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ABSTRACT

AIRLINE DISRUPTION MANAGEMENT

Arıkan, Uğur

Ph.D., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Sinan Gürel

Co-Supervisor : Prof. Dr. M. Selim Aktürk

September 2014, 200 pages

In this thesis, we deal with recovering airline operations in cases of irregularities.
In schedule design phase, airlines generally generate tight schedules in order to effi-
ciently utilize resources and deal with the high competition in the industry. However,
irregularities in operations, also called disruptions, occur due to various reasons such
as unscheduled aircraft maintenance, late appearance of crew members, bad weather
conditions, congestions in airports, etc., and prevent the airline operate its original
schedules. Airline Operations Control Centers (AOCC) are responsible for recover-
ing the schedules of entities such as aircraft, crew members and passengers. These
controllers are generally equipped with a set of recovery actions such as departure
holding, flight cancellation and aircraft swapping. Due to the large size of airline
networks, interdependencies between different entity types and real time solution re-
quirement, integrated airline recovery problem is challenging. A common practice
in the literature and industry is sequential approach which firstly recovers aircraft
schedules and schedule recovery of the remaining entities are carried out accordingly.
However, sequential approach results in high disruption and recovery costs. On the
other hand, literature lacks from practical methodologies for the integrated airline re-
covery problem. We focus on the integrated problem in this thesis and propose a new
network representation, exact approaches and heuristic approaches. Due to the in-
creasing competition in industry, passenger convenience is attaining more and more
importance. We also place a special emphasis on passenger recovery. Finally, we
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manage to integrate cruise speed control option in addition to the common recovery
actions and our experiments have shown that speeding up flights is a very beneficial
action to mitigate delays, create new swap opportunities and maintain passenger and
crew connections.

Keywords: Airline operations, integrated recovery, disruption management, irregular
operations, passenger recovery, cruise speed control, conic quadratic mixed integer
programming, connection network
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ÖZ

HAVAYOLU AKSAKLIK YÖNETİMİ

Arıkan, Uğur

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Sinan Gürel

Ortak Tez Yöneticisi : Prof. Dr. M. Selim Aktürk

Eylül 2014 , 200 sayfa

Bu tezde, aksaklıklar karşısında havayolu çizelgelerinin tamiri ile ilgileniyoruz. Çi-
zelge tasarım aşamasında, havayolları kaynaklarını etkin bir şekilde kullanabilmek ve
sektördeki rekabet gücünü artırabilmek için genellikle sıkışık çizelgeler oluştururlar.
Ancak, planlanmamış uçak bakım gereksinimi, bir mürettebat üyesinin gecikmesi,
olumsuz hava şartları ve havaalanlarındaki yoğunluk gibi birçok etmenden dolayı
operasyonlarda aksaklıklar oluşur. Bu aksaklıklar havayolunun planlanmış çizelge-
leri uygulamasını engelleyebilir. Uçak, mürettebat ve yolcu gibi farklı elemanların
çizelgelerini onarmak havayolu operasyon kontrol merkezlerinin sorumluluğundadır.
Kontrolörlerin uygulayabileceği, kalkış zamanı erteleme, uçuş iptali ve uçak rotası
değiştirme gibi bir grup onarım eylemi vardır. Havayolu ağlarının büyüklüğü, farklı
eleman türleri arasındaki ilişkiler ve gerçek zamanlı çözüm gereksinimi nedenleriyle
bütünleşik havayolu onarım problemi zorludur. Literatürde ve pratikteki genel uygu-
lama önce uçak rotalarını tamir edip, mürettebat ve yolcu çizelgelerini yenilenen uçak
çizelgelerine göre onaran ardışık yaklaşımdır. Ancak ardışık yaklaışım yüksek aksak-
lık ve onarım maliyetlerine yol açar. Öte yandan, literatürde bütünleşik havayolu ak-
saklık problemi için pratik çözüm yöntemi eksikliği gözlenmektedir. Bu tezde, bütün-
leşik probleme yoğunlaşarak, problem için yeni bir ağ gösterimi ile kesin ve sezgisel
çözüm yaklaşımları öneriyoruz. Endüstride artan rekabet nedeniyle, yolcu memnu-
niyeti giderek önem kazanmaktadır. Bu nedenle yolcu çizelgesi tamirine çok önem
veriyoruz. Son olarak uçuş hız kontrolünü diğer tamir eylemlerine entegre ediyoruz.
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Deneylerimiz de bazı uçuşlarının hızlandırılmasının gecikmeleri azalttığını, yeni uçak
rota değiştirme imkanları yarattığını, ve yolcu ve mürettebat çizelgelerindeki bağlan-
tıların korunmasına yardım ettiğini gösteriyor.

Anahtar Kelimeler: Havayolu operasyonları, aksaklık yönetimi, bütünleşik çizelge
onarma, yolcu çizelgeleri, uçuş hız kontrolü, konik karesel karmaşık tamsayı
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CHAPTER 1

INTRODUCTION

Air transportation is being used for about one hundred years. Since then this grow-

ing industry has been a very important sector due to the economical and operational

aspects. [9] states that airlines alone generated more than $300 billion in revenues

in 2002, a lean year, and carried out about 1.6 billion passengers. Moreover, number

of passengers carried is expected to grow at an annual rate of 4% – 5% in the next

20 years according to most forecasts. Due to the high operational costs and complex

airline networks, airline industry has been a very interesting sector for researchers.

Especially after 1950s, operations research has contributed a lot in this industry.

Airlines are dealing with high capital, high labor and operating costs with low prof-

itability margins due to the high competition in the industry. In addition, their op-

erations are restricted with security and safety concerns. Therefore, airlines need to

analyze a very complex and a large-scale system for planning their operations. Most

airlines make use of sophisticated optimization tools while they are making decisions.

However, there are still decisions, such as recovery decisions against disruptions that

have not been automated yet. A large number of methodologies to increase the prof-

itability of airlines has been proposed by researchers. There are more than 1,000

operations research papers published for decision support of air transport industry.

On the other hand, high operating costs and enhancements in computer technology

encourage studies in this industry. Airline operations that researchers are mostly in-

terested are schedule planning and revenue management. In schedule planning phase,

flights to be operated by the airline are determined and schedules of airline resources

such as aircraft and crew members are created. The objective of the schedule plan-
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ning problem is generally capturing the maximum demand with minimum operating

costs to maximize the profitability of airline operations. Revenue management in air-

line industry, on the other hand, deals with determining fare classes and ticket prices

with the aim of: selling the right product to the right customer at the right moment

at the right price. More recently, there is an increasing attention in airline recovery

problem, or disruption management problem, which deals with the irregularities that

occur while carrying out the scheduled operations. The aim of disruption manage-

ment problem is minimizing the disturbances that arise due to these irregularities. In

this thesis, we deal with the airline recovery problem and propose real-time solution

methodologies. In Section 1.1, we explain the phases of schedule planning in order

to introduce airline operations. We introduce the reasons of irregularities in airline

operations and recovery actions in Section 1.2. Since one of the main focus of this

thesis is integrating cruise speed control action in airline recovery, we introduce re-

lated concepts in Section 1.3. We discuss our motivation and contributions in Section

1.4 and present the outline of this thesis in Section 1.5.

1.1 Schedule Planning

There are numerous decisions that an airline needs to make before operating its first

flight. Firstly, flight regions, i.e. origin-destination (O-D) pairs, need to be deter-

mined. Next decision stage is related with number of flights that will be assigned to

each O-D pair. Moreover, departure and arrival time decisions are to be made. Once

all flights that will be operated are scheduled, the airline needs to assign aircraft and

crew members to flights. The assignment decisions are constrained by many opera-

tional limitations. Interdependencies among these decisions can easily be observed.

However, it is challenging to develop an integrated optimization model for schedule

planning problem. Moreover, due to the huge size of airline networks and complexity

of schedule the planning problem, integrated approaches suffer from intractability.

In the literature and in practice, schedule planning is generally broken into four core

problems, each solved sequentially ([11]). In this sequential approach, each subprob-

lem is constrained by the optimal schedules of its preceding problems. Even though

the subproblems are much smaller and simpler than the integrated problem, they are
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still challenging. Subproblems of the schedule planning problem are listed below:

1. Schedule Design

2. Fleet Assignment

3. Aircraft Maintenance Routing

4. Crew Scheduling

i. Crew Pairing

ii. Crew Assignment

1.1.1 Schedule Design

The first stage of the sequential approach is the schedule design stage. In this stage,

flight legs that will be operated by the airline are determined. A flight leg is a flight

with a determined:

• origin airport,

• destination airport,

• departure time, and

• arrival time.

Each flight leg can be considered as a market for the airline, and hence, determining

flight legs actually corresponds to deciding the markets to be served. Since it greatly

determines the market share that the airline will capture, schedule design stage is

regarded as the most important part of airline schedule planning. Schedule design is

carried out about one year before the first flight of a leg and generated schedules are

greatly driven by market considerations.

Schedule designs of most major airlines operate on hub-and-spoke networks in order

to reduce operating costs. A hub-and-spoke network is a type of airline schedule in

which a great majority of flight legs depart from or arrive at a small subset of airports
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which are called hubs ([38]). Remaining airports are called spokes, and have rela-

tively limited flights. This structure is advantageous also in disruption management

since a great number of recovery opportunities can be generated in hubs.

The solution of the schedule design problem includes an optimal set of flight legs to

be operated. These decisions affect aircraft and crew schedules, however, [11] points

out the intractability of a single model to optimize all these decisions.

1.1.2 Fleet Assignment

Once flight legs to be flown are determined, airlines next assign fleets to flight legs. A

fleet is a set of aircraft of the same type. Deciding the aircraft types of flight legs has

a great impact on the profitability of the airline. Aircraft of different fleets have dif-

ferent seat capacities. Assigning a small aircraft to a flight leg with a greater demand

results in lost customers; while unnecessary operating costs would be incurred in the

opposite case. Different aircraft types may also have different speed capabilities and

fuel efficiencies.

The inputs for the fleet assignment problem are:

• set of flight legs to be flown (solution of schedule design stage)

• number of available aircraft in each fleet

• cost of operating each flight leg with aircraft of each fleet

• turnaround time restrictions

• maintenance requirements of aircraft

Turnaround time, or turn time, is the minimum time needed after the arrival of an

aircraft to be ready for its next flight. The length of the turnaround time may depend

on aircraft type and airport. Maintenance requirement of an aircraft is related with the

age and total distance flown by the aircraft in addition to its type. General approach

to solve fleet assignment problem in the literature is to model the problem as an

integer multi-commodity network flow model. In this model, fleets are regarded as

commodities and the decision is to assign a fleet to each leg.
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Generally, a timeline network is used for this model. In these networks, a node cor-

responds to time and location of a flight departure or a flight arrival. There are two

types of arcs connecting these nodes: flight arcs and ground arcs. A flight arc corre-

sponds to a scheduled flight leg and the arrival time is modified taking the required

ground time into consideration. This time is required for disembarking passengers

of the completed flight and embarking the passengers for the new flight, unloading

and loading baggage and refueling. A ground arc, on the other hand, represents a

connection between two consecutive flights.

Objective of the problem is generally generating a feasible assignment while mini-

mizing a cost function including the following two cost terms.

• Operating cost: Total cost of operating all flight legs with aircraft belonging to

the assigned fleet.

• Opportunity cost: Total cost of lost sales. This term is calculated by considering

the excess demands for flight legs that exceed the capacity of aircraft belonging

to the assigned fleet.

Solution of fleet assignment problem consists of fleet types assigned to each flight leg.

Most fleeting models assume that flight times and ground times are deterministic;

and hence, resulting schedules are sensitive to disruptions because factors such as

congestion, weather conditions or new security policies may result in large variations

in these expectations.

1.1.3 Aircraft Maintenance Routing

Once the fleet types of all flight legs are determined, the next stage is aircraft main-

tenance routing. In this stage, routings or rotations of each aircraft are determined.

Individual aircraft are assigned to flight legs. Aircraft maintenance routing is gener-

ally divided into subproblems for each fleet type. While making individual aircraft

assignments, decision makers are subject to the following constraints:

• Flights need to be operated with the available number of aircraft in the fleet.
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• Flight departure times need to satisfy the determined time windows.

• Required turnaround time between each consecutive flights needs to be pro-

vided.

Another important consideration is the maintenance restrictions of the Federal Avia-

tion Administration (FAA). These restrictions require a periodic aircraft service called

scheduled maintenance. The frequency of services is a function of both flight hours

(air time) and number of assigned flights.

The objective is to find aircraft rotations that satisfy these restrictions (feasibility

problem). An aircraft rotation is a sequence of flight legs which starts and ends at the

same airport (maintenance station). A rotation may take more than one day to fly. A

daily route, on the other hand, is a subsequence of a rotation including flight legs that

will be flown in the same day ([64]). Generally, the problem is modeled as a network

circulation problem with side constraints.

Although airlines obey the maintenance restrictions of the FAA, experiencing me-

chanical problems during daily routes is not rare. Whenever such a problem occurs,

the aircraft has to receive an unscheduled maintenance.

1.1.4 Crew Scheduling

Crews can be studied in two groups:

• Cabin crews are the employees which provide service to passengers.

• Cockpit crews are the pilots and hence, responsible for operating the aircraft.

Most studies on crew scheduling problem focus on scheduling cockpit crews for two

reasons. Firstly, cockpit crews have greater salaries than the cabin crews. Note that

second greatest cost term of the total operating costs of an airline corresponds to

crew salaries while fuel cost is the leading term. Second reason is related with con-

siderations about tractability. Concerning only cockpit crews reduce the complexity

and size of the problem greatly ([11]). In this thesis, we will use crew members for

mentioning about cockpit crews only.
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In this stage crew members are assigned to the scheduled flight legs. Typically, pi-

lots may only fly one type of aircraft. In this case, crew scheduling problem can be

separated to subproblems corresponding to each fleet type. Moreover, it is a com-

mon practice, both in the literature and in industry, to break the problem into two

sequential problems:

1. Crew pairing problem

2. Crew assignment problem

1.1.4.1 Crew Pairing Problem

At this stage, pairings are determined. A pairing is a sequence of flight legs which

starts and ends at the same city. Flights in a pairing may take multiple days. The ob-

jective of the problem is to generate minimum cost pairings while obeying restrictive

work rules. Common work rules are listed below.

• Number of flights in a pairing is constrained by an upper bound.

• Air (flying) time of the flights in a pairing is constrained by an upper bound.

• Total length of the pairing, also called total away-from-home time, is con-

strained by an upper bound ([9]).

• Rest time between two consecutive pairings is constrained by a lower bound.

• Total air time in any 24-hour period is constrained by eight hours.

Modeling these restrictions is challenging. Moreover, the cost term of the objective

function is generally defined by a nonlinear function of flying time, total working time

and the time that the crew is away from home. A common approach is to solve a set

partitioning problem after generating feasible pairings. Note that each pairing has a

corresponding cost that may be calculated a priori, and hence, the objective function

of this formulation is linear. However, the drawback of this approach is the huge

number of feasible pairings. For a major U.S. airline, billions of feasible pairings

may be generated. In order to handle this drawback, column generation techniques

and metaheuristics are utilized in the literature.
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1.1.4.2 Crew Assignment Problem

The solution of crew pairing problem is a set of feasible pairings that covers all flight

legs. Final stage of schedule planning is to assign pilots to these pairings. Generally,

crew assignment is done using a bidline or preferential model. A bidline is a set of

pairings that a crew flies in a month. Again, bidlines are subject to FAA and contrac-

tual rules. Due to the complexity of the problem, airlines generally seek feasibility

instead of optimizing any objective function at this stage.

1.2 Irregular Operations

Airlines operate their flights with expensive resources in a highly competitive in-

dustry. Therefore, airlines generally create tight schedules in order to increase their

profitability. These tight schedules rely on the assumption that the flight legs will

be operated as planned. However, this optimistic scenario rarely occurs because of

irregularities in operations. Irregularities may result in disturbances that are severe

enough to prevent the airline continue with the original schedules. Such irregularities

are called disruptions. In cases of disruptions, controllers need to make real-time re-

covery decisions. This thesis focuses on the problem of recovering aircraft, crew and

passenger schedules, namely airline recovery problem, or disruption management

problem.

Since disruptions damage aircraft and crew schedules, airlines incur operational costs.

Passengers are also severely affected from disruptions and recovery actions. It is not

easy to evaluate the cost of the effect of disruptions on passengers. However, pas-

senger convenience is becoming more and more important in recent years. [12] state

that in 2007, which is the last year of peak demand for air transportation before eco-

nomical downturn, cost of arrival time delays to airlines is estimated to be $19 billion

(U.S. Congress Joint Economic Committee, 2008). In the following year, profits of

airlines were estimated to be only $5 billion (Air Transport Association, 2008). These

statistics show the significance of disruption costs in airline industry. Joint Economic

Committee report states that the economic cost of time lost by passengers due to the

irregularities in airline operations is estimated to be $12 billion. On the other hand,
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Air Transport Association estimates the cost of passenger delays as $5 billion. The

huge difference in these estimates results from different methodologies used and re-

veals the requirement for more accurate estimates to evaluate the cost of lost time by

passengers in air transportation. However, significance of disruption costs in airline

revenues can still be observed. In this thesis, we place a special emphasis on passen-

ger recovery. We integrate passenger recovery decisions with the recovery of aircraft

and crew schedules. Moreover, we try to contribute by proposing realistic passenger

delay cost formulations.

1.2.1 Reasons of Disruptions

There are various reasons that may result in a disruption. Some of them are related

with airline resources while the remaining may be caused by the outer system. Most

common disruption types are listed below.

• Unscheduled maintenance. As explained in Section 1.1.3, each aircraft attends

periodic maintenances that are scheduled with respect to the restrictions of

the Federal Aviation Administration (FAA). However, unexpected mechanical

problems may still occur. In these cases, aircraft experiencing such problems

needs to have an unscheduled maintenance and during this time this aircraft will

be unavailable. Severity of disruption is related with the duration of the main-

tenance. Some problems may be resolved in half an hour while more serious

ones may take days. Since aircraft is scarcest resource of an airline, absence of

a single aircraft for a period of time may result in great disruption costs.

• Crew delays. Crew members that are scheduled to a flight may arrive late, or

even may not show up due to health problems. The prior one may result in

flight departure delays, while the latter one may result in flight cancellations.

• Problems in ground operations. Problems in ground operations may be experi-

enced due to the lack of ground resources. This may result in increased luggage

loading time or fueling time. Therefore, ready time of the aircraft for its suc-

ceeding flight will be delayed. If there is not enough slack time between the

flights, these problems may result in departure delays.
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• Poor weather conditions. During takeoffs and landings, there has to be a sep-

aration between aircraft. Poor weather conditions may result in a decrease in

sight and an increase in the separation distance. Less than scheduled number

of aircraft may land or take off. In such cases, departure and arrival times of

flights may be delayed. Air time of flight legs are generally assumed to be de-

terministic. However, poor weather conditions may result in longer flight times

than scheduled, and again arrival times may be delayed. Finally, extremely bad

weather conditions may result in airport closures for a period of time. If the

closed airport is a hub, a very large number of flights need to be cancelled. This

results in great disruption costs and recovery process requires a great effort.

• Congestions at airports. With increasing air traffic, congestions may be ob-

served in airports, especially in hubs. Congestion in a hub may result in delays

or cancellations of a great number of flights.

• Delay propagation. Delay propagation may be regarded as the consequence of

some other disruption. Arrival delay of a flight may result in departure delays

of downstream flights. Delay may propagate through the schedules of aircraft

and crew members. Moreover, late arrival of connected passengers may also

result in departure delays of their succeeding flights.

In order to understand the frequency of disruptions, we carry out a data analysis based

on the data provided by Bureau of Transportation Statistics (BTS) (http://www.bts.gov).

BTS publishes the on-time performance data of all scheduled flights. Public data con-

tains information about scheduled departure times and arrival times together with the

realized departure and arrival times. In our data analysis, we work with the data of

flights of a major U.S. airline operated between January, 2011 and March, 2013. In

Figure 1.1, we observe the behavior of arrival delay severities on a timeline. We

observe that distribution of arrival delay severities in different time of year does not

experience a significant change. In Figure 1.2, overall distribution of arrival delay

severities over this 15-month period is illustrated. In airline industry, it is common

to consider flights that do not experience an arrival delay greater than 15 minutes

as on-time flights. In this sense, this analysis reveals that about 19.1% of all flights

experience an arrival delay.
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Figure 1.1: Behavior of arrival delays of a major U.S. airline on a timeline.

Figure 1.2: Distribution of flights of a major U.S. airline with respect to severities of
arrival delays.
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Reasons of arrival delays are classified into five categories by BTS:

• Carrier

• Weather

• National Airspace System (NAS)

• Security

• Late aircraft

We perform a data analysis to understand the effect of the delay sources proposed

by BTS. Distribution of the number of delayed flights, total delay experienced and

average delay per flight in January, 2011 are illustrated in Figure 1.3. We observe

that carrier, NAS and aircraft related delays construct about 93.3% of all delayed

flights. Security delays, on the other hand, result in most severe arrival delays. Overall

average delay experienced is about 33 minutes per delayed flight.

Another important statistics provided by BTS is the number of cancelled flights. Can-

cellations are not as common as arrival delays. However, they result in greater dis-

turbances and disruption costs. Within the investigated 15-month period, we observe

that about 2.1% of all scheduled flights is cancelled.

In addition to our data analysis, [53] state that about 30% of the flights of a major U.S.

airline is delayed in year 2000. Moreover, the authors report that the percentage of

cancelled flights is about 3.5%. All these analyses reveal the importance of disruption

management in air transportation.

1.2.2 Preventive Recovery Actions

Preventive actions against disruptions may be taken during schedule planning phase.

Many researchers take the uncertainty in airline operations into account and pro-

pose methodologies to generate schedules that are less sensitive against disruptions,

namely robust schedules. Main strategy in creating robust schedules is to add slack

times between consecutive flights. Total slack time is limited since flight legs to be
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Figure 1.3: Severities of arrival delays of a major U.S. airline with respect to reasons
proposed by BTS.
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operated, number of available aircraft and crew members are determined. Proposed

approaches try to distribute total slack time in the optimal way so that delays due to

forthcoming disruptions may be absorbed and delay propagation is minimized.

Another approach is related with structure of the schedule design. In hub-and-spoke

networks, airlines mostly prefer to generate aircraft routings having several out and

back flight legs. In particular, if a flight departs from a hub and arrives at a spoke,

the next flight assigned to this aircraft arrives at the same hub. Crew schedules are

designed in the same manner. With this schedule design, any such flight pairs can be

cancelled without affecting the downstream flights in aircraft and crew schedules.

1.2.3 Real-Time Recovery Actions

In this section, we explain real-time recovery actions which correspond to the alterna-

tive courses of actions of the proposed solution approaches in this thesis. In cases of

disruptions, airlines need to take action in order to reduce the costs resulting from dis-

ruptions. Generally, controllers, or dispatchers, in Airline Operations Control Center

(AOCC) are responsible for recovery actions. Dispatchers in AOCC continuously

track all operations and make the final decision in the case of a disruption ([25]).

The actions to be taken against disruptions are generally decided manually by these

controllers based on their experience and intuition. This intuitive decision making

process may be understood by the following questions to which dispatchers try to

find answers ([77]). Moreover, we make use of this sequential process in the Iso-

lation Heuristic (explained in Chapter 5) that we propose to limit the problem size

while dealing with huge instances.

• Can all scheduled flights be made with the available aircraft?

• If not, which flights should be cancelled?

• What are the new departure times of the flights which will minimize passenger

delay throughout the network?

• What is the new aircraft rotation plan (which aircraft of different routings will

be swapped)?
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• Is it possible to make the planned flights with the available crews?

• What is the crew rotation plan?

• Does the new schedule satisfy maintenance restrictions?

Dispatchers are equipped with a set of recovery actions to deal with disruptions. Most

common recovery actions are listed below.

• Holding departure times. Departure time of flights may be delayed to some

extent. Maximum allowed delay is determined with the available time slot as-

signed to the airline in the corresponding airport. Dispatchers may delay the

departure time of a flight due to various reasons. First of all, an unscheduled

maintenance of an aircraft may delay its first flight. In this case, dispatch-

ers may assign this flight to another available aircraft or may need to cancel

several flights. However, if the problem is not that severe, dispatchers may de-

cide to hold the departure time of the flight until the end of this unscheduled

maintenance, so that original schedule may be executed as planned except that

several flights experience arrival delays. Similarly, in cases of late arrivals of

crew members or connected passengers, dispatchers may delay departure time

of the corresponding flights. It is important to note that, holding the departure

time of a flight affects downstream flights, as well. In particular, delay propa-

gates through the downstream flights in the schedules of the aircraft and crew

members that are planned to operate the delayed flight. As explained in Sec-

tion 1.2.1, this effect is called as delay propagation. Moreover, delayed flights

may result in insufficient connection time for connected passengers, as well. In

this case, dispatchers may decide to cancel the flights of these passengers or

try to reallocate them. Otherwise, experienced departure delay also propagates

through passenger itineraries.

• Flight cancellation. Flight cancellation is explained as a disruption type in

Section 1.2.1. However, dispatchers may use flight cancellation as a recovery

action, as well. Flight cancellation is a very costly and an undesired recovery

action. Aircraft, crew and passenger schedules are severely affected from can-

cellations. On the other hand, delay propagation may also result in extreme
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disturbances, and hence, in some cases, cancelling a few flights may be pre-

ferred.

• Swapping aircraft and crew members. One of the most common and beneficial

recovery actions used in practice is swapping the routings of two aircraft. In

cases of delays in ready time of aircraft or late arrival of aircraft due to delay

propagation, dispatchers may search for swap opportunities. In general, rout-

ings of two aircraft that arrive at a common airport within the recovery horizon

may be swapped. Whenever their routings are swapped each aircraft contin-

ues with the routing of the other one. This recovery action may help to prevent

delay propagation. Moreover, if the final destination of both of the swapped air-

craft is the same airport, this recovery action results in minimal operating costs.

On the other hand, if they end up in different airports at the end of the day of

operations, dispatchers may need to relocate them. Structure of hub-and-spoke

networks helps to generate numerous swap opportunities at hubs since at any

given time dispatchers may find many available aircraft on ground. Dispatchers

may also utilize this recovery action for crew members.

