
1

A RANDOMNESS TEST BASED ON POSTULATE R-2 ON THE NUMBER OF
RUNS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OKAN ŞEKER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

AUGUST 2014

Approval of the thesis:

A RANDOMNESS TEST BASED ON POSTULATE R-2 ON THE NUMBER
OF RUNS

submitted by OKAN ŞEKER in partial fulfillment of the requirements for the degree
of Master of Science in Department of Cryptography, Middle East Technical
University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Department of Mathematics, METU

Examining Committee Members:

Dr. Muhiddin Uğuz
Department of Mathematics, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Assist. Prof. Dr. Çetin Ürtiş
Department of Mathematics, TOBB ETU

Assist. Prof. Dr. Fatih Sulak
Department of Mathematics, Atılım University

Dr. Cihangir Tezcan
Department of Mathematics, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: OKAN ŞEKER

Signature :

v

vi

ABSTRACT

A RANDOMNESS TEST BASED ON POSTULATE R-2 ON THE NUMBER OF
RUNS

Şeker, Okan

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

August 2014, 39 pages

Random values are considered as an indispensable part of cryptography, since they are
necessary for almost all cryptographic protocols. Most importantly, key generation is
done by random values and key itself should behave like a random value. Randomness
is tested by statistical tests and hence, security evaluation of a cryptographic algorithm
deeply depends on statistical randomness tests.

In this thesis we focus on randomness postulates of Solomon W. Golomb in particular,
second postulate which is about runs of a sequence and their distributions. The distri-
butions of runs of length one, two and three are underlined. And by these distributions
we state three new statistical randomness tests. New tests use χ2 distribution there-
fore, exact probabilities are needed. We calculate the probabilities in a combinatorial
approach. In order to using in the tests, probabilities are divided into five intervals,
which are called as subintervals. Subinverval are selected in such a manner that each
interval have nearly equal probabilities. Finally, three new statistical tests are defined
and pseudocodes for new statistical tests are given.

New statistical tests are designed to detect deviations of number of different length
from a random sequence. Since other tests are not interested in runs of different length,
they cannot be detected this deviation. The tests are implemented with some other
statistical tests, on some well-known algorithms and binary expansion of irrational
numbers. Experiment results show the performance and sensitivity of our tests.

vii

Keywords : Statistical Randomness Tests, Golomb’s Randomness Postulates, Run Tests.

viii

ÖZ

ÖBEK SAYILARI HAKKINDAKİ R-2 POSTÜLASINA DAYALI BİR
RASTGELELİK TESTİ

Şeker, Okan

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ağustos 2013, 39 sayfa

Rastgele değerler neredeyse bütün kriptografik protokollerde ihtiyaç¸ duyulduğu için
kriptografinin ayrılmaz bir parçası olarak görülmektedir. En önemlisi, anahtar üretimi
rastgele değerler ile sağlanmaktadır ve anahtarın kendisi de bir rastgele değer gibi
davranmalıdır. Rastgelelik testleri istatistiksel testleri ile yapılmaktadır, bu yüzden
kriptografik algoritmaların güvenliği derin bir şekilde istatistiksel rastgelelik testlerine
bağlıdır. Bu tezde Solomon W. Golomb tarafından tanımlanan rasgelelik postülalarına
odaklanılmıştır, özellikle öbek sayıları ve dağılımları üzerine olan ikinci postülası
üzerine çalışılmıştır. Postülada geçen öbek terimi, bir seride geçen kesintisiz ve aynı
bitlerden oluşan en uzun alt-seriler olarak tanımlanmıştır. Birlik, ikilik ve üçlük öbek
sayılarının dağılımı vurgulanmış ve bu dağılımlar ile yeni istatistiksel rastgelelik test-
lerini tanımlanmıştır. Yeni testler chi-kare dağılımını kullandıkları için, gerçek olasılıklara
ihtiyaç duyulmuştur. Bu olasılıkları kombinatorik bir yaklaşım ile hesaplanmıştır.
Testlerde kullanmak üzere bu olasılıkları alt-aralık denilen beş aralığa bölünmüştür.
Alt-aralıklar neredeyse eşit olasılıklara sahip olacak şekilde seçilmiştir. Son olarak
da testler tanımlanmış¸ ve kodları verilmiştir. Yeni tanımlanan testler farklı uzunluk-
taki öbek sayılarının dağılımındaki sapmaları ortaya çıkarmak üzere tasarlanmıştır.
Diğer testler farklı uzunluktaki öbek sayıları ile ilgilenmedikleri için bu sapma be-
lirlenememektedir. Yeni testler bazı tanınmış algoritmalar ve irrasyonel sayıların ikili
açılımları üzerinde uygulanmıştır. Bu deneyler testleri performansını ve hassasiyetini
göstermiştir

ix

Anahtar Kelimeler : İstatistiksel Rassalık Testleri, Golomb’un Rassallık Postülaları,
Run Testleri.

x

To My Family

xi

xii

ACKNOWLEDGMENTS

First of all, I would like to express my great thanks to my supervisor Assoc. Prof. Ali
Doğanaksoy. His excellent mentoring, guidance and motivation make this work finish.

I deeply thank to Assist. Prof. Dr. Fatih Sulak who patiently guide me and encourage
me throughout the research with his expertise and to Dr. Muhiddin Uguz for his for his
ideas, valuable comments from the beginning. Special thanks should be given to Ziya
Akcengiz for his support, collaboration and friendship.

I am grateful to my colleges in TÜBITAK-UEKAE and in Institute of Applied Mathe-
matics. They have been exquisite friends and supporters.

Finally, I would like to thank to my family for their endless support and love. And I
thank to my sister for being an excellent mentor and friend through my entire life. Last
but not the least, I wish to thanks all my friends with whom I have worked on stage
and my dearest friends for their wonderful friendship.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xvii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Random Sequences and Random Numbers 1

1.2 Randomness . 2

1.3 Testing . 3

1.4 Test Suites . 3

1.5 Golomb’s Randomness Postulates 4

1.6 Motivation . 5

2 RUN TESTS . 7

2.1 Brief Overview of Run Tests 7

2.2 Computation of Probabilities 8

2.2.1 Number of Runs 9

xv

2.2.2 Number of Runs of Length One 11

2.2.3 Number of Runs of Length Two 14

2.2.4 Number of Runs of Length Three 16

2.3 Summary . 18

3 TEST DESCRIPTIONS . 21

3.1 Number of Runs . 24

3.2 Runs of Length One Test 25

3.3 Runs of Length Two Test 25

3.4 Runs of Length Three Test 26

3.5 Summary . 26

4 APPLICATIONS . 29

4.1 Application on AES Finalists Algorithms 29

4.2 Application on Binary Expansions 30

4.3 Applications on Non-Random Data 30

4.4 Summary . 33

5 CONCLUSION . 35

REFERENCES . 37

xvi

LIST OF TABLES

Table 2.1 Subinterval probabilities for 128 bit sequences. 10

Table 2.2 Interval and probability values for number of runs for 64, 128, 256,
512 bits blocks. 11

Table 2.3 Interval and probability values for runs of length one for 64, 128,
256, 512 bits blocks. 13

Table 2.4 Interval and probability values for runs of length two test for 64,128,256,512
bits blocks. 16

Table 2.5 Interval and probability values for runs of length three test for 64,128,256
bits blocks. 19

Table 3.1 Number of sequences in the given intervals for number of runs test,
runs of length one test, runs of length two test and runs of length three test. 24

Table 4.1 Test results for the 128-bit outputs of AES finalists. 30

Table 4.2 Test results for the 256-bit outputs of AES finalists. 31

Table 4.3 Test results for the binary expansion of e, π and
√

2. 32

Table 4.4 Test results for non-random data sets. 32

xvii

xviii

LIST OF ABBREVIATIONS

TRNG True Random Number Generator

PRNG Pseudorandom Number Generator

H0 Null Hypothesis

NIST National Institute of Standards and Technology

AES Advanced Encryption Standard

rt Number of Runs

r1 Number of Runs of Length One

r2 Number of Runs of Length Two

r3 Number of Runs of Length Three

xix

xx

CHAPTER 1

INTRODUCTION

1.1 Random Sequences and Random Numbers

Random numbers and random sequences are extensively used in many areas such
as, game theory, numerical analysis, quantum mechanics, cryptography etc. They
constitute a necessary part of cryptography. Need for random sequences emerges in
challenge and response authentication systems, generation of digital signatures, zero-
knowledge protocols etc. But, most important feature is; key generation is highly
depend on random values. As stated in [29], if each term of a sequence takes any value
from a finite set with equal probability, then the sequence is said to be random. The
sequence is called binary random sequence if the set is chosen as {0,1}. Another def-
inition stated by Kolmogorov [17] is about the length of the shortest description of a
sequence. Accordingly, if a sequence is random then the shortest description should be
the sequence itself. To prevent any weaknesses in the sequences, three basic properties
of a random bit sequence are stated in [27] as follows:

1. Unpredictability: Let S = s1, s2, . . . , sn, sn+1, . . . be a random bit sequence then,
knowing first t element of a sequence should not give any information about st+1,
the next element of the sequence S . All elements of the sequence should be
generated independently.

2. Uniformity: Given any subsequence of S , there should be nearly equal number
of 1’s and 0’s.

3. Independence: Each element of S is independent from other elements, That is,
Pr(si=s j) = 1/2 for any i , j.

Random sequences should have some additional properties also. First of all, they
should be reproducible in order to use in an algorithm. Moreover, they should not
need too much time and power consumption and they should have large period. Such
sequences can be generated by two type of sources.

First one is called true random generator (TRNG). TRNG is a combination of a non-
deterministic source and some processing function which is required to overcome any
weaknesses in the source. Physical sources like thermal noise, sound samples from an

1

environment, radioactive decay etc. are generally used as a non-deterministic source.
As it is needed, outputs of these sources have good statistical properties. They are
unpredictable and not periodic. However, using these sources in algorithms causes
various problems. For example, production of random numbers can become time and
power consuming. Since, reproducing the outputs of these sources is nearly impossi-
ble, large number of bits should be transmitted. Therefore, this transmission makes the
systems unpractical.

