SYNTHESIS OF 2-Iodomethylene-2,3-dihydro-1,4-oxazepine Derivatives

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
Ezel Dikmen

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CHEMISTRY

SEPTEMBER 2014
Approval of the thesis:

SYNTHESES OF 2-IODOMETHYLENE-2,3-DIHYDRO-1,4-OXAZEPINE DERIVATIVES

Submitted by EZEL DİKME in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlker Özkan
Head of Department, Chemistry

Prof. Dr. Metin Zora
Supervisor, Chemistry Dept., METU

Examinining Committee Members:

Prof. Dr. Cihangir Tanyeli
Chemistry Dept., METU

Prof. Dr. Metin Zora
Chemistry Dept., METU

Prof. Dr. Özdemir Doğan
Chemistry Dept., METU

Prof. Dr. Aliye Altundaş
Chemistry Dept., Gazi University

Prof. Dr. Adnan Bulut
Chemistry Dept., Kırıkkale University

Date: 01.09.2014
I hereby declare that all information in this document has been obtained and presented in accordance with all academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Ezel DİKMEN
Signature

iv
Seven-membered heterocyclic compounds containing two heteroatoms are at least as important as one heteroatom-containing heterocycles in many applications. Oxazepine derivatives are one of such seven-membered heterocyclic compounds. Therefore, the construction of oxazepine derivatives has attracted considerable attention among researchers because of providing useful treatments for many diseases with their pharmaceutical compositions. Accordingly, our research group has aimed to synthesize seven-membered heterocyclic compounds. In this manner, we have developed a new methodology for the synthesis of iodo-substituted 1,4-oxazepine derivatives. First of all, the synthesis of alkynyl ketones was achieved and then the preparation of N-propargylic β-enaminone derivatives was performed from the reaction of alkynyl ketones and propargyl amine. The reaction of N-propargylic β-enaminones via zinc chloride and iodine has afforded iodo-substituted 1,4-oxazepine molecules. For this study, ZnCl₂ was used as a Lewis acid catalyst in order to initiate electrophilic cyclization.

Keywords: Seven-membered heterocyclic compounds, oxazepine, N-propargylic β-enaminone, electrophilic cyclization
ÖZ

2-İYODOMETİLEN-2,3-DİHİDRO-1,4-OKZAZEPİN TÜREVLERİNİN SENTEZİ

Dikmen, Ezel
Yüksek Lisans, Kimya Bölümü
Tez Yöneticisi: Prof. Dr. Metin Zora
Eylül 2014, 92 sayfa

Anahtar Kelimeler: Yedili halka heterosiklik bileşikler, okzazepin, N-proparjilik β-enaminon, elektrofilik halkalama.
To My Dear Family
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Prof. Dr. Metin Zora for his guidance and support. I learned a lot from him not only about academic means but also about life. I have completed my thesis study at METU in the light of his encouragements and suggestions.

I would like to thank especially to Yılmaz Kelgökmen for his efforts and friendship during the project.

I also thank all Zora’s research group members, Yasemin Çayan, Ecem Teke, N. Esra Yazıcı and Eda Karadeniz for their friendship, helps and also making laboratory life more enjoyable during my study.

I also should express my thanks to Özge Yüksel and Mehmet Akçalı for their supports and for always being with me in all cases.

I would like to thank Burak Erbişim for his endless love, encouragement and believe in me.

I would like to thank TUBITAK for financial support during my Master studies at METU.

Finally, I would like to thank to my family for everything. Despite of being away from each other, I always felt their endless supports, patients and also their love.
TABLE OF CONTENTS

ABSTRACT ... v
ÖZ ... vi
ACKNOWLEDGEMENTS ... viii
TABLE OF CONTENTS .. ix
LIST OF TABLES .. xiii
LIST OF FIGURES .. xiv
LIST OF SCHEMES ... xviii
ABBREVIATIONS ... xx

CHAPTERS

1. INTRODUCTION .. 1
 1.1 HETEROCYCLIC COMPOUNDS .. 2
 1.2 SEVEN-MEMBERED HETEROCYCLIC COMPOUNDS 4
 1.2.1 Oxazepines .. 5
 1.2.2 Synthesis of oxazepines .. 7
 1.3 ELECTROPHILIC CYCLIZATION ... 11
 1.4 β-ENAMINONES .. 13
 1.4.1 Cyclization of N-propargylic β-enaminones .. 13
 1.5 AIM OF THE STUDY ... 17

2. RESULTS AND DISCUSSION .. 19
 Synthesis of N-propargylic β-enaminone derivatives .. 19
 Synthesis of iodo-substituted 1,4-oxazepine derivatives 24
Proposed mechanism for the formation of 2-iodomethylene-2,3-dihydro 1,4 oxazepines 44 .. 30

3. CONCLUSION .. 33

4. EXPERIMENTAL ... 35

4.1 GENERAL PROCEDURE 1. SYNTHESIS OF ALKNYL KETONES (8) 36
4.1.1 Synthesis of 1,3-diphenylprop-2-yn-1-one (8A).. 36
4.1.2 Synthesis of 1-phenyl-3-(4-(trifluoromethyl)-phenyl)prop-2-yn-1-one 8B.... 37
4.1.3 Synthesis of 3-(2-fluorophenyl)-1-phenylprop-2-yn-1-one (8C)...................... 37
4.1.4 Synthesis of 1-phenyl-3-(m-tolyl)prop-2-yn-1-one (8D)................................. 38
4.1.5 Synthesis of 1-phenyl-3-(p-tolyl)prop-2-yn-1-one (8E)................................. 38
4.1.6 Synthesis of 3-(2-methoxyphenyl)-1-phenylprop-2-yn-1-one (8F).............. 39
4.1.7 Synthesis of 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (8G).................. 39
4.1.8 Synthesis of 1-(2-bromophenyl)-3-(m-tolyl)prop-2-yn-1-one (8H)............ 40
4.1.9 Synthesis of 1-(2-bromophenyl)-3-(p-tolyl)prop-2-yn-1-one (8I)............. 40
4.1.10 Synthesis of 1-(2-chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (8J).... 41
4.1.11 Synthesis of 2-(5-oxo-5-phenylpent-3-yn-1-yl)isoindoline-1,3-dione (8K)... 41

4.2 GENERAL PROCEDURE 2. SYNTHESIS OF N-PROPARGYLIC β- ENAMINONES 42 .. 42
4.2.1 Synthesis of 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42A).... 42
4.2.2 Synthesis of 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)- phenyl)prop-2-en-1-one (42B) .. 42
4.2.3 Synthesis of 3-(3-fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42C) ... 43
4.2.4 Synthesis of 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42D) .. 43
4.2.5 Synthesis of 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42E).. 44
4.2.6 Synthesis of 3-(2-methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42F) .. 44
4.2.7 Synthesis of 1-(2-bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42G) ...

4.2.8 Synthesis of 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42H) ...

4.2.9 Synthesis of 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42I) ...

4.2.10 Synthesis of 1-(4-chlorophenyl)-3-(prop-2-yn-1-ylamino)-3-(3-fluorophenyl)prop-2-en-1-one (42J) ...

4.2.11 Synthesis of 2-(5-oxo-5-phenyl-3-(prop-2-yn-1-ylamino)pent-3-en-1-yl)-1H-indene-1,3(2H)-dione (42K) ...

4.3 GENERAL PROCEDURE 3. SYNTHESIS OF IODO-SUBSTITUTED OXAZEPINE DERIVATIVES 44 ...

4.3.1 Synthesis of 2-(iodomethylene)-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44A) ...

4.3.2 Synthesis of 2-(iodomethylene)-7-phenyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4-oxazepine (44B) ...

4.3.3 Synthesis of 5-(3-fluorophenyl)-2-(iodomethylene)-7-phenyl-2,3-dihydro-1,4-oxazepine (44C) ...

4.3.4 Synthesis of 2-(iodomethylene)-7-phenyl—5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (44D) ...

4.3.5 Synthesis of 2-(iodomethylene)-7-phenyl—5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (44E) ...

4.3.6 Synthesis of 2-(iodomethylene)-5-(2-methoxyphenyl)-7-phenyl-2,3-dihydro-1,4-oxazepine (44F) ...

4.3.7 Synthesis of 7-(2-bromophenyl)-2-(iodomethylene)-5-phenyl-2,3-dihydro-1,4-oxazepine (44G) ...

4.3.8 Synthesis of 7-(2-bromophenyl)-2-(iodomethylene)-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (44H) ...

4.3.9 Synthesis of 7-(2-bromophenyl)-2-(iodomethylene)-5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (44I) ...

4.3.10 Synthesis of 7-(2-chlorophenyl)-5-(fluorophenyl)-2-(iodomethylene)-2,3-dihydro-1,4-oxazepine (44J) ...
4.3.11 Synthesis of 2-(2-(iodomethylene)-7-phenyl-2,3-dihydro-1,4-oxazepin-5-yl)ethyl)-1H-indene-1,3(2H)-dione (44K) .. 54

REFERENCES ... 55

APPENDICES A. NMR DATA .. 59
LIST OF TABLES

TABLES

Table 1. Synthesis of alknyl ketones 8 ... 20

Table 2. Synthesis of n-propargylic β-enaminones 42 ... 22

Table 3. Optimization of reaction conditions for the synthesis of 2-iodomethylene-2,3-dihydro 1,4-oxazepine 44A .. 26

Table 4. Synthesis of 2-iodomethylene-2,3-dihydro 1,4-oxazepines 44. .. 27
LIST OF FIGURES

FIGURES

Figure 1. Examples of heterocyclic compounds. ... 1
Figure 2. Structures of purine and pyrimidine bases. ... 2
Figure 3. Structures of the five best selling heterocyclic medicines for 2009. 3
Figure 4. Examples of seven-membered heterocycles. ... 4
Figure 5. Structure of a 1h-2-benzazepine derivative. .. 5
Figure 6. Structures of oxazepines. ... 5
Figure 7. Structures of dibenz(b,f)[1,4]oxazepine. ... 6
Figure 8. Structure of loxapine. ... 6
Figure 9. Structures of 5,11-dihydrodibenzo[b,e][1,4]oxazepine derivatives........ 7
Figure 10. Structure of n-propargylic β-enaminone. .. 13
Figure 11. 1H NMR spectrum of 1,3-diphenylprop-2-yn-1-one (8a). 21
Figure 12. 13C NMR spectrum of 1,3-diphenylprop-2-yn-1-one (8a). 21
Figure 13. 1H NMR spectrum of 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42a). ... 23
Figure 14. 13C NMR spectrum of 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42a). ... 24
Figure 15. 1H NMR spectrum of 2-iodomethylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44a). ... 28
Figure 16. Noesy spectrum of 2-iodomethylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44a). ... 29
Figure 17. 13C NMR spectrum of 2-iodomethylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44a). ... 30
Figure 18A. 1H NMR Spectrum of compound 8A .. 60
Figure 19A. 13C NMR Spectrum of compound 8A ... 60
Figure 20A. 1H NMR Spectrum of compound 8B ... 61
Figure 21A. 13C NMR Spectrum of compound 8B ... 61
Figure 22A. 1H NMR Spectrum of compound 8C ... 62
Figure 23A. 13C NMR Spectrum of compound 8C ... 62
Figure 24A. 1H NMR Spectrum of compound 8D ... 63
Figure 25A. 13C NMR Spectrum of compound 8D ... 63
Figure 26A. 1H NMR Spectrum of compound 8E ... 64
Figure 27A. 13C NMR Spectrum of compound 8E ... 64
Figure 28A. 1H NMR Spectrum of compound 8F ... 65
Figure 29A. 13C NMR Spectrum of compound 8F ... 65
Figure 30A. 1H NMR Spectrum of compound 8G ... 66
Figure 31A. 13C NMR Spectrum of compound 8G ... 66
Figure 32A. 1H NMR Spectrum of compound 8H ... 67
Figure 33A. 13C NMR Spectrum of compound 8H ... 67
Figure 34A. 1H NMR Spectrum of compound 8I ... 68
Figure 35A. 13C NMR Spectrum of compound 8I ... 68
Figure 36A. 1H NMR Spectrum of compound 8J ... 69
Figure 37A. 13C NMR Spectrum of compound 8J ... 69
Figure 38A. 1H NMR Spectrum of compound 8K ... 70
Figure 64A. 1H NMR Spectrum of compound 44B. .. 83
Figure 65A. 13C NMR Spectrum of compound 44B. .. 83
Figure 66A. 1H NMR Spectrum of compound 44C. .. 84
Figure 67A. 13C NMR Spectrum of compound 44C. .. 84
Figure 68A. 1H NMR Spectrum of compound 44D. .. 85
Figure 69A. 13C NMR Spectrum of compound 44D. .. 85
Figure 70A. 1H NMR Spectrum of compound 44E. .. 86
Figure 71A. 13C NMR Spectrum of compound 44E. .. 86
Figure 72A. 1H NMR Spectrum of compound 44F. .. 87
Figure 73A. 13C NMR Spectrum of compound 44F. .. 87
Figure 74A. 1H NMR Spectrum of compound 44G. .. 88
Figure 75A. 13C NMR Spectrum of compound 44G. .. 88
Figure 76A. 1H NMR Spectrum of compound 44H. .. 89
Figure 77A. 13C NMR Spectrum of compound 44H. .. 89
Figure 78A. 1H NMR Spectrum of compound 44I. .. 90
Figure 79A. 13C NMR Spectrum of compound 44I. .. 90
Figure 80A. 1H NMR Spectrum of compound 44J. .. 91
Figure 81A. 13C NMR Spectrum of compound 44J. .. 91
Figure 82A. 1H NMR Spectrum of compound 44K. .. 92
Figure 83A. 13C NMR Spectrum of compound 44K. .. 92
LIST OF SCHEMES

