the null hypothesis is rejected, then it is necessary 

to test significance of individual parameters. For example, in the model 

constructed for the gene ssb, both  F  and *F  statistics reject the null hypothesis. 

To determine which genes have a significant effect on this gene, individual t-tests 

are conducted. The p-values of jT   and *

jT statistics obtained by obtained using 

LS and MML estimator, respectively are given in the last two rows of Table 5.13. 

From this table, it is concluded that the effects of the genes dinI and rpoD on the 

gene ssb are significant when the LS estimators are used in the testing procedure. 

However, when the MML estimators are used in the testing procedure, it is seen 

that all genes have a significant effect on the gene ssb. 

 

 

Table 5.13: Individual t-tests of model constructed for the gene ssb. 

 

Genes 

 

 Estimation 

Method 
recA 

  

lexA 
 

ssb 
 

recF 
 

dinI 
 

umuDC 
 

rpoD 
 

rpoH 
 

rpoS 
 

ssb LS 0.090 -0.285 -1.277 0 0.056 0 0.031 0 0 

 
MML 0.094 -0.286 -1.277 0 0.057 0 0.033 0 0 

 
Var(LS) 0.083  0.307  0.001 - 0.016 - 0.007 - - 

  Var(MML) 0.007  0.044  0.000 - 0.002 - 0.001  -  - 

 p  0.36 0.42 0.00
†
 - 0.04

†
 - 0.02

†
 - - 

 *
p  

0.00
†
 0.00

†
 0.00

†
 - 0.00

†
 - 0.00

†
 - - 

 

†Indicates statistically significant coefficient. 
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Since the explanatory variables in the multiple linear regression model represent 

the gene expression changes and they are subject to the measurement errors, the 

explanatory variables are treated as stochastic in the second part of the application 

and the stochastic multiple linear regression analysis is applied to estimate the 

regulatory influences of genes on one another. Therefore, firstly the Q-Q plots of 

gene expression changes are examined to determine their distributions. Obtained 

Q-Q plots show that the gene expression changes have also a Weibull distribution.  

For conciseness, again one of the obtained Q-Q plot of gene expression changes 

for Weibull distribution is given by Figure 5.4.   

 

 

 

 

Figure 5.4: Q-Q Plot of gene expression for Weibull distribution with 2.2p . 
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Then, the method of LS and MML are used to estimate the model parameters 

assuming that the error term and explanatory variables in the model comes from a 

Weibull distribution. In this part, stochastic multiple linear regression model for 

the gene lexA is constructed. This gene is selected since the F  and *F  statistics 

give inconsistent results for the significance of model in the multiple linear 

regression analysis with nonstochastic covariates. In Table 5.14, the first and 

second rows show the influences of genes in the network on the gene lexA 

estimated by LS and MML methods, respectively. Given in the third and fourth 

rows are the bootstrap variances of the LS and MML estimators. Table indicates 

that the MML estimators have smaller variances and hence they are more precise. 

Furthermore, when the results given Table 5.12 and 5.14 are compared, it is seen 

that LS and MML estimates obtained for stochastic multiple linear regression 

model are different from those obtained for multiple linear regression model with 

nonstochastic covariates. Also, p-values of F  and *F  statistics obtained to test 

the significance of the constructed models are given in the last two columns of the 

tables. Null hypothesis is rejected by the test statistic *F  in both of the stochastic 

and nonstochastic regression analyses. However, when the results of F  statistic 

given in Table 5.12 and 5.14 are compared, it is seen that F statistic rejects the 

null hypothesis in stochastic regression analysis while it fails to reject the null 

hypothesis in nonstochastic regression analysis. 
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Table 5.14: Constructed multiple linear regression model with stochastic covariates for gene lexA in the SOS subnetwork. 

 

Genes 

 

 Estimation 

Method 
recA 

  

lexA 
 

ssb 
 

recF 
 

dinI 
 

umuDC 
 

rpoD 
 

rpoH 
 

rpoS 
 

     p  

 

*
p  

 

lexA LS 0.298 -0.941 -0.379 0 0.195 -0.452 0 0 0   0.03
†
    0.00

†
 

 
MML 0.345 -1.066 -0.353 0 0.209 -0.531 0 0 0   

 
Var(LS) 0.210  0.175  0.173 - 0.141  0.154 - - - 

  
  Var(MML) 0.197  0.165  0.156  - 0.134  0.901  -  -  - 

  
 

            †Indicates statistically significant fit for the row. 
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CHAPTER 6 

 

 

SUMMARY AND CONCLUSIONS 

 

 

 

In this thesis, a biological background of cells, genes, DNA and RNA molecules 

is given in the framework of gene expression and gene regulation. Then, 

microarray technology used to measure gene expression levels is explained and 

issues about transformation and normalization of microarray data are explored to 

describe the preparation of data for the statistical analysis.  

 

The most widely used methods such as Boolean networks, Gaussion models, 

Bayesian networks and Ordinary differential equations to reconstruct GRNs are 

presented. Especially, NIR algorithm which is a first order differential equation 

model is examined in detail since it is the motivation of this study. 

 

The distribution of gene expression data following an external perturbation 

experiment is explored and determined as a distribution from Weibull family by 

examining their Q-Q plots and by matching (approximately) the sample skewness 

and kurtosis with the corresponding theoretical values of the distribution. 

Therefore, a theoretical background for Weibull distribution is given briefly.  

 

To determine the regulatory relationships between genes in the network, a 

multiple linear regression analysis applied to gene expression and perturbation 

data and a theoretical explanation of the multiple linear regression model is 

summarized.  
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It is shown that the error term in the multiple linear regression model has also a 

Weibull distribution. Under the assumption of Weibull distributed error term, the 

method of LS and MML are implemented to estimate the model parameters. An 

extensive simulation study is carried out to examine the bias and efficiency 

properties of obtained LS and MML estimators. In addition, robustness properties 

of LS and MML estimators are explored based on the misspecified and 

contamination models as a plausible alternative for Weibull distribution.  

