# GEOCHEMICAL CHARACTERIZATION OF GEOTHERMAL SYSTEMS IN TURKEY AS NATURAL ANALOGUES FOR GEOLOGICAL STORAGE OF $$\rm CO_2$$

### A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

SANEM ELİDEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING

SEPTEMBER 2014

## Approval of the thesis:

## GEOCHEMICAL CHARACTERIZATION OF GEOTHERMAL SYSTEMS IN TURKEY AS NATURAL ANALOGUES FOR GEOLOGICAL STORAGE OF CO<sub>2</sub>

submitted by **SANEM ELİDEMİR** in partial fulfillment of the requirements for the degree of **Master of Science in Geological Engineering Department, Middle East Technical University** by,

| Prof. Dr. Canan Özgen<br>Dean, Graduate School of <b>Natural and Applied Science</b> |  |
|--------------------------------------------------------------------------------------|--|
| Prof. Dr. Erdin Bozkurt<br>Head of Department, <b>Geological Engineering</b>         |  |
| Prof. Dr. Nilgün Güleç<br>Supervisor, Geological Engineering Dept., METU             |  |
| Examining Committee Members:                                                         |  |
| Prof. Dr. Ender Okandan<br>Petroleum and Natural Gas Engineering Dept., METU         |  |
| Prof. Dr. Nilgün Güleç<br>Geological Engineering Dept., METU                         |  |
| Prof. Dr. Nurkan Karahanoğlu<br>Geological Engineering Dept., METU                   |  |
| Prof. Dr. Halim Mutlu<br>Geological Engineering Dept., Ankara University             |  |
| Assist. Prof. Dr. Fatma Toksoy Köksal<br>Geological Engineering Dept., METU          |  |
|                                                                                      |  |

Date: 02.09.2014

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : Sanem Elidemir

Signature :

#### ABSTRACT

# GEOCHEMICAL CHARACTERIZATION OF GEOTHERMAL SYSTEMS IN TURKEY AS NATURAL ANALOGUES FOR GEOLOGICAL STORAGE OF CO<sub>2</sub>

Elidemir, Sanem M.S., Department of Geological Engineering Supervisor: Prof. Dr. Nilgün Güleç

September 2014, 150 pages

To mitigate the unfavourable effect of  $CO_2$  emission on global warming and climate change, geological storage of  $CO_2$  is currently regarded to be one of the major strategies. Deep saline formations constitute one of the alternative reservoirs for hosting the injected  $CO_2$  and the information about the behaviour of these reservoirs is provided via the studies of natural analogues.

This thesis is concerned with the geothermal systems of Turkey as natural analogues for  $CO_2$  storage sites and the evaluation of their geochemical characteristics in terms of possible hydrogeochemical processes involved in  $CO_2$  storage. For the selected geothermal fields from western, eastern and northern Anatolia, the hydrogeochemical processes and potential trapping mechanisms controlling the systems are determined with the assistance of various geochemical approaches including the geochemical characterization of the system, speciation-

solubility calculations, estimation of relative contribution of carbonate and sulphate minerals to the system, and modelling studies (such as inverse modelling, dedolomitization modelling) depending on the behaviour of the field. The results lead to the recognition of three different groups of geothermal systems with respect to the dominant trapping mechanisms: mineral trapping, solubility trapping and mineral  $\pm$  solubility trapping. In some of the fields from western Anatolia, mineral trapping seems to be the major mechanism, while the others show the effects of both mineral and solubility trapping; a special mechanism named dedolomitization is also identified for Emet geothermal field. For eastern Anatolian fields, and for the fields located along the North Anatolian Fault Zone, solubility trapping is the dominant mechanism.

**Keywords:**  $CO_2$  storage, geothermal system, trapping mechanism, dedolomitization, hydrogeochemistry.

# CO2 DEPOLAMA SAHALARININ DOĞAL BENZERLERİ OLARAK TÜRKİYE'DEKİ JEOTERMAL SİSTEMLERİN JEOKİMYASAL KARAKTERİZASYONU

Elidemir, Sanem Yüksek Lisans, Jeoloji Mühendisliği Bölümü Tez Yöneticisi: Prof. Dr. Nilgün Güleç

Eylül 2014, 150 sayfa

CO<sub>2</sub> emisyonunun küresel ısınma ve iklim değişimi üzerindeki olumsuz etkisini azaltmak için, gündemde olan başlıca stratejilerden biri CO<sub>2</sub> gazının yeraltı katmanlarında depolanmasıdır. Derin tuzlu akiferler, enjekte edilen CO<sub>2</sub>'in depolanması için alternatif rezervuarlardan birini oluşturur ve bu rezervuarların davranışı hakkındaki bilgi doğal benzerleri üzerindeki çalışmalarla sağlanır.

Bu tez çalışması, CO<sub>2</sub> depolama sahalarının doğal benzerleri olan Türkiye'deki jeotermal sistemlere ve bu sistemlerin jeokimyasal özelliklerinin CO<sub>2</sub> depolama sırasında gelişebilecek muhtemel hidrojeokimyasal süreçler açısından değerlendirilmesine ilişkindir. Batı, doğu ve kuzey Anadolu'dan seçilmiş jeotermal sistemler için bu sistemleri kontrol eden hidrojeokimyasal süreçler ve potansiyel kapanlanma mekanizmaları, sistemin jeokimyasal karakterizasyonu, türleşmeçözünürlük hesaplamaları, karbonat ve sülfat minerallerinin göreceli olarak sisteme katkısının tahmini ve saha davranışına göre (tersine modelleme, dedolomitleşme modellemesi gibi) modelleme çalışmalarını içeren çeşitli jeokimyasal yöntemlerle belirlenmiştir. Sonuçlar baskın kapanlanma mekanizmalarına göre üç farklı grubun tanımlanmasına yol açmıştır: mineral kapanlanması, çözünürlük kapanlanması ve mineral ± çözünürlük kapanlanması. Batı Anadolu'daki bazı sahalarda mineral kapanlanması başlıca mekanizma olarak görünürken, diğerlerinde hem mineral hem çözünürlük kapanlanması etkisini göstermektedir; Emet jeotermal sahasında ise dedolomitleşme adı verilen özel bir mekanizmanın da varlığı belirlenmiştir. Doğu Anadolu'da ve Kuzey Anadolu Fay Zonu üzerinde yer alan sahalarda çözünürlük kapanlanması ana mekanizmadır.

Anahtar kelimeler: CO<sub>2</sub> depolama, jeotermal sistem, kapanlanma mekanizması, dedolomitleşme, hidrojeokimya.

To my beloved mother

#### ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my thesis supervisor, Prof. Dr. Nilgün Güleç, for her invaluable guidance, patience and encouragement throughout this thesis study. I am extremely grateful for her continuous support and advice, both on academic and on personal level. With her exceptional knowledge, kindness, and discipline, I have learned a lot.

I am indebted to Assist. Prof. Dr. Fatma Toksoy Köksal, for her guidance and support at an important stage of my life. I am deeply grateful.

I would like to thank my family. Not only during my thesis study, but in each part of my life, my mother and father have always been supportive, understanding, patient and encouraging. Thank you for your love and for believing in me in every step I take. I would also like to thank my sweet little Sushi, for brightening every day, being a moral support and his uncontrollable playfulness whenever I try to study.

I would like to thank my best friends Seda Kahraman and Çidem Argunhan, for their endless support, patience and being there for me whenever I need any help. I consider myself lucky to have met you two.

The friendship, assistances and encouragements of my colleagues and roommates Faruk Berber and Okay Çimen are also greatly appreciated. Special thanks go to Faruk for chocolate support and background music at the most critical times.

I would also like to thank my lunch group: Çidem Argunhan, Uğurcan Özçamur and Barış Ünal, for all those fun lunch times that turn even the most stressful day into a happy one.

Last but most certainly not least, I would like to thank Uğur Can Karakuş for always being with me, cheering me up and standing by me in the good and bad times. Without his infinite support, encouragement, love and patience, many things wouldn't have been possible.

# TABLE OF CONTENTS

| ABSTRACT                                                                            |
|-------------------------------------------------------------------------------------|
| ÖZvii                                                                               |
| ACKNOWLEDGEMENTSx                                                                   |
| TABLE OF CONTENTS                                                                   |
| LIST OF FIGURESxv                                                                   |
| LIST OF TABLES                                                                      |
| CHAPTERS                                                                            |
| 1. INTRODUCTION                                                                     |
| 1.1. Purpose and Scope                                                              |
| 1.2. Geographic Setting                                                             |
| 1.3. Material and Methods                                                           |
| 1.4. Layout of the Thesis                                                           |
| 2. LITERATURE REVIEW: SUBSURFACE STORAGE OF $CO_2$ 7                                |
| 2.1. Sites Suitable for CO <sub>2</sub> Storage                                     |
| 2.2. Physico – Chemical Processes of CO <sub>2</sub> Storage10                      |
| 2.2.1. Trapping Mechanisms                                                          |
| 2.2.2. Dedolomitization                                                             |
| 2.3. Monitoring the Site                                                            |
| 2.4. Migration Mechanisms and Potential Impacts of CO <sub>2</sub> Leakage and Risk |
| Assessment                                                                          |
| 3. GEOTHERMAL FIELDS IN TURKEY                                                      |

| estern Anatolia                                       | 27                              |
|-------------------------------------------------------|---------------------------------|
| stern Anatolia                                        | 44                              |
| rthern Anatolia                                       | 49                              |
| OGEOCHEMICAL CHARACTERIZATION OF GEOTHER              | MAL<br>53                       |
| estern Anatolia                                       | 54                              |
| Kızıldere. Tekkehamam and Germencik Geothermal Fields | 54                              |
| Balcova Geothermal Field                              |                                 |
| Salihli Geothermal Field                              | 57                              |
| Sundurgi Geothermal Field                             |                                 |
| Simay Geothermal Field                                | 60                              |
| Emet Geothermal Field                                 | 00<br>67                        |
| Dibili Caatharmal Field                               | 02                              |
|                                                       | 02                              |
| Balıkesir Thermal Waters                              | 63                              |
| Edremit Geothermal Field                              | 64                              |
| stern Anatolia                                        | 64                              |
| Diyadin Geothermal Field                              | 64                              |
| Çaldıran Geothermal Field                             | 67                              |
| rthern Anatolia                                       | 68                              |
| GEOCHEMICAL MODELLING: PROCESSES CONTROLI             | LING                            |
| HEMICAL BEHAVIOUR OF THE SYSTEMS                      | 73                              |
| neral Trapping: Group I Type Geothermal Fields        | 77                              |
| Hydrogeochemical Characteristics                      | 77                              |
| Speciation – Solubility Calculations                  | 79                              |
| Mass-Balance Calculations                             | 83                              |
|                                                       | stern Anatolia<br>tern Anatolia |

| 5.2. So                                                | blubility ± Mineral Trapping: Group II Type Geothermal Fields85 |  |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| 5.2.1. Hydrogeochemical Characteristics                |                                                                 |  |  |  |  |  |
| 5.2.2.                                                 | Speciation – Solubility Calculations                            |  |  |  |  |  |
| 5.2.3.                                                 | Mass – Balance Calculations                                     |  |  |  |  |  |
| 5.2.4.                                                 | Modelling Dedolomitization100                                   |  |  |  |  |  |
| 5.3. So                                                | olubility Trapping: Group III Type Geothermal Fields            |  |  |  |  |  |
| 5.3.1.                                                 | Hydrogeochemical Characteristics104                             |  |  |  |  |  |
| 5.3.2.                                                 | Speciation – Solubility Calculations106                         |  |  |  |  |  |
| 5.3.3.                                                 | Mass – Balance Calculations110                                  |  |  |  |  |  |
| 6. CONCLUSIONS AND RECOMMENDATIONS                     |                                                                 |  |  |  |  |  |
| REFERENCES                                             |                                                                 |  |  |  |  |  |
| APPENDICES                                             |                                                                 |  |  |  |  |  |
| A. GEOCHEMICAL DATA COMPILED FROM PREVIOUS STUDIES 127 |                                                                 |  |  |  |  |  |

#### LIST OF FIGURES

#### FIGURES

Figure 2.1: Schematic diagram of CO<sub>2</sub> geological storage (METI, 2010)......7 Figure 2.2: Existing/proposed CO<sub>2</sub> storage sites (IPCC, 2005). Major projects Figure 2.3: CO<sub>2</sub> distribution model after 0.1, 0.5, 1.0 and 2.0 years of injection Figure 2.4: A general depiction of the development of trapping mechanisms over Figure 2.5: The injected  $CO_2$  is trapped by the impermeable caprock (CCP, 2008). Figure 2.6: Examples for the structural trapping: a) fault trapping; b) anticline trapping; c) facies change trapping; d) unconformity trapping (CO2CRC, 2011)...13 Figure 2.7: Residual trapping of CO<sub>2</sub> within the pores of a rock (CCP, 2008)...... 14 Figure 2.8: Following physical trapping mechanisms, geochemical trapping (solubility and mineral trapping) mechanisms can take place (Solomon, 2007). ... 15 Figure 2.9: Monitoring the CO<sub>2</sub> plume at the Sleipner pilot with seismic imaging method [before injection (which began in 1996) and after injection] (CO2GeoNet, Figure 2.10: Potential leakage scenarios of CO<sub>2</sub> storage (CO2GeoNet, 2008)...... 21 Figure 3.1: Distribution of geothermal areas and hot-springs in Turkey in relation Figure 3.2: A) Paleotectonic units and suture zones of Turkey (from Sengör, 1984) Figure 3.3: General geologic map and location of important geothermal fields of 

| Figure 3.4: The Seferihisar-Balçova Geothermal system (Magri et al., 2010 and the                         |
|-----------------------------------------------------------------------------------------------------------|
| references therein)                                                                                       |
| Figure 3.5: Simplified hydrogeological map of the Gediz Graben (Tarcan, 2005 and                          |
| the references therein)                                                                                   |
| Figure 3.6: Location map of the geothermal fields in Afyon, Turkey (Şimşek &                              |
| Güleç, 1994)                                                                                              |
| Figure 3.7: Location map of Simav geothermal area, Turkey (Palabıyık & Serpen,                            |
| 2008 and the references therein)                                                                          |
| Figure 3.8: Geological map of Emet geothermal field (Gemici et al., 2004 and the                          |
| references therein)                                                                                       |
| Figure 3.9: Geological map of the Balıkesir region showing the geothermal areas                           |
| (from Mutlu & Kılıç, 2009)                                                                                |
| Figure 3.10: Geological map of the Biga Peninsula (Okay & Satır, 2000)43                                  |
| Figure 3.11: Maps showing a) the location, b) major tectonic units and c) geology                         |
| of eastern Anatolia. (from Keskin, 2007 in Mutlu et al., 2012)                                            |
| Figure 3.12: Location map of Diyadin geothermal field (Mutlu et al., 2013)47                              |
| Figure 3.13: Location map of Çaldıran geothermal field (Aydın et al., 2013) 48                            |
| Figure 3.14: Location map of the sampled geothermal fields along the NAFZ                                 |
| (Güleç et al., 2006)                                                                                      |
| Figure 4.1: Schoeller diagrams of the geothermal fields of western Anatolia a)                            |
| Kızıldere, b) Tekkehamam, c) Germencik, d) Balçova, e) Salihli, f) Sındırgı 55                            |
| Figure 4.2: $\delta^{18}O-\delta D$ diagrams for the western Anatolian waters                             |
| Figure 4.3: $CO_2$ - <sup>3</sup> He- <sup>4</sup> He ternary diagram for the western Anatolian fluids61  |
| Figure 4.4: Schoeller diagrams of the geothermal fields of eastern Anatolia a)                            |
| Diyadin, b) Çaldıran                                                                                      |
| Figure 4.5: $\delta^{18}O-\delta D$ diagram for the eastern Anatolian thermal waters                      |
| Figure 4.6: $CO_2$ - <sup>3</sup> He- <sup>4</sup> He ternary diagram for the eastern Anatolian fluids    |
| Figure 4.7: Schoeller diagrams of the geothermal fields along the NAFZ 69                                 |
| Figure 4.8: $\delta^{18}$ O vs. $\delta$ D diagram of the sampled waters                                  |
| Figure 4.9: Ternary plot of $CO_2$ - <sup>3</sup> He- <sup>4</sup> He for the geothermal fields along the |
| NAFZ                                                                                                      |

| Figure 5.1: Concentration vs EC diagrams for geothermal fields of Kızıldere (a, b),                                  |
|----------------------------------------------------------------------------------------------------------------------|
| Germencik (c, d), Balçova (e, f) and Simav (g, h)78                                                                  |
| Figure 5.2: Evolution of saturation indices in the thermal waters of Kızıldere (A),                                  |
| Germencik (B), Balçova (C) and Simav (D) vs dominant anion concentrations 81                                         |
| Figure 5.3: Evolution of analytic and corrected calcium concentrations and                                           |
| magnesium concentrations vs. total sulphate concentrations in the thermal waters of                                  |
| Kızıldere (A), Germencik (B), Balçova (C) and Simav (D) (see text for further                                        |
| explanation)                                                                                                         |
| Figure 5.4: Concentration vs EC diagrams for geothermal fields of Edremit (a, b),                                    |
| Balikesir (c, d), Dikili (e, f) and Sindirgi (g, h)                                                                  |
| Figure 5.5: Evolution of saturation indices in the thermal waters of Edremit (A),                                    |
| Balıkesir (B), Dikili (C), Sındırgı (D), Emet (E), Salihli (F) and Tekkehamam (G)                                    |
| vs dominant anion concentrations                                                                                     |
| Figure 5.6: Evolution of analytic and corrected calcium concentrations and                                           |
| magnesium concentrations vs. total sulphate concentrations in the thermal waters of                                  |
| Edremit (A), Balıkesir (B), Dikili (C), Sındırgı (D), Emet (E), Sındırgı (F) and                                     |
| Tekkehamam (G)95                                                                                                     |
| Figure 5.7: Evolution of analytic and corrected magnesium and calcium                                                |
| concentrations vs. total sulfate concentrations in the thermal waters of Edremit (A),                                |
| Balıkesir (B), Dikili (C), Sındırgı (D), Emet (E), Salihli (F) and Tekkehamam (G)                                    |
| (sse text for further explanation)                                                                                   |
| Figure 5.8: PHREEQC simulations of a less evolved Emet sample (sample no.6)                                          |
| water reacting with added CO <sub>2</sub> and gypsum                                                                 |
| Figure 5.9: Modelling of dedolomitization and calcite dissolution for the                                            |
| geothermal fields of a) Edremit, b) Balikesir, c) Emet. Trends are modelled for                                      |
| different conditions of fixed PCO <sub>2</sub> at $10^{-1,2}$ , $10^{-1,5}$ , $10^{-2}$ and $10^{-2,7}$ as shown 102 |
| Figure 5.10: Concentration vs EC diagrams for geothermal fields of Çaldıran (a, b),                                  |
| Diyadin (c, d), NAFZ (e, f) 105                                                                                      |
| Figure 5.11: Evolution of saturation indices in the thermal waters of Çaldıran (A),                                  |
| Diyadin (B), and NAFZ (C) vs dominant anion concentrations 108                                                       |

| Figure  | 5.12:   | Evolution    | of    | analytic    | and   | corrected   | calcium     | concentrations  | and   |
|---------|---------|--------------|-------|-------------|-------|-------------|-------------|-----------------|-------|
| magnes  | sium co | oncentration | ıs v  | s. total su | lphat | e concentra | ations in t | he thermal wate | rs of |
| Çaldıra | n (A),  | Diyadin (B   | ), aı | nd NAFZ     | (C).  |             |             |                 | 109   |

# LIST OF TABLES

# TABLES

| Table 3.1: Drilling data on the primary geothermal systems in western Anatolia 31    |
|--------------------------------------------------------------------------------------|
| Table 3.2: Drilling data on the primary geothermal systems in eastern Anatolia 46    |
| Table 3.3: Drilling data on the primary geothermal systems along the NAFZ 51         |
| Table 5.1: Comparison of three different groups of geothermal fields in Turkey,      |
| determined for this study76                                                          |
| Table 5.2: Summary of results from speciation - solubility calculations of Group I   |
| fields (spr: spring)                                                                 |
| Table 5.3: Summary of results from mass-balance calculations of Group I              |
| geothermal fields                                                                    |
| Table 5.4: Summary of results from speciation - solubility calculations of Group II  |
| fields                                                                               |
| Table 5.5: Summary of results from mass-balance calculations of Group II             |
| geothermal fields                                                                    |
| Table 5.6: Summary of results from speciation - solubility calculations of Group III |
| fields                                                                               |
| Table 5.7: Summary of results from mass-balance calculations of Group III            |
| geothermal fields                                                                    |
| Table A.1: Chemical analyses of waters from geothermal fields of western Anatolia    |
|                                                                                      |
| Table A.2: Isotopic compositions waters from geothermal fields of western            |
| Anatolia                                                                             |
| Table A.3: Chemical analyses of waters from geothermal fields of eastern Anatolia    |
|                                                                                      |
| Table A.4: Isotopic compositions waters from geothermal fields of eastern Anatolia   |
|                                                                                      |

| geothermal fields along the NAFZ | from | waters | of    | analyses  | Chemical   | e A.5: | Table |
|----------------------------------|------|--------|-------|-----------|------------|--------|-------|
|                                  |      | •••••  |       |           |            |        |       |
| geothermal fields along the NAFZ | from | waters | ons   | ompositio | Isotopic c | e A.6: | Table |
|                                  |      |        | ••••• |           |            |        |       |

#### **CHAPTER 1**

#### **INTRODUCTION**

From the time of the industrial revolution, the atmospheric concentrations of carbon dioxide (CO<sub>2</sub>) and other Green-House Gases (GHG) (e.g. methane and nitrous oxide) have been increasing continuously which resulted in the rise of the average global surface temperature (Shukla et al., 2010). The level of CO<sub>2</sub> concentration in the atmosphere during this period is reported to have dramatically increased from about 280 ppm to 396.83 ppm mainly due to the burning of fossil fuels (coal, oil, gas) (IPCC, 2007 and Scripps Institution of Oceanography, 2014). Since CO<sub>2</sub> is the primary greenhouse gas, scientists have been searching for techniques to be able to reduce CO<sub>2</sub> emissions and to mitigate the effects of global warming and climate change. For this purpose, CO<sub>2</sub> capture and storage is considered to be one of the main measures which is a process carried out in several stages: the separation of CO<sub>2</sub> from industrial and energy-related sources, the transportation to a storage location and the injection of supercritical CO<sub>2</sub> into deep geologic formations (such as deep saline aquifers, and depleted or active oil reservoirs) for a long-term isolation from the atmosphere.

Prior to the application of this technology, for the safety of both humans and environment it is crucial to perform safety assessment of the reservoir and to examine the behaviour of  $CO_2$  after the injection with respect to the hosting rocks (fluid-rock interactions). Natural analogues provide a valuable source for the investigation of these elements. Gas fields and hydrothermal (geothermal) systems are the two reservoir types that are being studied as natural analogues.

In terms of the geothermal energy potential, Turkey is one of the richest countries in the world with many geothermal fields. These geothermal fields are ideal candidates to be studied as natural analogues for  $CO_2$  storage. In this thesis study, several geothermal fields are selected from western, eastern and northern Anatolia for the application of various geochemical methodologies in order to characterize the reservoir, its potential evolution and the hydrogeochemical processes expected in geological storage. Additionally, the mechanisms that can trap the injected  $CO_2$ are identified which are very important for a successful storage.

#### 1.1. Purpose and Scope

This thesis study is focused on the hydrogeochemical characteristics of geothermal systems in Turkey as natural analogues for  $CO_2$  storage. The main aim of the study is to contribute to the preliminary assessment of the geothermal fields for the potential future projects of  $CO_2$  storage in Turkey.

To accomplish this goal, the database available for several geothermal fields from western, eastern and northern Anatolia are evaluated in terms of possible mechanisms of  $CO_2$  trapping in hydrothermal reservoirs. This evaluation is performed via the use of speciation-solubility relations, estimation of relative contribution of carbonate and sulphate minerals to the system, and hydrogeochemical modelling studies.

#### 1.2. Geographic Setting

Turkey, as located on a tectonically active zone, is characterized by complex geology, and by the presence of extensive volcanism, numerous grabens and active faults, resulting in the formation of large-scale thermal systems each having different characteristics. Thus, various geothermal fields from western, eastern and northern part of Turkey are chosen as natural analogues for this study. The selection of the fields is based primarily on the available and reliable hydrogeochemical data from recent publications. The selected geothermal systems from the western Anatolia are Kızıldere-Denizli, Tekkehamam-Denizli, Salavatlı-

Aydın, Germencik-Aydın, Balçova-İzmir, Seferihisar-İzmir, Salihli-Manisa, Ömer-Gecek-Afyon, Sındırgı-Balıkesir, Simav-Kütahya, Emet-Kütahya, Dikili-İzmir, Balıkesir, Tuzla-Çanakkale and Edremit-Balıkesir fields which are all associated with different grabens. From eastern Anatolia, Diyadin-Ağrı and Çaldıran-Van fields located around young volcanoes and from northern Anatolia the fields along North Anatolian Fault Zone Yalova (town centre), Efteni-Düzce, Mudurnu-Bolu, Seben-Bolu, Bolu (town centre), Kurşunlu-Çankırı, Hamamözü-Amasya, Gözlek-Amasya, and Reşadiye-Tokat are also selected (Fig 1.1).



Figure 1.1: Distribution of geothermal springs in Turkey (from MTA, 2012).

#### 1.3. Material and Methods

For the hydrogeochemical characterization of the systems and the identification of potential trapping mechanisms, various geochemical approaches are utilized. The relevant data are compiled from the previous studies conducted for the selected geothermal fields.

As a first step for the hydrogeochemical characterization, the water types are identified via Schoeller diagrams. Then, the major anion and cation contents of water samples are correlated with their electrical conductivity values, the latter being used as a tracer of the hydrogeochemical evolution of the system. Following this, speciation-solubility calculations are performed with the aid of PHREEQC code (Parkhurst and Appelo, 1999). PHREEQC performs a wide variety of aqueous geochemical calculations and is used for modelling reactions and processes, including (1) speciation and saturation-index calculations, (2) batch-reaction and one-dimensional (1D) transport calculations, and (3) inverse modelling (Parkhurst and Appelo, 2013). In this study, the features of speciation and saturation-index calculations and inverse modelling are used. Saturation index calculations helped with the identification of the minerals that are prone to be dissolved or to be precipitated. The estimation of the relative contribution of carbonate and sulphate minerals to the system is performed using the common ion Ca<sup>2+</sup>. Combined evaluation of the hydrogeochemical patterns and the speciation-solubility calculations led to identification of the potential trapping mechanisms. To further verify the validity of the specified mechanisms, the mass-balance calculations (inverse modelling) are performed by using PHREEQC code which allows determination of the direction and magnitude of mass transfers and the potential geochemical reactions that occur between two hydraulically-connected points of a system.

The possibility of dedolomitization, which is a special trapping mechanism, (dissolution of dolomite accompanied by precipitation of calcite) is also investigated. For those systems/fields where dedolomitization appeared as a possible mechanism, additional modelling of dedolomitization is performed with the assistance of *PHREEQC* code. This modelling helped distinguishing the effects of  $CO_2$  in systems dominated by dedolomitization from those dominated by calcite dissolution.

#### 1.4. Layout of the Thesis

This thesis is divided into 6 chapters. Following this introduction chapter which is Chapter 1;

Chapter 2 is a literature research regarding the fundamentals of  $CO_2$  storage process.

Chapter 3 explains the geologic characteristics of the primary geothermal systems from the western, eastern, and the northern Anatolia.

Chapter 4 is the compilation of the chemical compositions of the selected thermal waters in Turkey from previous studies and the review of their hydrogeochemical characteristics.

Chapter 5 presents the hydrogeochemical calculations and modelling studies and their interpretation in terms of the processes controlling the  $CO_2$  trapping in the geothermal systems.

Chapter 6 gives the major conclusions derived from this thesis study.

#### **CHAPTER 2**

#### LITERATURE REVIEW: SUBSURFACE STORAGE OF CO2

One of humanity's most pressing concerns is the continuous increase of  $CO_2$  emissions in the atmosphere. Geological storage of  $CO_2$  (Fig. 2.1) provides a way to avoid these emissions and to fight against climate change. Once  $CO_2$  is captured from industrial facility or power plant, it is compressed into a dense supercritical form (both temperature and pressure exceed the critical point where the substance has both gas-like and liquid-like qualities), transported by either pipeline or ship and injected under pressure into suitable deep rock formations (IPCC, 2005 and  $CO_2$ GeoNet, 2008).



Figure 2.1: Schematic diagram of CO<sub>2</sub> geological storage (METI, 2010).

Since  $CO_2$  storage is a widely accepted solution against global warming, major research programmes have been carried out in Europe, Australia, Japan, the United States, and Canada since the 1990's. Lessons learned from these investigations provide important insight regarding this topic. This chapter is the review of the information obtained from studies performed so far about the geological storage of  $CO_2$ .

#### 2.1. Sites Suitable for CO<sub>2</sub> Storage

The selection of a storage site is a long and important process. Before making any injections, a detailed image of the layers below the surface is prepared via seismic surveying studies. Following these preliminary assessments, other criteria for a suitable site are examined. The fundamental ones are; (i) sufficient porosity, permeability and storage capacity, (ii) an overlying impermeable rock (the caprock of clay, marl etc.) to act like a trap mechanism for  $CO_2$  and to prevent it from migrating upwards, (iii) the presence of other trapping mechanisms (e.g. solubility trapping, mineral trapping), (iv) a location where pressures and temperatures are high enough (deeper than 800m) to permit supercritical  $CO_2$  to be stored, (v) the remoteness of the storage site from potable waters ( $CO_2$ GeoNet, 2008).

Three storage options are available:

- 1) Deep saline aquifers,
- 2) Depleted hydrocarbon fields,
- 3) Coal seams that cannot be mined.

In the special report of IPCC (2005) it is stated that deep saline aquifers are generally regarded as an effective reservoir for the  $CO_2$  storage since they have the largest storage capacity and they are more widespread than other reservoir options.

The storage studies started in the early 1970s with the first injection of  $CO_2$  into subsurface geological formations in Texas, USA, as part of enhanced oil recovery (EOR) project (i.e increasing the amount of oil that can be extracted from the field via gas injection), and this and many other projects have been ongoing ever since (IPCC, 2005). Currently, the important large-scale projects include Sleipner in Norway, Weyburn in Canada, Otway in Australia and In Salah in Algeria (Fig. 2.2) (Shukla et al., 2010).



Figure 2.2: Existing/proposed CO<sub>2</sub> storage sites (IPCC, 2005). Major projects mentioned in this study are highlighted with a circle.

The *Sleipner* project, which is first commercial application of  $CO_2$  storage, was launched in 1996 in a Norwegian offshore saline aquifer which is 800 m below the seabed of the North Sea. The reservoir (Utsira formation) is a 200–300 m thick sandstone saline aquifer including thin mudstone layers which provide the physical trapping for  $CO_2$ . By mid 2008, 10 Mt (Million tonnes) of  $CO_2$  has been injected into the formation (Shukla et al., 2010). The *Weyburn* project started in the year 2000, in south Canada. The project is the injection of  $CO_2$  into an oil field for EOR. The carbonate reservoir is composed of two aquifers capped by an anhydrite caprock. 20 Mt of CO<sub>2</sub> is expected to be stored within the lifespan of the project of 20-25 years (Shukla et al., 2010). The *Otway* project which is the storage in depleted gas reservoir, started in 2008. Porous sandstone comprises the reservoir while the caprock is the thick-layered low-porosity Belfast mudstone. By June 2010, 50,000 tons of CO<sub>2</sub> has been successfully stored in this project (MIT Energy Initiative, 2014). The injection to a depleted gas reservoir started in 2004 in the *In Salah* project. The reservoir is composed of the Krechba Carboniferous sandstone. More than three million tons of CO<sub>2</sub>, separated during gas production, have been securely stored into the formation. After the analysis of the reservoir, seismic and geomechanical data, the concerns about the integrity of the seal led to the decision to suspend CO<sub>2</sub> injection in June 2011. The future of the injection strategy is under review at present (MIT Energy Initiative, 2014). Most of these projects continue with injection and also geochemical and monitoring investigations.

#### 2.2. Physico – Chemical Processes of CO<sub>2</sub> Storage

Once injected to the reservoir,  $CO_2$  fills pore spaces and fractures of the permeable formation and it buoyantly rises towards the caprock since the immiscible, supercritical  $CO_2$  phase has a much lower density and viscosity than the liquid brine in the reservoir (Fig. 2.3). Over time,  $CO_2$  can displace the insitu fluid in which it may dissolve or mix, or the  $CO_2$  may react with host rocks and the minerals or even the combination of these processes can take place. Due to the corrosive character of  $CO_2$ , the assessment of  $CO_2$ -rock interactions and the determination of the mechanisms that can prevent the  $CO_2$  from reaching the surface and causing leakage, are crucial issues.



Figure 2.3: CO<sub>2</sub> distribution model after 0.1, 0.5, 1.0 and 2.0 years of injection (Hovorka et al., 2001).

#### 2.2.1. Trapping Mechanisms

The success of geological storage depends on a combination of different trapping mechanisms. As hydrologic and chemical processes, trapping mechanisms can be divided into five categories: stratigraphic, structural, residual, solubility and mineral (IEA, 2008). These mechanisms take place based on the local geology and act together when there is more than one mechanism present. Their relative importance is expected to change over time as  $CO_2$  migrates and interacts with the rocks and fluids (Fig. 2.4). Even though the process is very slow (may take place over thousands of years, depending on the reservoir characteristics), the most secure phase of  $CO_2$  trapping is mineral trapping.



Figure 2.4: A general depiction of the development of trapping mechanisms over time (IPCC, 2005).

<u>Stratigraphic trapping</u> is formed by changes in rock type caused by variation in the geological setting (Fig. 2.5). When the supercritical  $CO_2$  is injected, it is not dissolved in formation water immediately, and due to its supercritical state,  $CO_2$  is less dense than the formation water and so it moves upwards until it reaches the top of the formation and is trapped by an impermeable layer of caprock ( $CO_2CRC$ , 2011). The caprock is comprised of clays, salt, shale or ultramafic rock types.



Figure 2.5: The injected CO<sub>2</sub> is trapped by the impermeable caprock (CCP, 2008).

<u>Structural trapping</u> is developed with the shift of impermeable rocks by a fault or fold in the geologic strata (Fig. 2.6) (IEA, 2008). These sealing faults (tilted blocks), anticline structures and unconformities have the potential to trap buoyant  $CO_2$ . Faults can act as permeability barriers in some circumstances and in others, as preferential pathways for fluid flow (Salvi et al., 1999).



Figure 2.6: Examples for the structural trapping: a) fault trapping; b) anticline trapping; c) facies change trapping; d) unconformity trapping (CO<sub>2</sub>CRC, 2011).

<u>Residual trapping</u> which usually begins after the injection stops, occurs with the trapping of  $CO_2$  in the narrow pore spaces in the reservoir rock by the capillary pressure of water (the difference in pressure across the interface between two phases) so that it can no longer move upwards (Fig. 2.7). Eventually, this residually trapped  $CO_2$  can dissolve into the formation water ( $CO_2CRC$ , 2011).



Figure 2.7: Residual trapping of CO<sub>2</sub> within the pores of a rock (CCP, 2008).

 $CO_2$  in the subsurface can go through a series of geochemical interactions with the rock and formation water that will further enhance storage capacity and its security.

In <u>solubility (dissolution) trapping</u> (Fig. 2.8), when  $CO_2$  dissolves in groundwater, its density increases, it becomes heavier than the surrounding water and begins to sink downwards. This allows the  $CO_2$  to become more dispersed in the water, increasing the security of the mechanism and over time, the amount of  $CO_2$  dissolved in the water can also increase ( $CO_2CRC$ , 2011). When  $CO_2$  dissolves into the groundwater, firstly solubility trapping occurs. The solubility of  $CO_2$  in water increases with increasing pressure and decreases with increasing temperature and increasing water salinity.



Figure 2.8: Following physical trapping mechanisms, geochemical trapping (solubility and mineral trapping) mechanisms can take place (Solomon, 2007).

Dissolution of  $CO_2$  in the waters can be represented by the chemical reaction:

 $\mathrm{CO}_2 \left(g\right) + \mathrm{H}_2\mathrm{O} \Longleftrightarrow \mathrm{H}_2\mathrm{CO}_3 \Longleftrightarrow \mathrm{HCO}_3^- + \mathrm{H}^+ \Longleftrightarrow \mathrm{CO}_3^{-2-} + 2\mathrm{H}^+$ 

In the chemical reaction induced by  $CO_2$  injection, initially  $CO_2$  dissolves in water and the weak carbonic acid is formed. This is followed by rapid dissociation of carbonic acid to produce the bicarbonate ion, resulting in an immediate drop in pH and increasing the acidity. The dissolved bicarbonate species react with cations such as alkali earth metals (Ca, Mg, and Ba) or Fe<sup>2+</sup> to precipitate carbonate minerals (e.g. calcite, magnesite or siderite) expected to confine  $CO_2$ .

Further addition of  $CO_2$  to the system results in the increase of the partial pressure of  $CO_2$  and consequently it causes the dissolution of carbonate minerals in the reservoir (Appelo & Postma, 2005).