SCHEMES

Scheme 1. Copper-catalyzed synthesis of oxazepines. .. 7
Scheme 2. Palladium-catalyzed synthesis of benzoxazepines. .. 8
Scheme 3. Construction of 1,4-oxazepines from ynones and 2-azido alcohols. 8
Scheme 4. Synthesis of 1,4-oxazepines from \(n \)-propargyl-\(\beta \)-formylenamides. 9
Scheme 5. Synthesis of fully unsaturated monocyclic 1,4-oxazepines......................... 10
Scheme 6. Synthesis of dihydro-1,4-diheteroepins. ... 10
Scheme 7. General representation of electrophilic cyclizations. 11
Scheme 8. Synthesis of 4-iodopyrazoles via \(i_2 \)-mediated electrophilic cyclization of \(a,\beta \)-alkynic hydrazones. ... 12
Scheme 9. Synthesis of pyrazoles via \(cui \)-mediated electrophilic cyclization of \(a,\beta \) alkynic hydrazones. .. 12
Scheme 10. Synthesis of substituted pyridine and pyrrole derivatives from \(n \) propargylic \(\beta \)-enaminones. ... 13
Scheme 11. Ag-catalyzed intramolecular cyclization of \(n \)-propargylic \(\beta \)-enaminones. ... 14
Scheme 12. Synthesis of iodo-substituted pyridines via electrophilic cyclization. ... 14
Scheme 13. Synthesis of 3-methylene-3,4-dihydro-2H-pyrroles.............................. 15
Scheme 14. Synthesis of highly functionalized pyrroles from 3-aza-1,5-enynes..... 15
Scheme 15. Synthesis of 1,2-dihydropyridines and 3-iodo-1,2-dihydropyridines from
3-aza-1,5-enynes. ... 16
Scheme 16. Synthesis of pyridines from 3-aza-1,5-enynes. 16
Scheme 17. Synthesis of monocyclic oxazepine derivatives................................. 17
Scheme 18. Proposed mechanism for the formation of 2-iodomethylene-2,3-dihydro-
1,4-oxazepines 44.. 31
ABBREVIATIONS

ACN acetonitrile
br broad (spectral)
d doublet (spectral)
DCM dichloromethane
dd doublet of doublet (spectral)
FT fourier transform
Hz hertz
J coupling constant
mmultiplet (spectral)
ppm parts per million (in NMR)
q quartet (spectral)
rt room temperature
s singlet (spectral)
t triplet (spectral)
THF tetrahydrofuran
TLC thin layer chromatography
δ chemical shift in parts per million downfield from
CHAPTER 1

INTRODUCTION

Organic chemistry is a comprehensive and continually evolving scientific discipline that focuses on carbon compounds. Over the years, chemists have paid much attention to carbon compounds on account of the electronic structure of carbon and its incidental position in the periodic table [1]. Carbon atoms constitute long chains by bonding to one another. Therefore, a great variety of compounds are formed from simple to complex. For instance, ethane has the shortest carbon chain whereas DNA has very long carbon chains. Another important macromolecular organic compound is the proteins, which contain many amino acids in their chains. Proteins have many functions in living organisms, such as catalyzing metabolic reactions, DNA replications, transporting molecules and so on [2].

Actually, all compounds of carbon do not come from living organisms. Over the past decades, chemists have tried to design and synthesize new functional molecules such as drugs, dyes, food additives, pesticides and polymers in the laboratory. In other words, organic chemistry has an important effect on the every area of our lives [3].

Many organic compounds include ring systems. There may be elements other than carbon in their cyclic structure. Then, these type of compounds are known as heterocyclic compounds (Figure 1) [4].

![Figure 1. Examples of heterocyclic compounds.](image)
1.1 Heterocyclic Compounds

Heterocyclic compounds incorporate not only one or more carbon atoms but also at least one heteroatom, such as oxygen, nitrogen or sulfur, in their ring skeletons [5]. Heterocycles vary depending on the number of their rings, types, and the positions of heteroatoms [6].

It is noteworthy that heterocyclic compounds have important utilizations in many areas, including biological systems, medicine, agriculture, industry and technology, polymers, dyes and pigments [6]. Because of the vital role of heterocycles in life and society, these molecules are inspirational for scientific and technological studies.

Heterocycles have also a great significance in biochemical processes. Fundamentally, DNA and RNA, both carry genetic information, contain heterocyclic pyrimidine and purine bases such as cytosine, thymine, uracil, adenine and guanine, the structures of which are depicted in Figure 2 [7].

![Figure 2. Structures of purine and pyrimidine bases.](image)

Applications of heterocyclic molecules in medicinal chemistry are indisputable. In the present day, many diseases have been treated by the heterocyclic drugs.
The five of the top 20 best selling medicines for 2009 are illustrated in Figure 3, which are atorvastatin (lipitor; used for reducing blood cholesterol), rosuvastatin (crestor; a statin for treatment of cardiovascular disease), clopidogrel (plavix; anti-platelet agent), esomeprazole (nexium; a proton-pump inhibitor to prevent gastric acid formation) and montelukast (singulair; for treatment of asthma and seasonal allergies) [8].

![Chemical structures](image)

Figure 3. Structures of the five best selling heterocyclic medicines for 2009.
According to all the statements referred previously, it can be concluded that heterocyclic compounds have a great contribution to research area, technological developments and mediately human life.

1.2 Seven-membered Heterocyclic Compounds

In recent years, heterocyclic molecules with seven-membered rings have been a quickly evolving curiosity among chemists as compared to five and six-membered heterocyclic compounds. The more size of ring increases, the more range of compounds can be acquired by altering the type, location and number of the heteroatoms [9]. For instance, azepines are one nitrogen containing seven-membered heterocycles. Similarly, oxepines and thiepines are one oxygen or sulfur-containing seven-membered rings, respectively (Figure 4) [10].

![Figure 4. Examples of seven-membered heterocycles.]

It is obvious that fused-ring derivatives based on the azepine system are important in medicinal chemistry due to their wide range of pharmacological applications. For example, 1H-2-benzazepine derivatives play an important role as an inhibitor of acetylcholinesterase [11] and the potential anti-HIV agent [12].
Figure 5. Structure of a 1H-2-benzazepine derivative.

Significantly, methyl-substituted oxepines are known as potential intermediates in the arene metabolism by enzymatic systems of liver [13]. Furthermore, dibenzo[b,f]thiepine derivatives are employed in many pharmacological applications, incorporating antischizophrenic, antiflammatory, antidepressant and antihistaminic properties [14,15].

Seven-membered heterocyclic compounds containing two heteroatoms are at least as important as one heteroatom-containing heterocycles in many applications. Oxazepine derivatives are one of such seven-membered heterocyclic compounds [10].

1.2.1 Oxazepines

Oxazepines are seven-membered heterocyclic systems composed of mixed heteroatoms, nitrogen and oxygen. There are three types of oxazepine, 1,2-oxazepine, 1,3-oxazepine and 1,4-oxazepine as illustrated in Figure 6 [16].

Figure 6. Structures of oxazepines.
Furthermore, benzoxapines are bicyclic heterocyclic compounds containing benzene ring fused to oxazepine ring as shown in Figure 7 [16].

![Figure 7. Structures of dibenz(b,f)[1,4]oxazepine.](image)

A pharmaceutical composition including oxazepine ring structure provides useful treatments for many diseases. For instance, loxapine shown in Figure 8 is effective antipsycotic drug for schizophrenia [17].

![Figure 8. Structure of loxapine.](image)

In addition, oxazepine-containing medicines, such as 5,11-dihydrodibenzo[b,e][1,4]-oxazepine derivatives, represent outstanding effects as therapeutic agents for abnormal motor functions of gastrointestinal tracts, particularly irritable bowel syndrome (Figure 9) [18].
1.2.2 Synthesis of Oxazepines

It is obvious that the construction of oxazepine derivatives has attracted considerable attention among researchers. Nakamura and coworkers recently employed the copper-catalyzed reactions of the O-propargylic oximes (1) with dipolarophiles (2), such as maleimides and fumaric acid esters, to synthesize multisubstituted oxazepine derivatives (3) as shown in Scheme 1. This single operation contains in turn 2,3-rearrangement, [3+2] cycloaddition and 1,3-oxygen migration [19].
Another important study was conducted by Jiang and coworkers. This research group synthesized 4-aminobenzo[b][1,4]oxazepine derivatives 7 by employing palladium-catalyzed sequential reaction of o-aminophenols 4, bromoalkynes 5 and isocyanides 6 as represented in Scheme 2 [20].

![Scheme 2. Palladium-catalyzed synthesis of benzoxazepines.](image)

Oxazepines can also be constructed by aza-Wittig reaction followed by intramolecular cyclization. Phosphine mediated tandem reaction of ynones 8 with 2-azido alcohols 9 generated biologically important seven-membered 1,4-oxazepines 10 (Scheme 3) [21].

![Scheme 3. Construction of 1,4-oxazepines from ynones and 2-azido alcohols.](image)

Another efficient synthetic methodology for the preparation of 1,4-oxazepines 14 involves the intramolecular cyclization of N-progargyl-β-formyl enamides 11 (Scheme 4). First ketone functionality is reduced by NaBH₄, and then the resulting alcohol 12 is subjected to cyclization by I₂ in the presence of NaHCO₃. Finally, the reductive dehalogenation of 13 produces 1,4-oxazepines 14 [22].
First example of fully unsaturated monocyclic 1,4-oxazepines was synthesized in six steps by Tsuchiya and coworkers in 1986 (Scheme 5) [23]. Initially, pyridine 15 was converted to corresponding dihydropyridine 16, electrocyclic ring closure of which under photochemical conditions provided 2-azabicyclo[2.2.0]hex-5-ene 17. Its oxidation with MCPBA, followed by reduction with H_2 in the presence of Pd/C provided 3-oxa-6-azatricyclo[3.2.0.0^{2,4}]heptane 19. It was then converted to 3-oxa-6-azatricyclo[3.2.0.0^{2,4}]hept-6-ene 20. Finally, electrocyclic ring opening afforded 1,4-oxazepine 21 (Scheme 5). The yield of final product was low since it was not so stable that it started to decompose during purification [23].
Scheme 5. Synthesis of fully unsaturated monocyclic 1,4-oxazepines.

Tsuchiya and coworkers also reported the construction of novel dihydro-1,4-diheteroepins 23 from the corresponding tricyclic compounds 22 as shown in Scheme 6 [24]. Tricyclic compounds 22 were acquired from pyridines via a similar pathway depicted in Scheme 5.

Scheme 6. Synthesis of dihydro-1,4-diheteroepins.
1.3 Electrophilic Cyclization

A general example of electrophilic cyclizations is represented in Scheme 7. I$_2$, Br$_2$, ICI, NBS, NIS, PhSeCl and PhSeBr are among the commonly used electrophiles. In cyclizations, electrophiles activate the alkyne functionality, which initiates the attack of nucleophiles such as hydroxyl, hydroxylate, carboxyl, carboxylate, amino and amido groups, resulting in the formation of cyclic compounds. Admittedly, electrophilic cyclizations are versatile methods in synthetic chemistry [25,26].

\[
\begin{align*}
\text{R} = \text{alkyl, aryl, vinyl, benzyl} \\
\text{Electrophile} = \text{I}_2, \text{Br}_2, \text{ICI}, \text{NIS}, \text{NBS}, \text{PhSeCl}, \text{PhSeBr}
\end{align*}
\]

Scheme 7. General representation of electrophilic cyclizations.

Electrophilic cyclizations are generally influenced by the nature of the electrophile and nucleophile, C-C triple bond polarizability and geometrical orientation of the functional groups. Length of chain and substitution type provide *endo*-dig or *exo*-dig cyclization for the formation of cyclic molecules [27].

