

DEVELOPMENT OF FREE AND OPEN SOURCE SOFTWARE
FOR FLOW MAPPING

INTEGRATED TO GEOGRAPHIC INFORMATION SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAİM CEM GÜLLÜOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

GEODETIC AND GEOGRAPHIC INFORMATION TECHNOLOGIES

SEPTEMBER 2014

Approval of the thesis:

DEVELOPMENT OF FREE AND OPEN SOURCE SOFTWARE
FOR FLOW MAPPING

INTEGRATED TO GEOGRAPHIC INFORMATION SYSTEMS

submitted by NAİM CEM GÜLLÜOĞLU in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Geodetic and
Geographic Information Technologies Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen _____________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ahmet Coşar _____________
Head of Department, Geodetic and Geographic Information Tech.

Prof. Dr. Oğuz Işık _____________
Supervisor, City and Regional Planning Department, METU

Prof. Dr. Nurkan Karahanoğlu _____________
Co-Supervisor, Geological Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ali Türel _____________
City and Regional Planning Dept., METU

Prof. Dr. Oğuz Işık _____________
City and Regional Planning Dept., METU

Assoc. Prof. Dr. Nurünnisa Usul _____________
Civil Engineering Dept., METU

Assoc. Prof. Dr. Ela Babalık Sutcliffe _____________
City and Regional Planning Dept., METU

Prof. Dr. Can Ayday _____________
Institute of Earth and Space Sciences, Anadolu University

 Date: September 2, 2014

 iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Naim Cem Güllüoğlu

Signature :

 v

ABSTRACT

DEVELOPMENT OF FREE AND OPEN SOURCE SOFTWARE FOR FLOW

MAPPING INTEGRATED TO GEOGRAPHIC INFORMATION SYSTEMS

Güllüoğlu, Naim Cem

Ph.D., Department of Geodetic and Geographic Information Technologies

Supervisor : Prof. Dr. Oğuz Işık

Co-Supervisor : Prof. Dr. Nurkan Karahanoğlu

September 2014, 219 pages

Mapping of spatial interaction data is an ongoing challenge for cartographers. In

many Geographic Information Systems (GIS) software there is no off-the-shelf

functionality for processing and visualizing spatial interactions or geographical

flows. Considering the development efforts that have been made in the last few

decades to discover the potential of GIS almost in every aspect, handling and

visualization of spatial interaction data under GIS remain underutilized.

The main objective of this study is to develop a general purpose free and open

source software for flow mapping that is fully integrated to a desktop GIS

application. Identified as the most fundamental form of geographical flows, the

scope of this study focuses on exploration and visualization of interactions taking

place between geographic locations where the actual flow routes are unknown or

negligible. The flow mapping software, FlowMapper, is designed as a plugin to the

popular, free and open source Geographic Information Systems software Quantum

GIS (QGIS). Development environment tools utilized in this study consists of

 vi

Python programming language, PyQGIS Python bindings for QGIS API, PyQt

Python bindings for Qt framework, Qt Designer tool and OGR Simple Feature

Library. Designed as a fully menu driven and user friendly plugin, users of

FlowMapper are capable of generating flow maps easily by supplying node

coordinates and interaction matrix. Besides, flow related attributes such as net,

gross magnitude calculations are automatically performed and flow gaining, flow

losing nodes are automatically identified. In order to increase cartographic quality,

advanced symbology options and flow filtering capabilities are also offered in

FlowMapper as spatially non-distorting visual clutter reduction techniques.

Capabilities of developed plugin are successfully tested with different scenarios

and by using several flow datasets consisting of four to two hundred nodes.

Comprising of more than 6.500 lines of code, FlowMapper plugin received more

than ten thousand downloads during two years of development period. Besides,

plugin website received visitors from more than eighty countries. These indicators

prove the need for integration of flow mapping tools to popular, open source

desktop GIS applications. The main contribution of this study is the free and open

source, general purpose flow mapping application FlowMapper which is integrated

to QGIS in plugin form that aids exploration of spatial interaction data and

creation of flows maps with symbology and filtering options.

Keywords: Flow Mapping, Spatial Interaction Data, Geographic Information

Systems (GIS), Quantum GIS (QGIS)

 vii

ÖZ

AKIM HARİTALAMASI İÇİN COĞRAFİ BİLGİ SİSTEMLERİNE ENTEGRE

ÖZGÜR VE AÇIK KAYNAK KODLU YAZILIM GELİŞTİRİLMESİ

Güllüoğlu, Naim Cem

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi : Prof. Dr. Oğuz Işık

Ortak Tez Yöneticisi : Prof. Dr. Nurkan Karahanoğlu

Eylül 2014, 219 sayfa

Mekansal etkileşim verisinin haritalanması kartograflar için süregelen bir uğraştır.

Çoğu Coğrafi Bilgi Sistemleri (CBS) yazılımında mekansal etkileşimleri veya

coğrafi akımları işlemek ve görselleştirmek için kullanıma hazır fonksiyonlar

bulunmamaktadır. Geçmiş on yıllarda CBS’nin her alandaki potansiyelini

keşfetmek için harcanan çabalar göz önüne alındığında mekansal etkileşim

verisinin CBS altında işlenmesi ve görselleştirilmesi yetersiz seviyede kalmıştır.

Bu çalışmanın başlıca amacı masaüstü bir CBS uygulamasıyla tümüyle

bütünleşmiş, genel maksatlı, özgür ve açık kaynak kodlu bir akım haritalama

yazılımı geliştirilmesidir. Bu çalışmanın kapsamı coğrafi akımların en temel formu

olarak tanımlanan coğrafi lokasyonlar arasında gerçekleşen, fiili akım

güzergahının bilinmediği veya ihmal edilebilir olduğu etkileşimlerin incelenmesi

ve görselleştirilmesi üzerine odaklanmıştır. FlowMapper akım haritalama yazılımı

popüler, özgür ve açık kaynak kodlu Coğrafi Bilgi Sistemleri yazılımı Quantum

GIS’a (QGIS) bir eklenti olarak tasarlanmıştır. Bu çalışmada yararlanılan

 viii

geliştirme ortamı araçları Python programlama dili, QGIS uygulama programlama

arayüzü için PyQGIS Python bağlantıları, Qt geliştirme ortamı için Python

bağlantıları, Qt tasarım aracı ve OGR kütüphanesinden oluşmaktadır. Tümüyle

menü yönlendirmeli ve kullanıcı dostu bir eklenti olarak tasarlanan

FlowMapper’ın kullanıcıları nod koordinatlarını ve etkileşim matrisini sağlayarak

akım haritalarını kolayla üretebilmektedirler. Ayrıca net, brüt akım büyüklüğü gibi

hesaplamalar otomatik olarak gerçekleştirilmekte ve akım kazanan, akım kaybeden

nodlar otomatik olarak tespit edilmektedir. Kartografik gösterim kalitesini

arttırmak için gelişmiş semboloji seçenekleri ve akım filtreleme yetenekleri

mekansal bozulmaya neden olmayan görsel karmaşa azaltma teknikleri olarak

FlowMapper içerisinde sunulmuştur. Geliştirilen eklentinin yetenekleri farklı

senaryolar ve dörtten iki yüze kadar nod içeren çeşitli akım veri setleri ile başarılı

şekilde test edilmiştir.

FlowMapper eklentisi 6.500 satırdan fazla koddan oluşmaktadır ve geliştirildiği iki

yıllık dönem içerisinde on binden fazla indirilmiştir. Ayrıca eklentinin web sitesi

seksenden fazla ülkeden ziyaretçi almıştır. Bu göstergeler akım haritalama

araçlarının popüler, açık kaynak kodlu masaüstü CBS uygulamalarına

entegrasyonuna olan ihtiyacı da kanıtlamıştır. Bu çalışmanın temel katkısı, QGIS’a

eklenti formunda bütünleştirilmiş, mekansal etkileşim verisinin analizine ve akım

haritalarının oluşturulmasına sunduğu gösterim ve filtreleme seçenekleriyle

yardımcı, genel maksatlı, özgür ve açık kaynak kodlu FlowMapper uygulamasıdır.

Anahtar Kelimeler: Akım Haritalaması, Mekansal Etkileşim Verisi, Coğrafi Bilgi

Sistemleri (CBS), Quantum GIS (QGIS)

 ix

To my wife

and

my parents

 x

ACKNOWLEDGEMENTS

First and foremost I would like to express my deepest gratitude to my supervisor

Prof. Dr. Oğuz Işık for his invaluable contributions, continuous support and

encouragement throughout my PhD studies. His guidance and immense knowledge

helped me to represent my research interests in the best possible way in my thesis

study. I am also very grateful to my co-supervisor Prof Dr. Nurkan Karahanoğlu

for his interest, advices and insightful discussions during the preparation of this

thesis.

I would like to thank to my thesis supervising committee members Assoc. Prof.

Dr. Nurünnisa Usul and Assoc. Prof. Dr. Ela Babalık Sutcliffe for their

contributions and suggestions. I will never forget their warm and positive attitude

during this research. I am very grateful to my PhD examining committee members

Prof. Dr. Ali Türel and Prof. Dr. Can Ayday for their time, valuable comments and

insightful reviews.

I owe Prof. Dr. Waldo Tobler a debt of gratitude for his pioneering studies in the

literature that enlighten the importance of flow mapping. I also would like to thank

to Alan Glennon and Michael Frank Goodchild for their inspiring studies focusing

on handling and visualization of spatial interaction data under GIS. Besides, I

would like to give special thanks to Alan Glennon for his open source

development effort “Flowpy” script which inspired me for the development of

FlowMapper plugin for QGIS.

Most important thanks go to tens of users who made valuable contributions by

giving feedbacks to FlowMapper plugin via emails. Their feedbacks and

suggestions helped me to improve the plugin for the better. Besides that, I am

especially grateful to more than ten thousand anonymous users of FlowMapper

 xi

who made the plugin this much popular. In addition, I appreciate the work of all

members in QGIS community for their collaborative efforts in development of

such great GIS software, Quantum GIS.

I especially want to thank to my friends Ali Özgün Ok and Aslı Özdarıcı Ok for

encouraging me to pursue a PhD. Their friendship and support during the hard

times will always be remembered.

I am also grateful to my friends Burak Gürhan, Nilay Aygüney Berke, Mustafa

Özgür Berke, Recep Özdoğan, Caner Şahin and Gizem Altınkaya Kurtulmuş for

their understanding, support, motivation and close friendship which mean a lot to

me. I am very lucky to have such amazing workmates as Ayhan Kavşut, Dursun

Yıldırım Bayar, Saadet Aslı Bozkurt and Hatice Güneş from the office. I

appreciate their friendship, help and kindness during the writing of the thesis.

I would like to express my sincere gratitude to my aunt L. Funda Şenol Cantek, my

grandfather Mustafa Naim Şenol and my late grandmother Nermin Şenol. I am

blessed to have them and thanks for everything that you have made from the day I

was born. I also want to thank to my mother-in-law Aysel Urgancı for her

motivation and support during the preparation of this thesis.

Lastly, I would like to thank to my parents Nurşen Güllüoğlu and Gürol Güllüoğlu

for all their love and encouragement throughout my life. Their endless support and

absolute confidence in me always keep me going. And most of all I thank to my

wife İlksen Urgancı Güllüoğlu, for all the love and happiness we have shared

during time spent and that will be spent together.

 xii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ.. vii

ACKNOWLEDGEMENTS .. x

TABLE OF CONTENTS .. xii

LIST OF TABLES .. xv

LIST OF FIGURES.. xviii

LIST OF ABBREVIATIONS .. xxi

CHAPTERS

1. INTRODUCTION... 1

1.1. Identifying Problems in Flow Mapping ... 3

1.2. Aim and Contributions of the Study... 6

1.3. Scope and Methodology of the Study .. 9

2. LITERATURE SURVEY ... 15

2.1. Fundamental Concepts ... 15

2.2. History and Advances in Flow Mapping.. 20

2.3. Review and Comparison of Visual Clutter Reduction

Techniques.. 28

2.4. Review and Comparison of Existing Flow Mapping Software........ 36

3. FREE AND OPEN SOURCE SOFTWARE... 43

3.1. Overview of Free and Open Source Software Concept 44

3.2. Development in Free and Open Source Environment...................... 49

3.3. Review of Free and Open Source GIS Software.............................. 56

3.3.1. QGIS Desktop GIS Application ... 69

3.4. Motivation for Free and Open Source Development and

Reasons for Selecting QGIS .. 73

 xiii

4. DEVELOPMENT ENVIRONMENT OF FLOW MAPPING

SOFTWARE ... 79

4.1. Python Programming Language... 79

4.2. QGIS API and PyQGIS Python Bindings.. 87

4.3. Qt Framework and PyQt Python Bindings....................................... 89

4.4. OGR Simple Features Library.. 92

5. DEVELOPMENT OF FLOWMAPPER PLUGIN FOR QGIS 95

5.1. Development Methodology of FlowMapper Plugin 96

5.2. Architecture of FlowMapper Plugin for QGIS 101

5.2.1. Structure of a Python Plugin and FlowMapper.................. 101

5.2.2. GUI Development for FlowMapper................................... 113

5.2.3. Development of Main Module and Flow Generator

Module ... 119

5.3. Releasing FlowMapper Plugin ... 136

6. CAPABILITIES OF FLOWMAPPER PLUGIN AND RESULTS........ 145

6.1. Installation of FlowMapper Plugin .. 145

6.2. Exploring GUI and Capabilities of FlowMapper........................... 147

6.2.1. Creating Flow Lines and Flow Nodes.................................. 148

6.2.2. Symbology Capabilities ... 153

6.2.3. Filtering Capabilities .. 158

6.3. Input Data Structure and Describing Test Datasets 161

6.4. Generating Flow Maps with FlowMapper and Discussing

Results .. 166

7. CONCLUSIONS AND RECOMMENDATIONS.................................. 183

7.1. Conclusions and Discussions ... 183

7.2. Recommendations .. 193

REFERENCES.. 197

 xiv

APPENDICES

A. STRUCTURE OF FLOWMAPPER AND INTERACTION WITH

QGIS.. 209

B. SOURCE CODE OF FLOW GENERATOR MODULE......................... 211

CURRICULUM VITAE ... 219

 xv

LIST OF TABLES

TABLES

Table 2.1 Visual Clutter Reduction Techniques... 30

Table 2.2 Comparison of Visual Clutter Reduction Techniques...................... 33

Table 2.3 Comparison of Existing Flow Mapping Software............................ 38

Table 3.1 Free and Open Source Software Alternatives to Well Known

Commercial Software Products.. 44

Table 3.2 Freeware vs. Free & Open Source Software Concept...................... 47

Table 3.3 Free and Open Source Software Business Models........................... 54

Table 3.4 Motives for Development and for Choosing a Project..................... 56

Table 3.5 Open Source Geospatial Projects Supported by OSGeo and

Projects in Incubation Process.. 58

Table 3.6 Open Source Geospatial Projects Hosted or Listed by

MapTools.org ... 58

Table 3.7 Taxonomy of Free and Open Source Geospatial Projects with

Respect to Programming Languages .. 59

Table 3.8 Evaluation Criteria for Free and Open Source Desktop GIS

Software.. 60

Table 3.9 Project Characteristics of Selected Free and Open Source

Desktop GIS Software.. 61

Table 3.10 Functional Characteristics of Selected Free and Open Source

Desktop GIS Software.. 62

Table 3.11 Free and Open Source Desktop GIS Software Cited on Web

Resources and in the Literature .. 64

Table 3.12 Evaluation Criteria and Weighted Scoring Utilized in

Cascadoss Project ... 66

 xvi

Table 3.13 Marketing, Technical, Economic and Cumulative Potential of

Free and Open Source Desktop GIS Applications Evaluated

in Cascadoss Project ... 67

Table 3.14 General Project Characteristics and Major Features of QGIS.......... 70

Table 4.1 Python Release History and Licensing Characteristics 82

Table 4.2 Popularity of Programming Languages based on TIOBE

Index: Long Term History.. 83

Table 4.3 Programming Languages Showing Highest Annual Rise in

Popularity Rating based on TIOBE Index.. 84

Table 4.4 Popularity of Programming Languages based on LangPop

Normalized Score Chart ... 84

Table 4.5 Examples of Performing “Hello, World!” Statement in

Different Programming Languages .. 86

Table 4.6 QGIS API Modules .. 88

Table 4.7 Some Popular Vector and Raster Data Formats Supported by

GDAL/OGR.. 93

Table 5.1 Directory Structure of a Typical Python Plugin and

FlowMapper.. 106

Table 5.2 Source Code of “__init__.py” File for FlowMapper...................... 109

Table 5.3 Metadata Tags for QGIS Python Plugins 110

Table 5.4 Content of “metadata.txt” File for FlowMapper 111

Table 5.5 FlowMapper Icon Set and Source Code of Resources Files

for FlowMapper: (a) FlowMapper Icon Set, (b) XML based

“resources.qrc” file, (c) “resources.py” file in Python

language.. 112

Table 5.6 Part of the Source Code for GUI Development: (a) XML

based Qt Designer “ui” file, (b) Python translated “py” file 114

Table 5.7 Controlling Properties of GUI Objects: (a) Code snippet from

“ui_flowmapper.py” for controlling the properties of “Show

flow direction” checkbox via Qt’s signal – slot mechanism,

(b) Code snippet from “form3dialog.py” to change the state

of “Calculate Statistics…” button... 117

 xvii

Table 5.8 Partial Content of Main Module: “flowmapper.py”....................... 120

Table 5.9 Python Code for Calculating Descriptive Statistics 130

Table 5.10 Python Code for Generating Graduated Symbology with

Equal Interval Classes .. 134

Table 5.11 Source Code of the Repository for FlowMapper: (a) xml file,

(b) xsl stylesheet .. 138

Table 5.12 Releases of FlowMapper Plugin... 140

Table 5.13 Number of FlowMapper Downloads from the QGIS Official

Repository... 142

Table 5.14 Number of Visits to the Plugin Website by Countries 144

Table 6.1 URLs for Downloading FlowMapper and OS Specific Paths

for QGIS Python Plugins.. 146

Table 6.2 FlowMapper Menu Items ... 148

Table 6.3 Sample Flow Data Format: (a) Coordinates of nodes, (b)

Names of nodes, (c) Interaction matrix storing magnitude of

flows between nodes... 150

Table 6.4 Symbology Options Offered in FlowMapper................................. 154

Table 6.5 Structure of Input File Storing Node Coordinates.......................... 162

Table 6.6 Structure of Input File Storing Node Names.................................. 162

Table 6.7 Structure of Input File Storing Interaction Matrix 163

Table 6.8 Properties of Selected Test Datasets... 166

Table B.1 Source Code of Flow Generator Module: “flowpyv07.py”............ 211

 xviii

LIST OF FIGURES

FIGURES

Figure 1.1 Organization of the Study... 11

Figure 2.1 Flow Maps based on Diverse Flow Scenarios: (a) Largest

migrations in The US observed during 1995 – 2000 shown as

node-to-node flows, (b) Napoleon’s march on Moscow

illustrated along a route via successive flow lines with

decreasing magnitude, (c) Subsurface flow routes in a karst

watershed which follow both network and node-to-node paths

are depicted as a hybrid approach... 18

Figure 2.2 Geo-visualization of Napoleon’s 1812 Campaign into Russia

in Space Time Cube Notation... 19

Figure 2.3 Minard’s Original Flow Maps Prepared in the 1860s:

Minard’s Original Flow Maps Prepared in the 1860s: (a)

Napoleon’s 1812 campaign into Russia, (b) Movement of

travelers on the major railroads of Europe, (c) French wine

exports in 1864, (d) Europe raw cotton imports in 1858, 1864

and 1865 ... 21

Figure 2.4 (a) Tobler’s FlowMapper Software Adapted to Run under

Microsoft Windows and (b) Its Sample Output vs. (c) Output

of Original FlowMapper... 23

Figure 2.5 Flow Data Model Tools for ArcGIS 9.x... 24

 xix

Figure 2.6 Methods for Reducing Visual Clutter: (a) Flow Map Layout:

Migration from California between 1995 – 2000 using edge

routing and layout adjustment, (b) JFlowMap: Refugee flows

between countries in 2008 with bundled flow lines, (c) VIS-

STAMP: SOM visualization, parallel coordinate plot and

output migration map between counties between 1995 – 2000

with hierarchical regions .. 25

Figure 2.7 Sample Flow Map Created in Flowmap v7.3 between

Discrete Nodes with Straight Line Segments................................... 27

Figure 2.8 Trip Desire Lines between Origin and Destination Locations

Created by Using TransCAD v5... 28

Figure 3.1 QGIS v1.8.0-Lisboa Running on Windows 69

Figure 3.2 QGIS v1.8.0-Lisboa (a) Plugin Manager and (b) Plugin

Installer ... 73

Figure 4.1 Qt Designer Running on Windows .. 91

Figure 5.1 Development Methodology of FlowMapper Plugin 96

Figure 5.2 QGIS v2.0 Plugin Manager: (a) Manage installed core &

external plugins, (b) Download and install more plugins from

repositories, (c) Manage official and third party repositories 102

Figure 5.3 Interface of QGIS Plugin Builder... 105

Figure 5.4 GUI Development for FlowMapper with Qt Designer Tool 113

Figure 5.5 GUI of FlowMapper: (a) “Generate flow lines and nodes”

form, (b) “Filter Flow Lines by Length” form 116

Figure 5.6 Webpage of FlowMapper Python Plugin Hosted at the QGIS

Official Repository ... 137

Figure 5.7 Plugin Repository Webpage ... 139

Figure 5.8 FlowMapper Plugin Website.. 143

Figure 6.1 GUI for Generate Flow Lines and Nodes Tool 149

Figure 6.2 Types of Flow Calculations: (a) Two way, (b) Gross, (c) Net 151

Figure 6.3 Attribute Table for Flow Lines... 152

Figure 6.4 Attribute Table for Flow Nodes ... 153

Figure 6.5 Symbology Adjustment Tool for Flow Lines................................. 155

 xx

Figure 6.6 Symbology Adjustment Tool for Flow Nodes 155

Figure 6.7 User Interface of Filter Flow Lines by Magnitude Tool 159

Figure 6.8 User Interface of Filter Flow Lines by Length Tool 159

Figure 6.9 User Interface of Filter Flow Lines by Node and Direction

Tool... 160

Figure 6.10 Flow Maps Generated by Using 4x4 Interaction Matrix: (a)

Two Way Flows, (b) Net Flows, (c) Gross Flows.......................... 167

Figure 6.11 Flow Maps Generated by Using Bank Interactions Dataset:

(a) Gross interactions greater than the average magnitude

with graduated symbolgy, (b) Unfiltered gross interactions

with single symbology.. 170

Figure 6.12 Gross Interactions Displayed in Google Earth 172

Figure 6.13 Internal Migration Patterns of Turkey between 2007 and

2012: (a) Major net migrations greater than 2.000 people, (b)

Major net migrations shorter than 300 kilometers and greater

than 2.000 people.. 173

Figure 6.14 Major Gross Migration Patterns of Turkey Shorter than 300

Kilometers and Greater than 5.000 People..................................... 174

Figure 6.15 Magnitude and Direction of Incoming and Outgoing Net

Migration Patterns for Ankara.. 176

Figure 6.16 Major Destinations of Turkish Immigrants: (a) With straight

flow lines, (b) With curved flow lines .. 177

Figure 6.17 Magnitude of Gross Pass Distributions between Players of

Spain during Final Match of FIFA 2010 .. 180

Figure A.1 Conceptual Diagram of FlowMapper Plugin.................................. 209

 xxi

LIST OF ABBREVIATIONS

AML Arc Macro Scripting Language

ANSI American National Standards Institute

API Application Programming Interface

dmg Extension of Apple disk image file format

ESRI Environmental Systems Research Institute

EULA End User License Agreement

FlowMapper QGIS plugin written in Python for flow mapping

FSF Free Software Foundation

GDAL Geospatial Data Abstraction Library

GIS Geographic Information Systems

GIS-T Geographic Information Systems for Transportation

GNU Acronym for GNU's Not Unix

GPL General Public License

GUI Graphical User Interface

IDE Integrated Development Environment

IDLE Integrated Development Environment for Python

OGR Simple Features Library

OS Operating System

OSGeo Open Source Geospatial Foundation

OSGeo4W OSGeo Binary Distribution (Installer) for Microsoft Windows

OSI Open Source Initiative Organization

png Extension for Portable Network Graphics file format

POSIX Portable Operating System Interface

py Extension of Python code file in human readable format

pyc Extension for Python byte code file in binary format

PyQGIS Python Bindings for QGIS API

PyQt Python Bindings for Qt

 xxii

QGIS Quantum GIS

Qt Cross Platform Application and GUI Framework

shp Extension for ESRI shapefile format

SOM Self Organizing Map or Self Organizing Feature Map

VBA Visual Basic for Applications

XML Extendable Markup Language

 1

CHAPTER 1

INTRODUCTION

“Geographical movement is critically important. This is because much change in

the world is due to geographical movement. Movement of people, ideas, money,

energy or material”

Waldo R. Tobler

Advances emerged in transportation infrastructure during 20th century and

numerous developments in telecommunication technology witnessed in the last

few decades have transformed the world to a highly dynamic global space more

than ever. This dynamic and unbounded space notion was discussed by Castells

(1989) as “Space of Flows” and can be characterized not only with the physical

movements of people or material but also with the flows of energy, money, ideas

and information as well. Therefore, representing geographic movements between

locations, mapping flows and spatially dynamic events have critical importance in

perceiving today’s highly mobilized world.

Typically flow mapping corresponds to the act of visualizing movement patterns

or interactions taking place between geographical locations. Node-to-node flows

represent the most fundamental and common form of spatial interactions where the

actual flow routes between locations are unknown or negligible (Tobler, 1976).

Based on this assumption, the core elements needed to construct a flow map can be

given as follows: (i) nodes as the origins and destinations of geographic

movements, (ii) links as lines or curves for displaying flows between nodes and

(iii) magnitude attributes to hold the amount of flows between nodes. Although

this appears to be a simple cartographic task, lucid and effective representation of

 2

spatial interactions tables on maps has been a lengthy ongoing challenge for

cartographers (Tufte, 2007) that involve both computational and cartographic

issues.

The earliest noticeable examples of flow maps were prepared in the second half of

19th century by Charles Joseph Minard, a French civil engineer and a pioneer in

thematic cartography (Robinson, 1982). Approximately a century after Minard’s

inspiring studies, in 1959 first examples of computer based flow mapping were

produced by the Chicago Area Transportation Study, currently known as Chicago

Metropolitan Agency for Planning (CMAP), to support decision making on

highway route selection (Tobler, 1987). In the late 1960s, Kern and Ruston (1969)

made the next significant contribution to computer based flow mapping by linking

origins and destinations with the aid of a dedicated computer program. Computer

based flow mapping techniques continued to develop during the 1970s (Tufte,

2007) and in the 1980s Tobler drew attention to the importance of geographical

flows with his several studies Tobler (1976, 1981, 1987) by focusing on the

visualization of spatial interaction data. Soon after Tobler drew attention to spatial

interactions and flow phenomena; in his pioneering publication “The Informational

City”, Castells (1989) introduced the “Space of Flows” concept. In contrast to

geographically bounded spaces, the “Space of Flows” concept pertains to human

actions and interactions circulating dynamically among organizational nodes

(Stalder, 2003).

Considering extensive capabilities of today’s computers for processing large

datasets and the proven potential of GIS in handling spatial data offers great

opportunities for extracting interesting patterns and revealing valuable information

from spatial interaction data. However, considering the development efforts that

have been made in the last few decades to reveal the full potential of GIS almost in

every domain; it is surprising to see that flow mapping remained relatively less

developed under GIS (Rae, 2009). For example, either commercial (e.g. ArcGIS,

MapInfo) or open source (e.g. GRASS, QGIS, gvSIG, uDIG), there exists neither

functionality for visualizing spatial interactions nor a data model for storing inter-

 3

nodal flows in any of these popular desktop GIS software. In other words,

currently none of the popular applications offers out of the box functionality that

enables users to perform GIS-aware analyses on spatial interaction data. Thus,

with the development of a flow mapping software that is fully coupled to GIS, this

gap could partially be filled.

1.1. Identifying Problems in Flow Mapping

GIS provides substantial tools for analyzing and visualizing spatially static

datasets; yet handling of spatially dynamic events still poses challenges for

cartographers (Tufte, 2007). These challenges can be evaluated from two main

perspectives: (i) problems emerging due to nature of flow phenomena and data

intensive structure of spatial interaction tables and (ii) problems emerging from the

absence of special flow mapping tools integrated to off-the-shelf GIS software.

Ever since the earliest noticeable examples of flow maps, which were produced by

Charles Joseph Minard in the second half of 19th century (Robinson, 1982),

general cartographic techniques utilized in visualization of flow data have not

changed a lot (Boyandin et al., 2010). As mentioned by Tobler (1981), first origin

and destination locations are mapped and then these locations are linked by lines.

Besides, proportional line widths, graduated colors and arrow heads are commonly

used to give additional information regarding the magnitude and direction of

flows. Although this appears to be a simple cartographic task, in flow mapping

researchers or users usually have to deal with datasets which are many times

bigger than the total number of pixels available on computer display.

Flow data are usually stored in square matrix form. This matrix or interaction table

stores the magnitude of flow lines between origin and destination nodes. As the

number of flow nodes increases linear, the number of corresponding flow lines

increase in a quadratic way. For example, a flow matrix involving 10 nodes will

only result 100 inter-nodal flows while a flow matrix involving 100 nodes will

 4

result 10.000 flow lines to be rendered. This poses one of the most common

challenges in flow mapping known as visual clutter problem which is caused by

overlapping flow features (e.g. crossing of flow lines, overlapping of adjacent flow

nodes) while displaying large interaction matrices. In addition to cartographic

concerns, manual computation of flow related attributes, such as net or gross flow

magnitudes, quickly becomes unfeasible as the number of nodes increases.

As a solution to the calculation of flow related attributes problem, utilization of

computer processing power has already been discussed by Tobler (1987). Tobler

suggests utilization of computerized techniques for datasets involving especially

more than ten flow nodes. As a way out to the visual clutter problem, where much

of the ongoing research efforts in flow mapping are focusing on (Phan et al., 2005;

Guo, 2009; Boyandin et al., 2010), utilization of several visual clutter reduction

techniques (Ellis and Dix, 2007) emerge as a solution. However at this point,

absence of GIS integrated, user friendly and general purpose flow mapping tools

emerges as another challenge. In fact, this problem is so severe that unless some

third party tools or add-ons are used, it is not possible to automatically map few

pairs of flows via interconnecting lines and get the flow related attributes

calculated under GIS. One of the reasons for the absence of integrated flow

mapping tools to popular commercial desktop GIS applications may be due to

weak demand of market for such domain specific tools. In other words, the number

of potential users demanding to pay for flow mapping tools may not be

commercially enough or profitable to attract companies to initiate development.

Based on this assumption, free and open source development methodology should

be considered as a way of developing and distributing software in specific research

domains such as flow mapping. In Chapter 3, free and open source software

concept and development environment are reviewed in detail.

In general, potential value of a flow map increases proportional to the complexity

of the flow dataset (Tobler, 1981). Thus, spatial interaction matrices having

smaller sizes are usually considered to be geographically uninteresting since

visualization of few interactions is not a difficult problem (Tobler, 1981). On the

 5

contrary, as the spatial interaction matrix gets larger, the number of flow lines

exhibit quadratic increase. In other words, as the number of movements increase,

more flow lines are added onto map and cartographic representation gets more

difficult due to edge crossings (Pieke and Krüger, 2007). This usually requires

implementation of special techniques to avoid or reduce visual clutter in flow

maps. Another problem associated with a large spatial interaction matrix is that

visual interpretation of such a large dataset without mapping is usually not

convenient. Thus, to reveal any hidden spatial pattern and to extract valuable

information, utilization of flow mapping techniques under GIS offer great

potential. With this motivation almost three decades ago, Tobler (1987) suggested

utilization of computer power for mathematical operations, statistical filtering and

visualizations especially for datasets including more than ten nodes

According to Tobler (1981), another difficulty in flow mapping stems from the

first law of geography: “Near places interact more than distant places.” Based on

this assumption many interactions often take place between adjacent locations

where there is little room to render flow lines. As a result of this, both flow lines

and flow nodes suffer from visual clutter due to edge crossings and overlapping

nodes. Similar to the methods utilized for avoiding edge crossing (e.g. flow

bundling, hierarchical routing), there are lossy or spatially distorting (e.g. node

clustering, point displacement) and non-distorting (e.g. node filtering, proportional

symbology) techniques for avoiding node overlaps which are reviewed in Chapter

2 during literature survey.

In addition to the core components of a basic flow dataset which are locations as

flow nodes, interactions as flow lines and flow magnitude as attribute data; flow

data may involve multiple attributes. For example; internal migration data of a

country may also include age groups, income levels and occupations of migrants in

addition to the amount of migrants. This leads to high dimensionality in flow data

which needs utilization of data mining and multivariate statistical techniques for

extracting useful information. For example, Guo (2009) applied self organizing

maps (SOM) technique for multivariate analysis and visualization of large spatial

 6

interaction data in order to decrease the number of origin destination pairs by

clustering them based on multiple attributes. As an advanced topic, analysis and

visualization of multivariate flow data is a more challenging area since it involves

similar spatial concerns faced in univariate data but together with handling of

multiple attributes. Yet, the scope of this thesis only focuses on mapping of

univariate spatial interactions between discrete locations.

It is evident that mapping of large interaction datasets often poses visual clutter

problem that hides interesting patterns in data and hinders valuable information.

Besides, mapping of spatial interaction data remained underutilized in GIS. Thus,

development of a specially designed and fully GIS integrated flow mapping tool

which offers several visual clutter reduction techniques together with some

cartographic representation options could fill this gap and pave the way for

transforming spatial interaction data to spatial information and knowledge.

1.2. Aim and Contributions of the Study

The main objective of this study is to develop free and open source software for

flow mapping that is fully integrated to a desktop GIS application. By tightly

coupling this tool with a popular GIS application, such as in plugin form, users

will also have the chance of benefiting from all existing capabilities of this GIS

application without needing to recode them in the plugin.

The most noticeable contribution of this study is the flow mapping software named

FlowMapper. Rather than a standalone application, FlowMapper is designed as a

plugin to the popular, multi platform, free and open source desktop GIS

application QGIS. By this way, FlowMapper can benefit from the agile

development environment offered by QGIS platform. Motivation for open source

development and reasons for selecting QGIS as the core GIS component that the

FlowMapper is built on are further discussed and rationalized in Chapter 3.

 7

Tobler (1976) identified the most fundamental and common form of spatial

interactions as flows taking place between discrete locations where flow routes are

unknown or negligible. Based on this insight, with the intention of developing a

general purpose, multi platform flow mapping tool, FlowMapper plugin is

developed to handle and visualize this type of spatial interactions under QGIS.

Other types of flow scenarios are explained in Chapter 2 during literature survey.

Yet, FlowMapper plugin targets automatic calculation of flow related attributes

(e.g. length, net magnitude, gross magnitude etc.) and visualization of inter-nodal

interactions between discrete locations while accounting cartographic concerns

(e.g. symbol size, line width, color etc.).

One of the most common challenges in flow mapping can be identified as visual

clutter problem which is caused by overlapping flow features (e.g. crossing of flow

lines, overlapping of adjacent flow nodes) while displaying large interaction

matrices. Thus, implementation of several visual clutter reduction techniques is

highly desired. Yet, there are many visual clutter reduction techniques in the

literature (Ellis and Dix, 2007) and implementation of all these techniques in

FlowMapper is almost impossible. Since FlowMapper is intended to be a general

purpose visualization tool that tries to keep the essence and spatial arrangement of

flow data, only spatially non-distorting visual clutter reduction techniques (e.g.

filtering and advanced symbology techniques) are considered during development

rather than other techniques involving rearrangement of flow data (e.g. node

clustering, hierarchical edge routing etc.). Prior to development, details regarding

these techniques are reviewed in Chapter 2.

Another promise of this study is to develop a user friendly application. Since many

GIS users are used to perform operations via menu driven and GUI based

software, it is highly probable that potential users of FlowMapper will also be

seeking for this experience. Thus, FlowMapper is intended to be designed as a

fully interactive and GUI based plugin which is very critical for the utilization and

acceptance level of FlowMapper.

 8

As an integral part of the objective of this study, FlowMapper should not require

any licensing fee and it should be distributed without any restriction under the

GNU GPL v2 license. In other words, FlowMapper should be free and source code

must be open. So it could reach more potential users who are seeking for spatial

interaction mapping tools under GIS. Besides, it is highly desirable that the

desktop GIS software on which the FlowMapper is to be built should also be

provided at no cost. By this way, whole setup could be established without paying

any license fee. In this context, free and open source development emerges as a

promising method that encourages distribution of source code and code reuse. As a

contribution of this kind of development, source code of FlowMapper could be

used by other developers for further development of plugin. Besides, some parts of

the source code of plugin could be examined and reused by researchers in

derivative works.

The aim of this study is defined as development of a flow mapping software that is

fully integrated to GIS. To fulfill this aim, several objectives are defined. These

can be listed as follows: (i) The flow mapping software, FlowMapper, should be

designed in plugin form on top of a desktop GIS application for seamless GIS

integration, (ii) both FlowMapper and the desktop GIS application should be

supplied free of charge in order to reach more people, (iii) Source code of

FlowMapper should be open in order to encourage researchers for further

development or code reuse, (iv) FlowMapper should be fully GUI based and

should not require complex installation, (v) FlowMapper should be designed as a

general purpose spatial interaction mapping tool to aid visualization of flows and

calculation of flow attributes, (vi) FlowMapper should include several tools for

reducing visual clutter problem in flow maps without distorting the essence of

flow data. In Chapter 5, structural and functional requirements of FlowMapper

plugin will be with the intention of achieving these objectives.

It is also appropriate to mention what is not aimed in this study. Neither

development of a standalone, complete GIS application nor development of a flow

mapping application that implements most current and complex visual clutter

 9

reduction algorithms are aimed in this study. In contrast, FlowMapper is intended

to be a general purpose, user friendly tool to answer generic needs of GIS users.

The most prominent contribution of this study is the FlowMapper software that is

fully integrated to QGIS in plugin form. Besides with the release of FlowMapper,

one more plugin is added to the QGIS repository which also extends the

capabilities of QGIS. As a plugin to one of the most popular desktop GIS platform,

FlowMapper intends to pave the way from spatial interaction data to spatial

knowledge and to aid people in understanding today’s highly mobilized world.

1.3. Scope and Methodology of the Study

With the motivation of developing a general purpose flow mapping application

integrated to GIS, the scope of this study mainly involves exploration and

visualization of spatial interaction data pertaining to the scenario described by

Glennon and Goodchild (2004) as flows taking place between discrete locations

where the actual flow routes are unknown or negligible (e.g. human migration,

telephone calls, imported and exported goods etc.). Nearly four decades ago, this

scenario was mentioned as the most fundamental form of flow mapping by Tobler

(1976) and generally involves flow nodes and lines as geographic features and

magnitude of flows as attribute data. While keeping focus on this type of flows and

intending to produce cartographically appealing flow maps, the scope of this study

also involves implementation of visual clutter reduction techniques such as

filtering and advanced symbology options since visual clutter is one of the most

common problems of flow mapping especially when working with large datasets.

Considering that FlowMapper is designed as a user friendly tool that intends to

respond general purpose flow mapping needs of GIS users; implementation of only

spatially non-distorting clutter reduction techniques (e.g. subsetting by a given

criteria, graduated color rendering, proportional symbol size adjustment etc.) are

considered in FlowMapper and other algorithms such as node clustering or flow

 10

line bundling, routing which imply either spatial distortion or rearrangement of

flow data are excluded from the requirements list of FlowMapper.

Methodology of this study can be evaluated from two perspectives. While the first

one involves general methodology and organization of this study, the second one

pertains to the software development methodology of FlowMapper plugin. Under

this heading general methodology and organization of this study is explained.

Development methodology of the plugin is at the beginning of Chapter 5 because

it depends on the findings from the literature survey and the review of free and

open source software concept together with the review of open source desktop GIS

applications.

The aim of this study is set as development of a free and open source flow

mapping tool. This software should be designed as a general purpose GUI based

tool and must be fully integrated to a popular desktop GIS application. Besides, it

should include several techniques for exploring flow data and reducing visual

clutter problem. To fulfill all these requirements, following questions should be

answered first: What is flow mapping? What does free and open source software

mean and how it is developed? What are the current challenges in flow mapping?

Which visual clutter reduction techniques are listed in the literature? What are the

characteristics of existing flow mapping tools? Which desktop GIS applications

exist on the free and open source market? Which GIS application should be

preferred as the base platform to built FlowMapper on? Which software

environment is needed to develop FlowMapper?

In order to answer all the questions above and to properly evaluate functional

requirements of FlowMapper prior to initiating coding, a detailed literature survey

is undertaken in Chapter 2 together with a review regarding free and open source

software concept in Chapter 3. Besides existing open source desktop GIS

applications are reviewed in Chapter 3 and upon determining the suitable platform

for building FlowMapper on, development environment required for the plugin is

discussed in Chapter 4. Development methodology of the plugin is given at the

 11

beginning of Chapter 5 and then the architecture of FlowMapper is explained in

detail. In Chapter 6, capabilities of the plugin are explored by using several test

datasets and generated flow maps are given. Organization of this study is presented

with the flow chart given in Figure 1.1.

Figure 1.1. Organization of the Study

CHAPTER 1: INTRODUCTION

Identifying common problems in flow mapping arising: (i) from the essence of flow
phenomena, (ii) from the absence of GIS integration. Setting the aim & objectives.

CHAPTER 2
LITERATURE

SURVEY

CHAPTER 3
FREE & OPEN

SOURCE
SOFTWARE

Review of

- Free & Open Source
Software Concept
- Free & Open Source
Software Development
- Free & Open Source GIS
Software
- Quantum GIS

CHAPTER 4: EXPLORING DEVELOPMENT ENVIRONMENT

Exploring characteristics of development environment components required for
implementing FlowMapper on top of the selected desktop GIS application as a
plugin (e.g. programming language, API, GUI toolkit etc.)

Review of

- Fundamental Concepts
(flow, flow map, flow types)
- History and Advances
- Visual Clutter Reduction
Techniques
- Existing Flow Mapping
Software

CHAPTER 5: DEVELOPMENT OF FLOWMAPPER PLUGIN

(i) Defining development methodology, (ii) Determination of functional
requirements, (iii) Exploring the architecture and code structure, (iv) Repository

CHAPTER 6: EXPLORING CAPABILITIES OF FLOWMAPPER PLUGIN

(i) Installation, (ii) Capabilities and usage, (iii) Test datasets, (iv) Generating flow
maps based on different scenarios and discussing results

CHAPTER 7: CONCLUSIONS & RECOMMENDATIONS

Determination of
- Flow type to be focused
- Visual clutter reduction
techniques to be implemented

Determination of
- Free & Open Source GIS
platform to build the plugin

 12

Development of a computer program is usually triggered upon identification of the

software requirements. In this study, unless detailed literature survey on flow

mapping is carried and open source software concepts are understood; neither

functional nor development environment requirements can be determined properly.

Thus, as presented on the upper section of the flowchart (Figure 1.1), introduction

chapter is followed by a literature survey and review of open source software

concept.

In Chapter 2, fundamental concepts of flow mapping are explained and a brief

history is presented in conjunction with the advances in flow mapping. Besides,

several visual clutter reduction techniques cited in the literature and existing flow

mapping software are discussed. With the guidance of this survey, type of flow

scenario to be focused is determined (e.g. inter-nodal flows taking place over

uncertain paths). Besides, visual clutter reduction techniques to be implemented in

FlowMapper are identified (e.g. non-distorting methods focalizing on the

appearance of data rather than the methods dealing with spatial rearrangement of

data).

In Chapter3, issues regarding semantics of free and open source software, types of

open source software licensing and community based open source development

issues are surveyed. Besides, open source desktop GIS applications are reviewed

in detail to determine the most suitable open source desktop GIS platform that the

FlowMapper is going to be built on.

In Chapter 4, upon determining the QGIS as the core GIS component,

characteristics of other essential development environment components are

explored. This involves a review of Python programming language, QGIS

development API, Qt framework and open source OGR library.

At the beginning of Chapter 5, development methodology of FlowMapper is

presented with respect to the requirements of plugin. Then, architecture of the

plugin is explored with respect to QGIS plugin structure, coding, modules and

 13

dependencies, GUI structure, functions and features implemented. Last section of

Chapter 5 includes a review of plugin release history. Repository download

statistics and plugin website visits are presented at the end of Chapter 5.

Chapter 6 mainly involves demonstration of the capabilities of FlowMapper.

Installation methods, input data structure and user interface of FlowMapper are

explained. Then, several flow maps are generated by using the test datasets to

demonstrate different capabilities of plugin. Besides, cartographic quality of these

flow maps is discussed. Following this chapter, conclusions of this study are

presented together with recommendations for further development of FlowMapper.

Besides two appendices, one of which contains the source code of the module that

creates flow features and the other which portraits inner structure and interaction

of the plugin with QGIS, are given at the end of this study.

 14

 15

CHAPTER 2

LITERATURE SURVEY

In this chapter, the aim is to give better understanding of the history of flow

mapping and ongoing challenges for displaying spatial interaction data. In the

first part, fundamental concepts are explained and brief history is given in

conjunction with the advances in flow mapping. Then a taxonomy study,

presenting different approaches aiming to reduce the amount of visual clutter

encountered in flow maps, is given. Besides, some of the methods referred to

in this taxonomy are discussed and exemplified by means of several selected

studies from the literature. At the end of this chapter, review of existing flow

mapping software is presented in order to reach a better understanding of the

maturity and functional capacity of flow mapping applications.

2.1. Fundamental Concepts

From a general perspective, a flow is defined as a steady and continuous

movement of something or somebody in one direction (Oxford University

Press, 2012). In computer science; flow is perceived as data transfer and

implies flows of bits through an information system between processes (Bruza

and Weide, 1993). Besides, in computer networks, it corresponds to flows of

data packets over a topology between source and destination nodes. In

transportation management, which studies the interactions between vehicles,

people and infrastructure, flow is perceived as traffic flow and characterized

by density and velocity (Gülgeç, 1998). It is clear that flow has many other

 16

meanings in different domains such as hydrology, chemistry,

telecommunication etc.

Within the scope of this study, flow is considered as cumulative movements of

people, animals, goods, money and information within a period of time. In

GIS, a flow corresponds to the geographical movement of a body and

embodies at least three fundamental components in its simplest form; (i)

origin, (ii) destination and (iii) magnitude which are very identical with a

vector.

Tobler, who made the earliest contributions to computer aided mapping of

spatial interaction data in the late 70s (Tobler, 1976), makes the definition of

flow mapping as the act of visualizing movement patterns between geographic

locations. More than three decades after Tobler described flow phenomena, in

the literature there are still very close definitions to Tobler’s regarding flow

mapping and flow maps. For example; Rae (2009) defines flow mapping as a

special cartographic technique that includes mapping and visualizing

movements from origin to destination points in geographic space. Similarly,

Pieke and Krüger (2007) define flow maps as visualizations of interconnected

links indicating movements of people or objects between geographic locations

within a certain period of time.

