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ABSTRACT

ON OBTAINING REGULAR, WEAKLY REGULAR AND NON-WEAKLY
REGULAR BENT FUNCTIONS OVER FINITE FIELDS AND RING OF

INTEGERS MODULO PM

Çelik, Dilek

Ph.D, Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

August 2014, 47 pages

Bent functions over the finite fields of odd characteristics received a lot of attention of
late years. However, the classification and construction of bent functions seems quite
tough.
Over the finite fields with characteristic 2, a method is given to construct bent functions
using near-bent functions [11]. This method is then generalized to finite fields with p
elements for an odd prime p by Çeşmelioğlu et al. [3, 4]. The idea is constructing a bent
function F by ’glueing’ the near-bent functions in such a way that Walsh spectrum of F
do not include zero value. This can be achieved by combining the near-bent functions
having no common element in supports of their Walsh transforms and the union of
their support of Walsh transforms should be equal to domain of near-bent functions.
In this thesis, we aim to construct regular, weakly regular and non-weakly regular bent
functions. For this purpose, we first give an adaptation of the method given in [3], to
the finite fields with pm elements and ring of integers modulo pm, wherem is a positive
integer greater than 1. Then, we generalize the method by using s-plateaued functions,
for an integer s > 1, instead of using near-bent functions over ring of integers modulo
pm. It is notable to emphasize that, we obtain completely different results in every
adaptation process.
To apply the method of construction, we compute the Walsh spectrum of quadratic
functions over finite fields with pm elements and ring of integers modulo pm. We
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evaulate the quadratic Gauss sum over Zq to achieve the computation over the ring
of integers. Also, we give a technique to classify the constructed bent functions as
regular, weakly regular and non-weakly regular.

Keywords : Bent, Near-Bent, Plateaued Functions, Weakly Regular, Non-Weakly Reg-
ular, Finite Fields, Rings of Integers, Walsh Spectrum, Fourier Transform
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ÖZ

SONLU CİSİMLER VE SONLU TAM SAYI HALKALARI MODULO PM

ÜZERİNDE DÜZENLİ, ZAYIFÇA DÜZENLİ VE ZAYIFÇA OLMAYAN
DÜZENLİ BÜKÜK FONKSİYONLARIN ÜRETİLMESİ ÜZERİNE

Çelik, Dilek

Doktora, Kriptoloji Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ağustos 2014, 47 sayfa

Son yıllarda, karakteristiği tek olan sonlu cisimlerde tanımlı bükük fonksiyonlar üzerinde
yapılan çalışmalar çok yaygınlaşmıştır. Fakat, bükük fonksiyonların üretimi ve sınıflandırılması
oldukça zor gözükmektedir. Karakteristiği 2 olan sonlu cisimler üzerinde yarı bükük
fonksiyonlar kullanarak bükük fonksiyonlar üretme metodu ortaya çıkarılmıştır [11].
Daha sonra bu metot, p tek bir asal sayı olmak üzere, p elemanlı sonlu cisimler üzerinde
çalışacak şekilde geliştirilmiştir [3]. Metodun anafikri, yarı bükük fonksiyonları, üretilecek
olanF bükük fonksiyonunun Walsh spektrumunda sıfır bulundurmayacak şekilde yapıştırmaktır.
Bu amaca, yarı bükük fonksiyonların Walsh dönüşümlerinin desteklerinde (support-
larında) ortak eleman olmayacak ve Walsh dönüşümlerinin desteklerinin (support-
larının) birleşimi yarı bükük fonksiyonların tanım kümesi olacak şekilde seçilmesiyle
ulaşılabilir.
Bu çalışmada, düzenli, zayıfça düzenli ve zayıfça olmayan düzenli bükük fonksiy-
onlar üretmeyi hedeflemekteyiz. Bu amaç için öncelikle [3, 4] makalelerinde verilen
bazı çalışmaları pm elemanlı sonlu cisimler ve tam sayı halkaları modulo pm üzerine
adapte ettik. Ayrıca, tam sayı halkaları modulo pm üzerinde, metodu yarı bükük
fonksiyonlar yerine, s > 1 bir tam sayı olmak üzere, s-plato fonksiyonlar kullanarak
çalışacak şekilde geliştirdik. Adaptasyon çalışmasının her aşamasında farklı sonuçlar
elde ettiğimizi vurgulamak isteriz.
Bükük fonksiyon üretme methodunu ikinci dereceden fonksiyonlar kullanarak bir uygu-
lama yapmak amacıyla, pm elemanlı sonlu cisimler ve tam sayı halkaları modulo pm
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üzerinde tanımlı ikinci dereceden fonksiyonların Walsh spektrumunu hesapladık. Tam
sayı halkaları modulo pm’deki uygulamayı yapabilmek için, bu kümede ikinci derece
Gauss toplamını hesapladık. Ayrıca, ürettiğimiz bu bükük fonksiyonların, düzenli,
zayıfça düzenli ve zayıfça olmayan düzenli bükük fonksiyonlar olarak sınıflandırılabilmesi
için bir yöntem verdik.

Anahtar Kelimeler : Bükük Fonksiyon, Yarı Bükük Fonksiyon, Sonlu Halka, Sonlu
Cisim, Zayıfça Düzenli, Zayıfça Olmayan Düzenli
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CHAPTER 1

INTRODUCTION

Boolean bent functions were first introduced by Rothaus in 1976 and played a signifi-
cant role in design theory, coding theory and cryptography due to having the maximum
Hamming distance to the set of all affine functions [15]. The general theory of the bent
functions over an arbitrary finite field is developed by Kumar, Scholtz and Welch [10].
Ever since that time a lot of studies have been made and interesting results are obtained
through studying, for example, monomial, binomial, and quadratic functions. One can
study some of them [8], [7], [9], [3], [6], [12], [1].
In 2009, Leander and McGuire has given a method for construction of bent functions
using near-bent functions over the finite fields with characteristic 2 [11]. By this, they
get the first examples of non-weakly regular bent functions in dimensions 10 and 12.
The idea is constructing a bent function F by ’glueing’ the near-bent functions in such
a way that Walsh spectrum of F do not include zero value. This can be achieved by
combining the near-bent functions which have no common element in supports of their
Walsh transforms and the union of their support of Walsh transforms should be equal
to the domain of near-bent functions.
The idea is later generalized to finite fields with odd characteristic by Çeşmelioğlu et al.
[3]. For an odd prime p, they give a method that uses a determined number of near-bent
functions defined from Fnp to Fp to construct weakly regular and non-weakly regular
bent functions. Moreover, they give numerical illustrations using quadratic near-bent
functions. Afterwards, they develope the method in such a way that plateaued func-
tions are used instead of near-bent functions for construction [4].
The fundamental aim of this thesis is to give a method to construct regular, weakly-
regular and non-weakly regular bent functions over finite fields with pm elements and
the ring of integers modulo pm, for an odd prime p and any integer m > 1.
For this purpose, we generalize some of the ideas that are given in [11], [3] and [4].
Using generalized near-bent functions from Fnpm to Fpm , we present a method to con-
struct generalized bent functions by adding one more dimension. That is, using this
method of construction, we get bent functions from Fnpm × Fpm to Fpm .
To give concrete examples, we compute Walsh spectrum of all quadratic functions
defined from Fnpm to Fpm and apply the construction method on these functions. A
process to decide whether the constructed bent function is regular, weakly regular or
non-weakly regular is explained in detail.
Then, we adapt this study over ring of integers modulo pm. This adaptation brings
some difficulties due to the zero divisors, nonexistence of suitable Lagrange interpo-
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lation coefficients and need of the computation of Gauss sums for the ring Zpm . First,
we introduce a method that constructs bent functions over Zpm . Then, the Walsh spec-
trum of quadratic functions from Znpm to Zpm defined by d1x

2
1 + d2x

2
2 + ...+ dn−sx

2
n−s

is computed to give numerical examples for the construction where di ∈ Z×pm and
0 ≤ s ≤ n − 1. Using this computation, a simple method is given to obtain quadratic
near-bent functions with pairwise disjoint support of Walsh transforms. Also, we eval-
uate the quadratic Gauss sum over Zpm for the computations. We apply the construc-
tion method on certain quadratic functions and obtain regular, weakly regular or non-
weakly regular bent functions. We emphasize that different results than the results of
the finite field case are obtained in every application process.
Lastly, we broaden this study over the ring of integers modulo pm by giving a method
that uses s-plateaued functions instead of near-bent functions for a positive integer
s > 1. Using this method, one can obtain bent functions by adding smore dimensions.
That is using s-plateaued functions from Znpm to Zpm , we can construct bent functions
defined from Znpm × Zspm to Zpm . For illustrations, we use quadratic functions with a
determined form, Walsh spectrum of which we compute. Also, we explain how to use
these quadratic functions to obtain functions with disjoint support of Walsh transforms.
Then, a technique to identify the constructed bent functions as regular, weakly regular
and non-weakly regular is given.
The thesis is organized as follows. This first chapter is devoted to explain the pur-
pose of the thesis, give the necessary definitions and notation regarding functions with
special properties defined over finite fields with pm elements and the ring of integers
modulo pm. In Chapter 2, we give a method to construct bent functions using near-bent
functions defined from Fnpm to Fpm . Then, we apply the method on quadratic functions
and classify the constructed bent functions as regular, weakly regular or non-weakly
regular. Chapter 3 generalizes the idea that is given in Chapter 2 to the ring of integers
modulo pm. In Chapter 4, we develop the method of construction that is given in Chap-
ter 3. Instead of near-bent functions, we use s-plateaued functions to construct bent
functions, for a positive integer s > 1. It is notable to emphasize that the dimension
increases by s for this case.

1.1 Functions Over Finite Fields With Special Properties

This section is devoted to give some necessary notation and definitions restricted to the
scope of the thesis. Note that, the notation given in this section is valid for the whole
thesis.
Let p be a prime and q = pm for a positive integer m. Let wp = e

2π
√
−1
p be the complex

primitive p-th root of unity. Consider the finite extension Fq of the finite field Fp. This
extension is of order m and every element a in Fq, can be uniquely represented in the
form,

a = c1a1 + c2a2 + · · ·+ cmam,

where c1, c2, · · · cm ∈ Fp and {a1, a2, · · · , am} is a basis of Fq over Fp.

2



Definition 1.1. For a ∈ Fq, the trace of a over Fp is denoted and defined as
Tr(a) := a+ aq + · · ·+ aq

m−1 .

Definition 1.2. Let F∗q denote the multiplicative group of Fq which consists of nonzero
elements of Fq. Let t ∈ F∗q and c ∈ Fnq . Given a function f(x) : Fnq → Fq, Walsh
transform (or Fourier transform) of f is defined by,

f̂(t, c) =
∑
x∈Fnq

wTr(tf(x)+c·x)
p ,

where wp = e
2π
√
−1
p is the complex primitive p-th root of unity and c · x denotes the

standard inner product of c and x.

Definition 1.3. For a fixed t ∈ F∗q , the Walsh spectrum of f is denoted and defined

by spec(f) :=
{
f̂(t, c) : c ∈ Fnq

}
. Also, the support of f is given by supp(f) :={

c ∈ Fnq : f(t, c) 6= 0
}

.

The term generalized bent functions is used for various definitions. The natural gener-
alization of bent functions that we use in this thesis is first proposed in 1985 by Kumar
et al. [10].

Definition 1.4. For a fixed t ∈ F∗q , a function f : Fnq → Fq is called a generalized bent

function if
∣∣∣f̂(t, c)

∣∣∣ = qn/2, for all c ∈ Fnq .

Definition 1.5. For a fixed t ∈ F∗q , a function f : Fnq → Fq is called a generalized

near-bent function if
∣∣∣f̂(t, c)

∣∣∣ = q(n+1)/2 or 0, for all c ∈ Fnq .

A Boolean function is bent (respectively near-bent) if all Walsh coefficients are equal
to ∓2n/2 (respectively ∓2(n+1)/2 or 0). Realize that, this coincides with the concept of
bent and near-bent functions over finite fields with odd characteristic. However, there
is an important difference which is Boolean bent (respectively near-bent) functions
exist only if the number of variables, n, is even (respectively odd).

Definition 1.6. Let f be a function defined from Fnq to Fq. For t ∈ F∗q , define f t

from Fnq to Fp as f t(x) = Tr(tf(x)). Then, the Walsh transform of f t is f̂ t(c) =∑
x∈Fnq

w
f t(x)+Tr(c·x)
p .

Let f ∗ be a function from Fnq to Fp. The normalized Fourier coefficients of a bent
function, f t, can be computed as follows [10, 5],

q−n/2f̂ t(c) =

{
∓wf

∗(c)
p , if (n is even) or (n is odd and p ≡ 1 (mod 4))

∓
√
−1w

f∗(c)
p , if n is odd and p ≡ 3 (mod 4).
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Definition 1.7. Let f t be a bent function defined as in the Definition 1.6. Then,

• f t is called regular, if for every c ∈ Fnq , q−n/2f̂ t(c) = w
f∗(c)
p .

• f t is called weakly regular, if there exists a complex v which has unit magnitude
such that vq−n/2f̂ t(c) = w

f∗(c)
p for all c ∈ Fnq .

• Otherwise, f t is called non-weakly regular.

