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ABSTRACT

WEYL-INVARIANT HIGHER CURVATURE GRAVITY THEORIES

Dengiz, Suat

Ph.D., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

SEPTEMBER, 2014, 103 pages

In this thesis, Weyl-invariant extensions of three-dimensional New Massive Grav-

ity, generic n-dimensional Higher Curvature Gravity theories and three-dimensional

Born-Infeld gravity theory are analyzed in details. As required byWeyl-invariance,

the actions of these gauge theories do not contain any dimensionful parameter,

hence the local symmetry is spontaneously broken in (Anti) de Sitter vacua in

analogy with the Standard Model Higgs mechanism. In �at vacuum, symmetry

breaking mechanism is more complicated: The dimensionful parameters come

from dimensional transmutation in the quantum �eld theory; therefore, the con-

formal symmetry is radiatively broken (at two loop level in 3-dimensions and

at one-loop level in 4-dimensions) à la Coleman-Weinberg mechanism. In the

broken phases, save for New Massive Gravity, the theories generically propagate

with a unitary (tachyon and ghost-free) massless tensor, massive (or massless)

vector and massless scalar particles for the particular intervals of the dimension-

less parameters. For New Massive Gravity, there is a massive Fierz-Pauli-type

graviton. Finally, it is shown that n-dimensional Weyl-invariant Einstein-Gauss-
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Bonnet theory is the only unitary higher dimensional Weyl-invariant Quadratic

Curvature Gravity theory.

Keywords: Weyl-invariance, New Massive Gravity, Higher Curvature Gravity

Theories, Born-Infeld Gravity theory, Spontaneously Symmetry Breaking, Ra-

diatively Symmetry Breaking, (Anti) de Sitter spaces, Weyl-invariant Einstein-

Gauss-Bonnet theory
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ÖZ

YÜKSEK MERTEBEDEN E�R�L� WEYL-DE���MEZL� KÜTLE-ÇEK�M
KURAMLARI

Dengiz, Suat

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bayram Tekin

2014 , 103 sayfa

Bu tez çal�³mas�nda, Weyl-de§i³mez bir ³ekilde geni³letilmi³ üç boyutlu Yeni

Kütleli Kütle-çekim, genel n-boyutlu Yüksek Mertebeden E§rili Kütle-çekim

teorileri ve üç boyutlu Born-Infeld Kütle-çekim teorisi detayl� ³ekilde analiz

edildi. Weyl-de§i³mez taraf�ndan gerekli görüldü§ü üzere, bu ayar teorilerinin

eylem integralleri birimli parametre içermezler, dolay�s�yla lokal simetri Stan-

dard Model Higgs Mekanizmas�ndaki gibi (Anti) de Sitter vakumlar�nda kendil-

i§inden k�r�l�r. Düz uzay-zaman vakumunda, simetri k�r�lma mekanizmas� çok

karma³�kd�r: Birimli parametreler kuantum teorisindeki birimsel dönü³ümden

gelir; bundan dolay� konformal simetri Coleman-Weinberg mekanizmas�na ben-

zer olarak halka seviyesinde (3-boyutta iki-halka seviyesinde ve 4-boyutta bir-

halka seviyesinde) k�r�l�r. Simetrinin k�r�ld�§� fazlarda, Yeni Kütleli Kütle-çekim

teorisi hariç, genel olarak teoriler boyutsuz parametrelerin özel aral�klar�nda

üniter (takyon ve hayalet olmaks�z�n) bir kütlesiz tensör, bir kütleli (veya kütle-
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siz) vektör ve bir kütlesiz skaler parçac�klar olarak hareket ederler. Yeni Kütleli

Kütle-çekim teorisinde ise Fierz-Pauli-tipi kütleli bir graviton vard�r. Son olarak,

Weyl-de§i³mez Einstein-Gauss-Bonnet teorisinin n-boyutlu Weyl-de§i³mez ik-

inci dereceden Kütle-çekim teorileri içerisinde üniter olan tek teori oldu§u gös-

terildi.

Anahtar Kelimeler: Weyl-de§i³mez, Yeni Kütleli Kütle-çekim, Yüksek Mertebe-

den Kütle-çekim teorileri, Born-Infeld Kütle-çekim teorisi, Kendili§inden Simetri

K�r�lmas�, Halka Mertesi Simetri K�r�lmas�, (Anti) de Sitter uzaylar�, Weyl-

de§i³mez Einstein-Gauss-Bonnet teori
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CHAPTER I

INTRODUCTION

Quantum Mechanics and Einstein's Special and General theories of relativity

(SR and GR, respectively) are probably the greatest achievements of physics in

the 20th-century. Roughly speaking, Quantum Theory is the theory of small-

scales whereas the SR is of high-velocity and GR is of the large-scales. As it

is known, each of these theories has in fact shortcomings: Quantum Mechanics

is not a relativistic one. On the other side, GR fails to be a Quantum The-

ory. Therefore, reconciling Quantum Mechanics with SR yields a well-behaved

relativistic version of Quantum Mechanics called �Quantum Field Theories�. In

the framework of Quantum Field Theories, the coupling constants generically

involve the information of basic interactions of given quantum �elds. Depending

on values of the coupling constants (which are actually not constants at all!),

there are two distinct and fundamental approaches in this new context, namely

perturbative and non-perturbative methods. In the non-perturbative method,

the related coupling constants of the �elds are so large that they prevent one

to approach the theory perturbatively. On the other side, when the coupling

constants are satisfactorily small, one can then approach the theories perturba-

tively (namely in a power series expansion in terms of the coupling constants) in

order to determine the fundamental behaviors of the �elds: Here, by using the

noninteracting �elds, one can evaluate the explicit contributions coming from

any desired order by expanding the coupling constants in the power-series up to

a proper order. Symbolically, the corresponding interactions are always denoted

by the connected Feynman diagrams in which it is assumed that these interac-

tions are carried via the exchange of virtual particles. Moreover, in Quantum
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Field Theories, these virtual mediators or (interacting) quantum �elds can also

move in the loops whose momenta are allowed to be any value, that is to say,

they can acquire any frequency from zero to in�nity. And interestingly, these

higher-order e�ects generically do modify the physical quantities of the �elds

such as masses, propagator structures, e�ective potentials etc. Therefore, in

order to �nd the exact values of these physical quantities, one has to evalu-

ate contributions coming from the radiative corrections by summing over all

the allowed momentums (i.e., from zero to in�nity) that particles can receive

throughout the loops. But, these sums (or integrals) often diverge, as the mo-

mentum goes to zero (IR-divergence) or to in�nity (UV-divergence). In general,

these disturbing in�nities in the extreme limits can be resolved by choosing an

appropriate regularization scheme, to get rid o� the divergences. For instance,

one can assume a cut-o� scale Λ which will cut the integral at a �nite value and

thus eliminate those disturbing in�nities. Generically, one needs cut-o�s both at

the IR and UV regions. But, in this case, the scattering amplitudes and also the

coupling constants will inevitably depend on the cut-o�, and hence the theory

becomes an e�ective one, meaning the theory is valid below the, say UV, cut-o�.

Alternatively, one can follow the dimensional regularization [1, 2] where integrals

are evaluated at complex n-dimensions, or Pauli-Villars method [3] in which the

bare propagators are replaced with the ones which involve very heavy ghosts to

regularize the divergent integrals1. After the regularization is carried out, one
1 There is also another regularization process dubbed �zeta-function regularization� which is

used in order to drop out divergences in determinant of the operator occurred during path integrals

of �elds: That is, let us suppose that the vacuum to vacuum transition amplitude for a generic

gravity-coupled-scalar-�eld theory in a curved spacetime

Z ≡
∫
D[g]D[Φ] eiS[g,Φ], (I.1)

is given. Here ~ is set to 1. Then, with the rede�nitions gµν = ḡµν + hµν and Φ = Φ0 + ΦL, (I.1)

turns into

lnZ ≡ iS[ḡ,Φ0] + ln

∫
D[h] eiS

(2)[h] + ln

∫
D[ΦL] eiS

(2)[ΦL]. (I.2)

Furthermore, the quadratic part of ΦL in (I.2) can also be written as

S(2)[ΦL] = −1

2

∫
d4x
√
−ḡΦL∆(2)ΦL, (I.3)

where ∆(2) is the related second-order operator composed of ḡµν and ΦL. (Note that the metric part

can also be converted in the similar form. But in that case one needs to also de�ne a Fadeev-Popov

ghost in order to �x the gauge freedom that causes degeneracies in the operator.) It is known that if

the background metric is Euclidean, ∆(2) becomes real, elliptic and self-adjoint so that it has complete

spectrum of eigenvectors Φn with real eigenvalues λn. Therefore, after Wick rotation, one will get

2



has to decouple these ghosts from the rest by sending their masses to in�nity.

Otherwise, the unitarity of the model would also be lost. Since there are no spe-

ci�c choices of cut-o� scales or loop-levels dictated by experimental results in

the interacting theories, one can follow the renormalization procedure in which

the coupling constants are taken as �bare� ones in order to tune the parameters,

and hence to render the nonrenormalizable ones without altering the physical

results. In this aspect, despite being unitary, referring their paper for the proof

[2], 't Hooft and Veltman used the background �eld method (in which the back-

ground gauge-invariance is preserved via a suitable choice of gauge condition)

in perturbative quantum �eld theory approach to GR with matter �elds and

showed that the theory actually contains new one-loop divergences, and hence

it is non-renormalizable rather it is an e�ective �eld theory. On the other hand,

unlike in intermediate scales, GR in its bare form also fails to be a well-de�ned

theory in the large distances. That is to say, recent experimental data indicate

that GR fails to explain the �attening of the galaxy rotation curves [5] and the

accelerating expansion of the universe [6]. In the IR regime, it is well-known that

these problems can be cured by introducing a huge amount of extra matter and

energy (i.e., dark matter and dark energy), compared to the observable matter.

Since the theory is problematic in both extreme scales, the idea of modi�cation of

∆(2)Φn = λnΦn with the normalization
∫
d4x
√
ḡΦnΦm = δ

(4)
nm. However, when it is not Euclidean, the

operator is not self-adjoint. But the excitation ΦL can be written in terms of Φn as ΦL =
∑
n anΦn

which provides D[Φ] =
∏
n µD[an], where µ is an appropriate normalization constant with [µ] = M .

Hence with these tools, one will �nally get

Z[ΦL] =
µ
√
π

2

∏
n

λ−1/2
n =

[
det
( 4

µ2π
∆(2)

)]−1/2

. (I.4)

Due to the unlimited eigenvalues of ∆(2), the determinant inevitably diverges. To cure this, here a

generic zeta-function constructed in terms of these eigenvalues

ζ(s) =

∞∑
n=0

λ−sn , (I.5)

which reduces to Riemann-zeta function when λn = n and converges for Re(s) > 2 in four dimensions.

In this method, it is aimed to extend s to have poles at s = 1, 2 that is regular at s = 0, which provides

us to take the determinant of ∆(2) as the derivative of (I.5) at s = 0 (i.e., det[∆(2)] ≡ e−
dζ(s)
ds
|s=0) so

that one will �nally get

lnZ[ΦL] =
1

2
ζ
′
(0) +

1

2
ln(

µ2π

4
)ζ(0). (I.6)

Thus, one can easily evaluate the zeta-function as long as the eigenvalues are known. (See [4] for the

details of the zeta-function regularization.)
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GR (or even replacing it with a new one) has received valuable attention. For this

reason, various approaches have been proposed in order to construct a consistent

and predictive UV and IR-complete gravity theory. Perhaps, one can collect all

these approaches in two families: Firstly, one can totally change the background

spacetime to a new (higher or lower dimensional one at high energies) one.

Probably, in this family, the most known example is String theory which was

developed in higher-dimensional manifolds. Despite its undesired features such

as its great number of vacua, it achieves not only to quantize gravity but also

provides a uni�ed theory. Secondly, one might not alter the 4−dimensional

arena and use the experience obtained from Quantum Field Theories in order

to obtain the desired tree (and/or loops)-level propagator structure, and hence

(self-)interactions. In this point of view, for instance, one can assume higher

order curvature corrections to pure GR [7] such that they will be suppressed in

the lower frequency regimes, but they turn to be important as one goes to higher

frequency regimes. [In fact, at low energies String theory also yield such higher

order gravity theories.] Alternatively, one can assume a proper extra symmetry

that might spoil out the above mentioned one-loop divergence of GR. Here due

to the several reasons, the conformal symmetry is a candidate for this aim. For

instance, since according to the SR context, the masses of the excitations lose

their importance as the energy scale is increased. Therefore, it is expected that

such a well-behaved gravity theory will not contain any dimensionful parameter

in the extremely high energy regions, say Planck-scale or beyond. However, GR

has a dimensionful parameter with a mass dimension −2, that is the Newton's

constant. So somehow Newton's constant must be upgraded to a �eld. Since

conformal symmetry does not accept any dimensionful parameter, so, it might

resolve the above mentioned problem of GR in extremely high energy scales.

Hence, being free of dimensionful parameters can provide a renormalized gravity

theory at least in the power-counting point of view.

In this thesis, we analyze the Weyl-invariant modi�cations of various Higher

Order Gravity theories and also study the stability and unitarity of them as

well as the corresponding symmetry-breaking mechanisms at low energies for

the generation of the masses for fundamental excitations propagated about con-

4



stant curvature vacua, as well as the appearance of the Newton's constant. Our

discussion will be based on the following papers:

1. S. Dengiz, and B. Tekin, �Higgs mechanism for New Massive Gravity and

Weyl-invariant extensions of Higher-Derivative Theories,� Phys. Rev. D

84, 024033 (2011) [8].

2. M. Reza Tanhayi, S. Dengiz, and B. Tekin, �Unitarity of Weyl-Invariant

New Massive Gravity and Generation of Graviton Mass via Symmetry

Breaking,� Phys. Rev. D 85, 064008 (2012) [9].

3. M. Reza Tanhayi, S. Dengiz, and B. Tekin, �Weyl-Invariant Higher Curva-

ture Gravity Theories in n Dimensions,� Phys. Rev. D 85, 064016 (2012)

[10].

In the �rst paper, Weyl-invariant extension of New Massive Gravity, generic

n-dimensional Quadratic Curvature Gravity theories and 3-dimensional Born-

Infeld gravity are presented. As required by the Weyl-invariance, Lagrangian

densities of these Weyl-invariant Higher Curvature Gravity theories are free of

any dimensionful parameter. In addition to the constructions of those gauge

theories, the symmetry breaking mechanisms in the Weyl-invariant New Massive

Gravity is also studied in some detail. Here the structure of the symmetry

breaking directly depends on the type of background wherein one works: the

Weyl symmetry is spontaneously broken by the (Anti) de Sitter vacua. On

the other side, radiative corrections at two-loop level break the symmetry in

�at backgrounds and thus these broken phases of the model provide mass to

graviton.

In the second paper, the particle spectrum and hence the stability of the Weyl-

invariant New Massive Gravity around its maximally-symmetric vacua are stud-

ied in detail. Since the model contains various non-minimally coupled terms,

the stability and unitarity of the model are determined by expanding the action

up to the second-order in the �uctuations of the �elds. Here it is demonstrated

that the model fails to be unitary in de Sitter space. Moreover, it is shown that

the Weyl-invariant New Massive Gravity generically propagates with a unitary

5



massive graviton, massive (or massless) vector particle and massless scalar par-

ticle in the particular domains of parameters around its Anti-de Sitter and �at

vacua. Thus, as indicated in the �rst paper, the masses of the fundamental

excitations of the model are generated as a result of breaking of the conformal

symmetry.

Finally, in the last paper, stability and unitarity of the Weyl-invariant extension

of the n-dimensional Quadratic Curvature theories are analyzed. From the per-

turbative expansion of the action, it is shown that, save for the Weyl-invariant

New Massive Gravity, the graviton is massless. Moreover, it is shown that the

Weyl-invariant Gauss-Bonnet model can only be the Weyl-invariant Quadratic

Curvature Gravity theory in higher dimensions.

To be able to give a detailed exposition on the contents of these 3 papers, let us

brie�y review the required background material 2: The basics of the higher curva-

ture gravity theories, the conformal transformations and Spontaneous-Symmetry

Breaking via Standard Model Higgs Mechanism and Radiative-corrections in the

remainder of this chapter.

I.1 Higher Order Gravity Theories

Even though pure GR has a unitary massless spin-2 particle (the graviton), as

mentioned above, there occurs divergences at the higher-order corrections due to

the graviton self-interactions. To stabilize this nonrenormalization at least in the

power-counting aspects, one can add higher powers of curvature scalar terms to

the bare action in order to convert the propagator structure into the desired form

such that the higher order part will be suppressed in the large-scales so they can

be ignored, whereas they become important as the energy scale increases. Since

the super�cial degree of divergence D of the four-dimensional GR 3 that arises

2 In this dissertation, we follow two conventions: In the pure Quantum Field Theory parts in

this chapter, we are following the mostly-negative signature. On the other hand, in all the gravity

parts throughout this thesis, we are following the mostly-plus signature and also Riemann and Ricci

tensors are Rµνρσ = ∂ρΓ
µ
σν + ΓµραΓασν − ρ↔ σ and Rνσ = Rµνµσ, respectively.

3 GR's action is built from the Ricci scalar R which involves second-order derivatives of the

metric. Hence, the momentum-space propagator of the graviton will behave as 1
p2

whereas each

vertex propagates as p2. Since in generic n dimensions, the r-loop diagrams will contain integration
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from the one-loop calculations is 4 and since the second order curvature terms

contain 4th-order-derivatives, adding an appropriate combination of a quadratic

curvature scalar counter terms will bring corrections with the 4th-order momen-

tum terms (i.e., 1
p4 ) to the usual graviton propagator. This modi�cation has the

potential to cancel out the above mentioned D and so brings on a fully renor-

malized gravity theory. Actually, one can add any arbitrary scalar powers of

curvature terms to GR. But, without adding the corresponding quadratic cur-

vature term, due to the number of D, one will not be able to cure the �rst-order
loop in�nities [7]. On the other side, the situation changes if the backgrounds

are maximally symmetric (nonzero) constant curvature [i.e., (Anti-) de Sitter

[(A)dS]] vacua: More precisely, as shown in [13], any arbitrary higher curva-

ture correction, whose order is greater than 2, brings out nonzero contributions

to the one-loop propagator structure when the background is (A)dS spacetimes.

Furthermore, these contributions are directly related to ones that come from the

particular quadratic curvature terms. Therefore, since the second order modi�-

cations contain the e�ects of ones beyond itself, it is enough to just work only on

the quadratic curvature corrections. As it is known, R2, R2
µν , R

2
µναβ are the only

quadratic curvature scalar terms. But, since the topological term Gauss-Bonnet

combination is known to yield

δ

∫
d4x
√
−g

(
R2 − 4R2

µν +R2
µναβ

)
= 0, (I.10)

then, the quadratic term R2
µναβ can be eliminated. And thus, one is left with

only R2, R2
µν quadratic terms. It is known that in n = 4, by incorporating

pure GR with R2, in addition to the massless spin-2 �eld, the theory gains

an extra massive scalar �eld about its �at or (A)dS backgrounds [7] . In this

of (dnp)r; therefore the super�cial degree of divergence D of the diagram will be

D = nL+ 2(V − I), (I.7)

where L, V and I stand for the total number of loops, vertices and internal lines of the given diagram,

respectively. Moreover, since L can be de�ned in terms of V and I as

L = I − V + 1, (I.8)

then, (I.7) will turn into

D = (n− 2)L+ 2. (I.9)

Observe that when n = 4 at the one-loop level, D becomes 4. In addition this, save for the n = 2 case,

D increases as L increases [2, 11]. (See also [12] and references therein for a comprehensive review on

the concept of quantum gravity.)

7



case, the unitarity of the modi�ed theory is preserved but it still contains one-

loop divergences. On the other side, adding a combination of the R2 and R2
µν

terms remarkably yields the vanishing of the divergences. Hence, the theory

becomes renormalizable. In this case, the extended version of GR has a massless

tensor �eld, a massive scalar �eld and a massive tensor �eld around its constant

curvature and �at vacua. However, this does not come for free: Since R2
µν

contains a ghost, the unitarity of the pure GR is lost. Unitarity of a theory

cannot be compromised because predictions of a non unitary theory are simply

unreliable. Namely probability does not add up to 1. Unfortunately, with

this modi�cation, the unitarity of massless and massive spin-2 �uctuations are

inevitably in con�ict. All the above mentioned unitarity analysis can be seen

Figure I.1: Tree-level scattering amplitude via one graviton exchange between
two point-like locally conserved sources.

from the corresponding tree-level scattering amplitude in (A)dS, A, obtained
via the one graviton exchange between two point-like locally conserved sources

(See Figure I.1) which is given by [14]

4A ≡
∫
d4x
√
−ḡ T ′µν(x)hµν(x) =

∫
d4x
√
−ḡ

(
T
′

µν(x)hTTµν(x) + T
′
ψ
)
. (I.11)

Here, hµν stands for the �uctuation about (A)dS vacua, T µν is the stress-energy

tensor of the source that generates the graviton. Also, ψ and hTTµν are the scalar

and the transverse-traceless irreducible parts of the metric �uctuation such that

hTTµν (x) =
[
O−1(x, x

′
)T TT (x

′
)
]
µν
, (I.12)
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O−1 is the corresponding retarded Green's function obtained from the lineariza-

tion of the corresponding �eld equations in the imposed condition ∇̄µhµν−∇̄νh =

0. In these higher derivative theories, many classical properties of GR are intact.

For example, just like the ADM conserved quantities of GR [15, 16, 17], con-

served charges can be constructed by using the Killing vectors and these charges

are known as Abbott-Deser-Tekin (ADT) charge and super-potential [18, 19].

I.1.0.1 New Massive Gravity: A Three Dimensional Theory

As mentioned above, due to the con�ict between the massless and massive spin-

2 modes, GR augmented with the quadratic curvature terms inevitably results

in the violation of the unitarity. On the other hand, since pure GR does not

propagate any dynamical degree of freedom in 3-dimensions, one can study GR

in lower dimensions to better understand the nature of �quantum� gravity. In

fact there is a vast literature on 3-dimensional gravity [20, 21, 22]. In this aspect,

in 2009, a massive gravity theory called " New Massive Gravity4", was proposed

[23]. The theory, which comes with a particular combination of the quadratic

curvature terms, is given by the action

SNMG =
1

κ2

∫
d3x
√
−g
[
σR− 2λm2 +

1

m2
(R2

µν −
3

8
R2)
]
, (I.13)

where κ2 is the 3-dimensional Newton's constant, λm2 is the cosmological con-

stant and m2 is mass of the graviton. Furthermore, σ is a dimensionless pa-

rameter which can be set to ±1 depending on the unitarity region. With the

speci�c combination of higher-order terms, the spin-0 mode, that comes from

the addition of R2 term, also drops. And this happens only in 3 dimensions.