 

For the regression model with nonstochastic covariates, F  and *F statistics are 

obtained to test the equality of model parameters based on LS and MML 

estimators, respectively. Furthermore, power values of these tests are compared 

under true distribution and some plausible distributions. 

 

Since the explanatory variables represents the expression levels of genes in the 

network and it is shown that they come from a Weibull distribution, these 

variables are considered as stochastic in this study. Hence, stochastic multiple 

linear regression model is also used for inferring GRNs and model parameters are 

estimated by using method of LS and MML. Since the variances of LS estimators 

of model parameters are very sensitive to the location and scale parameters of the 

explanatory variables in the regression analysis, it is proposed to use re-

parameterized model to rectify this situation. 

 

Bias, efficiency and robustness comparisons of LS and MML estimators are also 

made for the stochastic multiple linear regression model assuming both 

explanatory variables and errors come from a Weibull distribution. In addition, 

test statistics for the significance of the constructed models are obtained based on 

LS and MML estimators and power values of them are compared under true 

distribution and some plausible distributions. 
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A real-life gene expression data are analyzed to illustrate the proposed multiple 

linear regression models by implementing LS and MML estimation methods.   

 

On the basis of this research, the following conclusions can be stated: 

 

 MML estimators derived for the proposed models are computationally and 

theoretically straightforward since they are the explicit solutions of the 

likelihood functions.  

 

 For the multiple linear regression model with nonstochastic covariates and 

Weibull distributed error term, the MML estimators 0̂ , γ̂  and ̂  are 

unbiased (or have negligible bias) and remarkably more efficient than the 

corresponding LS estimators. Also, relative efficiencies of LS estimators 

decrease as the sample size increases, that is, the variances of MML 

estimators become smaller for the larger sample sizes. 

 

 For the stochastic multiple linear regression model with Weibull 

distributed covariates and Weibull distributed error term, it is indicated 

that MML estimators jj
ˆ,ˆ   , 

jI.j̂ 0̂ , γ̂  and ̂  are unbiased estimators 

and have better efficiency properties than the LS estimators. 

 

 When the plausible alternatives are considered for Weibull distribution, it 

is shown that MML estimators obtained for the proposed models are also 

robust to deviations from the assumed distribution. 

 

 Test statistic *F  obtained by using MML estimators is more powerful 

than the test statistic based on the LS estimators. 
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To sum up, multiple linear regression analysis used to construct GRNs depends on 

the normality assumption of errors. However, this assumption is not satisfied in 

most real life situations and non-normality complicates the data analysis and 

results in inefficient estimators. Therefore, this study examines the true 

distributions of errors and provides an efficient, robust and powerful estimation 

technique by implementing the method of MML under the true distributions of 

errors. Also, this study considers the explanatory variables as stochastic since they 

represents the gene expression changes and gene expression changes are subject to 

the measurement errors and proposes stochastic multiple linear regression analysis 

for the reconstruction of GRNs by considering the regulatory relationships 

between the genes. 

 

As a future study, it is planned to handle the relationships between the model 

covariates by applying ridge regression analysis to the gene expression data and 

estimate the model parameters by using the MML estimation method. 

 

Furthermore, it is considered to extend this study by using adaptive modified 

maximum likelihood (AMML) estimation method for inferring GRNs. This 

method is used when the nature of the underlying distribution cannot be 

investigated by a researcher (Dönmez, 2010). 
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APPENDIX A 

 

 

SIMULATION RESULTS FOR LARGE SAMPLE SIZES 

 

 

 

Table A.1: Monte Carlo averages, variances, MSEs and REs for multiple linear 

regression with nonstochastic covariates; 3q , 1 , 00   and 

)q..,,,j(j   2 1  1  . 

 

                    30n  

   2p      4p    

 
0

  
1

  
2

  
3

    
0

  
1

  
2

  
3

    

           
Mean 

(LS) 

0.018 1.000 0.992 0.993 0.988 0.010 1.003 1.000 0.999 0.987 

Mean 

(MML) 

0.036 1.001 0.994 0.994 0.953 0.024 1.003 1.000 0.998 0.971 

n var 

(LS) 

2.708 3.073 2.887 2.951 0.623 1.110 0.867 0.872 0.906 0.494 

n var 

(MML) 

2.091 2.450 2.273 2.336 0.481 1.030 0.798 0.809 0.841 0.411 

RE(LS) 77 80 79 79 77 93 92 93 93 83 

   6p      8p    

           
Mean 

(LS) 

 

0.009 0.999 1.000 1.002 0.990 0.009 0.011 1.000 0.998 1.000 

Mean 

(MML) 

0.013 0.998 1.000 1.002 0.980 0.013 0.011 1.000 0.999 0.999 

n var 

(LS) 

0.932 0.443 0.447 0.454 0.580 0.932 0.875 0.268 0.267 0.266 

n var 

(MML) 

0.866 0.396 0.400 0.411 0.526 0.866 0.786 0.239 0.234 0.238 

RE(LS) 93 89 89 90 91 93 90 89 87 89 
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Table A.1 (Continued) 

 

                    50n  

   2p      4p    

 
0

  
1

  
2

  
3

    
0

  
1

  
2

  
3

    

           
Mean 

(LS) 

 

0.005 1.002 0.999 0.997 0.993 0.007 0.999 0.999 0.997 0.995 

Mean 

(MML) 

0.014 1.003 0.997 1.001 0.966 0.018 0.999 0.999 0.996 0.983 

n var 

(LS) 