As a consequence of these problems another type of random number generators are
used in cryptosystems, which are called pseudorandom number generators (PNRG). A
PRNG is used one or multiple inputs or seeds to generate pseudorandom sequences,
that is random looking sequences of a specific length which are produced by determin-
istic processes [21].

The seeds should be also unpredictable and random, therefore PNRG’s are designed to
work with a TRNG. Three important features of PNRG’s are; they don’t need too
much time and power compared to TRNG’s, they are reproducible and have large
period. Moreover, if an PRNG is designed properly, each value, which is produced
by previous values via transformations, introduce additional randomness. That is, a
series of such transformations can eliminate undesired statistical properties. Hence
PRNG’s can have better statistical properties compared to TRNG’s.

1.2 Randomness

As stated in Section 1.1 need for random sequences arises in many different areas in
cryptography. Therefore, randomness is a highly important issue for cryptographic
systems. According to the Kerckhoff’s principle [14], security of the cryptographic
systems should depend only on the key, so that security of the system depends on
random values which are used in the algorithm. Also, using weak random values in
key generations can cause a leakage in the system and hence an adversary can gain
ability to break the whole cryptosystem.

In all applications, used values should be sufficient size and be random, in such a
manner that probability of any chosen quantity should be small enough to eliminate
an adversary to gain any specific information. Thus, sequences and numbers, which
are used as a key in cryptographic algorithms such as, block ciphers and synchronous
stream ciphers should be pseudorandom. These sequences should have good statistical
properties and they are usually generated by a PRNG, defined in Section 1.1

Another place where random looking plays an important role is that, outputs of algo-
rithms should be pseudorandom and hence, should be indistinguishable from random
mappings. That is, an algorithm’s output should not give any information about input
of the system or the key itself. Therefore, round number of a block cipher is de-
cided according to concept of random looking. Hence, security of the system depends
on testing of pseudorandom sequences. For these reasons, testing pseudorandom se-
quences is an important topic and it is done by statistical randomness tests, which is
considered as an important part of evaluating the security of cryptographic algorithms.

2

1.3 Testing

Statistical tests are defined to detect weaknesses that a sequence could have. For a
finite sequence there is no definition of randomness. Therefore, statistical tests are
defined to detect weaknesses that a sequence could have.

For each statistical test a random variable, whose distribution function is known, is
chosen, such as number of ones or number of uninterrupted sequence of identical bits.
A critical value which corresponds to far out in the tails of distribution, is decided
according to the distribution. Depending on the distribution and random variable a real
number between zero and one, called p-value, is calculated. If the p-value for a test
is calculated as one, then this result indicates that the sequence is completely random.
On the other hand, the sequence is completely non-random, if p-value is determined as
zero.

1.4 Test Suites

Numerous statistical tests can be implemented to a sequence to compare with a truly
random sequence. A large number of statistical tests can be described in such a manner
that each of them evaluates a different characteristic of the sequence. Therefore, there
is no special set of tests assumed to be complete. For different purposes, different
finite set of test can be arranged. These sets are called as test suites. In the literature,
there exists various statistical test suites. The most important test suites are the suite
given in the Knuth’s book [16], test suite presented by Rukhin [24], DIEHARD [19],
CRYPT-X [6], TestU01 [18] and the test suite published by NIST [3] so far.

• Knuth’s Test suite is stated in Donald Knuth’s book The Art of Computer Pro-
gramming, Volume 2 [16] in 1969. It is one of the most quoted reference for the
statistical randomness testing. The reason is that, it contains most of the standard
and required tests such as, frequency test, runs test, serial test etc.

• DIEHARD Test Suite was developed by Marsaglia in 1995 on a CDROM. 15
statistical tests were included in the suite. In most of the tests, sequence sizes
are fixed, therefore it is not suitable to test sequences with different lengths. In
2010 Alani [1] uses the suite to evaluate the AES finalists.

• NIST(National Institute of Standards and Technology) test suite consist of firstly
16 then 15 various statistical tests. The suite is used as an evaluation tool for
the Advanced Encryption Standard (AES) by Soto and Bassham [28]. Since
its first publication some revisions are made. In 2004 test setting of discrete
fourier transform test and lempel-ziv test are found wrong [15] and new test,
which can be used instead of lempel-ziv test, is defined in [10] and correction of
overlapping template matching is stated in 2007 [9].

• Crypt-X suite was developed in the Information Security Research Centre at
Queensland University of Technology in 1992. It consists of 7 different tests

3

which are; frequency, binary derivative, change point, runs, sequence complexity
and linear complexity tests.

• TestU01 is developed in 2007 and it consists of two parts and each parts has 2
sub parts.

1. Tests for a sequence of real numbers in (0,1)

– Tests on a single stream of n numbers.
– Tests based on n subsequences of length t:

2. Tests for a sequence of random bits

– One long binary stream of length n.
– Tests based on n bit strings of length m.

Besides the suites there are works, focusing on statistical tests individually. Such as, a
universal statistical test, stated by Maurer [20], a test based on diffusion characteristic
of a block cipher [13], topological binary test defined by Alcover et.al. [2], a new
randomness test based on SAC [11], work done by Ryabko [25] in 2004

1.5 Golomb’s Randomness Postulates

As it is stated, there are no complete set of tests to be assumed complete. Apart from
the statistical tests, there is works on deciding pseudorandomness, which is a diffi-
cult task. Golomb’s postulates constitute a base for randomness tests. This work is
considered as one of the most important attempts to create some necessary properties
for a finite (or periodic) pseudorandom sequence to be random looking. Sequences
satisfying following three properties are called pseudo-noise sequence [8].

Let S = s0, s1, . . . , sn−1, . . . be an infinite binary sequence periodic with n (or a finite
sequence of length n). A run is defined as an uninterrupted maximal sequence of
identical bits. Runs of 0’s are called gap, runs of 1’s are called block. R1, R2 and R3
are Golomb’s randomness postulates which are given as follow:

R1) In a period of S , the number of 1’s should differ from the number of 0’s by at most
1. In other words, sequence should be balanced.

R2) In a period of S , at least half of the all runs of 0’s or 1’s should have length one, at
least one-fourth should have length 2, at least one-eight should have length 3, and the
like. Moreover, for each of these lengths, there should be (almost) equally many gaps
and blocks.

R3) The auto correlation function C(t) should be two valued. That is for some integer
K and for all t = 0, 1, 2, . . . , n − 1

C(t) =

n−1∑
i=0

(−1)si+si+t =

{
n if t = 0
K if 1 ≤ t ≤ n − 1 .

4

The first postulate states that in an n − bit sequence, the difference of number of ones
and zeros should be 1 or 0. In other words, the number of ones in a sequence, that is
weight of the sequence, should be approximately n/2. Frequency test, which measures
the difference of number of ones and zeros in an n − bit sequence, is defined to check
this the first postulate of Golomb. Since being balanced for an algorithm’s output is
very important in cryptography, frequency test is used as initial step for almost all test
suites. If an algorithm fails the frequency test, then other tests are not even applied.

The second postulate of Golomb is about number of runs in sequences. Tests, which
deal with number of runs, are called as run tests and these are also included in many
test suites as frequency test. However, in most of test suites, they consider only the
total number of runs in the sequence and do not concern about the number of runs of
different length. The main reason, for this is calculating the expected number of runs
of specified length in a random sequence is a difficult task especially when specified
length becomes large.

Third postulate gives information about amount of similarities between the sequence
and shifted version of it. If S is a random sequence, the autocorrellation should be
constant, that is; correlation between ith and (i + t)th bits should give no information
about the sequence for t = 1, 2, . . . , (n − 1).

1.6 Motivation

Apart from the statistical tests, which are used in test suites given in Section 1.4, there
are various statistical tests. In this thesis, we focus on the second postulate of Golomb
and define a new test based on this postulate. Our main motivation is to decrease the
number of tests in the suites nby using fundamental postulates and hence, design more
efficient test suites with less statistical tests.

Our secondary goal is to state statistical tests in order to test short sequences like out-
puts of block ciphers and hash functions. This problem is actually stated in the NIST
test suite. In the test suite, it is assumed that sequence length n is of order 103 to 107.
For this reason, asymptotic reference distributions were derived and used for tests.
But, asymptotic reference distributions are misleading for small values of n, As stated
in [3] ”the asymptotic reference distributions would be inappropriate and would need
to be replaced by exact distributions that would commonly be difficult to compute”.
In other words, asymptotic reference distributions can lead some errors while testing
the outputs of block ciphers or hash functions. In 1999, to overcome this problem,
Soto [28] proposed to concatenate short sequences. This method is used for testing the
randomness of Advanced Encryption Standard candidates. Another method has been
proposed by Sulak et.al. [30], in which distribution functions used in NIST test suite
replaced by exact distribution and a similar method is used for producing the p-values.
We use the methods stated in [30] and [29].

Outline of the thesis is as follows:

In Chapter 2, we give the proofs of our fundamental theorems. Also probabilities

5

associated to runs of length one, two and three are stated and the probabilities are
divided into five intervals, which are called as subintervals, in such a way that each
interval has nearly equal probabilities. In Chapter 3, three new statistical tests are
defined according to the subinterval probabilities and pseudocodes for new statistical
tests are given. In Section 4, we apply our tests to five finalists of advanced encryption
standard competition. After that we implement the tests on binary expansion of e, π and√

2, which are obtained from NIST package [3]. In the last part of implementation we
generate some non-random data sets to emphasize the sensitivity of our tests. Finally
In Section 5, we summarize our results and state the topics for further research.

6

CHAPTER 2

RUN TESTS

2.1 Brief Overview of Run Tests

In Chapter 2 we propose three new statistical randomness tests and a variation of run
test which is stated in [30] . First, we give a brief information about run tests in the lit-
erature. Then the proofs of our fundamental theorems and calculation of probabilities,
which are needed to introduce our approach to the run tests, are given. Using these
calculations, we state our new run tests and give the pseudocodes.