With reference to definitions given above, it can be inferred that following

components are emphasized as the core elements to construct a flow map: (i)

nodes as the source and destination locations of geographic movements (e.g.

points, centroids of polygons); (ii) edges as links either with or without arrow

heads for displaying flow directions or flows between sources and destinations

(e.g. lines, polylines, arcs with fixed or varying widths, graduated colors) and

(iii) magnitude which indicates the amount of cumulative flow between nodes

(e.g. attribute(s) data stored in flow matrix or cube).

 17

In their study regarding the methods for visualizing spatial interaction data,

Andrienko et al. (2008) criticize Tobler's early approach (Tobler, 1976) to

flow mapping with the missing time component. As a result of this, flow

mapping techniques initially introduced by Tobler (1976) are inconvenient for

displaying any temporal change, trend that exists in flow data cube or among

matrices. Both Andrienko et al. (2008) and Boyandin et al. (2010) suggest

cartographic production techniques such as animated flow map rendering or

utilization of flow maps in series, named as small-multiples, in order to add

the notion of time to flow mapping for demonstrating any possible temporal

trend within data.

Glennon and Goodchild (2004) characterize three diverse use cases, scenarios

for flow maps in their study which aims to develop a generic GIS database

template for flow data. Based on the characteristics of flow phenomena,

following scenarios can be depicted on flow maps: (i) node-to-node flows, (ii)

flows along networks or through known routes and (iii) situations where node-

to-node and network flows occur in proximity. Flow maps showing node-to-

node flows represent patterns of geographical movements via straight lines,

arrows or curves between discrete nodes by using origin, destination and

magnitude data available in flow matrix. Since node-to-node flows represent

the most fundamental form of spatial interactions between known locations

where the actual flow route is unknown or negligible (Tobler, 1976), within the

context of this study, visualization and analysis of discrete, inter-nodal flow

data under GIS is primarily kept in focus. For the second scenario, flow maps

focus on the magnitudes of flows taking place along network segments. For the

last scenario, where node-to-node and network flows occur in proximity; both

origin – destination nodes and the magnitude of flow along network edges are

equally considered. Respectively, these three flow scenarios can be exemplified

with the following cases: (i) human migration, (ii) trips with known routes and

(iii) drainage networks, flow accumulation (Figure 2.1).

 18

Figure 2.1. Flow Maps based on Diverse Flow Scenarios: (a) Largest migrations in
The US observed during 1995 – 2000 shown as node-to-node flows, (b)
Napoleon’s march on Moscow illustrated along a route via successive flow lines
with decreasing magnitude, (c) Subsurface flow routes in a karst watershed which
follow both network and node-to-node paths are depicted as a hybrid approach
(ArcGIS Flow Data Model Tools plugin implementations are adapted from
Glennon and Goodchild, 2004)

In addition to Glennon’s and Goodchild’s (2004) approach, in the literature there

are other studies categorizing flow maps from other aspects. For example, in

their study regarding the visual analytical methods for movement data,

Andrienko et al. (2008) categorize flow maps as (i) maps displaying individual’s

movement behaviors and (ii) maps showing cumulative movements of multiple

entities during a certain time period.

Maps in the first category demonstrate the temporal movement behavior of

individuals or individual events and space time cube visualization technique,

introduced by Hagerstrand at the end of sixties (Hagerstrand 1970 in Hedley et

al., 1999), is a common cartographic way for displaying them in the research

(a) (b)

(c)

 19

area of time geography (Kraak, 2003). In its basic appearance, space time cube

visualization can be described with the following components: (i) geography

on the base plane of the cube to point out locations along x and y axis; (ii) z

axis, along which locations scattered on the base plane are extruded with

respect to time and duration of visit, movement; (iii) 3D polylines either

showing directions of movements or displaying actual routes by

interconnecting scattered, transit nodes extruded along z axis. Flow map

displaying Napoleon’s March on Moscow, previously given in Figure 2.1 (b),

is adapted to space time cube representation by extruding the locations on the

transit route along z axis proportional with the time (Figure 2.2).

Figure 2.2. Geo-visualization of Napoleon’s 1812 Campaign into Russia in Space
Time Cube Notation (adapted from Kraak, 2009)

x y

z
(t

im
e)

KKKooowwwnnnooo

MMMooossscccooowww

KKKooowwwnnnooo

 20

Studies analyzing temporal movement behaviors of individual events and

discussing techniques for aggregation of spatiotemporal data in space time

cubes can also be found in the literature: Mountain, 2005; Kraak, 2003; Dykes

and Mountain, 2003, 2002; Mountain and Raper 2001.

Maps in the second category, previously presented in Figure 2.1(a), visualize

cumulative flow data which is analogous to a collection of long time data

series derived by the aggregation of individual movements. Flow mapping

techniques discussed in Tobler’s early studies (Tobler, 1976, 1981, 1985,

1987) and his successors (Boyandin et al., 2010; Rae, 2009; Guo, 2009; Pieke,

2007; Phan et al., 2005) focus on geo-visualization of mass, cumulative flows

and discuss visual clutter reduction techniques such as sampling, filtering,

node clustering, edge bundling, edge routing etc.

Rather than keeping focus on temporal movements of individuals, which is

especially studied in time-geography (Kraak, 2003), scope of this study strictly

focuses on mass, cumulative flow data and geo-visualization of this data under

GIS with a user friendly, GUI based flow mapping plugin.

2.2. History and Advances in Flow Mapping

The earliest noticeable examples of flow maps were produced in the second

half of 19th century by Charles Joseph Minard, a French civil engineer and a

pioneer in thematic cartography and statistical graphics (Robinson, 1982).

Phan et al. (2005) refer to Minard’s hand-drawn flow maps and identify his

success with the utilization of following techniques: (i) intelligent distortion of

positions, (ii) bundling of edges sharing similar destinations and (iii)

intelligent edge routing. Examples of Minard’s flow maps selected from the

literature are given in Figure 2.3.

 21

Figure 2.3. Minard’s Original Flow Maps Prepared in the 1860s: (a) Napoleon’s
1812 campaign into Russia (adapted from Tufte, 2007), (b) Movement of travelers
on the major railroads of Europe (adapted from Friendly, 2002), (c) French wine
exports in 1864 (adapted from Tufte, 2007)

(a)

(b)

(c)

 22

Figure 2.3. Minard’s Original Flow Maps Prepared in the 1860s (cont.): (d) Europe
raw cotton imports in 1858, 1864 and 1865 (adapted from Börner and Hardy,
2008)

Approximately a century after Minard’s pioneering studies, in 1959 first examples

of computer based flow mapping were produced by the Chicago Area

Transportation Study, currently named as Chicago Metropolitan Agency for

Planning (CMAP), in order to support decision making on the location of new

interstate highways in Chicago (Tobler, 1987). In the late 1960s, Kern and Ruston

(1969) made the next significant contribution to computer-based flow mapping by

plotting single lines on a map with the aid of a dedicated computer program.

Computer based techniques for mapping geographic flows continued developing in

the late 1970s (Tufte, 2007) and during the 1980s Tobler advanced this subject

with his two studies: (i) “A Model of Geographic Movement” (Tobler, 1981) and

(ii) “Experiments in Migration Mapping by Computer” (Tobler, 1987). In 1987,

Waldo Tobler made the most prevailing contribution by developing the Flow

Mapper software by which discrete, node-to-node flows could be mapped.

Software attracted much attention later in 2003, FlowMapper was ported, recoded

to operate under Microsoft Windows with the support of Center for Spatially

Integrated Social Science (Tobler, 2003; CSISS, 2004) (Figure 2.4).

(d)

 23

Figure 2.4. (a) Tobler’s FlowMapper Software Adapted to Run under Microsoft
Windows and (b) Its Sample Output (CSISS, 2004) vs. (c) Output of Original
FlowMapper (Tobler, 1987)

Glennon and Goodchild (2004) adapted node-to-node flow mapping

capabilities of Tobler’s FlowMapper to ESRI ArcGIS 9 platform by developing

a series of VBA macros (Figure 2.5). Having attracted attention of many users

and researchers (Rae, 2009); this tool realized integration of fundamental flow

mapping techniques into an off-the-shelf, proprietary desktop GIS package

rather than standalone applications. Besides, Glennon and Goodchild (2004)

designed several flow data models for handling interaction data under GIS

regarding different types of flow scenarios which are given as: (i) node-to-node

flows where actual route is unknown (e.g. human migration), (ii) flows taking

place along networks or through routes with varying magnitude (e.g. railroad

passenger trips) and (iii) situations where node-to-node and network flows

occur in proximity (e.g. watersheds).

FlowMapper in 1987

(a)

(b)

(c)

FlowMapper in 2004

 24

Figure 2.5. Flow Data Model Tools for ArcGIS 9.x

However, visualizations of spatial interaction data created either using Tobler’s

original FlowMapper or its adaptations potentially suffer from overlapping

nodes and edge crossings especially for cases where flow data matrix includes

more than ten nodes since software lack implementations of proper clutter

reduction techniques. Although none of these were implemented in his

FlowMapper software; Tobler (1987) discussed some techniques to prevent

from visual clutter. These techniques can be listed as follows: (i) Filtering:

applying filters on flow tables based on some descriptive statistics to summarize

dense data, (ii) Clustering: spatial aggregation of adjacent nodes with respect to

predefined clustering tolerance and (iii) Bundling and Routing: merging of

individual flows into larger streams those sharing same general directions.

Besides, to improve cartographic quality, Tobler (1987) suggested rendering of

small arrows on top of larger ones so that flow lines having less magnitudes

would not be suppressed by major flows. The other minor enhancement

discussed by Tobler (1987) was the utilization of curved flow bands or arrows

with trajectories “through the air” above a map shown in perspective, which was

previously discussed by Thornthwaite (1934 in Tobler, 1987).

 25

Motivation behind all these techniques discussed by Tobler in 1987 to reduce high

dimensionality of spatial interaction data and to avoid visual clutter in flow maps,

still attract attention of many researches. For instance, Boyandin et al. (2010),

Holten and Wijk (2009), Cui and Zhou (2008), Phan et al. (2005) focused bundling

and routing of flow lines in their studies (Figure 2.6). Thomson and Lavin (1996)

discussed utilization of animation in migration maps and Wood et al. (2009), Xiao

and Chun (2009) tried to build completely new visualizations such as flow trees

and kriskograms.

SOM is a type of neural network based clustering technique utilized for reducing

high dimensionality in data while preserving topological properties of the input

surface. In VIS-STAMP software, Guo et al. (2006) offered utilization of SOM

technique for multivariate clustering of flows. In his further study focusing on flow

mapping and multivariate visualization of large spatial interaction data, Guo

(2009) employed hierarchical clustering, data mining techniques and SOM in

migration data under VIS-STAMP (Figure 2.6). However, limited cartographic

functionality offered in VIS-STAMP is criticized by Adrienko et al. (2008).

Figure 2.6. Methods for Reducing Visual Clutter: (a) Flow Map Layout: Migration
from California between 1995 – 2000 using edge routing and layout adjustment
(Phan et al., 2005), (b) JFlowMap: Refugee flows between countries in 2008 with
bundled flow lines (Boyandin et al., 2010)

(a) (b)

 26

Figure 2.6. Methods for Reducing Visual Clutter (cont.): (c) VIS-STAMP: SOM
visualization (bottom left), parallel coordinate plot (bottom center) and output
migration map between counties between 1995 – 2000 with hierarchical regions
(right) (Guo, 2009)

In addition to these studies, other advances in analysis and mapping of spatial

interaction data are presented below.

In 1990, as a result of the collaboration between Utrecht University and Gadjah

Mada University in Indonesia, a stand alone application known as Flowmap was

developed (Geertman et al., 2003). Flowmap was initially released as a package to

operate under Microsoft DOS; however current releases can operate under

Microsoft Windows platform and have been successfully used in some studies

(e.g. de Jong and van Eck Ritsema, 1996; van Eck Ritsema and de Jong, 1999).

Despite its compatibility with proprietary GIS file formats (e.g. ESRI shapefile,

MapInfo mif/mid) it is not yet widely used (Boyandin et al., 2010) which may be

arising from its standalone design. In its official website, developers of Flowmap

state that “Flowmap is not a general purpose GIS. In fact, its spatial analysis tools

and functionalities are rather basic. It is specifically designed to be used in

combination with a Database Management System (DBMS) and a mapping system

and/or general purpose GIS.” (Flowmap, 2013) (Figure 2.7)

(c)

 27

Figure 2.7. Sample Flow Map Created in Flowmap v7.3 between Discrete Nodes
with Straight Line Segments

Other applications allowing for some forms of flow mapping can be given as

follows: (i) MapInfo by means of MapBasic program “Cre8Line” to draw

lines between discrete nodes; (ii) O’Malley’s (1998) Desire Line Maker

extension for ArcView 3.x which can produce flow maps from either a

combination of shapefile and data table or a data table with origin and

destination coordinate information; (iii) ET GeoWizards extension for

ArcGIS 9.x for node-to-node flows; (iv) Caliper’s GIS based transportation

planning software TransCAD for drawing transport desire lines between trip

generation zones or nodes (Figure 2.8). However, it should be noticed that

except from TransCAD neither of these software offers any specific built-in

tools for reducing visual complexity that arises especially when working with

dense datasets.

 28

Figure 2.8. Trip Desire Lines between Origin and Destination Locations Created
by Using TransCAD v5

Considering the development efforts that have been made in the last few decades

to discover the full potential of GIS in every aspect, handling and visualization of

spatial interaction data under GIS remain underutilized, which this study intends to

contribute. Thus, its potential should be developed if the path from spatial

interaction data to spatial information and knowledge is to be made clear (Longley

et al., 2005).

2.3. Review and Comparison of Visual Clutter Reduction Techniques

In this part, review of visual clutter reduction techniques selected from the

literature is given together with a taxonomy study presenting the benefits and

shortcomings of these techniques.

In their study reviewing the developments in multidimensional, multivariate

visualizations, Wong and Bergeron (1997) reveal visual clutter problem by stating

“scientists have to deal with data that is many thousand times bigger than the

number of pixels on display”. Situation is the same for flow mapping; amount of

spatial interaction data could be very large while visual displays are relatively

 29

small. Thus, visual clutter reduction techniques must be used to ensure preparation

of clear, understandable visualizations from which users can obtain knowledge.

Otherwise, plotting too much data on too small an area will result in visual clutter

which diminishes the usefulness of visualization. Besides, problem is much severe

if the users of spatial interaction data focus on explorative visualization where the

potential information and knowledge locked within the mass of data is unknown

(Ellis and Dix, 2007).

Below, brief review of selected studies discussing clutter reduction techniques are

presented in chronological order.

In the early 90s, Leung and Apperley (1994) presented a taxonomy study on

distortion-oriented visualizations. Although visual clutter problem is not directly

discussed in this study, in the conclusion they state that “non-distortion techniques,

such as information suppression, should be investigated further since they are

potentially powerful”. A decade after Tobler (1987) identified visual clutter

problem arising in flow maps mainly due to large spatial interaction tables, Keim

(1997) discussed sampling, querying, segmentation and aggregation as techniques

for reducing the amount of data to be displayed. Card et al. (1999) proposed user

interaction into the process of data visualization, mapping and mentioned

techniques as zooming, magic lens, context focusing and dynamic querying which

are latter discussed as clutter reduction techniques in the taxonomy study of Ellis

and Dix (2007). Comprehensive reviews of data clustering algorithms are

performed by Jain et al. (1999) and Murtagh (2000). Although these studies did

not directly keep focus on visual clutter reduction they presented methods for

preprocessing mass data into manageable sets.

In his taxonomy, discussing strategies for multidimensional data visualization,

Ward (2002) states following placement principles: (i) position derived from the

data (e.g. node coordinates), (ii) degree of overlaps allowed (e.g. tolerance for

edge crossings of flow lines), (iii) display utilization (e.g. screen resolution,

allocation) and (iv) spatial displacement for improving visibility (e.g. topological

 30

distortion of base map). In his study, Ward (2002) also recommended user control

over these placement principles since they are a tradeoff between efficient display

use, amount of occlusion and distortion.

Ellis and Dix (2007) divided clutter reduction techniques into three groups in their

taxonomy study principally keeping focus on 2D visualizations (Table 2.1).

Table 2.1. Visual Clutter Reduction Techniques (adapted from Ellis and Dix, 2007)

 Clutter Reduction Techniques

Sampling

Filtering

Change Point Size

Change Opacity

Appearance

Clustering

Point / Line Displacement
Spatial Distortion

Topological Distortion

Temporal Animation

Under the appearance group (Table 2.1), Ellis and Dix (2007) list the techniques

that affect the look of data. Changing point size and opacity are self-explanatory

techniques. Clustering results in different representations such as bundle of

individual lines or group of points, thus this technique is also listed under

appearance group. Filtering and sampling techniques are also included into the

appearance group since they have a direct influence on appearance; such as items

may disappear as a direct result of filtering. Ellis and Dix (2007) explain the

difference between sampling and filtering as sampling is the random selection of a

subset from the whole dataset whereas filtering is the selection of a subset from the

whole dataset that satisfies a given criteria. Thus, if the user needs to focus on a

specific set of data or has an insight of what might be interesting then filtering is

ideal; otherwise sampling provides a way to explore the data without

preconceptions.

 31

Spatial distortion techniques focus on displacement of points, lines and distortion

of base plane. Point, line displacement technique adjusts the position of each data

item. Topological distortion stretches the background, base map either non-

uniformly (e.g. fisheye) or uniformly (e.g. zoom) by also including data items

plotted on it. Point, line displacement techniques do not alter the base map or

background plane, but points, lines may be plotted in slightly different positions

than their actual coordinates. For the case of topological distortion, since this

technique distorts the base map by including the map items (e.g. different map

projections), features are relatively in their right positions, but space has changed.

Animation, which can be explained as visualization of map series in a successive

order, is mentioned in the literature (Bruijin and Spence, 2000) in relation to

clutter reduction; thus Ellis and Dix (2007) include this technique under temporal

category.

In their study, evaluating clutter reduction techniques for information

visualization, Ellis and Dix (2007) define eight major benefits from the aspect of

user and system to compare these techniques. These criteria include; (i) avoiding

overlaps, (ii) retaining spatial information, (iii) local applicability, (iv) scalability,

(v) adjustability, (vi) capability to show point/line attributes, (vii) capability to

discriminate points/lines and (viii) capability to show overlap density. In the next

paragraph, possible benefits of each criterion are discussed briefly.

Avoiding overlaps directly reduces clutter thereby gives the ability of identifying

underlying patterns and avoids the loss of information by giving more display

space to features. For any type of geospatial data, retaining spatial information,

coordinate pairs defining positions of points is significant. However, the accuracy

to which users can measure the absolute position of a point is argued by Ellis and

Dix (2007) and relative positions are considered to be more important than the

absolute positions of features especially when searching for patterns in geospatial

data. Local applicability stands for implementation of any clutter reduction

algorithm limited to a specific region or regions of the display. Benefits of

 32

localization include; capability of reducing clutter in localized regions in order to

reveal information underneath, allowing users to investigate items in detail whilst

keeping the general context, avoiding possible information loss in low density

areas when reducing clutter in high density areas. Scalability is a desirable

property in any information system, thus clutter reduction techniques that are

capable of handling large datasets are desirable. As Ellis and Dix (2007) state,

most of the visualizations are interactive and allow user control up to some degree.

Adjustability criterion is related with the ability of adjusting parameters of the

system that have an influence on the degree of visual clutter. Possible benefits of

adjustability are the ability of adjusting sampling rate to desired level in order to

see patterns (Dix and Ellis, 2002), interactive adjustment helps users to understand

cluster distribution (Chen and Liu, 2003). Capability of showing point/line

attributes is beneficial when displaying multivariate data; with techniques

providing this capability user has the possibility of mapping flow nodes and flow

lines with color, size and opacity based on desired attribute. Capability to

discriminate individual points or lines in a crowded display helps to differentiate

overlapping points (Brodbeck et al., 1997) and reduce apparent clutter by making

each cluster of lines distinct (Fua et al., 1999). Ellis and Dix (2007) suggested that

if over plotting is present in display, users should be aware of this; otherwise they

may not realize that data may remain hidden from their view. As Wegman (1996)

stated, capability of showing overlap density help users to discriminate individual

lines such as outliers.

Considering both the visual clutter reduction techniques listed in Table 2.1 and

eight criteria explained in the previous paragraph, a comparison of clutter

reduction techniques versus plotting criteria is given in Table 2.2. It should be

noted that the purpose of this classification is not to prefer any technique over

others; on the contrary the aim is to present a systematic comparison in order to

create a better understanding about the strengths and weaknesses of different

approaches.

 33

Table 2.2. Comparison of Visual Clutter Reduction Techniques (adapted from
Ellis and Dix, 2007)

av
oi

d
s

ov

er
la

p
s

re
ta

in
s

sp
at

ia
l

in
fo

rm
at

io
n

lo
ca

l
ap

p
li

ca
b

il
it

y

sc
al

ab
il

it
y

ad
ju

st
ab

il
it

y

ca
p

ab
le

 t
o

sh
ow

 p
oi

n
t/

li
n

e
at

tr
ib

u
te

s

ca
p

ab
le

 t
o

d
is

cr
im

in
at

e
p

oi
n

ts
/l

in
es

ca
p

ab
le

 t
o

sh
ow

 o
ve

rl
ap

d

en
si

ty

sampling possibly       

filtering possibly       

point size possibly      possibly 

opacity partly   *  * * *

clustering possibly partly *   partly * possibly

point/line
displacement * *   possibly  possibly 
topological
distortion

possibly possibly      *

animation *  * * *   *

 satisfies criterion  does not satisfy criterion * some exception
possibly : criterion is met in some situation but not in others partly : criterion is partly met in some situations

With reference to Table 2.2, not all clutter reduction techniques avoid overlap. Since

points and lines are not displaced in sampling technique, it cannot avoid overlap

completely. However, sampling can be used successfully to reveal hidden patterns

(Ellis and Dix, 2007). Besides, Ward (2002) suggests that an acceptable amount of

overlap can be tolerated and allowing users to adjust sampling rate may be an

optimum solution. As sampling, filtering cannot completely avoid overlapping; but

it can reveal desired relationships for the chosen data range. Rendering large points

may conceal other points underneath those plotted earlier. Thus reducing point sizes

to optimum level may be beneficial. However, there are trade-offs between overlap

and points size; besides screen space need to be large enough to see the required

detail (Derthick et al., 2003). Although change in opacity cannot avoid overlap, it

can reveal underlying or partially overlapping points. By means of clustering, the

number of data items may be reduced to simplify the plot. So, clustering may be

used to avoid overlaps by either representing a group of points by a single point or a

Clutter
Reduction
Technique

Criteria

 34

group of lines by a single line or band (Ellis and Dix, 2007). Although point, line

displacement algorithms are specifically designed to avoid overlaps, they are strictly

limited by the number of pixels on the display and human visual perception.

Topological distortion involves stretching the base map either uniformly (e.g.

zooming) or non-uniformly (e.g. fisheye lens) to give extra display space to the map

features. However, as discussed in Phan et al. (2005), it may not be completely

possible to avoid overlapping in flow maps unless additional techniques, such as

edge routing and flow bundling, are implemented. In animation technique, rapid

serial visual presentation (de Bruijn and Spence, 2000) may avoid overlaps by

showing a stack of images to user in quick succession.

Sampling, filtering, changes to opacity and point size; all retain spatial information.

Clustering, by default, loses individual spatial information; however it keeps

aggregated spatial information for the clusters. The higher the number of

overlapping points, the greater the distortion required to accommodate these points

without overlaps. However, spatial information actually lost does not completely

depend on the new displacement since relative positions after displacement are still

representative in terms of spatial adjacency which was identified by Ellis and Dix

(2007) as a more determining factor than absolute positions. Case is also analogous

to topological distortion technique. However since base plane is being stretched,

Ellis and Dix (2007) argued that spatial information could be retained as long as

sufficient landmarks are preserved on the map.

Clustering is performed on similarity measures and does not necessarily maintain

any spatial locality. Thus, performing local operations such as passing a lens over a

set of points to examine clusters would be meaningless.

Sampling, filtering and clustering techniques can be considered as scalable since all

these techniques deal with large datasets and inherently reduce the number of

plotted points. However, reducing the point size is limited to the available

resolution of the display and visual perception; thus categorized as not scalable. For

opacity, Healey et al. (1995) suggested that it is only useful up to five overlapping

 35

items; thus allows very limited scalability. Utilization of topological distortion to

very large number of data items would lead to a significant spread of points which

results unmanageable distortion from the point of user. De Bruijn and Spence

(2000) argued that some animation techniques showing data items in sequence can

deal with very large datasets; however the time required to show all data should

need to be taken into account.

Adjustability criterion is related to whether the degree of clutter reduction can be

adjusted interactively by the user. Ellis and Dix (2007) proposed that sampling

rate, dynamic query range, point size, opacity and to some extent cluster size can

all be adjusted by the user. However, the amount of spatial displacement depends

on the data density. The rate of animation rate can also be adjusted; however this

has no effect on the clutter reduction.

All techniques apart from opacity and clustering do not have adverse effect on the

utilization of symbology for points or lines (e.g. color, texture). However, reducing

the opacity diminishes the significance of points, especially color; besides for

clustering symbology is applied based on aggregated values rather than individual

features.

As Ellis and Dix (2007) also stated, it is desirable to distinguish between individual

points or lines so in a crowded display. A side effect of increasing point size was

criticized by Ellis and Dix (2007) as giving additional prominence to outlier data

which tend to be in sparse areas of the map. Thus, it may lead a distorted view of

the data distribution. Opacity is used to discriminate overlapping lines, especially in

association with clustering technique. However, as Healey et al. (1995) stated,

opacity is only useful when up to five items overlap. As an implementation of

point, line displacement technique; Wong and Bergeron (1997) discussed curving

lines with edge lens technique to disambiguate the connected nodes of a graph.

Fekete and Plaisant (2002) discussed that with careful adjustment of opacity, users

can gain insight about overlap density. Subsequent to clustering, although

 36

aggregated attributes can be shown with proportional symbology (e.g. applying

gradual color proportional to the number of items in the cluster), opacity remains

the only clutter reduction among others that promotes visual indication of overlap

density.

2.4. Review and Comparison of Existing Flow Mapping Software

Under this heading characteristics of several flow mapping applications are

explored. This involves the review of several applications especially designed for

flow mapping (e.g. Tobler’s Flow Mapper, JFlowMap etc.) together with other

software which are not solely developed for flow mapping but similar or

comparable kind of functionality (e.g. TransCAD, Gephi).

The motivation in performing this review is not the determination of the “best”

flow mapping application or choosing one tool over another. In contrast, the

motivation is to compare these applications to understand the current situation

together with the strengths and weaknesses of existing flow mapping applications

for rationalizing “What to be implemented in FlowMapper”. Besides, by exploring

general characteristics and features of these applications, current challenges and

common problems in development of a flow mapping application are tried to be

identified. So that, some structural and functional requirements can be determined

for FlowMapper plugin.

Although there are only a few applications specifically designed for flow mapping,

there are some on the market that offer this kind of functionality even though

many of them lack GIS integration. Some of these applications are already

introduced while reviewing history and advances in flow mapping. For example;

in Figure 2.4 Windows version of Tobler’s Flow Mapper (Tobler, 1987; CSISS,

2004), in Figure 2.5 Flow Data Model Tools for ArcGIS 9 (Glennon and

Goodchild, 2004), in Figure 2.6 Flow Map Layout (Phan et al., 2005), JFlowMap

(Boyandin et al., 2010) and VIS-STAMP (Guo et al., 2006; Guo, 2009), in Figure

 37

2.7 Flowmap (Flowmap, 2013) and in Figure 2.8 TransCAD are presented with

their main user interfaces under previous headings. Yet, it is clear that these are

not the only available applications on the market in terms of establishing links

between nodes; in other words creating inter-nodal flow lines. For example, Gephi

is one of such software that is worth mentioning before presenting a side-by-side

comparison. Bastian et al. (2009) define Gephi as open source network exploration

and manipulation software. Based on the information on its website (The Gephi

Consortium, 2014), Gephi offers highly customizable symbology and labeling

options for exploring and visualizing networks. Besides, it also offers filtering,

node clustering and edge bundling algorithms which are similarly included in

JFlowMap (Boyandin et al., 2010). From all these aspects, Gephi may appear as a

perfect tool for flow mapping. However, Gephi has no GIS integration; meaning

that users cannot use their GIS datasets in Gephi. Yet, until the release of “Export

to SHP” plugin in 2013, there was no option for exporting created flow features to

any GIS file format in Gephi. Thus, rather than a GIS integrated, specially

designed flow mapping tool; Gephi should be considered as a fully featured, multi

purpose network exploration and visualization tool that has roots in graph theory.

Apart from Gephi, there are other minor tools for creating links between nodes.

For example, by using the “XY to Line” tool that is located under ArcGIS

ArcToolbox, it is possible to create lines between origin and destination nodes.

Similar operation can be performed by using the “Cre8Line” MapBasic program

under MapInfo. However, neither of these tools can handle interaction tables and

calculate flow related attributes such as net or gross flow magnitudes. Thus, it is

not convenient to consider this kind of line creation tools as flow mapping

applications. Based on the findings above, both Gephi and other minor tools

designed for line generation are excluded from the side-by-side comparison given

in Table 2.3. On the contrary, seven different flow mapping applications are listed

on this table together with the latest release of FlowMapper plugin to give better

comparison against existing software.

Performing an in depth review of a computer program involves detailed

examination of each feature and requires long term experience with that software.

 38

Regarding seven different flow mapping applications listed in Table 2.3, this kind

of detailed survey should be considered as a separate study which is beyond the

scope of this study. Since the intention in performing this review is not the

determination of “best” flow mapping application or choosing one tool over

another, these applications are examined on the basis of their general

characteristics. In other words, to understand the current situation of existing flow

mapping software, rather than applying a quantitative methodology, a qualitative

comparison is performed with respect to several criteria which can be given as

follows; type of application, multi platform support, installation method, runtime

requirements, licensing, GIS integration, GUI support, continuity of development

and availability of visual clutter reduction techniques.

Table 2.3. Comparison of Existing Flow Mapping Software

Criteria

F
lo

w
 M

ap
p

er

(T
ob

le
r,

 1
98

7)

(C
S

IS
S

, 2
00

4)

T
ra

n
sC

A
D

(C

al
ip

er
 C

or
po

ra
tio

n,
 2

01
4)

F
lo

w
m

ap

(F
lo

w
m

ap
, 2

01
3)

(G

ee
rt

m
an

 e
t a

l.,
 2

00
3)

F
lo

w
 D

at
a

M
od

el
 T

oo
ls

fo

r
A

rc
G

IS

(G
le

nn
on

 &
 G

oo
dc

hi
ld

, 2
00

4)

F
lo

w
 M

ap
 L

ay
ou

t
(P

ha
n

et
 a

l.,
 2

00
5)

V
IS

-S
T

A
M

P
 &

G

ra
p

h
R

E
C

A
P

 &
 F

lo
w

M
ap

(G

uo
 e

t a
l.,

 2
00

6;
 G

uo
, 2

00
9)

JF
lo

w
M

ap

(B
oy

an
di

n
et

 a
l.,

 2
01

0)

F
lo

w
M

ap
p

er
 f

or
 Q

G
IS

Application
Type

Standalone Standalone Standalone
Add on as

VBA
macro

Standalone
Standalone

(4)
Standalone

Add on as
Python
plugin

Supported
Platforms

MS. Win. MS. Win. MS. Win. MS. Win.
MS. Win.

Linux
MacOSX

MS. Win.
Linux

MacOSX

MS. Win.
Linux

MacOSX

MS. Win.
Linux

MacOSX

Installation
Method

Binary
setup,

installer

Binary
setup,

installer

Binary
setup,

installer

Available
as mxd
project

file

Manual Manual Manual

One click
via QGIS

plugin
manager

Requirements

.NET
Framework
Runtime &

Adobe
SVG

Viewer

N/A N/A
ArcGIS

v9.x

Java
Runtime
5 (JRE or

JDK)

Java
Runtime
6 (JRE or

JDK)

Java
Runtime
6 (JRE or

JDK)

QGIS
v2.x

 39

Table 2.3. Comparison of Existing Flow Mapping Software (cont.)

Criteria

F
lo

w
 M

ap
p

er

(T
ob

le
r,

 1
98

7)

(C
S

IS
S

, 2
00

4)

T
ra

n
sC

A
D

(C

al
ip

er
 C

or
po

ra
tio

n,
 2

01
4)

F
lo

w
m

ap

(F
lo

w
m

ap
, 2

01
3)

(G

ee
rt

m
an

 e
t a

l.,
 2

00
3)

F
lo

w
 D

at
a

M
od

el
 T

oo
ls

fo

r
A

rc
G

IS

(G
le

nn
on

 &
 G

oo
dc

hi
ld

, 2
00

4)

F
lo

w
 M

ap
 L

ay
ou

t
(P

ha
n

et
 a

l.,
 2

00
5)

V
IS

-S
T

A
M

P
 &

G

ra
p

h
R

E
C

A
P

 &
 F

lo
w

M
ap

(G

uo
 e

t a
l.,

 2
00

6;
 G

uo
, 2

00
9)

JF
lo

w
M

ap

(B
oy

an
di

n
et

 a
l.,

 2
01

0)

F
lo

w
M

ap
p

er
 f

or
 Q

G
IS

Licensing Freeware

Commercial
Std. Lic.
12.000
USD

Edu. edt.
Freeware

&
Pro. edt.

Commercial

Open
Source

Open
Source
BSD

Freeware

Open
Source
Apache
Lic. 2.0

Open
Source
GPL v2

GIS
Integration

No
Yes (2)
(GIS-T)

Partially
(Export,
Import

GIS
formats)

Yes
(as

ArcGIS
macro)

No No No
Yes

(as QGIS
Plugin)

GUI Based Yes Yes Yes Yes Yes Yes Yes Yes

Initial
Release Date

2004 (1) 1985 1990 2004 2005 2006 2009 2012

Current
Release

1.1 5.0 7.4.2 0.7 0.1 Alpha N/A 0.16.6 0.4

Developed
with

VB .NET Proprietary Unknown VBA Java Java Java Python

Development
Depreciated

Unknown No No Yes (3) Unknown No Unknown No

Visual
Clutter

Reduction
Techniques

Limited
(Size &
Color)

Yes
(Advanced
Symbology

&
Filtering)

Yes
(Advanced
Symbology

&
Filtering)

No

Yes
(Advanced
Symbology

& Edge
routing &

Node
adjust.)

Yes
(Advanced
Symbology
& Filtering

& Node
Clustering
& SOM)

Yes
(Advanced
Symbology
& Filtering

& Flow
Bundling
& Node

Clustering)

Yes
(Advanced
Symbology

&
Filtering)

Website

Flow Mapper: www.csiss.org/clearinghouse/FlowMapper
TransCAD: www.caliper.com/tcovu.htm
Flowmap: http://flowmap.geo.uu.nl/index.php
Flow Data Model Tools for ArcGIS: http://dynamicgeography.ou.edu/flow
Flow Map Layout: http://graphics.stanford.edu/papers/flow_map_layout
VIS-STAMP & FlowMap : http://www.spatialdatamining.org/software
JFlowMap: http://ilya.boyandin.me/works/2010/10/01/jflowmap
FlowMapper for QGIS: http://plugins.qgis.org/plugins/FlowMapper

(1) Originally developed by W. Tobler in 1987; further ported to Windows by CSISS in 2004.
(2) TransCAD is a GIS based application designed for transportation planning
(3) ESRI discontinued VBA support in ArcGIS with the release of 10.1.
(4) VIS-STAMP is for multivariate analysis. GraphRECAP & FlowMap is an integrated tool for
exploring large flow datasets.

 40

Based on Table 2.3, it can be concluded that excluding the FlowMapper plugin for

QGIS and Flow Data Model Tools developed in VBA as an add on to ArcGIS 9,

the rest of the applications run as standalone software. However, it should be noted

that since VBA support in ArcGIS is discontinued with the release of version 10.1,

it is not possible to run Flow Data Model Tools on current releases of ArcGIS.

This makes the situation for GIS integration even worse. Except from QGIS

FlowMapper plugin, among all these applications listed in Table 2.3, there is

neither freeware nor open source software for flow mapping that offers GIS

integration or support for common GIS file formats. One of the reasons of this lack

of integration may be due to standalone design preference. Excluding TransCAD,

which is a GIS based commercial application for transportation planning, unless

core GIS capabilities are embedded or extensive import export capabilities are

added to support common GIS formats, effective GIS integration cannot be

realized in standalone applications. Furthermore, implementation of these

capabilities in a standalone application requires additional coding effort.

Standalone design of these flow mapping applications has also some impacts on

installation requirements. Based on Table 2.3, three of these applications, namely

Flow Map Layout, VIS-STAMP and JFlowMap do not come with any user

friendly installer. This means users must perform installation either by manually

locating required files or by using command line prompts to install and execute the

software. It is clear that this type of installation may be confusing for average users

who are accustomed to GUI based setups. Moreover, the situation becomes worse

when these applications depend on external libraries for execution or require

installation of runtime environment. For example; although JFlowMap is a fully

GUI based software that offers several visual clutter reduction techniques, it needs

installation of Java Runtime Environment on the system and needs to be manually

executed from the command line by pointing to the “jar” file which is not the most

user friendly way of running a program. In contrast to JFlowMap, Tobler’s Flow

Mapper has a wizard like user friendly setup for Windows. However, to run

Tobler’s Flow Mapper on Windows platforms, users must also install .NET

Framework Runtime and Adobe SVG Viewer on their system which adds some

 41

extra steps to the installation process. On the other hand, FlowMapper plugin for

QGIS does not require installation of any additional library which is not already

included in QGIS and can be installed from the QGIS plugin manager just by one

click.

All applications included in this review are GUI based and offer menu driven

structure for performing operations. While all work on Windows platforms, owing

to multi platform support of Java language, Flow Map Layout, VIS-STAMP and

JFlowMap can also work on Linux and MacOSX environment. Similarly

FlowMapper plugin can also work on multiple platforms thanks to cross platform

support of Python language and QGIS development environment.

From the perspective of licensing concerns, there are both open source and

proprietary applications. Regarding the proprietary applications, they are either

offered as freeware software (e.g. Tobler’s Flow Mapper, Educational edition of

Flowmap) or require non-free commercial license (e.g. TransCAD, Professional

edition of Flowmap). On the commercial software side, TransCAD appears as a

featured GIS application that also includes tools for making detailed analyses on

origin destination matrices and creating flow lines between these locations which

are called “desire lines” in analytical transportation planning. However this comes

at a price of more than 10.000 USD for the standard version (Caliper Corporation,

2014) which is obviously out of the purchasing limits of most GIS users. On the

free and open source software side, there are four applications including QGIS

FlowMapper plugin. Based on this finding, it can be inferred that free and open

source development is also a preferred method for developing applications in

specific research domains such as flow mapping.

One of the most common challenges in flow mapping is visual clutter problem on

which most researchers have focused (Phan et al., 2005; Guo, 2009; Boyandin et

al., 2010). Under the previous heading, in Table 2.1, several visual clutter

reduction techniques are presented from the literature. While some techniques

 42

bring about spatial distortion in data, some affect only the appearance of data

which can be defined as spatially non-distorting techniques.

Based on Table 2.3, almost all flow mapping applications, except for Tobler’s

Flow Mapper and Flow Data Model Tools for ArcGIS, offer some kinds of non-

distorting techniques such as filtering or customizable symbology for reducing

clutter and generating cartographically more appealing maps. Besides, three

applications implement node clustering (e.g. Flow Map Layout, VIS-STAMP and

JFlowMap), flow line routing (e.g. Flow Map Layout) and flow line bundling (e.g.

JFlowMap) algorithms which involve rearrangement of flow data (Ellis and Dix,

2007). Although implementation of these algorithms result appealing flow maps,

they imply a tradeoff between keeping the original spatial arrangement of data and

avoiding visual clutter.

One of the intentions of performing a literature survey on flow mapping by means

of reviewing visual clutter reduction techniques and existing flow mapping

software is for properly determining functional requirements of FlowMapper and

also rationalizing them. Based on the findings of this chapter, flow scenario to be

focused in FlowMapper is determined as node-to-node flows taking place through

uncertain routes. With reference to the reviews regarding visual clutter reduction

techniques and comparison of existing flow mapping software, non-distorting

reduction techniques such as filtering of flow data and implementation of

advanced symbology options are determined as the clutter reduction techniques to

be implemented in FlowMapper. Besides, several requirements of FlowMapper

such as GUI based design, hassle free installation, multi platform support, GIS

integration and inclusion of visual clutter reduction techniques are rationalized by

reviewing the current status of flow mapping applications.

 43

CHAPTER 3

FREE AND OPEN SOURCE SOFTWARE

In the previous chapter, fundamental concepts of flow mapping are discussed

together with a brief history that presents advances in flow mapping. Besides,

visual clutter reduction techniques and existing flow mapping software are

reviewed for better identifying maturity and capabilities of these applications.

Based on the findings of Chapter 3, flow scenario to be focused in FlowMapper is

identified as node-to-node flows where actual route is negligible. Besides several

requirements to be met in FlowMapper are identified as GIS integration, user

friendly GUI and installation, multi platform support and inclusion of visual clutter

reduction methods.

The aim of this study involves development of a free and open source flow

mapping application that is fully integrated to GIS. Thus, before starting

development, fundamentals of open source development should be investigated

and the GIS component to integrate the FlowMapper application should be

determined.

From the perspective above, at the beginning of this chapter, a general overview is

given regarding definitions and concepts in free and open source software. Then,

existing free and open source GIS applications are reviewed with respect to their

popularity, development environments, technical, economic and marketing

potentials. Besides, as a free and open source desktop GIS application, QGIS is

reviewed in detail. At the end of this chapter, motivation for free and open source

development and reasons for selecting QGIS as the main component to develop

the FlowMapper plugin are presented.

 44

3.1. Overview of Free and Open Source Software Concept

Owing to valuable development efforts made by open source developers in the

last few decades and anonymous contributions from open source software

communities; today free and open source software gamut offers such great

diversity that it is almost possible to find more than one free and open source

software almost for any user for any purpose. There are such successful, mature

open source projects that some of these software are competing with their well

known proprietary, commercial alternatives. In Table 3.1, well known

commercial products are listed with their popular free and open source

alternatives.

Table 3.1. Free and Open Source Software Alternatives to Well Known
Commercial Software Products

Category
Commercial &

Proprietary Software
Free & Open Source

Alternative

Operating System
Microsoft Windows

Apple Mac OS X
iOS

Linux Distributions such as
Ubuntu, openSUSE, Pardus

Android

Offfice Suite
Microsoft Office for Windows

Microsoft Office for Mac
LibreOffice
NeoOffice

Database
Microsoft SQL Server

Oracle Database + Spatial
MySQL

PostgreSQL + PostGIS

GIS
ESRI ArcGIS Desktop,

MapInfo
GRASS, Quantum GIS,

uDig, openJUMP

Multimedia

Adobe Photoshop
Adobe Illustrator
Adobe Premiere
Adobe Audition

Windows Media Payer

The GIMP
Inkscape

Avidemux
Audacity

VLC Media Player

Desktop Publishing Adobe PDF Reader (Acrobat) PDFCreator

Web Browser &
Mailing Client

Microsoft Internet Explorer
Microsoft Outlook

Mozilla Firefox
Mozilla Thunderbird

Utilities
CuteFTP
WinZip

FileZilla
7Zip

 45

In its most abstract form, free and open source software, sometimes referred to as

free / libre open source software, is a computer program that is developed by the

collaborative efforts of programmers and both the software and its source code are

licensed free of charge which encourages utilization of the software and

modifications, improvements to the source code.

It is possible to find similar descriptions on the websites of Free Software

Foundation (FSF) and Open Source Initiative (OSI). Free Software Foundation is a

nonprofit organization established in 1985 to support the free software movement.

According to FSF, free software means software that respects users’ freedom and

community. Thus, a program can be called as free software if the users have the

freedom to run, copy, distribute, study, change and improve the software (FSF,

2013a). Similarly, Open Source Initiative is a nonprofit organization established in

1998 to promote development and distribution of open source software. However,

OSI has coined a new term “open source” alternative to the term “free software”

due to confusion of the word “free” in English. According to OSI (2013a), free

software and open source software are two terms for the same thing; software

released under licenses that guarantee a certain, specific set of freedoms. Thus, in

general, terms "free software" and "open source software" can be used

interchangeably. In this study, as a combination of these two terms, the term “free

and open source software” is preferred and used.

Although both FSF(2013a) and OSI (2013a) make quite similar definitions for the

free and open source software concept; they disagree when defining the levels of

freedom and distribution terms that software must conform. FSF (2013a) prefers

an abstract, four point definition for software freedom while OSI (2013b) prefers a

more detailed, ten point definition. In practice, either approach server the same

goal; promoting open source development and keeping the software free but use

different language.

General Public License (GPL), which is the most widely used free software license

(OSRC, 2013), originally written for the GNU Project (an acronym for GNU is

 46

Not UNIX) by Richard Stallman who is the founder of Free Software Foundation

(FSF), guarantees four essential levels of freedom to end users (FSF, 2013a).

These are;

Freedom 0: To run the program, for any purpose,

Freedom 1: To study how the program works,

Freedom 2: To redistribute copies so you can help your neighbor,

Freedom 3: To distribute copies of your modified versions to others.

In addition to have unrestricted access to source code, OSI (2013b) defines the

distribution terms that open source software must comply as follows;

1. Free redistribution without any loyalty or fee

2. Providing source code as well as compiled form

3. Allowing modifications and derived works

4. Integrity of the Author's Source Code

5. No Discrimination against Persons or Groups

6. No Discrimination against Fields of Endeavor

7. Distribution of License to all to whom the program is redistributed

8. License Must Not Be Specific to a Product

9. License Must Not Restrict Other Software

10. License Must Be Technology Neutral

In the free and open source software environment, it carries significant

importance to distinguish between these two terms; “free” vs. “freeware”.

Freeware is software which is available free of charge but it is copyrighted by

its developer who retain the rights to modify and distribute it (The Linux

Information Project, 2006). Freeware distributions typically lack human

readable source code, thus any modifications by contributing users is

unfeasible. Freeware software licenses usually include specific expressions in

EULA (End User License Agreement) such as “can be freely copied but not

sold” or “free for personal usage only” or “prohibition of use by the military”

 47

etc. all of which limit redistribution. A quick comparison between freeware and

free (open source) software concept is presented in Table 3.2.

Table 3.2. Freeware vs. Free & Open Source Software Concept

 Freeware Free and Open Source

Description
Software that can be used free of
charge

Software that can be used, modified
and redistributed without any
restrictions.

License &
Copyright

Distributed with EULA that is specific
to the software. Copyright laws are
applicable to all components of the
software

Most popular one is GNU GPL
License. Usually only the name of the
software may be subject to copyright.

Features
All features are free of charge.
Otherwise it is called shareware or
commercial.

All features are free of charge

Distribution

Can be distributed free of charge or
maybe subject to limited distribution
for different usage purposes (e.g.
commercial, military)

Can be distributed freely for any
purpose

Source Code
Proprietary. Typically not available
and subject to copyright rights.

Always available to public access free
of charge.

