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ABSTRACT 

 

DESIGN, CONSTRUCTION AND CONTROL OF AN ELECTRO-

HYDRAULIC LOAD SIMULATOR FOR TESTING HYDRAULIC DRIVES 

 

 

Akova, Hayrettin Ulaş 

M.S., Department of Mechanical Engineering 

Supervisor      : Prof. Dr. Bülent E. Platin 

Co-Supervisor: Prof. Dr. Tuna Balkan 

 

September 2014, 171 pages 

 

 

In this thesis, an electro-hydraulic load simulator is designed, constructed, and 

controlled in order to carry out the stability and performance tests of newly 

developed hydraulic drive and control systems. It is an experimental loading system 

capable of applying the desired test loads onto the actuator of the hydraulic drive 

system under test in a laboratory environment. The primary aim of this study is to 

support the research activities related to the development of hydraulic drive and 

control systems so as to reduce their development period and to save the funds. 

A fluid power control system with a valve controlled linear actuator is designed as 

the load simulator. The selection of the hydraulic components of the system is 

presented in detail. A real-time control system is employed for controlling the 

electro-hydraulic load simulator. A test bench is designed and constructed in order to 

accommodate the actuators of the electro-hydraulic load simulator and the hydraulic 

drive system under test. 
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A mathematical model of the system is developed and a simulation model is 

constructed by using MATLAB®/Simulink®. The model is validated by the results of 

open-loop tests. A combined feedforward and feedback force controller and a 

disturbance feedforward controller are designed by linearizing the validated model of 

the system around a critical operating point. The actuator position of the hydraulic 

drive system under test is measured with an incremental encoder and its velocity is 

estimated by a kinematic Kalman filter to be used in the disturbance feedforward 

controller. The controllers and the kinematic Kalman filter are implemented into a 

real-time control computer. 

The dynamic performance of the electro-hydraulic simulator developed is evaluated 

by performing a series of real time experiments and comparing their results with the 

model responses. In addition, the loading limits of the simulator are clearly 

demonstrated by both experimental tests and simulation results. 

 

Keywords: Electro-Hydraulic Load Simulator, Fluid Power Control System, 

Modeling and Validation, Force Control, Combined Feedforward and Feedback 

Control, Kinematic Kalman Filtering  
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ÖZ 

 

HİDROLİK SÜRÜCÜ SİSTEMLERİNİN TESTLERİ İÇİN 

ELEKRO-HİDROLİK YÜK SİMÜLATÖRÜ TASARIMI, ÜRETİMİ VE 

KONTROLÜ  

 

 

Akova, Hayrettin Ulaş 

 Yüksek Lisans, Makina Mühendisliği Bölümü 

 Tez Yöneticisi         : Prof. Dr. Bülent E. Platin 

 Ortak Tez Yöneticisi: Prof. Dr. Tuna Balkan 

 

Eylül 2014, 171 sayfa 

 

 

Bu tez çalışmasında, yeni geliştirilmekte olan hidrolik sürücü ve kontrol 

sistemlerinin kararlılık ve başarım testlerinin gerçekleştirilmesi için bir elektro-

hidrolik yük simülatörü tasarlanmış, üretilmiş ve kontrolü gerçekleştirilmiştir. Bu 

yük simülatörünün, geliştirilmekte olan hidrolik sürücü sistemlerinin test edilmesi 

amacıyla belirlenen kuvvetleri laboratuvar ortamında uygulayabilen deneysel bir 

yükleme sistemi olarak kullanılması hedeflenmiştir. 

Yük simülatörü olarak valf kontrollü doğrusal bir eyleyiciye sahip bir akışkan gücü 

kontrol sistemi tasarlanmıştır. Sistemi oluşturan hidrolik ekipmanların seçimi 

ayrıntılı olarak verilmiştir. Elektro-hidrolik yük simülatörünün kontrolünü 

gerçekleştirmek için gerçek zamanlı bir kontrol sistemi kurulmuştur. Yük 

simülatörünün ve test edilmekte olan hidrolik sürücü sisteminin eyleyicilerinin uygun 

bir şekilde birbirlerine bağlanabilmesi için bir test düzeneği tasarlanıp üretilmiştir. 
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Sistemin matematiksel modeli kurularak MATLAB®/Simulink® ortamında bir 

benzetim modeli oluşturulmuştur. Bu model açık çevrim test sonuçları ile 

doğrulanmıştır. Model kritik bir çalışma noktası etrafında doğrusallaştırılarak bir 

birleşik ileri ve geri besleme kuvvet kontrolcüsü ve test edilecek sistemin 

hareketinden kaynaklı bozucu etkiyi giderici bir ileri besleme hız kontrolcüsü 

tasarlanmıştır. Test edilmekte olan sistemin eyleyici konumu doğrusal bir cetvel ile 

ölçülmekte, hızı ise kinematik Kalman filtresi kullanılarak kestirilmektedir. 

Kontrolcüler ve kinematik Kalman filtresi bir gerçek-zamanlı kontrol bilgisayarında 

gerçekleştirilmiştir. 

Elektro-hidrolik yük simülatörünün dinamik başarımı yapılan testler ile 

değerlendirilmiş ve model yanıtları ile karşılaştırılmıştır. Ayrıca simülatörün 

yükleme kapasitesi deneysel sonuçlar ve yapılan simülasyonlar ile açık bir şekilde 

gösterilmiştir. 

 

Anahtar Kelimeler: Elektro-Hidrolik Yük Simülatörü, Akışkan Gücü Kontrol 

Sistemi, Modelleme ve Doğrulama, Kuvvet Kontrolü, Birleşik İleri ve Geri 

Beslemeli Kontrol, Kinematik Kalman Filtre  
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model based design (MBD) in designing mechatronic systems in many industrial, 

aerospace, and automotive applications. The modeling and the model analysis of the 

complete system under development constitute the basis of the design approach 

(Figure 1-1a). Generally, a parametric system model is regarded as a useful model 

since it allows the improvement of the model in each design cycle (Figure 1-1b). 

However, it was also stated that the accuracy obtained depends on the accordance 

between the real system and the developed models. Hence, the verification of the 

desired characteristics (properties ensurance) is highly essential as it can also be 

inferred from Figure 1-1a. 

 

Figure 1-1 a) A mechatronic design cycle, b) recurrent design cycles [5] 

While modeling dynamic systems, generally a number of simplifying assumptions 

are made. Sometimes, some fast dynamics of systems are intentionally neglected, or 

some important dynamics of systems may be missed unintentionally. In addition, 

some model parameters are only estimated as their nominal values. Often, some 

model parameters are assumed to be constant, even though they are actually time 

varying. Therefore, although modeling and simulation are highly important design 

tools, it should also be noted that testing models with real data compensates for the 

mentioned drawbacks and is also an important part of the whole product 

development process for verification and validation purposes. 
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A schematic view of an electro-hydraulic load simulator test bench, which is used to 

simulate the loads affecting the rudder of an aircraft [11], is given in Figure 1-3 so as 

to explain the main components of a load simulator test bench. 

 

 

Figure 1-3 An electro-hydraulic load simulator [11] 

A load simulator test bench consists of two main parts; namely, the test 

actuator/system under test and the load simulator. In Figure 1-3, the actuator under 

test, whose performance is evaluated in laboratory conditions, is labeled as (1) 

whereas the load simulator, which is responsible for creating the desired loads on the 

actuator under test, is labeled by (3). Moreover, a force feedback is obtained through 

a force transducer (5). In addition, two systems are connected to each other through a 

compliant spring arrangement, which is generally called as a load system. The 

reference loading for the load simulator can either be a set of random or predefined 

data [12] or the result of a dynamic simulation in real time, determined by using the 

motion data of the test actuator via the position transducer (2). The latter case is 

known as HIL (Hardware-in-the-loop) simulation [13]. In Figure 1-3, the element (4) 

represents the real-time hardware in which the reference load generator and the 

controller of the load simulator is implemented. The reference load generator and the 

controller are not necessarily be implemented in the same real-time hardware. 
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The advantages that can be expected from a load simulator test bench to test 

hydraulic drive systems are summarized as follows [14, 15]. 

 The effects of some hard-to-model characteristics of the system, such as 

noise, hysteresis, backlash, changes in fluid properties (e.g., bulk modulus, 

viscosity), on the system performance can be evaluated. 

 The performance of control systems can be observed without requiring the 

complete system to be tested. 

 The system can be tested under extreme conditions in laboratory, such as, 

high temperature, high loading, shock, etc. 

 The system can be tested in the presence of different fault and failure 

conditions. 

 It is time and cost efficient since it does not require the complete system to be 

tested. 

With these advantages, load simulators are used in many application areas as 

experimental testing benches, e.g., seismic testing of civil engineering structures, 

health monitoring and fault testing of EMAs, ground testing of actuators of control 

surfaces of aircrafts, and development of energy efficient electro-hydrostatic (EHAs) 

drive systems. 

Currently, a number of research studies on the development of new energy efficient 

hydraulic drive systems and their control algorithms are carried out in the Middle 

East Technical University - Automatic Control Laboratory [16, 17, 18, 19]. In one of 

these studies, which focuses on a variable speed pump controlled hydraulic drive 

system [19], a need for a load simulator is arisen so that its stability and performance 

tests can be carried out in a fast and economic way. Since the actuator of the system 

is mounted on the test bench, rather than the actual machine, any modification made 

on the system can be easily evaluated. The load simulator can also be used for testing 

different drive systems within its limits. Hence, through this load simulator, it is 
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expected to provide a controlled laboratory environment for the testing of new 

hydraulic circuit solutions and their control algorithms. 

In addition to the experimental test systems, force control systems are encountered in 

many other applications, such as injection molding machines [20], active suspension 

systems [21, 22], robotic applications [23, 24], haptic simulations [25], etc. Hence, 

the development of some new force control strategies for these applications is a 

promising research area. A load simulator test bench can easily serve as a platform 

on which the research activities related to force control techniques can be carried out.  

 

1.2 Literature Survey 

In this section, two important points related to the electro-hydraulic force control 

applications are explained. These are the added compliance (low stiffness spring) 

between the actuators of the load simulator and the system under test and the use of 

velocity feedforward compensation to eliminate the strong disturbance caused by the 

motion of the position controlled actuator to be tested. Some examples of the load 

simulators used for testing of different servo systems are also presented by 

highlighting the points regarding the details of their drive systems, the applied 

control methods, and the mechanical structures of the test benches. 

1.2.1 Issues Related to Electro-Hydraulic Force Control 

Hydraulic control systems are used in many motion control applications such as 

position control or velocity control of the hydraulic actuators. They are considered to 

be good velocity sources even in the presence of large disturbances thanks to their 

high mechanical stiffness [26]. However, many researchers underlined that a 

mechanically compliant or low impedance actuator is required for a good force 

control [27, 28, 29]. 

Robinson [30] studied mathematically the effects of using a compliant spring in 

series between a closed-loop force controlled actuator and the load. Such an actuator 
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is called as a series elastic actuator. In Robinson’s study, a simple, power domain 

independent model was initially considered to derive important conclusions and then 

the same analysis were performed for both hydraulic and electric actuators, 

separately. Due to its simplicity, this model and the derived results are presented 

here. The model consists of an ideal velocity source with a DC gain of ܭ௠, a spring 

with stiffness ݇௦, and a simple proportional controller with gain ܭ. The block 

diagram representation of this simple model is given in Figure 1-4. The controlled 

output of the system is ݂ whereas the reference and disturbance inputs are denoted by 

௥݂௘௙ and ݔௗ, respectively.  

 

 

Figure 1-4 Simple model of a force controlled actuator and its block diagram [30] 

From the block diagram in Figure 1-4, the input-output relationship of the simple 

force controlled actuator is determined as 
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ሻݏሺܨ  ൌ
݇௦ܭܭ௠

ݏ ൅ ݇௦ܭܭ௠
ሻݏ௥௘௙ሺܨ െ

݇௦ݏ
ݏ ൅ ݇௦ܭܭ௠

ܺௗሺݏሻ (1.1) 

which can be utilized to investigate the closed-loop bandwidth and the output 

impedance of the system.  

The following closed-loop transfer function is obtained between ܨ and ܨ௥௘௙ by 

neglecting the motion of the disturbance (letting ܺௗ ൌ 0) 

ሻݏ௖௟ሺܩ  ൌ
ሻݏሺܨ
ሻݏ௥௘௙ሺܨ

ൌ
݇௦ܭܭ௠

ݏ ൅ ݇௦ܭܭ௠
 (1.2) 

It is seen from this first order transfer function that the actuator bandwidth is directly 

related to the spring stiffness and controller gain. These two system parameters 

contribute to the corner frequency of this first order transfer function ߱௖ as follows: 

 ߱௖ ൌ ݇௦ܭܭ௠ (1.3) 

From Equation (1.3), it is concluded that any decrease in the spring stiffness can be 

compensated by increasing the controller gain proportionally without deteriorating 

the bandwidth of the closed-loop system, assuming that the actuator operates within 

saturation limits of the control valve. One obvious advantage of decreasing the 

stiffness of the spring and increasing the controller gain is observed in the output 

impedance ܼ of the actuator, which is obtained by letting ܨ௥௘௙ ൌ 0 in Equation (1.1) 

as 

 ܼሺݏሻ ൌ
Fሺݏሻ
ܺௗሺݏሻ

ൌ
െ݇௦ݏ

ݏ ൅ ݇௦ܭܭ௠
 (1.4) 

At low frequencies, the effect of the disturbance is minimum, which is highly 

desired. However, as the frequency increases, the output impedance approaches to 

the value of the stiffness of the spring. Therefore, decreasing the spring stiffness 

decreases the output impedance. In addition, the allowed increase in the controller 
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It is clearly seen from Equation (1.5) that increasing the control gain by using a 

compliant spring attenuates the motion errors. Hence, the author concluded that high 

control gain provides a smooth force output. 

This point was also considered by Pratt et al. [29]. They suggested the use of a 

compliant element between the load and the actuator in force-controlled robots in 

unstructured environments despite the common feeling that stiffer is better [29]. It 

was stated for a stiff connection that any small relative movement between the 

actuator and the load causes high force errors in the control loop and high controller 

gains leads to stability problems. Therefore, one is restricted to use a conservative 

controller gain. It was concluded that the effect of friction and inertia, in this way, 

cannot be compensated completely in the closed-loop system. Hence, a practical 

control law cannot be determined. 

Another obvious advantage of using a compliant arrangement between the actuator 

and the load is the reduction in the shock loadings, which prevents the damage of the 

components of the test bench. 

Besides the advantages stated above, using a serial compliance between the force 

controlled actuator and the load actuator results in a considerable bandwidth 

limitation at around limit forces of the actuator. A low stiffness spring requires large 

deformations to create large forces meaning that the actuator has to operate faster. 

However, an actuator can operate only within certain velocity and force limits. In 

Figure 1-6, a typical saturation curve for an actuator is given and it is represented by  

௣ݒ  ൑ ௦ܸ௔௧ ൬1 െ
݂
௦௔௧ܨ

൰  (1.6) 

where ௦ܸ௔௧ and ܨ௦௔௧ are the no load velocity and the stall force of the actuator, 

respectively. 



11 

 

 

Figure 1-6 Saturation curve of the actuator [30] 

If the actuator operates within its limits, the closed-loop bandwidth of the actuator is 

not affected by the compliance of the spring element. Nevertheless, for larger forces 

the closed-loop bandwidth of the system is damaged by the saturation limit of the 

actuator. Robinson [30] showed this force bandwidth constraint by performing an 

analysis of the load, which is a spring of stiffness ݇௦, as follows. 

 ݂ሺݐሻ ൌ ௠௔௫ሺ߱ሻ݁௜ఠ௧ܨ ൌ ݇௦ݔ௣ሺݐሻ (1.7)

where ߱ is the frequency of the loading,  ܨ௠௔௫ is the maximum force that can be 

applied at a given ߱, and ݔ௣ is the position of the load actuator. 

Taking the derivative of Equation (1.7), the velocity of the load actuator ݒ௣ is 

determined. 

௣ݒ  ൌ
1
݇௦
௠௔௫݅߱݁௜ఠ௧ (1.8)ܨ

By inserting Equations (1.7) and (1.8) into Equation (1.6) and getting the magnitude 

of the resulting expression, the following inequality is obtained: 

 

௠௔௫ሺ߱ሻܨ

௦௔௧ܨ
൑

݇௦
௦ܸ௔௧
௦௔௧ܨ

ඨ߱ଶ ൅ ቀ݇௦
௦ܸ௔௧
௦௔௧ܨ

ቁ
ଶ
 

(1.9)
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Because of the aforementioned difficulties encountered in the rigid mode, Ahn and 

Dinh considered different arrangements of two compression springs with various 

spring constants as the possible design solutions. The arrangement of the springs in 

Figure 1-8b was named as the serial spring mode. With this configuration, it was 

also aimed to have different environments in extension and retraction of the load 

actuator so that the performance of the controllers can be better analyzed. To 

illustrate this, the spring A is compressed while the load actuator is retracting 

whereas the spring B is at its free length. However, the authors preferred the 

configuration in Figure 1-8c named as parallel spring mode since it is more compact 

than the previous one while having the same functioning. The final design that they 

were used in their study is shown in Figure 1-8d. 