2.531 2.734 2.907 2.731 0.600 1.085 0.807 0.829 0.807 0.485 

n var 

(MML) 

1.785 1.987 2.136 1.980 0.457 1.002 0.739 0.768 0.746 0.417 

RE(LS) 71 73 73 72 76 92 92 93 92 86 

   6p      8p    

 
0

  
1

  
2

  
3

    
0

  
1

  
2

  
3

    

           
Mean 

(LS) 

 

0.005 1.003 1.000 1.001 0.994 0.004 0.999 0.999 1.000 0.996 

Mean 

(MML) 

0.009 1.003 1.001 1.000 0.986 0.006 1.000 0.999 0.999 0.990 

n var 

(LS) 

0.879 0.400 0.421 0.422 0.553 0.819 0.245 0.254 0.265 0.598 

n var 

(MML) 

0.819 0.362 0.377 0.368 0.503 0.761 0.216 0.219 0.235 0.545 

RE(LS) 93 90 89 87 91 93 88 86 89 91 
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Table A.2: Monte Carlo averages, variances, MSEs and REs for stochastic  

multiple linear regression; 3q . 

 

 
        30n  

 Mean      Variancen   

Parameter  ValueTrue   LS  MML  LS  MML  )LS(RE  

                                                 4p , 2
1
p , 4

2
p , 6

3
p  

1
  0 0.007 0.008 0.4 0.349 87 

2
  0 0.007 0.004 0.433 0.366 85 

3
  0 0.012 0.013 0.542 0.497 92 

1
  1 0.992 0.989 0.559 0.480 86 

2
  1 0.942 0.944 0.272 0.221 81 

3
  1 0.943 0.942 0.160 0.139 87 

21
  0.5 0.480 0.476 0.850 0.786 92 

231.
  0.5 0.529 0.517 0.268 0.232 87 

132.
  0.5 0.461 0.473 0.325 0.288 89 

0
  0 0.028 0.031 5.651 5.227 92 

1
  1 0.994 0.996 3.431 3.137 91 

2
  1 0.937 0.949 2.409 2.233 93 

3
  1 0.849 0.899 5.524 5.145 93 

  1 0.994 0.991 0.506 0.427 84 

                                                 8p , 2
1
p , 4

2
p , 6

3
p  

1
  0 0.011 0.009 0.398 0.368 92 

2
  0 0.007 0.008 0.430 0.400 93 

3
  0 0.012 0.014 0.599 0.568 95 

1
  1 0.990 0.993 0.574 0.515 90 

2
  1 0.944 0.946 0.282 0.251 89 

3
  1 0.844 0.893 0.174 0.160 92 

21
  0.5 0.474 0.473 0.873 0.820 94 

231.
  0.5 0.526 0.536 0.259 0.222 86 

132.
  0.5 0.444 0.446 0.326 0.290 89 

0
  0 0.040 0.038 3.791 3.709 98 

1
  1 0.985 0.993 1.381 1.318 95 

2
  1 0.940 0.944 0.914 0.895 98 

3
  1 0.882 0.894 1.761 1.656 94 

  1 0.986 0.992 0.643 0.595 92 
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Table A.2 (Continued) 

 

 
          50n  

 Mean      Variancen   

Parameter  ValueTrue   LS  MML  LS  MML  )LS(RE  

                                                 4p , 2
1
p , 4

2
p , 6

3
p  

1
  0 0.003 0.004 0.405 0.367 91 

2
  0 0.004 0.005 0.397 0.348 88 

3
  0 0.001 0.010 0.575 0.537 93 

1
  1 0.995 0.995 0.585 0.533 91 

2
  1 0.947 0.946 0.261 0.243 93 

3
  1 0.864 0.871 0.167 0.149 89 

21
  0.5 0.473 0.472 0.850 0.793 93 

231.
  0.5 0.524 0.511 0.272 0.257 94 

132.
  0.5 0.448 0.443 0.31 0.300 97 

0
  0 0.004 0.031 5.415 5.203 96 

1
  1 0.988 1.000 3.192 2.907 91 

2
  1 0.941 0.947 2.156 2.004 93 

3
  1 0.877 0.884 4.776 4.505 94 

  1 0.993 0.996 0.479 0.461 96 

                                                 8p , 2
1
p , 4

2
p , 6

3
p  

1
  0 0.006 0.004 0.412 0.379 92 

2
  0 0.001 0.003 0.390 0.363 93 

3
  0 0.005 0.006 0.578 0.503 87 

1
  1 0.996 0.993 0.552 0.502 91 

2
  1 0.950 0.947 0.253 0.229 90 

3
  1 0.845 0.843 0.160 0.139 87 

21
  0.5 0.469 0.473 0.814 0.769 94 

231.
  0.5 0.521 0.519 0.254 0.244 96 

132.
  0.5 0.444 0.444 0.318 0.295 93 

0
  0 0.020 0.013 3.704 3.318 90 

1
  1 0.995 0.992 1.254 1.151 92 

2
  1 0.952 0.960 0.882 0.784 89 

3
  1 0.881 0.892 1.633 1.452 89 

  1 0.997 0.996 0.605 0.595 98 
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Table A.3: Robustness comparisons for multiple linear regression with 

nonstochastic covariates, 50n , 3q , 1 , 00   and  

)q..,,,j(j   2 1  1  . 