Example
Adobe PDF Reader, Adobe Flash
Player, Google Talk, Google Earth,
Faststone Image Viewer

Mozilla Firefox, GIMP, VLC Media
Player, Inkscape, Notepad++,
Quantum GIS

In its most basic form, source code is a human readable statement of the intent and

mechanism of the program (Darrell, 1991). Source code, as a human readable text,

includes data structures and algorithms; thus it provides many clues about how the

program works and evolves. Practically, if the source code of software is freely

accessible; anyone who has enough programming skills can develop new features

by modifying the source code and improve the program. In the free and open

source software environment, source code is typically created with the

collaborative efforts of community developers. If a developer improves the

existing source code, other community developers start using the improved code

written by previous developer and throughout the lifecycle of software this cycle

loops. For any free and open source software project, providing unrestricted, free

access to source code has vital importance for the continuity of the project. There

 48

are more than 60 open source licenses approved by OSI (2013c), each of which

defines different rights for their users. GNU General Public License (GPL), which

is listed as the most commonly used open source software license by OSRC

(2013), legally ensures this requirement by keeping the source code open and

giving right to anyone to develop without needing to receive any permission from

any of the previous developers. However, Berkeley Standard Distribution (BSD)

License, which is listed as the fifth most popular open source software license by

OSRC (2013), permits development of proprietary derivative works from free and

open source software. Vries et al. (2008) comment on BSD license as providing

maximum level of freedom in using the source code as well as giving right for

development of closed source, proprietary software. However, this type of freedom

also brings risk of not opening the source code of derivate works.

Proprietary, closed source software is protected with copyright laws and typically

distributed in compiled binary form which is not human readable and can only be

interpreted by computers. As well as the copyright laws, binary distribution

completely disables access to the source code and prevents any unauthorized

modifications to the software. In the proprietary software market, nobody except

the commercial developer of the software has authorization to modify the source

code and privatization of the proprietary software is guaranteed with copyrights.

On the contrary, copyleft concept, pioneered by Richard Stallman, utilizes the

principles of copyright law but to keep the software free and open source.

Generally, copyleft is a method for making a program free and requiring all

modified and extended versions of the program to be free as well (FSF, 2013b).

For example, popular GNU General Public License promotes the copyleft concept.

However, some other free and open source software licenses such as BSD, MIT

and Apache Licenses are not copyleft type licenses.

One of the intentions of this study is to provide the flow mapping software to any

GIS user free of charge and keeping the source code accessible for possible

contributions in order to strengthen the continuity of software. Having the

motivation of developing domain specific software, it is logical to take the

 49

advantage of previous development efforts by studying the source code of existing

similar software. Through this approach, there is a possibility of reusing the code

rather than starting development from scratch. It is clear that this type of

development can only be ensured in free and open source environment.

3.2. Development in Free and Open Source Environment

Free and open source software is a result of collaborative development efforts.

Thus projects without an active community cannot have a long lifetime. If the

project has enough potential, it attracts attention of users and quickly builds an

active community. Project with an active community quickly reaches a mature

state. However, building an active community requires organizational and

management skills as well as development efforts.

Eric Raymond, a computer engineer and a well known open source advocate,

offers a model for open source software development known as the bazaar model

(Raymond, 1999). Contrary to the traditional model of software development, in

which roles are clearly defined; in the bazaar model roles are not clearly defined

and development takes place in a decentralized way. According to Robles (2004),

software developed using the bazaar model typically displays the following

patterns:

(i) Users should be treated as co-developers: Having free access to source

code and assuming that some users hold programming skills each user is a

potential co-developer and should be encouraged to submit improvements

to the software such as code fixes, bug reports, documentation. It is clear

that having more co-developers and an active community increase the rate

at which the software evolves since each user machine provides an

additional test platform.

 50

(ii) Early releases: To increase the level of user participation and to create

an active community, initial version of the software should be released as

early as possible.

(iii) Frequent integration: Code changes should be frequently merged into a

shared code base. By this approach, additional workload of fixing large

number of bugs prior to major releases can be avoided or reduced.

(iv) Several versions: Robles (2004) mentions the need of two different

versions in open source software development. First one is the buggier,

development version which offers more but experimental features for test

users and co-developers. Second one is the stable version with less but

tested functionality.

(v) High modularization: Structure of the software should allow parallel

development on software components.

(vi) Dynamic decision making structure: A dynamic structure is needed to

make strategic decisions depending on user requirements.

Free and open source development philosophy, discussed by Raymond (1999) and

Robles (2004) with the bazaar model, is quite similar to agile development. Agile

development methodology can be defined with the following characteristics

(Warsta and Abrahamsson, 2003):

Incremental: Small releases with rapid cycles

Cooperative: Developers constantly work together with the customer.

Straightforward: Method is easy to learn and to modify

Adaptive: Tolerating last minute changes.

In their study, Warsta and Abrahamsson (2003) discuss how open source software

development paradigm complies with the characteristics of agile development.

 51

Although there are arguments on how open source development differs from agile

development in philosophical, economic and team structural aspects; Warsta and

Abrahamsson (2003) find open source development method rather close to agile

software development.

During the development of open source software there are plenty of voluntary

tasks to be performed by the community. Preparation of user manuals, tutorials,

test data, translation of documents and graphical user interface (GUI), providing

technical support via email lists, management of project website and user forum,

bug reporting, performing initial tests prior to release, preparing installer packages

are tasks those rely on voluntary contributions.

Practically in free and open source projects, similar to agile development which

prioritizes working software over comprehensive documentation (Beck et al.,

2001), speed of development is beyond the speed of documentation. Thus,

contributions from especially advanced, experienced users are expected to prepare

valuable resource material for new, novice users such as tutorials, user guides.

Besides translations of these documents are usually prepared by voluntary efforts

of community members who are native in the target language to which the

document is being translated.

Discussion forums and email lists are valuable sources for getting support. They

are usually divided into categories according to their scope such as; developers

section for discussion of development issues, users section for questions regarding

installation and usage of the program, translation section that deals with translation

of GUI and documentation, bugs section where users can submit bug reports,

community team or project committee section for management of web sites, blogs,

mailing lists and to discuss future strategy of the software. By means of discussion

forums and email lists members can help each other and keep the community

active. After registering on forums or joining emailing lists users can follow

development progress and post messages for requesting help. However, there is

also no guarantee that all questions or support requests will be answered or met

 52

since contribution to forums and emailing lists are totally voluntary. In compliance

with the spirit of freedom, in open source projects, registrations on forums and

subscriptions to emailing lists are free of charge and open to anyone without any

discrimination.

In free and open source software projects, it is a must that source code is

accessible from internet to any user free of charge. The term codebase refers to

collection of source code used to compile a software (adapted from Janssen, 2013).

Typically codebase includes only human readable source code. Codebase is stored

in source control repositories and edited by developers. Code repository stores

large amounts of source code and utilized in multi-developer projects for

committing code changes and managing software versions. According to Ohloh

(2013), which is a free, public directory of open source software, Subversion, GIT

and CVS are the three most popular version control systems distributed under an

open source license. In open source projects, all users have read-only access to

repositories however community developers have write permissions as well.

Improvements to the source code are made by community developers unless it

contradicts the aim and scope of the project. By utilizing version control system,

community developers get a chance of working as a team on the same source code

simultaneously.

Preparation of an installation package is needed in order to ease the installation

process for users. A package usually includes an application installation file

known as setup. Since setup files are platform dependent, source code should be

compiled separately for each target operating system. For example, popular open

source desktop GIS software, Quantum GIS offers different installers for different

platforms such as executable (exe) setup file for Windows OS, DMG installer for

Mac OS X, DEB installation package for Debian and Ubuntu OS, RPM

installation package for Mandriva and Fedora OS, APK installation package for

Android Mobile OS (QGIS, 2013b). Similar to other development tasks,

preparation of setup files and installation packages in open source projects are

performed by voluntary contributions of release or packaging team.

 53

Typically, a community gathering around an open source project is not

homogeneous (Cascadoss, 2007a). Not all users are interested to become actively

involved in the project; besides not all users in the community have programming

skills. Mockus et al. (2000), who examined Apache web server development

process, found that about %80 of the source code was written by contributions of

nearly 15 core developers. Besides, a group of co-developers, nearly tenfold bigger

than the core developers group, were fixing bugs while another group of users,

which is nearly tenfold larger than the co-developers group, were reporting bugs in

software. In their study, Mockus et al. (2000) estimated nearly half million Apache

web server installations. However, total number of users submitting bug reports

was about 3.000 which indicates an active participation rate much lower than %1.

Based on these findings, community of an open source project exhibits a three

layered structure. In the first layer, core developers are surrounded by a larger

group of co-developers and testers. In the second layer, there are active users

submitting bug reports and providing support on forums and email lists. In the

third layer, largest group of users, passive consumers of the software exist.

Mockus et al. (2000) identify that although only a small part of the community

actively participates in the project, numerically it is still greater than the number

typically seen in the development of comparable proprietary software.

In free and open source development, continuity of a project can only be

guaranteed with an active community. Otherwise, project will end without

reaching enough maturity due to insufficient interest and participation. In order to

become a sustainable project, a fair and motivating governance structure should be

constructed and shared with the community. Leadership in free and open source

projects should be meritocratic. That means, members who make more valuable

contributions to project have more to say regarding the future of the project. Ideas

are freely discussed, voted between members on forums and emailing lists then

strategic decisions are taken by consensus. Project leaders must be responsive to

user concerns and ensure consensus. Otherwise, a group of developers may “fork”

the project which is briefly copying the source code to start a competing project

(Fogel, 2006). Generally, forking causes duplication of work and separation of

 54

communities. Thus, unless there is a valid reason, forking should be avoided. A

recent and well known forking activity was experienced in the multi platform,

popular office suite OpenOffice due to Oracle’s (former Sun Microsystems)

central role in the project (Paul, 2010). As a result, a group of key contributors to

OpenOffice formed a new organization called Document Foundation and forked

the project in 2010 with LibreOffice project having the intension of liberating the

project from Oracle’s control. Fogel (2006) explains the main reason for not being

true dictators in free and open source projects with this forking threat and states

that “Replicability implies forkability; forkability implies consensus.”

In commercial software market, generating revenue directly from the proprietary

software by selling license is perceived as the key factor for a successful business

model (Cascados, 2007a). However, in the free and open source software

environment, there are other business models to get financial support since selling

an open source program with a commercial license is not realistic. In Table 3.3, a

list of open source business models collected either from the literature or observed

in the market is presented with their brief descriptions.

Table 3.3. Free and Open Source Software Business Models (adapted from
Cascados, 2007a)

Model
Name

Alternative
Naming

Description Example

Dual
Licensing

Twin
Licensing

Companies offer their software with two
types of licenses; free and commercial

MySQL, Nokia
(Trolltech) Qt

Support
Seller

Product
Specialists,
Software

Provider (GPL)

Companies provide paid support for free and
open source software that they developed

Support for
Red Hat Linux

Distribution

Third Party
Support Seller

Third Party
Service
Provider

Companies provide paid support for
free and open source software that are not
developed by themselves

Support for
PostgreSQL from

EnterpriseDB

Platform
Providers

Distributor
Companies bundle several free and open
source software into a complete platform and
guarantee the quality of integrated platform

Red Hat,
Novell

 55

Table 3.3. Free and Open Source Software Business Models (cont.) (adapted from
Cascados, 2007a)

Model
Name

Alternative
Naming

Description Example

Consulting N/A
Companies provide consultancy for free and
open source software based on their
knowledge

Software as a
Service

Hosted
Strategy

Free and open source software is used to
provide access to revenue generating online
services

Google

Added Value
Providers

Software
Provider

(non-GPl)

Companies create proprietary software
derived from free and open source software

Apple,
EnterpriseDB

Accessorizing N/A
Selling services or physical items related to
free and open source software (books,
hardware, gadgets)

SourceForge,
O’Reilly

Donation N/A
Users or sponsors may donate money to
project on a volunteer basis

SourceForge,
Ubuntu, QGIS

Loss
Leader

Split OSS /
Commercial

Products

Free software is used to promote a
commercial, proprietary software

Qualcomm’s
Eudora email client

Widget
Frosting

Optimization
Strategy

Companies sell high value bundled software
and hardware components with low cost free
and open source software.

Apple Darwin on
MacOSX Server,

OracleDB on Linux

In Table 3.3, only pure forms of business models are listed. In practice,

companies mix and adapt several business models in order to create their own

sustainable models. Among these models, the most popular open source models

to create business value are the Support Seller and the Platform Provider

Models (Cascados, 2007a).

Voluntary contributions and financial support are two important factors for the

continuity of an open source project. In their study, Shapiro and David (2008)

tried to identify motivating reasons for developers to contribute to an open

source project. In Table 3.4, motives for development and motivation reasons

for choosing a project are given respectively from the most motivating to the

less.

 56

Table 3.4. Motives for Development and for Choosing a Project (adapted from
Shapiro and David, 2008)

Motives for development * Motives for choosing a project *
We should be free to modify the software we use Software being developed would be useful to me

As FS user, wanted to give back to community Technically interesting

Wanted to provide alternatives to proprietary I launched the project

Way to become better programmer Important and visible project

Best way for software to be developed Knew people working on it

Needed modification of existing software Other reasons

Needed to fix bugs in existing software

Wanted to interact with like-minded programmers

Wanted to learn how particular program worked

Liked challenge of fixing bugs in existing software

Employer wanted me to collaborate in OS

(*) Factors are listed from the most motivating (on
top row) to the less (on bottom row)

3.3. Review of Free and Open Source GIS Software

Free and open source software is becoming increasingly more reliable than it was

in the past (Chen et al., 2010). Similarly, existing free and open source GIS

software is entering a phase of refinement and enhancement (Ramsey, 2007). As

an inevitable result of this phenomenon, free and Open Source GIS software

became to provide competing alternatives to proprietary software and now exists at

every level of the spatial data infrastructure stack.

Steiniger and Bocher (2009) clarify the reasons of this growing popularity in free

and open source GIS software with reference to four indicators. First is the number

of projects initiated in the last couple of years. For example, in the last 5 years,

nearly 20 new GIS software were added to the list hosted on FreeGIS.org. Second

indicator is the increasing financial support by governmental organizations. Third

one is listed as the noticeable download rates of free and open source GIS

software. For example, during 2012, QGIS installer for Windows was downloaded

more than half million times (QGIS, 2013c). Last indicator is given as the

increasing number of use cases in free and open source GIS software such as

 57

desktop GIS applications, spatial database applications, web GIS toolkits and

development libraries which were all identified by Ramsey (2007).

In this part of the study, characteristics of different free and open source desktop

GIS software are investigated with the intention of identifying the most mature and

popular products which could provide suitable environment for the development of

flow mapping plugin. Although all free and open source projects are valuable and

include great effort, identification of mature and popular products is potentially

important since recognition and utilization level of the plugin will be a derivative

of the community size and popularity of selected GIS application. Besides, greater

and active community practically means more chance of reaching help during

development process and also documentation is more complete in mature projects.

Recent taxonomy and evaluation studies regarding GIS related free and open

source software are performed by Cascadoss (2007b), Ramsey (2007), Steiniger

and Bocher (2009), Chen et al. (2010). FreeGIS.org, MapTools.org,

OpenSourceGIS.org and OSGeo.org are several web resources that list and

promote widespread use of GIS related free and open source software. These

software lists include all types of GIS applications ranging from less known to

very popular mature projects. In September 2008, 339 and in August 2010, 351

open source GIS software were listed in FreeGIS.org (Kepoğlu, 2010) while this

number increased to 356 in May 2013. Similary, in May 2007, 238 and in

September 2008, 256 open source GIS software were listed in OpenSourceGIS.org

(Kepoğlu, 2010) while this number reached up to 350 in May 2013. Based on

these indicators, as also mentioned in Steiniger and Bocher’s (2009) study, it is

clear that open source development has boosted and the number of GIS software

projects being initiated shows a growing trend.

Open Source Geospatial Foundation (OSGeo), founded in 2006, is a non-profit

organization that provides financial, organizational and legal support to the open

source geospatial projects. GIS related free and open source projects those being

 58

officially supported by OSGeo and also other geospatial software, announced as

incubating projects as of June 2013, are listed in Table 3.5.

Table 3.5. Open Source Geospatial Projects Supported by OSGeo and Projects in
Incubation Process (adapted from OSGeo, 2013)

 Supported Projects Incubating Projects

Web Mapping

deegree, geomajas, GeoMoose,
GeoServer, Mapbender,
MapBuilder, MapFish,

MapGuide Open Source,
MapServer, OpenLayers

ZOO-Project, Team Engine

Desktop Applications GRASS GIS, Quantum GIS gvSIG, Opticks, Marble

Geospatial Libraries
FDO, GDAL/OGR, GEOS,
GeoTools, OSSIM, PostGIS

MetaCRS, rasdaman

Metadata Catalogs GeoNetwork pycsw

Outreach Projects
Public Geospatial Data,

Education and Curriculum,
OSGeo Live

MapTools.org is another web resource for users and developers interested in open

source geospatial applications. As of June 2013, GIS related software either hosted

or listed in MapTools.org are given in Table 3.6.

Table 3.6. Open Source Geospatial Projects Hosted or Listed by MapTools.org
(adapted from MapTools.org, 2013)

 Project

Packaged Tools and Utilities MS4W, OS Geo-Live

Web Tools

CartoWeb, Chameleon (Hosted), Dracones, Fusion,
GeoEXT, GeoMOOSE, Ka-Map (Hosted), Mapbender,

MapFish, MapServer, OpenLayers, OWTChart (Hosted),
PHP MapScript (Hosted)

Desktop Tools GRASS, OpenEV, Quantum GIS, uDig

Utilities and Libraries
AVCE00 (Hosted), DGNLib (Hosted), GDAL, GeoTiff,

MITAB (Hosted), OGR, Proj4, Shapelib (Hosted)

 59

Ramsey (2007) presented an overview of free and open source GIS projects by

making taxonomy with respect to the programming language that the project is

built on such as C, JAVA, .NET. Besides, Ramsey (2007) added a fourth

category to the taxonomy for the web applications which do not fall into a

language category. Web applications include various toolkits and web services

which provide browser based interface to spatial services (e.g. mapping servers).

Applications, libraries, toolkits, frameworks and server based applications in this

taxonomy study are listed in Table 3.7.

Table 3.7. Taxonomy of Free and Open Source Geospatial Projects with Respect
to Programming Languages (adapted from Ramsey, 2007)

Category Shared Libraries Applications

C / C++
GDAL/OGR, Proj4, GEOS, Mapnik,
FDO

MapGuide Open Source, UMN
Mapserver, GRASS, QGIS, OSSIM,
TerraLib, GMT, PostGIS

JAVA JTS Topology Suite, GeoTools
GeoServer, degree, JUMP,
OpenJUMP, Kosmo, gvSIG,
OpenMap, uDig

.NET / C# NTS, Proj.Net, SharpMap WorldWind, MapWindow

Toolkits Frameworks Servers
WEB

Projects MapBuilder, ka-Map,
OpenLayers

Mapbender, Cartoweb
TileCache,
FeatureServer

Steiniger and Bocher (2008) present an overview of free and open source

projects strictly focused on developing desktop GIS software. Desktop GIS

software is a mapping application which is installed and runs on a personal

computer or a workstation and allows users to display, edit, query and analyze

geographic data and information linked to locations (ESRI, 2013). Project

evaluation criteria referred to Steiniger and Bocher (2008) are presented in

Table 3.8.

 60

Table 3.8. Evaluation Criteria for Free and Open Source Desktop GIS Software
(adapted from Steiniger and Bocher, 2009)

Criteria Explanation & Possible Entries

Application Focus Viewing, Editing, Analysis

User Level
Novice (Viewing), Experienced (Editing, Basic Analysis),
Expert (Analysis), Research (Scripting, Programming)

Supported OS MS Windows, Linux, Apple Mac OS X

License License of core platform. GPL, LGPL etc.

Development Platform C, C++, C#, JAVA, VB .NET, QT4, Python

Main Data Types
Supported vector & raster formats. SHP, DXF, GeoTIFF,
ECW etc.

Features, Functionality
Database Connection Support, Thematic Mapping,
Scripting, Coordinate Transformations, Topology,
Advanced Editing, Surface Operations and 3D analysis

Supported OGC Standards WMS, WFS, WCS, SFS, GML, WMC etc.

Development API Existence of development API

With reference to criteria listed in Table 3.8, review of project characteristics and

comparison of functional capability among free and open source desktop GIS

applications are respectively given in Table 3.9 and 3.10. Besides, to enable a

comparison of the functional capability between open source and a well known

commercial product, ArcView 10.1 is added to Table 3.10 as the base product of

ESRI ArcGIS Desktop architecture. Both tables are adapted from Steiniger and

Bocher (2008) but updated to meet the current versions of software as of May

2013.

 61

Table 3.9. Project Characteristics of Selected Free and Open Source Desktop GIS
Software (adapted from Steiniger and Bocher, 2009; Ramsey, 2007)

Software
Year Founded

Project Website

Application
Focus

User
Level

Supported
Operating
Systems

Development
Platform

Development
by

License

GRASS
1982

grass.osgeo.org

Analysis &
Scientific

Visualisation,
Cartography,
Modelling &
Simulation

Experienced,
Expert,

Research

MS-Win,
Linux,

MacOSX

C,
Shell,

Tcl/Tk,
Python

Research
Institutes,

Universities,
Companies,
Volunteers
Worldwide

GPL

QGIS
2002

qgis.org

Viewing,
Editing,

Analysis,
GRASS GUI

Novice
Experienced,

Expert,
Research

MS-Win,
Linux,

MacOSX

C++,
Qt4,

Python

Universities,
Companies,
Volunteers
Worldwide

GPL

uDig
2004

udig.refractions.net

Viewing,
Editing,

Analysis,

Novice
Experienced,

Expert,
Research

MS-Win,
Linux,

MacOSX

JAVA
Eclipse RCP

Companies,
Organizations,

Volunteers

Core
Eclipse
RCP is

EPL

gvSIG
2003

gvsig.org

Viewing,
Editing,

Analysis,

Novice
Experienced,

Expert,
Research

MS-Win,
Linux,

MacOSX
JAVA

Companies,
Universities,
Government

GPL

SAGA
2001

saga-gis.org

Analysis,
Modeling,
Scientific

Visualization

Novice
Experienced,

Expert,
Research

MS-Win,
Linux,

MS Visual
C+ +

Universities
LGPL
(API),
GPL

MapWindow
1998

mapwindow.org

Core GIS
Functions,
Developing

Decision
Support
Systems

Novice
Experienced,

Expert,
Research

MS-Win

C+ +,
C#,

VB.NET
MS Visual

Studio .NET

Universities,
Companies,
Volunteers
Worldwide

Mozilla
Public

License
v1.1

OpenJUMP
2002

openjump.org

Viewing,
Editing,

Analysis,

Novice
Experienced,

Expert,
Research

MS-Win,
Linux,

MacOSX
JAVA

Volunteers
Worldwide

GPL

 62

Table 3.10. Functional Characteristics of Selected Free and Open Source Desktop
GIS Software (adapted from Steiniger and Bocher, 2009; functionality chart
updated to meet current releases of software)

Functionality
GRASS
v6.4.2

QGIS
v1.8.0

uDig
v1.4

gvSIG
v1.12

SAGA
v2.0.8

Map
Window
v4.8.6

Open
Jump
v1.6.3

Arc
View
v10.1

SHP Y Y Y Y Y Y Y Y

GML Y Y Y Y - Y(1) Y Y

R
ea

d

DXF Y Y - Y Y Y(1) Y(1) Y

SHP Y Y Y Y Y Y Y Y

GML Y Y Y Y - Y(1) Y(1) Y(4) V
ec

to
r

D
at

a

W
ri

te

DXF Y Y - Y - - Y(1) Y

JPEG Y Y Y Y Y Y Y Y

ECW Y(2) Y(Win) Y(2) Y - Y Y(1) Y

GeoTIFF Y Y Y Y Y Y Y Y R
ea

d

ArcInfo
GRID Y Y Y Y Y Y - Y

JPEG Y Y Y Y Y Y Y Y

ECW Y(2) Y(2) Y(2) Y Y(2) Y(2) - Y(3)

GeoTIFF Y Y Y Y Y Y - Y

R
as

te
r

D
at

a

W
ri

te

ArcInfo
GRID Y Y Y Y Y Y Y(1) Y

PostGIS
R+W (1)
Limited

R+W R+W R+W - R+W (1) R+W (1)
Limited

R
OLE
DB

Database
Access
R:Read

W:Write Oracle R R+W (1) R+W R+W - - R(P)
R

OLE
DB

Compliance to
OGC

Supported
Standards

WMS
WFS
GML

WPS (via
pyWPS)

WMS
WFS(-T)
SFS (via
PostGIS)

GML
KML

WMS
WFS(-T)

SFS
GML
WPS
SLD

WMS
WFS(-G)

WCS
GML
KML
CSW
SLD

Under
Dev.

WMS,
WFS,
WCS

WMS(1)
WFS(1)

WMS
WFS-T(1)

SFS
GML
WPS
SLD
(dee

JUMP)

WMS(-T)
WFS(1)
WCS

CSW(1)
SFS

GML
KML

WMC(1)

Thematic Mapping
(Bar chart,

graduated symbols,
individual values,
pie chart, labels)

Y Y
-

(Labels
Only)

Y
(Simple)

Y
-

(Labels
Only)

Y(1) Y

Developer API Y Y Y - Y Y Y -

Scripting
Functionality

Bash
Python

Perl
Python

Groovy
(1) Jython

Python
Console

C#
VB.NET

Beanshell
Jyhon (1)

Python
Model
Builder

 63

Table 3.10. Functional Characteristics of Selected Free and Open Source Desktop
GIS Software (cont.) (adapted from Steiniger and Bocher, 2009; functionality
chart updated to meet current releases of software)

Functionality
GRASS
v6.4.2

QGIS
v1.8.0

uDig
v1.4

gvSIG
v1.12

SAGA
v2.0.8

Map
Window
v4.8.6

Open
Jump
v1.6.3

Arc
View
v10.1

Coordinate
Transformations

Projections

Y Y Y Y(1) Y Y Y(1) Y

Creating & Editing
Vectors

(2D graphics incl.
points, lines, area
tools, snapping,

coordinate input)

Y Y Y Y Y Y Y Y

GPS Support Y Y Y(1) - Y Y Y(1) Y

Topology
(Creating link, node,

chain and
polygon topology)

Y Y(1) - Y
-

(TIN
Only)

-
(TIN

Creation
API

Only)

Y
(Limited)

-

Advanced Data
Creation &

Editing
(Creating offset, line

generalization,
trimming, rotating,

intersection)

Y Y Y Y(1) Y Y Y

Y
(Except
Offset,
Line
Gen.)

Advanced
Thematic Mapping
(Thiessen polygon

analysis, grid
analysis,

contour generation)

Y Y(1) - Y(1) Y Y
-

Only
TIN

Y(4)

Creating 3D Views
& Terrains
(TIN, DTM,

shading, surface
draping)

Y Y(1) - Y(1) Y Y
Y(1)

Only
TIN

Y(4)

Viewshed &
Terrain Analysis

(line-of-sight, slope,
aspect, gradient)

Y Y(1) - Y(1) Y Y - Y(4)

(1) Functionality is provided by a plugin.
(2) Erdas ECW SDK, which is needed for ECW read & write support, is not compiled by default
in GDAL. Erdas ECW SDK is commercial, proprietary software and users are subject to EULA.
(3) Write to ECW functionality is provided via ERDAS ECW Plugin for ArcGIS Desktop. This
plugin is commercial, proprietary software and users are subject to EULA.
(4) ESRI ArcGIS Desktop Extension is needed; such as Spatial Analyst, 3D Analyst.

 64

Based on Table 3.10, as also concluded in Steiniger and Bocher’s (2009)

study, some free and open source desktop GIS applications, such as GRASS,

QGIS and gvSIG, offer more functionality than ArcView 10.1. In order to

asses the popularity of each application, free and open source desktop GIS

projects referred either on web resources or in the literature are listed in Table

3.11. Parallel to Steiniger and Bocher’s (2009) conclusion, based on Table

3.11, GRASS, QGIS, gvSIG and uDig are found as the most cited projects on

web resources and in the literature.

Table 3.11. Free and Open Source Desktop GIS Software Cited on Web Resources
and in the Literature.

OSGeo

.org
(2013)

MapTools
.org

(2013)

Cascadoss
.eu

(2007b)

Ramsey
(2007)

Steiniger &
Bocher
(2009)

Count

FMaps X 1

GRASS X X X X X 5

gvSIG X X X X 4
Jump or

OpenJump
 X X X 3

Kosmo X X X 3

MapWindow X X X 3

OpenEV X X 2

OpenMap X X 2

OSSIM X 1

QuantumGIS X X X X X 5

SAGA X X 2

Thuban X 1

uDig X X X X 4

For identifying the most mature free and open source desktop GIS software

that offers more functionality than other candidates, a side by side feature

comparison chart (Table 3.10) or a list showing how much the software is

cited (Table 3.11) may provide an insight but neither can supply enough

 65

evidence for decisive selection. Thus different aspects of desktop GIS must be

evaluated and graded with respect to a set of objective criteria. Financed by

the European Commission under the Sixth Framework Program, such a study

was performed by Cascadoss Project for the development of transnational

cascade program on open source GIS and RS software for environmental

applications (Cascadoss, 2007b).

Cascadoss project evaluates free and open source GIS and RS related software

with respect to their (i) marketing potential, (ii) technical potential and (iii)

economic potential. Indicators for evaluating the marketing potential are

number of users, existing market share, strength of community, level of

support and business models that is possible with the software license.

Technical potential of any software is usually a derivative of the quality of

development. Thus, Cascadoss project refers to the quality model defined by

ISO 9126 which is an international standard for the evaluation of software

quality. Economic potential of free and open source software can be measured

by assessing the total cost of migration from any existing proprietary system

and total cost of savings that can be made by choosing open source systems.

Multi criteria decision making process is involved in Cascadoss project to

determine the marketing, technical and economic potential of each software.

Set of evaluation criteria and weight factors involved are listed in Table 3.12.

 66

Table 3.12. Evaluation Criteria and Weighted Scoring Utilized in Cascadoss
Project (Cascadoss, 2007b)

W.
Max.
Score

W.
Max.
Score

W.
Max.
Score

Evaluation Criteria
for Marketing

Potential

 Max. Sum. 60 Points

Weight

Max.
Score

Evaluation Criteria
for Technical

Potential

Max. Sum 60 Points

Weight

Max.
Score

Evaluation Criteria
for Economic

Potential

Max. Sum 60 Points

Weight

Max.
Score

Maturity of Project 15 Functionality 15 Cost of installation 24
Version control Suitability Cost of deployment

Mailing list Accuracy Cost of labor
W 8

MS 3

Documentation Interoperability Cost of Migration 18

Testing method Security

W 5
MS 3

Cost of project
migration

Portability

W 5
MS 3

Reliability 9
Cost of labor that takes

part in the operative work
of migration

Strength of
Community

15
Maturity and product

history

Cost of software
customization to

migrate existing data

W
6

MS
3

Producer community Robustness Cost of operation 18
User community Fault Tolerance Suitability for users

Vendors community Recoverability
Cost of labor for system

administration
OSS distributor

community
Reliability Compliance

W 3
MS 3

Training for the
newcomers

Foundations and
non-profit organizations

Usability 9
Cost of interruption by

software weakness
Governmental agencies Understandability Costs of version control

W 6
MS 3

Overall level of the
support

W 5
MS 3

Learn ability

Market Share 12 Documentation
Availability Popularity of the

software
W 4

MS 3 Operability
Legal / License issues 9 Attractiveness

W 3
MS 3

Efficiency 9
License of the software

W 3
MS 3 Time behavior

Collaboration with
Other Projects

9 Resource utilization

Synergy between
OSS products

W 3
MS 3

Runtime

Efficiency compliance

W 3
MS 3

Maintainability 9
Analyzability
Changeability

Stability

W 3
MS 3

Portability 9
Adaptability
Coexistence
Installability

Replaceability

W 3
MS 3

 67

Cascadoss project (2007b) groups evaluated free and open source software into

four headings: (i) desktop GIS and RS applications, (ii) development libraries, (iii)

server applications and (iv) environmental applications. However in this thesis,

only desktop GIS applications are considered; desktop RS applications,

development libraries, server and environmental applications are not taken into

consideration. Desktop GIS applications evaluated in Cascadoss project (2007b)

are; (i) FMaps, (ii) GRASS, (iii) gvSIG, (iv) JUMP, (v) Kosmo, (vi) OpenEV, (vii)

OpenMap, (viii) OSSIM, (ix) QuantumGIS, (x) Saga GIS, (xi) Thuban and (xii)

uDig.

As stated earlier, the aim of this thesis is to develop a free and open source flow

mapping application that is integrated into GIS. This integration can be effectively

achieved on existing desktop GIS platforms which support plugin architecture.

With reference to the evaluation performed by Cascadoss project, it is possible to

identify suitable open source desktop GIS applications to which the flow mapping

plugin can be integrated. With reference to evaluation criteria and weighted

scoring principles given in Table 3.12, evaluation results regarding desktop GIS

software are given in Table 3.13 with respect to their marketing, technical,

economic potentials. Besides, a fourth evaluation column is added in order to

present combined potential of each application.

Table 3.13. Marketing, Technical, Economic and Cumulative Potential of Free and
Open Source Desktop GIS Applications Evaluated in Cascadoss Project (adapted
from Cascadoss, 2007b)

Desktop GIS
Application

Version
Marketing
potential

Technical
Potential

Economic
Potential

Cumulative
Potential

FMaps 0.0.2 17.4 15.8 28.2 20.5

GRASS 6.2.3 59.3 46.9 40.1 48.8

gvSIG 1.1.2 49.8 39.8 37.1 42.2

JUMP 1.2 35.3 25.6 49.8 36.9

Kosmo 1.2 29.8 28.6 43.9 34.1

OpenEV 1.8 50.1 27.1 40.7 39.3

 68

Table 3.13. Marketing, Technical, Economic and Cumulative Potential of Free and
Open Source Desktop GIS Applications Evaluated in Cascadoss Project (cont.)
(adapted from Cascadoss, 2007b)

Desktop GIS
Application

Version
Marketing
potential

Technical
Potential

Economic
Potential

Cumulative
Potential

OpenMap 4.6.4 48.0 25.4 47.8 40.4

OSSIM 1.7.4 50.7 36.7 37.1 41.5

QuantumGIS 0.9.1 55.6 40.8 50.6 49.0

Saga GIS 2.0.2 44.9 30.4 36.0 37.1

Thuban 1.2.1 55.1 30.2 47.8 44.4

uDig 1.1-RC 14 42.3 30.6 42.4 38.4

 Evaluation is over 60 points. Top three scores on each column are written in bold.

According to Table 3.13, respectively GRASS, QGIS and Thuban are identified as

the first three desktop GIS applications offering the highest marketing potential. In

terms of technical potential, as in marketing potential ranking, GRASS and QGIS

are identified as the top two desktop GIS applications while gvSIG is listed as the

third software. From the point of economic potential, GRASS loses its leading

position to QGIS and JUMP is listed as the second software offering the highest

economic potential. Collecting the same score, OpenMap and Thuban share the

third ranking in terms of economic potential. Cumulative potential indicates

equally weighted average of marketing, technical and economic potential. In terms

of cumulative potential, respectively QGIS, GRASS, Thuban and gvSIG are listed

as the desktop GIS applications sharing top four ranks. This conclusion is quite

consistent with the findings of Steiniger and Bocher’s (2009) study in which

GRASS, QGIS and gvSIG are found to offer more functionality than ArcView

10.1. Besides, with reference to Table 3.11, GRASS, QGIS, gvSIG and uDig are

found as the most cited projects on web resources and in the literature. Based on

these findings, it can be concluded that GRASS and QGIS are the top two free and

open source desktop GIS products; besides Thuban with its great marketing and

economic potential and gvSIG with its promising technical potential are other two

free and open source desktop GIS products.

 69

3.3.1. QGIS Desktop GIS Application

Quantum GIS, or QGIS in short, is a user friendly multi platform free and open

source desktop GIS application that supports vector, raster and database formats

(QGIS, 2013a) (Figure 3.1). QGIS is an OSGeo supported project and licensed

under the GNU General Public License. This license guarantees the freedom of

utilization and redistribution of QGIS for any purpose; besides it also guarantees

the availability of human readable source code for further distributions, modified

or derived work.

Figure 3.1. QGIS v1.8.0-Lisboa Running on Windows

As a response to the expert oriented design of GRASS, a group of volunteers

initiated QGIS project in 2002 (Steiniger and Bocher, 2009). Main intention of the

project was to provide a user friendly and fast geographic data viewer for Linux

based platforms (Hugentobler, 2008). As the project evolved, utilization of QGIS

as a user friendly interface for GRASS emerged as an idea (Steiniger and Bocher,

2009). QGIS increased its development tempo in 2004 by releasing several minor

 70

versions with new features and including a tie to GRASS analysis functionality

(Ramsey, 2007). As a result of this agile development, QGIS project has already

achieved its initial objectives and now community works to extend the

functionality beyond data viewing. General project characteristics and major

features of QGIS are presented in Table 3.14.

Table 3.14. General Project Characteristics and Major Features of QGIS

General Characteristics

Project Full Name Quantum GIS

Variant Name QGIS

Founded 2002

Type of License GNU General Public License

Programming Language C++, QT4 Framework, Pyhton

Supported Platforms MS Windows, BSD, Apple MacOSX, Linux, Android

GUI Translations 48 languages for v1.8.0

QGIS Desktop : General purpose desktop GIS application

QGIS Browser : Data viewer for network and WMS data

QGIS Server : WMS 1.3 server configured by QGIS
desktop project files

Purpose

QGIS Client : Web front-end for web mapping based on
OpenLayers and GeoExt

Documentation and Resources

User Guide
Available in English, German, Russian for v1.8
Available in English, German, Russian, French,
Portuguese, Korean for v1.7

Other Documentation
QGIS Coding and Compilation Guide
QGIS API Documentation
PyQGIS Cookbook

Mailing List http://qgis.org/en/community/mailing-lists.html

Forum
Current: http://gis.stackexchange.com
Depreciated: http://forum.qgis.org

Wiki http://hub.qgis.org/projects/quantum-gis/wiki

Repository http://hub.qgis.org/projects/quantum-gis/repository

Plugin Repository http://plugins.qgis.org/plugins

 71

Table 3.14. General Project Characteristics and Major Features of QGIS (cont.)

Functionality

Support for Common
Vector and Raster

Formats

Uses OGR/GDAL library to support common vector and
raster formats such as; ESRI ShapeFile, ArcInfo
Coverages, Spatially Enabled PostGIS Tables, MapInfo
MID/MIF and TAB, KML, GML, AutoCad DXF, GRASS
Locations ans Mapsets, GeoTiff, ArcGrid, ERDAS IMG
etc.

Native Support for
Spatial Database

PostGIS, SpatiaLite, MS SQL Spatial

OGC Compliance WMS, WMS-C, WFS, WFS-T

Exploration and
Cartographic Production

On-the-fly reprojection, print composer, overview panel,
view/edit/search attributes, labeling, advanced vector and
raster symbology, map decorations for cartographic
representation

Creating and editing
Digitizing tools for vector features, field and raster
calculator, georeferencer plugin, GPS tools to
import/export GPX format

Spatial analysis
Map algebra, geoprocessing tools, geometry tools, terrain
analysis, grid interpolation, network analysis

Scripting Support Python scripting

Plugin Support Plugins with C++ and Python

Review is performed based on v1.8.0 Lisboa released in 21 June 2012

QGIS is a community driven project. Project management workload is divided

between an international team of developers and users who have specific

responsibilities other than coding. QGIS project steering committee is comprised

of three main teams. These are; (i) release management team, (ii) technical

resources team and (iii) community resources team. QGIS releases are managed

by release management team which is prepared by packaging and testing teams.

Technical resources team recruit and support code maintainers team who ensure

consistency and quality of code added into repository. Community resources

team is responsible for the organization of GUI translations, user conferences,

press material and translations. Although it is difficult to know the exact size of

QGIS community, with reference to more than half million QGIS Windows

installers downloaded in 2012 (QGIS, 2013c), size of the community is

promising. QGIS Project always looks for volunteers and contributions can be

 72

improvements to the source code, packaging oriented or non programming help

such as documentation and translation.

QGIS is developed using QT cross application framework and C++ programming

language. With the release of v0.9, python programming language support was

added to QGIS at the end of 2007. Although QGIS desktop application is built

primarily for Linux (Ramsey, 2007), QT is available for other platforms such as

Windows, OS X, X11, Android and iOS. So QGIS is also built for use in platforms

other than Linux. As a multi platform desktop GIS application, QGIS runs on

Windows, Linux, BSD, MacOSX and Android platforms. On Windows operating

systems QGIS can be installed either by using standalone installer which is

recommended for new users or by using OSGEO4W installer which offers more

installation options for experienced users. On Linux platforms, prebuilt binary

packages exist for many popular Linux distributions such as Debian, Fedora,

RedHat, openSUSE, Mandriva, Ubuntu and Slackware. For MacOSX users, Apple

dmg disk image and for Android users, apk application package are available for

easy installation (QGIS, 2013b).

QGIS can be customized for specific needs. Either by using C++ or Python

languages, programmers or experienced users with enough programming

knowledge can have access to QGIS libraries via QGIS API (Application

Programming Interface). Customizations can be performed in two ways; either a

standalone, custom GIS application can be developed by using QGIS libraries or a

new plugin can be developed for use with the native GUI of QGIS. As of June

2013, 215 plugins are listed and available for download from the official plugin

repository of QGIS which is hosted on “http://plugins.qgis.org/plugins”. All these

plugins can easily be downloaded, installed and managed by using the “QGIS

Plugin Manager” (Figure 3.2). Besides, there are also external developers who

develop third party plugins and publish them by creating third party repositories

hosted on their web domains.

 73

Figure 3.2. QGIS v1.8.0-Lisboa (a) Plugin Manager and (b) Plugin Installer

3.4. Motivation for Free and Open Source Development and Reasons for

Selecting QGIS

The freedom to have unrestricted access to source code and community based

development structure that encourages anonymous contributions are the most

important factors promoting productivity in free and open source environment. As

an inevitable result of these motivating factors, today free and open source

software gamut offers such great diversity. As previously presented in Table 3.1,

there are such successful open source projects which can compete with their well

known proprietary, commercial alternatives.

(a)

(b)

 74

Practically, free and open source software is supplied free of charge. Anyone can

download it from the internet and start benefiting from it with no restrictions for

any purpose. This provides cost reduction compared to commercial software

which is subject to payment of license fee. For example, as of 2012 valid in the

United States, a bundle which includes annual subscription to the ESRI

Developer Network (EDN) and a fixed node single ArcView license is priced for

2.000 USD per year (ESRI, 2012). Besides, this price increases in half to 3.000

USD per year, if bundle is preferred with a fixed node ArcEditor license and

doubles to 4.000 USD per year, if fixed node ArcInfo license is preferred. High

licensing fees either prevent spread of software or restrict easy access to software

since there are limited installations. This may be a discouraging factor for users

who are new to GIS. However free and open source software can be installed and

used on unlimited number of computers either for personal or for commercial

purposes without any restrictions. For example, compared to the EDN annual

subscription and ArcView fixed node license bundle which is priced for 2.000

USD per year; QGIS Desktop GIS software is available free of charge with its all

plugins. Besides, all developer content such as QGIS API documentation,

PyQGIS Cookbook, mailing lists, project’s wiki page are all open to public

access free of charge.

In commercial software world, unless there is enough market potential to

compensate the cost of development efforts, software vendors choose to behave

conservative in terms of integrating domain specific tools to their existing

architecture since these tools may be rarely used. In other words, commercial

software vendors are usually slow to respond in terms of expanding existing

functionality of software unless it is profitable. For example, one of the most

popular GIS software on the market, ESRI ArcGIS for Desktop is available with

three levels of license and more than twenty paid extensions (ESRI, 2014). While

most of these extensions are designed for general purpose analyses (e.g. Spatial

Analyst, 3D Analyst, Geostatistical Analyst) and require “Basic” type of license

(formerly ArcView); solution based specific extensions (e.g. ArcGIS for Maritime,

ArcGIS for Aviation, ESRI Roads and Highways) require purchasing of either

 75

“Standard” (formerly ArcEditor) or “Advanced” (formerly ArcInfo) type of license

which costs few times more than the base license. Yet, offering more than twenty

extensions as one of the most popular desktop GIS software, there is neither an

extension nor specific tools in the ArcToolbox designed for flow mapping. Thus,

proprietary or commercial GIS products are generally designed to meet general

needs of users.

Flow mapping is a special domain where the market is commercially not strong

enough to compensate the cost of developing specially designed tools for

visualization of spatial interaction data. In software development, source code is a

valuable resource not only because it gives developers a chance to analyze how the

application works but also it avoids developers from recoding algorithms that are

already coded. In free and open source development, since the source code is

available from the internet, existing functionality of software can be extended by

development efforts of researchers to meet the demand occurring in special

domains where development is not profitable enough for commercial vendors. For

example, QGIS can be customized to meet specific needs with its plugin support

or even standalone GIS applications can be developed either by using C++ or

Python programming languages by accessing QGIS libraries via QGIS API. In

contrast to free and open source development, in the proprietary development

source code is kept confidential and only the software vendor has right to access.

Thus, modifications to software by third party developers are either not allowed

due to restricting EULA terms or limited to an extent that is determined by the

development libraries supplied by the vendor.

Possible advantages of the free and open source development methodology can be

listed as follows:

(i) Unrestricted and gratis access to human readable source code and

implementation of algorithms;

(ii) Opportunity of studying the source code and modifying the software in

order to fix bugs, improve performance and extend functionality;

 76

(iii) Opportunity of redistributing modified or extended versions of

software and source code without any restrictions;

(iv) Encouraging voluntary contributions to development process which

can be performed either by participating to coding or preparation of

documentation and translations;

(v) Open development encouraging voluntary contributions guarantees the

continuity of software up to some level since any researcher may continue

on development without facing any legal obstacles even if the originator

stops development.

In order to identify the most mature free and open source desktop GIS software

that offers more potential than others several web resources and research studies

are reviewed. While GRASS, QGIS, Thuban and gvSIG are identified as leading

GIS applications having more potential than others (Cascadoss 2007b, Steiniger

and Bocher 2009); GRASS and QGIS are identified as the top two free and open

source desktop GIS application (Cascadoss, 2007b). In their study evaluating GIS

software for water resources management Chen et al. (2010) criticize complex

structure of GRASS and promotes QGIS due to its adequately powerful structure,

functionality and user friendly interface. Besides, with the aid of community

developed GRASS plugin for QGIS, all tools of GRASS can be executed from the

user friendly interface of QGIS. Owing to its user friendly interface (Chen et al.,

2010), great economic potential (Cascadoss, 2007b) and proven popularity with

over half million downloads in 2012 (QGIS, 2013c), although GRASS is identified

to have more technical potential than QGIS (Cascadoss, 2007b), in this study

QGIS is preferred to GRASS as the desktop GIS platform that the flow mapping

plugin will be developed.