1.2 Functions with Special Properties over Zq

In this section, we continue to give some necessary notation and definitions restricted
to the scope of the thesis. In Chapter 3, we adapt the study over finite fields that we
give in Chapter 2 to the ring of integers modulo q. So, the definitions and notation that
are given for the finite field case in the previous section, will be customized.
The following notation is valid for whole thesis.

• p is an odd prime and q = pm for some positive integer m.

• Zq: The ring of integers modulo q.

• Znq : The direct sum of n copies of Zq.

• Z×q : The multiplicative group of Zq.

• w: The complex primitive q-th root of unity, that is w = e
2π
√
−1
q .

Note that, The multiplicative group (Z/rZ)× is cyclic if and only if r is 1, 2, 4, pm
or 2pm ([14], pg. 83). Then, the multiplicative group of Zq is a cyclic group of order
φ(pm) = pm − pm−1.

Definition 1.8. Let c ∈ Znq . Given a function f from Znq to Zq, the Walsh transform
(or Fourier transform) of f is denoted and defined by,

f̂(c) =
∑
x∈Znq

wf(x)−c·x,

where c · x denotes the standard inner product of c and x.
Also, the Walsh spectrum of f is spec(f) :=

{
f̂(c) : c ∈ Znq

}
and the support of f is

supp(f) :=
{
c ∈ Znq : f(c) 6= 0

}
.

Definition 1.9. A function f : Znq → Zq is called a bent function if
∣∣∣f̂(c)

∣∣∣ = qn/2, for
all c ∈ Znq .
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Realize that, this concept coincides with the concept of a generalized bent function
given in Definition 1.4.

Consider a function f : Znq → Zq with a Walsh spectrum such that
∣∣∣f̂(c)

∣∣∣2 = Q or 0

for all c ∈ Znq . As
∑

c∈Znq

∣∣∣f̂(c)
∣∣∣2 = q2n by Parseval’s identity, Q equals to qn+s, for

some integer s with 0 ≤ s ≤ n. These functions are called s-plateaued functions and
the formal definitions are as follows.

Definition 1.10. Let s be a positive integer. A function f : Znq → Zq is called an

s-plateaued function if
∣∣∣f̂(c)

∣∣∣ = q(n+s)/2 or 0, for all c ∈ Znq .

Definition 1.11. A function f : Znq → Zq is called a near-bent function if
∣∣∣f̂(c)

∣∣∣ =

q(n+1)/2 or 0, for all c ∈ Znq .

Note that, near-bent functions are 1-plateaued functions, indeed.

Let f be a bent function and f̃ be a function defined from Znq to Zq. Then, the normal-
ized Fourier coefficients of f can be computed as follows [10].

(q)−n/2f̂(c) =

{
∓wf̃(c), if (n is even) or (n is odd and q ≡ 1 (mod 4)
∓
√
−1wf̃(c), if n is odd and q ≡ 3 (mod 4).

Definition 1.12. Let f be a bent function defined from Znq to Zq. Then,

• f is called regular, if for every c ∈ Znq , q−n/2f̂(c) = wf̃(c).

• f is called weakly regular, if there exists a complex v which has unit magnitude
such that vq−n/2f̂(c) = wf̃(c) for all c ∈ Znq .

• Otherwise, f is called non-weakly regular.
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CHAPTER 2

A CONSTRUCTION OF BENT FUNCTIONS OVER FINITE
FIELDS

2.1 Introduction

As this chapter can be seen as a generalization of the techniques given in the Article
[3] to q-ary case. We would like to give the following list of contributions.

• First, we emphasize that we study over finite fields with pm elements for an
integer m greater than 1 instead of finite fields with p elements.

• In [3], the authors compute the Walsh spectrum of quadratic functions defined
from Fnp to Fp in the form d1x

2
1 + d2x

2
2 + ... + dn−sx

2
n−s where di ∈ F×p and

0 ≤ s ≤ n− 1.
We compute Walsh spectrum of all quadratic functions defined from Fnq to Fq and
obtained a different result than the one in [3]. Moreover, we use a completely
different technique for the computation.

• For the construction of bent functions, quadratic near-bent functions having pair-
wise disjoint support of Walsh transforms are needed. In [3], to show that a set
of functions have pairwise disjoint support of Walsh transforms, the authors used
the concept of linear structures. Instead of this, we used a simpler and shorter
method to demonstrate it.

• We give a comprehensive method to classify the constructed bent function as
regular, weakly regular or non-weakly regular.

• For a fixed p, more number of bent functions can be constructed compared to
[3]. Besides, for a fixed p, the percentage of non-weakly regular bent functions
are greater than the percentage of regular and weakly regular bent functions.

This chapter is organized as follows. Section 2.2 is devoted to give a method to con-
struct bent functions over finite fields with q elements. In Section 2.3, we determine the
Walsh spectrum of q-ary quadratic functions. Then, we show how to obtain quadratic
near-bent functions with pairwise disjoint support of Walsh transforms. In section 2.4,
we give an application of the study over quadratic functions and so, construct bent

7



functions. Then, we give a comprehensive explanation to classify these constructed
bent functions as regular weakly regular and non-weakly regular.

2.2 A Construction of Bent Functions Using Near-Bent Functions over Finite
Fields

Let fu : Fnq → Fq, for u ∈ Fq be near-bent functions. Then,
∣∣∣f̂u(t, a)

∣∣∣2 = qn+1 or 0

for all a ∈ Fnq . The idea is combining these functions in such a way that, for a fixed
t ∈ F∗q the support of their Walsh transforms do not have a common element and the
union of their support of Walsh transforms should be equal to domain of these near-
bent functions. By this way, we construct a function F : Fnq × Fq → Fq such that∣∣∣F̂(t, (a, b))∣∣∣2 = qn+1, for all (a, b) ∈ Fnq × Fq, which implies that F is bent.

Lemma 2.1. Let f : Fnq → Fq. Then, for a fixed t ∈ F∗q ,∑
c∈Fnq

∣∣∣f̂(t, c)
∣∣∣2 =

{
q2n, if x = y
0, if x 6= y.

Proof. ∑
c∈Fnq

∣∣∣f̂(t, c)
∣∣∣2 =

∑
c∈Fnq

∑
x,y∈Fnq

wTr(tf(x)+c·x−tf(y)−c·y)
p

=
∑
x,y∈Fnq

wTr(t(f(x)−f(y)))
p

∑
c∈Fnq

wTr(c·(x−y))
p .

Realizing that, ∑
c∈Fnq

wTr(c·(x−y))
p =

{
qn, if x = y
0, if x 6= y,

we get the result. By this lemma, a special case of Parseval’s relation can be obtained
for q-ary case.

Theorem 2.2. For u ∈ Fq, let fu : Fnq → Fq be near-bent functions such that
supp(f̂i)∩supp(f̂j) is empty for i, j ∈ Fq. Let ξi be elements of Fq for i ∈ {0, 1, ..., q − 1}.
Then, the function F : Fnq × Fq → Fq defined by

F (x, y) = (−1)
∑
u∈Fq

(y − ξ0)(y − ξ1)...(y − ξq−1)

(y − u)
fu(x)

is bent.
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Proof. Let t ∈ F∗q be fixed. Using Lemma 2.1, we have∑
c∈Fnq

∣∣∣f̂u(t, c)∣∣∣2 =
∣∣∣supp(f̂u)∣∣∣ qn+1 = q2n.

Hence,
∣∣∣supp(f̂u)∣∣∣ = qn−1. To complete the proof, we need to choose fu such that⋃

u∈Fq supp(f̂u) = Fnq . For the functions fu to satisfy this property, q-many near-bent
functions are needed.

Let (a, b) ∈ Fnq × Fq. Then,

F̂
(
t, (a, b)

)
=

∑
x∈Fnq ,y∈Fq

wTr(tF (x,y)+a·x+by)
p =

∑
y∈Fq

wTr(by)
p

∑
x∈Fnq

wTr(tF (x,y)+a·x)
p

=
∑
y∈Fq

wTr(by)
p

∑
x∈Fnq

w
Tr
(

((−1)
∏
α∈F∗q

α)tfy(x)+a·x
)

p

=
∑
y∈Fq

wTr(by)
p

∑
x∈Fnq

wTr(tfy(x)+a·x)
p =

∑
y∈Fq

wTr(by)
p f̂y(t, a).

Each a is an element of exactly one supp(f̂y) because for u, v ∈ Fq, supp(f̂u) ∩
supp(f̂v) is empty and

⋃
u∈Fq supp(f̂u) = Fnq . So, we have

F̂ (t, (a, b)) =
∑
y∈Fq

wTr(by)
p f̂y(t, a) = wTr(by)

p f̂y(t, a),

which implies
∣∣∣F̂ (t, (a, b))

∣∣∣ =
∣∣∣f̂y(t, a)

∣∣∣ = q
n+1
2 .

2.3 Computation of Walsh Spectrum of Quadratic Functions over Fq

To construct bent functions using Theorem 2.2, we need near-bent functions with the
desired properties. For this aim, we study on Walsh spectrum of quadratic functions.
Every quadratic function f : Fnq → Fq can be written as,

f(x1, x2, ..., xn) =
n∑

i,j=1

aijxixj,

9



with aij = aji. Without loss of generality, we can omit the affine part of f because
the absolute value of the Walsh transform of f does not change when a constant value
is added to it. Then, f can be associated with a quadratic form as XAXT where A is
an n × n symmetric matrix with (i, j)th entry is aij , X = [x1x2...xn] and XT is the
transpose matrix of X .
One can transform a quadratic form by a linear substitution of indeterminates to find
a simpler form. This linear substitution can be expressed by a matrix relation. If the
square matrix used in this substitution is nonsingular, then we call this, nonsingular
linear substitution. Two quadratic forms are said to be equivalent if one can be trans-
formed to the other by means of a nonsingular linear substitution of indeterminates.
Any quadratic form over Fq is equivalent to a diagonal quadratic form [13]. That is,
for each quadratic form, there exists d1, d2, ..., dn ∈ Fq such that f(x1, x2, ..., xn) =
d1x

2
1 + d2x

2
2 + ...+ dnx

2
n.

So, if we describe the Walsh spectrum of the quadratic form fn,n−s(x1, x2, ..., xn) :=
d1x

2
1+d2x

2
2+...+dn−sx

2
n−s for s ∈ {0, 1, ..., n− 1}, we determine the Walsh spectrum

of all quadratic functions.

Theorem 2.3. Let fn,n−s : Fqn → Fq be defined by fn,n−s(x1, x2, ..., xn) := d1x
2
1 +

d2x
2
2 + ...+ dn−sx

2
n−s for d1, d2, · · · , dn−s ∈ F∗q . Let D =

∏n−s
i=1 di and s be an integer

such that 0 ≤ s ≤ n− 1. Let η denote the quadratic character of Fq.
For c1, c2, · · · cn ∈ Fq, let

• v = Tr(−(c2
1)(4td1)−1 − (c2

2)(4td2)−1 − · · · − (c2
n−s)(4tdn−s)

−1).

• v′ = Tr(−(c2
1)(4td1)−1 − (c2

2)(4td2)−1 − · · · − (c2
n)(4tdn)−1).

The condition EQ is defined to describe the case when,

Tr(cn) = · · · = Tr(cn−s+1) = 0,

and the condition NEQ is defined to describe the case when

(Tr(cn), T r(cn−1), · · · , T r(cn−s+1)) 6= (0, 0, · · · , 0).

For a fixed t ∈ F∗q and c ∈ Fnq , we have the following results.

1. The Case n− s is even and s > 0:

f̂n,n−s(t, c) =


η(tn−sD)q

n+s
2 wvp, if p ≡ 1 (mod 4) and EQ

√
−1

(n−s)m
η(tn−sD)q

n+s
2 wvp, if p ≡ 3 (mod 4) and EQ

0, if NEQ.

2. The Case n− s is odd and s > 0:

f̂n,n−s(t, c) =


(−1)m−1η(tn−sD)q

n+s
2 wvp, if p ≡ 1 (mod 4) and EQ

(−1)m−1
√
−1

(n−s)m
η(tn−sD)q

n+s
2 wvp, if p ≡ 3 (mod 4) and EQ

0, if NEQ.
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3. The Case s = 0:

f̂n,n(t, c) =


η(tnD)q

n
2wv

′

p , if n even and p ≡ 1 (mod 4)

(−1)m−1η(tnD)q
n
2wv

′

p , if n odd and p ≡ 1 (mod 4)√
−1

nm
η(tnD)q

n
2wv

′

p , if n even and p ≡ 3 (mod 4)

(−1)m−1
√
−1

nm
η(tnD)q

n
2wv

′

p , if n odd and p ≡ 3 (mod 4).

Proof. Let ψ be the canonical additive character of Fq and G(η, ψ) be the associated
Gaussian sum. Using [13, Theorem 5.33],

f̂1,1(t, c) =
∑
x∈Fq

wTr(tdx
2+cx)

p = wTr(−c
2(4td)−1)

p η(td)G (η, ψ) .

The definition of Gauss sum over Fq is given as [13],

G (η, ψ) =

{
(−1)m−1q1/2, if p ≡ 1 (mod 4)
(−1)m−1

√
−1

m
q1/2, if p ≡ 3 (mod 4).