 

   1 Model

 
    2 Model

 
  

 
0

  
1

  
2

  
3

    
0

  
1

  
2

  
3

    

           
Mean 

(LS) 

 

-0.096 1.001 0.998 1.003 0.991 0.059 1.001 1.000 0.999 0.994 

Mean 

(MML) 

-0.101 1.000 0.998 1.002 0.993 0.064 1.000 0.999 0.999 0.996 

n var 

(LS) 

 0.763 0.272 0.261 0.250 0.564 0.841 0.254 0.248 0.256 0.640 

n var 

(MML) 

 0.674 0.242 0.230 0.220 0.494 0.739 0.221 0.215 0.218 0.546 

RE(LS) 88 89 88 88 88 88 87 87 85 85 

   3 Model

 
    4 Model

 
  

 
0

  
1

  
2

  
3

    
0

  
1

  
2

  
3

    

           
Mean 

(LS) 

 

-0.073 1.001 0.999 1.000 0.991 0.002 0.998 1.000 0.997 0.987 

Mean 

(MML) 

-0.084 1.002 1.000 1.000 0.999 0.000 0.998 1.000 0.997 0.986 

n var 

(LS) 

0.640 0.244 0.249 0.259 0.421 0.882 0.260 0.255 0.249 0.650 

n var 

(MML) 

0.629 0.215 0.214 0.225 0.411 0.810 0.227 0.231 0.224 0.592 

RE(LS) 98 88 86 87 98 92 87 90 90 91 

 

 

 

 

 

 

 

 

 

 

 






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Table A.3 (Continued) 

 

   5 Model    

 
0

  
1

  
2

  
3

    

      
Mean 

(LS) 

 

-0.091 0.997 1.000 0.999 0.992 

Mean 

(MML) 

-0.084 0.997 0.999 1.000 0.995 

n var 

(LS) 

 1.183 0.373 0.367 0.361 0.551 

n var 

(MML) 

 0.901 0.269 0.270 0.271 0.472 

RE(LS) 76 72 74 75 85 

 

 

 

 


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Table A.4: Robustness comparisons for stochastic multiple linear regression; 50n , 3q . 

 

 

   Model 1   Model 2 

 Mean      Variancen   Mean   Variancen   

Parameter  ValueTrue  LS  MML  LS  MML  )LS(RE  LS  MML  LS  MML  )LS(RE  

1
  0 0.002 0.003 0.418 0.380 91  0.005  0.003 0.379 0.352 93 

2
  0 0.003 0.003 0.499 0.459 92  0.002  0.004 0.512 0.471 92 

3
  0 0.004 0.006 0.546 0.513 94  0.005  0.005 0.533 0.485 91 

1
  1 0.997 0.997 0.569 0.512 90  0.993  0.995 0.567 0.494 87 

2
  1 0.992 0.991 0.575 0.512 89  0.950  0.970 0.280 0.246 88 

3
  1 0.953 0.944 0.559 0.487 87  0.958  0.968 0.156 0.138 88 

21
  0.5 0.533 0.532 0.249 0.229 92  0.513  0.512 0.244 0.220 90 

231.
  0.5 0.510 0.500 0.268 0.241 90  0.523  0.519 0.270 0.246 91 

132.
  0.5 0.515 0.512 0.419 0.390 93  0.529  0.523 0.394 0.362 92 

0
  0 -0.091 -0.089 4.833 4.398 91  -0.078 -0.078 4.288 3.988 93 

1
  1 0.994 0.995 1.552 1.459 94  0.996  0.997 1.323 1.138 86 

2
  1 0.920 0.939 1.360 1.292 95  0.981  0.989 1.197 1.041 87 

3
  1 0.949 0.951 1.998 1.838 92  0.958  0.968 1.645 1.464 89 

  1 0.991 0.993 1.036 0.912 88  0.996  0.998 0.410 0.390 95 
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Table A.4 (Continued) 

 

 

   Model 3   Model 4 

 Mean      Variancen   Mean   Variancen   

Parameter  ValueTrue  LS  MML  LS  MML  )LS(RE  LS  MML  LS  MML  )LS(RE  

1
  0 0.006 0.004 0.379 0.345 91  0.005  0.003 0.385 0.354 92 

2
  0 0.007 0.002 0.473 0.431 91  0.003  0.006 0.501 0.451 90 

3
  0 0.007 0.001 0.513 0.472 92  0.004  0.006 0.561 0.511 91 

1
  1 0.991 0.995 0.551 0.485 88  0.995  0.995 0.550 0.489 89 

2
  1 0.976 0.980 0.263 0.229 87  0.960  0.979 0.578 0.514 89 

3
  1 0.943 0.952 0.158 0.136 86  0.953  0.961 0.556 0.490 88 

21
  0.5 0.523 0.521 0.243 0.211 87  0.519  0.512 0.265 0.241 91 

231.
  0.5 0.529 0.528 0.246 0.222 90  0.519  0.516 0.265 0.247 93 

132.
  0.5 0.523 0.522 0.431 0.371 86  0.522  0.519 0.421 0.387 92 

0
  0 0.015 0.004 4.095 3.726 91 -0.021 -0.020 4.810 4.329 90 

1
  1 0.995 0.997 1.341 1.180 88  0.997  0.999 1.699 1.461 86 

2
  1 0.978 0.982 1.145 1.019 89  0.971  0.985 1.661 1.412 85 

3
  1 0.943 0.954 1.621 1.427 88  0.964  0.973 1.837 1.598 87 

  1 0.991 0.996 0.623 0.573 92  1.103  1.100 0.990 0.842 85 
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APPENDIX B 

 

 

MATLAB CODE FOR ESTIMATION AND HYPOTHESIS TESTING IN 

MULTIPLE LINEAR REGRESSION ANALYSIS WITH 

NONSTOCHASTIC COVARIATES 

 

 