Zora research group has recently reported the synthesis of α,β-alkynic hydrazones 24 and their regioselective conversion to 4-iodopyrazoles 25 via molecular iodine-mediated electrophilic cyclization (Scheme 8) [28]. These cyclizations were found to be general for a variety of α,β-alkynic hydrazones and allowed the presence of aliphatic, aromatic, heteroaromatic and ferrocenyl moieties with electron-withdrawing and electron-donating substituents.
Scheme 8. Synthesis of 4-iodopyrazoles via I$_2$-mediated electrophilic cyclization of α-β-alkynic hydrazones.

Correspondingly, Zora research group has also investigated the synthesis of pyrazole derivatives 26 via copper (I) iodide-mediated electrophilic cyclizations of α-β-alkynic hydrazones 23 as illustrated in Scheme 9 [29].

Scheme 9. Synthesis of pyrazoles via CuI-mediated electrophilic cyclization of α-β alkynic hydrazones.

1.4 β-Enaminones

β-Enaminones, containing the structural units of N–C=C–C=O, have an important place in organic synthesis. Particularly, N-propargylic β-enaminones are frequently used as substrates for the synthesis of heterocyclic and pharmaceutical compounds,
such as pyrrole, pyridine, benzodiazepine and indole derivatives and many healing agents (Figure 10) [30,31].

Figure 10. Structure of N-propargylic β-enaminone.

1.4.1 Cyclization of N-propargylic β-enaminones

Because of the ambident nucleophilic feature of enamine moiety and the electrophilic feature of enone moiety, N-propargylic β-enaminones have emerged as valuable substrates and intermediates in cyclization reactions [34].

In this respect, an important study was reported by Cacchi research group (Scheme 10) [33]. When treated with CuBr in DMSO, N-propargylic β-enaminones 28 yielded pyridine derivatives 27. However, when treated with Cs$_2$CO$_3$ in DMSO, they produced pyrrole derivatives 29 in good to high yields, as depicted in Scheme 10 [33].

Scheme 10. Synthesis of substituted pyridine and pyrrole derivatives from N-propargylic β-enaminones.
A similar study was conducted by Martins and coworkers. They investigated Ag-catalyzed intramolecular cyclization of \(\text{N-propargylic } \) \(\beta \)-enaminones 30, which provided pyrroles 31 and/or 1,2-dihydropyridines 32 (Scheme 11) [34].

Scheme 11. Ag-catalyzed intramolecular cyclization of \(\text{N-propargylic } \) \(\beta \)-enaminones.

Zora research group has recently developed a new method for the synthesis of iodo-substituted pyridine derivatives, the initial results of which were presented [35]. When treated with molecular iodine in the presence of \(\text{NaHCO}_3 \), \(\text{N-propargylic } \) \(\beta \)-enaminones 28 underwent electrophilic cyclization to afford iodopyridines 33 in good to high yields (Scheme 12) [35]. Significantly, iodopyridines are very useful synthetic intermediates due to their capability of being converted to more complex structures by metal-catalyzed coupling reactions [36].

Scheme 12. Synthesis of iodo-substituted pyridines via electrophilic cyclization.
Synthesis of 3-methylene-3,4-dihydro-2H-pyrroles was also accomplished from N-propargylic β-enaminones. In the presence of Au(I) and Ag(I) catalysts, N-propargylic β-enaminones reacted with aryne precursor 34 to generate 3-methylene-3,4-dihydro-2H-pyrroles 35 as depicted in Scheme 13. These products have substantial role in many applications, such as flavouring agent for various food products, alkaloids and natural products [37].

Wan and coworkers developed new routes for the synthesis of highly functionalized pyrrole derivatives. Under proper conditions, N-sulfonyl azaenyne derivatives 37 produced α-(arylsulfonyl)methyl pyrroles 36 and β-(arylsulfonyl)methyl pyrroles 38 as shown in Scheme 14 [38]. Importantly, during these reactions, sulfonyl group migration was observed.

Scheme 14. Synthesis of highly functionalized pyrroles from 3-aza-1,5-enynes.
In addition, Wan and coworkers achieved the synthesis of pyridine derivatives from the same starting materials. When treated with NIS in DMF at 80 °C or heated in refluxing methanol, 3-aza-1,5-enynes 37 produced 3-iodo-1,2-dihydropyridines 39 and 1,2-dihydropyridines 40, respectively (Scheme 15) [39].

![Scheme 15. Synthesis of 1,2-dihydropyridines and 3-iodo-1,2-dihydropyridines from 3-aza-1,5-enynes.](image)

Wan and coworkers also reported one-pot synthesis of substituted pyridines 41 from 3-aza-1,5-enynes 37 (Scheme 16) [40]. The reaction first produced in situ 1,2-dihydropyridines which, upon elimination of sulfinic acid, afforded pyridines.

![Scheme 16. Synthesis of pyridines from 3-aza-1,5-enynes.](image)

Notably, the popularity of N-propargylic β-enaminones as synthetic intermediates has risen considerably in organic synthesis [41] since the important heterocyclic compounds, such as pyroles, pyrrolines and pyridines, were resulted from the cyclization of these β-enaminones and their 3-aza-1,5-enzyme derivatives [42].
As exemplified above, different kinds of five and six-membered heterocycles were obtained from the cyclization of N-propargylic β-enaminones. However, from these cyclizations, no seven-membered ring formation, such as oxazepine, was reported.

1.5 Aim of the study

So far, the syntheses of five and six-membered heterocyclic compounds were generally reported from N-propargylic β-enaminones. On the other hand, there are quite a few studies for the construction of seven-membered rings with two heteroatoms, especially monocyclic oxazepine molecules. Our research group has recently achieved the synthesis of 2-methylene-2,3-dihydro-1,4-oxazepines 43 via ZnCl₂-mediated cyclization of N-propargylic β-enaminones 42 in one-pot manner (Scheme 17).

In the light of this study, we have planned the synthesis of monocyclic iodo-substituted oxazepine derivatives. Importantly, iodine-containing derivatives are very useful intermediates for the synthesis of various products since they can be easily elaborated to more complex structures by metal-catalyzed coupling reactions. In the first part of the study, α,β-alkynic ketones will be synthesized via Sonogashira cross-coupling reaction of terminal alkynes with aryloyl chlorides. Then, conjugate addition of propargylamine to α,β-alkynic ketones will be employed to afford N-propargylic β-enaminones as starting materials. At the final stage, the cyclizations of
N-propargylic β-enaminones 42 will be investigated in the presence of molecular iodine and ZnCl$_2$, which is expected to give monocyclic iodo-substituted 2,3-dihydro-1,4-oxazepine derivatives 44 as presented in Scheme 18.

![Scheme 18. Synthesis of iodo-substituted 2,3-dihydro-1,4-oxazepines 44.](image)

In brief, the scope, limitations and proposed mechanism of the above mentioned cyclization of N-propargylic β-enaminones 42 to 2-iodomethylene-2,3-dihydro-1,4-oxazepine derivatives 44 will be discussed in detail.
CHAPTER 2

RESULTS AND DISCUSSION

2.1 Synthesis of N-propargylic β-enaminone derivatives

At the first stage of the study, the starting materials, namely N-propargylic β-enaminone derivatives 42, were synthesized from terminal alkynes 46 in two steps according to literature procedures [33]. First step of the synthesis was the preparation of alkynyl ketones 8 through Sonogashira cross-coupling of benzoyl chloride derivatives 45 with terminal alkynes 46 in the presence of a Pd catalyst (Table 1) [33]. Importantly, PdCl₂(PPh₃)₂ was employed as catalyst, CuI as co-catalyst and NEt₃ as base for this coupling reaction, which are generally used in Sonogashira reactions.

By means of these coupling reactions, eleven derivatives of alkynyl ketones 8, including electron-withdrawing and electron-donating groups, were prepared. The yields of alkynyl ketones 8 changed from 54 to 99% (Table 1).

Structural assignments of alkynyl ketones 8 were elucidated by ¹H and ¹³C NMR spectroscopy. As a representative example, ¹H and ¹³C NMR spectra of 1,3-diphenylprop-2-yn-1-one (8A) are given in Figures 11 and 12. As shown in ¹H NMR spectrum (Figure 11), phenyl hydrogens resonate approximately between 7.39 and 8.31 ppm. On the other hand, as depicted in ¹³C NMR spectrum (Figure 12), alkynic carbons peaks appear at 87.0 and 93.2 ppm while carbonyl peak shows up at 178.2 ppm. The remaining phenyl carbons resonate approximately between 120.3 and 137.1 ppm.
Table 1. Synthesis of alkynyl ketones 8.\(^a\)

<table>
<thead>
<tr>
<th>R₂ Cl</th>
<th>H≡R₁</th>
<th>2 mol% PdCl₂(PPh₃)₂</th>
<th>2 mol% CuI</th>
<th>Et₃N, THF, rt</th>
<th>R₂ ≡R₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>(90%)</td>
<td>(85%)</td>
<td>(59%)</td>
<td>8A</td>
</tr>
<tr>
<td>O</td>
<td>CF₃</td>
<td>(72%)</td>
<td>(98%)</td>
<td>(90%)</td>
<td>8B</td>
</tr>
<tr>
<td>O</td>
<td>F</td>
<td>(72%)</td>
<td>(98%)</td>
<td>(90%)</td>
<td>8E</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>(55%)</td>
<td>(93%)</td>
<td>(99%)</td>
<td>8G</td>
</tr>
<tr>
<td>Br</td>
<td>O</td>
<td>(64%)</td>
<td>(54%)</td>
<td>(54%)</td>
<td>8D</td>
</tr>
<tr>
<td>Br</td>
<td>O</td>
<td>(54%)</td>
<td>(54%)</td>
<td>(54%)</td>
<td>8H</td>
</tr>
</tbody>
</table>

\(^a\)Yield are of isolated products.
Subsequently, as illustrated in Table 2, we synthesized N-propargylic β-enaminones 42 by conjugate addition of propargylamine to alkynyl ketones 8 [33]. The reaction of alkynyl ketones 8 with propargylamine in methanol at 65 °C for approximately 2 h afforded N-propargylic β-enaminones 42 in good to high yields.
Table 2. Synthesis of N-propargylic β-enaminones 42.a

\[
\begin{align*}
\text{R}_2\text{C}=\text{C} & \quad \text{H}_2\text{N} \quad \text{CH}_3\text{OH}, 65 \degree \text{C} \\
\text{R}_1\text{C}=\text{C} & \quad \text{R}_2
\end{align*}
\]

<table>
<thead>
<tr>
<th>42A</th>
<th>42B</th>
<th>42C</th>
<th>42D</th>
</tr>
</thead>
<tbody>
<tr>
<td>F\text{C}</td>
<td>F</td>
<td>H\text{C}</td>
<td>CH\text{3}</td>
</tr>
<tr>
<td>(98%)</td>
<td>(98%)</td>
<td>(90%)</td>
<td>(78%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>42E</th>
<th>42F</th>
<th>42G</th>
<th>42H</th>
</tr>
</thead>
<tbody>
<tr>
<td>O\text{CH}_3</td>
<td>Br</td>
<td>Br</td>
<td>CH\text{3}</td>
</tr>
<tr>
<td>(93%)</td>
<td>(80%)</td>
<td>(90%)</td>
<td>(97%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>42I</th>
<th>42J</th>
<th>42K</th>
</tr>
</thead>
<tbody>
<tr>
<td>H\text{C}</td>
<td>Cl</td>
<td>Ph</td>
</tr>
<tr>
<td>(94%)</td>
<td>(91%)</td>
<td>(53%)</td>
</tr>
</tbody>
</table>

aYield are of isolated products.
By employing these reactions, eleven derivatives of \(N \)-propargylic \(\beta \)-enaminones 42 were synthesized. The yields of \(N \)-propargylic \(\beta \)-enaminones 42 altered from 53 to 98% (Table 2). It should be mentioned that \(\beta \)-enaminones 42 were obtained as single isomers from these reactions. The stereochemistry of the double bonds in \(\beta \)-enaminones 42 was assigned as Z on the basis of NOESY experiments of the Cacchi research group using the same and/or similar compounds [33]. NOESY experiments showed the presence of an intramolecular hydrogen bond (N-H\(\cdots \)O) in these compounds as well. Obviously, the presence of such an intramolecular hydrogen bond in \(\beta \)-enaminones 42 increases their stability. As a result, NH peak of \(\beta \)-enaminones 42 generally appears over 11.00 ppm in their \(^1 \)H NMR spectra.