This definition leads to,

f̂1,1(c) =

{
(−1)m−1q

1
2w

Tr(−c2(4td)−1)
p η(td), if p ≡ 1 (mod 4)

(−1)m−1
√
−1

m
q

1
2w

Tr(−c2(4td)−1)
p η(td), if p ≡ 3 (mod 4).

Now, as c = (c1, c2, ..., cn) ∈ Fnq consider

f̂2,1(t, c) =
∑
x∈F2

q

wTr(tf2,1(x)+c·x)
p =

∑
x1,x2∈Fq

wTr(tdx
2
1+c1x1+c2x2)

p

=
∑
x2∈Fq

wTr(c2x2)
p

∑
x1∈Fq

wTr(tdx
2
1+c1x1)

p

=


(−1)m−1η(td)q1+ 1

2w
Tr(−c21(4td)−1)
p , if Tr(c2) = 0 and p ≡ 1 (mod 4)

(−1)m−1
√
−1

m
η (td) q1+ 1

2w
Tr(−c21(4td)−1)
p , if Tr(c2) = 0 and p ≡ 3 (mod 4)

0, if Tr(c2) 6= 0.

Now, consider

f̂3,1(t, c) =
∑
x∈F3

q

wTr(tf3,1(x)+c·x)
p =

∑
x1,x2,x3∈Fq

wTr(tdx
2
1+c1x1+c2x2+c3x3)

p

11



=
∑
x3∈Fq

wTr(c3x3)
p

∑
x2∈Fq

wTr(c2x2)
p

∑
x1∈Fq

wTr(tdx
2
1+c1x1)

p

=


(−1)m−1η(td)q2+ 1

2w
Tr(−c21(4td)−1)
p , if Tr(c2) = Tr(c3) = 0 and p ≡ 1 (mod 4)

(−1)m−1
√
−1

m
η(td)q2+ 1

2w
Tr(−c21(4td)−1)
p , if Tr(c2) = Tr(c3) = 0 and p ≡ 3 (mod 4)

0, if (Tr(c2), T r(c3)) 6= (0, 0).

Then, one can easily see that,

f̂n,1(t, c) =


(−1)m−1η(td)q

n+1
2 w

Tr(−c21(4td)−1)
p , if p ≡ 1 (mod 4) and EQ

(−1)m−1
√
−1

m
η(td)q

n+1
2 w

Tr(−c21(4td)−1)
p , if p ≡ 3 (mod 4) and EQ

0, if NEQ.

More concrete examples can be given but instead, we compute the last steps to com-
plete the proof.

f̂n,n−1(t, c) =
∑
x∈Fnq

wTr(tfn,n−1(x)+c·x)
p =

∑
x∈Fnq

w
Tr(td1x21+···+tdn−1x2n−1+c1x1+···+cnxn)
p

=

∑
xn∈Fq

wTr(cnxn)
p

∑
x1∈Fq

wTr(td1x
2
1+c1x1)

p

 · · ·
 ∑
xn−1∈Fq

w
Tr(tdn−1x2n−1+cn−1xn−1)
p

 .

This leads to the followings,

• If n− 1 is even:

f̂n,n−1(c) =


η(tn−1D)q

n+1
2 wvp, if p ≡ 1 (mod 4) and Tr(cn) = 0

√
−1

(n−1)m
η(tn−1D)q

n+1
2 wvp, if p ≡ 3 (mod 4) and Tr(cn) = 0

0, if Tr(cn) 6= 0.

• If n− 1 is odd:

f̂n,n−1(c) =


(−1)m−1η(tn−1D)q

n+1
2 wvp, if p ≡ 1 (mod 4) and Tr(cn) = 0

(−1)m−1
√
−1

(n−1)m
η(tn−1D)q

n+1
2 wvp, if p ≡ 3 (mod 4) and Tr(cn) = 0

0, if Tr(cn) 6= 0.

Lastly, we compute f̂n,n.

f̂n,n(t, c) =
∑
x∈Fnq

wTr(tfn,n(x)+c·x)
p =

∑
x∈Fnq

wTr(td1x
2
1+···+tdnx2n+c1x1+···+cnxn)

p

12



=

∑
x1∈Fq

wTr(td1x
2
1+c1x1)

p

∑
x2∈Fq

wTr(td2x
2
2+c2x2)

p

 · · ·
∑
xn∈Fq

wTr(tdnx
2
n+cnxn)

p



=


η(tnD)q

n
2wv

′

p , if n even and p ≡ 1 (mod 4)

(−1)m−1η(tnD)q
n
2wv

′

p , if n odd and p ≡ 1 (mod 4)√
−1

nm
η(tnD)q

n
2wv

′

p , if n even and p ≡ 3 (mod 4)

(−1)m−1
√
−1

nm
η(tnD)q

n
2wv

′

p , if n odd and p ≡ 3 (mod 4).

Lemma 2.4. Let fu : Fnq → Fq be defined by fu(x1, x2, ..., xn) = du1x
2
1 + du2x

2
2 + ...+

dun−1x
2
n−1 + uxn, where u ∈ Fq and du1 , d

u
2 , · · · , dun−1 ∈ F∗q . For u, v ∈ Fq with u 6= v,

the supports of the Walsh transforms of fu and fv are disjoint.

Proof. Note that, by Theorem 2.3, fu is a near-bent function because if a linear term is
added to a near-bent function it will again be a near-bent function.
Let t ∈ F∗q be fixed and c = (c1, c2, ..., cn) ∈ Fnq . Then,

f̂u(t, c) =
∑
x∈Fnq

wTr(tfu(x)+c·x)
p =

∑
x∈Fnq

w
Tr(t(du1x

2
1+du2x

2
2+...+dun−1x

2
n−1+uxn)+c·x)

p

=
∑

x1,...xn−1∈Fq

w
Tr(t(du1x

2
1+du2x

2
2+...+dun−1x

2
n−1)+c1x1+...+cn−1xn−1)

p

∑
xn∈Fq

wTr(utxn+cnxn)
p

The first sum in this product can be computed using Gauss sum and it can be seen that
it is nonzero by Theorem 2.3. So, only the second sum,

∑
xn∈Fq w

Tr(utxn+cnxn)
p , can

make this product zero. If utxn + cnxn is nonzero, then Tr(utxn + cnxn) is linear, so
the sum is zero. Hence, fixing t ∈ F∗q we have,

supp(f̂u) =
{
c = (c1, c2, ..., cn) ∈ Fnq : ut ≡ −cn (mod q)

}
.

2.4 Conclusion and Examples

In Theorem 2.3, we compute Walsh spectrums of certain quadratic functions and in
Lemma 2.4, we show how to obtain quadratic functions with pairwise disjoint support
of Walsh transforms. Now, using this information we give an application of the con-
structed method that is given in Theorem 2.2. Moreover, we classify these constructed
functions as regular bent, weakly regular bent and non-weakly regular bent.
Let fu : Fnq → Fq be defined by fu(x1, x2, ..., xn) = du1x

2
1+du2x

2
2+...+dun−1x

2
n−1+uxn,

where u ∈ Fq and du1 , d
u
2 , · · · , dun−1 ∈ F∗q . Let F : Fn+1

q → Fq be a bent function con-
structed by near-bent functions, fu, using Theorem 2.2.
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Let t ∈ F∗q . By Definition 1.6, F t : Fn+1
q → Fp is a function with F t(x) = Tr(tF (x))

and f tu : Fnq → Fp is a function with f tu(x) = Tr(tfu(x)). Our aim is to determine the
cases for which F t is regular, weakly-regular or non-weakly regular, for a fixed t ∈ F∗q .

Let (a, b) ∈ Fnq × Fq. At the end of the proof of Theorem 2.2, we conclude that, for

each a ∈ Fnq and a fixed t ∈ F∗q , there exists exactly one u such that
∣∣∣F̂(t, (a, b))∣∣∣ =∣∣∣f̂u(t, a)

∣∣∣. This is equivalent to
∣∣∣F̂ t(a, b)

∣∣∣ =
∣∣∣f̂ tu(a)

∣∣∣. So, it is enough to investigate the
Fourier coefficients of fu given in Theorem 2.3. For this investigation, we study case
by case for the variables n, m and p.

First Case (n− 1 even) Assume n− 1 is even. By Theorem 2.3,

spec (fu) =


{

0, η(tn−1Du)q
n+1
2 w

f∗(c)
p

}
, if p ≡ 1 (mod 4){

0,
√
−1

(n−1)m
η(tn−1Du)q

n+1
2 w

f∗(c)
p

}
, if p ≡ 3 (mod 4)

where u ∈ Fq, Du =
∏n−1

i=1 d
u
i , c ∈ Fnq and f ∗ : Fnq → Fp is a function.

1. Assume p ≡ 1 (mod 4). Then, the result depends on the value of η(tn−1Du).

• If η(tn−1Du) is 1 for all values of u ∈ Fq, then F t is regular.
• If η(tn−1Du) is −1 for all values of u ∈ Fq, then F t is weakly regular.
• If η(tn−1Du) attains both of the values 1 and−1, F t is non-weakly regular.

2. Assume p ≡ 3 (mod 4).

• If n− 1 is equivalent to zero modulo 4, the result is the same with item 1.
• If n−1 is equivalent to 2 modulo 4, we have two different results depending

on m.
When m is even, the same conclusion given in item 1 occurs.
When m is odd, a slightly different situation comprises. η(tn−1Du) = −1
∀u ∈ Fq gives that F t is regular. η(tn−1Du) = 1 ∀u ∈ Fq gives that F t

is weakly regular. Lastly, when η(tn−1Du) attains both of the values, F t is
non-weakly regular.

Second Case (n− 1 odd) Assume n− 1 is odd. By Theorem 2.3,

spec (fu) =


{

0, (−1)m−1 η(tn−1Du)q
n+1
2 w

f∗(c)
p

}
, if p ≡ 1 (mod 4){

0, (−1)m−1√−1
(n−1)m

η(tn−1Du)q
n+1
2 w

f∗(c)
p

}
, if p ≡ 3 (mod 4)
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where u ∈ Fq, Du =
∏n−1

i=1 d
u
i , c ∈ Fnq and f ∗ : Fnq → Fp is a function.

1. Assume p ≡ 1 (mod 4).

• For m − 1 even, we have three different results depending on the value
of η (tn−1Du). If η(tn−1Du) is 1 for all values of u ∈ Fq, F t is regular.
If η(tn−1Du) is −1 for all values of u ∈ Fq, F t is weakly regular. If
η(tn−1Du) takes both of the values −1 and 1, F u is non-weakly regular.
• Form−1 odd, we have similar results to the casem−1 even. If η(tn−1Du)

is−1 for all values of u ∈ Fq, F t is regular. If η(tn−1Du) is 1 for all values
of u ∈ Fq, F t is weakly regular. If η(tn−1Du) takes both of the values −1
and 1, F t is non-weakly regular.

2. Assume p ≡ 3 (mod 4). Then, three different results are obtained depending on
the value of m.

• Assume m ≡ 0 (mod 4). Then, the result is the same with the item 1,
(m− 1) odd case.
• Assume m ≡ 2 (mod 4). Then, the result is the same with the item 1,

(m− 1) even case.
• Lastly, we investigate the case which is the same for m ≡ 1 (mod 4) and
m ≡ 3 (mod 4). For all u ∈ Fq if η(tn−1Du) is always 1 or always −1 ,
then F t is weakly regular. Otherwise, F t is non-weakly regular.

Remark 2.1. For a fixed p, greater number of bent functions are constructed compared
to [3] because the coefficients of near-bent functions are chosen from a set with major
number of elements.

Remark 2.2. For an odd prime p, there are equal numbers of quadratic residues and
quadratic non-residues in F∗p. On the contrary, the number of quadratic non-residues is
greater than the number of quadratic residues in F∗pm . This leads to the situation that
the percentage of non-weakly regular bent functions of our construction is grater than
the percentage of non-weakly regular bent functions constructed in [3].