 

clear all 
n=input('n='); 
q=input('q='); 
sigma=input('sigma='); 
p=input('p='); 
ga0=input('ga0='); 
ga=[]; 
for i=1:q 
    ga(i,1)=input('ga='); 
end 
gax=[ga0;ga]; 
LSE_PAR=[];  
MML_PAR=[];  
LSE_PARx=[];  
F_lse=[]; 
F_mml=[]; 
aa=0; 
bb=0; 
for ii=1:100000/n 
x=[]; 
w=[]; 
y=[]; 
xx=[]; 
for j=1:q 
    x(:,j)=rand(n,1); 
end 
xx=[ones(n,1) x]; 
mean_x=mean(x,1); 
mean_xx=mean(xx,1); 
w=wblrnd(sigma,p,n,1); 
y=ga0+x*ga+w; 

  
%LSE for Multiple Linear Regression Model 

  
ga_lse=(inv(xx'*xx))*(xx'*y); 
sum1=0; 
for i=1:n 
    sum2=0; 
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    for j=1:(q+1) 
        sum2=sum2+ga_lse(j)*xx(i,j);        
    end 
    sum1=sum1+(y(i)-sum2)^2; 

  
end 
sigma_lse=sqrt(sum1/((n-q-1)*(gamma(1+2/p)-(gamma(1+1/p))^2))); 
ga0_lse=ga_lse(1,1)-(gamma(1+1/p))*sigma_lse; 
ga_lse(1,1)=ga0_lse; 

  
%MMLE for Multiple Linear Regression Model 

  
alpha1=[]; 
beta1=[]; 
alpha2=[]; 
beta2=[]; 
eta=[]; 
delta=[]; 

  
for i=1:n 
    t(i,1)=(-log(1-i/(n+1)))^(1/p); 
    alpha1(i,1)=2*((t(i))^(-1)); 
    alpha2(i,1)=(2-p)*((t(i))^(p-1)); 
    beta1(i,1)=(t(i))^(-2); 
    beta2(i,1)=(p-1)*((t(i))^(p-2)); 
    eta(i,1)=(p-1)*beta1(i,1)+p*beta2(i,1); 
    delta(i,1)=(p-1)*alpha1(i,1)-p*alpha2(i,1); 
end 

  
m=sum(eta); 
de=sum(delta); 

  
ga0i=ga_lse(1,1); 
gai=[]; 
for j=1:q 
    gai(j,1)=ga_lse(j+1); 
end 

  
%iteration 

  
for i=1:3 
    e=[]; 
    data=[]; 
    for l=1:n 
    e(l,1)=y(l)-ga0i-x(l,:)*gai; 
    end 
    data=[e y x]; 
    [data1,I]=sort(data(:,1)); 
    data_ordered=data(I,:); 
    e_or=data_ordered(:,1); 
    yc=data_ordered(:,2);   
    xc=[]; 
    X=[]; 
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    K=[]; 
    L=[]; 
    for j=1:q 
        xc(:,j)=data_ordered(:,j+2); 
    end 
    mean_yc=(eta'*yc)/m; 
    for j=1:q 
        mean_xc(1,j)=(eta'*xc(:,j))/m; 
    end 
    for l=1:n 
        for j=1:q 
            X(l,j)=xc(l,j)-mean_xc(j); 
        end 
    end 
    for l=1:n 
        Y(l,1)=yc(l)-mean_yc; 
    end 
    K=(inv(X'*(diag(eta))*X))*(X'*(diag(eta))*Y); 
    D=(inv(X'*(diag(eta))*X))*(X'*(diag(delta))*ones(n,1)); 
    B1=[]; 
    B1=Y-X*K; 
    C1=[]; 
    C1=(Y-X*K).^2; 
    B=0; 
    for l=1:n 
        B=B+(delta(l))*B1(l); 
    end 
    C=0; 
    for l=1:n 
        C=C+(eta(l))*C1(l); 
    end 
    sigma_mml=(-B+sqrt(B^2+4*n*C))/(2*sqrt(n*(n-q-1)));     
    ga_mml=K-D*sigma_mml; 
    ga0_mml=mean_yc-mean_xc*ga_mml-(de/m)*sigma_mml; 
    ga0i=ga0_mml; 
    gai=ga_mml; 
end 
ga0_mml=ga0i; 
ga_mml=gai; 
LSE_PAR(ii,:)=[ga_lse' sigma_lse]; 
MML_PAR(ii,:)=[ga0_mml ga_mml' sigma_mml]; 

  
ga_lse1=[]; 

  
for l=2:q+1 
    ga_lse1(l-1,1)=ga_lse(l,1); 
end 

  
F_lse(ii)=(ga_lse1'*x'*y)/(q*(sigma_lse^2)); 
F_mml(ii)=(ga_mml'*X'*diag(eta)*Y)/(q*(sigma_mml^2)); 

  
if F_lse(ii)>=finv(0.95,q,n-q-1); 
    aa=aa+1; 
end 
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if F_mml(ii)>=finv(0.95,q,n-q-1) 
    bb=bb+1; 
end 

  
end 
mean_LSE=(mean(LSE_PAR,1))';  
mean_MML=(mean(MML_PAR,1))';  
var_LSE=n*(var(LSE_PAR,1))';  
var_MML=n*(var(MML_PAR,1))';  
RE=100*(var_MML./var_LSE); 
tablo=[mean_LSE mean_MML var_LSE var_MML RE]'; 
power_lse=aa/(100000/n); 
power_mml=bb/(100000/n); 
power=[power_lse power_mml]; 
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APPENDIX C 

 

 

MATLAB CODE FOR ESTIMATION AND HYPOTHESIS TESTING IN 

STOCHASTIC MULTIPLE LINEAR REGRESSION ANALYSIS 

 

 