Furthermore, at the tree-level, (I.13) has a unitary massive graviton with two

helicities (±2) around both its (A)dS and �at vacua. In addition to this, the

model supplies a non-linear extension of the famous massive gravity theory of

4 In 3 dimensions, there is an alternative and unique parity non invariant theory called �Topo-

logically Massive Gravity� which has a unitary massive graviton with a single helicity [24]. See also a

critical extension of Topologically Massive Gravity dubbed �Chiral Gravity� [25] which may provide a

well-behaved 3-dimensional quantum gravity theory in asymptotically AdS3 background via Anti-de

Sitter/Conformal Field Theory (AdS/CFT) correspondence.
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Fierz-Pauli [26] that is de�ned by the action

SFP =

∫
dnx
√
−g
[ 1

κ2
R−

m2
graviton

2
(h2

µν − h2)
]
, (I.14)

which propagates with a massive graviton with 2 degrees of freedom in 3 dimen-

sions and 5 degrees of freedom in 4 dimensions. However, the theory violates

gauge-invariance and also there occurs one more degree of freedom at the non-

linear level which is called �the Boulware-Deser ghost� [27]. Meanwhile, the

limit m2
graviton → 0 is disconnected from the massless case m2

graviton = 0 which is

called �the van Dam-Veltman-Zakharov (vDVZ) discontinuity� [28, 29]. Only in

3 dimensions Fierz-Pauli theory has a nonlinear extension (with a single �eld)

that is the New Massive Gravity theory. On the other side, despite the common

expectation, New Massive Gravity fails to be a renormalizable theory [30, 31].

But if one drops the Einstein term, it might be renormalizable [32]. In addi-

tion to this, it also fails to be a well-de�ned theory in the context of AdS/CFT

correspondence because the unitarity of bulk and boundary are in con�ict [23].

Finally, Born-Infeld gravity, an in�nite order extension of New Massive Gravity

was constructed in [33] which reduces to the ordinary New Massive Gravity in

the quadratic expansion of curvature.

I.2 Conformal Invariance

As it is known, GR has �local Lorentz−invariance�, �general covariance� or

�di�eomorphism−invariance� as symmetries5. Although pure GR does not have

conformal symmetry at all, since it preserves the casual structure of spacetimes

up to a conformal factor, let us brie�y review the basics of conformal trans-

formations in GR: As it is known light-cones of spacetimes remain invariant

up to a conformal factor of the metric, which provides one to demonstrate the

global structures of the spacetime manifolds on a 2-dimensional surface of a pa-

per called �Conformal (Penrose) diagrams�. This can be seen by observing that,

in n = 4, the metric has 10 independent components. From the energy and

momentum constraints, this reduces to 6. Assuming a light-cone with a spe-

ci�c coordinate system brings 5 constraints, hence, there remains 1 independent
5 In this part, we mainly follow [34].
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component that allows the invariance of the null-cone structures throughout the

scales a conformal factor of metric [35]. On the other hand, let us review how

conformal symmetry is augmented to GR: Generically, the conformal symmetry

is known as the transformations that preserve the angle between the curves on a

given manifold. Algebraically, under local conformal transformations, the metric

transforms as

gµν → g
′

µν = Ω2gµν , (I.15)

where Ω is an arbitrary function of coordinates but we assume Ω > 0. Moreover,

using (I.15), one can show that the Christo�el connection transforms as

Γαµν → Γ
′α
µν = Γαµν + Ω−1(δαν∇µΩ + δαµ∇νΩ− gµν∇αΩ). (I.16)

Therefore, from (I.16) and the de�nition of Riemann tensor

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµλρΓ

λ
νσ − ΓµλσΓλνρ, (I.17)

one can easily show that, under (I.15), the Riemann tensor transforms according

to

Rµ
νρσ → R

′µ
νρσ = Rµ

νρσ+Ω−2
[
gνσ
(

2∇ρΩ∇µΩ− Ω∇ρ∇µΩ
)

+ δµσ

(
Ω∇ν∇ρΩ− 2∇νΩ∇ρΩ + gνρ∇αΩ∇αΩ

)
− gνρ

(
2∇σΩ∇µΩ− Ω∇σ∇µΩ

)
− δµρ

(
Ω∇ν∇σΩ− 2∇νΩ∇σΩ + gνσ∇αΩ∇αΩ

)]
.

(I.18)

Contracting (I.18) yields the transformation of Ricci tensor as

Rµν → R
′

µν = Rµν + Ω−2
[
(n− 2)(2∇µΩ∇νΩ− Ω∇ν∇µΩ)

− gµν
(

(n− 3)∇αΩ∇αΩ + Ω�Ω
)]
,

(I.19)

where � ≡ ∇α∇α. Finally, the conformal transformation of the Ricci scalar

reads

R→ R
′
= Ω−2

[
R− (n− 1)Ω−2

(
(n− 4)∇αΩ∇αΩ + 2Ω�Ω

)]
. (I.20)

Hence, with these transformations, one will �nally obtain the conformal trans-

formation of the Einstein tensor as

Gµν → G
′

µν = Gµν + (n− 2)Ω−2
[
2∇µΩ∇νΩ− Ω∇ν∇µΩ

+ gµν
((n− 5)

2
∇αΩ∇αΩ + Ω�Ω

)]
.

(I.21)
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Of course by using the above transformations of the curvature terms, one can

study the conformal extension of any given gravity model. Alternatively, by

using the experience of making a global symmetry local with the help of extra

�elds, one can modify GR and other extensions of it as gauge theories such that

they will recover the above mentioned conformal transformations for the speci�c

choices of �elds. As we will see in detail in the next chapters, one such (in fact

the �rst attempt) was done by Weyl in 1918 [36] in order to unify electromagnetic

theory and gravity via a real scalar and an Abelian gauge �elds.

I.3 Spontaneous Symmetry Breaking

In Quantum Field Theory perspective, elementary particles are labeled via their

masses and their spins. This was worked out long time ago by Wigner [37].

Furthermore, this unique framework also gives what values of these labels can

be: According to Quantum Field Theory in �at space, due to the requirements

of unitarity, the masses of the particles in the subatomic world are not allowed

to be negative, and additionally their spins can only be 0, 1
2
, 1, 3

2
in units of ~.

Note that Wigner's theorem allows higher spins but in four dimensions, one

cannot have a renormalizable interacting �eld theory for spins larger than 3
2
~.

In this construction, all the matter particles (i.e., fermions) quarks, electron,

muon, tau have m2 ≥ 0 and spin-1
2
. Also, the force carriers (i.e., bosons) of the

Electrodynamic and Strong interactions (photon and gluons, respectively) have

m2 = 0 and spin-1 with two degrees of freedom. On the other side, even though

the mediators of the Weak Interaction (i.e. W±, Z bosons) have spin-1, in

contrary to the photon and gluons, they are massive with values approximately

90 times the proton mass and receive an extra third degree of freedom. Then, a

natural question inevitably arises: what kind of a process causes the generation

of these masses and hence the existence of this additional degree of freedom?

At the time, this had been a really subtle issue until the Higgs mechanism was

proposed [38]. In this mechanism, it is stated that the masses and hence the

above mentioned third degrees of freedom of the mediators of the Electroweak
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interaction are generated via the spontaneous breaking6 of the corresponding

local SU(2)×U(1) gauge symmetry to U(1) in the classical vacuum of the Higgs

potential given in the Figure I.2. So electromagnetism becomes an e�ective U(1)

theory.

Figure I.2: Mexican-hat-like Higgs Potential.

As it is known, the Higgs potential that provides the breaking of the symmetry

is somehow a �hard� one. That is to say, it is put in the Lagrangian of the

Higgs �eld by hand. At that step, one can ask what actually stays behind this

spontaneous symmetry breaking without assuming a potential whose classical

solution has a nonzero value? That is, one would like to have such a mechanism

that will provide the existence of the spontaneous breaking of the continuous

symmetry which automatically arises from the nature of theory. This important

question was answered by Coleman and Weinberg in 1973 [39]. In their paper,

using the functional method, after a regularization and renormalization process,

they showed that the radiative corrections at the one-loop level to the e�ective

potential for the Φ4-theory remarkably changes the minimum at the origin into

a maximum, and hence shifts this minimum to a nonzero point which automat-

ically induces the spontaneous symmetry breaking. That is to say, they proved

that the higher-order corrections due to the self-interactions are in fact the back-

bone of the spontaneous breaking of the symmetry. Unfortunately, Coleman and

Weinberg mechanism could not explain the symmetry breaking mechanism in

6 Here, by symmetry-breaking, it means that although a given action is invariant under a con-

tinuous symmetry, its vacuum is not.
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the Standard Model, since it gave a very light (4 GeV) Higgs particle. Of course

we now know that the Higgs boson was found with the mass 126 GeV [40].

Therefore, apparently, in the Standard Model, symmetry breaking is not a loop

result but a tree-level result.

As we will see in the next chapters, the Weyl symmetry augmented in the Higher

Derivative Gravity theories is spontaneously broken in (A)dS backgrounds in

analogy with the usual Standard Model Higgs Mechanism, whereas it is radia-

tively broken via Coleman-Weinberg mechanism in the �at vacuum. Hence, the

�uctuations gain their masses via symmetry breaking. Because of this, let us

now brie�y review the Higgs and Coleman-Weinberg mechanisms, separately:

I.3.1 Higgs Mechanism

In this part, we will review the basics of the Higgs mechanism by mainly following

[41]: Historically, the idea of symmetry breaking was �rst used in superconduc-

tivity in order to explain the generation of Cooper pairs which is known as �The

Bardeen-Cooper-Schrie�er (BCS) Model� [42, 43, 44].

In his paper, Nambu showed that the Goldstone theorem was in fact valid in any

spontaneously broken continuous global symmetry (1960): That is, there would

always occur a massless scalar particle for each broken generator whenever a

continuous global symmetry was broken. Later, the idea of the spontaneous

symmetry breaking was extended to the particle physics by Nambu and Jona-

Lasinio [45] in 1961. In 1963, Anderson introduced the �rst but non-relativistic

version of the local spontaneous symmetry breaking by showing that, when the

local symmetry is broken, there does not occur a Nambu-Goldstone boson in

the certain examples of superconductors, rather the vector �elds gain masses

[46]. In 1964, Higgs, Englert-Brout and Guralnik-Hagen-Kibble [38] separately

constructed the relativistic version of the Anderson mechanism and it was later

dubbed �The Higgs mechanism�. Therefore, to be historically consistent, let us

�rst review the spontaneous symmetry breaking of a global symmetry brie�y,

and after that skip to the study of Standard Model Higgs mechanism:
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Spontaneously Broken Global Symmetry and Generation of Nambu-

Goldstone Bosons

To see what happens when a continuous global symmetry is spontaneously bro-

ken, let us work on the Lagrangian density for a complex scalar �eld

L = ∂µΦ∗∂µΦ− λ2

2
(ΦΦ∗ − ν2)2, (I.22)

which contains a Mexican-hat-like potential whose vacuum expectation value

(VEV), < φ >, is ν. At it is seen, (I.22) has a global U(1)-invariance. That is,

transforming Φ as

Φ→ Φ
′
= eiγΦ, (I.23)

leaves (I.22)-invariant with γ real. One should observe that, since the scalar �eld

is a complex �eld, one can rewrite it in terms of its modulus and a phase factor

as Φ = |Φ|eiσ. Therefore, depending on σ, the theory has in�nite numbers of

vacua, each of which has the same VEV of ν. Hence, the solutions also have

the global U(1)-invariance, and thus the symmetry remains unbroken. On the

other hand, by freezing σ to any arbitrary constant, the solution will choose

a certain vacuum and so the symmetry will be spontaneously broken. As it is

known, in the Quantum Field Theory context, the particles are interpreted as

the �uctuations around the vacuum values of the �elds. Therefore, to read the

fundamental excitations propagated about the vacuum in this broken phase, let

us set σ = 0 for simplicity, and expand Φ about its vacuum value as

Φ = ν +
1√
2

(Φ1 + iΦ2), (I.24)

where Φ1 is the �eld normal to the potential that points toward the higher-

values of the potential, whereas Φ2 is the one that horizontally parallels to curve.

Moreover, by plugging (I.24) into (I.22), one will �nally �nd that the theory has

a massive scalar �eld Φ1 with mass mΦ1 =
√

2λν and a massless scalar �eld

Φ2 dubbed "Nambu-Goldstone boson". To summarize, there always occurs a

massless boson if a continuous global symmetry is spontaneously broken. Since

there are not massless scalar particles in Nature, this spontaneous symmetry

breaking of a global symmetry seems a little irrelevant for particle physics.

15



Spontaneously Broken Local Symmetry: The Higgs Mechanism

In this section, we will study the spontaneous-breaking of the local symmetry

dubbed �The Higgs mechanism7�. As it is known, local symmetry is implemented

to a theory via gauge vector �elds. Since these �elds can be either Abelian or

non-Abelian, it will be more convenient if one studies the Higgs mechanism for

these two distinct cases, separately:

Spontaneous Symmetry Breaking in Abelian Gauge Theories

In this part, we analyze the spontaneous symmetry breaking of the local U(1)

symmetry in which the complex scalar �eld (or Higgs �eld) transforms according

to

Φ→ Φ
′
= eieσ(x)Φ. (I.25)

In contrary to the global case, by inserting (I.25) into (I.22), one can easily show

that, due to the partial derivatives, there will occur extra terms such that they

will prevent the Lagrangian density to be invariant under (I.25). For this reason,

by using Abelian vector �eld, one needs to assume a new derivative operator,

Dµ, called "gauge-covariant derivative", which acts on Φ as

DµΦ = ∂µΦ + ieAµΦ, (I.26)

in order to get rid o� the symmetry violating terms. Taking the canonically

normalized kinetic term for the gauge �eld into account and replacing the usual

derivative operators in (I.22) with the one in (I.26), one will get

L = (DµΦ)∗DµΦ− λ2

2
(ΦΦ∗ − ν2)2 − 1

4
FµνF

µν , (I.27)

where Fµν = ∂µAν − ∂νAµ is the �eld-strength tensor for the vector �elds. Note

that, with this modi�cation, the theory gains local U(1)-invariance, with Aµ

transforms as Aµ → A
′
µ = Aµ − ∂µσ(x). Let us now rewrite the Higgs �eld in

terms of its modulus and phase as

Φ = |Φ|eiγ(x) =
(
ν +

1√
2
ψ(x)

)
eiγ(x). (I.28)

7 The mechanism is sometimes called �Anderson-Higgs mechanism,� since Anderson made the

�rst observation that �photon� becomes e�ectively massive in a superconductor via this mechanism.
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Here the modulus was also expanded about the vacuum. Furthermore, as in the

global case, by freezing γ(x) to zero, one will �x the gauge-freedom, and will

be left with the real �eld. Thus, �xing the gauge-freedom spontaneously breaks

the local symmetry. To read the fundamental excitations about the vacuum,

by inserting (I.28) into (I.27), one will �nally see that the theory has a massive

scalar �eld with mass mψ =
√

2λν and a massive vector �eld with the mass

mAµ =
√

2|e|ν. However, in this case, the Nambu-Goldstone boson does not

exist. One often says that the Nambu-Goldstone boson is eaten by the massive

vector �eld. Thus, the mechanism provides a way to give masses to the gauge

particles as is desired in the weak sector of the Standard Model. In this example,

the scalar �eld becomes the third degree of freedom for the massive photon.

Spontaneous Symmetry Breaking in non-Abelian Gauge Theories

It is known that, in its unbroken phase, the Electroweak theory is invariant

under the local SU(2) × U(1) gauge group. Here in this case, the Higgs �eld

is a doublet (i.e., composing of two complex parts) and transforms according

to the fundamental representation of the group. Let us study how this local

symmetry is augmented to the theory: As in the previous part, due to the extra

terms coming from the usual partial derivatives, one should replace the usual

derivative operator with a proper gauge-covariant derivative, Dµ. But here, Dµ
must be composed of the gauge �elds belonging to both SU(2) and U(1). More

precisely, by de�ning the non-Abelian gauge �eld to be Aµ (a matrix) of SU(2)

and Abelian gauge �eld to be Bµ (a function) of U(1), one can de�ne

DµΦ = ∂µΦ− ifσaAaµΦ− if ′eBµΦ. (I.29)

Here, σa; a = 1, 2, 3, are the generators of the SU(2) gauge group (i.e., Pauli

spin matrices)8 and f , f
′
are the coupling constants of the gauge �elds . There-

fore, locally SU(2) × U(1)-invariant Lagrangian density of the Higgs �eld and

the vector �elds becomes

L = (DµΦ)+DµΦ− λ2

2
(ΦΦ∗ − ν2)2 − 1

4
F a
µνF

aµν − 1

4
F̂µνF̂

µν , (I.30)

8 Note that the non-Abelian gauge �eld Aµ is expanded in the generator basis of the SU(2)

group with the coe�cient Aaµ.
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where F a
µν = ∂µA

a
ν − ∂νA

a
µ + fεabcAbµA

c
ν and F̂µν = ∂µBν − ∂νBµ. Note that

−1/4 are chosen in order to have canonically normalized kinetic terms for the

gauge �elds. As in the Abelian case, here, one can eliminate 3 components of

the Higgs �eld via �xing the gauge-freedom and arrives at

Φ = ν +
1√
2
ψ, (I.31)

which hence spontaneously breaks SU(2)×U(1)-symmetry into U(1). Moreover,

in order to obtain the fundamental excitations and their masses, let us de�ne

σ+ =
1√
2

(σ1 + iσ2), σ− =
1√
2

(σ1 − iσ2), (I.32)

which yields

A±µ =
1√
2

(A1
µ ± iA2

µ). (I.33)

Hence, one will obtain

σaAaµ = σ+A−µ + σ−A+
µ + σ3A3

µ. (I.34)

Then, by substituting (I.34) into (I.30), one will �nally get

mZ =
1√
2
νf̄ , mW =

1√
2
νf, (I.35)

where

f̄ = (f 2 + f
′2)1/2,

f

f̄
= cos θW ,

f
′

f̄
= sin θW . (I.36)

Here θW is called �Weinberg angle� which is ∼ 29.3137◦ ± 0.0872◦. Finally, the

massless photon will be de�ned by the transverse component

Aµ = A3
µ sin θW +Bµ cos θW . (I.37)

This corresponds to the unbroken U(1) symmetry.

I.3.2 Coleman-Weinberg Mechanism in n = 4 and n = 3 Dimensions

In the Standard Model Higgs mechanism, the spontaneous symmetry breaking

of the local gauge symmetry is via the nonzero classical vacuum expectation

value of the Higgs �eld. The crucial thing is that, at the Lagrangian level, it is

assumed that the complex scalar �eld has a potential that provides symmetry-

breaking. Naturally, one can search for a mechanism that will automatically give
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such a symmetry breaking without adding any hard symmetry breaking term.

The question was answered by Coleman and Weinberg in 1973 [39]: Using the

electrodynamics of charged massless scalar �eld, they showed that, even though

the minimum of the interaction potential is zero at the tree-level, the higher-

order corrections at the one loop level to the e�ective potential convert the

shape of the potential into a Mexican-hat-type one by turning the minimum at

the origin into a maximum. Therefore, the minimum is shifted to a nonzero

point which breaks the symmetry spontaneously. In this part, we will review

the Coleman-Weinberg calculations for the renormalizable scalar potential Φ4

in n = 4 dimensions [39] and its 3−dimensional version known as Tan-Tekin-

Hosotani computations for the two-loop radiative corrections to the e�ective-

potential for the Φ6 interactions [47]:

As mentioned above, Coleman and Weinberg used the scalar �eld Lagrangian

density

L = −1

4
FµνF

µν +
1

2
(∂µΦ1 − eAµΦ2)2 +

1

2
(∂µΦ2 − eAµΦ1)2

− µ2

2
(Φ2

1 + Φ2
2)− λ

4!
(Φ2

1 + Φ2
2)2 + counter terms,

(I.38)

in order to study the e�ect of higher-order corrections to the e�ective poten-

tial9. Note that a compact form of �counter-terms� are also inserted in (I.38)

which are generically done in Quantum Field Theory in order to absorb the

singularities that arise during the regularization and renormalization procedure.

It is known that, when bare mass scale µ2 ≥ 0, (I.38) becomes a usual stable

Quantum Field Theory which propagates with a charged massive scalar and its

massive anti-particle particle and a massless photon. On the other hand, when

µ2 < 0, the vacuum Φ1 = Φ2 = 0 is unstable and the symmetry is spontaneously

broken. In this case, the theory propagates with a massive neutral scalar and a

massive vector particles. For the second case, the crucial question is whether the

occurring symmetry breaking is due to the negativity of µ2 or actually due to

higher-corrections in the potential? And the more important question is what

would happen when µ2 = 0, namely when the theory is massless classically?

In [39], as we will see below, it was shown that symmetry breaking is actually

9 The decomposition of Φ = Φ1 + iΦ2 is used in (I.38).
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because of the radiative corrections coming from the self-interactions of �elds

when µ2 = 0. In their approach, there also occurs an interesting result dubbed

�dimensional transmutation� that roughly stands for the change in relations be-

tween dimensionless parameters as well as the generation of dimensionful ones

via radiative corrections: More precisely, when µ2 = 0, the action contains two

independent dimensionless parameters e and λ. Surprisingly, after the one-loop

calculations are carried out, these two distinct parameters depend on each other

[i.e., λ = λ(e)] and a dimensionful parameter that is the vacuum expectation

value of the scalar �eld, which provides the spontaneous symmetry breaking,

comes into the picture. Therefore before the symmetry breaking one has two

dimensionless parameters and after the symmetry breaking one has one dimen-

sionful and one dimensionless parameter; hence the dimensional transmutation.

As it is known, the structure of e�ective potential directly determines what

kind of symmetry breaking process will occur. However, computations for the

e�ective potential generically is really a subtle task because one has to compute

and collect in�nite number of diagrams in order to �nd the potential. One

of the leading procedures is the loop expansion method in which one �nds the

contributions coming from each separate part of the diagrams order by order (i.e.,

starting from tree-level to r-loops) and then sum them to �nd the desired result

for the e�ective potential10. The procedure that was followed is the functional

method [48] which was extended in study of spontaneous symmetry breaking in

[49]: To see how this method works, let us suppose that the Lagrangian density

for the scalar �eld is replaced with the one that includes a source

L(Φ, ∂µΦ)→ L′(Φ, ∂µΦ) ≡ L(Φ, ∂µΦ) + J (x)Φ(x). (I.40)

The functional W which gives all the connected Feynman diagrams is de�ned

10 By assuming an overall dimensionless parameter a such that

L → L
′
≡ a−1L, (I.39)

one can show that the loop expansion procedure corresponds to the power-series expansion of a, which

is , at the end, freezed to 1. Needless to say that because of being an overall parameter, a does not

change the physical results rather it controls the expansion. The advantage of the r-loop expansion

method is that it provides all the vacua of the theory simultaneously (For the detailed proof and

discussion see [39].)
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as

eiW = 〈0future|0past〉, (I.41)

namely it is the vacuum to vacuum transition amplitude. The functional can

also be expressed in terms of the sources as

W(J ) =
∑
r

1

r!

∫
d4x1 . . . d

4xrO(r)(x1 . . . xr)J (x1) . . .J (xr), (I.42)

where Or is the propagator that gives the sum of all the connected diagrams

with r external legs. Furthermore, the classical solution is de�ned by

Φc(x) =
δW
δJ (x)

=
〈0future|Φ(x)|0past〉
〈0future|0past〉

∣∣∣∣
J=0

, (I.43)

which provides one to de�ne an e�ective action Γ(Φc) as a Legendre transfor-

mation

Γ(Φc) =W(J )−
∫
d4xJ (x)Φc(x). (I.44)

Observe that the variation of the action with respect to the classical solution

gives
δΓ

δΦc(x)
= −J (x). (I.45)

Similarly, the e�ective action can also be written as

Γ(Φc) =
∑
r

1

r!