Example 2.1. Let p = 3, n = 4 and q = 32. Choosing the minimal polynomial
x2 + 2x+ 2 and a to be a root of it to construct F32 over F3, we represent the field F32

as {αa+ β : α, β ∈ F3}.
For u ∈ F32 , cu ∈ F∗32 and x = (x1, x2, x3, x4), the functions fu : F4

32 → F32 defined by
fu(x) = cux

2
1 +x2

2 +x2
3 +ux4 are near-bent functions with pairwise disjoint support of

Walsh transforms. Now, consider the following identified near-bent functions defined
from F4

32 to F32 .

f0(x) = 2x2
1 + x2

2 + x2
3

f1(x) = x2
1 + x2

2 + x2
3 + x4

f2(x) = 2x2
1 + x2

2 + x2
3 + 2x4

fa(x) = x2
1 + x2

2 + x2
3 + ax4
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fa+1(x) = 2x2
1 + x2

2 + x2
3 + (a+ 1)x4

fa+2(x) = x2
1 + x2

2 + x2
3 + (a+ 2)x4

f2a(x) = 2x2
1 + x2

2 + x2
3 + (2a)x4

f2a+1(x) = x2
1 + x2

2 + x2
3 + (2a+ 1)x4

f2a+2(x) = x2
1 + x2

2 + x2
3 + (2a+ 2)x4

By Theorem 2.2, F (x1, x2, x3, x4, y) defined from F5
32 to F32 and given by,

∑
u∈F32

y(y−1)(y−2)(y−a)(y−(a+1))(y−(a+2))(y−2a)(y−(2a+1))(y−(2a+2))
(y−u)

fu(x)

= y8x2
1 − y8x4 + ay8 + a2y6x2

1 + a6y7x4 + a3y7 + y6x4 + a5y6 + y4x2
1 + a2y5x4 +

a7y5 + a5y3 + x2
1 − y4x4 + ay4 + a6y2x2

1 + a6y3x4 + a3y3 + a7yx2
1 + y2x4 + a5y2 +

x2
1 − x2

2 − x2
3 + ayx4 + a7y,

is a bent function with algebraic degree 10.
Let F t : F5

32 → F3 with F t(x) = Tr(tF (x)). Let t ∈ F∗32 be fixed. If t = 1, then, F t is
a regular bent function because 1 is a quadratic residue of F∗32 . If t = a+ 2, then, F t is
weakly regular bent function because (a+ 2)3 = 2a is a quadratic non-residue of F∗32 .
Actually, F t being regular, weakly regular or non-weakly regular does not depend on
the value of t. This is because multiplying Du by tn−1 does not change the situation
whether η(tn−1Du) is stable or variable for all values of u ∈ Fq. Actually, this depends
on the reason that the product of two residues or two non-residues is a residue, whereas
the product of a nonresidue and residue is a nonresidue.
In addition, if we choose at least one of the cu from the set of quadratic non-residues of
F∗32 , namely {a, 2a, a+ 2, 2a+ 1}, and at least one of the cu from the set of quadratic
residues of F∗32 , namely {1, 2, a+ 1, 2a+ 2}; then F t is a non-weakly regular bent
function for all values of t ∈ F∗32 .
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CHAPTER 3

A CONSTRUCTION OF (NON)-WEAKLY REGULAR BENT
FUNCTIONS OVER THE RING OF INTEGERS MODULO pm

3.1 Introduction

This chapter is devoted to adapting the methods over finite fields with odd character-
istic given in Chapter 2 to the ring of integers modulo pm. Studying over rings brings
some difficulties due to the reasons that rings have zero divisors, there is a need of
special type of coefficients for Lagrange interpolation and computation of Gauss sums
over rings.

In Section 3.2, we give an adaptation of the construction method given in Theorem
2.2. In [3], the authors use polynomials as coefficients for Lagrange interpolation.
However, for our case we prove that the functions which can be used as coefficients
for Lagrange interpolation cannot be representible as polynomials using the paper of
Carlitz [2].

Consider the quadratic functions of the form d1x
2
1 + d2x

2
2 + ... + dn−sx

2
n−s where

di ∈ Z×q and 0 ≤ s ≤ n− 1. In Section 3.3, we determine the Walsh spectrum of these
functions when they are defined over Zp2 by a method that is different from the one that
is used in [3]. Then, we study the same concept over Zp3 in Section 3.4. The results
are different from each other and to achieve these results, we compute quadratic Gauss
sum over Zp2 and Zp3 . In Section 3.5, we generalize the idea of Section 3.3 and Section
3.4. The Walsh spectrum of quadratic functions that are described at the beginning of
this paragraph give different results for odd m and even m when they are defined from
Znpm to Zpm . Note that, to reach the results we computed quadratic Gauss sums for each
case. Moreover, we present a simple technique to obtain quadratic near-bent functions
with pairwise disjoint support of Walsh transforms.

In Section 3.6, we conclude the chapter by giving examples to generate regular, weakly
regular and non-weakly regular bent functions. For the examples, we use quadratic
functions to construct a bent function over Zpm . If m is even, then all constructed
bent functions are regular. If m is odd, the great majority of the constructed bent
functions are non-weakly regular similar to [3], but there exists some distinctions. To
illustrate, for each p, we can construct further bent functions and the percentage of
non-weakly regular bent functions is greater. Also, as p and m increase for an odd m,
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this percentage of non-weakly regular gets greater.

3.2 A Method to Construct Bent Functions Using near-bent Functions

To combine near-bent functions for constructing a bent function, we study the La-
grange interpolation principle on integers modulo n because we cannot use the same
coefficients that are used in [3].

The reason is that Znq has zero divisors, that is, for every value u ∈ {0, 1, ..., q − 1}, the
coefficient y(y−1)...(y−(q−1))

y−u becomes zero for each y ∈ Znq . The original coefficients
given in the classical definition of Lagrange interpolation cannot be used either because
of the same reason. Moreover, we show that one cannot find new coefficients for the
construction over the ring of integers using some of the methods in [2].

Proposition 3.1. Let u ∈ Zq. The functions hu : Zq → Zq which are defined by

hu(x) =

{
a, if x = u
0, if x 6= u,

where a 6≡ 0 (mod p), cannot be represented in a polynomial form.

Proof. For any polynomial, g(x), it is a fact that g(x+ p) = g(x) (mod p). However,
hu does not satisfy this equation for x = u which implies hu(x) cannot be represented
as a polynomial [2].

Proposition 3.2. For u ∈ Zp2 , the functions hu : Zp2 → Zp2 which are defined as
follows

hu(x) =

{
p, if x = u
0, if x 6= u,

cannot be represented as a polynomial.

Proof. Note that, a function f(x) over Zp2 can be represented by a polynomial over
Zp2 if and only if

∑r
s=0(−1)r−s

(
r
s

)
f(s) ≡ 0 (mod pv(r)) for 0 ≤ r < p2 where

v(r) = min(2, µ(r)) and µ(r) is the highest power of p that divides r! [2].
Let j ≡ u (mod p). Now, consider

∑r
s=0(−1)r−s

(
r
s

)
hu(s) for the case when r =

2p+ j. Since r ≥ 2p, p2 divides r!. So, v(r) = 2. Then,

2p+j∑
s=0

(−1)2p+j−s
(

2p+ j

s

)
hu(s) = (−1)2p+j−u

(
2p+ j

u

)
hu(u) = (−1)2p+j−u

(
2p+ j

u

)
p.

This is not divisible by p2 as
(

2p+j
u

)
is not divisible by p. Therefore, the sum is not

equivalent to zero modulo p2, which implies hu(x) cannot be representible in polyno-
mial form.
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Remark 3.1. LetLc(x) be defined from Zq to Zq and given byLc(x) = (1− (x− c)p−1)
pn−1.

Carlitz suggested that this polynomial can be used for Lagrange interpolation formula
[2]. Actually, the values of the function can be easily computed as:

Lc(x) =

{
1, if x ≡ c (mod p)
0, if x 6≡ c (mod p).

For i ∈ {0, 1, ..., q}, letting fi : Znq → Zq be near-bent functions with supp(f̂i)∩supp(f̂j)
is empty for i 6= j, one can consider the following construction: F : Znq × Zq → Zq
defined as

F (x, y) =

p−1∑
i=0

fi(x)Li(y)

However, using this construction, one can combine p-many near-bent functions and
so, F cannot be a bent function. Actually, this result is not suprising because in the
Theorem 3.3, we explain that we need q-many near-bent functions to obtain a bent
function. Some values of F̂ are zero as

⋃p−1
i=0 supp(f̂i) is equal to Znq . Example 3.1 is

given to illustrate this.

Example 3.1. Let f0, f1 and f2 be near-bent functions with disjoint support of Walsh
spectrums and defined from Z4

9 to Z9. For c = 0, 1, 2, let the functions Li : Z9 → Z9

be defined by

Lc(x) =

{
1, if x ≡ c (mod 3)
0, if x 6≡ c (mod 3).

Then, construct the function F which is defined from Z4
9 × Z9 to Z9 as F (x, y) =∑2

c=0 fc(x)Lc(y). That is,

F (x, y) = f0(x)L0(y) + f1(x)L1(y) + f2(x)L2(y)

Then, for a ∈ Z4
9 and b ∈ Z9, we have

F̂ (a, b) =
∑
x∈Z4

9

∑
y∈Z9

wF (x,y)−a·x−by =
∑
y∈Z9

w−by
∑
x∈Z4

9

wF (x,y)−a·x

=
∑
y∈Z9

w−by
∑
x∈Z4

9

w(f0(x)L0(y)+f1(x)L1(y)+f2(x)L2(y))−a·x

=
(
w0 + w−3b + w−6b

)∑
x∈Z4

9

wf0(x)−a·x+

(
w−b + w−4b + w−7b

)∑
x∈Z4

9

wf1(x)−a·x +
(
w−2b + w−5b + w−8b

)∑
x∈Z4

9

wf2(x)−a·x
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Note that,

w0 + w−3b + w−6b =

{
3, if b ≡ 0 (mod 3)
0, if b 6≡ 0 (mod 3).

w−b + w−4b + w−7b =

 3, if b = 0
−1.5− 2.5

√
−1, if b = 3 or b=6

0, if b 6≡ 0 (mod 3).

w−2b + w−5b + w−8b =


3, if b = 0
−1.5 + 2.5

√
−1, if b = 3

−1.5− 2.5
√
−1, if b = 6

0, if b 6≡ 0 (mod 3).

Using these results, we have

F̂ (a, b) =


3(f̂0(a) + f̂1(a) + f̂2(a)), if b = 0

3f̂0(a) + (−1.5− 2.5
√
−1)f̂1(a) + (−1.5 + 2.5

√
−1)f̂2(a), if b = 3

3f̂0(a) + (−1.5− 2.5
√
−1)(f̂1(a) + f̂2(a)), if b = 6

0, if b 6≡ 0 (mod 3).

Obviously, F is not a bent function.

Remark 3.2. Using the same notation and data in Remark 3.1, another construction
using q-many near-bent functions can be considered as follows:

F (x, y) =

q−1∑
i=0

fi(x)Lj(y),

where j ≡ i (mod p). However, one can see that F is not bent using the definition
easily since for each value of y, F depends pm−1 many fi functions. To illustrate,
consider the following example.

Example 3.2. Let f0, f1, · · · f8 be near-bent functions with disjoint support of Walsh
transforms and defined from Z4

9 to Z9. For c = 0, 1, 2, let the functions Lc : Z9 → Z9

be defined by

Lc(x) =

{
1, if x ≡ c (mod 3)
0, if x 6≡ c (mod 3).

Then, construct the function F which is defined from Z4
9 × Z9 to Z9 as F (x, y) =∑8

i=0 fi(x)Lj(y) where j ≡ i (mod p). Then, we have
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F̂ (a, b) =
∑
x∈Z4

9

∑
y∈Z9

wF (x,y)−a·x−by =
∑
y∈Z9

w−by
∑
x∈Z4

9

wF (x,y)−a·x

=
∑
y∈Z9

w−by
∑
x∈Z4

9

w(
∑8
i=0 fi(x)Lj(y))−a·x

=
(
w0 + w−3b + w−6b

)∑
x∈Z4

9

w(f0(x)+f3(x)+f6(x))+−a·x+

(
w−b + w−4b + w−7b

)∑
x∈Z4

9

w(f1(x)+f4(x)+f7(x))−a·x+

(
w−2b + w−5b + w−8b

)∑
x∈Z4

9

w(f2(x)+f5(x)+f8(x))−a·x,

which gives F is not a bent function.

Theorem 3.3. For u ∈ Zq, let fu : Znq → Zq be near-bent functions such that
supp(f̂u) ∩ supp(f̂v) is empty for u, v ∈ Zq. Let hu be a function defined from Zq
to Zq and given by,

hu(x) =

{
1, if x = u
0, if x 6= u.

Then, the function F : Znq × Zq → Zq defined by

F (x, y) =
∑
u∈Zq

hu(y)fu(x),

is bent.

Proof. We first determine the number of near-bent functions that is needed to construct
a bent function. For this aim, we obtain a special case of the Parseval’s relation. Let
f : Znq → Zq, and a ∈ Znq . Then,

∑
a∈Znq

∣∣∣f̂(a)
∣∣∣2 =

∑
a∈Znq

∑
x,y∈Znq

wf(x)−a·x−(f(y)−a·y) =
∑
x,y∈Znq

w(f(x)−f(y))
∑
a∈Znq

wa·(y−x).

Realizing that, ∑
a∈Znq

wa·(y−x) =

{
qn, if x = y
0, if x 6= y,

we have ∑
a∈Znq

∣∣∣f̂(a)
∣∣∣2 =

{
q2n, if x = y
0, if x 6= y.
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Then, for a near-bent funtion f , we have∑
a∈Znq

∣∣∣f̂(a)
∣∣∣2 =

∣∣∣supp(f̂)
∣∣∣ qn+1 = q2n,

since
∣∣∣f̂(a)

∣∣∣ = 0 or qn+1/2 for all a ∈ Znq . By this, one gets
∣∣∣supp(f̂)

∣∣∣ = qn−1.

We need to combine the near-bent functions using the principle of Lagrange interpo-
lation. The idea is constructing a function F by ’glueing’ the near-bent functions in
such a way that Walsh spectrum of F do not include zero value. This can be achieved
by combining the near-bent functions having no common element in supports of their
Walsh transforms and the union of their support of Walsh transforms should be Znq .

Hence, the number of near-bent functions that is needed is q as
∣∣∣supp(f̂)

∣∣∣ = qn−1.

Let fu : Znq → Zq, for u ∈ Zq be near-bent functions. Then,
∣∣∣f̂u(a)

∣∣∣2 = qn+1 or 0 for
all a ∈ Znq .