The structures of \(N \)-propargylic \(\beta \)-enaminones 42 were analyzed by \(^1 \)H and \(^{13} \)C NMR spectroscopy. As a representative example, \(^1 \)H and \(^{13} \)C NMR spectra of \(N \)-propargylic \(\beta \)-enaminone 42A are given in Figures 13 and 14. As expected, in the \(^1 \)H NMR spectrum (Figure 13), acetylenic hydrogen resonates at 2.31 ppm while double bond hydrogen resonates at 5.87 ppm. Methylene hydrogens between amine and alkyne groups appear at 3.97 ppm. The remaining phenyl hydrogen peaks come approximately between 7.39 and 7.97 ppm (Figure 13).

![Figure 13. \(^1\)H NMR spectrum of 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42A).](attachment:figure13.png)
On the other hand, as shown in the 13C NMR spectrum (Figure 14), two alkynic carbon peaks are observed at 72.6 and 79.9 ppm while carbonyl peak is observed at 189.3 ppm. Methylene carbon between amine and alkyne groups appears at 34.3 ppm. The remaining phenyl carbon peaks are seen between 127.3 and 140.1 ppm (Figure 14).

Figure 14. 13C NMR spectrum of 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one 42A.

2.2 Synthesis of 2-iodomethylene-2,3-dihydro-1,4-oxazepines

At the final stage, for the synthesis of iodo-substituted oxazepine derivatives, we investigated the cyclizations of N-propargylic β-enaminones 42. In the light of our previous studies, these cyclizations were carried out in the presence of molecular iodine and ZnCl$_2$. Recently, in organic reactions, popularity of Zn based lewis acids have increased significantly due to their abundance, affordability and environmental friendliness [43]. Therefore, we chose ZnCl$_2$ as a Lewis acid for this study.
Initially, for the optimization of reaction conditions, the cyclization of N-propargylic β-enaminone $42A$ was examined in detail. The results are summarized in Table 3. First, the reaction was carried out in the presence of 1.0 eq. I$_2$ with varying amount of ZnCl$_2$ in DCM at 40 °C (Table 3, Entries 1-4).

These reactions went to completion in approximately 6 h on average. Importantly, all of these reactions afforded the expected seven-membered ring product 2-iodomethylene-2,3-dihydro-1,4-oxazepine $44A$ in varying yields (52-81%). However, best result (81%) was obtained with 1.0 eq. I$_2$ and 2.5 eq. ZnCl$_2$ (Table 3, Entry 4). Clearly, the use of higher amounts of ZnCl$_2$ increased the yield of $44A$ considerably. However, the use of higher amounts of I$_2$ with varying amounts of ZnCl$_2$ did not increase or did lower the yield of $44A$ (23-56%) (Table 3, Entries 5-7).

Subsequently, the reaction in Entry 4 was also performed in different solvents such as ACN, 1,4-dioxane, DCE and THF (Table 3, Entries 8-11), but mostly lower yields of $44A$ were obtained with these solvents (12-56%), indicating that DCM was the most suitable solvent for this reaction. The reaction in Entry 4 was also carried out with ZnI$_2$ and ZnBr$_2$, instead of ZnCl$_2$ (Table 3, Entries 12 and 13), but no higher yields of $44A$ were observed with these Lewis acids (39-52%). In summary, the cyclization reactions were carried out with 1.0 eq. I$_2$ and 2.5 eq. ZnCl$_2$ in refluxing DCM (i.e. with the reaction condition present in Entry 4 of Table 3).

The results from a systematic study are given in Table 5. A variety of N-propargylic β-enaminones 42, bearing electron-withdrawing and electron-donating groups, were employed in these reactions and eleven derivatives of 2-iodomethylene-2,3-dihydro-1,4-oxazepines 44 were synthesized in mostly moderate to good yields.
Table 3. Optimization of reaction conditions for the synthesis of 2-iodomethylene-2,3-dihydro-1,4-oxazepine 44A.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amount of I$_2$</th>
<th>Amount of ZnX$_2$</th>
<th>Solvent</th>
<th>Temp. ($^\circ$C)</th>
<th>Time (h)</th>
<th>Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 eq. I$_2$</td>
<td>1.0 eq. ZnCl$_2$</td>
<td>DCM</td>
<td>40</td>
<td>5.0</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>1.0 eq. I$_2$</td>
<td>1.5 eq. ZnCl$_2$</td>
<td>DCM</td>
<td>40</td>
<td>7.0</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>1.0 eq. I$_2$</td>
<td>2.0 eq. ZnCl$_2$</td>
<td>DCM</td>
<td>40</td>
<td>5.0</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>1.0 eq. I$_2$</td>
<td>2.5 eq. ZnCl$_2$</td>
<td>DCM</td>
<td>40</td>
<td>6.0</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>1.5 eq. I$_2$</td>
<td>2.0 eq. ZnCl$_2$</td>
<td>DCM</td>
<td>40</td>
<td>6.0</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>2.0 eq. I$_2$</td>
<td>1.0 eq. ZnCl$_2$</td>
<td>DCM</td>
<td>40</td>
<td>6.0</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>2.0 eq. I$_2$</td>
<td>2.0 eq. ZnCl$_2$</td>
<td>DCM</td>
<td>40</td>
<td>5.0</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>1.0 eq. I$_2$</td>
<td>2.5 eq. ZnCl$_2$</td>
<td>ACN</td>
<td>82</td>
<td>5.5</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>1.0 eq. I$_2$</td>
<td>2.5 eq. ZnCl$_2$</td>
<td>1,4-Dioxane</td>
<td>101</td>
<td>3.5</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>1.0 eq. I$_2$</td>
<td>2.5 eq. ZnCl$_2$</td>
<td>DCE</td>
<td>84</td>
<td>3.5</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>1.0 eq. I$_2$</td>
<td>2.5 eq. ZnCl$_2$</td>
<td>THF</td>
<td>66</td>
<td>5.0</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>1.0 eq. I$_2$</td>
<td>2.5 eq. ZnI$_2$</td>
<td>DCM</td>
<td>40</td>
<td>5.0</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>1.0 eq. I$_2$</td>
<td>2.5 eq. ZnBr$_2$</td>
<td>DCM</td>
<td>40</td>
<td>5.0</td>
<td>52</td>
</tr>
</tbody>
</table>

aYields are of isolated products.
Table 4. Synthesis of 2-iodomethylene-2,3-dihydro-1,4-oxazepines 44.\(^a\)

\[
\text{R}_1 \text{NH} \quad \text{R}_2 \quad \text{I}_2, \text{ZnCl}_2 \\
\text{DCM, 40 °C} \\
\text{R}_2 \text{O} \quad \text{R}_1 \quad \text{I} \quad \text{H} \\
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>44A</td>
<td>81%</td>
</tr>
<tr>
<td>44B</td>
<td>72%</td>
</tr>
<tr>
<td>44C</td>
<td>85%</td>
</tr>
<tr>
<td>44D</td>
<td>78%</td>
</tr>
<tr>
<td>44E</td>
<td>42%</td>
</tr>
<tr>
<td>44F</td>
<td>23%</td>
</tr>
<tr>
<td>44G</td>
<td>66%</td>
</tr>
<tr>
<td>44H</td>
<td>59%</td>
</tr>
<tr>
<td>44I</td>
<td>55%</td>
</tr>
<tr>
<td>44J</td>
<td>68%</td>
</tr>
<tr>
<td>44K</td>
<td>28%</td>
</tr>
</tbody>
</table>

\(^a\)Yield are of isolated products.
Structural assignments of 2-iodomethylene-2,3-dihydro-1,4-oxazepines 44 were made by 1H and 13C NMR spectroscopy. As a representative illustration, 1H NMR, NOESY and 13C NMR spectra of 2,3-dihydro-1,4-oxazepine 44A are exhibited in Figures 15-17. As seen in the 1H NMR spectrum of 2,3-dihydro-1,4-oxazepine 44A (Figure 15), the peak of methylene hydrogens appears at 4.71 ppm. The exo double bond hydrogen, near iodine atom, resonates at 5.90 ppm while the olefinic hydrogen on the ring skeleton resonates at 6.36 ppm. The protons of phenyl groups appear approximately between 7.28 and 7.79 ppm.

Figure 15. 1H NMR spectrum of 2-iodomethylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44A).

It should be mentioned that 2-iodomethylene-2,3-dihydro-1,4-oxazepines 44 were obtained as single isomers from these reactions. The stereochemistry of the exo double bonds in oxazepines 44 was assigned as Z on the basis of NOESY experiment performed on oxazepine 44A. In the NOESY spectrum of 44A (Figure 16), a NOE interaction was observed between the exo double bond hydrogen and the methylene hydrogens, which is shown in circles in Figure 16, proving the Z configuration of the exo double bond.
Figure 16. NOESY spectrum of 2-iodomethylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44A).

On the other hand, in 13C NMR spectrum of 44A shown in Figure 17, methylene carbon resonates at 54.8 ppm. The exo double bond carbon, which is attached to iodine atom, appears at 59.9 ppm. The olefinic CH carbon on the ring skeleton appears at 100.2 ppm. The remaining carbon atoms, including phenyl carbons, are observed between 126.5 and 167.6 ppm.
2.3 Proposed mechanism for the formation of 2-iodomethylene-2,3-dihydro 1,4-oxazepines 44.

A possible mechanism for the formation of 2-iodomethylene-2,3-dihydro-1,4-oxazepines 44 is outlined in Scheme 18. Initial coordination of alkyne and carbonyl functionalities of N-propargylic β-enaminone 42 to ZnCl₂ forms the intermediate complex 50, in which alkyne and carbonyl functionalities come close to each other. 7-Exo-dig cyclization then occurs to give complex 51. The interaction of Zn moiety of 51 with molecular iodine produces complex 52. Finally, reductive elimination affords 2-iodomethylene-2,3-dihydro-1,4-oxazepine derivative 44. Importantly, the stereochemistry of the exo double bond is set at the formation of complex 51, in which Zn and oxygen moieties end up on the same side, presumably as a result of oxygen coordination to Zn during the course of the reaction.
Scheme 19. Proposed mechanism for the formation of 2-iodomethylene-2,3-dihydro-1,4-oxazepines 44.
CHAPTER 3

CONCLUSION

To sum up, one-pot synthesis of 2-iodomethylene-2,3-dihydro-1,4-oxazepines were achieved from \(N \)-propargylic \(\beta \)-enaminones in the presence of molecular iodine and zinc chloride.

In the first part of the study, \(\alpha,\beta \)-alkynic ketones were prepared via Sonogashira cross-coupling of terminal alkynes with aryloyl chlorides, which then subjected to conjugate addition of propargylamine to yield \(N \)-propargylic \(\beta \)-enaminones. Through this procedure, eleven derivatives of \(N \)-propargylic \(\beta \)-enaminones were synthesized.

In the second part of the study, 7-exo-dig cyclizations of \(N \)-propargylic \(\beta \)-enaminones were investigated. When treated with molecular iodine and zinc chloride in refluxing DCM, \(N \)-propargylic \(\beta \)-enaminones afforded 2-iodomethylene-2,3-dihydro-1,4-oxazepines. Optimization studies for reaction conditions showed that best results were obtained with 1.0 eq. I\(_2\) and 2.5 eq. ZnCl\(_2\) over 6 h.

Consequently, eleven derivatives of 2-iodomethylene-2,3-dihydro-1,4-oxazepines were synthesized from \(N \)-propargylic \(\beta \)-enaminones in one-pot cyclization using I\(_2\) and ZnCl\(_2\). Although the yields of final products altered between 23 and 85\%, they were in moderate to good yields in most cases.

The biological activity tests of the synthesized 2-iodomethylene-2,3-dihydro-1,4-oxazepine derivatives, which may have some potential for pharmaceutical benefit, will be carried out by a collaborative work.
CHAPTER 4

EXPERIMENTAL

The record of 1H and 13C NMR spectra were made at 400 and 100 MHz by a Bruker Spectrospin Avance DPX400 Ultrashield spectrometer. The chemical shifts are reported in parts per million (ppm) downfield from an internal TMS (trimethylsilane) reference. Coupling constants (J) are given in hertz (Hz), and the spin multiplicities are presented by the following symbols: s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet) and br (broad). The reactions were accomplished by using Flash chromatography involving thick-walled glass columns using silica gel (Merck 230-400). Thin layer chromatography (TLC) was performed by using commercially available 0.25 mm silica gel plates and visualizing was effected with short wavelength UV lamp. Ethyl acetate-hexane solvent mixtures were used as eluent in Flash chromatography and their polarities were employed according to volume:volume ratio. In case of necessity, solvents used in reactions were distilled for purity. The inert atmosphere was supplied by slight positive pressure (ca. 0.1 psi) of argon gas in some reactions. All equipments and glassware were dried in oven prior to use.
4.1 General Procedure 1. Synthesis of alkynyl ketones (8)

In a round-bottomed flask, the corresponding benzoyl chloride (45) (0.70 mmol) was dissolved in THF (1.0 mL) and to the solution, PdCl\(_2\)(PPh\(_3\))\(_2\) (0.01 mmol) and Et\(_3\)N (0.1 mL), and CuI (0.01 mmol) were added, respectively, and stirred at room temperature under argon atmosphere. After 20 min later, terminal alkyne (46) (0.58 mmol) was added slowly and the resulting mixture was continued to be stirred for additional 40 min. When the reaction was over, water (50 mL) was added to the flask and the organic layer was extracted with ethyl acetate (2 x 25 mL). The separated organic phase was washed with water (2 x 50 mL) and then dried over MgSO\(_4\) and filtered. The obtained crude product was purified by flash chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent.