∫
d4x1 . . . d

4xr ∆(r)(x1 . . . xr)Φc(x1) . . .Φc(xr). (I.46)

Here, ∆(r) is the propagator that gives all the one-point-irreducible (1PI) dia-

grams with r-external legs that cannot be disconnected by cutting any internal

line. Even though 1PIs contain external legs, their propagators do not contain

any contribution coming from these legs. Alternatively, one can also express the

e�ective action in terms of the potentials as

Γ =

∫
d4x

(
− V(Φc) +

1

2
(∂µΦc)

2Z(Φc) + . . .
)
, (I.47)

where V is "the e�ective potential" whose r-times derivatives give all the loops

which are only composed of 1PIs diagrams with vanishing momentums of exter-

nal legs. Thus, the renormalization conditions due to the perturbative expansion

near the origin can be expressed as follows: When one wants the operator cor-

responding to the propagator to be zero at the external lines, one should set

µ2 =
d2V
dΦ2

c

∣∣∣∣
Φc=0

. (I.48)
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Meanwhile, requiring the four-point function at the external legs to be the di-

mensionless coupling constant λ yields

λ =
d4V
dΦ4

c

∣∣∣∣
Φc=0

. (I.49)

And �nally, one should normalize the wave-function as

Z(Φc = 0) = 1. (I.50)

To see how e�ective potential of a given theory is explicitly evaluated via one-

loop correction using the functional method, it is more pedagogical to work on

a simpler example: For this purpose, let us consider the Lagrangian density of

the complex scalar �eld that interacts via Φ4

L =
1

2
(∂µΦ)∗∂µΦ− λ

4!
Φ4 +

α

2
(∂µΦ)∗∂µΦ− β

2
Φ2 − γ

4!
Φ4. (I.51)

Here, α, β and γ are the bare counter-terms of the wave-function, mass and

coupling constant which will eat the singularities at the end. As it is seen, one

will read the tree-level potential

V =
λ

4!
Φ4
c . (I.52)

Figure I.3: One-loop corrections resulted from the sum of in�nitely numbers of
quartically self-interacting scalar �elds.

On the other side, due to the in�nite number of the one-loop diagrams, the ef-

fective potential will not be obvious. Hence, by adding the contributions coming
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from the counter-terms and using the e�ective action obtained above, one will

obtain the total e�ective potential at the one-loop level (Figure I.3) as

V =
λ

4!
Φ4
c −

β

2
Φ2
c −

γ

4!
Φ4
c + i

∫
d4k

(2π)4

∞∑
r=1

1

2r

( λ
2
Φ2
c

k2 + iε

)r
. (I.53)

Here, i is due to the generating functional W of the connected diagrams. Also,

1/2 is substituted since we have bosons. Moreover, since the change of any two

external legs at the same vertex does not bring any new diagram, we plugged

1/4! in the numerator which cancels the ordinary one. Finally, since any r-

face diagram is invariant under re�ection and rotation, the 1/n! is also inserted

which eliminates the one coming during expansion. Collecting the series as well

as using Wick-rotation (i.e., replacing k0 with ik0), one will �nally reach

V =
λ

4!
Φ4
c −

β

2
Φ2
c −

γ

4!
Φ4
c +

1

2

∫
d4k

(2π)4
ln

(
1 +

λΦ2
c

2k2

)
. (I.54)

One should observe that the power-counting yields that the integral diverges as

k → 0 and as k → ∞. Therefore, (I.54) is in fact both IR and UV-divergent.

To cure the UV-divergence, one can assume a cut-o� scale Λ in (I.54) such that

it will give

V =
λ

4!
Φ4
c +

β

2
Φ2
c +

γ

4!
Φ4
c +

λΛ2

64π2
Φ2
c +

λ2Φ4
c

256π2

[
ln
(λΦ2

c

2Λ2

)
− 1

2

]
, (I.55)

where all the terms that disappear as Λ → ∞ were not taken into account.

Hereafter, one needs to �nd the explicit values of the counter-terms: This can

be reached via the requirements of the renormalized mass and coupling-constant:

First of all, the renormalized mass is expected to be zero which then converts

the �rst renormalization condition (I.48) into

µ2 =
d2V
dΦ2

c

∣∣∣∣
Φc=0

= 0, (I.56)

that yields

β = − λΛ2

32π2
. (I.57)

However, due to the IR-divergence at the origin, one cannot evaluate the renor-

malized coupling constant via the above de�ned second renormalization condi-

tion (I.49). In momentum space, the coupling-constants cannot be evaluated at

the on-shell mass point because it stays at the top of the IR-divergence. The
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cure is that one needs to evaluate the coupling-constants at an arbitrary non

zero point M which is far from the on-shell singular-point. In another words,

one can assume the renormalized coupling constant to be

λ =
d4V
dΦ4

c

∣∣∣∣
Φc=M

, (I.58)

which induces the renormalized wave function counter-term to be Z(M) = 1.

Hence, (I.58) will �nally become

γ = − 3λ2

32π2

[
ln
(λM2

2Λ2

)
+

11

3

]
. (I.59)

Thus, by collecting all these results, one will �nally obtain the e�ective potential

at the one-loop level as

V =
λ

4!
Φ4
c +

λ2Φ4
c

256π2

[
ln
( Φ2

c

M2

)
− 25

6

]
. (I.60)

This is called �the Coleman-Weinberg potential�. Observe that (I.60) is free

of the UV cut-o� Λ which is required by the renormalization of the theory.

Meanwhile, the IR-divergences in each diagram are gathered at a singular point

at the origin of the e�ective potential of the classical �eld. In addition to these,

since the logarithmic part becomes negative as one approaches to the origin, the

minimum is converted into a maximum (Figure I.4). Hence, the minimum of

Figure I.4: Symmetry breaking via Coleman-Weinberg mechanism. The blue
and red lines stand for tree-level and three-level plus one-loop e�ective potentials,
respectively: Observe that after adding the one-loop corrections to the tree-level
potential, the minimum is converted and the new minimum occurs at a nonzero
point <Φ>

M
.
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the potential is shifted to a nonzero point

ln
Φc

M
= −16π2

3λ
. (I.61)

Thus, the symmetry is spontaneously broken11. But actually it turns out that

in this new minimum the perturbation theory breaks down as the renormalized

mass scale µ2 (and hence the renormalized coupling constant λ) receives greater

values, which is then cured when one takes into account the one-loop corrections

of the gauge �eld part [39]. Finally, one can easily show that the arbitrary

renormalized mass parameter M does not play any role in the physical results.

For instance, by assuming another renormalized point M̃ , then, the e�ective

potential at the one-loop level will turn into

V =
λ̃

4!
Φ4
c +

λ̃2Φ4
c

256π2

[
ln
( Φ2

c

M̃2

)
− 25

6

]
+O(λ3). (I.62)

Hence, M is nothing but a parametrization of same potential at the given order.

Actually, any change in the renormalized coupling constant (I.58) and the scale

of the �eld Z(M) = 1 will induce a proper change in the renormalized mass M

whose (and so of the coupling constant) exact region at a given energy scale is

determined via the "renormalization group �ow" given by [50][
M

∂

∂M
+ η

∂

∂λ
+ ζ

∫
d4xΦc(x)

δ

δΦc(x)

]
Γ = 0, (I.63)

where η and ζ are parameters that depend on λ. By using (I.46), (I.63) turns

into [
M

∂

∂M
+ η

∂

∂λ
+ rζ

]
Γr(x1 . . . xr) = 0. (I.64)

Using (I.47), one will obtain[
M

∂

∂M
+η

∂

∂λ
+ζΦc

∂

∂Φc

]
V = 0,

[
M

∂

∂M
+η

∂

∂λ
+ζΦc

∂

∂Φc

+2ζ

]
Z = 0. (I.65)

Since it is more useful to work with the dimensionless parameters that generically

rely only on the ratio Φc/M , by de�ning the following dimensionless functions

V(4) =
∂4V
∂Φ4

c

, t = ln(
Φc

M
), η̄ =

η

1− ζ
, ζ̄ =

ζ

1− ζ
, (I.66)

11 One might also think that the r-loop corrections beyond the one-loop level may convert this

maximum again into a minimum. In fact this is partially true, that is if such a situation takes place,

then this higher order corrections to the e�ective potential will just result in local minima. That is

to say, since the contributions coming from the higher orders will always be smaller than the one

coming from the one-loop computation, they will not turn this maximum into an absolute minimum,

but rather they will only cause a local tilted minima at the top of this overall maximum [39].
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one will be able to convert (I.65) into a fully-dimensionless �ow equations[
− ∂

∂t
+ η̄

∂

∂λ
+ 4ζ̄

]
V(4)(t, λ) = 0,

[
− ∂

∂t
+ η̄

∂

∂λ
+ 2ζ̄

]
Z(t, λ) = 0. (I.67)

Moreover, with these rede�nitions, the conditions above mentioned can also be

written as

V(4)(0, λ) = λ, Z(0, λ) = 1. (I.68)

Hence, using (I.68) in (I.67) yields the �ow coe�cients as

ζ̄ =
1

2
∂tZ(0, λ), η̄ = ∂tV(4)(0, λ)− 4ζ̄λ. (I.69)

Therefore, the renormalization group �ow coe�cients can be evaluated as long

as the time derivatives of the conditions (I.68) are known. However, even though

the loop expansions of those derivatives will bring important results, their exact

form are not known. To cure this subtle issue, let us suppose that the �ow

coe�cients are completely known which provide us to assume a general �ow

equation [
− ∂

∂t
+ η̄

∂

∂λ
+ 4ζ̄

]
F(t, λ) = 0, (I.70)

that covers (I.65). The current aim is to �nd a generic renormalized coupling

constant λ
′
(which at t = 0 reduces to λ) such that

η̄(λ
′
) =

dλ
′

dt
. (I.71)

Thus, one will get the solution of (I.69) as

F(t, λ) = h[λ
′
(t, λ)]en

∫ t
0 dt
′
ζ̄[λ
′
(t
′
,λ)]. (I.72)

Here h is an arbitrary function depends on λ
′
that is freezed by the �ow coe�-

cients (I.68) as

Z(t, λ) = e2
∫ t
0 dt
′
ζ̄[λ
′
(t
′
,λ)], V(4)(t, λ) = λ

′
(t, λ)[Z(t, λ)]2. (I.73)

Thus, intervals for the renormalized conditions are exactly determined in terms

of the derivatives of renormalization group �ow coe�cients η̄ and ζ̄. Now, by us-

ing t = ln(Φc
M

), di�erentiating the one-loop e�ective Coleman-Weinberg potential

(I.60) with respect to Φc gives

V(4) = λ+
3λ2t

16π2
. (I.74)
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Furthermore, substituting (I.74) into the second equation of (I.69) yields

η̄ =
3λ2

16π2
. (I.75)

Thus using (I.71), one will �nally arrive at

λ
′
=

λ

1− 3λt
16π2

, V(4) =
λ

1− 3λt
16π2

. (I.76)

Thus, the one-loop corrections to the e�ective potential is valid when |λ| � 1

and |λt| � 1 [39].

This pure scalar �eld example was unrealistic but gave us an example calculation

of the Coleman-Weinberg Potential. By following the same steps given above

and taking into account the one-loop diagrams of the photon12, one will �nally

obtain the one-loop e�ective potential for the charged massless scalar meson

coupled to U(1)-gauge �eld which is de�ned by the action (I.38) as

V =
λ̃

4!
Φ4
c +

3e4Φ4
c

64π2

[
ln
( Φ2

c

〈Φ〉2
)
− 25

6

]
, (I.77)

where 〈Φ〉 is minimum of the one-loop e�ective potential. Furthermore, by

taking the derivative of V with respect to Φc, one will arrive at an interesting

result

λ =
33

8π2
e4. (I.78)

Thus, in broken phase, dimensionless constants become related and with the

generation of the nonzero vacuum expectation of the scalar �eld, one has a

"dimensional transmutation" as explained above. Following the same steps given

in the renormalization group �ow part, one will obtain

ζ̄ =
3e2

16π2
, η̄ =

5λ2

6
− 3e2λ+ 9e4

4π2
, (I.79)

which will give the corresponding domains of the parameters as

e
′2 =

e2

1− e2t
24π2

, λ
′
=
e
′2

10

[√
719 tan

(1

2

√
719 ln e

′2 + θ
)

+ 19

]
, (I.80)

where θ is the integration constant determined via the requirements of λ
′

= λ

and e
′
= e.

12 Here, due to the minimal coupling between the scalar �eld and the gauge �eld, there will also

occur similar one-loops diagrams for the photon [39].
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Finally, the 3-dimensional Coleman-Weinberg-like calculations to the e�ective

potential was evaluated by P.N. Tan, B. Tekin, and Y. Hosotani in 1996-1997

[47]. They computed the e�ective potential at the two-loop level for the Maxwell-

Chern-Simons charged scalar Electrodynamics, which self-interacts through the

Φ6-couplings, given by

L = −a
4
FµνF

µν − κ

2
εµνρAµ∂νAρ + L(G.F.) + L(F.P )

+
1

2
(∂µΦ1 − eAµΦ2)2 +

1

2
(∂µΦ2 + eAµΦ1)2

− m2

2
(Φ2

1 + Φ2
2)− λ

4!
(Φ2

1 + Φ2
2)2 − ν

6!
(Φ2

1 + Φ2
2)3,

(I.81)

where L(G.F.) and L(F.P ) are the related gauge-�xing term (in t'Hooft-gauge) and

Faddeev-Popov ghost

L(G.F.) = − 1

2ξ
(∂µA

µ − ξeηΦ2)2, L(F.P ) = −c+(∂2 + ξe2ηΦ1)c. (I.82)

Referring to [47] for the details of the calculations, after a long regularization

and renormalization computations, one gets the the one-loop e�ective potential

in the Landau gauge (ξ = 0) for the full theory (I.81) as

V 1−loop
eff (ν) =

ν

6!
ν6 +

~
12π

e6

a3
F(x), (I.83)

where

F(x) = 3κ̃x2 − (κ̃2 + 4x2)1/2(κ̃2 + x2) +
2κ̃4(240M̃2 − 62M̃κ̃2 + κ̃4)

(4M̃ + κ̃2)11/2
x6

+ κ̃3,

(I.84)

and

x =

√
aν

e
, M̃ =

aM

e2
, κ̃ =

κ

e2
. (I.85)

When M = 0 and κ 6= 0, then F ≥ 0 thus the overall minimum at the origin

is not altered, thus the U(1) symmetry remains unbroken. On the other hand,

for the choice of M̃ = κ̃2, then one will get F(x)/κ̃3 = 3y2 − (1 + 4y2)1/2(1 +

y2) + 0.00512y2 + 1, the minimum occurs at a nonzero point away from the

origin; hence the symmetry is spontaneously broken. If κ = 0, then the second

renormalization condition for the coupling constant fails. Therefore, by imposing

the renormalization scale to be M1/2, then one can see that the minimum also

occurs at a nonzero point so the symmetry breaking takes place. Thus, due
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to this, one should go beyond one-loop in order to explicitly determine the

corresponding symmetry-breaking.

To �nd the two-loop corrections to the e�ective potential, one needs to determine

the fundamental graphs in the full theory. There are in fact �ve types of the

graphs whose two-loop corrections to the e�ective potentials quoted from [47]

are

1. Two scalar loops: The two-loop e�ective potential due to the two scalar

loops is found

V
(q1)
eff =

~2

(4π)2

{
3
( λ

4!
+

15νv2

6!

)
m2

1+3
( λ

4!
+

3νv2

6!

)
m2

2

+ 2
( λ

4!
+

9νv2

6!

)
m1m2

}
.

(I.86)

Figure I.5: Two scalar loops.

2. One scalar and one gauge loop: The two-loop e�ective potential due to

the one scalar and one gauge loop is

V
(q2)
eff =

e2~2

16π2a

(m1 +m2)(m2
+ +m2

−)

m+ +m−
. (I.87)

Figure I.6: One scalar and one gauge loop.
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3. θ-shape diagram: The two-loop e�ective potential due to the θ-shape dia-

gram is found

V
(c1)
eff = − ~2

32π2

{
3
( λ

3!
ν +

ν

36
ν3
)2

+
( λ

3!
ν +

ν

60
ν3
)2
}

×
{
− 1

n− 3
− γE + 1 + ln 4π

}
+

~2

32π2

{
3
( λ

3!
ν +

ν

36
ν3
)2

ln
(3m1)2

µ2

+
( λ

3!
ν +

ν

60
ν3
)2

ln
(m1 + 2m2)2

µ2

}
.

(I.88)

Figure I.7: θ-shape diagram.

4. θ-shape diagram with two scalar and one gauge propagators: The corre-
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sponding two-loop e�ective potential is found

V
(c2)
eff =

~2e2

64π2a

{[
2(m2

1 +m2
2)− (m+ +m−)2 + 3m2

3

]
×
[
− 1

n− 3
− γE + 1 + ln 4π

]
+ 2

[
m1m2 −

(m1 +m2)[2(m1 −m2)2 +m2
+ +m2

−]

m+ +m−

]
− (m2

1 −m2
2)2

m2
3

ln
(m1 +m2)2

µ2

−
∑
a=±

2m2
a(m

2
1 +m2

2)−m4
a − (m2

1 −m2
2)2

ma(m+ +m−)
ln

(ma +m1 +m2)2

µ2

− 5

6

κ2

a2

}
.

(I.89)

Figure I.8: θ-shape diagram with two scalar and one gauge propagators.

5. θ-shape diagram with two gauge and one scalar propagators: The corre-

sponding two-loop e�ective potential is found

V
(c3)
eff = −3~2e2ν2

64π2a2
×
{
− 1

n− 3
− γE + 1 + ln 4π

}
− ~2e4ν2

32π2a2

{
− 2m1

m+ +m−
− 2m2

1 + 12m2
3

(m+ +m−)2
+ 3

}
+

~2e4ν2

128π2a2

{
2[(m+ −m−)2 −m2

1]2

m2
3(m+ +m−)2

ln
(m+ +m− +m1)2

µ2

+
m4

1

m4
3

ln
m2

1

µ2

+
∑
a=±

[
(4m2

a −m2
1)2

m2
a(m+ +m−)2

ln
(2ma +m1)2

µ2

− 2(m2
a −m2

1)2

m2
3ma(m+ +m−)

ln
(ma +m1)2

µ2

]}
,
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where

m±(ν) =
1

2

[√κ2

a2
+

4(eν)2

a
± |κ|

a

]
, m2

3(ν) = m+m− =
(eν)2

a
. (I.91)

Figure I.9: θ-shape diagram with two gauge and one scalar propagators.

Observe that the above obtained two-loops e�ective potentials contain loga-

rithmic terms which are enough to analyze the existence symmetry breaking

mechanism because they will be e�ective when one approaches to the origin or

away from it. (That is to say, approaching continuously to the origin or to the

large values of the renormalized mass will give information about the change in

minimum or the stability of the model, respectively.) But in contrary to the

pure scalar �eld e�ective potential given below (I.92), the domain of the min-

ima are in the regime where the perturbation theory is valid (See [47] for the

proofs). Therefore, leaving the detailed analysis to [47], by analyzing the small

and large limits of the two-loop potentials, one will see that the theory is stable

at large distances and the minima turn into maxima which triggers the spon-

taneous symmetry breaking of the U(1) symmetry. On the other, the two-loop

corrections to the pure scalar �eld e�ective potential reads

Veff = ν(M)Φ6 +
7~2

120π2
ν(M)2Φ6

(
ln

Φ4

M2
− 49

5

)
. (I.92)

Hence, due to the negativity of the logarithmic term as one approaches zero,

the minimum at the origin turns into a maximum and it is shifted to a nonzero

point, which thus triggers the spontaneous symmetry breaking.
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CHAPTER II

HIGGS MECHANISM FOR NEW MASSIVE GRAVITY

AND WEYL-INVARIANT EXTENSIONS OF

HIGHER-DERIVATIVE THEORIES1

Gauge theory framework has been an extremely important cornerstone of physics

in exploring the fundamental laws behind nature since the birth of Quantum

Theory. Historically, the �rst step towards the construction of a gauge theory

was the one taken by Hermann Weyl in 1918 (See [51] for comprehensive re-

views): In his model, Weyl tried to reconcile gravity with electrodynamics by

assuming the transformation of the metric as

gµν → g
′

µν = eλ
∫
Bαdxαgµν . (II.1)

Here λ is a real constant and Bα is the vector potential. However, at that time,

Einstein rejected Weyl's model because the vectors were being enlarged from

point to point in the model, and hence the causal structure of the spacetime

would depend on the history of them and so it would fail to be an experimen-

tally well-de�ned one. Later, in spite of its initial failure, the importance of

the Weyl's approach was revealed by London [52] after Quantum Theory devel-

oped. London showed that, by assuming λ in (II.1) to be purely complex, the

Schrödinger equation would admit the following transformation of Schrödinger's

wave function

Ψ(x)→ Ψ
′
(x) = e

i
~
∫
AαdxαΨ(x). (II.2)

On the other side, as it is known the rigid-scale-invariance requires the invariance

under the coordinates and �elds transformations x → x
′ ≡ τx, φ → φ

′ ≡ τ cφ,
1 The results of this chapter are published in [8] .
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respectively2. This rigid symmetry dictates the curved backgrounds, which

would like to have local Lorentz, to be ones that are conformally �at. Thus,

if one wants to integrate the Lorentz-invariance to generic curved spacetimes,

the rigid-scale invariance becomes useless. At that step, the Weyl-invariance

needs to be taken account. Later, in addition to this unique property, an in-

teresting phenomenon about the Weyl symmetry was proposed: it was shown

that, in contrary to the classical case, the conformal symmetry in various the-

ories did not survived after the quantization was carried out which was called

�Conformal (or Weyl) Anomaly� (See [54] and [53] and also references therein).

Recently, there have been several interesting works on the Weyl-invariance and

its integration into various topics of theoretical physics which includes such as

the one-loop beta functions in pure Conformally Coupled Scalar Tensor the-

ory [55] and Weyl-tensor square gravity [56]; Standard Model in the context

of conformal invariance [57]; Conformal symmetries in diverse dimensions [58];

Weyl-invariant extension of Topologically Massive Gravity [59]; Weyl-invariance

in the Standard Model [60]; A noncompact Weyl-gauged SU(N) Einstein-Yang-

Mills theory [61]; Conformally coupled scalar �eld to Higher Derivatives theories

[62].