• Rerouting aircraft and crew members. Swapping is only a subset of possible

rerouting actions. Actually, schedules of aircraft and crew members may com-

pletely be altered in cases of disruptions. However, due to the complexity of

schedules, rerouting action is not common in practice and in the literature. Re-

call that all flights have already assigned aircraft and crew members. If the

dispatchers decide to reroute an aircraft through a completely different set of

flights, number of aircraft that are affected from this decision may be as many

as the number of flight legs in the new schedule. Swapping is a preferred ac-

tion since the number of affected aircraft is bounded by two. In Chapter 4 and

Chapter 5, we propose methods to allow evaluating all rerouting opportunities

and generate the complete solution space.

• Spilling passengers. Whenever the airline cancels the tickets of passengers, it

is said that these passengers are spilled. Flight cancellation may most probably

result in passenger spills. On the other hand, late arrivals of flights may result

in insufficiency in the required connection time for passengers that change their

aircraft. Note that passengers having at least two flights in their itineraries may
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be spilled due to insufficient connection times. Major airlines generally operate

with one and two flight itineraries, while some long trips may also include

three flights. Passenger spilling is an undesired recovery action. Generally two

cost terms are incurred: cost of lost sales and cost of passenger inconvenience.

The latter one is probably more important than the prior one due to the high

competition in the industry.

• Reallocating passengers. Passengers with cancelled flights or experiencing in-

sufficient connection times may be reallocated to later flights. Passengers may

experience arrival delays, however, passenger inconvenience is less compared

to spilling action. Therefore, dispatchers prefer to reallocate passengers when-

ever available. Main consideration for this recovery action is the number of

empty seats in available flights.

• Ferrying aircraft. Due to the experienced disruptions or as a consequence of

the recovery actions, some aircraft may end up the day at different airports than

their expected locations. In such cases, dispatchers may need to relocate these

aircraft to their expected airports so that original schedules may be resumed in

the next day. The action of flying the aircraft to its expected location without

passengers is called ferrying. This recovery action is not a desired recovery

action due to its high operating costs.

• Deadheading crew members. Similar to ferrying action, crew members may

also be relocated in order to recover the schedules. Deadheaded crew members

are transported as passengers.

• Using standby aircraft. A standby (also called surplus or spare) aircraft, espe-

cially located at hubs, may provide valuable recovery actions to prevent delay

propagation and cancellations. However, since keeping an idle aircraft is very

costly, this recovery action is not preferred by most airline companies.

• Calling up reserve crew members. This action resembles using standby aircraft

action and it is relatively less costly. Airlines generally locate reserve crew

members at major airports for quickly responding crew-related disruptions.

• Cruise speed control. Airlines typically operate aircraft at their most economi-

cal speeds, usually called maximum range cruise (MRC) speeds. MRC speed is
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always lower than the maximum speed that the aircraft may reach. The differ-

ence between the maximum speed and MRC speed depends on the O-D pair of

the flight and technological properties of the operating aircraft. In cases of dis-

ruptions, speeds of several flights may be increased to reduce arrival delays. It

is important to note that, reducing the arrival delay of a flight affects the arrival

delays of downstream flights as well. In other words, delay may be mitigated in

the same manner it propagates through the flight schedules of related aircraft,

crew members and passengers. Moreover, being able to use variable operation

times (flight times) increases the number of swapping, rerouting and reallocat-

ing opportunities since the solution space is enlarged. However, if the speed of

a flight exceeds its MRC speed, fuel consumption increases, and an additional

fuel cost is incurred. Relation between the deviation from the MRC speed and

fuel consumption is expressed with a nonlinear function. Therefore, this recov-

ery action is excluded in most airline recovery methodologies proposed in the

literature. On the other hand, despite the complexity it adds to the formula-

tion, in this thesis we try to integrate cruise speed control action with common

recovery actions and analyze its performance.

Dispatchers need to take recovery actions in a very short period of time. According

to many authors in the literature, solution times of airline recovery problem needs

to be limited by about five minutes since recovery decisions made later than this up-

per bound may not be implementable due to the dynamic nature of airline operations.

There are also some studies that limit decision making process with about 30 minutes.

Explanations of the recovery actions reveal the dependencies of decisions related to

different entity types. In this thesis, we use entity to refer to individual aircraft, crew

members and passengers. For instance, while swapping the routings of two aircraft

connected passengers must be considered. Similarly, since the flight sequences of air-

craft and crew members do not overlap, decisions related to one of these entity types

directly affects the decisions related to the other one. Therefore, decisions related

to all entity types need to be integrated in a methodology that seeks for the global

optimum. However, major U.S. airlines operate more than a thousand flights in a

single day of operations. Due to huge size of airline networks, complexity of the

problem and short solution time requirements, integrated recovery problem is chal-
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lenging. Therefore, it is common to follow a sequential approach while recovering

the schedules both in practice and in the literature. The sequential recovery approach

resembles the sequential approach used in schedule planning. Considering the air-

craft as the scarcest resource, aircraft routings are repaired firstly. Resulting aircraft

routings are used as inputs for crew and passenger recovery problems.

1.3 Cruise Speed Control

Duration of a flight is separated into six phases:

• take-off and initial climb,

• climb,

• cruise,

• descent,

• holding, and

• approach.

Cruise phase corresponds to the greatest portion of the flight time, especially for long

trips. Even it is the most fuel economical phase, majority of fuel is consumed at this

stage. Fuel cost optimization of cruise phase involves determination of the optimal

altitude and optimal cruise speed. With a given a flight level which may be determined

by the airline or imposed by air traffic control, speed is the only remaining parameter

that requires selection ([3]). Being the longest phase of a flight, cruise speed has

a significant effect on flight time. In [2], total cost of a flight is reported to be the

summation of the following three terms:

• fixed cost independent of flight time,

• cost of consumed fuel,

• cost related with the flight time.
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Figure 1.4: Behavior of cost terms with respect to cruise speed according to [2].

[2] illustrates the behavior of these cost terms as displayed in Figure 1.4. Time related

cost is represented by a linear function which does not involve the effect of airline net-

works. Moreover, passenger inconvenience is ignored. Placing a special emphasis on

passenger recovery, we propose formulations that try to evaluate time-related costs as

accurate as possible. On the other hand, we observe a nonlinear and convex relation-

ship between fuel consumption, or fuel cost, with the cruise speed. Minimizer of this

function (speed that minimizes fuel consumption) is called maximum-range cruise

(MRC) speed. Most airlines operate their flights at MRC speeds. This figure displays

a simplified tradeoff between the increased fuel cost and decreased time-related cost

whenever the cruise speed of a flight is increased. Reducing the arrival delay of a

flight by speeding up results in delay mitigation in the downstream flights, as well.

Furthermore, new swap and rerouting opportunities can be created by increasing the

speeds of some flights, even if they are not disrupted. Therefore, it does not seem

possible to evaluate this tradeoff without considering the entire airline network. We

integrate cruise speed control action in our formulations in Chapters 3 and 4, and op-

timize cruise speeds with other recovery actions simultaneously, while coping with

airline recovery problems.
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1.4 Motivation and Contributions

Air transportation industry has been a very interesting research area, especially for

operations research field, after 1950s. One of the main reasons of this attention is the

high capital together with high labor and operating costs. Even minor improvements

in airline operations may result in great impacts on profitability. Moreover, the com-

plexity and size of airline systems make airline planning problems difficult to solve.

Despite the huge number of studies, there are still decisions that have not been studied

sufficiently, and hence, not automated yet. Intuition and experience of controllers in

airlines plays an important role in making these decisions. Therefore, there is still an

increasing demand for new optimization methods for airline processes.

This dissertation focuses on the airline recovery problem, or disruption management

problem. Airline recovery problem is relatively less studied than schedule planning

problems. Majority of the studies in the literature follows the sequential approach

used in schedule planning problems, and hence, breaks the recovery problem to sub-

problems corresponding to different entity types, such as aircraft, crew members and

passengers. The aim of this approach is to deal with the complexity of the recovery

problem and limited solution times. In the literature, different time limitations are

proposed for recovery actions varying between three to 30 minutes. Integrated for-

mulations generally suffer from reaching the optimal, or even feasible, solutions for

practical-size instances within this time limit.

On the other hand, sequential recovery decisions result in suboptimal solutions that

incur high operating and passenger inconvenience costs. Integration of aircraft and

crew recovery has been studied due to the effect of aircraft recovery decisions on crew

schedules in the sequential approach. More recently, with the increased competition

in industry, there is an increasing number of studies that integrate passenger recovery

with aircraft recovery. Finally, there are several studies that try to integrate all entity

types. In Chapter 3, we initially integrate passenger recovery with aircraft related

decisions. In Chapter 4 and Chapter 5, we propose solution approaches to integrate

all entity types.

Integrated recovery formulations in the literature are based on two traditional problem
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representations: time-space networks and flight strings. However, these studies also

suffer from intractability in real time for practical sized instances. Generally, sequen-

tial approach or cost approximations are proposed to maintain the tractability of large

instances. Main drawback of these representations is the huge problem size required

to represent the solution space. In this thesis, we propose an alternative problem

representation that utilizes connection, also called activity-on-node, networks. Con-

nection networks have a significant advantage in size of the problem representation.

Main reason of the reduction in problem representation is being able to represent

time-related decisions with continuous variables instead of binary variables. Unlike

traditional approaches, we model schedules and recovery actions of all entity types

with connection networks. Interdependencies among different entity types are well

expressed on the common set of flight nodes. Therefore, we manage to easily in-

tegrate aircraft, crew and passenger recovery processes. Since all entity types are

represented with connection networks having the same structure, other entity types

such as luggage can also be integrated with the proposed problem representation.

As explained in Section 1.2.3, cruise speed control action adds complexity to the re-

covery problem due to the nonlinear relationship between cruise speed of flights and

fuel consumption. Since the integrated recovery problem is already complex, there

are only a few studies that integrate cruise speed control action with common recov-

ery actions. Moreover, there does not exist any study that evaluates all possible cruise

speed options without discretization. Our alternative problem representation enables

to represent cruise speed decisions with continuous decision variables. Our formula-

tions include a nonlinear cost term in the objective function for evaluating the tradeoff

between the additional fuel cost and reduction in disruption costs. We linearize the

objective functions by introducing additional constraints and finally show that these

constraints are second order cone programming (SOCP) representable. Our experi-

mentations have shown that proposed reformulation is efficient and real time solutions

can be proposed to large-sized problems. Moreover, we report in Section 4.5 that the

reduction in total disruption and recovery costs provided by integrating cruise speed

control action is significant.

This study also places a special emphasis on passenger recovery. As mentioned

above, passenger convenience is becoming more and more important in recent years
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due to the high competition in airline industry. Passengers are severely affected from

recovery decisions made by the sequential recovery process and this results high pas-

senger inconvenience and cost of goodwill loss. On the other hand, proposed inte-

grated approaches generally do not utilize all passenger reallocation opportunities. In

our proposed problem representation, we model all entity types in the same manner

and evaluate all possible recovery actions. Therefore, passenger recovery is com-

pletely integrated.

Another challenge in passenger recovery is related with the difficulty in estimating

arrival delay costs of passengers. Modeling total passenger delay cost is complex due

to passenger reallocation and spilling decisions. Most integrated approaches propose

an approximation method which ignores these decisions and assumes that passengers

are transported as planned. It is common to express the relationship between the ex-

perienced arrival delay and passenger delay cost with a linear function. Some authors

believe that passenger delay cost can be represented by a nonlinear convex function

of the experienced arrival delay. We propose a piecewise cost function to estimate this

nonlinear relationship in addition to the linear cost function. Moreover, we manage

to solve large instances by calculating the actual delays of each individual passen-

ger instead of using the approximation method. In order to calculate actual arrival

delay experienced by each passenger while utilizing passenger reallocation opportu-

nities, each passenger needs to be modeled explicitly. To the best of our knowledge,

this study is the first to model each passenger explicitly without aggregating the pas-

sengers in the same fare class of an itinerary. In addition to enabling actual delay

calculation, explicit modeling has the advantage of assigning different delay and spill

cost parameters to each individual.

Finally, we propose an alternative heuristic approach for making recovery decisions

for huge instances in real time in Chapter 5. There are very few heuristic approaches

in the literature for airline recovery problem, and to the best of our knowledge there is

no proposed heuristic approach for the integrated recovery problem. Note that good

recovery decisions that can be made in five minutes is much more valuable than the

optimal solution that can be reached within a couple of hours in airline industry. As

explained above, our proposed problem representation has an advantage of express-

ing the interdependencies of different entity types through the set of flight nodes.
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Utilizing this beneficial structure of the connection networks, we propose Isolation

Heuristic that limits the solution space. We try to mimic the intuitive decision mak-

ing process of dispatchers in the sense that they try to recover schedules with minimal

disturbations on the original schedules. Therefore, a great majority of the entities fol-

low their original schedules in the proposed recovery. Proposed approach cleverly

tries to isolate these entities and find good recovery solutions over a smaller solution

space. The heuristic is equipped with mechanisms to control the tractability, stability

and quality of the solutions. The heuristic is independent of the optimization method-

ology. The algorithm only reduces the solution space in a very short time, and the

resulting solution space can be optimized with any methodology.

1.5 Organization of Dissertation

This dissertation consists of six chapters.

Following this introduction chapter, a literature review on airline operations is pre-

sented in Chapter 2. Literature review is investigated in two sections. In the first

section, important studies on scheduling problems are listed, while in the second one

we focus on airline recovery approaches.

In Chapter 3, an approach that integrates passenger recovery with aircraft recovery,

and integrates cruise speed control action with common recovery actions is presented.

Proposed approach is illustrated with a small-sized numerical example. An optimiza-

tion model is proposed to solve aircraft and passenger recovery problem. Since cruise

speed control action is utilized, proposed formulation is a mixed integer nonlinear

programming model. An efficient reformulation scheme is proposed to represent the

problem with a second order cone programming model. The approach is experi-

mented with the flight data of a major U.S. airline. At the end of the chapter, we

conclude that the approach is promising in the sense that it can provide real time so-

lutions to practical size instances and cruise speed control action provides significant

savings in disruption and recovery costs.

In Chapter 4, an alternative problem representation is proposed which allows easily

integrating aircraft, crew members, passengers, and any other entity type. Based on

24



this representation, a network based formulation is proposed to optimally solve the

integrated recovery problem. Mathematical formulation utilizes all possible recov-

ery actions to guarantee global optimality. Due to the nonlinear tradeoff between

increased fuel consumption and reduction in disruption costs, a reformulation similar

to the one introduced in Chapter 3 is proposed. Moreover, two important preprocess-

ing approaches that reduce problem size without sacrificing optimality are proposed

to enhance solution times. Finally, four alternative methodologies to evaluate arrival

delay cost of passengers are developed. Experimentations of the proposed formula-

tion, preprocessing approaches and passenger delay cost functions are presented at

the end of the chapter.

In Chapter 5, a heuristic approach named as Isolation Heuristic is proposed. Aim of

the heuristic approach is controlling the tradeoff between the tractability of instances

and quality of the solutions that can be reached in real time. Moreover, a solution pro-

cedure is proposed that quickly updates connection networks with respect to the lo-

cations of the entities at the moment a disruption occurs, quickly isolates the solution

space and finds fast and good recovery decisions. The heuristic isolates the solution

space regardless of the optimization model. In experimentations, four optimization

models proposed in Chapter 4 are used to test the performance of the solution proce-

dure.

In Chapter 6, a summary and conclusion of this thesis is presented. Future research

directions are also explained in this chapter.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we first summarize studies in schedule planning problems and recov-

ery problems in Section 2.1 and Section 2.2, respectively. Note that, these problems

are related since recovery process is applied on the scheduled operations. In Section

2.3, we classify the underlying problem representations of the solution approaches

in the literature. We investigate the studies that deal with cruise speed optimization

in Section 2.4. Finally, we summarize expressions for calculating passenger-related

disruption costs proposed in the literature in Section 2.5.

2.1 Schedule Planning Problems

We investigate literature on schedule planning problems in four categories:

1. Schedule Design

2. Fleet Assignment

3. Aircraft Maintenance Routing

4. Crew Scheduling

These categories correspond to the stages of schedule planning in the sequential plan-

ning approach. In many studies reviewed in this section, at least two of these problems

are integrated.
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2.1.1 Schedule Design

We present few studies in this section since most studies that deal with schedule

design problem are integrated with at least one of the later-stage problems.

[32] focus on airlines operating on hub-and-spoke networks. The authors point out

the reduction in complexity of system analysis with this network structure. Proposed

approach aids in flight schedule selection and route price determination. An important

contribution of the study is the proposition of an expression which calculates demand

for each route as a function of the service quality and prices of all derived routes.

A heuristic approach is proposed to find the flight schedule and route prices with

the objective of maximizing the profit of the airline. Decision making process takes

the prices of other airlines into consideration and optimizes against the competitors’

decisions.

[49] study schedule design problem in charter airlines, in particular. Characteristics

of charter networks are exploited in developing exact and heuristic service network

design models and algorithms for the problem. The authors manage to express many

of the constraints and complexities of schedule design problem with a specially design

network so that the problem is formulated as a classical network design problem.

Proposed model can achieve quality solutions in long solution times. They develop a

fast solution approach for the special case having a single fleet type. Then, the single-

fleet model is adapted to develop a heuristic approach that can handle multiple-fleet

problems.

2.1.2 Fleet Assignment

Fleet assignment problem has gained a great attention of researchers due to its signif-

icance in the profitability of airline companies.

[30] study fleet assignment problem in hub-and-spoke networks. The problem is

formulated as an integer programming model unlike the traditional multi-commodity

network flow problems. For solving the proposed model, a Lagrangian relaxation is

utilized together with heuristics for converting the Lagrangian solutions into primal
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feasible solutions, and for improving the obtained solutions.

[18] define Demand Driven Dispatch, D3, as an operating concept addressing the

problem of capacity assignment to flight schedules to meet fluctuating market needs.

The authors suggest that dynamic aircraft capacity assignment may provide improve-

ment in operating profits. Proposed approach is based on the fact that a demand fore-

cast improves as departure approaches, and hence, dynamic assignment may provide

better matches between demand and assigned capacity. A time-space network repre-

sentation is proposed, and the problem is formulated as a multi-commodity network

flow problem with side constraints.

[42] deal with a basic daily, domestic fleet assignment problem. Steps taken to find ef-

ficient solutions to the problem are chronologically presented. Problem is represented

with a time-expanded network. The authors formulate the problem as a large-scale

multi-commodity network flow problem with side constraints. Due to the following

reasons listed by the authors, solution times of these problems can be very long.

• These problems are severely degenerate, and hence, applying standard linear

programming techniques leads to poor performance.

• The large number of integer variables can make finding optimal integer solu-

tions difficult.

The authors attack to this challenging problem using several methods such as interior-

point algorithm, dual steepest edge simplex, cost perturbation, model aggregation,

branching on set-partitioning constraints and prioritizing the order of branching. Ex-

perimentations have shown that the proposed algorithm finds the solutions more than

two times faster than a standard LP-based branch-and-bound code.

[85] propose a solution approach for integrated schedule design and fleet assignment

problem. The study aims to present a framework that helps airlines adjust their flight

schedules and fleet assignments in response to expected changes in market demand

conditions in the near future. Integrated problem is represented on a multi-fleet time-

space network. Several strategic models are formulated as multi-commodity network

flow problems. For solving these mathematical formulations, the authors suggest the

Lagrangian relaxation accompanied by the network simplex method, a Lagrangian
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heuristic and a modified subgradient method. A computational study based on a case

study of a major Taiwan airline is also presented.

[67] deal with the solution of large scale fleet assignment problems. Similar to [18],

the problem is formulated as a multi-commodity network flow problem with side

constraints, except that, the underlying representation utilizes connection networks.

Side constraints are related with marketing, operational and crew restrictions.

[63] study the effect of schedule flexibility on fleet assignment problems. Proposed

approach is based on the fact that allowing variability in scheduled departure times

of flights improves flight connection opportunities, and hence, a more cost efficient

fleet assignment can be generated. The authors present a generalized fleet assignment

model that also schedules flight departures simultaneously. Due to the increased com-

plexity with the integration, two algorithmic approaches are proposed to solve the

model. Solution approach is tested on a real and large-scale flight data of a major

U.S. airline. An important insight provided by the experimentation is the significance

of the improvement in fleet assignments with flexible flight schedules.

[13] discuss the shortcomings of earlier fleet assignment models such as static passen-

ger demand assumption. The authors propose a new assignment model, an Itinerary-

Based Fleet Assignment Model, which is capable of capturing network effects. More-

over, spill and recaputre of passengers are more accurately estimated. Performance

of the model is experimented with full-scale networks of a large U.S. airline.

[55] propose an integrated approach for schedule design and fleet assignment prob-

lems. The schedule design deals with determining where and where to offer flights

so that the profits are maximized. On the other hand, in fleet assignment stage, air-

craft types are assigned to flights so that revenues are maximized and operational

costs are minimized. The authors propose an integrated approach that simultane-

ously optimizes these decisions. This study is important in the sense that it presents

a framework for expressing demand and supply interactions. Two integrated mod-

els and solution procedures are proposed. The first model captures interactions be-

tween demand and supply through proposed demand correction methods. However,

the approach suffers from intractability issues in large sized problems. Therefore,

an approximate schedule design and fleet assignment model is proposed to deal with
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large-sized instances. A limited experimentation based on the flight data of a major

U.S. airline is presented in the paper.

Similar to [63], [16] solve fleet assignment problems while determining the departure

time of the scheduled flights within defined time windows. Main difference of this

study from other fleet assignment approaches is that it deals with a periodic schedul-

ing horizon instead of daily operations. Short spacings between consecutive flights

having the same origin-destination pair are penalized. The authors propose a non-

linear integer multi-commodity network flow model. In order to solve the model, a

branch-and-price strategy is applied. [15], on the other hand, deals with weekly fleet

assignment problem in particular. An exact mixed-integer linear programming model

and a heuristic solution approach based on mathematical programming are presented.

The approach is experimented on large-sized instances provided by Air Canada.

2.1.3 Aircraft Maintenance Routing

Similar to schedule design approaches, studies on aircraft routing problems are gen-

erally integrated with either fleet assignment problem or crew scheduling problem.

[35] develop minimum-cost multi-commodity network flow model with integral con-

straints for aircraft maintenance routing problem. Aim of the approach is minimizing

the number of facilities for a given flight schedule. A two-phase heuristic approach

is proposed to solve the problem. In the first phase, aircraft assignments matching

flight requirements are generated efficiently by exploiting the Eulerian property of

the underlying graph. This procedure is followed by a probabilistically perturbed set

covering heuristic.

[24] propose an approach to determine the routes flown by each aircraft in a given

fleet for a commercial passenger airline. The authors relax the common practice

of fixing the connections during the day and only using overnight connections as op-

tions for maintenance routing. Proposed approach enables to consider all connections

as options in maintenance routing. Proposed mathematical formulation is an asym-

metric traveling salesman problem with side constraints. As the solution procedure,

Lagrangian relaxation and subgradient optimization methods are utilized.

31



[31] deal with the daily aircraft routing and scheduling problem (DARSP). The aim of

the problem is to determine daily schedules with the objective of maximizing the an-

ticipated profits derived from the aircraft of a heterogeneous fleet. Two mathematical

models are proposed:

• a set partitioning type formulation, and

• a time constrained multi-commodity network flow formulation.

A column generation technique is used to solve the first model, and a Dantzig-Wolfe

decomposition is used to solve the linear relaxation of the second one.

[39] cope with aircraft maintenance problem in USAir. Maintenance considerations

used in their model include three day maintenance and balance check visit require-

ments. Simple and polynomial-time algorithms are proposed to determine aircraft

routings.

[10] present a single model and solution approach to make fleet assignment and air-

craft routing decisions simultaneously. A string-based model and a branch-and-price

solution approach using column generation is proposed to solve the integrated prob-

lem. A string is defined to be a maintenance feasible sequence of connected flights

departing and arriving at maintenance stations. An extension of the model is also

proposed that can handle complicated constraints such as equal aircraft utilization

requirement.

[45] study fleet assignment and aircraft routing problem in the long range planning

process, and introduce a new type of constraints related with schedule synchroniza-

tion. When flights with same origin, destination and time windows are flown on

different weekdays, the departure has to be scheduled at the same time every day, for

marketing purpose. The constraints forcing such flights to depart at the same time

ensure the required schedule synchronization.

[48] present a basis for the development of an on-line decision support system for

fleet operations management within airlines. The problem addressed in the study is

the integrated fleet assignment and aircraft routing problem. Unlike the majority of

studies in the literature, proposed approach aims to face on-line operation conditions.
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A Dynamic Programming approach is proposed to cope with the fleet assignment

problem, while a heuristic technique is used to solve the embedded aircraft routing

problem.

[68] remark the impracticality of existing aircraft maintenance routing approaches.

Majority of the approaches generate long-term plans and consider only one or two of

the primary maintenance checks that must be performed on a regular, long-term basis.

The authors state that these plans are often ignored by the controllers who are required

to make quick decisions on maintenance requirements and other irregular events, such

as severe weather changes or equipment failures. In order to provide practical solu-

tions, the authors introduce maintenance resource availability constraints. Proposed

model is solved using a branch-and-price algorithm.

[43] investigate models and solution approaches for integrated fleet assignment and

aircraft routing problems. The aim of the study is to investigate fast optimization-

based approximation algorithms for solving the problem. The authors state that a

branch-and-price approach would be useful for optimizing the problem, however,

would require high CPU times in addition to the significant effort required for imple-

mentation. Alternatively, they propose fast network-flow based heuristic approaches

based on well-known network flow techniques. Ease of implementation of the pro-

posed heuristic approaches is remarked. Experimentation of the approach with real-

data provided by TunusAir shows that proposed heuristics provide fast and near-

optimal solutions.

2.1.4 Crew Scheduling

This complex stage of schedule planning has also gained great attention of the re-

searchers. The problem is studied continually, and with an increasing interest due

to the high costs of flying personnel ([44]). Some of the important studies in the

literature are reviewed in this Section.