Another commonly discussed issue related to the electro-hydraulic load simulation is 

the velocity feedforward compensation, which was extensively used by many 

researchers so as to improve the disturbance rejection performance of force 

controlled electro-hydraulic actuators [7, 32, 33, 34, 35]. Jacazio and Balossini [36] 

proposed the load velocity feedforward compensation scheme for the control of 

loading actuators of an aerospace test rig.  In that study, although the performance of 

the test system was shown with test results, the improvement achieved by the 

feedforward compensation scheme was not clearly indicated. 

A successful application of the velocity feedforward compensation scheme was 

performed by Plummer [33]. A combined force control strategy, consisting of a 

proportional force feedback controller ܩ௣ and a velocity feedforward compensator 

for the load motion 1/ܳሺݏሻ, is proposed in that study as shown in Figure 1-9. The 

method was applied in a Formula One test bench. It is required to simulate the 

aerodynamic down loads while, at the same time, the car is being tested on a four 

poster rig. The feedforward compensator was used to match the motions of the load 

and the actuator without resulting in large force errors. In that study, the velocity of 

the load was determined from the motion data obtained by an accelerometer attached 

to the test structure as seen in Figure 1-9. This signal was then filtered with an 
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inverse dynamic model of the hydraulic actuator. The author also considered the 

effect of the high frequency noise available in the velocity signal. Hence, the 

disturbance feedforward controller transfer function was designed to attenuate the 

high frequency noise. Finally, a proportional force feedback controller was designed 

by assuming a disturbance-free plant transfer function. The improvement in 

disturbance rejection achieved with the addition of the feedforward compensator can 

be seen in Figure 1-10. In that study, a compliant element between the actuator and 

the load is also included by emphasizing its requirement to have a certain level of 

mechanical isolation. Therefore, the load dynamics on the actuator was reduced to a 

single spring independent of the dynamics of the actual load. As a result, the method 

can be used to test different loads with different dynamics without requiring the 

model of the load and the re-adjustment of the controller parameters. 

 

 

Figure 1-9 Control block diagram of the electro-hydraulic load simulator [33] 
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controlled flight actuator was eliminated via a displacement compensator. 

Experiments were carried out with and without the disturbance compensator. The 

disturbance rejection performance of the compensation was evaluated by applying a 

step command of 5	݉݉ to the actuator under test. For this disturbance input, the 

maximum observed force error was about 0.6	݇ܰ and about 0.3	݇ܰ without and with 

displacement compensator, respectively. The authors also stated a 30	% 

improvement in the settling time according to 2	% criteria. Hence, the results showed 

that the force tracking performance of the load simulator was considerably improved 

with the addition of the velocity compensation.  

Zongxia et al. [38] studied the hydraulic torque control problem on a load simulator 

test bench, whose schematic view is given in Figure 1-14. Two hydraulic motors 

were used as the load and test actuators, and they were controlled by two servo-

valves. The test actuator was controlled to track a reference position input and an 

angular transducer was available for the feedback as seen in the figure. On the other 

hand, the closed-loop torque controlled load actuator was expected to track a 

reference torque command with a feedback from a torque transducer. The details 

about the mechanical structure/connections of the test bench are not available in the 

study. However, authors discussed the heavy disturbance of the test actuator on the 

performance of the load actuator in detail. Although they pointed the velocity 

feedforward compensation scheme as a suitable method to this problem, they 

proposed a more direct approach, named as velocity synchronizing control, which 

made use of the control signal to the servo-valve of the test actuator rather than its 

velocity. In that way, it was aimed to eliminate phase lag caused by the feedforward 

compensator, which was an inverse dynamic model of the hydraulic system. A 

detailed non-linear mathematical model of the load simulator was obtained and the 

improvement achieved with the proposed method was shown with the experimental 

results. To illustrate, for a 10	ݖܪ sinusoidal disturbance input, the torque error 

decreased from 75	ܰ݉ to 5	ܰ݉ with the addition of the compensator. The 
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load simulator was named as the force generator, whereas the position controlled 

system was named as the disturbance generator since the objective was to study the 

force control problem for an energy efficient hydraulic system. Different spring 

arrangements, named as spring load system, were discussed in that study to provide a 

certain degree of compliance between the actuator under test and the load simulator. 

The inner and outer springs had the spring constants of 720	ܰ/݉݉ and 519	ܰ/݉݉, 

subject to a maximum force of 8.6	݇ܰ and 4.7	݇ܰ, respectively. A force transducer 

with a capacity of 50	݇ܰ was used to provide the required feedback for the force 

control. In addition, a PC (Personal Computer) was utilized as the control computer 

equipped with the required data acquisition and control cards. A two degree-of-

freedom robust adaptive control strategy was proposed with a feedback controller 

and a pre-filter and its results were compared with those obtained when a classical 

PID controller was used. The proposed method was particularly effective in terms of 

steady state performance, but its transient performance was only comparable with 

that of the PID controller. The test bench was highly flexible since it allowed the 

development of different control strategies for the developed hydraulic circuit 

solutions. 

 

1.3 Objective of the Thesis 

The main objective of this thesis is to develop an electro-hydraulic load simulator to 

carry out the performance and stability tests of newly developed hydraulic drives and 

control systems in controlled laboratory conditions. With the help of this load 

simulator, it is aimed to eliminate the strong need for an actual plant to be readily 

built or available so as to evaluate the performance and stability of these systems. 

The design and control of the hydraulic load simulator are to be performed to satisfy 

the given requirements. The resulting system should be tested to indicate its actual 

limits clearly. A simulation model will also be developed as an off-line tool available 

to the user to foresee the results before performing the experiments on the test bench. 
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1.4 Thesis Outline 

In this chapter, load simulators are introduced as experimental loading units used in 

actuator or structural testing systems. The main components of these test benches are 

explained and the advantages of using a load simulator test bench in the development 

of new systems are discussed. In literature review, two commonly discussed issues in 

the field of electro-hydraulic force control, namely the use added compliance 

between the actuators of the load simulator and the actuator under test, and the use of 

velocity feedforward controller are considered. In addition, some selected examples 

of load simulators from the literature are investigated in terms of their drive systems, 

control topologies, and the mechanical structures of the test stands. Finally, the 

objective of this thesis study is presented. 

In Chapter 2, the development of an electro-hydraulic load simulator is presented. 

The sizes of the hydraulic components and the stiffness of the spring load system are 

determined according to the design specifications. The feedback transducers and the 

real-time target machine, which is used as DAQ system and the control computer of 

the load simulator, are introduced. The construction of the test bench to 

accommodate the actuators of the hydraulic load simulator and the drive system 

under test are presented. The final view of the constructed test bench together with 

the load simulator and the hydraulic drive system under test are shown and the main 

components of the test bench are labeled on its photographs. 

In Chapter 3, a non-linear mathematical model of the electro-hydraulic load 

simulator is developed and a simulation model is constructed by using 

MATLAB®/Simulink®. Most model parameters are obtained from the technical 

drawings and catalogs of the components. The friction characteristic of the hydraulic 

actuator is determined by some performing open-loop experiments. The validity of 

the model with these parameters is also shown by performing some open-loop 

experiments and comparing them with simulation results. 
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In Chapter 4, the non-linear mathematical model obtained in the previous chapter is 

linearized around a critical operating point. The linearized model is utilized in order 

to design a combined feedforward and feedback controller. A proportional feedback 

controller for the force control loop is selected and a reference feedforward is 

designed to improve the force tracking performance of the system. A disturbance 

feedforward controller is also designed in order to reduce the strong disturbance 

caused by the motion of the hydraulic drive system under test. Since only the 

actuator position of the hydraulic drive system under test is measured by a linear 

encoder, its velocity is estimated for using in the disturbance feedforward controller. 

A Kalman filter with a kinematic model is designed and tuned to accurately estimate 

the velocity of the actuator. 

In Chapter 5, the performance of the electro-hydraulic load simulator is investigated 

by conducting some real-time experiments and by comparing their results with model 

responses. Disturbance rejection and force tracking performances of the electro-

hydraulic load simulator are evaluated by performing a set of frequency response 

tests. The saturation limits of the hydraulic system of the load simulator are 

investigated by applying reference sinusoidal force inputs of various magnitudes and 

frequencies. Force and spool position responses of the non-linear simulation model 

are also presented in order to show that the simulation model can be utilized as an 

offline test platform before performing real-time experiments. 

In Chapter 6, the whole design process of the electro-hydraulic load simulator and 

the results are summarized, conclusions reached are presented, and some possible 

research points for future studies are discussed. 
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2.1 Requirements for the Electro-Hydraulic Load Simulator 

An electro-hydraulic load simulator with its test bench is to be designed and 

constructed in order to satisfy the following requirements. 

 The test bench should provide a mean for the direct connection of the 

actuators of the load simulator and the system under test with a minimum 

axial misalignment. 

 The test bench should accommodate a single rod hydraulic actuator as an 

initial test specimen, whose main dimensions can be seen in Appendix C. 

 The allowable operating region in the ܨ െ  ௗ plane for the system under testݒ

is defined in Figure 2-1. The load locus of the system under test is restricted 

within a region limited by a maximum power of 0.75	ܹ݇, a velocity of 

 ݇ܰ. The frequencies of the	and a maximum force of 15 ,ݏ/݉݉	100

sinusoidal forces that the load simulator should apply at the maximum 

velocity and the loading of the actuator under test are specified as ߱ ൌ

߱ and ݖܪ	1.75 ൌ  .respectively ,ݖܪ	1

 

Figure 2-1 Allowable region for the system under test 
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system is introduced to attenuate the effect of the strong disturbance of the test 

actuator on the performance of the load simulator. In addition to the force transducer, 

two position and two pressure transducers are also utilized in the test bench. One of 

the position transducers is used to measure the position of the actuator under test. 

The output of this transducer is used in a disturbance feedforward controller. Other 

transducers are available only for monitoring purposes. The hydraulic circuit layouts 

of the valve-controlled load simulator and the variable speed pump controlled 

hydraulic drive system under test are given in dashed blue and red rectangles, 

respectively. A valve controlled hydraulic system is considered for the load simulator 

due to its high performance relative to pump controlled drives. Connections of the 

transducers and the driver of the flow control valve with the real time control 

computer through its various input and output interfaces are also indicated in Figure 

2-2. 

 

2.3 Development of the Hydraulic Load System 

In this sub-section, the development of the hydraulic load system is explained in 

detail. In Figure 2-3, the layout of the valve controlled electro-hydraulic load 

simulator is given. It consists of a proportional control valve, a differential hydraulic 

actuator, and a spring arrangement. The valve operates with a constant supply 

pressure ݌௦ and its return is connected to the tank ݌௧. The supply pressure is initially 

selected to ensure that the hydraulic actuator can deal with the operational loads. The 

flow control valve and the stiffness value of the load system are selected to satisfy 

the given requirements. In addition, the design of the hydraulic power pack which is 

constructed to provide the required flow rate at the selected supply pressure ݌௦ is 

explained with its hydraulic circuit elements. 
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Figure 2-3 Layout of the valve-controlled electro-hydraulic load simulator 

 

2.3.1 Selection of the Supply Pressure and Hydraulic Actuator 

The selection of the supply pressure of a hydraulic control system operating at 

constant pressure is one of the first design steps [40]. A high supply pressure is 

desirable since less flow is then required in order to deliver a specified power to the 

load. On the other hand, two factors limit the use of very high supply pressures, 

namely, increased leakage and noise and decreased component life. Therefore, for 

most industrial systems, generally a supply pressure between 35 and 140	ܾܽݎ is 

selected [40]. However, the final value of the supply pressure should be determined 

at the same time with the size of the hydraulic actuator to handle the expected loads. 

In this study, a Hanchen 120 series differential hydraulic actuator is used as the 

actuator of the load simulator since it has been made available to the research team 

by the department. The specifications of the hydraulic actuator are given in Table 

2-1. 
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Table 2-1 Hydraulic actuator specifications 

Piston diameter 60 ݉݉ 

Rod diameter 30 ݉݉ 

Stroke 200 ݉݉ 

Maximum operating pressure 150  ݎܾܽ

Overall mass 10.5 ݇݃ 

Piston rod mass 2.7 ݇݃ 

 

In many applications, differential actuators are commonly preferred because of their 

compact design, low cost, and easy use. However, they exhibit an inherent 

nonlinearity due to their different pressure areas for rod and piston sides and this 

leads to different the steady state velocities of the hydraulic piston in extension and 

retraction phases for the same valve openings. 

The following equation can be utilized to determine the required supply pressure for 

the actuator to handle the dynamic operational loads [40]: 

௅݌  ൌ
݉௣൫݀ଶݔ௣/݀ݐଶ൯ ൅ ܾ௣ሺ݀ݔ௣/݀ݐሻ ൅ ݇௦ሺݔ௣ െ ௗሻݔ

௣ܣ
 (2.1) 

Here, it can be assumed that the maximum acceleration, velocity, and spring force 

occur at the same time with a very conservative approach. The maximum force 

requirement is set as ܨ୫ୟ୶ ൌ ݇௦Δݔ௠௔௫ ൌ 15	݇ܰ. Some reasonable values are 

assumed for the maximum velocity and acceleration of the actuator as ݔሶ௣ ൌ

ሷ௣ݔ and ݏ/݉݉	250 ൌ  ଶ. In addition, it is reasonable to assume that loadݏ/݉݉	15000

pressure ݌௅ never exceeds 2݌௦/3. This last assumption is desirable since as ݌௅ 

approaches to ݌௦, the actuator tends to stall and hence the flow gain decreases 
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leading the system to lose control [40]. The mass of the hydraulic piston with the 

addition of connector parts is ݉௣ ൌ 8	݇݃. A reasonable value for the viscous friction 

coefficient is assumed as ܾ௣ ൌ  Considering the rod side pressure area .݉݉/ݏܰ	6.5

of the hydraulic actuator ܣ஻ ൌ 2121	݉݉ଶ, the minimum supply pressure required is 

determined as ݌௦ ൒ ௦݌ Therefore, a supply pressure of .ݎܾܽ	118 ൌ  ݎܾܽ	120

ሺ12	ܽܲܯሻ is selected in this study. 

2.3.2 Selection of the Spring Constant and Flow Control Valve 

The selection of the spring constant is a highly crucial design step for the 

development of a series elastic actuator to be used in closed-loop force control 

applications. The addition of series compliance between the actuators of the load 

simulator and the system under test has the distinct advantage of reducing the output 

impedance ܼሺݏሻ ൌ  ሻ. Therefore, the effect of this strong disturbanceݏሻ/ܺௗሺݏሺܨ

caused by the motion the system under test is considerably reduced. However, the 

flow requirement drastically increases with decreasing spring stiffness as larger 

deformations are required so as to generate the same forces. Since this also increases 

the size of the flow control valve, a load analysis with various spring stiffness values 

is performed by considering the flow-pressure saturation limits of different 

proportional flow control valves. 

The flow-pressure characteristics (saturation curve) of a flow control valve used with 

a differential actuator are expressed by the following equations [41]: 

 For extension of the actuator, 

௣ݒ  ൌ ݃
1

஺ඥ1ܣ ൅ ሺܣ஺/ܣ஻ሻଷ
ඥ݌௦ െ ஺ (2.2)ܣ/ܨ

 For retraction of the actuator, 
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௣ݒ  ൌ ݃
1

஺ඥ1ܣ ൅ ሺܣ஺/ܣ஻ሻଷ
ඥሺܣ஺/ܣ஻ሻ݌௦ ൅  ஺ (2.3)ܣ/ܨ

where ݃ is the hydraulic conductance of the valve at its full opening per metering 

edge. 

In this study, three different proportional control valves available in the catalog of 

Parker Hannifin are considered. The valves are rated at a pressure drop of 35	ܾܽݎ 

ሺ3.5	ܽܲܯሻ per metering edge as 16	݈݉݌ ሺ0.27 ∙ 10ିଷ	݉ଷ/ݏሻ, 25	݈݉݌ ሺ0.42 ∙

10ିଷ	݉ଷ/ݏሻ and 40	݈݉݌ ሺ0.67 ∙ 10ିଷ	݉ଷ/ݏሻ. By using Equations (2.2) and (2.3), 

the characteristic curves of these valves at the supply pressure ݌௦ ൌ  are ݎܾܽ	120

plotted in Figure 2-4 for extension and retraction cases, separately. 

 

Figure 2-4 Characteristic curves of valves with different flow ratings 

As seen in Figure 2-4, the retraction case limits the achievable performance of the 

hydraulic system. Therefore, while selecting the control valve and the value of the 
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spring constant of the load system the retraction plots are considered in the analysis. 

The extension case determines the requirements for the power supply. 

In order to apply the desired loads onto the actuator under test, the motion of the 

hydraulic load simulator should be expressed as follows: 

ሻݐ௣ሺݔ  ൌ ܺ଴ sin߱ݐ ൅ ሻ (2.4)ݐௗሺݔ

ሻݐ௣ሺݒ  ൌ ܺ଴߱ cos߱ݐ ൅ ሻ (2.5)ݐௗሺݒ

where ܺ଴ and ߱ are the amplitude and frequency of the oscillations of the load 

actuator, respectively. The position and velocity of the disturbance actuator are 

denoted by ݔௗ and ݒௗ, respectively. 