Run tests depend on the Golomb’s second postulate and they investigate number of
runs in a sequence and their distribution. Run tests take place in most of the test suites.
Almost in all of these suites, run tests concern only about the total number of runs in
the sequences. The most important ones of these are the suite given in [16], [19],
[18] and [3].

Knuth and DIEHARD test suite defines the run test on random numbers. They define
runs as runs up and runs down in a sequence. To illustrate their definition; consider a
sequence of length 10, S n = 138742975349; putting a vertical line between s j’s when
s j > s j+1, this runs of the sequence 138742975349 can be seen as |138|7|4|29|7|5|349|.In
other words, the run test examines the length of monotone subsequences.

TestU01 defines run and gap tests for testing the randomness of long binary stream of
length n. This test collects runs of 1’s and 0’s until the total number of runs is 2r. Then
for each length j = 1, 2, . . . , k it counts the number of runs of 1’s and 0’s of length in
this collection and and records this 2k counts. Then it applies χ2 test on these counts.
Longest run of 1’s test is also defined for the collection of strings of length m which
are obtained from the original long binary string of length n.

In the NIST test suite, 2 of 15 tests are variations of run tests. They are called as run
test and longest run of ones in a block test. First one deals with the total number of
runs in a sequence. It calculates the total number of runs in a sequence and determine
whether it is consistent with the expected number of runs, which is supposed to be
close to n/2 in a sequence or not. Second one determines whether the longest run of
ones in the sequence is consistent with the length of longest runs of ones which is in a
random sequence. In NIST test suite the reference distribution for the run tests is a χ2

distribution.

7

In this thesis we use the approach stated in [30], thus we need the exact probabilities
and exact distribution of tests statics. Finding the number of sequences having a se-
lected number of runs of length i is a hard problem. We find the number with the help
of combinatorial formulas. After that we calculate the desired probabilities by just di-
viding the number by total number of sequences. Calculating the exact probabilities
of the number of runs of length i in a random sequence enables us to investigate the
number of the runs of same length in an random sequence. We calculate for number of
runs of length 1, 2 and 3 and we give the detailed information in the following section.
However as the length grows, calculations are getting complex and time required for
these calculations grows exponentially. Therefore, tests involving number of runs of
length j (j > 3) unpractical for statistical test suites.

2.2 Computation of Probabilities

In this section, we give detailed information about the calculations for finding the num-
ber of sequences, having a number of runs of lengths 1, 2 or 3 and hence, we state ex-
act probabilities. Probabilities depend on the number of existing shorter runs. That is;
probabilities for the number of runs of length two depend on both total number of runs
and number of runs of length one , similarly number of runs of length three depends
on total number of runs and number of runs of length one and two and so on. These
probabilities are not directly used in the test, since they include some dependence with
number of runs etc. Therefore, after stating the theorems we give the algorithm to find
the exact probabilities which we need for describing the tests.

In the calculations of probabilities we frequently use the following combinatorial for-
mula.

Remark 2.1 ([23] Number of Non-Negative Integer Solutions of a Linear Equation).
The number of non-negative integer solutions of x1 + x2 + . . .+ xr = n, n ∈ Z+ is

(
n+r−1

r−1

)
.

Remark 2.2. The number of positive integer solutions of x1 + x2 + . . . + xr = n, n ∈ Z+

is
(

n−1
r−1

)
.

Proof. With the substitution xi = x′i + 1 we get,

(x′1 + 1) + (x′2 + 1) + . . . + (x′r + 1) = n
x′1 + x′2 + . . . + x′r = n − r.

From Remark 2.1 it follows that the number of solutions is:(
(n − r) + (r) − 1

r − 1

)
=

(
n − 1
r − 1

)
.

�

8

2.2.1 Number of Runs

In the rest of the thesis we denote the total number of runs, number of runs of length
one, two and three as rt, r1, r2 and r3 respectively and we use samples of these variables
r, l1, l2, l3 respectively. We denote by Pr(rt = r) the probability of randomly chosen
binary sequence with r runs. In the same way, Pr(ri = li) is the probability of randomly
chosen binary sequence with li runs of length i. Also we use subscripts S 1, S 2, . . . , S m
to differentiate the blocks of a long sequence or outputs of block ciphers and hash
functions.

Also to illustrate runs of a sequence we use the equation x1 + x2 + . . . + xr = n for a
sequence with length n and having r runs. An important property of this illustration is
that; it gives no information about content of xi’s, that is; xi (i = 1, 2 . . . , r) can be a run
of 0’s or 1’s. Thus, each positive integer solution of the equation x1 + x2 + . . . + xr = n
corresponds to two sequences, one starting with 1, the other start with 0. Hence, the
number of sequences with length n and having exactly r runs is 2

(
n−1
r−1

)
.

Example 2.1. Let S=01100010011111001100011101010000 be a binary sequence
length of 32, having 15 runs. Then;

x1 + x2 + . . . + x15 = 32
0︸︷︷︸
x1

11︸︷︷︸
x2

000︸︷︷︸
x3

1︸︷︷︸
x4

00︸︷︷︸
x5

11111︸︷︷︸
x6

00︸︷︷︸
x7

11︸︷︷︸
x8

000︸︷︷︸
x9

111︸︷︷︸
x10

0︸︷︷︸
x11

1︸︷︷︸
x12

0︸︷︷︸
x13

1︸︷︷︸
x14

0000︸︷︷︸
x15

.

x1 = 1, x2 = 2, x3 = 3, x4 = 1, x5 = 2,
x6 = 5, x7 = 2, x8 = 2, x9 = 3, x10 = 3,

x11 = 1, x12 = 1, x13 = 1, x14 = 1, x15 = 4.

Probabilities are calculated in a similar way as in [30]. The main difference is that, in
the previous approach, sequences are viewed in a circular form. Probabilities depend
on weight of the sequence and parity of number of runs. We calculate the probabilities
with the above notation, which is not based on circular form and they depend on the
number of runs and number of shorter runs.

Theorem 2.1. Let S = s1, s2, . . . , sn be a binary sequence of length n having total a of
r runs then;

Pr(rt = r)= (n−1
r−1)

2n−1 .

Proof. We can illustrate the sequence of length n, having r runs as follows;

x1 + x2 + . . . + xr = n.

The number of all binary sequences S = s1, s2, . . . , sn of length n, having total number
of r runs is 2

(
n−1
r−1

)
which is the result of Remark 2.2. Hence probability of a randomly

chosen such sequence to have exactly r runs is;

9

Pr(R = r) =
2 ·

(
n−1
r−1

)
2n .

�

After finding the exact probabilities we calculate the subinterval probabilities. Follow-
ing example shows the calculations of subinterval probabilities for 128 bit sequences.

Example 2.2. Calculating the Subinterval Probabilties.

• Step 1: Calculate Pr(rt = r) for l1 = 1, 2, . . . , 128 by using Theorem 2.1.

• Step 2: Determine subintervals such that; (α0, α1), (α1, α2), . . . , (α4, α5) such
that, Pri(αi < R < αi+1) ≈ 0, 2. In our example subinterval probability can
be calculated as follows;

Box1 =

58∑
r=0

Pr1(rt = r) Box2 =

61∑
r=59

Pr2(rt = r)

Box3 =

64∑
r=62

Pr3(rt = r) Box4 =

67∑
r=65

Pr4(rt = r)

Box5 =

128∑
r=68

Pr5(rt = r)

• Step 3: Finally, we get the Table 2.1 for subinterval probabilities;

In the same way we calculate the subinterval probabilities for different block lengths.
They can be seen in Table 2.2.1

Table 2.1: Subinterval probabilities for 128 bit sequences.

Intervals Probability
Box 1 0-58 0.187478
Box 2 59-61 0.173915
Box 3 62-64 0.208992
Box 4 65-67 0.190652
Box 5 68-128 0.238960

10

Table 2.2: Interval and probability values for number of runs for 64, 128, 256, 512 bits
blocks.

n=64 n=128 n=256 n=512
interval prob interval prob interval prob interval prob

Box 1 1-28 0.224981 1-58 0.187478 1-120 0.190339 1-246 0.212950
Box 2 29-30 0.175671 59-61 0.173915 121-125 0.210794 247-253 0.216834
Box 3 31-32 0.198693 62-64 0.208992 126-129 0.197731 254-259 0.208488
Box 4 33-34 0.175671 65-67 0.190652 130-134 0.210794 260-265 0.173571
Box 5 35-64 0.224981 68-128 0.238960 135-256 0.190339 266-512 0.188154

2.2.2 Number of Runs of Length One

In this section, probabilities for an n − bit sequence having l1 runs of length one are
given in a combinatorial approach. We use the same notation and similar ideas of
Section 2.2.1 to compute the number of sequences having total of r runs, l1 of which are
of length one and hence we calculate the probabilities. As a result of this calculations,
we state the first new run test, which depends on the idea in Golomb’s second postulate.

Theorem 2.2. The probability of randomly chosen binary sequence S = s1, s2 . . . , sn
with length n, to have a total of r runs, l1 of which are runs of length one is,

Pr(rt = r, r1 = l1) =

(
n−r−1
r−l1−1

)
·
(

n
l1

)
2n−1 .

Proof. As in the proof of the Theorem 2.1, we illustrate the sequence as follows;

x1 + x2 + . . . + xr = n (2.1)

Let’s first assume that the last l1 runs are the runs of length one and the rest are of
length at least two. That is,

xr−l1+1 = . . . = xr−1 = xr = 1.

x1 + x2 + . . . + xr−l1 +

l1︷ ︸︸ ︷
1 + 1 . . . + 1 = n

x1 + x2 + . . . + xr−l1 = n − l1.

Notice that here, xi ≥ 2 so, we use the change of variable yi = xi−2 for i = 1, 2, . . . r−l1.