[44] propose a branch-and-cut approach to optimally solve large set partitioning prob-

lems. Proposed branch-and-cut solver generates cutting planes based on the underly-

ing structure of the polytope defined by the convex hull of the feasible integer points.
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These cuts are incorporated with a tree-search algorithm. Contractual labor require-

ments are represented with side constraints. Solution approach is experimented with

68 large-scale real-world crew scheduling problems.

[23] model crew pairing problem as a set partitioning zero-one integer program. Each

column in this representation corresponds to a pairing while each row represents a

flight. In a feasible solution each flight is covered by exactly one pairing. Costs

corresponding to the excess crew cost of the pairing is assigned to each column. The

authors point out the impossibility of fully representing the constraint matrix for large

schedules, and propose a graph based branching heuristic applied to a restricted set

partitioning problem representing a collection of "best" pairings.

[80] develop a new model alternative to the traditional set partitioning representations.

Proposed model is based on breaking the decision making process into two stages. In

the first stage of the approach, a set of duty periods that cover the scheduled flights is

determined. In the succeeding stage, pairings are built based on these duty periods.

In order to solve the proposed model, a decomposition approach is proposed.

[14] contribute by introducing a new lower bound for the crew scheduling problem

based on a dynamic programming approach. Proposed lower bound is used in a tree

search procedure.

[29] integrate aircraft routing and crew scheduling problems. Integration is facilitated

by linking constraints imposing minimum connection times for crews that depend

on aircraft connections. The authors propose a Benders’ decomposition algorithm to

handle the linking constraints. The iterative approach solves a master problem for

aircraft routing decisions, and a subproblem for crew scheduling decisions.

[50] introduce a new solution approach for crew scheduling problem which enumer-

ates hundreds of millions random pairings. Linear relaxation of the problem is solved

first and millions of columns with best reduced cost are selected. These columns are

further reduced by a linear programming based heuristic. Integer problem with these

columns are solved by a commercial integer programming solver. The authors state

that the proposed approach outperforms the approaches in the current practice.

[51] propose a partially integrated approach for schedule design, aircraft routing and
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crew scheduling problems. Actually, the approach focuses on crew scheduling, but

provides more flexibility while maintaining the feasibility of aircraft routings by intro-

ducing plane count constraints. Moreover, the approach allows to modify departure

times of scheduled flights within given time windows. As a result of their compu-

tational study, the authors conclude that provided flexibility while performing crew

scheduling results in significantly lower costs.

[83] study the crew scheduling problem of a Taiwan airline. The authors report that

work rules in the considered airline are relatively simple compared to the airlines

in other countries. This enables the authors to use pure network models in addition

to traditional set covering models. Pure network formulations can be solved both

efficiently and effectively using real constraints.

[82] cope with cockpit crew scheduling problem. A set partitioning model is used

and a column generation algorithm is proposed for efficiently solving the problem.

Similar to [83], solution procedure is tested using real data from a Taiwan airline.

[52] report their valuable industrial experience on crew rostering problem. The au-

thors describe real-world constraints and objectives, and reveal the natural complexity

of the practical problem. Methodologies used in the Carmen Crew Rostering system,

a commercial crew rostering system used in several major European airlines, are also

presented.

[41] consider crew scheduling problem where crew members are stationed unevenly

among home bases. The authors introduce the basic idea of a partially integrated

approach for solving the problem and remark the advantages of integration over the

traditional sequential approach. Proposed approach can handle dynamic changes in

the availability of the crew members during the planning period. These changes may

occur due to pre-scheduled activities, such as vacancy, or off-duty days.

2.2 Recovery Problems

Majority of studies in airline recovery literature focuses on aircraft recovery prob-

lems since aircraft are considered to be the scarcest resource of airlines. The next
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most studied recovery stage in the literature is crew recovery, while there are fewer

approaches that focus on passenger recovery. We group the studies on airline recovery

problem in four subsections:

1. Aircraft recovery

2. Crew recovery

3. Passenger recovery

4. Partially and fully integrated recovery

Studies explained in aircraft recovery section, Section 2.2.1, are generally dedicated

approaches. In some of these studies, crew and passenger related costs are involved,

however, crew and passenger recovery actions are not integrated. Some of the stud-

ies summarized in crew recovery section, Section 2.2.2, are dedicated while some of

them are integrated with aircraft recovery. Dedicated crew recovery approaches try to

repair crew schedules assuming that aircraft recovery decisions are already made. Un-

like crew recovery, we have not found any dedicated passenger recovery approaches.

Therefore, studies summarized in passenger recovery section, Section 2.2.3, are in-

tegrated with either aircraft recovery or with aircraft and crew recovery. Finally, we

list partially and fully integrated recovery approaches in Section 2.2.4. For a recent

review on airline recovery problems, we refer to [26].

2.2.1 Aircraft Recovery

Aircraft routing recovery is the recovery process that focuses on the aircraft resource.

Considering the number of aircraft in the fleets of the airline and maintenance con-

straints, aircraft routing recovery aims to return to the original schedule with respect

to a preferred objective. The objective is often minimizing the operating costs, max-

imizing the profit or minimizing the time required to return to the original schedule.

Common recovery actions used for recovering aircraft schedules are aircraft swap-

ping, flight cancellation, standby aircraft, and departure time holding. In addition to

optimization models, interactive solution approaches that benefit from the experience

and intuition of airline controllers provide an important contribution.
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The first study on aircraft recovery problem is proposed by [75] in 1984. The authors

deal with the disruption scenario in which some aircraft in the fleet become unavail-

able for a period of time. Recovery actions utilized in the proposed approach are

rerouting aircraft and departure time holding. The aim of the approach is to operate

the scheduled flights with the reduced number of available aircraft. The problem is

represented by a type of a connection network where scheduled flight legs are rep-

resented by nodes. Moreover, available aircraft are represented by a second type of

nodes, as well. Based on this representation, the authors develop a nonlinear integer

model with the objective function of total passenger delay. In order to determine air-

craft routings and departure time decisions resulting in the minimum total passenger

delay, a Branch and Bound procedure is proposed.

[74] focuses on airport closures in some regions during winter months due to meteoro-

logical conditions. Airport closure is one of the most major disruption types resulting

in a great number of flight cancellations, and entire airline network is affected from

cancellations. The author studies the reliability of aircraft schedules related with the

meteorological conditions. One of the main contributions of this study is the proposed

indicator which quantifies the adaptability of aircraft routings to meteorological con-

ditions. A heuristic approach which tries to minimize the number of aircraft required

to operate the scheduled flight legs with a given traffic volume is proposed. When

alternative solutions are found, the heuristic selects the recovery decisions that result

in the minimum number of passengers whose flights are cancelled.

Due to many reasons such as mechanical problems, one or more aircraft may be taken

out of operation during the execution of flight schedules. [76] deal with such disrup-

tions where the airline has to operate the flights with an aircraft shortage. Setting

the recovery horizon as the day of operations, the aim of the proposed approach is

to create a new daily aircraft schedule which minimizes total number of cancelled

flights in these situations. A secondary objective is also used to select the solution

resulting in minimum total passenger delay among those with the same number of

cancelled flights. The problem is broken into subproblems for each fleet type. For the

solution methodology, the authors propose a greedy heuristic algorithm for solving

a lexicographic optimization problem. Efficiency of the proposed algorithm is tested

on a small-sized scenarios. In the proposed approach, crew related restrictions are not
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taken into account.

[77] enhance the solution methodology proposed in [76] by considering crew-related

restrictions. The problem is again solved for each aircraft type separately. Similarly

the primary of the proposed approach is maximizing the number of flown flight legs

in cases of aircraft shortages, while the secondary objective tries to minimize total ar-

rival delay experienced by the passengers. The authors propose a heuristic approach

that uses first in, first out (FIFO) principle and a sequential approach based on dy-

namic programming which tries to facilitate the tasks carried out by the dispatchers.

A software package based on the proposed heuristic model is developed. An inter-

esting and important contribution of the proposed approach is the interaction with the

dispatchers. Dispatchers are assigned an active role using the software on confirming

the final solution. Moreover, they may change the fleet type of flights and resolve

the problem. In addition to retiming decisions of scheduled flights and new aircraft

routings, the output also includes crew rotations.

[47] point out the importance of aircraft recovery problem and present an overview of

a decision support system with the attempt of conceptualizing the problem and form

a basis. In particular, the authors deal with aircraft shortages. In order to recover the

schedules of the aircraft, departure time holding, flight cancellation, aircraft swapping

and using standby aircraft actions are utilized. Proposed solution methodology is

based on network flow theory. The problem is represented by a timeline network. The

authors develop two minimum cost network flow models. Solution of the first model,

called the delay model, determines the set of flights to be delayed that can absorb

the shortages. The model is a pure minimum cost network with arcs bounded by a

flow of unity, and the proposed approach delays flights until the shortage is fixed. The

second model, called the cancellation model, by determining the optimal set of flights

to be cancelled with respect to the same goal. The model can handle more than one

cancellations, and again utilizes aircraft swapping and using standby aircraft actions.

Both models are solved using Busacker-Gowen’s dual algorithm. One significant

drawback of the proposed approach is the separation of departure time holding and

flight cancellation decisions into different models. The tradeoff between cancelling

and delaying a flight can be evaluated to some extent. However, since the models are

pure delay and pure cancellation models, solutions with both cancelled and delayed
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flights are not evaluated. On the other hand, the main aim of the proposed models is to

provide decision support for the dispatchers in airline operations control centers while

finding good solutions in real-time. The authors present a computational study based

on a network with three airports and a considerable air traffic. Some test scenarios

are based on the real data of United Airlines.

[60] presents a novel approach on the integration of computer science and opera-

tions research techniques in airline industry. The study focuses on development of

a decision support system for the dispatchers in airline operations control centers.

Described system is designed and developed on distributed desktop UNIX work-

stations, networked through ethernet TCP/IP communications, with an X Windows

Motif graphical user interface. Features of the application can be summarized as:

• real time flight following,

• aircraft routing,

• maintenance planning,

• crew management,

• gate assignment,

• flight planning and aircraft recovery against disruptions.

The interactive, graphical user interface provides several representations to aid dis-

patchers follow and edit the airline operations. Some of these representations are

routing chart, station-to-station activity chart, and gate activity chart. Based on the

integration of airline operations, the author proposes a rule system which tracks oper-

ational constraints. Whenever, dispatchers decide to deviate from the original sched-

ules, the rule system quickly checks whether these constraints are violated or not. The

rules are of the If-Then form and are classified under: maintenance, crew, operational,

etc. categories. Parameters of these rules can be updated by the dispatchers, such as

number of aircraft overnighting at a particular station. As a second dimension, the

rules are classified according to their criticalities. Violations of level I rules issue a

visual alarm to the dispatchers, while level III violations only generate a violation

report. Another feature of the proposed application is its ability to carry out What-If
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analysis by simulating disruptions, such as closure of an airport. Finally, the appli-

cation is equipped with aircraft recovery mechanisms. In cases of cancellations or

significant flight delays, aircraft rescheduling alternatives minimizing the effects of

the disruption are generated. The problem is represented by a network flow model,

and the solution procedure is based on an Out-Of-Kilter network flow algorithm.

[84] propose a decision support framework to handle schedule perturbations in airline

industry. The authors assume a single fleet type and focus on disruptions occurred

due to an aircraft breakdown. The problem is represented on a time-space network.

Based on this representation, the authors propose pure network flow models and net-

work flow models with side constraints. The prior ones are solved using the network

simplex method, while for the latter one the authors apply Lagrangian relaxation with

subgradient method. Computational study presented in the study includes real life

problems of a major Taiwan air carrier.

[73] considers the problem where the schedule is given and one of the fleet assign-

ments need to be changed. In other words, it is aimed to swap the fleet type of a

specific flight satisfying all restrictions such as flow balance, flight coverage and air-

craft count, while trying to minimize the resulting cost. The procedure is restricted to

find swaps between two aircraft types at a time. The reason why swaps across three

or more aircraft types are not allowed is the great burden on computation times. The

author aims to find a solution within a minute or two. The favorable swaps are the

ones that involve few or none overnight equipment type changes due to maintenance.

Two algorithms are proposed in the study to find swap opportunities. The first al-

gorithm runs in linear-time and finds same-day swaps (with no overnight equipment

type changes) if such a swap exists. For the cases where no such opportunity ex-

ists, the author proposes a general algorithm that restricts the search for k-overnight

equipment changes which is polynomial for fixed k.

[6] present a greedy randomized adaptive search procedure (GRASP) to carry out

aircraft recovery. Flight cancellation, departure time holding and aircraft swapping

are the set of recovery actions integrated in the solution procedure. The GRASP de-

scribed in the study is adapted for use as a randomized neighborhood search tech-

nique. Neighbor generation operations are performed on pairs of aircraft routes.
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These routes are generated from an incumbent aircraft routing. Feasibility consid-

erations in neighbor generation process include flight coverage and aircraft balance

at airports. Alternative routes are evaluated by the incurred cancellation and delay

costs. Proposed approach keeps a limited set of candidate solutions corresponding

to the best local routings. The authors present a computational study based on the

flight data of Continental Airlines and report solutions within at most 5% gap with

the optimal solution is obtained in about 70% of all test instances.

[21] propose a real-time decision support tool for adapting flight schedule and fleet

assignment in cases of unforeseen perturbations in the planned schedule. The au-

thors aim to simultaneously evaluate delay and cancellation options. They present

a quadratic 0-1 programming model for the integrated problem which tries to max-

imize the profit while taking into account delay and cancellation cost penalties. In

addition to their base model, the authors also consider the issues of ferrying aircrafts

and multiple aircraft type swapping capabilities as an extension. In the second part of

the paper, [22] present an effective algorithm for solving the problem in real time.

Ground Delay Program (GDP) is one of the several programs that the FAA is admin-

istering for efficient and equitable use of scarce airspace and airport capacity. In poor

weather conditions, the FAA may decide that the number of planned arrivals at an

airport will exceed the airport’s capacity. In such cases, GDP is initiated, and in a

GDP usually the arrival times of these flights are delayed. [58] address such disrup-

tions. The performance measure is the percentage of flights that are delayed more

than 15 minutes. The problem is modeled as an integer problem. Valid inequalities

and variable reduction methods are used to solve the problem.

[78] deal with disruptions due to aircraft shortages. Different from earlier studies,

main objective of the solution approach is to minimize the deviations from the orig-

inal aircraft schedules. In other words, the emphasis is placed on the stability of the

scheduled operations. Proposed solution methodology is a network model with side

constraints that utilizes departure time holding and flight cancellation actions. The

authors present a computational study based on the flight data of Continental Air-

lines and report that generally optimal or near-optimal solutions are obtained. The

solutions are obtained from the LP relaxation of the network model, and a rounding

41



heuristic is proposed to deal with non-integral solutions. An important feature of the

proposed approach is the interaction with the decision makers, i.e. the dispatchers.

The model is flexible in the sense that the dispatchers can reflect their preferences in

the objective function.

[8] present the time-band optimization model for reconstructing aircraft routings in

the cases of groundings and delays experienced over the course of the day. The ob-

jective of the problem is to minimize the costs measured by flight delays and cancel-

lations. While rerouting, the following constraints are considered:

• every flight in each routing must depart from the airport where the immediately

preceding flight arrived,

• a minimum turn time must be ensured between each flight arrival and subse-

quent departure,

• the recovery period extends to the end of the current day,

• the schedule should be resumed the next day,

• airport departure curfew restrictions should be observed,

• no scheduled maintenance should be violated.

The authors construct time-band model transforming the problem into a time-based

network whose time horizon is discretized. The resulting formulation is an integral

minimum cost network flow problem with side constraints.

[65] propose delay threshold policy. Upon the realization of a disruption, propagated

delay is estimated. The authors state that if the total delay is not over an acceptable

value, push back policy may be implied. Otherwise, aircrafts need to be rerouted.

In the procedure presented, aircraft recovery problem is solved for each fleet sepa-

rately. Authors point out the difficulty of determining delay and cancellation costs.

It is stated that anecdotal evidence suggests minimizing cancellations, delay minutes,

and total delays sequentially. They develop a heuristic that selects only a subset of

aircrafts to be rerouted in order to reduce the size of the problem.
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[79] consider a specific case of disruptions, called hub closure. In the time interval

that the hub is being closed, no transient activity is permitted. The inputs of the prob-

lem are the positions of aircrafts at the time of closure, the original flight schedule, the

time of hub closure and reopening, and a time set for recovery. The objective is to find

the best assignment of aircrafts to flights such that at the end of the recovery period,

all flights can be flown as originally scheduled. In order to find real-time solutions,

estimates are made. The authors suggest a rolling horizon approach in which the mod-

els can be rerun when more accurate information becomes available. The problem is

modeled as a multicommodity network model. Then, a bundle algorithm is presented

to provide feasible near-optimal solutions much more quickly than a mixed-integer

program. The performance of the bundle algorithm is compared with the MIP solved

with CPLEX and the authors report the superiority of solutions of bundle algorithm

with respect to finding much quicker solutions and providing multiple high-quality

solutions instead of a single best solution.

[5] consider four actions for recovery, delaying, swapping, cancelling and ferrying.

The problem is modeled as a mixed integer multi-commodity flow model with side

constraints, where aircrafts are commodities. Using Dantzig-Wolfe decomposition,

the model is reformulated as a set packing model.

[56] deal with the dedicated aircraft recovery problem. The authors propose several

heuristic approaches based on a network representation of the problem with the aim

of handling problems of a realistic size (about 100 aircraft and 500 flights) in real time

(no more than three minutes). The approach tries to balance the tradeoff between de-

lays, cancellations and swaps. They test their approach with disruptions from British

Airways, and revised flight schedules with good quality are generated in less than 10

seconds on the average.

[34] define the new concept called recovery network as a set of nodes and arcs, such

that each possible recovery scheme of the unit (aircraft, crew member or passenger)

corresponds to a path. In addition, each unit-specific constraint is modeled as a re-

source and an associated resource limit. For example, an aircraft has limits on the

consecutive flown hours, crew members have limits on the duration of duty and pas-

sengers have limits on the delay of their itinerary. Resources are either consumed (by

43



flights) or renewed (maintenance). Aircraft recovery program (ARP) aims to assign

a recovery scheme to each aircraft such that original schedule is maintained at a de-

termined point in time. While determining the recovery plan, maximal flight hours,

maximal number of take-offs and landings and the maximal absolute time elapsed

between two maintenances are obeyed. Output of ARP, which is a feasible recovery

plan, is used as input for passenger recovery program (PRP). The authors assume that

either the passenger should be brought to their final destination within a maximum

delay limit which depends on the original itinerary length or the itinerary should be

cancelled. This time, each passenger itinerary (or groups of passengers with the same

itinerary) is considered as a resource. Capacities of the aircrafts are taken into account

while creating the recovery plan. Crew recovery problem is also solved similarly, us-

ing the output of ARP as input.

In this thesis study, we try to recover from disruptions at the end of the operating

day in order to guarantee that each aircraft reaches its scheduled maintenance point.

In Chapter 3, we integrate cruise speed control action with departure time holding

and aircraft swapping actions in addition to passenger recovery actions. In Chapter

4 and Chapter 5, we propose a new network representation that generate all possible

rerouting opportunities for each of the entity types.

2.2.2 Crew Recovery

Aircraft recovery takes the first place in sequential recovery approaches in the litera-

ture and in practice due to the scarcity of aircraft. Crew recovery plans are generally

generated based on the recovered aircraft routings. Majority of studies dealing with

crew recovery problem is not integrated. On the other hand, a minor part of these

studies try to integrate aircraft recovery with crew recovery.

Because of the complexity of crew schedules, restrictive crew legalities and the size

and scope of hub-and-spoke networks, [81] state that, crew management during ir-

regular operations is usually the bottleneck of the recovery process. The approach

assumes that the flight schedule has been fixed and thus is given. The authors focus

on crew scheduling problem only. The objective of the problem is defined as to re-

turn to the original schedule as soon as possible, preferably in a cost-effective way.
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Crew pairing repair problem is modeled with a space-time network within a given

time window. The start of the time window is considered as the current time while

the end of the time window is the proposed time at which the original schedule will

be restored. Since pilots are qualified for only one type of aircraft and the crew pair-

ings are built by fleet type, the problem is separated to aircraft types and modeled as

an integer multi-commodity network flow problem. For obtaining fast solutions, a

heuristic search algorithm is presented.

[71] provide the first attempt to solve operational airline crew scheduling problem.

The problem is to modify personalized scheduled monthly assignments of crew mem-

bers during day-to-day operations. Proposed procedure tries to cover all flights (no

cancellation) with available crew members while trying to minimize the crew cost

and disturbances of crew members. In order to find an integrated solution, the authors

model and solve crew pairing problem and crew assignment problem simultaneously.

Crew recovery problem is formulated as an integer nonlinear multi-commodity flow

problem. Dantzig-Wolfe decomposition principle is embedded in a branch-and-bound

search tree in order to solve the integer nonlinear formulation. The decomposition is

equivalent to the column generation scheme with a master problem defined as a Set

Partitioning type model and a specific pairing generator (subproblem) for each crew

candidate. In order to define the pairing costs, three terms are used:

• real cost of the pairing: credited time cost, transportation cost between the

airport and the hotel, deadhead cost, per diem and hotel cost, etc.,

• penalties: these costs are used to penalize the violation of global constraints,

• bonuses: these costs are used when a certain activity is suggested to an em-

ployee.

[54] point out the complexity of airline recovery problems due to size of the entire

schedule and real time nature of the problem, and describe the necessity to reduce

the complexity and size of the problem instead of applying a full-scale optimization

method. Based on the fact that the original schedules are optimal prior to the expe-

rienced disruption, the authors propose preprocessing techniques to extract a subset

of crew schedules to be rescheduled. In other words, the problem size is reduced by
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reducing the number of schedules that may be altered and an optimization model is

solved on the reduced feasible region. Proposed solution approach is based on an

integer programming formulation. Mathematical formulation together with the pre-

processing methods provide recovery plans for crew members in almost real time.

Moreover, the schedule selection procedure in preprocessing stage guarantees that

the original schedule will be disturbed as little as possible. In other words, the distur-

bance on the stability of airline operations is limited.

[69] contribute to the literature by introducing the problem of crew scheduling which

performs well in operations with disruptions taking uncertainties into consideration.

An easily implemented procedure for finding approximate solutions for the problem

of minimizing expected crew costs. Moreover, a lower bound on the expected cost of

any crew schedule is provided. In an uncertain environment, a measure for evaluating

the performance of crew schedules is developed and it is shown that this measure

performs better than a deterministic model. SimAir, a Monte Carlo simulation of

airline operations with disruptions, is used to evaluate crew schedule’s performance.

Finally, it is aimed to provide insight into what type of pairings perform better in

cases of disruptions. The authors focus on push-back recovery policy because of its

simple structure. Two methods for finding crew schedules that may perform well in

operations are proposed. These methods try to reflect the pairing costs in operations

with disruptions more accurately than deterministic models. Once these costs are

obtained, a set partitioning model is solved using an algorithm developed by [50].

[61] focus on crew recovery by integrating crew pairing and crew assignment prob-

lems during the recovery process. The authors deal with critical crew recovery prob-

lems arising on the day of operations. Given a disruption, infeasibilities may occur in

crew schedules, and the authors list the following examples for such cases:

• arrival delay of a flight may result in an insufficient connection time among two

consecutive flights of a crew member;

• due to a flight cancellation, the flight schedule of an operating crew member

can be operationally infeasible;

• a crew calling sick disturbs the scheduled flights assigned to this crew member;
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• decisions related to aircraft recovery may cause infeasibilities in crew schedules

(e.g. illegal aircraft type - crew member match).

In these cases, the proposed approach tries to repair all illegal individual roster while

trying to cover all scheduled flights. The authors propose to carry out pairing con-

struction and pairing assignment in a single step. Provided solution methodologies are

based on simple tree search and more sophisticated column generation and shortest-

path algorithms.

[1] develop an integrated Decision Support Tool for Airlines schedule Recovery dur-

ing irregular operations (DSTAR). The tool is designed for the operators in AOCCs

and is capable of detecting current and future flight delays and aims to generate proac-

tive integrated recovery plan to avoid these delays. Proposed framework integrates

a schedule simulation model and a resource assignment optimization model. The

schedule simulation model predicts the list of disrupted flights, while the optimiza-

tion model tries to find the optimal plan of crew and aircraft swapping, reserve uti-

lization and flight delays to recover the predicted disruptions. Besides its integrated

solution approach, the study contributes to the literature by creating proactive ac-

tions against anticipated resource problems. It is aimed to obtain real-time solutions.

Schedule simulation model and optimization solver are integrated in a rolling horizon

framework. First schedule simulation model is activated to simulate all flights and

their resources. The model projects all potential downline resource violations within

a given horizon due to the introduced delays and cancellations. Resource violations

may include misconnect, rest and duty limit violations. If a violation is projected,

all the flights that are in the routing of that flight are considered as disrupted flights.

Once the set of disrupted flights is projected, the first recovery stage in the horizon

consisting of the earliest set of resource-independent flights is determined. To be

solved at each stage, a mathematical formulation of the recovery problem as a mixed

integer program (MIP) is developed. The objective of the MIP is to minimize the total

cost associated with recovering all flights in the stage under consideration. Total cost

consists of resources assignment cost, total delay cost and cancellation cost. In order

to illustrate the application of the tool, a detailed example to recover the schedule of

a major U.S. airline is provided.
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[70] propose an approach that integrates certain aspects of:

• schedule design,

• fleet assignment,

• aircraft routing, and

• crew scheduling problems.

Proposed solution methodology is an alternative mixed-integer programming model.

In order to deal with the complexity of the integrated problem, the authors propose

a reformulation-linearization technique. Moreover, a Benders’ decomposition-based

solution approach is proposed to deal with large-sized problems. A computational

study using the real flight data of United Airlines is presented and potential prof-

itability that can be achieved by applying the proposed approach is reported. One of

the important contributions of the study is the proposed alternative problem represen-

tation. The authors utilize a flight network representation alternative to the traditional

time-space networks.

In Chapter 4 and Chapter 5, present methods to generate all possible rerouting ac-

tions for each crew member while satisfying their restrictions. Furthermore, speeding

up some flights enables new crew swapping and rerouting opportunities, and hence,

enlarges the solution space.