Solubility trapping increases the acidity of the groundwater, and then dissolved  $CO_2$  reacts directly or indirectly with minerals from the surrounding rocks, leading

to the precipitation of stable carbonate minerals (*mineral trapping*) (Fig. 2.8). The reaction to form these minerals takes place depending on the composition of the reservoir rock, the temperature and pressure, the chemical composition of the water, the water/rock contact area and the rate of fluid flow through the rock ( $CO_2CRC$ , 2011). Formation of carbonate minerals takes place from the continuous reaction of the bicarbonate ions with cations such as calcium, magnesium with the reaction:

$$HCO_3^- + Ca^{2+} = CaCO_3(s) + H^+$$
 (calcite)

Gunter et al. (1993) states mineral trapping as the most permanent form of geological storage. Although this trapping mechanism is believed to be relatively slow, potentially taking a thousand years or longer, the permanence of storage, combined with the potentially large storage capacity of some geological settings makes this mechanism a desirable feature for long-term  $CO_2$  storage.

Carbon geochemistry and stable isotopes with noble gas tracers also provide insight into the understanding of deep carbon cycle and, thus, the subsurface behaviour of  $CO_2$  (Lollar & Ballentine, 2009). The analysis of the carbon isotopic signature of  $CO_2$  helps determine the origins of samples and better understand  $CO_2$  migration. Particularly, using the stable carbon isotopes, the  $CO_2$  lost via dissolution process can be distinguished from the  $CO_2$  lost through precipitation as carbonates. Noble gases provide information about the source of  $CO_2$  in continental settings; moreover, they have also been used to observe the fate of geologically stored  $CO_2$ and to calculate the volume of water in contact with oil reservoirs. In continental settings, the contributions of magmatic fluid to subsurface systems are identified with the examination of the <sup>3</sup>He/<sup>4</sup>He ratios.  $CO_2/^3$ He ratio is utilized in the identification of mantle-derived  $CO_2$  from other sources and the changes in  $CO_2/^3$ He provide a measure of the amount of  $CO_2$  lost or gained.
#### 2.2.2. Dedolomitization

Dedolomitization, which can be considered as the opposite reaction of dolomitization, is a special mechanism of mineral trapping process which occurs under certain conditions (Escorcia et al., 2013). It involves dolomite ( $CaMg(CO_3)_2$ ) dissolution and calcite ( $CaCO_3$ ) precipitation processes where  $Mg^{2+}$  is substituted by  $Ca^{2+}$  ion modifying the porosity and permeability of carbonate rocks.

In the study of Appelo and Postma (2005) it is stated that the groundwater in equilibrium with both calcite and dolomite has special properties represented by the following reaction:

$$Ca^{2+} + CaMg(CO_3)_2 \leftrightarrow 2 CaCO_3 + Mg^{2+}$$

In this case of equilibrium, the  $[Mg^{2+}] / [Ca^{2+}]$  ratio becomes invariant at constant temperature and pressure. Simultaneous occurrence of calcite and dolomite equilibrium, if accompanied by the dissolution of gypsum or anhydrite (fuelling the necessary Ca<sup>2+</sup> ions to the reaction), leads to the process of dedolomitization (Appelo and Postma, 2005).

Gypsum dissolution, as it increases  $Ca^{2+}$  concentration of the system, triggers calcite precipitation which causes the  $CO_3^{2-}$  concentration to decrease. As a result, the dissolution of dolomite is provoked, increasing  $Mg^{2+}$  concentration. The obtained net result is that the transformation of dolomite to calcite is induced by the dissolution of gypsum and waters with increased  $Mg^{2+}$ , and  $SO_4^{2-}$  concentrations are produced. It should also be noted that for each mole of dissolved dolomite, two moles of calcite are precipitated.

 $CaSO_4 + CaMg(CO_3)_2 = 2CaCO_3 + Mg^{2+} + SO_4^{2-}$ 

Dedolomitization creates a quite different carbonate environment than calcite dissolution which is driven by  $CO_2$  instead of the input of  $Ca^{2+}$  ions in dedolomitization (Romanak et al., 2010):

 $CO_2 (aq) + H_2O + CaCO_3 \leftrightarrow Ca^{2+} + 2HCO_3^{-}$ 

According to Auqué et al. (2009), dedolomitization is one of the most desired mechanisms due to the secure mineral trapping system (the calcitized dolomite may develop into a reservoir rock for a few hundred thousands of years) and the net increase in porosity. This increase is the result of the volume created by the dissolution of 1 mole of gypsum (74.7 cm<sup>3</sup>/mole) or anhydrite (46 cm<sup>3</sup>/mole) and 1 mole of dolomite (64.36 cm<sup>3</sup>/mole) which is much larger than the volume filled by the precipitation of 2 mole of calcite (36.93 cm<sup>3</sup>/mole), according to the stoichiometry in reaction. Nevertheless, the distribution of this porosity increase may not be homogeneous and decrease in porosity might occur at a local scale. This argument emphasizes the significance of a detailed mineralogical and geochemical characterization of the reservoirs which are considered for the CO<sub>2</sub> storage, to accurately predict the long term evolution of the system.

## 2.3. Monitoring the Site

Tracking the  $CO_2$  migration in the subsurface and monitoring the system are essential to reduce the uncertainties, to maintain a safe storage and to give early warnings about the potential risks. Monitoring is required for variety of purposes (IPCC, 2005):

- Controlling the injection process, and measuring the well and caprock integrity, injection rates, wellhead and formation pressures.
- Verification of the injected  $CO_2$  quantity and tracking the migration of  $CO_2$  from the injection point.
- Optimization of the project efficiency, injection pressures and drilling of new injection wells.
- With suitable monitoring techniques (such as geochemical, biochemical and remote sensing procedures), making sure that the storage proceeds smoothly and CO<sub>2</sub> remains contained in the reservoir.
- Providing early warning in the case of any seepage or leakage that might require intervention.

• Observation of the ground movements and microseismicity in case of the potential small-scale movements caused by the pressure increase due to the injection.

• Building a reliable relationship with the society and sharing the necessary information regarding the safety of the storage site.

A wide range of monitoring techniques is available and can be applied for  $CO_2$  storage projects. The applicability and sensitivity of these techniques are site-specific to some extent (IPCC, 2005). Proper monitoring techniques are selected according to the technical and geological characteristics of the site and the monitoring purposes (CO<sub>2</sub>GeoNet, 2008). Before conducting an effective monitoring study, a baseline survey which shows the initial state of the site must be performed which provides a tool for the comparison for successive surveys.

In the case of  $CO_2$  storage, the monitoring methods can be divided as direct and indirect monitoring ( $CO_2$ GeoNet, 2008). Direct  $CO_2$  monitoring consists of the measurement and analysis of fluids from deep wells and gas concentrations taken from the soil or atmosphere, whereas geophysical surveys and the monitoring of pressure or pH changes in the groundwater are the indirect monitoring methods.

Both present and future storage projects require the monitoring of  $CO_2$  migration in the sub-surface for the potential environmental impacts on groundwater, air quality and/or plant and animal life. Available methods include well testing and pressure monitoring, chemical analyses of water samples, chemical tracers, chemical sampling, surface and borehole seismic analysis, electromagnetic, and other geotechnical instruments (Fig. 2.9). Effects of  $CO_2$  on atmosphere and ecosystems can be monitored by chemical instruments and the examination of the plant and animal life. Remote sensing, soil analyses and measurement of water quality are also suitable methods to detect the migration of  $CO_2$  (IEA, 2008 and Shukla et al., 2010).



Figure 2.9: Monitoring the CO<sub>2</sub> plume at the Sleipner pilot with seismic imaging method [before injection (which began in 1996) and after injection] (CO2GeoNet, 2008).

Monitoring studies should continue even after the cease of the injection to be able to detect any  $CO_2$  migration that might take place afterwards leading to potential leakage. The improvement and assessment of long-term monitoring and the development of new types of equipment are currently in progress (IEA, 2008).

# 2.4. Migration Mechanisms and Potential Impacts of CO<sub>2</sub> Leakage and Risk Assessment

 $CO_2$  that is trapped by residual trapping, solubility trapping, or mineral trapping mechanisms is securely stored within the reservoir. However,  $CO_2$  that is held by stratigraphic or structural trapping has the potential to move out of the reservoir through leakage pathways and escapes back to the atmosphere; which is the principal risk of geological storage. It may also create local risks to groundwater, to ecology and hence, to humans.

Potential leakage pathways develop due to the man-made (deep wells) or natural (fracture systems and faults) structures in general. These pathways are (a) fractures in caprocks, (b) faults, (c) poorly designed active and badly sealed abandoned wells (Fig. 2.10).



Figure 2.10: Potential leakage scenarios of CO<sub>2</sub> storage (CO2GeoNet, 2008).

In caprocks, the presence of potentially weak spots could provide leakage pathways due to the changes in pressure. The selection of suitable sites and the characterization of parameters of the reservoir (strength, lateral distribution and sealing properties of cap rocks) are critical factors for the early detection of such leakage. Permeable or reactivated faults of reservoirs may provide pathways for fluid ascension. However, detection and prediction of possible  $CO_2$  migration pathways along faults is rather uncertain; therefore, faults need to receive special attention in monitoring. Both active and abandoned wells may form leakage pathways if improperly installed/sealed (failure of the cement for the abandoned wells) or if the materials of the wells are corroded. Due to technical improvements in well cementation and logging, properly sealed boreholes are often considered safer than the older ones, so that monitoring of older wells has to be taken into consideration in monitoring strategies (Rütters et al., 2013). Although the significant vulnerability is caused by the leaks from the abandoned wells, they can be sealed with heavy mud or cement.

In case of leakage, the occurrence of  $CO_2$ -rock interactions is likely, while it is considered highly unlikely that  $CO_2$ -rock interactions are capable of triggering leakage paths. Nevertheless, if a leakage pathway is already in place, these interactions have potential to either enhance leakage via dissolution and shrinkage of clay minerals or restrict it through precipitation of fast reacting minerals (Gaus, 2010).

If leakage is detected in a site, it is expected that the leakage can be eliminated by reducing injection rate or reservoir pressures or by balancing pressure in different parts of the reservoir. The leaks can be safely dissipated and necessary repairing procedures can be performed or the escaped  $CO_2$  can be collected and re-injected since the leakage will be a slow process. However, any dispersal into the atmosphere decreases the effectiveness of the storage (IEA, 2008).

As for the CO<sub>2</sub> impact on human health and environment; for humans, CO<sub>2</sub> is very dangerous at very high concentrations. In fact, CO<sub>2</sub> concentrations above 5000 ppm can cause death if exposed too long (CO<sub>2</sub>GeoNet, 2008). Enclosed environments and topographical depressions have higher risks of increased CO<sub>2</sub> concentration since CO<sub>2</sub> is denser than air, it has the tendency to accumulate close to ground. On marine ecosystems, the main effect will be the local lowering of pH and its impact, and on terrestrial ecosystems the potential effects are death of some plants, potable aquifer contamination and rock dissolution resulting in the decrease of structural integrity due to the acidification of groundwater. Contamination of potable aquifers is one of the main concerns where the potable character of water is significantly modified with the geochemical reactions that may occur. The dissolution of leaking CO<sub>2</sub> acidifies the water, triggering metal mobilisation (Gaus, 2010). All these factors considered, it can be said that CO<sub>2</sub> leakage is dangerous for human and animal health and for ecosystem.

Risk assessment studies aim to the determination and quantification of the potential risks caused by the subsurface injection of  $CO_2$  (IPCC, 2005). Most risk assessments include the usage of scenarios that identify, classify and describe possible future states of the storage site and events that may result in leakage of  $CO_2$  or other risks. These scenarios are the main step for the development of risk

assessment models using all the relative components from the site with respect to the specified case. The assessment models help with the modification of the processes to remove excess risks and to determine and implement appropriate monitoring and intervention strategies to maintain the remaining risks. Natural analogue studies provide a strong base for understanding and identifying the health, safety and environmental risks that may emerge. Careful site selection, correct operation, extensive monitoring studies, performance and risk assessments, effective regulatory supervision and the implementation of remediation measures to eliminate or restrict the causes and impacts of leakage whenever necessary are some of the main procedures that will ensure the safety of the  $CO_2$  storage (IPCC, 2005).

#### **CHAPTER 3**

#### **GEOTHERMAL FIELDS IN TURKEY**

Turkey is situated in the tectonically active Alpine-Himalayan belt and is constantly under the effect of the relative movement of the European and the Afro-Arabian plates, resulting in the formation of extensive volcanism as well as the presence of numerous grabens and active faults. These features induce the widespread geothermal activity in the form of hot springs, fumaroles, hydrothermal alterations and recent mineralizations. The hot springs in Turkey are distributed in parallel with the fault systems and the Tertiary–Quaternary volcanics (Fig 3.1). More than 600 hot springs are present in Turkey some of which have temperatures exceeding 100°C that lead to the recognition of an important geothermal potential in Turkey (Söğüt et al., 2010). In fact, Turkey is the seventh richest country in the world and 1<sup>st</sup> in Europe with respect to geothermal energy potential (Dagistan, 2007). In regard to this potential, extensive geothermal exploration and investigations have been implemented by the General Directorate of the Turkish Mineral Research and Exploration (MTA) since the 1960s. Balçova-İzmir (1962) and Kızıldere-Denizli (1968) are some of the examples for the earliest fields discovered. According to the MTA report of geothermal energy studies, a total of 190 geothermal fields have been discovered by MTA and the number of drilled wells is 506 with the total depth of 252,515 m (MTA, 2011).

The highest geothermal energy potential in Turkey is associated with the western Anatolian region and, as a result, most of the geothermal energy studies are focused on this region. The estimated reservoir temperature using geothermometry applications is as high as about 250°C (Mutlu and Güleç, 1998) which is also

confirmed by the bottom hole temperatures measured in Kızıldere and Germencik fields. Mutlu and Güleç (1998) and Güleç et al. (2002) suggest that the extensional tectonics of western Anatolia provide a deep-seated heat source (associated with asthenospheric upwelling) and a deep circulation of waters along the faults of the widespread graben system.

The northern Anatolian region is bounded to the south by the dextral North Anatolian Fault along which most of the geothermal fields are situated. The geothermometry applications yield reservoir temperature estimates around 110 °C (Mutlu and Güleç, 1998). This relatively low geothermal energy potential in the North Anatolian region is attributed to the lack of a regional heat source and the restriction of local magmatic activities which are limited to pull-apart basins (Mutlu and Güleç, 1998; Güleç et al., 2002).

The eastern Anatolian region, on the other hand, undergoes contemporary compression. Despite the availability of a potential heat source at depth and recently active volcanoes, the relatively moderate geothermal energy potential of this region can be attributed to the lack of well-developed fault systems and consequently, the deficiency of deep hydrothermal circulation (Mutlu & Güleç, 1998).

The utilization fields of geothermal energy in Turkey include domestic heating, greenhouse heating, industrial processes, heat pumps, spas and thermal resorts for balneological purposes, and electricity generation. Presently operating geothermal power plants of Turkey are in Denizli-Kızıldere, Aydın-Germencik, Çanakkale-Tuzla, Aydın-Salavatlı, İzmir-Seferihisar and Aydın-Bozköy-Çamur fields (MTA, 2011). In addition, there are more fields in development which are suitable for electricity production.



Figure 3.1: Distribution of geothermal areas and hot-springs in Turkey in relation to the major tectonic and volcanic features (from MTA, 2012). The selected fields for this study are indicated by black circles.

Given that the hydrogeochemical data used in thesis study are from the fields located in western, eastern and northern Anatolia, the geologic characteristics of geothermal fields in these regions are further explained in the following sections.

#### 3.1. Western Anatolia

Western Anatolia is a valuable region in terms of geothermal energy. The grabens in this region host the main and the most important geothermal fields which comprise approximately 70% of the total geothermal energy potential in Turkey (Yılmazer, 2009).

Western Anatolia comprises two major paleotectonic units, the Sakarya Continent to the north and the Menderes-Taurus platform to the south (Figure 3.2A), which are separated from each other by the İzmir-Ankara Suture representing a branch of the Neo-Tethys (Şengör, 1984). The Sakarya Continent is composed of a basement made up of Paleozoic to Triassic aged metamorphic rocks of Kazdağ Massif and Karakaya Complex (amphibolites, gneisses, schists, phyllites, marbles, metaperiodites, metabasites); this basement is overlain by Tertiary clastics and carbonates (Bingöl, 1969; Bingöl et al., 1973; Bozkurt and Mittwede, 2001). The Menderes-Taurus platform consists of a basement comprised by a gneissicmigmatitic core surrounded by a schist and marble envelope (Dürr, 1975; Şengör et al., 1984), known as the Menderes Massif metamorphics; these metamorphics are overlain by Upper Cretaceous ophiolitic mélange (Şengör & Yılmaz, 1981) and Neogene terrestrial sediments. Both the Sakarya Continent and the Menderes Massif seem to have been largely affected by magmatic activities characterized by widespread volcanic products and granitic intrusions of Neogene-Quaternary age.

As regard to the neotectonic setting, western part of Turkey is one of the most seismically active and rapidly deforming regions in the world. In this region, the most distinguished neotectonic features are the approximately E–W-trending grabens with their intervening horsts and related active normal faults. These grabens are the products of N-S extension prevailing in the region since about the late Miocene (Dewey and Şengör, 1979; Şengör et al., 1985; Bozkurt, 2003) in response to the westward escape of the Anatolian plate in between the North Anatolian and the East Anatolian Fault Zones which formed as a consequence of Arabian-Anatolian collision along the Bitlis-Zagros Suture Zone (Fig. 3.2B). The largest and best developed of these grabens comprise the Edremit, Bakırçay, Kütahya, Simav, Gediz, Küçük Menderes, Büyük Menderes, and Gökova grabens (Fig. 3.2C).

The studies conducted for the distribution of the geothermal fields with respect to the major grabens reveal that in general, the high-enthalpy fields are bound to the grabens in the south, while the grabens at the north include the relatively lowenthalpy fields (Şimşek & Güleç, 1994). From south to north, the geothermal systems comprise Kızıldere-Denizli, Tekkehamam-Denizli, Salavatlı-Aydın, and Germencik-Aydın geothermal systems within the Büyük Menderes Graben; Balçova-İzmir and Seferihisar-İzmir near the Çubukludağ Graben; Salihli-Manisa within the Gediz Graben; Ömer-Gecek within Afyon Graben; Sındırgı-Balıkesir and Simav-Kütahya within the Simav Graben; Emet-Kütahya within Kütahya Graben; Dikili-İzmir and Balıkesir area near Bakırçay (Bergama) Graben, and Tuzla-Çanakkale and Edremit-Balıkesir fields within Edremit Graben (Fig 3.2C).



Figure 3.2: A) Paleotectonic units and suture zones of Turkey (from Şengör, 1984). RP:Rhodope-Pontide Fragment, KB:Kırşehir Block, S:Sakarya Continent, MT:Menderes-Taurus Block, DAYK:East Anatolian Accretionary Complex, 1-Main-Paleo-Tethys Suture, 2-Karakaya Suture, 3-Intra Pontide
Suture, 4-Erzincan Suture, 5-İzmir-Ankara Suture, 6-Inner Tauride Suture, 7-Antalya Suture, 8-Asurid Suture, 9-Çüngüş Suture, 10-Maden Suture. B) Neotectonic structures of Aegean and Eastern Mediterranean regions (from Bozkurt, 2001) (WAEP: Western Anatolian Extensional Province). C) Geothermal fields of Western Anatolia (Şimşek & Güleç, 1994).

In the following section, the main geological features of the primary geothermal systems of western Anatolia are reviewed. The fields are grouped according to the associated grabens as previously mentioned. The data compiled from drilling studies is summarized in Table 3.1.

| Graben                | Geothermal<br>System    | No. of<br>drilled<br>wells | Max<br>drilled<br>depth (m) | Max<br>measured<br>Temp.(°C) | Reservoir rocks                                                                                                                            | Cap rocks                                                                                        | References                                                                 |
|-----------------------|-------------------------|----------------------------|-----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Büyük Menderes Graben | Kızıldere<br>(Denizli)  | 21                         | 2261                        | 242                          | Pliocene limestone, Paleozoic<br>to Mesozoic Menderes Massif<br>marble, schist, and quartzite                                              | Pliocene alternating<br>sandstone,<br>conglomerate, claystone                                    | Şimşek, 2003;<br>Şimşek et al., 2005;<br>Tarcan, 2005;<br>MTA, 2005        |
|                       | Tekkehamam<br>(Denizli) | 2                          | 2001                        | 168                          | Pliocene limestone, Paleozoic<br>to Mesozoic Menderes Massif<br>marble, schist, and quartzite                                              | Pliocene alternating<br>sandstone,<br>conglomerate, claystone                                    | Gökgöz, 1998;<br>MTA, 2005; Karakuş<br>& Şimşek, 2013                      |
|                       | Salavatlı<br>(Aydın)    | 2                          | 1510                        | 172                          | Paleozoic to Mesozoic<br>Menderes Massif marble,<br>quartzite, and mica shists                                                             | Pliocene alternating<br>sandstone,<br>conglomerate, claystone                                    | Özgür, 2003; Tarcan,<br>2005; MTA, 2005;<br>Karamanderesi, 2013            |
|                       | Germencik<br>(Aydın)    | 9                          | 2398                        | 232                          | Miocene sandstone,<br>conglomerate, Paleozoic to<br>Mesozoic Menderes Massif<br>marble, schist and quartzite                               | Pliocene alternating<br>sandstone,<br>conglomerate, claystone,<br>siltstone                      | Tarcan, 2005;<br>MTA, 2005; Karakuş<br>& Şimşek, 2013                      |
| Çubukludağ Graben     | Balçova<br>(İzmir)      | 31                         | 1100                        | 140                          | Bornova melange chert,<br>limestone, serpentinite and<br>mafic submarine volcanics                                                         | Neogene interbedded<br>conglomerate,<br>sandstone, claystone,<br>mudstone, marl<br>and limestone | Şimşek & Güleç<br>1994; Tarcan, 2005;<br>MTA, 2005;<br>Tarcan et al., 2009 |
|                       | Seferihisar<br>(İzmir)  | 6                          | 2009.5                      | 153                          | Bornova melange chert,<br>limestone, serpentinite and<br>mafic submarine volcanics                                                         | Neogene interbedded<br>conglomerate,<br>sandstone, claystone,<br>mudstone, marl<br>and limestone | Tarcan & Ünsal,<br>2003;<br>MTA, 2005                                      |
| Gediz Graben          | Salihli<br>(Manisa)     | 20                         | 1189.1                      | 168                          | Paleozoic to Mesozoic<br>Menderes Massif marble,<br>schist, gneiss and quartzite                                                           | Neogene intercalated<br>claystone, sandstone,<br>conglomerate and<br>siltstone                   | Tarcan, 2005;<br>MTA, 2005;<br>Özen, 2012                                  |
| Afyon<br>Graben       | Ömer-Gecek<br>(Afyon)   | 25                         | 905                         | 98                           | Neogene limestones,<br>conglomerates, Paleozoic schist<br>and marble                                                                       | Neogene sandy clay, silt,<br>marl, tuffs and<br>clayey limestone                                 | Mutlu, 1998;<br>MTA, 2005                                                  |
| Simav Graben          | Sındırgı<br>(Balikesir) | 1                          | 987                         | 106                          | Neogene dacite and tuff, Upper<br>Cretaceous serpentine and<br>recrystallized limestone                                                    | Neogene conglomerate,<br>sandstone, siltstone and<br>marl                                        | MTA, 2005;<br>Aksoy et al., 2009                                           |
|                       | Simav<br>(Kütahya)      | 15                         | 958                         | 162.4                        | Neogene Naşa basalts;<br>Mesozoic limestone,<br>sandstone, conglomerate of<br>Kırkbudak fm; Paleozoic to<br>Mesozoic Simav marble, schist, | Neogene rocks of<br>claystone, sandstone and<br>conglomerate                                     | Gemici & Tarcan,<br>2002;<br>MTA, 2005                                     |
| Kütahya<br>Graben     | Emet<br>(Kütahya)       | 4                          | 325                         | 49                           | Paleozoic to Mesozoic<br>Menderes Massif gneiss, schist,<br>phyllites and marble                                                           | Neogene alternating<br>conglomerate, sandstone<br>and limestone                                  | Gemici et al., 2004;<br>MTA, 2005                                          |
| Bakırçay<br>Graben    | Dikili<br>(İzmir)       | 11                         | 1500                        | 131.5                        | Late Miocene-Pliocene fracture<br>zones in Yuntdağ volcanic-I<br>consist of altered andesite                                               | Pliocene mudstone,<br>siltstone, limestone,<br>sandstone and<br>conglomerate of Soma fm          | Özen et al., 2005;<br>MTA, 2005;<br>Karahan, 2013                          |

Table 3.1: Drilling data on the primary geothermal systems in western Anatolia

| Graben             | Geothermal<br>System   | No. of<br>drilled<br>wells | Max<br>drilled<br>depth (m) | Max<br>measured<br>Temp.(°C) | Reservoir rocks                                                                                                                                | Cap rocks                                                                                                                  | References                                        |
|--------------------|------------------------|----------------------------|-----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Bakırçay<br>Graben | Gönen<br>(Balıkesir)   | 17                         | 800                         | 80                           | Paleozoic to early Mesozoic<br>gneiss, schist, marble,<br>granodiorite and crystallized<br>limestone                                           | Upper Miocene-Pliocene<br>conglomerate,<br>sandstone, marl,<br>claystone, clayey<br>limestone                              | MTA, 2005;<br>Mutlu, 2007;<br>Mutlu & Kılıç, 2009 |
| Edremit Graben     | Tuzla<br>(Çanakkale)   | 14                         | 1020                        | 174                          | Lower Miocene rhyolitic<br>tuffs, ignimbrites, latitic and<br>rhyolitic lavas; Paleozoic schist,<br>crystallized limestone and<br>granodiorite | Miocene tuffitic<br>claystone, conglomerates<br>and sandstone                                                              | Tarcan, 2005;<br>MTA, 2005;<br>Baba et al., 2009  |
|                    | Edremit<br>(Balıkesir) | 22                         | 496                         | 62                           | Permeable agglomerate and<br>conglomerate units; Plio-<br>Quaternary unconsolidated<br>sandstone, mudstone and<br>conglomerate                 | Ballıca Formation of<br>siltstone, marl,<br>conglomerate,<br>sandstone, clayey<br>limestone; Plio-<br>Quaternary sediments | MTA, 2005;<br>Avşar et al., 2013                  |

Table 3.1 (cont'd): Drilling data on the primary geothermal systems in western Anatolia

## Büyük Menderes Graben: Kızıldere, Tekkehamam, Salavatlı, Germencik

Regarding the energy potential, the most important fields are the ones related with the Büyük Menderes Graben (BMG) in the south. BMG which is represented by a great number of hot springs is an E-W trending graben structure, approximately 175 km long and 10-20 km wide, bounded by active normal faults. The prominent geothermal fields of BMG include Kızıldere, Tekkehamam, Salavatlı and Germencik (Fig. 3.3).

The Kızıldere geothermal field is located 40 km west of the city of Denizli, in the eastern section of the BMG, and it is the first acknowledged high-temperature geothermal field in Turkey. Tekkehamam field is also located at the eastern segment, while Salavatlı geothermal field is in the middle, and Germencik is in the western part of the BMG.



Figure 3.3: General geologic map and location of important geothermal fields of BMG (Karakuş & Şimşek, 2013).

The basement of these fields is composed of Menderes Massif metamorphics consisting of gneisses, schists, and an alternation of quartzites, micaschists and marbles known as the İğdecik Formation. This formation is overlain by fluvial and lacustrine Pliocene sediments, that are divided into four lithologic units, from bottom to top: the Kızılburun Formation, a 200-m thick formation of alternating red and brown conglomerates, sandstones, shales and lignite layers; the Sazak Formation, comprising intercalated gray limestones, marls and siltstones, 100-250m in thickness; the Kolonkaya Formation, made up of yellowish green marls, siltstones and sandstones, 350-500m in thickness, and, finally, the Tosunlar Formation, composed of alternating units of poorly-consolidated conglomerates, sandstones and mudstones with fossiliferous clay units, about 500m in thickness (Simsek et al., 2005). These units are unconformably overlain by Quaternary alluvium. In Kızıldere field, Sazak formation, İğdecik formation and deep-seated gneisses and quartzites are the three main reservoirs (Simsek et al., 2005), whereas Germencik field has two reservoirs, quartz schists, gneisses and marbles of Menderes Massif comprise the first reservoir, Neogene aged sandstones and conglomerates form the secondary reservoir. Clay-bearing sedimentary levels of Neogene age act as cap rock of the system (Filiz et al., 2000).

### **Çubukludağ Graben: Seferihisar and Balçova**

The Seferihisar geothermal field is situated 40 km SW of İzmir close to the Aegean Sea within the Çubukludağ graben. Balçova geothermal field is located to the NE of the Seferihisar field and it is approximately 10 km SW of İzmir (Fig. 3.4).



Figure 3.4: The Seferihisar–Balçova Geothermal system (Magri et al., 2010 and the references therein)

The stratigraphic series of the Seferihisar and Balçova areas consist of Paleozoic metamorphic rocks of the Menderes Massif as basement which is overlain by the Upper Cretaceous to Paleocene Bornova mélange (İzmir flysch) consisting of interbedded conglomerate, sandstone-shale, limestone lenses, limestones and

serpentinite bodies, mafic volcanics, chert and their complexes. These units are covered by Neogene terrestrial sediments of interbedded conglomerate, sandstone, claystone, mudstone, and marl and limestone lenses. Quaternary alluvium overlies all the lithologies. Fractured mafic submarine volcanics and highly permeable limestone and serpentinite bodies of the Bornova mélange are the reservoir rocks, while relatively impermeable clay-rich zones and sandstone, shale levels of the Neogene sediments act as the system cap rock (Tarcan & Gemici, 2003; Tarcan et al., 2009).

#### Gediz Graben: Salihli

Gediz Graben which is the second largest graben of western Anatolia after BMG, is 150 km long and up to 40 km wide. The geothermal fields of Salihli are located in the southern part of the Gediz Graben and approximately 48 km SE of Manisa (Fig. 3.5).



Figure 3.5: Simplified hydrogeological map of the Gediz Graben (Tarcan, 2005 and the references therein).

The Salihli geothermal fields are divided into four main groups from west to east as Caferbeyli, Sart-Çamur, Üfürük and Kurşunlu. The stratigraphic sequence of the area starts with the Paleozoic metamorphics of the Menderes Massif as the basement. The Neogene terrestrial sediments, which are called as Acidere, Göbekli and Asartepe including poorly cemented clayey levels, have very low permeability as a whole. The oldest sedimentary unit, Acidere formation consists of fine grained calcareous mudstones, siltstones, sandstones and pebbly sandstones. The Göbekli formation covers a vast area in the region and is dominated by intercalated sandstone, pebbly sandstone, conglomerate beds and mudstones. The Asartepe formation consists of poorly compacted alluvial-fan deposits that comprise mainly conglomerates with intercalated sandstone. The older units are overlain unconformably by Quaternary travertines and alluvium (Tarcan et al., 2000; Özen et al., 2012). The metamorphics of the Menderes Massif act as aquifer for both cold ground waters and thermal waters. The clayey levels of the Neogene terrestrial sediments act as cap rocks for the geothermal systems.

#### Afyon Graben: Ömer-Gecek

In Afyon area a total of four geothermal fields are present: Ömer–Gecek, Gazlıgöl, Sandıklı, and Heybeli-Karaburun. Ömer-Gecek field is a distinguished area with its many hot springs and it is located 15 km northwest of the city of Afyon (Fig. 3.6). Most of the hot springs are concentrated in three sites: the Uyuz Bath, Ömer Bath, and Gecek Bath.



Figure 3.6: Location map of the geothermal fields in Afyon, Turkey (Şimşek & Güleç, 1994).

The oldest unit in the Ömer-Gecek field is the metamorphic rocks of Paleozoic age. In a general sequence, they are observed from bottom to top as: (1) muscovitebiotite-calc-quartz schist; (2) marble; and (3) albite-chlorite-muscovite-sericite schist. Meta-conglomerate and meta-sandstones are also present as big lenses and bands in the schists. Neogene deposits comprised of conglomerate-sandstone, clayey limestone-sandstone, and volcanic glass-trachyandesitic tuff unconformably overlie the Paleozoic basement. As a result of the volcanic activity, tuffs, agglomerates, and lava flows of andesitic, trachytic, trachyandesitic and basaltic compositions are intercalated with the Neogene sediments. Quaternary deposits of travertine and alluvium are the youngest sediments observed in the area. Neogene limestone, silicified limestone, and Paleozoic schist and marbles are the most likely reservoir rocks of the field. Sandy clay, silt, marl and tuffs of Neogene age are the main cap rocks (Mutlu, 1998).

## Simav Graben: Sındırgı, Simav

Sindirgi geothermal field is 25 km east of Balikesir-Sindirgi town and it is located on the western segment of Simav graben. Simav geothermal field, which includes thermal waters of Eynal, Çitgöl and Naşa, is located in the central part of the Simav graben approximately 4 km north of Simav town (Fig. 3.7).



Figure 3.7: Location map of Simav geothermal area, Turkey (Palabıyık & Serpen, 2008 and the references therein)

The basement of Sindirgi geothermal field is formed by the complex of Upper Cretaceous serpentinite, radiolarite and limestone. This unit is unconformably overlain by Neogene sediments (conglomerate, sandstone, siltstone and marl) and mafic volcanics (dacite and tuff) (Aksoy et al., 2009). There are two different reservoir rocks in the field. First one is the mafic volcanic series which are close to the surface, and the other one is Upper Cretaceous recrystallized limestones. Ophiolitic units around the area and Neogene sediments form thick cap rocks of the field.

On the other hand, the basement of Simav geothermal field is the Paleozoic Simav metamorphics which consist of quartzite, quartz-muscovite schist, mica-schist,

calcschist and recrystallized limestone (marble). This unit is overlain unconformably by Mesozoic Kırkbudak formation (conglomerate, sandstone, siltstone and limestone). These rocks are covered by Cenozoic Toklargözü formation and Eynal formation made up of coarse clastic rocks The Paleocene Eğrigöz granite cuts the metamorphics and Kırkbudak formation. The Naşa basalts are the youngest volcanic rocks. Main reservoir rocks of the field are calcschist and recrystallized limestone levels of Kırkbudak formation; the Naşa basalts comprise the potential (secondary) reservoir rocks. Impermeable Neogene rocks, such as claystone, sandstone and conglomerate, cap the Simav geothermal system (Gemici & Tarcan, 2002; MTA, 2005).

# Kütahya Graben: Emet

Emet geothermal field is located in the N-S trending Hisarcık-Emet basin, close to Kütahya graben (Fig. 3.8).



Figure 3.8: Geological map of Emet geothermal field (Gemici et al., 2004 and the references therein).

Menderes Massif metamorphic rocks constitute the principle basement rocks of Emet geothermal field. Paleocene Eğrigöz granite cuts the metamorphic rocks. Neogene lacustrine sediments (Kızılbük formation) in the Emet area consist, from bottom to top, of: basal conglomerate and sandstone, alternating thin-bedded limestone with lenses of marl and tuff, and a red unit that is composed of conglomerate, sandstone, clay, tuff, marl, limestone, coal and gypsum bands. A borate bearing unit of clay with marl, limestone and tuff intercalations (Hisarcık and Emet formations) and capping basalts overlies the red unit. The youngest features are the Quaternary deposits of travertine and alluvium. Investigations show that there are two reservoirs for the thermal waters; Paleozoic metamorphic rocks and Neogene terrestrial rocks (Gemici et al., 2004; MTA, 2005).

#### Bakırçay Graben: Dikili, Balıkesir

Thermal and mineral waters of Dikili town are located 100 km far from İzmir on the western segment of Bakırçay graben. On the basis of locality, geothermal systems of this area can be divided into three groups: (1) Dikili, (2) Kaynarca and (3) Kocaoba geothermal systems. Located near the eastern part of Bakırçay graben, Balıkesir is one of the largest geothermal provinces in Turkey. There are eight geothermal fields in the Balıkesir region; these are Gönen, Manyas, Pamukçu, Bigadiç, Sındırgı, Edremit, Balya and Susurluk geothermal fields (Fig. 3.9).



Figure 3.9: Geological map of the Balıkesir region showing the geothermal areas (from Mutlu & Kılıç, 2009).

In the Dikili area, the basement is comprised of Tertiary granodiorite of Kozak Massif. Neogene Yuntdağı volcanics, clayey limestone - marl - siltstone mudstone - sandstone - conglomerate intercalations of Soma formation, Dededağı basalts and Quaternary alluvium are the cover units of the granodioritic basement. The composition of Yuntdağı volcanics is andesite, dacite and rhyolite. Due to the well-developed fracture systems of these volcanics, they act as reservoir rocks, whereas mudstones and siltstones in Soma formation act as cap rocks for the system (Özen et al., 2005; MTA, 2005; Karahan, 2013).

In the Balıkesir area, metamorphic rocks consisting of gneiss, schist, marble and ophiolites of Paleozoic to early Mesozoic age and a mélange association of upper Cretaceous age form the basement. In the area, there are also several granitic plutons with ages ranging from Oligocene to middle Miocene. All these magmatic rocks are covered by Neogene sediments comprised of conglomerate, sandstone, marl, claystone and clayey limestone. The youngest unit is the Quaternary alluvium. The reservoir rocks in geothermal fields of the Balıkesir area are gneiss, marble, granodiorite and recrystallized limestone of Paleozoic to early Mesozoic age. The upper Miocene-Pliocene sediments such as conglomerate, sandstone, marl, claystone, form the cap rock of the systems (MTA, 2005; Genç 1998 in Mutlu, 2007).

#### Edremit Graben: Tuzla, Edremit

Tuzla geothermal field is located in northwestern Turkey, 80 km SW of Çanakkale and 5 km from the Aegean Sea. Due to the effect of seawater, the thermal water of Tuzla has extremely high dissolved salt content. Edremit geothermal field which is 87 km W of Balıkesir, is located on the eastern segment of Edremit graben. (Fig. 3.10).