In the analysis, the effects of inertia and friction are neglected since force associated 

with them are relatively small as compared to the spring force ܨሺݐሻ, which can be 

inferred from Equation (2.1). Then, the force applied by the load actuator is 

determined as follows: 

ሻݐሺܨ  ൌ ݇௦൫ݔ௣ሺݐሻ െ ሻ൯ݐௗሺݔ ൌ ݇௦ܺ଴ sin߱(2.6) ݐ

Equations (2.5) and (2.6) are initially squared and then summed to yield to 

 
൫ݒ௣ െ ௗ൯ݒ

ଶ

ሺܺ଴߱ሻଶ
൅

ଶܨ

ሺ݇௦ܺ଴ሻଶ
ൌ 1 (2.7)

By using Equation (2.7), the load loci for different stiffness values of the load system 

are plotted in Figure 2-5 by considering the limit loadings specified in Section 2.1. In 

the figure, the pressure – flow characteristics of the valves given in Figure 2-4 are 

also plotted. 

As can be seen in Figure 2-5 and Figure 2-6, as the stiffness of the spring between 

the actuators of the load simulator and disturbance actuator is decreased, the required 
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Figure 2-5 Load loci for different spring constants - ܨ ൌ 15	kN at ߱ ൌ 1	Hz and 

ௗݒ ൌ  ݏ/݉݉	50

 

Figure 2-6 Load loci for different spring constants - ܨ ൌ 7.5	݇ܰ at ߱ ൌ  and ݖܪ	1.75

ௗݒ ൌ  ݏ/݉݉	100

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Force [kN]

V
el

oc
ity

 [
m

m
/s

]

 

 

k
s
 = 0.7 kN/mm

k
s
 = 0.9 kN/mm

k
s
 = 1 kN/mm

k
s
 = 1.5 kN/mm

k
s
 = 2 kN/mm

Valve - Ret - 16 lpm

Valve - Ret - 25 lpm
Valve - Ret - 40 lpm

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Force [kN]

V
el

oc
ity

 [
m

m
/s

]

 

 

k
s
 = 0.7 kN/mm

ks = 0.9 kN/mm

ks = 1 kN/mm

k
s
 = 1.5 kN/mm

k
s
 = 2 kN/mm

Valve - Ret - 16 lpm

Valve - Ret - 25 lpm
Valve - Ret - 40 lpm



37 

 

flow rates to apply the desired forces at specified frequencies considerably increase. 

Thus, it requires the use of valves with higher flow capacities. However, it is desired 

to select the smallest sized flow control valve possible in order to keep the size of the 

hydraulic power pack as compact as possible to reduce the overall development cost. 

Therefore, first the valve with the lowest flow capacity should be considered. 

From Figure 2-5, it is seen that with the valve rated as 16	݈݉݌, the requirement 

investigated in that plot can be achieved if spring stiffness value greater than 

1.5	݇ܰ/݉݉ is selected. On the other hand, the requirement given in Figure 2-6 

cannot be satisfied with this valve and spring selections. At that point, it is required 

to either increase the stiffness of the load spring system or select a flow control valve 

with higher capacity. In Appendix D, the extra stiff springs available in the catalog of 

a die spring producer is given. The highest stiffness value in the catalog is 952	ܰ/

݉݉. However, the stiffest one readily available in the market was the one with a 

stiffness value of 565	ܰ/݉݉. Even a parallel combination of two of these springs 

cannot lead to a stiffness value greater than 2	݇ܰ/݉݉, thus further complicated 

spring arrangements are required to achieve this stiffness value. In addition, it is not 

reasonable to limit the maximum velocity of the load system to 125	݉݉/ݏ which is 

slightly greater than the system under test and to further increase the output 

impedance of the load actuator. 

The next valve in the catalog, which has a flow rating of 25	݈݉݌, is considered. It is 

observed in Figure 2-5 and Figure 2-6 that with the use of this valve and a spring 

load system having an equivalent stiffness of 1	݇ܰ/݉݉ satisfies both requirements 

given these figures. Therefore, two of this hardest spring that is readily available in 

market are gathered and the springs are decided to be used in parallel connection to 

lead to an equivalent stiffness of 2 ∙ 565	ܰ/݉݉	 ൌ 1130	ܰ/݉݉. A mechanical 

arrangement is constructed to operate the springs in parallel connection. 

The ordering code of the selected proportional directional control valve 

ሺ25	݈݉݌	ݐܽ	35	ݎܾܽ	ݎ݁݌	݃݊݅ݎ݁ݐ݁݉	݁݀݃݁	ሻ of Parker Hannifin is D1FPE50HB9NB5 
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Figure 2-8 Allowable operating region for the system under test and load loci for the 

load simulator ሺ݇௦ ൌ 1130	ܰ/݉݉ሻ 

 

Figure 2-9 Load loci for the load simulator when ݒௗ ൌ  ݏ/݉݉	0
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the figure. By using these figures, the loading limits of the hydraulic system are 

summarized in Table 2-2 and Table 2-3. 

 

Table 2-2 Loading limits of the hydraulic system for ݒௗ ൌ  ݏ/݉݉	100

Magnitude [kN] 1 2.5 5 7.5 

Frequency [Hz] 10 10 6 4 

 

Table 2-3 Loading limits of the hydraulic system for ݒௗ ൌ  ݏ/݉݉	0

Magnitude [kN] 1 3 5 7.5 10 15 

Frequency [Hz] 10 10 6 4 3 2 

 

To conclude, if it is further required to get a more extended dynamic loading 

capability, the stiffness of the load system can be increased, but of course at the 

expense of an increased output impedance, ܼሺݏሻ. 

2.3.3 Hydraulic Power Pack 

A hydraulic power pack is constructed to provide the valve controlled hydraulic 

system with the required flow rate at the selected constant supply pressure. The 

hydraulic layout of the power unit is given in Figure 2-10, and the elements of the 

power pack are listed below. 

 Hydraulic pump and motor  

 Pressure relief valve 
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 Check valve 

 Shut-off valve 

 High pressure filter 

 Accumulator 

 Reservoir 

 Quick couplings for pressure and return lines (disconnected) 

 

 

Figure 2-10 Hydraulic power pack layout – constant pressure operation 

 

Pump and Motor 

The required hydraulic power for the electro-hydraulic load simulator is provided by 

a constant displacement pump which is driven by a prime mover (an electric motor) 

as seen in Figure 2-10. A GAMAK cage induction motor with a power rating of 
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11	ܹ݇ is utilized in this study, and its further specifications are given in Table 2-4. 

The size of the pump is determined by using the following equation: 

 ܳ௣ ൌ  ௣ܰ (2.8)ܦߟ

where ߟ is the volumetric efficiency, ܦ௣ is the displacement of the pump per 

revolution, and ܰ is the rotational speed of the pump, hence of the electric motor 

since they are coupled. From the catalog of Bucher Hydraulics, a constant 

displacement pump (QX31-032) with an effective displacement of 31.2	ܿ݉ଷ/ݒ݁ݎ is 

selected. Since its volumetric efficiency at 120	ܾܽݎ	is about 0.93, the actual pump 

flow is determined as ܳ௣ ൌ  by using (2.8). Hence, when the characteristic ݉݌݈	43

curve of the valve given in Figure 2-4 is considered, the selected pump-motor 

arrangement satisfies the required flow rate (42	݈݉݌). In addition, the torque that 

should be provided by the electric motor to provide a supply pressure of 

 .݉ܰ	with this pump is determined as 60	ݎܾܽ	120

 

Table 2-4 Specifications of the electric motor 

Type ܧ2ܯܩܣ 160  4ܯ

Supply voltage 3 െ ,݁ݏ݄ܽ݌ 400 ܸ, 50  ݖܪ

Rated power 11 ܹ݇ 

Speed 1470  ݉݌ݎ

Current 21.0  ܣ

Torque 71.5 ܰ݉ 
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provided by the project sponsor. The pre-charge pressure of the accumulator ݌଴ is 

suggested in reference [44] to be calculated as follows: 

଴݌  ൌ ௔௖௖ܥ ∙  ௠ (2.9)݌

Here, ݌௠ is the average operating pressure and ܥ௔௖௖ is a constant between 0.6 and 

0.75. Thus, the pre-charge pressure of the accumulator is set to 0.6 ∙ ݎ120ܾܽ ൎ

 .ݎܾܽ	70

Transmission Line Elements 

A number of flexible hoses, couplings, and fittings are used as the transmission line 

elements. For this purpose, FIREFLEX DIN EN 853 SAE100R2 AT 1/2" hydraulic 

hoses with a maximum operating pressure of 275	ܾܽݎ are employed. Since the 

elasticity of the hoses affects the dynamics of the system, the control valve is 

assembled as close as possible to the hydraulic actuator in order to decrease the hose 

length. In addition, quick couplings are used to connect the power pack to the valve 

in order to decrease the setup-time and to prevent the hydraulic oil losses during 

disassembling and assembling the test bench. 

Hydraulic Fluid 

PO Hydro Oil HD 46 series hydraulic oil is used as the working medium in the valve 

controlled hydraulic system. Some typical physical specifications of the oil are given 

in Table 2-5. With its high viscosity index, it can be used in wide temperature ranges. 

It is also possible with this oil to obtain a cleanness level of NAS 7 (according to 

NAS 1638) by using a proper filtration, which is required for the operation of the 

proportional control valve. 
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Table 2-5 Physical specifications of the hydraulic oil 

Manufacturer and type Petrol Ofisi, Hydro Oil HD Series 

ISO Viscosity Grade (VG) 46 

Density, @ 15௢0.879 ܥ ݇݃/݉ଷ 

Kinematic viscosity, @ 40௢46 ܥ ݉݉ଶ/ݏ 

Viscosity Index 99 

 

Hydraulic Reservoir 

It is suggested as a rule of thumb that the volume of the hydraulic reservoir be 3 

times the rated pump flow rate expressed as volume per minute [45]. That is, the time 

required to empty the reservoir should take 3-5 minutes in case of a failure of the 

major line [46]. Hence, the minimum required size of the hydraulic fluid reservoir is 

determined as about 120	݈݅ݏݎ݁ݐ. 

Pressure Filter 

The proper filtration of the hydraulic oil is extremely important to prevent 

component failures and the resulting failure costs [46]. An Eaton HP 61 10VG series 

pressure filter is utilized in order to maintain the required fluid cleanliness. This filter 

with stainless steel wire mesh has a filter-fineness of 10	݉ߤ. It is advised to place the 

filter at the last possible place before the critical component, which is the 

proportional flow control valve in this system [40]. Thus, the filter is placed just 

before the valve inlet as seen in Figure 2-10. 

Before installing the proportional directional control valve, a flushing operation is 

performed by manually directing the fluid flow to both sides of the hydraulic actuator 

via a hand operated directional control valve during a day shift. The cleanliness of 

the system is monitored by the Parker Laser CM20 Contamination Monitor in order 
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to make sure that a level of NAS 6 is obtained before installing the proportional 

directional control valve to the system. 

 

2.4 DAQ and Control System Hardware 

In this section, the data acquisition and control system hardware utilized for the 

hydraulic load simulator is presented. It consists of a number of feedback and 

monitoring transducers, a real-time target machine as the real-time data acquisition 

system, and the control computer. The interactions of the transducers and the driver 

of the control valve with the real-time target machine and the hydraulic system can 

be seen in Figure 2-2. 

 

2.4.1 Feedback and Monitoring Transducers 

The electro-hydraulic load simulator is equipped with a number of feedback and 

monitoring transducers, namely, a force transducer, two pressure transducers, and a 

position transducer. In addition, an incremental encoder is used to measure the piston 

position of the hydraulic drive system under test. The details of these components are 

given in this section. 

Force Transducer 

The force applied by the load simulator onto the test actuator is determined via a 

force transducer which is given in Figure 2-12. It is a Burster Model 8524 tension 

and compression force transducer which is suitable for laboratory applications [47]. 

It is made of corrosion resistant steel and it is easily integrated with the test bench 

with the aid of a number of threaded and unthreaded fastening holes. The maximum 

static load that can be measured is 20 kN, and the natural frequency of the transducer 

is stated to be about 4	kHz. [47]. 
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namely, Simulink®, Real-Time Workshop®, and xPC Target™, already be installed 

on the host PC. A fixed step Runge-Kutta 4th order (ode4) solver is selected with a 

sampling frequency of 1000	ݖܪ for integration of system differential equations 

during simulations. The designed controller in MATLAB®/Simulink® environment is 

compiled in the host PC and downloaded to the real-time target machine. 

 

2.5 Mechanical Construction of the Test Bench 

A test bench is designed and constructed to accommodate the actuators of the load 

simulator and the hydraulic system under test. The solid model of the test bench can 

be seen in Figure 2-16, which is obtained by modeling the components of the test 

bench in SolidWorks 2010. As seen in the figure, a closed frame structure is 

preferred in order to prevent the created forces from being transferred to its 

environment. Therefore, the resulting structure can be mounted on any platform. 

Furthermore, it is compact and easily transportable. Some important dimensions of 

the test bench can be seen in Appendix C. 

The components of the test bench are labeled in Figure 2-17. Hydraulic actuators are 

supported by two separate mounting brackets. Each actuator is clamped to its 

mounting bracket with six threaded bolts. On the other hand, the mounting brackets 

are connected to each other to form a closed structure through six end threaded 

connecting rods by using nuts. In order to provide these connections, the mounting 

brackets are machined to obtain the required holes. The technical drawings of the 

brackets can be seen in Appendix C. Furthermore, the proper alignment of the 

actuators is critical since the lateral forces induced onto the force transducer increase 

with increasing amount of misalignment, which may damage the transducer. Hence, 

the brackets are machined together to ensure the concentricity of the rods of two 

actuators. 

The length of the connecting rods, that is the distance between the actuators of the 

load simulator and the system under test, is determined such that the whole stroke of  
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Figure 2-21 Components of the hydraulic load simulator 

 

Figure 2-22 A photograph of the power pack and its components 
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Figure 3-1 Physical model of the electro-hydraulic load simulator 

In the following sub-sections, the simplifying assumptions are explained and the 

mathematical models of the valve, actuator, and the load are developed by using 

physical laws. Furthermore, the MATLAB®/Simulink® models for each sub-system 

are constructed and presented. 

3.1.1 Valve Model 

A four-way, zero-lapped proportional control valve is used in order to control the 

flow through the actuator of the load simulator. The valve is modeled as shown in 

Figure 3-2. The input voltage to the valve driver ݑ results in a proportional spool 

 

 

Figure 3-2 Valve model 
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 ܳ ൌ ௩ඨݔݓௗܥ
2
ߩ
Δ(3.2) ݌ 

Here, ܥௗ and ݓ are the discharge coefficient and peripheral width of the orifice, 

respectively, Δ݌ is the pressure differential across the orifice and ߩ is the density of 

the hydraulic fluid. 

A schematic view of a typical symmetrical four-land-four-way spool valve is given 

in Figure 3-4. Ports labeled as A and B are connected to the piston and rod side 

chambers of the hydraulic actuator, respectively. Also, assumed directions of the 

flows through these ports ܳ஺ and ܳ஻ are indicated in the figure. Remaining ports are 

for the supply and return lines as shown. Supply and return pressures are represented 

by ݌௦ and ݌௧, respectively. In this study, oscillations in the supply pressure are 

neglected and the supply pressure is assumed to be constant since an accumulator is 

utilized on the pressure line to reduce those oscillations. On the other hand, the return 

pressure is assumed to be zero, i.e., ݌௧ ൌ 0, since it is considerably smaller than the 

other system pressures [40]. 

 

Figure 3-4 Schematic of a four-land-four-way spool valve 
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Four orifices on the valve are numbered in Figure 3-4. In addition, the assumed 

positive direction of the spool position is shown in the figure. For an exactly zero-

lapped valve with perfect radial clearances, at null position of the spool, no flow to 

the load is allowed whereas only two of the orifices of the valve permit the fluid flow 

depending on the sign of spool stroke. 

The configuration of the valve for the positive displacement of the spool is given in 

Figure 3-5. Here, only the orifices 1 and 4 allow the fluid flow to provide the 

extension of the hydraulic actuator. 

 

Figure 3-5 Configuration of the valve for positive spool position 

Following flow equations can be written for ݔ௩ ൒ 0: 

 ܳ஺ ൌ ௩ඨݔݓௗܥ
2
ߩ
ሺ݌௦ െ ஺ሻ (3.3)݌

 ܳ஻ ൌ ௩ඨݔݓௗܥ
2
ߩ
஻ (3.4)݌
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The configuration of the valve for the negative displacement of the spool is given in 

Figure 3-6. In this configuration, only the orifices 2 and 3 allow the fluid flow to 

provide the retraction of the hydraulic actuator. 