History of GRASS, an acronym for Geographic Resources Analysis Support

System, dates back to 1982 and has a long development history. For the past three

decades GRASS has been primarily developed to run on high powered UNIX

workstations. Until the release of v5.0, core components of GRASS were

developed by the U.S. Army Construction Engineering Research Laboratory

 77

(USA-CERL). In 1997 development efforts for GRASS was transferred to

community and now source code, documentation and release are all managed by

the GRASS Development Team. Until v6.3, GRASS can be run on Windows

platforms with the aid of Cygwin emulator that ports Linux environment to

Windows. WinGRASS is an open source project that is maintained by the GRASS

Development Team with the intention of developing native Windows version of

GRASS which does not need any emulator to run. Latest development of GRASS

GIS for Windows Native is v6.4 and released in 2012. However, GRASS

Development Team still identifies WinGRASS as an experimental project and

notices that it should not be considered as a fully working release of GRASS for

Windows since it needs more testing (GRASS, 2013). Thus, to develop a flow

mapping plugin integrated into a desktop GIS, it is preferable to choose a more

stable platform than GRASS which is not subject to major changes.

Unlike GRASS which has a development history of nearly three decades,

development of QGIS dates back only to 2002. With the release of v0.9 at the end

of 2007, Python programming language support was added to QGIS. Python is an

interpreted programming language that runs directly from the human readable

source code and has a shorter and more lucid syntax than C++. Thus, developing

with Python is easier. By using Python programming language and Python

bindings such as pyQT and pyQGIS, either plugins or standalone GIS applications

can be developed by accessing QGIS libraries via QGIS API. Taking the

advantage of high level programming language Python and offering an up-to-date

structure than GRASS, QGIS offers more stable developing environment than

GRASS. Main reasons for choosing QGIS as the desktop GIS platform to develop

a plugin can be given as follows:

(i) Popularity of project which promises large and active community;

(ii) User friendly GUI especially compared to GRASS;

(iii) Native multi platform support; Windows, Linux, MacOSX;

(iv) Support for popular raster and vector formats via OGR/GDAL;

(v) Extensible functionality with plugin structure;

 78

(vi) Python programming language support for rapid development;

(vii) Valuable resources such as QGIS user manual, API documentation,

PyQGIS Cookbook and mailing lists;

(viii) General Public License (GNU GPLv2) which guarantees unrestricted

access to source code either in later releases or in derivative works;

(ix) Support of OSGeo Foundation.

Many GIS users prefer menu driven, user friendly applications since they offer more

comfortable working environment and have sharp learning curves than command

line executed applications. Practically, desktop GIS users who want to map spatial

flows would also prefer similar menu driven interactive applications. However, flow

mapping is a special research area where the market is commercially not strong

enough to compensate the cost of developing a fully featured GIS application

dedicated for flow mapping. Instead, in this study, flow mapping application is

preferred to be developed as a plugin to a popular, open source desktop GIS

application. By this way, users can both benefit from common GIS functions and

utilize flow mapping tools seamlessly in the same application. Besides, by

performing this work with the open source development methodology, researchers

interested in flow mapping will have access to source code and opportunity of

contributing to development which increases the continuity of project.

Up to this point of the study, a literature survey regarding flow mapping and a

review regarding free and open source software concept are respectively given in

Chapter 2 and 3. Besides, a comparison of visual clutter reduction techniques and

existing flow mapping software is given in Chapter 2. A similar comparison is

presented in Chapter 3 regarding existing free and open source GIS software

together with a review for QGIS. Based the findings from these two chapters; type

of flow scenario to be focused and visual clutter reduction techniques to be

implemented in FlowMapper are determined. Besides, free and open source desktop

GIS platform for building FlowMapper on is selected as QGIS. In the next chapter,

software development environment required for building a QGIS plugin is explored.

 79

CHAPTER 4

DEVELOPMENT ENVIRONMENT OF FLOW MAPPING SOFTWARE

In Chapter 3, QGIS was selected as the base desktop GIS component in order to

build a flow mapping application in plugin form due to its agile development

environment that supports Python programming language and its up-to-date API

compared to GRASS. In order to develop a QGIS plugin with Python, at least

following tools and libraries are needed: (i) QGIS desktop application, (ii) Python

2.5 or more, (iii) Qt4 framework, (iv) PyQt4 Python bindings, (v) PyQGIS Python

bindings. In addition to these development tools, OGR Simple Features Library is

utilized to perform operations on vector data files.

In this chapter, main components of the development environment are defined.

Respectively (i) Python programming language, (ii) QGIS API and PyQGIS

Python bindings, (iii) Qt development framework and its Python bindings PyQT

and (iv) Geospatial Data Abstraction Library (GDAL) and Simple Features

Library (OGR) are examined.

4.1. Python Programming Language

Python is a dynamic, high level, multi platform, general purpose programming

language. Python’s design philosophy explicitly emphasizes code readability (PSF,

2013a) and its syntax allows developers to perform operations with fewer lines of

code compared to same operations in other well known languages such as C++ or

Java. As a dynamic, high level programming language, Python is often admitted as

a scripting language; however, owing to its thousands of third party modules,

 80

Python is also used in a wide range of non-scripting domains such as scientific and

numeric computing, database access, desktop GUI development, network

programming, 3D graphics and game development (PSF, 2013b).

Python Software Foundation (PSF, 2013a), which is a non-profit organization that

aims to advance open source technology related to Python programming language,

lists some of Python’s key distinguishing features as follows:

(i) Clear and readable syntax,

(ii) Intuitive object orientation,

(iii) Modularity and hierarchical package support,

(iv) Support for high level dynamic data types,

(v) Extensive standard libraries and plenty of third party modules,

(vi) Capability of being embedded in applications as a scripting language,

(vii) Extensions and modules can be written in other languages (e.g. C and

C++ for Python, Java for Jython, .NET languages for IronPython).

Python development efforts include many contributions; however Guido van

Rossum is regarded as the principal author of Python programming language

(Pilgrim, 2004). The name of the programming language originates from the BBC

comedy series named “Monty Python's Flying Circus”. Guido van Rossum needed

a unique name for the new language that he began implementing and since he

enjoyed this comedy series, he gave “Python” name to the language.

Python was conceptualized in the late 1980s and developed in the early 1990s by

Guido van Rossum as a successor of the programming language ABC at

Stichting Mathematisch Centrum (CWI) in Netherlands. Python 1.2 was the last

version released from CWI. Between 1995 and 2000, Guido van Rossum

continued his development efforts at the Corporation for National Research

Initiatives (CNRI) in Reston, Virginia and released several Python versions.

Python 1.6 was the latest of the versions released from CNRI. In 2000, Guido

van Rossum and core development team members shifted to BeOpen.com in

 81

order to establish BeOpen PythonLabs team and then Python 2.0 was released by

BeOpen.com. Just after Guido van Rossum left CNRI, it was understood that

ability to use Python with software released under GNU General Public License

was very desirable and promising. With this intention, CNRI and Free Software

Foundation (FSF) collaborated to make changes on the Python license. In 2001,

Python Software Foundation (PSF) was established as a non-profit organization

in Delaware, USA to protect, promote and advance Python programming

language while facilitating community based development efforts. Starting with

Python 2.1, all intellectual property produced on top of this structure is owned by

the Python Software Foundation (PSF). Python 2.7 was released in 2013 as the

latest and most recent version under Python 2.x series. Python 3.0, which was

developed to rectify certain design flaws encountered in Python 2.x series, was

released in 2008. However, during development of Python 3.0, modifications

required to fix shortcomings could not be implemented while keeping backward

compatibility with Python 2.x series. Thus, there is no warranty that a Python 2.x

code snippet would run unmodified on Python 3.0. In other respect, Python 2.x

development was not depreciated with the release of Python 3.0. Python 2.5, 2.6

and 2.7 versions were released between 2011 and 2013. Besides, many features

of Python 3.0 have been back ported to be compatible with Python 2.6 and 2.7

(van Rossum, 2006).

In Table 4.1, Python release history is given with respect to each version’s release

date and software license characteristics. As it can be inferred from the table, all

Python releases are open source. Python license does not have copyleft restrictions

as in GNU GPL type licenses; thus, modified versions can be distributed without

having to keep the modified source code open. Besides, not all but most Python

releases are GNU GPL compatible. This means compatible versions of Python can

be combined and released with the source code of the software that is released

under GNU GPL. A well-matched example is distribution of Python with QGIS

which is licensed under GNU GPL (e.g. QGIS 2.0.1-Dufour is distributed with

Python 2.7.5)

 82

Table 4.1. Python Release History and Licensing Characteristics (adapted from
PSF, 2013c and PSF, 2013d)

Python
Version

Release
Year

Owner Open Source
GNU GPL

Compatibility

from 2.1.1
to 3.3.3

2001 - 2013 PSF Yes Yes

2.1 2001 PSF Yes No

1.6.1 2001 CNRI Yes No

2.0 2000 BeOpen.com Yes No

1.6 2000 CNRI Yes No

1.3 - 1.5.2 1995 - 1999 CNRI Yes Yes

0.9.0 - 1.2 1991 - 1995 CWI Yes Yes

Python, installed with extensive standard libraries (PSF, 2013e), is also

designed to be used as extensible language. Python supports packages and

modules which encourage modularity and code reuse for increased productivity.

One of Python’s striking features is its capability of integrating with other

languages as a “glue” (Zelle, 1999). Libraries developed with different

languages can be called via Python language (e.g. C and C++ libraries via

Python, Java libraries via Jython, C# libraries via IronPython). SIP and SWIG

are two common tools for writing Python modules that interface with C and

C++ libraries. Riverbank Computing Limited developed SIP in order to enable

access to formerly Trolltech’s, currently Nokia’s Qt cross platform framework

via Python. Although SIP was initially developed to create Python bindings for

Qt (PyQt) by aggregating Python, Qt and C++; SIP can also be used to create

Python bindings for any C and C++ library. For example, QGIS bindings for

Python (PyQGIS) are also created by using SIP as in PyQt (QGIS, 2014a). In

addition to its clear and understandable syntax, this structure makes Python

effective and powerful “glue” language. As inferred from Table 4.1, source code

of all Python releases is open, besides all recent Python releases have GNU GPL

compatible PSF license. This makes possible to embed Python interpreter into

any application to be used as a scripting language in that application (Brown,

2001). By this way Python tools and libraries can be utilized in that relevant

 83

application. Apart from these methods, by using third party tools (e.g. Py2exe or

Pyinstaller), it is also possible to pack Python code snippets into standalone

executable applications.

Owing to Python’s design philosophy that promotes clear and readable syntax

and its distinctive capabilities discussed above, Python programming language

has gained popularity in recent years. TIOBE is a specialized company found in

2000 in assessing the software quality. TIOBE (2014) uses top 25 search

engines to calculate the TIOBE Index to asses the popularity of programming

languages. In Table 4.2, current popularity ranking of top 12 programming

languages are given as of January 2014. Besides, previous popularity rankings

of these languages are also listed in Table 4.2 with 5 year intervals. Table 4.3

presents the programming language which shows the highest annual rise in

popularity rating.

Table 4.2. Popularity of Programming Languages based on TIOBE Index: Long
Term History (adapted from TIOBE, 2014)

Language 2014 2009 2004 1999 1994 1989

C 1 2 2 1 1 1

Java 2 1 1 16 - -

Objective-C 3 42 48 - - -

C++ 4 3 3 2 2 4

C# 5 8 9 32 - -

PHP 6 5 6 - - -

(Visual) Basic 7 4 5 3 3 7

Python 8 6 11 22 22 -

JavaScript 9 9 8 21 - -

Perl 10 7 4 5 17 23

Lisp 14 18 15 10 7 2

Ada 23 21 16 17 6 3

 84

Table 4.3. Programming Languages Showing Highest Annual Rise in Popularity
Rating based on TIOBE Index (adapted from TIOBE, 2014)

Year Highest Rise Year Highest Rise

2013 Transact-SQL 2008 C
2012 Objective-C 2007 Python
2011 Objective-C 2006 Ruby
2010 Python 2005 Java
2009 Go 2004 PHP

With reference to Table 4.2, Python is listed as the 8th most popular programming

language according to TIOBE Index results announced on January 2014. Python

also displayed a positive trend in the last decade. With reference to Table 4.3, in

2007 and 2010, Python was listed as the language showing the highest annual rise

in popularity rating.

Similar to TIOBE Index, LangPop (2013) is a website which collects data about the

popularity of programming languages. LangPop presents a normalized comparison

chart in their website (LangPop, 2013). This chart is a reflection of listing statistics

and returned search results from Github Repositories, Google Files, Ohloh,

Craiglist and Google Search. By default, to create the normalized comparison chart

rankings, all sites are equally weighted. In Table 4.4, based on the normalized

comparison chart, popularity rankings of top twelve programming languages are

presented and Python is listed as the sixth popular language (LangPop, 2013).

Table 4.4. Popularity of Programming Languages based on LangPop Normalized
Score Chart (adapted from LangPop, 2013)

Rank Language Score Rank Language Score

1 C 63 7 Shell 29
2 Java 56 8 Ruby 26
3 PHP 55 9 Objective C 23
4 JavaScript 43 10 C# 22
5 C++ 35 11 Assembly 21
6 Python 30 12 SQL 19

 85

As it can be inferred from Tables 4.2, 4.3 and 4.4, Python is one of the most

popular languages and its popularity is increasing. Based on this finding, ESRI, as

one of the leading geographic information systems companies, replaced its Arc

Macro scripting Language (AML) with Python 2.1 in 2004 with the release of

ArcGIS 9.0. Besides, with the release of ArcGIS 10.1 in 2012, ESRI discontinued

its support to Visual Basic for Applications (VBA) and preferred to replace it with

Python 2.7. Similar to ESRI’s choice in the commercial GIS market, QGIS

community in the free and open source platform, integrated Python scripting

support starting from QGIS v0.9 released in 2007.

Python is an interpreted language that can run on many different operating

systems. Python is written in C programming language and owing to proven

performance of C (Prechelt, 2000), it runs faster than many early scripting

languages (Zelle, 1999). It can be argued that computational performance of an

interpreted language would be slower than a compiled language like C or C++

typically by a factor of ten. However, considering processing capabilities of

today’s computers, in practice, this performance constraint will only make

difference when working with huge amounts of data or be critical when expecting

very reliable performance for real time operations in embedded systems.

Performance of a programming language should be judged not only with reference

to its computation speed. Python can be preferred to C, C++, C# or Java due to its

clear syntax which is quite close to English and its fast debugging cycle. Python’s

clear syntax allows performing the same tasks with less code compared to C++, C#

and Java (see Table 4.5 below where the codes required for the simple task of

printing “Hello, World!” are given). Besides, as an interpreted language, Python

codes can be executed without needing compilation to binary. Instead, Python

source code is translated into byte code, written into a “pyc” file and executed by

Python virtual machine. If the source code is not altered, relevant “py” file is not

parsed and “pyc” file is not recompiled. This structure makes Python’s debugging

cycle faster than compiled languages.

 86

Table 4.5. Examples of Performing “Hello, World!” Statement in Different
Programming Languages

Prog.
Language

Character
Count

without
Spaces

Code

C++ 74

#include <iostream>

int main()
{
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

C# 88

using System;
class HelloWorld
{
 static void Main()
 {
 System.Console.WriteLine("Hello, World!");
 }
}

Java 94

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

Python 2.x 19 print "Hello, world!"

Various tools are available for GUI development in Python; such as PyGtk,

PyQT and wxPython. All three toolkits are coded with C or C++ and support

development on multiple platforms. However, in order to develop GUI with

Python by using these toolkits, Python bindings of that toolkit should be

installed on the target development platform. By means of these bindings,

development libraries supplied with the toolkit can be accessed and

implemented by Python. GUI development can be performed either by

importing modules from the toolkit and hard coding with Python or by using

an interactive graphical design tool to arrange the GUI elements on screen.

 87

For example, QT framework libraries on which the QGIS is also built

provides an interactive design tool called QT Designer. For example, in this

study, QT Designer is preferred to design form interfaces for QGIS

FlowMapper plugin. Then, “ui” files storing designs are transformed into

Python “py” files by using “pyuic”, which is an UI compiler for QT included

in the PyQT package.

In Chapter 3, it was mentioned that QGIS can be customized for specific

needs by developing plugins either by using C++ or Python languages. Design

philosophy of Python gives priority to the performance of programmer rather

than pure performance of computer. Due to Python’s very clear and easily

understandable syntax which endorses its sharp learning curve and due to its

high level structure; Python is preferred as the development language of

QGIS FlowMapper plugin instead of C++.

4.2. QGIS API and PyQGIS Python Bindings

QGIS not only provides a free and open source desktop GIS environment, but

also provides development libraries which can be used to create customized

applications. This has been realized with the refactoring of libraries released

with QGIS v0.8 in 2007 (Corradini and Racicot, 2011). Starting from QGIS

v0.9, Python support is integrated into QGIS. However, QGIS v1.0 or greater

is recommended as the basis for development since it provides a stable,

consistent API. QGIS API modules and brief explanation of each module are

given in Table 4.6.

 88

Table 4.6. QGIS API Modules (adapter from QGIS, 2014b)

QGIS API Modules Description

QGIS Core Library Provides all basic GIS functionality.

QGIS GUI Library
Built on top of core library and provides reusable
GUI widgets.

QGIS Analysis Library
Built on top of core library and provides ready to
use tools for performing spatial analysis both with
vector and raster datasets.

Map Composer
QGIS Map Composer provides layout elements
(e.g. legend, scalebar) to prepare data for printing.

QGIS Network Analysis Library
Provides high level tool topology building and
topological analysis.

PyQGIS refers to Python bindings for QGIS. It can be described as the “Pythonic”

application programming interface (API) which wraps QGIS library written in

C++ (Corradini and Racicot, 2011). This means developers can write scripts,

plugins or applications with “Pythonic” QGIS API without having to learn C++.

“Pythonic” QGIS API structure is quite similar to the API in C++.

QGIS is built on top of Qt libraries. PyQt, namely Python bindings for Qt, is

developed with the open source SIP tool. For seamless integration with PyQt,

PyQGIS, namely “Pythonic” API that wraps QGIS libraries, is also developed with

the use of SIP tool. These bindings make possible to develop new GIS applications

by using QGIS and Python language. There are several ways of using Python with

QGIS; (i) commands can be executed within Python console embedded in QGIS,

(ii) plugins can be developed with Python to be used in QGIS, (iii) standalone,

custom GIS applications can be developed with Python by utilizing QGIS API.

For the first use case, Python console can be accessed from the interface of QGIS.

Python is embedded in QGIS as an interpreter. This interpreter also parses the

source code of any Python plugin located under plugins directory at the

initialization of QGIS.

 89

Regarding the second use case, capabilities of QGIS can be extended via plugins.

QGIS plugins can be developed either by C++ or Python languages. Plugins

developed with C++ must be compiled for each platform (e.g. plugin must be

compiled into “dll” file for Windows OS). Unlike C++ plugins, plugins developed

in Python do not need to be compiled for different platforms. Same Python source

code can be distributed for different platforms. Plugin source code is executed by

the Python Virtual Machine on-the-fly. Regarding plugin development in QGIS,

plugins take advantage of the functionality offered by the libraries licensed under

GNU GPL. This means that QGIS plugins must also be licensed under GNU GPL.

From the perspective of third use case, not every possible user needs a fully

functional desktop GIS application. In such cases, by means of PyQGIS and PyQt

Python bindings, custom standalone applications or widgets within third party

applications can be developed to meet specific GIS related needs (e.g. standalone

map viewer with basic map controls and query functions).

4.3. Qt Framework and PyQt Python Bindings

Qt is a cross platform application framework commonly used for software

development with graphical user interface (GUI) (Wikipedia, 2014a). It has two

major versions as Qt 5 (Qt Project, 2013) and Qt 4 on which the QGIS is also built.

Although Qt is sometimes classified as a widget tool, it is also possible to use Qt

for developing non-GUI based applications (e.g. command line tools) (Wikipedia,

2014a). The idea behind using an application framework such as Qt is speeding up

the development cycle and increasing productivity by utilizing the tools available

under that framework (e.g. Qt Designer).

Qt framework was originally developed by a Norwegian company Trolltech.

Nokia acquired Trolltech in 2008 and until 2011 Qt framework was developed by

Nokia. In 2011, Digia Company acquired commercial property of Qt framework

 90

and currently it is being developed under Qt Project that involves contributing

developers to advance Qt under open governance model.

Substantially, Qt uses C++. Yet, it can be used with several programming

languages via Qt bindings (e.g. PyQt for Python, Qt Jambi for Java, QtRuby for

Ruby). Since Qt is developed as a cross platform framework, it can be used on

many platforms such as Windows (Qt for Microsoft), OS X (Qt for Apple OS X),

X11 (Qt for X Window System), Embedded Linux (Qt for Embedded Platforms),

QNX & BlackBerry 10 (Qt for ONX and QNX based platform BlackBerry 10),

Android (Qt for Android) and iOS (Qt for iOS). Besides, Qt has also external ports

(e.g. Qt for OpenSolaris and Qt Ubuntu).

Qt framework is available with three different types of licenses: (i) commercial

license, (ii) GNU GPL v3 and (iii) GNU LGPL v2.1. Besides, Qt framework is

available with three editions (Wikipedia, 2014a): (i) GUI Framework

(Commercial, entry level GUI edition without network and database support), (ii)

Full Framework (Fully featured commercial edition), (iii) Open Source (Complete

open source edition).

PyQt, developed by Riverbank Computing Limited, stands for Python bindings

that wrap Qt libraries written in C++ (Riverbank, 2014a). In other words, PyQt

links between Qt cross platform application framework and cross platform

programming language Python. By means of PyQt bindings one can develop

applications with Python by utilizing Qt framework tools without having to know

C++. As expected, PyQt runs almost on all platforms on which Qt and Python can

be installed.

PyQt incorporates dual licensing model as in Qt. For free and open source

development, PyQt is supplied under GNU GPL v2 and GNU GPL v3 (Riverbank,

2014b). However, for proprietary development with Python in Qt framework,

commercial licenses for Qt and PyQt should be purchased.

 91

Qt framework includes a GUI design tool known as Qt Designer (Figure 4.1). For

Python programmers, by means of the tools bundled in PyQt, it is possible to

generate Python code from Qt Designer “ui” files. GUI interactively designed in

Qt Designer tool is stored as “ui” file in “xml” structure. By means of “pyuic4”

compiler bundled in PyQt, “xml” based “ui” design file is translated into “py” file

that stores the Python code. Similar to the procedure for “ui” design files, resource

files storing GUI icons are translated into Python code via “pyrcc4” compiler

bundled in PyQt. Details regarding implementation of these tools in FlowMapper

are explained in Chapter 5.

Figure 4.1. Qt Designer Running on Windows

QGIS is already built on top of Qt libraries. By using PyQt bindings along with

PyQGIS, it is possible to develop custom applications in Python for specific GIS

related needs by accessing QGIS and Qt libraries. PyQt brings all power and

 92

advantages of Qt framework within the clear syntax of Python. In this study, Qt

Designer is used to interactively design the GUI of QGIS FlowMapper plugin. By

means of the bundled compilers (“pyuic4”, “pyrcc4”) in PyQt, GUI design and

resource files of FlowMapper plugin are transformed into Python code.

4.4. OGR Simple Features Library

OGR used to be an acronym for OpenGIS Simple Features Reference

Implementation. However, since OGR is not fully compatible with the OpenGIS

Simple Feature specification; the name was changed to Simple Features Library

while the acronym OGR stayed same (OSGeo, 2014a).

OGR is a free and open source, cross platform C++ library for reading and writing

vector data formats. As a part of the GDAL/OGR library, OGR is packed with

GDAL (Geospatial Data Abstraction Library). In theory OGR is separate from

GDAL, however both OGR and GDAL reside in the same source tree (OSGeo,

2014a). Similar to OGR, as a cross platform C++ library, GDAL incorporates

similar read and write capabilities but on raster data formats. Both GDAL and

OGR libraries are open source and distributed with the X11/MIT license. This type

of licensing makes it possible to use these libraries even for building proprietary

software.

GDAL project was initiated by Frank Warmerdam in 1998 (Warmerdam, 2008).

Currently, GDAL/OGR is an OSGeo supported project and development efforts

are welcomed under the umbrella of OSGeo (OSGeo, 2014b). GDAL/OGR

provides useful command line utilities for data processing and translation. With

reference to GDAL/OGR v1.10.1 released in 2013, library supports more than 130

raster formats (GDAL, 2014a) and more than 70 vector formats (GDAL, 2014b)

(Table 4.7). GDAL/OGR library provides data access for many open source and

commercial software; such as QGIS, GRASS, OpenEV, FME, Google Earth and

ArcGIS (OSGeo, 2014b).

 93

Table 4.7. Some Popular Vector and Raster Data Formats Supported by
GDAL/OGR (adapted from OSGeo, 2014b)

Vector Raster

ESRI Shapefile TIFF, BigTIFF, GeoTIFF

ESRI Coverages Erdas Imagine

ESRI Personal Geodatabase PCI Geomatics Database File

MapInfo (including mid/mif and tab) ESRI Grids

Microstation DGN ECW

GML MrSID

PostGIS JPEG2000

Oracle Spatial DTED

As a cross platform C++ translator library, GDAL/OGR binary packages are

compiled against several platforms such as Windows, Ubuntu, Debian, OpenSUSE

and MacOSX. Although GDAL/OGR library is written for C++, following

bindings are available for development with other languages such as Perl, Python,

Java, C#, Ruby and R. Unlike PyQGIS and PyQt bindings created using SIP,

GDAL/OGR bindings are created using SWIG, which is also an open source tool

for connecting C or C++ libraries to other languages.

GDAL/OGR is a widely accepted open source library due to its extensive support

for many raster and vector data formats. As stated above, GDAL/OGR library

provides data access for many open source software. For example QGIS release

v2.0.1 is compiled against GDAL/OGR v1.10.0. GDAL/OGR provides ready to

use, prebuilt command line utilities for data translation and processing. “Ogr2ogr”

is a valuable command line utility included in OGR. It offers conversion of vector

data to supported formats while offering extra operations during conversion such

as attribute based subsetting, dropping attribute fields, defining output coordinate

system. In this study, while OGR library bindings for Python is used to create

shapefiles storing flow lines and flow node features; “ogr2ogr” command line

utility is utilized for filtering shapefiles based on user defined attribute values and

exporting shapefiles to Google Earth “kml” or MapInfo “tab” format.

 94

In this chapter, development environment components required for implementing

FlowMapper as a plugin to QGIS are reviewed in detail. These tools can be given

as follows: (i) Python programming language, (ii) QGIS API and PyQGIS

Python bindings, (iii) Qt development framework and PyQT Python bindings,

(iv) GDAL/OGR library. In Chapter 5, details regarding development

methodology and architecture of FlowMapper are given together with a review

of modules written in Python.

 95

CHAPTER 5

DEVELOPMENT OF FLOWMAPPER PLUGIN FOR QGIS

In previous chapters, fundamental concepts and history of flow mapping were

reviewed and ongoing challenges in displaying spatial interaction data were

identified from the literature. Besides, free and open source software concept

was discussed. Having the motivation for open source development, QGIS

was selected as the most promising open source desktop GIS application.

Development of a plugin under QGIS requires some software components

which portray the development environment of FlowMapper plugin. These

components, such as Python programming language, “Pythonic” API for

QGIS and Python bindings for Qt framework, were introduced in Chapter 4.

In this chapter, development of QGIS FlowMapper plugin is explained in

detail. At first, development methodology is presented with respect to the

scope of the study and requirements of the flow mapping software. Then,

architecture of the plugin is explored from the following respects; compliance

to QGIS Python plugin structure, coding with Python, modules and

dependencies, menu and GUI structure, functions and features implemented.

At the end of this chapter, development history is reviewed and a side by side

evaluation is presented among major releases. Besides, download and visitor

statistics regarding the plugin repository and website are included at the end

of this chapter.

 96

5.1. Development Methodology of FlowMapper Plugin

Development methodology of FlowMapper plugin involves determination of

software requirements prior to initiating coding. These requirements can be

grouped under two headings: (i) requirements regarding development environment

of FlowMapper and (ii) requirements regarding functional capabilities or features

of FlowMapper. Methodology and stages involved in the development of QGIS

FlowMapper plugin is given in Figure 5.1.

Figure 5.1. Development Methodology of FlowMapper Plugin

DEVELOPMENT
ENVIRONMENT

REQUIREMENTS

- Python Programming Language
- Qt Framework and PyQt
- Pythonic API for QGIS (PyQGIS)
- OGR Simple Features Library

DETERMINATION OF REQUIREMENTS

USER SUPPORT
& FEEDBACK

DEVELOPMENT OF QGIS FLOWMAPPER PLUGIN

(i) Coding & Debugging the Plugin in Python, (ii) GUI Development in Qt Designer

PRE-RELEASE TESTS

Testing the capabilities of plugin with different datasets

RELEASING THE PLUGIN

(i) Official and 3rd Party Repository, (ii) Website

FUNCTIONAL REQUIREMENTS

- Development as a QGIS plugin
- GUI based & menu driven structure
- Node-to-node flow mapping capabilities
(generating flow lines & nodes)
- Net, gross, two-way flow calculation
- Plain text based lucid input data format
- Widely accepted shapefile as output data format
- Magnitude, length, node, direction based
filtering options
- Graduated symbology options
- Calculation of basic statistical indicators
- Export to other GIS vector formats

 97

Parallel to the general methodology of this study, in order to identify all the

requirements given in Figure 5.1, first a detailed literature survey is performed on

fundamentals and ongoing challenges of flow mapping. By means of this survey,

types of flows and visual clutter reduction techniques to be focused in

FlowMapper are identified. Subsequently, free and open source software concept

is reviewed together with open source desktop GIS applications. Based on this

review, QGIS is selected as the core GIS component of FlowMapper. Afterwards,

development environment components required for building FlowMapper as a

QGIS plugin are identified. These components can be listed as follows: (i) Python

as the programming language together with an IDE such as IDLE and preferably a

powerful text editor such as Notepad++, (ii) Qt4 framework, Python bindings for

Qt (PyQt), PyQt command line tools “pyrcc4”, “pyuic4” and Qt Designer for GUI

development, (iii) Python bindings for QGIS API (PyQGIS) and lastly (iv) OGR

simple features library and its command line utility “ogr2ogr”.

Since flow mapping is a domain where wide range of analysis and various

representation techniques exist, functional capabilities of the plugin should be

limited to ease development. Based on the findings of detailed literature survey on

flow mapping in Chapter 2 and review of open source concept together with open

source GIS applications in Chapter 3; functional requirements and structural

characteristics of FlowMapper emerged as follows: (i) To ensure seamless GIS

integration FlowMapper should be developed as a plugin to QGIS, therefore

architecture must comply with the QGIS plugin structure, (ii) Similar to other flow

mapping software, FlowMapper should also be designed GUI based and operations

should be performed via menu driven structure, (iii) For ease of use input data

format should be lucid and plain text based (e.g. tab or space delimited text file) so

that it can be easily created and edited on any platform just with a text editor, (iv)

Flow lines and nodes should be created in a commonly used GIS based vector data

format, such as ESRI shapefile, in order to promote interoperability with other GIS

software, (v) FlowMapper should be capable of generating flow lines between

nodes via straight links which is identified as the most fundamental form of

displaying spatial interactions during literature survey in Chapter 2, (vi)

 98

FlowMapper should be capable of generating flow lines based on user selected

interaction scenario such as net, gross or two way flows and attributes such as

magnitude, length, origin-destination coordinates should be automatically

calculated, (vii) Flow nodes should be generated as point features based on user

supplied input test file storing either Cartesian or geographic coordinates, (viii)

Attributes for flow nodes, such as node name, magnitude of incoming, outgoing,

gross flows taking place at each node and a field for indicating whether the node is

gaining or losing flow, should be automatically calculated based on input

interaction matrix, (ix) As also discussed by Tobler (1987, 2003), in order to

reduce visual complexity and reveal desired patterns in data, plugin should offer

filtering capabilities based on magnitude, length, origin-destination node and

direction of flows, (x) Cartographic visualization options must be offered for flow

lines and nodes (e.g. single symbology mode, arrow heads to depict flow

directions, graduated symbology mode to render colors and adjust line thickness or

point size automatically based on magnitude), (xi) Users should be able to review

basic statistical indicators (e.g. min, max, mean, variance) for flows prior to

performing filtering or determining suitable intervals for graduated symbology,

(xii) Plugin should be capable of exporting output shapefiles to some popular

vector data formats (e.g. MapInfo tab and Google Earth kml).

After determining functional capabilities to be offered in FlowMapper, coding and

debugging cycle of the plugin is initiated under QGIS development environment.

To code a QGIS plugin with Python, developer needs to be familiar to Qt4 classes

and tools as well as the basics of Python. In this study, at the development phase

prior to starting coding, more than half a semester was spent to learn Python

programming language and to understand QGIS plugin structure and

dependencies. The Python tutorial prepared by Cogliati (2005) as a short book was

very useful to make a gentle introduction to Python and to gain hands on coding

experience. QGIS is developed with Qt framework and Python bindings for Qt

(PyQt) is created using SIP which is a tool for writing Python bindings for C/C++

libraries. Similarly, Python bindings for QGIS API (PyQGIS) is also created using

SIP tool. According to QGIS coding and compilation guide (QGIS, 2010), PyQt

 99

and PyQGIS are listed as the two other components for creating a QGIS Python

plugin. After getting familiar with the development environment, five stage agile

methodology defined in the PyQGIS developer cookbook (QGIS, 2014a) is

applied. These stages are (i) idea, (ii) create files, (iii) write code, (iv) test and (v)

publish. Idea stage includes setting the objectives and determination of functional

capabilities which are already performed. Second stage includes creation of

mandatory files that build the skeleton of a QGIS Python plugin (e.g. metadata.txt,

resources.qrc etc.). For this stage, rather than coding these files from scratch,

another Python plugin named as “QGIS Plugin Builder” was used to build the

initial framework of FlowMapper plugin. Third and fourth stages refer to coding,

debugging, GUI development and testing of FlowMapper. GUI development of

FlowMapper is mostly done in Qt Designer while for coding and debugging cycle

Notepad++ text editor, IDLE IDE, Python console embedded in QGIS, PyQt

command line utilities “pyrcc4” and “pyuic4” are used. The last stage of

development implies publishing the plugin in QGIS repository to make it available

for public.

Coding of FlowMapper started at the beginning of December 2011 and after about

four months the initial release v0.1 was published on the QGIS official plugin

repository at the end of March 2012. Excluding the automatically compiled

“resources.py” file, with more than 6.500 lines of code written in almost two years

period, FlowMapper has reached a mature state with four major and several minor

releases. All FlowMapper releases and their source codes are freely available for

download through the QGIS official plugin repository hosted on

“http://plugins.qgis.org/plugins/FlowMapper”. As of August 2014, almost after

two and a half year from the first release, FlowMapper has been downloaded more

than 12.000 times from the repository. This corresponds more than 10 downloads

per day which reveals the demand for integration of flow mapping tools to a

popular open source desktop GIS application.

All tools utilized for the development of FlowMapper (e.g. Python v2.6, Qt4,

PyQt, PyQGIS, OGR) have both precompiled binary packages for major Linux

 100

distributions and installers for Windows OS. However, plugin development

platform was setup on Windows 7 due to hands-on experience with Microsoft

Windows OS. Since coding started on Windows platform, until release of

FlowMapper v0.2.2, plugin was only tested on Windows 7 and XP. Staring from

v0.2.2, all releases of FlowMapper offer cross platform support and known to be

fully functional under Linux too.

One of the requirements in the development of FlowMapper is keeping the plugin

user friendly and fully functional out of the box. To make a user friendly GUI,

functions are designed to be accessible via simple menu driven structure that

guides the user to relevant form. GUI design is fully performed with Qt Designer

tool; however some dynamic form controls were required to be coded fully

manually. In order to keep the plugin fully functional out of the box, no third party

modules or libraries are used. In other words, FlowMapper only needs a QGIS

installation on the system and is not dependent to any other library that is not

needed by default QGIS installation. As a result of this structure, even novice

QGIS users can start using the plugin just in minutes after installing it via QGIS

plugin manager.

Development methodology of the plugin typically follows free and open source

development methodology previously reviewed in Chapter 3. As a QGIS Python

plugin, FlowMapper is also licensed with GNU GPL. Hence there is no restriction

in terms of usage, redistribution and further development of the plugin as long as

the source code is kept open. Inherently free and open source development

promotes collaboration among developers and users. Although FlowMapper is

coded by just one developer, there were also several contributions to development.

For example, a code snippet from Flowpy, which is a Python script originally

coded by Glennon (2009), was adapted to be reused in FlowMapper plugin.

Besides, StackExchange GIS network was used for asking questions and searching

answers about QGIS API related issues. Mails from users were often related with

the usage of the plugin with different datasets. Considering these comments,

starting from v0.1.1, FlowMapper is supplied with at least two test dataset and a

 101

brief documentation as a user manual. There were also few other user requests

regarding the functions to be added to next releases of plugin. However, there were

no requests from anyone for making active participation to coding.

5.2. Architecture of FlowMapper Plugin for QGIS

Inner structure and source code of FlowMapper are explored in details under this

heading. These include explanations about the purpose of files located under the

plugin folder, how the plugin works and review of some snippets from the source

code. Besides, some details about the tools utilized for coding and GUI

development are mentioned. A schema demonstrating the inner structure of the

plugin is also given in Appendix A.

5.2.1. Structure of a Python Plugin and FlowMapper

Since FlowMapper is built as a plugin to QGIS, in order to understand the inner

structure, it is a good starting point to review the purpose files located under the

plugin directory regarding the structure explained in PyQGIS developer cookbook

(QGIS, 2014a) and QGIS coding and compilation guide (QGIS, 2010). As stated

in the following resources (QGIS, 2010, QGIS, 2014a and QGIS, 2014c), features

of QGIS can be extended via plugins either written in C++ or Python. There are

two types of QGIS plugins: (i) core and (ii) external (QGIS, 2014c). Core plugins

are maintained by the QGIS development team and they are already included in

every QGIS distribution. Core plugins are generally written in C++ however there

are also some core plugins written in Python. In contrast to core plugins, external

plugins are stored in external repositories and maintained by their authors.

Currently, all external QGIS plugins are written in Python (QGIS, 2014c). The

main outcome of this study, FlowMapper is also an external plugin. Plugin is being

stored both under the QGIS official plugin repository

“http://plugins.qgis.org/plugins/plugins.xml?qgis=2.0” and under the dedicated

 102

repository which is created only for this study “http://95.9.195.180/plugins.xml”.

By means of the plugin manager, core and external plugins can be managed, new

plugins can be automatically installed and external repositories can be added

(Figure 5.2).

Figure 5.2. QGIS v2.0 Plugin Manager: (a) Manage installed core & external
plugins, (b) Download and install more plugins from repositories, (c) Manage
official and third party repositories

QGIS Python plugins depend on the functionality of shared libraries

“libqgis_core” and “libqgis_gui” (QGIS, 2010). Since both of these libraries are

(a)

(b)

(c)

 103

licensed under GNU GPL, any derivative work utilizing these libraries must also

be licensed under the GNU GPL. In other words; anyone can develop a QGIS

Python plugin and use it for individual needs without being forced to publish it.

However, if the plugin is published, source code must also be published under the

GNU GPL license. In Chapter 3, this necessity of GNU GPL was explained with

the “copyleft” concept. As it should be, FlowMapper plugin is also published

under the GNU GPL v2 with its Python “py” files which include the human

readable source code.

When a user needs a new external plugin (e.g. FlowMapper), it must be

downloaded from the repository and compressed “zip” file contents need to be

extracted into a folder that holds the same name with the plugin. Then this folder

must be moved to the location where QGIS looks for the plugins. Depending on

the operating system (e.g. Windows OS, Linux OS or MacOSX), QGIS scans

subdirectories under the following paths and initializes the Python plugins it finds.

For Linux: “plugins” path for QGIS 1.8.0 Lisboa on Xubuntu 12.04.2 LTS

./usr/share/qgis/python/plugins/

home/$USERNAME/.qgis/python/plugins/

For Mac: “plugins” path for QGIS 1.8.0 Lisboa on Mac OS X Maverics

./Applications/QGIS.app/Contents/Resources/python/plugins/

./Users/$USERNAME/.qgis/python/plugins/

For Windows: “plugins” path for QGIS 2.2 Valmiera (64bit) on Windows 7

C:\Program Files\QGIS Dufour\apps\qgis\python\plugins\

C:\Users\$USERNAME\.qgis2\python\plugins\

Based on one of the two locations where the plugin resides, plugin will be either

loaded for all users or only for the current user indicated with the “$USERNAME”

variable. For example, if user wants FlowMapper plugin to be loaded for all users,

paths written on the first lines should be used otherwise paths specified on the

second lines should be preferred.

 104

QGIS plugin manager (Figure 5.2) provides a user friendly interface for managing

both core and external plugins. Instead of manually downloading and extracting

the contents into plugins directory, new plugins can be automatically downloaded

from repositories and installed by means of the plugin manager shown in Figure

5.2 (b). By default, plugin manager installs external plugins under the user specific

path; thus these plugins will be only loaded for the user who has installed them.

Adding a new plugin to QGIS requires downloading contents of the plugin within

a compressed “zip” file. For security concerns, there is an approval mechanism for

the plugins those uploaded to the official QGIS repository. When a new plugin is

uploaded to the official repository, it needs to be reviewed and approved by an

administrator; otherwise that plugin is not listed as downloadable. However, there

is no such mechanism for third party private repositories maintained by individual

developers. This is a security flaw since installing a plugin involves execution of

the Python code contained in the plugin folder. So, users should install plugins

from third party repositories on their own risk.

Starting from version 0.9, developers can write a QGIS plugin either in C++ or

Python language. While C++ is a compiled language that is generally regarded as

running fast, Python is an interpreted language which does not require recompilation

of whole source code while testing small sections in software. This means, when

developing with C++ whole source code must be transformed into a set of computer

specific instructions prior to execution. However, when developing in Python, the

source code is modified and saved in the same format that is still human readable.

Thus, unlike QGIS core plugins those written in C++ and distributed in binary forms

(e.g. as “dll” for Windows), Python plugins come with “py” files which store the

human readable source code. When QGIS is started, Python “py” source code files

(e.g. __init__.py, flowmapper.py) residing under plugins directory are interpreted

and automatically compiled into Python “pyc” byte code files (e.g. __init__.pyc,

flowmapper.pyc). Once this transformation is completed; these “pyc” files are used

to run the plugin until there is any change in the source code stored in “py” files.

However, if an error is found during transformation, relevant plugin is automatically

 105

disabled by QGIS and a warning message is propagated with an error log for

debugging purposes. This log includes some vital information about the source of

error such as name of “py” file and line number of erroneous code. This is very

valuable because by looking at that information, plugin developer can debug and fix

erroneous code. Moreover, initialization cycle of a plugin can be automated by

means of another QGIS Python plugin named as “Plugin Reloader” which eases

reloading of a plugin without needing to restart QGIS. During development of

FlowMapper, this mechanism was found very useful and practical since it made

coding and debugging cycle possible almost on any platform by only needing a text

editor (e.g. Notepad++) and a QGIS installation.

As previously mentioned under the methodology section, the second stage of five

staged development methodology defined in the PyQGIS developer cookbook

(QGIS, 2014a) involves creation of mandatory files which will build the skeleton

for a plugin. Rather than coding these files from scratch, a Python plugin named

“QGIS Plugin Builder” (Sherman et al., 2014) was used to build the skeleton of

FlowMapper plugin (Figure 5.3). This provided a working template on which the

plugin is further developed regarding the functional requirements that FlowMapper

should satisfy.

Figure 5.3. Interface of QGIS Plugin Builder

 106

In Table 5.1, directory structure of a typical Pyhon plugin is given together with

the directory structure of FlowMapper. Besides, a brief explanation regarding the

purpose of each file is also given in the table.

Table 5.1. Directory Structure of a Typical Python Plugin and FlowMapper

Generic Python Plugin Purpose of File FlowMapper

…\plugins\GenericPlugin Plugin directory …\plugins\FlowMapper

__init__.py
Starting point; QGIS initializes the
plugin from __init__.py

__init__.py

metadata.txt
Contains metadata about the plugin in
plain text format *

metadata.txt

resources.qrc
Contains paths to resources used in
forms. “qrc” file is XML based

resources.qrc

resources.py
Translation of “resources.qrc” file to
Python language

resources.py

plugin.py Main module of the plugin flowmapper.py

N/A
Additional module that creates flow
lines, flow nodes and attribute tables

flowpyv07.py

form.ui
Main module

form
Main module

form
ui_flowmapper.ui

About form ui_about.ui

Filter by
magnitude f.

ui_form2.ui

Filter by
length form

ui_form3.ui

Symbology
for lines form

ui_form4.ui

Export form ui_form5.ui

Filter by node
& direction f.

ui_form6.ui

N/A N/A

G
U

I
fi

le
 c

re
at

ed
 b

y
Q

t D
es

ig
ne

r

in
 X

M
L

 f
or

m
at

Symbology
for nodes form

ui_form7.ui

 107

Table 5.1. Directory Structure of a Typical Python Plugin and FlowMapper (cont.)

Generic Python Plugin Purpose of File FlowMapper

form.py
Main

module form
Main module

form
ui_flowmapper.py

About form ui_about.py

Filter by
magnitude f.

ui_form2.py

Filter by
length form

ui_form3.py

Symbology
for lines form

ui_form4.py

Export form ui_form5.py

Filter by node
& direction f.

ui_form6.py

N/A N/A

T
ra

ns
la

tio
n

of
 X

M
L

 b
as

ed
 “

ui
”

fi
le

 to
 P

yt
ho

n
la

ng
ua

ge

Symbology
for nodes f.

ui_form7.py

Main module
form

flowmapperdialog.py

About form form_aboutdialog.py

Filter by
magnitude f.

form2dialog.py

Filter by
length form

form3dialog.py

Symbology
for lines form

form4dialog.py

Export form form5dialog.py

Filter by node
& direction f.

form6dialog.py

N/A N/A

In
 o

rd
er

 to
 a

cc
es

s
de

si
gn

er
 o

bj
ec

ts
 &

G

U
I

in
te

ra
ct

io
n

**

Symbology
for nodes f.

form7dialog.py

* Beginning with QGIS v1.8 “metadata.txt” is the preferred way to supply information about a
plugin. Embedding metadata into “__init__.py” will not be supported for QGIS ≥ v2.0.

** A separate Python file is not mandatory but advisable for accessing Qt Designer objects.
This provides a middle layer between the main module and “py” files translated from “ui” files.

It can be inferred from Table 5.1 that the structure of FlowMapper is almost

identical with the structure of a generic plugin defined in the PyQGIS developer

cookbook (QGIS, 2014a) except for the files with “dialog” postfix which are used

for accessing Qt Designer objects that exist in form interfaces. These Python files

with “dialog” postfix (e.g. flowmapperdialog.py) act as a middle layer between the

 108

main body of plugin (e.g. flowmapper.py) and Qt Designer files (e.g.

ui_flowmapper.ui) which are translated to Python files (e.g. ui_flowmapper.py) by

using “pyuic4” command line tool. To express more technically,

“flowmapperdialog.py” module subclasses “QtGui.QDialog” class and wraps

“ui_flowmapper.py” file. By default, this is the recommended structure deployed

by the QGIS Plugin Builder (Sherman et al., 2014). One advantage of this

hierarchy is that since it abstracts the setup of user interface, developer does not

have to deal with the user interface setup in the main Python module

(flowmapper.py). Thus, as FlowMapper is coded, dialog specific properties such

as setting values to form objects that interact with buttons are implemented via

Python files having “dialog” postfix (e.g. flowmapperdialog.py, form2dialog.py,

form3dialog.py etc.)