Figure 3.10: Geological map of the Biga Peninsula (Okay & Satır, 2000).

The basement of the Tuzla geothermal field consists of Paleozoic metamorphic rocks that are schist and recrystallized limestone. The metamorphic basement is intruded by a large granodioritic pluton, named as Kestanbol pluton. These units are overlain by Mesozoic conglomerate, sandstone, marl and limestone-sandstone which are in turn overlain by Miocene rhyolitic tuffs, ignimbrites, latitic and rhyolitic lavas. Different type of lavas and recrystallized limestone of metamorphic basement comprise the reservoir rocks, whereas tuffitic claystone, conglomerates and sandstones on the top of these units act as cap rock for the system (Gevrek et al., 1984-1985; MTA, 2005).

The basement of Edremit geothermal field is made up of metamorphic rocks (schists, gneisses, amphibolites, metadunites, migmatites, and marbles) of the Kazdağ Massif. The basement is overlain by spilitic basalts, radiolarites and clastics of Karakaya Formation which are also overlain by the sandy limestones of Bilecik Formation. These units are intruded by the Eybek Granodiorite. The Plio-

Quaternary sediments of unconsolidated sandstone, mudstone and conglomerate form the youngest units in the field. Two aquifers are present in the field: a deeper confined aquifer and a shallower unconfined aquifer. The shallower aquifer is comprised of Quaternary and Plio-Quaternary loosely cemented, unconsolidated sandstone, mudstone and conglomerate units. This shallow aquifer overlies the Ballıca Formation of siltstone–marl–conglomerate–sandstone–clayey limestone which is impermeable and acts as a cap rock for the deeper confined aquifer. The deeper aquifer is composed of agglomerate and conglomerate units which are permeable (Avşar et al., 2013).

#### 3.2. Eastern Anatolia

Eastern Anatolia has a rather moderate geothermal potential resulting from the lack of deep fault systems which prevent deep hydrothermal circulation of waters, despite the widespread Neogene-Quaternary volcanism which provide a sufficient heat source in the region (Mutlu & Güleç, 1998).

The geologic framework of eastern Anatolia has been characterized by the collision between the Arabian and the Anatolian plates in middle Miocene. The tectonic regime in the region seems to have changed from compressional–contractional in middle Miocene-early Pliocene to compressional–extensional (tectonic escape) until present (Koçyiğit et al., 2001). By the ongoing convergence between the Arabian and the Eurasian plates, the Anatolian Plate is squeezed out with a westward motion along the East and North Anatolian faults. Five different tectonic blocks are recognised in Eastern Anatolia: i) the Eastern Rhodope–Pontide fragment (granulite facies rocks), ii) northwestern Iranian fragment (magmatic–migmatitic lithologies covered in most parts by collision-related volcanics), iii) Eastern Anatolian Accretionary Complex, EAAC (ophiolitic mélange with flysch units), iv) Bitlis–Pötürge Massif (gneisses, schists, quartzites and marbles), and v) the Arabian foreland (Keskin, 2007) (Fig. 3.11).



Figure 3.11: Maps showing a) the location, b) major tectonic units and c) geology of eastern Anatolia. (from Keskin, 2007 in Mutlu et al., 2012).

Following the middle Miocene collision of the Arabian and Anatolian plates, intense volcanic activity seems to have initiated and generated lava flows and pyroclastics of variable composition (from basalts to rhyolites) which cover the basement units. This activity has given rise to the formation of several stratovolcanoes aligned in a NE–SW direction (e.g. Ararat, Tendürek, Süphan, and Nemrut) aging from 2.5 to <0.01Ma (Yılmaz et al., 1998; Özdemir et al., 2006; Özdemir, 2011) (Fig. 3.11). Among them, Nemrut volcano on the southwest coast of Lake Van is reported to be historically active where the latest gas and ash eruptions took place in 1692 (Karakhanian et al., 2002).

The important geothermal areas of the region are concentrated around the young volcanoes (e.g., Diyadin-Ağrı, Çaldıran-Van, Nemrut-Bitlis areas) (Mutlu and Gulec, 1998; Mutlu et al., 2012). The drilling data relevant to Diyadin and Çaldıran geothermal fields are given in Table 3.2.

| Geothermal<br>System | No. of<br>drilled<br>wells | Max<br>drilled<br>depth (m) | Max<br>measured<br>Temp.(°C) | Reservoir rocks                                                                                                                            | Cap rocks                                                                                                                                                           | References                                         |
|----------------------|----------------------------|-----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Diyadin<br>(Ağrı)    | 6                          | 215.1                       | 78                           | Paleozoic marbles, gneiss, schists<br>and lacustrine limestones                                                                            | Pliocene-Quaternary schists,<br>altered tuffs and ignimbrites                                                                                                       | Pasvanoğlu & Güler,<br>2010;<br>Mutlu et al., 2013 |
| Çaldıran<br>(Van)    | 1                          | 573                         | 83                           | Paleozoic to Mesozoic metamorphic<br>rocks of serpentinized peridotite,<br>gabbro, volcanic deposits, red<br>limestone and sandy limestone | Plio-Quaternary andesite, basalt,<br>tuff, ignimbrite, pyroclastic rocks;<br>Eocene-Miocene sediments of<br>sandstone, sandy limestone,<br>marl, shale and mudstone | Aydın et al., 2013                                 |

Table 3.2: Drilling data on the primary geothermal systems in eastern Anatolia

# **Diyadin Geothermal Field**

Diyadin geothermal field is located at southeast of Ağrı (Fig. 3.12) and it is a tectonic depression where many hot and cold springs are present.



Figure 3.12: Location map of Diyadin geothermal field (Mutlu et al., 2013).

The basement of Diyadin field consists of marble, gneiss, schist and quartzite of Paleozoic-Mesozoic age. Above this unit, upper Cretaceous ophiolitic rocks (serpentinized peridotite, gabbro, volcanic deposits, red limestone and sandy limestones) are observed. These units are overlain by sediments of Miocene to Pliocene age made up of sandstone, sandy limestone, marl, micritic limestone, shale, claystone, mudstone and evaporates. Pliocene-Quaternary andesite, basalt, tuff, ignimbrite, lava flow and pyroclastic rocks which are named as Tendürek Volcanics, cover all the units. At the top, Quaternary alluvium and travertine are present (Mutlu et al., 2013). Paleozoic marbles, gneiss, schists are the main reservoir rocks whereas the lacustrine limestones form the secondary reservoir

rocks due to their relatively high secondary porosity and permeability. Pliocene-Quaternary schists and altered tuffs and ignimbrites comprise the cap rocks (Pasvanoğlu, 2013).

# **Çaldıran Geothermal Field**

The geothermal springs in the Çaldıran plain are situated at northeast of Lake Van (Fig. 3.13).



Figure 3.13: Location map of Çaldıran geothermal field (Aydın et al., 2013).

Paleozoic metamorphics and upper Cretaceous ophiolitic mélange (also called Kemertepe Complex) which consists of serpentinized peridotite, gabbro, volcanic deposits, red limestone and sandy limestone blocks, form the basement of the area.

Sediments of Eocene-Miocene age (mainly carbonates, evaporates) overlie the mélange. These sediments include sandstone, sandy limestone, marl, micritic limestone, neritic limestone, shale, claystone and mudstone. Above these units, Pliocene-Quaternary andesite, basalt, tuff, ignimbrite, lava flow and pyroclastic rocks (Tendürek Volcanics) are observed. Quaternary alluvium covers all the units. Reservoir rocks of Çaldıran geothermal field are comprised of Paleozoic-Mesozoic metamorphic rocks and the cap rocks are made up of Plio-Quaternary volcanic rocks and Eocene-Miocene sediments (Aydın et al., 2013).

#### **3.3. Northern Anatolia**

The important geothermal areas of northern Anatolia are situated along one of the major neotectonic structures (seismically active zones) of Turkey, North Anatolian Fault Zone (NAFZ). The geothermal activity is concentrated especially in the western and central-western segments of the zone associated with the tectonic activity along the NAFZ. As previously mentioned, this region has the lowest geothermal energy potential in Turkey, mainly due to restriction of the heat source (young magmatic activities) to pull-apart basins (Mutlu & Güleç, 1998). The major geothermal fields located along the NAFZ are from west to east: Yalova, Efteni, Mudurnu, Seben, Bolu, Kurşunlu, Hamamözü, Gözlek, and Reşadiye (Fig. 3.14).



Figure 3.14: Location map of the sampled geothermal fields along the NAFZ (Güleç et al., 2006)

Paleozoic metamorphics composed of schists and marbles form the basement rocks of the geothermal areas along NAFZ. Upper Jurassic-lower Cretaceous limestones and upper Cretaceous flysch comprised of intercalations of limestone, conglomerate, marl, sandstone, claystone and siltstone, unconformably overlie this metamorphic basement. Intercalated with, or overlying, the upper Cretaceous flysch, there are upper Cretaceous to Miocene basaltic-andesitic lava flows, tuffs and agglomerates. Neogene clastics and lacustrine limestones overlie these lithologies (Şahinci, 1970; Canik, 1972; Koçak, 1974; Özcan and Ünay, 1978; Erzenoğlu, 1989; MTA, 2005). The youngest units in the region are the Plio-Quaternary fluviatile deposits, and in the eastern-central segment of the NAFZ these deposits are associated with Plio-Quaternary volcanics which have rather small exposures (Tatar et al., 1995).

The drilling data relevant to the geothermal fields along the NAFZ are summarized in Table 3.3.

| Geothermal<br>System  | No. of<br>drilled<br>wells | Max<br>drilled<br>depth (m) | Max<br>measured<br>Temp.(°C) | Reservoir rocks                                                    | Cap rocks                                                                                     | References                                                                        |
|-----------------------|----------------------------|-----------------------------|------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Yalova                | 1                          | 673.5                       | 40                           | Tertiary volcanics<br>(particularly Eocene<br>andesites)           | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |
| Efteni<br>(Düzce)     | -                          | -                           | 43.6<br>(hot spring)         | Mesozoic limestones                                                | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |
| Mudurnu<br>(Bolu)     | 2                          | 125                         | 39.8                         | Mesozoic limestones                                                | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |
| Seben<br>(Bolu)       | 1                          | 2200                        | 90                           | Mesozoic limestones                                                | Neogene marl, sandstones and<br>limestones; impermeable<br>clayey levels of the flysch facies | Canik & Pasvanoğlu,<br>2003; MTA, 2005;<br>Süer et al, 2008;<br>Yılmazdemir, 2011 |
| Bolu                  | 3                          | 758.5                       | 43                           | Upper Cretaceous<br>limestones and<br>sandstones                   | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |
| Kurşunlu<br>(Çankırı) | 3                          | 680                         | 54                           | Tertiary volcanics                                                 | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |
| Hamamözü<br>(Amasya)  | 1                          | 500                         | 42.5                         | Mesozoic limestones;<br>secondary permeability<br>zones of schists | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |
| Gözlek<br>(Amasya)    | 3                          | 530.3                       | 40.5                         | Mesozoic limestones                                                | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |
| Reşadiye<br>(Tokat)   | 1                          | 238.9                       | 46.5                         | Mesozoic limestones                                                | Neogene clastics and<br>limestones; impermeable<br>clayey levels of the flysch facies         | MTA, 2005;<br>Süer et al, 2008                                                    |

Table 3.3: Drilling data on the primary geothermal systems along the NAFZ

The primary reservoir rocks of the geothermal fields located along the NAFZ (except Yalova and Kurşunlu) are Mesozoic limestones. Tertiary volcanics constitute the reservoir rocks of Yalova and Kurşunlu (Koçak, 1974; MTA, 2005). The cap rocks of these systems are composed of impermeable clayey levels of the flysch facies and the Neogene deposits.
## **CHAPTER 4**

# HYDROGEOCHEMICAL CHARACTERIZATION OF GEOTHERMAL FIELDS: DATA COMPILATION

In most of the geothermal fields in Turkey, Na–Ca–HCO<sub>3</sub> type waters are the major water types except that Na–Cl type waters are typical for the coastal areas of western Anatolia and for a few inland areas of western and central Anatolia where deep water circulation exists. The discharge temperature of the springs ranges up to 100°C, and the bottom-hole temperatures in drilled wells up to 242°C. Western Anatolian fields that have the highest geothermal energy potential in Turkey, are associated with the western Anatolian extensional tectonics which provide a regional, deep-seated heat source (asthenospheric upwelling) and a widespread graben system allowing deep circulation of waters (Mutlu & Güleç, 1998).

In this chapter, the chemical compositions of thermal waters in Turkey that are compiled from previous studies are presented and their hydrogeochemical characteristics are reviewed. From the viewpoint of  $CO_2$  storage, to investigate the geothermal fields as natural analogues, several fields are selected for detailed hydrogeochemical characterization. The selection is based on:

a) The available and reliable hydrogeochemical data with sufficient parameters,

b) The available isotope and gas geochemistry data (although these data are not used in the geochemical modelling in this study, the availability of these data is also taken into account in order to compare the conclusions derived from previous studies to those of present study),

c) Most recent publications (articles not reports).

## 4.1. Western Anatolia

Among the geothermal fields of western Anatolia, Kızıldere, Tekkehamam, Germencik, Balçova, Salihli, Sındırgı, Simav, Emet, Dikili, Balıkesir, and Edremit fields are selected for the hydrogeochemical investigation. The data relevant to the chemical and isotopic compositions of the geothermal fluids from the geothermal fields of western Anatolia are given in Table A.1 and A.2, respectively.

# 4.1.1. Kızıldere, Tekkehamam and Germencik Geothermal Fields

Chemical composition of Kızıldere, Tekkehamam and Germencik geothermal systems are compiled from Şimşek et al. (2005), Gökgöz (1998), Filiz at al. (2000), respectively (Table A.1). Isotope compositions are taken from Karakuş and Şimşek (2013) and Mutlu et al. (2008) (Table A.2).

Thermal occurrences in these fields can be grouped into three as, i) Na-HCO<sub>3</sub> type Kızıldere, ii) Na-SO<sub>4</sub> type Tekkehamam and iii) Na-HCO<sub>3</sub>-Cl type Germencik waters (Fig. 4.1) The bicarbonate nature of the Kızıldere waters are attributed by Simsek et al. (2005) to a long time interaction of the waters with the carbonate levels of the metamorphic basement. The SO<sub>4</sub>-rich nature of Tekkehamam waters are stated by Gökgöz (1998) to be due to oxidation of H<sub>2</sub>S gas escaping from magma, and/or dissolution of minerals like gypsum. The Cl-rich character of the Germencik waters, on the other hand, is attributed (by Mutlu and Güleç, 2008) to the presence of connate fossil waters at depth. The stable oxygen- and hydrogenisotope compositions points to an essentially meteoric origin for the thermal waters in the fields of Büyük Menderes Graben (BMG) as the data points on  $\delta^{18} O$  vs.  $\delta D$ diagram (Fig. 4.2) plot in the vicinity of the Global and/or Local Meteoric Water Lines. Additionally, however, the effects of water-rock interaction and mixing are also recognized, particularly in the Germencik field. In this respect, the reservoir seems to be recharged mainly by meteoric waters penetrating to depths along the major fault zones. These waters after being heated at depth, ascend through the major faults bounding the graben, and flow towards the centre of the graben where

they mix with colder groundwater (\$im\$ek, 1985, 2005). The studies on the controls of He-CO<sub>2</sub> systematics (Mutlu et al., 2008) reveal that water samples are significantly affected by degassing in the hydrothermal system and/or have experienced CO<sub>2</sub> loss via calcite precipitation (Fig. 4.3).



Figure 4.1: Schoeller diagrams of the geothermal fields of western Anatolia a) Kızıldere, b) Tekkehamam, c) Germencik, d) Balçova, e) Salihli, f) Sındırgı.



Figure 4.1 (cont'd): Schoeller diagrams of the geothermal fields of western Anatolia g) Simav, h) Emet, i) Dikili, j) Balıkesir, k) Edremit.

# 4.1.2. Balçova Geothermal Field

Chemical composition of Balçova geothermal system is compiled from Tarcan et al. (2009); isotope data are from Mutlu et al. (2008) (Table A.1 and A.2). The chemistry of thermal waters is dominated by Na and HCO<sub>3</sub> (Fig 4.1). Na-rich nature of thermal waters is attributed (Tarcan et al., 2009) to rock dissolution and ion exchange reactions in deep aquifers at high temperatures.

 $\delta^{18}$ O and  $\delta$ D values indicate a meteoric origin for Balçova waters (B-101 in Table 4.2 and Fig. 4.2). However, since the area is close to shore, the relatively high  $\delta^{18}$ O and  $\delta$ D values (compared to the fields of BMG) are probably due to the effects of sea water influx into the host aquifer; this is also supported by the high Na and relatively high Cl contents of waters (Mutlu et al., 2008). He-CO<sub>2</sub> systematics seems to be controlled mainly by CO<sub>2</sub> loss via calcite precipitation (Fig. 4.3).

# 4.1.3. Salihli Geothermal Field

The concentration of the constituents in thermal waters from Salihli geothermal field are compiled from Tarcan et al. (2005) and Özen et al. (2012) (Table A.1). The waters are dominantly Na-HCO<sub>3</sub> type except in Sart and Üfürük where waters are Na-Ca-HCO<sub>3</sub> and Ca-Mg-HCO<sub>3</sub> types, respectively (Fig 4.1).

Oxygen- and hydrogen-isotope compositions (Fig.4.2 and Table A.2) point to the effects of water-rock interaction and evaporation of waters of metoric origin (Özen et al., 2012).



Figure 4.2: δ<sup>18</sup>O-δD diagrams for the western Anatolian waters. MMWL: Mediterranean Meteoric Water Line (δD=8 δ<sup>18</sup>O+22; Gat and Carmi, 1970); GMWL: Global Meteoric Water Line (δD=8 δ<sup>18</sup>O+10). (a) western Anatolian waters (from Mutlu et al., 2008), (b) waters in the BMG (from Karakuş & Şimşek), 2013, (c) waters in Salihli field KGF: Kurşunlu geothermal field, CGF: Caferbeyli geothermal field, GGF: greenhouse geothermal field (from Özen et al., 2012), (d) waters in Simav field (from Palabıyık & Serpen, 2008). Sample numbers are given in Table A.2.



Figure 4.2 (cont'd): δ<sup>18</sup>O-δD diagrams for the western Anatolian waters. MMWL: Mediterranean Meteoric Water Line (δD=8 δ<sup>18</sup>O+22; Gat and Carmi, 1970); GMWL: Global Meteoric Water Line (δD=8 δ<sup>18</sup>O+10). (e) waters in Dikili field (from Özen et al., 2005), (f) waters in the Balıkesir region (from Mutlu, 2007), (g) waters in Edremit field (from Avşar et al., 2013). Sample numbers are given in Table A.2.

#### 4.1.4. Sındırgı Geothermal Field

The geochemical analyses of Sındırgı (Hisaralan) geothermal field are taken from Aksoy et al. (2009) and the isotope data are from Mutlu et al. (2008) (Table A.1 and Table A.2). The thermal waters in the field are of Na-HCO<sub>3</sub> character (Fig. 4.1).

Dominance of HCO<sub>3</sub> content in thermal waters indicates dissolution of carbonate minerals and connection to the limestone reservoir rocks. On the other hand, long interaction time between thermal waters and reservoir rocks results in the exchange of Na ion in ophiolitic rocks such as clay and serpentine, with Ca and Mg, making Na the major cation of the system (Aksoy, Demirkıran, & Şimşek, 2009). The  $\delta^{18}$ O– $\delta$ D composition of Sındırgı (Hisaralan) sample (B-118) plot on local Mediterranean Meteoric Water Line (MMWL) (Fig. 4.2) pointing to meteoric origin. When the isotopic data of Sındırgı field is compared to the data of other fields in western Anatolia, it can be seen that  $\delta^{18}$ O values do not show any enrichment (i.e. shift from MMWL). This means that Sındırgı waters have less circulation time and a lower temperature with respect to other fields. Combined He-CO<sub>2</sub> systematics suggest the effect of degassing and calcite precipitation in the deep hydrothermal system in Sındırgı (sample no. B-118 in Fig. 4.3) (Mutlu et al., 2008).

## 4.1.5. Simav Geothermal Field

Data on the chemical properties of Simav geothermal field are obtained from the study of Gemici & Tarcan (2002) (Table A.1). The thermal waters are NaHCO<sub>3</sub> in nature (Fig. 4.1). Although the dominant anion in waters is bicarbonate, sulphate concentration in Simav field is distinctly higher than those of other fields in western Anatolia. According to Palabiyik and Serpen (2008), the high SO<sub>4</sub> levels are due to the presence of alunite mineral in the vicinity (Şaphane area) which is a product of hydrothermal alteration of tuffs.

The isotope compositions ( $\delta^{18}$ O and  $\delta$ D) suggest meteoric origin (Fig. 4.2 and Table A.2) and Palabiyik and Serpen (2008) state that through the Simav fault which penetrates very deep, the heat at depth is transferred with naturally convecting meteoric waters in the metamorphic crust. In addition, it is observed that the water is enriched in <sup>18</sup>O pointing to the existence of long time fluid-rock interaction in the system at depth and/or boiling due to the high temperature in the reservoir.



Figure 4.3:  $CO_2$ -<sup>3</sup>He-<sup>4</sup>He ternary diagram for the western Anatolian fluids. Bold solid lines represent mixtures between mantle-He (8 and 30  $R_A$ ) and pure CO<sub>2</sub>. Light solid lines indicate various mixtures between CO<sub>2</sub> and helium yielding observed C-He systematics of the samples. Arrows show the effects of degassing, calcite precipitation and radiogenic-He addition (symbols as in Fig. 4.2 and empty circles and squares represent gas samples on grabens and gas samples on NAFZ, respectively. Sample numbers are given in Table A.2.

#### 4.1.6. Emet Geothermal Field

Waters of Emet geothermal field are analysed by Gemici et al. (2004) and the results are tabulated in Table A.1. With respect to their chemical composition, the waters can be categorized into three different groups:

1) Ca-Mg-SO<sub>4</sub>-HCO<sub>3</sub> type waters (samples 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10).

2) Ca-Mg-HCO<sub>3</sub> type waters (samples 11 and 12).

3) Na-Ca-SO<sub>4</sub> (sample 13).

The dominancy of calcium in most of the samples suggests the dissolution of carbonate (limestone and dolomite) reservoir rocks. The dominancy of  $SO_4$  as anion of the thermal waters, on the other hand, reflects the dissolution of gypsum layers in the K121lbük formation below the Emet borate deposits. Gemici et al. (2004) suggest that in water-rock interaction, dissolution of CaSO<sub>4</sub> is an important process. As CaSO<sub>4</sub> dissolves the SO<sub>4</sub>/HCO<sub>3</sub> ratio increases, which results in the shift of the type of water from HCO<sub>3</sub>-dominant to SO<sub>4</sub>-dominant.

# 4.1.7. Dikili Geothermal Field

For the geochemical characterization of the waters of Dikili geothermal field, the relevant data are taken from the study of Özen et al. (2005) (Table A.1). The chemistry of the waters in the area show similarities and the water types in Dikili Spa, Kaynarca and Kocaoba are Na-HCO<sub>3</sub>-SO<sub>4</sub>, Na-SO<sub>4</sub>-HCO<sub>3</sub>, Na-Ca-SO<sub>4</sub>, respectively. The high concentrations of Na and HCO<sub>3</sub> ions in the waters are attributed by Özen et al. (2005) to a combination of mixing with cold groundwater, water rock interaction and ion exchange reactions in the aquifers.

In addition to the chemical analyses of waters in Dikili area, Özen et al. (2005) also conducted isotope studies which suggest that thermal waters in the geothermal fields are of meteoric origin and show slight  $\delta^{18}$ O enrichment (Fig. 4.2 and Table A.2). The recharged meteoric water is heated at depth and ascends to the surface

along the faults. Hydrogeochemical assessment points to a potential mixing process of thermal waters with cold water before and/or after heating at depth.

## 4.1.8. Balıkesir Thermal Waters

The results of chemical analyses of waters from the Balıkesir region are taken from Mutlu (2007) (Table A.1). Included in this group, Gönen, Pamukçu, Edremit and Balya waters are Na-SO<sub>4</sub> type, whereas Bigadiç and Sındırgı waters are characterized by Na-HCO<sub>3</sub> enrichment. The Ekşidere thermal water is of Ca-HCO<sub>3</sub> character, and the Manyas and Susurluk fields are represented by Na-Ca-HCO<sub>3</sub> type waters. Low chloride concentrations in hot waters may suggest shallow water circulation in most of the geothermal fields. On the other hand, relatively high levels of sulphate concentration in these waters may be generated from the oxidation of metallic sulphides or escape of  $H_2S$  from a deep hot-water system.

The isotope studies (Mutlu, 2007) (Table A.2, Fig. 4.2) show that except for the Bigadic waters, most of the Balıkesir waters point to a common meteoric origin on the Local Meteoric Water Line (LMWL). Different position of the Bigadic thermal waters with an <sup>18</sup>O shift is explained with water-rock interaction process as a consequence,  $\delta^{18}$ O content of these waters is increased. In fact, some other thermal waters (e.g. G-7, G-8, G-16, PMK-1, PMK-2, MK-1) with slight <sup>18</sup>O shifts might have also undergone oxygen exchange reactions. Isotope composition of inorganic carbon in the Gönen, Susurluk, Bigadiç, Sındırgı and one of the Manyas waters (-4.8 to +0.7 ‰) (Mutlu, 2007) closely resembles marine limestones which are represented with  $\delta^{13}$ C values of about -3 to +3‰ (Clark & Fritz, 1997). Mutlu (2007) states that the relatively high temperatures of the Bigadiç, Sındırgı, Gönen and Susurluk thermal waters might have induced carbonate dissolution process resulting in carbon isotope compositions similar to marine limestones. On the other hand, it can be observed in He-CO<sub>2</sub> systematics (Fig. 4.3) that some waters in Balıkesir fields (sample B-124 from Gönen and B-77 from Manyas, Table A.2) are mainly affected by degassing in the hydrothermal system and/or have experienced CO<sub>2</sub> loss via calcite precipitation (Mutlu et al., 2008).

#### 4.1.9. Edremit Geothermal Field

Chemical composition of Edremit geothermal system is taken from Avşar et al. (2013) (Table A.1 and A.2). The hydrogeochemical facies of the waters are defined by the dominant cation–anion pair which indicates that waters >40°C are of "Na –  $SO_4$ " type, waters <30°C are of "Ca –  $HCO_3$ " type and those with temperatures between 30 and 40 °C are "Ca –  $SO_4$ " type.

All water samples from Edremit field plot in between Mediterranean Meteoric Water Line (MMWL) and Global Meteoric Water Line (GMWL) (Fig. 4.2), suggesting a common meteoric source for the waters. Chemical compositions and isotopic studies in Avşar et al. (2013) indicate that "mixing" and "water–rock interaction" are potential subsurface processes.

### 4.2. Eastern Anatolia

Diyadin and Çaldıran geothermal fields of eastern Anatolia are studied for the hydrogeochemical investigation. The data relevant to the chemical composition of the geothermal fluids from these fields are given in Table A.3. Table A.4 gives the isotopic composition of samples from all over the eastern Anatolian region including those from the Diyadin and Çaldıran geothermal fields.

# 4.2.1. Diyadin Geothermal Field

Chemical and isotope compositions of Diyadin geothermal system are acquired from Mutlu et al. (2013) and Mutlu et al. (2012), respectively (Table A.3 and Table A.4). The hydrogeochemical characteristics of Diyadin field are Na-HCO<sub>3</sub> type for thermal waters (TUN, KOP, KUS, TAZ, MLK, DIB) while Ca-HCO<sub>3</sub> type for cold waters (Fig. 4.4). Although all the waters in the field are HCO<sub>3</sub> – dominated, some of the samples with high temperatures (MLK, KOP, KUS, TUN) have relatively high amount of Cl, indicating that these waters have longer water-rock interaction times and/or deep circulation. In addition, BUR and EBU waters are characterized by relatively high SO<sub>4</sub> contents accompanied by low pH values.



Figure 4.4: Schoeller diagrams of the geothermal fields of eastern Anatolia a) Diyadin, b) Çaldıran

The isotope composition of the eastern Anatolian thermal waters is depicted in terms of  $\delta^{18}$ O– $\delta$ D diagram in Fig. 4.5. As can be seen from Fig. 4.5 most waters plot close to the Global Meteoric Water Line (GMWL), pointing to a meteoric origin. Waters in the northeast and eastern parts of the region (samples CAY, DYD, DVT, AYR, HAD, CAM-1, CAM-2), including Diyadin samples (DYD, DVT), plot off the (global and local) meteoric water lines indicating the effect of water–rock interaction process and evaporation and/or phase separation on their isotopic compositions (Mutlu et al., 2012).



Figure 4.5: δ<sup>18</sup>O-δD diagram for the eastern Anatolian thermal waters. MMWL: Mediterranean Meteoric Water Line (δD=8 δ<sup>18</sup>O+22); LMWL: Local Meteoric Water Line (δD=8 δ<sup>18</sup>O+16.5); GMWL: Global MeteoricWater Line (δD=8 δ<sup>18</sup>O+10) (Mutlu et al., 2012). Sample numbers are given in Table A.2.

The He-CO<sub>2</sub> systematics (Fig. 4.6) of Diyadin (samples DYD and DVT) which have high  $CO_2/{}^3$ He values indicate that these waters have undergone hydrothermal degassing while the sample CKR is most likely affected by mixing processes.  $\delta^{13}C$ (CO<sub>2</sub>) values suggest derivation from marine limestone (or slab carbonate) rather than an organic sedimentary source (Mutlu et al., 2012).



Figure 4.6: CO<sub>2</sub>-<sup>3</sup>He-<sup>4</sup>He ternary diagram for the eastern Anatolian fluids. Bold solid line represents mixture between mantle-He (8 and 30 R<sub>A</sub>) and pure CO<sub>2</sub>. Numbers in parenthesis are δ<sup>13</sup>C values. Short dashed line indicates addition of radiogenic helium (~0.05 RA); long dashed lines represent CO<sub>2</sub> loss relative to helium (Mutlu et al., 2012). Sample numbers are given in Table A.4.

# 4.2.2. Çaldıran Geothermal Field

Chemical composition of Çaldıran geothermal system is compiled from Aydın et al. (2013); isotope data are from Mutlu et al. (2012) (Table A.3 and A.4). The water samples of ALT, AYR, AYS, KOC-II, KOC-III and YKR are Na-HCO<sub>3</sub> type, and the samples of AVC, BUG, BUS, KOC-I, KOC-III and ZYR are Ca-Mg-HCO<sub>3</sub> type waters (Fig. 4.4). It can be observed that HCO<sub>3</sub> is the major anion of the field. On the other hand, the major cation is Na in AYR and KOC-II thermal waters whereas in BUG, Mg-Ca are the major cations. This may indicate that waters in

Çaldıran geothermal field may originate from aquifers with different lithologies (Aydın et al., 2013).

The O- and H-isotope composition of Çaldıran waters in Fig. 4.5 are represented by samples AYR and BUG. BUG plots on the local meteoric water line, while AYR plots off the meteoric water lines indicating the effect of water–rock interaction process and evaporation and/or phase separation.

With respect to the He-CO<sub>2</sub> systematics (Fig. 4.6), one of the samples from Çaldıran field (BUG) fall on a mixing line between mantle- and crustalcomponents; the other sample, AYR, has extremely low  $CO_2/{}^3$ He value suggesting either the effect of degassing (where the sample represents the first formed gas) or calcite precipitation (Mutlu et al., 2012).  $\delta^{13}$ C (CO<sub>2</sub>) values, like those of Diyadin samples, point to a marine limestone (or slab carbonate) source for carbon, rather than an organic sedimentary source (Mutlu et al., 2012).

# 4.3. Northern Anatolia

The geochemical analyses of the geothermal fields along the North Anatolian Fault Zone (NAFZ) are taken from Süer et al. (2008) and the isotope data are from Süer et al. (2008) and de Leeuw et al. (2010) (Table A.5 and Table A.6). In these articles, the compositions are determined for a total of 3-sampling periods in three years of monitoring and in this thesis study, the average values are used in the calculations. The sampled fields are Yalova, Efteni, Mudurnu, Seben, Bolu, Kurşunlu, Hamamözü, Gözlek, and Reşadiye. Most of the thermal waters in these fields are Na-HCO<sub>3</sub> type (Efteni, Seben, Gözlek, Reşadiye and Kurşunlu samples), apart from the Ca-HCO<sub>3</sub> type Bolu and Mudurnu, and the Na-SO<sub>4</sub> type Yalova samples (Fig. 4.7). Hamamözü has a mixed character while the cold waters in this field are Ca and/or Mg-HCO<sub>3</sub> type. The hydrogeochemical facies of these waters (HCO<sub>3</sub>-type) are most likely the result of the dissolution of the limestones that comprise the reservoir rock. The dominancy of Na, as cation, can be associated with the ion exchange reactions taking place with the overlying sediments. The SO<sub>4</sub> type character of Yalova waters is attributed to either the dissolution of evaporites

containing gypsum, or the oxidation of sulphide-bearing minerals (Süer et al., 2008).



Figure 4.7: Schoeller diagrams of the geothermal fields along the NAFZ

The stable isotope compositions which are plotted in the  $\delta^{18}$ O vs.  $\delta$ D diagram (Fig. 4.8) reveal that both hot and cold waters have a meteoric origin. Only the sample from Kurşunlu field (sample no. 9a) plots off the line with a relatively high  $\delta^{18}$ O value, suggesting that water-rock exchange, and/or calcite scaling might be effective for that area (Süer et al., 2008).



Figure 4.8: δ<sup>18</sup>O vs. δD diagram of the sampled waters (data represent the average of nine sampling periods, GMWL: Global Meteoric Water Line (Craig, 1961), MMWL: Mediterranean Meteoric Water Line (Gat and Carmi, 1970) in Süer et al. (2008).

The He-CO<sub>2</sub> systematics of these fields seem to be under the effect of volatile degassing (phase separation) from the hydrothermal waters (de Leeuw et al., 2010) (Fig. 4.9).



Figure 4.9: Ternary plot of CO<sub>2</sub>-<sup>3</sup>He-<sup>4</sup>He for the geothermal fields along the NAFZ. Samples have been affected by two processes: (1) mixing between mantle-derived (8R<sub>A</sub>, CO<sub>2</sub>/<sup>3</sup>He = 2 x 10<sup>9</sup>) and crustal (0.02R<sub>A</sub>, CO<sub>2</sub>/<sup>3</sup>He = 10<sup>10</sup>-10<sup>15</sup>) volatiles, and (2) subsequent elemental fractionation between CO<sub>2</sub> and He. The first process is indicated by dotted lines connecting the MORB point to crustal values with CO<sub>2</sub>/<sup>3</sup>He ratios ranging from 10<sup>12</sup> to 10<sup>15</sup>. Each sample location is characterized by its own specific <sup>3</sup>He/<sup>4</sup>He ratio, resulting from the first process (volatile mixing). The second process is displayed with dashed lines that point towards/away from the CO<sub>2</sub> apex. All samples of the same location show variable CO<sub>2</sub>/He ratios, and lie on the same elemental fractionation line, which is the result of phase separation (de Leeuw et al. 2010).

## **CHAPTER 5**

# HYDROGEOCHEMICAL MODELLING: PROCESSES CONTROLLING THE GEOCHEMICAL BEHAVIOUR OF THE SYSTEMS

For a successful storage of  $CO_2$ , the potential site must be evaluated thoroughly before the application of the technology. The important parameters to achieve this aim are understanding the geomechanical properties of both the reservoir and the cap-rock, as well as the geochemical reactions that take place within the system. It is crucial to comprehend how a reservoir will react to the injection of  $CO_2$  from a geochemical point of view, such as the migration path of the gas and the water-rock interactions. With the initiation of the injection, the short-term interactions take place between the injected gas and well material, while longer-term interactions occur between the gas and the host rock and/or the cap-rock (i.e. trapping mechanisms that are explained in Chapter 2). To be able to interpret these interactions and to monitor the impact of the injection, long-term geochemical modelling is very important.

In this thesis study, various geothermal fields from western, eastern and northern Anatolia are utilized as natural analogues of  $CO_2$  storage sites. Each field has its own characteristics; therefore, to make an efficient prediction of the potential mechanisms in the system, various geochemical approaches are undertaken. These approaches include the geochemical characterization of the system, speciation-solubility calculations, estimation of the relative contribution of carbonate and sulphate minerals to the carbon budget of the hydrothermal system, and other modelling types related to mass-balance calculations (e.g. inverse modelling, dedolomitization modelling) depending on the behaviour of the field.

For geochemical characterization of groundwaters, electrical conductivity (EC) is used as a tracer of the hydrogeochemical evolution of the system as EC is related to the amount of dissolved constituents and the temperature of water. Typically EC correlates well with TDS (Total Dissolved Solids); with increasing depth and time of circulation, water dissolves more minerals from the rocks it comes into contact with and therefore, EC increases. The geochemical characterization is essential to predict and interpret the potential mechanisms in the system by the observation of the evolution of elemental compositions.

