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ABSTRACT

CHANNEL ESTIMATION REFINEMENT BY TRAINING SEQUENCE
EXTENSION AND INTERLEAVER DESIGN

Gelincik, Samet
M.S., Department of Electrical and Electronics Enginegrin
Supervisor : Assoc. Prof. Dr. Ali Ozgiir Yilmaz

September 2014, 57 pages

Rapid variation of channel coefficients is one of the mostlehging problems in
wireless communication. To provide and keep communicatiodesired quality,
channel coefficients should be estimated continuouslys Tan be made by using
pilot symbols between data blocks which are known by thestratier and receiver.
The channel coefficients between pilot symbols can be ety interpolation but
this method has a disadvantage in fast fading channels giercehannel coefficient
estimates have better quality around the pilot blocks theaydrom them. To solve
this problem, we propose to extend the pilot block by makisg af the soft infor-
mation produced by channel decoder. We track the channeiass in time by the
LMS algorithm bidirectionally so that we can estimate ca&fits more accurately
by interpolation . We also introduce a new interleaver whistdes the bits into sub-
regions based on their proximity to pilot blocks and perradkeem within their own
region.



Keywords: Sum product algorithm, Soft input soft output@gation, channel esti-
mation, least square estimation, least mean square &lgyiiterleaver
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DENEME DIZiSI GENISLETIMI VE KARISTIRICI TASARIMIYLA KANAL
KESTIRIMI IY ILESTIRMES]

Gelincik, Samet
Yiksek Lisans, Elektrik ve Elektronik Mihend&iiBolim

Tez Yoneticisi : Dog. Dr. Ali Ozgur Yilmaz

Eylul 201457 sayfa

Kanal katsayilarinin hizh dgsimi kablosuz haberlesmenin en 6nemli problemlenmde
biridir. Kaliteli bir iletisimin sajlanmasi ve surdirtlebilmesiicin kanal katsayilarinin
surekli kestirilmelidir. Bu ise veri bloklarinin arasindé@nderilecek alici ve verici
tarafindan bilinen deneme sembolleri vasitasiyla yapilaBilot sembolleri arasin-
daki kanal katsayilari aragerleme yontemiyle bulunabilmesinggraen bu yéntem
hizli dgjisen kanallarda deneme sembollerinin yakinlarinda Ikayiatakip etme-
sine r@gmen oOzellikle kanalin ortasina @a kanal takip edememektedir. Biz bu
calismada yukarida belirffimiz aradgerlemenin yetersiz kalma problemine ¢6zim
olarak, deneme sembollerinin etrafindaki veri semballekullanarak kanal den-
eme sembollerinin etrafindaki belli noktalara kadar LM $itginiyle takip etmeyi ve
bundan sonra aragerleme yapmay1 6nerdik. Ayrica bu uygul@aniz yénteme uy-
gun, zaman ekseninde bir ¢esit coklamglagan bir karistirici tasarlayarak iletisim

kalitesini arttirdik.

Vil



Anahtar Kelimeler: Toplam carpim algoritmasi, yumusaidiji yumusak ciktil
kanal denklestirme, kanal kestirimi, en az kareler kestjren az karesel ortalama
algoritmasi, karistirici
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CHAPTER 1

INTRODUCTION

Signals transmitted through wireless channels are exposeatious adverse effects
due to the nature of the wireless medium. One of these effeatsiltipath propaga-
tion which is the result of reflection, refraction or diffteomn. Multipath propagation
reproduces many copies of the transmitted signal whereeavercantenna observes
multiple echoes in different delays and attenuations. Whenmultipath delay is
greater than the symbol duration, interference across slgr(mter-symbol inter-
ference (ISI)) forms. Multipath propagation also causestdiation in received sig-
nal power which is called fading. Furthermore, changes afroanication medium
makes the channel time varying. To reconstruct the tramsdhgignal at the receiver

side channel estimation and equalization must be carried ou

In many scenarios channel estimation is an integral pateféceiver design. In the
literature, there are three different channel estimatmhiques: blind, semi blind
and training based. Blind channel estimation [28] methdzhised on estimating the
channel using known statistics about the channel and ingmuience, not through
known symbols. However, it has some disadvantages suchnasrgence, latency,
phase ambiguity etc. To overcome such problems, semi blvathreel estimation

methods [[28] are suggested so that fast and robust estmmedio be provided by
means of using known symbols and known statistics aboutsyaidols [11]. The

semi blind estimation can also be used efficiently in esiimgaflast fading channels
and has superiority over training based and blind chantiehason separately [11].

Training-based channel estimation is executed in varicagswhrough transmission

of symbols known both to transmitter and receiver. Some eftdthniques used



with training based estimation are Least Square’s [31]etation estimation [5], ML
estimation[[30]. As an example, training based channemegion is used in Global
System for Mobile Communication (GSM) [15] and EDGE [[16].

Training based channel estimation is used effectively sead slow time variation of
the channel through pilot sequences transmitted periliglita this case, the channel
is estimated at pilot regions and then interpolated for #ta cegions by various inter-
polators such as linear |[6], Wiener filtering! [7]. This apgeb is used in 1S-136_[3].
However, when the time variation rate of the channel in@samterpolation aided
training based channel estimation is not effective esfigdi@cause of throughput
inefficiency since it requires transmitting pilot sequen®re frequently. To enable
channel estimation in relatively fast fading channelstelae several methods in the
literature for iterative receivers. In_[27] and [24],a daided channel estimation
method is proposed in which the channel is iteratively estiad through soft infor-
mation of the channel decoder by using some techniques sudi&, RLS, Kalman
filtering. As an alternative to those methods, we propos¢henalata directed train-
ing based channel estimation method. The method itergt@ésdends pilot sequence
to portions of data which is estimated through the soft im@ation produced by de-
coder. With this "extended training sequence”, the chaoaelbe tracked bidirec-
tionally inside the extended training sequence regiongn] mterpolation provides

better quality channel estimation along a whole packet.

In Chapter 2, the background information needed througtthsis can be found.
In Chapter 3, both the sum product (SP) algorithm which ismaplémentation of
soft input soft output (SISO) equalizer and the utilized @l&qualizer structure is
described. In Chapter 4, channel estimation with the leqisares (LS) algorithm,
the pilot extension idea, tracking of the channel with theS3 Klgorithm, interleaver
design are explained and related results are provided. |@ans follow in chapter
5.

The employed notations are organized as follows. Lower ldt®s (e.g.x) repre-
sents scalars, bold letters (e g),denote vectors, bolded upper case letters (XJ.,
denote matrices. For a given vector random variahI®, denote its autocorrela-

tion matrix. The indicator$)”, ()*, and £{} denote Hermitian transpose, conjugate



transpose and expectation operations respectively. Thexnaepresents the iden-

tity matrix of proper size.






CHAPTER 2

BACKGROUND INFORMATION

2.1 Wireless Channel Characterization

2.1.1 Some Wireless Channel Features

Wireless transmission medium has many features diffemrem those of fixed or
wired channels and these features are the consequence itifyreotal specific nature

of the surrounding medium.

Multipath propagation is a very important phenomenon tlaat tole on many prob-
lems which arise in wireless communication. During a wesl#ansmission, a trans-
mitter and receiver may have a direct path between each atigei is called the line
of sight path (LOS). However, the signal reaches the rec#iveugh many different
paths and this phenomenon is called multipath propagagismlting from many in-
teracting objects surrounding the transmitter and recdike houses, walls, doors or
windows which the signal reflects and/or diffracts througénb. These signals have

various amplitude, phase and delay.