Assuming that a QGIS version equal or later than 2.0 is installed on the system;

when QGIS is started, QGIS first looks for “__init__.py” and “metadata.txt” files

under the FlowMapper folder. Upon locating them, QGIS parses

“classFactory(iface)” function from “__init__.py” file and loads “FlowMapper”

class from “flowmapper.py”. In order to load and unload a plugin, respectively

“initGui()” and unload() functions are used. These functions are located under

“FlowMapper” class and “initGui()” function uses icons from the resource file

“resources.py”. By means of “initGui()” function, respectively; (i) an action is

created to start plugin configuration, (ii) this action is connected to the “run(self)”

method and (iii) by using “addToolBarIcon” and “addPluginToMenu” slots,

toolbar icon and menu items are added to QGIS GUI. At the beginning of

“flowmapper.py” file, “FlowMapperDialog” class is imported from

“flowmapperdialog.py” file for interface interaction. When action connecting the

form to the run method is triggered, based on interface design stored in

“ui_flowmapper.py” file form is shown to user. This mechanism also applies to

rest of the forms. The only difference is that rather than the “run(self)” method,

each action created to start configuration is connected to the method which is

specific for that form (e.g. “form2(self)”, “from3(self)”, “about(self)” etc.). This

method calls only the related “QtGui.QDialog” classes in order to interact with the

 109

user interface and show the form (e.g. “about(self)” method calls

“Form_AboutDialog(QtGui.QDialog)” class from “form_aboutdialog.py” file

which also calls “Ui_FormAbout(object)” class from “ui_about.py” file.)

Up to this point, folder structure reflecting the architecture of a QGIS Python

plugin is examined. Then, details regarding how FlowMapper plugin is initialized

by QGIS are given. Besides, procedure for interacting with user interface files,

accessing designer objects and making forms visible to users are explained. From

this point on, content and purpose of mandatory files building the skeleton of the

plugin will be examined in detail before turning focus to GUI development, coding

of main module and implementations to meet functional requirements.

Starting point of FlowMapper is the “__init__.py” file which makes it known to

QGIS as a Python plugin together with the “metadata.txt” file. As shown in Table

5.2, “classFactory(iface)” (Line 3) method imports “FlowMapper” (Line 5) class

from “flowmapper.py” file and returns “iface” (Line 6) object which is the

reference for communicating with the QGIS interface in a Python plugin.

Table 5.2. Source Code of “__init__.py” File for FlowMapper

Source Code of __init__.py
1
2
3
4
5
6

This script initializes the plugin
and makes it known to QGIS.
def classFactory(iface):
 # load FlowMapper class from file FlowMapper
 from flowmapper import FlowMapper
 return FlowMapper(iface)

Starting with the release of QGIS v1.8, “metadata.txt” file is the recommended

way of providing general information about a plugin. Embedding metadata tags

as methods in the “__init__.py” file is obsolete and with the release of QGIS

v2.0, “metadata.txt” became the only way that is accepted. This information is

 110

used by the QGIS plugin manager and also needed by the QGIS official plugin

repository when a plugin is uploaded. As plugin is initialized by QGIS, plugin

manager needs to retrieve some mandatory information such as name and

description of the plugin, email of the author etc. This is performed through

“metadata.txt” file. In Table 5.3, a list of mandatory and optional metadata tags

are given. Besides, in Table 5.4, content of “metadata.txt” file for FlowMapper is

presented.

Table 5.3. Metadata Tags for QGIS Python Plugins

Metadata Tag Type Explanation

name Mandatory Name of the plugin in string data type

description Mandatory Short description of the plugin in string data type

version Mandatory Version of the plugin in dotted notation (e.g. 0.2.3)

author Mandatory Name of the developer

email Mandatory Email of the developer

qgisMinimumVersion Mandatory Min. QGIS version required by the plugin in dotted notation

qgisMaximumVersion Optional Max. QGIS version that the plugin works in dotted notation

changelog Optional In string data type and can be multiline

experimental Optional Indicates that the plugin is experimental (True or False)

deprecated Optional Indicates that the plugin is deprecated (True or False)

tags Optional Comma separated keywords list for the plugin

homepage Optional URL of the plugin’s homepage

repository Optional URL of the plugin’s source code repository

tracker Optional URL of the plugin’s bug tracker

icon Optional Filename or a relative path for the plugin icon

category Optional Category of the plugin such as raster, vector, database, web

 111

Table 5.4. Content of “metadata.txt” File for FlowMapper

Content of metadata.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

This file contains metadata for the plugin.

Mandatory items:
[general]
name=FlowMapper
description=This plugin generates flow lines between
 discrete nodes for depicting spatial
 interaction data (e.g. migration).
version=0.4
author=Cem GULLUOGLU
email=cempro@gmail.com
qgisMinimumVersion=2.0
End of mandatory metadata

Optional items:
experimental=False
tags= flow, flow mapping, spatial interaction data
homepage=http://95.9.195.180
repository=http://95.9.195.180/plugins.xml
icon=icon.png
End of optional metadata

Another file listed in Table 5.1 is the “resources.qrc” file which is required for

setting the icons used in FlowMapper form interfaces. In Table 5.5 (b), source

code of “resources.qrc” for FlowMapper is given. This file is written in XML

language and includes the path (Line 2) and name of the icons (Lines 3 – 10). As

shown in Table 5.5 (a), eight different icons are designed for FlowMapper in

“png” format and each icon is used in one form. After creating icons and editing

“resources.qrc” file, this file is translated to Python language by using the PyQt

tool “pyrcc4” with the following command line “pyrcc4 –o resources.py

resources.qrc”. During development of FlowMapper, this translation is performed

each time a new icon is created and added to the “resources.qrc” file. After

transformation, as shown in Table 5.5 (c), all icons are stored in hexadecimal

notation within the “resources.py” file (Lines 3 – 13).

 112

Table 5.5. FlowMapper Icon Set and Source Code of Resources Files for
FlowMapper: (a) FlowMapper Icon Set, (b) XML based “resources.qrc” file, (c)
“resources.py” file in Python language

(a) FlowMapper Icon Set

icon.png

icon2.png

icon3.png

icon4.png

icon5.png

icon6.png

icon7.png

icon8.png

(b) Source code of resources.qrc in XML
1

2
3
4

5
6

7
8
9

10
11

12

<RCC>

 <qresource prefix="/plugins/flowmapper" >
 <file>icon.png</file>
 <file>icon2.png</file>

 <file>icon3.png</file>
 <file>icon4.png</file>

 <file>icon5.png</file>
 <file>icon6.png</file>
 <file>icon7.png</file>

 <file>icon8.png</file>
 </qresource>
</RCC>

(c) Source code of resources.py in Python
1

2
3

4
5
6

7
8

9
10
11

12
13

14
15
16

17
18

19
20
21

22
23

from PyQt4 import QtCore

qt_resource_data = "\

\x00\x00\x0d\x2b\
\x89\
\x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\

\x00\x00\x18\x00\x00\x00\x18\x08\x06\x00\x00\x00\xe0\x77\x3d\xf8\
\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\x0b\x13\

...

...
\x00\x00\x00\xbe\x00\x00\x00\x00\x00\x01\x00\x00\x54\x45\

\x00\x00\x00\xd6\x00\x00\x00\x00\x00\x01\x00\x00\x62\x08\
"

def qInitResources():
 QtCore.qRegisterResourceData(0x01, qt_resource_struct, \

 qt_resource_name, qt_resource_data)

def qCleanupResources():
 QtCore.qUnregisterResourceData(0x01, qt_resource_struct, \
 qt_resource_name, qt_resource_data)

qInitResources()

 113

5.2.2. GUI Development for FlowMapper

The third and fourth stages of plugin development methodology mentioned in the

PyQGIS developer cookbook (QGIS, 2014a) involve coding, debugging cycle and

GUI development. Before focusing on the source code of main module

“flowmapper.py” and flow generator module “flowpyv07.py”, details regarding

GUI development are presented since these modules interact with user interface

objects.

One of the requirements of FlowMapper is defined as a user-friendly GUI where

operations can be performed via simple menu driven structure that guides user to

relevant form interface. GUI design of FlowMapper plugin is fully performed by

using Qt Designer which is installed as a part of Qt4 framework. Screenshot of Qt

Designer tool and GUI of the form that is used for creating flow lines and nodes

are given in Figure 5.4.

Figure 5.4. GUI Development for FlowMapper with Qt Designer Tool

 114

Qt Designer offers various predefined GUI elements, named as widgets (e.g. push

button, combo box, line edit, spin box etc.), which can be easily used in drag and drop

manner. Once a form design is completed, its layout is saved as Qt Designer “ui” file.

This file is XML based and stores all properties of GUI elements (e.g. form, widgets,

signal – slot parameters etc.). Similar to the translation performed on “resources.qrc”

file, XML based Qt Designer “ui” file also needs to be translated to Python language.

This is performed by running the PyQt tool “pyuic4” with the following command line

“pyrcc4 –o ui_flowmapper.py ui_flowmapper.ui”. In Table 5.6, a part of the source

code from XML based “ui_flowmapper.ui” file is given together with several lines of

Python source code from “ui_flowmapper.py” file. Once translation to Python language

is completed, form design and all properties of GUI elements are automatically created

under the “Ui_FlowMapper” class as given in Table 5.6 (b) starting from the line no. 7.

Table 5.6. Part of the Source Code for GUI Development: (a) XML based Qt
Designer “ui” file

(a) Source code of ui_flowmapper.ui in XML
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
 <class>FlowMapper</class>
 <widget class="QDialog" name="FlowMapper">
 <property name="windowModality">
 <enum>Qt::NonModal</enum>
 </property>
 <property name="geometry">
 <rect>
 <x>0</x>
 <y>0</y>
 <width>540</width>
 <height>400</height>
 </rect>
 </property>
...
...
 <property name="windowTitle">
 <string>Generate flow lines and nodes</string>
 </property>
 <property name="windowIcon">
 <iconset resource="resources.qrc">
 <normaloff>:/plugins/flowmapper/icon.png</normaloff>
 :/plugins/flowmapper/icon.png</iconset>
 </property>
 ...
 ...

 115

Table 5.6. Part of the Source Code for GUI Development (cont.): (b) Python
translated “py” file

(b) Source code of ui_flowmapper.py in Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

from PyQt4 import QtCore, QtGui
try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_FlowMapper(object):
 def setupUi(self, FlowMapper):
 FlowMapper.setObjectName(_fromUtf8("FlowMapper"))
 FlowMapper.setWindowModality(QtCore.Qt.NonModal)
 FlowMapper.resize(540, 400)
...
...
 icon = QtGui.QIcon()
 icon.addPixmap(QtGui.QPixmap \
 (_fromUtf8(":/plugins/flowmapper/icon.png")), \
 QtGui.QIcon.Normal, QtGui.QIcon.Off)
 FlowMapper.setWindowIcon(icon)
...
...
import resources

Form design and properties of widgets are stored in XML based Qt designer

“ui” files. For example, in Table 5.6 (a), form dimensions are defined in lines

12 and 13 which reside under geometry property tag (Lines 8 – 15). Similarly,

form title is defined in line 19 and properties of form icon are given between

lines 21 and 25. Once Python translation is performed, all these properties are

expressed in Python syntax. For example, in Table 5.6 (b), form dimensions

are set in line 11 and form icon properties are defined between lines 14 and

18. Two sample form interfaces designed for FlowMapper by using Qt

Designer are given in Figure 5.5.

 116

Figure 5.5. GUI of FlowMapper: (a) “Generate flow lines and nodes” form, (b)
“Filter Flow Lines by Length” form

In FlowMapper GUI, properties of some widgets change depending on the state of

other widgets which interact with user. For example, on the “Generate flow lines and

nodes” form shown on Figure 5.5(a), “enabled” and “checked” properties for “Show

flow direction” checkbox is “True” by default. However, if user selects the flow type

as “Gross” by checking the radio button, “enabled” and “checked” states of “Show

flow direction” checkbox are automatically changed to “False” since gross flows do

not imply any direction. Similarly, on the “Filter flow lines by length” form shown on

Figure 5.5(b), “enabled” state for “Calculate Statistics…” button is “False” by default;

in other words button is grayed out and cannot be clicked unless a shapefile is

selected. However, when user clicks “Browse…” button and selects a valid input

shapefile, “Calculate Statistics…” button become active and user can populate

(a)

(b)

If the user selects flow
type as “Net” or “Two
Way”, “Show flow
direction” checkbox
remains active;
otherwise it switches to
inactive state.

Unless a valid input shapefile
is selected by the user,
“Calculate Statistics…”
button remains inactive.

 117

descriptive statistics upon clicking the button. Among these two examples, there are

many other dynamic controls written for each form. These dynamic controls are

manually written in Python by using Qt’s signal and slot mechanism which can be

used to communicate between objects. In Qt, a signal is emitted when an event occurs

(e.g. when a user clicks a button). In response to a signal, a slot can be called as a

function. While a signal can be connected to a single slot, it is also possible to connect

a single signal to many slots or many signals to a single slot. Implementations for

dynamically controlling properties of “Show flow direction” checkbox and “Calculate

Statistics…” button are given in Table 5.7 with two different code snippets.

Table 5.7. Controlling Properties of GUI Objects: (a) Code snippet from
“ui_flowmapper.py” for controlling the properties of “Show flow direction”
checkbox via Qt’s signal – slot mechanism

(a) Sample code for signal – slot mechanism from ui_flowmapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

from PyQt4 import QtCore, QtGui
...
...
class Ui_FlowMapper(object):
 def setupUi(self, FlowMapper):
 FlowMapper.setObjectName(_fromUtf8("FlowMapper"))
...
...
 self.retranslateUi(FlowMapper)
...
...
 # Connect click event of “GrossRadioButton”
 # to “uncheck_ShowDirectioncheckBox” method
 QtCore.QObject.connect(self.GrossRadioButton, \
 QtCore.SIGNAL(_fromUtf8("clicked(bool)")), \
 self.uncheck_ShowDirectioncheckBox)
 # Connect click event of “GrossRadioButton”
 # to disable “ShowDirectioncheckBox”
 QtCore.QObject.connect(self.GrossRadioButton, \
 QtCore.SIGNAL(_fromUtf8("clicked(bool)")), \
 self.ShowDirectioncheckBox.setDisabled)
 # Connect click event of “TwowayRadioButton”
 # to enable “ShowDirectioncheckBox”
 QtCore.QObject.connect(self.TwowayRadioButton, \
 QtCore.SIGNAL(_fromUtf8("clicked(bool)")), \
 self.ShowDirectioncheckBox.setEnabled)
 # Connect click event of “NetRadioButton”
 # to enable “ShowDirectioncheckBox”
 QtCore.QObject.connect(self.NetRadioButton, \
 QtCore.SIGNAL(_fromUtf8("clicked(bool)")), \

 118

Table 5.7. Controlling Properties of GUI Objects (cont.): (a) Code snippet from
“ui_flowmapper.py” for controlling the properties of “Show flow direction”
checkbox via Qt’s signal – slot mechanism, (b) Code snippet from
“form3dialog.py” to change the state of “Calculate Statistics…” button

(a) Sample code for signal – slot mechanism from ui_flowmapper.py
31
32
33
34
35
36
37
38
39
40
41
42

 self.ShowDirectioncheckBox.setEnabled)
...
...
 QtCore.QMetaObject.connectSlotsByName(FlowMapper)
...
...
 def uncheck_ShowDirectioncheckBox(self):
 # Uncheck “ShowDirectioncheckBox”
 self.ShowDirectioncheckBox.setChecked(False)
...
...
import resources

(b) Sample code for signal – slot mechanism from form3dialog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

import sys, os
from os.path import isfile

from PyQt4 import QtCore, QtGui
from ui_form3 import Ui_Form
import flowmapper.py main module
import flowmapper

Create the dialog for Form3
class Form3Dialog(QtGui.QDialog):
 def __init__(self):
 QtGui.QDialog.__init__(self)
 # Set up the user interface from Designer.
 self.ui = Ui_Form()
 self.ui.setupUi(self)

 # Set input shapefile name and path to be filtered by length
 def SetTextBrowseInputShapeFilterLength(self):
 self.ui.BrowseShapeLineEdit.setText \
 (flowmapper.InputShpFilterLengthName)
 InputShpFilterLengthDirectory = \
 flowmapper.InputShpFilterLengthName
 if len(flowmapper.InputShpFilterLengthName) > 0:
 # Check the path whether it points to a shapefile
 extension = os.path.splitext \
 (str(InputShpFilterLengthDirectory))[1]
 if extension == ".shp":
 # Change state from Disabled to Enabled
 self.ui.CalStatLength.setEnabled(True)
...
...

 119

Based on Table 5.7 (a), when user clicks to the “Gross” radio button (Lines 14 –

16), a signal from the “GrossRadioButton” form object is connected to the

“uncheck_ShowDirectioncheckBox” method to change the “setChecked” property

of “ShowDirectioncheckBox” form object to “False” (Lines 37 – 39). By using

another signal – slot mechanism, “Enabled” state of “ShowDirectioncheckBox”

form object is changed to “Disabled” (Lines 19 – 21). In contrast, when user clicks

on “Two Way” or “Net” radio buttons, state of “ShowDirectioncheckBox” object

is set to “Enabled” since these types of flows imply direction (Lines 24 – 26, Lines

29 – 31). In Table 5.7 (b), upon user browses for the input file, path is checked

whether it points to a shapefile or not (Lines 25 – 26). If the input is a shapefile

(Line 27), “Disabled” state of “CalStatLength” form object is changed to

“Enabled” (Line 29). During GUI development of FlowMapper, same logic and

identical methodology is applied for the rest of the forms in order to perform form

designs and code form controls.

5.2.3. Development of Main Module and Flow Generator Module

Main module of FlowMapper plugin is implemented in the “flowmapper.py” file

while flow lines, flow nodes are created and attribute field calculations are

performed in the “flowpyv07.py” file. Totally, comprising about more than 3.000

lines of Python code, these two files are at the core of FlowMapper. Yet,

equivalent to more than a hundred pages of Python code, it is not convenient to

review every line of these files in this section. Instead, implementation of several

functions, such as how flow lines and flow nodes are created and graduated

symbology schema is applied or how filtering operations are performed upon

calculation of basic statistical indicators, are going to be reviewed with respect to

code snippets quoted from these files. For example, in Table 5.8, related parts of

the source code taken from “flowmapper.py” file are presented in order to explain

how flow lines and flow nodes are created in shapefile format and then added into

map layout. Besides, since “flowpyv07.py” file is imported at the beginning of

 120

“flowmapper.py” file, full source code of “shapefilemaker” function that is

implemented in “flowpyv07.py” file is given in Appendix B.

Table 5.8. Partial Content of Main Module: “flowmapper.py”

Code snippets from flowmapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

import standard Python modules sys & os
import sys
import os
from os.path import realpath & isfile functions
from os.path import realpath
from os.path import isfile
import QGIS core library
from qgis.core import *
import qgis.gui that brings GUI components e.g. map canvas
import qgis.gui
from qgis.gui import *
import QtCore and QtGui modules
from PyQt4 import QtCore, QtGui
QtCore contains non-GUI functionality
from PyQt4.QtCore import *
QtGui extends QtCore with GUI functionality.
from PyQt4.QtGui import *
#import ogr module from GDAL to work with vectors
import ogr
from osgeo import ogr
initialize Qt resources from file resources.py
import resources
include flow generator module
import flowpyv07
import FlowMapperDialog class to interact with GUI objects
import flowmapperdialog
from flowmapperdialog import FlowMapperDialog
...
...
class FlowMapper:
 def __init__(self, iface):
 # set reference to the QGIS interface
 self.iface = iface
 def initGui(self):
 # create action to initialize plugin configuration
 self.action = Qaction \
 (QIcon(":/plugins/flowmapper/icon.png"), \
 "Generate flow lines and nodes", self.iface.mainWindow())
...
...
 # connect action to the run method
 QObject.connect \
 (self.action, SIGNAL("triggered()"), self.run)
...
...
 # add toolbar button and menu item to QGIS GUI
 self.iface.addToolBarIcon(self.action)
 self.iface.addPluginToMenu("&FlowMapper", self.action)
...
...

 121

Table 5.8. Partial Content of Main Module: “flowmapper.py” (cont.)

Code snippets from flowmapper.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

 def unload(self):
 # remove toolbar button and menu item from QGIS GUI
 self.iface.removePluginMenu("&FlowMapper",self.action)
 self.iface.removeToolBarIcon(self.action)
...
...
 def OutputShp(self):
 dlg = FlowMapperDialog()
 fd = QtGui.QFileDialog(dlg)
 # define as global variable
 global SaveShpName
 global SaveShpDirectory
 # browse to set shapefile name for output flow lines
 SaveShpName = fd.getSaveFileName \
 (None, 'Shapefile(*.shp)','Type output file name','*.shp')
 def OutputShpNodes(self):
 dlg = FlowMapperDialog()
 fd = QtGui.QFileDialog(dlg)
 # define as global variable
 global SaveShpNameNodes
 global SaveShpDirectoryNodes
 # browse to set shapefile name for output flow nodes
 SaveShpNameNodes = fd.getSaveFileName \
 (None, 'Shapefile(*.shp)','Type output file name','*.shp')
 def InputNodes(self):
 dlg = FlowMapperDialog()
 fd = QtGui.QFileDialog(dlg)
 # define as global variable
 global InputNodesName
 # browse to select input text file storing node coord.
 InputNodesName = fd.getOpenFileName \
 (None, 'Text Files(*.txt)', 'Select txt file', '*.txt')
 def InputNodeNames(self):
 dlg = FlowMapperDialog()
 fd = QtGui.QFileDialog(dlg)
 # define as global variable
 global InputNodeNamesName
 # browse to select input text file storing node names
 InputNodeNamesName = fd.getOpenFileName \
 (None, 'Text Files(*.txt)', 'Select txt file', '*.txt')
 def InputMatrix(self):
 dlg = FlowMapperDialog()
 fd = QtGui.QFileDialog(dlg)
 # define as global variable
 global InputMatrixName
 # browse to select input text file storing flow matrix
 InputMatrixName = fd.getOpenFileName \
 (None, 'Text Files(*.txt)', 'Select txt file', '*.txt')
...
...
 def run(self):
 # create and show “Generate flow lines and nodes” dialog
 dlg = FlowMapperDialog()
 dlg.show()
 # connect to method to browse input or output file names
 # then connect to flowmapperdialog to interact with GUI
 QtCore.QObject.connect(dlg.ui.BrowseShape,QtCore.SIGNAL \
 ("clicked()"), self.OutputShp)

 122

Table 5.8. Partial Content of Main Module: “flowmapper.py” (cont.)

Code snippets from flowmapper.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

 QtCore.QObject.connect(dlg.ui.BrowseShape,QtCore.SIGNAL \
 ("clicked()"), dlg.SetTextBrowseShape)
 QtCore.QObject.connect(dlg.ui.BrowseNodes,QtCore.SIGNAL \
 ("clicked()"), self.InputNodes)
 QtCore.QObject.connect(dlg.ui.BrowseNodes,QtCore.SIGNAL \
 ("clicked()"), dlg.SetTextBrowseNodes)
 QtCore.QObject.connect(dlg.ui.BrowseNodeNames, \
 QtCore.SIGNAL("clicked()"), self.InputNodeNames)
 QtCore.QObject.connect(dlg.ui.BrowseNodeNames, \
 QtCore.SIGNAL("clicked()"), dlg.SetTextBrowseNodeNames)
 QtCore.QObject.connect(dlg.ui.BrowseShapeNodes, \
 QtCore.SIGNAL("clicked()"), self.OutputShpNodes)
 QtCore.QObject.connect(dlg.ui.BrowseShapeNodes, \
 QtCore.SIGNAL("clicked()"), dlg.SetTextBrowseShapeNodes)
 QtCore.QObject.connect(dlg.ui.BrowseMatrix, \
 QtCore.SIGNAL("clicked()"), self.InputMatrix)
 QtCore.QObject.connect(dlg.ui.BrowseMatrix, \
 QtCore.SIGNAL("clicked()"), dlg.SetTextBrowseMatrix)
 # check if OK button is clicked
 result = dlg.exec_()
 if result == 1:
 global SaveShpName
 global SaveShpNameNodes
 global InputNodeNamesName
 global InputNodesName
 global combotext
 SaveDirectory = SaveShpName
 # get type of coordinates (geographic or cartesian)
 combotext = str(dlg.ui.comboBox.currentText())
 # check if include node names checkbox is checked
 if dlg.ui.IncludeNodeNamescheckBox.isChecked()==False:
 IncludeNodeNames = 0
 InputNodeNamesName = InputNodesName
 else:
 IncludeNodeNames = 1
 # check if create flow nodes checkbox is checked
 if dlg.ui.CreateFlowNodescheckBox.isChecked()==False:
 CreateShpNodes = 0
 SaveShpNameNodes = "NULL"
 else:
 CreateShpNodes = 1
 # set flow type based on user selection
 if dlg.ui.TwowayRadioButton.isChecked():
 FlowType = 1
 elif dlg.ui.GrossRadioButton.isChecked():
 FlowType = 2
 elif dlg.ui.NetRadioButton.isChecked():
 FlowType = 3
 # connect to shapefilemaker function in flow generator
 # module to create flow lines, flow nodes and to
 # calculate attributes based on supplied parameters
 flowpyv07.shapefilemaker(FlowType, CreateShpNodes, \
 IncludeNodeNames, str(SaveDirectory), \
 str(SaveShpName), str(SaveShpNameNodes), \
 str(InputMatrixName), str(InputNodesName), \
 str(InputNodeNamesName), str(combotext))

 123

Table 5.8. Partial Content of Main Module: “flowmapper.py” (cont.)

Code snippets from flowmapper.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

 # if add to map is not checked, only show success msg.
 if dlg.ui.Add2MapcheckBox.isChecked()==False:
 SuccessMessage = \
 str(SaveShpName) + " created successfully !"
 QMessageBox.information \
 (self.iface.mainWindow(), "info", \
 SuccessMessage, "Close")
 else:
...
...
 # if add to map + show direction boxes are checked
 # and single symbology is selected
 elif dlg.ui.comboBoxSelectSymbology.currentText() \
 =="Single Symbol" and \
 dlg.ui.ShowDirectioncheckBox.isChecked()==True:
 # set shapefile layer name, path and driver
 layer = QgsVectorLayer \
 (str(SaveShpName),str(SaveShpName),'ogr')
 # create symbology
 registry = QgsSymbolLayerV2Registry.instance()
 lineMeta = \
 registry.symbolLayerMetadata("SimpleLine")
 markerMeta = \
 registry.symbolLayerMetadata("MarkerLine")
 # get layer geometry type
 symbol = QgsSymbolV2.defaultSymbol \
 (layer.geometryType())
 # define symbology properties for flow line
 lineLayer = lineMeta.createSymbolLayer \
 ({'width': '0.26', 'color': '255,0,0', \
 'offset': '0', 'penstyle': 'solid', \
 'use_custom_dash': '0', 'joinstyle': 'bevel', \
 'capstyle': 'square'})
 # define symbology for flow direction marker
 markerLayer = markerMeta.createSymbolLayer \
 ({'width': '0.26', 'color': '255,0,0', \
 'rotate': '1', 'placement': 'centralpoint', \
 'offset': '0'})
 subSymbol = markerLayer.subSymbol()
 # replace default layer with simplemarker
 subSymbol.deleteSymbolLayer(0)
 triangle = registry.symbolLayerMetadata \
 ("SimpleMarker").createSymbolLayer({'name': \
 'filled_arrowhead', 'color': '255,0,0', \
 'color_border': '0,0,0', 'offset': '0,0', \
 'size': '3', 'angle': '0'})
 subSymbol.appendSymbolLayer(triangle)
 # replace default layer with custom layers
 symbol.deleteSymbolLayer(0)
 symbol.appendSymbolLayer(lineLayer)
 symbol.appendSymbolLayer(markerLayer)
 # replace renderer of current layer
 renderer = QgsSingleSymbolRendererV2(symbol)
 layer.setRendererV2(renderer)
 # add layer to map and show success message
 QgsMapLayerRegistry.instance().addMapLayer \
 (layer)
 SuccessMessage = \
 str(SaveShpName) + " created successfully !"

 124

Table 5.8. Partial Content of Main Module: “flowmapper.py” (cont.)

Code snippets from flowmapper.py
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

 QMessageBox.information \
 (self.iface.mainWindow(), "info", \
 SuccessMessage, "Close")
...
...
 # only show success message if add flow nodes to map
 # checkbox is not checked
 if dlg.ui.CreateFlowNodescheckBox.isChecked()==True \
 and dlg.ui.AddNodes2MapcheckBox.isChecked()==False:
 SuccessMessage = \
 str(SaveShpNameNodes) + " created successfully !"
 QMessageBox.information(self.iface.mainWindow(), \
 "info", SuccessMessage, "Close")
...
...
 # determine if user wants to add flow nodes to map
 # and differentiate flow gaining and loosing nodes
 elif dlg.ui.CreateFlowNodescheckBox.isChecked()==True \
 and dlg.ui.AddNodes2MapcheckBox.isChecked()==True \
 and dlg.ui.DifNodeSymbologycheckBox.isChecked()==True:
 # create symbology
 registry=QgsSymbolLayerV2Registry.instance()
 markerMeta=registry.symbolLayerMetadata \
 ("MarkerLine")
 # get layer geometry type
 def validatedDefaultSymbol(geometryType):
 symbol=QgsSymbolV2.defaultSymbol(geometryType)
 if symbol is None:
 if geometryType == QGis.Point:
 symbol = QgsMarkerSymbolV2()
 elif geometryType == QGis.Line:
 symbol = QgsLineSymbolV2()
 elif geometryType == QGis.Polygon:
 symbol = QgsFillSymbolV2()
 return symbol
 # create default symbology for flow nodes
 def makeSymbologyForRange \
 (layer, min ,max, label ,colour, alpha, size):
 symbol = validatedDefaultSymbol \
 (layer.geometryType())
 symbol.setColor(colour)
 symbol.setAlpha(alpha)
 symbol.setSize(size)
 range = QgsRendererRangeV2 \
 (min, max, symbol, label)
 return range
 # set shapefile layer name, path and driver
 vlayer = QgsVectorLayer(str(SaveShpNameNodes), \
 str(SaveShpNameNodes),'ogr')
 # set indicator attribute field
 myTargetField = 'indicator'
 # define class labels for flow nodes
 classlabel1 = \
 "nodes gaining flows (incoming>outgoing)"
 classlabel2 = \
 "nodes losing flows (incoming>outgoing)"
 classlabel3 = "neutral nodes (incoming=outgoing)"

 125

Table 5.8. Partial Content of Main Module: “flowmapper.py” (cont.)

Code snippets from flowmapper.py
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

 # set parameters for three symbology classes
 myRangeList = []
 myRangeList.append(makeSymbologyForRange \
 (vlayer,0.9,2,classlabel1,QColor(0,192,0),1,2))
 myRangeList.append(makeSymbologyForRange(vlayer, \
 -2,-0.9,classlabel2,QColor(255,0,0),1,2))
 myRangeList.append(makeSymbologyForRange(vlayer, \
 0,0,classlabel3,QColor(128,128,128),1,2))
 # replace renderer of current layer
 myRenderer = QgsGraduatedSymbolRendererV2 \
 (myTargetField, myRangeList)
 vlayer.setRendererV2(myRenderer)
 # add layer to map and show success message
 QgsMapLayerRegistry.instance().addMapLayer(vlayer)
 message = str(SaveShpNameNodes) + \
 " created successfully !"
 QMessageBox.information(self.iface.mainWindow(), \
 "info" ,message)

Not all content of the source code is given in Table 5.8, however general layout of

“flowmapper.py” is organized as follows: Required libraries, classes, modules and

functions are imported at the beginning (Lines 1 – 29). All methods and functions

in the main module are implemented under the “FlowMapper” class (Lines 30 –

298). This class includes several methods, Python functions and implementation of

Qt’s signal – slot mechanism in order to perform such operations: (i) initialization

of plugin configuration and menu structure (Lines 31 – 56), (ii) setting global

variables (Lines 57 – 100), (iii) calculation of descriptive statistics, (iv)

implementation of methods to show forms and run form operations (Lines 101 –

298), (v) calling “shapefilemaker” function from flow generator module with user

defined variables (Lines 160 – 164), (vi) executing “ogr2ogr” command line utility

to filter flow lines by length or magnitude and (vii) applying symbology to flow

lines (Lines 177 – 226) and flow nodes (Lines 241 – 298) based on user

preference.

A typical scenario is selected to explain the code snippet quoted from main module

“flowmapper.py” (Table 5.8) and to examine the content of flow generator module

“flowpyv07.py” (Appendix B, Table B.1). This typical scenario reflects some

 126

common operations performed by users for creating and visualizing flow lines.

These operations can be given as follows: user (i) selects “Generate flow lines and

nodes” sub menu item from the “Plugins” menu under where the FlowMapper is

located; (ii) browses to select input files in which node coordinates, node names

and interaction matrix are stored; (iii) types output file names to store flow lines

and flow nodes; (iv) selects flow type (e.g. net); (v) determines whether to add

output files into map layout (e.g. checks add files to map checkbox); (vi) chooses

desired symbology (e.g. single symbology); (vii) decides whether to indicate

direction of flows and finally (viii) decides whether to differentiate symbology of

flow gaining and flow losing nodes. Upon clicking “OK” button, FlowMapper

creates flow lines, flow nodes and calculates feature attributes; then adds created

files into map window based on user defined preferences.

In order to perform operations defined in the scenario above; at the beginning of

“flowmapper.py” (Table 5.8), standard Python modules “sys” and “os”, QGIS core

library and GUI module “qgis.core” and “qgis.gui”, PyQt4 core and GUI modules

“QtCore” and “QtGui”, “ogr” module from OGR/GDAL, Qt resources

“resources.py”, flow generator module “flowpyv07.py” and form dialog classes

are imported (Lines 1 – 29). At this point, it should be evoked that all these

modules and libraries needed to run FlowMapper are also needed by QGIS and

come with the default installation of QGIS. When QGIS starts, FlowMapper

plugin is initiated by using “__init.py__” file. This file passes the “iface” object to

the main module “flowmapper.py” (Lines 31 – 33). By using the “iface” object, it

is possible to interact with the “Pythonic” QGIS API or in other words PyQGIS.

By means of the “initGui” method (Lines 34 – 50), plugin configuration is

initialized and sub menu structure for FlowMapper is built under “Plugins” menu.

When the user clicks “Generate flow lines and nodes” sub menu item, “run”

method of the form is triggered through the Qt’s signal – slot mechanism (Lines 42

– 43) and shown to the user (Lines 103 – 104). When the user clicks browse button

to select input files; such as the file storing node coordinates, names or interaction

matrix; a connection is triggered to each relevant method (e.g. Lines 123 – 124

triggers the “InputMatrix” method to select interaction matrix). By using

 127

“QFileDialog” and “getOpenFileName” method, file name and path is assigned to

the global variable “InputMatrixName” (Lines 91 – 98). Just after assigning file

name and path to the global variable as string, “SetTextBrowseMatrix” method is

called from the “FlowMapperDialog” class in order to populate the textbox content

that shows the file path in GUI (Lines 125 – 126). This mechanism is almost

similar for all input and output files; however “getSaveFileName” (Line 64)

method is used for output files instead of “getOpenFileName” method which is

used to locate input files. After setting input and output files, user determines type

of flow (e.g. net) that is to be created and calculated (Lines 151 – 156). The user

should also determine whether to generate flow nodes (Lines 145 – 149) and to

include names of nodes as feature attributes (Lines 139 – 143). Besides, parameter

to define the type of input node coordinates (Line 137) and option to show created

features on map are set by the user. Proper selection of coordinate type (e.g.

decimal degrees or Cartesian) has vital importance for the calculation of flow

length. If the user wants to add flow features on map upon creation, it is possible

to set several symbology options from the user interface (e.g. single symbology

representation or graduated symbology representation such as equal interval or

defined interval, indicating directions of net and two way flows, differentiating

symbology of nodes by flow gain or loss). After setting all these parameters, when

the user clicks to the “OK” button on the form, “shapefilemaker” function is called

from the flow generator module “flowpyv07.py” and executed with respect to the

parameters assigned to global variables (Lines 160 – 164).

The “shapefilemaker” function that is implemented in the flow generator module

“flowpyv07.py” is used to create flow lines and flow nodes in shapefile format

(Table B.1 in Appendix B). While most parts of the “shapefilemaker” function are

coded from scratch especially for FlowMapper plugin, some parts of it involve

code reuse from the “Flowpy” script of Glennon (2009). To create flow features in

shapefile format, the “shapefilemaker” function requires (i) a set of coordinate

pairs either geographic or Cartesian (Line 21), (ii) a square interaction matrix

(Line 20) and (iii) determination of flow type such as net, gross or two way.

Besides, some additional parameters such as “IncludeNodeNames” and

 128

“CreateShpNodes” should be passed to the “shapefilemaker” function in order to

populate origin and destination node names for flow lines and to trigger creation of

flow nodes (Lines 79 – 163) which are optional by default. Flow generator module

needs only few modules to run. These are “os”, “sys” and “math” as standard

Python modules and “ogr” module from OGR/GDAL library to handle shapefile

vector format (Lines 17 – 18). Besides, it is also possible to run “shapefilemaker”

function outside of QGIS by manually setting required parameters for the function

if a Python version greater than v2.0 and its corresponding bindings for

OGR/GDAL are installed on the system.

General layout of flow generator module “flowpyv07.py” is organized as follows:

(i) required modules are imported at the beginning (Lines 17 – 18); (ii) paths of

input files are assigned to variables (Lines 20 – 22); (iii) input files (node

coordinates, node names and interaction matrix) are opened read only (Lines 25 –

31); (iv) total number of nodes is determined (Lines 33 – 36) and entries stored in

each input file are appended into a list object as elements (Lines 38 – 77); (v) if

“CreateShpNodes” parameters is set to “1”, which means that the user also wants

to create flow nodes, first a blank shapefile is created by using the “ogr” driver

(Lines 79 – 86); (vi) using the same driver, attribute fields are created (Lines 87 –

105), (vii) after creating empty shapefile with attribute fields, via “ogr” driver,

flow nodes are inserted into the shapefile as “wkbPoint” geometry features by

accessing the coordinate pairs in the list object “mypoints[]” (Lines 107 – 117);

(viii) attributes for flow nodes, such as node names and total amount of

outgoing/incoming flows from/to that node, are calculated by accessing the list

objects “mypointnames[]” and “myodmatrix[]” (Lines 117 – 163); (ix) similar to

the method applied for creating flow nodes, depending on the flow type selected

by the user, which is “net” for this scenario (Line 337) , first an empty shapefile is

created with attribute fields (Lines 165 – 194) and then flow lines are inserted into

the shapefile as “wkbLineString” geometry features by accessing the coordinates

of origin and destination nodes stored in the list object “mypoints[]” (Lines 348 –

353 and Lines 404 – 409); (x) attributes for flow lines, such as magnitude, names

and coordinates of origin – destination nodes, are calculated by accessing the list

 129

objects “mypointnames[]” and “myodmatrix[]” (Lines 354 – 377 and Lines 410 –

433); besides lengths of flow lines are calculated depending on the type of input

coordinates (Lines 382 – 400 for geographic coordinates, Lines 379 – 381 for

Cartesian coordinates); (xi) after populating contents of attribute fields for each

flow line feature, shapefile is closed and “ogr” driver is destroyed (Lines 464 –

466).

With reference to the use case that the code structure of the main module is being

examined (Table 5.8), upon creation of flow lines and nodes in shapefile format,

these files are automatically added into the QGIS map window with the following

configuration: (i) flow lines displaying net flows are rendered with direction

arrows in single symbolgy mode; (ii) flow nodes are rendered to differentiate

whether the node is gaining or losing flows depending on the cumulative

interactions taking place on that node. The first part is initiated in Line 175 and

completed in Line 226 by populating a success message upon adding flows to

map. The second part is initiated in Line 241 and completed in Line 298 with a

similar success message. In order to perform these operations, layer name and path

of the vector layer is set by using the “ogr” driver (Lines 181 – 182 for lines, Lines

271 – 272 for nodes). Then desired symbology template is created by using

symbol layers (Lines 183 – 188 for lines, Lines 244 – 247 for nodes). In QGIS,

using custom symbol layers make possible to overlay marker symbols (e.g.

arrows) on lines to indicate flow direction. For flow lines, after defining properties

of custom line layer and custom marker layer (Lines 192 – 215), this symbology is

rendered in single symbology mode (Lines 216 – 218) and added to map by calling

the “addMapLayer” method (Lines 220 – 221). For flow nodes, methodology is

similar; however flow nodes are rendered in graduated symbology mode (Lines

289 – 292). Hence, symbology properties and class labels for each graduated

interval are separately defined and appended to the range list of graduated renderer

(Lines 281 – 288).

Creation of flow lines and flow nodes as well as calculation of attributes for flow

features are the core capabilities of FlowMapper plugin which meet the most

 130

fundamental requirements expected of a flow mapping software. However,

capabilities of FlowMapper plugin are beyond this. Additional capabilities of

FlowMapper can be listed as follows: (i) filtering flow lines either by length or

magnitude; (ii) filtering flow lines by node and direction to reveal flows either

incoming to or outgoing from a node; (iii) calculating basic statistical indicators

for flow features (e.g. minimum, maximum., mean, standard deviation, number of

features); (iv) rendering of automatically or manually adjusted graduated

symbology for flow lines and nodes based on magnitude field; (v) exporting

created vector features to Google Earth “kml” and MapInfo “tab” formats.

Code snippet implemented for calculating descriptive statistics is given in Table 5.9.

These indicators (Lines 4 – 12) supply preliminary information to the user about the

content of dataset before performing any operation on data such as filtering features

by magnitude or filtering flows by length or deciding number of classes, intervals

for graduated symbology representation. Besides, these indicators are also required

by the Python code that builds subclasses for graduated symbology representation

(for example, in graduated symbology mode when the user enters the number of

equal interval subclasses, min. and max. should be known to calculate the range;

then range is divided to the number of subclasses to get the interval.)

Table 5.9. Python Code for Calculating Descriptive Statistics

Code snippet for calculating descriptive statistics
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def CalStatFilter(self):

 # create variables to hold descriptive statistics
 global CalStatNoOfFeatures # no. of features in shapefile
 global CalStatNoOfFeaturesZero # no.of feat.having magnitude>0
 global CalStatSumMagnitude # total magnitude of flows in shp
 global CalStatMaxFlow # max. flow magnitude in shp
 global CalStatMinFlow # min. flow magnitude in shp
 global CalStatMean # average flow magnitude in shp
 global CalStatMeanNotZero # avg.mag.excl.feat.having mag.=0
 global CalStatStdDev # standard deviation of flows in shp
 global CalStatStdDevNotZero # std.dev.excl.feat.having mag.=0

 # open and read shapefile by using "ogr" driver
 shp = ogr.Open(str(InputShpFilterDirectory),1)
 layer = shp.GetLayer(0)

 131

Table 5.9. Python Code for Calculating Descriptive Statistics (cont.)

Code snippet for calculating descriptive statistics
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

 # get number of features in shapefile
 CalStatNoOfFeatures = str(layer.GetFeatureCount())

 feature = layer.GetNextFeature() # read first feature
 counterNotZero = 0
 CalStatSumMagnitude = 0
 CalStatList = [] # create list object
 while feature:
 magnitude = feature.GetField('magnitude') # get flow mag.
 if magnitude > 0:
 CalStatList.append(int(magnitude))
 CalStatMinFlow = min(CalStatList)
 CalStatMaxFlow = max(CalStatList)
 counterNotZero = counterNotZero + 1
 CalStatSumMagnitude = CalStatSumMagnitude + magnitude
 feature.Destroy() # destroy feature
 feature = layer.GetNextFeature() # read next feature
 # assign values to variables
 CalStatMean = str((CalStatSumMagnitude / \
 int(CalStatNoOfFeatures)))
 CalStatMeanNotZero = str(CalStatSumMagnitude / \
 int(counterNotZero))
 CalStatSumMagnitude = str(CalStatSumMagnitude)
 CalStatNoOfFeaturesZero = str(int(CalStatNoOfFeatures)- \
 int(counterNotZero))
 CalStatMaxFlow = str(int(CalStatMaxFlow))
 CalStatMinFlow = str(int(CalStatMinFlow))
 layer.ResetReading() # reset reading shapefile

 feature = layer.GetNextFeature() # read first feature
 var = 0
 varNotZero = 0
 while feature:
 magnitude = feature.GetField('magnitude') # get flow mag.
 var = var + ((magnitude - float(CalStatMean))**2)
 if magnitude > 0:
 varNotZero = varNotZero + ((magnitude - \
 float(CalStatMeanNotZero))**2)
 feature.Destroy() # destroy feature
 feature = layer.GetNextFeature() # read next feature
 # assign values to variables
 CalStatStdDev = str((var / int(CalStatNoOfFeatures))**0.5)
 CalStatStdDevNotZero = str((varNotZero / \
 int(counterNotZero))**0.5)
 layer.ResetReading() # reset reading shapefile

 # close data source
 shp.Destroy()

As given in Table 5.9, in order to calculate basic statistical indicators

regarding flow features, first global variables are defined at the beginning of

“CalStatFilter” function. As these indicators are assigned to global variables,

 132

once calculated they can be accessed and used in other functions or methods.

Shapefile layer holding flow features is accessed via “ogr” driver (Lines 14 –

16). Number of features in the shapefile is returned by the “GetFeatureCount”

method (Line 18). Then, first feature in the shapefile is accessed (Line 20) and

value of desired attribute field (e.g. magnitude, Line 25) for that feature is

appended as an element to the list object “CalStatList[]” (Line 27). This

operation is performed iteratively until the last feature in the shapefile is

accessed (Lines 24 – 33). By using list functions for “CalStatList[]” object,

indicators such as minimum, maximum, mean are calculated (Lines 35 – 43).

After calculating the mean value for dataset (Lines 35 – 38), a similar iterative

operation is performed by using another “while” loop to calculate the standard

deviation (Lines 49 – 60). After calculating all required statistics, data source

is closed (Line 64).

In Chapter 2, during review of visual clutter reduction techniques, filtering

was cited by Tobler (1987) and by Ellix and Dix (2007) as a method for

avoiding visual clutter on flow maps. Tobler (1987) defines filtering operation

as applying filters on flow tables based on descriptive statistics. Ellix and Dix

(2007) define filtering as the selection of a subset from the whole dataset that

satisfies the criteria set by the user. In FlowMapper, users can perform several

filtering operations by accessing the following forms: (i) “Filter flow lines by

magnitude”, (ii) “Filter flow lines by length” and (iii) “Filter flow lines by

node and direction”.