(x1 − 2) + (x2 − 2) + . . . + (xr−l1 − 2) = n − l1 − 2(r − l1)

y1 + y2 + . . . + yr−l1 = n − 2r + l1. (2.2)

11

The number of sequences having conditions, which are stated above, is equal to the
number of non-negative solutions of the equation 2.2. Consequently, by the Remark 2.1,
number of desired solutions is, (

n − r − 1
r − l1 − 1

)
.

Selection of l1 runs of length 1 give us a factor of
(

r
l1

)
. Since, each positive integer

solution of the equation 2.1 corresponds to two sequences. First one starts with 1 and
the other starts with 0. Therefore we multiply the number of solutions by 2. Therefore,
the number of all binary sequences of length n, having total number of r runs, l1 of
which of length one is equal to 2

(
n−r−1
r−l1−1

)(
r
l1

)
. Hence probability of a randomly chosen

such sequence to have exactly r runs, l1 of which, is length one is:

Pr(rt = r, r1 = l1) =
2 ·

(
n−r−1
r−l1−1

)
.
(

r
l1

)
2n . (2.3)

�

Number of sequences having r runs, l1 of which are length one can be found using
formula above. Our aim is to compute total number of sequences of length n having l1
runs of length one without depends on the total number of runs. In order to compute
the aimed number we use Corollary 2.3.

Corollary 2.3. Let N1(l1) denote the number of sequences with exactly l1 runs of length
one. Then,

N1(l1) =

n∑
r=1

2 ·
(
n − r − 1
r − l1 − 1

)
·

(
r
l1

)
. (2.4)

Since the number of all sequences of length n is 2n, probabilities follows immediately;

Pr(r1 = l1) =
N1(l1)

2n .

Moreover, Algorithm 1 enable the calculation for N1(l1). So that we can investigate
number of length one independently.

After finding the N1(l1) for l1 = 0, 1, 2, . . . , n by using Corollary 2.3 and Algorithm 1
we calculate the subinterval probabilities in the same way that is showed in exam-
ple 2.2. They can be seen in Table 2.2.2

Example 2.3. Let S n be a random sequence of length 8, having 4 runs and 2 runs of
length one.
Since, we have exactly 4 runs, xi’s must be at least 1;

12

Algorithm 1 Calculating Pr(r1 = l1) for l1 = 0, 1 . . . , n
l1 ← 1 , r ← 1, N1(l1)← 0,
while l1 ≤ n do

while r ≤ n do
Pr(r1 = l1)← Pr(r1 = l1) +

(
n−r−1
r−l1−1

)(
r
l1

)
/2n−1

r ← r + 1
end while
l1 ← l1 + 1

end while
return N1

Table 2.3: Interval and probability values for runs of length one for 64, 128, 256, 512
bits blocks.

n=64 n=128 n=256 n=512
interval prob interval prob interval prob interval prob

Box 1 0-13 0.190082 0-27 0.173171 0-56 0.187255 0-117 0.193566
Box 2 14-16 0.238877 28-31 0.21426 57-61 0.189280 118-125 0.218630
Box 3 17-18 0.174560 32-34 0.186977 62-66 0.219859 126-132 0.217076
Box 4 19-21 0.211470 35-38 0.21339 67-72 0.218775 133-140 0.199515
Box 5 22-64 0.185009 39-128 0.21219 73-256 0.184827 141-512 0.171211

x1 + x2 + x3 + x4 = 8, xi ≥ 1 for i = 1, 2, 3, 4.

Fix x3 = x4 = 1 then;

x1 + x2 = 6 xi ≥ 2 for i = 1, 2

We want xi ≥ 2. Define x′i = xi + 2 for i=1,2.

x1 + x2 = 6, xi ≥ 2 for i = 1, 2

(x1 + 1) + (x2 + 1) = 2

x′1 + x′2 = 2, x′i ≥ 0 for i = 1, 2

x′1 = 2, x′2 = 0⇔ x1 = 4, x2 = 2, x3 = 1, x4 = 1
{

11110010
00001101

x′1 = 1, x′2 = 1⇔ x1 = 3, x2 = 3, x3 = 1, x4 = 1
{

11100010
00011101

x′1 = 0, x′2 = 2⇔ x1 = 2, x2 = 4, x3 = 1, x4 = 1
{

11000010
00111101

The above construction gives us 6 different sequences of length 8 with 2 runs of length

one. Also selecting x3 and x4 gives us a factor of
(
4
2

)
. Hence, the total number of

13

sequences of length 8 with 4 runs, 2 of which are of length one is 2 ·
(
8 − 4 − 1
4 − 2 − 1

)
·

(
4
2

)
=

36.

2.2.3 Number of Runs of Length Two

In this section, we calculate the number of sequences having l1 runs of length one in
a combinatorial approach. As in the previous section we use the same notation and
the similar ideas in Section 3.1 to compute the number of sequences having total of
r runs, l2 of which are of length two and hence we calculate the probabilities. Then
using these calculations, we state the second new run test.

Theorem 2.4. The probability of randomly chosen binary sequence S = s1, . . . , sn with
length n, having r runs, l1 of which are length one and l2 of which are length and two
is ;

Pr(rt = r, r1 = l1, r2 = l2) =

(
n−2r+l1−1
r−l1−l2−1

)
·
(

n
l1

)
·
(

n−l1
l2

)
2n−1 .

Proof. As in the previous Theorems 2.1 and 2.2 we illustrate the sequence as follows;

x1 + x2 + . . . + xr = n (2.5)

Let us first assume that the last l1 runs are of length one and l2 runs are the runs of
length two. The rest are of length at least three. That is,

xr−l1+1 = . . . = xr−1 = xr = 1,
xr−l1−l2+1 = . . . = xr−l1−1 = xr−l1 = 2.

x1 + x2 + . . . + xr−(l1+l2) +

l2︷ ︸︸ ︷
2 + 2 + . . . + 2 +

l1︷ ︸︸ ︷
1 + 1 . . . + 1 = n,

x1 + x2 + . . . + xr−(l1+l2) = n − l1 − 2l2.

Notice that here, xi ≥ 3. We use the change of variables yi = xi − 3 for i = 1, 2, . . . , r −
(l1 + l2).

(x1 − 3) + (x2 − 3) + . . . + (xr−(l1+l2) − 3) = n − (l1 + 2l2) − 3(r − l1 − l2)

y1 + y2 + . . . + yr−(l1+l2) = n − 3r + 2l1 + l2. (2.6)

The number of sequences having conditions, which are stated above, is equal to the
number of non-negative solutions of the equation 2.6. Consequently, by the Remark 2.1,
number of desired solutions is,

14

(
n − 2r + l1 − 1
r − l1 − l2 − 1

)
.

Selection of l1 and l2 runs of length 1 and length 2 give us a factor of
(

r
l1

)(
r − l1

l2

)
. Since,

each positive integer solution of the equation 2.5 corresponds to two sequences, one
starting 1, the other start with 0. We multiply the number of solutions by 2. Therefore;
the number of all binary sequences of length n, having total number of runs, l1 and l2
of which length one and two respectively, is equal to,

2
(
n − 2r + l1 − 1
r − l1 − l2 − 1

)(
r
l1

)(
r − l1

l2

)
.

Hence the probability of a randomly chosen sequence to have these conditions is;

Pr(rt = r, r1 = l1, r2 = l2) =
2·(n−2r+l1−1

r−l1−l2−1)·(r
l1
)·(r−l1

l2
)

2n .

�

We find the number of sequences having r runs, l1 and l2 of which are length one
and two respectively, using formula above. In order to define the second new run
test, we need number of sequences of length n having l2 runs of length two, without
dependingon the other variables such as, number of runs and number of runs of length
one. Corollary 2.5 enables us to compute the probabilities that are needed for defining
the new statistical test.

Corollary 2.5. Let N2(l2) denote the number of runs of sequences with exactly i runs
of length two. Clearly, we have maximum

⌊
n
2

⌋
runs of length two. Otherwise sequence

length exceeds n. Then for l2 = 0, 1, . . . ,
⌊

n
2

⌋
,

N2(l2) =

n∑
l1=0

n∑
r=1

2 ·
(
n − 2r + l1 − 1
r − l1 − l2 − 1

)
·

(
r
l1

)
·

(
r − l1

l2

)
. (2.7)

Since the number of all sequences of length n is 2n, probabilities follows immediately;

Pr(r2 = l2) =
N2(l2)

2n

Also Algorithm 2 enable the calculation for the number of sequences with desired
conditions, and hence subinterval probabilities can be stated in the same way in exam-
ple 2.2. The subinterval probabilities can be seen in the Table 2.2.3

15

Algorithm 2 Calculating Pr(r2 = l2) for l2 = 1, 2, . . . ,
⌊

n
2

⌋
i← 1, l1 ← 0, r ← 1, N2(l2)← 0.
while l2 ≤

⌊
n
2

⌋
do

while l1 ≤ n do
while r ≤ n do

Pr(r2 = l2)← Pr(r2 = l2) +
(

n−2r+l1−1
r−l1−l2−1

)(
r
l1

)(
r−l1

l2

)
/2n−1

r ← r + 1
end while
l1 ← l1 + 1

end while
l2 ← l2 + 1

end while
return N2

Table 2.4: Interval and probability values for runs of length two test for 64,128,256,512
bits blocks.

n=64 n=128 n=256 n=512
Interval Prob. Interval Prob. Interval Prob. Interval Prob.

Box 1 0-5 0.161344 0-12 0.167075 0-27 0.192579 0-57 0.188938
Box 2 6-7 0.260964 13-14 0.174075 28-30 0.194051 58-61 0.178794
Box 3 8 0.149093 15-16 0.209794 31-33 0.222923 62-65 0.210496
Box 4 9-10 0.245287 17-19 0.266590 34-36 0.187853 66-70 0.225615
Box 5 11-32 0.183309 20-64 0.182464 37-128 0.202591 71-256 0.196154

2.2.4 Number of Runs of Length Three

In the last section of this chapter, we focus on the number of sequences having exactly
l3 runs of length three. We use same constructions with the previous sections to com-
pute the number of sequences having total of r runs, l3 of which are of length three and
hence we calculate the probabilities. Then using these calculations, we state the last
new statistical test in the next chapter.