Speciation-solubility relations are based on saturation index calculations. The saturation index (SI) is a useful quantity for the determination of whether water is saturated (in equilibrium), undersaturated, or oversaturated with respect to a particular mineral. SI values are calculated using the chemical activities of the dissolved ions of the mineral (ion activity product, IAP) and their solubility product  $(K_{sp})$  with the equation:  $SI = \log (IAP/K_{sp})$ . If the result is negative (SI < 0) the mineral is dissolved, if positive (SI > 0) it is precipitated, and if zero (SI = 0) then the water and mineral are at chemical equilibrium. Speciation-solubility calculations are performed with the assistance of the PHREEQC code (Parkhurst & Appelo, 1999) and using the thermodynamic database *llnl.dat* (Lawrence Livermore National Laboratory database) distributed with the code. The reason for choosing this database over others is that it contains more mineral species and allows calculation of equilibrium conditions at a wider range of temperatures between 0-300 °C (Soong et al., 2003). The necessary inputs to the PHREEQC program for the speciation - solubility calculations are; temperature, pH and concentrations of dissolved elements for each sample. The Saturation Index (SI) calculations were carried out for Anhydrite, Gypsum, Aragonite, Calcite, Dolomite, and Magnesite minerals which are the major phases involved in water-rock interactions within the carbonate system. A graph is prepared with the SI of these minerals against the major anion of the related field.

Given the fact that calcium is the major common ion in the processes controlling the geothermal systems related to the trapping mechanisms, to understand the general model of the systems, the examination of the evolution of dissolved calcium concentrations with the increasing interaction between thermal waters and minerals is crucial. In this regard, for estimation of the relative contribution of carbonate minerals' dissolution to the total dissolved calcium, the amount of calcium derived from dissolution of CaSO<sub>4</sub> minerals (gypsum or anhydrite) (as inferred from total dissolved sulphate), is subtracted from the total dissolved calcium concentrations. This procedure has been previously applied by Auqué et al. (2009) to a Spanish thermal system (the Alhama–Jaraba complex) and stands from the fact that when CaSO<sub>4</sub> dissolves, the concentration of both Ca and SO<sub>4</sub> increases at a one-to-one ratio.

Mass-balance calculations (inverse modelling) have also been performed with the help of *PHREEQC* code. This modelling allows the determination of the direction and magnitude of mass transfers accompanied by the potential geochemical reactions taking place between two hydraulically-connected points of a system. As inputs of modelling, the compositions assigned to initial and final solutions are those of water samples likely to represent, respectively, the least evolved (lowest EC) and the most evolved (highest EC) waters of the geothermal fields. Another parameter for inverse modelling is the determination of the mineral phases of the system to be considered as sources and sinks.

A geochemical modelling that is previously implemented by Romanak et al. (2010) using the *PHREEQC* code is dedolomitization modelling for a study of the Dockum aquifer in SACROC oil field, Texas. In this thesis study, dedolomitization modelling is performed for the geothermal fields that show indications for dedolomitization. For the modelling, a high  $HCO_3^-$  - low  $Ca^{2+}$  water sample from each of the corresponding field is used as the input for *PHREEQC*.

The geochemical approaches mentioned above have led to the recognition of three distinctive groups of geothermal fields in regard to the possible trapping mechanisms in the systems (Table 5.1).

| Region              | Geothermal<br>Field | *SO4       | *HCO₃      | *Ca        | *Mg        | **Gypsum/<br>Anhydrite | **Calcite/<br>Aragonite | **Dolomite | **Magnesite | ***Ca<br>(corrected) | Groups  |
|---------------------|---------------------|------------|------------|------------|------------|------------------------|-------------------------|------------|-------------|----------------------|---------|
| Western<br>Anatolia | Kizildere           | -          | +          | -          | -          | diss.                  | ppt                     | ppt        | ppt         | neg                  | Group 1 |
|                     | Germencik           | +          | +          | -          | -          | diss.                  | ppt                     | ppt        | ppt         | neg                  |         |
|                     | Balcova             | +          | +          | -          | -          | diss.                  | ppt                     | ppt        | ppt         | neg                  |         |
|                     | Simav               | +          | +          | -          | const      | diss.                  | dom. ppt                | ppt        | dom. ppt    | neg                  |         |
|                     | Edremit             | +          | -          | (slight) - | (slight) - | diss.                  | both                    | both       | dom.diss.   | neg                  | Group 2 |
|                     | Balikesir           | +          | +          | (slight) + | (slight) - | diss.                  | equil.                  | dom. ppt   | dom.diss.   | neg                  |         |
|                     | Dikili              | const      | +          | -          | +          | diss.                  | dom. ppt                | dom. ppt   | dom.diss.   | neg                  |         |
|                     | Sindirgi            | +          | +          | -          | -          | diss.                  | dom. ppt                | dom. ppt   | dom.diss.   | neg                  |         |
|                     | Emet                | +          | -          | +          | +          | diss.                  | dom. ppt                | ppt        | dom.diss.   | neg                  |         |
|                     | Salihli             | +          | +          | +          | +          | diss.                  | dom. ppt                | dom. ppt   | both        | neg                  |         |
|                     | Tekkehamam          | +          | (slight) - | -          | -          | diss.                  | dom. ppt                | ppt        | both        | neg                  |         |
| Eastern<br>Anatolia | Caldiran            | +          | +          | +          | +          | diss.                  | dom.diss.               | dom.diss.  | dom.diss.   | neg                  | Group 3 |
|                     | Diyadin             | (slight) + | +          | const      | +          | diss.                  | dom.diss.               | dom.diss.  | dom.diss.   | neg                  |         |
| Northern            |                     |            |            |            |            |                        |                         |            |             |                      | Croup's |
| Anatolia            | NAFZ                | +          | +          | +          | +          | diss.                  | both                    | dom. ppt   | dom.diss.   | neg                  |         |

Table 5.1: Comparison of three different groups of geothermal fields in Turkey, determined for this study

\*: represent major anions-cations (having an active role in CO<sub>2</sub> trapping mechanisms) showing positive (+), negative (-) or constant (const.) trends with increasing EC as a measure of hydrogeochemical evolution

\*\*: diss: dissolution, ppt: precipitation, dom: dominantly, equil: in equilibrium

\*\*\*: neg: negative, indicating corrected Ca trends against domiant anion of the system (see text for further explanation)

# 5.1. Mineral Trapping: Group I Type Geothermal Fields

Group I consists of geothermal fields located in Kızıldere, Germencik, Balçova, and Simav. The hydrogeochemical characteristics and saturation index calculations of the fields in this group all indicate that mineral trapping due to the precipitation of carbonate minerals might be the dominant mechanism in this system. In addition to these studies, mass-balance calculations are performed for the verification of the determined mechanism.

# 5.1.1. Hydrogeochemical Characteristics

The hydrochemistry of the water samples taken from the fields of Group I is tabulated in Appendix-Table A.1. The variations in the concentrations of the major ions (Na, Ca, Mg, HCO<sub>3</sub>, SO<sub>4</sub>, and Cl) vs. electrical conductivity (EC) are displayed in Fig. 5.1.



Figure 5.1: Concentration vs EC diagrams for geothermal fields of Kızıldere (a, b), Germencik (c, d), Balçova (e, f) and Simav (g, h).

The fields in Group I have similar geochemical variations characterized by decreasing Ca and Mg, while increasing Na, Cl and HCO<sub>3</sub> contents with increasing EC of the solutions. The SO<sub>4</sub> concentrations also have an increasing trend except for K121ldere field. Mg/Ca ratio appears to have a negative trend in all fields apart from Simav. With respect to these observations (decreasing Ca and Mg with increasing EC, i.e. with progressive hydrogeochemical evolution), precipitation of Ca and Mg-bearing minerals can be anticipated in the hydrothermal system. Moreover, in Germencik, Balçova and Simav, the increasing SO<sub>4</sub> points to the dissolution of sulphate minerals. To strengthen these predictions, speciation – solubility calculations are carried out.

# 5.1.2. Speciation – Solubility Calculations

Saturation index (SI) calculations are performed for Anhydrite, Gypsum, Aragonite, Calcite, Dolomite, and Magnesite minerals for each field of Group I utilizing the *PHREEQC* code; the results are presented in Table 5.2, along with the calculated  $CO_2$  partial pressure, and are depicted in terms of SI vs. major anion plots in Fig. 5.2.

| Geothermal | Sample            | T(°C) | рН   | log pCO <sub>2</sub> | Saturation Index (SI) |         |          |           |        |           |
|------------|-------------------|-------|------|----------------------|-----------------------|---------|----------|-----------|--------|-----------|
| Field      |                   |       |      | _                    | Aragonite             | Calcite | Dolomite | Magnesite | Gypsum | Anhydrite |
|            | KD-6              | 196   | 8.97 | -1.56                | 0.88                  | 1.03    | 3.22     | 1.22      | -3.47  | -2.34     |
|            | KD-13             | 195   | 8.89 | -1.50                | 1.08                  | 1.23    | 3.24     | 1.04      | -3.04  | -1.92     |
|            | KD-14             | 207   | 8.96 | -1.27                | 0.93                  | 1.09    | 3.35     | 1.32      | -3.49  | -2.30     |
|            | KD-15             | 205   | 8.82 | -1.35                | 0.90                  | 1.05    | 2.99     | 0.99      | -3.15  | -1.98     |
| Kizildere  | KD-16             | 211   | 8.94 | -1.40                | 1.37                  | 1.52    | 3.59     | 1.13      | -2.82  | -1.61     |
|            | KD-20             | 201   | 8.92 | -1.59                | 1.01                  | 1.16    | 3.11     | 0.99      | -3.05  | -1.90     |
|            | KD-21             | 202   | 9.02 | -1.67                | 1.03                  | 1.18    | 3.23     | 1.10      | -3.14  | -1.99     |
|            | KD-22             | 202   | 9.3  | -1.87                | 0.92                  | 1.08    | 3.44     | 1.40      | -3.62  | -2.46     |
|            | R-1               | 242   | 8.8  | -0.60                | 1.46                  | 1.62    | 3.78     | 1.30      | -2.93  | -1.43     |
|            | TH-2              | 171   | 9.4  | -2.38                | 1.00                  | 1.15    | 4.14     | 1.96      | -3.54  | -2.57     |
|            | 1                 | 60    | 7.01 | -0.54                | 0.53                  | 0.67    | 2.95     | 0.84      | -2.54  | -2.40     |
|            | 2                 | 60    | 6.66 | -0.23                | 0.35                  | 0.49    | 2.10     | 0.17      | -2.26  | -2.11     |
|            | 3                 | 50    | 6.9  | -0.51                | 0.46                  | 0.60    | 2.66     | 0.57      | -1.99  | -1.94     |
|            | 4                 | 70    | 6.63 | -0.15                | 0.34                  | 0.49    | 2.54     | 0.66      | -2.39  | -2.16     |
| Commencia  | 5                 | 60    | 7.6  | -1.14                | 1.03                  | 1.17    | 3.87     | 1.26      | -2.58  | -2.44     |
| Germencik  | 6                 | 200   | 8.5  | -0.93                | 1.29                  | 1.44    | 4.57     | 2.17      | -3.74  | -2.59     |
|            | 7                 | 200   | 8.5  | -1.12                | 1.58                  | 1.74    | 4.84     | 2.15      | -3.43  | -2.28     |
|            | 9                 | 231   | 8.7  | -1.20                | 1.73                  | 1.89    | 5.31     | 2.54      | -3.47  | -2.15     |
|            | 11                | 221   | 6.05 | 0.38                 | 0.13                  | 0.28    | -0.15    | -1.34     | -1.29  | -0.03     |
|            | 12                | 17    | 7    | -1.35                | -0.49                 | -0.35   | 0.97     | -0.36     | -2.18  | -2.44     |
|            | DHDNS             | 114   | 7.25 | -0.96                | 1.06                  | 1.21    | 3.40     | 0.98      | -1.44  | -0.85     |
|            | DHDNR             | 116   | 6.99 | -0.72                | 0.80                  | 0.95    | 2.83     | 0.68      | -1.36  | -0.77     |
|            | GEWR              | 138   | 6.33 | -0.15                | -0.29                 | -0.14   | 0.22     | -0.77     | -1.53  | -0.78     |
|            | BD-2              | 129   | 7.77 | -1.27                | 1.08                  | 1.23    | 3.12     | 0.73      | -2.00  | -1.30     |
|            | BD-4              | 138   | 8.01 | -1.45                | 1.42                  | 1.56    | 3.63     | 0.94      | -1.81  | -1.06     |
| Balcova    | BD-5              | 117   | 7.84 | -1.49                | 1.21                  | 1.35    | 3.37     | 0.82      | -1.88  | -1.27     |
|            | B-4               | 86    | 7.38 | -1.21                | 0.58                  | 0.72    | 2.27     | 0.23      | -1.83  | -1.47     |
|            | B-5               | 105   | 7.07 | -0.83                | 0.43                  | 0.57    | 2.07     | 0.26      | -1.77  | -1.26     |
|            | B-10              | 92    | 7.05 | -0.89                | 0.36                  | 0.50    | 1.78     | -0.02     | -1.55  | -1.14     |
|            | B-II              | 92    | 7.85 | -1.66                | 0.93                  | 1.07    | 3.05     | 0.68      | -1.81  | -1.40     |
|            | B-13              | 120   | 7.48 | -1.49                | 1.33                  | 1.47    | 3.72     | 1.06      | -1.30  | -0.67     |
|            | 1 (EJ-1)          | 163   | 8.74 | -1.96                | 1.64                  | 1.79    | 4.73     | 1.88      | -2.09  | -1.17     |
|            | 3 (E6)            | 160   | 8.84 | -2.11                | 1.39                  | 1.54    | 4.64     | 2.04      | -2.44  | -1.54     |
| Simav      | 4 (E8)            | 150   | 9.2  | -2.66                | 1.50                  | 1.64    | 4.86     | 2.12      | -2.59  | -1.75     |
|            | 5 (Eynal Spa Spr) | 78    | 9.2  | -3.20                | 0.45                  | 0.60    | 3.34     | 1.39      | -3.32  | -3.02     |
|            | 6 (E4)            | 98    | 7.07 | -0.76                | 0.52                  | 0.66    | 1.86     | -0.07     | -1.41  | -0.95     |
|            | 7 (Çitgöl well)   | 140   | 7.31 | -0.84                | 1.33                  | 1.48    | 3.36     | 0.76      | -1.07  | -0.30     |
|            | 8 (Çitgöl well)   | 162   | 7.91 | -1.19                | 1.64                  | 1.79    | 3.99     | 1.15      | -1.27  | -0.36     |
|            | 9 (Çitgöl Spr)    | 51    | 6.84 | -0.99                | -0.13                 | 0.01    | 0.76     | -0.74     | -1.28  | -1.21     |
|            | 11 (Naşa well)    | 90    | 7.03 | -0.91                | 0.50                  | 0.64    | 2.04     | 0.10      | -1.34  | -0.95     |
|            | 13 (Eynal Spr)    | 60    | 8.2  | -2.30                | 0.28                  | 0.42    | 1.62     | -0.24     | -2.30  | -2.16     |
|            | 14 (Çitgöl Spr)   | 83    | 7    | -0.95                | 0.21                  | 0.36    | 1.28     | -0.41     | -1.44  | -1.10     |
|            | 15 (Naşa Spr)     | 64    | 6.6  | -0.74                | -0.41                 | -0.26   | 0.26     | -0.89     | -1.44  | -1.26     |

Table 5.2: Summary of results from speciation - solubility calculations of Group I fields (spr: spring)



Figure 5.2: Evolution of saturation indices in the thermal waters of Kızıldere (A), Germencik (B), Balçova (C) and Simav (D) vs dominant anion concentrations

Speciation - solubility index calculations reveal that majority of waters are oversaturated with respect to carbonate minerals dolomite and magnesite, close to equilibrium or slightly oversaturated with respect to aragonite and calcite, and undersaturated with respect to sulphate minerals anhydrite and gypsum (Table 5.2, Fig. 5.2). In Simav, waters with relatively low pH are undersaturated with respect to carbonate minerals aragonite, calcite and magnesite (Fig. 5.2D). Undersaturation indicates the possibility of dissolution, and oversaturation points to the possibility of precipitation of the minerals. In this respect, anhydrite and gypsum dissolution and aragonite, calcite, dolomite and magnesite precipitation is expected in the geothermal system of these fields.

The SI results support the observations that were made regarding the hydrogeochemical character of the waters. Therefore, the depletion of Ca and Mg concentrations is attributed to the carbonate minerals' (aragonite, calcite, dolomite

and magnesite) precipitation, whereas the enrichment in  $SO_4$  concentration suggests dissolution of sulphate minerals (anhydrite, gypsum).

For an assessment of possible relative contribution of carbonate minerals' dissolution to the total dissolved calcium, the amount of calcium derived from dissolution of CaSO<sub>4</sub> minerals (gypsum or anhydrite) (as inferred from total dissolved sulphate), is subtracted from the total dissolved calcium concentrations. The (corrected) Ca concentration estimated via this calculation is also shown in Fig. 5.3. As seen in Fig. 5.3, corrected Ca concentrations correlate negatively with SO<sub>4</sub>. The negative trend of corrected Ca with SO<sub>4</sub> can be attributed to calcite and/or aragonite precipitation in parallel with gypsum and/or anhydrite dissolution. Moreover, the negative correlation between Mg and SO<sub>4</sub> in Balcova and Simav waters points to potential dolomite and/or magnesite precipitation in these fields along with calcite and aragonite.



Figure 5.3: Evolution of analytic and corrected calcium concentrations and magnesium concentrations vs. total sulphate concentrations in the thermal waters of Kızıldere (A), Germencik (B), Balçova (C) and Simav (D) (see text for further explanation)

## 5.1.3. Mass-Balance Calculations

The investigation of hydrogeochemical patterns combined with speciationsolubility calculations lead to the identification of carbonate precipitation as the major (potential) mechanism for the trapping of  $CO_2$  in the geothermal fields of Group I.

For a further verification of the validity of this process, mass-balance calculations (inverse modelling) have also been performed with the help of *PHREEQC* code. The least evolved (lowest EC) and the most evolved (highest EC) water samples of the geothermal fields are assigned to initial and final solutions, respectively. Furthermore, among the least and most evolved water samples, the ones with

relatively lower pH are selected in order to be able to reduce the potential degassing effects from the surface and to better represent the conditions at depth. Another parameter for inverse modelling is the determination of the mineral phases of the system to be considered as sources and sinks. The minerals that are used in saturation index calculations (such as gypsum, calcite, dolomite) are chosen for the modelling in which the dissolution of gypsum is imposed. Taking the mentioned inputs into account, mass-balance calculations are applied to Group I geothermal fields, and the results are presented in Table 5.3.

| Mass         | Field     | Initial Solution* | Final Solution* | Calcite mole<br>transfer** | Dolomite mole<br>transfer** |  |
|--------------|-----------|-------------------|-----------------|----------------------------|-----------------------------|--|
| Ralanco      | Kizildere | R-1               | KD-13           | -0.0202                    | -0.0001                     |  |
| Calculations | Germencik | 3                 | 2               | 1.437                      | -1.367                      |  |
| Calculations | Balcova   | B-13              | B-10            | -0.208                     | -0.108                      |  |
|              | Simav     | 15                | 1               | -0.892                     | -0.190                      |  |

Table 5.3: Summary of results from mass-balance calculations of Group I geothermal fields

\*Sample numbers are given in Table A.1

\*\*Negative mass transfer corresponds to precipitation and positive to dissolution.

Given that in mass-balance calculations, negative mass transfer values correspond to precipitation and positive values to dissolution, the results of Group I are consistent with the determined processes of dolomite  $\pm$  calcite precipitation for the fields. The positive value obtained for calcite in Germencik can be inferred from the saturation index results of calcite that are close to equilibrium in Table 5.2, Fig. 5.2. Furthermore, the negative Mg/Ca ratio observed in EC diagrams of Kızıldere, Germencik and Balçova (Fig 5.1) imply that dolomite precipitation is more effective in those fields compared to calcite precipitation.

When all modelling results are considered, it is evident that in geothermal fields of Group I which includes Kızıldere, Germencik, Balçova and Simav, the precipitation of carbonate minerals is most likely the dominant mechanism in these systems which lead to mineral trapping of  $CO_2$  in carbonate minerals. This conclusion is also supported by the presence of scaling problem in these fields and the He-CO<sub>2</sub> systematics (Fig. 4.3) as reported by previous studies (Mutlu et al., 2008).

## 5.2. Solubility ± Mineral Trapping: Group II Type Geothermal Fields

Edremit, Balıkesir, Dikili, Sındırgı, Emet, Salihli and Tekkehamam comprise the geothermal fields of Group II. The hydrogeochemical characterization and saturation index calculations of the fields in this group point to the potential of solubility  $\pm$  mineral trapping. The existence of dedolomitization seems also possible for some of the fields. Furthermore, mass-balance calculations and additional (dedolomitization) modelling are carried out for a proper interpretation of the mechanisms dominating the geothermal fields.

## 5.2.1. Hydrogeochemical Characteristics

The tabulated hydrochemistry of the water samples collected from the fields of Group II is given in Appendix-Table A.1. The variations in the concentrations of the major ions (Na, Ca, Mg, HCO<sub>3</sub>, SO<sub>4</sub>, and Cl) vs. electrical conductivity (EC) are illustrated in Fig. 5.4.



Figure 5.4: Concentration vs EC diagrams for geothermal fields of Edremit (a, b), Balikesir (c, d), Dikili (e, f) and Sindirgi (g, h).



Figure 5.4 (cont'd): Concentration vs EC diagrams for geothermal fields of Emet (i, j), Salihli (k, l), Tekkehamam (m, n)

The geochemical characteristics of Group II differ slightly in each field. The common aspects of these fields are that they almost all have increasing SO<sub>4</sub>, Na, and Cl concentrations with increasing EC (except the rather constant trend of SO<sub>4</sub> in Dikili and Na in Emet). When HCO<sub>3</sub> concentration is taken into account, in Balıkesir, Dikili, Sındırgı and Salihli fields it has an increasing trend, while in Edremit, Emet and Tekkehamam the trend is decreasing. In the case of Ca and Mg concentrations, the decreasing trend can be observed in Edremit (slightly decreases), Sindirgi and Tekkehamam, whereas in Emet and Salihli both of them increase in parallel with the increase of EC. For Balkesir, Ca concentration slightly increases and Mg slightly decreases, contrarily for Dikili, Ca decreases and Mg increases. Except for the negative trend observed in Sındırgı, Mg/Ca ratio is almost constant in every field of Group II. Considering these examinations, the dissolution of sulphate minerals can be expected due to the increasing amount of SO<sub>4</sub> in all fields. On the other hand, the variations seen in  $HCO_3$  concentrations among the fields can be explained by both dissolution and precipitation of carbonate minerals which also affect the changes in the concentrations of Ca and Mg. To be able to make more precise interpretations regarding the systems, the speciation – solubility calculations are performed.

### **5.2.2.** Speciation – Solubility Calculations

Saturation index (SI) of Anhydrite, Gypsum, Aragonite, Calcite, Dolomite, and Magnesite minerals are calculated for each field of Group II with the aid of *PHREEQC* code. The calculation results are tabulated in Table 5.4, along with the calculated  $CO_2$  partial pressure, and are illustrated in terms of SI vs. major anion plots in Fig. 5.5.
| Geothermal | Sample         | T(°C) | pН   | log pCO <sub>2</sub> | Saturation Index (SI) |         |          |           |        |           |
|------------|----------------|-------|------|----------------------|-----------------------|---------|----------|-----------|--------|-----------|
| Field      |                |       |      |                      | Aragonite             | Calcite | Dolomite | Magnesite | Gypsum | Anhydrite |
|            | ED-3           | 62    | 7.76 | -2.81                | -0.32                 | -0.18   | -1.09    | -2.33     | -1.55  | -1.39     |
|            | ED-1           | 62    | 7.65 | -2.82                | -0.42                 | -0.27   | -1.75    | -2.90     | -1.34  | -1.18     |
|            | EDJ-3          | 59    | 7.65 | -2.87                | -0.53                 | -0.38   | -1.93    | -2.99     | -1.38  | -1.25     |
|            | EDJ-2          | 58    | 7.67 | -2.85                | -0.48                 | -0.34   | -1.80    | -2.91     | -1.44  | -1.31     |
|            | EDJ-5          | 55    | 7.99 | -2.84                | -0.16                 | -0.02   | -0.72    | -2.16     | -2.03  | -1.93     |
|            | DERM.          | 53    | 7.81 | -2.84                | -0.15                 | -0.01   | -0.38    | -1.84     | -1.36  | -1.28     |
|            | ENT.           | 51    | 7.95 | -2.87                | 0.02                  | 0.17    | 0.05     | -1.59     | -1.47  | -1.41     |
|            | EDJ-7          | 51    | 7.61 | -2.91                | -0.63                 | -0.49   | -2.21    | -3.20     | -1.32  | -1.25     |
|            | EDJ-4          | 50    | 7.81 | -2.85                | -0.18                 | -0.04   | -0.41    | -1.86     | -1.42  | -1.36     |
| Edremit    | EDJ-8          | 43    | 8    | -2.90                | -0.69                 | -0.55   | -1.37    | -2.35     | -2.49  | -2.50     |
|            | YAGCI          | 42    | 8.13 | -2.86                | 0.36                  | 0.50    | 0.71     | -1.32     | -1.69  | -1.70     |
|            | DSI-6          | 39    | 8.07 | -2.75                | 0.84                  | 0.98    | 2.54     | 0.02      | -1.10  | -1.15     |
|            | DOG.           | 32    | 8.14 | -2.80                | 0.88                  | 1.03    | 2.65     | 0.04      | -1.23  | -1.34     |
|            | DSI-9          | 32    | 8.09 | -2.80                | 0.85                  | 1.00    | 2.48     | -0.10     | -1.05  | -1.16     |
|            | HAST.          | 31    | 8.06 | -2.88                | 0.65                  | 0.79    | 2.12     | -0.26     | -1.26  | -1.39     |
|            | DSI-5          | 30    | 8.06 | -2.83                | 0.57                  | 0.72    | 2.16     | -0.15     | -1.34  | -1.47     |
|            | DSI-7          | 21    | 8.14 | -2.91                | 0.39                  | 0.54    | 1.81     | -0.38     | -2.40  | -2.62     |
|            | DSI-8          | 18    | 8.12 | -2.86                | 0.64                  | 0.78    | 2.40     | -0.05     | -1.76  | -2.01     |
|            | EMINDSI        | 12    | 8.14 | -2.92                | 0.47                  | 0.62    | 1.73     | -0.6      | -2.07  | -2.38     |
|            | G-7            | 60.4  | 7.15 | -1.42                | 0.20                  | 0.35    | 0.77     | -1.01     | -1.19  | -1.05     |
|            | G-8            | 57.8  | 7.42 | -1.68                | 0.47                  | 0.62    | 1.31     | -0.75     | -1.19  | -1.07     |
|            | G-16           | 77.5  | 6.97 | -1.19                | 0.03                  | 0.17    | 0.43     | -1.10     | -1.28  | -0.98     |
|            | EKS-1          | 42.7  | 7.26 | -1.90                | -0.08                 | 0.06    | 1.00     | -0.58     | -2.47  | -2.48     |
|            | EKS-2          | 18.8  | 4.16 |                      |                       |         |          |           | -2.82  | -3.06     |
|            | EKS-3          | 21.5  | 3.91 |                      |                       |         |          |           | -3.27  | -3.48     |
|            | MK-1           | 49.8  | 6.57 | -0.90                | -0.09                 | 0.06    | 0.47     | -1.07     | -1.57  | -1.51     |
|            | MK-2           | 34.4  | 6.87 | -1.28                | 0.05                  | 0.20    | 0.72     | -1.05     | -1.79  | -1.88     |
|            | PMK-1          | 64.9  | 7.56 | -2.01                | 0.34                  | 0.48    | 1.31     | -0.58     | -1.38  | -1.19     |
|            | PMK-2          | 55.5  | 7.34 | -1.75                | -0.03                 | 0.12    | 0.61     | -0.96     | -1.60  | -1.49     |
|            | BHS-1          | 94.6  | 7.29 | -0.88                | 0.23                  | 0.37    | 2.30     | 0.65      | -2.15  | -1.72     |
|            | BHS-2          | 82.9  | 6.95 | -0.63                | 0.33                  | 0.48    | 1.98     | 0.17      | -1.65  | -1.31     |
| Balikosir  | SHS-1          | 98.5  | 7.01 | -0.84                | 0.30                  | 0.45    | 1.53     | -0.18     | -2.03  | -1.56     |
| Dairesii   | SHS-2          | 97.3  | 7.38 | -1.20                | 1.13                  | 1.28    | 2.78     | 0.23      | -1.64  | -1.18     |
|            | SHS-3          | 95.1  | 6.97 | -0.83                | 0.23                  | 0.38    | 1.45     | -0.21     | -2.05  | -1.62     |
|            | SHS-4          | 87    | 6.72 | -0.69                | -0.15                 | 0.00    | 0.78     | -0.54     | -2.07  | -1.70     |
|            | EDR-1          | 57.6  | 7.83 | -2.97                | -0.11                 | 0.04    | -0.36    | -1.85     | -1.20  | -1.08     |
|            | EDR-2          | 44.7  | 7.56 | -2.44                | -0.02                 | 0.12    | 0.26     | -1.38     | -1.16  | -1.16     |
|            | GDR-1          | 56.6  | 8.4  | -3.54                | 0.10                  | 0.25    | -0.49    | -2.19     | -1.56  | -1.45     |
|            | GDR-2          | 17.5  | 7.76 | -2.68                | -0.15                 | -0.01   | 0.54     | -1.13     | -2.96  | -3.22     |
|            | BLY-1          | 59    | 8.21 | -3.12                | 0.06                  | 0.21    | -0.42    | -2.06     | -1.77  | -1.64     |
|            | BLY-2          | 58.1  | 8.1  | -3.04                | -0.10                 | 0.04    | -0.73    | -2.22     | -1.79  | -1.66     |
|            | BLY-3          | 28.8  | 6.17 | -1.47                | -2.19                 | -2.04   | -3.16    | -2.72     | -2.70  | -2.84     |
|            | SLK-1          | 31.8  | 7.05 | -1.56                | -0.11                 | 0.04    | 1.03     | -0.59     | -1.57  | -1.69     |
|            | SLK-2          | 72.8  | 6.4  | -0.55                | -0.75                 | -0.60   | -1.33    | -2.10     | -1.86  | -1.60     |
|            | SLK-3          | 25.7  | 8.05 | -3.02                | -0.11                 | 0.04    | 1.00     | -0.66     | -2.70  | -2.88     |
|            | 1-a Dikili Spa | 65    | 7.3  | -1.08                | 0.54                  | 0.68    | 2.07     | -0.02     | -1.46  | -1.27     |
|            | 2-a Dikili Spa | 40    | 7.3  | -1.22                | 0.33                  | 0.48    | 1.65     | -0.36     | -1.47  | -1.51     |
|            | 3-a Dikili Spa | 40    | 7.3  | -1.22                | 0.37                  | 0.51    | 1.59     | -0.46     | -1.44  | -1.47     |
| Dikili     | 4-a Dikili Spa | 66    | 7.1  | -0.90                | 0.41                  | 0.55    | 1.73     | -0.23     | -1.43  | -1.24     |
| DIKIII     | 5-a Dikili Spa | 65    | 7    | -0.81                | 0.37                  | 0.51    | 1.54     | -0.39     | -1.35  | -1.16     |
|            | 6-a Dikili Spa | 73    | 7.2  | -0.95                | 0.63                  | 0.77    | 2.09     | -0.06     | -1.37  | -1.12     |
|            | 7-a Dikili Spa | 34    | 7.4  | -1.21                | 0.43                  | 0.58    | 1.86     | -0.29     | -1.51  | -1.60     |
|            | 8-b Dikili Spa | 72    | 6.2  | -0.21                | -0.58                 | -0.43   |          |           | -1.29  | -1.04     |

 Table 5.4: Summary of results from speciation - solubility calculations of Group II fields (bh: borehole)

 Table 5.4 (cont'd): Summary of results from speciation - solubility calculations of Group II fields (bh: borehole)

| Geothermal | Convista               |       |      | las sec              | Saturation Index (SI) |         |          |           |        |           |  |
|------------|------------------------|-------|------|----------------------|-----------------------|---------|----------|-----------|--------|-----------|--|
| Field      | Sample                 | T(°C) | рн   | log pCO <sub>2</sub> | Aragonite             | Calcite | Dolomite | Magnesite | Gypsum | Anhydrite |  |
|            | 9-b Dikili Spa         | 41    | 6.7  | -0.69                | -0.26                 | -0.12   | -0.86    | -2.27     | -1.34  | -1.37     |  |
|            | 10-b Dikili Spa        | 36    | 6.4  | -0.59                | -0.78                 | -0.64   | -2.17    | -3.10     | -1.40  | -1.48     |  |
|            | 11-b Dikili Spa        | 65    | 6.8  | -0.64                | 0.14                  | 0.29    | -0.31    | -2.01     | -1.38  | -1.19     |  |
|            | 12-b Dikili Spa        | 30    | 6.6  | -0.61                | -0.01                 | 0.13    | -0.63    | -2.36     | -1.07  | -1.20     |  |
|            | 13-b Near Dikili       | 32    | 7.9  | -1.77                | 0.97                  | 1.11    |          |           | -1.36  | -1.47     |  |
|            | 15-b Plain near Dikili | 24    | 6.7  | -1.65                | -1.27                 | -1.12   | -1.52    | -2.02     | -2.75  | -2.94     |  |
|            | 16-b Sülüklü spr.      | 24    | 7.2  | -1.82                | -0.20                 | -0.05   | 0.68     | -0.90     | -2.53  | -2.72     |  |
|            | 18-c Agrobay-1. well   | 93    | 6.9  | -1.01                | 0.20                  | 0.34    | 0.80     | -0.83     | -0.99  | -0.57     |  |
|            | 19-c Agrobay-2, well   | 89    | 6.8  | -1.00                | 0.00                  | 0.15    | 0.88     | -0.57     | -1.00  | -0.62     |  |
|            | 21-a Kaynarca          | 42    | 8.1  | -2.27                | 0.73                  | 0.88    | 1.79     | -0.62     | -1.41  | -1.43     |  |
|            | 22-a Kaynarca          | 82    | 7.7  | -1.61                | 0.80                  | 0.95    | 1.39     | -0.89     | -1.35  | -1.01     |  |
|            | 23-a Kaynarca          | 48    | 8    | -2.13                | 0.77                  | 0.91    | 2.22     | -0.18     | -1.36  | -1.33     |  |
|            | 24-a Kaynarca          | 53    | 7.7  | -1.81                | 0.56                  | 0.70    | 0.87     | -1.30     | -1.32  | -1.24     |  |
|            | 25-a Kaynarca          | 80    | 7.8  | -1.72                | 1.02                  | 1.16    | 2.55     | 0.05      | -1.23  | -0.92     |  |
|            | 26-a Kaynarca          | 74    | 7.4  | -1.36                | 0.49                  | 0.63    | 0.70     | -1.30     | -1.28  | -1.02     |  |
| Dikili     | 27-a Kaynarca          | 99    | 8.6  | -2.39                | 1.64                  | 1.78    | 3.20     | 0.15      | -1.51  | -1.04     |  |
|            | 28-a Kaynarca          | 46    | 8.4  | -2.54                | 1.06                  | 1.20    | 2.29     | -0.42     | -1.46  | -1.44     |  |
|            | 29-a Kaynarca          | 83    | 7.4  | -1.34                | 0.33                  | 0.47    | 0.64     | -1.17     | -1.55  | -1.21     |  |
|            | 30-a Kaynarca          | 76    | 7.4  | -1.36                | 0.55                  | 0.69    | 0.89     | -1.16     | -1.41  | -1.13     |  |
|            | 31-b Kaynarca          | 88    | 7.4  | -1.30                | 0.61                  | 0.75    | 1.67     | -0.39     | -1.33  | -0.95     |  |
|            | 32-b Kaynarca          | 41    | 7.8  | -2.01                | 0.51                  | 0.66    | 1.52     | -0.67     | -1.28  | -1.31     |  |
|            | 33-b Kaynarca east     | 70    | 7.1  | -1.13                | 0.16                  | 0.30    | 0.71     | -0.98     | -1.24  | -1.01     |  |
|            | 34-b Kaynarca west     | 32    | 7.4  | -1.77                | 0.68                  | 0.83    | 2.46     | 0.05      | -0.67  | -0.79     |  |
|            | 37-b Kaynarca, spring  | 79    | 7.6  | -1.85                | 0.49                  | 0.63    | 0.96     | -1.02     | -1.23  | -0.92     |  |
|            | 38-c Kaynarca well-1   | 67    | 6.9  | -1.48                | -0.34                 | -0.19   | 0.02     | -1.19     | -1.05  | -0.85     |  |
|            | 39-c Kaynarca well-3   | 87    | 8.2  | -2.33                | 0.92                  | 1.06    | 2.76     | 0.38      | -1.49  | -1.12     |  |
|            | 40-c Kaynarca petrol   | 68    | 7    | -1.29                | 0.04                  | 0.19    | 0.76     | -0.82     | -1.03  | -0.81     |  |
|            | 41-a DG-1, well        | 98    | 9    | -3.15                | 1.21                  | 1.35    | 3.52     | 0.90      | -2.06  | -1.60     |  |
|            | 42-a DG-3, well        | 45    | 7.7  | -2.24                | -0.93                 | -0.78   | 1.21     | 0.48      | -3.21  | -3.20     |  |
|            | 44-c Kocaoba Spa       | 52    | 7.4  | -2.20                | 0.09                  | 0.23    | 0.07     | -1.64     | -0.77  | -0.70     |  |
|            | 45-b Kocaoba Spa       | 54    | 7.2  | -1.89                | 0.03                  | 0.17    | 0.40     | -1.23     | -0.80  | -0.71     |  |
|            | H-1                    | 96    | 7.79 | -1.56                | 1.02                  | 1.16    | 3.00     | 0.56      | -2.08  | -1.64     |  |
|            | H-2                    | 58.2  | 7.51 | -1.55                | 0.36                  | 0.50    | 1.59     | -0.35     | -2.11  | -1.98     |  |
|            | H-4                    | 79.2  | 7.03 | -0.97                | 0.12                  | 0.26    | 1.04     | -0.58     | -2.03  | -1.73     |  |
|            | H-5                    | 85    | 6.59 | -0.58                | -0.28                 | -0.14   | 0.31     | -0.88     | -1.95  | -1.59     |  |
|            | H-6                    | 83.7  | 6.51 | -0.52                | -0.43                 | -0.29   | -0.04    | -1.09     | -1.96  | -1.62     |  |
|            | H-7                    | 72    | 7.45 | -1.40                | 0.43                  | 0.58    | 1.80     | -0.16     | -2.13  | -1.88     |  |
|            | H-8                    | 96    | 7.43 | -1.21                | 0.55                  | 0.70    | 2.08     | 0.11      | -2.16  | -1.72     |  |
| Sindirgi   | H-9                    | 81.3  | 7    | -0.90                | 0.13                  | 0.27    | 1.04     | -0.57     | -2.15  | -1.82     |  |
|            | H-10                   | 94    | 6.89 | -0.74                | 0.26                  | 0.40    | 1.66     | -0.03     | -1.89  | -1.46     |  |
|            | H-11                   | 55.5  | 7.07 | -1.16                | -0.17                 | -0.03   | 0.61     | -0.82     | -2.17  | -2.07     |  |
|            | H-12                   | 62    | 6.14 | -0.36                | -0.73                 | -0.59   | -0.84    | -1.68     | -1.80  | -1.64     |  |
|            | H-13                   | 62    | 6.9  | -0.98                | 0.02                  | 0.17    | 0.35     | -1.24     | -2.04  | -1.88     |  |
|            | H-15                   | 95    | 7.46 | -1.43                | 1.19                  | 1.34    | 3.75     | 1.13      | -2.19  | -1.75     |  |
|            | H-16                   | 96.6  | 6.8  | -0.65                | 0.07                  | 0.21    | 0.99     | -0.51     | -2.01  | -1.56     |  |
|            | H-8A                   | 95.2  | 7.12 | -1.96                | 0.00                  | 0.14    | 1.55     | 0.13      | -2.19  | -1.75     |  |
|            | 1                      | 43    | 7.11 | -1.62                | 0.38                  | 0.52    | 1.72     | -0.32     | -0.67  | -0.68     |  |
|            | 2                      | 54    | 7.1  | -1.48                | 0.49                  | 0.64    | 1.96     | -0.14     | -0.92  | -0.82     |  |
|            | 3                      | 43    | 7.1  | -1.61                | 0.27                  | 0.41    | 1.56     | -0.37     | -0.93  | -0.94     |  |
| Emet       | 4                      | 38    | 6.9  | -1.48                | 0.19                  | 0.33    | 1.28     | -0.61     | -0.40  | -0.46     |  |
|            | 6                      | 48    | 7    | -1.49                | 0.03                  | 0.18    | 1.24     | -0.43     | -1.63  | -1.59     |  |
|            | 8                      | 46    | 6.47 | -1.11                | -0.32                 | -0.17   | 0.32     | -1.01     | -0.48  | -0.46     |  |
|            | 9                      | 49    | 6.45 | -1.07                | -0.29                 | -0.14   | 0.37     | -0.98     | -0.46  | -0.41     |  |