Let (a, b) ∈ Znq × Zq and w be the q-th root of unity. Then,

F̂ (a, b) =
∑

x∈Znq ,y∈Zq

wF (x,y)−a·x−by =
∑
y∈Zq

w−by
∑
x∈Znq

wF (x,y)−a·x

=
∑
y∈Zq

w−by
∑
x∈Znq

w(
∑
u∈Zq hu(y)fu(x))−a·x =

∑
y∈Zq

w−by
∑
x∈Znq

w(h0(y)f0(x)+···+hq−1(y)fq−1(x))−a·x =

w0
∑
x∈Znq

wf0(x)−a·x+w−b
∑
x∈Znq

wf1(x)−a·x+· · ·+w−(q−1)y
∑
x∈Znq

wfq−1(x)−a·x =
∑
y∈Zq

w−byf̂y(a).

Since supp(f̂u) ∩ supp(f̂v) is empty and
⋃
u∈Zq supp(f̂u) = Znq , each a is an element

of exactly one f̂y. So, we have

∣∣∣F̂ (a, b)
∣∣∣ =

∣∣∣∣∣∣
∑
y∈Zq

w−byf̂y(a)

∣∣∣∣∣∣ =
∣∣∣w−byf̂y(a)

∣∣∣ = q
n+1
2 .

3.3 Walsh Spectrum of quadratic Functions over Zp2

In the whole section, q is p2 and w denotes the q-th root of unity, that is w = e2π
√
−1/p2 .

To construct bent functions using Theorem 3.3, we need near-bent functions with the
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desired properties.
In this section, we determine Walsh spectrum of quadratic functions, fn,n−s := d1x

2
1 +

d2x
2
2+...+dn−sx

2
n−s defined from Znq to Zq for s ∈ {0, 1, ..., n− 1} and d1, d2, · · · , dn−s ∈

Z×q .

Lemma 3.4. Let q = p2, d ∈ Z×q and c ∈ Zq. The quadratic Gauss sum over Zq,
namely

∑
x∈Zq w

dx2−cx, equals to pw−c
2/4d.

Proof. A change of variables will be helpful, so replacing x with y + α for α = c/2d
we have,

dx2 − cx = d(y + α)2 − c(y + α) = dy2 + cy +
c2

4d
− cy − c2

2d
= dy2 − c2

4d
.

Hence,
∑

x∈Zq w
dx2−cx = w−c

2/4d
∑

x∈Zq w
dx2 . For x ∈ Zq, there exists a0, a1 ∈ Zp

such that x = a0 + a1p. Then,∑
x∈Zq

wdx
2

=
∑

a0,a1∈Zp

wd(a0+a1p)2 =
∑

a0,a1∈Zp

wda
2
0+2da0a1p+da21p

2

=
∑
a0∈Zp

e
2π
√
−1(da20)

p2
∑
a1∈Zp

e
2π
√
−1(da0a1)
p = p,

because
∑

a1∈Zp e
2π
√
−1(da0a1)
p is p for a0 = 0 and zero otherwise as d ∈ Z×q .

Theorem 3.5. Let q = p2. Let fn,n−s : Znq → Zq be defined by
fn,n−s(x1, x2, · · · , xn) := d1x

2
1 + d2x

2
2 + ...+ dn−sx

2
n−s where d1, d2, · · · , dn−s ∈ Z×q .

Let w be the q-th root of unity, that is w = e2π
√
−1/p2 . Then,

f̂n,n−s(c) =

{
q
n+s
2 w

− c21
4d1
− c22

4d2
−···

c2n−s
4dn−s , if cn = cn−1 = · · · = cn−s+1 = 0

0, if otherwise,

where s is a positive integer with 0 < s ≤ n− 1 and c = (c1, c2, · · · , cn) for ci ∈ Zq.

Moreover, for s = 0, the result is simply f̂n,n(c) = q
n
2w
− c21

4d1
− c22

4d2
−··· c

2
n

4dn .

Proof. It is useful to compute the Walsh spectrum of f1,1(x) = dx2, first. Then, f̂n,1
is obtained and this leads to the determination of the general form. Using Lemma 3.4,
we have

f̂1,1(c) =
∑
x∈Zq

wdx
2−cx = w−c

2/4dq1/2.

Then,
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f̂2,1(c) =
∑
x∈Z2

q

wf2,1(x)−c·x =
∑

x1,x2∈Zq

wdx
2
1−c1x1−c2x2

=
∑
x2∈Zq

w−c2x2
∑
x1∈Zq

wdx
2
1−c1x1 =

{
q3/2w−c

2
1/4d, if c2 = 0

0, if c2 6= 0.

Similarly,

f̂3,1(c) =
∑
x∈Z3

q

wf3,1(x)−c·x =
∑

x1,x2,x3∈Zq

wdx
2
1−c1x1−c2x2−c3x3

=
∑
x3∈Zq

w−c3x3
∑
x2∈Zq

w−c2x2
∑
x1∈Zq

wdx
2
1−c1x1

=

{
q5/2w−c

2
1/4d, if c2 = c3 = 0

0, if otherwise.

Then, f̂n,1(c) can be easily computed as,

f̂n,1(c) =

{
q
n+s
2 w−c

2
1/4d, if cn = cn−1 = · · · = c2 = 0

0, if otherwise.

Now, consider fn,n. We have,

f̂n,n(c) =
∑
x∈Znq

wfn,n(x)−c·x =
∑
x∈Znq

wd1x
2
1+···+dnx2n−c1x1−···−cnxn

=

∑
x1∈Zq

wd1x
2
1−c1x1

∑
x2∈Zq

wd2x
2
2−c2x2

 · · ·
∑
xn∈Zq

wdnx
2
n−cnxn


= qn/2w

− c21
4d1
− c22

4d2
−··· c

2
n

4dn .

Next, we consider fn,n−1. We have,

f̂n,n−1(c) =
∑
x∈Znq

wfn,n−1(x)−c·x =
∑
x∈Znq

wd1x
2
1+···+dn−1x2n−1−c1x1−···−cnxn

=

∑
x1∈Zq

wd1x
2
1−c1x1

 · · ·
 ∑
xn−1∈Zq

wdn−1x2n−1−cn−1xn−1

∑
xn∈Zq

w−cnxn
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=

{
q
n+1
2 w

− c21
4d1
− c22

4d2
−···

c2n−1
4dn−1 , if cn = 0

0 if cn 6= 0.

The general case can be achieved, similarly.

3.4 Walsh Spectrum of Quadratic Functions over Zp3

In this section, we give an adaptation of the study given in Section 3.3. That is, for q =
p3, we determine the Walsh spectrum of quadratic functions fn,n−s := d1x

2
1 + d2x

2
2 +

... + dn−sx
2
n−s defined from Znq to Zq, for s ∈ {0, 1, ..., n− 1} and d1, d2, ..., dn−s ∈

Z×q .

Lemma 3.6. Let q = p3, d ∈ Z×q and c ∈ Zq. Then, the quadratic Gauss sum over Zq
is as follows.∑

x∈Zq

wdx
2−cx =

{
w−c

2/4dq1/2η(d), if p ≡ 1 (mod 4)

w−c
2/4dq1/2η(d)

√
−1, if p ≡ 3 (mod 4).

Proof. For simplicity, replace x with y + α for α = c/2d. Then,

dx2 − cx = d(y + α)2 − c(y + α) = dy2 + cy +
c2

4d
− cy − c2

2d
= dy2 − c2

4d
.

We have Zq = Zp3 = {a0 + pa1 + p2a2 : a0, a1, a2 ∈ Zp}.

∑
x∈Zq

wdx
2

=
∑

a0,a1,a2∈Zp

wd(a0+a1p+a2p2)2 =
∑

a0,a1,a2∈Zp

wda
2
0+2da0a1p+(2da0a2+da21)p2

=
∑
a0∈Zp

e
2π
√
−1(da20)

p3
∑
a1∈Zp

e
2π
√
−1(2da0a1p+da

2
1p

2)

p3
∑
a2∈Zp

e
2π
√
−1(2da0a2)

p = p
∑
a1∈Zp

e
2π
√
−1(da21)

p .

The last equality comes from the fact that d ∈ Z×q and∑
a2∈Zp

e
2π
√
−1(2da0a2)

p =

{
p, if a0 = 0
0, if otherwise.

Using [13, Theorem 5.33] and the definition of the Gauss sum over finite fields with p
elements, we conclude that

p
∑
a1∈Zp

e
2π
√
−1(da21)

p =

{
p3/2η(d), if p ≡ 1 (mod 4)
p3/2η(d)

√
−1, if p ≡ 3 (mod 4).
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Theorem 3.7. For q = p3, let fn,n−s : Znq → Zq be defined by fn,n−s(x1, x2, · · · , xn) :=

d1x
2
1 + d2x

2
2 + ...+ dn−sx

2
n−s for di ∈ Z×q . Let η be the quadratic character of Zq and

w be the q-th root of unity, that is w = e2π
√
−1/p3 . Then, for a positive integer s such

that 0 < s ≤ n− 1, we have,

f̂n,n−s(c) =

 q
n+s
2 wvη(D), if p ≡ 1 (mod 4) and cn = cn−1 = · · · = cn−s+1 = 0

q
n+s
2 wvη(D)

√
−1

n−s
, if p ≡ 3 (mod 4) and cn = cn−1 = · · · = cn−s+1 = 0

0, if otherwise,

where D = d1d2 · · · dn−s, v = − c21
4d1
− c22

4d2
− · · · c

2
n−s

4dn−s
, and c = (c1, c2, · · · , cn) such

that c1, c2, · · · , cn ∈ Zq.

Moreover, for s = 0 the result becomes

f̂n,n(c) =

{
q
n
2wvη(D), if p ≡ 1 (mod 4)
q
n
2wvη(D)

√
−1

n
, if p ≡ 3 (mod 4).

Proof. We use very similar arguments that we used previously to prove Theorem 3.5.
So, we do not give much detail. For c ∈ Zq, we have the following fact using Lemma
3.6,

f̂1,1(c) =
∑
x∈Zq

wdx
2−cx =

{
q1/2w−c

2/4dη(d), if p ≡ 1 (mod 4)

q1/2w−c
2/4dη(d)

√
−1, if p ≡ 3 (mod 4).

The Walsh spectrum of fn,1 can be computed as,

f̂n,1(c) =

 q
n+s
2 w−c

2
1/4dη(d), if p ≡ 1 (mod 4) and cn = cn−1 = · · · = c2 = 0

q
n+s
2 w−c

2
1/4dη(d)

√
−1, if p ≡ 3 (mod 4) and cn = cn−1 = · · · = c2 = 0

0, if otherwise.

To obtain the general form, one can find some of the results as follows.

1.
f̂2,2(c) =

∑
x∈Z2

q

wf2,2(x)−c·x =
∑

x1,x2∈Zq

wd1x
2
1+d2x22−c1x1−c2x2

=
∑
x1∈Zq

wd1x
2
1−c1x1

∑
x2∈Zq

wd2x
2
2−c2x2 =

 qw
− c21

4d1
− c22

4d2 η(d1d2), if p ≡ 1 (mod 4)

qw
− c21

4d1
− c22

4d2 η(d1d2)
√
−1

2
, if p ≡ 3 (mod 4).

26



2.
f̂3,2(c) =

∑
x∈Z3

q

wf3,2(x)−c·x =
∑

x1,x2,x3∈Zq

wd1x
2
1+d2x22−c1x1−c2x2−c3x3

=
∑
x3∈Zq

w−c3x3
∑

x1,x2∈Zq

wd1x
2
1+d2x22−c1x1−c2x2

=


q2w

− c21
4d1
− c22

4d2 η(d1d2), if p ≡ 1 (mod 4) and c3 = 0

q2w
− c21

4d1
− c22

4d2 η(d1d2)
√
−1

2
, if p ≡ 3 (mod 4) and c3 = 0

0, if c3 6= 0.

3.
f̂3,3(c) =

∑
x∈Z3

q

wf3,3(x)−c·x =
∑

x1,x2,x3∈Zq

wd1x
2
1+d2x22+d3x23−c1x1−c2x2−c3x3

=
∑
x1∈Zq

wd1x
2
1−c1x1

∑
x3∈Zq

wd2x
2
2−c2x2

∑
x3∈Zq

wd3x
2
3−c3x3

=

 q3/2w
− c21

4d1
− c22

4d2
− c23

4d3 η(d1d2d3), if p ≡ 1 (mod 4)

q3/2w
− c21

4d1
− c22

4d2
− c23

4d3 η(d1d2d3)
√
−1

3
, if p ≡ 3 (mod 4).

3.5 Walsh Spectrum of Quadratic Functions over Zpm

Lemma 3.8. Let d ∈ Z×q and c ∈ Zq for q = pm. Let η be the quadratic character of
Zq. Then, the quadratic Gauss sum over Zq is as follows.

• The Case m is even:
∑

x∈Zq w
dx2−cx = q1/2w−c

2/4d.

• The Case m is odd:

∑
x∈Zq

wdx
2−cx =

{
w−c

2/4dq1/2η(d), if p ≡ 1 (mod 4)

w−c
2/4dq1/2η(d)

√
−1, if p ≡ 3 (mod 4).