The deviation of a multipath signal experienced in relagiiase of a frequency com-
ponent or in amplitude is defined as fading and results ima#gon of the signal.
The multipath components of a signal causes interferendehas interference can
be constructive or destructive depending on the phase afrtheng multipath com-
ponents. Instantaneous deviation of the signal level isddfas small scale fading.
Large- scale fading occurs if there is an obstacle in theggapon path so that one

or many multipath components are attenuated greatly witihebult of preventing the

5



communication. The small and large scale fading are cordbaehe receiver and
in practice, it results in changing the channel coefficiemts time and sometimes
signal power undergo noise level with the consequence obsyerror in an uncoded

structure.

The maximum delay between multipath components of a synshaetfined as delay
spread,T;,,. Multipath signal components coming from different pathgths may

cause interference at the receiver if a multipath compooéaat signal arrives the
antenna at the same time with any subsequent signal. Thatism arises if one of
the delays between multipath components of a transmittedsyis greater than a

symbol duration. This phenomenon is called inter-symbi@rference (I1SI).

Movements of the transmitter and receiver or changes in th@snding medium
leads to variation of the multipath components’ propertiBlsis dynamic behaviour
of the channel impulse response is usually characterizeddppler spread of the
channel which roughly describes the rate of change for thamél impulse response
components. Assuming wide sense stationary channel impesponse, the varia-
tion in time is reflected in power spectral density (PSD). im simulations, we will
consider a Gaussian shaped PSD where the twice the stareléatiaho of the PSD
will be referred to as fading bandwidth (FBW). FBW is also aasw@e for channel
coherence timé,.. The coherence time is qualitatively defined as the rangalokEg
over which the autocorrelation of channel taps in time iszevo. The relationship

between the channel coherence time and FBW is

T, ~———. (2.1)

2.1.2 Channel Model

In this thesis, we consider a channel model characterizaddescrete time baseband
equivalent channel with the assumption that required ¢mmdi such as proper sam-
pling and filtering are in effect[ [26]. The discrete time mbfie a time varying

channel is



hn = [hn,Ou hn,b ceey hn,L—l] (22)

wheren indicates the sampling timel” + 7y, 7" and, are symbol duration and an
arbitrary time offset. The index k ih, ;, indicates the response of channel with delay
kT at the time instant’T” + 7, and L indicates the total channel length.

In the time invariant case, the time index n is dropped siheechannel is constant

the whole observation time so that

h = [ho, hu, .o b1 . (2.3)

2.2 The HF Communication

The High Frequency (HF) band is defined as the electromagsgeéictrum between
3 MHz and 30 MHz, which corresponds to wavelengths betweem Ehd 100 m.

The radio communication which is performed in this frequeband is called HF

communication. The detailed information about HF commaition can be found in
[18] and [17].

HF communication is very often used for military purposesilittty communica-
tion standards are being developed by NATO (North Athlanteaty Organization),
and by US DoD (United States Department of Defence). The S¥ANKStandard-
ization Agreement) series is published by NATO , the MIL-S{Mlitary Standard)
series is published by US DoD. With the introduction of soree/ standards such as
STANAG 4539, Military Standard 188110-C, the performarsenproved in terms
of availability and data rates.

2.2.1 Propagation Mechanism

There are two major propagation mechanisms for electroetagwaves in the HF
band. One of them is ground wave in which the waves propadeaeg sghe surface

of the earth. The other one is sky wave in which the waves dlected back to the

7



earth from the ionosphere. Transmission frequency andumtivity of the surface of

the earth determines the propagation range of the ground.wav

Sky wave is used for communication distances of at least 5Bykuosing one or more
reflection between earth and ionosphere layers. When tlotr@teagnetic waves
from the sun is absorbed by the athmosphere, molecules mimeitb The density
profile of different types of molecules, the solar zenithlarand the strength of the
ionizing electromagnetic waves determine the ionizatidnctv is concentrated in
layers or regions. Since ionization depends on the solatlzangle, it is denser
during day than during night, and denser in summer than itewiffhe solar activity

and the 11-year sunspot cycle change the ionization density

The lowest altitude, between 60-90 km, of the ionosphenesponds to layer D and
it has lower electron density respect to layer D and F so thes diot reflect the radio
waves. However, it absorbs the energy of waves. The midgés ia layer E and the
altitude is between 90 and 120 km. The layer F is highestudiiaand it includes the
altitude between 200 and more than 500 km. The E and F regleosan density
is enough to refract electromagnetic waves in HF range |ettweo regions act as a
reflector for HF communication.

The received noise in HF frequencies consists of man made ngalactic noise and
athmospheric noise (static discharge). This noise is tigeged in [13] and it may
has a bursty nature. However, it can be modelled as bantetinadditive White

Gaussian noise with a simplifying assumption. More detals be found in[[20].

2.2.2 HF Channel

The transmitter and receiver are not moving (or moving sfawlative to the wave-
length) in ionospheric HF communication system. Howevee, ¢lectromagnetic
waves are being reflected from large number of randomly ngpoiins. This means
that the Doppler shift can be modelled by Gaussian disiohuf22]. This model is
verified experimentally by Watterson, Juroshek and Bensani29]. The model is

referred as Watterson model in literature.
The Watterson channel is a two tap channel with the delayadpralues quite large

8



in the vicinity of a few milliseconds. The taps are indeperidend have equal power
with the Gaussian PSD.

Assuming the mean of Doppler shift is zero, the Gaussian Rogpectrum can be

written as

02
Sh(v) = \/% exp (—@) (2.4)

whereo? is the variance of the Doppler shift. For a fading channelohiiias Gaus-
sian power spectral density, we define the Doppler spreaadand bandwith (FBW)
as twice of the standard deviation of the Doppler shift

FBW = 20,. (2.5)

2.3 Channel Estimation Technigues

In the thesis, a data directed training based channel estimtachnique will be used.
Hence, the channel estimation method is based on using hothenknown symbols
and their corresponding observations, but also on obsengbf unknown data. It
is imperative that training based channel estimation isshafsdata directed channel
estimation. Training based channel estimation is appbedime-invariant channels
and in case of very short pilot sequence duration so thathibarel varies slowly.
Assuming a training sequence = [z, z1, ..., zy|, the corresponding outpyt =

(Y0, Y1, -, Yn+—1) @Nd the channék = [hg, hq, ..., 1] , our discrete time system

model is given in matrix form for the time-invariant case & [

y = Xh+ w (2.6)

whereX is an N + L — 1 x L matrix whose rows are shifts of training sequence
andw = [wo, wy, ..., wy+—1] IS composed of circularly symmetric complex additive

white Gaussian noise samples.



2.3.1 Least Squares Estimation

Least Squares (LS) channel estimation can be obtained from

hs = argming (y — Xh)H (y — Xh). (2.7)

The size of vectoy is N which is the number of received signals affected by only

the training symbols. The LS estimation of channel can baddy the equationl [2]

hps = (X7X) ™ X7y, (2.8)

2.3.2 Maximum Likelihood Estimation

With maximum likelihood (ML) channel estimation, the coefffints which maxi-
mizes the likelihood of the received signal is searched for:

har = argmaxyp (y | h). (2.9)

For complex Gaussian noise, the solution can be obtainediaymizing the equation

givenin [2]

hy, = argmazy (y — Xh)? R (y — Xh) (2.10)

which is related to the logarithm of the ML function whefg, is the covariance

matrix of noise. In that case, the ML estimate of the charmghien in [2] as

by, = (XTR,'X) T (XTR,Y) y. (2.12)

However, in case of zero mean circularly symmetric white$s&an noiseRz,, = Nyl

and the ML estimate can be calculated with

10



by = (XTX) (XM y. (2.12)

It is seen from[(2.12) and (2.8) that two estimation techegjis matched if the noise

is zero mean circularly symmetric white Gaussian noise.