| Geothermal<br>Field | Sample | T(°C)    | pН   | log pCO <sub>2</sub> | Saturation Index (SI) |         |          |           |        |           |
|---------------------|--------|----------|------|----------------------|-----------------------|---------|----------|-----------|--------|-----------|
| rielu               |        |          |      |                      | Aragonite             | Calcite | Dolomite | Magnesite | Gypsum | Anhydrite |
|                     | 11     | 33       | 7.8  | -2.23                | 0.72                  | 0.87    | 2.61     | 0.16      | -2.16  | -2.26     |
| Emet                | 12     | 39       | 6.7  | -0.89                | 0.12                  | 0.26    | 1.29     | -0.52     | -1.79  | -1.84     |
|                     | 13     | 43       | 7.1  | -1.61                | 0.19                  | 0.33    | 1.47     | -0.38     | -0.51  | -0.52     |
|                     | 1      | 55       | 6.53 | -0.34                | -0.11                 | 0.03    | 1.14     | -0.36     | -2.28  | -2.18     |
|                     | 2      | 60       | 6.93 | -0.59                | 0.73                  | 0.87    | 2.69     | 0.38      | -1.94  | -1.80     |
|                     | 3      | 44       | 6.39 | -0.47                | 0.02                  | 0.16    | 0.93     | -0.75     | -1.82  | -1.82     |
|                     | 4      | 31       | 6.69 | -0.73                | 0.52                  | 0.66    | 1.83     | -0.42     | -1.73  | -1.85     |
|                     | 5      | 42       | 7.31 | -1.06                | 1.00                  | 1.14    | 3.30     | 0.63      | -1.23  | -1.25     |
|                     | 6      | 55       | 7.43 | -1.13                | 0.73                  | 0.88    | 2.79     | 0.45      | -2.40  | -2.30     |
|                     | 7      | 29       | 6.35 | -0.33                | -0.25                 | -0.11   | 1.26     | -0.23     | -1.90  | -2.04     |
|                     | 8      | 34       | 6.35 | -0.21                | -0.08                 | 0.06    | 1.29     | -0.34     | -1.81  | -1.90     |
|                     | 9      | 182 (bh) | 8.31 | -0.77                | 1.73                  | 1.88    | 4.47     | 1.59      | -1.84  | -0.80     |
|                     | 10     | 27       | 6.01 | -0.74                | -1.37                 | -1.22   | -1.25    | -1.64     | -1.63  | -1.80     |
|                     | 11     | 31       | 6.83 | -0.78                | 0.29                  | 0.44    | 2.36     | 0.33      | -1.97  | -2.09     |
|                     | 12     | 155 (bh) | 7.8  | -0.64                | 1.99                  | 2.14    | 5.36     | 2.14      | -2.49  | -1.62     |
|                     | 13     | 37       | 6.38 | -0.10                | 0.45                  | 0.6     | 2.39     | 0.24      | -2.95  | -3.02     |
|                     | 14     | 31.6     | 7.1  | -1.08                | 0.36                  | 0.51    | 1.69     | -0.40     | -1.63  | -1.75     |
|                     | 15     | 59.3     | 7.6  | -1.35                | 1.12                  | 1.27    | 3.38     | 0.67      | -1.68  | -1.54     |
|                     | 16     | 41.5     | 6.2  | -0.27                | -0.21                 | -0.07   | 0.61     | -0.85     | -1.27  | -1.30     |
|                     | 17     | 42.6     | 7.8  | -1.66                | 1.33                  | 1.48    | 3.68     | 0.67      | -1.59  | -1.60     |
|                     | 18     | 64.9     | 6.6  | -0.39                | 0.04                  | 0.19    | 1.00     | -0.60     | -2.48  | -2.29     |
| Salihli             | 19     | 56.3     | 6.7  | -0.42                | 0.17                  | 0.32    | 1.46     | -0.31     | -2.58  | -2.47     |
| Samm                | 20     | 57       | 6.7  | -0.56                | 0.64                  | 0.79    | 2.37     | 0.13      | -1.32  | -1.21     |
|                     | 21     | 55       | 7.3  | -1.08                | 0.93                  | 1.08    | 2.93     | 0.39      | -1.58  | -1.48     |
|                     | 22     | 51.1     | 7.7  | -1.56                | 1.21                  | 1.36    | 3.50     | 0.66      | -1.67  | -1.60     |
|                     | 23     | 63.5     | 7.7  | -1.38                | 1.33                  | 1.48    | 3.77     | 0.87      | -1.70  | -1.53     |
|                     | 24     | 63.2     | 6.6  | -0.39                | -0.75                 | -0.60   | 0.58     | -0.24     | -2.98  | -2.81     |
|                     | 25     | 35.1     | 7.3  | -1.24                | 0.70                  | 0.85    | 2.39     | -0.03     | -1.57  | -1.65     |
|                     | 26     | 52       | 6.7  | -0.43                | 0.45                  | 0.60    | 2.07     | 0         | -2.71  | -2.64     |
|                     | 27     | 43       | 6.3  | -0.49                | -0.12                 | 0.03    | 0.62     | -0.93     | -1.53  | -1.54     |
|                     | 28     | 22       | 4.9  | -0.05                | -2.17                 | -2.02   | -3.09    | -2.71     | -2.64  | -2.85     |
|                     | 29     | 26       | 6.7  | -0.87                | 0.40                  | 0.54    | 1.69     | -0.47     | -0.81  | -0.99     |
|                     | 30     | 54       | 7.5  | -1.80                | -0.34                 | -0.19   | 0.51     | -0.77     | -2.31  | -2.22     |
|                     | 31     | 36.3     | 7.8  | -1.78                | -0.05                 | 0.09    | 1.00     | -0.65     | -2.58  | -2.65     |
|                     | 32     | 29.8     | 5.9  | -0.68                | -1.40                 | -1.26   | -1.49    | -1.83     | -1.98  | -2.11     |
|                     | 33     | 31.1     | 6.7  | -0.82                | 0.22                  | 0.37    | 1.86     | -0.10     | -1.48  | -1.60     |
|                     | 34     | 27.5     | 7.1  | -1.44                | 0.13                  | 0.28    | 1.58     | -0.31     | -1.66  | -1.81     |
|                     | 35     | 23.6     | 6.1  | -1.14                | -1.26                 | -1.12   | -1.60    | -2.11     | -1.56  | -1.75     |
|                     | 36     | 23.7     | 7.8  | -2.80                | 0.18                  | 0.32    | 1.17     | -0.78     | -1.63  | -1.83     |
|                     | 37     | 28       | 8    | -2.58                | 0.88                  | 1.03    | 2.75     | 0.11      | -1.58  | -1.73     |
|                     | 38     | 26.8     | 7.5  | -2.24                | 0.09                  | 0.24    | 1.38     | -0.47     | -1.56  | -1.72     |
|                     | TH-1   | 116      | 7.71 | -1.63                | 0.40                  | 0.55    | 2.15     | 0.40      | -1.50  | -0.90     |
|                     | 3      | 98       | 6.7  | -0.58                | 0.08                  | 0.22    | 1.14     | -0.35     | -1.00  | -0.54     |
|                     | 4      | 99       | 7.6  | -1.19                | 0.67                  | 0.82    | 2.19     | 0.11      | -1.55  | -1.08     |
| Tekkehamam          | 5      | 60       | 7.9  | -1.70                | 1.76                  | 1.90    | 4.60     | 1.26      | -0.63  | -0.49     |
|                     | 6      | 72       | 7.7  | -1.45                | 0.97                  | 1.12    | 3.11     | 0.61      | -1.21  | -0.96     |
|                     | 7      | 55.5     | 6.45 | -0.63                | -0.16                 | -0.01   | 0.55     | -0.89     | -0.49  | -0.39     |
|                     | 8      | 61.5     | 6.2  | -0.20                | 0.00                  | 0.14    | 1.10     | -0.47     | -0.41  | -0.26     |
|                     | 9      | 73.5     | 7.1  | -0.72                | 0.36                  | 0.51    | 0.86     | -1.02     | -1.39  | -1.13     |

 Table 5.4 (cont'd): Summary of results from speciation - solubility calculations of Group II fields (bh: borehole)



Figure 5.5: Evolution of saturation indices in the thermal waters of Edremit (A), Balıkesir (B), Dikili (C), Sındırgı (D), Emet (E), Salihli (F) and Tekkehamam (G) vs dominant anion concentrations

According to the SI calculations, most of the waters in Group II fields are undersaturated with respect to anhydrite, gypsum and magnesite, close to equilibrium or slightly oversaturated with respect to aragonite and calcite, and mostly oversaturated with respect to dolomite (Table 5.4, Fig. 5.5.). Since undersaturation points to the possibility of dissolution, and oversaturation implies the possibility of precipitation of the minerals, it can be said that anhydrite, gypsum and magnesite dissolution and aragonite, calcite, and dolomite precipitation is expected in these fields.

When the fields of Group II are examined in detail, it is observed that SI values of carbonate minerals mostly fall into both areas of the SI diagrams. For instance in Edremit (Fig. 5.5A), aragonite, calcite, dolomite and magnesite all have both positive and negative SI values that suggest dissolution and precipitation would take place for those carbonate minerals. In fact, the variations of Ca, Mg, HCO<sub>3</sub> seen in hydrogeochemical investigations in Fig. 5.4 can be explained with the variant mineral dynamics suggested by the SI results. In other words, if a decrease in HCO<sub>3</sub>, Ca and/or Mg concentration is observed, the precipitation of the related carbonate mineral is effective in that field rather than dissolution. In the case of sulphate minerals, the increase in SO<sub>4</sub> concentration (Fig. 5.4) is in favour of the SI index results which imply the dissolution of SO<sub>4</sub>-bearing minerals. In brief, the results of speciation - solubility calculations are consistent with the hydrogeochemical characteristics of Group II fields.

Given that the dissolution of Ca- and/or Mg-bearing minerals (dominantly sulphate and, to a lesser extent, carbonate minerals) is an effective hydrothermal process in Group II geothermal fields, the relative contribution of carbonate minerals' dissolution to the total dissolved calcium is estimated. As applied for Group I fields, the amount of calcium derived from dissolution of CaSO<sub>4</sub> minerals (gypsum or anhydrite) (as inferred from total dissolved sulphate), is subtracted from the total dissolved calcium concentrations. The (corrected) Ca concentration estimated via this calculation is also shown in Fig. 5.6. It can be observed that corrected Ca concentrations correlate negatively with SO<sub>4</sub>. The negative trend of corrected Ca with  $SO_4$  indeed suggests that the dissolution is largely governed by sulphate (rather than carbonate) minerals. This trend can also be an indication of calcite and/or aragonite precipitation in parallel with gypsum and/or anhydrite dissolution. Moreover, the negative correlation between Mg and  $SO_4$  in Edremit, Dikili, Sındırgı and Salihli waters suggests potential dolomite and/or magnesite precipitation, while the positive trend of Mg in Emet and Tekkehamam indicates the possibility of dolomite and/or magnesite dissolution in these fields along with calcite and aragonite precipitation. The almost constant trend of Mg in Balikesir points to the fact that both dissolution and precipitation can take place similar to the SI results of Balikesir in Fig. 5.5B.



Figure 5.6: Evolution of analytic and corrected calcium concentrations and magnesium concentrations vs. total sulphate concentrations in the thermal waters of Edremit (A), Balıkesir (B), Dikili (C), Sındırgı (D), Emet (E), Salihli (F) and Tekkehamam (G).

It follows from the above discussion that dolomite and magnesite have characteristics for both dissolution and precipitation in Group II systems. Furthermore, Table 5.4 and Fig. 5.5 reveal that dolomite is likely to be precipitated and magnesite is prone to be dissolved; the relative contribution of these minerals to the system is investigated in Fig. 5.7 with calculations similar to the Ca correction calculations.

Initially, the distinction of chemical formulas between dolomite  $(CaMg(CO_3)_2)$  and magnesite  $(MgCO_3)$  is considered to be able to calculate the relative contribution of each mineral. Given that magnesium is the common element of these carbonate minerals, the calcium assumed to be derived from the dissolution of dolomite is subtracted from the total magnesium content of the system. It is important to note here that the calcium content used in these calculations is the corrected Ca (mentioned above) which represents the contribution from carbonate (and eliminates the contribution from sulphate) dissolution. The (corrected) Mg concentrations estimated with this calculation, which are shown in Fig. 5.7, have positive trend with increasing SO<sub>4</sub> in all the fields of Group II. This positive trend can be interpreted as the dissolution of magnesite and precipitation of dolomite which justify the SI results.



Figure 5.7: Evolution of analytic and corrected magnesium and calcium concentrations vs. total sulfate concentrations in the thermal waters of Edremit (A), Balıkesir (B), Dikili (C), Sındırgı (D), Emet (E), Salihli (F) and Tekkehamam (G) (see text for further explanation)

# 5.2.3. Mass – Balance Calculations

In the geothermal fields of Group II, the examination of hydrogeochemical characteristics and speciation-solubility calculations show that both dissolution and mineral precipitation might be controlling the trapping of  $CO_2$  in the system.

For a further verification, mass-balance calculations (inverse modelling) have also been performed with the help of *PHREEQC* code for Group II geothermal fields, and the modelling results are tabulated in Table 5.5.

|              | Field      | Initial Solution* | Final Solution* | Calcite mole | Dolomite mole |  |
|--------------|------------|-------------------|-----------------|--------------|---------------|--|
|              |            |                   |                 | transfer**   | transfer**    |  |
|              | Edremit    | EDJ-5             | DERM            | -0.499       | 0.030         |  |
| Mass-        | Balikesir  | BLY-3             | BHS-2           | -0.279       | 0.772         |  |
| Balance      | Dikili     | 15                | 7               | 0.0205       | 0.545         |  |
| Calculations | Sindirgi   | H-8A              | H-12            | 0.689        | -0.314        |  |
|              | Emet       | 11                | 13              | -3.747       | 1.631         |  |
|              | Salihli    | 11                | 13              | 3.327        | 1.134         |  |
|              | Tekkehamam | 8                 | TH-1            | -2.380       | -1.552        |  |

Table 5.5: Summary of results from mass-balance calculations of Group II geothermal fields

\*Sample numbers are given in Table A.1

\*\*Negative mass transfer corresponds to precipitation and positive to dissolution.

Since negative mass transfer values corresponds to precipitation and positive values to dissolution in mass-balance calculations, the results of Group II are consistent with the SI index results which suggest both dissolution and precipitation can be present for calcite and dolomite in the fields.

A striking feature of inverse modelling results in Table 5.5 is that in Edremit, Balıkesir and Emet fields calcite precipitation seems to be accompanied by dolomite dissolution which is an important sign for a possible occurrence, in the concerned fields, of dedolomitization process (dissolution of dolomite and precipitation of calcite induced by input of calcium ions through gypsum dissolution). In this respect, when hydrogeochemical characteristics of Edremit, Balıkesir and Emet fields are re-examined, the EC diagrams (in Fig. 5.4) reveal an almost constant Mg/Ca ratio which is an indicator for the possibility of dedolomitization (referring to the equilibrium with both calcite and dolomite as explained in Chapter 2). In Edremit and Emet, the decreasing  $HCO_3$  concentration is indirect evidence that the mass of precipitated calcite is larger than that of dissolved dolomite (see Chapter 2). In the saturation index plot of Edremit and Balıkesir (Fig. 5.5) samples fall into the areas of both undersaturation and oversaturation with respect to calcite and dolomite supporting the potential for dedolomitization. On the other hand, in Emet, the samples are close to the equilibrium with respect to calcite and aragonite, even though they seem to be oversaturated with dolomite, and given the fact that the continuous addition of  $CO_2$ to the system lowers the saturation index values of carbonate minerals (especially dolomite) as shown in Fig. 5.8, the existence of dedolomitization process in this system is possible. Moreover, corrected Ca trends shown in Fig. 5.6 suggest calcite and/or aragonite precipitation in parallel with gypsum and/or anhydrite dissolution in all three fields, accompanied by dolomite and/or magnesite dissolution in Emet as inferred from the positive Mg trend. Another indicator for the dedolomitization process for Emet field is the Calcite/Dolomite ratio calculated during the inverse modelling. This ratio is around 2 (calcite mole transfer/dolomite mole transfer = 2.3, in Table 5.5) which is the ratio considered for the stoichiometry of the overall dedolomitization reaction meaning that for every dissolved dolomite 2 calcite minerals precipitate (see Chapter 2 and equation 5.1 in the following section 5.2.4). All these observations suggest dedolomitization as a potential process in those fields.



Figure 5.8: PHREEQC simulations of a less evolved Emet sample (sample no.6) water reacting with added CO<sub>2</sub> and gypsum (0.01 moles of each are added in 3 steps). The initial points are the calculated SI values of the sample. Previously applied by Keating et al. (2010).

### 5.2.4. Modelling Dedolomitization

As previously explained in Chapter 2, the main driving force in systems dominated by dedolomitization is not the addition of  $CO_2$  but of calcium ions. Dissolution of gypsum or anhydrite within a carbonate aquifer is commonly the source for calcium ions inducing dedolomitization. The dedolomitization process triggered by the input of Ca<sup>2+</sup> ions follows the below reaction

 $Ca^{2+} + CaMg(CO_3)_2 \leftrightarrow Mg^{2+} + 2CaCO_3$  (5.1)

and creates a carbonate environment different than that caused by calcite dissolution:

$$CO_{2 (aq)} + H_2O + CaCO_3 \leftrightarrow Ca^{2+} + 2HCO_3^{-}$$
 .....(5.2)

In order to distinguish the effects of  $CO_2$  in systems dominated by dedolomitization from those dominated by calcite dissolution, Romanak et al. (2010) have previously implemented a geochemical modelling using the *PHREEQC* code for a study of the Dockum aquifer in SACROC oil field, Texas. In this thesis study, this dedolomitization modelling is performed for the geothermal fields of Edremit, Balikesir and Emet due to the possibility of dedolomitization in these systems (Fig. 5.9).

For the modelling, a high  $HCO_3^{-}$  - low  $Ca^{2+}$  water sample from each of the corresponding field is used as the input for *PHREEQC* (the samples used in this study are YAGCI for Edremit, BHS-1 for Balıkesir and 11 for Emet). Then, to be able to construct the geochemical trends of dedolomitization, 30 mmoles of CaSO<sub>4</sub> is added to the solution in each step for a total of 30 steps in equilibrium with calcite and dolomite at various values of fixed partial pressure of CO<sub>2</sub> (P<sub>CO2</sub>) (Fig. 5.9). The P<sub>CO2</sub> values used in the model is within the range of those obtained from speciation-solubility calculations (Table 5.4) and also within the normal range for aquifers (~10<sup>-3</sup> to 10<sup>-1</sup> (Clark & Fritz, 1997)). Calcite dissolution is also modelled using the information from equation 5.2 which is the production of 1 mole of Ca<sup>2+</sup> and 2 moles of HCO<sub>3</sub><sup>-</sup> leading to a trendline with a slope of 0,5 on a chart of Ca<sup>2+</sup> versus HCO<sub>3</sub><sup>-</sup> (Fig. 5.9).



Figure 5.9: Modelling of dedolomitization and calcite dissolution for the geothermal fields of a) Edremit, b) Balikesir, c) Emet. Trends are modelled for different conditions of fixed PCO<sub>2</sub> at 10<sup>-1,2</sup>, 10<sup>-1,5</sup>, 10<sup>-2</sup> and 10<sup>-2,7</sup> as shown.

The results of the modelling show two different scenarios for the fields. While the water samples from Edremit and Balıkesir follow the trend for calcite dissolution, the samples from Emet mostly fall within the trends for dedolomitization. These outcomes indicate that the most likely process for Edremit and Balıkesir is calcite dissolution rather than dedolomitization; on the other hand, the hypothesis of the existence of dedolomitization for Emet is acceptable.

Regarding dedolomitization for Emet, if the model is further evaluated, it is observed that the dissolved  $HCO_3^-$  concentration decreases in the early stages of reaction since it is consumed during calcite precipitation process. As calcite precipitation proceeds,  $HCO_3^-$  concentration in the initial solution is used up and dedolomitization process starts to be the main supply of  $HCO_3^-$  for calcite precipitation. Even though  $Ca^{2+}$  is also consumed during the calcite precipitation process, due to the constant addition of  $CaSO_4$  to the system, its concentration slightly increases.

When all the investigations are taken into consideration, it can be said that the trapping mechanism for Group II geothermal fields (Edremit, Balıkesir, Dikili, Sındırgı, Emet and Tekkehamam) is a combination of solubility and mineral trapping of  $CO_2$ . The He-CO<sub>2</sub> systematics of these fields (Mutlu et al., 2008) also suggest both precipitation and dissolution of carbonate minerals (Fig. 4.3). Additionally, in Emet, a special trapping mechanism is likely to occur, namely dedolomitization which is one of the most desirable methods for the storage of  $CO_2$ . The presence of gypsum bands in the Neogene lacustrine sediments in Emet is in support of the likelihood of dedolomitization in this field.

# 5.3. Solubility Trapping: Group III Type Geothermal Fields

Group III comprises the geothermal fields which have distinctive hydrogeological features leading them to be identified as a separate group. These are Çaldıran and Diyadin from eastern Anatolia, and the fields along the North Anatolian Fault Zone (NAFZ) which, from west to east, are Yalova, Efteni, Bolu, Mudurnu, Seben,

Kurşunlu, Hamamözü, Gözlek and Reşadiye. The hydrogeochemical characteristics, saturation index calculations and inverse modelling of the fields in this group suggest solubility trapping as the most effective mechanism in these systems.

# 5.3.1. Hydrogeochemical Characteristics

The table for hydrochemistry of the water samples taken from the fields of Group III is presented in Appendix-Tables A.3 and A.5. The variations in the concentrations of the major ions (Na, Ca, Mg,  $HCO_3$ ,  $SO_4$ , and Cl) vs. electrical conductivity (EC) are shown in Fig. 5.10.



Figure 5.10: Concentration vs EC diagrams for geothermal fields of Çaldıran (a, b), Diyadin (c, d), NAFZ (e, f).

From Fig. 5.10, it is observed that the geothermal fields of Group III have very similar hydrogeochemical characteristics. Except Ca in Diyadin which is constant, all of the ions have increasing trends with increasing EC in all fields. Mg/Ca ratio remains constant in NAFZ geothermal fields and increases in Çaldıran and Diyadin. These examinations lead to the assumption that the rate of dissolution of the minerals is higher than that of their precipitation which results in the increase in the concentrations. For further analysis of the systems, speciation – solubility calculations are studied.

#### 5.3.2. Speciation – Solubility Calculations

Saturation index (SI) calculations are carried out for Anhydrite, Gypsum, Aragonite, Calcite, Dolomite, and Magnesite minerals for each field of Group III with the assistance of *PHREEQC* code; the results are tabulated in Table 5.6, along with the calculated  $CO_2$  partial pressure, and are illustrated in terms of SI vs. major anion diagrams in Fig. 5.11.

| Geothermal |             |       |      |                      | Saturation Index (SI) |         |          |           |        |           |
|------------|-------------|-------|------|----------------------|-----------------------|---------|----------|-----------|--------|-----------|
| Field      | Sample      | (, ,  | рн   | log pCO <sub>2</sub> | Aragonite             | Calcite | Dolomite | Magnesite | Gypsum | Anhydrite |
|            | ALT         | 23.62 | 6.51 | -1.16                | -1.13                 | -0.98   | -0.66    | -1.31     | -2.13  | -2.32     |
|            | AVC         | 12.86 | 7.88 | -3.17                | -1.04                 | -0.89   | -1.00    | -1.80     | -4.28  | -4.59     |
|            | AYR         | 36.15 | 7.02 | -0.97                | -0.62                 | -0.47   | 0.84     | -0.24     | -2.63  | -2.70     |
|            | AYS         | 25.80 | 6.07 | -0.64                | -1.42                 | -1.27   | -1.15    | -1.50     | -2.19  | -2.37     |
|            | BUG         | 35.73 | 6.76 | -0.94                | 0.01                  | 0.16    | 1.62     | -0.09     | -2.33  | -2.41     |
| Caldiran   | BUS         | 20.33 | 5.85 | -0.84                | -2.00                 | -1.86   | -2.45    | -2.25     | -2.11  | -2.33     |
|            | KOC-I       | 15.98 | 6.18 | -0.75                | -1.06                 | -0.91   | -0.69    | -1.46     | -2.66  | -2.93     |
|            | KOC-II      | 25.08 | 6.71 | -0.62                | 0.19                  | 0.33    | 2.17     | 0.21      | -1.98  | -2.16     |
|            | KOC-III     | 14.59 | 5.63 | -0.46                | -1.76                 | -1.62   | -2.06    | -2.13     | -2.29  | -2.57     |
|            | YKR         | 14.16 | 5.62 | -0.90                | -2.75                 | -2.60   | -4.15    | -3.24     | -3.18  | -3.47     |
|            | ZYR         | 11.39 | 7.15 | -2.37                | -1.39                 | -1.24   | -2.00    | -2.47     | -3.15  | -3.47     |
|            | BUR         | 19.51 | 5.4  | -1.34                | -3.47                 | -3.32   | -6.02    | -4.36     | -1.66  | -1.89     |
|            | DGM         | 11.07 | 4.56 | -1.00                | -4.64                 | -4.49   | -8.28    | -5.5      | -1.90  | -2.22     |
|            | DHS         | 21.5  | 8.43 | -3.00                | 1.21                  | 1.35    | 3.48     | 0.48      | -1.82  | -2.04     |
|            | DIB         | 48.25 | 6.98 | -0.99                | 0.41                  | 0.56    | 2.54     | 0.48      | -1.65  | -1.61     |
|            | DKC         | 11.19 | 6.44 | -1.27                | -1.03                 | -0.89   | -1.09    | -1.92     | -1.51  | -1.83     |
|            | DVS         | 11.4  | 5.4  | -1.02                | -2.85                 | -2.70   | -4.78    | -3.79     | -1.31  | -1.62     |
|            | EBU         | 25.77 | 3.17 |                      |                       |         |          |           | -1.02  | -1.19     |
|            | GBK         | 9.64  | 5.5  | -0.95                | -2.66                 | -2.52   | -4.42    | -3.63     | -1.63  | -1.97     |
|            | GOK         | 10.94 | 6.05 | -1.11                | -1.78                 | -1.63   | -2.65    | -2.73     | -1.75  | -2.07     |
|            | KEV         | 20.62 | 5.9  | -0.84                | -1.75                 | -1.61   | -2.12    | -2.17     | -1.84  | -2.06     |
|            | КОР         | 50.63 | 7.23 | -1.37                | 0.44                  | 0.58    | 2.70     | 0.63      | -1.78  | -1.72     |
| Diyadin    | KUS         | 65.5  | 7.43 | -1.42                | 0.49                  | 0.63    | 3.24     | 1.19      | -2.19  | -2.00     |
|            | MKK         | 9.27  | 6.11 | -0.98                | -1.45                 | -1.30   | -1.48    | -1.90     | -1.49  | -1.83     |
|            | MLK         | 65.2  | 6.63 | -0.69                | 0.28                  | 0.43    | 1.99     | 0.15      | -1.53  | -1.34     |
|            | MNC         | 20.15 | 7.8  | -2.70                | -0.10                 | 0.05    | 0.82     | -0.88     | -2.41  | -2.64     |
|            | MNG         | 16.57 | 7.18 | -2.51                | -1.49                 | -1.35   | -1.88    | -2.21     | -2.89  | -3.15     |
|            | RAH         | 11.46 | 7.75 | -2.37                | 0.11                  | 0.25    | 1.63     | -0.33     | -2.86  | -3.17     |
|            | TAZ         | 39.81 | 6.93 | -1.07                | 0.11                  | 0.25    | 1.95     | 0.16      | -1.67  | -1.71     |
|            | TSK         | 10.7  | 5.26 | -0.78                | -2.99                 | -2.85   | -4.65    | -3.52     | -1.67  | -2.00     |
|            | TUN         | 63.4  | 7.27 | -1.28                | 0.43                  | 0.58    | 2.87     | 0.87      | -1.90  | -1.73     |
|            | YES         | 12.01 | 7.68 | -2.34                | 0.28                  | 0.43    | 1.13     | -1.00     | -2.36  | -2.67     |
|            | ZEG         | 17.82 | 3.15 |                      |                       |         |          |           | -0.81  | -1.06     |
|            | Efteni-1a   | 43.2  | 6.5  | -0.38                | 0.17                  | 0.31    | 2.17     | 0.33      | -3.33  | -3.34     |
|            | Efteni-1b   | 17    | 8.6  | -3.53                | 0.09                  | 0.23    | 2.16     | 0.25      | -3.51  | -3.77     |
|            | Yalova-2a   | 61.2  | 7.6  | -2.77                | 0.10                  | 0.24    | 0.51     | -1.16     | -0.63  | -0.47     |
|            | Yalova-2c   | 17.2  | 7.5  | -2.10                | 0.23                  | 0.38    | 0.89     | -1.15     | -1.88  | -2.14     |
|            | Bolu-3a     | 42    | 6.2  | -0.56                | -0.23                 | -0.08   | 0.30     | -1.14     | -0.63  | -0.65     |
|            | Bolu-3b     | 14.6  | 8    | -3.45                | -0.99                 | -0.84   | -0.91    | -1.76     | -3.32  | -3.60     |
|            | Mudurnu-4a  | 39.8  | 6.2  | -0.59                | -0.49                 | -0.34   | 0.22     | -0.97     | -2.01  | -2.05     |
|            | Mudurnu-4d  | 15.1  | 7.1  | -1.59                | -0.11                 | 0.04    | 1.03     | -0.69     | -1.93  | -2.21     |
|            | Seben-5a    | 71.4  | 6.6  | -0.40                | 0.09                  | 0.24    | 1.49     | -0.13     | -1.97  | -1.73     |
| NAFZ       | Seben-5d    | 15    | 7.4  | -1.97                | 0.08                  | 0.23    | 1.46     | -0.46     | -1.21  | -1.50     |
|            | Hamamözü-6a | 42.5  | 7.4  | -1.94                | 0.00                  | 0.15    | 1.45     | -0.23     | -2.48  | -2.49     |
|            | Hamamözü-6b | 16.3  | 7.5  | -2.08                | 0.15                  | 0.29    | 1.40     | -0.57     | -2.04  | -2.31     |
|            | Gözlek-7a   | 39.1  | 7.8  | -2.33                | 0.12                  | 0.26    | 1.58     | -0.22     | -2.61  | -2.65     |
|            | Gözlek-7b   | 17.8  | 7.7  | -2.19                | 0.47                  | 0.62    | 2.44     | 0.16      | -1.32  | -1.58     |
|            | Reşadiye-8a | 41.2  | 6.4  | -0.32                | 0.30                  | 0.45    | 1.85     | -0.14     | -1.44  | -1.46     |
|            | Reşadiye-8b | 15.3  | 7.3  | -2.08                | -0.52                 | -0.37   | 0.35     | -0.97     | -1.96  | -2.24     |
|            | Kurşunlu-9a | 57.4  | 7    | -0.16                | 0.91                  | 1.05    | 3.23     | 0.73      | -2.53  | -2.40     |
|            | Kursunlu-9b | 13.3  | 6.4  | -0.63                | -0.61                 | -0.47   | -0.39    | -1.62     | -2.14  | -2.43     |
|            | Kurşunlu-9c | 13.2  | 8    | -2.69                | 0.46                  | 0.60    | 1.72     | -0.58     | -2.68  | -2.98     |

Table 5.6: Summary of results from speciation - solubility calculations of Group III fields



Figure 5.11: Evolution of saturation indices in the thermal waters of Çaldıran (A), Diyadin (B), and NAFZ (C) vs dominant anion concentrations

Speciation - solubility index calculations show that the waters of Group III are undersaturated with respect to anhydrite and gypsum, and – to a certain extent – magnesite, pointing to dissolution of these minerals. Calcite and aragonite show SI values close to equilibrium or indicative of dissolution. The fields in eastern Anatolia have waters mostly undersaturated, while those along NAFZ mostly oversaturated with respect to dolomite (Table 5.6, Fig. 5.11). In other words, SI values indicate that dissolution is the dominating process in the geothermal systems associated with eastern Anatolian fields. On the other hand, for the fields along the NAFZ, although both precipitation and dissolution seem to be the valid hydrogeochemical processes, the rate of dissolution appears to be exceeding that of precipitation as the concentrations of major anions and cations display increasing trends with increasing EC value as a measure of hydrogeochemical evolution (Fig. 5.10). Although both carbonate and sulphate minerals in these waters are likely to be dissolved, it is important to evaluate the relative contribution of carbonate minerals' dissolution to the total dissolved calcium. Similar to the procedure done for other groups, the amount of calcium derived from dissolution of  $CaSO_4$  minerals (gypsum or anhydrite) (as inferred from total dissolved sulphate), is subtracted from the total dissolved calcium concentrations. The (corrected) Ca concentration estimated with this calculation is shown in Fig. 5.12.



Figure 5.12: Evolution of analytic and corrected calcium concentrations and magnesium concentrations vs. total sulphate concentrations in the thermal waters of Çaldıran (A), Diyadin (B), and NAFZ (C).

As seen in Fig. 5.12, in all fields of Group III corrected Ca concentrations correlate negatively with SO<sub>4</sub>. The negative trend of corrected Ca with SO<sub>4</sub>, when combined with the results obtained from SI calculations, suggests that the dissolution process is dominated by sulphate, rather than carbonate minerals.

## 5.3.3. Mass – Balance Calculations

For the geothermal fields of Group III, dissolution is found out to be the most likely process for the trapping of  $CO_2$  in these systems.

Mass-balance calculations (inverse modelling) have also been carried out utilizing *PHREEQC* code for Group III geothermal fields to further evaluate the mechanism of  $CO_2$  storage and the modelling results are presented in Table 5.7.

| Mass-        | Field    | Initial Solution* | Final Solution* | Calcite mole<br>transfer** | Dolomite mole<br>transfer** |
|--------------|----------|-------------------|-----------------|----------------------------|-----------------------------|
| Balance      | Caldiran | 1 (ALT)           | 8 (KOC-II)      | -3.306                     | 6.165                       |
| Calculations | Diyadin  | 1 (BUR)           | 15 (MLK)        | 0.365                      | 1.773                       |
|              | NAFZ     | 11                | 1               | -3.087                     | 5.616                       |

Table 5.7: Summary of results from mass-balance calculations of Group III geothermal fields

\*Sample numbers are given in Tables A.3 and A.5

\*\*Negative mass transfer corresponds to precipitation and positive to dissolution.