Proof. In Lemma 3.4 and Lemma 3.6, we give detailed proofs for m = 2 and m = 3.
Now, for simplicity, we continue to give detailed proofs for m = 4 and m = 5. Then,
the generalizations get easier to understand.
A change of variables will be helpful. Hence we replace x with y + α for α = c/2d to
have

dx2 − cx = d(y + α)2 − c(y + α) = dy2 + cy +
c2

4d
− cy − c2

2d
= dy2 − c2

4d
.
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Assume that m = 4. Let x ∈ Zp4 . As we have
Zq = Zp4 = {a0 + pa1 + p2a2 + p3a3 : a0, a1, a2, a3 ∈ Zp}, there exist some a0, a1, a2, a3 ∈
Zp such that

x2 = a2
0 + a2

1p
2 + 2a0a1p+ 2a0a2p

2 + 2a0a3p
3 + 2a1a2p

3 (mod p4).∑
x∈Zp4

e
2π
√
−1(x2)

p4 =
∑
a0∈Zp

e
2π
√
−1(a20)

p4
∑
a1∈Zp

e
2π
√
−1(a21p

2+2a0a1p)

p4
∑
a2∈Zp

e
2π
√
−1(2a0a2p

2+2a1a2p
3)

p4
∑
a3∈Zp

e
2π
√
−1(2a0a3)
p

= p
∑
a1∈Zp

e
2π
√
−1(a21p

2)

p4
∑
a2∈Zp

e
2π
√
−1(2a1a2)
p = p2

To write the last two equalities, we used the following two facts, respectively.∑
a3∈Zp

e
2π
√
−1(2a0a3)
p =

{
p, if a0 = 0
0, if a0 6= 0

and ∑
a2∈Zp

e
2π
√
−1(2a1a2)
p =

{
p, if a1 = 0
0, if a1 6= 0.

Now, assume m = 5. Let x ∈ Zp5 . Then, there exists some a0, a1, a2, a3, a4 ∈ Zp such
that x = a0 + a1p+ a2p

2 + a3p
3 + a4p

4. This implies,

x2 = a2
0+a2

1p
2+a2

2p
4+2a0a1p+2a0a2p

2+2a0a3p
3+2a0a4p

4+2a1a2p
3+2a1a3p

4 (mod p5)

Let A = a2
1p

2 + 2a0a1p, B = 2a0a2p
2 + 2a1a2p

3 + a2
2p

4 and C = 2a0a3p
3 + 2a1a3p

4.

∑
x∈Zp5

e
2π
√
−1(x2)

p5 =
∑
a0∈Zp

e
2π
√
−1(a20)

p5
∑
a1∈Zp

e
2π
√
−1A

p5
∑
a2∈Zp

e
2π
√
−1B

p5
∑
a3∈Zp

e
2π
√
−1C

p5
∑
a4∈Zp

e
2π
√
−1(2a0a4)
p

= p
∑
a1∈Zp

e
2π
√
−1(a21)

p3
∑
a2∈Zp

e
2π
√
−1(a22)

p

∑
a3∈Zp

e
2π
√
−1(2a1a3)
p = p2

∑
a2∈Zp

e
2π
√
−1(a22)

p

Using [13, Theorem 5.33], the definition of the Gauss sum over finite fields with p
elements, and considering the fact that d ∈ Z×p5 , we have∑

x∈Zp5

e
2π
√
−1(dx2)

p5 = p2
∑
a2∈Zp

e
2π
√
−1(da22)

p =

{
p5/2η(d), if p ≡ 1 (mod 4)
p5/2η(d)

√
−1, if p ≡ 3 (mod 4)

where η is the quadratic character of Zp.
Now, let x ∈ Zq = Zpm . As Zpm = {a0 + pa1 + · · ·+ pm−1am−1 : a0, a1, · · · , am−1 ∈ Zp},
there exist a0, a1, · · · , am−1 ∈ Zp such that x = a0 + a1p+ a2p

2 + · · ·+ am−1p
m−1.

x2 =

m
2
−1∑

i=0

(
aip

i
)2

+ 2p(a0a1) + 2p2(a0a2) + 2p3(a0a3 + a1a2) + 2p4(a0a4 + a1a3)+
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+2p5(a0a5+a1a4+a3a2)+· · ·+2pm−1(a0am−1+a1am−2+· · ·+am
2
−1am

2
) (mod pm) · · · (∗)

There are two cases depending on m.

1. Assume m is even. Then, the sum (∗) does not include the square of the sum-
mands ai such that i ≥ m/2. The result is q1/2, since we get p as a factor for
each of these summands.

2. Assume m is odd. Note that, for each of the (m−1
2

)-many summands which do
not appear in (∗), we get p as a factor. [13, Theorem 5.33] and the definition of
the Gauss sum over finite fields with p elements leads to the following result.∑

x∈Zq

wdx
2−cx =

{
w−c

2/4dq1/2η(d), if p ≡ 1 (mod 4)

w−c
2/4dq1/2η(d)

√
−1, if p ≡ 3 (mod 4).

Theorem 3.9. Let q = pm and m be an even integer. Let fn,n−s : Znq → Zq be defined
by fn,n−s(x1, x2, · · · , xn) := d1x

2
1 + d2x

2
2 + ...+ dn−sx

2
n−s for d1, d2, · · · , dn−s ∈ Z×q .

Then, for a positive integer s such that 0 < s ≤ n − 1 and c = (c1, c2, · · · , cn) with
c1, c2, · · · , cn ∈ Zq we have,

f̂n,n−s(c) =

{
q
n+s
2 w

− c21
4d1
− c22

4d2
−···

c2n−s
4dn−s , if cn = cn−1 = · · · = cn−s+1 = 0

0, if otherwise.

Moreover, for s = 0, the result is simply f̂n,n(c) = q
n
2w
− c21

4d1
− c22

4d2
−··· c

2
n

4dn .

Proof. By Lemma 3.8, we have

f̂d1,1(c) =
∑
x∈Zq

wdx
2−cx = w−c

2/4dpm/2 = w−c
2/4dq1/2.

Realize that, this assertion is exactly the same with the one in the proof of Theorem
3.5. Applying the same method, the result can be achieved, easily.

Theorem 3.10. Let q = pm and m be an odd integer. Let fn,n−s : Znq → Zq be defined
by fn,n−s(x1, x2, · · · , xn) := d1x

2
1 + d2x

2
2 + ...+ dn−sx

2
n−s for d1, d2, · · · , dn−s ∈ Z×q .

Let η be the quadratic character of Zq. Then, for a positive integer s such that 0 <
s ≤ n− 1 and c = (c1, c2, · · · , cn) such that c1, c2, · · · , cn ∈ Zq we have,

f̂n,n−s(c) =

 q
n+s
2 wvη(D), if p ≡ 1 (mod 4) and cn = cn−1 = · · · = cn−s+1 = 0

q
n+s
2 wvη(D)

√
−1

n−s
, if p ≡ 3 (mod 4) and cn = cn−1 = · · · = cn−s+1 = 0

0, if otherwise,
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where D = d1d2 · · · dn−s and v = − c21
4d1
− c22

4d2
− · · · c

2
n−s

4dn−s
.

Moreover, for s = 0 the result becomes

f̂n,n(c) =

{
q
n
2wvη(D), if p ≡ 1 (mod 4)
q
n
2wvη(D)

√
−1

n
, if p ≡ 3 (mod 4).

Proof. Using Lemma 3.8, we have the following,

f̂d1,1(c) =
∑
x∈Zq

wdx
2−cx =

{
w−c

2/4dq1/2η(d), if p ≡ 1 (mod 4)

w−c
2/4dq1/2η(d)

√
−1, if p ≡ 3 (mod 4).

Then, the result can be achieved by following the steps given in proof of Theorem 3.7.

Lemma 3.11. Let fu : Znq → Zq be defined by fu(x1, x2, ..., xn) = du1x
2
1 + du2x

2
2 +

... + dun−1x
2
n−1 + uxn, where u ∈ Zq and dui ∈ Z×q for 1 ≤ i ≤ n − 1. Then, the set

{fu(x) : u ∈ Zq} gives a set of near-bent functions having pairwise disjoint support of
Walsh transforms.

Proof. By Theorem 3.9 and Theorem 3.10, fu is a near-bent function. Note that,
adding a linear term to a near-bent function, it will again be a near-bent function.
Let c = (c1, c2, ..., cn) ∈ Znq .

f̂u(c) =
∑
x∈Znq

wfu(x)−c·x =
∑

x1,...xn∈Zq

w(du1x
2
1+du2x

2
2+...+dun−1x

2
n−1+uxn)−c1x1−···−cnxn

=
∑

x1,...xn−1∈Zq

w(du1x
2
1+du2x

2
2+···+dun−1x

2
n−1)−c1x1−···−cn−1xn−1

∑
xn∈Zq

wuxn−cnxn .

The first sum in this product is nonzero by Theorem 3.9 and Theorem 3.10. So, only
the second sum,

∑
xn∈Zq w

uxn−cnxn , can make this product zero. If uxn − cnxn is
nonzero, then the sum is zero. Hence, we have

supp(f̂u) =
{
c = (c1, c2, · · · , cn) ∈ Znq : u ≡ cn (mod q)

}
,

which gives supp(f̂i) ∩ supp(f̂j) is empty, for i, j ∈ Zq and i 6= j.
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3.6 An Application on Quadratic Functions

In this section, we give an application of the study of this chapter on quadratic func-
tions. In Theorem 3.9 and Theorem 3.10, we determine the Walsh spectrum of certain
quadratic functions. Using these theorems, we can obtain necessary number of near-
bent functions with desired properties to construct bent functions by Theorem 3.3.
We also give a simple technique to determine whether the constructed bent functions
using these quadratic near-bent functions are regular, weakly regular or non-weakly
regular.
Let fu : Znq → Zq be defined by fu(x1, x2, ..., xn) = du1x

2
1+du2x

2
2+...+dun−1x

2
n−1+uxn,

where u ∈ Zq and dui ∈ Z×q for 1 ≤ i ≤ n − 1. Let F : Zn+1
q → Zq be the bent func-

tion constructed by Theorem 3.3 using these near-bent functions. Recall that, for each
a ∈ Znq , there exists exactly unique u such that

∣∣∣F̂ (a, b)
∣∣∣ =

∣∣∣f̂u(a)
∣∣∣. So, it is enough to

observe the Fourier coefficients of f̂u, for 0 ≤ u ≤ q − 1, to determine whether F is
weakly regular or not.

3.6.1 A Classification of the Constructed Bent Functions When m is Even

Let q = pm such that m is even. By Theorem 3.9, spec(fu) =
{

0, qn+1/2wf̃(c)
}

where

f̃ is the function from Znq to Zq and c ∈ Znq . For this case, all constructed bent functions
using Theorem 3.3 are regular by the first item of Definition 1.12.

3.6.2 A Classification of the Constructed Bent Functions When m is Odd

Let q = pm such that m is odd. Then, by Theorem 3.10,

spec (fu) =


{

0, q
n+1
2 η(Du)w

f̃(c)
}
, if p ≡ 1 (mod 4){

0, q
n+1
2 wf̃(c)η(Du)

√
−1

n−1
}
, if p ≡ 3 (mod 4)

where Du = du1d
u
2 · · · dun−1, f̃ is the function from Znq to Zq and c ∈ Znq .

The Case p ≡ 1 (mod 4):

• η(Du) = 1 for all u ∈ Zq ⇒ F is a regular bent function.

• η(Du) = −1 for all u ∈ Zq ⇒ F is a weakly regular bent function.

• η(Du) attains both of the values {−1, 1} ⇒ F is a non-weakly regular bent
function.
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The Case p ≡ 3 (mod 4):

1. Assume n− 1 ≡ 0 (mod 4).

• η(Du) = 1 for all u ∈ Zq ⇒ F is a regular bent function.
• η(Du) = −1 for all u ∈ Zq ⇒ F is a weakly regular bent function.
• η(Du) attains both of the values {−1, 1}⇒ F is a non-weakly regular bent

function.

2. Assume n− 1 ≡ 2 (mod 4).

• η(Du) = −1 for all u ∈ Zq ⇒ F is a regular bent function.
• η(Du) = 1 for all u ∈ Zq ⇒ F is a weakly regular bent function.
• η(Du) attains both of the values {−1, 1}⇒ F is a non-weakly regular bent

function.

3. Assume n− 1 ≡ 1 (mod 4) or n− 1 ≡ 3 (mod 4).

• No regular bent function is constructed.
• η(Du) = 1 for all u ∈ Zq or η(Du) = −1 for all u ∈ Zq implies that F is a

weakly regular bent function.
• η(Du) attains both of the values {−1, 1}⇒ F is a non-weakly regular bent

function.

Remark 3.3. Great majority of the constructed bent functions using Theorem 3.3 are
non-weakly regular. As p andm get greater, the percentage of non-weakly regular bent
functions increases.

Example 3.3. For u ∈ {0, 1, · · · , 26}, let fu : Z5
27 → Z27 be near-bent functions

defined as

fu(x1, x2, x3, x4, x5) = du1x
2
1 + du2x

2
2 + du3x

2
3 + du4x

2
4 + ux5,

where du1 , d
u
2 , d

u
3 , d

u
4 ∈ Z×27.

The set of quadratic residues of Z×27 is QR := {1, 4, 7, 10, 13, 16, 19, 22, 25} and the
set of quadratic non-residues of Z×27 is QnR := {2, 5, 8, 11, 14, 17, 20, 23, 26}. Let hu
be functions defined from Z27 to Z27 such that,

hu(y) =

{
1, if y = u
0, if otherwise.