 

clear all 
n=input('n='); 
p=input('p='); 
p1=input('p1='); 
p2=input('p2='); 
p3=input('p3='); 
q=3; 
mu1=0; 
mu2=0; 
mu3=0; 
sigma1=1; 
sigma2=1; 
sigma3=1; 
ro21=0.5; 
ro31=0.5; 
ro32=0.5; 
sigma=1; 
teta21=ro21*(sigma2/sigma1); 
teta31=ro31*(sigma3/sigma1); 
teta32=ro32*(sigma3/sigma2); 
mu1_I=0; 
mu2_I=0; 
mu3_I=0; 
sigma1_I=1; 
sigma2_I=sqrt(0.75); 
sigma3_I=sqrt(0.5625); 
aa=0; 
bb=0; 
for j=1:100000/n 
w1=wblrnd(sigma1_I,p1,n,1); 
x1=w1; 
w2=wblrnd(sigma2_I,p2,n,1); 
x2=sqrt(0.75)*w2+0.5*x1; 
w3=wblrnd(sigma3_I,p3,n,1); 
x3=sqrt(0.5625)*w3+0.5*x1+0.5*x2; 
u1=(x1-mu1)/sigma1; 
u2=(x2-mu2)/sigma2; 
u3=(x3-mu3)/sigma3; 
X1=x1-mean(x1); 
X2=x2-mean(x2); 
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X3=x3-mean(x3); 
e=wblrnd(sigma,8,n,1); 
y=u1+u2+u3+e; 
Y=y-mean(y); 
Xj1=X1; 
Xj2=[X1 X2]; 

  
%LSE for Stochastic Multiple Linear Regression 

  
teta21_lse=inv(Xj1'*Xj1)*(Xj1'*x2); 
teta_lse=inv(Xj2'*Xj2)*(Xj2'*x3); 
teta31_lse=teta_lse(1); 
teta32_lse=teta_lse(2); 
sigma1_I_lse=sqrt(X1'*X1)/sqrt((n-1)*(gamma(1+2/p1)-

(gamma(1+1/p1))^2)); 
sigma2_I_lse=sqrt((X2-teta21_lse*X1)'*(X2-teta21_lse*X1))/sqrt((n-

2)*(gamma(1+2/p2)-(gamma(1+1/p2))^2)); 
sigma3_I_lse=sqrt((X3-teta31_lse*X1-teta32_lse*X2)'*(X3-

teta31_lse*X1-teta32_lse*X2))/sqrt((n-3)*(gamma(1+2/p3)-

(gamma(1+1/p3))^2)); 
mu1_I_lse=mean(x1)-sigma1_I_lse*gamma(1+1/p1); 
mu2_I_lse=mean(x2)-teta21_lse*mean(x1)-sigma2_I_lse*gamma(1+1/p2); 
mu3_I_lse=mean(x3)-teta31_lse*mean(x1)-teta32_lse*mean(x2)-

sigma3_I_lse*gamma(1+1/p3); 
mu1_lse=mu1_I_lse; 
mu2_lse=mu2_I_lse+teta21_lse*mu1_I_lse; 
mu3_lse=mu3_I_lse+teta31_lse*mu1_I_lse+teta32_lse*mu2_I_lse; 
sigma1_lse=sigma1_I_lse; 
sigma2_lse=sqrt(sigma2_I_lse^2+(teta21_lse^2)*(sigma1_I_lse^2)); 
sigma3_lse=sqrt(sigma3_I_lse^2+(teta31_lse^2)*(sigma1_I_lse^2)+(te

ta32_lse^2)*(sigma2_I_lse^2)); 
ro21_lse=teta21_lse*(sigma1_lse/sigma2_lse); 
ro31_lse=teta31_lse*(sigma1_lse/sigma3_lse); 
ro32_lse=teta32_lse*(sigma2_lse/sigma3_lse); 
u1_lse=(x1-mu1_lse)/sigma1_lse; 
u2_lse=(x2-mu2_lse)/sigma2_lse; 
u3_lse=(x3-mu3_lse)/sigma3_lse; 
U1_lse=u1_lse-mean(u1_lse); 
U2_lse=u2_lse-mean(u2_lse); 
U3_lse=u3_lse-mean(u3_lse); 
U=[U1_lse U2_lse U3_lse]; 
ga_lse=inv(U'*U)*(U'*Y); 
A=(Y-ga_lse(1)*U(:,1)-ga_lse(2)*U(:,2)-ga_lse(3)*U(:,3)); 
sigma_lse=sqrt(A'*A)/sqrt((n-q-1)*(gamma(1+2/p)-

(gamma(1+1/p))^2)); 
ga0_lse=mean(y)-ga_lse(1)*mean(u1_lse)-ga_lse(2)*mean(u2_lse)-

ga_lse(3)*mean(u3_lse)-gamma(1+1/p)*sigma_lse; 