2.2.3 Passenger Recovery

There are fewer studies on passenger recovery in the literature than aircraft and crew

recovery. In practice, passenger recovery is observed as the last stage of the sequential

recovery approach. In some methodologies passenger related costs are considered in

the prior stages occurring according to the recovery decisions. These methods try to

evaluate the effect of aircraft and crew recovery decisions on passenger convenience

which has a great impact on the profitability of airlines. However, passenger recovery

decisions such as reallocating or spilling are not integrated. Therefore, without de-

tailed analysis of passenger itineraries and recovery actions, it is not possible to make
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optimal recovery decisions. In the literature, studies that utilize passenger recov-

ery actions are not dedicated approaches. Due to the high dependency of passenger

schedules on aircraft and crew schedules, passenger recovery is either integrated with

aircraft recovery or with both aircraft and crew recovery.

[64] present a stochastic model, which is a discrete event semi-Markov process, de-

scribed in terms of states and transitions that can either be random or deterministic.

The input of the model is an original schedule which includes:

• a set of crews, their pairings and their bidlines,

• a set of aircrafts and their routings,

• a set of itineraries and their passengers, and

• a set of reserve crews that are not assigned to pairings but can be used in oper-

ations.

The state of the stochastic model includes:

• the deviation of the current schedule from the original one,

• historical information required to calculate performance measures and to deter-

mine whether the current schedule will violate planning rules, and

• conditions that are not in control of the airline, such as weather.

Transitions are observed as a result of an event (e.g. departure events, arrival events,

weather events, congestion events) or a set of decisions. Proposed model uses a semi-

Markov process for the state of the weather. The model uses aggregate distributions

for the ground time, the time duration from the moment the plane and crew are ready

until the departure of a leg. As recovery decisions, the authors use delaying legs,

cancelling legs, deadheading crews, ferrying aircrafts, swapping aircrafts, rerouting

crews on new reconstructed pairings and rerouting passengers. Crew costs, cancella-

tions and on-time percentage, passenger misconnection are used as performance mea-

sures. For the implementation of the stochastic model, the authors present SimAir and

give computational results.
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[72] deal with Day of Operations Scheduling (DAYOPS) problem that involves deter-

mining real-time changes to planned airline schedules in cases of perturbations with

the objective of minimizing passenger inconvenience and airline operating costs. The

authors contribute by modeling and solving DAYOPS optimally in real-time provided

that the disruptions are minor. The actions that are used against these minor disrup-

tions is only modifications in arrival and departure times. In addition to activity start

times, activity durations (flight times) are also considered as variables. The problem

is modeled with the objective which consisting of cost terms defined as linear func-

tions of arrival times and flight times. The authors show that dual reformulation of

the problem is a network problem that can be solved in time linear in problem size;

and hence, can create real-time solutions. The idea that the authors suggest is that, in

case of disruptions, the dispatchers can try to restore the schedule simply by delay-

ing some flights using the approach presented in their study, and expensive changes,

such as rerouting aircrafts, swapping, can be considered if a satisfying solution is not

provided.

[20] point that passenger disruptions rarely drive operational decision-making while

AOCCs create recovery plans. Studies show, however, that arriving on time is the

service characteristic most valued by passengers. The authors propose airline recov-

ery models that decides flight departure times and cancellations with the objective

of minimizing operating costs, like conventional models, and are extended to include

passenger delay and disruption costs. Disrupted Passenger Metric model is proposed.

The model includes a binary variable which determines whether a planned itinerary

is disrupted or not, and passenger disruption cost is approximated by the product of

number of disrupted passengers and an estimated cost per disrupted passenger defined

for each itinerary. The authors make the assumption that passenger itineraries include

at most two legs and state that this assumption could be relaxed. This assumption is

true for a major fraction of flights; however, there also exists three leg flights: spoke-

hub leg, hub-hub leg and finally hub-spoke leg. Using an Airline Operations Control

simulator developed by the authors, experiments are provided for several days of op-

erations of a major U.S. airline.

[53] propose two new approaches to minimize passenger disruptions and achieve ro-

bust airline schedule plans. The first approach involves aircraft routing and the second
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one involves retiming flight departure times. In most optimization models for the air-

craft maintenance routing problem, the objective is to maximize through revenue, the

potential revenue obtained by offering passengers the opportunity to stay on the same

aircraft when making a connection at an airport. The authors state that this additional

revenue is very difficult to estimate in practice and moreover, its financial impact is

relatively small. Therefore, in their study, aircraft maintenance routing problem is

considered as a feasibility problem with the aim of achieving robustness with mini-

mal cost implications. Propagated delay is defined to be the delay that occurs when

the aircraft to be used for a flight is delayed on its prior flight. As a result, this delay is

a function of the aircraft’s routing. In the proposed robust aircraft maintenance rout-

ing (RAMR) model, the authors try to minimize the expected total propagated delay.

RAMR is a stochastic discrete optimization problem without random variables in the

constraints. Since the expectations in the objective function can be computed offline,

RAMR is actually a deterministic mixed-integer linear program with a large number

of binary variables. For solving realistic problems, a branch-and-price approach is

used.

In the second part of their study, [53] consider passengers who miss their flights due

to insufficient connection time. Aim of this approach is to minimize the number of

passenger misconnections by retiming the departure times of flight legs within a small

time window. In case of a disruption, slacks may absorb the delay and prevent passen-

ger misconnections; however, adding too much slack would reduce the productivity

of the fleet. Therefore, it is important to make the right decision on where to add the

slack so as to maximize the benefit to passengers without requiring additional aircraft

to fly the schedule (no rerouting). The method used to add slacks is moving departure

times of flights while maintaining aircraft productivity. In practice, departure times of

flights can be altered in a small time window that starts several weeks before the flight

and ends in the day of departure. For retiming departure times, the authors propose

the connection-based flight schedule retiming (CFSR) model. The objective of the

model is to minimize the expected total number of disrupted passengers. Similar to

RAMR, CFSR is also a deterministic mixed-integer program with a large number of

binary variables. Again a branch-and-price algorithm is developed to solve practical-

size problems. The method is experimented using data from a major U.S. airline
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and the authors report that number of passenger misconnections can substantially be

reduced using the proposed approach.

Like [20], [46] also point out the lack of studies on passenger recovery in aircraft re-

covery models in the literature. The authors present an assignment model for airline

schedule recovery which recovers both aircraft and disrupted passengers simultane-

ously. Schedule recovery actions that may be used by the model are determined as:

• calling up reserve aircraft,

• swapping aircrafts,

• over-flying (to fly to another scheduled destination),

• ferrying,

• delaying, and

• cancellation.

Proposed mathematical formulation of the problem has the objective of minimizing

the sum of aircraft assignment cost, total delay cost, cancellation cost, and disrupted

passenger cost. Disrupted passenger costs include the cost of rerouting them to the

earliest available itinerary or transporting them to the destination by another way. In

the proposed approach, the recovery horizon is broken into recovery stages in order to

reduce the number of disrupted flights and aircrafts that will be included in the model.

[59] integrate recovery decisions for aircraft and passengers with cruise speed deci-

sions. Proposed approach is based on a time-space network representation similar

to the one presented in [20]. Similarly, flight copy generation method is applied to

represent different departure time decisions for each scheduled flight. The formula-

tions of [20] is enhanced by the integration of cruise speed control action. Different

cruise speed options are represented by introducing a second set of flight copies for

each flight copy having different timing decisions. Flight copies in this second di-

mension have different slopes, each corresponding to a different arrival time while

these arcs originate from the same departure time. The authors propose two mathe-

matical models to find the optimal aircraft and passenger recovery decisions. In the
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first mathematical model, passenger rerouting actions are evaluated integrated with

aircraft recovery actions. The authors report the intractability of this formulation due

to the large size of airline networks. Therefore, an alternative formulation is proposed

which uses an approximation for evaluating passenger delays.

[62] integrate aircraft, crew and passenger recovery problems. Formulations are based

on a single-day recovery horizon. The authors propose separate mixed-integer pro-

gramming models for each of the:

• schedule recovery,

• aircraft recovery,

• crew recovery, and

• passenger recovery problems.

These subproblems are based on a flight string representation. The coordination be-

tween subproblems are constructed by a Benders’ decomposition scheme together

with the column generation approach. Time limit for the integrated recovery is set to

30 minutes in the experimentations. The authors also propose a sequential approach,

similar to the sequential recovery approach in practice, to handle disruption scenarios

on large airline networks.

In Chapter 3, we integrate beneficial passenger recovery actions with aircraft recov-

ery decisions to reduce passenger delay and spill costs. With problem representations

presented in Chapter 4 and Chapter 4, we propose to generate all possible passenger

reallocation actions in order to optimize passenger recovery decisions. Furthermore,

we observe a significant reduction in total passenger delay and in the number of pas-

senger misconnections with cruise speed control action.

2.2.4 Partially and Fully Integrated Recovery

There is an increasing effort in the literature for integrating several or all aspects of

aircraft, crew and passenger recovery. We have discussed integrated as well as dedi-

cated approaches in the previous subsections which are placed according to the order
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of the subproblems in the sequential recovery approach and the main focus of studies.

In this subsection, we list some important integrated recovery approaches. [1] and

[70] integrate aircraft and crew recovery problems. [72] and [46] deal with aircraft

recovery with considering passenger related costs, while [53] integrates aircraft and

passenger recovery processes. [20], [59] and [62] consider recovery actions related

with aircraft, crew and passengers simultaneously.

These studies integrate recovery decisions to different extents in terms of the consid-

ered entity types and utilized recovery actions. In Chapter 3 we propose an approach

that integrates aircraft and passenger recovery. In the network-based formulation that

we propose in Chapter 4, we try to achieve a full integration by:

• considering disruption and recovery costs related with aircraft, crew and pas-

senger in the objective function;

• allowing to model entity type-dependent operational restrictions; and

• including all possible recovery actions related with each of these entity types in

the solution space.

2.3 Problem Representations

Majority of problem representations used in airline operations studies in the literature

can be classified into three groups:

1. time-space network (TSN) representation,

2. flight string (FS) representation.

3. connection network (CN) representation, and

Classification is made on the main characteristics of the representations. However,

representations in the same group may differ slightly from each other. In this section,

we discuss some important studies in the literature that utilize these representations.
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Figure 2.1: A city-fleet time line presented in [42].

2.3.1 Time-Space Network Representation

An early example of TSN representation is proposed by [42] for dealing with the

fleet assignment problem. The authors classify the proposed representation as time-

expanded multi-commodity network. Aircraft balance is satisfied by modeling activi-

ties at each airport with a time line for each fleet. An example time line corresponding

to a city and a fleet is illustrated in Figure 2.1. Nodes on the time line correspond to

arrivals and departures of the corresponding fleet at the corresponding airport. Time

of arrival nodes are modified by adding refueling and baggage handling time to the

arrival time. Therefore, time of an arrival node corresponds to the time when the air-

craft is ready to takeoff. Departure and arrival nodes of a flight are connected by a

decision variable which represents the assignment of the corresponding fleet to this

flight.

[79] use TSN representations to deal with hub closures. Problem is represented by a

collection of TSNs, each TSN corresponding to an equipment type (fleet). A single

TSN is illustrated in Figure 2.2. Time is represented by the vertical axis, while hori-

zontal axis represents airports. Authors deal with aircraft recovery, and hence, flows

on the network are aircraft. Flow is from top to down. Sloping arcs represent flights

from one airport to another. Vertical, or ground, arcs (arrows are omitted to avoid

clutter) represent the aircraft on the ground that are waiting for a flight. Authors pro-

pose to use binary variables for flight arcs (as only a single fleet type will be assigned

to each flight), while integer variables are used to represent ground arcs (since there

may be many aircraft at an airport at a particular time).
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Figure 2.2: TSN representation presented in [79].

[20] integrates aircraft, crew and passenger recovery by utilizing departure time hold-

ing and flight cancellation actions. Underlying representation of the proposed formu-

lation is a TSN representation similar to [79]. In addition to flight arcs corresponding

to scheduled flights, the authors propose to generate copy arcs for utilizing departure

time holding action. For each possible departure time of a flight, a copy arc is in-

cluded to represent the corresponding departure time decision. In this manner, time is

discretized. Flight copy generation process is illustrated in Figure 2.3. In this figure,

three copies of a DCA-ORD flight with a scheduled departure time of 7:50 are pre-

sented. Note that space is represented by the vertical axis and time is represented by

the horizontal axis. [84], [85], [78] and [5] are other important studies that generate

flight copies for every m minutes for each flight. [20] show that many of the flight

copies are dominated, and hence, can be eliminated from the solution space.

[59] enhance the approach proposed by [20] by integrating cruise speed control with

common recovery actions. Flight copies are again generated for each departure time

decision of each flight. Additionally, the authors propose a second dimension of

flight copy generation process to represent cruise speed decisions. For each flight

copy corresponding to a departure time of a flight, flight copies corresponding to
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Figure 2.3: Flight copy generation process for departure time holding action pre-
sented in [20].

Figure 2.4: Flight copy generation process for cruise speed control action presented
in [59].

different cruise speeds are generated. In addition to departure time options, cruise

speed options are discretized in the same manner. This second type of flight copies

have different slopes than those of the original flights. Two flight copies of a DCA-

ORD flight with a scheduled arrival time of 9:30 are represented in Figure 2.4. Note

that these copies start from the same departure node, however, they arrive earlier due

to the increased cruise speed.

As addressed by [20], the main drawback of TSN representation in airline recov-

ery problems is the huge size of the generated networks. Problem size has a linear

relationship with the number of flights multiplied by the number of departure time

options. If time is discretized for each minute, a precise representation would be

achieved. In this case, if two hours of departure time delays are allowed by the air-

line policy and time slot restrictions, problem size will be linear with 120 times the

number of flights. With cruise speed integration, this coefficient will be multiplied

with the number of cruise speed options considered for each flight. Therefore, some

authors limit the departure delays by 15 minutes, discretize time for each five min-

utes and evaluate only several cruise speed options to be able to provide real time
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solutions. However, this practice restricts the solution space and results in suboptimal

solutions.

In our alternative problem representation explained in Chapter 4, flights are repre-

sented by nodes (activity-on-node). Therefore, we represent departure and arrival

time of flights with continuous variables. This has two advantages. Firstly, problem

size is linear with the number of scheduled flights. Secondly, we do not need to dis-

cretize time and restrict the solution space. Arcs connecting flight nodes represent

feasible flight connections for each of the entity types: aircraft, crew and passenger.

Number of arcs, on the other hand, is directly related with the number of rerouting

opportunities. Therefore, problem is represented with its natural limits. Moreover,

variable operation times, i.e. cruise speed control, is easily integrated with the pro-

posed networks. Cruise time decisions are also represented by continuous variables,

and hence, cruise speed options are not discretized.

2.3.2 Flight String Representation

[10] propose flight string models to solve the integrated fleet assignment and aircraft

routing problem. The authors define a flight string as a sequence of connected flights

with the following characteristics:

• origin of the first flight and the destination of the last flight in the string corre-

spond to a common maintenance station,

• origin of a flight in the string is the same airport with the destination of its

preceding flight, and

• the sequence of flights are maintenance feasible, i.e. it satisfies all FAA and

carrier-specified maintenance requirements.

Then, an augmented flight string is defined to be a FS with the minimum time neces-

sary to perform maintenance attached to the end of the last flight in the string. The

objective of the proposed formulations is to select the set of augmented FSs so that:

• each flight is assigned to exactly one fleet;
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• for each flight, assigned flights are partitioned into a set of rotations;

• each aircraft in a fleet is assigned to at most one rotation;

• total costs are minimized.

A branch-and-price algorithm is proposed to solve the string-based models.

[27] use FS representation to improve crew scheduling by incorporating key main-

tenance routing decisions. The main contribution of the study is the integration of

maintenance routing and crew pairing problems with FSs. [66] propose a string-

based fleet assignment model similar to the one proposed in [10]. The authors use

FSs to reduce hub connectivity and increase robustness of fleet assignments.

In a recent study, [62] uses FS representation for fully integrated airline recovery

problem. A flight string is defined to be a sequence of flights, with timing decisions,

to be operated by the same aircraft. Note that the same sequence of flights may be

present in more than one FS, each corresponding to different departure time decisions.

A single model for each of the schedule recovery, aircraft recovery, crew recovery and

passenger recovery is proposed. Four of these models are string-based formulations.

A Benders’ decomposition scheme is proposed to decompose the integrated problem

where schedule recovery problem is naturally selected to be the master problem.

[62] state that the main advantage of FS representation is in the ease of obtaining

integer solutions for the routing problem. Moreover, it enables flexible models which

involve nonlinear, complex costs and constraints. Note that such objective functions

and constraints can easily be linearized since the coefficients of flight strings can be

calculated prior to solving the mathematical models. On the other, the main drawback

is the huge number of FSs to be generated. When timing decisions are included in

FSs, this number grows exponentially. Authors generally propose to select eligible

FSs to reduce the problem size. Most formal size reduction procedure is explained

by [62]. Proposed preprocessing approach is a straightforward method that identifies

disrupted and disruptable resources based on some definitions. Set of eligible FSs

are generated with respect to these resources. However, resources that are not dis-

rupted, or disruptable, however can be used to recover disrupted operations are not

utilized. For instance, consider an aircraft experiencing an unscheduled maintenance
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and having a delayed ready time. Then, flights assigned to this aircraft are disrupted;

and crew members and passengers related with these flights are disrupted, as well. On

the other hand, an aircraft with a remarkable amount of idle time that is not disrupted

or disruptable is left out of the solution space. Note that such a resource would be

beneficial since it can carry out the disruptable flights and prevent delay propagation.

In our proposed problem representation, we use a connection-based network. There-

fore, we do not enumerate FSs, but instead optimal FSs are generated by the network-

based mathematical models. Note that there is a great difference in size between

generating all flight connections and generating all FSs (or paths in the CN). We

agree with problem size reduction considerations and place a special emphasis on

preprocessing methods. In Chapter 4, we propose two important preprocessing meth-

ods that provide great reductions in problem size without compromising optimality.

Moreover, in Chapter 5, we propose Isolation Heuristic that is independent of the op-

timization models but dedicated to problem size reduction. To the best of our knowl-

edge, this heuristic is the first approach to heuristically solve fully integrated airline

recovery problems. Moreover, instead of a straightforward method, the heuristic has

parameters to control the tradeoff between solvability of the instances and quality of

the solutions.

2.3.3 Connection Network Representation

Connection networks are often named as flight networks, and activity-on-node net-

works in the literature.

[73] proposes a flight network, or a connection network, representation for swap-

ping applications in fleet assignment problem. Iin the proposed CN representation,

flights are represented with arcs, and hence, it differs from the CN definition in this

thesis (not an activity-on-node network). In addition to flights, proposed network in-

cludes ground arcs and overnight arcs. The nodes, on the other hand, are called turn

nodes, and are used to represent connecting possibilities between arriving and depart-

ing flights. An example presented by the authors is given in Figure 2.5. The example

network represents the daily operations at station l.
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Figure 2.5: CN representation presented in [73].

[67] use CN representation to deal with large scale fleet assignment problems. Pro-

posed representation is called as event-activity network representation. A node in the

event-activity network designated by (f, e) represents the start event of flight f by

fleet type e. Existence of an arc designated by (f, g, e) in the network represents the

availability of a connection between the starting events of flights f and g for type e.

These arcs are named as flight activity arcs. With this representation, fleet assignment

problem can be considered as a fixed-schedule time-constrained routing problem.

[5] propose a solution approach based on a CN representation for aircraft recovery

problem. Underlying networks include three kinds of node: source nodes, flight nodes

and flight sink nodes. Each node belongs to an airport. Source nodes are used to

represent the position of aircraft at the start time. Each flight sink node is associated

with a single aircraft, the one that is originally assigned. This forces to resume the

original schedules after the end time.

[70] use a CN representation in the approach that tries to integrate certain aspects

of schedule design, fleet assignment, aircraft routing, and crew scheduling problems.
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Figure 2.6: CN representation presented in [5].

Each flight is represented by a node j (j = 1, ..., n, where n is the number of flight

legs). Moreover, nodes n + s are included in the network to represent different sta-

tions. Three types of arcs are used in the network:

• (n+ s, j)⇔ station s is the departure station of flight j;

• (j, n+ s)⇔ station s is the arrival station of flight j;

• (j, k)⇔ an aircraft can cover flight k immediately after l.

An example CN is proposed by the authors is displayed in Figure 2.7. Feasible pe-

riodic routings of two aircraft are designated by bold arcs. Note that each of these

routings start at a station node, visits some flight nodes and arrives at a station node.

CN representations discussed in this section have significant differences depending

on the problem type that the authors are dealing with. The alternative representation

that we present in Chapter 4 can be classified as a CN representation. Structure of the

proposed CNs can be summarized with the following:

• activities (flights, maintenances, etc.) are represented in nodes,
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Figure 2.7: CN representation presented in [70].

• existence of an arc represents the possibility of sequentially operating the cor-

responding pair of activities by a single entity (aircraft, crew, and passenger).

These simple rules construct a general representation. Note that only aircraft routings

are represented by CNs in the studies that we discuss in this section. We model crew

and passenger operations with CNs in addition to aircraft operations. This allows to

easily model the dependencies between different entity types in a mathematical model

or in an algorithm. To the best of our knowledge, this thesis is the first study in which

integration of different entities is represented by a CN representation.

2.4 Cruise Speed Control Action

We suggest readers [2], [3] and [19] to understand flight stages, fuel economy, impact

of cruise stage on total trip cost, and considerations in cruise speed optimization.

In the study of [28], delay recovery opportunities by speeding up some flights to

some extent are discussed. Furthermore, [57] present a novel approach on fuel cost

minimization by optimizing cruise speeds and altitude profiles.

The approach proposed by [59] integrates cruise speed control as a recovery action

in the integrated aircraft and passenger recovery problem. A flight planning engine,

JetPlan, is used to generate the flight plans used in the solution approach. The authors
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show that disruption and recovery costs can be significantly improved by consider-

ing the network effects on time-related costs when compared with the state-of-the-

practice at airlines. Our alternative problem representation and fuel cost expression

as a function of cruise time (similar to the one proposed by [57]) enable to represent

cruise speed decisions with continuous variables. In this thesis, we try to contribute

by proposing formulations that allow continuous cruise speed optimization while all

possible recovery actions are optimized simultaneously in fully integrated airline re-

covery problems.

[4] is the first study to integrate cruise speed controllability in an aircraft recovery

problem with environmental constraints and cost coefficients. In order to optimally

solve the tradeoff between increased fuel cost and disruption costs, the authors pro-

pose a fuel cost function based on the fuel flow model of Base of Aircraft Data

(BADA) project of EUROCONTROL (the air traffic management organization of

Europe). When the cruise speed of a flight is increased, CO2 emission is increased

as well, and an additional cost is incurred. The authors also contribute by integrat-

ing CO2 emission cost in the airline recovery problem. The study presents nonlin-

ear mixed integer formulations for single and multi fleet aircraft recovery problems,

which are then strengthened by conic quadratic reformulation. Furthermore, the au-

thors propose extensions to handle flight delay costs represented by nonlinear and

step functions in addition to the linear relation used in the preceding formulations.

The approach proposed by [33] falls into robust airline scheduling category. In ro-

bust airline scheduling, the uncertainty in operations is taken into consideration while

cruise speed is usually considered as a fixed parameter. [33] consider cruise times as

controllable and non-cruise times as uncertain. By integrating cruise speed control-

lability, the authors manage to add flexibility to the problem. The experimentations

show that 60% of idle time costs can be reduced by only a 2% increase in fuel costs.

This result points out the effectiveness of cruise speed control action in schedule plan-

ning phase.
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2.5 Passenger-Related Disruption Costs

In cases of disruptions or as a consequence of recovery decisions, passengers may

be spilled or they may experience arrival delays. Generally, a cost coefficient is as-

signed to each passenger in each passenger itinerary to represent the cost of spilling

(also called passenger disruption cost in some studies). On the other hand, it is not

an easy task to evaluate the cost of arrival delays experienced by passengers. Fur-

thermore, passenger delay cost formulation in integrated airline recovery problems is

challenging due to the complexity of the problem.

[20] present two optimization models for the problem. In the first one, called Dis-

rupted Passenger Metric (DPM) model, passenger disruption costs, i.e. spill costs,

are evaluated. In Passenger Delay Metric (PDM) model, on the other hand, a more

accurate passenger-related cost calculation method including passenger delay costs is

presented. The formulation benefits from the underlying TSN and flight copy repre-

sentation. For flight copies each associated with different arrival times, a passenger

delay cost coefficient can be assigned. This allows to handle any relation between the

amount of arrival delay and corresponding passenger delay cost, while a linear rela-

tionship is used in the experimentations. In a similar approach [59] use a simulator

to compute the passenger delay costs of flight copies. However, TSN representa-

tion requires complete enumeration of passenger rerouting options. Furthermore, it

is difficult to obtain real time solutions due to the increased problem size with TSN

representation. [20] report that DPM is fast enough to provide real time solutions,

while PDM cannot be solved in real time for practical-sized problems. Similarly [59]

propose an approximate aircraft and passenger recovery model to provide real time

solutions. The approximate model calculates total passenger delay cost of a solution

assuming that all passengers are transported as scheduled. In other words, the method

ignores rerouting and spilling decisions of passengers, and hence, actual delay cost

can be underestimated or overestimated by the model.

Even though the authors use a FS representation, the approach of [62] resembles

the studies of [20] and [59] in the sense that all passenger rerouting opportunities

together with retiming decisions of flights are enumerated. Therefore, any passenger

delay cost function can be incorporated. The drawback is again with the number of

65



alternatives to be enumerated. The authors, hence, propose to generate only eligible

alternative itineraries in the passenger recovery process. In the computational study,

the authors use a linear relationship between the realized delay and passenger delay

cost.

Passenger delay cost can be regarded as the loss of goodwill cost for the carrier. On

the other hand, with the passengers’ point of view, it may be regarded as the amount

of money a passenger is willing to pay for an arrival with one minute less delay. The

value of this parameter may be different for each passenger and it may even vary for

an individual in different days, in different times of the day and in different origin-

destination pairs. [36] presents a novel study that describes the use of choice theory in

air transportation for modelling passenger behavior. [37] state that from a passenger’s

perspective, representing the passenger behavior using ’door-to-door’ time instead of

’airport-to-airport’ time would be more accurate and proposes a formulation to calcu-

late the values of times. There are studies in the literature that model the behavior of

business class passengers, such as [40]. The authors study ticketing, refund and ex-

change behavior of business class passengers depending on factors such as frequency

of travel, carrier, time from ticket purchase and time before flight departure. In terms

of delay costs for business class passengers, we can intentionally state that value of

time is greater than that for economy class passengers.