 

Figure 3-6 Configuration of the valve for negative spool position 

Following flow equations for can be written for ݔ௩ ൏ 0: 

 ܳ஺ ൌ ௩ඨݔݓௗܥ
2
ߩ
 ஺ (3.5)݌

 ܳ஻ ൌ ௩ඨݔݓௗܥ
2
ߩ
ሺ݌௦ െ  ஻ሻ (3.6)݌

In general, the model parameters of the valve are difficult to determine, or measure, 

and not available in valve catalogs. Instead, they are combined in a parameter ܭ௩ 

named as steady state flow gain, which is given by 

௩ܭ  ൌ ඨݓௗܥ௔ܭ
2
ߩ

 (3.7) 
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 ܳ஻ ൌ ௦݌௩ඥݔ௩ܭ െ  ஻ (3.11)݌

In addition, the steady state gain of the transfer function between the input voltage 

ܷሺݏሻ and the spool position ܺ௩ሺݏሻ can be assumed as unity for convenience to 

simplify to 

ሻݏ௔ሺܩ  ൌ
ܺ௩ሺݏሻ
ܷሺݏሻ

ൌ
1

௔ܶݏ ൅ 1
 (3.12) 

The MATLAB®/Simulink® model of the proportional control valve is obtained by 

using the Equations from (3.8) to (3.13) as shown in Figure 3-8. The valve model 

accepts the voltage signal ݑ and the chamber pressures of the hydraulic actuator ݌஺ 

and ݌஻ as inputs. The output of the model is the flow rates through its ports A and B, 

which are ܳ஺ and ܳ஻, respectively. The saturations of the valve input signal at 

െݑ௠௔௫ and ݑ௠௔௫ are also included in the model with a saturation block. 

 

Figure 3-8 MATLAB®/Simulink® model of the proportional control valve 
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3.1.2 Hydraulic Actuator Model 

In this sub-section, the mathematical model of the hydraulic actuator shown in Figure 

3-1 is obtained. It is a single rod actuator, also called as an ܣ ൅  configuration ܣߙ

[50]. The positive direction for the actuator motion, ݔ௣, is compatible with the input 

signal to the valve, ݑ. That is, a positive input signal to the control valve causes a 

positive velocity of the hydraulic actuator and vice versa. In addition, it is assumed 

that the actuator is at its mid-stroke when ݔௗ ൌ 0. 

The effect of compressibility of the hydraulic fluid is taken into consideration in the 

model. The bulk modulus of the hydraulic fluid is represented by ߚ and it is assumed 

to be constant. However, the compliance effect of the actuator structure is neglected. 

Also, the lines are assumed to be rigid and volume of the fluid between the valve and 

actuator is small since valve is very close to the actuator. In addition, the external and 

cross-port leakages of the hydraulic piston are not considered in the model. Hence, 

the flow continuity equations for both chambers of the hydraulic actuator are written 

as follows: 

 ܳ஺ ൌ ሶ௣ݔ஺ܣ ൅
஺ܸ

ߚ
஺݌݀
ݐ݀

 (3.13)

 ܳ஻ ൌ ሶ௣ݔ஻ܣ െ
஻ܸ

ߚ
஻݌݀
ݐ݀

 (3.14)

The force output of the hydraulic actuator, ܨ௅, is obtained by 

௅ܨ  ൌ ஺݌஺ܣ െ ஻ (3.15)݌஻ܣ

The piston and rod side volumes of the hydraulic actuator depend on the position of 

the hydraulic actuator. Hence, the piston side volume of the actuator, ஺ܸ, is 

 ஺ܸ ൌ ஺ܸబ ൅ ௣ (3.16)ݔ஺ܣ
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whereas the rod side volume, ஻ܸ, is 

 ஻ܸ ൌ ஻ܸబ െ  ௣ (3.17)ݔ஻ܣ

Here, ஺ܸబ and ஻ܸబ are the initial, or mid-stroke (ݔ௣ ൌ 0), piston and rod side volumes 

of the hydraulic actuator, respectively. 

The MATLAB®/Simulink® model of the hydraulic actuator, implementing Equations 

from (3.13) to (3.17), is given in Figure 3-9. The model accepts the flow rates ܳ஺ and 

ܳ஻, the position ݔ and velocity ݔሶ  of the actuator as inputs, and outputs the hydraulic 

load force ܨ௅ together with the chamber pressures ݌஺ and ݌஻ separately. 

 

Figure 3-9 MATLAB®/Simulink® model of the hydraulic actuator 
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test actuator to the force transducer is assumed, and the position of the test actuator is 

denoted by ݔௗ. The application of the Newton’s 2nd law of motion to the system 

yields to 

 ݉௣ݔሷ௣ ൅ ܾ௣ݔሶ௣ ൅ ݇௦ݔ௣ ൌ ஺݌஺ܣ െ ஻݌஻ܣ ൅ ݇௦ݔௗ (3.18)

The ultimate control variable in the electro-hydraulic load simulator is the force 

exerted to the system under test ܨ, and it is given by 

ܨ  ൌ ݇௦ሺݔ௣ െ ௗሻ (3.19)ݔ

The MATLAB®/Simulink® model of the load is shown in Figure 3-10. The model is 

constructed by using Equations from (3.13) to (3.17). The inputs to this sub-model 

are the force generated by the hydraulic actuator ܨ௅ and the velocity of the actuator 

under test as the disturbance input ݔሶௗ. The output of the model are the position and 

velocity of the actuator of the load simulator ݔ௣and ݔሶ௣, and the force exerted to the 

actuator under test ܨ, which is the control variable. Furthermore, the non-linearity 

due to the limited stroke of the hydraulic actuator between െݔ௣௠௔௫ and ݔ௣௠௔௫ is 

included into the model. 

 

Figure 3-10 MATLAB®/Simulink® model of the load 
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3.2 Model Validation 

In the previous section, the mathematical models of the proportional control valve, 

the hydraulic actuator, and the load are obtained and their simulation models are 

constructed by using MATLAB®/Simulink®. The inputs and outputs of each sub-

model are clearly identified. In this section, these sub-models are combined to 

construct the whole system simulation model as seen in Figure 3-11. The model is 

validated with experimental test results in order to prove its reliability for the control 

system design and analysis. 

 

Figure 3-11 MATLAB®/Simulink® model of the whole system 

Most model parameters are available in the manufacturers’ catalogues and the 

technical drawings of the products. However, the friction characteristic of the 
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hydraulic system, is not available and it has to be determined experimentally. 
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performed when only mounting parts are attached to the hydraulic cylinder and the 

supply pressure is adjusted to an operating pressure of  ݌௦ ൌ  The actuator .ݎܾܽ	120

position ݔ௣ and the chamber pressures ݌஺ and ݌஻ are measured by a linear position 

encoder and pressure transducers at each chambers, respectively. Furthermore, the 

acceleration of the actuator is estimated by using a kinematic Kalman filter. Using 

Newton’s second law of motion, the friction force is determined as follows [51]: 

௙ܨ  ൌ ஺݌஺ܣ െ ஻݌஻ܣ െ ܨ െ݉௣ݔሷ௣ (3.20)

The friction force is then plotted as a function of piston velocity as shown in Figure 

3-12. There are 4 cycles available in the figure. As clearly seen in the figure, a 

Stribeck friction curve, which is commonly encountered in literature [51], can be 

utilized to represent the friction characteristic of the hydraulic actuator. It consists of 

static friction, Coulomb friction and viscous friction proportional to the actuator 

velocity. 

 

Figure 3-12 Measured friction force versus velocity of the hydraulic actuator – 

Supply pressure ݌௦ ൌ  ݎܾܽ	120
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Investigating the friction characteristic of the hydraulic actuator, it is seen that the 

effects of non-linear components of the friction can be neglected and only a viscous 

friction can be assumed. In addition, this assumption is reasonable since a linear 

analysis will be performed in the design and analysis of the controller. 

In order to linearly represent the friction characteristic of the hydraulic actuator given 

in Figure 3-12 as a pure viscous friction, MATLAB®’s Curve Fitting Toolbox is 

utilized. The graphical interface of the toolbox is utilized to import the data and fit a 

linear polynomial of the form 

ሶ௣൯ݔ௙൫ܨ  ൌ  ሶ௣ (3.21)ݔଵ݌

The coefficient of the polynomial is found as ݌ଵ ൌ 6.5. The goodness of the fit is 

given with a root mean square error of 47.4	ܰ. 

In Figure 3-13, it is seen that the viscous friction assumption represents the friction 

characteristic fairly well, and its static and Coulomb friction components are 

neglected. 

 

Figure 3-13 Viscous friction force approximation of the measured friction force 
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Most model parameters are obtained from the manufacturers’ catalogs whereas only 

the friction characteristic of the hydraulic actuator is determined experimentally. In 

addition, the bulk modulus of the fluid is approximated from literature [41]. The 

nominal values for the model parameters are listed in Table 3-1. 

Table 3-1 Nominal values of the model parameters 

Parameter Symbol Unit Value 

Piston side area ܣ஺ ݉݉ଶ 2827.4 

Rod side area ܣ஻ ݉݉ଶ 2120.6 

Maximum actuator stroke ݔ௣௠௔௫ ݉݉ 200 

Flow gain of the control valve ܭ௩ 
݉݉ଷ

ܽܲܯ√ܸݏ
 22270 

Valve actuator time constant ௔ܶ 0.002 ݏ 

Initial volume of the piston side chamber ஺ܸబ ݉݉ଷ 325200 

Initial volume of the rod side chamber ஻ܸబ ݉݉ଷ 243900 

Stiffness of the compliant spring ݇௦ ܰ/݉݉ 1130 

Viscous damping coefficient ܾ௣ ܰ ∙  6.5 ݉݉/ݏ

Mass of the piston ݉௣ ݇݃ 3 

Bulk modulus of the hydraulic fluid 1300 ܽܲܯ ߚ 

Supply pressure ݌௦ 12 ܽܲܯ 

Tank pressure ݌௧ 0 ܽܲܯ 
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The validity of the model with parameters given in Table 3-1 is evaluated by 

performing some open-loop tests, and comparing the results of these experimental 

tests with the simulation results. This approach is generally considered as the most 

obvious and pragmatic way to determine whether a model is good enough [52]. 

In the open-loop test, a sinusoidal input signal is applied to the valve driver. During 

the test, the valve spool position, the hydraulic actuator position, and pressures of 

both chambers are measured by means of corresponding transducers. The sinusoidal 

input signal to the valve has a magnitude 3	ܸݐ݈݋ and frequency 1	ݖܪ as shown in 

Figure 3-14. The spool position is obtained via the LVDT of the valve. The 

measurement and simulation results are also given in this figure. In Figure 3-14, the 

residual error between the measured and simulated spool position responses is also 

given which is within an error band of േ0.14	ܸݐ݈݋. It is seen that the model is 

reasonable within 0.033	ܸݐ݈݋	ݏ݉ݎ. 

 

Figure 3-14 Measured and simulated spool position responses of the open-loop 

system to a reference sinusoidal input and residual error 
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In Figure 3-15, measured and simulated position responses of the hydraulic actuator 

are compared. Since the hydraulic actuator is a differential actuator, its extension 

velocity is greater than its retraction velocity, as expected. Therefore, a drift in 

extension direction of the actuator in each cycle of the sinusoidal control input is 

observed. In Figure 3-15, the residual error between the measured and simulated 

position responses is also shown. The residual error remains in an error band 

between െ1 and 1	݉݉ with a root mean squared value of 0.33	݉݉. 

 

Figure 3-15 Measured and simulated position responses of the open-loop system and 

residual error 
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In Figure 3-16, measured and simulated velocity responses of the open-loop system 

are given. The velocity of the actuator is estimated from the position measurement by 

using a kinematic Kalman filter. The residual velocity error is between െ17 and 

 Hence, the model is in good .ݏ/݉݉	and has an rms value of 4.8 ݏ/݉݉	23

agreement with the experimental results. 

 

Figure 3-16 Measured and simulated velocity responses of the open-loop system and 

residual error 
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compared with the simulation results. Although a small off-set between the 

experimental and simulation results is observed, the dynamic behaviors of the 

chamber pressures are compatible with the simulation results. This off-set occurs 

since the value of the supply pressure in the system is slightly higher than the one in 

the simulation model. However, since their dynamic behaviors are important, the 

load pressure, which corresponds to the load force obtained in Equation (3.15), is 

determined and presented in Figure 3-18. The model represents the load pressure 

dynamics of the system fairly well as seen in the figure. The residual error is between 

െ0.38 and 0.28	ܾܽݎ and its rms value is 0.15	ܾܽݎ. 

 

Figure 3-17 Measured and simulated rod and piston side pressure responses of the 

open-loop system 
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Figure 3-18 Measured and simulated load pressure responses of the open-loop 

system and residual error 
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actuator. Therefore, the steady state characteristics of the system are investigated 

both for retraction and extension of the hydraulic piston. For these two cases, the 

algebraic non-linear flow equations describing the pressure – flow characteristic of 

the valve are separately linearized around an operating point. Transfer functions of 

the load simulator are determined for these two phases of motion. 

For the hydraulic system shown in Figure 3-1, the piston and rod side areas are 

denoted by ܣ஺ and ܣ஻, respectively. However, the piston area ܣ௣, and the area ratio 

 are used in the remaining of this study for notational convenience. Their ߙ

definitions are given below. 

௣ܣ   ൌ ,஺ܣ ߙ ൌ
஻ܣ
஺ܣ

 (4.1) 

where ߙ ൏ 1. 

4.1.1 Steady State Characteristics of the System 

For a differential (or single rod) hydraulic actuator, the steady state retraction and 

extension velocities are different for the same valve opening because of different 

pressure areas of each chamber. The steady state extension velocity is greater than 

the steady state retraction velocity for the same valve opening. In addition, the steady 

state chamber pressures for extension and retraction cases are different from each 

other. 

At steady state, effects of compressibility at both chambers of the hydraulic actuator 

die out, and the flow continuity equations given in Equations (3.13) and (3.14) 

become 

 ܳ஺଴ ൌ  ሶ௣଴ (4.2)ݔ௣ܣ

 ܳ஻଴ ൌ  ሶ௣଴ (4.3)ݔ௣ܣߙ
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At this stage, it is a common practice to introduce the load pressure, which is defined 

as follows [41]: 

௅݌  ൌ ஺݌ െ ஻ (4.4)݌ߙ

For a positive valve opening ݔ௩ ൒ 0, the valve equations defined for the extension 

case in Equations (3.8) and (3.9) are combined with Equations (4.2) and (4.3) to 

yield to 

 
ܳ஺଴
ܳ஻଴

ൌ
௦݌௩ඥݔ௩ܭ െ ஺଴݌
஻଴݌௩ඥݔ௩ܭ

ൌ
ሶ௣଴ݔ௣ܣ
ሶ௣଴ݔ௣ܣߙ

 (4.5)

which can be simplified to the following form so as to represent a steady state 

relationship between the chamber pressures. 

௦݌ଶߙ   ൌ ஺଴݌ଶߙ ൅ ஻଴ (4.6)݌

By introducing the load pressure ݌௅ defined in Equation (4.4) into the above 

equation, the steady state chamber pressures for extension (ݔ௩ ൒ 0) are determined 

as 

஺଴݌   ൌ
1

1 ൅ ଷߙ
ሺ݌௅ ൅ ௦ሻ (4.7)݌ଷߙ

஻଴݌  ൌ
െߙଶ

1 ൅ ଷߙ
ሺ݌௅ െ ௦ሻ (4.8)݌

For a negative valve opening ݔ௩ ൏ 0, the valve equations defined for the retraction 

case in Equations (3.10) and (3.11) are combined with Equations (4.2) and (4.3) to 

yield to 

 
ܳ஺଴
ܳ஻଴

ൌ
஺଴݌௩ඥݔ௩ܭ

௦݌௩ඥݔ௩ܭ െ ஻଴݌
ൌ

ሶ௣଴ݔ௣ܣ
ሶ௣଴ݔ௣ܣߙ

 (4.9)
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which simplifies to the following form so as to represent a steady state relationship 

between the chamber pressures. 

௦݌  ൌ ஺଴݌ଶߙ ൅  ஻଴ (4.10)݌

By introducing the load pressure ݌௅ defined in Equation (4.4) into the above 

equation, the steady state chamber pressures for retraction (ݔ௩ ൏ 0) are determined 

as follows: 

஺଴݌  ൌ
1

1 ൅ ଷߙ
ሺ݌௅ ൅  ௦ሻ (4.11)݌ߙ

஻଴݌  ൌ
1

1 ൅ ଷߙ
ሺ݌௦ െ  ௅ሻ (4.12)݌ଶߙ

 

4.1.2 Linearized Valve Coefficients 

The non-linear algebraic equations representing the pressure – flow characteristic of 

the valve for the extension and retraction cases are linearized in this section. 

The flow equation ܳ ൌ ܳ൫ݔ௩೚,  ௢൯ given in Equation (3.2) can be linearized by using݌

Taylor series expansion about an operating point ௢ܲ൫ݔ௩௢,  ௢൯ and by neglecting the݌

higher order terms one obtains the following equation in terms of deviations of 

respective variables from the operating point. Note that Δ operator is utilized to 

indicate deviations in respective variables. 