After a brief historical review of the Weyl-invariance, let us now study the funda-

mentals of the symmetry and hence its integration to Higher Curvature Gravity

theories:

II.1 Weyl Transformation

Under local Weyl transformations, the generic n−dimensional metric and real

scalar �eld transform according to3

gµν → g
′

µν = e2λ(x)gµν , Φ→ Φ
′
= e−

(n−2)
2

λ(x)Φ, (II.3)

where λ(x) is an arbitrary function of the coordinates. To better understand

how the local Weyl symmetry is implemented to a given theory, it would be

2 Here, τ is a constant and c is dimension of the �elds.
3 See also [63] for Weyl-invariant extension in gravity.
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much more e�cient to work on the particular samples: Firstly, let us suppose

that the kinetic part of the real scalar �eld action

SΦ = −1

2

∫
dnx
√
−g ∂µΦ∂νΦg

µν , (II.4)

where we are working in the mostly-plus signature. And one wants to modify

the action in such a way that it becomes invariant under (II.3). As it is clear,

by inserting (II.3) into (II.4), due to the partial derivatives, extra terms appear

which will prevent the action to be locally Weyl-invariant. In fact, the situation

is same as the one in the non-Abelian gauge theories that we have seen in

the previous chapter: For instance, in the Electroweak theory, when one wants

the complex scalar �eld part of the full theory to be invariant under the local

SU(2) × U(1) transformation, one has to replace the usual derivative operator

with the one called �gauge covariant derivative�, which is constructed with the

help of the related non-Abelian and Abelian gauge �elds belonging to the adjoint

representation of the group, in order to eliminate the terms resulting from the

usual derivative operator and locality. Therefore, to eliminate the additional

terms, one needs also to replace the partial derivative operator with the gauge-

covariant derivative, Dµ, that acts on the tensor and the scalar �elds as follows

DµΦ = ∂µΦ− n− 2

2
AµΦ, Dµgαβ = ∂µgαβ + 2Aµgαβ. (II.5)

Here, in contrast to the non-Abelian gauge theories, the compensating Weyl's

gauge �eld Aµ is Abelian and transforms according to

Aµ → A
′

µ = Aµ − ∂µλ(x). (II.6)

Thus, by using (II.3) in (II.5), one will �nally obtain the transformations of the

gauge-covariant derivative of the metric and scalar �eld as

(Dµgαβ)
′
= e2λ(x)Dµgαβ, (DµΦ)

′
= e−

(n−2)
2

λ(x)DµΦ, (II.7)

which then makes (II.4) to have local Weyl-invariance. Note that under these

transformations
√
−g→

√
−g′ = enλ(x)

√
−g. In addition to the kinetic term, a

Weyl-invariant potential can also be added to the scalar �eld action (II.4) which

then results in

SΦ = −1

2

∫
dnx
√
−g

(
DµΦDµΦ + ν Φ

2n
n−2

)
, (II.8)
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where ν ≥ 0 is a dimensionless coupling constant which ensures the existence of

the ground state for the renormalizable potential at least in n = 3 and n = 4−
dimensional �at spacetimes.

On the other hand, the Weyl-invariant version of the kinetic part of the gauge

�eld is achieved via an additional scalar �eld with a speci�c weight: As it can be

easily seen, the corresponding strength tensor Fµν = ∂µAν − ∂νAµ is invariant

under (II.3). However, since we are working in the generic n−dimensional curved

backgrounds, during Weyl transformations, the volume part and the inverse

metrics of the action bring on extra terms which are thus being eliminated by

assuming a compensating scalar �eld with the weight of 2(n−4)
(n−2)

. That is to say,

one can easily show that the Maxwell-type action for the vector �eld

SAµ = −1

2

∫
dnx
√
−g Φ

2(n−4)
n−2 FµνF

µν , (II.9)

is actually invariant under the Weyl's transformations (II.3). Note that in n = 4

we do not need a compensating �eld.

Finally, as in the scalar �eld case, one can see that the usual Christo�el symbol

does not provide the required tools to study the Weyl-invariance in gravity. For

that purpose, one has to modify the Christo�el symbol such that it will become

scale-invariant which then will lead the Weyl-invariant curvature tensors: Re-

placing the usual Christo�el symbol with the one which is composed of recently

de�ned gauge-covariant derivatives will in fact provide us with desired connec-

tion. That is, by assuming the Weyl-invariant version of the Christo�el symbol

as

Γ̃λµν =
1

2
gλσ
(
Dµgσν +Dνgµσ −Dσgµν

)
, (II.10)

at the end, one can show that the Weyl-invariant Riemann tensor becomes

R̃µ
νρσ[g, A] = ∂ρΓ̃

µ
νσ − ∂σΓ̃µνρ + Γ̃µλρΓ̃

λ
νσ − Γ̃µλσΓ̃λνρ

= Rµ
νρσ + δµνFρσ + 2δµ[σ∇ρ]Aν + 2gν[ρ∇σ]A

µ

+ 2A[σδρ]
µAν + 2gν[σAρ]A

µ + 2gν[ρδσ]
µA2,

(II.11)

where 2A[ρBσ] ≡ AρBσ − AσBρ; ∇µA
ν = ∂µA

ν + ΓνµρA
ρ; A2 = AµA

µ 4. And

also, from the related contraction of (II.11), one will obtain the Weyl-invariant
4 Here, further de�ning DµAν ≡ ∂µAν − AµAν and D̃µAν ≡ ∇µAν − AµAν will convert the

result in a more compact form, we do not do that here.
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Ricci tensor as

R̃νσ[g, A] = R̃µ
νµσ[g, A]

= Rνσ + Fνσ − (n− 2)
[
∇σAν − AνAσ + A2gνσ

]
− gνσ∇ · A,

(II.12)

where ∇ · A ≡ ∇µA
µ. Finally the Ricci scalar reads

R̃[g, A] = R− 2(n− 1)∇ · A− (n− 1)(n− 2)A2. (II.13)

Here one must observe that, in contrary to (II.11) and (II.12), the Ricci scalar

obtained in (II.13) is not invariant under local Weyl transformations, but it

transforms according to

R̃[g, A]→ (R̃[g
′
, A
′
])
′
= e−2λ(x)R̃[g, A]. (II.14)

Since the Weyl-invariant Ricci scalar is not invariant under the Weyl transfor-

mations, to get the Weyl-invariant extension of Einstein-Hilbert action, as in the

previous cases, one should use a proper compensating scalar �eld with a weight

2. That is to say, one can show that the modi�ed Einstein-Hilbert action

S =

∫
dnx
√
−gΦ2R̃[g, A]

=

∫
dnx
√
−gΦ2

[
R− 2(n− 1)∇ · A− (n− 1)(n− 2)A2

]
,

(II.15)

is actually invariant under local Weyl transformations. In the �Weyl-gauged�

Einstein-Hilbert action (II.15), one should observe that, from �eld equations of

the vector �eld, the Weyl's gauge �eld is pure gauge which means that, save

giving dynamics to the scalar �eld, the theory actually does not propagate any

dynamical vector �eld. More precisely, by varying (II.15) with respect to Aµ,

one will �nally obtain the constraint equation

Aµ =
2

n− 2
∂µ ln Φ, (II.16)

which dictates Aµ to be unphysical. Thus, by plugging (II.16) into (II.15), one

will eliminate the gauge �eld and hence arrive at the well-known "Conformally

Coupled Scalar Tensor theory" given by

S =

∫
dnx
√
−g

(
Φ2R + 4

(n− 1)

n− 2
∂µΦ∂µΦ

)
. (II.17)

37



II.2 Weyl-Invariant n-Dimensional Quadratic Curvature Gravity The-

ories

From the curvature terms obtained in the previous section, one will obtain the

square of Riemann tensor under the local Weyl transformations as

R̃2
µνρσ = R2

µνρσ − 8Rµν∇µAν + 8RµνAµAν − 4RA2 + nF 2
µν

+ 4(n− 2)(∇µAν)
2 + 4(∇ · A)2 + 8(n− 2)A2(∇ · A)

− 8(n− 2)AµAν∇µAν + 2(n− 1)(n− 2)A4,

(II.18)

where ∇ ·A = ∇µA
µ; A2 = AµA

µ; A4 = AµA
µAνA

ν . The Weyl transformations

of Ricci square term reads

R̃2
µν = R2

µν − 2(n− 2)Rµν∇νAµ − 2R(∇ · A) + 2(n− 2)RµνAµAν

− 2(n− 2)RA2 + F 2
µν − 2(n− 2)F µν∇νAµ

+ (n− 2)2(∇νAµ)2 + (3n− 4)(∇.A)2 − 2(n− 2)2AµAν∇µAν

+ (4n− 6)(n− 2)A2(∇ · A) + (n− 2)2(n− 1)A4,

(II.19)

and �nally square of the Ricci scalar under Weyl transformations becomes

R̃2 =R2 − 4(n− 1)R(∇ · A)− 2(n− 1)(n− 2)RA2 + 4(n− 1)2(∇ · A)2

+ 4(n− 1)2(n− 2)A2(∇ · A) + (n− 1)2(n− 2)2A4.

(II.20)

As we did in the construction of the Weyl-invariant Maxwell-type and Einstein-

Hilbert actions, here, the Weyl-invariant extension of the generic n−dimensional

Quadratic Curvature Gravity theories augmented with theWeyl-invariant Einstein-

Hilbert action can be written via a compensating scalar �eld with the weight
2(n−4)
n−2

as

S̃quadratic =

∫
dnx
√
−g

{
σΦ2R̃ + Φ

2(n−4)
n−2

[
αR̃2 + βR̃2

µν + γR̃2
µνρσ

]}
. (II.21)

Furthermore, from the Weyl-invariant curvature terms (II.20)-(II.18), one can

easily evaluate the Weyl-invariant extension of the Gauss-Bonnet combination
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as

R̃2
µνρσ − 4R̃2

µν + R̃2 = R2
µνρσ − 4R2

µν +R2 + 8(n− 3)Rµν∇µAν

− 8(n− 3)RµνAµAν − 2(n− 3)(n− 4)RA2

− (3n− 4)F 2
µν − 4(n− 2)(n− 3)(∇µAν)

2

+ 4(n− 2)(n− 3)(∇ · A)2 + 4(n− 2)(n− 3)2A2(∇ · A)

+ 8(n− 2)(n− 3)AµAν∇µAν − 4(n− 3)R(∇ · A)

+ (n− 1)(n− 2)(n− 3)(n− 4)A4.

(II.22)

Interestingly, when n = 3, Weyl-invariant version of Gauss-Bonnet combination

does not vanish rather it reduces to the Maxwell theory

R̃2
µνρσ − 4R̃2

µν + R̃2 = −5F 2
µν , (II.23)

if the pure geometrical Gauss-Bonnet combination on the right hand side of

(II.22) is identically zero.

II.2.1 Weyl-invariant New Massive Gravity and related Symmetry

Breaking Mechanism

By setting n = 3 and choosing the dimensionless parameters as α = −3/8, β =

1, γ = 0, which eliminates the massive spin-0 mode that is also in con�ict with

the massive spin-2 mode, in (II.21), one will obtain the Weyl-invariant New

Massive Gravity as

S̃NMG =

∫
d3x
√
−g

[
σΦ2R̃ + Φ−2

(
R̃2
µν −

3

8
R̃2
)]

+ S(Φ) + S(Aµ). (II.24)

Here the actions S(Φ) is the 3−dimensional version of (II.8) whereas S(Aµ) is the

3−dimensional Weyl-invariant kinetic part for the gauge �eld Aµ whose generic

version is obtained in (II.9). Furthermore, the dimensionless coe�cient σ is

chosen for the sake of the unitarity analysis which will be done later. Meanwhile,

by inserting the explicit form of the Weyl-extended curvature tensors developed
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above into (II.24), one arrives at an action with no dimensionful parameter

S̃NMG =

∫
d3x
√
−g

{
σΦ2

(
R− 4∇ · A− 2A2

)
+ Φ−2

[
R2
µν −

3

8
R2 − 2Rµν∇µAν + 2RµνAµAν

+R∇ · A− 1

2
RA2 + 2F 2

µν + (∇µAν)
2

− 2AµAν∇µAν − (∇ · A)2 +
1

2
A4

]}
+ S(Φ) + S(Aµ).

(II.25)

Hereafter, we will analyze the corresponding Higgs-type symmetry breaking

mechanism for the generation of masses for the particles propagated with the

model. Note that one could start by adding a hard symmetry breaking term to

the action which, in the vacua, would break the Weyl-symmetry as in [64]. But

what we would like is that, without adding any symmetry breaking term, we

want to consider the generation of masses of the �uctuations in analogy with the

Standard Model Higgs mechanism which states that the vacuum of the theory

breaks the gauge symmetry, and thus this broken phase provides masses to the

mediators. For that purpose, here in our case, by freezing the scalar �eld Φ to
√
m and ν to 2λ as well as setting the vector �eld Aµ to zero, Weyl-invariant

New Massive Gravity (II.25) will recover the usual New Massive Gravity such

that the Newton's constant κ becomes related to the mass of the graviton as

m−1/2. In fact, this is a very interesting result because, with these choices,

(II.24) is no longer Weyl-invariant and also this broken phase provides a VEV

to the scalar �eld and so to the coupling constant. In other words, this result

implies that the Weyl-symmetry is interestingly broken by the vacuum of the

theory. As we will see in detail, the scale symmetry is in fact spontaneously

broken in (Anti)-de Sitter backgrounds whereas the radiative corrections, at the

two-loop-level, break the symmetry in �at background. To see this in detail, let

us �nd the vacuum �eld equations of the model. For that purpose, one naturally

needs the �eld equations for each particles. Thus, referring to Appendix A for

the derivations, let us quote the �nal results: First of all, by varying (II.24) with
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respect to gµν , up to the boundary terms, one will �nally obtain

σΦ2Gµν + σgµν�Φ2 − σ∇µ∇νΦ
2 − 4σΦ2∇µAν + 2σgµνΦ

2∇ · A

− 2σΦ2AµAν + σgµνΦ
2A2 + 2Φ−2[Rµσνα −

1

4
gµνRσα]Rσα + �(Φ−2Gµν)

+
1

4
[gµν�−∇µ∇ν ]Φ

−2R + gµνG
σα∇σ∇αΦ−2 − 2Gσ

ν∇σ∇µΦ−2

− 2(∇µG
σ
ν)(∇σΦ−2) +

3

16
gµνΦ

−2R2 − 3

4
Φ−2RRµν + gµνΦ

−2Rαβ∇αAβ

− 2Φ−2Rαν∇µA
α − 2Φ−2Rβµ∇βAν −�(Φ−2∇µAν)− gµν∇β∇α(Φ−2∇αAβ)

+∇α∇ν(Φ
−2∇αAµ) +∇β∇ν(Φ

−2∇µA
β)− gµνΦ

−2RαβAαAβ + 4Φ−2RανAµA
α

+ �(Φ−2AµAν)− 2∇α∇ν(Φ
−2AαAµ) + gµν∇α∇β(Φ−2AαAβ) + Φ−2Gµν∇ · A

+ gµν�(Φ−2∇ · A)−∇µ∇ν(Φ
−2∇ · A) + Φ−2R∇µAν −

1

2
Φ−2GµνA

2

− 1

2
gµν�(Φ−2A2) +

1

2
∇µ∇ν(Φ

−2A2)− 1

2
Φ−2RAµAν − Φ−2[gµνF

2
αβ + 4Fν

αFαµ]

− 1

2
gµνΦ

−2(∇αAβ)2 + Φ−2∇µAα∇νA
α + Φ−2∇βAν∇βAµ + gµνΦ

−2AαAβ∇αAβ

− 2Φ−2AνA
α∇µAα − 2Φ−2AµA

β∇βAν +
1

2
gµν(∇ · A)2 − 2(∇ · A)∇µAν

− 1

4
gµνΦ

−2A4 + Φ−2AµAνA
2 = − 1√

−g
δS(Φ)

δgµν
,

(II.26)

where S(Φ) is the 3−dimensional scale-invariant scalar �eld action. Moreover,

similarly, one will obtain the �eld equation for the scalar �eld Φ as

2σΦ
(
R− 4∇ · A− 2A2

)
− 2Φ−3

[
R2
µν −

3

8
R2 − 2Rµν∇µAν + 2RµνAµAν +R∇ · A− 1

2
RA2 + 2F 2

µν

+ (∇µAν)
2 − 2AµAν∇µAν − (∇ · A)2 +

1

2
A4

]
= − 1√

−g
δS(Φ)

δΦ
.

(II.27)

And the variation of (II.25) with respect to the vector �eld, Aµ , gives rise to

− 4∇µΦ2 + 4Φ2Aµ + 2Rν
µ∇νΦ

−2 + 4RµνA
ν −R∇µΦ−2 − Φ−2RAµ

+ 8∇ν(Φ−2∇µAν)− 10∇ν(Φ−2∇νAµ) + 2∇α(Φ−2AαAµ)− 2Φ−2(∇µAν)A
ν

− 2Φ−2(∇νAµ)Aν + 2∇µ(Φ−2∇ · A) + 2AµA
2 = − 1√

−g
δS(Φ)

δAµ
.

(II.28)

From now on we will work on these equations and bring out the present symme-

try breaking mechanism for the masses of fundamental degrees of the freedom
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propagated with the theory. For this purpose, one needs to �nd the correspond-

ing vacuum �eld equations particularly when the related vacua are constant

curvature vacua (which reduce to the �at background for zero cosmological con-

stant.). Therefore, let us �rst �x Fµν = 0 and speci�cally choose Aµ = 0 in

order to avoid breaking of the Lorentz-invariance of the vacua (i.e., to prevent

the vacua to choose a certain direction). And then, setting the scalar �eld to

its vacuum value m1/2 and choosing Rµν = 2Λgµν in the �eld equations will give

the vacuum �eld equation

ν m4 − 4σm2Λ− Λ2 = 0. (II.29)

As it is seen from (II.29), depending on the parameters, there are various cases

that should be taken into account: First of all, let us assume that the coupling

for the scalar potential ν is positive and also the cosmological constant is known

and we are required to �nd the vacuum expectation value (VEV) of the scalar

�eld. Therefore, for this case, from (II.29), one will obtain

m2
± =

2σΛ

ν
± |Λ|

ν

√
4σ2 + ν. (II.30)

As evaluated above, the Newton constant is κ = m−1/2, and hence the positivity

of it eliminates the negative roots of (II.30) and so one is left with the positive

solution m2
+. Thus, by following [13, 23], one will �nally obtain the mass of the

graviton as

M2
graviton = −σm2

+ +
Λ

2
. (II.31)

However, (II.31) is not the �nal result that we would like to arrive at. That

is, depending on the values of the parameters, (II.31) can also be a tachyon

(M2
graviton < 0) which would violate the unitarity of the theory. Although the

detailed perturbative unitarity analysis of the model is carried out in the next

chapter, let us keep this in mind and �nd roughly the unitary parameter regions

for the Weyl-invariant New Massive Gravity. Therefore, leaving the detailed

unitarity analysis to the next chapter, let us now determine the unitary intervals

just by using the corresponding conditions in constant curvature spacetimes: As

it is known, for a massive gravity theory to be unitary in de Sitter (dS) space,

it must satisfy the Higuchi bound [65] (M2
graviton ≥ Λ > 0) whereas, in Anti-de

Sitter (AdS) space, the Breitenlohner-Freedman bound [66] (M2
graviton ≥ Λ) must
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be satis�ed. Thus, by taking care of the results developed above, one can show

that the following compact condition is valid for either dS or AdS spacetimes

− 4sign(Λ)− 2σ
√

4 + ν ≥ sign(Λ)ν. (II.32)

Here, sign(Λ) = Λ/|Λ| and it takes +1 for dS space and −1 for AdS space. From

(II.32), one can show that, for dS background, the theory becomes unitary only

when σ = −1 whereas, in AdS space, it is allowed for either signs of σ. On the

other side, for the case when the VEV is known, from (II.29), one will obtain

Λ± = m2
[
− 2σ ±

√
4 + ν

]
. (II.33)

By following the same steps given above, one can easily determine the desired

unitary regions in both (A)dS. Finally, for the vanishing potential (i.e., ν = 0.),

one will get Λ = −4σm2. Again, for instance, by supposing that the VEV of the

scalar �eld is known, then, σ = −1 is allowed in dS space and σ = +1 is allowed

in AdS space. But, the Higuchi bound prevents the model to be unitary in dS

vacuum for σ = −1. On the other hand, from (II.31), one will get the mass of

graviton as

M2
graviton = −3σm2, (II.34)

and since Breitenlohner-Freedman bound is satis�ed, the theory becomes unitary

in AdS vacuum only when σ = +1.

Finally, for the case of �at vacuum, in contrast with the constant curvature vacua

in which the scale symmetry is spontaneously broken, the symmetry remains

unbroken in its vacuum. Here, there are well-known distinct approaches which

will cure this subtle issue: One can start with a hard mass term which, at the

end, will break the symmetry. Alternatively, as in the 4−dimensional Coleman-

Weinberg mechanism for the Φ4−theory [39], one can also search whether the

higher order corrections do break the Weyl-symmetry or not. However, in con-

trast to the Coleman-Weinberg mechanism, here, the model that we are dealing

with is a 3−dimensional one, and therefore we need radiative calculations for

the Φ6−theory5. After a long renormalizations and regularizations, at the two
5 Since the Weyl-invariant New Massive Gravity contains both gravity and vector �eld parts as

well as the scalar �eld, one could take into account the radiative corrections that come from these

parts. But, since these computations will bring numerical corrections and our main is to bring out

the fundamental symmetry-mechanism in the model rather than these exact values, we will only focus

on the higher-order calculations for the scalar potential part.
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loop-level, the desired e�ective potential was evaluated [47] as

Veff = ν(µ)Φ6 +
7~2

120π2
ν(µ)2Φ6

(
ln

Φ4

µ2
− 49

5

)
. (II.35)

As it is seen from (II.35), the minimum of the e�ective-potential is far from

zero, thus the dimensionful parameter that breaks the Weyl-symmetry comes

from the dimensional transmutation. Here, ~2 in (II.35) indicates that the Weyl

symmetry is broken at the two-loops level. Furthermore, µ2 is scale of the

renormalized mass and when it is large, the minimum of the e�ective potential

will occur at a non zero point where perturbation model fails. Fortunately, as

shown in [39, 47], this is resolved when the contributions coming from gauge

�elds are added.

II.2.2 Weyl-Invariant Born-Infeld theories

Deser and Gibbons constructed a Born-Infeld 6 version of gravity theory in 1998

[67]. Furthermore, the Born-Infeld version of New Massive Gravity [33], which

reduces to the usual one at the quadratic-curvature expansion, is given by

SBINMG = −4m2

κ2

∫
d3x
[√
−det

(
g +

σ

m2
G
)
− (1− λ

2
)
√
−g
]
. (II.36)

Here, Gµν = Rµν − 1
2
gµνR. That is to say, by using the curvature-expansion√

det(1 + A) = 1 +
1

2
TrA+

1

8
(TrA)2 − 1

4
Tr(A2) +O

(
A3
)
, (II.37)

(II.36) recovers New Massive Massive7. Moreover, (II.36) is shown to be the

exact boundary counter terms of AdS4 [72]. In the context of scale-invariance,

by considering the conformal-invariant Einstein tensor

G̃µν = R̃µν −
1

2
gµνR̃, (II.38)

and a compensating scalar �eld, the Weyl-invariant Born-Infeld New Massive

Gravity can be written as [8]

SBINMG = −4

∫
d3x
[√
−det

(
Φ4g + σG̃

)
− (1− λ

2
)
√
−Φ4g

]
. (II.39)

6 Born and Infeld proposed a determinant-form of electrodynamics in order to eliminate the

singularities in Maxwell theory by the non-linear contributions [68].
7 Interestingly, it is also veri�ed in the context of AdS/CFT [69, 70, 71]. See also [73] for the

holographic analysis of New Massive Gravity.
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Finally, as in the core theory, using (II.37), any desired Weyl-invariant higher-

order gravity theory can be obtained. Finally, by using the Cayley-Hamilton

theorem in 3-dimensions

det(A) =
1

6

[
(Tr(A))3 − 3Tr(A)Tr(A2) + 2Tr(A3)

]
, (II.40)

one can express (II.39) in terms of the traces as√
−det

(
Φ4g + σG̃

)
=

√
−det

(
Φ4g

){
1− 1

2
Φ−4R̃µν

[
− gµν + Φ−4

(
R̃µν −

1

2
gµνR̃

)
+

2

3
Φ−8

(
R̃µρR̃

ρ
ν −

3

4
R̃R̃µν +

1

8
gµνR̃

2
)]}1/2

,

(II.41)

which is exact. Thus, one can obtain any desired Weyl-invariant higher curvature

theory at any level via expanding (II.41) in Taylor series of the curvature.
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CHAPTER III

UNITARITY OF WEYL-INVARIANT NEW MASSIVE

GRAVITY AND GENERATION OF GRAVITON MASS

VIA SYMMETRY BREAKING1

In the previous chapter, we studied the integration of the local Weyl symmetry

to the generic n-dimensional Quadratic Curvature Gravity theories and Born-

Infeld extension of the New Massive gravity. By the appropriate choices of the

parameters in the Weyl-invariant Quadratic Curvature theories, we obtained

the Weyl-invariant extension of the 3-dimensional New Massive Gravity the-

ory which is the only nonlinear extension of the Fierz-Pauli theory and has

a massive graviton with two helicities at the linearized level. In addition to

this, we also revealed the corresponding symmetry-breaking mechanisms for the

generation of the masses of the excitations propagated around the maximally

symmetric vacua: Here, the Weyl symmetry is spontaneously broken in (A)dS

vacua whereas the symmetry is radiatively (at two-loops level) broken in �at vac-

uum [47] as in the usual 4-dimensional Coleman-Weinberg mechanism [39]2. In

this chapter, we will �nd the particle spectrum of the theory about those vacua

and determine the unitary (i.e., ghost and tachyon-free) parameter regions by

perturbatively expanding the action [8]

SNMG =
∫
d3x
√
−g

{
σΦ2

(
R− 4∇ · A− 2A2

)
+ Φ−2

[
R2
µν − 3

8
R2 − 2Rµν∇µAν

+ 2RµνAµAν + R∇ · A− 1
2
RA2 + 2F 2

µν + (∇µAν)
2 − 2AµAν∇µAν − (∇ · A)2 +

1 The results of this chapter are published in [9] .
2 See [74] for a Higgs-type symmetry-breaking mechanism in the context of quantum theory of

gravity.
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1
2
A4

]}
+ S(Φ) + S(Aµ),

up to the quadratic-order in the �uctuations of the �elds about their vacuum

values. Here S(Φ) and S(Aµ) are the 3-dimensional Weyl-invariant extensions

of the scalar �eld and gauge �eld actions

S(Φ) = −1

2

∫
d3x
√
−g
(
DµΦDµΦ + ν Φ6

)
, S(Aµ) = β

∫
d3x
√
−g Φ−2FµνF

µν .