Given that positive mass transfer values correspond to dissolution in mass-balance calculations, it is clear from Table 5.7 that dissolution is indeed the major process in Diyadin field. Dolomite dissolution is also clear for the fields of Çaldıran and NAFZ, although the negative values indicate precipitation for calcite. It is important, however, to note the relatively large amount of dolomite dissolution compared to calcite precipitation in Çaldıran and NAFZ fields, suggesting that the calcite precipitation does not contradict the validity of dissolution as the major hydrogeochemical process for Group III fields. Furthermore, the He-CO<sub>2</sub> systematics (Fig. 4.6 and Fig. 4.9) of these fields (Mutlu et al., 2012; de Leeuw et 2010) also suggest that dissolution of carbonate minerals is the dominant hydrogeochemical process.

### **CHAPTER 6**

#### **CONCLUSIONS AND RECOMMENDATIONS**

Taken as the natural analogues for  $CO_2$  storage sites, various geothermal fields from western, eastern and northern Anatolia are examined with respect to the hydrogeochemical processes and potential mechanisms controlling  $CO_2$  trapping in these systems. The methods used for this study are the geochemical characterization of the system, speciation-solubility calculations, estimation of relative contribution of carbonate and sulphate minerals to the system, and modelling studies such as inverse modelling and dedolomitization modelling depending on the behaviour of the field. With the investigation of the results, three different groups of geothermal systems are identified with regard to the dominant  $CO_2$  trapping mechanism:

1. First group is characterized by *mineral trapping* as the dominant trapping mechanism and is comprised by K121ldere, Germencik, Balçova and Simav geothermal fields from western Anatolia. In these fields, increasing electrical conductivity (EC) of solutions (as a measure of hydrogeochemical evolution) is accompanied by decreasing Ca and Mg, and generally increasing SO<sub>4</sub> contents, pointing to the potential of precipitation of carbonate and dissolution of sulphate minerals. Saturation index (SI) calculations indeed reveal that majority of waters are oversaturated with respect to carbonate minerals dolomite and magnesite, and - to a certain extent - aragonite and calcite, and undersaturated with respect to anhydrite and gypsum. With the results showing dolomite  $\pm$  calcite precipitation, mass-balance calculations (inverse modelling) verify mineral trapping as the dominant CO<sub>2</sub> trapping mechanism in these systems.

2. The second group is characterized by *mineral* ± *solubility trapping* and includes Edremit, Balıkesir, Dikili, Sındırgı, Emet, Salihli and Tekkehamam geothermal fields from western Anatolia. The hydrogeochemical differences observed between these fields and those categorized as Group I, lead to their identification as a separate group (Group II). This group has variable geochemical characteristics. The SO<sub>4</sub> concentrations have increasing trends with increasing EC in almost all fields (as is the case with the first group), suggesting the dissolution of sulphate minerals which is also supported by SI calculations. On the other hand, HCO<sub>3</sub>, Ca and Mg concentrations have different trends in different fields, resulting in the anticipation of both dissolution and precipitation of carbonate minerals in the systems. SI calculations reveal that different water samples from individual fields show both undersaturation and oversaturation with respect to calcite, aragonite and dolomite, while dominantly undersaturation with respect to magnesite (as opposed to Group I fields). The occurrence of both dissolution and precipitation of carbonate minerals for this group is justified with the mass-balance calculations (inverse modelling). However for Edremit, Balıkesir and Emet fields, the results of mass-balance calculations combined with the previous studies indicate the possibility of dedolomitization which can be generated by calcite precipitation accompanied by dolomite dissolution. At this step, dedolomitization modelling is performed to differentiate the effects of  $CO_2$  in systems dominated by dedolomitization from those dominated by calcite dissolution. The results of this modelling show that Edremit and Balıkesir follow the trend for calcite dissolution, while the samples from Emet mostly fall within the trends for dedolomitization. In brief, the trapping mechanism of the fields in this group is a combination of solubility and mineral trapping whereas for Emet, dedolomitization is also likely to occur.

3. The third group is characterized by *solubility trapping*. The fields included in this group are Çaldıran and Diyadin from eastern Anatolia, and the fields along the North Anatolian Fault Zone (NAFZ), namely, Yalova, Efteni, Bolu, Mudurnu, Seben, Kurşunlu, Hamamözü, Gözlek and Reşadiye. The hydrogeochemical character of this group is that all of the major anions and cations have increasing trends with increasing EC in almost all fields. This observation implies the dissolution of sulphate and carbonate minerals in these systems. SI calculations reveal that the waters are dominantly undersaturated with respect to carbonate and sulphate minerals. The mass-balance calculations verify dissolution as the major process, although calcite precipitation may also occur in some fields. In other words, solubility trapping is the main mechanism for the fields of Group III.

A striking observation relevant to the above mentioned grouping is that the mineral trapping (rather than dissolution) seems to be the dominant  $CO_2$  trapping mechanism in fields with the highest reservoir temperatures such as Germencik and Kızıldere in the Büyük Menderes Graben, whereas in the fields with relatively lower temperatures dissolution is an effective process. Therefore, it can be concluded that reservoir's temperature condition determines the impact of  $CO_2$  interactions.

The conclusions derived from this thesis study are relevant for  $CO_2$  storage in deep saline aquifers. The geochemical investigations performed in this study provide an invaluable starting point for understanding the behavior of potential storage systems. For the prospective  $CO_2$  storage projects in the long term, rate of mineral precipitation or dissolution of  $CO_2$  should also be studied via kinetic modelling in addition to the thermodynamic studies performed in the thesis work. Moreover, more natural analogues must be studied in order to confirm and widen the knowledge of long-term  $CO_2$ -induced geochemical interactions.

### REFERENCES

- Akkuş, İ., Akıllı, H., Ceyhan, S., Dilemre, A., & Tekin, Z. (2005). Türkiye Jeotermal Kaynakları Envanteri. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü.
- Aksoy, N., Demirkıran, Z., & Şimşek, C. (2009). Sındırgı-Hisaralan (Balıkesir) jeotermal sahasının jeokimyasal özelliklerinin değerlendirilmesi. *Jeotermal Enerji Semineri*, (pp. 61-72). İzmir.
- Appelo, C., & Postma, D. (2005). *Geochemistry, groundwater and pollution*. Amsterdam: A.A. Balkema Publishers.
- Auqué, L., Acero, P., Gimeno, M., Gomez, J., & Asta, M. (2009). Hydrogeochemical modeling of a thermal system and lessons learned for CO2 geologic storage. *Chemical Geology*, 268, 324-336.
- Avşar, Ö., Güleç, N., & Parlaktuna, M. (2013). Hydrogeochemical characterization and conceptual modeling of the Edremit geothermal field (NW Turkey). *Journal of Volcanology and Geothermal Research*, 262, 68–79.
- Aydın, H., Mutlu, H., & Kazancı, A. (2013). Çaldıran (Van) jeotermal sahasının hidrojeokimyasal özellikleri. 11. Ulusal Tesisat Mühendisliği Kongresi -Jeotermal Enerji Semineri, (pp. 71-90). İzmir.
- Bingöl, E. (1969). Geology of the central and southeastern sections of the Kazdag Massif. *Mineral Exploration Institute of Turkey Bulletin*, 72, 102-123.
- Bingöl, E., Akyürek, B., & Korkmazer, B. (1973). Biga yarımadası'nın jeolojisi ve karakaya formasyonunun bazı özellikleri. *MTA, cumhuriyetin 50.yılı yer bilimleri kongresi, tebliğler*, (pp. 70-76). Ankara.

- Bozkurt, E. (2003). Origin of NE-trending basins in western Turkey. *Geodinamica Acta*, *16*, 61–81.
- Bozkurt, E., & Mittwede, S. (2001). Introduction to the Geology of Turkey—A Synthesis. *International Geology Review*, *43*, 578-594.
- Canik, B. (1972). Düzce-Derdin hamamı civarının jeoloji ve hidrojeoloji etüdü. Ankara: MTA Report 6359.
- Canik, B., & Pasvanoğlu, S. (2003). Geothermal investigation of the Kesenözü thermal springs (Bolu-Turkey). *European Geothermal Congress*, (pp. 1-10). Szeged-Hungary.
- CCP (2008). CO<sub>2</sub> Trapping Mechanisms. CO<sub>2</sub> Capture Project: Retrieved from http://www.co2captureproject.org/co2\_trapping.html (last accessed on 14 August 2014)
- Clark, I. D., & Fritz, P. (1997). *Environmental Isotopes in Hydrogeology*. Boca Raton: CRC Press.
- CO<sub>2</sub>CRC (2011). *Injection & storage*. The Cooperative Research Centre for Greenhouse Gas Technologie: Retrieved from http://www.co2crc.com.au/aboutccs/stor\_trapping.html (last accessed on 14 August 2014)
- CO<sub>2</sub>GeoNet (2008). *What does CO<sub>2</sub> geological storage really mean?* The European Network of Excellence on the Geological Storage of CO<sub>2</sub>: Retrieved from http://www.co2geonet.com/ (last accessed on 4 August 2014)
- Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703.
- Dagistan, H. (2007). Yenilenebilir Enerji ve Jeotermal Kaynaklarimiz. *Türkiye 10. Enerji Kongresi* (pp. 73-80). Ankara: MTA Genel Müdürlügü.

- de Leeuw, G., Hilton, D., Güleç, N., & Mutlu, H. (2010). Regional and temporal variations in CO2/3He, 3He/4He and d13C along the North Anatolian Fault Zone, Turkey. *Applied Geochemistry*, 25, 524–539.
- Dewey, J., & Şengör, A. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. *Geological Society of America Bulletin*, 90, 84-92.
- Dominco, E., & Şamilgil, E. (1970). The geochemistry of the Kizildere geothermal field, in the framework of the Saraykoy-Denizli geothermal area. *Geothermics*, 2, 553–560.
- Dürr, S. (1975). Über Alter und geotektonische Stellung des Menderes-Kristallins/SW-Anatolien und seine Äequivalente in der mittleren Ägäis.
   Habilitation Thesis, University of Marburg/Lahn.
- Erzenoğlu, Z. (1989). Amasya Gümüşhacıköy Hamamözü (Arkutbey) kaplıcası H-1 no'lu sıcaksu sondajı kuyu bitirme raporu. Ankara: MTA Report 8714.
- Escorcia, L., Gomez-Rivas, E., Daniele, L., & Corbella, M. (2013). Dedolomitization and reservoir quality: insights from reactive transport modelling. *Geofluids*, 1-11.
- Filiz, Ş., Tarcan, G., & Gemici, Ü. (2000). Geochemistry of the Germencik geothermal fields, Turkey. *Proceedings World Geothermal Congress*, (pp. 1115-1120). Kyushu - Tohoku, Japan.
- Gat, J., & Carmi, I. (1970). Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. *Journal of Geophysical Research*, 75, 3039–3048.
- Gaus, I. (2010). Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. *International Journal of Greenhouse Gas Control*, 4, 73-89.

- Gemici, Ü., & Tarcan, G. (2002). Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 116, 215-233.
- Gemici, Ü., Tarcan, G., Çolak, M., & Helvacı, C. (2004). Hydrogeochemical and hydrogeological investigations of thermal waters in the Emet area (Kütahya, Turkey). *Applied Geochemistry*, 19, 105–117.
- Gevrek, A., Şener, M., & Ercan, T. (1984-1985). Çanakkale -Tuzla jeotermal alanının hidrotermal alterasyon etüdü ve volkanik kayaçların petrolojisi. *Maden Tetkik ve Arama Dergisi, 103,104*, 55-81.
- Giggenbach, W. (1991). Chemical techniques in geothermal exploration. Application of geochemistry in geothermal reservoir development (pp. 119-142). Rome: UNITAR/UNDP.
- Gökgöz, A. (1998). Geochemistry of the Kızıldere-Tekkehamam-Buldan-Pamukkale Geothermal Fields, Turkey. Reykjavik, Iceland: Geothermal Training Programme, The United Nations University.
- Gunter, W., Perkins, E., & McCann, T. (1993). Aquifer disposal of CO<sub>2</sub>-rich gases: reaction design for added capacity. *Energy Conversion and Management*, 34, 941–948.
- Güleç, N., Hilton, D. R., de Leeuw, G., Mutlu, H., Süer, S., & Çifter, C. (2006). Geochemical monitoring of the geothermal fluids along the seismically active North Anatolian Fault Zone (NAFZ), Turkey. *New Techniques in Earthquake Prediction Studies and Their Applicability in Turkey*. INGV-Palermo, Italy: Leopass-RAP4LEO-Leonardo da Vinci Project.
- Güleç, N., Hilton, D., & Mutlu, H. (2002). Helium isotope variations in Turkey: relationship to tectonics, volcanism and recent seismic activities. *Chemical Geology*, 187, 129–142.

- Hovorka, S., Doughty, C., Knox, P., Green, C., Pruess, K., & Benson, S. (2001). Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO<sub>2</sub>. Washington DC: National Energy Technology Laboratory.
- IEA (2008). Geologic Storage of Carbon Dioxide: Staying Safely Underground. CO2CRC.
- IPCC (2005). Carbon Dioxide Capture and Storage: Special Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.
- IPCC (2007). Climate Change 2007: Synthesis Report. (p. 104). Geneva, Switzerland: Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A.(eds.)].
- Jeckelmann, C. (1996). Genese Lokaler Thermal Wasser Vorkommen in der Region, Bergama/W-Türkei. Zurich: Doktor der Naturwissenchaften der Eridgenössischen Technischen Hochshule.
- Karahan, Ç. (2013). Jeotermal Enerji, Çevresel Etkileri Dikili-Kaynarca Jeotermal Rezervuarı ve Sondaj Uygulamaları. Jeotermal Sempozyumu, Dikili Jeotermal Alanı. MTA Ege Bölge Müdürlüğü.
- Karakhanian, A., Djrbashian, R., Trifonov, V., Philip, H., Arakelian, S., & Avagian, A. (2002). Holocene-historical volcanism and active faults as natural risk factors for Armenia and adjacent countries. *Journal of Volcanology and Geothermal Research*, 113, 319–344.
- Karakuş, H., & Şimşek, Ş. (2013). Tracing deep thermal water circulation systems in the E–W trending Büyük Menderes Graben, western Turkey. *Journal of Volcanology and Geothermal Research*, 252, 38–52.
- Karamanderesi, İ. (2013). *Characteristics of Geothermal Reservoirs in Turkey*. İzmir: IGA Academy Report.

- Keskin, M. (2007). Eastern Anatolia: a hot spot in a collision zone without a mantle plume. Plates, Plumes, and Planetary Processes, Geological Society of America Special Paper, 430, pp. 693–722.
- Koçak, A. (1974). Çavundur (Kurşunlu-Çankırı) kaplıca bölgesinin hidrojeoloji etüdü raporu. Ankara: MTA Report 6373.
- Koçyiğit, A., Yılmaz, A., Adamia, S., & Kuloshvili, S. (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. *Geodinamica Acta*, 14, 177-195.
- Lollar, B., & Ballentine, C. (2009). Insights into deep carbon derived from noble gases. *Nature Geoscience*, *2*, 543 547.
- Magri, F., Akar, T., Gemici, Ü., & Pekdeger, A. (2010). Deep geothermal groundwater flow in the Seferihisar–Balçova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes. *Geofluids*, 10, 388–405.
- Mahon, W., Klyen, L., & Rhode, M. (1980). Natural Sodium bicarbonate sulphate hot waters in geothermal systems. *Chinetsu (Journal Japanese Geothermal Energy Association)*, 17, 11-24.
- METI (2010). Japan's current situation and direction of progress after the economic crisis. In White Paper on International Economy and Trade 2010. Tokyo, Japan: Industrial Science and Technology Policy and Environmental Bureau, the Ministry of Economy, Trade and Industry (METI).
- MIT Energy Initiative. (2014, January). Otway Fact Sheet: Carbon Dioxide Capture and Storage Project. Carbon Capture & Sequestration Technologies: Retrieved from https://sequestration.mit.edu/tools/projects/otway.html (last accessed on 31 July 2014)

- MTA (2011). *Geothermal Energy Studies in MTA*. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü.
- MTA (2012). Türkiye Jeotermal Enerji Potansiyeli. Maden Tetkik ve Arama Genel Müdürlüğü: Retrieved from http://www.mta.gov.tr/v2.0/dairebaskanliklari/enerji/index.php?id=jeotermal\_potansiyel (last accessed on 9 July 2014)
- MTA-JICA (1987). Pre-Feasibility Study on the Dikili Bergama Geothermal Development Project in the Republic of Turkey. Ankara: Progress Report II, Final Report, M.T.A.
- Mutlu, H. (1998). Chemical geothermometry and fluid–mineral equilibria for the Ömer–Gecek thermal waters, Afyon area, Turkey. *Journal of Volcanology and Geothermal Research*, 80, 303–321.
- Mutlu, H. (2007). Constraints on the origin of the Balıkesir thermal waters (Turkey) from stable isotope (d18O, dD, d13C, d34S) and major-trace element compositions. *Turkish Journal of Earth Sciences*, *16*, 13-32.
- Mutlu, H., & Güleç, N. (1998). Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia (Turkey). *Journal of Volcanology* and Geothermal Research, 85, 495–515.
- Mutlu, H., & Kılıç, A. (2009). Geothermometry applications for the Balıkesir thermal waters, Turkey. *Environmental Geology*, *56*, 913–920.
- Mutlu, H., Aydın, H., & Kazancı, A. (2013). Diyadin (Ağrı) jeotermal sahasına yönelik jeokimyasal ve izotopik bulgular. *11. Ulusal Tesisat Mühendisliği Kongresi - Jeotermal Enerji Semineri*, (pp. 47-67). İzmir.
- Mutlu, H., Güleç, N., & Hilton, D. (2008). Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey. *Chemical Geology*, 247, 305–321.

- Mutlu, H., Güleç, N., Hilton, D., Aydın, H., & Halldórsson, S. (2012). Spatial variations in gas and stable isotope compositions of thermal fluids around Lake Van: Implications for crust-mantle dynamics in eastern Turkey. *Chemical Geology*, 300-301, 165–176.
- Okay, A., & Satır, M. (2000). Upper Cretaceous Eclogite-Facies Metamorphic Rocks from the Biga Peninsula, Northwest Turkey. *Turkish Journal of Earth Sciences*, 9, 47-56.
- Özcan, M., & Ünay, T. (1978). Bolu-Seben-Kesenözü kaplıcası ve çevresi jeotermal enerji aramaları rezistivite etüdü raporu. Ankara: MTA Report 8269.
- Özdemir, Y. (2011). Volcanostratigraphy and Petrogenesis of Süphan Stratovolcano. Ankara: Ph.D. Thesis, Middle East Technical University.
- Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A., & Güleç, N. (2006).
   Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent post-collisional volcanism in Turkey. *Chemical Geology*, 226, 189–211.
- Özen, T., Bülbül, A., & Tarcan, G. (2012). Reservoir and hydrogeochemical characterizations of geothermal fields in Salihli, Turkey. *Journal of Asian Earth Sciences*, 60, 1–17.
- Özen, T., Tarcan, G., & Gemici, Ü. (2005). Hydrogeochemical Study of the Selected Thermal and Mineral Waters in Dikili Town, İzmir, Turkey. *Proceedings World Geothermal Congress*, (pp. 1-12). Antalya.
- Özgür, N. (2002). Geochemical signature of the Kizildere geothermal field, Western Anatolia, Turkey. *International Geology Review*, 44, 153-163.
- Özgür, N. (2003). Active geothermal systems in the rift zone of the Büyük Menderes, Western Anatolia, Turkey. Isparta, Turkey: Süleyman Demirel

Üniversitesi, Research and Application Center for Geothermal Energy, Groundwater and Mineral Resources.

- Palabıyık, Y., & Serpen, U. (2008). Geochemical assessment of Simav geothermal fi eld, Turkey. *Revista Mexicana de Ciencias Geológicas*, 25(3), 408-425.
- Parkhurst, D., & Appelo, C. (1999). User's guide to PHREEQC (version 2)--A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In U.S. Geological Survey Water-Resources Investigations Report 99-4259 (p. 312).
- Parkhurst, D., & Appelo, C. (2013). Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods. U.S. Geological Survey.
- Pasvanoğlu, S., & Güler, S. (2010). Hydrogeological and Geothermal Features of Hot and Mineralized Waters of the Ağri - Diyadin (Turkey). *Proceedings World Geothermal Congress*, (pp. 1-10). Bali, Indonesia.
- Romanak, K. D., Smyth, R. C., Yang, C., Hovorka, S. D., & Lu, J. (2010). Role of dedolomitization in the detection of anthropogenic CO2 in freshwater aquifers. *Water Rock Interaction 13 Conference* (pp. 1-4). Guanajuato, México: GCCC Digital Publication Series.
- Rütters, H., Möller, I., May, F., Flornes, K., Hladik, V., Arvanitis, A., et al. (2013). State of the Art of Monitoring Methods to evaluate Storage Site Performance. (A. Korre, R. Stead, & N. Jensen, Eds.) CGS Europe report No. D3.3.
- Salvi, S., Quattrocchi, F., Brunori, C., Doumaz, F., Angelone, M., Billi, A., et al. (1999). A Multidisciplinary Approach to Earthquake Research: Implementation of a Geochemical Geographic Information System for the Gargano Site, Southern Italy. *Natural Hazards*, 20, 255–278.

- Scripps Institution of Oceanography. (2014). *The Keeling Curve*. Retrieved from https://scripps.ucsd.edu/programs/keelingcurve/ (last accessed on 8 September 2014)
- Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A review of studies on CO2 sequestration and caprock integrity. *Fuel*, 89, 2651–2664.
- Solomon, S. (2007). Carbon Dioxide Storage: Geological Security and Environmental Issues – Case Study on the Sleipner Gas field in Norway. Bellona Report.
- Soong, Y., Jones, J., Harrison, D., Hedges, S., Goodman, A., & Baltrus, J. (2003). Mineral Trapping of CO2 with Oriskany Brine. U.S. Department of Energy, National Energy Technology Laboratory.
- Söğüt, A. R., Güzel, A., Zedef, V., & Bayram, A. F. (2010). Some geological and hydrogeochemical characteristics of geothermal fields of Turkey. *Scientific Research and Essays*, 5, 3147-3151.
- Süer, S., Güleç, N., Mutlu, H., Hilton, D., Çifter, C., & Sayın, M. (2008). Geochemical Monitoring of Geothermal Waters (2002–2004) along the North Anatolian Fault Zone, Turkey: Spatial and Temporal Variations and Relationship to Seismic Activity. *Pure and Applied Geophysics*, 165, 17-43.
- Şahinci, A. (1970). Mudurnu kaplıcası hidrojeoloji etüd raporu. Ankara: MTA Report 4367.
- Şengör, A. (1984). Structural classification of the tectonic history of Turkey. *Proceedings of Ketin Symposium*, (pp. 37-61). Ankara.
- Şengör, A., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. *Tectonophysics*, 75, 181-241.
- Şengör, A., Görür, N., & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, Strike-slip
*Deformation, Basin Formation, and Sedimentation.* Society of Economic Palaentologists and Mineralogists, Special Publication 37 (in honor of J.C. Crowell).

- Şengör, A., Satır, M., & Akkök, R. (1984). Timing of the tectonic events in the Menderes Massif, western Turkey: implications for tectonic evolution and evidence for Pan-African basement in Turkey. *Tectonics*, 3, 693-707.
- Şimşek, S. (1982). Geology and geothermal energy possibilities oJthe Denizli-Saraykoy-Buldan area. İstanbul: Ph.D. Thesis, Istanbul University, Earth and Sciences Faculty.
- Şimşek, Ş. (2003). Present status and future development possibilities of Aydın-Denizli Geothermal Province. *International Geothermal Conference*, (pp. 11-16). Reykjavík.
- Şimşek, Ş., & Güleç, N. (1994). Geothermal Fields of Western Anatolia: Excursion Guide. International Volcanological Congress (pp. 1-35). Ankara: IAVCEI.
- Şimşek, Ş., Yıldırım, N., & Gülgör, A. (2005). Developmental and environmental effects of the Kızıldere geothermal power project, Turkey. *Geothermics*, 34, 239–256.
- Tarcan, G. (2005). Mineral saturation and scaling tendencies of waters discharged from wells (>150 oC) in geothermal areas of Turkey. *Journal of Volcanology and Geothermal Research*, 142, 263–283.
- Tarcan, G., & Gemici, Ü. (2003). Water geochemistry of the Seferihisar geothermal area, İzmir, Turkey. *Journal of Volcanology and Geothermal Research*, 126, 225-242.
- Tarcan, G., Gemici, Ü., & Aksoy, N. (2005). Hydrogeological and geochemical assessments of the Gediz Graben geothermal areas, western Anatolia, Turkey. *Environmental Geology*, 47, 523–534.

- Tarcan, G., Gemici, Ü., & Aksoy, N. (2009). Hydrogeochemical factors effecting the scaling problem in Balçova geothermal field, İzmir, Turkey. *Environmental Geology*, 58, 1375–1386.
- Tatar, O., Piper, J. D., Park, R., & Gürsoy, H. (1995). Palaeomagnetic study of block rotations in the Niksar overlap region of the North Anatolian Fault Zone, central Turkey. *Tectonophysics*, 244, 251-266.
- Tezcan, A. (1975). Geophysical studies in Sarayköy–Kızıldere geothermal field, Turkey. Proceedings of 2nd UN Symposium on the Development and Use of Geothermal Resources, (pp. 1231–1240).
- Wiersberg, T., Süer, S., Güleç, N., Erzinger, J., & Parlaktuna, M. (2011). Noble gas isotopes and the chemical composition of geothermal gases from the eastern part of the Büyük Menderes Graben (Turkey). *Journal of Volcanology and Geothermal Research*, 208, 112-121.
- Yıldırım, N. D. (1997). Geochemical characteristic and re-injection of the Kizildere-Tekkehamam geothermal field. *GEOENV*'97. İstanbul.
- Yıldırım, N., & Ölmez, E. (1999). Kızıldere (Denizli–Sarayköy) sahasında acilan yeni kuyular ile üretim kuyuları arasındaki hidrokimyasal ilişki. Batı Anadolu Hammadde Kaynakları Sempozyumu Baksem 99. İzmir.
- Yilmaz, Y., Güner, Y., & Şaroğlu, F. (1998). Geology of the quaternary volcanic centers of the east Anatolia. *Journal of Volcanology and Geothermal Research*, 85, 173–210.
- Yılmazdemir, K. (2011, January 12). Sondajdan 90 C derecelik su çıktı. Hürriyet: Retrieved from http://www.bolununsesi.com/icerik/haber.asp?id=19062 (last accessed on 15 July 2014)
- Yılmazer, S. (2009). Batı Anadolu'nun Olası Jeotermal Potansiyelinin Belirlenmesi. Gayzer Yerbilimleri Ltd. Şti.

## **APPENDIX A**

## **GEOCHEMICAL DATA COMPILED FROM PREVIOUS STUDIES**

In this thesis study, various geothermal fields from western, eastern and northern Anatolia are chosen as natural analogues. The selection of the fields is based mainly on the available and reliable hydrogeochemical data from recent publications that have sufficient parameters. The compiled hydrogeochemical and isotopic data of these fields are tabulated in the following pages.

| Field                  | Sample<br>No. | Location          | T(°C)            | рН   | EC<br>(μS/cm) | Na    | к    | Са   | Mg   | HCO₃  | SO4   | Cl    | Mg/Ca |
|------------------------|---------------|-------------------|------------------|------|---------------|-------|------|------|------|-------|-------|-------|-------|
|                        | KD-6          | Kızıldere         | 196 <sup>b</sup> | 8.97 | 5830          | 53.07 | 2.97 | 0.03 | 0.01 | 25.99 | 5.83  | 3.5   | 0.49  |
|                        | KD-13         | Kızıldere         | 195 <sup>b</sup> | 8.89 | 5940          | 56.55 | 3.53 | 0.05 | 0.01 | 24.99 | 8.05  | 3.61  | 0.21  |
|                        | KD-14         | Kızıldere         | 207 <sup>b</sup> | 8.96 | 6160          | 61.33 | 3.89 | 0.03 | 0.01 | 39.38 | 7.67  | 4.06  | 0.27  |
| a                      | KD-15         | Kızıldere         | 205 <sup>b</sup> | 8.82 | 5890          | 58.29 | 3.53 | 0.03 | 0.01 | 23.99 | 7.6   | 3.95  | 0.21  |
| lere                   | KD-16         | Kızıldere         | 211 <sup>b</sup> | 8.94 | 5835          | 60.9  | 3.79 | 0.08 | 0.01 | 24.99 | 7.43  | 3.84  | 0.12  |
| zıld                   | KD-20         | Kızıldere         | 201 <sup>b</sup> | 8.92 | 6180          | 59.81 | 3.58 | 0.04 | 0.01 | 18.99 | 7.39  | 3.95  | 0.15  |
|                        | KD-21         | Kızıldere         | 202 <sup>b</sup> | 9.02 | 5940          | 57.63 | 3.35 | 0.04 | 0.01 | 19.99 | 7.39  | 3.95  | 0.22  |
|                        | KD-22         | Kızıldere         | 202 <sup>b</sup> | 9.3  | 5830          | 55.46 | 3.58 | 0.03 | 0.01 | 25.99 | 7.59  | 3.84  | 0.33  |
|                        | R-1           | Kızıldere         | 242 <sup>b</sup> | 8.8  | 5820          | 67.68 | 6.27 | 0.07 | 0.01 | 50.38 | 8.24  | 3.78  | 0.14  |
|                        | TH-2          | Kızıldere         | 171 <sup>b</sup> | 9.4  | 4800          | 53.94 | 3.07 | 0.05 | 0.05 | 21.88 | 7.57  | 3.16  | 0.99  |
|                        | TH-1          | Well TH-1         | 116              | 7.71 | 4000          | 32.62 | 1.92 | 0.30 | 0.49 | 5.49  | 14.05 | 2.14  | 1.65  |
| J                      | 3             | Demirtas          | 98               | 6.70 | 2600          | 28.27 | 1.18 | 1.25 | 0.66 | 10.53 | 10.72 | 2.09  | 0.53  |
| an                     | 4             | Tekkehamam        | 99               | 7.60 | 3700          | 43.28 | 2.43 | 0.40 | 0.14 | 15.90 | 12.80 | 2.88  | 0.35  |
| aŭ                     | 5             | Tekkehamam-1      | 60               | 7.90 | 3800          | 23.05 | 1.64 | 5.24 | 2.18 | 18.93 | 11.14 | 2.54  | 0.42  |
| (eh,                   | 6             | Tekkehamam-2      | 72               | 7.70 | 3800          | 42.80 | 2.53 | 1.12 | 0.62 | 16.99 | 12.39 | 2.74  | 0.55  |
| ek                     | 7             | İnalti magarasi   | 55.5             | 6.45 |               | 31.97 | 1.87 | 4.64 | 1.44 | 11.94 | 17.70 | 2.45  | 0.31  |
| <b>F</b>               | 8             | Babacik pinari    | 61.5             | 6.20 | 2930          | 21.75 | 1.18 | 6.49 | 3.25 | 21.14 | 14.47 | 1.75  | 0.50  |
|                        | 9             | Gerenlik gölü     | 73.5             | 7.10 | 3680          | 43.50 | 2.40 | 0.75 | 0.04 | 24.16 | 11.14 | 3.10  | 0.05  |
| Germancik <sup>d</sup> | 1             | Balli Hot Spr     | 60               | 7.01 | 5763          | 52.68 | 2.97 | 1.10 | 1.97 | 38.48 | 0.62  | 34.67 | 1.80  |
| Germencik              | 2             | Alangullu Hot Spr | 60               | 6.66 | 5838          | 52.15 | 3.20 | 1.72 | 1.03 | 39.76 | 0.69  | 34.19 | 0.60  |

Table A.1: Chemical analyses of waters from geothermal fields of western Anatolia

| Field  | Sample<br>No. | Location                    | T(°C)            | рН   | EC<br>(μS/cm) | Na     | к    | Ca   | Mg   | HCO₃  | SO <sub>4</sub> | Cl    | Mg/Ca |
|--------|---------------|-----------------------------|------------------|------|---------------|--------|------|------|------|-------|-----------------|-------|-------|
|        | 3             | Camur Hot Spr               | 50               | 6.9  | 5383          | 47.89  | 2.79 | 1.65 | 2.39 | 38.60 | 1.50            | 31.45 | 1.45  |
|        | 4             | Ilica Hot Spr               | 70               | 6.63 | 5783          | 48.59  | 2.81 | 1.42 | 2.22 | 38.81 | 0.63            | 32.75 | 1.56  |
|        | 5             | Ali Thermal Spr             | 60               | 7.6  | 5292          | 46.89  | 2.76 | 0.97 | 1.40 | 33.86 | 0.63            | 33.45 | 1.44  |
| ь<br>Х | 6             | OB <sub>1</sub> weirbox     | 200 <sup>b</sup> | 8.5  | 7000          | 89.17  | 2.17 | 0.08 | 0.04 | 34.79 | 0.69            | 49.28 | 0.52  |
| and    | 7             | OB <sub>1</sub> weirbox     | 200 <sup>b</sup> | 8.5  |               | 58.94  | 1.15 | 0.16 | 0.04 | 21.70 | 0.39            | 44.74 | 0.26  |
| Ĕ      | 8             | OB <sub>2</sub> weirbox     | 231 <sup>b</sup> |      | 7200          | 122.23 | 4.88 | 0.10 | 0.08 | 25.09 | 1.75            | 54.95 | 0.79  |
| Ge     | 9             | OB <sub>2</sub> 2.reservoir | 231 <sup>b</sup> | 8.7  |               | 69.60  | 3.71 | 0.15 | 0.05 | 14.75 | 0.25            | 50.49 | 0.33  |
|        | 10            | OB <sub>6</sub> weirbox     |                  | 8.38 |               | 80.47  | 4.35 | 0.01 | 0.02 | 30.61 | 0.29            | 55.57 | 1.65  |
|        | 11            | OB <sub>6</sub> reservoir   | 221 <sup>b</sup> | 6.05 |               | 54.81  | 3.38 | 0.96 | 0.02 | 26.03 | 0.40            | 40.05 | 0.02  |
|        | 12            | Cold Gw                     | 17               | 7    | 1171          | 4.87   | 0.72 | 0.95 | 3.17 | 10.70 | 0.81            | 2.12  | 3.34  |
|        | 1 (DHDNS)     | Balçova                     | 114 <sup>b</sup> | 7.25 | 1490          | 12.64  | 0.60 | 1.33 | 0.77 | 9.39  | 1.93            | 3.61  | 0.58  |
|        | 2 (DHDNR)     | Balçova                     | 116 <sup>b</sup> | 6.99 | 1514          | 13.06  | 0.62 | 1.34 | 0.76 | 9.44  | 2.14            | 3.75  | 0.57  |
|        | 3 (GEWR)      | Balçova                     | 138 <sup>b</sup> | 6.33 | 1744          | 17.50  | 0.74 | 0.50 | 0.16 | 10.55 | 2.04            | 4.99  | 0.32  |
| υ      | 4 (BD-2)      | Balçova                     | 129 <sup>b</sup> | 7.77 | 1842          | 19.99  | 0.93 | 0.33 | 0.09 | 10.88 | 1.94            | 5.64  | 0.27  |
| ova    | 5 (BD-4)      | Balçova                     | 138 <sup>b</sup> | 8.01 | 2020          | 20.08  | 0.85 | 0.44 | 0.09 | 10.47 | 2.46            | 5.92  | 0.20  |
| alç    | 6 (BD-5)      | Balçova                     | 117 <sup>b</sup> | 7.84 | 1850          | 19.26  | 0.73 | 0.53 | 0.13 | 9.39  | 1.78            | 5.61  | 0.24  |
| Ó      | 7 (B-4)       | Balçova                     | 86 <sup>b</sup>  | 7.38 | 1900          | 16.48  | 0.70 | 0.59 | 0.22 | 10.83 | 2.20            | 4.43  | 0.38  |
| -      | 8 (B-5)       | Balçova                     | 105 <sup>b</sup> | 7.07 | 1595          | 16.07  | 0.66 | 0.57 | 0.30 | 10.00 | 1.99            | 4.17  | 0.53  |
|        | 9 (B-10)      | Balçova                     | 92 <sup>b</sup>  | 7.05 | 1950          | 16.93  | 0.75 | 0.75 | 0.30 | 10.44 | 3.29            | 4.99  | 0.40  |
|        | 10 (B-11)     | Balçova                     | 92 <sup>b</sup>  | 7.85 | 1619          | 15.83  | 0.65 | 0.48 | 0.23 | 9.83  | 3.12            | 4.80  | 0.47  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