  
%MML for Stochastic Multiple Linear Regession 

  
mu1_Ii=mu1_I_lse; 
mu2_Ii=mu2_I_lse; 
mu3_Ii=mu3_I_lse; 
teta21i=teta21_lse; 
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teta31i=teta31_lse; 
teta32i=teta32_lse; 
for ii=1:3 
e1=x1-mu1_Ii; 
e2=x2-mu2_Ii-teta21i*x1; 
e3=x3-mu3_Ii-teta31i*x1-teta32i*x2; 
data1=[e1 x1]; 
[data2,I]=sort(data1(:,1)); 
data_ordered1=data1(I,:); 
e1_or=data_ordered1(:,1); %ordered e 
xc1=data_ordered1(:,2); 
data2=[e2 x1 x2]; 
[data3,J]=sort(data2(:,1)); 
data_ordered2=data2(J,:); 
e1_or=data_ordered2(:,1); %ordered e 
xc21=data_ordered2(:,2); 
xc22=data_ordered2(:,3); 
data3=[e3 x1 x2 x3]; 
[data4,M]=sort(data3(:,1)); 
data_ordered3=data3(M,:); 
e1_or=data_ordered3(:,1); %ordered e 
xc31=data_ordered3(:,2); 
xc32=data_ordered3(:,3); 
xc33=data_ordered3(:,4); 
for i=1:n 
        t1(i,1)=(-log(1-i/(n+1)))^(1/p1); 
        t2(i,1)=(-log(1-i/(n+1)))^(1/p2); 
        t3(i,1)=(-log(1-i/(n+1)))^(1/p3); 
        alpha11(i,1)=2*((t1(i,1))^(-1)); 
        alpha21(i,1)=2*((t2(i,1))^(-1)); 
        alpha31(i,1)=2*((t3(i,1))^(-1)); 
        alpha12(i,1)=(2-p1)*((t1(i,1))^(p1-1)); 
        alpha22(i,1)=(2-p2)*((t2(i,1))^(p2-1)); 
        alpha32(i,1)=(2-p3)*((t3(i,1))^(p3-1)); 
        beta11(i,1)=(t1(i,1))^(-2); 
        beta21(i,1)=(t2(i,1))^(-2); 
        beta31(i,1)=(t3(i,1))^(-2); 
        beta12(i,1)=(p1-1)*((t1(i,1))^(p1-2)); 
        beta22(i,1)=(p2-1)*((t2(i,1))^(p2-2)); 
        beta32(i,1)=(p3-1)*((t3(i,1))^(p3-2)); 
        eta1(i,1)=(p1-1)*beta11(i,1)+(p1)*beta12(i,1); 
        eta2(i,1)=(p2-1)*beta21(i,1)+(p2)*beta22(i,1); 
        eta3(i,1)=(p3-1)*beta31(i,1)+(p3)*beta32(i,1); 
        delta1(i,1)=(p1-1)*alpha11(i,1)-(p1)*alpha12(i,1); 
        delta2(i,1)=(p2-1)*alpha21(i,1)-(p2)*alpha22(i,1); 
        delta3(i,1)=(p3-1)*alpha31(i,1)-(p3)*alpha32(i,1); 
end 
de1=sum(delta1); 
de2=sum(delta2); 
de3=sum(delta3); 
m1=sum(eta1); 
m2=sum(eta2); 
m3=sum(eta3); 
%j=1 
X1=xc1-eta1'*xc1/m1; 
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B1=delta1'*X1; 
C1=eta1'*(X1.^2); 
sigma1_I_mml=(-B1+sqrt(B1^2+4*n*C1))/(2*n); 
mu1_I_mml=eta1'*xc1/m1-(de1/m1)*sigma1_I_mml; 
mu1_mml=mu1_I_mml; 
sigma1_mml=sigma1_I_mml; 
%j=2 
X21=xc21-eta2'*xc21/m2; 
X22=xc22-eta2'*xc22/m2; 
K1=inv(X21'*diag(eta2)*X21)*(X21'*diag(eta2)*X22); 
D1=inv(X21'*diag(eta2)*X21)*(X21'*diag(delta2)*ones(n,1)); 
B21=delta2'*(X22-K1*X21); 
C21=eta2'*((X22-K1*X21).^2); 
sigma2_I_mml=(-B21+sqrt(B21^2+4*n*C21))/(2*n); 
teta21_mml=K1-D1*sigma2_I_mml; 
mu2_I_mml=eta2'*xc22/m2-teta21_mml*(eta2'*xc21/m2)-

(de2/m2)*sigma2_I_mml; 
mu2_mml=mu2_I_mml+teta21_mml*mu1_mml; 
sigma2_mml=sqrt(sigma2_I_mml^2+(teta21_mml^2)*sigma1_I_mml^2); 
ro21_mml=teta21_mml*(sigma1_mml/sigma2_mml); 
%j=3 
X31=xc31-eta3'*xc31/m3; 
X32=xc32-eta3'*xc32/m3; 
X33=xc33-eta3'*xc33/m3; 
Xj=[X31 X32]; 
K2=inv(Xj'*diag(eta3)*Xj)*(Xj'*diag(eta3)*X33); 
D2=inv(Xj'*diag(eta3)*Xj)*(Xj'*diag(delta3)*ones(n,1)); 
B31=delta3'*(X33-K2(1)*X31-K2(2)*X32); 
C31=eta3'*((X33-K2(1)*X31-K2(2)*X32).^2); 
sigma3_I_mml=(-B31+sqrt(B31^2+4*n*C31))/(2*n); 
teta31_mml=K2(1)-D2(1)*sigma3_I_mml; 
teta32_mml=K2(2)-D2(2)*sigma3_I_mml; 
mu3_I_mml=eta3'*xc33/m3-teta31_mml*(eta3'*xc31/m3)-

teta32_mml*(eta3'*xc32/m3)-(de3/m3)*sigma3_I_mml; 
mu3_mml=mu3_I_mml+teta31_mml*mu1_mml-teta32_mml*mu2_mml; 
sigma3_mml=sqrt(sigma3_I_mml^2+(teta31_mml^2)*sigma1_I_mml^2+(teta

32_mml^2)*sigma2_I_mml^2); 
ro31_mml=teta31_mml*(sigma1_mml/sigma3_mml); 
ro32_mml=teta32_mml*(sigma2_mml/sigma3_mml); 
mu1_Ii=mu1_I_mml; 
mu2_Ii=mu2_I_mml; 
mu3_Ii=mu3_I_mml; 
teta21i=teta21_mml; 
teta31i=teta31_mml; 
teta32i=teta32_mml; 
end 
ga0i=ga0_lse; 
gai=ga_lse; 
for i=1:n 
    t(i,1)=(-log(1-i/(n+1)))^(1/p); 
    alpha1(i,1)=2*((t(i))^(-1)); 
    alpha2(i,1)=(2-p)*((t(i))^(p-1)); 
    beta1(i,1)=(t(i))^(-2); 
    beta2(i,1)=(p-1)*((t(i))^(p-2)); 
    eta(i,1)=(p-1)*beta1(i,1)+p*beta2(i,1); 