2.4 Equalizer

From section 2.111, it is known that ISI occurs if delay sprég is greater than sym-
bol durationT'. I1SI prevents correct symbol and bit decoding unless spe@asures

are not taken even in high signal-to-noise ratios (SNR).droad manner, any signal
processing method which alleviates ISI is called equabmat Equalization can be
implemented through one of filtering, sequence estimatiotemative techniques.

There are two main types of equalizers in the literatureedimand non-linear. Some
linear equalizer types can suffer from noise enhancemefitwhich results in SNR
degradation even though ISl is completely eliminated. Nioedr equalization meth-
ods have less noise enhancement but it has larger implenoentamplexity. Equal-
ization techniques requires channel impulse responsetigata the ISI. In time vary-
ing cases, the equalizer tracks the change in channel vétaithof training symbols
through some updating methods, i.e. LMS, RLS, Kalman filgetc., which are

categorized as adaptive equalization.

Two of the popular linear equalizers are zero forcing (ZF) amnimum mean square
(MMSE) equalizers. ZF equalizers eliminate all ISI intradd by the channel but has
trouble with noise enhancements. MMSE equalizer works énsétnse which min-
imizes mean square error between the transmitted symbdlgheir corresponding
equalizer outputs so that its noise enhancement problesssshan ZF equalizer but
it does not eliminate all ISI. In short, the MMSE equalizeeddmce 1SI mitigation

and noise enhancement.

Nonlinear equalizer examples are decision feedback emugIDFE) and maximum
likelihood sequence estimaton (MLSE). DFE uses previoestiynated symbols to al-

leviate I1SI through a feedback filter and does not suffer frmise enhancement. Also

11



DFE generally has superiority over linear equalizers irpdading cases. [14] despite
its error propagation problems. MLSE has no problem witls@@nhancement since
it is not implemented with any filter. MLSE algorithm provlthe sequence which
maximizes likelihood of the received signal. It is the omlrequalization for and
used as lower bound in the sense of minimizing sequence étovever, its imple-

mentation complexity prevents widespread use.

A posteriori

in formation
L
Received Decoded
data SI50 SISO bits
— SR
Equalizer Decoder
|
A priori
in formation

Figure 2.1: Turbo Equalizer

In iterative (turbo) equalization processes such as inZmy.probability information,
called soft information, related to symbols or bits are Uguexchanged between
equalizer and decoder to determine the transmitted symbbésefore, the equalizer
which operates in turbo equalization is usually in the foffra soft input soft output
(SISO) equalizer and provides a posteriori probabilith3R’s) of transmitted bits to
the channel decoder and the decoder provides the a priorniations of symbol to

the equalizer.

2.4.1 Interleaver

In wireless communication, fading is an essential probleading to received power
being lower than noise level in severe conditions so thargmwccur in transmission
of information. Moreover, in some cases such a severe fadingnues a long period
of time leading to many consecutive errors, called burgirsrrAlthough error cor-
recting codes (ECC) mitigate the errors induced by the cblammany widely used

ECC codes, e.g., convolutional codes, operates under siengsion of independent
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bit/symbol errors. Interleaving is an effective solutienrbughly create such a sce-
nario with burst errors. Interleaver is defined as a singbeitirsingle output device
which takes the symbol sequence in a fixed alphabet and peedlne same sequence
in a different order. The classical usage of interleaveo isdparate the consecutive
bits to minimize the burst error probability by way of tramshing the channel as if
errors occur in regions apart from each other. A similar agens needed in turbo
decoding and equalization. Hence interleaving is usuakgent in turbo decoding

and equalization systems_[26].

We will utilize block interleavers in this work. In a blocktarleaver data is written
in row-wise in a matrix form and read in column-wise from thaatrix. A pseudo
random block interleaver is a sort of block interleaver inckhdata is written a se-

guential manner and read out in a pseudo random order.

2.5 System Model

2.5.1 General Model

Consider the system shown in Fig.12.2. A block of data bits {1,0} are convolu-
tionally encoded with a rat&, to form coded bitg ; € {1,0}, then the coded bits are
interleaved ta:, by employing a permutation functidi (.). Throughout this work,
gray mapping is used for modulation whepeconsecutive coded bits,,_ 1), 7 €
{1,2,..,Q} are combined to form a symbeg| in S = {s1, s, ....., 20 }. The constel-
lations are phase shift keying (PSK) and quadrature ana@itobodulation (QAM). In
addition to data symbols, training and synchronizationlsgiswhich are known by
receiver are added to data sequence to form transmitteddgmbn € {1,2,..., N}.
Thenz, are modulated with a carrier at a symbol rdtesymbols per second. Sym-
bol spaced discrete time model for sending the symbglgrough the intersymbol
interference (ISI) channel produces the received symbols

Yo =h'x, + w, (2.13)

13



Transmitter

Zn

=

¢ c
b_l> Encoder v’ »| Interleaver P Symbol
M apper

Training  sequence tp Zn

r-—- - - —_——

| IST |
| Channel 1
| h, |
-y,
Y vy
_ | Channel
Estimator
hAn Yn
D Y
A Lley) ) |
b | [nterleaver -
D SIS0 SISO
-
Equali
Decoder . Deinterleaver| quatizer
LEE(CP,) LeE (cp)
Receiver

Figure 2.2: Reference system model using adaptive turbalizqtion in the receiver
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whereh,, = [hy, ..., hn —1] IS the time varying channel impulse response (CIR) at
time n with length L andx,, = [z,,, 21, ..., Zn—r+1]. The scalamw,, denotes inde-
pendent and identically distributed zero mean circularimsetric complex Gaussian
random variables, where real and imaginary parts are imabgre and have the same
variances? = Ny/2. It is more compact to write the transmission model in matrix
form. Thereby, in case of the transmitted symbol sequenee|xy, 2o, ..., zx], the
received signal can be written

y=Hx+w (2.14)
with
[ hoo 0 . .. 0 |
0 . 0
hp-111 e hr-1,0
0
H=
0
hN,L—l . hN,O
] 0 0 hnir—114 |
(2.15)
wherey = [y1, 2, ..., yn+2—1] andw = [wy, wo, ..., Wn41—1].