4.1.1 Synthesis of 1,3-diphenylprop-2-yn-1-one (8A)

General Procedure 1 was followed by using benzoyl chloride (45) (100 mg, 0.70 mmol), PdCl\(_2\)(PPh\(_3\))\(_2\) (7 mg, 0.01 mmol), triethylamine (0.1 mL), CuI (2 mg, 0.01 mmol) and ethynylbenzene (59 mg, 0.58 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 1,3-diphenylprop-2-yn-1-one (8A) (yellow oil, 129 mg, 90% yield).

8A: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.28-8.22 (m, 2H), 7.73-7.68 (m, 2H), 7.67-7.62 (m, 1H), 7.57-7.48 (m, 3H), 7.47-7.41 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 178.2 (CO), 137.1 (C), 134.3 (CH), 133.3 (CH), 131.0 (CH), 129.8 (CH), 128.9 (CH), 128.8 (CH), 120.4 (C), 93.3 (C), 87.1 (C). The spectral data are in agreement with those reported previously for this compound [44].
4.1.2 Synthesis of 1-phenyl-3-(4-(trifluoromethyl)-phenyl)prop-2-yn-1-one (8B)

General Procedure 1 was followed by using benzoyl chloride (45) (100 mg, 0.70 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), Cul (2 mg, 0.01 mmol) and 1-ethynyl-4-(trifluoromethyl)benzene (98 mg, 0.58 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 1-phenyl-3-(4-(trifluoromethyl)-phenyl)prop-2-yn-1-one (8B) (brown-yellow oil, 162 mg, 85% yield).

8B: 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (m, 2H), 7.80 (d, $J = 8.1$ Hz, 2H), 7.74-7.63 (m, 3H), 7.59-7.51 (m, 2H). 13C NMR (100 MHz, CDCl$_3$); 13C NMR (100 MHz, CDCl$_3$) δ 177.7 (CO), 136.7 (C), 134.6 (CH), 133.3 (CH), 132.3 (q, $^2J = 33.0$ Hz, C), 129.7 (CH), 128.8 (CH), 125.7 (q, $^3J = 4.0$ Hz, CH), 124.1 (C), 123.7 (q, $^1J = 270.0$ Hz, CF$_3$), 90.5 (C), 88.2 (C). The spectral data are in agreement with those reported previously for this compound [45].

4.1.3 Synthesis of 3-(3-fluorophenyl)-1-phenylprop-2-yn-1-one (8C)

General Procedure 1 was employed using benzoyl chloride (45) (100 mg, 0.70 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), Cul (2 mg, 0.01 mmol) and 1-ethynyl-3-fluorobenzene (70 mg, 0.58 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 3-(2-fluorophenyl)-1-phenylprop-2-yn-1-one (8C) (yellow solid, 77 mg, 59% yield).

8C: 1H NMR (400 MHz, CDCl$_3$) δ 8.11 – 8.01 (m, 1H), 7.53 – 7.45 (m, 1H), 7.42 – 7.34 (m, 1H), 7.30 (dt, $J = 7.7, 1.2$ Hz, 1H), 7.25 – 7.14 (m, 1H), 7.03 (m, $J = 8.4, 2.6, 1.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 177.5 (CO), 162.2 (d, $^1J = 246.0$ Hz, CF), 136.6 (C), 134.2 (CH), 130.4 (d, $^3J = 9.0$ Hz, CH), 129.43 (CH), 128.8 (d, $^4J = 3.0$ Hz, CH), 124.1 (d, $^3J = 10.0$ Hz, C), 119.5 (d, $^2J = 22.0$ Hz, CH), 118.1 (d, $^2J = 21.0$ Hz, CH), 90.9 (d, $^4J = 4.0$ Hz, C), 87.1 (C): IR (neat): 3053,
4.1.4 Synthesis of 1-phenyl-3-(m-tolyl)prop-2-yn-1-one (8D)

General Procedure 1 was employed using benzoyl chloride (45) (100 mg, 0.70 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), CuI (2 mg, 0.01 mmol) and 3-ethynyl toluene (67 mg, 0.58 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 1-phenyl-3-(m-tolyl)prop-2-yn-1-one (8D) (yellow solid, 125 mg, 98% yield).

8D: 1H NMR (400 MHz, CDCl$_3$) δ 8.29-8.20 (m, 2H), 7.68-7.59 (m, 5H), 7.56-7.45 (m, 1H), 7.35-7.22 (m, 1H), 2.37 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 177.9, 138.7, 136.9, 134.0, 133.5, 131.8, 130.2, 129.5, 128.6, 128.6, 119.9, 93.5, 86.7, 21.1; IR (neat): 3059, 3032, 2188, 1630, 1596, 1578, 1479, 1450, 1377, 1314, 1294, 1280, 1225, 1165, 1092, 1036, 1016, 988, 935, 900, 883, 784, 759, 685, 626, 548, 520.

4.1.5 Synthesis of 1-phenyl-3-(p-tolyl)prop-2-yn-1-one (8E)

General Procedure 1 was employed using benzoyl chloride (45) (100.0 mg, 0.70 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), CuI (2 mg, 0.01 mmol) and 4-ethynyl toluene (67 mg, 0.58 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 1-phenyl-3-(p-tolyl)prop-2-yn-1-one (8E) (yellow solid, 92 mg, 72% yield).

8E: 1H NMR (400 MHz, CDCl$_3$) δ 8.37-7.96 (m, 2H), 7.68-7.59 (m, 5H), 7.17 (t, $J = 9.0$ Hz, 2H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 178.2, 141.7, 137.1, 134.1, 133.2, 129.7, 129.6, 128.7, 117.2, 93.9, 86.9, 21.9.
4.1.6 Synthesis of 3-(2-methoxyphenyl)-1-phenylprop-2-yn-1-one (8F)

General Procedure 1 was followed by using benzoyl chloride (45) (100 mg, 0.70 mmol), PdCl₂(PPh₃)₂ (7 mg, 0.01 mmol), triethylamine (0.1 ml), CuI (2 mg, 0.01 mmol) and 1-ethynyl-2-methoxybenzene (76 mg, 0.58 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 3-(2-methoxyphenyl)-1-phenylprop-2-yn-1-one (8F) (brown solid, 148 mg, 99% yield).

8F: ¹H NMR (400 MHz, CDCl₃) δ 7.85-6.96 (m, 9H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.2, 160.9, 134.5, 134.3, 129.2, 128.7, 124.0, 121.0, 111.2, 96.1, 88.2, 55.4; IR (neat): 3065, 3004, 2939, 2834, 2194, 1642, 1592, 1576, 1511, 1487, 1458, 1448, 1426, 1314, 1296, 1277, 1249, 1229, 1205, 1159, 1112, 1041, 1008, 933, 828, 811, 745, 693, 623, 580, 516.

4.1.7 Synthesis of 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (8G)

General Procedure 1 was employed using 2-bromobenzoyl chloride (45) (100.0 mg, 0.46 mmol), PdCl₂(PPh₃)₂ (7 mg, 0.01 mmol), triethylamine (0.1 ml), CuI (2 mg, 0.01 mmol) and ethynylbenzene (39 mg, 0.38 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (8G) (brown oil, 59 mg, 55% yield).

8G: ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.7, 1.7 Hz, 1H), 7.96 (dd, J = 7.9, 1.0 Hz, 1H), 7.90 (m, J = 9.2, 4.3 Hz, 2H), 7.79-7.61 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 137.4, 135.0, 133.5, 133.1, 132.8, 131.1, 128.8, 127.5, 121.2, 119.9, 94.2, 88.0; IR (neat): 3057, 2192, 1648, 1584, 1561, 1488, 1465, 1430, 1297, 1272, 1201, 1163, 1128, 1061, 1026, 1007, 994, 920, 814, 757, 736, 711, 688, 654, 619, 551, 535, 516.
4.1.8 Synthesis of 1-(2-bromophenyl)-3-(m-tolyl)prop-2-yn-1-one (8I)

General Procedure 1 was employed using 2-bromobenzoyl chloride (45) (100 mg, 0.46 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), Cul (2 mg, 0.01 mmol) and 3-ethynyl toluene (45 mg, 0.38 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 1-(2-bromophenyl)-3-(m-tolyl)prop-2-yn-1-one (8I) (yellow oil, 113 mg, 99% yield).

8I: 1H NMR (400 MHz, CDCl$_3$) δ 8.06 (dd, $J = 7.7$, 1.7 Hz, 1H), 7.63 (dd, $J = 7.9$, 1.1 Hz, 1H), 7.46-7.43 (m, 1H), 7.43-7.39 (m, 1H), 7.38 (d, $J = 0.9$ Hz, 2H), 7.35-7.30 (m, 1H), 7.25-7.21 (m, 2H), 2.30 (s, 3H), 2.00 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 177.0, 138.3, 137.1, 134.7, 133.3, 133.2, 132.6, 131.8, 130.0, 128.4, 127.3, 120.9, 119.4, 94.3, 87.5, 20.9; IR (neat): 3064, 2966, 2916, 2179, 1991, 1956, 1922, 1894, 1638, 1581, 1561, 1480, 1464, 1431, 1410, 1377, 1301, 1264, 1218, 1169, 1127, 1094, 1059, 1036, 1010, 987, 899, 874, 789, 774, 728, 685, 674, 654, 623, 552, 521.

4.1.9 Synthesis of 1-(2-bromophenyl)-3-(p-tolyl)prop-2-yn-1-one (8I)

General Procedure 1 was employed using 2-bromobenzoyl chloride (45) (100.0 mg, 0.46 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), Cul (2 mg, 0.01 mmol) and 4-ethynyl toluene (45 mg, 0.38 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 1-(2-bromophenyl)-3-(p-tolyl)prop-2-yn-1-one (8I) (light yellow solid, 106 mg, 93% yield).

8I: 1H NMR (400 MHz, CDCl$_3$) δ 8.06 (dd, $J = 7.7$, 1.8 Hz, 1H), 7.70 (dd, $J = 7.9$, 1.1 Hz, 1H), 7.54 (d, $J = 8.1$ Hz, 2H), 7.45 (td, $J = 7.5$, 1.2 Hz, 1H), 7.37 (td, $J = 7.6$, 1.8 Hz, 1H), 7.21 (d, $J = 7.9$ Hz, 2H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 178.0, 142.3, 138.2, 135.3, 133.6, 133.6, 133.1, 129.9, 127.8, 121.6, 117.3, 95.4, 88.4, 22.2; IR (neat): 2190, 1643, 1601, 1583, 1560, 1507, 1465, 1430, 1300, 1200, 1178, 1129, 1060, 1035, 1001, 823, 775, 730, 685, 674, 647, 610, 538, 517.
4.1.10 Synthesis of 1-(4-chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (8J)

General Procedure 1 was employed using 2-chlorobenzoyl chloride (45) (100 mg, 0.570 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), CuI (2 mg, 0.01 mmol) and 1-ethynyl-3-fluorobenzene (82 mg, 0.68 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 1-(2-chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (8J) (Brown-yellow solid, 112 mg, 64% yield).

$\text{8J: } ^1\text{H NMR (400 MHz, CDCl}_3) \delta 8.25-8.03 \text{ (m, 1H), 7.52-7.50 \text{ (m, 1H), 7.49-7.46 \text{ (m, 1H), 7.46 (t, } J = 1.3 \text{ Hz, 1H), 7.43 (s, 1H), 7.40 (dd, } J = 7.9, 2.4 \text{ Hz, 1H), 7.36 (m, } J = 8.9, 2.4, 1.3 \text{ Hz, 1H), 7.21 (m, } J = 8.4, 2.6, 1.1 \text{ Hz, 1H); } ^1\text{C NMR (100 MHz, CDCl}_3) \delta 176.5 \text{ (CO), 162.4 (d, } J = 247.0 \text{ Hz, CF), 141.1 (C), 135.2 (C), 131.0 (CH), 130.6 (d, } ^3J = 8.0 \text{ Hz, CH), 129.2 (CH), 129.1 (d, } ^4J = 3.0 \text{ Hz, CH), 121.8 (d, } ^3J = 9.0 \text{ Hz, C), 119.8 (d, } ^2J = 23.0 \text{ Hz, CH), 118.6 (d, } ^2J = 21.0 \text{ Hz, CH), 91.7 (d, } ^4J = 3.0 \text{ Hz, C), 86.9 (C); IR (neat): 3059, 2454, 2313, 2203, 1942, 1923, 1867, 1791, 1634, 1582, 1481, 1428, 1399, 1360, 1304, 1248, 1168, 1154, 1108, 1088, 1031, 1009, 954, 922, 890, 842, 784, 738, 718, 671, 641, 518}$

4.1.11 Synthesis of 2-(5-oxo-5-phenylpent-3-yn-1-yl)isoindoline-1,3-dione (8K)

General Procedure 1 was employed using benzoyl chloride (45) (100 mg, 0.70 mmol), PdCl$_2$(PPh$_3$)$_2$ (7 mg, 0.01 mmol), triethylamine (0.1 ml), CuI (2 mg, 0.01 mmol) and 2-(but-3-yn-1-yl)isoindoline-1,3-dione (116 mg, 0.58 mmol). Purification of the crude product by flash column chromatography on silica gel using 15:1 hexane/ethyl acetate as the eluent afforded 2-(5-oxo-5-phenylpent-3-yn-1-yl)isoindoline-1,3-dione (8K) (brown solid, 112 mg, 54% yield).