Let F : Z5
27 × Z27 → Z27 be defined by F (x, y) =

∑26
u=0 fu(x)hu(y). Then, by

Theorem 3.3, F is a bent function.

• For each u, if even number of {du1 , du2 , du3 , du4} are chosen from the set QnR, then
F is a regular bent function.

• For each u, if odd number of {du1 , du2 , du3 , du4} are chosen from the set QnR, then
F is a weakly regular bent function.
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• If at least for one u, odd number of {du1 , du2 , du3 , du4} are chosen from the set QnR
and at least for one u, even number of {du1 , du2 , du3 , du4} are chosen from the set
QnR, then F is a non-weakly regular bent function.

To be more clear, we will give some numerical illustrations.

1. For u ∈ Z27 if we choose fu as in the following way, then F is a weakly regular
bent function.

f0(x) = 5x2
1 + 2x2

2 + 7x2
3 + 8x2

4

f1(x) = 4x2
1 + 10x2

2 + 7x2
3 + 2x2

4 + x5

f2(x) = x2
1 + 23x2

2 + 2x2
3 + 2x2

4 + 2x5

f3(x) = x2
1 + 17x2

2 + x2
3 + x2

4 + 3x5

f4(x) = x2
1 + 10x2

2 + 8x2
3 + 22x2

4 + 4x5

f5(x) = 11x2
1 + 8x2

2 + 5x2
3 + 4x2

4 + 5x5

f6(x) = 2x2
1 + 4x2

2 + 5x2
3 + 8x2

4 + 6x5

f7(x) = 2x2
1 + 8x2

2 + 20x2
3 + 7x2

4 + 7x5

f8(x) = x2
1 + 4x2

2 + 7x2
3 + 2x2

4 + 8x5

f9(x) = 8x2
1 + x2

2 + 4x2
3 + 4x2

4 + 9x5

f10(x) = 11x2
1+14x2

2+x2
3+2x2

4+10x5

f11(x) = 2x2
1 +2x2

2 +4x2
3 +2x2

4 +11x5

f12(x) = x2
1 + 10x2

2 + 8x2
3 + x2

4 + 12x5

f13(x) = 2x2
1+16x2

2+2x2
3+17x2

4+13x5

f14(x) = 2x2
1+19x2

2+13x2
3+x2

4+14x5

f15(x) = 25x2
1+22x2

2+x2
3+26x2

4+15x5

f16(x) = 26x2
1 +2x2

2 +5x2
3 +x2

4 +16x5

f17(x) = x2
1 +25x2

2 +x2
3 +23x2

4 +17x5

f18(x) = 20x2
1+11x2

2+8x2
3+19x2

4+18x5

f19(x) = x2
1+13x2

2+22x2
3+14x2

4+19x5

f20(x) = 10x2
1+17x2

2+14x2
3+14x2

4+20x5

f21(x) = 7x2
1 +7x2

2 +7x2
3 +8x2

4 +21x5

f22(x) = 7x2
1 +5x2

2 +5x2
3 +5x2

4 +22x5

f23(x) = 4x2
1+23x2

2+2x2
3+23x2

4+23x5

f24(x) = 5x2
1+4x2

2+13x2
3+22x2

4+24x5

f25(x) = x2
1+11x2

2+20x2
3+26x2

4+25x5

f26(x) = 23x2
1+25x2

2+11x2
3+2x2

4+26x5

2

2. For u ∈ Z27 if we choose fu as in the following way, then F is a non-weakly
regular bent function.

f0(x) = x2
1 + x2

2 + 2x2
3 + 7x2

4

f1(x) = 4x2
1 + x2

2 + 8x2
3 + x2

4 + x5

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + 2x5

f3(x) = x2
1 +10x2

2 +11x2
3 +20x2

4 +3x5

f4(x) = x2
1 + x2

2 + x2
3 + x2

4 + 4x5

f5(x) = 2x2
1 + 5x2

2 + 23x2
3 + x2

4 + 5x5

f6(x) = 10x2
1+11x2

2+14x2
3+23x2

4+6x5

f7(x) = 23x2
1 + 4x2

2 + 5x2
3 + 4x2

4 + 7x5

f8(x) = 7x2
1 + 7x2

2 + 7x2
3 + 7x2

4 + 8x5

f9(x) = 4x2
1 + x2

2 + x2
3 + 2x2

4 + 9x5

f10(x) = 5x2
1 + 26x2

2 + x2
3 + x2

4 + 10x5

f11(x) = x2
1 +x2

2 +11x2
3 +14x2

4 +11x5

f12(x) = 2x2
1+4x2

2+8x2
3+16x2

4+12x5

f13(x) = x2
1 +5x2

2 +7x2
3 +11x2

4 +13x5

f14(x) = 13x2
1+17x2

2+19x2
3+23x2

4+14x5

f15(x) = 26x2
1 + x2

2 + x2
3 + 2x2

4 + 15x5
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f16(x) = 11x2
1+2x2

2+16x2
3+22x2

4+16x5

f17(x) = 22x2
1 + x2

2 + x2
3 + x2

4 + 17x5

f18(x) = x2
1 + x2

2 + x2
3 + x2

4 + 18x5

f19(x) = x2
1 +20x2

2 +7x2
3 +4x2

4 +19x5

f20(x) = 2x2
1+22x2

2+16x2
3+5x2

4+20x5

f21(x) = 4x2
1 +x2

2 +13x2
3 +4x2

4 +21x5

f22(x) = x2
1 +11x2

2 +11x2
3 +x2

4 +22x5

f23(x) = 17x2
1 +x2

2 +13x2
3 +x2

4 +23x5

f24(x) = x2
1 + x2

2 + 17x2
3 + x2

4 + 24x5

f25(x) = 16x2
1+19x2

2+19x2
3+22x2

4+25x5

f26(x) = 11x2
1+17x2

2+22x2
3+23x2

4+26x5

2

Remark 3.4. In Example 3.3, by different choices of fu, we can construct

• (8× 94)
27 many regular bent functions.

• (8× 94)
27 many weakly regular bent functions.

• (16× 94)
27 − 2 (8× 94)

27 many regular bent functions.
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CHAPTER 4

A TECHNIQUE TO OBTAIN WEAKLY AND NON-WEAKLY
REGULAR BENT FUNCTIONS USING S-PLATEAUED

FUNCTIONS

4.1 Introduction

A method to construct regular and (non)-weakly regular bent functions over the ring
of integers modulo pm using near-bent functions is given in Chapter 3. Note that, near-
bent functions are 1-plateaued functions, indeed. In this chapter, we broaden this study
such that it uses s-plateaued functions for a positive integer s > 1. For this purpose,
the number of functions to produce a bent function is increased but there is no problem
to obtain that number of s-plateaued functions.
One of the most important differences of this construction to the one in Theorem 3.3
is that the dimension increases by s, instead of 1.

In Section 4.2, we explain how to achieve s-plateaued functions with pairwise disjoint
support of Walsh transforms and give a method of construction of bent functions using
these s-plateaued functions. Also, we prove that the function hu that is used for con-
struction, cannot be represented in a polynomial form.
Section 4.3 studies an application of the construction method using quadratic s-plateaued
functions. Moreover, a technique is given to classify the bent functions as regular,
weakly regular and non-weakly regular.

4.2 A Construction of Bent Functions Using s-Plateaued functions

In this section, our aim is to expand the method that is given in Theorem 3.3. Recall
that, in that theorem, we indicate a method that constructs a bent function using a
determined number of 1-plateaued functions, namely near-bent functions. Now, we
aim to construct a bent function using s-plateaued functions for a positive number s
greater than 1.
The idea is to construct a bent function, F , by combining the s-plateaued functions in
such a way that Walsh spectrum of F do not have zero value. This can be achieved by
combining the s-plateaued functions having no common element in supports of their
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Walsh transforms and the union of their support of Walsh transforms should be Znq .

Theorem 4.1. Let s be a positive integer and u ∈ Zqs such that u = u1q
s−1 +u2q

s−2 +
· · · + us with ui ∈ Zq. For each u ∈ Zqs , let fu be an s-plateaued function defined
from Znq to Zq. Assume, supp(f̂u) ∩ supp(f̂v) is empty for u, v ∈ Zqs and u 6= v.

Then, the function F : Znq × Zsq → Zq defined by

F (x, y1, y2, · · · , ys) =
∑
u∈Zqs

hu(y1, y2, · · · , ys)fu(x),

is bent where hu is function defined from Zsq to Zq and given by,

hu(y1, y2, · · · , ys) =

{
1, if u = y1q

s−1 + y2q
s−2 + · · ·+ ys

0, if otherwise.

Proof. Recall that, a special case of Parseval’s identity is computed for the proof of
Theorem 3.3. Hence, for c ∈ Znq we have,

∑
c∈Znq

∣∣∣f̂u(c)∣∣∣2 =

{
q2n, if x = y
0, if x 6= y.

Then, we have ∑
c∈Znq

∣∣∣f̂u(c)∣∣∣2 =
∣∣∣supp(f̂u)∣∣∣ qn+s = q2n,

since
∣∣∣f̂u(c)∣∣∣ = 0 or qn+s/2 for all c ∈ Znq . So,

∣∣∣supp(f̂u)∣∣∣ = qn−s. Therefore, the
number of s-plateaued functions that is needed to construct a bent function is qs.

Let (a, b) ∈ Znq × Zsq. Then,

F̂ (a, b) =
∑

x∈Znq ,y∈Zsq

wF (x,y)−a·x−b·y =
∑
y∈Zsq

w−b·y
∑
x∈Znq

wF (x,y)−a·x

=
∑
y∈Zsq

w−b·y
∑
x∈Znq

w
∑
u∈Zqs

hu(y)fu(x)−a·x
=

=
∑
y∈Zsq

w−b·y
∑
x∈Znq

w(h0(y)f0(x)+···+hqs−1(y)fqs−1(x))−a·x =
∑
y∈Zsq

w−b·yf̂y′ (a),

where ý = y1q
s−1 + y2q

s−2 + · · · + ys for y = (y1, y2, · · · , ys) and each yi ∈ Zq.
Since supp(f̂i)∩ supp(f̂j) is empty and

⋃
i∈Zq supp(f̂i) = Znq , each a is an element of
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exactly one f̂ý. So, we have

∣∣∣F̂ (a, b)
∣∣∣ =

∣∣∣∣∣∣
∑
y∈Zsq

w−b·yf̂ý(a)

∣∣∣∣∣∣ =
∣∣∣w−b·yf̂ý(a)

∣∣∣ = q
n+s
2 .

To apply Theorem 4.1 on quadratic functions, we need q-many quadratic s-plateaued
functions with pairwise disjoint support of Walsh transforms and the union of their
Walsh transforms is Znq . In Chapter 3, we determine the Walsh spectrum of certain
quadratic functions from Znq to Zq. These quadratic functions can be shown to be s-
plateaued functions.The Walsh spectrum depends heavily on whether m is even or odd
(see Theorem 3.9 and Theorem 3.10). The following Lemma 4.2 is given to seperate
the Walsh spectrum of these quadratic s-plateaued functions.

Lemma 4.2. For n ≥ 2, n > s > 0, and m ≥ 1, let du1 , d
u
2 , · · · , dun−s ∈ Z×q . For u ∈

Zqs , we consider the correponding uniquely determined elements u1, u2, · · · , us ∈ Zq
with u = u1q

s−1 + u2q
s−2 + · · ·+ us and we define the function fu : Znq → Zq by,

fu(x1, x2, ..., xn) = du1x
2
1 +du2x

2
2 + ...+dun−sx

2
n−s+u1xn−s+1 +u2xn−s+2 + · · ·+usxn.

For u, v ∈ Zqs with u 6= v, the supports of the Walsh transforms of fu and fv are
disjoint.

Proof. Using the method of the proof of Lemma 3.11, we obtain that,

f̂u(c1, c2, · · · , cn) 6= 0⇔ (cn−s+1, cn−s+2, · · · cn) = (u1, u2, · · · , us).

Therefore, the supports of the Walsh transforms of fu and fv intersect if and only if
there exists (c1, c2, · · · , cn) ∈ Znq with,

(cn−s+1, cn−s+2, · · · cn) = (u1, u2, · · · , us) = (v1, v2, · · · , vs),

which is not possible as (u1, u2, · · · , us) 6= (v1, v2, · · · , vs).

Using Lemma 4.2, we can easily obtain necessary number of quadratic s-plateaued
functions with desired properties in order to construct bent functions using Theorem
4.1 which is a generalization of Theorem 3.3. In Theorem 3.3, we use the idea of La-
grange interpolation and explain that the coefficients used for the interpolation cannot
be represented as polynomials using the paper of Carlitz [2]. The same study is valid
for this case. In the following Proposition 4.3, we show that the function that is used
for the construction in Theorem 4.1 cannot be representible as a polynomial.
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Proposition 4.3. For u ∈ Zqs , let hu be a function defined from Zsq to Zq and given by,

hu(x1, x2, · · · , xs) =

{
a, if u = x1q

s−1 + x2q
s−2 + · · ·+ xs

0, if otherwise,

where a 6≡ 0 (mod p). Then, hu, cannot be represented in a polynomial form.