At the receiver side, the SISO equalizer produces extrinfdemation LLRSLE (c,)
as input to the SISO decoder after deinterleaving. The decgidlds the estimates
of information bitsh, and extrinsic LLRsL? (cp/) which are interleaved ta? (c,)
as input to the equalizer. Iterative channel estimatiomeefient is possible by us-
ing an extended training sequence which are estimated byibfdRmation L (c,)
produced by the SISO decoder.
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2.5.2 Specific Model

Information bits are convolutionally encoded with a rdte = 1/2 and constraint
length 7. The coded bits are interleaved by a block intede®auth respect to the per-
mutation function given in Military Standard 188-110C (MI88110C). The trans-
mitted signal frame structure is adopted from (ML-18811864J shown in Figl_2]3.
A transmitted signal frame consists of a synchronizatiazaprble followed by 16
data blocks, 544 symbols each of which has pilot block at Istdkes. Thereby a
frame includes 17 pilot blocks totally. Each of pilot block68 symbols. The pilots
are modulated with 8 PSK and the data sequence is modulate8REK or 4-QAM.
The transmitted sequence is sent at a a rate of 4800 symbasgend and the pulse
shaping function is raised cosine with a roll-off factor a8®. The transmitted chan-
nel is Watterson channel which has two independent tapsragtieigh fading [[10]
with the Gaussian power spectral density (PSD). The chdength is 10 and the two

taps have equal power.

Data Data

Synchronization |p; ., WPitoty | ... ... |Pilotig IPiloty;

Block, Blockg

Figure 2.3: Transmitted signal frame

In the receiver part, we assume exact synchronization legtwansmitter and re-
ceiver because synchronization preamble long enough tade@orrect synchro-
nization between transmitter and receiver. Thereforesyimehronization part is not
considered in simulations. The equalizer is a SISO equalibéch is implemented
through the sum product (SP) algorithm [21]. The channelitglly estimated with

the least-squares (LS) algorithm in pilot regions, the degéons are interpolated with
spline interpolation method and channel tracking is pentd by the least-mean-

square (LMS) algorithm.
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CHAPTER 3

THE SUM PRODUCT ALGORITHM AND SOFT-INPUT
SOFT-OUTPUT (SISO) EQUALIZER

3.1 Introduction

In our work, our interest is HF communication. It is knownttkde channel is mod-
elled as a time varying inter-symbol interference (ISHroma [23] so that an equal-
izer is utilized in the receiver side to alleviate I1SI. Oucewer (in Section[_2]5)
performs turbo equalization which exchanges soft inforomabetween equalizer and
decoder. Therefore our equalizer should be a soft in soff 180) component,
which is also called SISO equalizer. The early SISO equalizere based on trel-
lis based algorithms| [4] and_[12]. However, the number dfifstates becomes
excessive size when the channel impulse response (CIR}yidarge and the signal
constellation is large [25]. This makes trellis based SI$Qadization impractical
for HF communication since the corresponding channel lengte long generally.
Despite some performance degradation suboptimal SISQizenssbased on soft ISI
cancellation and linear filtering methods are utilized ter@ome practical difficul-

ties.

The SISO equalization can provide marginal a posterioribabdities (MAP) of the

transmitted symbols with soft ISI cancellation. In so dginge has to marginalize
the joint probability density function of transmitted vecgiven the received vector in
order to compute the MAP of transmitted symbols. SISO egattin implemented
on a suitable factor graph (FG) is an attractive option insiese of complexity and

practicality.
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In this chapter, firstly we provide some fundamental infatioraabout FGs and the

Sum Product (SP) algorithm and later present graph based &j8alizer [[3].

3.2 Sum Product Algorithm

The SP algorithm operates on suitable factor graphs for tgimalization with re-
spect to some local function over variables of a global fimmct Considering a set
of variablesr, zo, ...z, , and subsetg; of this set of variables, a global function is

written first for a particular problem in its factorized form

g (x1,x9,...x,) = Hgi (xi) - (3.1)

Based on this factorized representation, one may draw a F®GRg.[3.1 where the
related variables and functions are linked. It has been kn{@l] that marginaliza-
tiong (z;) = >, g(71,72,..,7,) can be often performed effectively over the set

of variables excluding; which is denoted by z;.

R

91 92 g3 gq | T 9N

Figure 3.1: A factor graph for
g (21, T2, ...7n) = g1 (T1,72) g2 (2, 74) g3 (T1, 73)
94 (73, 74) ... (Tn—1, T)

In the factor graph of Fig. 3.3,’s andz;’s are defined as function nodes and variable
nodes respectively and the message passings are exectuagtiveéhese nodes for

marginalization. The messages are computed based on thal&tions below:
e the message from a variable node to a function node:
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Ha;—g; ([L’Z) = H Hgp—a; (1’1) ) (3.2)

gr€n(zi)\{g5}

e the message from a function node to a variable node:

Hgj—a; <x2> = Z 9j (X.i) H Hazr—g; ('Tk> . (3.3)

~{zi} zren(g;)\{zi}

In the formulations above, (g,) is the argument set of the functignandn (x;) is the
set of functions of whichx; is element. Also, ~" indicates the summing operation
over the variables except the corresponding variable. ®pération is defined as
the summary operation. By this way, we send marginal funatibcorresponding

variable.

At every iteration of the SP algorithm the marginal functafrvariables are updated
where an iteration is defined as the message passing frorarables to all corre-

sponding nodes and then message passing from all functaesrto all their corre-

sponding variable nodes. In that case, the updated mamgddlinctions calculated
as the product of all incoming messages to variable nodes are

f([L'Z) = H Hgp—z; ([L’Z) (34)

grEn(zi)
3.3 A Specific Example
A more specific example of sum-product iteration over thefiom

f(x) = fi(w1,22) fa (22,73, 24) f3 (23, 25) fa (T2, 24) f5 (24, 75) (3.5)

is described in steps below. The corresponding factor gisaglpicted in Fig.[[312).
e Step 1:

Hazy—fr (x1> =1

Hzo— fs (x2> = Hfi—as <x2)
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® © ® o
i e =>4 >
Iz —

AT f3 f1 f5

Figure 3.2: A factor graph for
f ($17 T, X3, Ty, $5)=f1 ($1, xs) fa ($2, x3, $4) f3 ($37 $5) fa ($27 $4) fs ($47 $5)

Py ps (T2) = [pysay (T2)

Has—s fy (T3) = Hppoay (T3) fps—as (T3)

Has—s fo (T3) = Hpisay (T3) fps—as (T3)

Has—s fs (T3) = Hpioay (T3) ffamas (T3)

Pas—s o (Ta) = fhpises (Ta) fhps ey (Ta)

Pas—s o (Ta) = fhpyses (Ta) fhps ey (Ta)

My g5 (T4) = Hppsay (Ta) Ppyoa (T2)

Has—ps (T5) = [fs—as (T5)

s s (T5) = Wpssas (T5)

e Step 2:

pi—a (1) = D0y J1 (@1, 3) fay—s gy (73)

[fi—as (T3) = D0 gy J1 (21, 23) pay gy (1)

[ fosay (T2) = ZN{M} o (2, 23, 24) foys gy (23) Py gy (74)
[t fysy (L3, T4) = ZN{xg} fo (22, 23) oy 5 (42) Pwsms g (24)
[asas (Ta) = D0 ppny J2 (T2, X3%0) Py s 1y (T2) fhag—s g, (23)
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[fs—sas (T3) = D0 rpey [3 (T3, T5) fas—s gy (T5)
[fs—sas (T5) = D rpey [3 (T3, T5) fay—s gy (73)
[ifsmay (T2) = ZN{M} Ja (22, 24) poys gy (24)
[fsmas (T4) = ZN{M} Ja (22, 24) proy g,y (22)
[fs—ay (Ta) = D0 ppuy [5 (T4, T5) fas—s g5 (T5)

Hfs—as ($5) = Ew{ms} s ($4, 'T5) Haz4— f5 ($4)

Note that, since there is no message to variabJéhe message from; to function
node f; is always 1. One iteration consists of these two steps. Atttk of the

iteration, if one wants to calculate marginal function df trariables
f (1) = ppsa (21)

f(w2) = gy sy (21) ffy 2y (22)

f(23) = pf s (T3) Hpysig (T3) Ppssas (T3)

[ (@4) = Bppmay (T2) Bpysay (T2) Bpsaq (T4)

f(@5) = tpsmas (25) frfs—as (25)

In case of first iteration, all messages from a variable tonatfon node is unit mes-
sage, because we assume incoming messages to a variablea®dait message

[21]. After first iteration, all messages from variable nedee executed as in step 1.