While most studies in the literature work with a linear passenger delay cost function,

some authors believe that the relation between the amount of delay and the delay cost

is nonlinear and convex. In the formulations that we present in Chapter 4, we try

to evaluate passenger delay cost as accurate as possible. In addition to linear delay

cost function, we also formulate a piecewise linear function to approximately model

the nonlinear relationship. Similar to the approaches of [20] and [59], we propose

approximation models. Furthermore, we propose models that calculate passenger

delay cost of the solutions based on the actual (realized) delay of passengers in order

to solve the tradeoff more accurately. In order to achieve actual delay calculation, we

model each passenger explicitly rather than aggregating the passengers in the same

fare class of an itinerary. This approach has an additional advantage that different cost

functions can be applied to each individual passenger. To the best of our knowledge,

this study is the first to model passengers explicitly and provide real time solutions.
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CHAPTER 3

INTEGRATED AIRCRAFT AND PASSENGER RECOVERY

WITH CRUISE TIME CONTROLLABILITY

In this chapter, we present a mathematical formulation for the integrated aircraft

and passenger recovery problem that considers aircraft and passenger related costs

simultaneously. The problem is explained on an example in Section 3.1. In Sec-

tion 3.2, we propose a mathematical model for aircraft-passenger recovery problem

which handles departure and arrival delays of any severity. Superimposition of air-

craft and passenger networks is considered to create an integrated recovery plan.

The objective is to minimize the total recovery cost which includes routing-related

costs together with passenger-related costs. Passengers are discretized both by their

itineraries and classes. We aim to contribute by proposing an integrated solution

approach that reschedules departure and arrival times, swaps aircraft, determines pas-

senger itineraries that will be disrupted and finds optimal cruise speeds of flights. In

addition to more commonly used recovery actions, we aim to contribute by includ-

ing cruise speed control in the alternative courses of recovery actions. As discussed in

Section 1.3, fuel consumption increases with cruise speed. In order to find the optimal

trade-off between fuel consumption and delay propagation, fuel cost is expressed as a

nonlinear function of cruise time and included in the objective function. The problem

is formulated as a mixed integer nonlinear programming (MINLP) model. In Section

3.3, we show that the model can be represented as a conic quadratic mixed integer

programming (CQMIP) problem. Finally, we generate conic quadratic constraints to

solve the problem with commercial CQMIP solvers, such as CPLEX. We test our

approach using publicly available schedules of a major U.S. airline. We present the

computational study of the proposed approach In Section 3.4. Our experiments have
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shown that we could solve the integrated aircraft and passenger recovery problem

to optimality on a four-hub network of a major U.S. airline in less than one minute

on the average. Finally, we present our conclusions on the proposed approach and

experimentations in Section 3.5.

3.1 Numerical Example

Before presenting the mathematical formulation, we illustrate the main idea on a

small-sized numerical example. The input of aircraft and passenger recovery problem

consists of the flight schedule, characteristics of the assigned aircraft (such as seat

capacities and fuel efficiencies), planned passenger itineraries, numbers of passengers

of each class assigned to these itineraries, and lastly a set of disrupted flights with the

severities of these disruptions. Flight schedule of the example is illustrated on a time-

space network in Figure 3.1. Vertical axis corresponds to space (airports) while the

horizontal axis is the time line. Each line style (color) represents a different aircraft

routing. The horizontal line segments of a routing represents the time that the aircraft

spends at the airport. Length of these line segments need to be at least as long as the

turn time of the aircraft. Turn time is the minimum time required after the arrival of

an aircraft to be ready for its next departure. In the example problem, turn times for

all flights are set to 30 minutes. Inclined line segments, on the other hand, correspond

to planned flights. For instance, N5FCAA performs two flights: a 440-minute flight

from HNL to DFW, and a 440-minute flight from DFW back to HNL. The aircraft

spends 70 minutes at DFW between these flights.

Flight schedule is tabulated in Table 3.1, and operational details of these flights are

presented in Table 3.2. The rightmost column of Table 3.2 corresponds to the allow-

able compression percentage which is the aircraft-and-flight-dependent parameter in-

dicating the allowable compression of flight time expressed in terms of the percentage

of cruise time. For instance, cruise time, and hence the flight time, of flight 1 can be

decreased by 4.8 minutes at most, if the aircraft of the flight is not swapped.

Passenger itineraries expressed in terms of sequential flight numbers are listed in

Table 3.3 (the second and third columns represent the numbers of passengers in econ-
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Figure 3.1: Time-space network displaying the flight schedule of three aircraft rout-
ings

omy and business classes, respectively); and space network of flights and passenger

itineraries are represented in Figure 3.3. It is important to note that we deal with

the integrated network, which is the superimposition of aircraft routing and passen-

ger itinerary networks. For instance, passengers in itinerary 1-2-10 are three-flight

passengers who travel from DCA to ORD, ORD to DFW, and finally DFW to HNL

(Figure 3.1). At DFW, passengers in this itinerary switch from N322AA to N5FCAA.

Aircraft schedules must provide sufficient time for connected flights, which is called

the minimum connection time. In this example, minimum connection times are all set

to 30 minutes. When the minimum connection time is not satisfied, the itinerary is

said to be disrupted. Spill costs of all itineraries in this example are $50 and $200 for

economy and business class passengers, respectively. Delay costs are separated into

two terms: delay cost for aircraft and delay cost for passengers. Aircraft delay cost

contains several components such as maintenance cost, flight crew and cabin crew

cost, and marginal depreciation or lease cost per flight minute. On the other hand,

passenger delay cost is the estimated cost of time lost by passengers. Aircraft delay

costs are all set to $20 per minute; and passenger delay costs per passenger minute

are set to $0.05 and $2 for economy and business class passengers, respectively.

In the given scenario, N322AA is facing maintenance problems before its first flight,

and hence, it cannot depart before 09:50. In other words, departure time of flight

1 is delayed by two hours. A common recovery strategy for such disruptions is to
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Figure 3.2: Aircraft Routings

Figure 3.3: Passenger Itineraries
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Table 3.1: Planned flight schedule

Tail #
Flight

#
From To

Departure
time

Arrival
time

N322AA 1 DCA ORD 7:50 9:30
2 ORD DFW 10:00 12:20
3 DFW ORD 13:00 15:20
4 ORD DCA 16:30 18:10

N345AA 5 LAX ORD 6:00 9:40
6 ORD MSP 12:00 13:10
7 MSP ORD 14:00 15:10
8 ORD LAX 16:00 19:40

N5FCAA 9 HNL DFW 5:30 12:50
10 DFW HNL 14:00 21:20

postpone all flights until their assigned aircraft are ready. This strategy is known

as push-back recovery plan (PB1). A variation of PB1 is push-back recovery plan

maintaining passenger connections (PB2) which may be a good idea when spill costs

overweigh delay costs. In PB2, none of the itineraries are disrupted since the depar-

tures of all flights are postponed until aircraft and passengers are ready. On the other

hand, more flights are delayed and greater delay propagation is experienced.

In this study, we propose a new approach with the objective of finding minimum

cost recovery plans by deciding on which flights to postpone and how much to post-

pone, which itineraries to disrupt, cruise times of which flights to compress and how

much to compress, and the aircraft of which flights to swap. This integrated ap-

proach will be named as aircraft-passenger recovery (APR). Swapping aircraft may

provide opportunities to mitigate delays; however, the characteristics of the aircraft

should be considered while swapping aircraft. In particular, different types of air-

craft may have different fuel efficiencies; and hence, flying the same flight leg with

different aircraft may result in different fuel costs. For simplicity, all aircraft in

the example have similar fuel efficiencies, and fuel cost of a flight is computed by

0.25 × Distance2.5/crt1.5, where crt is the cruise time of the flight. Compression

limitations may also vary as displayed in Table 3.2. Finally, aircraft may have differ-

ent seat capacities. Therefore, a swap decision may result in spilled passengers due to

insufficient seat capacity. In the example, capacities of aircraft N322AA, N345AA,
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Table 3.2: Details of scheduled flights

Tail #
Flight

#
Cruise time

(min.)

Time to
next flight

(min.)

Dist.
(miles)

Allowable
compr.

N322AA 1 80 30 610 6%
2 120 40 800 6%
3 120 70 800 6%
4 80 - 610 6%

N345AA 5 200 140 1745 10%
6 50 50 335 10%
7 50 50 335 10%
8 200 - 1745 10%

N5FCAA 9 70 3780 9%
10 420 - 3780 9%

and N5FCAA are 270-30, 243-27 and 234-26 for economy and business class pas-

sengers, respectively. When the aircraft of two flights are swapped, a swap cost is

incurred for returning to the original schedule at the end of the day.

Three recovery schemes are displayed in Figures 3.4, 3.5, and 3.6 . Lines in grey

color represent the flights in the original schedule. In Figure 3.4, it can be seen

that only flights in the routing of N322AA are delayed with PB1 recovery policy.

Total delay is 420 minutes, resulting in a delay cost of $36,374. On the other hand,

the connection between flights 2 and 10, and the connection between 3 and 8 are

disrupted. Therefore, the passengers in itineraries 1-2-10, 2-10 and 3-8 are spilled. A

total of 87 economy and 8 business class passengers are spilled, and the resulting total

spill cost is $5,950. As given in Figure 3.5, in PB2 recovery policy, all connections

are maintained; however, in addition to flights in the disrupted routing, flights 8 and

10 are also delayed. Total delay is 570 minutes and the corresponding delay cost is

$45,676.

Figure 3.6 presents the solution obtained by APR approach. APR utilizes the swap

opportunity between flights 2 and 6. In the recovery scheme, N322AA operates flights

1, 6, 7 and 8, while N345AA operates flights 5, 2, 3 and 4. Resulting swap cost is $

5,000. In order not to delay flight 2, cruise time of flight 5 is compressed by 10 min-

utes so that it arrives 30 minutes (turn time) before the scheduled departure of flight
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Table 3.3: Planned passenger itineraries

Itinerary
# of pass.
Economy

# of pass.
Business

Itinerary
# of pass.
Economy

# of pass.
Business

1 183 19 4 113 15
1-2 33 4 5 65 13
1-2-10 12 2 5-6 90 8
1-6 42 5 6 57 6
2 153 18 7 130 16
2-10 72 6 7-8 113 11
3 67 7 8 51 5
3-4 137 13 9 234 26
3-8 3 0 10 103 10

2. It is important to note that flight 5 is not originally affected from this disruption,

but its cruise time is compressed (in albeit of additional fuel cost) due to the swap-

ping decision. Such an interaction will not be foreseen without a global optimization

model such as the one proposed in this study. The current industry solution of cost

index ratio is useful but the flight crew may not be able to see the consequences of

their local decisions. In this solution, passengers in itineraries 1-2 and 1-2-10 are

disrupted; and hence, 45 economy and 6 business class passengers are spilled. APR

captures the change in aircraft capacities due to the swap; 7 economy and 1 business

class passengers are spilled from flight 4. Resulting spill cost is $4,000. Delay is not

propagated and only flight 1 is delayed. Moreover, cruise time of flight 1 is com-

pressed by 4.8 minutes leading a total delay of only 115.2 minutes. Corresponding

total delay cost is $10,771. Speeding up two flights costs $5,757 for increased fuel

consumption. Some performance measures and cost terms of all recovery schemes

are summarized in Table 3.4. It can be observed from the cost values that APR finds

the optimal tradeoff between the cost terms by optimizing a unified objective func-

tion. In this example, a 40% reduction in total recovery costs with respect to those of

PB1 and PB2 schemes is provided.

73



Figure 3.4: PB1 solution

Figure 3.5: PB2 solution
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Figure 3.6: APR solution

3.2 Mathematical Formulation

The objective of the aircraft and passenger recovery problem is to find the mini-

mum cost recovery plan given aircraft routings and aircraft characteristics, passen-

ger itineraries and number of assigned passengers of each passenger class, and a set

of departure or arrival delays of any severity. The decisions include which flights

to postpone and how much to postpone, which passenger itineraries to maintain and

which to cancel, aircraft of which routings to swap and which flights to speed up.

Objective function consists of five cost terms: delay cost for aircraft and passengers,

spill cost, swap cost and additional fuel cost. Derivation of the general expression for

the nonlinear fuel cost will be given in this section, and conic quadratic reformulation

will be explained in Section 3.3.

3.2.1 Fuel Cost Function

Since we aim to use cruise speed control of flights in recovery, a realistic fuel cost

function is required. In the technical documentations of [2] and [19], it is reported

that direct operating costs of a flight consists of a fixed cost, and variable fuel and

time related costs depending on cruise speed and time. However, in the aircraft and
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Table 3.4: Performance measures of solutions

Performance measure PB1 PB2 APR

# of delayed flights 4 6 1
Total delay (min.) 420 570 115.2
# of disrupted itineraries 3 0 2
# of spilled passengers 95 0 59
Total compression (min.) 0 0 14.8
Aircraft delay cost 8,400 11,400 2,304
Passenger delay cost 27,974 34,276 8,467
Total spill cost 5,950 0 4,000
Additional fuel cost 0 0 5,757
Swap cost 0 0 5,000
Total recovery cost 42,324 45,676 25,528

passenger recovery problem, time related costs of flights should be evaluated consid-

ering the superimposition of aircraft and passenger networks instead of considering

flights separately. Therefore, we calculate these costs in the mathematical model as

aircraft and passenger delay costs. On the other hand, we develop the fuel cost func-

tion of a flight with respect to the technical report of [3]. It is reported that airlines

generally operate their aircraft at maximum range cruise (MRC) speeds that result

in minimum fuel consumption. The relation of fuel cost with deviation from MRC

speed is increasing and convex as displayed in Figure 3.7. In (3.1), we express actual

fuel cost of flight k (fckt) when operated with the aircraft of routing t as the deviation

from the planned (minimum) fuel cost (FCkt), where Vkt is the MRC speed, ∆vk is

the increase in the cruise speed and Kkt is flight and aircraft related parameter.

fckt(∆vk) = FCkt ×
(
Vkt + ∆vk

Vkt

)Kkt

(3.1)

where Kkt ≥ 1.

In (3.2) we express the relation between the cruise speed (vk) and cruise time (crtk)

of flight k, where DISTk is the cruise stage distance. A similar approximation was

also employed in [57] to analyze the potential of cruise fuel burn savings.

DISTk = vk × crtk (3.2)
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Figure 3.7: Cruise speed - fuel cost relation

Using relations in equations (3.1) and (3.2), Proposition 3.2.1 expresses fuel cost as a

function of cruise time.

Proposition 3.2.1. Cruise stage fuel cost of flight k, when operated with the aircraft

of routing t (fckt) and when the cruise time is compressed by ∆tk, can be expressed

as a function of the amount of compression as follows:

fkt(∆tk) = FCkt × TKkt
kt ×

(
1

Tkt −∆tk

)Kkt

(3.3)

where Tkt is the cruise time of the flight at planned cruise speed.

Proof. Using the relation in (3.2), we have both DISTk = Vkt × Tkt and DISTk =

(Vkt + ∆vk) × (Tkt −∆tk). Therefore, increase in cruise speed can be expressed in

terms of the amount of compression.

∆vk =
Vkt ×∆tk
Tkt −∆tk

(3.4)

Substituting (3.4) in (3.1), actual cruise stage fuel cost of a flight can be expressed in

terms of the amount of compression in the cruise time.
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3.2.2 Notation

Before going through the formulation, notation used throughout this chapter is de-

scribed below.

Sets:
F Set of all scheduled flights

R Set of all scheduled aircraft routings

Ft Set of flights in tth aircraft routing t ∈ R
I Set of passenger itineraries

I(k) Set of passenger itineraries including flight k k ∈ F
F (i) Set of flights in passenger itinerary i i ∈ I
S Set of pairs of flights that can be swapped

D Set of flights that have departure or arrival time disruption

Prek Set of flights including flight k and all flights that precede

flight k in its routing, k ∈ F
C Set of passenger classes

In general, aircraft of all flights departing from the same airport can be swapped:

S = {(k,m) : k,m ∈ F,m > k,Rk 6= Rm, ORIk = ORIm}.

Rk is the tail number of the kth flight and the parameter ORIk denotes the origin

airport of flight k. Flight pairs in set S can be determined by considering various

factors. If two aircraft have a long time gap between their arrivals to the airport where

swap occurs, then such a swap may be excluded from S. If a swap has a very high

cost, it causes infeasibilities in crew schedules or in aircraft maintenance restrictions,

then it should be excluded from S as well.

Parameters:

Rk: Routing (tail) number of flight k k ∈ F
DTk: Scheduled departure time of flight k k ∈ F
ATk: Scheduled arrival time of flight k k ∈ F
FTkt: Flight time of flight k if it is flown at planned speed k ∈ F, t ∈ R

with aircraft of routing t
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Tkt: Cruise time of flight k if it is flown at planned speed k ∈ F, t ∈ R
with aircraft of routing t

Γk: Aircraft turn time for flight k k ∈ F
Θik: Minimum connection time for passengers in i ∈ I, k ∈ F (i)

itinerary i before flight k

CAP c
t : Seat capacity for passengers of class c in the t ∈ R, c ∈ C

aircraft assigned to the routing t

APrek: Flight that immediately precedes flight k in its k ∈ F
routing

Firsti: First flight in passenger itinerary i i ∈ I
PPreik: Flight that immediately precedes flight k in i ∈ I, k ∈ F (i)

passenger itinerary i

εi: Difference between the ready time of passengers in i ∈ I
itinerary i and scheduled departure time of their first

flight

NPassck: Total number of class c passengers in flight k k ∈ F, c ∈ C
NP c

i : Number of class c passengers in itinerary i i ∈ I, c ∈ C
Kkt: Fuel cost exponent of aircraft of routing t for t ∈ R

operating flight k

Allkt: Percentage of cruise time of flight k that can be k ∈ F, t ∈ R
compressed with aircraft of routing t

FCkt: Minimum (planned) fuel cost of flight k if operated k ∈ F, t ∈ R
with aircraft of routing t

Yt1t2: Swap cost incurred if the aircraft of routings t1 and t2 t1, t2 ∈ R
are swapped

ADCk: Aircraft delay cost per flight minute of aircraft k ∈ F
PDCc

k: Passenger delay cost per minute per passenger of k ∈ F, c ∈ C
class c for flight k

SCc
i : Spill cost per passenger of class c in itinerary i i ∈ I, c ∈ C

DDk: Amount of departure delay of disrupted flight k k ∈ D
ADk: Amount of arrival delay of disrupted flight k k ∈ D
M : A sufficiently large amount of time
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Decision Variables:

dtk: Departure time of flight k in the recovered schedule k ∈ F
atk: Arrival time of flight k in the recovered schedule k ∈ F

∆tk: Amount of compression in cruise time of flight k in k ∈ F
the recovered schedule

delayk: Amount of arrival delay of flight k in minutes in the k ∈ F
recovered schedule

spci Number of class c passengers in itinerary i that are i ∈ I, c ∈ C
spilled due to itinerary disruption or capacity

insufficiency

passck: Number of class c passengers that are not disrupted k ∈ F, c ∈ C
and available for flight k

zi= 1, if passenger itinerary i is disrupted; 0 otherwise i ∈ I
xkm= 1, if aircraft of flights k and m are swapped; (k,m) ∈ S

0 otherwise

ykt= 1, if flight k is performed with aircraft of routing t; k ∈ F, t ∈ R
0 otherwise

3.2.3 Constraints

Constraints of the aircraft and passenger recovery problem are discussed in six groups.

3.2.3.1 Swap Constraints

We limit the number of swaps for the flights in a routing to one in (3.5) and introduce

the auxiliary variable ykt in (3.6) and (3.7) in order to indicate that a flight is swapped

or not.
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∑
k∈Ft

 ∑
m:(k,m)∈S

xkm +
∑

m:(m,k)∈S

xmk

 ≤ 1 ; t ∈ R (3.5)

∑
i∈Prek

 ∑
j:(i,j)∈S,
j∈Ft

xij +
∑

j:(i,j)∈S,
j∈Ft

xji

 = ykt; k ∈ F, t ∈ R \ {Rk} (3.6)

1−
∑
i∈Prek

 ∑
j:(i,j)∈S

xij +
∑

j:(i,j)∈S

xji

 =ykRk
; k ∈ F (3.7)

The auxiliary variable ykt takes value one if flight k is operated with the aircraft of

routing t. Value of ykRk
will be equal to one if the flight is not swapped; i.e., if the

flight is operated with the originally scheduled aircraft.

3.2.3.2 Departure Time Constraints

Departure time constraints are developed using the idea that an operation cannot start

until all necessary resources are available. Constraints allow early and late depar-

tures in order to create a greater feasible region; however, operational restrictions on

departure and arrival times can easily be inserted into the model.

dtk ≥ (DTk − εi)× (1− zi) ; i ∈ I, k = Firsti (3.8)

dtk ≥ (atj + Θij)−M × zi ; i ∈ I, k ∈ F (i) \ Firsti, j = PPreik (3.9)

dtk ≥ (atj + Γj)−M ×

 ∑
m:(k,m)∈S

xkm +
∑

m:(m,k)∈S

xmk

 ; k ∈ F, j = APrek

(3.10)

dtk ≥ (atj + Γj)−M × (1− xkm) ; k ∈ F, j = APrem 3 (k,m) ∈ S (3.11)

dtk ≥ (atj + Γj)−M × (1− xmk) ; k ∈ F, j = APrem 3 (m, k) ∈ S (3.12)

We allow flights to depart before the ready time of its passengers. Although it seems

an undesirable situation, it might be necessary due to a swapping decision. In such a
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case, constraint (3.8) ensures that the passengers having that flight as the first flight in

their itineraries are spilled. Passenger connections are modeled with constraint (3.9).

If a flight departs before passengers who have a preceding flight in their itineraries

are ready (atj + Θij), the variable zi takes value one denoting that the connection is

disrupted. Constraint (3.10) satisfies the aircraft flow balance of two successive flights

in a routing considering turn times if the aircraft of these flights are not swapped. In

case of swaps, balance is satisfied with constraints (3.11) and (3.12). For instance,

consider constraint (3.11) and suppose that the aircraft of flights k andm are swapped.

Then, the constraint states that flight k cannot depart before the ready time of the

aircraft after flight j which is the predecessor of flight m in its routing in the original

schedule.

3.2.3.3 Arrival Time and Delay Constraints

If the cruise speed is not controlled, arrival time of a flight would be expressed as the

sum of the departure time and the planned flight time. Taking compression and swap

decisions into consideration, arrival time constraint is given in (3.13). Since customer

convenience is related with on-time arrival performance of flights, we express delay

as the difference between actual and planned arrival time in (3.14). In order not to

promote early arrivals, we force delay to be nonnegative in (3.15).

atk ≥ dtk +

(∑
t∈R

FTkt × ykt

)
−∆tk ; k ∈ F (3.13)

delayk ≥ atk − ATk ; k ∈ F (3.14)

delayk ≥ 0 ; k ∈ F (3.15)

3.2.3.4 Allowable Compression Constraints

Maximum compression in the cruise time of a flight is limited and we express this

limitation as percentage of the cruise time. Limitation on the compression depends

both on the aircraft type and the flight. Constraint (3.16) defines the upper bound

for compression in cruise time. We assume that an airline plans its flight times at
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maximum range cruise speed which gives minimum fuel cost. Therefore, a longer

cruise time would be worse both in terms of time and cost. Constraint (3.17) enforces

compression variable to take nonnegative values.

∆tk ≤
∑
t∈R

Tkt × Allkt × ykt ; k ∈ F (3.16)

∆t ≥ 0 ; k ∈ F (3.17)

3.2.3.5 Passenger Itinerary Disruption and Capacity Shortage Constraints

Constraints (3.8) and (3.9) ensure that binary variable zi takes value one if itinerary

i is disrupted. Constraint (3.18) states that passengers in disrupted itineraries are

spilled.

spci ≥ NP c
i × zi ; i ∈ I, c ∈ C (3.18)

Since we allow swapping aircraft, seat capacities of flights may change and passen-

gers may also be spilled due to insufficient capacity. In capacity shortage cases, air-

line should decide on which passengers to spill considering different spill costs of

different itineraries. For a given flight k, number of class c passengers to be spilled

due to capacity shortage is given by max{0, NPassck −
∑

t∈R CAP
c
t × ykt}. These

passengers should be selected from the itineraries that include flight k, and some of

them may already been spilled due to itinerary disruptions. Constraint (3.19) ensures

that number of passengers assigned to each flight do not exceed the seat capacities of

its aircraft. ∑
i∈I(k)

spci ≥ NPassck −
∑
t∈R

CAP c
t × ykt ; k ∈ F (3.19)

3.2.3.6 Disruption Constraints

In aircraft and passenger recovery problem, we are dealing with delays of any severity.

One can represent a disruption by entering departure delay (DDk) or arrival delay

(ADk) for a flight. Constraint (3.20) states that a disrupted flight cannot depart before

its ready time. Note that the ready time of these flights after disruption is equal to the
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sum of scheduled departure time and departure delay. Similarly, constraint (3.21)

expresses arrival time disruptions.

dtk ≥ DT k +DDk ; k ∈ D (3.20)

atk ≥ AT k + ADk ; k ∈ D (3.21)

3.2.3.7 Objective Function

The objective of the problem is to recover from the disruptions with minimum oper-

ating and inconvenience costs. Cost of recovery includes five terms: delay cost for

aircraft and passengers, spill cost, swap cost, and increase in the fuel cost. Delay costs

include flight and passenger related costs. Passenger related delay costs are based on

the number of passengers in the original schedule. For each disrupted passenger, a

spill cost is incurred. Both disrupted passenger and passenger delay costs depend on

passenger classes. For pairs of flights that are swapped, a swap cost is incurred in

order to return to the original schedule before the next day of operations. Cruise stage

fuel cost of a flight considering both compression and swap decisions is expressed in

(3.3). Using auxiliary variable ykt, additional fuel cost of a particular flight, say k, is

obtained by
∑

t∈R fkt(∆tk)× ykt − FCkRk
. The objective function corresponding to

the recovery cost is defined in (3.22) and the complete model is given below:
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Minimize∑
k∈F

delayk ×

(
FDCk +

∑
c∈C

NPassck × PDCc
k

)
+

∑
c∈C

∑
i∈I

SCc
i × spci+∑

(k,m)∈S

YRkRm × xkm+(∑
k∈F

∑
t∈R

fkt(∆tk)× ykt − FCkRk

)
(3.22)

subject to

Swap constraints (3.5)− (3.7)

Departure time constraints (3.8)− (3.12)

Arrival time and delay constraints (3.13)− (3.15)

Allowable compression constraints (3.16)− (3.17)

Passenger itinerary disruption and capacity shortage

constraints (3.18)− (3.19)

Disruption constraints (3.20)− (3.21)

zi ∈ {0, 1} i ∈ I

xkm ∈ {0, 1} (k,m) ∈ S

Binary decisions included in the proposed model are whether to maintain a passenger

connection or not, and whether to swap aircraft of pairs of flights or not, as stated

above. Note that APR is a MINLP model having a nonlinear objective function.