Theorem 2.6. The probability of chosen binary sequence S = s1, s2, . . . , sn with length
n, to have r runs, l1 runs of length one, l2 runs of length two and l3 runs of length three
is

Pr(rt = r, r1 = l1, r2 = l2, r3 = l3) =

(
n−3r+2l1+l2−1
r−l1−l2−l3−1

)
.
(

r
l1

)
.
(

r−l1
l2

)
.
(

r−l1−l2
l3

)
2n−1 .

Proof. As in Theorems 2.1, 2.2 and 2.4 we illustrate the sequence as follows;

x1 + x2 + . . . + xr = n (2.8)

16

Let us first assume that the last l1 are of length 1 l2 are of length 2 and l3 of length 3.
Rest are at least length four.

xr−l1+1 = . . . = xr−1 = xr = 1,
xr−l1−l2+1 = . . . = xr−l1−1 = xr−l1 = 2,

xr−l1−l2−l3+1 = . . . = xr−l1−l2−1 = xr−l1−l2 = 3,

x1 + x2 + . . . + xr−l1−l2−l3 +

l3︷ ︸︸ ︷
3 + 3 + . . . + 3 +

l2︷ ︸︸ ︷
2 + 2 + . . . + 2 +

l1︷ ︸︸ ︷
1 + 1 . . . + 1 = n

x1 + x2 + . . . + xr−l1−l2−l3 = n − r − l1 − 2l2 − 3l3.

Notice that xi ≥ 4, we use the change of variables yi = xi − 4 for i = 1, 2, . . . r − (l1 +

l2 + l3).
The number of cases is equal to the number of non-negative solutions of following
equation.

(x1 − 4) + (x2 − 4) + . . . + (xr−(l1+l2+l3) − 4) = n − (l1 + 2l2 + 3l3) − 4(r − l1 − l2 − l3)

y1 + y2 + . . . + yr−(l1+l2+l3) = n − 4r + 3l1 + 2l3 + l3 (2.9)

The number of sequences having conditions, which are stated above, is equal to the
number of non-negative solutions of the equation 2.9. Consequently, by the Re-
mark 2.1, number of desired solutions is

(
n − 3r + 2l1 + l2 − 1
r − l1 − l2 − l3 − 1

)
.

Selection of l1, l2 and l3 runs gives us a factor of
(

r
l1

)(
r−l1

l2

)(
r−l1−l2

l3

)
. As stated in Theo-

rems 2.2 and 2.4 we multiply the number by 2. Therefore, the number of all binary
sequences of length n with conditions stated above is,

2 ·
(
n − 3r + 2l1 + l2 − 1
r − l1 − l2 − l3 − 1

)
·

(
r
l1

)
·

(
r − l1

l2

)
·

(
r − l1 − l2

l3

)
.

Hence, the probability of a randomly chosen sequence to have these conditions is;

P(rt = r, r1 = l1, r2 = l2, r3 = l3) =
2 ·

(
n−3r+2l1+l2−1
r−l1−l2−l3−1

)
·
(

r
l1

)
·
(

r−l1
l2

)
·
(

r−l1−l2
l3

)
2n .

�

We find the number of sequences having r runs, l1, l2, l3 of which are length one, two
and three, using formula above. In order to use probabilities in tests we need numbers

17

of sequences with length n and l3 runs of length two, without depending ob the other
variables. Corollary 2.7 enables us to compute the probabilities that are needed for
defining the new statistical test.

Corollary 2.7. Let N3(l3) denote the number of runs of sequences with exactly l3 runs of
length three. Clearly, we have maximum

⌊
n
3

⌋
runs of length three. if l3 >

⌊
n
3

⌋
sequence

length exceeds n. Then l3 = 0, 1, . . . ,
⌊

n
3

⌋
,,

N3(l3) =

n∑
l2=0

n∑
l1=0

n∑
r=1

2
(
n − 3r + 2l1 + l2 − 1
r − l1 − l2 − l3 − 1

)
·

(
r
l1

)
·

(
r − l1

l2

)
·

(
r − l1 − l2

l3

)
. (2.10)

Since the number of all sequences of length n is 2n, probabilities follows immediately;

Pr(r3 = l3) =
N3(l3)

2n

Algorithm 3 Calculating Pr(r3 = l3) for l3 = 1, 2, . . . ,
⌊

n
3

⌋
l3 ← 1, l2 ← 1, l1 ← 1, r ← 1, N3(l3)← 1.
while l3 ≤

⌊
n
3

⌋
do

while l2 ≤ n do
while l1 ≤ n do

while r ≤ n do
Pr(r3 = l3)← Pr(r3 = l3) + 2

(
n−3r+2l1+l2−1
r−l1−l2−l3−1

)
.
(

r
l1

)
.
(

r−l1
l2

)
.
(

r−l1−l2
l3

)
r ← r + 1

end while
l1 ← l1 + 1

end while
l2 ← l2 + 1

end while
l3 ← l3 + 1

end while
return N3

Since the number of all sequences of length n is 2n, probabilities follows immediately;
Pr(r3 = l3) =

N3(l3)
2n . And Algorithm 3 enable the calculations for the number of

sequences of length n and l3 runs of length three and hence subinterval probabilities
can be stated in the same way in example 2.2. The subinterval probabilities can be
seen in the Table 2.5

2.3 Summary

In this chapter we give the proofs of our main theorems. First, we give the required
corollaries and algorithms in order to formulate the exact number of sequences with the
given conditions. Hence, probabilities for the conditions on number of runs, number
or runs of one, two and three are stated in a combinatorial way.

18

Table 2.5: Interval and probability values for runs of length three test for 64,128,256
bits blocks.

n=64 n=128 n=256
Interval Prob. Interval Prob. Interval Prob.

Box 1 0-2 0.207825 0-5 0.163209 0-13 0.248734
Box 2 3 0.204319 5-7 0.274500 14-15 0.207164
Box 3 4 0.216732 8 0.154854 16-17 0.213743
Box 4 5-6 0.283245 9-10 0.245059 18-20 0.222144
Box 5 7-21 0.087877 11-42 0.162376 20-85 0.108212

Probabilities for runs of length more than three can be calculated theoretically in the
same way however, time complexities of algorithms to find exact numbers (and proba-
bilities) grow exponentially. Therefore, they are inconvenient to be used in test suites.

In the Chapter 3 we give the descriptions of the new statistical tests and state the
pseudocodes.

19

20

CHAPTER 3

TEST DESCRIPTIONS

The Golomb’s first postulate is about the weight of a sequence and in many test suites
the postulate is implemented with a proper generalization. On the other hand, the
second postulate, which is about runs of a sequence, is mostly implemented only by
using total number of runs regardless of their length. In this chapter, we define three
new statistical test based on the Golomb’s second postulate, which are runs of length
one test, runs of length two test and runs of length three test. The subjects of new run
tests are r1,r2 and r3 as their names state. We use probabilities calculated in previous
chapter.

We use χ2 as reference distribution and compare the measurements with expected val-
ues. In order to to this, we divide number of runs of length one, two and three into
subintervals, whose probabilities are approximately the same. That is, tests use the
subintervals (α0, α1), (α1, α2), . . . , (α4, α5) such that, Pri(αi < R < αi+1) ≈ 0.2. For
example; for a 128-bit sequence, runs of length two are divided into 5 parts as follows;

Pr1(1 ≤ r2 ≤ 12) = 0.167075
Pr2(13 ≤ r2 ≤ 14) = 0.174075
Pr3(15 ≤ r2 ≤ 16) = 0.209794
Pr4(17 ≤ r2 ≤ 19) = 0.266590
Pr5(20 ≤ r2 ≤ 32) = 0.182464

Then we count the number of runs of length i in the m sequences according to the
subintervals and denote the number of sequences in the given subinterval by Fi. Before
the last step we calculate the χ2 by following formula [30].

χ2 =

5∑
i=1

(Fi − m · Pri)2

m · Pri
.

Lastly p-value is calculated according to the given values;

21

p-value = igamc(
5
2
,
χ2

2
).

The next question is; how long sequences should be taken, in order to deducing a
reliable conclusion? In NIST test suite it is suggested that sequences should be about
20.000 bits long. But in new statistical tests we suggests that the tested sequences
should be about m · 25 where m is the block size . This number is a direct consequence
of creating subintervals. We need at least 5 block of sequences in order to get true
values.
Remark 3.1. Derivative of a Sequence

Counting runs of a sequence by using the definition is unpractical. So we use the
derivative of a sequence to count the runs. By the definition all 1’s in the derivative
of a sequence indicates the end of a run. So the number of runs of a sequence can be
defined as weight of its derivative.

Let S = s0, s1 . . . , sn−1 be a binary sequence of length n then, derivative of S ,denoted
by ∆S = ∆s0,∆s1 . . . ,∆sn−1 is defined as follows;

For i = 0, 1, . . . , n − 1

∆si =

{
si + si+1 if i = 0, 1, . . . , n − 2
1 if i = n − 1 .

Also we use a variation of derivative, ∆S ′ of length n+1 by adding 1’s at the beginning
of the sequence ∆S . The variation of derivative is an important part of the newly
defined run tests, since the number of runs of different lengths is determined by this
sequence.
Remark 3.2. Let S = s0, s1 . . . , sn−1 be a binary sequence and derivative of S is denoted
by ∆S = ∆s0,∆s1, . . . ,∆sn−1. Then ∆S ′ = ∆s′0,∆s′1 . . . ,∆s′n is defined as follows;

∆s′i =

{
∆si−1 if i = 1, . . . , n
1 if i = 0 .