3.4 Soft-Input Soft-Output (SISO) Equalizer

Our one dimensional system model is based on linear modokbver linear chan-
nels affected by circularly symmetric complex white Gaassioise. As a very gen-
eral form, the relationship between the transmitted secgien= [z, xo, ...., xN]T
and the received sequenge= [y1, y2, ..., yN+L_1]T can be written as in[_[26]

y=Hx+w (3.6)
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with

ho 0 0
ho 0 0
hi s ho
0o -
H= . (3.7)

: 0
hL—l ho
0 0 ha

wherew = [wy, w,, ....,wN+L_1]T are independent and identically distributed zero-
mean circularly symmetric complex Gaussian random vaeghvhere real and imag-
inary parts are independent and have the same varighee N,/2. The channel
convolutional matrix hask' = N + L — 1 rows andN columns wherd. is channel
length.

In the equalization process, we want to compute MAP for syimbaming from finite
modulation given the observatign To obtain MAP of the symbols individually, we
factor the pdf of((3.6) suitably according to! [8].

3.4.1 Maximum A Posteriori (MAP) Detection of Symbols

The MAP detection of symbols requires calculating a posteprobabilities (APP’s)
of p(z, | y) for all n andz, given the observatioly. This task can be accom-
plished based op (x | y) through P (x), a priori probability of the sequence &f
andp (y | x), the conditional pdf o givenx.

Since we assume that there is no correlation between tréesnsequence symbols,
the probability of the sequence is written as
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P(x)=[]Pn(zn). (3.8)

The conditional pdf of given the transmitted sequencequals

p(y|x)= (27T0‘2)_K exp (—M) . (3.9

202

Since the facto(27m2)‘K is independent of the transmitted sequexcgB.9) can be
written with a proportionality factor, which indicates thao quantities are different

from each other by a constant factor independent a$ given below

— Hx ||?
p(y | x) o< exp (—%) : (3.10)
If we define
m = Hy (3.11)
S=HH (3.12)

the norm square factor df (3]10) can be manipulated as

Iy —Bx || = y"y — 2R {x"H"y} + x"H"Hx
=[ly [I” —2® {x"m} + x"Sx. (3.13)

In that case[(3.10) can be written as

(3.14)

2 §R H H
y 2 X'm; + X Sx

202

One may note thah is a sufficient statistic (matched filter output) for MAP dztten

[26] and the]| y ||? term does not depend anso that
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XHm —XHX
p<y\x>o<exp<2%{ ) S>. (3.15)

202

3.4.2 Graph-Based Detection Algorithm

Factorization of a function can be performed in multiple wayn [8], a specific
factorization was proposed to reduce the complexity of the-product algorithm to

scale linearly with the number of interfering signal terms.

Some manipulations should be made on the (3.15) to haveabkufactor graph for
SISO detection with SP algorithm. The scalar forms of matperations in[(3.15)

are
N
x"m =Y "m,a}, (3.16)
n=1
xSx = ZS"" | 2, |2 +Z Z ) S kT
n=1k=1,k#n
sinceSH = S,
x"8x = ZSM | 2, |2 +222% {2 S ki } - (3.17)
n=1 k<n

By using these scalar forms, we can write {he (B.15) as

* Sn,n 1 *
[exp ( {mnxn — 5 | Tn |2}) gexp (—;%{Smkl'kl'n})]

=

ply[x)=
n=1
(3.18)
In that case the function nod&s (z,,) andR,, x(., ,) are defined as
1 . Snn 5
T (z,) = exp (;% {mnxn - | 2 | }) : (3.19)



1
Ry (T, T1) = exp {_E%{Sn,kl‘kx:z}} - (3.20)

By using these definitions and a priori probabilities of trensmitted sequence, we
can factorize the APP density function

Py (20) T () [ | Rk (s xk)] (3.21)

k<n

N

p(x|y) e P(x)p(y|x) o« []

n=1

for which the factor graph in Fig.[(3.3) is drawn.

As seen in Fig[ 313, the nodR, ;, appears in FG, IS, # 0, that is, when there
is interference between the correspondingly nodes. Atem {3.18) and hence the
definition of (3.21) the nod&,, ,, should be denoted &3,,..(n k), min(n.k)-

Py P P
T4 T4 Ty T5 Tg T6
::\\\ \‘\\\\N \ / \~\“““\‘\
S~ 7~ ~—__ -——— :
4,2 1R4.3 \Rs5.3 5,4 6,4 \R6,5

Figure 3.3: Some part of the factor graph respeCt ol 3.21nvlneinterference exist
betweenz,, andxy, if | k —n |€ 1,2

There are some points to discuss to this end. The graph ieglegtles, one of them
is seen in Fig.3]3 as bold lines and the length of cycle is Gbse the cycle come
back to the same variable in 6 steps as seen from arrows. Thesggdicates that the
graph can not eliminate the effect of intersymbol-intezfere (1SI) due to the factor-
ization. So, although the factorizaiton is exact, becaheeetis no approximation in
the derivation, the marginalization ¢f (3]121) is not exae ¢ cycle in FG [[21]. But
in the case of cycle length is at least 6, the SP algorithmsggaod results for the

marginalization of APP’s[[21].
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Rn,k

Figure 3.4: Propogated messages on the Factor Graph

By using the Fig.3}4, one can write marginalization of APBs a

(0 |y) = Yo (wn) = Pu(20) T (20) H KR, —zn (7n) (3.22)
k#n

and the propagated messages

= 2
/”Ll"rL_)Pn (xn) Pn (xn) (3 3)
Y, (z,
/”Lx'rL_)Rn,k (xn) = # (324)
:uRn’k—mn (xn)

Tk

It is known from [3.5) the marginalization of a variable in & ks product of all
incoming messages. Hen&g is marginalization ofy (x | y) respect tar,, and so
p(z, | y). Itis seeninl(3.22) that the first two term are constant feeoal the product
term is updating term which means that, , ..., (z,) bears APP information of node
k about noder. It can be inferred froni(3.23) that, ., p, (=) is proportional to the
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pdf p(y | z,) and it is produced by the algorithm as extrinsic informatioruse
in turbo iteration process. Finally, it can be said that teenR, ; provides the
propagation of APPs between interfering variables afteragying operation.

Two of the computation methods which provide the marginaPARrom FG are
Parallel-Schedule Sum-Product algorithm (PS-SPA) anidiS&chedule Sum-Product
algorithm (SS-SPA) [[21]. In PS-SPA, same kind of messagep@pagated at the
same time for all variables therefore it has feasibility mwv latency applications.
PS-SPA is implemented in the given order

1-) Update ally;,, terms,

2-) Update all,, r, , messages,

3-) Update allur,, , .x, messages,

4-) Go to step 1 in case of not satisfying the stopping coteri

5-) Update ally,, terms.