Fuel cost term of the objective function includes products of convex functions with

binary variables. In Section 3.3, we linearize the objective function and then show

that the resulting model is SOCP-representable. Finally, we explain generation of

conic quadratic constraints so that the model can be solved with commercial CQMIP

solvers.
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3.3 Conic Quadratic Mixed Integer Programming Model

In the objective function given in section 3.2.3.7 for each flight-aircraft pair there

exists a nonlinear fuel cost term

fkt(∆tk)× ykt (3.23)

which is the product of fuel cost function (fkt) and flight-aircraft assignment variable

(ykt). This term is nonlinear and nonconvex. In the following, we will first move

this function to the constraint set, and then show that the resulting constraint can be

reformulated in a way to represent a convex set. We next observe that the resulting

convex set can be represented using conic quadratic inequalities.

Substituting the function (3.3) in (3.23) we get

Ωkt ×
(

1

Tkt −∆tk

)Kkt

× ykt (3.24)

where Ωkt = FCkt × TKkt
kt .

We next introduce an auxiliary variable crtk that represents the actual cruise time of

flight k as below:

crtk = Tkt −∆tk k ∈ F and t ∈ R (3.25)

The next step in representing (3.23) via conic quadratic inequalities is to replace each

term (3.23) in the objective function with the expression Ωkt × qkt where qkt is an

auxiliary variable and add the following inequality into the constraint set

ykt

crtKkt
k

≤ qkt (3.26)

This reformulation is obviously equivalent to the original one since it is a minimiza-

tion problem. In its new form the objective is linear but now we have nonlinear

constraints in the constraint set.

Next, we first reformulate (3.26) so that the reformulation will represent the hypo-

graph of the geometric mean of 2l nonnegative variables, which is a convex set. In

the following, we drop k, t indices of variables and consider K = k1/k2 where k1, k2

are integers.
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Proposition 3.3.1. Inequality (3.26),

y

crtK
≤ q

can be equivalently written as

y2
l ≤ qk2 × crtk1 (3.27)

where l = dlog2(k1 + k2)e.

Proof. Inequality
y

crtK
≤ q

can be first written as

y ≤ crtk1/k2 × q

taking kth2 power of both sides we get

yk2 ≤ crtk1 × qk2

Exploiting the fact that y is a 0-1 decision variable in the model, the exponent of y

can be increased and set to 2l and we get:

y2
l ≤ crtk1 × qk2 × 1(2l−k1−k2) (3.28)

An inequality of the form r ≤ (s1s2 · · · s2l)1/2
l

with si ≥ 0 restrictions defines the

hypograph of the geometric mean of variables s1, . . . , s2 which is a convex set. In-

equality (3.28) is of the same form with some restrictions on the variables. k1 of them

are identical and equal to crtk, k2 of them equal to q and (2l− k1− k2) of them equal

to 1.

Proposition 3.3.1 shows that inequality (3.26) can be reformulated as an inequality

which defines a convex set, namely a hypograph of geometric mean of 2l variables.

This leads to the following result.

Proposition 3.3.2. Inequality (3.26),

y

crtKk
≤ q

with restrictions y ∈ {0, 1}, crtk ≥ 0, q ≥ 0, can be represented using conic quadratic

inequalities.
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Proof. As given in [17], for a positive integer l, an inequality of the form

r2
l ≤ s1s2 · · · s2l , (3.29)

for r, s1, . . . , s2l ≥ 0, i.e. a hypograph of geometric mean of 2l variables, can be

expressed equivalently using O(2l) variables and O(2l) hyperbolic inequalities of the

form

u2 ≤ v1v2, u, v1, v2 ≥ 0 (3.30)

Furthermore, each constraint u2 ≤ v1v2 can be written as a conic quadratic constraint

‖(2u, v1 − v2)‖ ≤ v1 + v2. (3.31)

This reformulation enables us to model the MINLP problem initiated in Section 3.2

as a CQMIP problem. The modified model with linear objective function, linear and

conic quadratic constraints can be handled by fast algorithms of commercial CQMIP

solvers. We finally illustrate the generation of conic quadratic constraints with an

example.

Example 3.3.1. Suppose thatK = 2.5; and hence, k1 = 5 and k2 = 2 for a particular

flight-aircraft pairing. By Proposition 3.3.1, inequality

y

crt2.5
≤ q

is first expressed as

y2 ≤ crt5q2

Then, reformulated as

y8 ≤ crt5q211

Obtained inequality can be expressed with the following three inequalities introduc-

ing two nonnegative variables:

w2
1 ≤crt× 1

w2
2 ≤w1 × q

y2 ≤w2 × crt
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Figure 3.8: Illustration of generation of conic quadratic constraints

Generation of the inequalities is illustrated in Figure 3.8.

These constraints can be represented by the following conic quadratic inequalities:

4w2
1+(crt− 1)2 ≤ (crt+ 1)2

4w2
2+(w1 − q)2 ≤ (w1 + q)2

4y2+(w2 − crt)2≤(w2 + crt)2

In the next section, we discuss the computational performance of proposed reformu-

lation.

3.4 Computational Results

In order to validate the practicality of the proposed approach for airline and pas-

senger recovery operations, and investigate the effects of several factors on solution

quality and performance of the approach with respect to solution time, we have set

up an experimental design. Bureau of Transportation Statistics (BTS) provides airline

on-time performance data (http://www.transtats.bts.gov/ DataIndex.asp). We have ex-

tracted the aircraft schedules of a major U.S. airline for three days of operations in

April, 2011. Extracted data includes tail numbers, departure and arrival times, flight

and cruise times, origins and destinations, and distances of flights. For each aircraft,

we randomly selected the number of seats and values of fuel cost parameters. Each

flight is included as a single-flight itinerary. Moreover, pair of flights that arrives to
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a common airport and satisfies minimum passenger connection time are considered

as possible passenger connections. The second rule on these pairs to be connect-

ing flights is that the origin of the prior flight should be a different airport than the

destination of the latter one. These possible connecting flights are used to generate

two-flight passenger itineraries. In a similar manner, again considering the minimum

connection times, and origins and destinations of the flights, three-flight itineraries are

constructed. Number of passengers in each flight is assigned randomly, considering

the seat capacities and generated itineraries using these flights. Six different aircraft

seat capacities are used: 150, 160, 180, 200, 260 and 300, where about 10% of the

seats are assigned to business class passengers. Finally, the number of passengers in a

flight is allocated randomly to the passenger itineraries that include the flight in con-

sideration. BTS also provides departure delays. Actually disrupted flights are rated

with respect to the severity of disturbation on the operations (length of delay, number

of succeeding flights in the routing of the disrupted flight, and number of connected

flights) and the most severe disruptions are selected for recovery instances.

We have analyzed five factors: number of hubs, number of disruptions, passenger

delay cost, fuel cost and swap cost. Number of hubs is directly related to the size

of the network in consideration and may affect the performance of the approach.

Number of disruptions is another factor affecting the complexity of the problem; and

hence, should be analyzed. Instances are created having one, two and five disruptions

at a given time frame. Two levels of each of the three cost parameters (passenger delay

cost, fuel cost and swap cost parameters) are used in the experimentation. Passenger

delay cost is set to $1.09 and $1.5 per minute per passenger for the low and high

values, respectively as proposed by [59]. As the cost estimates proposed by [20]

suggest, we have doubled the delay costs for business class passengers. We have

included a small flight delay cost of $10 to prevent unnecessary delays. For low

and high values of swap cost, we have used $500 (proposed by [59]) and $1000,

respectively. Low and high fuel cost constants are generated from U(0.5, 1) and

U(1.5, 3), respectively, where U(a, b) is a uniform distribution in interval (a, b). Fuel

cost exponents vary from 1.5 to 3.5. Spill costs are set to $457.8 that is evaluated by

the method proposed by [59]. For high and low levels of the factors, + and - signs will

be used. 15 instances are created for each of the 72 experimental settings. Therefore,
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a total of 1080 instances are solved using version 12.1 of IBM ILOG CPLEX. In order

to test the practicality of our approach, solution times are limited to 300 seconds.

Generated instances include one, two or four hubs. Sizes of the corresponding net-

works are displayed in Table 3.5. Number of routings is obtained from the data by

counting the number of routings that visit the selected hubs. All flights in these rout-

ings and all airports visited are relevant to our disruption problem; and hence, are

included in the model.

Solution times and gaps are summarized in Table 3.6. Gaps are calculated by di-

viding the difference between the best integer solution and best lower bound to the

best integer solution. When we increase the number of hubs or disruptions, the corre-

sponding solution times and gaps increase as well. We deal with realistic size problem

instances, and still solve 1059 of 1080 test instances to optimality using the proposed

APR approach. Solution times are greater than one minute only in four-hub instances;

however, average solution time is still less than one minute in general. When we an-

alyze the existing schedules, we observed that the number of disruptions was usually

less than two in a given time frame. For this particular case, we could solve all of the

problem instances optimally in less than one minute of computation time. This is a

very important contribution since we can now use optimization techniques instead of

relying on ad hoc approaches for such a critical problem.

Table 3.5: Effect of number of hubs on the size of the network

# of
hubs

Average # of
flights

Average # of
routings

Average # of
airports

1 352 99 41
2 619 211 49
4 1429 419 76

Table 3.7 summarizes characteristics of the recovery plans generated by APR with

respect to the levels of cost factors (+ and - signs indicate high and low values, re-

spectively). Magnitude of delay cost has the greatest effect on the recovery plan. It

can be seen from the table that in the first four settings, number of delayed flights and

total delay are less than those for the last four settings permitting disruptions in more

passenger itineraries. APR tries to minimize delay propagation as much as possible
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Table 3.6: Effect of # of hubs and # of disruptions on solution performance of APR

# of
hubs

# of
disruptions

Average
CPU time (sec.)

Average
gap (%)

Percentage of
optimal solutions

1 1 4 - 100
2 7 - 100
5 23 - 100

2 1 6 - 100
2 10 - 100
5 55 1.7 97

4 1 44 - 100
2 72 - 100
5 142 3.8 82

swapping more flights and using more cruise time compression when delay cost is

set to its high level. Therefore, we do not observe a statistically significant effect of

the other cost parameters in these settings. When we consider the last four settings

separately, we can observe a small effect of fuel cost on the amount of total compres-

sion. We do not observe a similar effect for swap cost; however, we can state that

swap opportunities help delay mitigation as the number of swaps is proportional to

total delay.

Table 3.7: Effects of cost factors on recovery actions with APR

Delay
cost

Fuel
cost

Swap
cost

# of flights
with delay

Delay
(min.)

# of spills # of swaps
Compr.
(min)

+ + + 4.07 726 57.2 1.88 165
+ + - 4.02 731 38.0 1.98 228
+ - + 4.00 718 41.1 1.92 179
+ - - 3.89 710 39.2 1.84 187
- + + 4.22 764 43.8 1.42 148
- + - 4.10 747 38.4 1.46 153
- - + 4.24 748 39.6 1.54 168
- - - 4.11 734 30.6 1.78 171

Trying to find the optimal balance between five cost terms, APR is expected to outper-

form methods PB1 and PB2; however, test instances are also solved with these push-

back recovery policies in order to observe the improvement in total recovery costs.
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Table 3.8: Comparison of APR with other approaches

# of hubs # of disruptions PB1 (%) PB2 (%) APR2 (%)

1 1 28.1 28.1 6.3
2 30.0 203.2 7.9
5 18.5 135.1 5.2

2 1 29.2 29.5 6.5
2 42.4 129.2 15.7
5 18.2 180.5 4.3

4 1 31.0 31.2 9.4
2 42.0 130.6 6.8
5 29.8 170.9 19.4

Average 28.3 130.6 8.4

Moreover, in our experiments, we have observed that complexity of the problem is

greatly depending on the number of swap opportunities. Without swap decision, all

test instances are solved to optimality in less than a minute (about 15 seconds on the

average). Therefore, we have named this alternative solution procedure as APR2 and

included in our analysis. On the other hand, PB1 and PB2 plans are created within

a second. Table 3.8 summarizes the percentage cost deviations of alternative ap-

proaches with respect to APR solutions. Deviations are calculated by dividing the

cost difference to the recovery cost obtained by APR. Greatly propagating delays,

PB2 results in most costly recovery plans. PB1 performs better than PB2, but the cost

deviation from APR solution is 28.3%. We also observe that APR2 provides great

cost improvements compared to push-back recovery policies. On the other hand,

8.4% deviation indicates the importance of swap opportunities. It is important to note

that even in instances where APR stopped with positive gaps, it provided better solu-

tions than APR2. This finding suggests that swap opportunities should be evaluated

even they make the problem more complex. Moreover, including the cruise speed

control into the integrated recovery process greatly enhances the solution quality as

seen in APR2 compared to PB1 or PB2.

Since APR2 finds the optimal solution in very short solution times compared to APR,

it may be preferred to APR in scenarios with less available solution times. In order

to compare solution qualities of these two approaches within shorter solution times,
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we have experimented same instances with time limits of one and two minutes. Table

3.9 summarizes the percentage cost deviations of APR2 with respect to APR within

60 and 120 seconds. Considering overall deviations, we can state that APR still out-

performs APR2. However, in five disruptions scenario of two-hub case and more

than one disruption scenarios of four-hub cases, the deviations are negative when we

need to take recovery actions within one minute. The results suggest to use APR2

with these settings. On the other hand, we observe that 120 seconds is sufficient to

evaluate and utilize swap opportunities, since APR outperforms APR2 in all settings

within two minutes.

Table 3.9: Comparison of APR with APR2 within shorter solution time limits

# of hubs # of disruptions 60 seconds 120 seconds

1 1 6.3 6.3
2 7.9 7.9
5 5.2 5.2

2 1 6.5 6.5
2 15.7 15.7
5 -1.4 4.2

4 1 5.3 9.4
2 -4.9 6.8
5 -6.2 4.8

Average 2.1 6.9

3.5 Conclusions

We develop a mathematical model for passenger and aircraft recovery problem. Main

focus of the study in this chapter is to integrate cruise speed control with other re-

covery actions such as retiming departure and arrival times, and swapping aircraft.

Airlines generally operate their flights at cruise speeds that result in minimum fuel

consumptions, which is lower than the maximum speed that the aircraft can reach.

Our experiments have shown that cruise time compression with cruise speed control

can greatly mitigate delays. On the other hand, fuel consumption increases as the air-

craft speed up. In accordance with the airline manufacturers’ technical specifications,

we present a convex and increasing function to express the change in fuel cost as the
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speed increases. Proposed formulation of the problem is originally a mixed integer

nonlinear programming (MINLP) model. We first linearize the nonlinear cost term in

the objective function and then show that the resulting problem is second-order cone

programming (SOCP) representable. Finally, we create conic quadratic constraints

for the nonlinear constraints to be able to solve the problem with commercial MIP

solvers such as IBM ILOG CPLEX. We also place special emphasis on passenger-

related costs. In addition to itineraries, we also discretize passengers with respect to

their classes. Proposed model decides passengers in which itineraries will be delayed

and how much; and which passenger itineraries will be disrupted, if necessary. Objec-

tive of our model is to minimize total recovery cost in case of disruptions. Recovery

cost consists of five terms: flight delay cost, passenger delay cost, disrupted itinerary

cost, swap cost, and increased fuel cost. Proposed model is able to create minimum

cost recovery plans by finding the optimal tradeoff between these cost terms. We

have performed an extensive computational study for five factors, i.e., number of

hubs, number of disruptions, delay cost, fuel cost, and swap cost. Number of hubs

determines the size of the network under consideration; and hence, is significant on

solution times and gaps. Number of disruptions that will be handled is also one of the

most important factors affecting the complexity of the problem. Due to the nature of

the problem we expect to handle one or two disruptions at a given time frame. Our

computational experiments have shown that proposed approach is able to handle two

disruptions on a four-hub network of a major U.S. airline within less than one minute

on the average. Moreover, 97% of the instances including problems dealing with five

disruptions at a given time frame are solved to optimality in real time. In the solution

approach, we only allow swapping aircraft that satisfy crew and maintenance related

constraints, although this assumption can be relaxed to enlarge the solution space.

In the next chapter, we manage to integrate aircraft, crew and passenger recovery by

an alternative problem representation. Proposed solution space includes all recovery

actions for each entity type. Furthermore, we propose realistic passenger delay cost

calculations in order to evaluate recovery actions more accurately.
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CHAPTER 4

A NETWORK FLOW APPROACH FOR INTEGRATED

AIRLINE RECOVERY WITH CRUISE SPEED CONTROL

In this chapter, we try to achieve full integration of airline recovery problems. Re-

call that integrated airline recovery approaches suffer from huge problem sizes and

intractability within real time. Therefore, we initially focus on an alternative problem

representation. In Section 4.1, we propose an alternative connection network (CN)

representation that is advantageous in both size of problem representation, and ease

of integrating different entity types and recovery actions. Proposed representation is

illustrated on an example recovery problem. In Section 4.2, we propose a network

flow based formulation that integrates recovery actions, restrictions and disruption

costs of aircraft, crew members and passengers. Furthermore, problem representation

and formulation allows to integrate any other entity type (such as luggage) that is

important for the decision maker in the same manner. We propose four different pas-

senger delay cost calculation methods. These include approximation methods that can

achieve faster solutions and more realistic formulations. Since all possible recovery

actions are included in the solution space, proposed formulation contains a nonlinear

cost term in the objective function due to the nonlinear tradeoff between cruise speed

and fuel cost of flights. In Section 4.3, we propose a similar scheme as discussed

in Section 3.3 to reformulate the proposed MINLP model as a CQMIP model. Inte-

grated airline recovery formulation with actual passenger delay cost calculations and

cruise speed control action is very complex. In Section 4.4, we present two important

preprocessing methods to reduce the problem size and complexity without sacrific-

ing optimality. We test the efficiency of our solution approach with practical-sized

problems and major disruption types. Results of the experimentations are presented
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in 4.5. Final remarks on the integrated airline recovery approach are given in 4.6.

4.1 Problem Representation

In this section, we give the problem definition and briefly review two important net-

work representations discussed in Section 2.3. Afterwards, we present the proposed

network structure and redefine the problem on this network.

An original schedule of an airline is given. A set of disruptions occur on the schedule.

We consider a recovery horizon, [t0, t1]. The aim of integrated airline recovery prob-

lem is to find the minimum-cost recovery actions by altering operations of aircraft,

crew members and passengers within the recovery horizon while providing that the

original schedule will be caught up by t1 the latest.

An effective representation of disruption management problem is crucial due to the

size of flight networks, complexity of the problem and limited solution times. There

are two important representations in the literature. [62] utilize flight strings which

are sequences of flights with timing decisions. Same sequence of flights might be

present in multiple strings each with a different set of retiming decisions. In order

to associate rerouting options, eligible flight strings with different flights and retim-

ing decisions for each entity need to be generated. String-based models have the

advantage of ignoring ground time requirements in the formulation since each flight

string already satisfies this restriction. On the other hand, since feasibility of flight

strings are evaluated by constant flight times, it is not easy to incorporate cruise speed

control.

The second important and widely used approach uses a time-space network represen-

tation ([20], [59]) where nodes are associated with both time and location. Flights are

represented by arcs between two nodes belonging to different locations. In order to

satisfy the ground time between any two consecutive flights, ground arcs starting and

ending at the same location are included. Departure time decisions are evaluated by

creating flight copies at different departure time alternatives. [59] manage to incorpo-

rate cruise speed control, or flight planning, with time-space network by generating

a second set of flight copies at each departure time alternative of each flight where
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each copy corresponds to a different cruise speed alternative. However, this requires

discretization of cruise speed options and a huge network to be generated.

We propose an alternative network representation which may be classified as a con-

nection network (CN), also known as a flight network or an activity-on-node network.

CNs represent the problem with a much smaller number of nodes and arcs since each

scheduled flight is represented by a single node. Moreover, they provide a greater

flexibility in retiming decisions and they are able to generate all possible paths with-

out enumeration. [70] propose a CN representation for integrated schedule design,

fleet assignment and aircraft routing problem in which aircraft are transported through

the CN starting and ending at a station. The authors describe the advantages of CN

representation in detail.

We start our approach by defining state parameters that capture the true state of any

entity. These definitions allow modeling all entity types (aircraft, crew member, or

a passenger) in a similar manner. Then, we propose a general CN representation

that allows to integrate any entity type. Therefore, not only aircraft, but all entities

are transported through a CN. By integration on a common CN, interdependencies

among different entity types are easily defined. Moreover, all recovery actions in-

cluding cruise speed control are included in the model to ensure optimality. Since

activity is kept on nodes, departure time, arrival time and cruise speed decisions can

be represented by continuous variables instead of a set of discrete alternatives.

4.1.1 Network Structure

We start with the notation required to understand the network structure. For the ease

of reading, we use overscores and underscores to denote parameters as upper and

lower bounds, respectively. All parameters begin with an upper case letter while

decision variables start with a lower case letter throughout the text. Parameters of

scheduled flights are defined below.

Orif (Desf ) : Origin (destination) airport of flight f

SDTf (SATf ) : Scheduled departure (arrival) time of flight f in the original

schedule
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Figure 4.1: Earliest departure time and latest arrival time of an entity

DTf (ATf ) : Latest allowable departure (arrival) time of flight f

∆Tf : Maximum of cruise time compression limits for flight f among

all aircraft types

FTf : Minimum of flight times of flight f at max-range cruise speed

among all aircraft types

ATf : Earliest possible arrival time of flight f

CTfg : Minimum of minimum connection times among all entities

between flights f and g

An airline may have different types of aircraft in its fleet. As a recovery action, aircraft

swaps may occur between flights. Therefore, while obtaining the values of ∆Tf and

FTf , we consider all possible aircraft types that can operate the flight. Maximum-

range cruise speed is the speed of an aircraft that results in minimum fuel consumption

which will be discussed in detail in Section 4.3. In order to generate all possible

rerouting options, we set the value of CTfg to the minimum of required connection

times among all entities. Note that there are two limitations on the earliest arrival

time of a flight. The first one is determined by time slot availability. On the other

hand, a flight cannot arrive before SDTf + FTf −∆Tf . Therefore, ATf is set to the

maximum of these limitations.
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4.1.1.1 Nodes

Proposed network contains four types of nodes: scheduled flight nodes, source nodes,

sink nodes and must-visit-nodes (or must-nodes). For each entity there is a source

node which represent the initial state of the entity at t0 and a sink node which represent

the final status of entity at t1. For each entity, there might be certain must-nodes. A

must-node might represent a maintenance activity of an aircraft at a certain airport

at a certain time period. Each node has a demand parameter corresponding to each

entity.

Let F be the set of all scheduled flights of the airline. Then, the set of flight nodes,

F , relevant to the problem are obtained as follows:

F = {f ∈ F : SDTf ≥ t0 and ATf ≤ t1}

which defines all flights scheduled to depart after t0 and scheduled to arrive before t1

as illustrated in Figure 4.1. Let T be the set of entity types (aircraft, crew member or

passenger) relevant to our problem, r ∈ Rt be an entity of type t and R =
⋃
t∈T R

t

be the set of all entities. Demand at flight nodes for all entities are zero, i.e. Dr
f =

0,∀r, f ∈ F .

Dynamic state of an entity is obtained and defined by the parameters below. Earliest

departure time and latest arrival time parameters that guarantee that operations outside

the recovery horizon will be operated as scheduled are illustrated in Figure 4.1.

Fr : Set of scheduled flights originally assigned to entity r ordered by

departure times

Fr = {, ..., f r−1, f r0 , f r1 , ..., f rnr , f rnr+1, ...}

F r : Set of scheduled flights of entity r within the recovery horizon ordered

by departure times

F r = {f ∈ Fr : SDTf ≥ t0, ATf ≤ t1} = {f r1 , f r2 , ..., f rnr}

FT rf : Flight time of flight f when operated by aircraft r at max-range cruise

speed

CT rfg : Minimum connection time required for entity r between flights f and g
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Orir : Location of entity r at the beginning of the recovery horizon

(e.g., Orir = Orirf1)

DT r : Earliest time that the first flight of entity r can depart (ready time)

DT r = max{t0, SATfr0 + CT rfr0 fr1 }

Desr : Planned destination of entity r at the end of the recovery horizon

(e.g., Desr = Desfrnr
)

AT r : Latest time that entity r needs to arrive at Desr to catch up its schedule

AT r = min{t1, SDTfrnr+1
− CT rfrnrf

r
nr+1
}

Recovery actions such as reserve aircraft and standby crew can be included in the

solution space by simply inserting these entities in set R with corresponding entity

parameters. These entities can be generalized as operating resources that can be used

within the recovery horizon and have F r = ∅.

Source node for entity r is designated by sr and has the following parameters to

represent the initial state of the entity:

Dessr = Orir, ATsr = DT r, CT rsr,g = 0,∀g ∈ F, Dr
sr = −1.

Sink node for entity r is designated by tr and has the following parameters to repre-

sent the final status of the entity:

Oritr = Desr, DTtr = AT r, CT rf,tr = 0,∀f ∈ F, Dr
tr = +1.

Finally, we insert must-nodes to model the restrictions of entities within the recovery

horizon such as scheduled aircraft maintenances or away-from-home limitations of

crew members. In the proposed solution approach, we will force entities with such

restrictions to visit these nodes. Let M r be the set of must-nodes of entity r, and

M =
⋃
r∈RM

r. For each must-node of entity r, we have:

Orim = Desm : location of the activity

DTm(ATm) : scheduled start (completion) time of the activity
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CT rfm = CT rmg = 0, f, g ∈ F , Dr
m = 0.