 Δܳ ൌ
߲ܳ
௩ݔ߲

ฬ
௫ೡ೚,௣బ

Δݔ௩ ൅
߲ܳ
݌߲
ฬ
௫ೡ೚,௣೚

Δ(4.13) ݌ 

where the flow gain ܭ௤ is defined by 
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௤ܭ  ൌ
߲ܳ
௩ݔ߲

ฬ
௫ೡ೚,௣బ

 (4.14)

and the pressure-flow coefficient ܭ௖ is expressed by 

௖ܭ  ൌ െ
߲ܳ
݌߲
ฬ
௫ೡ೚,௣బ

 (4.15)

Since ߲ܳ/߲݌ is always negative, the flow-pressure coefficient is also positive [40]. 

Therefore, the flow equations for extension, Equations (3.8) and (3.9), and for 

retraction, Equations (3.10) and (3.11), are linearized around an operating point 

௢ܲ൫ݔ௩௢,  :஻೚൯ to yield to the following linear expressions݌/஺೚݌

 Δܳ஺ ൌ ௩ݔ௤ಲΔܭ െ ஺ (4.16)݌௖ಲΔܭ

 Δܳ஻ ൌ ௩ݔ௤ಳΔܭ െ ஻ (4.17)݌௖ಳΔܭ

where the flow gains are 

௤ಲܭ  ൌ
߲ܳ஺
௩ݔ߲

ฬ
௫ೡ೚,௣ಲ೚

ൌ ቊ
௦݌௩ඥܭ െ ஺೚݌ for ௩ݔ ൒ 0

஺೚݌௩ඥܭ for ௩ݔ ൏ 0
 (4.18)

௤ಳܭ  ൌ
߲ܳ஻
௩ݔ߲

ฬ
௫ೡ೚,௣ಳ೚

ൌ ቊ
஻೚݌௩ඥܭ for ௩ݔ ൒ 0

௦݌௩ඥܭ െ ஻೚݌ for ௩ݔ ൏ 0
 (4.19)

and the flow-pressure coefficients are 

௖ಲܭ  ൌ െ
߲ܳ஺
஺݌߲

ฬ
௫ೡ೚,௣ಲ೚

ൌ

ە
ۖ
۔

ۖ
ۓ

௩௢ݔ௩ܭ
2ඥ݌௦ െ ஺೚݌

for ௩ݔ ൒ 0

െ
௩௢ݔ௩ܭ
2ඥ݌஺೚

for ௩ݔ ൏ 0
 (4.20)
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௖ಳܭ  ൌ െ
߲ܳ஻
஻݌߲

ฬ
௫ೡ೚,௣ಳ೚

ൌ

ە
ۖ
۔

ۖ
െۓ

௩௢ݔ௩ܭ
2ඥ݌஻೚

for ௩ݔ ൒ 0

௩௢ݔ௩ܭ
2ඥ݌௦ െ ஻೚݌

for ௩ݔ ൏ 0
 (4.21) 

   

4.1.3 Linear Transfer Function Models of the System 

In this sub-section, the transfer functions of the system are derived to be used in 

control system design and analysis. 

In order to eliminate the pressures ݌஺ and ݌஻ from Equations (4.16) and (4.17), the 

static relations, given in Equations (4.7) and (4.8), or equivalently in Equations 

(4.11) and (4.12), are linearized to yield to 

 Δ݌஺ ൌ
1

1 ൅ ଷߙ
Δ݌௅ (4.22) 

 Δ݌஻ ൌ െ
ଶߙ

1 ൅ ଷߙ
Δ݌௅ (4.23) 

Then, the linearized valve equations can be rewritten by using Equations (4.22) and 

(4.23) as follows: 

 Δܳ஺ ൌ ௩ݔ௤ಲΔܭ െ ௖ಲܭ
1

1 ൅ ଷߙ
Δ݌௅ (4.24) 

 Δܳ஻ ൌ ௩ݔ௤ಳΔܭ ൅ ௖ಳܭ
ଶߙ

1 ൅ ଷߙ
Δ݌௅ (4.25) 

Since it is clear that only linear mathematical models are the concern of this chapter, 

the use of Δ operator will be omitted for the remaining of the study. 

The flow continuity equations given in Equations (3.13) and (3.14) can be rearranged 

to give the pressure dynamics equations as follows: 
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ሶ஺݌  ൌ
ߚ

஺ܸ
൫ܳ஺ െ ሶ௣൯ (4.26)ݔ௣ܣ

ሶ஻݌  ൌ
ߚ

஻ܸ
൫െܳ஻ ൅ ሶ௣൯ (4.27)ݔ௣ܣߙ

The load pressure equation in Equation (4.4) is differentiated to result into the 

following expression: 

ሶ௅݌  ൌ ሶ஺݌ െ ሶ஻ (4.28)݌ߙ

Hence, first Equations (4.24) and (4.25) are inserted into Equations (4.26) and (4.27), 

respectively, in order to eliminate the flow terms, and then the resulting equations are 

substituted into Equations (4.28) to yield to 

 ܳ௅ ൌ ௩ݔ௤ܭ െ ௅݌௖ܭ ൌ ሶ௅݌ܥ ൅ ሶ௣ (4.29)ݔܣ

where ܳ௅ can be assumed as a virtual load flow. 

Parameters ܭ௤, ,௖ܭ  used in Equations (4.29) are expressed by ܣ and ,ܥ

௤ܭ  ൌ ௤ಲܭ ൅ ߙ ஺ܸ

஻ܸ
௤ಳ (4.30)ܭ

௖ܭ  ൌ
1

1 ൅ ଷߙ
௖ಲܭ െ

ଷߙ

1 ൅ ଷߙ
஺ܸ

஻ܸ
௖ಳ (4.31)ܭ

ܥ  ൌ ஺ܸ

ߚ
 (4.32)

ܣ  ൌ ൬1 ൅ ଶߙ ஺ܸ

஻ܸ
൰ ௣ (4.33)ܣ

Furthermore, the load model given in Equation (3.18) is rewritten here by 

introducing load pressure in Equation (4.4) as follows: 



84 

 

 ݉௣ݔሷ௣ ൅ ܾ௣ݔሶ௣ ൅ ݇௦ݔ௣ ൌ ௅݌௣ܣ ൅ ݇௦ݔௗ (4.34) 

The ultimate control variable for the load simulator is the force applied by the 

actuator of the load simulator onto the actuator under test and it is defined in 

Equation (3.19). Also, the transfer function representing the dynamics between the 

input signal to the valve driver ܷሺݏሻ and the spool position ܺ௩ሺݏሻ is given in 

Equation (3.12).  Therefore, by taking the Laplace transforms of Equations (3.19), 

(4.29) and (4.34), and by using them with Equation (3.12), the block diagram 

representation of the hydraulic load simulator is obtained as given in Figure 4-1. It 

can be seen in the figure that the model has two inputs, namely, the control input to 

the valve ܷሺݏሻ and the motion of the test actuator ܺௗሺݏሻ which acts as a disturbance 

input. The controlled output of the system is the force applied onto the test actuator 

by the load simulator ܨሺݏሻ. Note that the block diagram representation of the system 

is valid both for extension and retraction cases of the hydraulic actuator of the load 

simulator, but the valve parameters ܭ௤ and ܭ௖ are to be evaluated for each case with 

the given control input and the corresponding steady state chamber pressures. 

 

Figure 4-1 Block diagram representation of the hydraulic load simulator 

By using Figure 4-1, the following expression for the output force applied ܨሺݏሻ in 

terms of the input signal to the valve driver ܷሺݏሻ and the disturbance input ܺௗሺݏሻ is 

obtained: 

ሻݏሺܨ  ൌ ሻݏሻܷሺݏி௎ሺܩ ൅  ሻ (4.35)ݏሻܺௗሺݏி௑೏ሺܩ
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where the corresponding transfer functions are expressed as 

ሻݏி௎ሺܩ ൌ
௣ܣ௤݇௦ܭ

ሺ ௔ܶݏ ൅ 1ሻ൫݉ܥ௣ݏଷ ൅ ൫ܾܥ௣ ൅ ଶݏ௖݉௣൯ܭ ൅ ൫ܭ௖ܾ௣ ൅ ௣ܣܣ ൅ ݏ௦൯݇ܥ ൅ ௖݇௦൯ܭ
 (4.36)

ሻݏி௑೏ሺܩ ൌ െ݇௦
ଷݏ௣݉ܥ ൅ ൫ܾܥ௣ ൅ ଶݏ௖݉௣൯ܭ ൅ ൫ܭ௖ܾ௣ ൅ ݏ௣൯ܣܣ

ଷݏ௣݉ܥ ൅ ൫ܾܥ௣ ൅ ଶݏ௖݉௣൯ܭ ൅ ൫ܭ௖ܾ௣ ൅ ௣ܣܣ ൅ ݏ௦൯݇ܥ ൅ ௖݇௦ܭ
 (4.37)

Valve coefficients, namely, the flow gain, ܭ௤ and the flow-pressure coefficient ܭ௖ 

are highly important model parameters while considering the stability and dynamic 

characteristics of the system [40]. The open-loop gain of the system is directly 

affected from the flow gain whereas the system damping depends on the flow-

pressure coefficient of the valve. 

Valve coefficients depend on the operating point as given in equations from (4.18) to 

(4.21), and the most crucial operating point is the origin of the flow pressure-flow 

curve, where ௢ܲ൫ݔ௩௢, ௅೚൯݌ ൌ ௢ܲሺ0,0ሻ. At this point, the valve flow gain attains its 

maximum value, resulting in a high DC gain of the system, whereas the flow-

pressure coefficient is at its minimum, giving a low damping ratio. Thus, ௢ܲ is the 

most crucial operating point for system stability, and generally, a system stable at 

this point results in stable operation at other operating points [40]. 

As a result, in this study, the valve coefficients are evaluated around the critical 

operating point ௢ܲሺ0,0ሻ and the resulting coefficients are named as null valve 

coefficients [40]. The m-file used to determine the transfer functions of the system 

both in extension and retraction cases is supplied in Appendix E. The transfer 

functions of the system are determined by using numerical values for the model 

parameters given in Table 3-1 as follows: 

 For the extension of the actuator ݔ௩ ൒ 0, 

ி௎ܩ 
௘௫௧ሺݏሻ ൌ

2.53 ∙ 10ସ

ሺ0.002ݏ ൅ 1ሻሺ1.4 ∙ 10ି଻ݏଷ ൅ 1.14 ∙ 10ିସݏଶ ൅ ሻݏ
 (4.38)
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ி௑೏ܩ 
௘௫௧ ሺݏሻ ൌ െ1110

1.43 ∙ 10ି଻2ݏ ൅ 1.17 ∙ 10െ4ݏ ൅ 1

1.4 ∙ 10ି଻2ݏ ൅ 1.14 ∙ 10ିସݏ ൅ 1
 (4.39) 

 For the retraction of the actuator ݔ௩ ൏ 0, 

ி௎ܩ 
௥௘௧ሺݏሻ ൌ

2.19 ∙ 10ସ

ሺ0.002ݏ ൅ 1ሻሺ1.4 ∙ 10ି଻ݏଷ ൅ 1.14 ∙ 10ିସݏଶ ൅ ሻݏ
 (4.40) 

ி௑೏ܩ 
௥௘௧ ሺݏሻ ൌ െ1110

1.43 ∙ 10െ7ݏଶ ൅ 1.17 ∙ 10ିସݏ ൅ 1

1.4 ∙ 10െ7ݏଶ ൅ 1.14 ∙ 10െ4ݏ ൅ 1
 (4.41) 

Note that around the critical operating point ௢ܲሺ0,0ሻ the equivalent pressure-flow 

coefficients ܭ௖ are zero both for extension and retraction cases, and only the 

equivalent flow coefficients ܭ௤ are different from each other, i.e., ܭ௤௘௫௧ ൐  ௤௥௘௧. Theܭ

open-loop poles and zeros of the transfer functions in Equations (4.38), (4.39), 

(4.40), and (4.41) are given in Table 4-1. Bode magnitude and phase diagrams of the 

open-loop system for both extension and retraction cases are obtained in Figure 4-2 

by using Equations (4.38) and (4.40). 

 

Table 4-1 Open-loop poles and zeros of the plant transfer functions 

 Poles [ݏ/݀ܽݎ] Zeros ሾݏ/݀ܽݎሿ 

ி௎ܩ
௘௫௧ሺݏሻ 

0 

െ500 

െ407 േ ݆2610

െ 

ி௎ܩ
௥௘௧ሺݏሻ 

0 

െ500 

െ407 േ ݆2610

െ 

ி௑೏ܩ
௘௫௧ ሺݏሻ, ி௑೏ܩ

௥௘௧ ሺݏሻ െ407 േ ݆2610 െ410 േ ݆2613
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Figure 4-2 Open-loop Bode diagrams of the hydraulic load simulator 

Two important behaviors of a hydraulic actuator can clearly be observed in the 

figure. One is the integrating nature of the hydraulic actuator and it is observed in the 

low frequency region with a slope of െ20	݀ܤ/݀݁ܿ. The other is the interaction of the 

mass of the hydraulic piston and the effect of compressibility of the hydraulic fluid 

resulting in a resonant mode as seen in the high frequency range at around ߱ ൌ

  .ሻݏ/݀ܽݎ	ሺ2670	ݖܪ	425

 

4.2 Controller Design 

In this section, the design of the force control system for the electro-hydraulic load 

simulator is presented. The controller design is based on the continuous time transfer 

functions of the system, which are obtained in the previous section by linearizing the 

non-linear mathematical model of the system for both the extension and retraction 

phases of the actuator. 
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Performances of the load simulators are often evaluated based on the dual ten index, 

which requires that the amplitude and phase distinctions between the reference and 

the actual control variable are not more than 1	݀ܤ, and 10௢, respectively [53, 54]. 

Therefore, it is required that the dual ten bandwidth of the control system should be 

 .to apply the dynamic loads specified in Chapter 2.1 ݖܪ	10

The overall control architecture together with the plant model is given in Figure 4-3. 

It consists of a force feedback controller, a force reference (or set-point) feedforward 

and a disturbance feedforward controller. Here, it is aimed to achieve an enhanced 

dynamic performance and stability with a closed-loop controller ܩ௖ሺݏሻ, whereas the 

dynamic errors are diminished thanks to the reference and disturbance feedforward 

controllers, which are denoted by ܨ௨ሺݏሻ and ܨௗሺݏሻ, respectively. 

 

Figure 4-3 Overall control architecture 

Even though the use of feedback is very effective in stabilizing and achieving an 

improved dynamics for a control system, the use of an additional feedforward is 

commonly considered to be a powerful technique complementing the feedback [55]. 

Since an error is to be developed before a feedback controller responds, it is 

considered as reactive. On the other hand, feedforward is pro-active as it responds to 

changes in the measured inputs before an error actually develops in the controlled 
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variable [56]. An important drawback of the feedforward is its dependency on 

modeling errors because of its open-loop nature. Therefore, a concurrent use of 

feedback and feedforward controllers is often considered to be highly advantageous 

[56]. 

A combined feedforward and feedback control strategy is utilized in this study in 

order to achieve an improved tracking performance to reference force inputs and to 

attenuate the undesirable effect of the disturbance motion of the hydraulic drive 

system under test at the same time. Thus, first a disturbance feedforward 

compensation scheme is developed, and then the reference tracking performance of 

the system is designed by assuming a disturbance free plant. 

 

4.2.1 Disturbance Feedforward Controller 

In order to attenuate the effect of the disturbance caused by the motion of the 

actuator under test, a feedforward compensator is designed in this section. The 

disturbance feedforward controller is denoted in Figure 4-3 by the transfer function 

ሻݏ௥௘௙ሺܨ ሻ. Assuming thatݏௗሺܨ ൌ 0, the transfer function between the disturbance 

ܺௗሺݏሻ and the controlled output ܨሺݏሻ is determined as 

ሻݏி௑೏ሺܩ  ൌ
ሻݏி௎ሺܩሻݏௗሺܨ ൅ ሻݏி௑೏ሺܩ

1 ൅ ሻݏி௎ሺܩሻݏ௖ሺܩ
 (4.42)

where the ideal disturbance rejection performance can be obtained by letting 

ሻݏௗሺܨ  ൌ െ
ሻݏி௑೏ሺܩ

ሻݏி௎ሺܩ
 (4.43)

Similar to the reference feedforward design, the extension and retraction cases are 

considered separately since the open-loop gains of the system in these cases are 
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different. Therefore, by inserting Equations (4.38) and (4.39) into Equation (4.43), 

the disturbance feedforward compensator for extension case is obtained as follows: 

ௗܨ 
௘௫௧ሺݏሻ ൌ 1.2 ∙ 10ିଵଵݏସ ൅ 1.6 ∙ ଷݏ10ି଼ ൅ 9.2 ∙ 10ିହݏଶ ൅  (4.44) ݏ0.043

Similarly, Equations (4.40) and (4.41) are inserted into Equation (4.43) to obtain the 

disturbance feedforward controller for retraction case as follows: 

ௗܨ 
௥௘௧ሺݏሻ ൌ 1.4 ∙ 10ିଵଵݏସ ൅ 1.9 ∙ ଷݏ10ି଼ ൅ 10.6 ∙ 10ିହݏଶ ൅  (4.45) ݏ0.051

Last terms in Equations (4.44) and (4.45) represent the compensation of the 

disturbance caused by the velocity of the actuator under test whereas the remaining 

terms are the compensations for disturbances related to the higher order derivatives 

of its motion. Since in this study only the position of the actuator under test is 

measured via a linear encoder, the higher order derivatives of its motion have to be 

estimated. In this study, only the term related to the velocity of the actuator is 

considered in the feedforward controller by estimating its velocity. The other terms 

are neglected since it is generally very hard to estimate higher order derivatives with 

a reasonable accuracy, and their contributions to the overall control signal are 

relatively small. To illustrate, if the motion of the disturbance actuator is expressed 

by ݔௗሺݐሻ ൌ 5 sinሺ40 ∙  ሻ mm, then the control signals related to the compensationsݐ

for its velocity, acceleration, and jerk are 10, 0.8 and 0.005	ܸݐ݈݋, respectively.  