Instead of derivative, we use the variation of derivative in order to count the runs at
the beginning. Number of runs of length one in a sequence is indicated by the number
of overlapping occurrences of 11 . In the same way number of runs of length 2 and 3
in a sequence is indicated by the number of overlapping occurrences of 101 and 1001
respectively. More generally we can say that number of runs of length n is indicated
by the overlapping number of occurrences of 1 00 . . . 0︸ ︷︷ ︸

n−1

1.

Example 3.1. Let S=01100010011111001100011101010000 be a binary sequence
length of 32, having 15 runs, 6 runs of length one, 4 runs of length two and 3 runs
of length three. Then;

∆s0 = s0 + s1, ∆s1 = s0 + s2, . . . ,∆s31 = s31 + s32, ∆s32 = 1.

22

∆S = 101001101000010101001001111100001
∆S ′ = 1 101001101000010101001001111100001

• Weight of ∆S is 15 which corresponds to number of runs.

• Number of overlapping occurrences of 11 is 6 which corresponds to number of
runs of length one;

∆S ′ = 11︸︷︷︸
1

0100 11︸︷︷︸
1

0100001010100100 11111︸︷︷︸
4

00001.

• Number of overlapping occurrences of 101 is 4 which corresponds to number of
runs of length two;
∆S ′ = 1 101︸︷︷︸

1

001 101︸︷︷︸
1

0000 10101︸︷︷︸
2

001001111100001.

• Number of overlapping occurrences of 1001 is 3 which corresponds to number
of runs of length three;
∆S ′ = 110 1001︸︷︷︸

1

10100001010 1001001︸ ︷︷ ︸
2

111100001.

Before defining new statistical tests, we give the general idea of the test by following
example;

Example 3.2. Let S be a binary sequence of length 221. Let Fi and Pri are the number
of sequences in the given subinterval and probability of it respectively.

• Step 1: Choose a block size m. In our example we choose m as 128.

• Step 2: Then divide the sequence into m bit sequences. Then we get the set of
sequences as follows, S = {S 1, S 2, . . . , S 214}.

• Step 3: For each S i count the number of runs of length one, two and three. And
increment the corresponding boxes by 1.

S 1 = [0, 1, 0, 0, . . . , 1] −→ rt=65, r1=33, r2=15, r3=8
S 2 = [0, 1, 1, 0, . . . , 0] −→ rt=64, r1=32, r2=17, r3=9
...

S 214 = [0, 1, 0, 0, . . . , 1] −→ rt=65, r1=30, r2=16, r3=8

• Step 4: After that, we get the Table 3.1. Count rows in the table correspond to
the number of sequences whose number of runs of length one, two or three is in
given interval.

• Step 5: Then we calculate the χ2 by the given formula and from χ2 we compute
the p-value.

23

Table 3.1: Number of sequences in the given intervals for number of runs test, runs of
length one test, runs of length two test and runs of length three test.

Number of Runs Test
Interval Count

F1 0-58 3.161
F2 59-61 2.890
F3 62-64 3.351
F4 65-67 3.143
F5 68-128 3.839

Runs of Length One Test
Interval Count

F1 0-27 3.699
F2 28-31 3.744
F3 32-34 3.016
F4 35-38 3.155
F5 39-128 2.770

Runs of Length Two Test
Interval Count

F1 0-12 2.806
F2 13-14 2.838
F3 15-16 3.476
F4 17-19 4.331
F5 20-64 2.933

Runs of Length Three Test
Interval Count

F1 0-5 2.634
F2 5-7 4.447
F3 8 2.532
F4 9-10 4.082
F5 11-42 2.689

χ2 =
∑5

i=1
(Fi−220·Pri)2

220·Pri
and p-value=igamc(5

2 ,
χ2

2).

• Step 6: Finally, we conclude the sequence is random or not:

– Number of runs test: p-value=0.175195
– Number of runs of length one test: p-value=0.357056.
– Number of runs of length two test: p-value=0.462207.
– Number of runs of length three test: p-value=0.627001.

3.1 Number of Runs

Number of runs test, is implemented in a similar approach which is stated in [30].
Test uses the probabilities calculated in the previous chapter and counts the runs of
sequences, according to the subintervals. First, we collect the algorithm’s output and
generate the data set S. If given sequence of length n is a long binary sequence, the
sequence is divided into m bit blocks and get a set of sequences and generate S =

{S 1, S 2, . . . , S 2N } where N =
⌊

n
m

⌋
. In our test m can be 64, 128, 256 or 512. After

generating the data set, the test counts the number of runs of length one in each of
the sequences, according to the subintervals. In order to find the number of runs of
length one, first we find the derivative of the binary sequence ∆S k, then weight of ∆S k
indicates the number of runs in the sequence. After that we apply χ2 of Goodness of Fit
test to r values. In the last step value of χ2 is used to find the p-value. The pseudocode
of the test is given as follows;

24

Algorithm 4 Number of Runs Test(S 1, S 2, . . . , S m)
∆S ′k = s′k,0, s

′
k,1, . . . , s

′
k,n−1

i←− 0, rk,t ←− 0
while i ≤ n do

if s′k,i = 1 then
rk,t ←− rk,t + 1

end if
end while
Apply χ2 of Goodness of Fit test to rt values,
return p-value

3.2 Runs of Length One Test

The subject of first new run test is runs of length one. Test uses the probabilities calcu-
lated in the previous chapter. First, we collect the algorithms output and generate the
data set S. If the given sequence of length n is a long binary sequence, the sequence is
divided into m bit blocks and get a set of sequences and generate S = {S 1, S 2, . . . , S 2N }

where N =
⌊

n
m

⌋
. In our test m can be 64, 128, 256 or 512. After generating the data set,

the test counts the number of runs of length one in each of the sequences, according
to the subintervals. In order to find the number of runs of length one, first we find the
derivative of the binary sequence ∆S k, then we count the overlapping occurrences 11
in ∆S ′k for k = 1, 2, . . . ,m . After that we apply χ2 of Goodness of Fit test to l1 values.
In the last step value of χ2 is used to find the p-value. We propose new run test to
implement the idea of Golomb’s second postulate in statistical randomness test. The
pseudocode of the test is given in the Algorithm 5;

Algorithm 5 Runs of Length One Test(S 1, S 2, . . . , S m)
∆S ′k == ∆s′k,0,∆s′k,1, . . . ,∆s′k,n−1
i←− 0, lk,1 ←− 0
while i ≤ n do

temp = ∆s′k,i · 2
1 + ∆s′k,i+1 · 2

0

if temp = 3 then
lk,1 ←− lk,1 + 1

end if
end while
Apply χ2 of Goodness of Fit test to l1 values,
return p-value

3.3 Runs of Length Two Test

After giving the first new run test, we define runs of length two test. As its name
suggest, the subject of test is runs of length two. Test uses the probabilities calculated
previous chapter. As in the runs of length one test first, we collect the algorithms

25

output and generate the data set S and if given sequence of length n is a long binary
sequence, the sequence is divided into m bit blocks and get a set of sequences and
generate S = {S 1, S 2, . . . , S 2N } where N =

⌊
n
m

⌋
. In our test m can be 64, 128, 256

or 512. After generating the data set test counts the runs of length two in sequences,
according to the subintervals. Like in the previous tests we get the derivative of the
binary sequence ∆S k. In order to find the number of runs of length two, we count
the overlapping occurrences 101 in ∆S ′k . Then we apply χ2 of Goodness of Fit test
to l2 values. Then value of χ2 is used to find the p-value. The second new run test
constitutes another approach to the Golomb’s second postulate. The pseudocode of the
test is given as in the Algorithm 5;

Algorithm 6 Runs of Length Two Test(S 1, S 2, . . . , S m)
∆S ′k = ∆s′k,0,∆s′k,1, . . . ,∆s′k,n−1
i←− 0, lk,2 ←− 0
while i ≤ n − 1 do

temp = ∆s′k,i · 2
2 + ∆s′k,i+1 · 2

1 + ∆s′k,i+2 · 2
0

if temp = 5 then
lk,2 ←− lk,2 + 1

end if
end while
Apply χ2 of Goodness of Fit test to l2 values,
return p-value

3.4 Runs of Length Three Test

The last new run test is runs of length three test, whose subject is number of runs of
length three. Test uses the probabilities calculated in the previous chapter. Data set are
created in a same manner, that is, we collect the algorithm’s output and generate the
data set S, if the sequence is a long sequence we just divide into m bit blocks and then
generate the data set S = {S 1, S 2, . . . , S 2N } where N =

⌊
n
m

⌋
. Then, test counts the runs

of length three in sequences, according to the subintervals. After getting the derivative
of the binary sequence ∆S k, we count the number of runs of length three by just looking
the overlapping occurrences 1001 in in ∆S ′k. Then we apply χ2 of Goodness of Fit test
to l2 values. Then value of χ2 is used to find the p-value. The pseudocode of the last
new run test, runs of length three test, is given as follows;

3.5 Summary

Our aim is to extend the idea of Golomb’s postulates in randomness testing. In order
to do this, we define three new statistical randomness tests in this chapter. First, Basic
definitions and idea for statistical randomness tests are given. New tests are concern
with total number of runs and runs of length one, two and three and they are designed
to detect deviations of number of runs of different lengths from a random sequence.

26

Algorithm 7 Runs of Length Three Test(S 1, S 2, . . . , S m)
∆S ′k = ∆s′k,0,∆s′k,1, . . . ,∆s′k,n−1
i←− 0, lk,3 ←− 0
while i ≤ n − 2 do

temp= ∆s′k,i · 2
3 + ∆s′k,i+1 · 2

2 + ∆s′k,i+2 · 2
1 + ∆s′k,i+3 · 2

0

if temp = 9 then
lk,3 ←− lk,3 + 1

end if
end while
Apply χ2 of Goodness of Fit test to l3 values,
return p-value

In other words, the new tests are not only interested in total number of runs but also
distribution of runs. In the next chapter, we focus on the results of the new statistical
randomness tests.