$\text{8K: } ^1\text{H NMR (400 MHz, CDCl}_3) \delta 8.12-7.93 \text{ (m, 1H), 7.90-7.62 \text{ (m, 2H), 7.58-7.47 \text{ (m, 1H), 7.44-7.31 \text{ (m, 1H), 3.98 (t, } J = 6.9 \text{ Hz, 1H), 3.78-3.69 \text{ (m, 1H), 3.52 (dd, } J = 6.2, 3.1 \text{ Hz, 1H), 3.49-3.40 \text{ (m, 1H), 2.92 (t, } J = 6.9 \text{ Hz, 1H); } ^1\text{C NMR (100 MHz, CDCl}_3) \delta 177.7, 167.8, 136.5, 134.2, 134.0, 133.5, 131.8, 130.1, 129.5, 128.5, 128.4, 126.3, 123.4, 91.6, 80.7, 35.7, 19.1; IR (neat): 3069, 2830, 2670, 2553, 2234, 2193, 2156, 1787, 1761, 1724, 1686, 1640, 1601, 1590, 1540, 1524, 1497, 1442, 1432, 1416, 1385, 1357, 1291, 1254, 1239, 1189, 1166, 1156, 1137, 1088, 1031, 1009, 954, 922, 890, 842, 784, 738, 718, 671, 641, 518}$
4.2 General Procedure 2. Synthesis of N-propargylic β-enaminones derivatives (42)

In a round-bottomed flask, the corresponding alkyny ketone (8) (0.50 mmol) was dissolved in methanol (2.0 mL) and to the solution, propargylamine (0.60 mmol) was added. The resulting reaction mixture was refluxed in methanol at 65 °C for approximately 2 h under argon atmosphere. When the reaction was over, methanol was evaporated and the resulting crude product was purified by flash chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent.

4.2.1 Synthesis of 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42A)

General Procedure 2 was followed by using 1,3-diphenylprop-2-yn-1-one (8A) (103 mg, 0.50 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42A) (brown-yellow solid, 128 mg, 98% yield).

42A: 1H NMR (400 MHz, CDCl₃): δ 11.3 (br s, 1H), 7.8-7.3 (m, 10H), 5.9 (s,1H), 3.9 (dd J = 6.4, 2.4 Hz, 2H), 2.4 (t, J = 2.4 Hz, 1H); 13C NMR (100 MHz, CDCl₃): δ 188.2, 165.6, 136.5, 134.2, 129.9, 128.2, 94.4, 72.4, 68.3, 34.2. The spectral data are in agreement with those reported previously for this compound [33].

4.2.2 Synthesis of 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)-phenyl)prop-2-en-1-one (42B)

General Procedure 2 was followed by using 1-phenyl-3-(4-(trifluoromethyl)-phenyl)prop-2-yn-1-one (8B) (137 mg, 0.50 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 1-phenyl-3-(prop-2-
yn-1-ylamino)-3-(4-(trifluoromethyl)-phenyl)prop-2-en-1-one (42B) (yellow solid, 161 mg, 98% yield).

42B: 1H NMR (400 MHz, CDCl$_3$): δ 11.3 (br s, 1H), 7.9-7.4 (m, 9H), 5.9 (s, 1H), 3.9 (dd $J = 6.4$, 2.4 Hz, 2H), 2.4 (t, $J = 1.5$ Hz, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 189.4 (CO), 164.0 (C), 139.6 (C), 138.4 (C), 131.8 (q, $^2J = 33.0$ Hz, C), 131.3 (CH), 128.4 (CH), 128.3 (CH), 127.2 (CH), 125.7 (q, $^3J = 3.6$ Hz, CH), 123.8 (q, $^1J = 271.0$ Hz, CF$_3$), 94.9 (CH), 79.5 (C), 72.8 (C), 34.2 (CH$_2$).

4.2.3 Synthesis of 3-(3-fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42C)

General Procedure 2 was followed by using 3-(3-fluorophenyl)-1-phenylprop-2-yn-1-one (8C) (112 mg, 0.50 mmol) and propargyl amine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 3-(3-fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42C) (brown-yellow solid, 126 mg, 90% yield).

42C: 1H NMR (400 MHz, CDCl$_3$) δ 11.27 (s, 1H), 7.95-7.89 (m, 2H), 7.52-7.38 (m, 4H), 7.33-7.14 (m, 3H), 5.86 (s, 1H), 3.95 (dd, $J = 6.4$, 2.5 Hz, 2H), 2.35 (t, $J = 2.5$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 189.5 (CO), 164.2 (C), 162.6 (d, $^1J = 246.0$ Hz, CF), 139.8 (C), 137.0 (d, $^2J = 7.0$ Hz, C), 130.6 (d, $^3J = 8.0$ Hz, CH), 131.3 (CH), 128.4 (CH), 127.3 (CH), 123.7 (d, $^4J = 3.0$ Hz, CH), 116.9 (d, $^2J = 21.0$ Hz, CH), 115.2 (d, $^2J = 23.0$ Hz, CH), 94.8 (CH), 79.7 (C), 72.8 (CH), 34.3 (CH$_2$); IR (neat): 3222, 3055, 1600,1570, 1549, 1520, 1474, 1431, 1323, 1299, 1284, 1265, 1250, 1226, 1203, 1178, 1157, 1123, 1054, 1025, 1000, 965, 887, 876, 788, 736, 707, 675, 662, 578, 524.

4.2.4 Synthesis of 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42D)

General Procedure 2 was followed by using 1-phenyl-3-(m-tolyl)prop-2-yn-1-one (8D) (110 mg, 0.50 mmol) and propargyl amine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using
9:1 hexane/ethyl acetate as the eluent afforded 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42D) (red oil, 107 mg, 78% yield).

42D: 1H NMR (400 MHz, CDCl$_3$) δ 11.40 (t, J = 6.0 Hz, 1H), 7.93 (dt, J = 3.9, 2.3 Hz, 2H), 7.49 – 7.24 (m, 7H), 5.86 (s, 1H), 3.93 (dd, J = 6.3, 2.5 Hz, 2H), 2.41 (s, 2H), 2.35 (t, J = 2.5 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 188.8, 165.9, 139.8, 138.4, 134.6, 130.8, 130.4, 128.4, 128.2, 128.1, 127.0, 124.7, 94.3, 79.8, 77.5, 77.2, 76.8, 72.4, 34.0, 21.2.

4.2.5 Synthesis of 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42E)

General Procedure 2 was followed by using 1-phenyl-3-(p-tolyl)prop-2-yn-1-one (8E) (110 mg, 0.50 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42E) (brown-yellow oil, 128 mg, 93% yield).

42E: 1H NMR (400 MHz, CDCl$_3$) δ 7.99-7.83 (m, 2H), 7.55-7.36 (m, 5H), 7.26 (dd, J = 17.7, 7.5 Hz, 2H), 5.87 (s, 1H), 4.04-3.88 (m, 2H), 2.42 (s, 3H), 2.38-2.30 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 188.9, 166.1, 140.0, 131.9, 130.9, 129.3, 128.2, 127.7, 127.1, 94.5, 79.9, 72.4, 34.1, 21.3.

4.2.6 Synthesis of 3-(2-methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42F)

General Procedure 2 was followed by using 3-(2-methoxyphenyl)-1-phenylprop-2-yn-1-one (8F) (118 mg, 0.50 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 3-(2-methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42F) (red oil, 116 mg, 80% yield).

42F: 1H NMR (400 MHz, CDCl$_3$) δ 11.50 (br s, 1H), 7.95-7.86 (m, 2H), 7.52-7.26 (m, 5H), 7.03 (m, 2H), 5.91-5.65 (m, 1H), 3.97-3.81 (m, 2H), 3.85 (s, 3H), 2.27 (t, J
4.2.7 Synthesis of 1-(2-bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42G)

General Procedure 2 was followed by using 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (8G) (142 mg, 0.50 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 1-(2-bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42G) (red oil, 153 mg, 90% yield).

42G: \(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.56 (dd, \(J = 8.0, 1.0 \) Hz, 1H), 7.51-7.41 (m, 6H), 7.30 (td, \(J = 7.5, 1.1 \) Hz, 1H), 7.22-7.15 (m, 1H), 5.54 (s, 1H), 3.96 (dd, \(J = 6.4, 2.5 \) Hz, 2H), 2.33 (t, \(J = 2.5 \) Hz, 1H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 191.0, 165.7, 142.9, 134.4, 133.4, 130.3, 130.1, 129.2, 128.7, 127.9, 127.2, 119.5, 98.0, 79.6, 77.5, 76.8, 72.8; IR (neat): 3290, 3057, 1731, 1588, 1560, 1483, 1461, 1427, 1359, 1317, 1244, 1216, 1145, 1082, 1023, 949, 926, 872, 751, 698, 666, 647, 613, 564.

4.2.8 Synthesis of 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42H)

General Procedure 2 was followed by using 1-(2-bromophenyl)-3-(m-tolyl)prop-2-yn-1-one (8H) (150 mg, 0.5 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42H) (red oil, 172 mg, 97% yield).

42H: \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.92 (d, \(J = 8.1 \) Hz, 2H), 7.78-7.72 (m, 2H), 7.67 (d, \(J = 8.2 \) Hz, 2H), 7.54-7.37 (m, 3H), 6.40 (s, 1H), 6.02 (s, 1H), 4.81 (s, 2H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 191.0, 166.1, 143.1, 140.4, 133.5, 131.6, 130.3, 129.5, 129.3, 128.0, 127.3, 119.6, 98.4, 79.8, 72.7, 34.5, 21.5; IR (neat): 3289, 3054,
4.2.9 Synthesis of 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42I)

General Procedure 2 was followed by using 1-(2-bromophenyl)-3-(p-tolyl)prop-2-yn-1-one (8I) (150 mg, 0.5 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42I) (brown-yellow solid, 166 mg, 94% yield).

42I: 1H NMR (400 MHz, CDCl$_3$) δ 11.13 (s, 1H), 7.59 (dd, $J = 8.0, 1.0$ Hz, 1H), 7.51-7.46 (m, 1H), 7.44-7.39 (m, 2H), 7.33 (ddd, $J = 8.6, 5.8, 2.0$ Hz, 1H), 7.28 (s, 1H), 7.24-7.18 (m, 1H), 5.48 (s, 1H), 4.01 (dd, $J = 6.4, 2.5$ Hz, 2H), 2.42 (d, $J = 5.5$ Hz, 3H), 2.36 (q, $J = 2.9$ Hz, 1H), 2.06 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 191.0, 166.2, 143.2, 140.4, 133.5, 131.6, 130.3, 129.5, 129.3, 128.0, 127.2, 119.6, 98.3, 79.8, 72.7, 34.5, 21.5; IR (neat): 3280, 1586, 1571, 1552, 1522, 1492, 1460, 1430, 1351, 1310, 1280, 1256, 1219, 1184, 1146, 1080, 1021, 949, 925, 872, 827, 791, 757, 734, 677, 666, 636, 564, 530.

4.2.10 Synthesis of 1-(4-chlorophenyl)-3-(prop-2-yn-1-ylamino)-3-(3-fluorophenyl)prop-2-en-1-one (42J)

General Procedure 2 was followed by using 1-(4-chlorophenyl)-3-(3-fluorophenyl)prop-2-y-yn-1-one (8J) (129 mg, 0.5 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent 1-(4-chlorophenyl)-3-(prop-2-yn-1-ylamino)-3-(3-fluorophenyl)prop-2-en-1-one (42J) (brown yellow solid, 143 mg, 91% yield).