Therefore, the disturbance feedforward controller is given for extension and 

retraction cases by 

ௗܨ 
௘௫௧ሺݏሻ ൌ ௙ܷௗሺݏሻ

ܺௗሺݏሻ
ൌ  (4.46) ݏ0.043

ௗܨ 
௥௘௧ሺݏሻ ൌ ௙ܷௗሺݏሻ

ܺௗሺݏሻ
ൌ  (4.47) ݏ0.051
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In the next section, a kinematic Kalman filter is designed to estimate the velocity of 

the actuator under test. Assuming ideal velocity estimation via the KKF, the 

normalized Bode magnitude diagrams ܨሺ݆߱ሻ/݇௦ܺௗሺ݆߱ሻ showing the expected 

improvement in disturbance rejection performance of the load simulator with the use 

of feedforward controllers in Equations (4.46) and (4.47) are illustrated in Figure 4-4. 

 

Figure 4-4 Bode magnitude diagram of ܨሺ݆߱ሻ/݇௦ܺௗሺ݆߱ሻ 

4.2.2 Force Feedback Controller with a Reference Feedforward 

In this section, a combined feedforward and feedback force controller is designed by 

assuming that the effect of disturbance is completely eliminated by the disturbance 

feedforward controller designed in the previous section.  

It is clear from Equations (4.38) and (4.40), and Figure 4-2 that the DC gain of the 

system in extension of the actuator is greater than that of the actuator in retraction. 

Therefore, in designing the feedback controller, first the extension case will be 
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considered since its stability is more critical. Then, the performance of the resulting 

controller will be observed to see whether it is acceptable for the retraction case. 

Consider a proportional controller with a gain of ܭ௣ for the extension of the 

hydraulic actuator. The open-loop Bode plots of the system for the extension case are 

given for different values of the proportional controller gain in Figure 4-5 to result in 

stable closed-loop operations. The closed-loop Bode diagrams of the system for the 

same controller gains are also given in Figure 4-6. Although the 1	݀ܤ magnitude 

requirement can be satisfied with the small values of the proportional controller gain 

௣ܭ) ൌ 0.004), the phase lag of the closed-loop system is considerably higher than the 

10୭ phase requirement (about െ34୭). Thus, it is required to use greater controller 

gains, such as ܭ௣ ൌ 0.015, as seen in Figure 4-6. As can be seen in the figure, for 

this controller gain, the closed-loop system satisfies the dual ten bandwidth  

 

 

Figure 4-5 Open-loop Bode diagrams in extension case for different proportional 

controllers 

-100

-50

0

50

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

-360

-270

-180

-90

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (Hz)

K
p
 = 0.004

K
p
 = 0.0065

K
p
 = 0.015



93 

 

 

Figure 4-6 Closed-loop Bode diagrams in extension case for different proportional 

controllers 

requirement, and the െ3	݀ܤ bandwidth of the red curve is about 86	ݖܪ. However, 

the use of large closed-loop controller gains is generally undesired since it increases 

the noise sensitivity, and causes both the saturation of the control valve and the 

excitation of the un-modeled dynamics. 

A proportional controller can be utilized to achieve a reasonable bandwidth of the 

closed-loop system with a good phase margin. In order to achieve an improved 

tracking performance, a reference feedforward compensation can then be introduced 

without affecting the stability of the closed-loop system. Hence, dynamic errors are 

further reduced with the use of the feedforward compensation. 

Since the type number of the open-loop transfer functions obtained by linearization 

around the critical operating point (zero valve opening and load pressure) is unity, 

and thanks to the high flow gain of the control valve, the integral action is not 

considered for the force control loop. Although it is known that the integral action is 

-5

-4

-3

-2

-1

0

1

2

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

-30

-20

-10

0

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (Hz)

K
p
 = 0.004

K
p
 = 0.0065

K
p
 = 0.015



94 

 

also effective in rejecting the disturbance in low and mid-frequency range, a 

disturbance feedforward controller is considered in the next section to fulfill this 

requirement. 

The gain of the proportional controller is selected as ܭ௣ ൌ 0.0065, which satisfies 

the magnitude requirement but not the phase requirement. The open-loop and closed-

loop Bode diagrams of the system with the proportional controller are given in 

Figure 4-7 and Figure 4-8, respectively, and its frequency domain specifications are 

summarized in Table 4-2 for both extension and retraction cases. 

 

 

Figure 4-7 Open-loop Bode diagrams for ܭ௣ ൌ 0.0065 
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Figure 4-8 Closed-loop Bode diagrams for ܭ௣ ൌ 0.0065 

Table 4-2 Specifications of the closed-loop system with ܭ௣ ൌ 0.0065 

 Extension Retraction 

Bandwidth (െ3 (ܤ݀ ሾݖܪሿ 36.5 30.6 

Phase margin ሾ݀݁݃݁݁ݎሿ 71.5 73.8 

Gain margin ሾ݀ܤሿ 26.9 28.2 

Dual ten 

bandwidth 

1  ሿ 21.4 17.2ݖܪሾ ܤ݀

10୭ ሾݖܪሿ 4.6 3.9 

Velocity error constant 164.8 142.7 
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In order to improve the tracking performance of the system, a reference feedforward 

controller, ܨ௨ሺݏሻ, is designed by considering the closed-loop block diagram of the 

system given in Figure 4-3. Assuming that ௗܸሺݏሻ ൌ 0, the transfer function between 

the reference force input, ܨ௥௘௙ሺݏሻ, and the force output, ܨሺݏሻ, is written as follows: 

ሻݏிிೝ೐೑ሺܩ  ൌ
ሻݏி௎ሺܩሻݏ௖ሺܩ

1 ൅ ሻݏி௎ሺܩሻݏ௖ሺܩ
ቆ1 ൅

ሻݏ௨ሺܨ

ሻݏ௖ሺܩ
ቇ (4.48) 

where the ideal compensation can be obtained by letting 

ሻݏ௨ሺܨ  ൌ
1

ሻݏி௎ሺܩ
 (4.49) 

However, from the open-loop Bode diagrams of the plant given in Figure 4-2, it is 

seen that the valve dynamics and the resonant mode due to the interaction of the fluid 

compressibility and piston mass occur at relatively high frequencies. Therefore, only 

the integrating behavior of the hydraulic system is considered in the design of the 

feedforward controller. By neglecting these high dynamics in Equation (4.36), the 

feedforward compensator is obtained by using (4.49) as 

ሻݏ௨ሺܨ  ൌ ∗ܭ ௣ܣܣ ൅ ௦݇ܥ
௣ܣ௤݇௦ܭ

ݏ

௅ܶ௉ݏ ൅ 1
 (4.50) 

where a low pass filter with a time constant of ௅ܶ௉ is utilized to casually realize the 

compensator, and a scaling factor ܭ∗ is introduced to prevent the over-compensation 

of the controller [57]. It should also be noted here that since the DC gain of the 

hydraulic system is different in extension and retraction cases, the resulting 

controllers for these cases are also be different and they will be switched depending 

on the spool position. 

The controller defined by Equation (4.50) introduces a real zero and pole to provide a 

lead effect in the closed-loop system as given in (4.48). Assuming ܭ∗ ൌ 1, the 
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angular contribution of the controller to the closed-loop system at a frequency ߱, 

which is denoted by ߶, is given as 

 ߶ ൌ tanିଵ ൭߱ ቆ ௅ܶ௉ ൅
௣ܣܣ ൅ ௦݇ܥ
௣ܣ௤݇௦ܭ

1
௣ܭ
ቇ൱ െ tanିଵሺ߱ ௅ܶ௉ሻ (4.51)

In order to have a phase contribution of about ߶ ൌ 20୭ at around ߱ ൌ  the ,ݖܪ	10

time constants of the low pass filter ௅ܶ௉ are set to 0.001	ݏ by utilizing Equation 

(4.51). Then, the scaling factors ܭ∗ are tuned by using MATLAB®/SISO design tool 

so as to suppress the resulting resonant peak in the closed-loop responses, and they 

are found as 0.75 and 0.78 for extension and retraction cases, respectively. The 

resulting controllers for extension and retraction cases are given in Equations (4.52) 

and (4.53) as follows: 

ሻݏ௨௘௫௧ሺܨ  ൌ ሺ0.75ሻሺ4 ∙ 10ିହሻ
ݏ

ݏ0.001 ൅ 1
 (4.52)

ሻݏ௨௥௘௧ሺܨ  ൌ ሺ0.78ሻሺ4.6 ∙ 10ିହሻ
ݏ

ݏ0.001 ൅ 1
 (4.53)

The closed-loop Bode diagrams of the system with the feedforward compensators are 

given in Figure 4-9, in which it is clearly seen that the system satisfies the dual ten 

bandwidth requirement. In addition, the resonant peak of the closed-loop system is 

limited by 1	݀ܤ, which is also satisfactory for the transient performance of the 

system [58]. 
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Figure 4-9 Closed-loop Bode diagrams with ܭ௣ and ܨ௨ 

 

4.3 Velocity Estimation 

In this study, an incremental encoder is utilized for the position measurement of the 

actuator under test and it provides pulses proportional to the velocity of the actuator. 

Therefore, the velocity of the actuator is to be estimated from these discrete signals, 

which is a challenging work, particularly in low velocity ranges [59]. Although the 

use of difference equations to estimate the velocity is the easiest way, it is prone to 

discretization errors. Hence, there are many methods considered in literature in order 

to reduce these undesirable effects [60]. 

The velocity of the test actuator, which is considered as the disturbance input to the 

load simulator, is estimated by using a discrete Kalman filter with a kinematic model, 

or a kinematic Kalman filter (KKF). The main advantage of the estimation based on 

kinematic models is that the filter is independent of the dynamics of the plant. 

Therefore, it is not affected by the parameter variations or external disturbances [61]. 
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In addition, a Kalman filter provides optimal state estimation by minimizing the 

mean of the squared error [62]. 

In this study, the generalized coordinate of the test actuator is denoted by ݔௗ. Hence, 

the state vector for estimation is given as 

ܠ  ൌ ൥
ௗݔ
ሶௗݔ
ሷௗݔ
൩ (4.54)

In the following sub-sections, the continuous time kinematic model is first 

introduced, and then it is discretized. The recursive Kalman filter algorithm is also 

explained. The filter algorithm developed is implemented in MATLAB®/Simulink® 

and it is tuned offline by using experimental measurements. 

4.3.1 Kinematic Model 

In literature, constant velocity and constant acceleration models are commonly used 

for estimating the velocity of a moving object [63]. They correspond to either second 

or third order models obtained from simple equations of motion. In this study, a third 

order model is preferred since it provides an improved velocity estimate with a better 

estimation error over a second order model [64]. 

The third order model is generally called as Wiener process acceleration state model 

[64]. In this section, a continuous time Wiener process acceleration model is 

introduced, and then it is discretized. 

It is assumed that the rate of change of the acceleration is modeled by a zero mean 

white noise ݓ෥ሺݐሻ as follows: 

ഺௗݔ  ൌ ሻ (4.55)ݐ෥ሺݓ

where the expected value of the noise ܧሾݓ෥ሺݐሻሿ is 
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ሻሿݐ෥ሺݓሾܧ  ൌ 0 (4.56) 

Therefore, by using Equation (4.55), the state equation for the continuous time model 

of the system can be written as 

ሻݐሶሺܠ  ൌ ሺtሻܠۯ ൅  ሻ (4.57)ݐ෥ሺݓܟ۰

where 

ۯ  ൌ ൥
0 1 0
0 0 1
0 0 0

൩ ܟ۰ ൌ ൥
0
0
1
൩ (4.58) 

The corresponding discrete time model with a sample time of ௦ܶ is then given as 

௞ାଵܠ  ൌ ઴ܠ௞ ൅  ௞ (4.59)ܟ

where Φ is the state transition matrix given as 

 ઴ ൌ ۯ݁ ೞ் ൌ ൥
1 ௦ܶ ௦ܶ

ଶ/2
0 1 ௦ܶ
0 0 1

൩ (4.60) 

and ܟ௞ is the value of the process noise at the ݇௧௛ step, whose covariance matrix ۿ is 

obtained in [63] as follows: 

ۿ  ൌ ௞ܟ௞ܟሾܧ
்ሿ ൌ ቎

௦ܶ
ହ/20 ௦ܶ

ସ/8 ௦ܶ
ଷ/6

௦ܶ
ସ/8 ௦ܶ

ଷ/3 ௦ܶ
ଶ/2

௦ܶ
ଷ/6 ௦ܶ

ଶ/2 ௦ܶ

቏  ෤ (4.61)ݍ

Here, ݍ෤ is denoted as the power spectral density of the continuous time process noise 

and it is a design parameter for tuning this model to represent the actual motion. 
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4.3.2 The Discrete Kalman Filter Algorithm 

In 1960, Kalman proposed a recursive solution method to estimate the state of a 

process by minimizing the mean of the squared error between the measured and 

estimated states [62]. The method is applicable for a system described by a linear 

stochastic difference equation 

௞ାଵܠ  ൌ ઴ܠ௞ ൅ ௞ (4.62)ܟ

with an equation for the measurement ࢟௞ as	

୩࢟  ൌ ௞ܠ۶ ൅ ௞ (4.63)ܞ

where ۶ is the output matrix. The process noise ܟ௞ and measurement noise ܞ௞ are 

assumed to possess a zero-mean, white Gaussian distribution with the following 

covariance matrices, ۿ and ܀, respectively. 

ۿ  ൌ ௞ܟ௞ܟሾܧ
்ሿ (4.64)

܀  ൌ ௞ܞ௞ܞሾܧ
்ሿ (4.65)

The equations of the Kalman filter algorithm are divided into two main groups, 

namely, the time update and measurement update equations. The time update and 

measurement update equations are also called as predictor and corrector equations, 

respectively. 

The predictor equations are responsible for projecting the current state ܠ௞ିଵ and error 

covariance estimates ۾௞ିଵ so as to get the priori estimates ܠො௞
ି and ۾௞

ି for the next 

time step. Time update equations are given as 

ො௞ܠ 
ି ൌ ઴ܠො௞ିଵ (4.66)

௞۾ 
ି ൌ ઴۾௞ିଵ઴் ൅ (4.67) ۿ



102 

 

On the other hand, the corrector equations incorporate the new measurement into the 

priori estimates ܠො௞
ି and ۾௞

ି to have an improved posteriori estimates ܠො௞ and ۾௞. In 

the measurement update stage, initially the Kalman gain ۹௞ is computed as 

 ۹௞ ൌ ௞۾
ି۶்ሺ۶۾௞

ି۶் ൅  ሻିଵ (4.68)܀

which minimizes the error covariance between the measured and estimated states 

[62]. 

By using the Kalman gain obtained in Equation (4.68) as the blending factor of the 

priori estimates and measurements, the posteriori estimates are obtained as  

ො௞ܠ  ൌ ො௞ܠ
ି ൅ ۹௞ሺܡ௞ െ ො௞ܠ۶

ିሻ (4.69) 

௞۾  ൌ ሺ۷ െ ۹௞۶ሻ۾௞
ି (4.70) 

The Kalman filter algorithm is initialized with the initial estimates for the state ܠො௞ିଵ 

and the error covariance ۾௞ିଵ. Then, the predictor-corrector algorithm of the Kalman 

filter is recursively operated at each time step as seen in Figure 4-10. 

 

Figure 4-10 Recursive Kalman filter algorithm 
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4.3.3 Filter Implementation and Tuning 

The discrete Kalman filter algorithm to estimate the velocity and acceleration of the 

actuator under test is realized in MATLAB®/Simulink® as seen in Figure 4-11. In 

each sub-system, one of the time update (predictor) and measurement update 

(corrector) equations given in Figure 4-10 is implemented. In addition, the state 

transition and the output matrices of the kinematic model are specified in the filter as 

well as the measurement and noise covariance matrices. 