 

133 
 

    delta(i,1)=(p-1)*alpha1(i,1)-p*alpha2(i,1); 
end 
m=sum(eta); 
de=sum(delta); 
u1i=u1_lse; 
u2i=u2_lse; 
u3i=u3_lse; 
for ii=1:3 
    e=[]; 
    e=y-ga0i-gai(1)*u1i-gai(2)*u2i-gai(3)*u3i; 
    data5=[]; 
    data5=[e y x1 x2 x3]; 
    [data6,L]=sort(data5(:,1)); 
    data_ordered5=data5(L,:); 
    e_or2=data_ordered5(:,1); %ordered e 
    yc=data_ordered5(:,2); %concomitant (y) 
    %concomitant (x) 
    xc=[]; 
    xc1=data_ordered5(:,3); 
    xc2=data_ordered5(:,4); 
    xc3=data_ordered5(:,5); 
    u1_mml=(xc1-mu1_mml)/sigma1_mml; 
    u2_mml=(xc2-mu2_mml)/sigma2_mml; 
    u3_mml=(xc3-mu3_mml)/sigma3_mml; 
    U1_mml=u1_mml-eta'*u1_mml/m; 
    U2_mml=u2_mml-eta'*u2_mml/m; 
    U3_mml=u3_mml-eta'*u3_mml/m; 
    Y=yc-eta'*yc/m; 
    K=[]; 
    D=[]; 
    U_mml=[U1_mml U2_mml U3_mml]; 
    K=(inv(U_mml'*(diag(eta))*U_mml))*(U_mml'*(diag(eta))*Y); 
    

D=(inv(U_mml'*(diag(eta))*U_mml))*(U_mml'*(diag(delta))*ones(n,1))

; 
    B=delta'*(Y-K(1)*U1_mml-K(2)*U2_mml-K(3)*U3_mml); 
    C=eta'*((Y-K(1)*U1_mml-K(2)*U2_mml-K(3)*U3_mml).^2); 
    sigma_mml=(-B+sqrt(B^2+4*n*C))/(2*sqrt(n*(n-q-1))); 
    ga_mml=K-D*sigma_mml; 
    ga0_mml=eta'*yc/m-ga_mml(1)*eta'*u1_mml/m-

ga_mml(2)*eta'*u2_mml/m-ga_mml(3)*eta'*u3_mml/m; 
    ga0i=ga0_mml; 
    gai=ga_mml; 
    u1i=u1_mml; 
u2i=u2_mml; 
u3i=u3_mml; 
end 
LSE_PAR(j,:)=[mu1_lse mu2_lse mu3_lse sigma1_lse sigma2_lse 

sigma3_lse ro21_lse ro31_lse ro32_lse ga0_lse ga_lse' sigma_lse]; 
MML_PAR(j,:)=[mu1_mml mu2_mml mu3_mml sigma1_mml sigma2_mml 

sigma3_mml ro21_mml ro31_mml ro32_mml ga0_mml ga_mml' sigma_mml]; 
ulse=[u1_lse u2_lse u3_lse]; 
umml=[u1_mml u2_mml u3_mml]; 
F_lse(j)=(ga_lse'*ulse'*y)/(q*(sigma_lse^2)); 
F_mml(j)=(ga_mml'*umml'*diag(eta)*Y)/(q*(sigma_mml^2)); 
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if F_lse(j)>=finv(0.95,q,n-q-1); 
    aa=aa+1; 
end 
if F_mml(j)>=finv(0.95,q,n-q-1) 
    bb=bb+1; 
end 
end 
mean_LSE=(mean(LSE_PAR,1))'; % simulated means of LSEs 
mean_MML=(mean(MML_PAR,1))'; % simulated means of MMLs 
var_LSE=n*(var(LSE_PAR,1))'; % simulated means of LSEs 
var_MML=n*(var(MML_PAR,1))'; % simulated means of MMLs 
RE=100*(var_MML./var_LSE); 
tablo=[mean_LSE mean_MML var_LSE var_MML RE]; 
tablo1=tablo'; 
power_lse=aa/(100000/n) 
power_mml=bb/(100000/n) 
power=[power_lse power_mml] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

135 
 

CURRICULUM VITAE 

 

 

 

PERSONAL INFORMATION  

 

Surname, Name: Balcı, Sibel  

Nationality: Turkish (TC)  

Date and Place of Birth: 7 September 1979, Ankara  

email: sbalci@metu.edu.tr  

 

EDUCATION  

 

Degree   Institution     Year of Graduation  

MS    METU Statistics    2007  

BS   Hacettepe University Statistics 2001  

High School   Ayrancı Anadolu Lisesi, Ankara  1996  

 

ACADEMIC EXPERIENCE  

 

Year    Place      Enrollment  

2004-2014    METU Department of Statistics  Research Assistant 

 

FOREIGN LANGUAGES  

 

Advanced English 

 

 

 

 



 

136 
 

PUBLICATIONS  

 

Akkaya A. D. and Balci S. (2014). Chapter Translation in: Bioinformatics for 

Biologists (Regulatory Network Inference). Translation Editor: Kaya Z., Nobel: 

Ankara. 

 

Balci S., Akkaya A. D. and Ulgen B. E. (2013). Modified maximum likelihood 

estimators using ranked set sampling. J. of Comp. and Appl. Math., 238, 171-179.  