42J: 1H NMR (400 MHz, CDCl$_3$) δ 11.34 (s, 1H), 7.92 (d, $J = 8.3$ Hz, 2H), 7.54 (dt, $J = 15.4, 7.7$ Hz, 1H), 7.46 (d, $J = 8.3$ Hz, 2H), 7.36 (d, $J = 8.6$ Hz, 1H), 7.30 (d,
$J = 10.8 \text{ Hz, 1H}$, 5.86 (s, 1H), 4.02 (d, $J = 4.2 \text{ Hz, 2H}$), 2.42 (s, 1H); 13C NMR (100 MHz, DCl$_3$) δ 188.1 (CO), 164.7 (C), 162.7 (d, $^J = 247.0 \text{ Hz, CF}$), 138.2 (C), 137.5 (C), 136.8 (d, $^3J = 7.0 \text{ Hz, C}$), 130.7 (d, $^3J = 8.0 \text{ Hz, CH}$), 123.7 (d, $^4J = 3.0 \text{ Hz, CH}$), 117.1 (d, $^2J = 20.0 \text{ Hz, CH}$), 115.3 (d, $^2J = 22.0 \text{ Hz, CH}$), 128.7 (CH), 128.7 (CH), 94.5 (CH), 79.5 (C), 72.9 (CH), 34.4 (CH$_2$); IR (neat): 3233, 3064, 1598, 1570, 1520, 1473, 1433, 1395, 1351, 1325, 1282, 1265, 1253, 1231, 1202, 1170, 1158, 1128, 1106, 1092, 1065, 1014, 1001, 968, 933, 891, 878, 838, 793, 764, 704, 684, 665, 629, 583, 524.

4.2.11 Synthesis of 2-(5-oxo-5-phenyl-3-(prop-2-yn-1-ylamino)pent-3-en-1-yl)-1H-indene-1,3(2H)-dione (42K)

General Procedure 2 was followed by using 2-(5-oxo-5-phenylpent-3-yn-1-yl)isoindoline-1,3-dione (8K) (152 mg, 0.50 mmol) and propargylamine (33 mg, 0.60 mmol). Final purification of the crude product by flash column chromatography on silica gel using 9:1 hexane/ethyl acetate as the eluent afforded 2-(5-oxo-5-phenyl-3-(prop-2-yn-1-ylamino)pent-3-en-1-yl)-1H-indene-1,3(2H)-dione (42K) (yellow solid, 95 mg, 53% yield).

42K: 1H NMR (400 MHz, DCl$_3$) δ 11.28 (t, $J = 5.8 \text{ Hz, 1H}$), 7.81-7.71 (m, 4H), 7.68-7.58 (m, 2H), 7.41-7.27 (m, 4H), 5.74 (s, 1H), 4.19 (dd, $J = 6.2, 2.4 \text{ Hz, 2H}$), 3.91 (dd, $J = 8.8, 6.9 \text{ Hz, 2H}$), 2.91-2.61 (m, 2H), 2.45-2.22 (m, 1H); 13C NMR (100 MHz, DCl$_3$) δ 188.9, 167.8, 162.8, 139.7, 134.7, 131.8, 130.8, 129.0, 128.3, 128.1, 126.9, 126.2, 123.3, 92.9, 79.1, 72.8, 35.9, 32.3, 30.7; IR (neat): 3260, 3061, 1775, 1713, 1594, 1581, 1550, 1521, 1463, 1438, 1426, 1392, 1354, 1337, 1316, 1290, 1247, 1233, 1188, 1173, 1098, 1077, 1063, 1024, 997, 971, 933, 872, 802, 784, 753, 710, 691, 652, 605, 550, 528.

4.3 General procedure 3. Synthesis of iodo-substituted oxazepine derivatives (44)

In a round-bottomed flask, the corresponding N-propargylic β-enaminones derivatives (42) (0.38 mmol) was dissolved in DCM (10 mL) and to the solution,
ZnCl₂ (0.95 mmol) and I₂ (0.38 mmol) were added, respectively, and stirred at 40 °C under argon atmosphere. When the reaction was over, water (50 mL) was added to the flask and the organic layer was extracted with ethyl acetate (2 x 25 mL). The separated organic phase was washed with water (2 x 50 mL) and then dried over MgSO₄ and filtered. The obtained crude product was purified by flash chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent.

4.3.1 Synthesis of 2-(iodomethylene)-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44A)

General Procedure 3 was followed by using 1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42A) (100 mg, 0.38 mmol), ZnCl₂ (130 mg, 0.95 mmol) and I₂ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 2-(iodomethylene)-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (44A) (brown solid, 119 mg, 81% yield, mp 112.5 °C).

44A: ¹H NMR (400 MHz, CDCl₃) δ 8.05-7.62 (m, 2H), 7.57-7.19 (m, 4H), 6.48 (d, \(J = 20.6 \) Hz, 1H), 6.10-5.83 (m, 1H), 4.82 (d, \(J = 20.6 \) Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 159.1, 158.2, 155.9, 139.6, 134.6, 130.6, 130.3, 128.8, 128.5, 127.7, 126.5, 100.2, 59.9, 54.8; IR (neat): 3058, 3034, 2954, 2921, 2851, 1966, 1953, 1737, 1632, 1615, 1586, 1561, 1493, 1446, 1434, 1362, 1321, 1287, 1259, 1230, 1186, 1141, 1018, 994, 934, 836, 827, 758, 726, 693, 682, 669, 648, 583; MS (ESI, m/z): 387.01 [M+H]⁺; HRMS (ESI): calc. For C₁₉H₁₄INO: 388.0198 [M+H]⁺, found: 388.0196.

4.3.2 Synthesis of 2-(iodomethylene)-7-phenyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4-oxazepine (44B)

General Procedure 3 was followed by using 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)-phenyl)prop-2-en-1-one (42B) (125 mg, 0.38 mmol), ZnCl₂ (130 mg, 0.95 mmol) and I₂ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the
eluent afforded 2-(iodomethylene)-7-phenyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4-oxazepine (44B) (yellow solid, 125 mg, 72% yield, mp 134.4 °C).

44B: 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (d, $J = 8.1$ Hz, 1H), 7.78-7.72 (m, 1H), 7.67 (d, $J = 8.2$ Hz, 1H), 7.54-7.37 (m, 2H), 6.40 (s, 1H), 6.02 (s, 1H), 4.81 (s, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 166.4 (C), 159.5 (C), 155.6 (C), 143.0 (C), 134.3 (C), 131.9 (q, $^2J = 33.0$ Hz, C), 130.8 (CH), 128.8 (CH), 128.1 (CH), 126.5 (CH), 125.4 (q, $^3J = 4.0$ Hz, CH), 124.1 (q, $^1J = 270.0$ Hz, CF$_3$), 99.4 (CH), 60.5 (CH), 55.2 (CH$_2$); IR (neat): 3082, 2969, 1661, 1632, 1617, 1562, 1493, 1448, 1429, 1406, 1367, 1322, 1308, 1261, 1232, 1186, 1161, 1144, 1106, 1066, 992, 969, 930, 868, 849, 816, 775, 761, 731, 678, 648, 602, 590, 516.

4.3.3 Synthesis of 5-(3-fluorophenyl)-2-(iodomethylene)-7-phenyl-2,3-dihydro-1,4-oxazepine (44C)

General Procedure 3 was followed by 3-(3-fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42C) (106 mg, 0.38 mmol), ZnCl$_2$ (130 mg, 0.95 mmol) and I$_2$ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 5-(3-fluorophenyl)-2-(iodomethylene)-7-phenyl-2,3-dihydro-1,4-oxazepine (44C) (brown-yellow solid, 131 mg, 85% yield, mp 115.2 °C).

44C: 1H NMR (400 MHz, CDCl$_3$) δ 7.81-7.70 (m, 1H), 7.55 (ddd, $J = 9.8, 8.1, 6.8$ Hz, 1H), 7.51-7.32 (m, 2H), 7.19-7.05 (m, 1H), 6.40 (s, 1H), 5.99 (s, 1H), 4.79 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 166.3 (C), 161.3 (d, $^1J = 244.0$ Hz, CF), 159.2 (C), 155.8 (C), 142.0 (d, $^2J = 7.0$ Hz, C), 134.4 (C), 130.6 (CH), 129.9 (d, $^3J = 8.0$ Hz, CH), 128.8 (CH), 126.4 (CH), 123.4 (d, $^4J = 4.0$ Hz, CH), 117.0 (d, $^2J = 21.0$ Hz, CH), 114.7 (d, $^2J = 22.0$ Hz, CH), 99.6 (CH), 60.1 (CH), 55.0 (CH$_2$); IR (neat): 3065, 2969, 1661, 1632, 1617, 1562, 1496, 1481, 1445, 1429, 1365, 1319, 1305, 1289, 1253, 1179, 1038, 1021, 981, 929, 891, 873, 791, 758, 719, 684, 649, 628, 589, 525.
4.3.4 Synthesis of 2-(iodomethylene)-7-phenyl-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (44D)

General Procedure 3 was followed by 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42D) (105 mg, 0.38 mmol), ZnCl₂ (130 mg, 0.95 mmol) and I₂ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 2-(iodomethylene)-7-phenyl—5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (44D) (red solid, 119 mg, 78% yield, mp 122.7 °C).

44D: ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.75 (m, 2H), 7.66 (s, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.51-7.42 (m, 3H), 7.38-7.25 (m, 2H), 6.46 (s, 1H), 5.99 (s, 1H), 4.81 (s, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 158.7, 156.0, 139.8, 138.2, 134.6, 130.9, 130.5, 128.8, 128.4, 128.3, 126.4, 124.9, 100.4, 98.6, 54.8, 21.5: IR (neat): 3061, 3023, 2948, 1735, 1617, 1596, 1347, 1340, 1324, 1281, 1261, 1215, 1173, 1133, 1104, 1019, 933, 869, 834, 784, 756, 685, 646, 616, 588, 530.

4.3.5 Synthesis of 2-(iodomethylene)-7-phenyl—5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (44E)

General Procedure 3 was followed by 1-phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42E) (105 mg, 0.38 mmol), ZnCl₂ (130 mg, 0.95 mmol) and I₂ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 2-(iodomethylene)-7-phenyl—5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (44E) (brown solid, 64 mg, 42% yield, mp 121.1 °C).

44E: ¹H NMR (400 MHz, CDCl₃) δ 7.86 - 7.70 (m, 2H), 7.55 - 7.38 (m, 4H), 7.34 - 7.17 (m, 3H), 6.48 (d, J = 7.5 Hz, 1H), 5.98 (s, 1H), 4.80 (s, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 158.8, 156.1, 140.5, 136.8, 134.7, 130.5, 129.5, 129.2, 128.8, 128.3, 127.9, 127.7, 127.3, 126.4, 100.3, 59.6, 54.6, 21.5: IR (neat): 3070, 3028, 2966, 1733, 1633, 1616, 1580, 1556, 1491, 1451, 1437, 1405, 1359,
1321, 1289, 1262, 1232, 1206, 1180, 1140, 1112, 1089, 1036, 1018, 996, 930, 867, 842, 817, 761, 714, 690, 674, 649, 624, 552.

4.3.6 Synthesis of 2-(iodomethylene)-5-(2-methoxyphenyl)-7-phenyl-2,3-dihydro-1,4-oxazepine (44F)

General Procedure 3 was followed by using 3-(2-methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42F) (111 mg, 0.38 mmol), ZnCl₂ (130 mg, 0.95 mmol) and I₂ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 2-(iodomethylene)-5-(2-methoxyphenyl)-7-phenyl-2,3-dihydro-1,4-oxazepine (44F) (light yellow solid, 36 mg, 23% yield, mp 102.6 °C).

44F: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (ddd, J = 11.4, 6.8, 5.0 Hz, 1H), 7.59-7.31 (m, 3H), 7.15-6.83 (m, 1H), 5.81 (s, 1H), 4.00-3.68 (m, 2H), 2.04 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 163.6, 156.0, 140.4, 140.2, 136.2, 131.3, 131.0, 128.3, 127.4, 123.3, 121.1, 111.1, 101.4, 94.6, 80.3, 79.1, 55.7; IR (neat): 3059, 2971, 2839, 1594, 1567, 1549, 1511, 1480, 1462, 1449, 1436, 1347, 1318, 1292, 1271, 1234, 1215, 1183, 1146, 1115, 1078, 1053, 1042, 1020, 994, 929, 872, 802, 774, 741, 691, 673, 636, 617, 582, 529, 506.

4.3.7 Synthesis of 7-(2-bromophenyl)-2-(iodomethylene)-5-phenyl-2,3-dihydro-1,4-oxazepine (44G)

General Procedure 3 was followed by 1-(2-bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (42G) (129 mg, 0.38 mmol), ZnCl₂ (130 mg, 0.95 mmol) and I₂ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 7-(2-bromophenyl)-2-(iodomethylene)-5-phenyl-2,3-dihydro-1,4-oxazepine (44G) (brown-yellow oil, 117 mg, 66% yield,).