 

Figure 4-11 MATLAB®/Simulink® implementation of the Kalman filter 

The measurement noise covariance ܀ is a measure of the quality of the measurement 

device and can be approximated from the transducer resolution. Further, the process 

noise covariance matrix ۿ is a measure of the quality of the mathematical model to 
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Equation (4.59), and it is expressed in terms of the sample time ௦ܶ of the DAQ 

system and the power spectral density of the process ݍ෤. The power spectral density ݍ෤ 

is a design parameter, and it can be selected such that the value of the expected 

change in the acceleration over a sample time ௦ܶ is in the order of the following 

expression [63]: 

 ඥܳଷଷ ൌ ඥݍ෤ ௦ܶ (4.71) 

Therefore, the selection of a relatively small intensity ݍ෤ results in a nearly constant 

acceleration (NCA) model and vice versa.  

On the other hand, the performance of the filter depends on the relative relationship 

between the process noise covariance matrix ۿ and the measurement noise 

covariance matrix [65] ܀. The measurement noise covariance, a scalar in our case 

since there is a single measurement, is initially fixed according to the resolution of 

the encoder (ܴ ൌ 0.005ଶ	݉݉ଶ). As the initial starting point for the process noise 

covariance matrix ۿ, Equation (4.71) is utilized by assuming a reasonable value 

 ,to represent the change of acceleration over a sample time ௦ܶ. Then (ଶݏ/݉݉	300)

the process noise covariance matrix Q is obtained via off-line tuning by using 

experimental data. It is observed as expected that as the value of the process intensity 

 ෤ increases, the filter yields to noisy velocity and acceleration estimation. On theݍ

other hand, the velocity and acceleration estimations become smoother as the process 

noise covariance is decreased. By tuning the process intensity with experimental 

data, the process noise covariance matrix ۿ and the measurement noise covariance ܴ 

are obtained as 

ۿ  ൌ ൥
5 ∙ 10ିଵ଴ 1.25 ∙ 10ି଺ 1.67 ∙ 10ିଷ

1.25 ∙ 10ି଺ 3.33 ∙ 10ିଷ 5
1.67 ∙ 10ିଷ 5 10ସ

൩ , ܴ ൌ 25 ∙ 10ି଺ (4.72) 
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The experimental results are given in Figure 4-12 and Figure 4-13 in which the 

velocity and acceleration estimates obtained by kinematic Kalman filter and 

backward difference formulas are compared. Note that the velocity is estimated by 

directly applying the first order backward difference formula for the first derivative, 

whereas the position data is pre-filtered before applying the first order backward 

difference formula for the second derivative. 

In Figure 4-12, it is seen that the numerical differentiation method (1st order  

 

 

Figure 4-12 Velocity and acceleration estimations with backward difference formula 

and kinematic Kalman filter – High velocity 
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backward difference equation) provides relatively good results for velocity 

estimation at high speeds. However, the consequence of discretization error in low 

speeds becomes more noticeable as seen in Figure 4-13. On the other hand, 

kinematic Kalman filter provides better results for both low and high velocities. It is 

observed that the kinematic Kalman filter provides highly smooth acceleration 

estimates compared to numerical differentiation as seen both in Figure 4-12 and 

Figure 4-13. 

  

Figure 4-13 Velocity and acceleration estimations with backward difference formula 

and kinematic Kalman filter – low velocity 
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4.4 Implementation 

In this section, the implementation of the controllers designed in the previous 

sections into the real-time target machine is explained. A MATLAB®/Simulink® 

model of the controllers is constructed, compiled, and downloaded to the target 

machine. This model is utilized in order to perform the real-time experiments to 

evaluate the performance of the load simulator in the next chapter. 

In Figure 4-14, the MATLAB®/Simulink® model of the controllers is illustrated. The 

model accepts the applied force, spool position, chamber pressures, and the actuator 

positions of the load simulator and the hydraulic drive system under test as the 

inputs. The input blocks for the real-time target machine are used under the receive 

subsystem of the model in order to read the data from terminal boards. The measured 

analog signals in Volts are converted into the corresponding physical units as ܰ and 

 for applied force and chamber pressure readings, respectively. For pressure ܽܲܯ

readings, look-up tables are constructed by using the calibration results given in 

Appendix B.1. Similarly, the counter of the incremental encoder is converted into the 

length unit of ݉݉. 

The input signals are then utilized for the control computations. The position of the 

disturbance actuator is used by the kinematic Kalman filter in order to estimate its 

velocity so that it is used in the disturbance feedforward controller. On the other 

hand, reference force signals for the load simulator can easily be created by using the 

source blocks available in the library of the Simulink®. The reference signal is 

directly fed through the reference, or set-point, feedforward controller. For both the 

feedforward controllers, the sign of the spool position feedback determines the 

required controller gains to be used. For the feedback controller, the error is 

determined by comparing the reference signal and the measured force signal. The 

outputs of each controller, in Volts, are summed to get the overall manipulated input 

signal, which corresponds to the desired valve spool opening. 
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Figure 4-14 Real-time controller of the electro-hydraulic load simulator in 

MATLAB®/Simulink® 

The model outputs the computed value of the manipulated input in order to drive the 
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bandwidth of the system is about ߱௕ ൌ a sampling rate of ߱௦ ,ݖܪ	35 ൌ  is ݖܪ	1000

selected, which satisfies the requirement that 20 ൏ ߱௦/߱௕ ൏ 40 [66]. The controller 

model is compiled in the host PC and downloaded to the real-time target machine. 
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Initially the disturbance feedforward controller of the electro-hydraulic load 

simulator, ܨௗሺݏሻ, is disabled, and a zero reference force input is applied, ܨ௥௘௙ ൌ 0	ܰ. 

The applied disturbance position ݔௗ and the corresponding velocity ݒௗ are given in 

Figure 5-1. 

 

Figure 5-1 Disturbance input applied to the load simulator, ݔௗ, when ܨௗሺݏሻ is 

disabled 
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The response of the closed-loop force controlled load simulator, ܨ, under the 

influence of sinusoidal disturbance motion, ݔௗ, is given in Figure 5-2. It is seen in 

this figure that as the frequency of the applied disturbance increases the error in the 

force also increases. To illustrate, when the frequency of the disturbance is about 

 ܰ whereas the error increases up to	the error in the force is about 500 ݖܪ	1.7

1200	ܰ when the frequency of the disturbance reaches to 4	ݖܪ. 

 

Figure 5-2 Force response when ܨௗሺݏሻ is disabled 
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It is also observed in the Figure 5-2 that around ݐ ൌ  the error in the force ݏ	60

drastically increases. Note that the maximum velocity of the disturbance is about 

 Since the velocity of the disturbance .ݖܪ	ௗ is 7ݔ when the frequency of ,ݏ/݉݉	219

exceeds the maximum retraction velocity of the hydraulic load simulator (200	݉݉/

 the saturation of the flow valve occurs at that moment. Therefore, the saturation ,(ܿ݁ݏ

of the control valve causes this increase in the force error. In addition, the effect of 

this large force error leads to the deterioration of the position response of the actuator 

under test as seen in Figure 5-1. 

In Figure 5-3, the Bode magnitude diagram between the force error and the applied 

disturbance motion is given by normalizing it with the equivalent stiffness of the load 

system, i.e., ܨሺ݆߱ሻ/݇௦ܺௗሺ݆߱ሻ. The linearized model responses for extension and 

retraction cases determined in the previous chapter are also plotted on the same 

figure. 

 

Figure 5-3 Bode magnitude diagram of ܨሺ݆߱ሻ/݇௦ܺௗሺ݆߱ሻwhen ܨௗሺݏሻ is disabled 
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In order to show the improvement in the disturbance rejection performance of the 

load simulator with the use of the feedforward controller, ܨௗሺݏሻ, the same chirp 

signal for the disturbance, ݔௗ, is applied where ܨௗሺݏሻ is enabled. In Figure 5-4, the 

applied disturbance position ݔௗ and its velocity ݒௗ are shown. 

 

Figure 5-4 Disturbance input applied to the load simulator, ݔௗ, when ܨௗሺݏሻ is 

enabled 
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The force response of the electro-hydraulic load simulator as a result of the applied 

disturbance is given in Figure 5-5, where still a zero reference force is applied. The 

error is within 100	ܰ when the frequency of the disturbance is about 1.7	ݖܪ whereas 

it approaches to 200	ܰ as the frequency of the disturbance reaches to 7	ݖܪ. 

 

Figure 5-5 Force response when ܨௗሺݏሻ is enabled 
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The Bode magnitude diagram between the force error and the applied disturbance 

motion is given in Figure 5-6 by normalizing it with the equivalent stiffness of the 

load system, i.e., ܨሺ݆߱ሻ/݇௦ܺௗሺ݆߱ሻ. The linearized model responses by considering a 

perfect estimation of the disturbance velocity are also plotted on the same figure. It is 

seen that although a good improvement is achieved, the result is slightly poorer than 

the expected performance. Since the linearized models assume that the velocity of 

the disturbance actuator is perfectly estimated, they result in better disturbance 

rejection, whereas kinematic Kalman filter provides only an accurate enough 

estimate of the velocity. In addition, in the low frequency region it is observed that 

the blue curve becomes constant at about െ53	݀ܤ, which corresponds to the noisy 

force reading between േ100	ܰ obtained from the load transducer when the 

frequency of the disturbance is low, or even zero. 

 

Figure 5-6 Bode magnitude diagram of ܨሺ݆߱ሻ/݇௦ܺௗሺ݆߱ሻwhen ܨௗሺݏሻ is enabled 
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The decrease in the force error with the use of the disturbance feedforward 

controller, ܨௗሺݏሻ, is shown in time domain as given in Figure 5-7. In the figure, the 

results with and without the use of feedforward controller, ܨௗሺݏሻ, are plotted 

together, and the decrease in the error, especially in the high frequency excitations, is 

clearly seen. Actually, for the applied sinusoidal disturbance input, ݔௗ, with 5	݉݉ 

magnitude, the error is bounded between േ200	ܰ for the frequencies up to 7	ݖܪ 

when ܨௗሺݏሻ is enabled. 

 

Figure 5-7 Improvement in disturbance rejection performance with the use of ܨௗሺݏሻ 
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In the previous experiments, the reference force for the electro-hydraulic load 

simulator is set as zero. Since the controller parameters are determined in the 

previous chapter for null valve coefficients, their validity for other loading conditions 

should also be evaluated. Now, the same tests will be performed for a reference force 

of ܨ௥௘௙ ൌ 5000	ܰ and when the feedforward controller ܨௗሺݏሻ is enabled. Figure 5-8 

 

Figure 5-8 Disturbance input applied to the load simulator, ݔௗ, when ܨௗሺݏሻ is 

enabled and ܨ௥௘௙ ൌ 5000	ܰ 
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illustrates the disturbance motion (ݔௗ and ݒௗ)applied to the load simulator. In Figure 

5-9, the response of the load simulator is given. It is seen that only a slight increase 

compared to previous experiments is observed in the force error. Hence, the error is 

between െ260	ܰ and 200	ܰ for the same disturbance. 

 

Figure 5-9 Force response when ܨௗሺݏሻ is enabled and ܨ௥௘௙ ൌ 5000	ܰ 
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5.2 Force Tracking Performance 

In this section, the force tracking performance of the electro-hydraulic load simulator 

is evaluated by applying a sinusoidal force onto the actuator of the hydraulic drive 

system under test. In all of the following experiments, the disturbance feedforward 

controller, ܨௗሺݏሻ, is enabled in order to reject the disturbance motion, ݔௗ, of the 

actuator under test as response to the applied forces. In Figure 5-10, the  

 

Figure 5-10 Force tracking performance when ܨ௨(s) is disabled 
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reference force input to the hydraulic load simulator and its response are given. A 

chirp signal with frequency ranging from 0.1	ݖܪ to 15	ݖܪ with a magnitude of 

1000	ܰ is used as the reference input. Initially, the reference, or set-point, 

feedforward controller, ܨ௨ሺݏሻ is disabled. In Figure 5-11, the Bode 

 

 

 

Figure 5-11 Bode diagrams of ܨሺ݆߱ሻ/ܨ௥௘௙ሺ݆߱ሻ when ܨ௨ሺݏሻ is disabled 
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magnitude and phase diagrams of the force controlled system are given. The linear 

model responses are also plotted on the figures and they accurately predict the 

closed-loop system response. It is seen in the magnitude curve that the closed-loop 

system satisfies the 1	݀ܤ magnitude requirement of the dual ten criteria. On the other 

hand, 10୭ phase lag requirement is only satisfied up to about 5	ݖܪ, as expected by 

the linear models. Although the magnitude of the response clearly follows the 

reference as seen in Figure 5-10, the increased phase lag with increasing frequency 

of the reference signal leads to an increased instantaneous force error as indicated in 

Figure 5-12. 

 

Figure 5-12 Instantaneous force error when ܨ௨ሺݏሻ is disabled 
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Figure 5-13 Force tracking performance when ܨ௨ሺݏሻ is enabled 
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Figure 5-14 Bode diagrams, ܨሺ݆߱ሻ/ܨ௥௘௙ሺ݆߱ሻ when ܨ௨ሺݏሻ is enabled 
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With the use of the feedforward controller ܨ௨ሺݏሻ, the phase lag of the system is 

considerably decreased to the value of about െ6୭, and hence, it satisfies the 10୭ 

phase lag requirement of the dual-ten index. While the dual-ten requirements are 

satisfied, the decrease in the instantaneous force error is illustrated in Figure 5-15. 

 

Figure 5-15 Decrease in the instantaneous force error with the use of ܨ௨ሺݏሻ 
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A sinusoidal reference force input with a magnitude of 3000	ܰ and a frequency of 

 is applied to the electro-hydraulic load simulator. The reference input and the ݖܪ	5

response of the hydraulic load simulator are given together with the simulation 

results in Figure 5-16. A Fourier analysis of the experimental data shows that the 

magnitude ratio and phase lag at this frequency are 0.26	݀ܤ and െ2.1୭, respectively. 

 

 

Figure 5-16 Force response at 3000	ܰ and 5	ݖܪ 
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The velocity responses of the actuators of the load simulator and the hydraulic drive 

system under test are given in Figure 5-17. Although a constant position reference 

input is applied for the actuator of the hydraulic drive system under test, it is seen 

that the velocity of this actuator reaches up to 100	݉݉/ܿ݁ݏ with the application of 

the reference force by the load simulator. Thanks to the disturbance feedforward 

controller, the effect of the disturbance motion is considerably attenuated, and a 

smooth force output is obtained as seen in Figure 5-16. Therefore, the estimated 

velocity of the test actuator during the tests is also provided to the non-linear 

simulation model as input in addition to the sinusoidal force reference input. 

 

Figure 5-17 Actuator velocities at 3000	ܰ and 5	ݖܪ 
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simulator can be utilized as an offline tool to predict the experimental test results if 

an accurate enough dynamic model of the test system is available. 

 

Figure 5-18 Spool position feedback at 3000	ܰ and 5	ݖܪ 
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estimated velocities of the actuators of the load simulator and the hydraulic drive 

system under test are given in Figure 5-20. 

 

Figure 5-19 Force response at 7500	ܰ and 1	ݖܪ 
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Figure 5-20 Actuator velocities at 7500	ܰ	and 1	ݖܪ 

 

Figure 5-21 Spool position feedback at 7500	ܰ and 1	ݖܪ 
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Hence, it is crucial to perform the tests on the load simulator test bench within its 

limits in order to get satisfactory results without saturation. Furthermore, the 

effectiveness of the simulation model in approaching the actual test results is shown 

once again, and its use before the actual tests is emphasized again. 

The same test is performed for the sinusoidal force reference input of 10	݇ܰ at 1	ݖܪ. 

Knowing that the actuator under test has a highly low dynamic stiffness and exhibits 

large deflections at these loads, the saturation of the loading system is still expected. 

However, in order to provide an example loading at relatively large forces, the 

response of the system to 10	݇ܰ at 1	ݖܪ sinusoidal input is given in Figure 5-22. 

 

Figure 5-22 Force response at 10	݇ܰ and 1	ݖܪ 
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Figure 5-23 Actuator velocities at 10	݇ܰ and 1	ݖܪ 

 

Figure 5-24 Spool position feedback at 10	݇ܰ and 1	ݖܪ 
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The model accurately estimated the force and spool position responses. The large 

force errors at saturation instants are also estimated accurately by the simulation 

results as in Figure 5-22. 

The loading capacity of the simulator is summarized in Figure 2-8 and Figure 2-9 

with the selected components to fulfill the given requirements. In this section, a 

number of reference force inputs at different magnitudes and frequencies are applied 

to the electro-hydraulic load simulator to show that the requirements are satisfied. 

The spool position feedback of the flow control valve is taken and its saturation 

instants are observed. It is clearly shown by the experimental results that the 

simulator satisfies the requirements. To illustrate, the test with a reference force input 

of 3000	ܰ at 5	ݖܪ shows that this reference input can be applied if the velocity of 

the disturbance actuator is less than 100	݉݉/ݏ and the saturation of the flow control 

valve is observed when this velocity is exceeded. In addition, the experimental 

results are compared with the non-linear simulation results and the validity of the 

simulation model is clearly indicated. Therefore, the limits of the simulator 

summarized in Table 2-2 and Table 2-3 are validated and the simulation model is 

proposed as an offline tool to predict the test results before performing them on the 

load simulator. 
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impedance of the system. So as to determine the stiffness of the load system, an 

analysis of the load is performed by considering the saturation limit of the 

proportional control valve, and the dynamic loading limits of the simulator are 

indicated. Moreover, the hydraulic power pack providing the required power at 

constant pressure for the operation of the proportional control valve is explained with 

all its components. 