Filtering operation is implemented in Python code by executing the “ogr2ogr”

command line utility in the background with user defined parameters. As a

part of GDAL/OGR library, this utility can be used for conversion of vector

data to supported formats as well as attribute based subsetting of input data

during conversion. For example, to extract features from the input shapefile

which have magnitudes greater than the mean, following command should be

executed.

 133

ogr2ogr -f "ESRI Shapefile" -where "magnitude > MeanValue"

OutputShapefileName.shp InputShapefileName.shp

Similarly, to extract incoming flows to a node selected by the user, following

command should be executed. In the following command, “name_x2y2”

corresponds to the attribute field that holds destination node names for flow

lines.

ogr2ogr -f "ESRI Shapefile" -where "name_x2y2 = "UserSelectedNodeName""

OutputShapefileName.shp InputShapefileName.shp

FlowMapper offers several symbology options for better cartographic

representation and perception of flow phenomena. For example, direction of

each flow line is calculated automatically and can be depicted with an arrow

head that is overlaid on the center of flow line. Besides, if the user prefers

graduated symbology representation rather than single symbology mode, flow

lines are drawn with widths proportional to their magnitudes and rendered in

graduated colors which shade from light green to dark blue by default.

Similarly, for flow nodes, diameter of each circle representing a point feature

is drawn proportional to the cumulative magnitude of incoming, outgoing or

gross flows on that node. In graduated symbology mode, the user can

determine up to eight subclasses and manually adjust width and color for each

subclass or can select one of the following algorithms in order to generate

representation subclasses automatically; (i) equal size classes, (ii) equal

interval classes, (iii) defined interval classes and (iv) standard deviation

classes. For example, in Table 5.10, algorithm implemented for automatically

creating equal interval subclasses is given.

 134

Table 5.10. Python Code for Generating Graduated Symbology with Equal
Interval Classes

Python code to automatically generate equal interval classes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

...

...
determine feature geometry
def validatedDefaultSymbol(geometryType):
 symbol = QgsSymbolV2.defaultSymbol(geometryType)
 if symbol is None:
 if geometryType == QGis.Point:
 symbol = QgsMarkerSymbolV2()
 elif geometryType == QGis.Line:
 symbol = QgsLineSymbolV2()
 elif geometryType == QGis.Polygon:
 symbol = QgsFillSymbolV2()
 return symbol
create symbology
def makeSymbologyForRange(layer,min,max,label,colour,alpha,width):
 symbol = validatedDefaultSymbol(layer.geometryType())
 if dlg.ui.comboBoxSelectSymbology.currentText() <> "Single \
 Symbol" and dlg.ui.ShowDirectioncheckBox.isChecked() == True:
...
...
 elif dlg.ui.comboBoxSelectSymbology.currentText() <> "Single \
 Symbol" and dlg.ui.ShowDirectioncheckBox.isChecked() == False:
 symbol.setColor(colour)
 symbol.setAlpha(alpha)
 symbol.setWidth(width)
 range = QgsRendererRangeV2(min, max, symbol, label)
 return range
set shapefile layer name, path and driver
vlayer = QgsVectorLayer(str(SaveShpName),str(SaveShpName),'ogr')
myTargetField = 'magnitude' # set target attribute field
base line width and graduated symbology width multiplier factor
global basesymbolwidth, multipliersymbolwidth

if dlg.ui.comboBoxSelectSymbology.currentText() <> "Single Symbol"
and dlg.ui.ShowDirectioncheckBox.isChecked() == True:
...
...
elif dlg.ui.comboBoxSelectSymbology.currentText() <> "Single
Symbol" and dlg.ui.ShowDirectioncheckBox.isChecked() == False:
 global basesymbolwidth, multipliersymbolwidth
 basesymbolwidth = 0.25 # base line width
 multipliersymbolwidth = 0.75 # grad. sym. width multiplier

graduated symbology mode: CREATE EQUAL INTERVAL CLASSES
if dlg.ui.comboBoxSelectSymbology.currentText()=="Equal Interval":
 # get number of classes set by user
 GradSymNoOfClasses = dlg.ui.spinBoxClasses.value()
 # calculate class interval by dividing range to no. of classes
 GradSymInterval = round(((int(GradSymMax) - int(GradSymMin)) \
 / float(GradSymNoOfClasses)),0)
 myRangeList = [] # create list to store renderer range

 # iterate and set symbology parameters for each grad. class
 for i in range(GradSymNoOfClasses):
 if i == 0:
 # set class label for the FIRST class
 classlabel=str(GradSymMin)+" - "+str(int(GradSymMin) \
 + GradSymInterval)

 135

Table 5.10. Python Code for Generating Graduated Symbology with Equal
Interval Classes (cont.)

Python code to automatically generate equal interval classes
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

 # define symbology of first class
 myRangeList.append(makeSymbologyForRange(vlayer, \
 int(GradSymMin), int(GradSymMin) + GradSymInterval, \
 classlabel, QColor(0,255-(255*i/GradSymNoOfClasses), \
 255*i/GradSymNoOfClasses), 1, basesymbolwidth))
 elif i == (GradSymNoOfClasses - 1):
 # set class label for OTHER classes except the last
 classlabel=str(int(GradSymMin)+(GradSymInterval*i) \
 +0.001) + " - "+str(GradSymMax)
 # def.symbology of other classes except the last class
 myRangeList.append(makeSymbologyForRange(vlayer, \
 (GradSymInterval*i)+0.001, int(GradSymMax),
 classlabel, QColor(0,255-(255*i/GradSymNoOfClasses), \
 255*i/GradSymNoOfClasses), 1, (i+1)* \
 multipliersymbolwidth))
 else:
 # set class label for LAST class
 classlabel=str(int(GradSymMin)+(GradSymInterval*i) \
 +0.001)+" - "+str(int(GradSymMin)+GradSymInterval \
 *(i+1))
 # define symbology of last class
 myRangeList.append(makeSymbologyForRange(vlayer, \
 int(GradSymMin)+(GradSymInterval*i)+0.001, \
 int(GradSymMin)+GradSymInterval*(i+1),classlabel, \
 QColor(0,255-(255*i/GradSymNoOfClasses), 255*i/ \
 GradSymNoOfClasses), 1, (i+1)*multipliersymbolwidth))

 # replace renderer of current layer
 myRenderer = QgsGraduatedSymbolRendererV2(myTargetField, \
 myRangeList)
 vlayer.setRendererV2(myRenderer)
 # add layer to map and show success message
 SuccessMessage = str(SaveShpName) + " created successfully !"
 QMessageBox.information(self.iface.mainWindow(), "info", \
 SuccessMessage, "Close")
 QgsMapLayerRegistry.instance().addMapLayer(vlayer)
...
...

In Table 5.10, in order to create graduated symbology representation with equal

interval classes, first a blank symbology is created according to the geometry of

feature layer (Lines 15 - 27). Feature geometry is then validated (Line 16) by using

the “validateDefaultSymbol” function (Lines 4 – 13). Afterwards the data source

and the target attribute field to which graduated symbology will be applied are

defined (Lines 29 - 30). Line width to be used for the first class is assigned to the

global variable “basesymbolwidth” (Line 41) and similarly line width multiplier

factor to be used for the rest of the classes is assigned to “multipliersymbolwidth”

 136

variable (Line 42). By accessing the number of graduated classes set by the user

(Line 47), equal interval class value is calculated by dividing the range to the

number of classes (Lines 49 - 50). Class label that will appear on legend and

symbology parameters for each class (e.g. min., max., line color and width) are

calculated iteratively (Lines 54 – 84). After setting all required parameters for each

graduated class, symbology is rendered (Lines 87 – 88) and added into map (Line

94).

Up to this point, the architecture of FlowMapper plugin is reviewed in detail. First,

folder structure of FlowMapper and the purpose of each file located under this

plugin directory is explained with respect to the general structure of a Python

plugin for QGIS. Then, details regarding GUI development are reviewed. Finally,

capabilities and code structure of two major modules; (i) main module and (ii)

flow generator module, are examined in detail. In addition, a conceptual diagram

(Figure A.1) is given in Appendix A in order to portray the inner structure of the

plugin and interaction of it with QGIS.

5.3. Releasing FlowMapper Plugin

The last stage of agile development methodology defined in the PyQGIS developer

cookbook (QGIS, 2014a) involves releasing the plugin and publishing the source

code. Coding of FlowMapper plugin in Python started at the beginning of

December 2011. After about four months, at the end of March 2012, both the

source code and the initial release v0.1 were uploaded to the QGIS official plugin

repository.

When a plugin is uploaded to a repository, it is ready for the use of community.

A plugin published in a repository takes the advantage of easy installation via

“QGIS Plugin Manager” which otherwise requires manually downloading and

deploying the contents of plugin under QGIS plugins directory. Unlike most of

the core plugins written in C/C++, external plugins of QGIS are written in

 137

Python and they are stored either in third party repositories maintained by

external developers or in the QGIS official repository. Managed by the QGIS

community, offical plugin repository of QGIS is being hosted on

“http://plugins.qgis.org/plugins” and as of August 2014 more than 350 Python

plugins are being hosted including FlowMapper (Figure 5.6).

Figure 5.6. Webpage of FlowMapper Python Plugin Hosted at the QGIS Official
Repository

Building a third party plugin repository for QGIS is quite easy. It just needs some

space on a web server to host the plugin files in “zip” packaged format and a

definition file written in XML language. Repository built for FlowMapper is

hosted on the following address: “http://95.9.195.180/plugins.xml”. Although it is

not mandatory, if an “xsl” stylesheet is supplied for transformation of this “xml”

file, repository can be displayed as a webpage in web browsers. Source code and

screenshot of the plugin repository built for FlowMapper is given respectively in

Table 5.11 and Figure 5.7.

 138

Table 5.11. Source Code of the Repository for FlowMapper: (a) xml file, (b) xsl
stylesheet

(a) Source code of repository XML file
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

<?xml version = '1.0' encoding = 'UTF-8'?>
<?xml-stylesheet type='text/xsl' href='/plugins.xsl'?>
<plugins>
 <pyqgis_plugin name='FlowMapper' version='0.4'>
 <description>FlowMapper Plugin for QGIS</description>
 <version>0.4</version>
 <qgis_minimum_version>2.0</qgis_minimum_version>
 <homepage>http://95.9.195.180</homepage>
 <file_name>FlowMapper.zip</file_name>
 <author_name>Cem GULLUOGLU</author_name>
 <download_url>http://95.9.195.180/FlowMapper.zip</download_url>
 <uploaded_by>Cem GULLUOGLU</uploaded_by>
 <create_date>2013-12-29</create_date>
 <update_date>2013-12-29</update_date>
 </pyqgis_plugin>
</plugins>

(b) Source code of XSL stylesheet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

<?xml version = '1.0' encoding = 'UTF-8'?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match=" / ">
 <html> <body>
 <h2>FlowMapper Plugin for QGIS</h2> <xsl:apply-templates/>
 </body> </html>
</xsl:template>
<xsl:template match="description">
 Description: <xsl:value-of select="."/>
</br>
 Contact:
 cempro@gmail.com

</br>
</xsl:template>
<xsl:template match="qgis_minimum_version">
 Min. QGIS Version: <xsl:value-of select="."/>
</br>
</xsl:template>
<xsl:template match="download_url">
 Download:
 <xsl:value-of select="."/>
 (Size: ~4 MB)
</br>
</xsl:template>
<xsl:template match="update_date">
 Updated: <xsl:value-of select="."/>
</br>
</xsl:template>
<xsl:template match="version">
 Current Version: <xsl:value-of select="."/>
</br>
</xsl:template>
<xsl:template match="create_date"> </xsl:template>
<xsl:template match="file_name"> </xsl:template>
<xsl:template match="author_name"> </xsl:template>
<xsl:template match="uploaded_by"> </xsl:template>
<xsl:template match="homepage"> </xsl:template>
</xsl:stylesheet>

 139

Figure 5.7. Plugin Repository Webpage

Source code of the “xml” file describing the repository is given in Table 5.11(a).

Properties of FlowMapper plugin are defined within the “pyqgis_plugin” tag (Lines 4

– 15) which is contained by the “plugins” tag (Lines 3 – 16). It is also possible to

store more than one plugin within a single repository by creating a new

“pyqgis_plugin” tag for each plugin that is to be hosted. In Table 5.11(a), after

declaring “xml” version (Line 1) and “xsl” stylesheet (Line 2), a short description

regarding the plugin is given (Line 5). Version of the plugin (Line 6) and the

minimum version of QGIS that the plugin could run are defined within

“qgis_minimum_version” tag (Line 7). Homepage, plugin package name, author

name and download URL for the plugin are defined between Lines 8 – 11. Besides,

details regarding by whom and when the plugin is uploaded are defined between

lines 12 – 14. In Table 5.11(b), source code of the “xsl” stylesheet is given. By using

a stylesheet file, web browsers can interpret and show the repository like a webpage.

For example; between Lines 4 – 8, heading of the page is set. Between Lines 5 – 28,

page items are set by matching styles to desired descriptions in the “xml” file. For

example; in Table 5.11(b) between Lines 26 – 28, plugin version data defined under

the “version” tag that resides under the “xml” file is set to be shown on the webpage

with a prefix text: “Current Version:”.

 140

The first release of FlowMapper (v0.1) was uploaded to the official repository at

the end of March 2012 after about four months of development. Excluding the

automatically compiled “resources.py” file, FlowMapper v0.1 is comprised of

about 400 lines of Python code which includes the main module containing almost

one hundred lines of code and the flow generator module containing more than

150 lines of code. Following this initial release, several major and minor releases

were uploaded to the official repository within two years period during

development of FlowMapper. In Table 5.12, all major releases of FlowMapper are

given side by side along with the menu structure and GUI of main module in order

to portray how the plugin evolved gradually in time.

Table 5.12. Releases of FlowMapper Plugin

M
aj

or
 R

el
ea

se

R
el

ea
se

 D
at

e

M
in

im
u

m

Q
G

IS
 V

er
si

on

Plugin Menu GUI of Main Module

M
in

or

R
ev

is
io

n
s

0.1
29

Mar.
2012

1.0

N/A

0.2
11

Jan.
2013

1.0

0.1.1

0.2.5
29

Oct.
2013

2.0

for
1.4 <
QGIS
<2.0:
0.2.1
0.2.2
0.2.3

for
QGIS
>2.0:
0.2.4

 141

Table 5.12. Releases of FlowMapper Plugin (cont.)

M
aj

or
 R

el
ea

se

R
el

ea
se

 D
at

e

M
in

im
u

m

Q
G

IS
 V

er
si

on

Plugin Menu GUI of Main Module

M
in

or

R
ev

is
io

n
s

0.3
26

Nov.
2013

2.0

N/A

0.4
28

Dec.
2013

2.0

N/A

During development of FlowMapper, QGIS has also received updates. In

December 2011, when development of FlowMapper started, the latest stable

release of QGIS was v1.7.3. In September 2013, QGIS was updated to v2.0.1 from

v1.8.0 which was released in June 2012. This was a major update and result some

changes in the PyQt and PyQGIS API. While SIP v1 was used to create Python

bindings for Qt and QGIS API in QGIS v1.x, SIP v2 is preferred in QGIS v2.x.

Since API was subject to chance, QGIS v2.x is not fully backward compatible with

the plugins which were initially written for QGIS v1.x. Thus, FlowMapper needed

to be modified to be compatible with QGIS v2.x. In September 2013, just two

weeks after the release of QGIS v2.0.1, FlowMapper v0.2.4 was uploaded to the

repository as one of the first QGIS v2.x compatible plugins. At the end of the year,

in 28 December 2013, FlowMapper v0.4 was released on the repository and

received more than 5.000 downloads in 8 months. After about two years

development period, latest release of FlowMapper (v0.4) is comprised of more

 142

than 6.500 lines of code (excluding resources.py) which is almost 15 times more

than the amount contained by the first release (v0.1). Besides, the length of main

module code reached up to 3.000 lines which was about one hundred in v0.1 and

flow generator module contains more than 400 lines of code which was slightly

more than 150 lines in v0.1. As of August 2014, considering all releases hosted on

the QGIS official repository, FlowMapper has been downloaded more than 12.000

times. This corresponds more than 10 downloads per day and justifies the main

intention of this study which is integration of flow mapping tools to a popular open

source desktop GIS application. In Table 5.13, download counts retrieved from the

official repository and daily download rates for each release is presented.

Table 5.13. Number of FlowMapper Downloads from the QGIS Official
Repository

Version v0.1 v0.1.1 v0.2 v0.2.1 v0.2.2 v0.2.3 v0.2.4 v0.2.5 v0.3 v0.4

Release Date
29.03
2012

08.04
2012

11.01
2013

30.01
2013

03.06
2013

29.06
2013

22.09
2013

29.10
2013

26.11
2013

28.12
2013

Down. by Rel. 220 1.406 421 865 471 724 769 1.011 952 5.452

Daily Down. 22 5 22 7 18 9 21 36 30 23

Total Down. 220 1.626 2.047 2.912 3.383 4.107 4.876 5.887 6.839 12.291

 * Based on download counts listed in the official repository in 24 August 2014.

A dedicated website is built for FlowMapper which is available from the URL

“http://95.9.195.180”. During development of FlowMapper, latest release is

published on the site for download. As of August 2014, site hosts two versions of

plugin: (i) v0.2.3 which is the last release compatible with QGIS v1.x and (ii) v0.4

which is the latest release compatible with QGIS 2.x. Besides, brief documentation

about the usage of plugin and several test datasets are included in the plugin

package which can be directly downloaded from the site. In Figure 5.8, screenshot

of the plugin website is given.

 143

Figure 5.8. FlowMapper Plugin Website

It is possible to get download counts from the official plugin repository, however

it is not possible to retrieve any further information regarding these downloads

such as distribution of downloads by country or downloads by operating system.

On the other hand, details about the users visiting the plugin website can be

tracked by means of Google Analytics service. Basically, Google Analytics

service monitors the site and generates statistics regarding traffic sources

(Wikipedia, 2014b). Between February 2013 and August 2014, the site was

visited approximately 1.200 times. Since nearly % 60 of the total traffic to the

website is redirected traffic from the official plugin repository, website visitor

statistics can also be taken as a sample to reveal some details regarding

downloads from official repository. In Table 5.14, distribution of visits between

February 2013 and August 2014 is given by countries.

 144

Table 5.14. Number of Visits to the Plugin Website by Countries

R
an

k

Country

V
is

it
s

%

R
an

k

Country

V
is

it
s

%

R
an

k

Country

V
is

it
s

%

1 United States 155 12,8 29 South Africa 9 0,7 57 Kenya 2 0,2

2 France 134 11,0 30 Greece 8 0,7 58 Malawi 2 0,2

3 Italy 84 6,9 31 Taiwan 8 0,7 59 Singapore 2 0,2

4 Turkey 81 6,7 32 New Zealand 7 0,6 60 Slovakia 2 0,2

5 Germany 67 5,5 33 Singapore 7 0,6 61 U.A. Emirates 2 0,2

6 Brazil 60 4,9 34 Thailand 7 0,6 62 Albania 1 0,1

7 United Kingdom 56 4,6 35 Czech Rep. 6 0,5 63 Argentina 1 0,1

8 Spain 46 3,8 36 Finland 6 0,5 64 Bangladesh 1 0,1

9 Mexico 45 3,7 37 Morocco 6 0,5 65 Cuba 1 0,1

10 Canada 39 3,2 38 Chile 5 0,4 66 Cyprus 1 0,1

11 Japan 34 2,8 39 Denmark 5 0,4 67 Dominican R. 1 0,1

12 Poland 29 2,4 40 Hungary 5 0,4 68 Ecuador 1 0,1

13 Netherlands 21 1,7 41 Puerto Rico 5 0,4 69 Egypt 1 0,1

14 Sweden 19 1,6 42 Israel 4 0,3 70 Ethiopia 1 0,1

15 Portugal 17 1,4 43 Peru 4 0,3 71 Fiji 1 0,1

16 Australia 16 1,3 44 Romania 4 0,3 72 Ghana 1 0,1

17 Switzerland 16 1,3 45 Russia 4 0,3 73 Guatemala 1 0,1

18 Belgium 15 1,2 46 Bulgaria 3 0,2 74 Guyana 1 0,1

19 Indonesia 15 1,2 47 Colombia 3 0,2 75 Honduras 1 0,1

20 Austria 14 1,2 48 Croatia 3 0,2 76 Iran 1 0,1

21 Reunion 14 1,2 49 Estonia 3 0,2 77 Latvia 1 0,1

22 Malaysia 13 1,1 50 Philippines 3 0,2 78 Luxembourg 1 0,1

23 South Korea 13 1,1 51 Ukraine 3 0,2 79 Nigeria 1 0,1

24 Armenia 12 1,0 52 Bolivia 2 0,2 80 Pakistan 1 0,1

25 Argentina 11 0,9 53 Burkina Faso 2 0,2 81 Palestine 1 0,1

26 China 10 0,8 54 Costa Rica 2 0,2 82 Venezuela 1 0,1

27 India 10 0,8 55 Hong Kong 2 0,2 83 Vietnam 1 0,1

28 Norway 9 0,7

56 Ireland 2 0,2 Visitor statistics: 24 August 2014

Starting from the release v0.2.2, FlowMapper offers multi platform support. It can

work with QGIS installations running on Windows, Linux and MacOSX operating

systems. According to visitors data acquired by Google Analytics, excluding the % 2

of visits performed by using mobile devices; % 78 of visitors was using Windows

while % 15 of them was using MacOSX and % 7 was using Linux. These findings

provide evidence regarding the cross platform utilization of FlowMapper plugin.

 145

CHAPTER 6

CAPABILITIES OF FLOWMAPPER PLUGIN AND RESULTS

In previous chapter, methodology and steps involved in development of

FlowMapper plugin are explained. This is mainly performed by reviewing the

structure of a QGIS Python plugin and by giving technical details about GUI

development and by examining the source code of plugin modules. In this

technical context, Chapter 5 is intended to inform Python plugin developers for

QGIS.

In this chapter, the capabilities of FlowMapper plugin are explored. At the

beginning, installation methods are explained. Then, plugin capabilities are

reviewed by exploring the GUI. Afterwards, input data structure is explained by

reviewing several test datasets. Finally, sample flow maps are created from the test

datasets by using different capabilities of plugin. Besides, cartographic quality of

these flow maps is also discussed. Unlike Chapter 5 which aims to inform plugin

developers, Chapter 6 keeps focus particularly on the usage of plugin. In other

words, Chapter 6 is organized like a “user manual” and “tutorial document”.

6.1. Installation of FlowMapper Plugin

FlowMapper is designed as a Python plugin to QGIS. Thus, QGIS must be already

installed on the target system that the FlowMapper plugin will run. Similar to

QGIS, FlowMapper offers multi platform support and can run on Windows, Linux,

BSD, MacOSX systems. To benefit from additional capabilities of FlowMapper

 146

such as filtering, for only MacOSX users, installation of GDAL/OGR framework

is needed since it is not automatically installed during QGIS installation.

Assuming that QGIS is already exists on the system; it is possible to install

FlowMapper plugin in two ways. In the first method, plugin package should be

downloaded from the web and files in the package should be manually placed by

user under the OS specific path that contains QGIS Python plugins directory. In

this directory, each plugin is stored under a separate folder with the name of the

plugin. So, “FlowMapper” folder in the plugin package should be copied under

plugins directory to complete the installation. Afterwards, plugin can be enabled or

disabled from the plugin manager when needed. This manual installation process

might be a bit confusing for novice users since it requires user’s knowledge about

OS specific paths. In Table 6.1, addresses of download resources and OS specific

locations for Python plugins are listed.

Table 6.1. URLs for Downloading FlowMapper and OS Specific Paths for QGIS
Python Plugins

Web resources for downloading the plugin package

http://plugins.qgis.org/plugins/FlowMapper/version/0.4/download/ FlowMapper v0.4
for QGIS > 2.0 http://95.9.195.180/FlowMapper-0.4.zip

http://plugins.qgis.org/plugins/FlowMapper/version/0.2.3/download/ FlowMapper v0.2.3
for 1.4 < QGIS < 2.0 http://95.9.195.180/FlowMapper-0.2.3.zip

OS Location of QGIS Python plugins directory to extract plugin package

C:\Program Files\QGIS Dufour\apps\qgis\python\plugins\ for all users in system

C:\Users\$USERNAME\.qgis\python\plugins\ specific for user (v1.x) Windows

C:\Users\$USERNAME\.qgis2\python\plugins\ specific for user (v2.x)

./usr/share/qgis/python/plugins/ for all users in system

home/$USERNAME/.qgis/python/plugins/ specific for user (v1.x) Linux

home/$USERNAME/.qgis2/python/plugins/ specific for user (v2.x)

./Applications/QGIS.app/Contents/Resources/python/plugins/ for all users in system

./Users/$USERNAME/.qgis/python/plugins/ specific for user (v1.x) MacOSX

./Users/$USERNAME/.qgis2/python/plugins/ specific for user (v2.x)

(i) If the plugin is needed only for a specific user, variable $USERNAME should be replaced with
the user name of that user.
(ii) v1.x stands for QGIS 1.x releases up to 2.0. v2.x stands for QGIS releases greater than v2.0.

 147

In the second installation method, QGIS Plugin Manager is used. Brief

information about this utility has already been given in Chapter 5 (Figure 5.2). In

this method, download and extraction operations are performed silently by means

of the plugin manager. Thus, this is the recommended method for novice users.

By default, address of the official plugin repository is already defined in the

plugin manager and the user can immediately start searching for any Python

plugin that is hosted on the official repository. Besides, by using the plugin

manager interface that was previously shown on Figure 5.2(c), users can also add

addresses of third party repositories to install Python plugins released by external

developers. In QGIS interface, users can access to the plugin manager by

clicking on the “Manage and Install Plugins…” item that is listed under the

“Plugins” menu. Then user finds FlowMapper from the list and when user clicks

install button plugin gets installed. In this method, by default plugin gets

installed under the user specific Python plugins directory. Thus, when QGIS

starts, plugin is loaded only for the user who has installed it. Once installed,

FlowMapper icon appears on the plugins toolbar. FlowMapper can be enabled,

disabled or completely uninstalled by using the plugin manager interface which

was previously given in Figure 5.2(b).

6.2. Exploring GUI and Capabilities of FlowMapper

Under this heading, GUI and menu structure of FlowMapper will be reviewed.

Besides, purpose of each form will be explained by examining the functions

offered in each form. In Table 6.2, each item on FlowMapper menu is listed

together with a short description explaining its purpose.

 148

Table 6.2. FlowMapper Menu Items

Plugin Menu Main Purpose

This item resides at the core of plugin. It is used to
create flow lines based on a set of coordinates and a
corresponding interaction matrix that holds flows
between nodes. Besides, flow nodes can also be created
as point features by using the same data.

In this tool, by entering a threshold value and then by
choosing the desired arithmetic operator user can
perform filtering on flow lines with respect to their
magnitude.

In this tool, by entering a threshold distance and then by
choosing the desired arithmetic operator user can filter
flow lines by their length.

In this tool, user chooses a flow node to filter flow lines
incoming to that node or outgoing from that node or
both cases.

By using this form, user can define desired symbology
and representation options for flow line features.

By using this form, user can define desired symbology
and representation options for point features, which
represent discrete flow nodes.

User can export shapefiles storing flow features to
Google Earth “kml” or MapInfo “tab” formats.

This form gives basic information about the plugin. It
does not offer any functions.

6.2.1. Creating Flow Lines and Flow Nodes

The first item on the plugin menu is “Generate flow lines and nodes” tool (Figure

6.1). This tool resides at the core of FlowMapper and is used to create flow lines

based on a given set of node coordinates and an interaction matrix that holds flows

between these nodes. Besides, it is also possible to create flow nodes as point

features by using this form. These operations are performed by means of the flow

generator module “flowpyv07.py” which was reviewed in Chapter 5.

 149

Figure 6.1. GUI for Generate Flow Lines and Nodes Tool

Two input files must be supplied in order to create flow features. Both files are in plain

text format and either tab or space delimited. The first input file contains coordinate

pairs for every flow node (Table 6.3.a). Each flow node corresponds to a location that

gives and receives flows. A flow node is analogous to a point feature and defined by

easting and northing coordinates. For each flow node, one pair of either geographic or

Cartesian coordinate must appear on each line of the input file. For example, if there are

four different locations, coordinates of first location must appear in the first line and

coordinates of the last location must appear on the fourth line. The second mandatory

input file is the interaction matrix or namely flow matrix (Table 6.3.c). It contains

interaction data between flow nodes in square matrix form which has equal dimensions

in terms of the number of rows and columns in the matrix. The number of rows and

columns in the interaction matrix must be equal to the number of flow nodes appearing

in the coordinates file. Besides, the order of flow nodes appearing on the rows and

 150

columns of the flow matrix must be exactly same with the order that flow nodes appear

in the coordinates file. While each matrix element appearing on the same row

corresponds to the magnitude of an outgoing flow from the node represented by that

row number, elements appearing on the same column correspond to the magnitude of

incoming flows to the node represented by that column number. For example, if there

are four locations, flow matrix must have 4 rows and 4 columns. Elements appearing on

the first row are magnitudes of outgoing flows from the first node to others; similarly

elements on the first column are incoming flows to the first node from others while

diagonal elements should be assigned to zero since no internal flows occur. In addition

to these two mandatory files, user can also provide an input file in plain text format

which lists the name of each flow node in a row (Table 6.3.b). If this optional file is

supplied, flow nodes will appear with their names in the attribute tables rather than their

row number which is automatically calculated based on the order that they appear in the

coordinates file. Typical structure of a sample flow dataset is given in Table 6.3. It

comprises of four flow nodes as cities of Turkey, corresponding coordinates pairs,

names and a 4 by 4 square interaction matrix. By using this dataset it is possible to

organize mandatory and optional input files in plain text format which is accepted by

FlowMapper.

Table 6.3. Sample Flow Data Format: (a) Coordinates of nodes, (b) Names of
nodes, (c) Interaction matrix storing magnitude of flows between nodes

Raw Node Data:
(a) Node coordinates *, (b) Node names **

Raw Flow Data:
(c) Interaction matrix ****

Magnitude of flows received
No.*** Easting Northing Names

 To
 From Node 1 Node 2 Node 3 Node 4

1 28.90 41.10 Istanbul 1 0 270 10 5

2 30.70 36.90 Antalya 2 200 0 40 15

3 41.80 41.20 Artvin 3 120 130 0 20

4 40.70 37.30 Mardin F
lo

w
s

se
nt

4 70 60 25 0

* Coordinate pairs must be supplied in a text file
one pair in a row separated either by tab or white
space to be used with FlowMapper.
** Names must be listed in a text file one under the
other, one name appearing in each row to be used
with FlowMapper.
*** No. column should not be included in input file.

**** Magnitude of all flows must be supplied in a
text file to be used with FlowMapper. Order of
flows must be listed in the same order that they
appear in the coordinates data. Header rows or
columns should not appear in the input file. Each
flow magnitude should be separated either by tab or
white space.

 151

After providing all required input files, user can choose desired flow type that is to

be calculated. There are three options: (i) two way, (ii) gross and (iii) net. In “two

way” mode, two flow lines are created in opposite directions between two discrete

nodes. One depicts incoming flow and the other depicts outgoing flow (e.g.

incoming and outgoing migration between two cities). Magnitude of each flow line

is assigned from the corresponding flow matrix element. In “gross” mode, only

one flow line is created to depict interaction between two discrete locations.

Magnitude of a gross flow line is the sum of incoming and outgoing flows between

these two locations. Thus, “gross” flows do not imply direction (e.g. total trade

volume between two countries). In “net” mode, similar to “gross” mode, only one

flow line is created to depict interaction between two locations. However, “net”

flows imply direction and calculated by subtracting magnitudes of incoming and

outgoing flows. While absolute difference is assigned as the “net” flow magnitude,

positive or negative result determines the direction of flow line. In Figure 6.2, a

basic illustration is provided for each flow type.

Figure 6.2. Types of Flow Calculations: (a) Two way, (b) Gross, (c) Net

After defining input files and determining type of flow calculation, user needs to

type output file name to generate flow lines. Besides, if user wants to create flow

nodes as point features, desired name for output file can be entered by clicking on

the “Create shapefile to store flow nodes” checkbox. Upon clicking the “OK”

button on the form, flow lines and nodes are created in shapefile format.

200

50

Node
A

Node
B

(a) Two Way Flow

250Node
A

Node
B

(b) Gross Flow

150 Node
A

Node
B

(a) Net Flow

 152

FlowMapper not only builds geometry for flow phenomena, but also automatically

calculates and populates attribute field values for created flow features (Figure

6.3). For example, when flow lines are created, following feature attributes are

automatically calculated: (i) “magnitude”: magnitude of flow line, (ii)

“length_km”: length of flow line in kilometers to represent interaction distance,

(iii) “coord_x1”: easting of origin node, (iv) “coord_y1”: northing of origin node,

(v) “coord_x2”: easting of destination node, (vi) “coord_y2”: northing of

destination node, (vii) “name_x1y1”: name of origin node, (viii) “name_x2y2”:

name of destination node.

Figure 6.3. Attribute Table for Flow Lines

Similarly, based on the interaction matrix given in Table 6.3(c), following

attributes are automatically calculated for flow nodes (Figure 6.4). Respectively

these attributes are (i) “name”: name of the flow node, (ii) “incoming”: magnitude

of all incoming flows to a node which is calculated by summing all values listed

under the corresponding column in flow matrix, (iii) “outgoing”: magnitude of

cumulative outgoing flows from a node which is calculated by summing all values

listed on the corresponding row in flow matrix, (iv) “gross”: magnitude of all gross

flows calculated by summing all flows incoming to a node and outgoing from a

node, (v) “net”: magnitude of all net flows calculated by taking the absolute

 153

difference between all flows incoming to a node and outgoing from a node, (vi)

“in/out”: ratio of cumulative incoming flows to outgoing flows calculated by

dividing “incoming” field value to “outgoing” field value, (vii) “out/in”: ratio of

cumulative outgoing flows to incoming flows calculated by dividing “outgoing”

field value to “incoming” field value, (viii) “indicator”: an indicator field

calculated by subtracting “incoming” field value from “outgoing” field value. If

indicator is “-1”, it means that node is losing flows at total (e.g. assuming that

interaction matrix given in Table 6.3.c corresponds to an internal migration

dataset, “-1” denotes cities losing population due to outgoing migration). If

indicator is “1”, this means that magnitude of incoming flows to that node is

greater than the outgoing flows from that node (e.g. based on the same assumption,

it denotes cities gaining population due to incoming migration).

Figure 6.4. Attribute Table for Flow Nodes

6.2.2. Symbology Capabilities

In their studies, both Tobler (1987) and Ellis and Dix (2007) mentioned visual

clutter problem arising in flow maps due to data intensive interaction matrices.

They discussed several methods, including utilization of different representation

techniques, to overcome this problem. On this basis, FlowMapper offers tools to

represent flow features with desired symbology. In Table 6.4, a list of all

symbology options included in FlowMapper is given.

 154

Table 6.4. Symbology Options Offered in FlowMapper

Symbology
Option

User Defined
Independent

Variable

System Calculated
Dependent
Variable

Default
Rendering

Size

Default
Rendering

Color

Single
Symbology

N/A N/A Fixed, all same size Fixed, same color

Equal Size Number of classes Class Intervals

Equal
Interval

Number of classes Class Intervals

Defined
Interval

Class interval Number of classes

Standard
Deviation

Class interval as a
factor of Std. Dev.

Number of classes

Line thickness or
point size

gradually increases
proportional to the

target attribute
field value.

Flow lines
gradually shade
from light green

to dark blue
proportional to

flow magnitude.
Flow nodes are

rendered in grey.

G
ra

du
at

ed
 S

ym
bo

lo
gy

Manual
Interval

Number of classes
Class interval

Color of each class
Line thickness or

Point size

N/A As defined by user
As defined by

user

Show Flow
Directions

N/A N/A
Arrow size is

proportional to the
line thickness

Arrow color is
identical to the

line color

Differentiate
symbology by
flow gain and

loss

N/A N/A Fixed, all same size

Green for flow
gaining nodes
Red for flow
losing nodes

Grey for neutral
nodes

Excluding following two forms, “Export…” and “About FlowMapper”, on all

forms a symbology tab exists along the bottom of the form window (Figure

6.1). Besides, there are two separate tools one of which offers options for

adjusting symbology of flow lines (Figure 6.5) while the other provides similar

options for representation of flow nodes (Figure 6.6). Three types of

representations are supported with these two tools: (i) single symbology mode,

(ii) graduated symbology mode with automatically adjusted classes or

intervals, (iii) graduated symbology mode with fully manual, user adjusted

parameters. While the first two modes are available in all forms, manual mode

only exists in “Symbology for flow lines” and “Symbology for flow nodes”

tools.

 155

Figure 6.5. Symbology Adjustment Tool for Flow Lines

Figure 6.6. Symbology Adjustment Tool for Flow Nodes

 156

In order to use “Symbology for flow lines” tool, user must first browse and

select the shapefile storing flow lines. Upon selecting input shapefile,

descriptive statistics for the magnitude field are automatically calculated and

displayed on the form. These basic indicators provide prior knowledge about

the dataset before determining the parameters for selected symbology type (e.g.

class interval for graduated symbology representation). In single symbology

mode, all flow features are depicted with plain lines in one color. In graduated

symbology mode, thickness of a flow line is drawn proportional to its

magnitude while by default the color schema gradually shades from light green

for minor flows to dark blue for major flows. For this type of representation,

there are four available algorithms which automatically generate graduated

classes and the rendering parameters for each class such as line color and

thickness. The first graduated symbology algorithm is “Equal Size Classes”. In

this mode, user sets the number of graduated classes and algorithm

automatically adjusts the interval of each class to keep equal number of

elements in each class. In “Equal Interval” mode, algorithm gets the whole data

range and divides it to the number of graduated classes defined by user in order

to generate classes having equal intervals. To use “Defined Interval” mode,

user must first enter desired value for class interval. Then, algorithm divides

the whole data range to the user defined class interval value to calculate

required number of graduated classes. Afterwards, graduated classes are

generated with user defined intervals. Algorithm of “Standard Deviation” mode

is similar to the algorithm used in “Defined Interval” mode. However, in this

mode, class interval is not entered by user; instead multiples or divisions of

standard deviation value are used as class interval values. This value can be

chosen by user as one or two standard deviation or as half or quarter of the

standard deviation. The last mode, “Manual Interval”, is only available on

symbology forms and allows user control on all parameters. In this mode, user

can generate up to eight graduated classes and can define class intervals for

each class. Besides, user can also control rendering parameters of each class

such as color and thickness.

 157

Capabilities of “Symbology for flow nodes” tool are quite similar to

“Symbology for flow nodes” tool. Yet, in the “Symbology for flow nodes” tool

user can choose target attribute field (e.g. incoming, outgoing, net, gross etc.)

upon loading the shapefile that stores flow nodes. Then, by choosing one of the

graduated symbology algorithms, size of point markers can be rendered

proportional to the target field selected by user. While point markers with

bigger size represent major interactions taking place on a node, smaller point

markers denote minor event interactions. By default, all flow nodes are

rendered in grey.

In addition to these representation options, there are two specific

representations one of which is used for displaying flow directions and the

other one is used for creating specific symbology in order to differentiate flow

gaining nodes from flow losing nodes. In order to display flow directions on

map, user should click on the “Show flow direction” checkbox in “Symbology

for flow lines” window. Then, direction of each flow line is shown by

overlaying an arrow head on the center of each line. In single symbology mode,

all arrow heads are drawn the same size. In graduated symbology mode, the

size of the arrow head is rendered proportional to the magnitude of flow. If

user wants to distinguish flow gaining locations from flow losing locations,

“Differentiate symbology by flow gain and loss” checkbox in “Symbology for

flow lines” window should be clicked. Then, “flow gaining nodes” will be

rendered with green makers while “flow losing nodes” will be rendered in red.

The term “flow gaining node” is used to describe a node which receives more

incoming flows than outgoing. On the contrary, if a node gives more outgoing

flows than incoming, it is a “flow losing node”. In this mode, all point markers

are drawn the same size and overlaid on top of flow nodes so that user can

easily distinguish locations gaining or losing flows.

 158

6.2.3. Filtering Capabilities

Performing filtering on dense flow data was cited by Tobler (1987) and by

Ellix and Dix (2007) as a simple and straightforward method for avoiding or

reducing visual clutter problem in flow maps. Filtering can be defined as

extraction of a subset from the whole dataset based on user defined criteria.

FlowMapper offers three tools to perform different filtering operations on flow

lines. These tools are (i) “Filter flow lines by magnitude”, (ii) “Filter flow lines

by length” and (iii) “Filter flow lines by node and direction”.

Interfaces of “Filter flow lines by magnitude” (Figure 6.7) and “Filter flow

lines by length” (Figure 6.8) tools are quite similar. In both forms, user first

clicks “Browse…” button and selects the shapefile storing flow lines. Then, by

clicking on “Calculate Statistics…” button, it is possible to calculate some

basic statistics about the dataset. While these statistics are calculated for the

“magnitude” field in the “Filter flow lines by magnitude” form, in the “Filter

flow lines by length” form they are calculated for the “length_km” column. By

reviewing these statistics, user gets some prior knowledge about the dataset

before performing filtering operation. For example, if user wants to keep flow

lines having magnitudes greater than the mean value, by referring to the

textbox where average magnitude is displayed, user can learn the value. To

complete filtering operation, user selects the desired operator and enters the

threshold value to delete matching records (e.g. delete flow lines having

magnitudes less than < average value or delete flow lines longer than > average

flow length). Since user may need to keep original input data, filtered flow

features are written into a new shapefile with a file name to be provided by

user.

 159

Figure 6.7. User Interface of Filter Flow Lines by Magnitude Tool

Figure 6.8. User Interface of Filter Flow Lines by Length Tool

 160

Interface of “Filter flow lines by node and direction” tool differs from the first two

filtering tools (Figure 6.9). This tool is used to extract incoming, outgoing or both

incoming and outgoing flows for a selected node. To perform this operation, user

browses and selects the input shapefile storing flow lines. When the input file is

selected, “Select node name” combobox is automatically populated by parsing

“name_x1y1” and “name_x2y2” columns in attribute table. If the selection on

“Filter flow lines” combobox is set to “only incoming to”, then “Select node

name” combobox is populated by parsing “name_x2y2” column since this column

stores destinations of flow lines. If combobox is set to “only outgoing from”, then

node names are populated by “name_x1y1” column since it stores origins of flow

lines. If value is set to “both incoming to & outgoing from”, then both columns are

used. After making two selections from the comboboxes, user types an output file

name for the shapefile to store filtered flow lines and clicks “OK” button on the

form to complete filtering operation. Once filtered flow files are added to map,

they look like “star” diagrams which imply many radial lines originating from a

point. If symbology tool in this form is used in graduated symbology mode, by

default all incoming flows to a node are rendered in shades of green while all

outgoing flows are rendered in shades of red.

Figure 6.9. User Interface of Filter Flow Lines by Node and Direction Tool

 161

6.3. Input Data Structure and Describing Test Datasets

Every FlowMapper release includes a set of sample data. Bundling test data

with the plugin package provides users immediate chance of trying

FlowMapper. A typical test dataset is provided with the following files: (i)

node coordinates, (ii) node names, (iii) interaction matrix. While the files

storing node coordinates and interaction matrix are mandatory, file storing

node names is optional.

When preparing dataset to be used with FlowMapper, all input files must be

created in plain text format and values must be separated either by using

whitespace or tab. All input files must be prepared by using ANSI encoding

and special characters should not be used when typing node names. Besides, if

a node name consists of more than one word, underscore “_” character should

be used instead of whitespace (e.g. This_is_a_node_name). For numeric

entries, such as flow magnitudes and node coordinates, point “.” should be

used as the decimal separator (e.g. Easting: 33.123456).

Node coordinates file consists of coordinate pairs listed as rows. Separated

either by whitespace or tab, easting and northing values of each flow node

must appear on a separate row. Hence, the number of rows in this file is equal

to the number of flow nodes in the case dataset. In Table 6.5, content of a

“node coordinates file” is given. This first file belongs to a test dataset which

is distributed with “Flowpy” script developed by Glennon (2009). It includes

12 flow nodes corresponding to locations of several banks in the United States

and a flow matrix storing amount of banking interactions such as money

transfers.

 162

Table 6.5. Structure of Input File Storing Node Coordinates

Coordinates of 12 Banks in the U.S.

Node
No.

File Content
(Easting & Northing)

1
2
3
4
5
6
7
8
9

10
11
12

-71 42
-74 41
-75 40
-81 41
-77 37
-84 33
-88 42
-90 39
-93 45
-94.5 39
-96.75 32.75
-122.5 37.75

Node names file holds the names of locations or any other explanatory text to label

flow nodes. Similar to the structure used in node coordinates file, in node names

file name of each node must appear on a new row. So, row lengths of coordinates

file and names file are equal. This file must be prepared in ANSI format and

language specific characters (e.g. İ, ı, Ğ, ş) should not be used when typing node

names. Besides, underscore character should be preferred to whitespace when

writing node names consisting of two or more words. In Table 6.6, content of a

“node names file” is given.

Table 6.6. Structure of Input File Storing Node Names

Names of 12 Bank Locations in the U.S.

Node
No.

File Content
(Names of flow nodes)

1
2
3
4
5
6
7
8
9
10
11
12

Boston
NewYork
Philadelphia
Cleveland
Richmond
Atlanta
Chicago
StLouis
Minneapolis
Kansas
Dallas
SanFrancisco

 163

Together with the file storing node coordinates, interaction matrix file is the other

mandatory input that is needed by FlowMapper to generate flow lines. Created in

plain text format and arranged as a square matrix, it holds the magnitudes of flows

taking place between nodes. Dimension of this square flow matrix is determined

according to the number of flow nodes. For example; if there 10 pairs of

coordinates listed in the nodes coordinates file, there must be 10 rows and 10

columns in the interaction matrix which implies 100 flows. It is also critical that

row and column order of the flow matrix should be arranged in the same order that

is used for the coordinates and names files. Meaning that if coordinates of Node A

is listed on the first row and Node Z is listed on the last row of coordinates file,

flows outgoing from Node A should be listed on the first row and Node Z should

be listed on the last row in the flow matrix. In the flow matrix, magnitudes listed

on the same row correspond to outgoing flows and magnitudes listed on the same

column correspond to incoming flows. In theory, it is also possible to assign values

to diagonal elements; however in practice they are set to “0” zero since no self

flows occur. Like other input files, interactions file is plain text based and each

element appearing on the same row is separated either by whitespace or tab. In

Table 6.7, content of an “interaction file” or namely “flow matrix file” is given.

Table 6.7. Structure of Input File Storing Interaction Matrix

Interactions (Money Transfer) between 12 Bank Locations in The U.S.