129

| Field                | Sample<br>No. | Location               | T(°C)            | pН   | EC<br>(µS/cm) | Na    | К    | Са   | Mg   | HCO₃  | SO₄   | Cl   | Mg/Ca |
|----------------------|---------------|------------------------|------------------|------|---------------|-------|------|------|------|-------|-------|------|-------|
| Balçova <sup>e</sup> | 11 (B-13)     | Balçova                | 120 <sup>b</sup> | 7.48 | 1148          | 9.85  | 0.35 | 2.34 | 0.75 | 4.24  | 1.34  | 2.43 | 0.32  |
|                      | 1             | Urganli spa spr        | 55               | 6.53 | 2620          | 22.84 | 1.28 | 1.12 | 0.66 | 25.83 | 0.57  | 2.40 | 0.59  |
|                      | 2             | Urganli spa well (U-1) | 60               | 6.93 | 2870          | 22.23 | 1.25 | 2.27 | 0.95 | 27.52 | 0.72  | 2.37 | 0.42  |
|                      | 3             | Sart Camur spa spr     | 44               | 6.39 | 1690          | 8.18  | 0.56 | 4.19 | 0.91 | 18.55 | 0.44  | 1.30 | 0.22  |
|                      | 4             | Üfürük min well        | 31               | 6.69 | 1527          | 0.61  | 0.05 | 8.31 | 1.60 | 20.63 | 0.36  | 0.87 | 0.19  |
|                      | 5             | Kursunlu Ts            | 42               | 7.31 | 2110          | 23.44 | 1.61 | 3.24 | 1.97 | 27.39 | 3.53  | 2.82 | 0.61  |
|                      | 6             | Kursunlu Tw            | 55               | 7.43 | 2780          | 21.92 | 1.53 | 0.87 | 0.45 | 23.75 | 0.60  | 2.76 | 0.52  |
|                      | 7             | Sazdere min spr        | 29               | 6.35 | 2450          | 15.35 | 0.84 | 2.97 | 5.51 | 32.63 | 0.81  | 2.68 | 1.86  |
|                      | 8             | Sazdere Ts             | 34               | 6.35 | 2450          | 34.62 | 1.69 | 3.24 | 2.80 | 39.66 | 0.95  | 5.05 | 0.86  |
| ÷=                   | 9             | KG-1 (Göbekli) Dw      | 182 <sup>g</sup> | 8.31 | 6020          | 88.17 | 2.02 | 0.32 | 0.13 | 48.35 | 19.19 | 4.65 | 0.40  |
| lih                  | 10            | Sarikiz spr            | 27               | 6.01 | 906           | 1.13  | 0.15 | 2.25 | 2.35 | 8.92  | 1.08  | 0.45 | 1.04  |
| Se                   | 11            | Alasehir Ts            | 31               | 6.83 | 874           | 9.53  | 0.31 | 3.04 | 5.55 | 24.11 | 0.67  | 1.89 | 1.82  |
|                      | 12            | Caferbeyli Dw (SC-1)   | 155 <sup>g</sup> | 7.8  | 2700          | 29.58 | 1.79 | 1.05 | 0.25 | 32.50 | 0.35  | 3.24 | 0.24  |
|                      | 13            | Alasehir Tw            | 37               | 6.38 | 4270          | 22.01 | 1.25 | 7.76 | 6.67 | 51.05 | 0.04  | 2.85 | 0.86  |
|                      | 14            | K-1 well               | 31.6             | 7.1  | 2160          | 16.46 | 1.36 | 1.98 | 0.59 | 19.40 | 1.53  | 0.51 | 0.30  |
|                      | 15            | K-2 well               | 59.3             | 7.6  | 2200          | 17.03 | 1.38 | 1.57 | 0.55 | 19.60 | 1.75  | 2.00 | 0.35  |
| -                    | 16            | K-4 well               | 41.5             | 6.2  | 1757          | 8.84  | 0.64 | 4.24 | 1.40 | 23.94 | 1.74  | 1.16 | 0.33  |
|                      | 17            | K-5 well               | 42.6             | 7.8  | 2070          | 14.84 | 1.23 | 2.60 | 0.74 | 19.78 | 1.44  | 1.83 | 0.29  |
|                      | 18            | K-6 well               | 64.9             | 6.6  | 2130          | 18.39 | 1.32 | 1.08 | 0.21 | 21.78 | 0.30  | 2.12 | 0.20  |
|                      | 19            | K-7 well               | 56.3             | 6.7  | 2680          | 23.52 | 1.89 | 1.21 | 0.39 | 27.88 | 0.27  | 3.72 | 0.32  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field | Sample<br>No. | Location             | T(°C) | pН  | EC<br>(μS/cm) | Na    | к    | Са    | Mg    | HCO₃  | SO <sub>4</sub> | Cl   | Mg/Ca |
|-------|---------------|----------------------|-------|-----|---------------|-------|------|-------|-------|-------|-----------------|------|-------|
|       | 20            | K-8 well             | 57    | 6.7 | 1967          | 10.52 | 0.80 | 4.78  | 1.54  | 20.49 | 1.47            | 1.38 | 0.32  |
|       | 21            | K-11 well            | 55    | 7.3 | 2200          | 15.64 | 1.31 | 2.17  | 0.68  | 20.40 | 1.62            | 2.45 | 0.31  |
|       | 22            | K-12 well            | 51.1  | 7.7 | 2160          | 16.50 | 1.33 | 2.11  | 0.66  | 17.39 | 1.37            | 1.78 | 0.31  |
|       | 23            | K-15 well            | 63.5  | 7.7 | 2330          | 19.28 | 1.61 | 1.74  | 0.53  | 21.75 | 1.62            | 2.28 | 0.30  |
|       | 24            | K-16 well            | 63.2  | 6.6 | 2100          | 16.91 | 1.28 | 0.18  | 0.53  | 22.04 | 0.57            | 1.81 | 3.02  |
|       | 25            | K-19 well            | 35.1  | 7.3 | 2010          | 14.80 | 1.22 | 2.44  | 0.72  | 19.04 | 1.50            | 1.83 | 0.29  |
| ţ.    | 26            | K-20 well            | 52    | 6.7 | 2730          | 22.56 | 1.31 | 2.53  | 0.93  | 29.75 | 0.11            | 1.95 | 0.37  |
|       | 27            | Sart thermal spr     | 43    | 6.3 | 1506          | 6.76  | 0.64 | 4.93  | 1.01  | 16.00 | 0.75            | 0.76 | 0.21  |
|       | 28            | Üfürük mineral spr   | 22    | 4.9 | 3560          | 2.47  | 0.30 | 17.71 | 10.28 | 34.00 | 0.04            | 1.52 | 0.58  |
| hila  | 29            | Kurşunlu mineral spr | 26    | 6.7 | 1906          | 0.89  | 0.13 | 9.69  | 2.60  | 17.00 | 2.96            | 0.39 | 0.27  |
| Sa    | 30            | Greenhouse well-1    | 54    | 7.5 | 1991          | 21.50 | 0.19 | 0.22  | 0.10  | 5.87  | 2.19            | 1.50 | 0.45  |
|       | 31            | Greenhouse well-2    | 36.3  | 7.8 | 1963          | 20.08 | 0.18 | 0.15  | 0.06  | 16.14 | 2.19            | 1.24 | 0.37  |
|       | 32            | Cold well in KGF     | 29.8  | 5.9 | 926           | 2.62  | 0.32 | 2.75  | 1.85  | 8.90  | 0.39            | 0.96 | 0.67  |
|       | 33            | Cold well in CGF     | 31.1  | 6.7 | 1381          | 2.89  | 0.15 | 4.91  | 4.04  | 16.90 | 1.12            | 0.93 | 0.82  |
|       | 34            | Cold well in CGF     | 27.5  | 7.1 | 1180          | 2.08  | 0.15 | 2.47  | 1.69  | 8.75  | 0.97            | 1.50 | 0.68  |
| -     | 35            | Cold well in GGF     | 23.6  | 6.1 | 1409          | 3.69  | 0.19 | 5.18  | 1.51  | 4.20  | 0.63            | 0.51 | 0.29  |
|       | 36            | Kurşunlu stream      | 23.7  | 7.8 | 664           | 1.50  | 0.20 | 2.34  | 0.54  | 1.80  | 0.81            | 0.23 | 0.23  |
|       | 37            | Tabak stream         | 28    | 8   | 942           | 3.85  | 0.34 | 2.94  | 0.92  | 4.52  | 0.90            | 0.51 | 0.31  |
|       | 38            | Gediz river          | 26.8  | 7.5 | 1350          | 6.28  | 0.60 | 2.17  | 1.16  | 3.28  | 1.26            | 0.34 | 0.54  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field   | Sample<br>No. | Location         | T(°C) | pН   | EC<br>(μS/cm) | Na    | к    | Са   | Mg   | HCO₃  | SO <sub>4</sub> | Cl   | Mg/Ca |
|---------|---------------|------------------|-------|------|---------------|-------|------|------|------|-------|-----------------|------|-------|
|         | H-1           | Sındırgı         | 96    | 7.79 | 1252          | 11.89 | 0.46 | 0.51 | 0.11 | 10.10 | 1.19            | 2.60 | 0.22  |
|         | H-2           | Sındırgı         | 58.2  | 7.51 | 1378          | 11.98 | 0.50 | 0.53 | 0.11 | 10.00 | 1.31            | 2.62 | 0.21  |
|         | H-4           | Sındırgı         | 79.2  | 7.03 | 1331          | 11.61 | 0.50 | 0.54 | 0.09 | 9.93  | 1.22            | 2.45 | 0.18  |
|         | H-5           | Sındırgı         | 85    | 6.59 | 1287          | 11.63 | 0.46 | 0.60 | 0.12 | 10.06 | 1.22            | 2.40 | 0.20  |
|         | H-6           | Sındırgı         | 83.7  | 6.51 | 1283          | 12.41 | 0.48 | 0.55 | 0.10 | 10.33 | 1.31            | 2.51 | 0.19  |
|         | H-7           | Sındırgı         | 72    | 7.45 | 1388          | 11.85 | 0.48 | 0.49 | 0.11 | 10.01 | 1.22            | 2.43 | 0.21  |
| -<br>ва | H-8           | Sındırgı         | 96    | 7.43 | 1196          | 11.96 | 0.45 | 0.37 | 0.09 | 9.98  | 1.19            | 2.37 | 0.24  |
| dir     | H-9           | Sındırgı         | 81.3  | 7    | 1487          | 14.00 | 0.39 | 0.52 | 0.08 | 10.73 | 0.97            | 1.95 | 0.16  |
| Sin     | H-10          | Sındırgı         | 94    | 6.89 | 1275          | 11.23 | 0.47 | 0.70 | 0.26 | 10.33 | 1.19            | 2.34 | 0.37  |
|         | H-11          | Sındırgı         | 55.5  | 7.07 | 1252          | 11.73 | 0.44 | 0.48 | 0.12 | 10.00 | 1.19            | 2.40 | 0.24  |
|         | H-12          | Sındırgı         | 62    | 6.14 | 1490          | 13.27 | 0.33 | 1.32 | 0.15 | 12.84 | 1.00            | 1.86 | 0.11  |
|         | H-13          | Sındırgı         | 62    | 6.9  | 1225          | 11.39 | 0.23 | 0.94 | 0.05 | 9.78  | 0.75            | 1.52 | 0.05  |
|         | H-15          | Sındırgı         | 95    | 7.46 | 597           | 1.50  | 0.05 | 1.88 | 0.83 | 6.71  | 0.25            | 0.34 | 0.44  |
|         | H-16          | Sındırgı         | 96.6  | 6.8  | 1487          | 13.36 | 0.59 | 0.54 | 0.10 | 10.36 | 1.06            | 2.09 | 0.19  |
|         | H-8A          | Sındırgı         | 95.2  | 7.12 | 428           | 0.20  | 0.04 | 1.56 | 1.16 | 0.95  | 0.28            | 0.17 | 0.75  |
|         | 1             | EJ-1             | 163   | 8.74 | 2300          | 22.03 | 1.41 | 0.29 | 0.20 | 11.12 | 4.91            | 2.26 | 0.70  |
|         | 3             | E6               | 160   | 8.84 | 2280          | 23.15 | 1.59 | 0.16 | 0.24 | 10.68 | 4.75            | 2.26 | 1.49  |
| ma      | 4             | E8               | 150   | 9.2  | 2300          | 22.75 | 1.49 | 0.21 | 0.19 | 9.48  | 4.64            | 2.28 | 0.90  |
| Si      | 5             | Eynal Spa spring | 78    | 9.2  | 2200          | 23.03 | 1.24 | 0.04 | 0.16 | 9.64  | 4.42            | 2.00 | 4.02  |
|         | 6             | E4               | 98    | 7.07 | 2280          | 22.63 | 1.44 | 0.79 | 0.21 | 13.60 | 4.78            | 2.12 | 0.27  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field    | Sample<br>No. | Location                   | T(°C) | рН   | EC<br>(μS/cm) | Na    | к    | Са   | Mg   | HCO₃  | SO <sub>4</sub> | Cl   | Mg/Ca |
|----------|---------------|----------------------------|-------|------|---------------|-------|------|------|------|-------|-----------------|------|-------|
|          | 7             | Çitgöl dw                  | 140   | 7.31 | 1460          | 12.55 | 0.91 | 1.37 | 0.37 | 9.16  | 2.83            | 1.35 | 0.27  |
|          | 8             | Çitgöl dw                  | 162   | 7.91 | 1826          | 17.83 | 1.01 | 0.65 | 0.23 | 9.76  | 4.09            | 1.83 | 0.36  |
| -        | 9             | Çitgöl spring              | 51    | 6.84 | 2090          | 19.69 | 1.01 | 1.39 | 0.50 | 10.44 | 5.15            | 2.26 | 0.36  |
| nav      | 11            | Naşa dw                    | 90    | 7.03 | 1612          | 14.53 | 0.91 | 1.19 | 0.46 | 9.72  | 3.37            | 1.58 | 0.39  |
| Sir      | 13            | Eynal spring <sup>j</sup>  | 60    | 8.2  | 1200          | 19.57 | 1.38 | 0.14 | 0.05 | 8.49  | 4.73            | 1.97 | 0.39  |
|          | 14            | Çitgöl spring <sup>j</sup> | 83    | 7    | 1000          | 14.79 | 1.13 | 0.85 | 0.22 | 9.39  | 3.91            | 1.61 | 0.26  |
|          | 15            | Naşa spring <sup>j</sup>   | 64    | 6.6  | 1000          | 17.18 | 1.07 | 0.97 | 0.39 | 9.90  | 4.10            | 1.47 | 0.40  |
|          | 1             | Emet <sup>i</sup>          | 43    | 7.11 | 1350          | 0.82  | 0.13 | 5.76 | 1.86 | 4.84  | 5.64            | 0.31 | 0.32  |
|          | 2             | Emet <sup>i</sup>          | 54    | 7.1  | 1041          | 0.55  | 0.08 | 4.41 | 1.33 | 5.32  | 3.33            | 0.31 | 0.30  |
|          | 3             | Emet                       | 43    | 7.1  | 1015          | 0.57  | 0.09 | 4.15 | 1.46 | 4.72  | 3.49            | 0.31 | 0.35  |
|          | 4             | Emet                       | 38    | 6.9  | 1830          | 0.65  | 0.14 | 8.83 | 2.55 | 4.80  | 8.74            | 0.34 | 0.29  |
|          | 5             | Emet                       | 13    | 7.25 | 1606          | 0.58  | 0.11 | 7.46 | 2.04 | 4.48  | 7.81            | 0.37 | 0.27  |
| <u>ب</u> | 6             | Emet                       | 48    | 7    | 646           | 0.44  | 0.16 | 2.24 | 0.96 | 4.52  | 0.91            | 0.39 | 0.43  |
| met      | 7             | Emet                       | 15    | 7.2  | 962           | 0.40  | 0.05 | 5.66 | 2.83 | 7.52  | 4.51            | 1.41 | 0.50  |
| Ē        | 8             | Emet                       | 46    | 6.47 | 1269          | 0.27  | 0.03 | 7.19 | 2.37 | 4.64  | 8.04            | 0.48 | 0.33  |
|          | 9             | Emet                       | 49    | 6.45 | 1346          | 0.30  | 0.03 | 7.42 | 2.38 | 4.72  | 8.25            | 0.48 | 0.32  |
|          | 10            | Emet                       | 15    | 7.09 | 1636          | 0.37  | 0.02 | 8.82 | 3.02 | 5.44  | 10.61           | 0.56 | 0.34  |
|          | 11            | Emet <sup>j</sup>          | 33    | 7.8  | 500           | 0.43  | 0.05 | 1.95 | 0.86 | 5.70  | 0.30            | 0.16 | 0.44  |
|          | 12            | Emet <sup>j</sup>          | 39    | 6.7  | 1060          | 4.78  | 0.25 | 3.47 | 1.15 | 12.39 | 0.53            | 0.76 | 0.33  |
| -        | 13            | Emet <sup>j</sup>          | 43    | 7.1  | 2250          | 14.79 | 1.82 | 5.09 | 2.51 | 5.00  | 13.63           | 2.48 | 0.49  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field | Sample<br>No. | Location          | T(°C) | pН  | EC<br>(μS/cm) | Na    | К    | Са   | Mg   | HCO₃  | SO <sub>4</sub> | Cl    | Mg/Ca |
|-------|---------------|-------------------|-------|-----|---------------|-------|------|------|------|-------|-----------------|-------|-------|
|       | 1-a           | Dikili Spa        | 65    | 7.3 | 2900          | 28.71 | 1.07 | 0.92 | 0.30 | 17.86 | 5.87            | 2.76  | 0.33  |
|       | 2-a           | Dikili Spa        | 40    | 7.3 | 2900          | 24.79 | 1.05 | 1.07 | 0.35 | 18.68 | 5.01            | 2.89  | 0.33  |
|       | 3-а           | Dikili Spa        | 40    | 7.3 | 2900          | 25.45 | 1.10 | 1.17 | 0.28 | 18.68 | 5.01            | 2.92  | 0.24  |
|       | 4-a           | Dikili Spa        | 66    | 7.1 | 2800          | 24.14 | 0.97 | 1.05 | 0.28 | 17.04 | 4.84            | 2.46  | 0.27  |
|       | 5-a           | Dikili Spa        | 65    | 7   | 2800          | 23.71 | 0.97 | 1.25 | 0.26 | 17.37 | 4.92            | 2.49  | 0.21  |
|       | 6-a           | Dikili Spa        | 73    | 7.2 | 2600          | 23.49 | 1.02 | 1.15 | 0.26 | 17.04 | 4.97            | 2.51  | 0.22  |
|       | 7-a           | Dikili Spa        | 34    | 7.4 | 3600          | 35.67 | 0.90 | 1.02 | 0.34 | 26.55 | 5.88            | 2.73  | 0.33  |
|       | 8-b           | Dikili Spa        | 72    | 6.2 | 2560          | 24.79 | 0.88 | 1.22 | 0.00 | 16.96 | 5.00            | 2.50  | 0.00  |
| _     | 9-b           | Dikili Spa        | 41    | 6.7 | 2670          | 21.47 | 0.91 | 1.23 | 0.02 | 18.99 | 5.59            | 2.82  | 0.01  |
| ili ' | 10-b          | Dikili Spa        | 36    | 6.4 | 2540          | 21.97 | 0.98 | 1.17 | 0.01 | 16.50 | 4.63            | 2.93  | 0.01  |
| Dik   | 11-b          | Dikili Spa        | 65    | 6.8 | 2600          | 24.03 | 0.99 | 1.21 | 0.01 | 17.60 | 4.49            | 2.38  | 0.01  |
|       | 12-b          | Dikili Spa        | 30    | 6.6 | 3030          | 24.70 | 1.06 | 3.54 | 0.03 | 24.40 | 4.55            | 25.19 | 0.01  |
|       | 13-b          | Near Dikili       | 32    | 7.9 | 3200          | 22.88 | 0.80 | 1.32 | 0.00 | 22.99 | 6.04            | 3.15  | 0.00  |
|       | 15-b          | Plain near Dikili | 24    | 6.7 | 495           | 2.28  | 0.20 | 0.86 | 0.31 | 2.61  | 0.13            | 1.37  | 0.36  |
|       | 16-b          | Sülüklü spr.      | 24    | 7.2 | 631           | 19.36 | 0.18 | 1.91 | 0.75 | 4.90  | 0.18            | 10.49 | 0.39  |
|       | 18-c          | Agrobay-1, well   | 93    | 6.9 | 2140          | 18.05 | 0.82 | 1.55 | 0.19 | 5.83  | 6.88            | 2.09  | 0.13  |
|       | 19-с          | Agrobay-2, well   | 89    | 6.8 | 2150          | 18.44 | 0.82 | 1.57 | 0.53 | 5.28  | 6.92            | 2.14  | 0.34  |
| -     | 21-a          | Kaynarca          | 42    | 8.1 | 2700          | 24.79 | 0.92 | 0.82 | 0.06 | 9.80  | 8.18            | 2.05  | 0.07  |
|       | 22-a          | Kaynarca          | 82    | 7.7 | 2500          | 23.05 | 0.92 | 0.80 | 0.02 | 9.60  | 7.65            | 1.94  | 0.02  |
|       | 23-a          | Kaynarca          | 48    | 8   | 2700          | 24.79 | 0.95 | 0.92 | 0.16 | 9.80  | 8.06            | 2.05  | 0.17  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field      | Sample<br>No. | Location         | T(°C) | pН  | EC<br>(μS/cm) | Na    | К    | Са   | Mg   | HCO₃  | SO₄  | Cl    | Mg/Ca |
|------------|---------------|------------------|-------|-----|---------------|-------|------|------|------|-------|------|-------|-------|
|            | 24-a          | Kaynarca         | 53    | 7.7 | 2500          | 23.49 | 0.87 | 0.97 | 0.02 | 9.60  | 7.84 | 2.03  | 0.02  |
|            | 25-a          | Kaynarca         | 80    | 7.8 | 2600          | 23.05 | 0.84 | 1.10 | 0.14 | 9.80  | 7.65 | 2.00  | 0.12  |
|            | 26-a          | Kaynarca         | 74    | 7.4 | 2600          | 23.49 | 0.87 | 0.92 | 0.02 | 9.90  | 8.13 | 2.00  | 0.02  |
|            | 27-а          | Kaynarca         | 99    | 8.6 | 2500          | 23.49 | 0.84 | 0.82 | 0.02 | 10.00 | 7.74 | 1.97  | 0.02  |
|            | 28-a          | Kaynarca         | 46    | 8.4 | 2600          | 24.79 | 0.87 | 0.82 | 0.04 | 10.00 | 7.73 | 2.05  | 0.05  |
|            | 29-a          | Kaynarca         | 83    | 7.4 | 2600          | 22.62 | 0.84 | 0.52 | 0.02 | 8.90  | 6.40 | 1.97  | 0.03  |
|            | 30-a          | Kaynarca         | 76    | 7.4 | 2700          | 23.05 | 1.00 | 0.90 | 0.02 | 9.60  | 5.02 | 2.00  | 0.02  |
| - <u>-</u> | 31-b          | Kaynarca         | 88    | 7.4 | 2530          | 22.74 | 0.94 | 0.85 | 0.10 | 9.19  | 6.40 | 1.73  | 0.12  |
|            | 32-b          | Kaynarca         | 41    | 7.8 | 2623          | 22.41 | 0.76 | 1.05 | 0.12 | 9.10  | 8.29 | 1.92  | 0.12  |
| ikil       | 33-b          | Kaynarca east    | 70    | 7.1 | 2560          | 20.20 | 0.74 | 1.01 | 0.10 | 9.41  | 7.78 | 1.83  | 0.10  |
| Δ          | 34-b          | Kaynarca west    | 32    | 7.4 | 1901          | 10.47 | 0.40 | 5.96 | 2.61 | 7.62  | 6.83 | 6.93  | 0.44  |
|            | 37-b          | Kaynarca, spring | 79    | 7.6 | 410           | 21.36 | 1.05 | 0.99 | 0.04 | 4.64  | 7.35 | 2.26  | 0.04  |
|            | 38-c          | Kaynarca well-1  | 67    | 6.9 | 2040          | 16.31 | 0.61 | 1.68 | 0.32 | 2.97  | 6.67 | 6.35  | 0.19  |
|            | 39-с          | Kaynarca well-3  | 87    | 8.2 | 2360          | 21.53 | 0.98 | 0.55 | 0.19 | 5.28  | 7.73 | 2.23  | 0.34  |
|            | 40-c          | Kaynarca petrol  | 68    | 7   | 2320          | 18.83 | 0.82 | 1.71 | 0.32 | 5.47  | 7.30 | 2.31  | 0.19  |
| -          | 41-a          | DG-1. well       | 98    | 9   | 1800          | 15.79 | 0.82 | 0.27 | 0.09 | 4.62  | 5.76 | 1.44  | 0.35  |
|            | 42-a          | DG-3. well       | 45    | 7.7 | 5500          | 32.06 | 2.23 | 0.08 | 2.59 | 4.11  | 1.36 | 43.16 | 31.48 |
|            | 44-c          | Kocaoba Spa      | 52    | 7.4 | 1763          | 11.27 | 0.36 | 2.97 | 0.09 | 2.00  | 7.96 | 1.52  | 0.03  |
|            | 45-b          | Kocaoba Spa      | 54    | 7.2 | 1430          | 10.12 | 0.40 | 2.94 | 0.25 | 2.61  | 7.25 | 0.98  | 0.09  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field             | Sample<br>No. | Location             | T(°C) | pН   | EC<br>(μS/cm) | Na    | к    | Са   | Mg   | HCO₃  | SO <sub>4</sub> | Cl   | Mg/Ca |
|-------------------|---------------|----------------------|-------|------|---------------|-------|------|------|------|-------|-----------------|------|-------|
|                   | G-7           | Gönen                | 60.4  | 7.15 | 2410          | 20.84 | 0.74 | 1.67 | 0.13 | 6.28  | 4.87            | 7.05 | 0.08  |
|                   | G-8           | Gönen                | 57.8  | 7.42 | 2390          | 21.52 | 0.73 | 1.74 | 0.14 | 6.34  | 4.89            | 7.02 | 0.08  |
|                   | G-16          | Gönen                | 77.5  | 6.97 | 2930          | 21.23 | 0.75 | 1.22 | 0.10 | 5.68  | 4.71            | 7.23 | 0.08  |
|                   | EKS-1         | Gönen                | 42.7  | 7.26 | 329           | 0.53  | 0.05 | 1.28 | 0.53 | 3.15  | 0.17            | 0.24 | 0.42  |
|                   | EKS-2         | Gönen                | 18.8  | 4.16 | 171           | 0.40  | 0.04 | 0.16 | 0.09 | 0.00  | 0.45            | 0.41 | 0.55  |
|                   | EKS-3         | Gönen                | 21.5  | 3.91 | 113           | 0.29  | 0.05 | 0.08 | 0.04 | 0.00  | 0.28            | 0.27 | 0.50  |
|                   | MK-1          | Manyas               | 49.8  | 6.57 | 1570          | 11.31 | 0.76 | 3.51 | 0.43 | 8.15  | 0.87            | 7.85 | 0.12  |
| esir <sup>m</sup> | MK-2          | Manyas               | 34.4  | 6.87 | 877           | 3.86  | 0.28 | 3.50 | 0.44 | 7.20  | 0.46            | 2.39 | 0.12  |
|                   | PMK-1         | Pamukcu              | 64.9  | 7.56 | 1972          | 16.36 | 0.51 | 1.18 | 0.17 | 3.55  | 3.72            | 6.18 | 0.14  |
|                   | PMK-2         | Pamukcu              | 55.5  | 7.34 | 1433          | 13.85 | 0.36 | 0.82 | 0.12 | 4.56  | 3.03            | 3.71 | 0.15  |
| alık              | BHS-1         | Bigadic              | 94.6  | 7.29 | 2820          | 30.73 | 1.89 | 0.21 | 0.48 | 17.23 | 3.97            | 5.83 | 2.30  |
| ä                 | BHS-2         | Bigadic              | 82.9  | 6.95 | 3330          | 29.51 | 1.80 | 0.76 | 0.49 | 18.19 | 3.64            | 5.83 | 0.64  |
|                   | SHS-1         | Sindirgi (Hisaralan) | 98.5  | 7.01 | 1454          | 13.99 | 0.53 | 0.55 | 0.12 | 9.46  | 1.01            | 2.30 | 0.22  |
|                   | SHS-2         | Sindirgi (Hisaralan) | 97.3  | 7.38 | 1422          | 14.01 | 0.53 | 1.65 | 0.13 | 9.27  | 0.97            | 2.30 | 0.08  |
|                   | SHS-3         | Sindirgi (Hisaralan) | 95.1  | 6.97 | 1451          | 13.84 | 0.53 | 0.56 | 0.14 | 9.52  | 0.96            | 2.33 | 0.24  |
|                   | SHS-4         | Sindirgi (Hisaralan) | 87    | 6.72 | 1631          | 13.67 | 0.53 | 0.57 | 0.17 | 9.30  | 0.96            | 2.32 | 0.30  |
|                   | EDR-1         | Edremit              | 57.6  | 7.83 | 1354          | 11.86 | 0.13 | 1.25 | 0.03 | 0.80  | 5.28            | 1.68 | 0.03  |
|                   | EDR-2         | Edremit              | 44.7  | 7.56 | 968           | 8.65  | 0.10 | 1.75 | 0.12 | 1.77  | 4.07            | 1.46 | 0.07  |
| -                 | GDR-1         | Edremit              | 56.6  | 8.4  | 1260          | 13.31 | 0.15 | 0.56 | 0.00 | 0.82  | 5.14            | 1.71 | 0.01  |
|                   | GDR-2         | Edremit              | 17.5  | 7.76 | 208           | 0.23  | 0.02 | 1.00 | 0.26 | 2.27  | 0.06            | 0.14 | 0.26  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field    | Sample<br>No. | Location | T(°C) | pН   | EC<br>(μS/cm) | Na    | К    | Ca   | Mg   | HCO₃ | SO₄  | Cl   | Mg/Ca |
|----------|---------------|----------|-------|------|---------------|-------|------|------|------|------|------|------|-------|
|          | BLY-1         | Balya    | 59    | 8.21 | 1240          | 11.47 | 0.11 | 0.41 | 0.00 | 1.30 | 3.65 | 2.23 | 0.01  |
| E        | BLY-2         | Balya    | 58.1  | 8.1  | 1234          | 11.72 | 0.11 | 0.39 | 0.00 | 1.23 | 3.72 | 2.24 | 0.01  |
| esir     | BLY-3         | Balya    | 28.8  | 6.17 | 252           | 1.04  | 0.04 | 0.66 | 0.35 | 1.82 | 0.17 | 0.27 | 0.54  |
| alıko    | SLK-1         | Susurluk | 31.8  | 7.05 | 685           | 2.73  | 0.19 | 2.07 | 1.21 | 5.57 | 1.25 | 0.30 | 0.59  |
| Bâ       | SLK-2         | Susurluk | 72.8  | 6.4  | 1605          | 16.55 | 0.34 | 0.56 | 0.02 | 9.76 | 1.98 | 1.61 | 0.04  |
|          | SLK-3         | Susurluk | 25.7  | 8.05 | 207           | 0.87  | 0.05 | 0.54 | 0.30 | 1.74 | 0.21 | 0.31 | 0.56  |
|          | ED-3          | Edremit  | 62    | 7.76 | 1060          | 8.40  | 0.09 | 0.62 | 0.01 | 0.89 | 3.75 | 1.35 | 0.01  |
|          | ED-1          | Edremit  | 62    | 7.65 | 1310          | 10.22 | 0.14 | 0.90 | 0.00 | 0.70 | 4.89 | 1.75 | 0.00  |
|          | EDJ-3         | Edremit  | 59    | 7.65 | 1260          | 9.92  | 0.13 | 0.82 | 0.00 | 0.64 | 4.79 | 1.64 | 0.00  |
|          | EDJ-2         | Edremit  | 58    | 7.67 | 1200          | 9.44  | 0.13 | 0.77 | 0.00 | 0.72 | 4.37 | 1.61 | 0.01  |
|          | EDJ-5         | Edremit  | 55    | 7.99 | 756           | 6.09  | 0.08 | 0.32 | 0.00 | 1.52 | 1.98 | 1.30 | 0.01  |
| <b>c</b> | DERM.         | Edremit  | 53    | 7.81 | 1300          | 9.92  | 0.13 | 0.95 | 0.03 | 1.08 | 4.58 | 1.75 | 0.03  |
| mit      | ENT.          | Edremit  | 51    | 7.95 | 1200          | 9.35  | 0.12 | 0.80 | 0.03 | 1.43 | 4.06 | 1.66 | 0.04  |
| dre      | EDJ-7         | Edremit  | 51    | 7.61 | 1380          | 10.70 | 0.15 | 0.97 | 0.00 | 0.61 | 5.20 | 1.78 | 0.00  |
| Ŭ        | EDJ-4         | Edremit  | 50    | 7.81 | 1110          | 8.35  | 0.09 | 0.90 | 0.03 | 1.10 | 3.96 | 1.44 | 0.03  |
|          | EDJ-8         | Edremit  | 43    | 8    | 751           | 6.39  | 0.12 | 0.12 | 0.00 | 1.64 | 1.87 | 1.41 | 0.03  |
|          | YAGCI         | Edremit  | 42    | 8.13 | 874           | 6.70  | 0.08 | 0.75 | 0.02 | 2.51 | 2.29 | 1.33 | 0.03  |
| -        | DSI-6         | Edremit  | 39    | 8.07 | 1080          | 4.70  | 0.09 | 2.62 | 0.66 | 3.08 | 3.33 | 1.50 | 0.25  |
|          | DOG.          | Edremit  | 32    | 8.14 | 934           | 3.48  | 0.08 | 2.55 | 0.66 | 3.56 | 2.39 | 1.33 | 0.26  |
|          | DSI-9         | Edremit  | 32    | 8.09 | 1060          | 3.57  | 0.09 | 3.14 | 0.66 | 3.16 | 3.23 | 1.61 | 0.21  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

| Field | Sample<br>No. | Location | T(°C) | рН   | EC<br>(μS/cm) | Na   | к    | Са   | Mg   | HCO₃ | SO <sub>4</sub> | Cl   | Mg/Ca |
|-------|---------------|----------|-------|------|---------------|------|------|------|------|------|-----------------|------|-------|
|       | HAST.         | Edremit  | 31    | 8.06 | 817           | 2.13 | 0.09 | 2.50 | 0.58 | 2.46 | 2.08            | 1.52 | 0.23  |
| it    | DSI-5         | Edremit  | 30    | 8.06 | 962           | 3.57 | 0.10 | 1.95 | 0.70 | 2.79 | 2.29            | 1.47 | 0.36  |
| ēm    | DSI-7         | Edremit  | 21    | 8.14 | 466           | 1.00 | 0.05 | 1.05 | 0.39 | 3.00 | 0.25            | 0.59 | 0.37  |
| Edre  | DSI-8         | Edremit  | 18    | 8.12 | 975           | 1.70 | 0.05 | 2.17 | 1.07 | 3.51 | 0.74            | 2.85 | 0.49  |
|       | EMINDSI       | Edremit  | 12    | 8.14 | 438           | 0.61 | 0.04 | 1.60 | 0.38 | 3.43 | 0.39            | 0.48 | 0.24  |

Table A.1 (cont'd): Chemical analyses of waters from geothermal fields of western Anatolia

All concentrations are mmol/L.