The hydraulic load simulator is instrumented with a number of transducers, namely, 

a force transducer, two pressure transducers for each chambers of the hydraulic 

actuator, and a position transducer. The force transducer provides the feedback for 

the controlled variable to be used in the closed-loop control. Additionally, an 

incremental encoder is used to measure the actuator position of the hydraulic drive 

system under test, and its output is also used by the force control system. A real-time 

control computer with its various input and output modules is setup as the DAQ 

system and the real-time control computer. 

The construction of the test bench to accommodate the actuators of the hydraulic 

load simulator and the hydraulic drive system under test is briefly explained in this 

study. It is specifically aimed to test a variable speed pump controlled hydraulic 

drive system with a single rod hydraulic actuator. Therefore, the design of the test 

bench is performed according to the dimensions of the actuator to be tested. The 

solid model of the test bench is created by using SolidWorks 2010. The closed frame 

design of the test bench results in a compact and easily transportable structure 

without allowing the created forces to be transferred to its environment. 

A non-linear mathematical model of the electro-hydraulic load simulator is obtained 

with the purpose of control system design and analysis, and a numerical simulation 

model is constructed by using MATLAB®/Simulink®. Most of the model parameters 

are determined from the technical drawings and/or catalogs of the manufacturers of 

the components. However, the friction characteristic of the hydraulic actuator is 

determined by performing open-loop tests, and the bulk modulus of the hydraulic 

fluid is obtained from the literature. The validity of the model with these parameters 
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is shown by performing open-loop experiments and comparing them with simulation 

results. 

The validated mathematical model is linearized around a critical operating point, and 

the continuous time transfer functions of the system are obtained. By utilizing these 

transfer functions, a combined feedforward and feedback force controller, and a 

velocity feedforward controller to reject the disturbance motion of the system under 

test are designed. It is aimed to achieve an enhanced dynamic performance and 

stability with a proportional closed-loop controller whereas the dynamic errors are 

diminished thanks to the reference and disturbance feedforward controllers.  

In addition, a Kalman filter with a kinematic model is designed in order to estimate 

the actuator velocity of the hydraulic drive system under test since only its position is 

measured with an incremental encoder. The implementation and tuning of the filter 

are explained. The estimation results are compared with the ones obtained via finite 

difference equations, and it is concluded that the KKF provides smooth velocity 

estimation, especially in low velocities. Hence, it is used in the disturbance 

feedforward controller.  Although the KKF provides an estimate of the acceleration, 

it is observed that its use in the controller causes chattering of the control valve. 

Hence, the acceleration estimation is not as smooth as the velocity estimate. 

The performance of the electro-hydraulic load simulator is evaluated by performing 

real-time experiments and comparing them with model responses. The disturbance 

rejection performance of the system is evaluated under the influence of a sinusoidal 

disturbance motion of the hydraulic actuator under test. The method is highly 

powerful since the development of large force errors in the force control loop is 

prevented by synchronizing the velocity of load simulator with that of the 

disturbance actuator. The force tracking performance of the load simulator is 

evaluated by applying a sinusoidal force onto the actuator under test. The 

improvement in the force tracking performance and the resulting decrease in the 

instantaneous force error with the use of the reference feedforward controller are also 

shown. 
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The saturation limits of the electro-hydraulic load simulator are investigated by 

applying some sinusoidal force inputs of different magnitudes and frequencies. It is 

concluded that the design requirements stated in Chapter 2.1 are satisfied. The 

experimental results are compared with the non-linear simulation results and it is also 

proposed that the non-linear simulation model can be utilized as an offline test 

platform before performing the real-time experiments. 

To conclude, the whole design process of the electro-hydraulic load simulator is 

presented and the dynamic loading limits of the simulator are clearly indicated in this 

study. It is currently being used for the testing of a variable speed pump controlled 

hydraulic drive system. Since its limits are well-defined, similar systems can also be 

tested by using the simulator. Therefore, the load simulator is a convenient testing 

platform for the research activities related to the development of new drive and 

control systems as its use shortens the development period and saves the research 

funds. 

 

6.2 Future Work 

In this study, a differential hydraulic actuator is used as the actuator of the electro-

hydraulic load simulator since it is readily available for use. Although differential 

actuators are preferred because of their compact structures, they exhibit some 

important drawbacks due to their inherent nonlinearity. Since the DC gains of the 

actuator in extension and retraction cases are different, the feedforward controllers 

are separately designed in this study. Even though the feedforward controller gains 

are switched during tests depending on the sign of the spool position, a constant 

feedback gain is preferred since gain switching in feedback loop may cause stability 

problems. Hence, a gain scheduling method or a feedback linearizing controller can 

be utilized to further diminish the effect actuator nonlinearity.  

Another drawback of the differential actuator is that since the maximum achievable 

forces and velocities in each direction of the actuator motion are different from each 
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other, the performance of the simulator in each direction is different. That is, the 

maximum achievable velocity and the maximum force that can be applied are limited 

by the rod side of the actuator. Therefore, the specifications of the hydraulic system 

are given for this chamber of the actuator. Therefore, a double-rod hydraulic actuator 

can be selected to have symmetrical performance. 

An important use of the load simulators is observed in hardware-in-the-loop 

simulations and tests. In these applications, a physical simulation model of the plant 

is constructed and the forces determined by the real-time solution of this model are 

applied to the actuator under test by the load simulator. In this study, the controller of 

the hydraulic load simulator is implemented by using MATLAB®/Simulink® in an 

xPC target machine, and the used software and hardware provide the HIL 

simulations by their real-time capabilities. 

Besides the development of new hydraulic drive and control systems, the test bench 

can also be utilized to evaluate the performance of newly developed force control 

algorithms. Therefore, the research activities related to the active suspension 

systems, injection molding machines, and etc. can also be carried out with the 

electro-hydraulic load simulator designed and constructed in this study. 

To improve the disturbance rejection performance of the system, an accelerometer 

can be utilized so that both the compensation related to the acceleration of the 

actuator is included to the control signal, and also the accuracy of the velocity 

estimation obtained by kinematic Kalman filter can be improved. 

In this study, a number of simple buttons and switches are utilized in Simulink® 

model to control the load simulator. However, a graphical user interface (GUI) can 

be developed in order to provide the user with the required options to select and 

modify the tests more practically. In addition, the GUI can provide a mean for 

formatting and displaying the test results, which can also be adjusted through the 

GUI options. 
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The calibration procedure is summarized as follows [67]: 

 The transducer to be calibrated is connected to the test port. 

 A calibration load with a known weight is placed onto the weight carrier. 

 The oil pressure is increased by using the screw pump and the weight carrier 

with the calibration load is raised by the oil pressure. 

 Having the pressure oscillations damped out, the voltage output of the 

transducer is read. 

 The previous steps are repeated for different calibration loads. 

The calibration curves of the pressure transducers are given in Figures B.1-2 and 

B.1-3 for the rod and piston sides. 

 

Figure B.1-2 Rod side pressure transducer calibration 
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 Figure B.1-3 Piston side pressure transducer calibration 

 

B.2 Gain Setting and Calibration of Power Amplifier 

A signal amplifier, Burster Amplifier Module 9243 [68], is utilized in this study in 

order to amplify the output of the force transducer, which is a signal in the order of a 

few millivolts. In Figure B.2-1, the front view of the amplifier module together with 

the terminal assignment table is given. In the figure, the fine gain adjustment & zero 

point potentiometers can also be seen. 
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 ௧ܸ௢௧௔௟ ൌ ௦ܸ௧௔௚௘ଵ ∙ ௦ܸ௧௔௚௘ଶ ∙ ௦ܸ௧௔௚௘ଷ ∙ ሺ0.85…1.11ሻ (B.3)

where the first three gains, ௦ܸ௧௔௚௘ଵ, ௦ܸ௧௔௚௘ଶ, ௦ܸ௧௔௚௘ଷ, are for the coarse adjustment 

stages, and the last term represents the fine adjustment stage. 

Hence, the coarse adjustment gains are set as 10, 16.75,	and	8, respectively. 

Therefore, the product of these three gains yields to a gain of	1340. These gains are 

set by properly adjusting the DIP (dual in-line package)switches as seen in Figure 

B.2-2. Finally, the desired gain of 1333 is obtained by the fine adjustment 

potentiometer. 

The calibration of the amplifier module is performed by using the highly precise 

5.0	ܸ݉ voltage source available on the module. The corresponding terminal of the 

precision voltage source is terminal 8 (Figure B.2-1). Hence, the following steps are 

followed for the calibration of the amplifier module: 

 Disconnect the transducer, 

 Connect the input terminals (13, 14) to the ground terminal (9), 

 Adjust “0	ܸ” at the output of the module via the zero point potentiometer, 

 Connect terminal 14 to terminal of the precision voltage source (8), 

 Adjust the calculated voltage output with the set gain ௧ܸ௢௧௔௟, 

 Connect the transducer and adjust the zero point through the potentiometer. 
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 Simulation Parameters and Plant Transfer Functions 

% Load Simulator - Model Parameters 
% 04.05.2014 
% ---------------------------------------- % 
clear all; 
clc; 
% ---------------------------------------- % 
% Sampling time 
Ts = 0.001;      % [Second] 
% Supply pressure 
p_supply = 12;   % [MPa] 
% Fluid propoerties 
B = 1.3e9/1e6;   % Bulk Modulus of the Fluid - Nominal 
Value [Pa]2[MPa]  
% Valve parameters 
Kv = (25/60*1e6)/10/sqrt(3.5); % [mm^3/s]/V/[MPa]^0.5 
Tv = 1 / 2 / pi / 80;   % [Rad/s] 
u_max = 10;  % [V] 
% Actuator Parameters 
% Hanchen  
A_A = pi/4 * (0.060^2) * 1e6; % Piston Area A[m^2]2[mm^2] 
A_B = pi/4 * (0.060^2-0.030^2) * 1e6; % Piston Area B 
alpha = A_B / A_A;               % Area Ratio [unitless] 
x_piston = 0.2*1e3;              % Piston Stroke [m]2[mm] 
V_dead_A = A_A*15;               % Dead volume A 
[m^3]2[mm^3] 
V_dead_B = A_B*15;               % Dead volume B 
[m^3]2[mm^3] 
% Initial volume in the chambers of the Actuator 
% Assuming that the piston is at the midstroke 
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% Initial Volume A [mm^3] – at mid-stroke 
V_A = V_dead_A + x_piston * 0.5 * A_A; 
V_initial_A = V_A; 
% Initial Volume B [mm^3] 
V_B = V_dead_B + x_piston * 0.5 * A_B;  
V_initial_B = V_B; 
% Load Model 
% M = 3*1e-3;  % Mass [metric ton] – for open-loop tests 
M = (3+5)*1e-3;  % Mass [metric ton] with adapter parts 
k = 565 * 2;   % Spring rate [N/mm] 
b = 6500/1e3;  % Damping coefficient [N/(m/s)]2[N/(mm/s)] 
  
%% ---------------------------------------- % 
% Linearized Models 
% ---------------------------------------- % 
% Effective flow area 
A = A_A * (1 + alpha^2 * (V_A /V_B)); 
% Capacitance 
C = V_A / B; 
% Valve Dynamics 
G_valve = tf(1,[Tv 1]); 
% ---------------------------------------- % 
% For xv >= 0, Extention of the hydraulic actuator 
% Operating point around which the linearization 
% will be performed: 
p_load_0 = 0; 
x_valve_0 = 0; 
% Steady State Pressures 
p_A_0_ext = (p_load_0 + alpha^3 * p_supply) / (1 + 
alpha^3); 
p_B_0_ext = (-alpha^2 * (p_load_0 - p_supply)) / (1 + 
alpha^3); 
% Valve Coefficients [mm^2/s] 
KqA_ext = Kv * sqrt(p_supply - p_A_0_ext); 
KqB_ext = Kv * sqrt(p_B_0_ext); 
KcA_ext = Kv * x_valve_0 / 2 / sqrt(p_supply - 
p_A_0_ext); 
KcB_ext = -Kv * x_valve_0 / 2 / sqrt(p_B_0_ext); 
% Equivalent Parameters 
KQ_ext = KqA_ext + alpha * (V_A / V_B) * KqB_ext; 
KC_ext = (KcA_ext - alpha^3 * (V_A / V_B) * KcB_ext) / (1 
+ alpha^3); 
% Transfer Functions for Extention 
% G_FU(s) for extension 
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G_ext_force = tf(KQ_ext * k * A_A,[C*M (C*b+KC_ext*M) 
(KC_ext*b+A*A_A+k*C) (k*KC_ext)]) * G_valve; 
% G_FXd(s) for extension 
G_ext_force_dist = minreal(tf(k*[C*M (C*b+KC_ext*M) 
(KC_ext*b+A*A_A) 0],[C*M (C*b+KC_ext*M) 
(KC_ext*b+A*A_A+k*C) (k*KC_ext)])); 
% ---------------------------------------- % 
% For xv < 0, Retraction of the hydraulic actuator 
% Steady State Pressures 
p_A_0_ret = (p_load_0 + alpha * p_supply) / (1 + 
alpha^3); 
p_B_0_ret = (p_supply - alpha^2 * p_load_0) / (1 + 
alpha^3); 
% Valve Coefficients 
KqA_ret = Kv * sqrt(p_A_0_ret); 
KqB_ret = Kv * sqrt(p_supply - p_B_0_ret); 
KcA_ret = -Kv * x_valve_0 / 2 / sqrt(p_A_0_ret); 
KcB_ret = Kv* x_valve_0 / 2 / sqrt(p_supply - p_B_0_ret); 
% Equivalent Parameters 
KQ_ret = KqA_ret + alpha * (V_A / V_B) * KqB_ret; 
KC_ret = (KcA_ret - alpha^3 * (V_A / V_B) * KcB_ret) / (1 
+ alpha^3); 
% Transfer Functions for Retraction 
G_ret_force = tf(KQ_ret * k * A_A,[C*M (C*b+KC_ret*M) 
(KC_ret*b+A_A*A+k*C) (k*KC_ret)]) * G_valve; 
G_ret_force_dist = tf(k*[C*M (C*b+KC_ret*M) 
(KC_ret*b+A*A_A) 0],[C*M (C*b+KC_ret*M) 
(KC_ret*b+A*A_A+k*C) (k*KC_ret)]); 
 
 

 Fourier Analysis of the Experimental Data 

function BodePlot(x_in,y_out,t_start,t_end,PloT,Ts) 
% Delete the undesired data range 
x_in([1:t_start/Ts-1,t_end/Ts+1:end]) = [];  
y_out([1:t_start/Ts-1,t_end/Ts+1:end]) = []; 
% Time vector [second] 
t = t_start:Ts:t_end; 
Fs = 1/Ts; 
% Number of points 
npts = length(t); 
% Remove the bias 
x = detrend(x_in); 
y = detrend(y_out); 
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% Auxiliary Plots 
if PloT>0 
% Plot the signal 
figure 
plot(t,x,t,y); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
legend('Signal x(t)'); 
end 
% Fast Fourier Transform(FFT) of the Data 
X=fft(x); 
Y=fft(y); 
% Determine the numberof unique points 
NumUniquePts = ceil((npts+1)/2); 
f = (0:NumUniquePts-1)*Fs/npts; 
if PloT>0 
figure; subplot(211); 
plot(f,abs(X(1:NumUniquePts))); 
title('X(f) : Magnitude response'); 
ylabel('|X(f)|'); subplot(212); 
plot(f,abs(Y(1:NumUniquePts))); 
title('Y(f) : Magnitude response') 
xlabel('Frequency (Hz)'); ylabel('|Y(f)|') 
figure; subplot(211); 
plot(f,angle(X(1:NumUniquePts))); 
title('Phase response'); 
ylabel('Phase (rad)'); subplot(212); 
plot(f,angle(Y(1:NumUniquePts))); 
title('Phase response'); 
xlabel('Frequency (Hz)'); 
ylabel('Phase (rad)'); 
end 
% Magnitude [dB] 
MAG = 20*log10(abs(X)./abs(Y)); 
% Phase [degree] 
PHA = (angle(X)-angle(Y))*180/pi;   % degree 
% Format phase 
for i = 1 : 1 : (size(PHA) - 1) 
    if PHA(i+1)-PHA(i) > 200 
        PHA(i+1) = PHA(i+1)-360; 
    elseif PHA(i+1)-PHA(i) <-200 
        PHA(i+1) = PHA(i+1) + 360;     
    end 
end 
% Bode Plots 
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figure('name','Bode Magnitude') 
semilogx(f,MAG(1:NumUniquePts)); 
grid on; 
xlabel('Frequency (Hz)'); 
figure('name','Bode Phase'); 
semilogx(f,PHA(1:NumUniquePts)); 
xlabel('Frequency (Hz)'); 
grid on; 
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