(III.1)

Moreover, we allow the dimensionless parameter of the gauge �eld part β to be

free for the unitarity analysis such that at the end, it will be controlled by the

unitarity conditions of the model. Before going further, one needs to underline

that, even though the Weyl-invariant New Massive Gravity does not contain

any dimensionful parameter which is required by the scale-invariance, there is

no strict constraint on the relative contributions coming from each side of the

model. That is to say, as shown in the previous chapter, the Weyl-invariant New

Massive Gravity (II.24) or its explicit version (II.25) is composed of scalar, vector

and gravity parts which are separately invariant under the scale transformations.

However, due to these distinct parts, the model contains 4 free dimensionless-

parameters which determine the relative contributions coming from each side.

Since the usual New Massive Gravity theory lives in the vacua of its extended

version, therefore, to recover this, we set the parameter related to the higher

curvature part in (II.24) to be 1. Furthermore, for the scalar part, we set the

corresponding parameter to its non ghost canonical value of −1/2.

III.1 Perturbative Expansion of the Action up to Quadratic-Order

In the Chapter 2, we have seen how the Weyl-symmetry is implemented to

the scalar, Abelian vector and gravity theories. In Weyl-invariant New Mas-

sive Gravity, we also showed that the vacua of the theory spontaneously break

the Weyl symmetry, hence the masses of the excitations are generated via the

breaking of the conformal symmetry: That is to say, for the vacuum values

Φvac =
√
m, Aµvac = 0, gµν = ḡµν , (III.2)
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we obtained the corresponding vacuum �eld equation

νm4 − 4σm2Λ− Λ2 = 0. (III.3)

Therefore, since Φ receives a VEV, the scale symmetry is spontaneously bro-

ken in the constant curvature vacua. On the other hand, in �at vacuum (i.e.,

Λ = 0), higher-order (or radiative) corrections, at the two loop-level, break the

symmetry. As we emphasized in Chapter 2, there are in fact distinct cases to be

analyzed: For instance, by supposing that the VEV of the scalar �eld is known,

then, the theory receives two distinct vacua

Λ± = m2
[
− 2σ ±

√
4σ2 + ν

]
. (III.4)

Since these vacua could decay, one has to determine whether they are stable or

not. For that purpose, from now on, we will study the stability of the vacuum

solutions of Weyl-invariant New Massive Gravity (III.4) and determine the ghost

and tachyon-free parameter regions for the �uctuations by perturbing the action

(II.25) up to the second-order3. Therefore, let us decompose the �elds in the

theory in terms of their vacuum values plus small �uctuations4 around the those

vacuum solutions as

Φ =
√
m+ τΦL, Aµ = τALµ , gµν = ḡµν + τhµν , (III.5)

where we insert a dimensionless parameter τ in order to keep track of the orders

in the perturbation theory. Needless to say that, the Weyl-invariant NewMassive

Gravity contains various non minimally coupled terms between �elds, hence

this makes the search for the fundamental harmonic oscillators to be rather

complicated. One should observe that there are actually various methods in

order to �nd the particle spectrum of the model. For instance, one can work at

the �eld equations level, or one can transform the action and/or �eld equations

to the Einstein frame, and hence study the stability and unitarity of the model

there. However, in our case, these methods are not useful. Therefore, despite

being relatively lengthy, by using (III.5) and the quadratic-expansion of the

3 We are mainly following the method given in [75].
4 By small, we mean that the �uctuation that disappears rapidly at in�nity and small compared

to the vacuum values.
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curvature-tensors given in Appendix B, one will be able to write the quadratic-

expansion of the action (II.25) as

SWNMG = S̄WNMG + τS
(1)
WNMG + τ 2S

(2)
WNMG +O(τ 3), (III.6)

where S̄WNMG is a constant related to the action in the constant curvature

vacua which it does not play any crucial role in studying the stability and so

the unitarity of the theory. On the other hand, the �rst order part S(1)
WNMG

is the one that provides the vacuum �eld equation (III.3) which was obtained

in the previous chapter. Finally, referring Appendix B for the derivations, the

second-order part S(2)
WNMG, which will provide the particle spectrum, reads

S
(2)
WNMG =

∫
d3x
√
−ḡ
{
− 1

2
(∂µΦL)2 +

(
6σΛ− 9Λ2

2m2
− 15νm2

2

)
Φ2
L

+
2β + 5

2m
(FL

µν)
2 −

(
2σm+

Λ

m
+
m

8

)
A2
L −

1

m
(∇̄ · AL)2

+
1

m
(GLµν)2 −

(σm
2
− Λ

4m

)
hµνGLµν −

1

8m
R2
L

+
(

2σ
√
m+

Λ

m
√
m

)
ΦLRL

−
(

8σ
√
m+

4Λ

m
√
m

+

√
m

2

)
ΦL∇̄ · AL

}
,

(III.7)

where we used the Taylor expansions

Φ2 = m
(

1 + 2τ
ΦL

√
m

+ τ 2 Φ2
L

m
+O(τ 3)

)
, ∇µAν = τ∇̄µA

L
ν − τ 2(Γγµν)LA

L
γ +O(τ 3),

(III.8)

during computations. First of all, as it is seen in (III.7), to have a canoni-

cally normalized Maxwell-type kinetic part, the multiplier β that determines its

contribution to the whole model, must be freezed to −11/4. Secondly, (III.7)

still contains various (non minimally) coupled terms of the �uctuations, which

thus prevent us to determine the fundamental excitations propagated about the

vacua. Therefore, one must �nd a way to �nd the fundamental oscillators. In

fact, it will be much easier to work on a simpler example rather than to work

on the full action. For this purpose, let us determine the particle spectrum of

the rather simpler example of the "Conformally Coupled Scalar-Tensor theory"

whose action is

SS−T =

∫
d3x
√
−g

(
Φ2R + 8∂µΦ∂µΦ− ν

2
Φ6
)
. (III.9)

50



At the �rst sight, because of the sign of the scalar part, one might conclude

that the action (III.9) contains a ghost which would violate the unitarity of

the model. However, the model is a fully-nonlinear one, and thus one cannot

reach this result unless one expands the action up to second-order, or transform

it to Einstein frame in which the situation becomes clearer. Therefore, let us

�rst see what happens to the action in Einstein frame: By using the conformal

transformation

gµν(x) = Ω−2(x) gEµν(x), (III.10)

where Ω ≡ ( Φ
Φ0

)2 is a dimensionless scaling factor, one will �nally transform

(III.9) into
ESS−T =

∫
d3x
√
−gE Φ2

0

(
RE − ν

2
Φ4

0

)
, (III.11)

which is nothing but the usual Cosmological Einstein gravity that does not

propagate any physical degree of freedom in n = 3. Since the laws of physics are

frame-independent, so one must also obtain the same result in the Jordan-frame.

Because of this, let us expand the action (III.9) up to the second-order in its

�uctuations of the �elds: Without going in detail, by following the same steps

given above and in Appendix A, one will �nally obtain the quadratic expansion

of (III.9) about its maximally-symmetric vacua as

SS−T =

∫
d3x
√
−ḡ
{

6mΛ− ν

2
m3

+ τ

[
(3mΛ− ν

4
)h+ (12

√
m− 3νm5/2)ΦL +mRL

]
+ τ 2

[
(−1

2
mΛ +

ν

8
m3)h2

µν −
1

2
mhµνGLµν

+ (
1

4
mΛ− ν

16
m3)h2 + 2

√
mRL ΦL

+ (6Λ− 15

2
νm2)Φ2

L + 8(∂µΦL)(∂µΦL)

]}
,

(III.12)

where the zeroth-order part O(τ 0) is the value of the action in the vacua, and

it does not play role in our current aim. On the other side, using the explicit

form of the linearized Ricci scalar given in Appendix B, from vanishing of the

�rst-order part O(τ 1), one will get the vacuum �eld equation

Λ =
νm2

4
. (III.13)
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Thus, with the help of (III.13), one will �nally get the second-order part as

follows

S
(2)
S−T =

∫
d3x
√
−ḡ

{
− 1

2
mhµνGLµν+2

√
mRLΦL−24ΛΦ2

L+8(∂µΦL)2

}
. (III.14)

Here, as in the quadratic-expansion of the Weyl-invariant version of New Massive

Gravity, (III.14) also contains non minimally coupled term between the scalar

�eld and curvature tensor. To decouple it, and hence to obtain the particle

spectrum propagated around (A)dS vacua, let us rede�ne the tensor �uctuation

hµν = h̃µν −
4√
m
ḡµνΦ

L, (III.15)

and substitute it into (III.14). Then, the cross term in (III.14) drops out, and

one will �nally arrive at

S
(2)
S−T = −1

2
m

∫
d3x
√
−ḡ h̃µνG̃Lµν , (III.16)

which is also the linearized Cosmological Einstein theory with no propagating

degree of freedom. Hence (III.9) at the linearized level has no local degrees of

freedom 5; therefore up to a global degrees of freedom, the constraints control

the local structure of the solutions [22].

III.1.1 Scale-Invariant Gauge-Fixing Condition

Generically, any desired local symmetry is implemented to a given theory with

the help of the vector �elds which transform under the adjoint representation of

the related gauge group. However, this comes with a price: The extended ver-

sion of the mother theories inevitably gain unphysical degrees of freedom which

must be extracted from the extended theories. For this reason, by respecting

the given symmetries, one has to construct the most convenient gauge-�xing

condition such that the non dynamical degrees of freedom will drop and one
5 This can be simply seen by counting the degrees of freedom for n-dimensional GR via the

(n− 1)+1 orthogonal decomposition of the metric: The spatial metric and the conjugate momentum

both have n(n−1)
2

components at each point [i.e., (n−1)-dimensional hypersurface] of the n-dimensional

global hyperbolic spacetime. Moreover, since n-dimensional GR has 2n constraints equations, n for

the energy and momentum and n for their conjugate momenta. Thus, one is left with n(n−3) degrees

of freedom at each hypersurface. Hence, when n = 3, GR does not have any local propagating degrees

of freedom. On the other hand, when n = 4, GR has four phase degrees of freedom: two gravitational

modes and two conjugate momenta [22].
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will be left only with the physical ones. Therefore, here, we have to construct

the corresponding Weyl-invariant gauge-�xing condition: Hence, by using the

gauge-covariant derivative of the Weyl's vector �eld [8]

DµAν ≡ ∇µAν + AµAν , (III.17)

one will �nally obtain the transformation of the divergence of gauge-covariant

derivative of the Weyl's gauge �eld under the n−dimensional local scale trans-

formations

(DµAµ)′ = e−2λ
(
DµAµ −Dµ∂µλ+ (n− 3)(Aα∂αλ− ∂αλ∂αλ)

)
. (III.18)

One should note that the term Dµ∂µλ (III.18) is nothing but the Weyl-invariant

extension of the leftover gauge-invariance ∂µ∂
µλ = 0 that comes when one

chooses the usual Lorenz-condition ∂µA
µ = 0 as the gauge-�xing. Therefore,

by freezing the term Dµ∂µλ to zero, in 3−dimensions, one is left with

(DµAµ)′ = e−2λ(DµAµ), (III.19)

which thus provides us to de�ne a Weyl-invariant Lorenz-type gauge-�xing con-

dition

DµAµ = ∇ · A+ A2 = 0. (III.20)

As it is seen, at the linearized level, (III.20) turns into the vacuum Lorenz-gauge

�xing condition

∇̄ · AL = 0, (III.21)

that will eliminate the coupled term between the scalar and vector �elds in

(III.7).

III.1.2 Rede�nition of the Metric Fluctuation

As in the Conformally Coupled Scalar Tensor part, here one needs to also rede-

�ne the metric �uctuation to decouple the cross term between the scalar �eld

and curvature tensor in (III.7). Interestingly, one can show that the rede�nition

(III.15) also works here: Hence, by using the same tensor �uctuation, one will
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�nally get the rede�ned linearized curvature tensors as

(Rµν)L = (R̃µν)L +
2√
m

(∇̄µ∂νΦL + ḡµν�̄ΦL),

RL = R̃L +
8√
m

(�̄ΦL + 3ΛΦL),

GLµν = G̃Lµν +
2√
m

(
∇̄µ∂νΦL − ḡµν�̄ΦL − 2ΛḡµνΦL

)
,

hµνGLµν = h̃µνG̃Lµν +
4√
m
R̃LΦL +

16

m
ΦL�̄ΦL +

48

m
ΛΦ2

L,

(GLµν)2 = (G̃Lµν)2 +
8

m
(�̄ΦL)2 +

40

m
ΛΦL�̄ΦL +

48

m
Λ2Φ2

L

+
2√
m
R̃L�̄ΦL +

4√
m

ΛR̃LΦL.

(III.22)

Thus, using the linearized version of the Weyl-invariant gauge-�xing condition

(III.21) and the tensor identities developed above will decouple the cross terms

in (III.15) and so yield

S̃
(2)
WNMG =

∫
d3x
√
−ḡ

{
− 1

2

(
16σ +

8Λ

m2
+ 1
)

(∂µΦL)2

− 1

4m
(FL

µν)
2 −

(
2σm+

Λ

m
+
m

8

)
(ALµ)2

−
(σm

2
− Λ

4m

)
h̃µνG̃Lµν +

1

m
(G̃Lµν)2 − 1

8m
R̃2
L

}
.

(III.23)

Observe that the �rst line in (III.23) is the Lagrangian density for a massless

scalar �eld. Therefore, one must satisfy the following strict condition on the

parameters in order to prevent the scalar �eld to be a ghost

16σ +
8Λ

m2
+ 1 ≥ 0. (III.24)

On the other side, the Weyl's gauge �eld part of (III.23) is nothing but the known

Proca-like Lagrangian density for a massive vector �eld that has 2 physical

degrees of freedom in 3−dimensions and has the unitary mass only if

M2
A = (4σ +

1

4
)m2 + 2Λ ≥ 0. (III.25)

Finally, the last part of (III.23) is of the usual New Massive Gravity, which

propagates a massive graviton with 2 degrees of freedom in 3−dimensions around

its maximally-symmetric backgrounds. To see this, one can either decompose

the tensor �uctuation in terms of its irreducible parts whose transverse-traceless
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part will lead the desired result [76], or one can rewrite the Lagrangian in terms

of auxiliary �elds such that the Lagrangian will be converted into the known

theories [23]. By keeping the �rst method in mind, referring to [23] for the

intermediate steps and also by assuming a new tensor �eld fµν , one can easily

show that the Lagrangian density of the geometry in (III.23) will turn into

L(2)
fµν =

1

2
fµνGµν(f)− 1

4
M2

graviton(f 2
µν − f 2), (III.26)

which is nothing but a Fierz-Pauli-type gravity theory, and so the model prop-

agates a massive spin-2 �eld with 2-helicities with the mass square

M2
graviton = −σm2 +

Λ

2
. (III.27)

As it was done in the Chapter 2, to have a non-tachyonic fundamental excitation,

depending on the background that one works in, one must satisfy Higuchi bound

[65] (M2
graviton ≥ Λ > 0) in dS space and Breintenlohner-Freedman [66] bound

(M2
graviton ≥ Λ) in AdS-space. Here, for the theory to be well-behaved, the

unitarity conditions for each �eld must be compatible among themselves. Note

that Λ+ in (7) is related to the dS-space and Λ− refers to AdS-space. Therefore,

by substituting (III.27) in (III.4), one can show thatM2
graviton inevitably becomes

tachyon, and thus the theory fails to be unitary in dS-vacuum. Meanwhile, by

taking care of all the unitary-regions developed above, from (III.27), one can

easily show that the theory generically propagates a unitary massless scalar

�eld, massive vector �eld and massive tensor �eld among the parameter regions

of
− 1

16
< σ ≤ 0, 0 < ν ≤ 1

64
(1− 256σ2),

0 < σ ≤ 1

16
, 0 ≤ ν ≤ 1

64
(1− 256σ2).

(III.28)

Interestingly, for the particular values of

σ =
1

16
, ν = 0, Λ− = −m

2

4
, (III.29)

the scalar �eld drops out and the gauge �eld becomes massless and the mass of

the graviton becomes M2
graviton = −3m2/16.

Finally, in the case of �at vacuum, for the parameters of

− 1

16
≤ σ ≤ 0, ν = 0, (III.30)
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the theory propagates with a unitary massless scalar �eld, massive vector �eld

and massive tensor �eld. Particularly, when σ = −1/16, the scalar �eld disap-

pears, and the vector �eld becomes massless as well as the mass of the graviton

tuns into Mgraviton = m/4. On the other side, when σ = 0, then, the graviton

becomes massless and so the theory propagates with a unitary massless spin-0

�eld, massless spin-2 �eld and a massive spin-1 �eld with mass MAµ = m/2.
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CHAPTER IV

WEYL-INVARIANT HIGHER CURVATURE GRAVITY

THEORIES IN N DIMENSIONS 1

In this chapter, we will use the experience developed in the previous chapter

to study the stability and the unitarity (i.e., ghost and tachyon-freedom) of the

Weyl-invariant extension of generic n−dimensional Quadratic Curvature Gravity

theories augmented with Weyl-invariant Einstein-Hilbert action [8]

SWI =

∫
dnx
√
−g

{
σΦ2R̂ + Φ

2(n−4)
n−2

[
αR̂2 + βR̂2

µν + γR̂2
µνρσ

]}
+ S(Φ) + S(Aµ),

(IV.1)

by expanding the action up to the quadratic-level in the �uctuations of the �elds

in the model about their vacuum values. Here S(Φ) and S(Aµ) are the Weyl-

invariant extensions of the n-dimensional scalar �eld and gauge �eld actions

S(Φ) = −1

2

∫
dnx
√
−g

(
DµΦDµΦ + ν Φ

2n
n−2

)
,

S(Aµ) = ε

∫
dnx
√
−g Φ

2(n−4)
n−2 FµνF

µν .

(IV.2)

Note that the action contains 7 adjustable dimensionless parameters. Setting the

coe�cient of the scalar �eld action to canonically normalized value 1/2 reduces

them by 1. In addition to this, a free dimensionless parameter ε is considered in

the gauge �eld part for the sake of the unitarity that will be carried out. As we

will see later, the unitarity analysis will handle the freedom of ε. On the other

side, the Weyl-invariant curvature square terms were evaluated in Chapter 2 as

1 The results of this chapter are published in [10] .
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follows: Firstly, the Weyl transformations of Riemann tensor is

R̃2
µνρσ = R2

µνρσ − 8Rµν∇µAν + 8RµνAµAν − 4RA2 + nF 2
µν

+ 4(n− 2)(∇µAν)
2 + 4(∇ · A)2 + 8(n− 2)A2(∇ · A)

− 8(n− 2)AµAν∇µAν + 2(n− 1)(n− 2)A4,

(IV.3)

where ∇ · A = ∇µA
µ; A2 = AµA

µ; A4 = AµA
µAνA

ν . The Weyl transformation

of Ricci square term reads

R̃2
µν = R2

µν − 2(n− 2)Rµν∇νAµ − 2R(∇ · A) + 2(n− 2)RµνAµAν

− 2(n− 2)RA2 + F 2
µν − 2(n− 2)F µν∇νAµ

+ (n− 2)2(∇νAµ)2 + (3n− 4)(∇.A)2 − 2(n− 2)2AµAν∇µAν

+ (4n− 6)(n− 2)A2(∇ · A) + (n− 2)2(n− 1)A4,

(IV.4)

and �nally square of Ricci scalar under Weyl transformations is

R̃2 =R2 − 4(n− 1)R(∇ · A)− 2(n− 1)(n− 2)RA2 + 4(n− 1)2(∇ · A)2

+ 4(n− 1)2(n− 2)A2(∇ · A) + (n− 1)2(n− 2)2A4.

(IV.5)

Interestingly the Abelian gauge �eld is allowed to self-interact quadratically A2

and even quartically A4 levels.

IV.1 Perturbative Expansion about (A)dS Vacua

As mentioned in the perturbative study of Weyl-invariant New Massive Gravity,

there in fact some known methods to study the particle spectrum of the theory:

For example, one can work at the �eld equations-level by linearizing them and

trying to decouple cross terms. Alternatively, one can transform the action into

the Einstein frame and analyze the model there. However, these two methods

are not e�cient for our current aim. Because of this, as we did in the Chapter

3, we will work on the action level by expanding the action (IV.1) up to the

quadratic-order, which will provide us to �nd the fundamental oscillators for

the free-particles propagated with the theory [75]. Therefore, for this purpose,

let us decompose the �elds in terms of their values in the maximally-symmetric

vacua plus small �uctuations that disappear rapidly at in�nity around these
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vacua as

Φ = Φvac + τΦL, Aµ = τALµ , gµν = ḡµν + τhµν , (IV.6)

where the vacuum values are

Φvac = m(n−2)/2, Aµvac = 0, gµν = ḡµν . (IV.7)

As in the 3-dimensional case, here we also put a dimensionless parameter τ

in order to keep track of the orders in the perturbation theory. Note that

the necessity of the symmetry breaking mechanism, which is a spontaneous

one in (A)dS vacua and a radiative one in �at vacuum, imposes the vacuum

expectation value of the scalar �eld m to be in the mass-dimension. In fact,

there are only explicit higher order corrections to the e�ective potentials in 3

and 4-dimensional �at spacetimes [39, 47]. But, even though there is no explicit

Coleman-Weinberg-type calculations for the higher-dimensional �at spacetimes,

by taking these 3-and 4-dimensional �at spaces cases as references, we also expect

that the Weyl-symmetry is radiatively broken at the loop-level even in n > 4

dimensional �at spacetimes.