Amount of Money Received by Node

 To

 From 1 2 3 4 5 6 7 8 9 10 11 12

1 0 289 47 52 137 118 90 10 16 15 13 80

2 602 0 231 209 388 307 286 15 48 26 18 261

3 143 414 0 84 342 130 134 8 25 10 10 80

4 68 192 47 0 171 177 618 16 44 43 19 131

5 150 266 158 226 0 578 295 20 62 54 22 152

6 122 159 57 186 319 0 439 30 51 78 102 189

7 97 155 39 496 143 266 0 74 278 100 40 290

8 31 56 14 142 80 201 573 0 46 128 47 109

9 14 26 11 32 29 41 295 10 0 51 14 138

10 20 41 8 55 40 71 215 33 129 0 86 247

11 31 41 8 38 46 165 125 20 37 253 0 203

A
m

ou
nt

 o
f

M
on

ey
 S

en
t

fr
om

 N
od

e

12 82 81 23 84 114 106 251 22 127 128 43 0

 164

Five different datasets are provided for testing purposes. Each dataset includes

three input files: (i) node coordinates, (ii) node names and (iii) interaction

matrix or namely flow matrix. Each input file is created in plain text format and

edited to be compatible with the input data structure of FlowMapper described

above. The first dataset includes 4 nodes and a 4 by 4 interaction matrix. Each

node corresponds to a location of city center in Turkey and flows taking place

between these city centers are stored in the interaction matrix. This small

dataset is prepared for quick testing purposes during development of

FlowMapper and does not imply any real case or interaction. As a second set of

sample data, the test dataset supplied with the Flowpy script is used. Developed

by Gelennon (2009) under GPL, this Python script creates geographic flow

lines between discrete locations and some parts of this script are reused in the

flow generator module of FlowMapper. This dataset includes 12 nodes each of

which corresponds to a location of a bank in the U.S. Magnitude of interactions

between these banks are stored within a 12 by 12 square matrix in plain text

format. Third flow dataset pertains to internal migration of Turkey regarding

five years period between 2007 and 2012. This data is available from the web

site of TurkStat on yearly basis (TurkStat, 2013). This is a medium size dataset

and includes 81 nodes each of which corresponding to a city of Turkey.

Interaction matrix is prepared in plain text format holds magnitudes of nearly

6.500 flow lines corresponding to human migration between cities. Fourth test

dataset is about long term or permanent global immigration. This is a fairly

large dataset comprising of 226 countries. Hence, it is a suitable test dataset for

testing the filtering capabilities of FlowMapper. Data is available from the web

page of DRC (2007). It includes a 226 by 226 matrix which is generated by

disaggregating the information on migrant stock in each destination country as

given in its census (DRC, 2007). Reference period of the dataset is the 2000

round of population censuses. Fifth and the last test dataset refer to a different

scenario rather than usual geographic flows. This dataset is about passing

distributions between the team players in a soccer match. Interaction matrix

displaying passing distributions regarding the FIFA 2010 World Cup Final,

which was played between Spain and the Netherlands, can be accessed from

 165

FIFA Official Documents Repository (FIFA, 2010). Passing distribution dataset

comprises of 14 players while 3 of them were substitute players. In order to

create a compatible dataset to be used with FlowMapper, players are regarded

as flow nodes and since the location of the Soccer City Stadium where the

match is played in Johannesburg is known, coordinates for each node are

determined by looking at the arrangement of players on the soccer field.

Besides, node names file is created by using the names of players.

Totally five different test datasets are created in different sizes. While the

smallest dataset has just four nodes, the largest has more than two hundred

nodes. Practically FlowMapper does not imply any specific limitations

regarding the size of data; however in theory any limitation that applies to

shapefile format also applies to FlowMapper since flow features are created in

this format. Yet, remembering that each component of the shapefile format

(e.g. shp, shx, dbf) is limited to a size of 2 GB, FlowMapper has still enough

space to handle more than six millions of flow lines including their

automatically calculated attributes. In other words, FlowMapper is theoretically

capable of handling a square matrix that stores two way interactions taking

place between slightly more than 2.500 flow nodes. In Table 6.8, properties of

selected test datasets are summarized. Under the next heading, several flow

maps will be generated to test the capabilities of FlowMapper by using each of

these datasets.

 166

Table 6.8. Properties of Selected Test Datasets

Small

Synthetic
Dataset

US Bank
Interactions

Passes in a
Soccer Match

Internal
Migration of

Turkey

Global
Migrants

Intended
Purpose

For quickly
testing plugin’s

capabilities
during

development.

For testing
symbology and

filtering
capabilities on a

small dataset

To show how the
plugin can be

useful for
different
scenarios

For testing
symbology and

filtering
capabilities on a
medium sized

dataset

For testing
symbology and

filtering
capabilities on a

large dataset

Description

The simplest
dataset that can
be used to test
FlowMapper.

Bank interactions
between 12

different
locations in the

U.S.

Distribution of
passes between

team players
during a soccer

match

Migration
between 81 cities

of Turkey
between 2007

and 2012

Global
immigration data

between 226
different
countries

Type Synthetic Synthetic Real Data Real Data Real Data

Dataset Size Very Small Small Small Medium Large

No. of Nodes 4 12 14 81 226

Matrix Size 4x4 12x12 14x14 81x81 226x226

Projection &
Datum

Geographic (in Long. – Lat. order) & WGS84

File Structue Full text in ANSI encoding with space delimited variables

Date of Data N/A N/A 2010 2007 – 2012 2000

Data Source N/A Glennon (2009) FIFA (2010) TurkStat (2013) DRC (2007)

6.4. Generating Flow Maps with FlowMapper and Discussing Results

In this part, by using the test datasets introduced in the previous heading, several

flow maps will be generated based on different scenarios in order to demonstrate

functional and cartographic capabilities of FlowMapper.

At first, it will be convenient to start with the smallest dataset. Since this dataset

contains only four nodes, output flow map will not be subject to any visual clutter

problem. In this way, basic characteristics of flow maps generated by FlowMapper

could be better understood since no details are hindered. In Figure 6.10, three flow

maps displaying respectively two way, net and gross type of flows are given. All three

map layouts are prepared by using FlowMapper plugin and QGIS map composer

manager utility. To be more precise, a view from Google Maps is added as a

background layer by using another QGIS plugin named as “OpenLayers plugin”.

 167

Figure 6.10. Flow Maps Generated by Using 4x4 Interaction Matrix: (a) Two Way
Flows, (b) Net Flows, (c) Gross Flows

(a)

(b)

(c)

 168

FlowMapper uses straight lines in order to generate flow lines between discrete

nodes. During literature survey, this was identified as the most fundamental

cartographic technique for displaying spatial interactions. In Figure 6.10(a), “two

way” flows are mapped as straight line segments between discrete locations. In

this mode, all incoming and outgoing flows are shown on the map. To prepare this

map, first flow features are created in shapefile format by using the “Generate flow

lines and nodes” tool. Then flow lines are added into map with graduated

symbology representation. Since “Equal size classes” is selected, there are equal

numbers of features in each of these 4 graduated classes. By default, line colors of

graduated classes shades from light green to dark blue when graduated symbology

renderer is selected. Besides, line thickness of each graduated class increases

proportional to the magnitude of flow. Since “Show flow direction” option is also

selected, an arrow head is overlaid on the center of each flow line in order to show

the flow direction. Similar to line thickness, size of this direction arrow increases

proportional with the flow magnitude. As it can be seen in Figure 6.10(b), flow

lines having less magnitude are rendered on top of major flow lines having greater

magnitudes. This is a technique which is also referred by Tobler (1987). By using

this technique, flow lines displaying minor flows are not suppressed by thicker

flow lines showing major flows. In addition to flow lines, flow nodes are also

added to map and shown with two different representations. Since “Differentiate

symbology by flow gain and loss” option is selected, by accounting all cumulative

incoming and outgoing flows, if the magnitude of incoming flows to a node is

greater than the magnitude of outgoing flows from that node, then this node is

rendered in green; otherwise it appears red. As can be seen from the maps given in

Figure 6.10, while Antalya and İstanbul are shown in green as gaining nodes,

Artvin and Mardin are shown in red since they lose flows.

In Figure 6.10(b) and Figure 6.10(c), flow maps respectively displaying net

flows and gross flows are given. To prepare these maps, net and gross type of

flow lines are created in shapefile format by using the “Generate flow lines and

nodes” tool. Then these flow lines are added into map with graduated

symbology representation. For net flow lines, “Equal size classes”

 169

representation is selected. So, there are equal numbers of features in each of

these 3 classes. For gross flow lines, 4 different graduated representation

classes are defined in “Manual Interval” mode by using “Symbology for flow

lines” tool.

Magnitude of net flow between two nodes is calculated by subtracting

magnitudes of two flows in opposite directions. Depending on the subtraction

result, which gives either a positive or a negative value, direction of net flow

is determined. For example, by looking at the attribute table of two way flow

lines, it can be inferred that magnitude of flows outgoing from Antalya to

Mardin is 15; in the opposite direction there are 60 flows originating from

Mardin to Antalya. Hence, as shown in Figure 6.10(b), net flow magnitude

between Antalya and Mardin is 45 and the direction is towards Antalya.

Calculation of gross flow magnitude between two flow nodes is

straightforward; it is just aggregation of incoming and outgoing flows between

two nodes. Since gross flow is an indicator of all interactions between two

locations and it does not imply any direction. For example, in Figure 6.10(c),

gross interaction between Antalya and Mardin is shown as 75 by adding the

magnitudes of two flows in opposite directions.

U.S. bank interactions dataset is a small test dataset comprising of 12 flow

nodes. However, since it is larger than the first synthetic dataset which only

contains 4 nodes; bank interactions dataset can be used for demonstrating

basic filtering capabilities of the plugin such as magnitude filtering. In Figure

6.11(a), a flow map rendered with graduated symbology is given to show gross

interactions which have magnitudes greater than average gross flow

magnitude.

 170

Figure 6.11. Flow Maps Generated by Using Bank Interactions Dataset: (a) Gross
interactions greater than the average magnitude with graduated symbology, (b)
Unfiltered gross interactions with single symbology

As the number of flow nodes increases, resulting number of two way flow lines

increases in a quadratic way. Thus, Tobler (1987) suggests utilization of

computerized techniques when dealing with flow datasets containing more than

ten nodes. When mapped, these datasets produce more than one hundred flow

lines; hence cartographic concerns arise such as feature overlaps or crossings. For

example, when bank interactions data is mapped to show two way flow lines, more

(a)

(b)

 171

than a hundred line features will be generated. Assuming that only gross flow lines

are created, this will still generate about 70 flow lines. In Figure 6.11(b), all gross

flow lines created by using bank interactions data is presented with single

symbology representation. It is obvious that unless some clutter reduction

techniques are applied, resulting map is far from being informative.

Filtering, together with utilization of cartographic representation techniques such

as size, color and transparency, are mentioned by Tobler (1987) and by Ellis and

Dix (2007) as two common techniques to reduce visual clutter problem in flow

maps. With this in mind, in Figure 6.11(a), gross flow features only having

magnitudes greater than the average are mapped. In other words, minor flows are

filtered from whole dataset by using “Filter flow lines by magnitude” tool and only

major gross flows are mapped in six equal interval graduated representation

classes.

As it can be seen in Figure 6.11(a), in addition to flow lines, flow nodes are also

shown on map with grey circles. Similar to line thickness which is rendered

proportional to flow magnitude, diameter of each circle overlaid on a flow node is

adjusted proportional to the magnitude field selected by user, which is gross

magnitude for this instance. Besides, red or green markers are also overlaid on top

of these grey circles in order to indicate whether a node gains or loses flows. For

example, by looking at the diameter of the grey circle on New York, user can

interpret that this node is subject to more than 4000 gross interactions; yet there is

a red marker on New York since the amount of cumulative outgoing flows from

New York is higher than the amount of incoming cumulative flows.

It is also possible to display results on Google Earth. This can be performed in

several ways. User can export flow features to “kml” format by using FlowMapper’s

“Export…” tool or can use built-in export capabilities of QGIS. Besides, by using

another QGIS Python plugin named as “GEarthView”, map layout can be draped on

Google Earth as geo-referenced raster. Both the vector flow features and the map

layout are overlaid on Google Earth and presented in Figure 6.12.

 172

Figure 6.12. Gross Interactions Displayed in Google Earth

Internal migration data of Turkey is a medium size dataset comprising of 81 city

nodes and a corresponding migration matrix. Given an 81 by 81 flow matrix, this will

result more than 6.000 flow lines to be rendered which is inconvenient to map unless

visual clutter reduction techniques are implemented. Thereby, all filtering capabilities

of FlowMapper will be used together with graduated symbology representation

capabilities in order to generate informative and cartographically appealing flow

maps. By using this migration dataset, four flow maps are generated. The first map

given in Figure 6.13(a) shows the amount and direction of major net migrations

between cities. The second map, given in Figure 6.13(b), is a derivate map which

also shows direction of major net migration between cities but this time for those

closer than 300 kilometers. Generation of first map involves creation of net flow lines

and then filtering of them by magnitude in order to select major flows. Besides, to

generate the second map, this subset should be filtered again based on flow length in

order to determine short distance flows. The third map, given in Figure 6.14, shows

amount of major gross migrations between cities which are not farther than 300

kilometers. To prepare this map, created gross flow lines should be filtered based on

 173

their magnitudes and lengths. The last map, in Figure 6.15, prepared by using this

migration dataset shows net flows either received or given by Ankara. To create this

kind of thematic map which shows interactions related to a specific node, flow lines

should be filtered by using the “Filter flows by node and direction” tool.

Figure 6.13. Internal Migration Patterns of Turkey between 2007 and 2012: (a)
Major net migrations greater than 2.000 people, (b) Major net migrations shorter
than 300 kilometers and greater than 2.000 people

(a)

(b)

 174

The flow map given in Figure 6.13(a) illustrates major net internal migration patterns

in Turkey during five years period between 2007 and 2012. In order to identify major

migration patterns, net flow lines having magnitudes less than 2.000 people are

ignored. This is performed by using “Filter flow lines by magnitude” tool. Although

major net migrations are mapped with graduated symbology representation, this map

is subject to some level of visual clutter due to crossings of flow lines. However,

considering that the number of net flow lines generated from an 81 by 81 matrix is

more than 3.000, this migration map can still be taken as informative to reveal

magnitude and direction of major net migration patterns. For example; Istanbul can

easily be identified as one of the most outstanding city that receives major amounts of

migration especially from the eastern parts of Turkey. If further examined, Antalya

can be identified as one of the most appealing cities which receives major amount of

net migrations almost from all cities including metropolises such as İstanbul and

Ankara. Besides, by looking at the color and size of point markers on city centers, it

is possible to identify the amount of population increase or decrease for that city. For

example; İstanbul, Ankara and Antalya can be identified as cities receiving net

migration of more than 100.000 people while Van, Diyarbakır and Erzurum can be

identified as cities with outmigration of more than 25.000 people.

Figure 6.14. Major Gross Migration Patterns of Turkey Shorter than 300
Kilometers and Greater than 5.000 People

 175

In Figure 6.13(b) and Figure 6.14, flow lines are filtered based on distance in order

to reveal migration patterns between neighboring cities which are closer to each

other than 300 kilometers. This operation is performed by using “Filter flow lines

by length” tool. The first map, given in Figure 6.13(b), depicts amount and

direction of net migrations between neighboring cities which involve more than

2.000 people. The second map, given in Figure 6.14, shows gross migration

patterns between neighboring cities which involve more than 5.000 people.

Besides, by looking at the diameter of grey circles overlaid on city nodes, Istanbul

and Ankara can be identified as two prominent cities which are subject to more

than one million cumulative gross migrations. Compared to the flow map given in

Figure 6.13(a) which is prepared by filtering the data based on magnitude, these

two maps are less exposed to visual clutter problem since they depict a subset

which is also filtered based on distance in addition to magnitude. As a result of

ignoring long distance flow lines, the amount of overlaps and line crossings

decrease significantly and this provides cartographically more appealing flow

maps.

In Figure 6.15, magnitude and direction of all incoming and outgoing net

migration patterns are depicted for Ankara by using graduated symbology

representation. This is performed by filtering two way flow lines dataset by

using the “Filter flow lines by node and direction” tool. In this tool, when

graduated symbology representation is selected, by default all incoming flow

lines are rendered in shades of green while all outgoing flow lines are rendered

in shades of red. Besides, thicknesses of flow lines and size of direction arrows

are rendered proportional to the magnitude of flow which is the net migration

for this case. With reference to this map, it can be inferred that the most

significant incoming net migration sources of Ankara appear as Çorum and

Yozgat with more than 5.000 people while Antalya and Eskişehir appear as the

two most significant destinations for outgoing net migrations more than 10.000

people.

 176

Figure 6.15. Magnitude and Direction of Incoming and Outgoing Net Migration
Patterns for Ankara

In Figure 6.16, major destinations of Turkish immigrants are mapped at global

scale. With reference to a study carried by DRC (2007) about long term or

permanent immigration until 2000, this fairly large dataset involves 226 countries

including Turkey.

 177

Figure 6.16. Major Destinations of Turkish Immigrants: (a) With straight flow
lines, (b) With curved flow lines

(a)

(b)

 178

When an interaction matrix having dimensions of 226 by 226 is given to

FlowMapper and executed in “two way” flows mode, this will result more than

40.000 flow lines which is inconvenient to map simultaneously. Thus, in order

to produce cartographically appealing flow maps about Turkish immigrants,

this dataset should be filtered to reveal necessary information. For this case,

this is performed in three steps: (i) generating all two way flows by using the

226 by 226 immigration matrix, (ii) extracting a subset for flow lines outgoing

from the capital city Ankara by using the “Filter flow lines by node and

direction” tool, (iii) filtering this subset by using the “Filter flow line by

magnitude” tool in order to determine immigration patterns involving more

than 1.000 people. Afterwards, all flow lines in this subset are rendered with

graduated symbology representation to compose the map layout. When

examined in detail, more than 50 countries can be identified as destinations for

Turkish immigrants. The most popular destination can be distinguished as

Germany with slightly more than one and a half million immigrants. Besides,

France, Netherlands and Austria can be identified as other popular destinations

in the Continental Europe with more than 100.000 immigrants. On the other

hand, in terms of transoceanic long distance immigrations, United States of

America is the most popular destination for long term or permanent Turkish

immigrants with a magnitude of slightly less than 100.000 people.

As given in Figure 6.16(a), FlowMapper links locations (flow nodes) with

straight segments (flow lines) to depict spatial interactions. In Chapter 2,

during literature survey, this was mentioned as the most fundamental way of

displaying spatial interactions. However, instead of using straight segments,

utilization of curves in displaying flows between locations is also possible.

This is not a new issue (Thornthwaite, 1934 in Tobler, 1987) and sometimes

gives cartographically more appealing results especially for long distance

flows since curves represent the globe surface better. The map given in Figure

6.16(a) which shows immigration patterns with straight segments is

transformed into a new map that displays interactions with curved features,

Figure 6.16(b). However, there are few issues to overcome when preparing

 179

flow maps with curved links. First of all, features such as curves, arcs, splines

and Bezier curves are not supported in shapefile format by default. If

mandatory, such features are represented by inserting a large number of

vertices into polyline features to reshape them so that they resemble curves.

However, this is a workaround and not supported by FlowMapper. Thus, a

third party tool is needed. For example, in the popular proprietary GIS

software ArcGIS Desktop, “XY to Line” tool offers such functionality. Given

a shapefile created with FlowMapper that stores flow lines, this tool

transforms these features into geodesic curves. However, since this involves

inserting a large number of vertices into features, total size of the shapefile

increases significantly. For example, the total size of the shapefile storing flow

lines shown in Figure 6.16(a) is about 25 kilobytes; conversely the shapefile

storing flow lines shown in Figure 6.16(b) is about 3.500 kilobytes, which is

about 140 times bigger to store the same number features.

The last use case deals with a different scenario rather than usual geographic

flows. It involves passing distributions on the field among team players in a

soccer match (Figure 6.17). This use case is selected to demonstrate how

FlowMapper can be utilized in diverse application areas as a generic tool in

displaying different types of spatial interactions.

 180

Figure 6.17. Magnitude of Gross Pass Distributions between Players of Spain
during Final Match of FIFA 2010

Flow map given in Figure 6.17 illustrates gross pass distributions between

players of Spain during final match of FIFA 2010 World Cup. Including extra

time, this match lasted about 130 minutes and involved 14 players including the

3 substitutes as Navas, Fabregas and Torres. According to the match statistics

 181

provided by FIFA (2010), a total of 542 passes were successfully completed. In

order to visualize these passes, each player is assigned to a flow node and

coordinates for each node is determined according to the formation of players on

the soccer field. Then, by using the pass distributions matrix (FIFA, 2010), gross

flow lines are created by using FlowMapper plugin. As given in Figure 6.17,

flow lines are rendered with graduated color and thickness which deviates

proportional to the magnitude of gross passes. Besides, in order to show amount

of cumulative gross passes, a grey circle having diameter proportional to the

magnitude is placed on the location of each player. For example, Xavi holding

the jersey number 8, can be identified as the most significant player who gave or

received more than 130 gross passes. Besides, by looking at the red point marker

located on Xavi, it can be concluded that the number of total passes made by

Xavi is greater than the number of total passes received by him. In other words,

as a midfield player, Xavi gave more passes than he received.

In this part, the capabilities of FlowMapper plugin are demonstrated based on

different scenarios by using five different case datasets. Consequently,

FlowMapper emerges as a fully GIS integrated general purpose flow mapping

tool for displaying spatial interactions between discrete locations in today’s

highly mobilized world. Besides, FlowMapper offers additional filtering and

cartographic representation capabilities to aid discovering interesting patterns in

dataset while striving to avoid visual clutter problem without distorting the

essence of flow data.

 182

 183

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, brief summary of the study is presented together with the

conclusions that can be derived. Then, recommendations are presented for

further research and development of FlowMapper.

7.1. Conclusions and Discussions

In today’s highly mobilized world, a significant part of change arises from

geographical flows such as the movement of people, ideas, information, money,

energy or materiel. In his several studies Tobler (1976, 1981, 1987) drew

attention to the importance of geographical flows by focusing on the

visualization of spatial interaction data. Soon after Tobler drew attention to

geographic movement and flow phenomena; in his pioneering publication “The

Informational City”, Castells (1989) introduced the concept of “Space of Flows”

by reconceptualizing new forms of spatial mobilities with respect to

technological paradigms which portray a new type of space allowing real time

distant interactions (Castells, 2004). In other words, in contrast to geographically

bounded spaces, the “Space of Flows” concept pertains to human actions and

interactions circulating dynamically among organizational nodes (Stalder, 2003).

From this point of view, representing geographic movements, displaying flows

and spatially dynamic events are key activities in perceiving today’s highly

mobilized world which is subject to flows of people, information, money, goods,

etc. on an ever increasing scale…

 184

This study was initiated with the motivation of developing a general purpose flow

mapping software which is intended to help people better understand today’s

highly mobilized world by displaying spatial interactions and flows between

locations. Considering extensive capabilities of today’s computers to process large

amounts of data and the proven potential of GIS in handling spatial datasets offers

great opportunities in terms of discovering the potential of spatial interaction data.

However, considering the efforts that have been made in the last few decades to

reveal the full potential of GIS almost in every aspect, it is surprising to find how

full potential of flow mapping remained relatively less developed under GIS. For

example, either commercial or open source, there are no special tools included in

any of the popular GIS software such as ArcGIS, MapInfo, GRASS or QGIS. In

other words, none of this software offers out of the box functionality to depict

spatial interactions. With the development of FlowMapper plugin, which is fully

coupled with QGIS, this gap is partially filled in terms of integration of dedicated

flow mapping tools to desktop GIS.

Although GIS provides substantial tools and functions for dealing with spatial

data, handling of spatially dynamic events such as flows posses challenges for

cartographers. These challenges can be evaluated from two perspectives: (i)

problems arising from the essence of flow phenomena and spatial interaction data;

(ii) problems arising from the absence of dedicated flow mapping tools integrated

to off-the-shelf GIS software. For the first case, the most common challenge can

be expressed as visual clutter problem which arises from overlapping flow features

while displaying large flow matrices. Due to the structure of interaction matrices,

as the number of flow nodes increases linearly, the number of corresponding flow

lines increase in a quadratic way. As also suggested by Tobler (1987), to map flow

lines and calculate corresponding attributes (e.g. net or gross flow magnitudes) for

datasets including especially more than ten flow nodes, computerized techniques

should be used. However at this point, the absence of GIS integrated flow mapping

tools emerges as another challenge. By considering these challenges, FlowMapper

plugin was designed in plugin form as a fully GIS integrated software while

implementing several spatially non-distorting visual clutter reduction techniques

 185

which were discussed by Ellis and Dix (2007) as filtering (e.g. subsetting by a

given criteria) and advanced symbology (e.g. graduated color rendering,

proportional symbol size adjustment etc.)

One of the reasons of the absence of integrated flow mapping tools to popular

commercial desktop GIS applications may be due to weak demand of commercial

market for such domain specific tools. In other words, the number of potential

users demanding to pay for such tools may not be commercially enough to attract

companies to initiate development. Considering that flow mapping is one of these

areas where the market is not strong enough to attract commercial developers, free

and open source development should be embraced as the preferred methodology

for development of applications in specific research domains such as flow

mapping. On this basis, free and open source development emerged as an agile

methodology in development of FlowMapper plugin for QGIS desktop application

which is also an open source GIS software supplied freely without any licensing

fee.

After researching fundamental concepts in flow mapping, examining historical

development together with ongoing challenges in displaying spatial interaction

data and after all determining a gap in seamless integration of flow mapping tools

to GIS, the aim of this study was shaped under these circumstances. In short, the

main objective of this study is to develop free and open source software for flow

mapping integrated to GIS. With this motivation, several structural and functional

requirements were figured out for this domain specific software based on the

findings of literature survey carried in Chapter 2 and review of open source

software concept and development methodology reviewed in Chapter 3. For

example, some of the most important structural and functional requirements of

FlowMapper plugin were determined as follows: (i) FlowMapper should be

developed as a plugin to QGIS for seamless GIS integration and offered to all

potential users freely as an open source software product, (ii) FlowMapper should

be GUI based for ease of user interaction and must be fully functional out-of-the

box without needing installation of any other library that is not already included

 186

with QGIS installation, (iii) Input and output data structure should be lucid and

must use widely accepted formats such as plain text and shapefile, (iv)

FlowMapper should be capable of generating flow lines between discrete nodes

and be capable of making calculations for net, gross or two way flows, (v) To

avoid visual clutter and to reveal desired patterns in data, plugin should offer some

basic flow filtering capabilities together with several cartographic representation

options for flow lines and nodes.

FlowMapper plugin is built on top of QGIS. By this way, users of FlowMapper

can also benefit from all existing capabilities of QGIS. In Chapter 3, several free

and open source GIS applications were reviewed and among all QGIS and GRASS

were identified as the most functional and mature desktop GIS applications.

However, owing to its user friendly GUI, cross platform support including native

Windows binaries and stable development environment supported with up-to-date

API documentation; QGIS was selected as the most promising desktop GIS

application upon which to develop FlowMapper plugin. Besides, as an open source

software project continuing with collaborative efforts of community, popularity of

QGIS was proven with over half million downloads performed during 2012

(QGIS, 2013c). It is obvious that the popularity and widespread usage of QGIS is

promising for a growing active community which guarantees the continuity of

QGIS and strengthens the stability of the platform on which the FlowMapper is

built.

As a QGIS plugin, development environment of FlowMapper plugin is similar to

the environment that is portrayed in PyQGIS developer cookbook (QGIS, 2014a).

As reviewed in Chapter 4, following components are used for the development of

FlowMapper plugin: (i) Python as the programming language and IDLE Python

IDE; (ii) Qt4 cross platform application framework, Qt Designer for GUI

development, Python bindings for Qt (PyQt) and its command line tools “pyrcc4”,

“pyuic4”; (iii) Python bindings for QGIS API (PyQGIS); (iv) OGR simple features

library and its command line utility “ogr2ogr”. In order to fulfill functional

requirements of FlowMapper, plugin is written by using these development

 187

components with an open source and agile methodology. During development of

FlowMapper, this methodology provided some advantages which can be

summarized as follows: (i) Providing the plugin free of charge under QGIS, which

also does not require any licensing fee, led the plugin to reach more than 12.000

people almost in two and a half year; (ii) Considering that all users of FlowMapper

are also native testers, plugin was tested thousands of times and valuable

feedbacks were received by email; (iii) Since Python is an interpreted language

that runs directly from human readable source code, when a bug is found in the

plugin, users identified it and reported the erroneous line of code based on the

warning message that is raised by the integrated Python interpreter in QGIS; (iv)

GNU GPL v2, under which the QGIS is licensed, guarantees the source code of

both QGIS and its plugins to remain public in the future for collaborative

development; (v) Providing the source code of plugin to researchers paves the road

for further development of FlowMapper and also enables creation of derivative

works with code reuse; (vi) Since open source development environment

components of QGIS support multi platform, FlowMapper plugin gained native

support for multiple platforms without needing any additional coding.

During literature survey, fundamental concepts of flow mapping were reviewed.

With the guidance of this survey, interactions taking place between discrete

locations over uncertain paths were determined as one of the most common form

of flow scenarios. Thus, aiming to offer a general purpose interaction mapping

tool, FlowMapper is primarily developed to visualize this type of flows by

representing each inter-nodal interaction with a straight line object. Besides, based

on the review that visual clutter reduction techniques are evaluated (Ellis and Dix,

2007); filtering and graduated symbology rendering are implemented in

FlowMapper as spatially non-distorting techniques for reducing visual clutter in

flow maps.

Methodology and implementation stages involved in development of FlowMapper

plugin follows the five stage agile methodology defined in the PyQGIS developer

cookbook (QGIS, 2014a). These stages involve; (i) formation of the idea, (ii)

 188

creation of files, (iii) coding, (iv) testing and (v) publishing the plugin. First stage

involves setting the goal and determination of requirements prior to initiating

coding. Next stage involves building the skeleton of the QGIS Python plugin. For

FlowMapper, this is performed by using another Python plugin named as “QGIS

Plugin Builder”. Third and fourth stages involve Python code writing, debugging,

GUI development and testing. This routine were performed by using the

development environment components required for writing an external Python

plugin to QGIS which were previously mentioned as IDLE IDE, Qt, PyQt and

PyQGIS. For the last stage, FlowMapper and its source code was published in the

QGIS official plugin repository to make it available for public. Based on the

indicator that FlowMapper was downloaded more than 12.000 times within almost

two and a half year period and considering that every user of the plugin is also a

potential tester that may contribute to development by sending feedbacks about

bugs or asking for new features, FlowMapper reached a mature state with four

major and several minor versions.

Coding of FlowMapper started at the beginning of December 2011 and after about

4 months of development, at the end of March 2012, initial release v0.1 was

published on the QGIS official plugin repository. This initial release is comprised

of nearly 400 lines of Python code which includes the main module containing

almost one hundred lines of code and the flow generator module containing more

than 150 lines of code. Following this initial release, three major and several minor

releases were published. FlowMapper v0.4 was released at the end of December

2013 and comprises of more than 6.500 lines of Python code which is almost 15

times more than the total amount code written for the first release (v0.1). Besides,

the length of the main module reached up to 3.000 lines and length of the flow

generator module reached up to more than 400 lines.

Development of FlowMapper was performed under Windows. However, since

development environment components of QGIS support multi platform,

FlowMapper plugin gained cross platform support without needing any extra

additional coding. The only modification in the code was needed for making the

 189

file paths compatible with the POSIX file system which is used by Linux based

and MacOSX systems. As a result of this modification, starting from v0.2.2, all

further releases of FlowMapper plugin offer cross platform support and known to

be fully functional under Linux. In addition to multi platform support, one of the

requirements in development of FlowMapper was to provide a user friendly GUI

by which required functions could be accessed via simple menu driven structure.

For this purpose, GUI was designed by using the Qt Designer tool. By means of all

these efforts, FlowMapper came up as fully GIS integrated free and open source

flow mapping tool that can operate on multiple platforms with fully GUI based

menu driven structure.

Architecture of the FlowMapper plugin is similar to the architecture of a generic

Python plugin portrayed in QGIS developer cookbook (QGIS, 2014a). This

implies a modular structure that requires creation of several files such as;

metadata, resource and initialization files, a Python file to store the main class and

some additional files to store form interface classes. Besides, another module was

written for FlowMapper to generate flow features by interacting with the main

module. By means of this modular structure that promotes agile development and

successive releases, new functions and interfaces were added on top of existing

ones in each release without needing to modify the whole source code. In other

words, since the main skeleton of the FlowMapper plugin is already established, it

just needs some extra coding effort and design of corresponding form interface if a

new function needs to be added.

As an integral part of open source development under GNU GPLv2 license, all

releases of FlowMapper and their source codes are freely available for download

from the QGIS official plugin repository hosted on

“http://plugins.qgis.org/plugins/FlowMapper”. Additionally, a private repository

was also built for FlowMapper and is being hosted on

“http://95.9.195.180/plugins.xml”. As of August 2014, FlowMapper has been

downloaded more than 12.000 times from the QGIS official repository. This

means more than 10 downloads a day and justifies the need for development of

 190

FlowMapper. Besides, it also reveals the demand for integration of flow mapping

tools to a popular open source desktop GIS application.

In addition to download repositories, a dedicated website was built for the plugin

and published at “http://95.9.195.180”. During the period between February 2013

and August 2014, site received approximately 1.200 visits from more than 80

countries. According to the visitor statistics acquired by Google Analytics, almost

fifty percent of total visits were performed by the first five countries which can be

respectively listed as United States (%13), France (%11), Italy (%7), Turkey (%7)

and Germany (%6). Besides, %77 of visitors were using Windows while %15 of

them were using MacOSX, %6 were running Linux and %2 were on mobile

platforms. Based on this finding, it may be concluded that FlowMapper is being

utilized on multiple platforms.

FlowMapper plugin has drawn interest from tens of QGIS users from different

countries and took various contributions by emails. Most of these emails include

questions about the usage of plugin and preparation of nodal interaction data to use

it with FlowMapper. Considering these feedbacks, starting from v0.1.1,

FlowMapper plugin package was prepared to include sample datasets and brief

documentation that defines the structure of input data format. There were also

requests from few users demanding several new functions to be added into

FlowMapper such as inclusion of origin and destination node names in the

attribute table of flow lines or implementation of node clustering algorithms for

reducing visual complexity. However, considering that FlowMapper is intended to

be developed as a general purpose interaction mapping tool that only includes

spatially non-distorting clutter reduction techniques; implementation of algorithms

such as node clustering or flow line bundling were not included to the functional

requirements list of FlowMapper. Moreover, there are numerous of clutter

reduction techniques reviewed by Ellis and Dix (2007) that may be considered to

be implemented in FlowMapper. However, accounting the time budget of this

study, only spatially non-distorting techniques such as filtering and advanced

symbology techniques were implemented.

 191

Inherently free and open source development promotes collaboration among

developers and users. Although FlowMapper is coded just by one developer and

there were no active participation to coding; owing to previous development

efforts of open source developers, FlowMapper benefited from code reuse which

was very valuable especially at the early stages of development. For example, a

code snippet derived from Flowpy, which is a Python script originally coded by

Glennon (2009), was adapted to be reused in FlowMapper while coding the flow

generator module. Besides, GIS forum of StackExchange network was used for

asking questions and searching answers about QGIS API related issues.

In Chapter 6, capabilities of FlowMapper were demonstrated by using several test

datasets having different sizes. Generated flow maps refer to several common

scenarios such as internal country migration and global immigration as well as an

uncommon one that involves passing distributions between players on a soccer

field. By generating flow maps with different scenarios, FlowMapper proved itself

as general purpose flow mapping tool in displaying spatial interactions almost at

all scales from local to global. Besides, even working with large interaction

matrices, for example 81 by 81 or 223 by 223, desired patterns can be easily

extracted by performing simple filtering operations in FlowMapper. Moreover,

advanced symbology techniques included in FlowMapper, such as graduated color

rendering of flow lines or proportional symbol size for flow nodes, aids creation of

cartographically more appealing and spatially informative flow maps.

Considering the previous works of researchers in understanding geographically

dynamic events and ongoing efforts of developers to develop case specific

mapping tools, it is obvious that FlowMapper is neither the first nor the last

software developed for interaction mapping. As mentioned at the end of Chapter

2, there are already several mapping tools available for displaying spatial

interactions such as Tobler’s FlowMapper as one of the earliest contributions

(Tobler, 2003; CSISS, 2004), Flow Data Model Tools for ArcGIS to visualize

different types of flow scenarios (Glennon and Goodchild, 2004), VIS-STAMP

software for utilization of multivariate flow data analysis (Guo, 2009), JFlowMap

 192

to create maps either with flow binding or node clustering (Boyandin et al., 2010)

and Flow Map Layout for utilizing hierarchical clustering on flow lines (Phan et

al., 2005). Besides, Flowmap software developed in participation of Utrecht

University in the Netherlands and Gadjah Mada University in Indonesia

(Geertman et al., 2003), Caliper’s transportation planning software TransCAD

and general purpose, open source graphing tool Gephi (Bastian et al., 2009) can

be counted on the list of applications which are capable of displaying interactions

between discrete nodes. However, among all, neither of these applications

completely meets the requirements defined for FlowMapper. Although

FlowMapper may be criticized as lacking some special algorithms such as flow

bundling, node clustering and hierarchical routing; it can be regarded as a fully

GIS integrated, general purpose free and open source flow mapping tool that

meets many needs of average users with its easy installation process, fully menu

driven structure, advanced symbology options and practical filtering functions. In

other words, FlowMapper is not the most advanced flow mapping software that

includes complex algorithms for specific needs; but it is functionally one of the

best balanced software in terms of answering expectations of an average user

which was proven with more than 12.000 downloads in two and a half year

period.

The most prominent contribution of this study is the FlowMapper software that

is fully integrated to QGIS in plugin form. As a fully GUI based general

purpose interaction mapping tool, FlowMapper does not require any licensing

fee and its source code is publicly open for further development or for code

reuse. FlowMapper offers filtering and cartographic representation capabilities

to aid discovering interesting patterns in dataset while striving to avoid visual

clutter problem without distorting the spatial arrangement and essence of flow

data. In other words, it enables the flow data to speak for itself. As a plugin to

one of the most popular desktop GIS platform, FlowMapper paves the way

from spatial interaction data to spatial knowledge and helps people in

understanding today’s highly mobilized world which was conceptualized by

Castells (1989) as “space of flows”.

 193

7.2. Recommendations

FlowMapper was written just by one developer as a general purpose flow mapping

tool to aid users of desktop GIS in understanding spatial interactions between

discrete nodes. As of August 2014, almost two and a half year after the first

release, FlowMapper has reached more than 12.000 users. This number can be

increased by adding new functions to plugin with the collaborative efforts of QGIS

community developers. In addition to development of incremental releases which

offer new features that will attract more users; preparation of up-to-date user

manuals, tutorials, making announcements on the OSGeo email lists and

preparation of a dedicated wiki page will also assure retaining the community

active.

Continuity of an open source project is possible with an active community. Owing

to its powerful “Pythonic” API (PyQGIS) and more than half million downloads in

2012, QGIS ensures itself as a stable and promising platform for developers to

build plugins on it. Although FlowMapper received more than 12.000 downloads

in two and a half year, it is still being coded by one developer. In order to

implement further algorithms that will improve analysis and visualization

capabilities of FlowMapper, active participation of other developers is needed. At

this point, since all source code of FlowMapper is publically open on the QGIS

plugins repository, QGIS community developers emerge as an alternative for

giving contributions to the plugin. Although this will not guarantee the

sustainability of the plugin, an open invitation for collaboration or hand over can

be performed anytime by announcing this issue on the QGIS community emailing

list.

FlowMapper is developed as an open source, free and fully GIS integrated flow

mapping tool. It focuses on displaying inter-nodal spatial interactions which is

identified as the most common and fundamental form of flow mapping in the

literature. As a user friendly, fully GUI based tool, FlowMapper runs fast and does

not imply any specific limitations regarding the size of input data. On a quad core

 194

PC with 8GB ram, more than ten thousand flow lines are created with their

attributes in less than five seconds. However since FlowMapper creates outputs in

shapefile format, 2 GB maximum size limitation of each shapefile component also

applies to FlowMapper. Yet, there is still enough space to handle more than six

millions of flow lines including their attributes. This means FlowMapper can work

with flow matrices storing two way interactions taking place between slightly

more than 2.500 locations which is quite enough for many needs. If a larger matrix

is involved, either creation of several flow attributes should be eliminated by

modifying the source code to reduce output file size or utilization of more capable

vector data formats should be preferred.

As a general purpose flow mapping tool, FlowMapper offers only spatially non-

distorting visual clutter reduction techniques such as filtering of flow features

based on attributes, proportional symbology rendering, graduated color

representations etc. Considering that much of the research efforts in flow mapping

domain are focusing on techniques for visual clutter reduction and effective

representation of large interaction matrices; FlowMapper may be criticized as

lacking some advanced algorithms such as flow bundling, node clustering or

hierarchical routing. However, considering the extendable, modular structure of

FlowMapper described in Appendix A and agile development environment of

Python, implementation of the visual clutter reduction methods reviewed by Ellis

and Dix (2007) will be a further development issue for a developer fluent in

Python.

Although it is not considered as a clutter reduction method, utilization of curved

flow links instead of straight line segments, namely using geodesic flow lines

between flow nodes, can be offered as an option in FlowMapper that will improve

aesthetic quality especially for representing long distance global flows.

FlowMapper was developed for visualizing interactions between discrete nodes

where the actual paths or routes of flows are either unknown or unimportant. Two

other types of flows mentioned by Glennon and Goodchild (2004) were listed as:

 195

(i) flows taking place on network links or through known routes (e.g. traffic

density on road segments) and (ii) situations where node-to-node and network

flows occur in proximity (e.g. hydrological flows with sources and sinks). With the

implementation of additional flow data models, capabilities of FlowMapper can be

extended to cover these types of flow scenarios.

There are many algorithms that can be adapted to be implemented in FlowMapper.

By utilization of external libraries, it is theoretically possible to write more

complex algorithms in FlowMapper such as hierarchical clustering (Phan et al.,

2005) or SOM (Guo, 2009). However, as these algorithms are being added to

extent the capabilities of plugin, this will also expose a risk of deviating from the

core requirements of FlowMapper one of which is defined as avoiding

implementation of distorting visual clutter reduction techniques that involve spatial

rearrangement of flow data. While others are defined as offering a general

purpose, user friendly tool that is fully functional out of the box without needing

installation of any third party library. Thus, any further function to be included in

FlowMapper should be evaluated in detail and designed properly to keep the

balance between functionality and user friendliness.

 196

 197

REFERENCES

Andrienko, G., Andrienko, N., Kopanakis, I., Ligtenberg, A. and Wrobel, S.,
(2008), Visual Analytics Methods for Movement Data Mobility, book chapter in
Mobility, Data Mining and Privacy: Geographic Knowledge Discovery, Springer
Publishing Co., pp. 375-410

Bastian, M., Heymann, S., Jacomy, M., (2009), Gephi: An Open Source Software
for Exploring and Manipulating Network, in Proceedings of the 3rd International
Conference on Weblogs and Social Media, San Jose, California, USA

Beck K., Beedle M., Bennekum A., Cockburn A., Cunningham W., Fowler M.,
Grenning J., Highsmith j., Hunt A., Jeffries R., Kern J., Marick B., Martin R. C.,
Mellor S., Schwaber K., Sutherland J., Thomas D., (2001), Manifesto for Agile
Software Development, Agile Alliance, retrieved from http://agilemanifesto.org
(visited 26 May 2013)

Börner, K., Hardy, E.F., (Eds.), (2008), 4th Iteration: Science Maps for Economic
Decision Makers, Places and Spaces: Mapping Science, retrieved from
http://dev.scimaps.org/maps/map/europe_raw_cotton_im_3 (visited 3 Jun 2012)

Boyandin, I., Bertini, E., Lalanne, D., (2010), Using Flow Maps to Explore
Migrations Over Time, in Proceedings of Geospatial Visual Analytics Workshop
in conjunction with the 13th Agile International Conference on Geographic
Information Science, Guimaraes, Portugal

Brodbeck, B., Chalmers, M., Lunzer, A., Cotture, P., (1997), Domesticating Bead:
Adapting an Information Visualization System to a Financial Institution, in Proc.
InfoVis’97, Phoenix, IEEE, pp. 73-80

Brown, M. C., (2001), Python: The Complete Reference, McGraw-Hill/Osborne
Media, U.S.