Proof. In Proposition 3.1, we have shown this for s = 1 using the arguments in [2].
The generalization can be achieved easily.

4.3 Examples and Classification of the Constructed Bent Functions

In this section, we give an application of Theorem 4.1 on certain quadratic functions.
For this purpose, we use the functions and their Walsh spectrums that are given in The-
orem 3.10 and Theorem 3.9. Then, we show how to classify the constructed functions
as regular, weakly regular and non-weakly regular bent functions. The notation given
as follows is valid for the whole section. For a positive integer s such that n > s > 0,
let fu : Znq → Zq be defined by

fu(x1, x2, ..., xn) = du1x
2
1 +du2x

2
2 + ...+dun−sx

2
n−s+u1xn−s+1 +u2xn−s+2 + · · ·+usxn,

where u = u1q
s−1 +u2q

s−2 + · · ·+us for u1, u2, · · ·us ∈ Zq and du1 , d
u
2 , · · · dun−s ∈ Z×q .

Then, by Theorem 3.9 and Theorem 3.10, fu is an s-plateaued function. Note that, if
we add a linear term to an s-plateaued function, it will again be an s-plateaued func-
tion.
Also, by Lemma 4.2 the set {fu(x) : u ∈ Zqs} consists of s-plateaued functions having
pairwise disjoint support of Walsh transforms.
Let F : Zn+s

q → Zq be the bent function constructed by Theorem 4.1 using these func-
tions. According to the last part of the proof of Theorem 4.1, for each a ∈ Znq , there

exists exactly unique u such that
∣∣∣F̂ (a, b)

∣∣∣ =
∣∣∣f̂u(a)

∣∣∣. Thus, it is enough to observe the
Fourier coefficients of fu in order to determine whether F is regular, weakly regular or
non-weakly regular.

Remark 4.1. Let m be even. According to Theorem 3.9, spec(fu) =
{

0, qn+s/2wv
}

for v ∈ Zq. This gives all the constructed bent functions using fu are regular by the
first item of Definition 1.12.

Remark 4.2. Let m be odd and p ≡ 1 (mod 4). Then, by Theorem 3.10, spec (fu) ={
q
n+s
2 η(Du)w

v
}

, for v ∈ Zq and Du = du1d
u
2 · · · dun−s. Let F : Zn+s

q → Zq be the bent
function constructed by Theorem 4.1 using fu for u ∈ Zqs . Then, using Definition
1.12,

• η(Du) = 1 for all u ∈ Zqs ⇒ F is a regular bent function.
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• η(Du) = −1 for all u ∈ Zqs ⇒ F is a weakly regular bent function.

• η(Du) attains both of the values {−1, 1} ⇒ F is a non-weakly regular bent
function.

Remark 4.3. Let m be odd and p ≡ 3 (mod 4). Using Theorem 3.10, we have
spec (fu) =

{
0, q

n+s
2 wvη(Du)

√
−1

n−s
}

where v is a determined element of Zq and
Du = du1d

u
2 · · · dun−s. Let F : Zn+s

q → Zq be the bent function constructed by Theorem
4.1 using the s-plateaued functions fu. Then,

1. Assume n− s ≡ 0 (mod 4).

• η(Du) = 1 for all u ∈ Zqs ⇒ F is a regular bent function.
• η(Du) = −1 for all u ∈ Zqs ⇒ F is a weakly regular bent function.
• η(Du) attains both of the values {−1, 1}⇒ F is a non-weakly regular bent

function.

2. Assume n− s ≡ 2 (mod 4).

• η(Du) = −1 for all u ∈ Zqs ⇒ F is a regular bent function.
• η(Du) = 1 for all u ∈ Zqs ⇒ F is a weakly regular bent function.
• η(Du) attains both of the values {−1, 1}⇒ F is a non-weakly regular bent

function.

3. Assume n− s ≡ 1 (mod 4) or n− s ≡ 3 (mod 4).

• No regular bent function is constructed.
• η(Du) = 1 for all u ∈ Zqs or η(Du) = −1 for all u ∈ Zqs implies that F is

a weakly regular bent function.
• η(Du) attains both of the values {−1, 1}⇒ F is a non-weakly regular bent

function.

Example 4.1. Let u ∈ Z272 and u = 27u1 + u2 for u1, u2 ∈ Z27. Let hu : Z2
27 → Z27

be functions defined as

hu(y1, y2) =

{
1, if u = 27y1 + y2

0, if otherwise.

For each u, the 2-plateaued functions, fu : Z4
27 → Z27 are defined as

fu(x1, x2, x3, x4) = du1x
2
1 + du2x

2
2 + u1x3 + u2x4,

where du1 , d
u
2 ∈ Z×27. Then, F : Z4

27 × Z2
27 → Z27 defined by

F (x, y1, y2) =
∑

u∈Z272
fu(x)hu(y1, y2) is a bent function by Theorem 4.1.

The set of quadratic residues of 27 is QR = {1, 4, 7, 10, 13, 16, 19, 22, 25} and the set
of quadratic non-residues of 27 is QnR = {2, 5, 8, 11, 14, 17, 20, 23, 26}. F can be
classified by investigating the coefficients, du1 and du2 .
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• For each fu, if du1 and du2 are chosen from the same set, QR or QnR, then F is a
weakly regular bent function.

• For each fu, if du1 is chosen from QR and du2 is chosen from QnR, or vice versa,
then F is a regular bent function.

• If for some fu we choose du1 and du2 according to the first item and for the rest
of fu, the choice is done according to the second item, then F is a non-weakly
regular bent function.

In the light of this information, a numerical example is given. For x = (x1, x2, x3, x4),
let fu be defined as follows

fu(x) =

{
x2

1 + x2
2 + u1x3 + u2x4, if u2 = 0

x2
1 + 2x2

2 + u1x3 + u2x4, if u2 6= 0.

Then, F (x, y1, y2) =
∑

u∈Z272
fu(x)hu(y1, y2) is a non-weakly regular bent function

defined from Z6
27 to Z27 using the arguments given by Remark 4.3. Realize that,

F (x, y1, y2) = fy(x) which implies

F (x, y1, y2) =

{
x2

1 + x2
2 + y1x3 + y2x4, if y2 = 0

x2
1 + 2x2

2 + y1x3 + y2x4, if y2 6= 0.

Example 4.2. For u ∈ Z253 , let fu : Z5
25 → Z25 be 3-plateaued functions defined as

fu(x1, x2, x3, x4, x5) = du1x
2
1 + du2x

2
2 + u1x3 + u2x4 + u3x5,

where u = 125u1 + 25u2 + u3 for u1, u2, u3 ∈ Z25 and du1 , d
u
2 ∈ Z×25.

Define, hu : Z3
25 → Z25 as

hu(y1, y2, y3) =

{
1, if u = 125y1 + 25y2 + y3

0, if otherwise.

For all choices of du1 , d
u
2 , F : Z5

25 × Z3
25 → Z25 defined by,

F (x, y1, y2, y3) =
∑
u∈Z253

fu(x)hu(y1, y2, y3)

is a regular bent function by Remark 4.1.
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CHAPTER 5

CONCLUSION

Bent functions are significant tools as they have the maximum Hamming distance to
the set of all affine functions and they are connected into various areas of mathematics
and computer science. It is crucial to study bent functions over the finite fields of odd
characteristics due to the interesting results.
The idea of construction of bent functions using near-bent functions or construction
of near-bent functions using bent functions is first considered in [11]. The study is
over finite fields with characteristic 2. Let Fn2 be an n-dimensional vector space over
F2. As near-bent functions exist over Fn2 with n odd and bent functions exist over Fn2
with n even, it is possible to get one from another by either decreasing or increasing
the dimension by one. All the four cases are considered. The case of the study in
[11], we are especially concerned in this thesis is to get a bent function using near-
bent functions by increasing the dimension. We would like to mention this part briefly
because it summarizes the idea of our construction methods in a simple manner.
Let f1, f2 be near-bent functions from Fn2 to F2 with the property that supp(f̂1) ∩
supp(f̂2) = ∅ and

⋃
i=1,2 supp(f̂i) = Fn2 . Then, F (x, y) from Fn2 ×F2 to F2 defined by

F (x, y) = yf1(x) + (y + 1)f2(x),

is bent. It is very easy to show this, actually. Let λ be a linear functional on Fn2 × F2.
Then,

F̂ (λ) =
∑

(x,y)∈Fn2×F2

(−1)F (x,y)+λ(x,y)

=
∑

(x,0)∈Fn2×F2

(−1)f2(x)+λ(x,0) +
∑

(x,1)∈Fn2×F2

(−1)f1(x)+λ(x,1)

⇒ F̂ (λ) = f̂1(λ) + f̂2(λ).

Since supp(f̂1) and supp(f̂2) partition Fn2 , we have F̂ (λ) = ∓2
n+1
2 . Hence F is bent.

This construction method is then adapted to the finite fields with characteristic p [3].
They joint the near-bent functions using the Lagrange interpolation formula and obtain
a bent function by increasing the dimension by p. Let Fp be the finite field with p
elements and Fnp be an n-dimensional vector space over Fp. To give examples, they
compute the Walsh spectrums of all quadratic functions defined from Fnp to Fp. The
Walsh spectrum of quadratic functions defined over Fq and the ring of integers modulo
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q gives completely different results than the results in [3]. Then, they develope their
construction method such that the method uses s-plateaued functions instead of near-
bent functions and apply on quadratic functions.
In this thesis, we give an adaptation of some of the studies given in [3, 4, 11]. Over
finite fields with q elements, we give a method to obtain bent functions using near-bent
functions (see Theorem 2.2). Then, we compute the Walsh spectrum of all quadratic
functions defined from Fnq to Fq (see Theorem 2.3). This ensures us to apply the con-
struction method on quadratic functions. Moreover, we adapt the method of construc-
tion to the ring of integers modulo q. Then, we generalize the method in such a way
that it uses s-plateaued functions instead of near-bent functions. Consider the quadratic
functions d1x

2
1 + d2x

2
2 + ... + dn−sx

2
n−s for d1, d2, · · · , dn−s ∈ Z×q . We compute the

Walsh spectrum of these quadratic functions. Thus, we give examples of constructions
using these quadratic functions. To classify the constructed bent functions as regular,
weakly regular and non-weakly regular, we give detailed explanations.
Let h(x) be a monic, basic irreducible polynomial of degree k in Zq[x]. Then, the ring
R = Zq[x]/

(
h(x)

)
is a commutative ring with identity. It is proven that R is a Galois

ring by showing the principal ideal
(
p + h(x)

)
consists of all zero divisors and zero.

Actually, R is shown to be a Galois ring with qk elements and characteristic q [16].
Therefore, the studies given in Chapter 3 and Chapter 4 are also valid on Galois rings.

Now, we would like to give a summarized list of contributions.

• We give the first adaptation of some of the studies in [3, 4, 11] to the finite fields
with q elements and the ring of integers modulo q.

• The functions that are used as a Lagrange coefficient in Theorem 3.3 and Theo-
rem 4.1, cannot be represented as polynomials. We demonstrate this using some
of the arguments given in [2]. Moreover, we show that there is no alternative of
a polynomial to use for Lagrange interpolation formula.

• Consider the functions d1x
2
1 + d2x

2
2 + ...+ dn−sx

2
n−s for d1, d2, · · · , dn−s ∈ Z×q

and 0 ≤ s ≤ n−1. We compute the Walsh spectrum of these quadratic functions
over Zq and all quadratic functions over Fq. The results and techniques used for
the computations are completely different than the ones in [3].

• We compute the Gauss sum over Zq. That ensures us to obtain the Walsh spec-
trum of the quadratic functions, defined as d1x

2
1 + d2x

2
2 + ... + dn−sx

2
n−s for

d1, d2, · · · , dn−s ∈ Z×q and 0 ≤ s ≤ n− 1

• To apply the construction theorems (Theorem 2.2,Theorem 3.3,Theorem 4.1),
we need functions having pairwise disjoint support of Walsh transforms. So, we
give a technique to determine quadratic functions with pairwise disjoint support
of Walsh transforms.

• In the application parts, we explained how to classify the constructed bent func-
tions as regular, weakly regular and non-weakly regular in detail. (see Sections
2.4, 3.6, 4.3).
In Section 2.4, we construct bent functions using near-bent functions over Fq.
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When p is fixed, the percentage of the non-weakly regular bent functions is
greater than the percentage of regular and weakly regular bent functions. Also,
the number of bent functions we constructed is greater than the number of bent
functions constructed in [3] for a fixed p.
In Section 3.6 and Section 4.3, we give applications using near-bent functions
and s-plateaued functions over Zq = Zpm . For these cases, if m is even all
the constructed bent functions are regular. If m is odd great majority of the
bent functions are non-weakly regular. Moreover, we construct more bent func-
tions compared to [3] and the percentage of non-weakly regular bent functions is
greater. For an odd m, as p or m increases this percentage of non-weakly regular
functions gets greater.

To construct bent functions, we use the idea of Lagrange’s interpolation formula. As
a future work, one can search for any other idea to joint the s-plateaued functions to
obtain bent functions.
In [11], different ideas are given to obtain a bent function from near-bent functions
or obtain a near-bent function from bent functions. Generalizing these ideas to the
characteristic p case might be interesting.
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