Thus, referring to Appendix B for the detailed calculations, up to boundary

terms, one will �nally obtain the second order expansion of the action (IV.1)

SWI =

∫
dnx
√
−ḡ

{
L(τ 0) + τL(τ 1) + τ 2L(τ 2)

}
. (IV.8)

Here the zeroth part L(τ 0) stands for the vacuum value of the full action which

does not play any role during studying of the particle spectrum of the theory.

On the other side, the �rst-order part L(τ 1) reads

L(τ 1) =
( n

n− 2
m

n−6
2 ΦL +

1

4
mn−4h

)(
CΛ2 + 4σΛm2 − νm4

)
, (IV.9)

where the constant C is

C ≡ 8(n− 4)

(n− 2)2

(
nα + β +

2γ

n− 1

)
. (IV.10)

Therefore, from the vanishing of (IV.9), one will obtain the corresponding vac-

uum �eld equation

CΛ2 + 4σΛm2 − νm4 = 0. (IV.11)
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One should observe that, in n = 3, for the particular choices of the parameters

8α + 3β = 0, γ = 0. (IV.12)

(IV.11) recovers the vacuum �eld equation of the Weyl-invariant New Massive

Gravity that was found in the Chapter 2. As underlined in the previous chapter,

here we have two cases that should be taken into account: One can consider that

the cosmological constant is known and we are assumed to determine the vacuum

expectation value for the Weyl scalar �eld or vice-versa. Since the procedures

for each cases are similar, let us keep the �rst case in mind and then work on

the second case in which the VEV of Φ is assumed to be known: In that case,

from (IV.11), one will see that the theory generically accepts two solutions of

Λ± = −2m2

C

[
σ ∓

√
σ2 +

Cν
4

]
, n 6= 4, (IV.13)

which thus provides at least one maximally symmetric vacuum solution as long

as

σ2 +
Cν
4
≥ 0, (IV.14)

is satis�ed. On the other side, as expected, when n = 4, there exists just one

constant curvature vacuum

Λ =
νm2

4σ
. (IV.15)

Finally, the second-order part of (IV.8), which will provide the fundamental
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propagated excitations of the model, reads

L(τ 2) = −1

2
mn−4hµν

{( 4n

n− 2
α +

4

n− 1
β − 8

n− 1
γ
)

ΛGLµν

+ (2α + β + 2γ)
(
ḡµν�̄− ∇̄µ∇̄ν

)
RL

+
2Λ

n− 2

(
2α +

β

n− 1
− 2(n− 3)

n− 1
γ
)
ḡµνRL

+ (β + 4γ)�̄GLµν + σm2GLµν
}

+m
n−2

2

{
C Λ

m2
+ 2σ

}
RLΦL −

1

2
(∂µΦL)2

+
n

2(n− 2)

{
n(n− 6)C

(n− 2)

Λ2

m2
+ 4σΛ− (n+ 2)

n− 2
m2ν

}
Φ2
L

−mn−4

{
4(n− 1)α + nβ + 4γ

}
RL∇̄ · AL

−m
n−2

2

{
2(n− 1)C Λ

m2
+ 4σ(n− 1) +

n− 2

2

}
ΦL∇̄ · AL

+mn−4

{
4(n− 1)2α + nβ + 4γ

}
(∇̄ · AL)2

+
1

2
mn−4

{
(n2 − 2n+ 2)β + 2(3n− 4)γ + 2ε

}
(FL

µν)
2

− 2mn−2

{(
2n(n− 1)α + (3n− 4)β + 8γ

) Λ

m2

+
(n− 1)(n− 2)

2
σ +

(n− 2)2

16

}
A2
L.

(IV.16)

Here the explicit form of the linearized curvature tensors are [19]

RL =∇̄µ∇̄νh
µν − �̄h− 2Λ

n− 2
h,

GLµν =(Rµν)L −
1

2
ḡµνR

L − 2Λ

n− 2
hµν ,

RL
µν =

1

2

(
∇̄σ∇̄µhσν + ∇̄σ∇̄νhσµ − �̄hµν − ∇̄µ∇̄νh

)
.

(IV.17)

Due to the cross terms between the �uctuations in (IV.16), at that step, one

cannot determine the fundamental oscillators of the theory about its maximally

symmetric vacua unless one decouples them. Therefore, as we did in the per-

turbative analysis of the Weyl-invariant New Massive Gravity, here one must

construct a Weyl-invariant gauge-�xing condition, which at the linearized-level

will have the coupled term between of the vector �eld to other �elds to vanish,

and further rede�ne the tensor �uctuation in order to decouple the cross term

between tensor �eld and scalar �eld.
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IV.1.1 Scale-Invariant Gauge-Fixing Condition

As it was seen in the perturbative expansion of the New Massive Gravity in

Chapter 3, here one needs to construct a proper n−dimensional Weyl-invariant

gauge-�xing condition in order to extract the nonpropagating degrees of freedom

of the theory. For this purpose, by considering the gauge-covariant derivative of

the gauge �eld in the generic n dimensions

DµAν ≡ ∇µAν + (n− 2)AµAν , (IV.18)

one can easily show that the divergence of (IV.18) transforms according to

(DµAµ)′ = e−2λ(x)
(
DµAµ −Dµ∂µλ(x)

)
. (IV.19)

Here, the term Dµ∂µλ(x) is actually the n−dimensional Weyl-invariant version

of the leftover gauge-invariance ∂2λ = 0 that comes from the choice of the Lorenz

condition ∂µAµ = 0. Therefore, by imposing Dµ∂µλ(x) = 0, one will be able to

select an n−dimensional Weyl-invariant Lorenz-type gauge-�xing condition

DµAµ = ∇ · A+ (n− 2)A2 = 0, (IV.20)

whose linearized version recovers the usual background gauge-�xing condition

∇̄ · AL = 0, which will eliminate the related coupled terms (IV.16).

IV.1.2 Rede�nition of the Metric Fluctuation

To decouple the cross terms between the curvature tensors and the scalar �eld,

one needs to assume a new metric �uctuation. Skipping the intermediate steps,

one can show that the rede�nition

hµν = h̃µν −
4

n− 2
m

2−n
2 ḡµνΦL, (IV.21)
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will do the desired job and convert the linearized curvature terms in (IV.16) into

RL
µν = R̃L

µν +
2

n− 2
m

2−n
2

{
(n− 2)∇̄µ∂νΦL + ḡµν�̄ΦL

}
,

RL = R̃L +
4

n− 2
m

2−n
2

{
(n− 1)�̄ΦL +

2n

n− 2
ΛΦL

}
,

GLµν = G̃Lµν + 2m
2−n

2

{
∇̄µ∂νΦL − ḡµν�̄ΦL − 2(n− 2)ΛḡµνΦL

}
,

hµνGLµν = h̃µνG̃Lµν + 4m2−n
{
m

n−2
2 R̃LΦL + 2

n− 1

n− 2
ΦL�̄ΦL +

4n

(n− 2)2
ΛΦ2

L

}
,

(GLµν)2 = (G̃Lµν)2 + 2m
2−n

2

{
(n− 2)R̃L�̄ΦL + 2ΛR̃LΦL

}
+ 4m2−n

{
(n− 1)(�̄ΦL)2 +

4nΛ2

(n− 2)2
Φ2
L +

2(2n− 1)Λ

n− 2
ΦL�̄ΦL

}
.

(IV.22)

Hence, with the help of (IV.22) and the linearized version of the Weyl-invariant

Lorenz-type gauge-�xing condition as well as the vacuum �eld equation (IV.11),

(IV.16) becomes

S̃WI =

∫
dnx
√
−ḡ
{
mn−4

{
−
[ 2nΛ

n− 2
α +

2Λ

n− 2
β

− 4(n− 4)Λ

(n− 1)(n− 2)
γ +

m2

2
σ
]
h̃µνG̃Lµν

+
[
α− n− 4

4
β − (n− 3)γ

]
R̃2
L + (β + 4γ)(G̃Lµν)2

}
− 1

2

{ 16

(n− 2)2

[
2n(n− 1)α + (3n− 4)β + 8γ

] Λ

m2

+ 8
(n− 1)

(n− 2)
σ + 1

}
(∂µΦL)2

+
16

m2

(n− 1)2

(n− 2)2

{
α +

n

4(n− 1)
β +

1

n− 1
γ
}

(�̄ΦL)2

+ 8m
n−6

2
n− 1

n− 2

{
α +

n

4(n− 1)
β +

1

n− 1
γ
}
R̃L�̄ΦL

+
1

2
mn−4

{
(n2 − 2n+ 2)β + 2(3n− 4)γ + 2ε

}
(FL

µν)
2

− 2mn−2
{[

2n(n− 1)α + (3n− 4)β + 8γ
] Λ

m2

+
(n− 1)(n− 2)

2
σ +

(n− 2)2

16

}
A2
L

}
.

(IV.23)

But, due to the R̃L�̄ΦL and Pais-Uhlenbeck term (�̄ΦL)2, (IV.23) is still not

in the desired form. Surprisingly, the coe�cients of these two terms are propor-
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tional to the same factor, and thus setting

α +
n

4(n− 1)
β +

1

n− 1
γ = 0, (IV.24)

reduces the action (IV.23) into the one which consists of fully decoupled basic

oscillators correspond to each free excitations of the theory. Before going further,

it is worth to emphasize an important result of the imposed condition (IV.24):

Using the fact that Gauss-Bonnet combination vanishes in 3 dimensions provides

us

R2
µνρσ = 4R2

µν −R2. (IV.25)

Thus, by using (IV.25), one can demonstrate that, in n = 3, (IV.24) will reduce

to the New Massive Gravity parameter combination of 8α̃ + 3β̃ = 0.

IV.2 Fundamental Excitations of the Theory

As demonstrated above, once the extra unitarity condition (IV.24) is imposed,

one is left with the fully-decoupled action

S
(2)
WIQCG =

∫
dnx
√
−ḡ
{
Lhµν + LAµ + LΦ

}
. (IV.26)

Here the explicit forms of the Lagrangian densities for each free-particle are

Lhµν = mn−4

{
−
[ 2nΛ

n− 2
α +

2Λ

n− 2
β − 4(n− 4)Λ

(n− 1)(n− 2)
γ +

m2

2
σ
]
h̃µνG̃Lµν

+
[
α− n− 4

4
β − (n− 3)γ

]
R̃2
L + (β + 4γ)(G̃Lµν)2

}
,

LAµ =
1

2
mn−4

{
(n2 − 2n+ 2)β + 2(3n− 4)γ + 2ε

}
(FL

µν)
2

− 2mn−2

{[
2n(n− 1)α + (3n− 4)β + 8γ

] Λ

m2

+
(n− 1)(n− 2)

2
σ +

(n− 2)2

16

}
A2
L,

LΦ = −1

2

{
16

(n− 2)2

[
2n(n− 1)α + (3n− 4)β + 8γ

] Λ

m2

+ 8
(n− 1)

(n− 2)
σ + 1

}
(∂µΦL)2.

(IV.27)

With these results, one can start to determine the particle spectrum of the

theory. However, since the tensor-�eld part requires much detailed works, at
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that moment, let us leave it for later and �rst study on the lower spin parts: As

it is seen in (IV.27), the Weyl gauge �eld side is nothing but the usual Proca-type

Lagrangian density whose generic form is

LAµ = −1

4
(FL

µν)
2 − 1

2
M2

AA
2
L, (IV.28)

which propagates a massive spin-1 �eld with mass M2
Aµ around its maximally-

symmetric vacua. In our case, to get a canonically normalized Maxwell-type

kinetic part (i.e., whose coe�cient is −1/4), one must �x ε to

ε = −1

2

[
(n2 − 2n+ 2)β + 2(3n− 4)γ + 1/2

]
, (IV.29)

with which the mass of the gauge �eld becomes

M2
A = 4(n− 4)

[
2(n− 1)α + β

]
Λ +

[
2(n− 1)(n− 2)σ +

(n− 2)2

4

]
m2. (IV.30)

Even though the requirement for being nontachyonic excitation demands M2
A ≥

0, as we will see in the spin-2 part, extra constraints will occur on the parameters

of the theory which will then contract the unitary region of the gauge-�eld,

namely M2
A ≥ 0 2. Meanwhile, by using (IV.30), one can show that the scalar

part of (IV.27) will turn into a more concrete one

LΦ = − 4M2
A

(n− 2)2m2

1

2
(∂µΦL)2. (IV.31)

Hence, the unitarity of Φ is determined by unitarity of the vector �eld. That is,

for the scalar �eld to be ghost or not directly depends on whether the massive

gauge-�eld is a tachyon or not. And interestingly, the scalar �eld turns into a

nonphysical degree of freedom while the gauge is massless.

On the other hand, because of its nontrivial form, one must work on the tensor

�eld part in detail in order to discover the particle spectrum of the gravity part.

As emphasized during the perturbative study of Weyl-invariant New Massive

Gravity, there exist two distinct approaches in order to fully determine the

fundamental excitations of the model propagated around its constant curvature

vacua: That is to say, one can either decompose the metric �uctuation in terms

of its irreducible parts [76], or one can assume the existence of auxiliary �elds
2 Here, one should notice that during the derivation of (IV.30), the imposed unitary condition

(IV.24) was also used.
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which will provide us to convert the Lagrangian into the known ones whose

particle spectrum are apparent [23]. Therefore, by keeping the �rst method in

mind, with the assumption of two auxiliary �elds of ϕ and fµν , one can rewrite

the Lagrangian for gravity side as

Lhµν =ahµνGLµν(h) + bR2
L + c(GLµν(h))2

≡ahµνGLµν(h) + fµνGLµν(h) + ϕRL −
m2

1

2
ϕ2 − m2

2

4
(f 2
µν − f 2).

(IV.32)

Here f ≡ ḡµνfµν and the explicit form of the coe�cients are

a ≡−mn−4
( 2nΛ

n− 2
α +

2Λ

n− 2
β − 4(n− 4)Λ

(n− 1)(n− 2)
γ +

m2

2
σ
)
,

b ≡mn−4
(
α− n− 4

4
β − (n− 3)γ

)
,

c ≡mn−4(β + 4γ).

(IV.33)

At that step in order to go further, one needs to �nd the exact values of the

masses of the auxiliary �elds in terms of the variables in the theory. To do this,

we need the �eld equations of the auxiliary �elds: Therefore, by varying (IV.32)

with respect to fµν and ϕ, one will obtain

fµν =
2

m2
2

GLµν(h) + ḡµν
n− 2

(n− 1)m2
2

RL, ϕ =
1

m2
1

RL. (IV.34)

Inserting these results into the second-line of (IV.32) yields

Lhµν = ahµνGLµν(h) +
1

m2
2

(GLµν(h))2 +
( 1

2m2
1

− (n− 2)2

4(n− 1)m2
2

)
R2
L, (IV.35)

whose comparison with the �rst-line of (IV.32) will �nally give the desired rela-

tion between the masses of the rede�ned �elds and the parameters of the model

as

c =
1

m2
2

, and b =
1

2m2
1

− (n− 2)2

4(n− 1)m2
2

. (IV.36)

Moreover, by plugging (IV.36) in the second-line of (IV.32), one will �nally

achieve to convert the Lagrangian into

Lhµν = (ahµν + fµν)GLµν(h) + ϕRL −
ϕ2

4b+ c(n− 2)2/(n− 1)
− 1

4c
(f 2
µν − f 2).

(IV.37)

Meanwhile, one can easily show that the imposed condition (IV.24) can also be

written in terms of the variables of the model as

4b+ c
(n− 2)2

n− 1
= 0, (IV.38)
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which remarkably brings on an in�nitely massive ϕ �eld in (IV.37), which in-

evitably decouples from the rest and hence eliminates the unwanted term ϕRL.

Thus, (IV.37) �nally turns into

Lhµν = (ahµν + fµν)GLµν(h)− 1

4c
(f 2
µν − f 2). (IV.39)

However, due to the coupling between the tensor �elds, (IV.39) is not still at

the desired form. Therefore, one has to decouple them. For that purpose, let us

de�ne a new tensor �eld as

hµν = hµν −
1

2a
fµν , (IV.40)

where a 6= 0. Then, it can be easily shown that (IV.40) will fully decouple the

�elds in (IV.39) and one will �nally arrives at

Lhµν = ahµνGLµν(h)− 1

4a
fµνGµν(f)− 1

4c
(f 2
µν − f 2), (IV.41)

which contains both the Cosmological Einstein-Hilbert and Fierz-Pauli parts,

respectively. One must observe that, due to the e�ective gravitational coupling

constant of each distinct parts, the unitarity of the massless and massive spin-2

excitations are in con�ict. Hence the theory cannot simultaneously propagate

with both unitary massless and massive gravitons; therefore the model will al-

ways fail to be unitary unless one drops out this inconsistency. There is actually

one procedure in order to cure this subtle issue: By setting c = 0, the mas-

sive graviton will receive an in�nite mass which then will decouple the massive

excitation, and thus the model becomes unitary with a massless spin-2 �eld.

Furthermore, combining the choice c = 0 and the condition (IV.24) gives rise a

very interesting result of

4γ + β = 0, α = γ, (IV.42)

that is nothing but the known Einstein-Gauss-Bonnet theory that propagates

with a unitary massless graviton only if

σ > −4(n− 3)(n− 4)γΛ

(n− 1)(n− 2)m2
, (IV.43)

is satis�ed [13]. In other words what has been found is that the only unitary

higher-dimensional Weyl-invariant Quadratic Curvature Gravity theory is the
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Weyl-invariant Einstein-Gauss-Bonnet model. On the other hand, for the par-

ticular choice of (IV.42), the mass of the vector �eld (IV.30) turns into

M2
A = 8(n− 3)(n− 4)γΛ +

((n− 2)2

4
+ 2(n− 1)(n− 2)σ

)
m2, (IV.44)

which is unitary as long as

σ ≥ −4(n− 3)(n− 4)γΛ

(n− 1)(n− 2)m2
− n− 2

8(n− 1)
. (IV.45)

With the comparison, one can show that the �rst unitary condition (IV.43) is

in fact stronger than the second one (IV.45)3.

Finally, we will focus on an important critical point of a = 0: In the case of

vanishing a, using the self-adjointness of the operator, one can convert (IV.39)

into

Lhµν = hµνGLµν(f)− 1

4c
(f 2
µν − f 2), (IV.47)

which provides the �eld equation

GLµν(f) = 0, (IV.48)

for the metric �uctuation hµν . As it is done in [23], this equation can be solved

by the speci�c choice of the tensor �eld

fµν = ∇̄µBν + ∇̄νBµ, (IV.49)

where Bµ stands for a vector �eld. Thus, by using (IV.49), one can easily show

that (IV.47) will turn into a Proca-type Lagrangian density of

Lhµν = − 1

4c
F 2
µν −

2Λ

c(n− 2)
B2
µ. (IV.50)

Here Fµν = ∇̄µBν − ∇̄νBµ is the corresponding curvature tensor for the vector

�eld Bµ. Hence, for that particular point, the theory propagates a nontachyonic

massive vector �eld with the mass

M2
Bµ =

4Λ

c(n− 2)
, (IV.51)

3 One should note that (IV.43) can also be written as

σ > −CΛ
2
, (IV.46)

which allows both constant curvature solutions, namely dS and AdS vacua.

68



as long as c > 0. Observe that (IV.51) is in agreement with the unitary con-

ditions developed above. In fact this critical point is similar to the one in the

usual New Massive Gravity [23]. Thus, at this point, the theory consists of a

unitary massless scalar �eld and two distinct massive vector �elds around its dS

vacua.

Finally, we will focus on the case when the background is �at. Since the re-

sults that we will obtain are valid in any higher-dimensional �at spaces, so let

us assume that the background is a 4−dimensional one: As it is known, the

4−dimensional e�ective scalar potential obtained via the one-loop calculations

carried out by Coleman and Weinberg [39] is in the form

V (Φ)EFF = c1Φ4
(

log(
Φ

m
) + c2

)
, (IV.52)

and provides a nonzero vacuum expectation value for the scalar �eld, hence the

local Weyl symmetry is radiatively broken in �at vacua. Since the exact values

of coe�cients in (IV.52) are not important for our current case, we leave them in

compact forms. Furthermore, by using (IV.24) and the Einstein-Gauss-Bonnet

condition (IV.42) obtained above, one will �nally get the Lagrangian densities

for each excitations as

LΦ =− 1

2

(
1 + 12σ

)
(∂µΦL)2,

LAµ =− 1

4
(FL

µν)
2 − 1

2

(
1 + 12σ

)
m2A2

L,

Lhµν =− m2

2
σh̃µνG̃Lµν .

(IV.53)

Thus, the 4−dimensional Weyl-invariant Einstein-Gauss-Bonnet theory gener-

ically propagates with a unitary massless scalar �eld, massive vector �eld and

massless graviton about its �at vacua as long as σ > 0. And also this result is

valid in the higher-dimensional version of the model.
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CHAPTER V

CONCLUSION

In this dissertation, with the help of a real scalar �eld and a noncompact

Abelian gauge �eld, the Weyl-invariant extension of Higher Order Gravity theo-

ries, namely generic n-dimensional Quadratic Curvature Gravity theories, New

Massive Gravity and 3-dimensional Born-Infeld gravity theory, are constructed.

As required by the Weyl-invariance, these gauge theories do not involve any

dimensionful parameter; therefore masses of the fundamental excitations are

generated via symmetry breaking. Depending on the type of the background

wherein one works, the symmetry breaking mechanism works in two distinct

ways: When the background vacua are (Anti-) de Sitter spacetimes, the local

Weyl symmetry is spontaneously broken in complete analogy with the Standard

Model Higgs mechanism for the lower spin particles. Namely, the mere exis-

tence of a constant nonzero curvature vacuum breaks the symmetry. On the

other side, when the vacuum is a �at spacetime, radiative corrections change

the structure of the tree-level potential, which has a minimum at the origin, to

a new one whose minimum is shifted to a nonzero point that triggers break-

ing of the Weyl symmetry. Hence, in �at vacuum, the symmetry is broken

due to the dimensionful parameter (i.e., vacuum expectation value of the scalar

�eld) coming from the dimensional transmutation in Quantum Theory akin to

the 4-dimensional Coleman-Weinberg mechanism for the Φ4-theory. Thus, the

masses of fundamental excitations are generated as a result of symmetry break-

ing such that all the dimensionful coupling constants between �elds are frozen

in these broken phases. We also calculated the perturbative particle spectra

of these gauge theories and discussed their tree-level unitarity (i.e., ghost and
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tachyon freedom) around their (Anti-) de Sitter and �at vacua: In Chapter 3,

the stability and the unitarity of the Weyl-invariant New Massive Gravity were

studied by expanding the action up to the second order in the �uctuations of

the �elds about its maximally symmetric vacua. We showed that the theory is

unitary in its both Anti-de Sitter and �at vacua and generically propagates with

a massive spin-2, a massive (or massless) spin-1 and a massless spin-0 particles

around these vacua. But, it was showed that the theory fails to be unitary in

de Sitter space. In this part, depending on the unitarity regions, there occur

several interesting results in the theory. For instance, despite its kinetic term

in the Lagrangian density, for the certain choices of the dimensionless parame-

ters, the scalar �eld turns to be a nondynamical degree of freedom and hence

drops out from the spectrum. As mentioned above, the conformal symmetry is

spontaneously broken in the Anti-de Sitter vacuum in analogy with the Higgs

Mechanism whereas in �at vacuum, radiative corrections at two-loop level to

the e�ective potential for the Φ6-interaction yield nonzero classical solutions

and thus break the local Weyl symmetry à la Coleman-Weinberg mechanism.