If not otherwise specified, discharge temperatures for springs, well-head temperatures for wells are given.

spr:spring. min:mineral. ts:thermal springs. tw:thermal well. dw:deep well

KGF: Kurşunlu geothermal field, CGF: Caferbeyli geothermal field, GGF: greenhouse geothermal field

| <sup>a</sup> Şimşek et al. (2005).                                                     | <sup>h</sup> Aksoy et al. (2009).    |
|----------------------------------------------------------------------------------------|--------------------------------------|
| <sup>b</sup> reservoir temperature.                                                    | <sup>i</sup> Gemici & Tarcan (2002). |
| <sup>c</sup> Simsek. (1982); except TH-1 from Yildirim et al. (1997) in Gökgöz (1998). | <sup>j</sup> MTA (1996).             |
| <sup>d</sup> Filiz et al. (2000).                                                      | <sup>k</sup> Gemici et al. (2004).   |
| <sup>e</sup> Tarcan et al. (2009).                                                     | <sup>I</sup> Özen et al. (2005).     |
| <sup>f</sup> Tarcan et al. (2005) and Özen et al. (2012).                              | <sup>m</sup> Mutlu (2007).           |
| <sup>g</sup> bottom hole temperature.                                                  | <sup>n</sup> Avşar et al. (2013).    |

| Sample No. | Sample location       | CO <sub>2</sub> / <sup>3</sup> He (x10 <sup>9</sup> ) | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References                                                                               |
|------------|-----------------------|-------------------------------------------------------|------------------------------------------------|---------------|------------------------------|------------------------------------------------------------------------------------------|
| B-48       | Tuzla (spr)           | 45.5±0.3                                              | 0.35                                           | -23.02        | -4.01                        | Mutlu et al., 2008                                                                       |
| B-73       | Kestanbol-1 (well)    | 1.66±0.01                                             | -3.59                                          | -42.07        | -7.99                        | Mutlu et al., 2008                                                                       |
| B-64       | Kestanbol-2 (spr)     | 15.7±0.1                                              | -3.37                                          |               |                              | Mutlu et al., 2008                                                                       |
| B-86       | Çan (well)            | 1.72±0.02                                             | -4.1                                           | -65.43        | -10.46                       | Mutlu et al., 2008                                                                       |
| B-124      | Gönen (well)          | 33.6±0.2                                              | -1.52                                          | -76.89        | -11.96                       | Mutlu et al., 2008                                                                       |
| B-77       | Manyas (well)         | 34.3±0.2                                              | -6.61                                          | -60.88        | -11.01                       | Mutlu et al., 2008                                                                       |
| B-118      | Hisaralan (spr)       | 220 ±2                                                | -8.04                                          | -68.49        | -11.61                       | Mutlu et al., 2008                                                                       |
| B-90       | Seferihisar (spr)     | 892 ±20                                               | -3.79                                          | -35.97        | -6.11                        | Mutlu et al., 2008                                                                       |
| B-101      | Balçova (well)        | 95.1 ±0.8                                             | -3.65                                          | -40.96        | -7                           | Mutlu et al., 2008                                                                       |
| B-13       | Germencik (spr)       | 3865 ±80                                              | -1.89                                          | -45.04        | -4.68                        | Mutlu et al., 2008                                                                       |
| B-109      |                       | 1934 ±24                                              | -2.35                                          |               |                              | Mutlu et al., 2008                                                                       |
| B-40       | Kızıldere (well)      | 305±2                                                 | -0.62                                          | -61.65        | -7.68                        | Mutlu et al., 2008                                                                       |
| B-117      | Gazlıgöl (well)       | 5450± 150                                             | -2.58                                          | -89.86        | -13.13                       | Mutlu et al., 2008                                                                       |
| B-59       | Ömer (well)           | 23.540 ±2.060                                         | -0.66                                          | -86.16        | -13.11                       | Mutlu et al., 2008                                                                       |
| BM-1       | Pamukkale             | 12                                                    | -3.5                                           | -59.6         | -8.87                        | Güleç, 1988 (for CO <sub>2</sub> / <sup>3</sup> He);<br>Ercan et al., 1994; Şimşek, 2003 |
| BM-2       | Kızıldere (R1 well)   | 180                                                   |                                                | -52.9         | -4.31                        | Şimşek, 2003; Wiersberg et al., 2011                                                     |
|            | Kızıldere (KD6 well)  | 180                                                   |                                                | -56.2         | -6.13                        | Şimşek, 2003; Wiersberg et al., 2011                                                     |
|            | Kızıldere (KD13 well) | 280                                                   |                                                | -54.1         | -5.31                        | Şimşek, 2003; Wiersberg et al., 2011                                                     |
|            | Kızıldere (KD14 well) | 780                                                   |                                                |               |                              | Wiersberg et al., 2011                                                                   |
|            | Kızıldere (KD15 well) | 300                                                   |                                                | -55.5         | -5.23                        | Şimşek, 2003; Wiersberg et al., 2011                                                     |

Table A.2: Isotopic compositions waters from geothermal fields of western Anatolia

| Sample No. | Sample location       | CO2/ <sup>3</sup> He<br>(x10 <sup>9</sup> ) | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References                                                 |
|------------|-----------------------|---------------------------------------------|------------------------------------------------|---------------|------------------------------|------------------------------------------------------------|
| BM-2       | Kızıldere (KD16 well) | 920                                         |                                                |               |                              | Wiersberg et al., 2011                                     |
|            | Kızıldere (KD21 well) | 510                                         |                                                | -55.2         | -5.65                        | Şimşek, 2003; Wiersberg et al., 2011                       |
|            | Kızıldere (KD22 well) | 430                                         |                                                |               |                              | Wiersberg et al., 2011                                     |
| BM-3       | Tekkehamam            | 90                                          | - 1.2                                          |               |                              | Güleç, 1988; Ercan et al., 1994 (for<br>δ <sup>13</sup> C) |
|            |                       | 100                                         |                                                | -53.5         | -6.13                        | Wiersberg et al., 2011                                     |
|            |                       | 110                                         |                                                | -54.7         | -6.18                        | Wiersberg et al., 2011                                     |
| BM-4       | Ortakçı               |                                             | -5.39                                          | -51.1         | -8.17                        | Karakuş & Şimşek, 2013                                     |
| BM-5       | Gedik                 |                                             | -5.23                                          | -42.8         | -7.1                         | Karakuş & Şimşek, 2013                                     |
| BM-6       | Güvendik              | 138                                         | 0.45                                           | -37.7         | -6.82                        | Karakuş & Şimşek, 2013                                     |
| BM-7       | Salavatlı             | 322                                         | -0.2                                           | -45           | -1.36                        | Özgür, 2002                                                |
| BM-8       | Serçeköy              | 774                                         | -0.45                                          | -47.9         | -2.95                        | Karakuş & Şimşek, 2013                                     |
| BM-9       | İmamköy               |                                             | -1.29                                          | -37.5         | -6.31                        | Karakuş & Şimşek, 2013                                     |
| BM-10      | Yılmazköy             | 752                                         | 0.02                                           | -47.8         | -2.95                        | Karakuş & Şimşek, 2013                                     |
| BM-12      | Germencik (OB17 well) | 1100                                        | -0.33                                          | -39           | -1.46                        | Karakuş & Şimşek, 2013                                     |
|            | Germencik (OB14 well) |                                             |                                                | -38.9         | -1.24                        | Karakuş & Şimşek, 2013                                     |
| BM-13      | Çamur                 | 2086                                        | -2.2                                           | -40.6         | -2.73                        | Karakuş & Şimşek, 2013                                     |
| BM-14      | Gümüş                 |                                             | -1.24                                          | -22.6         | -4.09                        | Karakuş & Şimşek, 2013                                     |
| BM-15      | Sazlıköy              |                                             | -0.65                                          | -32.3         | -6.07                        | Karakuş & Şimşek, 2013                                     |
| BM-16      | Tuzburgaz             |                                             | -3.69                                          | 2.7           | -0.02                        | Karakuş & Şimşek, 2013                                     |
| BM-17      | Karina                |                                             | -2.41                                          | 3             | 0.73                         | Karakuş & Şimşek, 2013                                     |

Table A.2 (cont'd): Isotopic compositions waters from geothermal fields of western Anatolia

| Sample No. | Sample location      | CO <sub>2</sub> / <sup>3</sup> He<br>(x10 <sup>9</sup> ) | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References        |
|------------|----------------------|----------------------------------------------------------|------------------------------------------------|---------------|------------------------------|-------------------|
| 2          | K-2 well             |                                                          |                                                | -50.92        | -7.24                        | Özen et al., 2012 |
| 3          | K-4 well             |                                                          |                                                | -50.3         | -7.67                        | Özen et al., 2012 |
| 4          | K-5 well             |                                                          |                                                | -51.11        | -6.22                        | Özen et al., 2012 |
| 5          | K-6 well             |                                                          |                                                | -53.83        | -6.97                        | Özen et al., 2012 |
| 6          | K-7 well             |                                                          |                                                | -53.24        | -6.23                        | Özen et al., 2012 |
| 7          | K-8 well             |                                                          |                                                | -49.88        | -8.12                        | Özen et al., 2012 |
| 8          | K-11 well            |                                                          |                                                | -51.09        | -7.55                        | Özen et al., 2012 |
| 9          | K-12 well            |                                                          |                                                | -60.69        | -6.49                        | Özen et al., 2012 |
| 10         | K-15 well            |                                                          |                                                | -51.56        | -6.66                        | Özen et al., 2012 |
| 11         | K-16 well            |                                                          |                                                | -51.98        | -7.51                        | Özen et al., 2012 |
| 12         | K-19 well            |                                                          |                                                | -50.54        | -7.5                         | Özen et al., 2012 |
| 13         | K-20 well            |                                                          |                                                | -50.19        | -7.37                        | Özen et al., 2012 |
| 15         | Sart thermal spr     |                                                          |                                                | -47.37        | -7.88                        | Özen et al., 2012 |
| 16         | Üfürük mineral spr   |                                                          |                                                | -41.69        | -8.62                        | Özen et al., 2012 |
| 17         | Kurşunlu mineral spr |                                                          |                                                | -46.77        | -9.73                        | Özen et al., 2012 |
| 18         | Greenhouse well-1    |                                                          |                                                | -61.08        | -7.37                        | Özen et al., 2012 |
| 19         | Greenhouse well-2    |                                                          |                                                | -62.77        | -8.87                        | Özen et al., 2012 |
| 20         | Cold well in KGF     |                                                          |                                                | -41.79        | -7.71                        | Özen et al., 2012 |
| 21         |                      |                                                          |                                                | -52.53        | -9.12                        | Özen et al., 2012 |
| 22         |                      |                                                          |                                                | -54.12        | -9.5                         | Özen et al., 2012 |

Table A.2 (cont'd): Isotopic compositions waters from geothermal fields of western Anatolia

| Sample No. | Sample location        | CO <sub>2</sub> / <sup>3</sup> He<br>(x10 <sup>9</sup> ) | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References               |
|------------|------------------------|----------------------------------------------------------|------------------------------------------------|---------------|------------------------------|--------------------------|
| 23         | Cold well in KGF       |                                                          |                                                | -54.14        | -9.52                        | Özen et al., 2012        |
| 24         | Cold well in CGF       |                                                          |                                                | -46.41        | -8.03                        | Özen et al., 2012        |
| 25         |                        |                                                          |                                                |               |                              | Özen et al., 2012        |
| 26         |                        |                                                          |                                                | -46.55        | -9.13                        | Özen et al., 2012        |
| 27         | Cold well in GGF       |                                                          |                                                | -50.19        | -9.38                        | Özen et al., 2012        |
| 28         |                        |                                                          |                                                | -50.02        | -9.26                        | Özen et al., 2012        |
| 29         |                        |                                                          |                                                | -49.35        | -9.46                        | Özen et al., 2012        |
| 30         |                        |                                                          |                                                | -50.95        | -9.68                        | Özen et al., 2012        |
| E-7        | Eynal (well)           |                                                          |                                                | -65.3         | -9.34                        | Palabıyık & Serpen, 2008 |
| Eynal      | Eynal (hot spr)        |                                                          |                                                | -62.1         | -8.94                        | Palabıyık & Serpen, 2008 |
| E-1        | Eynal (well)           |                                                          |                                                | -60.9         | -9.08                        | Palabıyık & Serpen, 2008 |
| ÇİTGÖL-2   | Çitgöl-Naşa (well)     |                                                          |                                                | -55.9         | -9.23                        | Palabıyık & Serpen, 2008 |
| Naşa-2     | Çitgöl-Naşa (hot spr)  |                                                          |                                                | -66.7         | -9.62                        | Palabıyık & Serpen, 2008 |
| Nadarçam   | Çitgöl-Naşa (cold spr) |                                                          |                                                | -57.1         | -9.19                        | Palabıyık & Serpen, 2008 |
| 1          | Dikili Spa             |                                                          |                                                | -41.5         | -6.3                         | MTA-JICA, 1987           |
| 2          |                        |                                                          |                                                | -44.4         | -5.8                         | MTA-JICA, 1987           |
| 8          |                        |                                                          |                                                | -43.5         | -6.4                         | Jeckelman, 1996          |
| 9          | ]                      |                                                          |                                                | -41.5         | -5.9                         | Jeckelman, 1996          |
| 10         | ]                      |                                                          |                                                | -45           | -6.4                         | Jeckelman, 1996          |
| 11         |                        |                                                          |                                                | -45.9         | -6.3                         | Jeckelman, 1996          |

Table A.2 (cont'd): Isotopic compositions waters from geothermal fields of western Anatolia

| Sample No. | Sample location   | CO <sub>2</sub> / <sup>3</sup> He<br>(x10 <sup>9</sup> ) | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References      |
|------------|-------------------|----------------------------------------------------------|------------------------------------------------|---------------|------------------------------|-----------------|
| 12         | Dikili Spa        |                                                          |                                                | -47.1         | -6.5                         | Jeckelman, 1996 |
| 13         |                   |                                                          |                                                | -39           | -4.7                         | Jeckelman, 1996 |
| 14         |                   |                                                          |                                                | -31.7         | -5.2                         | Jeckelman, 1996 |
| 15         | Plain near Dikili |                                                          |                                                | -33.8         | -5.9                         | Jeckelman, 1996 |
| 16         | Sülüklü fountain  |                                                          |                                                | -32.6         | -5.4                         | Jeckelman, 1996 |
| 17         | Plain near Dikili |                                                          |                                                | -46.8         | -6.2                         | Jeckelman, 1996 |
| 22         | Kaynarca          |                                                          |                                                | -39.3         | -6.3                         | MTA-JICA, 1987  |
| 23         |                   |                                                          |                                                | -37.4         | -4.9                         | MTA-JICA, 1987  |
| 24         |                   |                                                          |                                                | -39.3         | -6.1                         | MTA-JICA, 1987  |
| 26         |                   |                                                          |                                                | -39.3         | -6.1                         | MTA-JICA, 1987  |
| 27         |                   |                                                          |                                                | -43           | -6.4                         | MTA-JICA, 1987  |
| 28         |                   |                                                          |                                                | -37.5         | -4.8                         | MTA-JICA, 1987  |
| 31         |                   |                                                          |                                                | -41.8         | -5.9                         | Jeckelman, 1996 |
| 32         |                   |                                                          |                                                | -38.2         | -4.8                         | Jeckelman, 1996 |
| 33         |                   |                                                          |                                                | -35.5         | -5.6                         | Jeckelman, 1996 |
| 34         | Kaynarca east     |                                                          |                                                | -30.7         | -5                           | Jeckelman, 1996 |
| 35         | Kaynarca west     |                                                          |                                                | -34.7         | -5.7                         | Jeckelman, 1996 |
| 41         | DG-1 well         |                                                          |                                                | -39.2         | -5.9                         | MTA-JICA, 1987  |
| 42         | DG-3 well         |                                                          |                                                | -35.5         | -5.4                         | MTA-JICA, 1987  |
| 45         | Kocaoba Spa       |                                                          |                                                | -46.3         | -7.5                         | Jeckelman, 1996 |

Table A.2 (cont'd): Isotopic compositions waters from geothermal fields of western Anatolia

| Sample No. | Sample location      | CO <sub>2</sub> / <sup>3</sup> He<br>(x10 <sup>9</sup> ) | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References      |
|------------|----------------------|----------------------------------------------------------|------------------------------------------------|---------------|------------------------------|-----------------|
| 46         | Near Kocaoba         |                                                          |                                                | -37           | -6.4                         | Jeckelman, 1996 |
| G-7        | Gönen                |                                                          | 0                                              | -76.83        | -12.12                       | Mutlu, 2007     |
| G-8        |                      |                                                          | 0                                              | -77.05        | -12.78                       | Mutlu, 2007     |
| G-16       |                      |                                                          | 0.7                                            | -77.39        | -12.5                        | Mutlu, 2007     |
| EKS-1      |                      |                                                          | -1.7                                           | -60.91        | -11.94                       | Mutlu, 2007     |
| EKS-2      |                      |                                                          | -17.7                                          | -55.95        | -11.21                       | Mutlu, 2007     |
| MK-1       | Manyas               |                                                          | -3.6                                           | -61.36        | -9.91                        | Mutlu, 2007     |
| MK-2       |                      |                                                          | -8.4                                           | -58.05        | -10.77                       | Mutlu, 2007     |
| PMK-1      | Pamukcu              |                                                          | -8.9                                           | -63.81        | -10.67                       | Mutlu, 2007     |
| PMK-2      |                      |                                                          | -11.2                                          | -58.47        | -9.92                        | Mutlu, 2007     |
| BHS-1      | Bigadic              |                                                          | -2                                             | -71.1         | -9.94                        | Mutlu, 2007     |
| BHS-2      |                      |                                                          | -1.2                                           | -71.8         | -9.86                        | Mutlu, 2007     |
| SHS-1      | Sindirgi (Hisaralan) |                                                          | -4.7                                           | -68.49        | -11.61                       | Mutlu, 2007     |
| SHS-2      |                      |                                                          | -4.8                                           | -69.02        | -11.78                       | Mutlu, 2007     |
| SHS-3      |                      |                                                          | -4.7                                           | -69.28        | -11.53                       | Mutlu, 2007     |
| SHS-4      |                      |                                                          | -3.4                                           | -68.85        | -11.73                       | Mutlu, 2007     |
| EDR-1      | Edremit              |                                                          | -10.5                                          | -55.15        | -10.05                       | Mutlu, 2007     |
| EDR-2      |                      |                                                          | -14.7                                          | -53.38        | -10.03                       | Mutlu, 2007     |
| GDR-1      |                      |                                                          | -7.2                                           | -52.1         | -9.61                        | Mutlu, 2007     |

Table A.2 (cont'd): Isotopic compositions waters from geothermal fields of western Anatolia

| Sample No. | Sample location | CO <sub>2</sub> / <sup>3</sup> He<br>(x10 <sup>9</sup> ) | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References         |
|------------|-----------------|----------------------------------------------------------|------------------------------------------------|---------------|------------------------------|--------------------|
| BLY-1      | Balya           |                                                          | -6.6                                           | -76.8         | -12.5                        | Mutlu, 2007        |
| BLY-2      |                 |                                                          | -6.7                                           | -75.89        | -12.91                       | Mutlu, 2007        |
| SLK-1      | Susurluk        |                                                          | -1.4                                           | -63.16        | -11.05                       | Mutlu, 2007        |
| SLK-2      |                 |                                                          | -1.8                                           | -72.37        | -12.36                       | Mutlu, 2007        |
| ED-3       | Edremit         |                                                          |                                                | -52.19        | -9.19                        | Avşar et al., 2013 |
| ED-1       |                 |                                                          |                                                | -52.22        | -9.47                        | Avşar et al., 2013 |
| EDJ-5      |                 |                                                          |                                                | -50.45        | -7.6                         | Avşar et al., 2013 |
| EDJ-7      |                 |                                                          |                                                | -47.15        | -7.24                        | Avşar et al., 2013 |
| EDJ-4      |                 |                                                          |                                                | -49.7         | -8.26                        | Avşar et al., 2013 |
| EDJ-8      |                 |                                                          |                                                | -45.94        | -7.18                        | Avşar et al., 2013 |
| DSI-6      |                 |                                                          |                                                | -47.55        | -7.95                        | Avşar et al., 2013 |
| TOTAL      |                 |                                                          |                                                | -48.69        | -7.91                        | Avşar et al., 2013 |
| DOGANDERE  |                 |                                                          |                                                | -43.28        | -7.91                        | Avşar et al., 2013 |
| DSI-9      |                 |                                                          |                                                | -47.07        | -7.76                        | Avşar et al., 2013 |
| HASTANE    |                 |                                                          |                                                | -43.26        | -6.71                        | Avşar et al., 2013 |
| DSI-7      |                 |                                                          |                                                | -43.06        | -6.95                        | Avşar et al., 2013 |
| DSI-8      |                 |                                                          |                                                | -38.72        | -7.24                        | Avşar et al., 2013 |
| EMINKUYU   |                 |                                                          |                                                | -38.77        | -6.88                        | Avşar et al., 2013 |
| EMINDSI    |                 |                                                          |                                                | -39.63        | -8.11                        | Avşar et al., 2013 |

Table A.2 (cont'd): Isotopic compositions waters from geothermal fields of western Anatolia

spr: spring, KGF: Kurşunlu geothermal field, CGF: Caferbeyli geothermal field, GGF: greenhouse geothermal field

| Field | Sample<br>No. | Location           | T(°C) | pН   | EC<br>(μS/cm) | Na    | к    | Са    | Mg    | HCO₃  | SO₄  | Cl   | Mg/Ca |
|-------|---------------|--------------------|-------|------|---------------|-------|------|-------|-------|-------|------|------|-------|
|       | BUR           | Burgulu spr        | 19.51 | 5.40 | 413           | 0.97  | 0.86 | 1.23  | 0.38  | 2.05  | 1.25 | 0.54 | 0.31  |
|       | CRK           | Köprü hot spr      | 25.79 | 2.38 | 1591.9        | 15.33 | 7.76 | 14.55 | 11.30 | 0.00  |      | 5.33 | 0.78  |
|       | DGM           | Davut cold spr     | 11.07 | 4.56 | 390           | 0.69  | 0.23 | 2.13  | 0.85  | 5.33  | 0.45 | 0.08 | 0.40  |
|       | DHS           | Diyadin spr        | 21.50 | 8.43 | 759           | 2.08  | 0.04 | 2.56  | 1.03  | 5.16  | 0.58 | 1.78 | 0.40  |
|       | DIB           | Dibekli hot spr    | 48.25 | 6.98 | 3415          | 6.79  | 1.79 | 2.32  | 3.33  | 14.34 | 1.46 | 4.51 | 1.43  |
|       | DKC           | Davut cold spr     | 11.19 | 6.44 | 758           | 0.89  | 1.23 | 3.16  | 1.20  | 5.90  | 0.96 | 1.83 | 0.38  |
|       | DVS           | Davut cold spr     | 11.40 | 5.40 | 413           | 0.73  | 0.47 | 3.18  | 1.07  | 5.49  | 1.46 | 0.54 | 0.34  |
|       | EBU           | Boyalan spr        | 25.77 | 3.17 | 2007          | 1.48  | 1.81 | 1.75  | 1.30  | 0.00  | 6.97 | 0.25 | 0.74  |
| a     | GBK           | Göğebakan cold spr | 9.64  | 5.50 | 725           | 1.45  | 0.24 | 2.63  | 0.86  | 6.88  | 0.75 | 0.87 | 0.33  |
| din   | GOK           | Göğebakan cold spr | 10.94 | 6.05 | 692           | 1.38  | 0.14 | 2.19  | 0.71  | 5.90  | 0.65 | 0.65 | 0.32  |
| Diya  | KEV           | Rahmankulu spr     | 20.62 | 5.90 | 606           | 1.58  | 0.02 | 2.06  | 1.77  | 7.78  | 0.65 | 0.20 | 0.86  |
|       | КОР           | Köprü hot spr      | 50.63 | 7.23 | 4868          | 7.42  | 1.77 | 1.72  | 3.12  | 9.59  | 1.35 | 4.96 | 1.81  |
|       | KUS           | Köprü hot spr      | 65.50 | 7.43 | 3738          | 6.55  | 1.88 | 0.70  | 3.12  | 10.41 | 1.25 | 4.40 | 4.45  |
|       | MKK           | Mollakara cold spr | 9.27  | 6.11 | 1104          | 2.30  | 1.55 | 3.15  | 3.37  | 8.93  | 1.25 | 3.22 | 1.07  |
|       | MLK           | Mollakara spr      | 65.20 | 6.63 | 3757          | 6.94  | 1.94 | 3.18  | 2.12  | 11.72 | 1.25 | 7.56 | 0.67  |
|       | MNC           | Diyadin spr        | 20.15 | 7.80 | 267           | 0.48  | 0.13 | 0.96  | 0.36  | 2.29  | 0.25 | 0.17 | 0.37  |
|       | MNG           | Mollakara spr      | 16.57 | 7.18 | 114           | 0.18  | 0.05 | 0.42  | 0.20  | 0.98  | 0.15 | 0.08 | 0.48  |
|       | RAH           | Rahmankulu spr     | 11.46 | 7.75 | 505           | 0.74  | 0.05 | 1.20  | 1.24  | 5.08  | 0.09 | 0.03 | 1.03  |
| F     | TAZ           | Tazekent hot spr   | 39.81 | 6.93 | 737           | 6.55  | 1.79 | 1.95  | 3.19  | 12.29 | 1.56 | 4.65 | 1.64  |
|       | TSK           | Taskesen cold spr  | 10.70 | 5.26 | 748           | 1.63  | 0.15 | 2.51  | 2.19  | 9.42  | 0.82 | 0.56 | 0.87  |

Table A.3: Chemical analyses of waters from geothermal fields of eastern Anatolia

| Field | Sample<br>No.     | Location         | T(°C) | pН   | EC<br>(µS/cm) | Na    | к    | Са   | Mg   | HCO₃  | SO <sub>4</sub> | Cl    | Mg/Ca |
|-------|-------------------|------------------|-------|------|---------------|-------|------|------|------|-------|-----------------|-------|-------|
|       | TUN               | Köprü hot spr    | 63.40 | 7.27 | 3744          | 7.86  | 2.02 | 0.97 | 2.60 | 10.41 | 1.67            | 5.11  | 2.70  |
|       | YES               | Boyalan cold spr | 12.01 | 7.68 | 359           | 0.69  | 0.04 | 2.26 | 0.33 | 4.67  | 0.15            | 0.23  | 0.14  |
| 2     | ZEG               | Burgulu spr      | 17.82 | 3.15 | 1301          | 1.94  | 0.33 | 2.49 | 0.88 | 0.00  | 8.95            | 0.17  | 0.35  |
| /adi  | AD-2 <sup>b</sup> | Yılanlı hot spr  | 70.00 |      |               | 6.44  | 1.96 | 3.57 | 2.36 | 14.60 | 1.27            | 3.58  | 0.66  |
| Di    | MT-2 <sup>b</sup> | Yılanlı hot spr  | 78.00 |      |               | 9.40  | 1.88 | 8.51 | 2.07 | 27.42 | 1.97            | 5.13  | 0.24  |
|       | MT-3 <sup>b</sup> | Yılanlı hot spr  | 76.00 |      |               | 10.05 | 1.62 | 7.73 | 2.76 | 27.32 | 1.10            | 5.56  | 0.36  |
|       | MT-4 <sup>b</sup> | Yılanlı hot spr  | 72.00 |      |               | 7.70  | 1.98 | 4.79 | 1.38 | 18.40 | 1.28            | 4.17  | 0.29  |
|       | ALT               | Altıyol          | 23.62 | 6.51 | 667           | 3.28  | 0.14 | 1.05 | 1.44 | 6.23  | 0.60            | 0.25  | 1.38  |
|       | AVC               | Avcıbaşı         | 12.86 | 7.88 | 95            | 0.30  | 0.08 | 0.23 | 0.11 | 0.98  | 0.01            | 0.03  | 0.48  |
|       | AYR               | Ayrancı          | 36.15 | 7.02 | 3915          | 26.33 | 4.80 | 0.23 | 0.85 | 19.67 | 1.46            | 12.02 | 3.67  |
|       | AYS               | Ayrancı          | 25.80 | 6.07 | 1616          | 10.51 | 1.96 | 1.29 | 2.07 | 12.29 | 0.55            | 4.57  | 1.60  |
| ° L   | BUG               | Buğulu           | 35.73 | 6.76 | 1607          | 3.65  | 0.62 | 2.47 | 2.93 | 12.86 | 0.24            | 0.47  | 1.19  |
| dira  | BUS               | Buğulu           | 20.33 | 5.85 | 747           | 1.14  | 0.33 | 1.42 | 1.84 | 7.54  | 0.47            | 0.31  | 1.29  |
| Çal   | KOC-I             | Koçovası         | 15.98 | 6.18 | 991           | 3.89  | 0.70 | 2.73 | 2.70 | 13.28 | 0.09            | 0.96  | 0.99  |
|       | KOC-II            | Koçovası         | 25.08 | 6.71 | 3545          | 16.55 | 2.99 | 3.48 | 7.01 | 31.55 | 0.66            | 4.49  | 2.02  |
|       | KOC-III           | Koçovası         | 14.59 | 5.63 | 1482          | 7.10  | 1.44 | 3.70 | 4.06 | 19.50 | 0.19            | 2.12  | 1.10  |
| -     | YKR               | Aşağıçanak       | 14.16 | 5.62 | 477           | 3.76  | 0.55 | 0.89 | 0.76 | 6.97  | 0.05            | 0.11  | 0.85  |
|       | ZYR               | Ziyaret          | 11.39 | 7.15 | 103           | 0.46  | 0.02 | 0.50 | 0.12 | 1.39  | 0.07            | 0.03  | 0.23  |

Table A.3 (cont'd): Chemical analyses of waters from geothermal fields of eastern Anatolia

All concentrations are mmol/L.

<sup>a</sup>Mutlu et al. (2013).

<sup>b</sup>drilled wells of MTA.

<sup>c</sup>Aydın et al. (2013).

| Sample No. | Sample location   | CO₂/ <sup>3</sup> He<br>(x10 <sup>9</sup> ) ª | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) | δD<br>(‰SMOW) | δ <sup>18</sup> Ο<br>(‰SMOW) | References         |
|------------|-------------------|-----------------------------------------------|------------------------------------------------|---------------|------------------------------|--------------------|
| AYR        | Ayrancı-Çaldıran  | 0.089                                         | 5.21                                           | -89.7         | -11.43                       | Mutlu et al., 2012 |
| BUG        | Buğulu-Çaldıran   | 89                                            | 2.94                                           | -91           | -13.49                       | Mutlu et al., 2012 |
| CAM-1      | Çamlık-Başkale    | 16,622                                        | 5.22                                           | -77.4         | -9.76                        | Mutlu et al., 2012 |
| CAM-2      |                   |                                               | 3.63                                           | -81.5         | -10.7                        | Mutlu et al., 2012 |
| CAY        | Çaybağı-Saray     | 37,742                                        | 1.82                                           | -72.2         | -3.41                        | Mutlu et al., 2012 |
| CKR        | Çukur-Güroymak    | 84                                            | 2.58                                           | -68.8         | -9.98                        | Mutlu et al., 2012 |
| DVT        | Diyadin           | 3660                                          | 4.61                                           | -90.9         | -11.29                       | Mutlu et al., 2012 |
| DYD        |                   | 28,779                                        | 4.79                                           | -92.1         | -11.52                       | Mutlu et al., 2012 |
| GRM        | Germav-Hizan      | 0.00024                                       | -17.5                                          | -72.4         | -10.89                       | Mutlu et al., 2012 |
| HAD        | Taşkapı-Erciş     |                                               | 4.04                                           | -79           | -10.12                       | Mutlu et al., 2012 |
| КОК        | Kokarsu-Bitlis    | 83                                            | 4.04                                           | -68.9         | -10.65                       | Mutlu et al., 2012 |
| NHL        | Nemrut caldera    | 20                                            | 1.89                                           | -64.5         | -9.57                        | Mutlu et al., 2012 |
| PAT        | Patnos-Ağrı       | 14,708                                        | 3.13                                           | -82.7         | -11.36                       | Mutlu et al., 2012 |
| TAS-1      | Taşkapı-Erciş     | 889                                           | 4.36                                           | -81.3         | -11.37                       | Mutlu et al., 2012 |
| TAS-2      |                   |                                               | 5.55                                           | -82.3         | -11.26                       | Mutlu et al., 2012 |
| TAT        | Tatvan-Bitlis     |                                               | 2.27                                           | -65.8         | -9.76                        | Mutlu et al., 2012 |
| TUT        | Tutak-Van         | 114                                           | 4.6                                            | -86.5         | -12.12                       | Mutlu et al., 2012 |
| YUR        | Yurtbaşı-Gürpınar | 10,292                                        | 3.13                                           | -89.4         | -12.68                       | Mutlu et al., 2012 |

Table A.4: Isotopic compositions waters from geothermal fields of eastern Anatolia

<sup>a</sup>Uncertainty for the  $CO_2/^3$ He ratio is estimated at ±5%.

| Field  | Sample No.  | Location | T(°C) | pН  | EC<br>(μS/cm) | Na     | к    | Са   | Mg   | HCO₃  | SO <sub>4</sub> | Cl    | Mg/Ca |
|--------|-------------|----------|-------|-----|---------------|--------|------|------|------|-------|-----------------|-------|-------|
|        | Efteni-1a   | Efteni   | 43.2  | 6.5 | 3053          | 14.75  | 0.33 | 3.47 | 6.34 | 28.01 | 0.03            | 5.64  | 1.83  |
|        | Efteni-1b   | Efteni   | 17    | 8.6 | 229           | 0.09   | 0.00 | 0.27 | 0.95 | 2.18  | 0.07            | 0.20  | 3.45  |
|        | Yalova-2a   | Yalova   | 61.2  | 7.6 | 1917          | 11.40  | 0.13 | 3.99 | 0.33 | 0.74  | 8.54            | 2.65  | 0.08  |
|        | Yalova-2c   | Yalova   | 17.2  | 7.5 | 584           | 0.74   | 0.05 | 2.47 | 0.25 | 5.02  | 0.43            | 0.39  | 0.10  |
|        | Bolu-3a     | Bolu     | 42    | 6.2 | 1957          | 1.78   | 0.41 | 8.43 | 1.60 | 12.39 | 4.65            | 0.31  | 0.19  |
|        | Bolu-3b     | Bolu     | 14.6  | 8   | 88            | 0.13   | 0.05 | 0.27 | 0.12 | 0.67  | 0.08            | 0.14  | 0.45  |
|        | Mudurnu-4a  | Mudurnu  | 39.8  | 6.2 | 1150          | 1.04   | 0.18 | 3.97 | 1.81 | 11.98 | 0.28            | 0.23  | 0.46  |
|        | Mudurnu-4d  | Mudurnu  | 15.1  | 7.1 | 793           | 0.78   | 0.10 | 2.42 | 1.65 | 7.57  | 0.47            | 0.25  | 0.68  |
| a<br>N | Seben-5a    | Seben    | 71.4  | 6.6 | 2187          | 19.10  | 0.82 | 1.17 | 0.58 | 19.44 | 0.95            | 1.72  | 0.49  |
| AFZ    | Seben-5d    | Seben    | 15    | 7.4 | 1105          | 2.61   | 0.15 | 2.57 | 1.97 | 6.00  | 2.77            | 0.39  | 0.77  |
| Z      | Hamamözü-6a | Hamamözü | 42.5  | 7.4 | 514           | 2.00   | 0.15 | 0.95 | 0.74 | 3.90  | 0.25            | 1.02  | 0.78  |
|        | Hamamözü-6b | Hamamözü | 16.3  | 7.5 | 613           | 0.70   | 0.05 | 1.97 | 0.95 | 5.42  | 0.39            | 0.31  | 0.48  |
|        | Gözlek-7a   | Gözlek   | 39.1  | 7.8 | 495           | 3.35   | 0.13 | 0.50 | 0.33 | 4.08  | 0.32            | 0.42  | 0.66  |
|        | Gözlek-7b   | Gözlek   | 17.8  | 7.7 | 1280          | 2.09   | 0.10 | 2.52 | 3.00 | 6.60  | 2.39            | 1.61  | 1.19  |
|        | Reşadiye-8a | Reşadiye | 41.2  | 6.4 |               | 34.80  | 1.33 | 7.59 | 3.66 | 29.78 | 1.23            | 22.68 | 0.48  |
|        | Reşadiye-8b | Reşadiye | 15.3  | 7.3 | 481           | 1.26   | 0.08 | 1.07 | 0.99 | 3.57  | 0.78            | 0.20  | 0.92  |
|        | Kurşunlu-9a | Kurşunlu | 57.4  | 7   | 11160         | 107.09 | 6.68 | 1.67 | 0.99 | 97.38 | 0.70            | 21.86 | 0.59  |
|        | Kurşunlu-9b | Kurşunlu | 13.3  | 6.4 | 2550          | 19.36  | 1.13 | 2.52 | 0.66 | 23.80 | 0.36            | 2.37  | 0.26  |
|        | Kurşunlu-9c | Kurşunlu | 13.2  | 8   | 455           | 0.48   | 0.03 | 1.65 | 0.41 | 4.15  | 0.09            | 0.23  | 0.25  |

Table A.5: Chemical analyses of waters from geothermal fields along the NAFZ

All concentrations are mmol/L. Data represent the average of nine sampling periods.

<sup>a</sup>Süer et al. (2008).

149

| Sample No.  | Sample location | CO <sub>2</sub> / <sup>3</sup> He<br>(x10 <sup>9</sup> ) <sup>a</sup> | δ <sup>13</sup> C(CO <sub>2</sub> )<br>‰ (PBD) <sup>a</sup> | δD<br>(‰SMOW)<br><sup>b</sup> | δ <sup>18</sup> Ο<br>(‰SMOW)<br><sup>b</sup> | References                                |
|-------------|-----------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------------------|
| Efteni-1a   | Efteni          | 8,700                                                                 | -1.55                                                       | -82.9                         | -11.3                                        | Süer et al. , 2008; de Leeuw et al., 2010 |
| Efteni-1b   |                 |                                                                       |                                                             | -80.1                         | -11.5                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Yalova-2a   | Yalova          | 32                                                                    | 1.52                                                        | -75.8                         | -11.3                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Yalova-2c   |                 |                                                                       |                                                             | -59                           | -9.1                                         | Süer et al., 2008; de Leeuw et al., 2010  |
| Bolu-3a     | Bolu            | 1,300                                                                 | -0.18                                                       | -82.8                         | -11.5                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Bolu-3b     |                 |                                                                       |                                                             | -79.4                         | -11.9                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Mudurnu-4a  | Mudurnu         | 55                                                                    | -2.46                                                       | -84.7                         | -12                                          | Süer et al., 2008; de Leeuw et al., 2010  |
| Mudurnu-4d  |                 |                                                                       |                                                             | -80.4                         | -11.2                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Seben-5a    | Seben           | 11,000                                                                | -0.34                                                       | -89                           | -12.1                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Seben-5d    |                 |                                                                       |                                                             | -68.4                         | -8.9                                         | Süer et al., 2008; de Leeuw et al., 2010  |
| Hamamözü-6a | Hamamözü        | 35                                                                    | -0.54                                                       | -87.4                         | -12                                          | Süer et al. , 2008; de Leeuw et al., 2010 |
| Hamamözü-6b |                 |                                                                       |                                                             | -74.5                         | -10.1                                        | Süer et al. , 2008; de Leeuw et al., 2010 |
| Gözlek-7a   | Gözlek          | 120                                                                   | -0.04                                                       | -94.2                         | -12.8                                        | Süer et al. , 2008; de Leeuw et al., 2010 |
| Gözlek-7b   |                 |                                                                       |                                                             | -76.7                         | -10                                          | Süer et al. , 2008; de Leeuw et al., 2010 |
| Reşadiye-8a | Reşadiye        | 77,000                                                                | -1.92                                                       | -92.9                         | -12.7                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Reşadiye-8b |                 |                                                                       |                                                             | -84.3                         | -12.1                                        | Süer et al. , 2008; de Leeuw et al., 2010 |
| Kurşunlu-9a | Kurşunlu        | 260,000                                                               | 0.92                                                        | -88.3                         | -8.5                                         | Süer et al., 2008; de Leeuw et al., 2010  |
| Kurşunlu-9b |                 |                                                                       |                                                             | -81.3                         | -10.5                                        | Süer et al., 2008; de Leeuw et al., 2010  |
| Kurşunlu-9c |                 |                                                                       |                                                             | -77.4                         | -9.8                                         | Süer et al., 2008; de Leeuw et al., 2010  |

Table A.6: Isotopic compositions waters from geothermal fields along the NAFZ

Data represent the average of nine sampling periods. <sup>a</sup>de Leeuw et al. (2010). <sup>b</sup>Süer et al. (2008).