Then, the set of nodes of the network is N = F ∪
(⋃

r∈R{sr, tr}
)
∪M .

4.1.1.2 Arcs

An arc (f, g) may correspond to a flight connection (if f, g ∈ F ), beginning of the

operations of an entity (if f = sr), end of the operations of an entity (if g = tr), or

connections with must-nodes (if f or g ∈ M r). Set of arcs is obtained using node

parameters as follows:

A = {(f, g) : f, g ∈ N, Desf = Orig and DTg ≥ ATf + CTfg}.

This rule allows to include all possible connections considering the allowed flexibility

in departure and arrival times by time slots and by cruise speed options. Therefore,

all possible paths can be generated through the proposed network. Moreover,

In order to incorporate recovery actions such as ferrying aircraft or deadheading crew

members, we insert external arcs, i.e. (f, g) /∈ A, whose arc costs are equal to the

costs of the corresponding actions. An external arc from sr to tr may represent ferry-

ing the aircraft (deadheading the crew member) from its origin to its destination. An

aircraft can also be ferried after operating some flights. This action can be modeled

by an external arc from a flight node to the sink. In terms of passengers, cancelling the

ticket of a passenger or reallocating to other means of transportation is modeled by an

external arc from source to the sink. On the other hand, a passenger with two or more

scheduled flights may be spilled after its first/second flight which may be modeled

by an external arc from a flight node to the sink. In general, any path that is exter-

nal to the CN of the airline can be modeled by external arcs. Therefore, cooperation

between airline companies in terms of passenger recovery can also be modeled using

external arcs. LetEr be the set of external arcs available for entity r andE =
⋃
∀r E

r.

Then, the set of arcs of the proposed network is A = A ∪ E.

Proposed network structure G = (N,A) is illustrated in Figure 4.2. Source and
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Figure 4.2: Network structure of the proposed representation.
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sink nodes are displayed on the left and right of the network, respectively. The arcs

emanating from source nodes (incoming to sink nodes) represent the connection to

the first (from the last) flight for the particular entity. For entities with restrictions, we

have a set of must-nodes displayed at the top of the network. The nodes within the

box in the middle of the network correspond to scheduled flights with incoming and

emanating flight connection arcs. All connections are created with respect to the arc

generation rule given above. Finally, three external arcs are displayed at the bottom of

the network (dashed) which may correspond to different recovery actions. We have

-1 (+1) demand in the source (sink) nodes for the corresponding entities, while all

flight and must-visit nodes have zero demand.

4.1.2 Disruption Types

All disruptions are modeled by updating parameters of entities and specific parts of

the network, i.e. no constraints need to be added to the formulation. We have selected

and experimented four disruption types which are of major importance with respect

to their frequency or severity. After describing how these disruptions are represented,

we redefine the problem with the proposed network structure.

4.1.2.1 Flight Departure Delay

Scheduled departure time of a flight may be delayed due to various reasons such

as airport congestion or irregularities in ground operations. These disruptions are

represented by updating SDTf as SDTf + DDf , if flight f experiences a departure

delay of DDf in minutes.

4.1.2.2 Flight Cancellation

If a flight experiences a severe departure delay, the airline may have no other option

but cancel the flight. Let Dc be the set of canceled flights. Then, all nodes in Dc

are removed from the network together with all arcs incoming to and emanating from

these nodes.
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4.1.2.3 Delayed Ready Time

Aircraft experiencing an unscheduled maintenance or late arrivals of crew members

are examples of this type of disruptions. Note that considering these as flight depar-

ture delays would eliminate many feasible recovery options and lead to sub-optimal

solutions. In particular, even if the ready time of an aircraft is delayed, its first flight

could still be operated on-time by another available aircraft. These disruptions are

modeled by updating DT r as DT r + RDr if entity r experiences a ready time delay

of RDr in minutes.

4.1.2.4 Airport Closure

Poor weather condition is one of the major reasons for an airport to cancel all depar-

tures and arrivals for a while. Let D[ac] be the set of closed airports and a ∈ D[ac] be

an airport experiencing a closure during [STa, ETa]. The consequences of this closure

are handled in two parts. Firstly, due to the closure of airport a, some flights need to

be canceled. We insert these flights into set D[c] with the following operations:

D[c] = D[c] ∪ {f : Orif = a, SDTf > STa and DTf < ETa}

D[c] = D[c] ∪ {f : Desf = a,ATf > STa and ATf < ETa}.

On the other hand, some flights affected from this closure may still be operated by

rescheduling the departure times or increasing their cruise speeds. These flights are

obtained in two subsets:

• {f : Orif = a, SDTf < STa and DTf > STa}, and

• {f : Desf = a,ATf < ETa and ATf > ETa}

The first subset includes flights which are scheduled to depart prior to the closure,

however, departure times may be held beyond the starting time of closure as DTf >

STa. Therefore, we update DTf = STa to guarantee that these flights do not depart

during closure. Ending time of closure falls within the arrival time slots of flights in
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the second subset. For these flights, we update ATf = ETa so that they do not arrive

during closure.

Given the network representation, the aim of disruption management problem is to

find the minimum-cost flow of entities from their source nodes to their sink nodes

provided that must-visit nodes will be visited by the corresponding entities.

4.1.3 Numerical Example

We illustrate the problem representation on a small-sized numerical example. The

flight schedule of an airline within the recovery horizon is tabulated in Table 4.1, and

details of these flights are presented in Table 4.2. Three aircraft and four crew teams

are involved in the problem. In this example, we assume that each flight is operated

by a crew team; however, the proposed approach can handle different requirements.

Scheduled flights of crew teams C1, C2, C3, and C4 are 1-2-3-4-9, 5, 6-7-8-13, and

10-11-12, respectively. The aircraft with tail numbers N322AA and N345AA have a

seat capacity of 180, while the seat capacity of N5FCAA is set to 210.

Table 4.1: Original aircraft and crew schedules of the example

Tail # Flight # Crew Id From To SDT SAT
N322AA 1 C1 ORD DCA 5:30 7:10

2 C1 DCA ORD 7:50 9:30
3 C1 ORD DFW 10:00 12:20
4 C1 DFW ORD 13:00 15:20
5 C2 ORD DCA 16:30 18:10

N345AA 6 C3 LAX ORD 6:00 9:40
7 C3 ORD MSP 12:00 13:10
8 C3 MSP ORD 14:00 15:10
9 C1 ORD LAX 16:00 19:40

N5FCAA 10 C4 DCA ORD 9:00 10:40
11 C4 ORD MSP 11:10 12:20
12 C4 MSP ORD 13:00 14:10
13 C3 ORD DCA 16:00 17:40

The original routing of N322AA is 1-2-3-4-5. However, it may be rerouted through

many alternative paths to reach DCA from ORD. For instance, it may only operate
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Table 4.2: Details of flight schedule of the example

Tail # Flight # Cruise Time Distance Number of Passengers
N322AA 1 70 610 126

2 70 610 149
3 110 800 111
4 110 800 166
5 70 610 153

N345AA 6 190 1745 170
7 40 335 172
8 40 335 135
9 190 1745 139

N5FCAA 10 70 610 170
11 40 335 196
12 40 335 200
13 70 610 154

flight 1 in cases of severe disruptions, or follow the path 1-2-5 if flight 3 or 4 is

cancelled. Moreover, the aircraft may use the flights scheduled to any other aircraft,

i.e. it can follow the path 1-10-11-12-5. On the other hand, only a subset of flight

nodes and connections can be used by this entity to construct a feasible path from its

origin to its destination. For instance, flight 6 cannot be operated by N322AA since

the aircraft is currently located at ORD and cannot arrive at LAX before the latest

departure time of this flight. The part of the proposed network related to N322AA is

given in Figure 4.3. This partial network is able to generate all possible paths for the

particular entity with an additional external arc (dashed) corresponding to ferrying

action. In Section 4.4.1, the importance of partial networks and an efficient algorithm

to generate them will be described.

In Figure 4.4, partial network of crew team C3 is displayed. The original schedule of

C3 which is transported from LAX to DCA is 6-7-8-13. All possible paths such as

6-7-12-13 or 6-13 can be generated through this network with an additional external

arc for deadheading. Consider flight connection arc between flights 7 and 12 which

is infeasible in the original schedule. Scheduled arrival time of flight 7 is 13:10 while

scheduled departure time of flight 12 is 13:00. However, there exists a possibility to

provide required connection time between these flights by speeding up flight 7 and

holding the departure time of flight 12. Therefore, we include this connection in our
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Figure 4.3: Partial network of aircraft N322AA.

Figure 4.4: Partial network of crew team C3.

solution space as well.

In this example, there exists 13 single-flight itineraries corresponding to each sched-

uled flight, and six two-flight itineraries. All itineraries and number of assigned pas-

sengers are tabulated in Table 4.3. Partial network of a passenger in itinerary 2-7 is

illustrated in Figure 4.5. The external arc from source to sink corresponds to spilling

the passenger, while the other one from 2 to the sink corresponds to reallocating this

passenger to other means of transportation at ORD.

In the disruption scenario, flight 1 experiences a departure delay of 90 minutes, i.e.

it cannot depart before 7:00. This disruption is handled by updating the scheduled

departure time of flight 1.
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Figure 4.5: Partial network of passengers in itinerary 2-7.

Table 4.3: Numbers of passengers in passenger itineraries

Itin. # Pass’rs
1 126
2 51

2-3 53
2-7 45
3 58

Itin. # Pass’rs
4 166
5 88
6 55

6-7 60
6-13 55

Itin. # Pass’rs
7 67
8 70

8-5 65
9 139

10 79

Itin. # Pass’rs
10-11 91

11 105
12 200
13 99

Note that without rerouting options, 90 minutes delay in flight 1 would propagate

through the downstream flights of aircraft N322AA and through those of crew team

C1. In the optimal solution of this example, aircraft N322AA follows the path s-1-

10-11-12-13-t while the path of aircraft N5FCAA is s-2-3-4-5-t. Since N5FCAA is

available in DCA at 7:50, flight 2 does not wait for arrival of the delayed flight. This

swap action prevents the delay of flight 1 to propagate. Since destinations of both

flights 13 and 5 are DCA, each aircraft is positioned at their expected locations by the

end of recovery horizon.

Crew rerouting actions are more complicated in this example. Note that the crew team

that is originally assigned to flight 2 also operates flight 1. Since, flight 2 does not wait

for the arrival of flight 1, flight 2 is assigned to another crew team. In this example, we

assume that each crew team is ready at the beginning of the recovery horizon and can

operate each of the flights; however, such technical limitations can easily be inserted

in the proposed approach. In the optimal solution, crew team C1, which is originally

located at ORD and needs to arrive at LAX, operates only flight 9. Crew team C2

operates flights 1-10-7-8-13 and reaches its destination (DCA). Flights 6-11-12-5 are
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operated by C3 with an origin-destination pair LAX-DCA. Finally, flights 2-3-4 are

operated by C4. Note that C4 is available in DCA at 7:50, and therefore, flight 2 is not

delayed. Also notice that flight 10 can still be delayed since flight 1 is experiencing a

departure delay and C2 is transported through the arc 1-10.

Allowing inter-fleet reassignments has two consequences. Firstly, the speed capa-

bilities of different aircraft may be different and this affects the maximum amount

of compression of flights, consequently additional fuel and carbon emission costs in-

curred due to the speed increases. In this example, we have assumed that each aircraft

have similar speed capabilities. In the optimal solution, flight 1 is compressed by 7

minutes for both decreasing the arrival delay of this flight and preventing propagation

through the connection 1-10. With the given departure delay and 7 minutes of com-

pression, flight 1 departs at 7:00 and arrives at 8:33. In this example, crew connection

times are set to 30 minutes. Then, due to connection 1-10 used by C2, flight 10 with

a scheduled departure time of 9:00 departs at 9:03. In the optimal solution, the speed

of this flight is also increased so that it arrives on time at 10:40.

Secondly, the seat capacities of aircraft may be different and inter-fleet swaps may

result in shortages. In this example, shortages may occur in flights 10, 11, 12 and

13 since the seat capacities of these flights are reduced by 30 seats after the swap

action. When we analyze the passenger assignments, we observe that flights 11 and

12 will have shortages of 16 and 20 seats, respectively. In Figure 4.5, it can be seen

that 10-7 is an alternative path for passengers in itinerary 10-11. However, there are

only 8 empty seats available in flight 7. Therefore, 8 passengers of itinerary 10-11 are

rerouted through path 10-7 and arrive at MSP. However, since flight 7 arrives at 13:10,

these passengers experience 50 minutes of arrival delay. Remaining 8 passengers are

spilled (transported through an external arc). Finally, 20 passengers of itinerary 12

are assigned to flight 8 with 60 minutes delay.

This example illustrates the complexity of the problem due to the interrelation among

entity types and the necessity of an integrated approach. Moreover, we try to il-

lustrate how passengers in an itinerary may be separated to different paths and how

cruise speed control can be integrated with other recovery actions. Proposed problem

representation is capable of generating all possible recovery options for each entity
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while they are evaluated simultaneously with the proposed mathematical formulation.

4.2 Mathematical Formulation

The constraints will be constructed in five groups and calculation of cost terms will

be explained after the constraints.

4.2.1 Flow Balance Constraints

Decision variable xrfg equals one if entity r flows through arc (f, g), and zero other-

wise. Flow balance is satisfied by equation (4.1).

∑
f :(f,g)∈A

xrfg −
∑

h:(g,h)∈A

xrgh = Dr
g , r ∈ R, g ∈ N (4.1)

where Dr
g =


−1 if g = sr, source node of r

0 if g is a flight or must-visit node

+1 if g = tr, sink node of r

For the sake of generality, we define constraint (4.1) for all aircraft and flight pairs.

However, an aircraft may not be appropriate to operate all flights due to technological

limitations. These limitations can easily be represented by eliminating flow variables

corresponding to infeasible matches.

4.2.2 Node Closure Constraints

In order to operate a flight, operating entities should be assigned. For instance, a flight

may require an aircraft and a crew team to be operated. We define subset TOP ⊆ T

as the set of operating entity types and the parameter Reqtf as the number of entities

of type t needed to operate flight f . Decision variable zf equals one if flight f is

cancelled (or node f is closed) and zero otherwise. Constraint (4.2) provides that

a flight will be cancelled if the required number of operating entities does not flow
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through the corresponding node. Constraint (4.3) guarantees that other entities cannot

flow through a closed node as well.

∑
r∈Rt

 ∑
g:(f,g)∈A

xrfg

 = (1− zf )Reqtf , t ∈ TOP , f ∈ F (4.2)

∑
g:(f,g)∈A

xrfg ≤ (1− zf )Dr
f , t ∈ T \ TOP , r ∈ Rt, f ∈ F (4.3)

4.2.3 Flight Time Constraints

Flight time of a flight node depends on the type of the assigned aircraft. Moreover,

flight time can be reduced to some extent by increasing the speed of the assigned

aircraft. Let nonnegative continuous decision variables dtf and atf represent the

actual departure and arrival time of flight f , respectively, where dtf ∈
[
SDTf , DTf

]
and atf ∈

([
ATf , ATf

])
. Note thatATf can be smaller when we utilize cruise speed

control option. Therefore, arrival time variable atf is defined over a greater interval

resulting in a greater solution space. Finally, let nonnegative continuous variable δtf

be the amount of cruise time compression of flight f . Then, the relation between

actual departure and arrival time, and compression is constructed with equation (4.4).

atf = dtf +

 ∑
r∈Raircr.

∑
g:(f,g)∈A

xrfg

FT rf − δtf , f ∈ F (4.4)

4.2.4 Arc Feasibility Constraints

We have four constraints in order to construct arc feasibility such that each corre-

sponding to a different operational rule.

4.2.4.1 Arcs emanating from source nodes

These arcs end in flight nodes that may be assigned to an entity as its first flight in the

recovered schedule. An entity will use one of these arcs and reach its first flight node,
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say ffirst. In this case, ffirst needs to wait for the ready time of this entity to depart.

Therefore, we need a constraint to ensure that the entity is available at the departure

time of its first flight. However, only a subset of these arcs are critical for feasibility.

They are defined as the set of departure-critical arcs, DCr = {(sr, g) ∈ A : SDTg <

DTr}, and the constraint for each entity r is defined over DCr in (4.5).

dtg ≥ DTrx
r
srg , r ∈ R, (sr, g) ∈ DCr (4.5)

4.2.4.2 Arcs incoming to sink nodes

Similarly, the last flight assigned to entity r cannot arrive later than the latest arrival

time of the entity, AT r, in order to catch up the original schedule. Constraint (4.6) is

limited to the arrival-critical arcs for entity r, ACr = {(f, tr) ∈ A : ATf > AT r}.

atf ≤ ATf +
[
AT r − ATf

]
xrftr , r ∈ R, (f, tr) ∈ ACr (4.6)

4.2.4.3 Intermediate arcs

Intermediate arcs consist of arcs between two flight nodes, and arcs between a flight

node and a must-node. If there is a positive flow of entity r between nodes f and

g, minimum connection time, CT rfg, should be provided between these flights. Set

of connection-critical arcs for entity r is defined as CCr = {(f, g) ∈ A : f, g ∈
F ∪M,ATf +CT rfg > SDTg}, and connection time rule is modeled with Constraint

(4.7).

dtg ≥ atf + CT rfgx
r
fg − ATf (1− xrfg) , r ∈ R, (f, g) ∈ CCr (4.7)
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4.2.4.4 Arcs emanating from or incoming to must-nodes

Recall that must-nodes represent restrictions of entities. Therefore, entities with such

restrictions should visit these nodes as formulated in Constraint (4.8).

∑
g:(m,g)∈A

xrmg = 1 , r ∈ R,m ∈M r (4.8)

4.2.5 Aircraft Properties

Some properties of flights depend on the type of assigned aircraft if inter-fleet aircraft-

flight assignments are allowed. Otherwise, these properties would be constant. First

such property is the seat capacity. Left-hand-side of constraint (4.9) is the number

of passengers assigned to flight f . This number is limited by the seat capacity of the

assigned aircraft (right-hand-side).

∑
r∈Rpass.

∑
g:(f,g)∈A

xrfg ≤
∑

r∈Raircr.

∑
g:(f,g)∈A

xrfgSCAP
r , f ∈ F (4.9)

The second property is the limitation on cruise speed. Each aircraft type may speed up

to different extents for a particular flight. Maximum cruise speed can be determined

by technological constraints or airline policy. This limit can be expressed with an

upper bound on cruise speed or equivalently on cruise time compression. We define

∆T rf to be the maximum amount of decrease in cruise time of f if it is operated by

aircraft r. Cruise time compression variable is bounded by constraint (4.10).

δtf ≤
∑

r∈Raircr.

∑
g:(f,g)∈A

xrfg∆T
r
f , f ∈ F (4.10)

4.2.6 External Arc Costs

We define tc[e] to be the total cost of flow on external arcs. Recall that tc[e] represents

the sum of costs of actions such as ferrying aircraft, deadheading crew members,
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spilling and allocating passengers to other means of transportation, and ticket cancel-

lation. Let C [e]
e be the cost of unit flow on arc e. Then, this cost term is evaluated in

(4.11).

tc[e] =
∑
r∈R

∑
e∈Er

C [e]
e x

r
e (4.11)

4.2.7 Flight Cancellation Costs

Let C [c]
f be the flight cancellation cost of flight f . Total flight cancellation cost of the

solution, tc[c] is evaluated by (4.12).

tc[c] =
∑
f∈F

C
[c]
f zf (4.12)

4.2.8 Additional Fuel Costs

Airlines generally operate their aircraft at maximum range cruise (MRC) speeds that

result in minimum fuel consumption. C [f ]
r,f is defined as the minimum fuel cost for

flight f that can be achieved by aircraft r at MRC speed. Increase in the cruise

speed of a flight and inter-fleet reassignments may result in a change in the fuel cost.

Defining T rf as the cruise time of flight f when operated with aircraft r at MRC speed,

andKr
f as the flight-and-aircraft-dependent exponential, the fuel cost of flight f when

operated by aircraft r, fcrf , is expressed as a function of the amount of compression

with the following equation:

fcrf (δtf ) = C
[f ]
r,fT

Kr
f

f

(
1

Tf−δtf

)Kr
f

Letting rf as the aircraft that is originally assigned to flight f , total additional fuel

cost of the solution, tc[f ], is calculated by (4.13)
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tc[f ] =
∑
f∈F

 ∑
r∈Raircr.

∑
g:(f,g)∈A

xrfgfc
r
f (δtf )− C

[f ]
r,f

 (4.13)

Derivation of fuel cost function and conic quadratic reformulation scheme to handle

nonlinearity in this constraint will be discussed in Section 4.3.

4.2.9 Passenger Delay Costs

Passenger delay cost includes cost of goodwill loss, and hence, is difficult to calculate

in practice. A straightforward calculation method used in many studies is to use a

continuous linear delay cost function by utilizing delay cost per passenger per minute.

On the other hand, there is also a belief that the relation between goodwill loss and

the amount of delay is nonlinear; and hence, a piecewise cost function would be

more appropriate. Due to the complexity of the problem, approximate delay costs are

utilized in the literature. In this study, we model and experiment approximate and

exact delay cost calculation methods for both linear and piecewise functions.

4.2.9.1 Linear Function with Flight Delay Approximation

Passengers may arrive to their destinations through a set of possible alternative flights

due to rerouting decisions. Therefore, each possible final flight for a passenger should

be investigated to calculate the actual delay, which increases complexity. A common

approximation method is to use flight delay instead of using actual delay of individ-

uals. Narr
f is defined to be the number of passengers that arrive to their destinations

through flight f in the original schedule.

Narr
f =

∑
r∈T pass.:Desr=Desf

Nbr

Total passenger delay cost, tc[pd], is approximated with constraints (4.14) and (4.15),

where decision variable delayf is the arrival delay of flight f and C [pd]
f is per minute

delay of a passenger whose last scheduled flight is f .
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Figure 4.6: A convex piecewise passenger delay cost function.

dlyf ≥ atf − SATf , f ∈ F (4.14)

tc[pd] =
∑
f∈F

Narr
f C

[pd]
f delayf (4.15)

This is the least complex method; however, it overestimates the delay cost for flight

f if some or all passengers in itineraries with final flight f are spilled or rerouted. On

the other hand, it underestimates the delay cost if passengers from other itineraries

are rerouted and arrive their destination through f .

4.2.9.2 Piecewise Function with Flight Delay Approximation

In this method, a convex piecewise delay cost function is used instead of a linear

function. An example delay cost function is illustrated in Figure 4.6. For flight f ,

the function is defined by delay points Df,i (Df,0 = 0) and corresponding delay costs

C
[pd]
f,i

(
C

[pd]
f,0 = 0

)
where If is the number of points that the function changes its slope.

Let continuous decision variable delayif be defined over [0,1] for each interval i of

flight f . Total passenger delay cost is approximated with constraints (4.16) and (4.17).
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If∑
i=1

(Df,i −Df,i−1)delay
i
f ≥ atf − SATf , f ∈ F (4.16)

tc[pd] =
∑
f∈F

Narr
f

If∑
i=1

(C
[pd]
f,i − C

[pd]
f,i−1)delay

i
f (4.17)

4.2.9.3 Linear Function with Actual Passenger Delay

In the remaining two methods, we propose actual passenger delay cost formulations.

To the best of our knowledge, these are the first formulations that both consider rerout-

ing decisions of passengers and realized arrival times of flights in an exact approach.

Let C [pd]
r be per minute delay cost of passenger r and decision variable delayr be the

realized delay of this passenger. Then, total linear delay cost of passengers with actual

delays is calculated with constraints (4.18) and (4.19), where SAT r is the scheduled

arrival time of passenger r.

delayr ≥ atf − SAT r −
(
ATf − SAT r

) (
1− xrftr

)
, r ∈ Rpass., f ∈ F 3 (f, tr) ∈ A (4.18)

tc[pd] =
∑

r∈Rpass.

C [pd]
r delayr (4.19)

4.2.9.4 Piecewise Function with Actual Passenger Delay

A piecewise delay cost function can be defined for each passenger in a similar manner.

Let Dr,i be the delay points that the function changes its slope (Dr,0 = 0) and C [pd]
r,i be

the corresponding delay costs (C [pd]
r,0 = 0) where there are Ir such points for passenger

r. Continuous decision variable delayir ∈ [0, 1] is defined for each interval i and total

passenger delay cost is calculated with constraints (4.20) and (4.21).
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Ir∑
i=1

(Dr,i −Dr,i−1)delay
i
r ≥ atf − SAT r −

(
ATf − SAT r

) (
1− xrftr

)
, r ∈ Rpass., f ∈ F 3 (f, tr) ∈ A (4.20)

tc[pd] =
∑

r∈Rpass.

Ir∑
i=1

(C
[pd]
r,i − C

[pd]
r,i−1)delay

i
r (4.21)

4.2.10 Mathematical Model

The complete mathematical formulation is given below:

Minimize tc[e] + tc[c] + tc[f ] + tc[pd]

subject to

(4.1) - (4.13)

(4.14) - (4.15) or (4.16) - (4.17) or (4.18) - (4.19) or (4.20) - (4.21)

Proposed formulation is a mixed integer nonlinear programming (MINLP) model

since the nonlinear fuel cost function is multiplied with the flow variables in (4.13). In

the next section, we will reformulate the problem as a conic quadratic mixed integer

programming (CQMIP) problem.

4.3 Conic Quadratic Reformulation

In the technical documentation of [2] and [19], it is reported that direct operating costs

of a flight consist of a fixed cost, and variable fuel and time related costs depending on

cruise speed and time. Considering downstream effects of disruptions and recovery

actions on all types of entities, we have already modeled time related costs without

isolating the decision to a single flight. For the variable fuel cost term, we develop
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the fuel cost function with respect to the technical report of [3]. It is stated that

airlines generally operate their aircraft at maximum range cruise (MRC) speeds that

lead to minimum fuel consumption. Fuel cost is increasing and convex in deviation

from MRC speed. V r
f is defined as the MRC speed of flight f for aircraft r, and δvf

as the increase in cruise speed. We express the fuel cost of flight f when operated

with aircraft r as a function δvf by (4.22), where Kr
f is flight-and-aircraft-dependent

parameter.

fcrf (δvf ) = C
[f ]
r,fT

Kr
f

f

(
V r
f + δvf

V r
f

)Kr
f

, Kr
f ≥ 1 (4.22)

Cruise stage distance of flight f can be expressed by DISTf = V r
f T

r
f for any aircraft

r. Note that since distance is constant, DISTf =
(
V r
f + δvf

) (
T rf − δtf

)
should also

hold. Using these equalities, we express δvf in terms of the amount of compression

in cruise time, δtf , with (4.23).