Brunza, P.D., Weide, Th.P., (1989), The Semantics of Data Flow Diagrams, in N.
Prakash (Eds.) Proceedings of the International Conference on Management of
Data, Hyderabad, India

Caliper Corporation, (2014), TransCAD Pricing and Ordering, in the official
website of TransCAD Transportation Planning Software, retrieved from
http://www.caliper.com/TransCAD/TransCADVersions.htm (visited 6 Jul 2014)

Card, S.K., Mackinlay, J.D., Shneiderman, B., (1999), Readings in Information
Visualization: Using Vision to Think, Chp. 1-2, Morgan Kaufmann

 198

Cascadoss, (2007a), Development of a trans-national cascade training program on
Open Source GIS&RS Software for environmental applications, Inventory and
Analysis of OSS Business Models, Deliverable 1.5, rev. final, pp. 9-11, 21, 41
retrieved from http://www.cascadoss.eu/en/PDFs/D1.5_Business_Models.pdf
(visited 26 May 2013)

Cascadoss, (2007b), Development of a trans-national cascade training programme
on Open Source GIS&RS Software for environmental applications, Evaluation of
Desktop Applications, retrieved from http://www.cascadoss.eu/en/index.php?optio
n=com_content&task=view&id=14&Itemid=14 (visited 26 May 2013)

Castells, M., (1989), The Informational City: Information Technology, Economic
Restructuring and the Urban Regional Process, Oxford: Blackwell, UK

Castells, M., (2004), An Introduction to the Information Age, in The Information
Society Reader, editors: Webster, F., Blom, R., Karvonen, E., Melin, H.,
Nordenstreng, K., Puoskari, E., London and New York: Routledge, pp. 138-149

Chen, D., Shams, S., Carmona-Moreno, C., Leone, A., (2010), Assessment of
Open Source GIS Software for Water Resources Management in Developing
Countries, in Journal of Hydro-environment Research 4, pp. 253-264

Chen, K., Liu, L., (2003), A Visual Framework Invites Human into the Clustering
Process, in Proc. Int. Conf. Scientific and Statistical Database Management, IEEE,
pp. 97-106

CISS, Center for Spatial Integrated Social Science, (2004), Tobler’s Flow Mapper,
website including description, functionalities and documentation of software,
retrieved from http://csiss.ncgia.ucsb.edu/clearinghouse/FlowMapper (visited 5
June 2011)

Cogliati, J., (2005), Non-Programmers Tutorial for Python, retrieved from
http://jjc.freeshell.org/easytut/easytut.pdf (visited 04 Feb 2012)

Corradini, G., Racicot, A., (2011), QGIS Workshop v1.0.0 documentation, Python
in QGIS, retrieved from http://www.qgisworkshop.org/html/workshop/python_in_
qgis_intro.html (visited 21 Dec 2013)

Cui, W., Zhou, H., (2008), Geometry-based edge clustering for graph
visualization, Transactions on Visualization and Computer Graphics, 14(6), Nov-
Dec 2008, pp.1277-1284

Darrell, R.R., (1991), Reading Source Code, in CASCON '91 Proceedings of the
1991 conference of the Centre for Advanced Studies on Collaborative research,
IBM Press, pp. 3-16

 199

de Bruijn, O., Spence, R., (2000), Rapid serial visual presentation: a space-time
trade-off in information presentation, in Proc. AVI 2000, Trento, Italy, ACM
Press, pp. 51-60

de Jong, T., van Eck Ritsema, J. R., (1996), Location profile based measures as an
improvement on accessibility modeling in GIS, in Computers, Environment and
Urban Systems, Vol. 20, pp. 181-190

Derthick, M., Christel, M.G., Hauptmann A.G., Wactlar, H.D., (2003), Constant
Density Displays Using Diversity Sampling, in Proc. InfoVis’03, Seattle, IEEE,
pp. 137-144

Dix, A., Ellis, G.P., (2002), By chance: enhancing interaction with large data sets
through statistical sampling, in Proc. AVI’02, L'Aquila, Italy, ACM Press, pp.
167-176

DRC, Development Research Centre on Migration, Globalisation and Poverty,
(2007), Global Migrant Origin Database, retrieved from http://www.migrationdrc.
org/research/typesofmigration/global_migrant_origin_database.html (visited 23
Apr 2013)

Dykes, J. A., Mountain, D. M., (2003), Seeking structure in records of spatio-
temporal behaviour: visualization issues, efforts and applications, in
Computational Statistics and Data Analysis, 43 (Data Visualization II Special
Edition), pp. 581-603

Ellis, G., Dix, A., (2007), A Taxonomy of Clutter Reduction for Information
Visualisation, in IEEE Transactions on Visualization and Computer Graphics,
Nov/Dec 2007, Vol. 13, No. 6, pp. 1216-1223

ESRI, Environmental Systems Research Institute, (2012), ESRI Developer
Network, About the EDN Subscription Program, How to subscribe?, retrieved
from http://edn.esri.com/index.cfm?fa=misc.program#item6 (visited 09 Jun 2013)

ESRI, Environmental Sciences Research Institute, (2013), Definition of Desktop
GIS in ESRI GIS Dictionary, retrieved from http://support.esri.com/en/knowledge
base/GISDictionary/term/desktop%20GIS (visited 16 Jun 2013)

ESRI, Environmental Sciences Research Institute, (2014), Products: ArcGIS for
Desktop, Extensions, in the official website of ESRI, retrieved from
http://www.esri.com/software/arcgis/arcgis-for-desktop/extensions (visited 14 Jun
2014)

Fekete, J.D., Plaisant, C., (2002), Interactive Information Visualization of a
Million Items, in Proc. InfoVis’02, pp., IEEE, pp. 117-124

 200

FIFA, 2010, Official Documents Repository, (2010) FIFA World Cup South
Africa, Final: Neatherlands - Spain, Passing Distribution, retrieved from
http://www.fifa.com/mm/document/tournament/competition/01/27/28/23/64_0711
_ned-esp_passingdistribution.pdf (16 Nov 2013)

Flowmap, (2013), Flowmap Home, official website of Flowmap including
information about software and its features, retrieved from
http://flowmap.geog.uu.nl/index.php (visited 2 Feb 2014)

Fogel, K., (2006), Producing Open Source Software, O'Reilly, pp. 57-60, 152-154,
retrieved from http://producingoss.com/en/producingoss.pdf (visited 02 Jun 2013)

Friendly, M., (2002), Visions and re-visions of Charles Joseph Minard, in Journal
of Educational and Behavioral Statistics, 27(1), pp. 31-52

FSF, Free Software Foundation, (2013a), What is free software, The Free Software
definition, retrieved from http://www.fsf.org/licensing/essays/free-sw.html (visited
19 May 2013)

Fua, Y. H., Ward, H.O., Rundensteiner, E.A., (1999), Hierarchical Parallel
Coordinates for Exploration of Large Datasets, in Proc. Visualization'99, Los
Alamitos, CA, IEEE, pp. 43-50

GDAL, (2014a), GDAL/OGR 1.10.1 release, GDAL Raster Formats, retrieved
from http://www.gdal.org/formats_list.html (visited 05 Jan 2014)

GDAL, (2014b), GDAL/OGR 1.10.1 release, OGR Vector Formats, retrieved from
http://www.gdal.org/ogr/ogr_formats.html (visited 05 Jan 2014)

Geertman, S., de Jong, T., Wessels, C., (2003), Flowmap: A support tool for
strategic Network analysis, in Geertman S. & Stillwell J. (Eds.), Planning support
systems in practice, Springer Verlag, Berlin

Glennon, A., (2009), Flowpy: Geographic Flow Line Creator Python Script,
retrieved from http://enj.com/software/flowpy/ (visited 01 Oct 2011)

Glennon, A., Goodchild, M., (2004), A GIS Flow Data Model, Flow White Paper
v03 Revised at 18.04.2005, unpublished paper retrieved from
http://parker.ou.edu/~gdi/flow/flowwhitepaperv03.doc (visited 14 May 2011)

GRASS, Geographic Resources Analysis Support System, (2013), Release Notes
for GRASS GIS 6.4 for MS-Windows-Native, retrieved from
http://grass.osgeo.org/grass64/binary/mswindows/native/ (visited 16 Jun 2013)

Gülgeç, İ., (1998), Ulaşım Planlaması, Özsan Matb., Bursa, Türkiye, p.2, 199, 209

 201

Guo, D., Jin, C., MacEachren, A. M., Liao, K., (2006), A visualization system for
space-time and multivariate patterns (VIS-STAMP), in Transactions on
Visualization and Computer Graphics, 12(6), IEEE, pp. 1461-1474

Guo., D., (2009), Flow mapping and multivariate visualization of large spatial
interaction data, in Transactions on Visualization and Computer Graphics, 15(6),
IEEE, pp. 1041-1048

Hägerstrand, T., (1970), What about people in regional science?, in Papers of the
Regional Science Association, Vol. 24, pp. 7-21

Healey, C.G., Booth, K.S., Enns, J., (1995), Visualizing Real-Time Multivariate
Data Using Preattentive Processing, in Trans. Modeling and Computer Simulation,
5(3), pp. 190-221

Hedley, N. R., Drew, C. H., Lee, A., (1999), Hagerstrand Revisited: Interactive
Space-Time Visualization of Complex Spatial Data, Informatica: International
Journal of Computing and Informatics, Vol. 23(4), pp. 155-168

Holten, D., Wijk, J.J., (2009), Force-Directed edge bundling for graph
visualization, in Computer Graphics Forum, 28(3), pp. 983-990

Hugentobler, M., (2008), Quantum GIS, in Shekhar, S., Xiong, H. (Eds),
Encyclopedia of GIS, New York, Springer, pp. 171-188

Jain, A.K., Murty, M.N., Flynn, P.J., (1999), Data Clustering: A Review, in ACM
Computing Surveys, 31(3), Sept 1999, pp. 264-323

Janssen, C., (2013), Codebase, Definition - What does codebase mean?,
Technopedia Webpage, retrieved from http://www.techopedia.com/definition/2396
2/codebase (visited 26 May 2013)

Keim, D.A., (1997), Visual Techniques for Exploring Databases, invited tutorial
Knowledge Discovery in Databases KDD'97, Newport Beach, CA, available from
http://www.dbs.informatik.uni-muenchen.de/~daniel/KDD97.pdf (visited 2 Jun
2012)

Kepoğlu, V., (2010), Development of Free/Libre and Open Source Spatial Data
Analysis System Fully Coupled with Geographic Information Systems,
Unpublished Ph.D. thesis submitted to the Graduate School of Natural and Applied
Sciences of Middle East Technical University, Ankara, Turkey, p. 74

Kern, R., Ruston, G., (1969), MAPIT, a computer program for the production of
flow maps, dot maps, and graduated symbol maps, in The Cartographic Journal, 6,
(2), pp. 131-137.

 202

Kraak, M. J., (2003), Geovisualization illustrated, in ISPRS Journal of
Photogrammetry and Remote Sensing, Vol. 57, Issues 5-6, April 2003, Challenges
in Geospatial Analysis and Visualization, pp. 390-399

LangPop, (2013), Programming Language Popularity: Normalized Comparison,
retrieved from http://langpop.com/#normalized (visited 28 Dec 2013)

Leung, Y.K., Apperley, M.D., (1994), A Review and Taxonomy of Distortion-
Oriented Presentation Techniques, in ACM Trans. Computer-Human Interaction,
1(2), June 1994, pp. 126-160

Longley, P. A., Goodchild, M. F., Maguire, D. J., Rhind, D. W., (2005),
Geographical information systems and science, 2nd ed., Chichester, Wiley, p.13

MapTools.org, (2013), List of projects retrieved from the free and open source
geospatial portal MapTools.org, retrieved from www.maptools.org (visited 09 Jun
2013)

Minard, C. J., (1869), Tableaux Craphiques et Cartes Figuratives de M. Minard,
1845-1869, a portfolio of his work held by the Bibliotheque de'Ecole Nationale
des Ponts et Chaussees (ENPC), Paris

Mockus, A., Fielding, R.T., Herbsleb, J., (2000), A case study of open source
software development: the Apache server, in Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), Limerick, Ireland, pp. 263-272

Mountain, D., (2005), Chapter 5: Visualizing, querying and summarizing
individual spatio-temporal Behaviour, in Exploring Geovisualization, Elsevier, pp.
181-200

Mountain, D., Dykes, J., (2002), What i did on my vacation: Spatio-temporal log
analysis with interactive graphics and morphometric surface derivatives, in
Proceedings of GIS Research UK, April 2002, UK

Mountain, D., Raper, J., (2001), Modelling human spatio-temporal behaviour: A
challenge for location-based services, in proceedings of Geocomputation 2001, 6th
Int. Conference on Geocomputation, Sep 2001, Australia

Murtagh, F., (2000), Clustering in Massive Data Sets, Chemical Data Analysis in
the Large, in Proc. Beilstein-Institut Workshop, May 2000, Bozen, Italy

O’Malley, K., (1998), Desire line maker v2 for ArcView 3.0, retrieved from
http://arcscripts.esri.com/details.asp?dbid=11200 (visited 2 June 2012)

Ohloh, Ohloh the open source network, (2013), Compare Repositories, retrieved
from http://www.ohloh.net/repositories/compare (visited 26 May 2013)

 203

OSGeo, Open Source Geospatial Foundation, (2013), List of supported and
incubating projects, in OSGeo web portal, retrieved from http://www.osgeo.org
(visited 09 Jun 2013)

OSGeo, Open Source Geospatial Foundation, (2014a), FAQ - General, What does
OGR stand for?, retrieved from http://trac.osgeo.org/gdal/wiki/FAQGeneral#What
doesOGRstandsfor (visited 04 Jan 2014)

OSGeo, Open Source Geospatial Foundation, (2014b), GDAL/OGR Info Sheet,
retrieved from http://www.osgeo.org/gdal_ogr (visited 04 Jan 2014)

OSI, Open Source Initiative, (2013a), What is free software and is it the same as
open source?, retrieved from http://opensource.org/faq#free-software (visited 19
May 2013)

OSI, Open Source Initiative, (2013b), The Open Source Definition (Annotated) v
1.9, retrieved from http://opensource.org/osd-annotated (visited 19 May 2013)

OSI, Open Source Initiative, (2013c), Open Source Licenses, Licenses by Name,
retrieved from http://opensource.org/licenses/alphabetical (visited 19 May 2013)

OSRC, Open Source Resource Center, (2013), Open Source License Data, Top 20
Most Commonly Used Licenses in Open Source Projects, retrieved from
http://osrc.blackducksoftware.com/data/licenses (visited 19 May 2013)

Oxford University Press, (2012), Keyword search “flow” in Oxford English
Dictionary, retrieved from http://oxforddictionaries.com/definition/flow?q=flow
(visited on 27 May 2012)

Paul, R., (2010), Document Foundation forks OpenOffice.org, liberates it from
Oracle, Ars essay in Technica Technology Portal, retrieved from
http://arstechnica.com/information-technology/2010/09/document-foundation-fork
s-openofficeorg-to-liberate-it-from-oracle (visited 02 Jun 2013)

Phan, D., Xiao, L., Yeh, R., Hanrahan, P. and Winograd, T., (2005), Flow Map
Layout, in IEEE Symposium on Information Visualization, 2nd Edt., Pearson
Education Prentice Hall, New York

Pieke, B., Krüger, A., (2007), Flow Maps - Automatic Generation and
Visualization in GIS, in Proceedings of the 5th Geographic Information Days, GI-
Days 2007, Probst, F., Kessler, C. (Eds.), 10-12 Sep 2007, Münster, Germany,
ISBN: 978-3-936616-48-4

Pilgrim, M., (2004), Dive Into Python - Python from novice to pro, p. 343,
retrieved from http://www.diveintopython.net/download/diveintopython-pdf-
5.4.zip (visited 04 Jan 2014)

 204

Prechelt, L., (2000), An Empirical Comparison of Seven Programming Languages,
in Computer, Vol. 33, Issue 10, pp. 23-29

PSF, Python Software Foundation, (2013a), About Python, retrieved from
http://www.python.org/about (visited 29 Dec 2013)

PSF, Python Software Foundation, (2013b), About Python, Application Domains,
retrieved from http://www.python.org/about/apps (visited 29 Dec 2013)

PSF, Python Software Foundation, (2013c), History and License, History of the
software, retrieved from http://docs.python.org/2/license.html (visited 29 Dec
2013)

PSF, Python Software Foundation, (2013d), Releases, retrieved from
http://www.python.org/download/releases (visited 29 Dec 2013)

PSF, Python Software Foundation, (2013e), Python 2.7.6 Documentation,
Installing Python Modules, Introduction, retrieved from
http://docs.python.org/2/install/#introduction (visited 29 Dec 2013)

QGIS, Quantum GIS Development Team, (2010), Quantum GIS Coding and
Compilation Guide Version 1.6 “Copiapo”, retrieved from
http://download.osgeo.org/qgis/doc/manual/qgis-1.6.0_coding-compilation_guide_
en.pdf (visited 08 Mar 2014)

QGIS, Quantum GIS, (2013a), About QGIS, in official website of QGIS project,
retrieved from http://qgis.org/en/about-qgis.html (visited 16 Jun 2013)

QGIS, Quantum GIS, (2013b), Download QGIS, retrieved from
http://hub.qgis.org/projects/quantum-gis/wiki/Download (visited 26 May 2013)

QGIS, Quantum GIS, (2013c), 2012 statistics for qgis.org, retrieved from
http://www.qgis.org/cgi-bin/awstats.pl?urlfilter=%2Fdownloads%2F&urlfilterex=l
&config=qgis&year=2012&month=all (visited 09 Jun 2013)

QGIS, Quantum GIS, (2014a), PyQGIS developer cookbook Release 2.0, retrieved
from http://docs.qgis.org/2.0/pdf/QGIS-2.0-PyQGISDeveloperCookbook-en.pdf
(visited 23 Feb 2014)

QGIS, Qunatum GIS, (2014b), QGIS API Documentation, 2.1.0-Master, Modules,
retrieved from http://qgis.org/api/modules.html (visited 05 Jan 2014)

QGIS, Quantum GIS, (2014c), QGIS User Guide Release 2.0, retrieved from
http://docs.qgis.org/2.0/pdf/QGIS-2.0-UserGuide-en.pdf (visited 10 Mar 2014)

Qt Project, (2012), Qt Versions, retrieved from http://qt-
project.org/wiki/QtVersions (visited 28 Dec 2013)

 205

Qt Project, (2013), Qt Public Roadmap: Qt 5, retrieved from http://qt-
project.org/wiki/Qt_5.0 (visited 28 Dec 2013)

Rae, A., (2009), From Spatial Interaction Data to Spatial Interaction Information?
Geovisualisation and Spatial Structures of Migration from the 2001 UK Census, in
Computers, Environment and Urban Systems, Vol. 33, pp. 161-178

Ramsey, P., (2007), The state of open source GIS, in FOSS4G 2007 Conference,
Vancouver, BC, Canada, p.6, retrieved from http://www.refractions.net/expertise/
whitepapers/opensourcesurvey/survey-open-source-2007-12.pdf (visited 02 Jun
2013)

Raymond, E.S., (1999), The Cathedral and the Bazaar, O’Reilly Media

Riverbank Computing Limited, (2014a), What is PyQT, retrieved from
http://www.riverbankcomputing.com/software/pyqt/intro (visited 04 Jan 2014)

Riverbank Computing Limited, (2014b), License, retrieved from
http://www.riverbankcomputing.com/software/pyqt/license (visited 04 Jan 2014)

Robinson, A., (1982), Early Thematic Mapping in The History of Cartography,
University of Chicago Press, Chicago

Robles, G., (2004), A Software Engineering approach to Libre Software, in
Gehring, R.A., Lutterbeck, B. (eds.), Open Source Jahrbuch, Lehmanns Media,
Berlin

Sarkar, M., Snibbe, S.S., Tversky, O.J., Reiss, S.P., (1993), Stretching the rubber
sheet: a metaphor for viewing large layouts on small screens, in Proc. UIST’93,
Atlanta, Georgia, ACM Press, pp. 81-91

Shapiro, J. S., David, A. P., (2008), Community-Based Production of Open Source
Software: What Do We Know about the Developers Who Participate?, p. 50,
retrieved from http://ssrn.com/abstract=1286273 (visited 02 Jun 2013)

Sherman, G., Pasotti, A., Sucameli, G., (2014), QGIS Plugin Builder v2.0.3,
retrieved from http://plugins.qgis.org/plugins/pluginbuilder/ (visited 14 Mar 2014)

Stalder, F., (2003), “The Status of Objects in the Space of Flows", Dissertation,
University of Toronto, p.3, retrieved from
http://felix.openflows.org/html/objects_flows.pdf (visited 25 May 2014)

Steiniger S., Bocher, E., (2009), An Overview on Current Free and Open Source
Desktop GIS Developments, in International Journal of Geographical Information
Science, Vol. 23, Iss. 10, pp. 1345-1370

 206

The Gephi Consortium, (2014), Features of Gephi, in offical website of Gephi,
retrieved from http://gephi.github.io/features/ (visited 5 Jul 2014)

The Linux Information Project, (2006), Freeware Definiton, retrieved from
http://www.linfo.org/freeware.html (visited 19 May 2013)

Thompson, W., Lavin, S., (1996), Automatic generation of animated migration
maps, in Cartographica Journal, 33(2), pp. 17-29

Thornthwaite, W., (1934), Internal Migration in the United States, University of
Pennsylvania Press, Philadelphia, USA in Computational Statistics & Data
Analysis, Vol. 43/4, pp. 581-603

TIOBE, (2014), TIOBE Index for January 2014: Very Long Term History,
Programming Language Hall of Fame, retrieved from
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (visited 05 Jan
2014)

Tobler, W., (1976), Spatial Interaction patterns, in Journal of Environmental
Systems, Vol. VI, pp. 271-301

Tobler, W., (1981), A Model of Geographical Movement, in Geographical
Analysis, Vol. 13, pp. 1-20

Tobler, W., (1985), Derivation of a Spatially Continuous Transportation Model, in
Transportation Research, Vol. 19-A, pp. 169-172

Tobler, W., (1987), Experiments in Migration Mapping by Computer, in The
American Cartographer, Vol. 14, pp. 155-163

Tobler, W., (2003), “Movement Mapping”, Santa Barbara: Center for Spatially
Integrated Social Science, University of California, unpublished paper retrieved
from http://csiss.ncgia.ucsb.edu/clearinghouse/FlowMapper/MovementMapping.p
df (visited 14 May 2011)

Tufte, E., (2007), The Visual Display of Geographic Information, 2nd. Ed., 5th
Printing, Aug 2007, Cheshire, Connecticut, Graphic Press, p. 25, 41

TurkStat, Turkish Statistical Institute, (2013), Address Based Population
Registration System Results: Migration Statistics, Internal Migration, Migration
across Provinces, retrieved from http://tuikapp.tuik.gov.tr/adnksdagitapp/adnks.zul
?kod=4&dil=2 (visited 18 May 2013)

van Eck Ritsema, J. R., de Jong, T., (1999), Accessibility analysis and spatial
competition effects in the context of GIS-supported service location planning, in
Computers, Environment and Urban Systems, Vol. 23, pp. 75-89

 207

van Rossum, G., (2006), Python Enhancement Proposals, PEP 3000 - Python
3000, retrieved from http://www.python.org/dev/peps/pep-3000 (visited 14 Dec
2013)

Vries, H., Oshri, I., (2008), Standards Battles in Open Source Software: The Case
of Firefox, Palgrave Macmillan, UK.

Ward, M.O, (2002), A taxonomy of glyph placement strategies for
multidimensional data visualization, in Information Visualization, Vol. 1, Issue
3/4, Dec 2002, pp. 194-210

Warmerdam, F., (2008), The Geospatial Data Abstraction Library, in Open Source
Approaches in Spatial Data Handling, ed. by G. Brent Hall and Michael G. Leahy,
Springer Berlin Heidelberg, pp. 87-104

Warsta, J., Abrahamsson, P., (2003), Is open source software development
essentially an agile method? In 3rd Workshop on Open Source Software
Engineering, Portland, Oregon, USA

Wegman, E.J., Luo, Q., (1996), High Dimensional Clustering Using Parallel
Coordinates and the Grand Tour, in Computing Science and Statistics, 28, July
1996, pp. 352-360

Wikipedia, (2014a), Qt (Software), retrieved from
http://en.wikipedia.org/wiki/Qt_%28software%29 (visited 05 Jan 2014)

Wikipedia, (2014b), Google Analytics, retrieved from
http://en.wikipedia.org/wiki/Google_analytics (visited 23 Apr 2014)

Wong, P.C., Bergeron, R.D., (1997), 30 Years of Multidimensional Multivariate
Visualization, Scientific Visualization: Overviews, Methodologies & Techniques,
Washington, IEEE, pp. 3-33

Wood, J., Dykes, J., Slingsby, A., Radburn, R., (2009), Flow trees for exploring
spatial trajectories, in Proceedings of the GIS Research UK 17th Annual
Conference, Durham, UK, pp. 229-234

Xiao, N., Chun, Y., (2009), Visualizing migration flows using kriskograms, in
Cartography and Geographic Information Science, 36(2), pp. 183-191

Zelle, J. M., (1999), Python as a First Language, in Proceedings of 13th Annual
Midwest Computer Conference, March 1999, Lisle, Illinois, U.S., retrieved from
http://mcsp.wartburg.edu/zelle/python/python-first.html (visited 14 Dec 2013)

 208

 209

APPENDIX A

STRUCTURE OF FLOWMAPPER AND INTERACTION WITH QGIS

In Figure A.1, a conceptual diagram is given in order to portray inner structure of

the plugin and interaction of plugin with QGIS.

Figure A.1 Conceptual Diagram of FlowMapper Plugin

 Python API

 C++ API

Q
G

IS

QtCORE GUI

PyQt PyQGIS

F
lo

w
M

ap
p

er
 P

lu
gi

n

Initialization
__init__.py

Form Dialog
flowmapperdialog.py
form_aboutdialog.py

form2dialog.py
form3dialog.py
form4dialog.py
form5dialog.py
form6dialog.py
form7dialog.py

Metadata
metadata.txt

Form User Interface
ui_flowmapper.ui

ui_about.py
ui_form2.py
ui_form3.py
ui_form4.py
ui_form5.py
ui_form6.py
ui_form7.py

Resources
resources.py

Main Module
flowmapper.py

Flow Generator Module
flowpyv07.py

OGR

Initialized

Interacts

Imported

 210

 211

APPENDIX B

SOURCE CODE OF FLOW GENERATOR MODULE

In order to create flow lines and flow nodes in shapefile format and to

automatically perform attribute calculations (e.g. flow magnitude, origin –

destination coordinate pairs, node names etc.) “shapefilemaker” function must be

called from “flowpyv07.py” file with the parameters defined in the main module

based on user preferences (Table 5.8, Lines 160 – 164). This requires importing

“flowpyv07.py” at the beginning of “flowmapper.py” (Table 5.8, Line 24). In

Table B.1, full source code of “flowpyv07.py” is given.

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py”

Source Code of flowpyv07.py in Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

flowpyv07.py was initially written by A. Glenneon (2009) in Python.
flowpyv07.py is further developed by C. Gulluoglu between 2011 – 2013
as the flow generator module for QGIS FlowMapper plugin. Besides, its
capabilities are extended to automatically generate several attribute
fields (e.g. origin-destination names, coordinates, length etc.) and to
generate flow nodes in addition to flow lines.

This file takes a square interaction matrix and corresponding set of
coordinate pairs to generate flow lines and flow nodes. While interaction
matrix and coordinate pairs files are mandatory inputs, node names file
is an optional input.

def shapefilemaker(typeofcalculation,CreateShpNodes,IncludeNodeNames, \
fulldirectorystring,outputfilename,outputfilenamenodes,fulldirODinput, \
fulldirPTinput,fulldirPTNamesinput,combotext):

 import os, sys, ogr # ogr is required to handle shapefile format
 import math # math is required to make great circle distance calc.

 odmatrixfilename = fulldirODinput # location of interaction matrix
 nodefilename = fulldirPTinput # loc. of file storing node coordinates
 nodenamesfilename = fulldirPTNamesinput # loc. of node names file

 # flow calculation type: two way = 1, gross = 2, net = 3
 try:
 # open input text files read only
 odmatrix = open(odmatrixfilename, 'r')
 nodes = open(nodefilename, 'r')

 212

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py” (cont.)

Source Code of flowpyv07.py in Python
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

 names = open(nodenamesfilename, 'r')
 except IOError, e:
 print 'file open error:', e

 numberofnodes = 0
 for line in nodes: # get node count, each line represents 1 node
 numberofnodes += 1
 nodes.close

 # interaction matrix is read below, result is myodmatrix[rows][columns]
 rows = 0
 myodmatrix = [] # create list to store flow magnitudes between nodes
 for icounter in xrange(numberofnodes):
 myodmatrix.append([])
 for jcounter in xrange(numberofnodes):
 myodmatrix[icounter].append(icounter+jcounter)
 for eachLine in odmatrix:
 separatestrings = eachLine.split()
 columns = 0
 while columns < numberofnodes:
 onevalue = float(separatestrings[columns])
 myodmatrix[rows][columns] = onevalue
 columns += 1
 rows += 1
 odmatrix.close

 # coordinates are read below, result is mypoints[ptrows][ptcolumns]
 ptrows = 0
 mypoints = [] # create list to store input node coordinates
 for kcounter in xrange(numberofnodes):
 mypoints.append([])
 for lcounter in xrange(2):
 mypoints[kcounter].append(kcounter+lcounter)
 nodesagain = open(nodefilename,'r')
 for eachLine2 in nodesagain:
 separatestrings2 = eachLine2.split()
 ptcolumns = 0
 while ptcolumns < 2:
 onevalue2 = float(separatestrings2[ptcolumns])
 mypoints[ptrows][ptcolumns] = onevalue2
 ptcolumns += 1
 ptrows += 1
 nodesagain.close

 # node names are read below if supplied by the user
 mypointnames = [] # create list to store input node names
 for eachLine3 in names:
 mypointnames.append(eachLine3.split())
 names.close

 # START: create shapefile to store flow NODES and attributes
 if CreateShpNodes == 1:
 driver2 = ogr.GetDriverByName('ESRI Shapefile') # get ogr driver
 if os.path.exists(outputfilenamenodes):
 driver2.DeleteDataSource(outputfilenamenodes)
 # create data source and layer
 ds2 = driver2.CreateDataSource(outputfilenamenodes)
 layer2 = ds2.CreateLayer('node', geom_type=ogr.wkbPoint)
 # define attribute field name and set data type
 fieldDefn20 = ogr.FieldDefn('name', ogr.OFTString)
 fieldDefn21 = ogr.FieldDefn('incoming', ogr.OFTReal)
 fieldDefn22 = ogr.FieldDefn('outgoing', ogr.OFTReal)
 fieldDefn23 = ogr.FieldDefn('gross', ogr.OFTReal)
 fieldDefn24 = ogr.FieldDefn('net', ogr.OFTReal)
 fieldDefn25 = ogr.FieldDefn('in/out', ogr.OFTReal)
 fieldDefn26 = ogr.FieldDefn('out/in', ogr.OFTReal)
 fieldDefn27 = ogr.FieldDefn('indicator', ogr.OFTReal)

 213

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py” (cont.)

Source Code of flowpyv07.py in Python
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

 # create attribute fields
 layer2.CreateField(fieldDefn20)
 layer2.CreateField(fieldDefn21)
 layer2.CreateField(fieldDefn22)
 layer2.CreateField(fieldDefn23)
 layer2.CreateField(fieldDefn24)
 layer2.CreateField(fieldDefn25)
 layer2.CreateField(fieldDefn26)
 layer2.CreateField(fieldDefn27)
 # FINISH: create shapefile to store flow NODES and attributes

 # START: insert nodes as point features into shapefile
 counterA = 0
 sumincoming = 0
 while counterA < numberofnodes:
 linester2 = ogr.Geometry(ogr.wkbPoint)
 linester2.SetPoint \
 (0, mypoints[counterA][0],mypoints[counterA][1])
 featureDefn2 = layer2.GetLayerDefn()
 feature2 = ogr.Feature(featureDefn2)
 feature2.SetGeometry(linester2)
 # set node names
 if IncludeNodeNames == 1:
 name = str(mypointnames[counterA])
 name = name[2:-2]
 feature2.SetField('name',name)
 elif IncludeNodeNames == 0:
 name = "Node_"+str(counterA+1)
 feature2.SetField('name',name)
 # sum magnitude of all outgoing flows from that node
 myodmatrixA=myodmatrix[counterA]
 sumoutgoing=sum(myodmatrixA)
 feature2.SetField('outgoing',sumoutgoing)
 # sum magnitude of all incoming flows to that node
 counterB = 0
 while counterB < numberofnodes:
 myodmatrixB = myodmatrix[counterB][counterA]
 sumincoming=sumincoming+int(myodmatrixB)
 counterB += 1
 feature2.SetField('incoming',sumincoming)
 # sum magnitude of gross for that node
 gross = sumincoming + sumoutgoing
 feature2.SetField('gross',gross)
 # calculate magnitude of net flows for that node
 net = sumincoming - sumoutgoing
 net_abs = abs(net)
 feature2.SetField('net',net_abs)
 # calculate ratio of all incoming flows to all outgoing flows
 in_DIV_out = sumincoming / sumoutgoing
 feature2.SetField('in/out',in_DIV_out)
 # calculate ratio of all outgoing flows to all incoming flows
 out_DIV_in = sumoutgoing / sumincoming
 feature2.SetField('out/in',out_DIV_in)
 # set indicator field: +1 gains flow, -1 looses flow, 0 in=out
 if net < 0:
 indicator = -1
 elif net > 0:
 indicator = 1
 elif net == 0:
 indicator = 0
 feature2.SetField('indicator',indicator)
 sumincoming = 0
 layer2.CreateFeature(feature2)
 counterA += 1
 linester2.Destroy() # destroy geometry
 feature2.Destroy() # destroy feature
ds2.Destroy() # close data source

 214

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py” (cont.)

Source Code of flowpyv07.py in Python
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

 # FINISH: insert nodes as point features into shapefile

 # START: create shapefile to store flow LINES and attributes
 driver = ogr.GetDriverByName('ESRI Shapefile') # get ogr driver
 if os.path.exists(outputfilename):
 driver.DeleteDataSource(outputfilename)
 # create data source and layer
 ds = driver.CreateDataSource(outputfilename)
 if ds is None:
 print 'Could not create file'
 sys.exit(1)
 layer = ds.CreateLayer('flow', geom_type=ogr.wkbLineString)
 # define attribute field name and set data type
 fieldDefn = ogr.FieldDefn('magnitude', ogr.OFTReal)
 # define attribute field name and set data type
 fieldDefn2 = ogr.FieldDefn('length_km', ogr.OFTReal)
 fieldDefn3 = ogr.FieldDefn('coord_x1', ogr.OFTReal)
 fieldDefn4 = ogr.FieldDefn('coord_y1', ogr.OFTReal)
 fieldDefn5 = ogr.FieldDefn('coord_x2', ogr.OFTReal)
 fieldDefn6 = ogr.FieldDefn('coord_y2', ogr.OFTReal)
 fieldDefn7 = ogr.FieldDefn('name_x1y1', ogr.OFTString)
 fieldDefn8 = ogr.FieldDefn('name_x2y2', ogr.OFTString)
 # define attribute fields
 layer.CreateField(fieldDefn)
 layer.CreateField(fieldDefn2)
 layer.CreateField(fieldDefn3)
 layer.CreateField(fieldDefn4)
 layer.CreateField(fieldDefn5)
 layer.CreateField(fieldDefn6)
 layer.CreateField(fieldDefn7)
 layer.CreateField(fieldDefn8)
 # FINISH: create shapefile to store flow LINES and attributes

 # START: insert TWO WAY flows as line features into shapefile
 if typeofcalculation == 1:
 counter1 = 0
 counter2 = 0
 while counter2 < numberofnodes:
 while counter1 < numberofnodes:
 linester = ogr.Geometry(ogr.wkbLineString)
 linester.AddPoint \
 (mypoints[counter2][0],mypoints[counter2][1])
 linester.AddPoint \
 (mypoints[counter1][0],mypoints[counter1][1])
 featureDefn = layer.GetLayerDefn()
 feature = ogr.Feature(featureDefn)
 feature.SetGeometry(linester)
 # set magnitude of flow line
 feature.SetField \
 ('magnitude',myodmatrix[counter2][counter1])
 # set origin and destination node coordinates
 x1 = mypoints[counter2][0]
 y1 = mypoints[counter2][1]
 x2 = mypoints[counter1][0]
 y2 = mypoints[counter1][1]
 feature.SetField('coord_x1',x1)
 feature.SetField('coord_y1',y1)
 feature.SetField('coord_x2',x2)
 feature.SetField('coord_y2',y2)
 # set origin and destination node names
 if IncludeNodeNames == 1:
 Namex1y1 = str(mypointnames[counter2])
 Namex1y1 = Namex1y1[2:-2]
 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = str(mypointnames[counter1])
 Namex2y2 = Namex2y2[2:-2]
 feature.SetField('name_x2y2',Namex2y2)

 215

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py” (cont.)

Source Code of flowpyv07.py in Python
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

 elif IncludeNodeNames == 0:
 Namex1y1 = "Node_"+str(counter2+1)
 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = "Node_"+str(counter1+1)
 feature.SetField('name_x2y2',Namex2y2)
 # calculate length of flow line
 if combotext == "Cartesian":
 length_m = (((x1-x2)**2)+((y1-y2)**2))**0.5
 feature.SetField('length_km',length_m / (1000))
 else: # spherical distance (based on wgs84 ellipsoid)
 lon1 = float(x1)
 lat1 = float(y1)
 lon2 = float(x2)
 lat2 = float(y2)
 length_km = math.atan2(math.sqrt((math.cos((math.atan \
 (1.0)/45.0)*lat2)*math.sin((math.atan(1.0)/45.0)*lon2 \
 -(math.atan(1.0)/45.0)*lon1))**2+(math.cos((math.atan \
 (1.0)/45.0)*lat1)*math.sin((math.atan(1.0)/45.0)*lat2 \
 math.sin((math.atan(1.0)/45.0)*lat1)*math.cos \
 ((math.atan(1.0)/45.0)*lat2)*math.cos((math.atan(1.0) \
 /45.0)*lon2-(math.atan(1.0)/45.0)*lon1))**2),
 math.sin((math.atan(1.0)/45.0)*lat1)*math.sin (\
 (math.atan(1.0)/45.0)*lat2)+math.cos((math.atan (1.0) \
 /45.0)*lat1)*math.cos((math.atan(1.0)/45.0)*lat2) \
 *math.cos((math.atan(1.0)/45.0)*lon2-(math.atan(1.0) \
 /45.0)*lon1)) * 6367.9375
 feature.SetField('length_km',length_km)
 layer.CreateFeature(feature)
 counter1 = counter1 + 1
 counter2 = counter2 + 1
 counter1 = 0
 # FINISH: insert TWO WAY flows as line features into shapefile

 # START: insert GROSS flows as line features into shapefile
 if typeofcalculation == 2:
 g = 0
 h = 0
 while g < numberofnodes:
 while h < numberofnodes:
 if (g <= h):
 linester = ogr.Geometry(ogr.wkbLineString)
 linester.AddPoint(mypoints[g][0], mypoints[g][1])
 linester.AddPoint(mypoints[h][0], mypoints[h][1])
 if h==g:
 grossmagnitude = \
 (myodmatrix[g][h] + myodmatrix[h][g])/2
 else:
 grossmagnitude = \
 (myodmatrix[g][h] + myodmatrix[h][g])
 featureDefn = layer.GetLayerDefn()
 feature = ogr.Feature(featureDefn)
 feature.SetGeometry(linester)
 # set gross magnitude of flow line
 feature.SetField('magnitude',grossmagnitude)
 # set origin and destination node coordinates
 x1 = mypoints[h][0]
 y1 = mypoints[h][1]
 x2 = mypoints[g][0]
 y2 = mypoints[g][1]
 feature.SetField('coord_x1',x1)
 feature.SetField('coord_y1',y1)
 feature.SetField('coord_x2',x2)
 feature.SetField('coord_y2',y2)
 # set origin and destination node names
 if IncludeNodeNames == 1:
 Namex1y1 = str(mypointnames[h])

 216

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py” (cont.)

Source Code of flowpyv07.py in Python
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

 Namex1y1 = Namex1y1[2:-2]
 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = str(mypointnames[g])
 Namex2y2 = Namex2y2[2:-2]
 feature.SetField('name_x2y2',Namex2y2)
 elif IncludeNodeNames == 0:
 Namex1y1 = "Node_"+str(h+1)
 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = "Node_"+str(g+1)
 feature.SetField('name_x2y2',Namex2y2)
 # calculate length of flow line
 if combotext == "Cartesian":
 length_m = (((x1-x2)**2)+((y1-y2)**2))**0.5
 feature.SetField('length_km',length_m / (1000))
 else: # spherical distance (based on wgs84 ellipsoid)
 lon1 = float(x1)
 lat1 = float(y1)
 lon2 = float(x2)
 lat2 = float(y2)
 length_km = math.atan2(math.sqrt((math.cos((\
 math.atan(1.0)/45.0)*lat2)*math.sin((math.atan \
 (1.0)/45.0)*lon2-(math.atan(1.0)/45.0)*lon1))**2+ \
 (math.cos((math.atan(1.0)/45.0)*lat1)*math.sin((\
 math.atan(1.0)/45.0)*lat2)-math.sin((math.atan \
 (1.0)/45.0)*lat1)*math.cos((math.atan(1.0) /45.0) \
 *lat2)*math.cos((math.atan(1.0)/45.0)*lon2-(\
 math.atan(1.0)/45.0)*lon1))**2),math.sin((\
 math.atan (1.0)/45.0)*lat1)*math.sin((math.atan \
 (1.0)/45.0)*lat2)+math.cos((math.atan(1.0)/45.0) \
 *lat1)*math.cos((math.atan(1.0)/45.0)*lat2)* \
 math.cos((math.atan(1.0)/45.0)*lon2-(math.atan \
 (1.0)/45.0)*lon1)) * 6367.9375
 feature.SetField('length_km',length_km)
 layer.CreateFeature(feature)
 h += 1
 h = 0
 g += 1
 # FINISH: insert GROSS flows as line features into shapefile

 # START: insert NET flows as line features into shapefile
 if typeofcalculation == 3:
 g = 0
 h = 0
 while g < numberofnodes:
 while h < numberofnodes:
 if (g <= h):
 if h==g:
 netmagnitude=(myodmatrix[g][h]+myodmatrix[h][g])/2
 else:
 netmagnitude=(myodmatrix[g][h]-myodmatrix[h][g])
 if netmagnitude < 0: # if net magnitude has minus value
 linester = ogr.Geometry(ogr.wkbLineString)
 linester.AddPoint(mypoints[h][0], mypoints[h][1])
 linester.AddPoint(mypoints[g][0], mypoints[g][1])
 featureDefn = layer.GetLayerDefn()
 feature = ogr.Feature(featureDefn)
 feature.SetGeometry(linester)
 # set net magnitude of flow line (absolute value)
 feature.SetField('magnitude',netmagnitude * (-1))
 # set origin and destination node coordinates
 x1 = mypoints[h][0]
 y1 = mypoints[h][1]
 x2 = mypoints[g][0]
 y2 = mypoints[g][1]
 feature.SetField('coord_x1',x1)
 feature.SetField('coord_y1',y1)
 feature.SetField('coord_x2',x2)

 217

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py” (cont.)

Source Code of flowpyv07.py in Python
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

 feature.SetField('coord_y2',y2)
 # set origin and destination node names
 if IncludeNodeNames == 1:
 Namex1y1 = str(mypointnames[h])
 Namex1y1 = Namex1y1[2:-2]
 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = str(mypointnames[g])
 Namex2y2 = Namex2y2[2:-2]
 feature.SetField('name_x2y2',Namex2y2)
 elif IncludeNodeNames == 0:
 Namex1y1 = "Node_"+str(h+1)
 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = "Node_"+str(g+1)
 feature.SetField('name_x2y2',Namex2y2)
 # calculate length of flow line
 if combotext == "Cartesian":
 length_m = (((x1-x2)**2)+((y1-y2)**2))**0.5
 feature.SetField('length_km',length_m / (1000))
 else : # spherical dist. (based on wgs84 ellipsoid)
 lon1 = float(x1)
 lat1 = float(y1)
 lon2 = float(x2)
 lat2 = float(y2)
 length_km = math.atan2(math.sqrt((math.cos \
 ((math.atan(1.0)/45.0)*lat2)*math.sin((\
 math.atan(1.0)/45.0)*lon2-(math.atan(1.0) \
 /45.0)*lon1))**2+(math.cos((math.atan (1.0) \
 /45.0)*lat1)*math.sin((math.atan(1.0)/45.0)* \
 lat2)-math.sin((math.atan(1.0)/45.0)*lat1)* \
 math.cos((math.atan(1.0)/45.0)*lat2)*math.cos \
 ((math.atan(1.0)/45.0)*lon2-(math.atan(1.0) \
 /45.0)*lon1))**2),math.sin((math.atan(1.0) \
 /45.0)*lat1)*math.sin((math.atan(1.0)/45.0) * \
 lat2)+math.cos((math.atan(1.0)/45.0)* lat1)* \
 math.cos((math.atan(1.0)/45.0)*lat2)* \
 math.cos((math.atan(1.0)/45.0)*lon2-(math.atan
 (1.0)/45.0)*lon1)) * 6367.9375
 feature.SetField('length_km',length_km)
 layer.CreateFeature(feature)
 else: # if net magnitude has positive value
 linester = ogr.Geometry(ogr.wkbLineString)
 linester.AddPoint(mypoints[g][0], mypoints[g][1])
 linester.AddPoint(mypoints[h][0], mypoints[h][1])
 featureDefn = layer.GetLayerDefn()
 feature = ogr.Feature(featureDefn)
 feature.SetGeometry(linester)
 # set net magnitude of flow line
 feature.SetField('magnitude',netmagnitude)
 # set origin and destination node coordinates
 x1 = mypoints[g][0]
 y1 = mypoints[g][1]
 x2 = mypoints[h][0]
 y2 = mypoints[h][1]
 feature.SetField('coord_x1',x1)
 feature.SetField('coord_y1',y1)
 feature.SetField('coord_x2',x2)
 feature.SetField('coord_y2',y2)
 # set origin and destination node names
 if IncludeNodeNames == 1:
 Namex1y1 = str(mypointnames[g])
 Namex1y1 = Namex1y1[2:-2]
 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = str(mypointnames[h])
 Namex2y2 = Namex2y2[2:-2]
 feature.SetField('name_x2y2',Namex2y2)
 elif IncludeNodeNames == 0:
 Namex1y1 = "Node_"+str(g+1)

 218

Table B.1. Source Code of Flow Generator Module: “flowpyv07.py” (cont.)

Source Code of flowpyv07.py in Python
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

 feature.SetField('name_x1y1',Namex1y1)
 Namex2y2 = "Node_"+str(h+1)
 feature.SetField('name_x2y2',Namex2y2)
 # calculate length of flow line
 if combotext == "Cartesian":
 length_m = (((x1-x2)**2)+((y1-y2)**2))**0.5
 feature.SetField('length_km',length_m / (1000))
 else: # spherical dist. (based on wgs84 ellipsoid)
 lon1 = float(x1)
 lat1 = float(y1)
 lon2 = float(x2)
 lat2 = float(y2)
 length_km = math.atan2(math.sqrt((math.cos \
 ((math.atan(1.0)/45.0)*lat2)*math.sin((\
 math.atan(1.0)/45.0)*lon2-(math.atan(1.0) \
 /45.0)*lon1))**2+(math.cos((math.atan (1.0) \
 /45.0)*lat1)*math.sin((math.atan(1.0)/45.0)* \
 lat2)-math.sin((math.atan(1.0)/45.0)*lat1)* \
 math.cos((math.atan(1.0)/45.0)*lat2)*math.cos \
 ((math.atan(1.0)/45.0)*lon2-(math.atan(1.0) \
 /45.0)*lon1))**2),math.sin((math.atan(1.0) \
 /45.0)*lat1)*math.sin((math.atan(1.0)/45.0) * \
 lat2)+math.cos((math.atan(1.0)/45.0)* lat1)* \
 math.cos((math.atan(1.0)/45.0)*lat2)* \
 math.cos((math.atan(1.0)/45.0)*lon2-(math.atan
 (1.0)/45.0)*lon1)) * 6367.9375
 feature.SetField('length_km',length_km)
 layer.CreateFeature(feature)
 h += 1
 h = 0
 g += 1
 # FINISH: insert NET flows as line features into shapefile

 linester.Destroy() # destroy geometry
 feature.Destroy() # destroy feature
 ds.Destroy() # close data source

 219

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Güllüoğlu, Naim Cem
Nationality: Turkish (T.C.)
Date and Place of Birth: 18 July 1980, Antalya
Marital Status: Married
Phone: +90 532 550 1150
Email: cempro@gmail.com , cemgulluoglu@gmail.com

EDUCATION

Degree Institution Graduation

M.Sci. METU, Geodetic and Geographic 2005
Information Technologies Department

B.Sci. Gazi University,
 City and Regional Planning Department 2002

High School Antalya High School 1998

WORK EXPERIENCE

Year Place Enrollment

2013 – Current Ministry of Urbanism & Environment Urban Planner
2011 – 2013 Golder Associates Turkey GIS Expert
2008 – 2011 Encon Environmental Consulting GIS Expert
2007 – 2008 Sampaş Inc. GIS Expert
2006 – 2006 Kutluay Planning Office RS Expert

LANGUAGES

Turkish (Native), English (Advanced)

PUBLICATIONS

Aksoy, A., Akyıldız, K., Berke, M., Büke, A., Çalışkan, M., Çeşmeci, H., Dıvrak,
B., Duran, M., Göcek, Ç., Güllüoğlu, C., Gültekin, M., Sürücü, B., 2012, Büyük
Menderes Havza Atlası, S Basım San., İstanbul, Türkiye, ISBN 978-605-62927-1-
2 (in Turkish)

Ok, A.Ö., Güllüoğlu, C., 2008, Orthorectification of Basic-Level Quickbird
Panchromatic Imagery with Different Sensor Models, 2nd Remote Sensing and
Geographic Information System Symposium, 13 – 15 Oct. 2008, Kayseri, Turkey
(in Turkish)