In Chapter 4, we evaluated the particle spectrum and discussed the unitarity

of the Weyl-invariant extension of generic n-dimensional Quadratic Curvature

Gravity theories by quadratically expanding the action in all directions of the

fundamental �elds in the theory around their values in (Anti-) de Sitter vacua.

In connection with the tree-level unitarity analysis, we showed that the only

unitary n-dimensional Weyl-invariant Quadratic Curvature theory is the Weyl-

invariant extension of the Einstein-Gauss-Bonnet theory which has a massless

tensor (i.e., graviton), a massive vector and a massless scalar particles in its

maximally symmetric vacua. As in the Weyl-invariant New Massive Gravity,

the scale symmetry is spontaneously broken in (Anti-) de Sitter vacua whereas

radiative corrections break the symmetry in �at vacuum. Thus, the massive

gauge excitation gains its mass via the breaking of the local Weyl symmetry.

For the future works, it will be particularly interesting to study the generic

n-dimensional Weyl-invariant extension of the Einstein-Gauss-Bonnet theory in

black hole backgrounds and also search for cosmological solutions of the theory.
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CHAPTER VI

FIELD EQUATION FOR THE PARTICLES

In this section, we will �nd the exact �eld equations of the scalar, vector and

tensor �elds in the Weyl-gauged New Massive Gravity [8]. However, since the

explicit form of the action (II.25) is very complicated, one needs to study on

each distinct part separately. For this purpose, let us rewrite (II.25) as

S̃NMG = σ(I1 − 4I2 − 2I3) + I4 −
3

8
I5 − 2I6 + 2I7 + I8

− 1

2
I9 + 2I10 + I11 − 2I12 − I13 +

1

2
I14,

(VI.1)

where the related actions are

I1 =

∫
d3x
√
−g Φ2R, I2 =

∫
d3x
√
−g Φ2∇µA

µ,

I3 =

∫
d3x
√
−g Φ2AµA

µ, I4 =

∫
d3x
√
−g Φ−2R2

µν ,

I5 =

∫
d3x
√
−g Φ−2R2, I6 =

∫
d3x
√
−g Φ−2Rµν∇µAν ,

I7 =

∫
d3x
√
−g Φ−2RµνAµAν , I8 =

∫
d3x
√
−gΦ−2R∇ · A,

I9 =

∫
d3x
√
−g Φ−2RAµA

µ, I10 =

∫
d3x
√
−g Φ−2F µνFµν ,

I11 =

∫
d3x
√
−g Φ−2(∇µAν)

2, I12 =

∫
d3x
√
−gΦ−2AµAν∇µAν ,

I13 =

∫
d3x
√
−gΦ−2(∇ · A)2, I14 =

∫
d3x
√
−gΦ−2A2

µA
2
ν .

(VI.2)

Hereafter, we will vary each of the above de�ned action with respect to the

metric, vector and scalar �elds separately and then sum all the evaluated results

in order to �nd the full �eld equations. Therefore, let us �rst evaluate the �eld

equation of the metric:
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VI.1 Field Equation for gµν

In this part, we will vary the explicit form of the action (II.25) with respect to

gµν which will �nally provide the corresponding �eld equation. Therefore, let us

vary each distinct action separately:

Variation of I1:

As it is seen, the variation of the I1 with respect to gµν becomes

δI1 =

∫
d3x Φ2

[
(δ
√
−g)R +

√
−g δR

]
. (VI.3)

First of all, it is known that the variation of the �rst term is (δ
√
−g) =

−1
2

√
−g gµνδg

µν . For the second term, one should be careful because there

is an overall scalar �eld which will bring extra terms when the boundary terms

are eliminate.d. Therefore, one needs to work step by step: Hence, let us rewrite

this term as

√
−g Φ2δR =

√
−g Φ2δ(gµνRµν) =

√
−g Φ2Rµνδgµν +

√
−g Φ2gµνδRµν . (VI.4)

Although the �rst term on the right hand side is in the desired form, the second

term is not. To cure this, let us substitute the Palatini identity

δRµν = ∇αδΓ
α
µν −∇µδΓ

α
αν , (VI.5)

into the last term of (VI.4). Then, one arrives at

√
−g Φ2gµν

[
∇αδΓ

α
µν −∇µδΓ

α
αν

]
=
√
−g Φ2

[
∇α(gµνδΓαµν)−∇µ(gµνδΓααν)

]
..

(VI.6)

One can easily show that the variation of the Christo�el symbol is given by

δΓαµν =
1

2
gασ[∇µδgνσ +∇νδgµσ −∇σδgµν ], (VI.7)

Hence, by doing the related contractions, one will get as

gµνδΓαµν = ∇µ(gασδgµσ)− 1

2
∇α(gµνδgµν), gµνδΓααν =

1

2
∇ν(gασδgασ). (VI.8)

By using (VI.8), up to a boundary term, one will �nally get

√
−g Φ2gµν

[
∇αδΓ

α
µν −∇µδΓ

α
αν

]
= gµν�Φ2 −∇µ∇νΦ

2. (VI.9)
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Thus, gathering all these results will give

δI1 =

∫
d3x
√
−g

(
Φ2Gµν + gµν�Φ2 −∇µ∇νΦ

2
)
δgµν , (VI.10)

where Gµν = Rµν − 1
2
gµνR is the pure Einstein tensor.

Variations of I2 and I3:

Similarly, one can easily show that the variations I2 and I3 with respect to gµν

are

δI2 =

∫
d3x
√
−gΦ2

(
∇µAν −

1

2
gµν∇ · A

)
δgµν

δI3 =

∫
d3x
√
−gΦ2

(
AµAν −

1

2
gµνA

2
µ

)
δgµν ,

(VI.11)

where ∇ · A = ∇µA
µ and A2

µ = AµA
µ.

Variation of I4:

By varying I4 with respect to gµν , one will get

δI4 =

∫
d3x
[
(δ
√
−g)Φ−2R2

µν +
√
−g Φ−2(δRµν)R

µν +
√
−g Φ−2Rµνδ(R

µν)
]
.

(VI.12)

Substituting (VI.5) in the second term of (VI.12) yields

√
−g Φ−2(δRµν)R

µν =
√
−g Φ−2Rµν

[
∇αδΓ

α
µν −∇µδΓ

α
αν

]
. (VI.13)

Furthermore, by eliminating the boundary terms, one will convert (VI.13) into

√
−g Φ−2(δRµν)R

µν = −Γαµν∇α(
√
−g Φ−2Rµν) + Γααν∇µ(

√
−g Φ−2Rµν).

(VI.14)

Moreover, with the help of (VI.7) and the identity [∇µ,∇ν ]Aσ = Rµνσ
αAα, up

a boundary term, one will �nally get the �rst and second term of (VI.14) as

Γαµν∇α(
√
−g Φ−2Rµν) =

√
−g
[
− 1

2
�(Φ−2Rµν)

+ Φ−2RµαR
α
ν − Φ−2RµσναR

σα
]
δgµν ,

Γααν∇µ(
√
−g Φ−2Rµν) =

√
−g
[1

4
gµν�(Φ−2R) +

1

2
gµνG

ασ∇α∇σΦ−2
]
δgµν .

(VI.15)
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Hence, using this result, (VI.14) becomes

√
−g Φ−2(δRµν)R

µν =
1

2
�(Φ−2Gµν) +

1

2
gµν�(Φ−2R)

+
1

2
gµνG

ασ∇α∇σΦ−2 − Φ−2RµαR
α
ν + Φ−2RµσναR

σα.

(VI.16)

On the other side, the last term of the (VI.12) can also be written as

√
−g Φ−2Rµνδ(R

µν) = 2
√
−gΦ−2RµαR

α
νδgµν +

√
−gΦ−2RαβδRαβ. (VI.17)

One should observe that the last term of (VI.17) is nothing but what was found

in (VI.16). Thus, collecting all the tools developed above, one will arrive at

δI4 =

∫
d3x
√
−g

[
2Φ−2(Rµσνα −

1

4
gµνRαβ)Rαβ

+ �(Φ−2Gµν) + gµν�(Φ−2R) + gµνG
ασ∇α∇σΦ−2

]
.

(VI.18)

Variation of I5:

In this case, the variation of I5 with respect to gµν gives

δI5 =

∫
d3x
[
(δ
√
−g) Φ−2R2 + 2

√
−g Φ−2RδR

]
. (VI.19)

Since the last term is not in the desired form, let us rewrite it as

√
−g Φ−2RδR =

√
−g Φ−2Rδ(gµνRµν)

=
√
−g Φ−2RRµνδgµν +

√
−g Φ−2RgµνδRµν .

(VI.20)

As it was done above, by using (VI.5) and (VI.8), up to a boundary term, one

will get

√
−g Φ−2RδR =

√
−g
[
Φ−2RRµν +gµν�(Φ−2R)−∇µ∇ν(Φ

−2R)
]
δgµν . (VI.21)

Hence, plugging (VI.21) into (VI.19) will �nally yield

δI5 =

∫
d3x
√
−g
[
− 1

2
gµνΦ

−2R2 + 2Φ−2RRµν

+ 2gµν�(Φ−2R)− 2∇µ∇ν(Φ
−2R)

]
δgµν .

(VI.22)
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Variation of I6:

To �nd the contribution coming from I6, let us vary it with respect to gµν

I6 =

∫
d3x

[
(δ
√
−g) Φ−2Rαβ∇αAβ +

√
−gΦ−2∇µAν δ(gµαgνβRαβ)

]
=

∫
d3x
√
−g
[
− 1

2
gµνδg

µν Φ−2Rαβ∇αAβ + Φ−2Rα
ν∇µAν δgµα

+ Φ−2Rµ
β∇µAν δgνβ + Φ−2∇αAβδRαβ

]
.

(VI.23)

Using (VI.5) in the last term will turn (VI.23) into

Φ−2∇αAβδRαβ = −δΓσαβ∇σ(Φ−2∇αAβ) + δΓσσβ∇α(Φ−2∇αAβ). (VI.24)

Moreover, by using (VI.7), one will �nally get

Φ−2∇αAβδRαβ =
[1

2
�(Φ−2∇µAν) +

1

2
gµν∇β∇α(Φ−2∇αAβ)

− 1

2
∇α∇ν(Φ

−2∇αAµ)− 1

2
∇β∇ν(Φ

−2∇µA
β)
]
δgµν .

(VI.25)

Thus, with this result, up to a boundary term, one will �nally obtain (VI.23) as

I6 =

∫
d3x
√
−g
[
− 1

2
gµν Φ−2Rαβ∇αAβ + Φ−2Rαν∇µA

α

+ Φ−2Rµβ∇βAν +
1

2
�(Φ−2∇µAν)

+
1

2
gµν∇β∇α(Φ−2∇αAβ)− 1

2
∇α∇ν(Φ

−2∇αAµ)

− 1

2
∇β∇ν(Φ

−2∇µA
β)
]
δgµν .

(VI.26)

Variation of I7:

As in the previous cases, by varying I7 with respect to gµν , one will get

δI7 =

∫
d3x
[
(δ
√
−g) Φ−2RαβAαAβ + 2

√
−g Φ−2Rα

νAµAα(δgµν)

+
√
−g Φ−2AµAνgµαgνβδRαβ

]
.

(VI.27)

Let us now substitute (VI.5) in the last term of (VI.27)

√
−g Φ−2AµAνg

µαgνβδRαβ =
√
−g Φ−2AµAν∇ζ(gµαgνβδΓ

ζ
αβ)

−
√
−g Φ−2AµAν∇α(gµαgνβδΓζζβ).

(VI.28)
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With the help of (VI.7), it will turn into

√
−g Φ−2AµAνgµαgνβδRαβ =

√
−g
[1

2
�(Φ−2AµAν)−∇α∇ν(Φ

−2AαAµ)

+
1

2
gµν∇α∇β(Φ−2AαAβ)

]
δgµν .

(VI.29)

Thus, up to a boundary term, one will �nally obtain

δI7 =

∫
d3x
√
−g
[
− 1

2
gµνΦ

−2RαβAαAβ + 2Φ−2Rα
νAµAα

+
1

2
�(Φ−2AµAν)−∇α∇ν(Φ

−2AαAµ)

+
1

2
gµν∇α∇β(Φ−2AαAβ)

]
δgµν .

(VI.30)

Variation of I8:

By varying I8 with respect to gµν , one will get

δI8 =

∫
d3x

[
(δ
√
−g) Φ−2R∇ · A

+
√
−gΦ−2(δR)∇ · A+

√
−gΦ−2R∇µAνδgµν

]
.

(VI.31)

Now, the second term of (VI.31) can also be written as

√
−gΦ−2∇ · Aδ(gµνRµν) =

√
−gΦ−2∇ · A [Rµνδgµν + gµνδ(Rµν)]

=
√
−gΦ−2∇ · A

[
Rµνδgµν +∇α(gµνδΓαµν)

−∇µ(gµνδΓααν)
]
,

(VI.32)

where we used (VI.5). As we did above, by using (VI.8), one will get

√
−gΦ−2∇ · Aδ(gµνRµν) =

√
−g
[
Φ−2∇ · ARµν + gµν�(Φ−2∇ · A)

−∇µ∇ν(Φ
−2∇ · A)

]
δgµν .

(VI.33)

Hence, up to a boundary term, one will �nally obtain (VI.31) as

δI8 =

∫
d3x
√
−g
[
Φ−2Gµν∇ · A+ gµν�(Φ−2∇ · A)

−∇µ∇ν(Φ
−2∇ · A) + Φ−2R∇µAν

]
δgµν .

(VI.34)
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Variation of I9:

In this case, the variation of I9 relative to gµν yields

δI9 =

∫
d3x
[
(δ
√
−g) Φ−2RA2

µ

+
√
−gΦ−2δ(R)A2

α +
√
−g Φ−2RAµAνδgµν

]
.

(VI.35)

Here, the second term of the (VI.35) can be written as

√
−gΦ−2A2

βδ(g
µνRµν) =

√
−gΦ−2A2

β[Rµνδgµν + gµνδRµν ]

=
√
−gΦ−2A2

β[Rµνδgµν +∇α(gµνδΓαµν)

−∇µ(gµνδΓααν)],

(VI.36)

where we used (VI.5). As we did above, by using (VI.8), up to a boundary term,

one will �nally obtain

√
−gΦ−2A2

βδ(g
µνRµν) =

√
−g
[
Φ−2A2

βRµν + gµν�(Φ−2A2
β)

−∇µ∇ν(Φ
−2A2

β)
]
δgµν .

(VI.37)

Collecting all these results, one will arrive at

δI9 =

∫
d3x
√
−g
[
Φ−2A2

βGµν + gµν�(Φ−2A2
β)

−∇µ∇ν(Φ
−2A2

β) + Φ−2RAµAν

]
δgµν .

(VI.38)

Variation of I10, I12, I13 and I14:

Finally, by varying I10, I12, I13 and I14 with respect to gµν , one will �nally get

δI10 =

∫
d3x
√
−g Φ−2

[
− 1

2
gµνF

αβFαβ − 2Fν
αFαµ

]
δgµν ,

δI12 =

∫
d3x
√
−g
[
− 1

2
gµνΦ

−2AµAν∇µAν

+ Φ−2AνA
α∇µAα + Φ−2AµA

α∇αAν

]
δgµν ,

δI13 =

∫
d3x
√
−gΦ−2

[
− 1

2
gµν(∇ · A)2 + 2∇µAν(∇ · A)

]
δgµν ,

δI14 =

∫
d3x
√
−g
[
− 1

2
gµν Φ−2A2

αA
2
β + 2Φ−2AµAνA

2
α

]
δgµν .

(VI.39)

Gathering all the results developed above, ignoring the boundary terms, one will

thus the full �eld equation

85



σΦ2Gµν + σgµν�Φ2 − σ∇µ∇νΦ
2 − 4σΦ2∇µAν + 2σgµνΦ

2∇ · A
− 2σΦ2AµAν + σgµνΦ

2A2 + 2Φ−2[Rµσνα − 1
4
gµνRσα]Rσα + �(Φ−2Gµν)

+ 1
4
[gµν�−∇µ∇ν ]Φ

−2R + gµνG
σα∇σ∇αΦ−2 − 2Gσ

ν∇σ∇µΦ−2

− 2(∇µG
σ
ν)(∇σΦ−2) + 3

16
gµνΦ

−2R2 − 3
4
Φ−2RRµν + gµνΦ

−2Rαβ∇αAβ

− 2Φ−2Rαν∇µA
α − 2Φ−2Rβµ∇βAν −�(Φ−2∇µAν)− gµν∇β∇α(Φ−2∇αAβ)

+∇α∇ν(Φ
−2∇αAµ) +∇β∇ν(Φ

−2∇µA
β)− gµνΦ

−2RαβAαAβ + 4Φ−2RανAµA
α

+ �(Φ−2AµAν)− 2∇α∇ν(Φ
−2AαAµ) + gµν∇α∇β(Φ−2AαAβ) + Φ−2Gµν∇ · A

+ gµν�(Φ−2∇ · A)−∇µ∇ν(Φ
−2∇ · A) + Φ−2R∇µAν − 1

2
Φ−2GµνA

2

− 1
2
gµν�(Φ−2A2) + 1

2
∇µ∇ν(Φ

−2A2)− 1
2
Φ−2RAµAν − Φ−2[gµνF

2
αβ + 4Fν

αFαµ]

− 1
2
gµνΦ

−2(∇αAβ)2 + Φ−2∇µAα∇νA
α + Φ−2∇βAν∇βAµ + gµνΦ

−2AαAβ∇αAβ

− 2Φ−2AνA
α∇µAα − 2Φ−2AµA

β∇βAν + 1
2
gµν(∇ · A)2 − 2(∇ · A)∇µAν

− 1
4
gµνΦ

−2A4 + Φ−2AµAνA
2 = − 1√

−g
δS(Φ)
δgµν .

VI.2 Field Equation for Aµ

In this part, by varying the related distinct action that involves gauge �eld in

(VI.1) with respect to Aµ, up to a boundary term, one will arrive at

δI2 = −
∫
d3x
√
−g (∇µΦ2) δAµ,

δI3 = 2

∫
d3x
√
−gΦ2AµδA

µ,

δI6 = −
∫
d3x
√
−g
[
Rµν∇νΦ−2 +

1

2
Φ−2∇µR

]
δAµ,

δI7 = 2

∫
d3x
√
−gΦ−2RµνA

ν δAµ,

δI8 = −
∫
d3x
√
−g∇µ(Φ−2R) δAµ,

δI9 = 2

∫
d3x
√
−gΦ−2RAµ δA

µ,

δ(I10 + I11) = 4

∫
d3x
√
−g
[
∇ν(Φ

−2∇µA
ν)− 3

2
∇ν(Φ

−2∇νAµ)
]
δAµ,

δI12 = −
∫
d3x
√
−g
[
AνAµ∇νΦ

−2 − Φ−2Aν∇µAν + Φ−2Aµ∇νA
ν
]
δAµ,

δI13 = −2

∫
d3x
√
−g∇µ(Φ−2∇νA

ν) δAµ,

δI14 = 4

∫
d3x
√
−gΦ−2AµA

2
ν δA

µ.

(VI.40)
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CHAPTER VII

PERTURBATIVE EXPANSION OF THE GENERIC

N-DIMENSIONAL WEYL-INVARIANT HIGHER

CURVATURE GRAVITY THEORIES

In this section, we will study the second-order perturbative expansion of the

generic n-dimensional scale-invariant quadratic curvature gravity theories which

is given by [8]

SWI =

∫
dnx
√
−g

{
σΦ2R̂+Φ

2(n−4)
n−2

[
αR̂2+βR̂2

µν+γR̂
2
µνρσ

]}
+SΦ+SAµ , (VII.1)

Needless to say that, since by setting γ = 0 and choose 8α + 3β = 0 in

3-dimensions, (VII.1) will recover the Weyl-gauged New Massive Gravity [8].

Therefore, it is useless to compute its perturbative expansion,separately. Here,

SΦ and SAµ are the generic n-dimensional conformal-invariant obtained in the

second and third chapters. As evaluated in previous chapter, the corresponding

explicit forms of the Weyl-gauged quadratic Ricci scalar is composed of the pure

curvature scalar terms and Abelian gauge �elds as

R̂2 = R2 − 4(n− 1)R(∇ · A)− 2(n− 1)(n− 2)RA2

+ 4(n− 1)2(∇ · A)2 + 4(n− 1)2(n− 2)A2(∇ · A)

+ (n− 1)2(n− 2)2A4,

(VII.2)
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where ∇.A = ∇µA
µ, A2 = AµA

µ and A4 = AµA
µAνA

ν , respectively. Secondly,

square of the Ricci tensor under Weyl transformations reads

R̂2
µν = R2

µν − 2(n− 2)Rµν∇νAµ − 2R(∇ · A) + 2(n− 2)RµνA
µAν

− 2(n− 2)RA2 − 2(n− 2)F µν∇νAµ + F 2
µν + (n− 2)2(∇νAµ)2

+ (3n− 4)(∇ · A)2 − 2(n− 2)2AµAν∇µAν

+ (4n− 6)(n− 2)A2(∇ · A) + (n− 2)2(n− 1)(A)4.

(VII.3)

Finally, the square of the Riemann tensor becomes

R̂2
µνρσ = R2

µνρσ − 8Rµν∇µAν + 8RµνA
µAν − 4RA2 + nF 2

µν

+ 4(n− 2)(∇µAν)
2 + 4(∇ · A)2 + 8(n− 2)(A)2(∇ · A)

− 8(n− 2)AµAν∇µAν + 2(n− 1)(n− 2)(A)4.

(VII.4)

Since all these terms are composed of vector �elds and the usual curvature terms,

one needs to �rst evaluate the quadratic expansion of the pure curvature tensors

in order to study the perturbative analysis of the full theory. Therefore, let us

review the second order expansions of these terms which were evaluated in [75]

and then move to work on the main task of this section:

VII.1 Second Order Expansions of the Curvature Terms

In this part, we will study second order expansions of the curvature terms: For

this purpose, one needs to decompose the whole metric as

gµν = ḡµν + τhµν . (VII.5)

Here a path-following dimensionless parameter τ is introduced to control the

expansion of the terms. At the end, it will be set to 1. Also, hµν is a satisfacto-

rily small �uctuation about the generic curved background ḡµν . Then, (VII.5)

induces

gµν = ḡµν − τhµν + τ 2hµρhνρ +O(τ 3), (VII.6)

where h = ḡµνhµν . Using these results, one will be able to show that the

quadratic expansion of the Christo�el connection becomes

Γρµν = Γ̄ρµν + τ
(

Γρµν

)
L
− τ 2hρβ

(
Γβµν

)
L

+O(τ 3). (VII.7)

88



Here Γ̄ρµν stands for the background Christo�el symbol which requires ∇̄ρḡµν = 0

and the explicit form of the linear term
(

Γρµν

)
L
is

(
Γρµν

)
L

=
1

2
ḡρλ
(
∇̄µhνλ + ∇̄νhµλ − ∇̄λhµν

)
. (VII.8)

Finally, the second-order form of the volume element reads as(√
−g
)

=
√
−ḡ
[
1 +

τ

2
h+

τ 2

8

(
h2 − 2h2

µν

)
+O(τ 3)

]
. (VII.9)

Therefore, inserting (VII.7) into the de�nition of the Riemann tensor �nally give

Rµ
νρσ =R̄µ

νρσ + τ
(
Rµ

νρσ

)
L
− τ 2hµβ

(
Rβ

νρσ

)
L

− τ 2ḡµαḡβγ

[(
Γγρα

)
L

(
Γβσν

)
L
−
(

Γγσα

)
L

(
Γβρν

)
L

]
+O(τ 3),

(VII.10)

where the explicit form of the linearized term is(
Rµ

νρσ

)
L

=
1

2

(
∇̄ρ∇̄σh

µ
ν + ∇̄ρ∇̄νh

µ
σ

− ∇̄ρ∇̄µhσν − ∇̄σ∇̄ρh
µ
ν − ∇̄σ∇̄νh

µ
ρ + ∇̄σ∇̄µhρν

)
.