44G: ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 7.7, 1.8 Hz, 2H), 7.92 (dd, J = 8.0, 1.0 Hz, 1H), 7.84 (dd, J = 8.0, 0.9 Hz, 1H), 7.78 (ddd, J = 11.1, 7.6, 1.7 Hz, 2H), 7.73-7.62 (m, 6H), 7.60-7.42 (m, 2H), 6.35 (s, 1H), 6.17 (s, 1H), 5.80 (s, 1H), 5.18
(s, 1H), 4.44-4.36 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 191.3, 156.4, 139.1, 137.2, 133.5, 131.1, 130.9, 130.4, 130.3, 130.0, 129.4, 129.2, 128.9, 128.5, 128.3, 127.6, 127.6, 127.2, 122.2, 119.6, 105.0, 99.4, 81.1, 60.0, 55.7, 54.9; IR (neat): 3060, 2974, 2840, 1732, 1636, 1588, 1562, 1482, 1467, 1427, 1356, 1320, 1297, 1250, 1217, 1178, 1137, 1084, 1059, 1018, 1000, 931, 872, 835, 755, 719, 696, 640, 611, 584, 545.

4.3.8 Synthesis of 7-(2-bromophenyl)-2-(iodomethylene)-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (44H)

General Procedure 3 was followed by 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (42H) (135 mg, 0.38 mmol), ZnCl$_2$ (130 mg, 0.95 mmol) and I$_2$ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 7-(2-bromophenyl)-2-(iodomethylene)-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (44H) (yellow solid, 107 mg, 59% yield, mp 133.2 °C).

44H: 1H NMR (400 MHz, CDCl$_3$) δ 7.72-7.65 (m, 2H), 7.64-7.53 (m, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.36-7.24 (m, 3H), 6.10 (s, 1H), 5.93 (s, 1H), 4.94 (s, 2H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 167.3, 159.1, 156.5, 139.2, 138.2, 137.2, 133.5, 131.1, 131.0, 130.9, 128.3, 128.1, 127.6, 124.8, 122.2, 105.2, 59.8, 54.9, 21.5; IR (neat): 3061, 3043, 2953, 2325, 1637, 1622, 1585, 1571, 1464, 1433, 1357, 1319, 1300, 1258, 1238, 1207, 1187, 1136, 1095, 1080, 1057, 1018, 983, 948, 932, 866, 843, 799, 768, 756, 719, 679, 634, 588, 520.

4.3.9 Synthesis of 7-(2-bromophenyl)-2-(iodomethylene)-5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (44I)

General Procedure 3 was followed by 1-(2-bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (42I) (135 mg, 0.38 mmol), ZnCl$_2$ (130 mg, 0.95 mmol) and I$_2$ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 7-(2-bromophenyl)-2-(iodomethylene)-5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (44I) (light yellow solid, 100 mg, 55% yield, mp 128.9 °C).
44I: 1H NMR (400 MHz, CDCl$_3$) δ 7.72 (d, J = 8.2 Hz, 2H), 7.66 (dd, J = 8.0, 1.1 Hz, 1H), 7.53 (dd, J = 7.6, 1.7 Hz, 1H), 7.39 (ddd, J = 8.7, 6.8 and 3.0 Hz, 1H), 7.33-7.27 (m, 1H), 7.21 (d, J = 7.9 Hz, 2H), 6.08 (s, 1H), 5.88(s, 1H), 4.90 (s, 2H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 166.9, 159.0, 156.7, 140.5, 137.3, 136.5, 133.5, 131.1, 130.9, 129.2, 127.58, 127.56, 122.2, 105.2, 59.6, 54.8, 21.5; IR (neat): 3055, 3024, 2971, 2841, 1734, 1638, 1624, 1580, 1560, 1510, 1464, 1429, 1349, 1321, 1296, 1252, 1228, 1209, 1178, 1136, 1113, 1084, 1057, 1018, 997, 965, 947, 932, 845, 811, 776, 754, 721, 688, 663, 638, 624, 556, 547, 508.

4.3.10 Synthesis of 7-(4-chlorophenyl)-5-(3-fluorophenyl)-2-(iodomethylene)-2,3-dihydro-1,4-oxazepine (44J)

General Procedure 3 was followed by 11-(4-chlorophenyl)-3-(prop-2-yn-1-ylamino)-3-(3-fluorophenyl)prop-2-en-1-one (42J) (119 mg, 0.38 mmol), ZnCl$_2$ (130 mg, 0.95 mmol) and I$_2$ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 7-(2-chlorophenyl)-5-(fluorophenyl)-2-(iodomethylene)-2,3-dihydro-1,4-oxazepine (44J) (light yellow solid, 114 mg, 68% yield, mp 136.4 $^\circ$C).

44J: 1H NMR (400 MHz, CDCl$_3$) δ 7.70-7.65 (m, 2H), 7.57-7.49 (m, 2H), 7.44-7.34 (m, 3H), 7.13 (m, J = 8.3, 2.5, 0.8 Hz, 1H), 6.36 (s, 1H), 5.99 (s, 1H), 4.78 (s, 2H), 13C NMR (100 MHz, CDCl$_3$) δ 166.2 (C), 162.9 (d, 1J = 245.0 Hz, CF), 158.0 (C), 155.6 (C), 141.9 (d, 3J = 7.0 Hz, C), 136.7 (C), 132.9 (C), 130.0 (d, 3J = 8.0 Hz, CH), 129.1 (CH), 127.7 (CH), 123.3 (d, 4J = 2.7 Hz, CH), 117.1 (d, 2J = 21.2 Hz, CH), 114.6 (d, 2J = 22.6 Hz, CH), 99.8 (CH), 60.3 (CH), 55.0 (CH$_2$); IR (neat): 3066, 2976, 1629, 1616, 1563, 1487, 1431, 1403, 1364, 1319, 1274, 1255, 1179, 1159, 1136, 1091, 1068, 1011, 982, 961, 929, 892, 878, 834, 817, 789, 760, 724, 711, 692, 666, 634, 621, 599, 555, 518; MS (ESI, m/z): 438.96 [M+H]$^+$; HRMS (ESI): calc. For C$_{18}$H$_{12}$ClFINO: 439.9714 [M+H]$^+$, found: 439.9785.
4.3.11 Synthesis of 2-(2-(iodomethylene)-7-phenyl-2,3-dihydro-1,4-oxazepin-5-yl)ethyl)-1H-indene-1,3(2H)-dione (44K)

General Procedure 3 was followed by 2-(5-oxo-5-phenyl-3-(prop-2-yn-1-ylamino)pent-3-en-1-yl)-1H-indene-1,3(2H)-dione (42K) (136 mg, 0.38 mmol), ZnCl₂ (130 mg, 0.95 mmol) and I₂ (97 mg, 0.38 mmol). Final purification of the crude product by flash column chromatography on silica gel using 19:1 hexane/ethyl acetate as the eluent afforded 2-(2-(2-(iodomethylene)-7-phenyl-2,3-dihydro-1,4-oxazepin-5-yl)ethyl)-1H-indene-1,3(2H)-dione (44K) (yellow solid, 52 mg, 28% yield).

44K: \(^{1}H\) NMR (400 MHz, CDCl₃) \(\delta\) 11.10 (s, 1H), 7.56 (dd, \(J = 8.0\), 1.0 Hz, 1H), 7.51-7.41 (m, 6H), 7.30 (td, \(J = 7.5\), 1.1 Hz, 1H), 7.21-7.15 (m, 1H), 5.47 (s, 1H), 3.96 (dd, \(J = 6.4\), 2.5 Hz, 2H), 2.33 (t, \(J = 2.5\) Hz, 1H); \(^{13}C\) NMR (100 MHz, CDCl₃) \(\delta\) 191.1, 165.8, 143.1, 134.4, 133.4, 130.3, 130.1, 129.2, 128.8, 127.9, 127.2, 119.5, 98.4, 79.6, 72.8, 34.4; IR (neat): 3060, 2919, 1769, 1703, 1634, 1615, 1572, 1493, 1435, 1392, 1354, 1294, 1261, 1237, 1211, 1188, 1177, 1135, 1093, 1064, 1026, 1000, 970, 941, 887, 863, 844, 764, 717, 689, 629, 603, 529, 505.
REFERENCES

APPENDIX A

NMR DATA

1H and 13C NMR spectra were recorded at 400 and 100 MHz, respectively, on a Bruker Spectrospin Avance DPX400 Ultrashield spectrometer.

1H and 13C NMR spectra of products are given below.
Figure 18A. 1H NMR Spectrum of compound 8A.

Figure 19A. 13C NMR Spectrum of compound 8A.
Figure 20A. 1H NMR Spectrum of compound 8B.

Figure 21A. 13C NMR Spectrum of compound 8B.
Figure 22A. 1H NMR Spectrum of compound 8C.

Figure 23A. 13C NMR Spectrum of compound 8C.
Figure 24A. 1H NMR Spectrum of compound 8D.

Figure 25A. 13C NMR Spectrum of compound 8D.
Figure 26A. 1H NMR Spectrum of compound 8E.

Figure 27A. 13C NMR Spectrum of compound 8E.
Figure 28A. 1H NMR Spectrum of compound 8F.

Figure 29A. 13C NMR Spectrum of compound 8F.
Figure 30A. 1H NMR Spectrum of compound 8G.

Figure 31A. 13C NMR Spectrum of compound 8G.
Figure 32A. 1H NMR Spectrum of compound 8H.

Figure 33A. 13C NMR Spectrum of compound 8H.
Figure 34A. 1H NMR Spectrum of compound 8I.

Figure 35A. 13C NMR Spectrum of compound 8I.
Figure 36A. 1H NMR Spectrum of compound 8J.

Figure 37A. 13C NMR Spectrum of compound 8J.
Figure 38A. 1H NMR Spectrum of compound 8K.

Figure 39A. 13C NMR Spectrum of compound 8K.
Figure 40A. 1H NMR Spectrum of compound 42A.

Figure 41A. 13C NMR Spectrum of compound 42A.
Figure 42A. 1H NMR Spectrum of compound 42B

Figure 43A. 13C NMR Spectrum of compound 42B.
Figure 44A. 1H NMR Spectrum of compound 42C.

Figure 45A. 13C NMR Spectrum of compound 42C.
Figure 46A. 1H NMR Spectrum of compound 42D.

Figure 47A. 13C NMR Spectrum of compound 42D.
Figure 48A. 1H NMR Spectrum of compound 42E.

Figure 49A. 13C NMR Spectrum of compound 42E.
Figure 50A. 1H NMR Spectrum of compound 42F.

Figure 51A. 13C NMR Spectrum of compound 42F.
Figure 52A. 1H NMR Spectrum of compound 42G.

Figure 53A. 13C NMR Spectrum of compound 42G.
Figure 54A. 1H NMR Spectrum of compound 42H.

Figure 55A. 13C NMR Spectrum of compound 42H.
Figure 56A. 1H NMR Spectrum of compound 42I.

Figure 57A. 13C NMR Spectrum of compound 42I.
Figure 58A. 1H NMR Spectrum of compound 42J.

Figure 59A. 13C NMR Spectrum of compound 42J.
Figure 60A. 1H NMR Spectrum of compound 42K.

Figure 61A. 13C NMR Spectrum of compound 42K.
Figure 62A. 1H NMR Spectrum of compound 44A.

Figure 63A. 13C NMR Spectrum of compound 44A.
Figure 64A. 1H NMR Spectrum of compound 44B.

Figure 65A. 13C NMR Spectrum of compound 44B.
Figure 66A. 1H NMR Spectrum of compound 44C.

Figure 67A. 13C NMR Spectrum of compound 44C.
Figure 68A. 1H NMR Spectrum of compound 44D.

Figure 69A. 13C NMR Spectrum of compound 44D.
Figure 70A. 1H NMR Spectrum of compound 44E.

Figure 71A. 13C NMR Spectrum of compound 44E.
Figure 72A. 1H NMR Spectrum of compound 44F.

Figure 73A. 13C NMR Spectrum of compound 44F.
Figure 74A. 1H NMR Spectrum of compound 44G.

Figure 75A. 13C NMR Spectrum of compound 44G.
Figure 76A. 1H NMR Spectrum of compound 44H.

Figure 77A. 13C NMR Spectrum of compound 44H.
Figure 78A. 1H NMR Spectrum of compound 44I.

Figure 79A. 13C NMR Spectrum of compound 44I.
Figure 80A. 1H NMR Spectrum of compound 44J.

Figure 81A. 13C NMR Spectrum of compound 44J.
Figure 82A. 1H NMR Spectrum of compound 44K.

Figure 83A. 13C NMR Spectrum of compound 44K.