In SS-SPA, the message passings are executed first in fodir@ction from1 to
N after operation in the backward direction fra¥hto 1 for each variable node. The
forward recursion of SS-SPA for each valuerofrom 1 to N is executed as given
below

1-) Update the:y, , .., messages far < n,

2-) Update the, term ,

3-) Update theu,, ,r, , messages far > n.

the backward recursion of SS-SPA can be executed for evgm N to 1
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1-) Update the:y, , .., messages fat > n,

2-) Update the’, term,

3-) Update the:,, .z , messages fat < n,

n,k
and the SS-SPA is implemented through forward and backvesutsion as in given

order

1-) Implement the forward recursion

2-) Implement the backward recursion

3-) Go to step 1 in case of not satisfying the stopping coteri

Due to serial implementation of SS-SPAs, latency growsalityewith the valueN
hence it is feasible for applications where long operatioretis not much of a prob-

lem.

Since the FG including cycles cannot eliminate ISI exactlgl eads to overestima-
tion of reliability of messages propagated between nodédsfactors [21]. Using
o? = N,/2 greater than actual one is suggested as a very basic tricketoane this
problem in [8]. The rationale of the trick is to assume tharenore noise than the
actual one and thereby to decrease the reliability of prafgaggmessages. In simu-
lations, we use PS-SPA which is operated for one iteration.rélatively low SNR,

it is not required to uséV, greater than the actual one. For SNR values whith
packet error rate (PER) performance is achievgdyalue should be generally chosen
slightly higher than the actulal one.
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CHAPTER 4

CHANNEL ESTIMATION, TRACKING AND INTERLEAVER
DESIGN IN TIME DOMAIN

4.1 Introduction

Channel estimation is an important issue in wireless comcation since provision
of communication reliability is usually contingent on theadjty of channel state in-
formation. Channel estimation is usually made throught@anbols between data
blocks. However, in fast fading channels, using only thetpito estimate the chan-
nel may not be a solution of the issue since the coherencentiayebe smaller than
data block duration. There are two solutions of this probl&me of them is to make
use of pilot symbol blocks more frequently in relation to tiederence time, the other
one is to track the channel with some techniques such as-Mszest-Squares (LMS),
Kalman filtering, Recursive-Least- Squares (RLS) etc. itdeded to say that using
more pilots decreases throughput efficiency thereby is refepred in many cases.
Therefore, the second solution is the suitable one for thblpm in our case because
our interest is HF communication and the waveforms are givévilitary Standard
188110-C (ML-188110C). In this study, due to lower compgxind implementa-
tion feasibility, we prefer the LMS method to track the chanrBy using suitable
interleaver with the channel tracking idea, channel tragkiapability and the overall

performance are enhanced.

In this chapter, Firstly,the system model is illustratedc@dly, the theoretical back-
ground of how the channel estimation is made through pilottsyls will be ex-

plained. Thirdly, the pilot extension idea is explained. ehthe uni-directional
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LMS channel tracking and direct application to bidirecibchannel tracking will be
asserted. In the interleaver design part, it is discussgdavtew approach for the in-
terleaving process is required followed by proposing ofwineesigned interleaver.

At the end, some corresponding results will be provided.

4.2 System Model for Receiver Part

Y
i

Deinterleaver)
-

SISO SISO

Y

bAn : decoded
—®  bits

Equalizer , Decoder

-t Interleaver

A
hn

Channel LLR

»| Estimation
and

Interpolation

Symbol

Estimated ATracked
Points Points
\i
LMS

| Tracking

A

Figure 4.1: Channel estimation and tracking system model

We consider the system given in Hig.4.1. Here, the subscrigfers to extrinsic, the
superscriptd” and D refer to equalizer and decoder respectively and the appistro

represents deinterleaved case. In that case

e LF: extrinsic LLR of encoded bits produced by equalizer

° LeE': deinterleaved extrinsic LLR of encoded bits produced hyadiger

e LP: extrinsic LLR of encoded bits produced by decoder

° Lfl: deinterleaved extrinsic LLR of encoded bits produced byoder.

The receiver performs turbo equalization process whiclgaties ISl iteratively. The
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proposed receiver performs iterative channel estimaticough the following steps:

e Step 1: The channel is estimated at pilot blocks throught.®qsare (LS) estima-
tion method. In order to estimate the channel coefficientaia regions, the middle

points in the pilot regions are used in the interpolatiorcpss.

e Step 2: SISO equalizer performs equalization and prodiies

e Step 3: Deinterleaving process is applied {6 theanl is produced

e Step 4: The decoder performs decoding and prodﬂ@és

e Step 5: Interleaving process is applied[t@l, thenL? is produced

e Step 6: Extended pilot sequences are produced by LLR to symdnaping

e Step 7: The channel is tracked up to borders of extendedlgdoks by the LMS
algorithm

e Step 8: Utilizing the middle points in the pilot region ane thorder points of the

extended pilot region, a new interpolation is executed.
e Step 9: The new channel estimates are used in the equatizatoess.

The above process continues from step 2 iteratively.

4.3 Channel Estimation From Mini Probe

The point estimated by LS The point estimated by LS
algorithm algorithm
T T
— —y
| |
| |
- ————————————————————w > a——
=1 N Transmitted Sequence L1 N
-
-
Mini Probe Mini Probe

Figure 4.2: Detailed representation of pilot blocks anchagmitted sequence
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The pilot blocks consist of multiple pilot symbols and reéet to as mini probes in
this study. Under the assumption of a time-invariant chiretennel gain coeffi-
cients can be determined by observation of mini probes atettever. If one wants
to estimate a channel with taps, at leasf., pilot symbols should be transmitted.
Channel estimation becomes better as there are morelthmliot symbols in each

mini probe.

Consider a transmitted signal= [z_;.1, ..., zy_1] in @ mini probe. Since the first
L—1 observations are exposed to interference from data sypthelseceived signals
after thesel, — 1 observation are utilized in channel estimation. The olst@ms

which are used in channel estimation

Yp =S +w, n=0,...,N—1, (4.1)

wherew,, denotes complex Gaussian noise samplesgnd given by

Sn =Y Mz, n=0,... N-1 (4.2)

Then, we can write Eq[.(4.1) in matrix form as

y=Xh+w , (4.3)

wherey = [yo, Y1, ....., yn—1]" andh = [hg, hy, .....,h,_1]" is channelX isaN x L
matrix with entries

[X]i+1,j+1:xi—j 0<Z<N—1, 0<]<L—1, (44)

and finallyw = [wp, w, ..., wy_1] IS @ zero mean Gaussian vector with covariance
matrix

32



Cyp = E [ww"] = 021n. (4.5)

We define the signal-to-noise ratio SNR of the signal as

0.2
SNR = —g (4.6)
Un
where
1 N-1
e DML (4.7)

We can now write the likelihood function gf for givenh as given below:

1 1 Wi
P = e {— g -X0 X0} @)

ﬂ-gn) n

We will work with the Least Square (LS) estimatelofvhich is given by [[9] as

h = (X7X)™' x"y. (4.9)

By applying this operation in all pilot regions individuglwe can find the estimates
at approximately middle points of all pilot blocks as showrfFig.[4.2. Then, inter-

polation provides channel estimates along the whole packet

4.4 Extension of Pilot Blocks

Finding the channel coefficients between pilots by inteapoh is reasonable for slow
varying channels. For instance, @BW = 1 Hz, the channel coherence timelis

sec and the symbol durationig4800 ~ 2 x 10~* sec in the simulations. The time
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4QAM, Fading BW=1 Hz
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Figure 4.3: Interpolation performance along a packet uddde Doppler spread at
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duration between pilot blocks is roughly 125 msecs. Hendengel variation can
be tracked by interpolation by pilot blocks. However, thgéa the fading bandwidth
is, the more the performance of interpolation diminishdssTs due to the fact that,
interpolation cannot track the channel under relativety feme variation as observed
in Figures[4.B and_4l4. Channel estimation such as in[Fidledds to error floor as
we will later observe in Sectidn 4.5.