27

28

CHAPTER 4

APPLICATIONS

In Chapter 4 new statistical randomness tests are implemented new statistical random-
ness tests on some well-known algorithms and binary expansion of the irrational num-
bers e, π and

√
2. The experiments are done in order to show both the performance and

the sensitivity of new statistical tests. Also, some statistical randomness tests, included
in NIST test package, are applied on each data file in order to compare the results and
results are listed in the following tables.

New statistical tests are designed to detect deviations of number of various length
from a random sequence. Therefore we generate some non-random data to show the
efficiency of new statistical randomness tests. Data generation methods are explained
briefly in the following sections.

4.1 Application on AES Finalists Algorithms

As stated in Section 1.1 outputs of block ciphers should give no information in the
absence of input or in other words should be indistinguishable from random mapping
and outputs of block ciphers should be evaluated carefully. Therefore, we choose the
application on block ciphers as our first implementation.

In order to check the validity of tests stated in the previous section, they are applied
to random data with some of tests included in NIST test suite. In the first imple-
mentation we select 5 known algorithms, which are Advanced Encryption Algorithms
finalists, MARS [5], RC6 [22], Rijndael [7], Serpent [4] and Twofish [26]. AES fi-
nalist algorithms are used to generate the 214 pseudorandom sequences of length 128
by encrypting non-correlated data. In the same way we generate 213 pseudorandom
sequences of length 256.

Tests from NIST test suite and new statistical tests are implemented in order to compare
the results. For the tests, which included in NIST test suite, each algorithms’ outputs
are concatenated and a long sequence of length 221 is generated. This method is also
used in evaluation of AES finalists [28]. On the other hand, new statistical randomness
tests take each binary sequences of length 128 and 256 individually. After analyzing
214 and 213 sequences, tests are implemented as they stated in previous chapter. The

29

results can be seen in Table 4.1 and Table 4.2. It can be seen from the results that, if
there is a deviation in number of runs, with the new statistical randomness tests we can
indicate cause of this deviation.

Table 4.1: Test results for the 128-bit outputs of AES finalists.

Statistical Tests Rijndeal Serpent Mars RC6 Twofish
Frequency Test 0.877073 0.385771 0.100285 0.813306 0.667550
Block Freq test 0.722551 0.159257 0.801489 0.475342 0.199609
Run test 0.703085 0.000651 0.003002 0.006542 0.006737
Longest Run of Ones in a Block 0.031990 0.661453 0.229015 0.338937 0.308989
Universal Statistical Test 0.006504 0.048462 0.007328 0.108877 0.023687
Linear Complexity Test 0.308490 0.231002 0.159494 0.662083 0.452449
Serial Test1 0.016532 0.249989 0.748831 0.307892 0.629330
Serial Test2 0.444775 0.504040 0.226215 0.602572 0.923866
Approximate Entropy Test 0.001276 0.070437 0.322856 0.053931 0.220444
Cumulative Sums Test Backward 0.271617 0.627426 0.152360 0.822441 0.838133
Cumulative Sums Test Forward 0.362406 0.501622 0.057094 0.971814 0.877082
Random Excursion Test 0.949243 0.143578 0.455967 0.307333 0.409744
Random Excursions Variant Test 0.816055 0.042998 0.515433 0.160018 0.041629
Number of Runs Test 0.820133 0.030861 0.062100 0.043231 0.060107
Runs of Length One Test 0.535513 0.076538 0.021622 0.055930 0.008255
Runs of Length Two Test 0.095602 0.339466 0.051861 0.057043 0.309454
Runs of Length Three Test 0.359483 0.213636 0.388663 0.318248 0.081348

4.2 Application on Binary Expansions

In the second part of our experiments, we use binary expansion of irrational numbers
e, π and

√
2. The data can be found in the NIST package. As in the first part we

also use some test that are included in NIST test suite. We collect first 219 bits of the
binary expansions and tested. For our tests we divide them into 128 bit blocks, hence
we get 212 sequences each of length 128. By this implementation we try to show the
performance of new statistical tests. The test results can be seen in Table 4.3.

4.3 Applications on Non-Random Data

Following implementation involves a random number generator, whose outputs is be-
tween 0 and 1. From each generated random number, we construct our sequence. We
also use an important definition stated in [12].

Definition 4.1. Let S be a binary sequence of length n and ith element of it is repre-
sented as si, then bias q is defined as follows,

Pr(si = 1) =
1
2

+ q

Pr(si = 0) =
1
2
− q

30

Table 4.2: Test results for the 256-bit outputs of AES finalists.

Statistical Tests Rijndeal Serpent Mars RC6 Twofish
Frequency Test 0.706150 0.564679 0.543406 0.238226 0.986777
Block Freq test 0.026959 0.378371 0.499770 0.389093 0.014817
Run test 0.012096 0.024743 0.015844 0.004712 0.333670
Longest Run of Ones in a Block 0.485537 0.709083 0.241949 0.354484 0.096190
Universal Statistical Test 0.022617 2.022754 0.197799 0.003131 0.011990
Linear Complexity Test 0.736271 0.755534 0.693168 0.162651 0.506699
Serial Test1 0.097033 0.254846 0.236358 0.442786 0.664981
Serial Test2 0.024441 0.524554 0.320521 0.594446 0.602472
Approximate Entropy Test 0.008027 0.056474 0.036288 0.137759 0.351455
Cumulative Sums Test - Backward 0.660527 0.690829 0.800794 0.315770 0.590035
Cumulative Sums Test - Forward 0.358374 0.795147 0.549565 0.275989 0.575370
Random Excursion Test(+1) 0.347825 0.177147 0.335655 0.115141 0.024925
Random Excursions Variant Test(-1) 0.019553 0.680250 0.330268 0.182713 0.546645
Number of runs 0.032656 0.031279 0.067175 0.056588 0.907728
Number of Runs Test 0.820133 0.381061 0.062100 0.043231 0.907728
Runs of Length One Test 0.077425 0.038299 0.069153 0.035235 0.554352
Runs of Length Two Test 0.263405 0.361392 0.030149 0.115706 0.784606
Runs of Length Three Test 0.285480 0.346626 0.861162 0.345888 0.108004

As stated in the Section 1.1 random sequences should have some properties, from the
three basic properties we can say that in a true random sequence we expect bias as 0.
that is, Pr(si = 1) = Pr(si = 0) = 1

2

If we increase the bias and generate the sequence, it is clear that the sequence become
non-random. The Algorithm 8 shows the generation of biased sequence.

Algorithm 8 Generation of Biased Sequence S q = sq
1, s

q
2, . . . , s

q
n

Let R = r0, r1, . . . , rn−1 be the outputs of a random number generator and 0 ≤ ri ≤ 1
for i = 1, 2, . . . , n − 1
i← 0
while i < n do

if ri ≤ 0.5 + q then
si ← 0

else
si ← 1

end if
i← i+1

end while
return S q

Example 4.1. Let R = r0, r1, . . . , rn−1 be a random sequence with 0 ≤ ri ≤ 1 for
i = 1, 2, . . . , n − 1, from this sequence we construct a binary sequence with bias 0.05.
The sequence with bias is constructed as follows,

sq
j =

{
0 if ri ≤ 0.5 + 0.05
1 if ri > 0.5 + 0.05 .

31

Table 4.3: Test results for the binary expansion of e, π and
√

2.

Statistical Test e π
√

2
Frequency Test 0.818668 0.393382 0.820816
Block Freq test 0.069195 0.191721 0.578760
Run test 0.489904 0.409869 0.894467
Longest Run of Ones in a Block 0.328344 0.048248 0.537307
Universal Statistical Test 0.930374 0.915310 0.462562
Linear Complexity Test 0.927809 0.208269 0.396546
Serial Test1 0.924970 0.232328 0.247445
Serial Test2 0.719054 0.221747 0.037551
Approximate Entropy Test 0.707174 0.085060 0.837672
Cumulative Sums Test - Backward 0.373319 0.333600 0.629320
Cumulative Sums Test - Forward 0.242488 0.313745 0.838133
Random Excursion Test 0.892831 0.844143 0.270246
Random Excursions Variant Test 0.388323 0.760966 0.461287
Number of Runs Test 0.225035 0.086202 0.272067
Runs of Length One Test 0.241279 0.097072 0.138194
Runs of Length Two Test 0.092391 0.129520 0.158537
Runs of Length Three Test 0.215721 0.114384 0.076582

Pr(sq
j = 1) = 0.55 and Pr(sq

j = 0) = 0.45

Table 4.4: Test results for non-random data sets.

Statistical Test q = 0.0 q = 0.01 q = 0.03
Frequency Test 0.375269 0.040143 0.000475
Block Frequency test 0.760739 0.802281 0.777309
Run test 0.794303 0.903035 0.859454
Longest Run of Ones in a Block 0.562918 0.257811 0.093295
NonOverlapping template test(M=9, B=000000001) 0.436359 0.377016 0.328182
Overlapping template test(M=9) 0.746164 0.642254 0.714769
Linear Complexity Test 0.693577 0.703492 0.670893
Serial Test1 0.680524 0.681398 0.549883
Serial Test2 0.538842 0.746869 0.615192
Approximate Entropy Test 0.372373 0.239482 0.308904
Cumulative Sums Test- Backward 0.372373 0.032272 0.000333
Cumulative Sums Test - Forward 0.429406 0.073315 0.000857
Number of Runs Test 0.912964 0.893689 0.941435
Runs of Length One Test 0.818485 0.832025 0.809327
Runs of Length Two Test 0.944299 0.790180 0.852354
Runs of Length Three Test 0.574298 0.782597 0.891987

In this implementation we create data sets with different biases with above construction
and therefore we observe the behavior of tests with respect to the randomness of a
sequence. The test results can be seen in Table 4.4.

32

4.4 Summary

In this chapter new statistical randomness tests are implemented on some well-known
algorithms and binary expansion on three irrational numbers. Experiments shows the
performance and sensitivity of the tests. Moreover, we implement other tests, which
are also included in NIST test suite, on the same data in order to compare the results.
The results show that, the cause of a deviation in number of runs can be detected only
by new statistical randomness tests.