(VII.11)

Secondly, the contraction in (VII.11) will results in

Rνσ = R̄νσ + τ
(
Rνσ

)
L
− τ 2hµβ

(
Rβ

νµσ

)
L
− τ 2Kνσ +O(τ 3). (VII.12)

Here Kνσ stands for

Kνσ = ḡµαḡβγ

[(
Γγµα

)
L

(
Γβσν

)
L
−
(

Γγσα

)
L

(
Γβµν

)
L

]
, (VII.13)

and also RL
νσ reads

RL
νσ =

1

2

(
∇̄µ∇̄σh

µ
ν + ∇̄µ∇̄νh

µ
σ − �̄hσν − ∇̄σ∇̄νh

)
. (VII.14)

Moreover, a second contraction will give the second-order expansion of the Ricci

scalar as

R = R̄ + τRL + τ 2K1 +O(τ 3), (VII.15)

where

K1 = R̄ρλhαρh
α
λ − hνσ

(
Rνσ

)
L
− ḡνσhµβ

(
Rβ

νµσ

)
L

− ḡνσḡµαḡβγ

[(
Γγµα

)
L

(
Γβσν

)
L
−
(

Γγσα

)
L

(
Γβµν

)
L

]
,

(VII.16)
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and

RL = ḡαβRL
αβ − R̄αβhαβ. (VII.17)

Thus, collecting all these results, one will �nally obtain linearized Einstein tensor

as

GLµν = (Rµν)
L − 1

2
ḡµνR

L − 2Λ

n− 2
hµν . (VII.18)

VII.2 Second Order Expansion of the Action

In this part, we will �nd the quadratic expansion of the (VII.1) in generic n-

dimensional (A)dS backgrounds whose curvature terms are

R̄µρνσ =
2Λ

(n− 1)(n− 2)
(ḡµν ḡρσ − ḡµσḡνρ), R̄µν =

2Λ

n− 2
ḡµν , R̄ =

2nΛ

n− 2
,

(VII.19)

and in which the classical solutions are

Φvac = m(n−2)/2, Aµvac = 0, gµν = ḡµν . (VII.20)

From now, let us study the quadratic expansion of the full theory by working

on each term, separately:

Quadratic Expansion of the α-Part

Throughout the calculations, we will need the quadratic �uctuation of the �elds.

Therefore, by using the Binomial expression of

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 + . . . , (VII.21)

one will obtain the scalar part up to quadratic order as

(Φ
2(n−4)
n−2 )2nd = m

n−4
n−2

[
1 + τ C(τ)

ΦL

√
m

+ τ 2 C(τ2)

Φ2
L

m

]
+O(τ 3), (VII.22)

where

C(τ) =
2(n− 4)

n− 2
, C(τ2) =

(n− 4)(n− 6)

(n− 2)2
. (VII.23)

Let us now �rst �nd the quadratic �uctuations come from the α-part:
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For R2-term:

By using above mentioned identity, one will obtain the quadratic expression of

the term as

(√
−gΦ

2(n−4)
n−2 R2

)
2nd

=
√
−ḡ m

n−4
n−2

{
R̄2 + τ

[
2R̄RL +

C(τ)R̄
2

√
m

ΦL +
R̄2

2
h

]
+ τ 2

[
2R̄K1 +R2

L +
2C(τ)R̄√

m
ΦLRL

+
C(τ2)R̄

2

m
Φ2
L + R̄hRL +

C(τ)R̄
2

2
√
m
hΦL

+
R̄2

8
h2 − R̄2

4
h2
µν

]}
.

(VII.24)

Before going further, one needs to �rst �nd the explicit form of the K1: Using

the explicit form of the linearized form of the curvature tensors and (VII.19) as

well as the identity [∇µ,∇ν ]Mρ = R̄µνρ
αMα will yield

K1 = −1

2
hµνRL

µν −
1

4
hRL +

2Λ

n− 2
h2
µν −

Λ

2(n− 2)
h2. (VII.25)

Thus, by substituting (VII.25) and (VII.19) in (VII.24), one will �nally obtain

the quadratic expansion of the term in n-dimensional (A)dS background as

(√
−gΦ

2(n−4)
n−2 R2

)
2nd

=
√
−ḡm

n−4
n−2

{
4n2Λ2

(n− 2)2
+ τ

[ 4nΛ

n− 2
RL +

4n2C(τ)Λ
2

√
m(n− 2)2

ΦL +
2n2Λ2

(n− 2)2
h
]

+ τ 2
[
R2
L −

2nΛ

n− 2
hµνRL

µν +
nΛ

n− 2
hRL

− n(n− 8)Λ2

(n− 2)2
h2
µν +

n(n− 4)Λ2

2(n− 2)2
h2

+
4nC(τ)Λ√
m(n− 2)

ΦLRL +
4n2C(τ2)Λ

2

m(n− 2)2
Φ2
L

+
2n2C(τ)Λ

2

√
m(n− 2)2

hΦL
]}
.

(VII.26)
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For R∇.A-term:

Secondly, by following the same steps, one will obtain the quadratic expression

of the term as(√
−gΦ

2(n−4)
n−2 R∇µA

µ
)

2nd

=
√
−ḡm

n−4
n−2

{
τ R̄∇̄.AL + τ 2

[
− R̄ḡµν(Γγµν)LALγ +RL∇̄.AL − R̄hµν∇̄µA

L
ν

+
R̄

2
h∇̄.AL +

2nC(τ )Λ
√
m(n− 2)

ΦL∇̄.AL
]}
.

(VII.27)

Furthermore, using the linearization of the Christo�el symbol, up to a boundary

term, one will be able to show that

ḡµν(Γγµν)LA
L
γ = −hµν∇µA

L
ν +

1

2
h∇̄.AL. (VII.28)

Thus, by using (VII.28), one will �nally arrive at(√
−gΦ

2(n−4)
n−2 R∇µA

µ
)

2nd

=
√
−ḡm

n−4
n−2

{
τ

2nΛ

n− 2
∇̄.AL + τ 2

[
RL∇̄.AL +

2nC(τ )Λ
√
m(n− 2)

ΦL∇̄.AL
]}

.

(VII.29)

For R2A2 and (∇.A)2 terms:

Similarly, by using the above de�ned expressions, one will be able to show that

the second-order perturbations of the last two terms of the α-part as(√
−gΦ

2(n−4)
n−2 R2AµA

µ
)

2nd
=
√
−ḡm

n−4
n−2 τ 2 2nΛ

n− 2
(ALµ)2,(√

−gΦ
2(n−4)
n−2 (∇.A)2

)
2nd

=
√
−ḡm

n−4
n−2 τ 2 (∇̄.AL)2.

(VII.30)

Thus, by collecting all the results obtained above, one will �nally obtain the

quadratic expansion of the α-Part in constant curvature background as

Sα
2nd

=
∫
dnx
√
−ḡm

n−4
n−2

{
4n2Λ2

(n−2)2 + τ

[
4nΛ
n−2

RL +
4n2C(τ)Λ

2

√
m(n−2)2 ΦL + 2n2Λ2

(n−2)2h

]
+ τ 2

[
R2
L − 2nΛ

n−2
hµνRL

µν + nΛ
n−2

hRL − n(n−8)Λ2

(n−2)2 h2
µν + n(n−4)Λ2

2(n−2)2 h
2 +

4nC(τ)Λ√
m(n−2)

ΦLRL

+
4n2C(τ2)Λ

2

m(n−2)2 Φ2
L +

2n2C(τ)Λ
2

√
m(n−2)2hΦL − 4(n− 1)RL∇̄.AL − 8n(n−1)C(τ)Λ√

m(n−2)
ΦL∇̄.AL

− 4n(n− 1)Λ(ALµ)2 + 4(n− 1)2(∇̄.AL)2

]}
.
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Quadratic Expansion of the β-Part

In this part, we will study second-order perturbative expansion of the β part of

the whole action:

For R2
µν:

By using above mentioned identity, one will obtain the quadratic expression of

the following term as(√
−gΦ

2(n−4)
n−2 R2

µν

)
2nd

=
√
−ḡm

n−4
n−2

{
R̄2
µν + τ

[R̄2
µν

2
h+ 2R̄µνRL

µν − 2R̄µ
αR̄σαh

µσ +
C(τ)R̄

2
µν√

m
ΦL
]

+ τ 2
[
(RL

µν)
2 − 2R̄µνhθκ(R

κ
µθν)L − 2R̄µνKµν

− 4RL
µνR̄

µ
αh

να + 2R̄µνR̄
µ
αh

νζhαζ + R̄µνR̄σαh
µσhνα

+ hRL
µνR̄

µν − hR̄µ
αR̄σαh

µσ +
R̄2
µν

8
h2 −

R̄2
µν

4
h2
αβ

+
C(τ)R̄

2
µν

2
√
m

hΦL +
2C(τ)R̄

µν

√
m

ΦLRL
µν

−
2C(τ)R̄µ

αR̄σα√
m

hµσΦL +
C(τ2)R̄

2
µν

m
Φ2
L

]}
.

(VII.31)

To �nd the explicit result, one must �rst �nd what the following terms acquire.

First of all, as we did above, by using the linearized Riemann tensor, in (A)dS

backgrounds, one will obtain

ḡµνhθκ(R
κ
µθν)L = hµνRL

µν −
2nΛ

(n− 1)(n− 2)
h2
µν +

2Λ

(n− 1)(n− 2)
h2. (VII.32)

Secondly,

ḡµνRL
µν = RL +

2Λ

n− 2
h, (VII.33)

and �nally

ḡµνKµν = −3

2
hµνRL

µν+
1

4
hRL+

2nΛ

(n− 1)(n− 2)
h2
µν+

(n− 5)Λ

2(n− 1)(n− 2)
h2. (VII.34)
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Thus, by gathering all these results, one will �nd the quadratic expansion of the

term in (A)dS background as(√
−gΦ

2(n−4)
n−2 R2

µν

)
2nd

=
√
−ḡm

n−4
n−2

{
4nΛ2

(n− 2)2
+ τ

[ 4Λ

n− 2
RL +

2nΛ2

(n− 2)2
h+

4nC(τ)Λ
2

√
m(n− 2)2

ΦL
]

+ τ 2
[
(RL

µν)
2 − 6Λ

n− 2
hµνRL

µν +
Λ

n− 2
hRL

+
(12− n)Λ2

(n− 2)2
h2
µν +

(n− 4)Λ2

2(n− 2)2
h2

+
2nC(τ)Λ

2

√
m(n− 2)2

hΦL +
4C(τ)Λ√
m(n− 2)

ΦLRL

+
4nC(τ2)Λ

2

m(n− 2)2
Φ2
L

]}
.

(VII.35)

For Rµν∇µAν, R
µνAµA

µ, F 2
µν, F

µν∇νAµ and (∇νAµ)2 terms:

Since it is straight forward, by suppressing the intermediate steps, one will �nally

obtain the quadratic expansion of the remaining terms as(√
−gΦ

2(n−4)
n−2 Rµν∇µAν

)
2nd

=
√
−ḡm

n−4
n−2

{
τ

2Λ

n− 2
∇̄ · AL

+ τ 2
[
RL
µν∇̄µAνL −

2Λ

n− 2
hµν∇̄µA

L
ν +

2C(τ)Λ√
m(n− 2)

ΦL∇̄ · AL
]}
,

(VII.36)

and (√
−gΦ

2(n−4)
n−2 RµνAµA

µ
)

2nd
=
√
−ḡ m

n−4
n−2 τ 2 2Λ

n− 2
(ALµ)2,(√

−gΦ
2(n−4)
n−2 F 2

µν

)
2nd

=
√
−ḡ m

n−4
n−2 τ 2 (FL

µν)
2,(√

−gΦ
2(n−4)
n−2 F µν∇νAµ

)
2nd

=
√
−ḡ m

n−4
n−2 τ 2 F µν

L ∇̄νA
L
µ ,(√

−gΦ
2(n−4)
n−2 (∇νAµ)2

)
2nd

=
√
−ḡ m

n−4
n−2 τ 2 (∇̄νA

L
µ)2.

(VII.37)

Thus, by collecting all the results obtained above, up to a boundary term, one

will �nally obtain the quadratic expansion of the β-Part in constant curvature
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background as

S̃β
2nd

=

∫
dnx
√
−ḡm

n−4
n−2

{
4nΛ2

(n− 2)2
+ τ

[ 4Λ

n− 2
RL +

2nΛ2

(n− 2)2
h+

4nC(τ)Λ
2

√
m(n− 2)2

ΦL
]

+ τ 2
[
(RL

µν)
2 − 6Λ

n− 2
hµνRL

µν +
Λ

n− 2
hRL +

(12− n)Λ2

(n− 2)2
h2
µν

+
(n− 4)Λ2

2(n− 2)2
h2 +

2nC(τ)Λ
2

√
m(n− 2)2

hΦL +
4C(τ)Λ√
m(n− 2)

ΦLRL +
4nC(τ2)Λ

2

m(n− 2)2
Φ2
L

− nRL∇̄ · AL + 4Λhµν∇̄µA
L
ν −

8(n− 1)C(τ)Λ√
m(n− 2)

ΦL∇̄ · AL

− 4(n− 1)Λ(ALµ)2 + (FL
µν)

2 − 2(n− 2)F µν
L ∇̄νA

L
µ

+ (n− 2)2(∇̄νA
L
µ)2 + (3n− 4)(∇̄ · AL)2

]}
.

(VII.38)

Quadratic Expansion of the γ-Part

For R2
µνρσ:

Let us now �nd the quadratic expansion of the R2
µνρσ. As we did before, one

will obtain(√
−gΦ

2(n−4)
n−2 R2

µνρσ

)
2nd

=
(√
−gΦ

2(n−4)
n−2 gµζg

νλgρβgσκRζ
νρσR

µ
λβκ

)
2nd

=
√
−ḡm

n−4
n−2

{
R̄µ

λβκR̄µ
λβκ + τ

[
2R̄µ

λβκ(Rµ
λβκ)L − 2R̄µ

λβ
σR̄

µ
λβκh

σκ

− R̄µν
βκR̄µ

λβκh
νλ + R̄ζλβκR̄µ

λβκhµζ + R̄µ
λβκR̄µ

λβκ

( C(τ)√
m

ΦL +
1

2
h
)]

+ τ 2

[
− 2R̄µ

λβκKµλβκ + ḡµζ ḡ
νλḡρβ ḡσκ(Rζ

νρσ)L(Rµ
λβκ)L − 4R̄µ

λβ
σ(Rµ

λβκ)Lh
σκ

− 2R̄µν
βκ(Rµ

λβκ)Lh
νλ + 3R̄µ

λβ
σR̄

µ
λβκh

σαhκα + R̄µ
λ
ρσR̄

µ
λβκh

ρβhσκ

+
2C(τ)R̄µ

λβκ

√
m

ΦL(Rµ
λβκ)L −

2C(τ)R̄µ
λβ
σR̄

µ
λβκ√

m
ΦLhσκ +

C(τ2)R̄µ
λβκR̄µ

λβκ

m
Φ2
L

+ R̄µ
λβκh(Rµ

λβκ)L − R̄µ
λβ
σR̄

µ
λβκhh

σκ +
C(τ)R̄µ

λβκR̄µ
λβκ

2
√
m

hΦL

+
R̄µ

λβκR̄µ
λβκ

8
h2 − R̄µ

λβκR̄µ
λβκ

4
h2
µν

]}
.

(VII.39)
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Thus, after tedious calculations, up to a boundary term, one will obtain the

quadratic expansion of the term about the (A)dS backgrounds as

(√
−gΦ

2(n−4)
n−2 R2

µνρσ

)
2nd

=
√
−ḡm

n−4
n−2

{
8nΛ2

(n− 1)(n− 2)2

+ τ

[
8nC(τ)Λ

2

√
m(n− 1)(n− 2)2

ΦL +
4nΛ2

(n− 1)(n− 2)2
h

]
+ τ 2

[
(RL

µνβσ)2 − 12Λ

(n− 1)(n− 2)
hµνRL

µν

+
2Λ

(n− 1)(n− 2)
hRL − 2(n2 − 13n+ 16)Λ2

(n− 1)2(n− 2)2
h2
µν

+
(n2 − 5n+ 12)Λ2

(n− 1)2(n− 2)2
h2 +

8C(τ)Λ√
m(n− 1)(n− 2)

ΦLRL

+
8nC(τ2)Λ

2

m(n− 1)(n− 2)2
Φ2
L +

4nC(τ)Λ
2

√
m(n− 1)(n− 2)2

hΦL

]}
.

(VII.40)

As it is seen, the quadratic expansions of the remaining terms γ− part which

were actually obtained above. Hence, using all these as well as (VII.40), one will

�nally get the second-order expansion of γ-part

S̃γ
2nd

=

∫
dnx
√
−ḡm

n−4
n−2

{
8nΛ2

(n− 1)(n− 2)2

+ τ
[ 8nC(τ)Λ

2

√
m(n− 1)(n− 2)2

ΦL +
4nΛ2

(n− 1)(n− 2)2
h
]

+ τ 2
[
(RL

µνβσ)2 − 12Λ

(n− 1)(n− 2)
hµνRL

µν

+
2Λ

(n− 1)(n− 2)
hRL − 2(n2 − 13n+ 16)Λ2

(n− 1)2(n− 2)2
h2
µν

+
(n2 − 5n+ 12)Λ2

(n− 1)2(n− 2)2
h2 +

8C(τ)Λ√
m(n− 1)(n− 2)

ΦLRL

+
8nC(τ2)Λ

2

m(n− 1)(n− 2)2
Φ2
L +

4nC(τ)Λ
2

√
m(n− 1)(n− 2)2

hΦL

− 4RL∇̄ · AL +
16Λ

n− 2
hµν∇̄µA

L
ν −

16C(τ)Λ√
m(n− 2)

ΦL∇̄ · AL

− 8Λ(ALµ)2 + n(FL
µν)

2 + 4(n− 2)(∇̄µA
L
ν )2

+ 4(∇̄ · AL)2
]}
.

(VII.41)

96



Quadratic Expansion of the Weyl-invariant Scalar Field Part

The action for the generic n-dimensional Weyl-invariant scalar �eld is given by

[8]

SΦ = −1

2

∫
dnx
√
−g (DµΦDµ + νΦ

2n
n−2 Φ). (VII.42)

By following using the quadratic expansion of the terms, up to a boundary term,

one will �nally obtain the second order expansion of SΦ

(SΦ)(2nd) =

∫ √
−ḡm

n−4
n−2

{
− νm

4
n−2

2

+ τ
[
− νm

4
n−2

4
h−

νm
−(n−10)
2(n−2) B(τ)

2
ΦL
]

+ τ 2
[
− m

−(n−4)
(n−2)

2
(∂µΦL)2 +

(n− 2)m
−(n−6)
2(n−2)

2
ALµ∂

µΦL

− (n− 2)2m
2

n−2

8
(ALµ)2 −

νm
−(n−6)
(n−2) B(τ2)

2
Φ2
L

−
νm

−(n−10)
2(n−2) B(τ)

4
hΦL − νm

4
n−2

16
h2 +

νm
4

n−2

8
h2
µν

]}
,

(VII.43)

where

B(τ) =
2n

n− 2
, B(τ2) =

n(n+ 2)

(n− 2)2
. (VII.44)

Thus, by collecting all the results obtained above, one will �nally obtain L(τ 1)

part as

L(τ 1) =
( n

n− 2
m

n−6
2 ΦL +

1

4
mn−4h

)(
CΛ2 + 4σΛm2 − νm4

)
, (VII.45)

where

C ≡ 8(n− 4)

(n− 2)2

(
nα + β +

2γ

n− 1

)
. (VII.46)
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On the other hand L(τ 2)-part as

L(τ 2) = −1

2
mn−4hµν

{( 4n

n− 2
α +

4

n− 1
β − 8

n− 1
γ
)

ΛGLµν

+ (2α + β + 2γ)
(
ḡµν�̄− ∇̄µ∇̄ν

)
RL

+
2Λ

n− 2

(
2α +

β

n− 1
− 2(n− 3)

n− 1
γ
)
ḡµνRL

+ (β + 4γ)�̄GLµν + σm2GLµν
}

+m
n−2

2

{
C Λ

m2
+ 2σ

}
RLΦL −

1

2
(∂µΦL)2

+
n

2(n− 2)

{
n(n− 6)C

(n− 2)

Λ2

m2
+ 4σΛ− (n+ 2)

n− 2
m2ν

}
Φ2
L

−mn−4

{
4(n− 1)α + nβ + 4γ

}
RL∇̄ · AL

−m
n−2

2

{
2(n− 1)C Λ

m2
+ 4σ(n− 1) +

n− 2

2

}
ΦL∇̄ · AL

+mn−4

{
4(n− 1)2α + nβ + 4γ

}
(∇̄ · AL)2

+
1

2
mn−4

{
(n2 − 2n+ 2)β + 2(3n− 4)γ + 2ε

}
(FL

µν)
2

− 2mn−2

{(
2n(n− 1)α + (3n− 4)β + 8γ

) Λ

m2

+
(n− 1)(n− 2)

2
σ +

(n− 2)2

16

}
A2
L.

(VII.47)

Alternatively, one can also evaluate the second order expansion of the quadratic

curvature parts by mean of the results obtained in [19]: That is, writing∫
dnx
√
−gΦ

2(n−4)
n−2

(
αR2 + βR2

µν + γR2
µνρσ

)
=

∫
dnx
√
−ḡ
{(

m
n−2

2 + τΦL

) 2(n−4)
n−2

(
X̄ + τX(1) + τ 2X(2)

)}
,

(VII.48)

will yield

X̄ ≡ nC
2(n− 4)

Λ2, X(1) ≡ nC
4(n− 4)

Λ2h+
(n− 2)C
2(n− 4)

ΛRL. (VII.49)

To get the quadratic part X(2), let us modify it in the form:

X(2) =
[√
−g
(
αR2 + βR2

µν + γR2
µνρσ

)](2)

=
[√
−g
(

(α− γ)R2 + (β + 4γ)R2
µν + γχE

)](2)

,

(VII.50)
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where χE ≡ R2
µνρσ − 4R2

µν + R2 is the Gauss-Bonnet combination. Hence, from

[19], one will obtain

X(2) = −1

2
hµν
{( 4nΛ

n− 2
α +

4Λ

n− 1
β − 8Λ

n− 1
γ
)
GLµν

+ (2α + β + 2γ)
(
ḡµν�̄− ∇̄µ∇̄ν

)
RL

+
2Λ

n− 2

(
2α +

1

n− 2
β − 2(n− 3)

n− 1
γ
)
ḡµνRL

+ (β + 4γ)�̄GLµν +
C
4

Λ2hµν −
C
8

Λ2ḡµνh

}
.

(VII.51)
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