4QAM, FBW 5 Hz
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Figure 4.5: Log-likelihood-ratios of encoded bits under B Bloppler spread at
SNR=8 dB for 4QAM

For FBW 5 Hz, the channel coherence time is alibRisec. In such a case, we have
to obtain more frequent sample points to interpolate atelyrbetween pilot regions.
This can be achieved by tracking the channel within a neighimod of pilot blocks.
We will refer to this idea as channel estimation refinemeriterAthe initial channel
estimation, the interpolation is quite accurate aroundntite probes. This leads to
correct detection of those symbols after decoding. In thaegcthe pilot region can
be extended to include a neighbourhood around the mini grobe

In Figures[4.b and_4.6 , transformed LLR values of encodexidfier the first itera-
tion are depicted for a typical run for 4QAM and BPSK moduati The transformed
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Figure 4.7: Log-likelihood-ratios of encoded bits of theftfidata block under 5 Hz
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BPSK, FBW:5 Hz
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Figure 4.8: Log-likelihood-ratios of encoded bits of thestfidata block under 5 Hz
Doppler spread at 8 dB

LLR and actual LLR are equal in magnitude but a transformeR lid_positive if the

corresponding coded bit is decoded correctly. The indeaéeg in the figures show
the data region borders. Also, it is seen that LLR values mié&s neighbourhoods
are greater than zero up to some certain points, which eesuttorrect decoding of
bits/symbols. In addition, it can be inferred from Figufed! and[4.8 (zoomed ver-
sions of Figured_4]5 and_4.6), that the pilot blocks can berg¢d 50-60 symbols
at 4QAM and can be extended 100-120 symbols at BPSK for bd#ssn the first

iteration. Fig. [4.D shows the extended pilot sequence nagiirst iteration pilot

region refers to extended pilot sequences after the firbbtiteration, second itera-
tion pilot region refers to extended pilot sequences aftersecond turbo iteration.

Furthermore, these extended pilot blocks can be used foinehé&acking purposes.

It is needed to say that relatively good examples are pravidd-igures[4.5-[4]8.
In reality, the extension numbers are about 20-30 and 5G6@®AM and BPSK
respectively for such an SNR value.
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Figure 4.9: Iteratively extended pilot regions

4.5 Channel Tracking With LMS

With the LMS algorithm [[19], the goal is to track the channiglitectionally at every
iteration by using the estimated channel coefficients fralot pegions. To realize
the idea, firstly the channel is interpolated through thareged points from pilots.
Then, SISO equalizer generates soft information of syml#dter channel decoding
operation, the training region is extended as depictedgn&L0 by means of LLR
information produced by the decoder. Channel estimatipeirmed by LMS and
interpolation enhances the channel estimation performbecause of more sample

points. Fig[4.1l1 shows the interpolation performance wapect to iterations.

Second
Iteration
Tracking

Points

T T T T T T
' mp | | I Data I V7 B Data I 107 B
| | | | 1 1

First
Iteration
Tracking
Points

Figure 4.10: Representation of extended training points
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The error signal measured at timeising the channel estimate at time- 1 is defined
asin [24]

€nn—1 = Yn — fl;l;_lxn (410)

and the channel estimate at timeéhrough the estimate at time— 1 is

h, = h,_1 + Bepn1X; (4.11)

A~

N N T
whereh,, = [hmo, . th_l] Xy = [T, Tn, ...,:cn_LH]T and g is LMS tracking
coefficient.

In that case, our forward and backward iterative error fiomst are

~

6£+1,n = Ynt1 — hi’TXnH (4.12)

€ 1 =Yn-1—hoTx, (4.13)

where f andb denote thef orward andbackward cases respectively.

Channel estimates in forward and backward directions aengs

h!,, =h! + Be,inx) (4.14)

b, =D + Ben 1% (4.15)

It is clear from Fig.[4.1R that the transmission performasaggraded substantially

with the iterative channel estimation refinement. At FBW § tte equalizer cannot
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alleviate ISI so that error floor is observed when the chaesiation is not refined
through iterative pilot extension. In contrary, the egqeadican achieve to combat ISI
with by refining the channel estimation iteratively throwettended pilot blocks.

4QAM, FBW: 5 Hz, SNR:10 dB
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Figure 4.11: Comparison interpolated channel estimaté@na function of iteration
number at SNR=10 dB

For any scenario, there is a range of iterative extensionbeunnalues for which

the PER performance is lowest. PER curves are drawn forréiffescenarios in

Fig. [4.13{4.1b. It can be inferred that the suitable extamsiumber depends on
modulation type. In simulations, the best ones are detexdfior a particular scenario
after a few trials and then used throughout for the constiscenario.

Interpolation performs more accurately through well eatied points. Therefore,
choosing an appropriate LMS tracking coefficighis important to achieve a sat-
isfactory channel tracking and interpolation performascee the channel can be
tracked with small error with a proper LMS coefficient. In gtady,5 is determined

by mean squared error (MSE) criterion through simulatimrselery scenario. We
determine the experimentally optimum beta through 1006oany generated chan-
nels for every scenario where the transmitted data is kneviegtly at the receiver.

As observed in Fig.[4.16 and_4]17 , it is concluded thatepends on SNR and
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Figure 4.12: Performance comparison with and without ckheatimation refine-
ment
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Figure 4.13: Comparison of extension numbers for 4QAM at Bidppler spread
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o 4QAM, FBW: 5 Hz
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Figure 4.14: Comparison of extension numbers for 4QAM at Bidppler spread
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Figure 4.15: Comparison of extension numbers for BPSK atBbjapler spread
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BPSK, FBW=5 Hz
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Figure 4.16: Experimentally Optimum LMS coefficients for&Rat 5 Hz Doppler
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fading bandwidth.

4QAM, FBw:5 Hz
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Figure 4.18: Extrinsic LLR of a data block produced by equealat SNR=8 dB after
initial equlization

4.6 Interleaver Design

Most of the well known codes that have been devised for istngereliability in the
transmission of information are effective when the err@ssed by the channel are
statistically independent_[26]. Error bursts are encawatén many communication
media. Signals sent through channels characterized bypatiitand fading phenom-
ena are prone to fall below noise level instantaneoushhdffading duration is long
enough, it leads to burst error. With interleaving, consigewcoded bits are separated
out so that the channel is transformed to have almost staligtindependent error
characteristic. That's why, interleaving is often used aslation to the burst error

problem [26].

The interleaver used in military standard 188-110C (ML-ILB&C) is a block inter-
leaver and the main aim is to separate out successive cogeastiar as possible since

the HF channel is time varying fading medium. However, imtigkly fast varying
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4QAM, FBW:5 Hz
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Figure 4.19: Extrinsic LLR of a data block produced by decateSNR=8 dB after
initial equalization

changing channels, the interpolation carried out at initeaation cannot track the
channel efficiently towards the middle of transmitted datg B.4. Thereby, it is
seen from Fig_4.18 that the extrinsic LLR of equaliZét in neighbourhood of mini

probes are generally more reliable thigh in the middle region.