We generate some sequences with bias from a pseudorandom sequence to show the
sensitivity of the tests. Also implementation results show the efficiency of the tests.
New tests can detect the deviations in distributions of runs while other tests cannot
detect.

Last implementation results show the efficiency of the new tests and detecting the
deviations in distributions of runs while other tests cannot detect.

33

34

CHAPTER 5

CONCLUSION

Random numbers and random sequences are essential in many different areas. In cryp-
tography, need for random values emerge in almost all protocols and most importantly
in key generation. Therefore, randomness is one of the most important issue for cryp-
tographic algorithms. In fact, using weak random values enable us an adversary to
break the whole system. For all applications, randomness and size of used values is
important issues. Accordingly, the probability of any chosen quantity should be so
small that, an adversary shouldn’t get any specific information. Thus, sequences used
in cryptographic algorithms should be pseudorandom and should have good statisti-
cal properties. Statistical tests are designed to detect deficiencies that a generator can
have. Therefore, statistical randomness tests are stated as an essential part of evaluating
security of cryptographic algorithms.

In this thesis, we propose three new statistical tests based the Golomb’s second pos-
tulate. Finding the real probabilities related to number of runs of length one, two and
three enable us to compare the observed values accordingly. New run tests can be used
in test suites to test security of algorithms so that Golomb’s second postulate is imple-
mented in a proper way. Moreover, these tests can be used as an evaluation tool for
short sequences such as, outputs of block ciphers and hash functions. These tests can
detect the deviation in distribution runs which cannot be detected by other tests. Also,
we use them on some standard algorithms that behave pseudorandom number genera-
tor and random sequences such as binary expansion of e, π and

√
2. Implementations

shows the consistency of new statistical test with other well-known statistical tests. It
is shown that in order to detect some deviation from randomness, new statistical tests
are more efficient than other statistical tests.

The contribution of the thesis and future works can be stated as follows.

• We have pointed out the importance of randomness in cryptography, and we have
focused on statistical test suites and Golomb’s postulates.

• According to the Golomb’s second postulate we propose three new statistical
randomness tests.

• We develop a notation to illustrate runs of a sequence. With the notation and
combinatorial formulas, exact probabilities are calculated. Calculated probabil-
ities have some independence. Therefore, the corollaries and the algorithms that

35

are needed to find the desired probabilities are given. These probabilities can
be summarized as follows; for an n-bit binary sequence Pr(rt = r), Pr(r1 = l1),
Pr(r2 = l2) and Pr(r3 = l3).

• Probabilities associated to total number of runs, runs of length one, two and three
probabilities are divided into five intervals, in such a manner that, each interval
has nearly equal probabilities. Each interval called as a subintervals.

• According to the subinterval probabilities the new testes are defined. New test
are called as number of runs test, runs of length one test, runs of length two test
and runs of length three test.

• We give exact probabilities for different block length which are 64, 128, 256 and
512. Therefore, the new tests can be applied on short sequences and hence can
be used for evaluating block ciphers and hash functions.

• Implementation on some well-known algorithms and binary expansion on irra-
tional number are done in order to check the validity of the new tests. Also, we
give the implementation of other tests on the same data in order to compare the
results.

• We propose a new method for generating a biased sequence and using this
method we generate non-random sequences. We show the sensitivity of the new
tests.

• We developed a software in order to do the implementation. This software in-
cludes the test in NIST package and new statistical randomness tests. The source
code and executable file can be downloaded from: https://www.dropbox.
com/s/8ggjndn7tzc8kdh/SRT_GUI.rar

• As a future work, correlations between new statistical tests and also with other
statistical tests can be examined.

36

https://www.dropbox.com/s/8ggjndn7tzc8kdh/SRT_GUI.rar
https://www.dropbox.com/s/8ggjndn7tzc8kdh/SRT_GUI.rar

REFERENCES

[1] D. M. M. Alani, Testing randomness in ciphertext of block-ciphers using diehard
tests, International Journal of Computer Science and Network Security, 10(4),
2010.

[2] P. M. Alcover, A. Guillamon, and M. d. C. Ruiz, New randomness test for bit
sequences., Informatica, 24(3), pp. 339–356, 2013.

[3] L. E. Bassham, III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B.
Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks, N. A. Heckert, J. F.
Dray, and S. Vo, Sp 800-22 rev. 1a. a statistical test suite for random and pseu-
dorandom number generators for cryptographic applications, Technical report,
NIST, Gaithersburg, MD, United States, 2010.

[4] E. Biham, R. J. Anderson, and L. R. Knudsen, Serpent: A new block cipher pro-
posal, in Fast Software Encryption, 5th International Workshop, FSE ’98, Paris,
France, March 23-25, 1998, Proceedings, volume 1372 of Lecture Notes in Com-
puter Science, pp. 222–238, Springer, 1998.

[5] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla,
S. M. M. Jr, L. O’Connor, M. Peyravian, J. Luke, O. M. Peyravian, D. Stafford,
and N. Zunic, Mars - a candidate cipher for AES, NIST AES Proposal, 1999.

[6] W. Caelli, Crypt x package documentation, Technical report, Information Secu-
rity Research, 1992.

[7] J. Daemen and V. Rijmen, The Design of Rijndael, Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2002, ISBN 3540425802.

[8] S. W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA,
USA, 1982, ISBN 978-0894120480.

[9] K. Hamano and T. Kaneko, Correction of overlapping template matching test
included in nist randomness test suite, IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., E90-A(9), pp. 1788–1792, 2007, ISSN 0916-8508.

[10] K. Hamano and H. Yamamoto, A randomness test based on t-codes, in Informa-
tion Theory and Its Applications, 2008. ISITA 2008. International Symposium on,
pp. 1–6, Dec 2008.

[11] J. Hernandez, J. Sierra, and A. Seznec, The sac test: A new randomness test,
with some applications to prng analysis, in A. Laganá, M. Gavrilova, V. Kumar,
Y. Mun, C. Tan, and O. Gervasi, editors, Computational Science and Its Appli-
cations – ICCSA 2004, volume 3043 of Lecture Notes in Computer Science, pp.
960–967, Springer Berlin Heidelberg, 2004, ISBN 978-3-540-22054-1.

37

[12] H. M. Heys, A tutorial on linear and differential cryptanalysis, Cryptologia,
26(3), pp. 189–221, July 2002, ISSN 0161-1194.

[13] V. Katos, A randomness test for block ciphers., Applied Mathematics and Com-
putation, 162, pp. 29–35, 2005.

[14] A. Kerckhoffs, La cryptographie militaire, Journal des Sciences Militaires, pp.
161–191, 1883.

[15] S.-J. Kim, K. Umeno, and A. Hasegawa, Corrections of the nist statistical test
suite for randomness., IACR Cryptology ePrint Archive, 2004, p. 18, 2004.

[16] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997, ISBN 0-201-89684-2.

[17] A. N. Kolmogorov, Three approaches to the quantitative definition of informa-
tion, International Journal of Computer Mathematics, 2(1-4), pp. 157–168, 1968.

[18] P. L’Ecuyer and R. Simard, Testu01: A c library for empirical testing of random
number generators, ACM Trans. Math. Softw., 33(4), August 2007, ISSN 0098-
3500.

[19] G. Marsaglia, The marsaglia random number CDROM including the diehard bat-
tery of tests of randomness, http://www.stat.fsu.edu/pub/diehard/, 1995.

[20] U. Maurer, A universal statistical test for random bit generators, Journal of cryp-
tology, 5, pp. 89–105, 1992.

[21] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied
Cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996, ISBN
0849385237.

[22] R. L. Rivest, M. J. B. Robshaw, Y. Yin, and R. Sidney, The rc6 block cipher,
1998.

[23] S. Ross, A First course in probability, Prentice Hall, 6. ed edition, 2002, ISBN
0131218026.

[24] A. Ruhkin, Testing randomness: A suite of statistical procedures, Theory of Prob-
ability & Its Applications, 45(1), pp. 111–132, 2001.

[25] B. Ryabko, V. Stognienko, and Y. Shokin, A new test for randomness and its
application to some cryptographic problems, Journal of Statistical Planning and
Inference, 123(2), pp. 365 – 376, 2004, ISSN 0378-3758.

[26] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, Twofish:
A 128-bit block cipher, in First Advanced Encryption Standard (AES) Confer-
ence, 1998.

[27] M. Sönmez Turan, On statistical analysis of synchronous stream ciphers, PhD
Thesis Supervisor Assoc. Prof. Dr. Ali Doğanaksoy, Ankara : METU, 2008.

38

[28] J. Soto and L. Bassham, Randomness testing of the advanced encryption stan-
dard finalist candidates, in NIST IR 6483, National Institute of Standards and
Technology, 1999.

[29] F. Sulak, Statistical analysis of block ciphers and hash functions, PhD Thesis
Supervisor Assoc. Prof. Dr. Ali Doğanaksoy, Ankara : METU, 2011.

[30] F. Sulak, A. Doğanaksoy, B. Ege, and O. Koçak, Evaluation of randomness test
results for short sequences, in Proceedings of the 6th International Conference
on Sequences and Their Applications, SETA’10, pp. 309–319, Springer-Verlag,
Berlin, Heidelberg, 2010.

39

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	Random Sequences and Random Numbers
	Randomness
	Testing
	Test Suites
	Golomb’s Randomness Postulates
	Motivation

	RUN TESTS
	Brief Overview of Run Tests
	Computation of Probabilities
	Number of Runs
	Number of Runs of Length One
	Number of Runs of Length Two
	Number of Runs of Length Three

	Summary

	TEST DESCRIPTIONS
	Number of Runs
	Runs of Length One Test
	Runs of Length Two Test
	Runs of Length Three Test
	Summary

	APPLICATIONS
	Application on AES Finalists Algorithms
	Application on Binary Expansions
	Applications on Non-Random Data
	Summary

	CONCLUSION
	REFERENCES