After initial equalization, the decoder makes this alreagljable information even
more reliable particularly in the neighbourhood of minilpes due to better channel

state information. The observation can be seen in[Fig] 4.19.

The symbols around the mini probe maybe used for channehatstin purposes.
This corresponds to extension of training sequence. Tlhenchiannel interpolation
performance will be better since the sampling points ofrpaation is far from each
other. To exploit such an idea, we divide the frame into fadregions with respect
to their proximity to mini probes and also divide the codeid bto four subregions.
Then, we devise an algorithm which interleaves every subinggdividually so that

bits in a subregion don’t get mixed up. This helps enhancediag performance at
the receiver. Coded and interleaved bits are modulatedemdrstheir own regions
as shown in Fid. 4.20.
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Figure 4.20: Interleaving Process
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4.7 Results

We run simulations for both BPSK and 4-QAM modulations at & kidseband band-
width and 4800 baud. The convolutional code raté/ig and constraint length is 7
with the generator polynomidl 33, 171). In simulations, we assume exact synchro-
nization so that there is no frequency offset between tratemand receiver clocks
and no need for synchronization preamble. The Wattersonnghanodel [[29] is
used in simulations and is equal power two tap fading chanitelGaussian power
spectral density. The simulations are carried out until&€kpt errors are recorded in
every case. The term "no channel refinement" indicates hleathiannel is estimated
only from mini probes and there is no iterative estimatidimesment, "known chan-
nel" indicates channel state information is perfectly knat the receiver. The term
"designed intrlvr" and "ML-188110C intrlvr" point out th#he channel estimation
refinement is performed with the use of stated interleavarABW 5 and 7 Hz, there
is no "no channel refinement"” result since error floor occise N, term in used
SISO equalizer is chosen 1 for any SNR value which the PERprdnce is lower
than10~3 and chosen 1.5 unless otherwise stated for the SNR valueh whivides

10~* PER. The used iterative extension number is representegamd.
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Figure 4.21: Performance comparison of various scheme®Jja&M at FBW 1 Hz
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4QAM, Fading BW=3.0
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Figure 4.22: Performance comparison of various scheme®jé&M at FBW 3 Hz

In Fig.[4.22,PER curves for FBW 3 of Hz are depicted in varicases. The perfor-
mance of channel estimation refinement is the same as withwikrchannel” case
for both interleaver types. Estimation refinement has aBadB SNR gain respect
to "no estimation refinement” case and the SNR gain is higitigfactory. Also, we

can say that the refinement idea is useful but the designedaaver is not required.

In Fig.[4.21, PER curves with FBW of 1 Hz are depicted for vasicases. The per-
formance of channel estimation refinement is the same astwétfknown channel”
case for both interleaver types. Estimation refinementiges/about 0.5 dB gain with
respect to "no channel refinement” case. We can say thattiheaésn refinement is

benefical but designed interleaver has no effect on perfocma

In Fig.[4.23 and[4.24, PER curves with FBW of 5 Hz are depictedBPSK and
4QAM. The "known channel" case performance of 4QAM is bdttan 4QAM per-
formance of known channel at FBW 3Hz due to diversity. It isrsthat the perfor-
mance of channel estimation refinement is highly satisfadior both modulation
types since the equalizer cannot eliminate ISI becausesofdty poor channel state
information in case of there is no estimation refinement. "Hoechannel refinement”

cannot recover any packets so that PER always 1 for all SN&esand thus not
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Figure 4.23: Performance comparison of various schemeBR&K at FBW 5 Hz
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Figure 4.24: Performance comparison of various scheme®ja&M at FBW 5 Hz
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drawn in the figure. The estimation refinement performand®RSK is almost the
same as with the "known channel". The estimation refinemeAQAM is about 1

dB off from the "known channel" case for the designed intardg and the perfor-
mance difference is reasonable. The results shows thastinestion refinement idea
is pretty good for 5 Hz fading bandwidth. However, the irgaxer gain difference
between ML-188110C and newly designed interleaver is 0.am0.25 dB respec-
tively BPSK and 4QAM.

BPSK, FBW=7 Hz
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Figure 4.25: Performance comparison of various schemeBR&K at FBW 7 Hz

In Fig.[4.2% , PER curves with FBW of 7 Hz are depicted for BP$Ke "known
channel” performance and estimation refinement performmahoewly designed in-
terleaver are almost the same with each other. Therefogegdtimation refinement
idea is still reasonable for BPSK. The difference betweenniwly designed inter-
leaver and ML-188110C interleaver increases with resgeEBW of 5 Hz and it is
about 1 dB.

In Fig.[4.26, the performance comparison of 4QAM at FBW 7 Hziven in the PER
wise. In 4QAM case, the approach still provides communicakiut the difference

between the known channel case and the channel refinemdnhetly designed
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Figure 4.26: Performance comparison of various scheme®Jja&M at FBW 7 Hz

interleaver is high. We observe the limitation of the pragmbscheme with these
results. The result is reasonable because the cohereneeftchannel at FBW 7 Hz
is about150 msec so that we should track the change in channel everyn£écs.
However, the initial interpolation is so bad that the chdrocaanot be extended to
provide closer sample points for interpolation. Thereftinere is a huge gap between

known channel and channel refinement cases.
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CHAPTER 5

CONCLUSION

In wireless communication, the bearing electromagnetiasanteract with the sur-
rounding medium which results in multipath signals. Moveiseof the transmitter
or receiver leads to time variation in received signal powidrerefore, the wireless
communication channel is characterized by ISI and fadilgprovide good commu-
nication quality, channel estimation is necessary and iatagral part of the receiver
since the equalizer can eliminate ISI with channel stat@métion. Therefore, pilot
sequences which are known by transmitter and receiver dimedtfor channel esti-
mation in many communication environment with some periddwever, the pilot
sequence is not a solution of the channel estimation prolotefast fading chan-
nels since the interpolation used with the channel estonai@annot track the channel
properly. As a solution of such a problem, we propose to ektée training se-
guences by the aid of soft information produced by the chiademoder and to track
the channel through the extended sequences to provide leeroolation. In addi-
tion, the interpolation performance at initial iteratianetter at the neighbourhood
of pilot sequences. Therefore, an interleaver which makesfithe better estimated
region of the channel enhances the interpolation perfocaaimce it provides longer

extended sequence.
As a result, the main contribution of this dissertation igegi below:

e With channel tracking operated bidirectionally with LMSdhgh the extended
training sequences, interpolation capability is incréasesulting equalizer perfor-

mance enhancement.

53



¢ We subdivide the coded bits into subregions and interleas®/esubregion individ-
ually then send the transmitted symbols in their correspanchannel regions. With
this application the chanel tracking capability is somesmenhanced.

Possible future works are

e Channel tracking can be applied to OFDM transmission taregé the channel

both in time and frequency domains,

¢ By designing a two dimensional interleaver regarding thet pmmserting regime in
the OFDM frame, the throughput as well as channel estimatiwhtracking perfor-
mance can be enhanced.

e Performance of the proposed scheme can be investigatedigyaiber SISO equal-

izers.

¢ Performance of the proposed scheme can be investigatedigythe channel statis-

tics in interpolation.
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