δvf =
V r
f δtf

T rf − δtf
(4.23)

Now substituting (4.23) in (4.22), we obtain the fuel cost function given in Section

4.2.8:

fcrf (δtf ) = C
[f ]
r,fT

Kr
f

f

(
1

Tf − δtf

)Kr
f

(4.24)

Let auxiliary variable yrf be equal to 1 if flight f is operated by aircraft r in the

recovered schedule and 0 otherwise. We also define nonnegative auxiliary decision

variables crtrf as the actual cruise time of flight f when operated with aircraft r, and

βrf as a fuel cost variable. Finally, letting the parameter Ωr
f be equal to C [f ]

r,fT
r
f
Kr

f , we

show that the nonlinear constraint (4.13) can be linearized as:

tc[f ] =
∑
f∈F

( ∑
r∈Raircr

Ωr
fβ

r
f − C

[f ]
r,f

)
(4.25)
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by addition of the following constraints:

yrf =
∑

g3(f,g)∈A

xrfg , f ∈ F, r ∈ Raircr. (4.26)

crtrf = T rf − δtf , f ∈ F, r ∈ Raircr. (4.27)

βrf ≥
yrf

crtrf
Kr

f
, f ∈ F, r ∈ Raircr. (4.28)

Inequality (4.28) is valid since it is a minimization problem. In the current form of

the problem we have the nonlinear constraint set (4.28).

Next, we reformulate (4.28) so that the reformulation will represent the hypograph

of the geometric mean of 2l nonnegative variables, which is a convex set. In the

following, we drop f and r indices of variables and consider K = k1/k2 where k1,

k2 are integers.

Proposition 4.3.1. Inequality (4.28),

β ≥ y

crtK

can be equivalently written as

y2
l ≤ βk2 × crtk1 (4.29)

where l = dlog2(k1 + k2)e.

Proof. Inequality

β ≥ y

crtK

can be first written as

y ≤ crtk1/k2 × β

taking kth2 power of both sides we get

yk2 ≤ crtk1 × βk2

Exploiting the fact that y is a 0-1 decision variable in the model, the exponent of y

can be increased and set to 2l and we get:

y2
l ≤ crtk1 × βk2 × 1(2l−k1−k2) (4.30)
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An inequality of the form r ≤ (s1s2 · · · s2l)1/2
l

with si ≥ 0 restrictions defines the

hypograph of the geometric mean of variables s1, . . . , s2, which is a convex set. In-

equality (4.30) is of the same form with some restrictions on the variables. k1 of them

are identical and equal to crtk, k2 of them equal to β and (2l− k1− k2) of them equal

to 1.

Proposition 4.3.1 shows that inequality (4.28) can be reformulated as an inequality

which defines a convex set, namely a hypograph of geometric mean of 2l variables.

This leads to the following result.

Proposition 4.3.2. Inequality (4.28),

β ≥ y

crtK

with restrictions y ∈ {0, 1}, crt ≥ 0, β ≥ 0, can be represented using conic quadratic

inequalities.

Proof. As given in [17], for a positive integer l, an inequality of the form

r2
l ≤ s1s2 · · · s2l , (4.31)

for r, s1, . . . , s2l ≥ 0, i.e. a hypograph of geometric mean of 2l variables, can be

expressed equivalently using O(2l) variables and O(2l) hyperbolic inequalities of the

form

u2 ≤ v1v2, u, v1, v2 ≥ 0 (4.32)

Furthermore, each constraint u2 ≤ v1v2 can be written as a conic quadratic constraint

‖(2u, v1 − v2)‖ ≤ v1 + v2. (4.33)

This reformulation enables to model the MINLP problem initiated in Section 4.2 as

a CQMIP problem. The modified model with a linear objective function, linear and

conic quadratic constraints can be handled by fast algorithms of commercial CQMIP

solvers.
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4.4 Preprocessing

As mentioned before, CNs are large and quick solutions are required in disruption

management. Therefore, it is important to eliminate unnecessary variables and con-

straints without sacrificing optimality. In this section, we describe two preprocessing

methods. In partial network approach, we propose an algorithm to obtain the partial

networks of entities. Partial network of an entity is a subset of the complete net-

work which excludes nodes and arcs that will not be visited by the entity even after

rerouting. Therefore, we can reduce the number of variables and constraints signif-

icantly. In the second method, we propose an entity aggregation rule without losing

any information and sacrificing optimality.

4.4.1 Partial Networks

A partial network of entity r is the subset of the complete graph, G = (N,A), which

includes the source and sink nodes (sr, tr), and must-visit nodes (M r) of the entity

together with the flight nodes that it can visit in a feasible solution. The idea is to

reduce the number of flow variables using the fact that not all arcs can be used to

transport a particular entity from its origin to its destination. For instance, consider

an entity whose destination is LAC and latest arrival time is 17:00. Then, a flight

from ORD to DFW with an earliest arrival time of 17:00 is irrelevant to this entity, as

well as all arcs incoming to and outgoing from this node. We propose Partial Network

Generation Algorithm for efficiently generating the partial network of an entity which

is capable of generating all feasible paths that can be used by the entity to reach its

destination; and does not include any flight nodes that would not be visited.

The steps of the algorithm for entity r is given in Algorithm 1. The algorithm starts

with an empty network. Partial network for r is obtained in line 3 by calling Gen-

eratePath sub-procedure with N curr = {sr}, where sr defines the initial state of the

entity. N curr is a temporary path that is updated throughout the algorithm. Finally,

external arcs related to entity r are included in line 4 and the partial network is re-

turned.

GeneratePath sub-procedure starts with a temporary path, N curr, and tries to connect
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a flight to the final flight of this path. Sub-procedure stops at line 10 if the desired

destination is reached and return to destination is not allowed. Returning to destina-

tion is not allowed for passengers, while it is allowed for aircraft and crew members.

For instance, the path ORD-DCA-DFW-DCA would not be realistic if the entity in

consideration is a passenger (or luggage) that will be transported from ORD to DCA.

If the destination has not been reached yet (or the entity may leave and return to its

destination), Nnext is created in line 12, which is the set of candidate flights that can

be connected to the last flight of the temporary path. The stopping condition in line

15 is crucial for the efficiency of the algorithm. If a flight is already inserted in the

partial network of the entity (g ∈ Nr), we are sure that all sub-paths emanating from

this node to the sink have already been discovered. Therefore, N curr can be inserted

without any further search.

Insert sub-procedure simply inserts the nodes and arcs in the temporary setN curr into

the partial network of the entity. Note that this sub-procedure is called either in line

16 or in line 19. In the latter one, the temporary path is a complete path from the

origin to the destination of the entity. All nodes and arcs in the temporary path are

inserted into the partial network. On the other hand, in the prior one, the temporary

path is connected to an already inserted node. Since we know that there is a sub-path

from the already inserted node (g) to the destination, the flights and connections in

the temporary path may exist in a feasible path. Therefore, we insert the nodes and

arcs of this sub-path to the network, as well. Since we do not insert the nodes and

arcs of any other path, generated partial network excludes all nodes and arcs that can

not be visited by the entity through a feasible path.

Finally note that partial network generation algorithm of an entity does not depend

on the partial networks of the other entities. Therefore, partial network generation

process can fully be parallelized with respect to entities. Figures 4.3, 4.4 and 4.5 are

example partial networks of a complete network that involves 13 flight nodes.

4.4.2 Entity Aggregation

Each individual (aircraft, crew member, and passenger) is defined as an entity so far.

By careful aggregation, number of entities can be reduced. It is easy to notice that
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Algorithm 1 Partial Network Generation Algorithm
1: procedure PNGA(r)

2: Initialization: Nr = ∅, Ar = ∅, N curr = {sr}
3: Gr = (Nr, Ar)← GeneratePath(N curr)

4: Ar ← Ar ∪ Er

5: return Gr = (Nr, Ar)

6: end procedure

7: procedure GENERATEPATH(N curr)

8: f ← last element of N curr

9: if Desf = Desr and return to destination is not allowed then

10: exit procedure

11: else

12: Nnext ←
{
g ∈ F ′(r) : Orig = Desf and SDTg ≥ ATf + CT rfg

}
13: for each g ∈ Nnext do

14: N curr ← N curr ∪ {g}
15: if g ∈ Nr then

16: Insert(N curr)

17: else

18: if Desf = Desr then

19: Insert(N curr ∪ {tr})
20: end if

21: GeneratePath(N curr)

22: end if

23: end for

24: end if

25: end procedure

26: procedure INSERT(N curr)

27: Nr ← Nr ∪N curr

28: Let fi be the ith element of N curr

29: for i = 1 to |N curr| − 1 do

30: Ar ← Ar ∪ {fi, fi+1}
31: end for

32: end procedure
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individuals of an aggregated entity need to have exactly the same partial network in

order to prevent any loss of information. By this observation, we can extend the rule

for aggregation of entities as follows:

Aggregation Rule: Individuals with common ready time, latest arrival time, origin,

destination, connection time between flights, must-visit nodes, technical properties

(such as aircraft speed and seat capacity) and delay cost parameters can be aggre-

gated without sacrificing optimality.

Proposed mathematical formulation can easily be modified to aggregated entities. For

instance, let entity, r, be defined as the aggregation of Nbr individuals. In this case,

binary decision variables xrfg need to be defined as nonnegative integer variables with

an upper bound of |Nbr|. Similarly, the demand of source and sink nodes of this

entity should be changed as −Nbr and Nbr, respectively.

It can easily be noticed that passengers in an itinerary with common delay cost pa-

rameters (in the same fare class) can be aggregated without violating the proposed

rule. However, for linear passenger delay cost function with actual passenger delay

(Sections 4.2.9.3 and 4.2.9.4), passengers should not be aggregated. On the other

hand, it is possible to incorporate a piecewise-step function utilizing realized delays

with aggregated passengers. Finally, we need to note that individuals of an aggregated

entity can still be transported through different paths.

4.5 Computational Results

We test the practicality of the proposed representation and formulation using data pro-

vided by Bureau of Transportation Statistics (http://www.transtats.bts.gov /DataIn-

dex.asp). We extract aircraft schedules of a major U.S. airline in January, 2012. Ex-

tracted data includes tail numbers, departure and arrival times, flight and cruise times,

origins, destinations, and distances of flights. We randomly assign seat capacities and

fuel cost parameters to each aircraft. Six different seat capacities are used in the ex-

perimentation: 150, 160, 180, 200, 260 and 300. For itinerary generation, we have

first defined each flight as a single-flight itinerary. Then, we designate flight pairs

with destination-origin match and available passenger connection time as possible
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passenger connections. We generate two-flight and three-flight itineraries using these

connection alternatives. We randomly assign the number of passengers in each flight

and assign these passengers to itineraries including these flights. Finally, we generate

scheduled routings of crew teams in a similar manner. We have used a recovery hori-

zon of 2000 minutes. Spill cost per passenger is set to $457.8 that is evaluated by the

method proposed by [59]. Flight cancellation, aircraft ferrying, and crew deadhead-

ing costs are set to $20000, $10000, and $500, respectively. Fuel cost coefficients

are randomly selected from U(1.5, 3.5) and assigned to each aircraft, where U(a, b)

is a uniform distribution in interval (a, b). For linear passenger delay cost function,

we have used $1.09 per passenger per minute as proposed by [59]. For piecewise

passenger delay cost function, we have used four steps: Df,i = 30, 60, 120, and 240,

for i = 1, 2, 3, 4. The corresponding delay costs per passenger are set to $25, $60,

$130, and $300, respectively.

We have tested our approach in three different networks. In Table 4.4, we summarize

the hubs, number of flights and number of entities included in these networks. Ab-

breviations ac, cr, it, and ps are used for aircraft, crew team, itinerary, and passenger,

respectively.

Table 4.4: Characteristics of the networks

Network Hubs |F| |Rac| |Rcr| |Rit| |Rps|
N1 DCA 103 27 38 139 16,393

N2 ORD 233 83 105 574 39,405

N3 ORD,DCA,LAX 504 168 225 1,177 85,141

We apply partial network approach in all instances. We generate partial networks both

by using the flexibility of cruise speed control and excluding it. In Table 4.5 partial

network structures for aircraft are summarized. Avg(|Nac|) and Avg(|Aac|) are the

average number of nodes and arcs in partial networks of aircraft, respectively. Firstly,

we observe a significant reduction in the number of decision variables and constraints

with partial network approach, as the average size of partial networks is much smaller

than the complete network. Secondly, we observe an increase in the number of nodes

and arcs with cruise speed control option. This indicates that a significant number of

new rerouting opportunities can be created by speeding up some flights.
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Table 4.5: Effect of cruise speed control on partial networks

without speeding up flights with speeding up flights

Network Avg(|Nac|) Avg(|Aac|) Avg(|Nac|) Avg(|Aac|)
N1 15.11 27.93 16.56 29.89

N2 15.47 27.71 17.02 29.81

N3 21.33 37.48 24.54 43.15

We have experimented four proposed delay cost calculation methods: linear function

with flight delay approximation (L−), piecewise function with flight delay approxi-

mation (PW−), linear function with actual delay (L+) and piecewise function with

actual delay (PW+). For experiments with actual delay costs (L+ and PW+), pas-

sengers are modeled explicitly while for approximations we have used aggregation

approach for passengers in each itinerary. It is expected that cruise speed control op-

tion will increase solution times. On the other hand, it provides a significant growth

in solution space. In order to observe the tradeoff between its burden in solution time

and improvement in costs, we define CS+ as the proposed approach and CS− as

the proposed approach without using cruise speed control option (note that CS− is a

mixed integer programming (MIP) model).

Four of the disruption types are tested. For each network, we have created depar-

ture delay scenarios including 1 to 5 departure delays each ranging from 45 to 120

minutes. Similarly 1 to 5 randomly selected flights are cancelled for cancellation sce-

narios. For delayed ready time instances, we have randomly selected an aircraft and

delayed its ready time by 60, 120, 180, 240 and 300 minutes. Finally, a hub is closed

for 60, 120, 180, 240 and 300 minutes in hub closure scenarios. Solution time is set

to 30 minutes for hub closure instances and to 15 minutes for the remaining.

4.5.1 N1 - Single-hub (DCA) scenarios

About 86% of all instances are optimized within the given time limit while the max-

imum gap is 2.2%. Gaps are calculated by dividing the difference between the best

integer solution and best lower bound to the best integer solution. Average solution
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times are displayed in Table 4.6. Solutions are obtained less than 10 seconds (four

minutes) on the average without (with) cruise speed control option. In order to ver-

ify whether it is worth to use realized delays, we check passenger delay costs of the

solutions. We observe that total passenger delay cost is underestimated with L− and

PW− by about $5,495 on the average. This amount may be negligible for severe

disruptions such as closure of a hub with a long duration, while it probably affects

decisions in minor disruptions.

Table 4.6: Solution times for N1 (in seconds)

Flight

Delay
Cancellation

Aircraft

Delay

Hub

Closure
Average

CS−

L− 1.3 1.4 1.3 2.4 1.6

PW− 1.3 1.4 2.3 1.4 1.6

L+ 6.5 12.1 7.3 8.6 8.6

PW+ 8.5 27.7 15.4 16.3 17.0

CS+

L− 357.6 5.5 61.1 11.5 108.9

PW− 556.2 7.1 118.3 22.2 176.0

L+ 320.1 33.7 72.2 27.2 113.3

PW+ 563.3 585.5 215.9 780.6 536.3

Total disruption and recovery costs are tabulated in Table 4.7. Despite the increased

solution times, we observe a significant improvement in costs with cruise speed con-

trol option. Percent improvements are calculated by dividing the difference in objec-

tive functions to the cost with CS−. Opposed to delay propagation, speeding up early

flights help mitigate delays. Therefore, improvement is expected in delay scenarios.

On the other hand, main reason of improvement in cancellation and hub closure sce-

narios is the availability of new rerouting and swap opportunities. On the average,

cruise speed option provides about 6.98% reduction in costs.
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Table 4.7: Total disruption and recovery costs for N1

CS− CS+ % Improvement

Flight Delay 63,792 53,643 15.9%

Cancellation 435,924 405,348 7.0%

Aircraft Delay 160,262 137,337 14.3%

Hub Closure 602,374 577,854 4.1%

4.5.2 N2 - Single-hub (ORD) scenarios

Solution times and costs of N2 instances are tabulated in Table 4.8 and Table 4.9,

respectively. About 78.7% of all instances are solved to optimality. Average gap is

only 0.74%. However, maximum gap reaches 10.13% for instances with L+ or PW+

and CS+. On the other hand, maximum gap is less than 0.5% for approximations

or for actual delay cost calculation with CS−. Therefore, we believe that size of N2

is near the upper bound for which real-time solutions can be provided using actual

delay cost calculation and cruise speed control option with the proposed approach.

As in N1 scenarios, we observe a significant improvement in costs with cruise speed

control option.

Table 4.8: Solution times for N2 (in seconds)

Flight

Delay
Cancellation

Aircraft

Delay

Hub

Closure
Average

CS−

L− 1.8 2.1 2.8 4.9 2.9

PW− 2.9 2.3 2.7 3.8 2.9

L+ 14.3 67.4 32.8 88.8 50.8

PW+ 22.4 75.4 322.4 923.3 335.9

CS+

L− 470.2 159.3 11.9 218.7 215.0

PW− 448.9 103.2 128.6 447.4 282.0

L+ 268.9 177.2 370.3 918.4 433.7

PW+ 500.8 484.1 555.4 1517.1 764.4
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Table 4.9: Total disruption and recovery costs for N2

CS− CS+ % Improvement

Flight Delay 30,280 27,282 9.9%

Cancellation 795,223 729,457 8.3%

Aircraft Delay 645,555 627,299 2.8%

Hub Closure 2,275,324 2,242,558 1.4%

4.5.3 N3 - Three-hub scenarios

For N3 scenarios, we have aggregated passengers in an itinerary, and hence, used L−

and PW− methods to estimate passenger delay costs. Solution times and costs of

N3 instances are tabulated in Table 4.10 and Table 4.11, respectively. About 79.3%

of all instances are solved to optimality while the average (maximum) gap is 0.3%

(2.6%). Average solution time with cruise speed control option is about ten minutes

while about 6.9% reduction in costs is provided.

Table 4.10: Solution times for N3 (in seconds)

Flight

Delay
Cancellation

Aircraft

Delay

Hub

Closure
Average

CS−

L− 3.8 72.7 13.9 95.3 46.4

PW− 5.9 57.9 14.1 85.1 40.8

CS+

L− 407.1 891.8 233.4 932.2 616.1

PW− 720.8 532.1 461.7 1638.4 838.3

In order to observe the relation between the improvement provided by cruise speed

control option and severity of disruptions, we further investigate instances. In Figure

4.7, costs with respect to the number of delayed flights are illustrated. Similar results

are observed for the remaining disruption types as well. The observations suggest

that cruise speed control option becomes more valuable as the disruption scenario

gets more complicated.
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Table 4.11: Total disruption and recovery costs for N3

CS− CS+ % Improvement

Flight Delay 61,652 56,563 8.3%

Cancellation 245,612 219,290 10.7%

Aircraft Delay 173,651 161,442 7.0%

Hub Closure 1,492,851 1,400,328 6.2%

Figure 4.7: Total costs with respect to number of delayed flights in N3

In Figure 4.8, we observe percent improvements in cost terms by cruise speed con-

trol option with respect to different disruption types. We observe improvement in

passenger delay costs for all disruption types as cruise speed control helps mitigate

delays. Moreover, it helps maintain passenger connections so there is an improve-

ment in external arc costs (spilling costs). In hub closure and aircraft delay scenarios,

we also observe that there is a reduction in the total number of ferried aircraft and

deadheaded crew members. Infeasibilities by flight cancellations may spread through

the schedules of aircraft and crew members, and result in severe disruptions. Hub clo-

sure scenarios are obviously the most complex scenarios resulting in many cancelled

flights. Therefore, network connectivity becomes more valuable than delay mitiga-

tion in cancellation and hub closure scenarios. Reduction in the number of cancelled

flights by cruise speed control option is 0.6 and 1.4 on the average for cancellation

and hub closure scenarios, respectively.
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Figure 4.8: Percent improvement in cost terms with cruise speed control

Analysis of the effect of severity of disruptions on disruption costs is illustrated in

Figure 4.9. Relation between the number of departure delays and cancellations with

total cost resembles a linear dependency. A similar relation exists between the amount

of ready time delay of aircraft and total cost for delays less than three hours. However,

the increase in total cost decreases for greater delays. The reason of this relation is

that a three hour delay is severe enough to force the airline utilize costly recovery

actions already. In hub closure scenarios, we observe a jump in the increase in total

cost for closures greater than two hours. Many affected flights in scenarios with a

closure less than or equal to two hours may still be operated using departure holding

and speeding up. However, the number of flights that needs to be cancelled increases

greatly for longer closures.

4.6 Conclusion

Recently, there is an increasing effort in integrated airline recovery approaches for air-

line disruption management problem due to high passenger inconvenience and crew

recovery costs with sequential approaches. Main challenge in integration is the in-

creased problem size while airlines require real-time solutions. In this study, we pro-

pose a general network representation for the problem that captures the state of the

entities and allows integration of any entity type in the same manner while keeping

the problem size in reasonable limits. Another advantage of the proposed representa-

tion is that all recovery actions including all rerouting possibilities for each entity can
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Figure 4.9: Total disruption and recovery costs with respect to the severity of disrup-
tions.
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easily be integrated to ensure optimality.

Service quality is becoming more important due to the high competition in the indus-

try. Therefore, evaluating all possible passenger recovery actions in cases of disrup-

tions is crucial. In the literature, there are several passenger delay cost calculation

methods to evaluate passenger recovery options, however, they do not fully capture

the dynamic nature of operations. To the best of our knowledge, this study is the first

to model each passenger explicitly and evaluate passenger delay costs by considering

both the rerouting decisions and realized delays of flights in the recovered schedule.

We propose a linear and a piecewise passenger delay cost function. For larger prob-

lems, we also propose approximation approaches similar to the ones proposed in the

literature.

In addition to common recovery actions, we also integrate cruise speed control action

in our solution space. Our experiments have shown that speeding up flights may be

very beneficial to mitigate delays and preserve passenger connections in cases of dis-

ruptions. Moreover, we observe an improvement in the connectivity of the network as

new swap and rerouting options are created. However, speeding up a flight increases

fuel consumption, and hence, additional fuel cost is incurred. There is a nonlinear

tradeoff between fuel consumption and aircraft speed. However, the resulting for-

mulation is second-order cone programming representable. Therefore, we can create

conic quadratic constraints for the nonlinear constraints and solve the problem with

commercial MIP solvers such as IBM ILOG CPLEX. With the proposed reformula-

tion, solution times have increased but kept within reasonable limits. On the other

hand, significant improvements in disruption and recovery costs are observed.

Finally, we propose two important preprocessing approaches for enhancing the per-

formance of the proposed approach without sacrificing optimality. In the first method,

an efficient algorithm to generate partial networks of entities is proposed in order to

eliminate unnecessary variables and constraints. In the second one, we propose a rule

to aggregate entities that needs to be satisfied to preserve optimality. In our experi-

mentations, we managed to optimize single-hub scenarios without aggregation while

for three-hub scenarios we have aggregated passengers in the same itinerary.

Aggregating passengers in the same itinerary is a common approach in the literature
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and reduces the problem size significantly. On the other hand, explicitly modeling

each passenger has several advantages. Firstly, it allows calculating passenger delay

costs using the realized delays in the recovered solution. Moreover, each individual

can be treated differently. For instance, different cost coefficients and different recov-

ery actions may be assigned to different individuals. Despite the increased problem

size, we have managed to achieve real-time solutions by explicitly modeling each

passenger in single-hub scenarios.

Our alternative problem representation and preprocessing approaches enhance solu-

tion times and enable fast solutions to complex formulations. However, solving in-

stances related with huge networks is still challenging. In this chapter, we have used

flight delay approximation method to deal with large instances. In the next chapter,

we propose a heuristic approach to solve large instances with complex formulations

where actual passenger delay is evaluated and cruise speed control action is utilized.

The approach reduces the solution space rather than simplifying the formulation.
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CHAPTER 5

A REAL TIME RECOVERY APPROACH TO INTEGRATED

AIRLINE DISRUPTION MANAGEMENT PROBLEM

In this chapter we propose a heuristic approach, Isolation Heuristic, that tries to han-

dle limited solution time requirement in airline disruption management. Integrated

airline recovery problem is very complex and practical instances are large. In the pre-

vious chapter, we propose four different passenger delay cost formulations where the

more realistic ones are more complex. Furthermore, integrating cruise speed control

action adds complexity to the formulation. We have tested four of the delay cost for-

mulations with and without utilizing cruise speed control action. We observe that the

most complex formulations in three-hub networks of a major U.S. airline cannot be

solved in real-time, while we achieve good results (having an average gap of 0.3%)

with approximation models. In order to deal with larger instances with complex for-

mulations, problem size should carefully be reduced. Most integrated airline recovery

approaches in the literature point out the importance of controlling problem size and

complexity. Common techniques to achieve tractability in real time include:

• solving individual or partially integrated recovery problems sequentially, and

• using approximations for passenger delay cost.

Sequential recovery approaches generally result in high passenger inconvenience. On

the other hand, approximation models underestimate or overestimate actual passenger

delay cost.
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The aim of the heuristic approach is to provide real time solutions with complex for-

mulations that maintains integration and realistic delay cost calculation. We propose

an alternative way to reduce problem size. Dispatchers in AOCCs alter only a subset

of operations while recovering schedules against disruptions in order to reduce the

complexity of the problem, and provide stability of the schedules. Note that enlarg-

ing this subset also enlarges the solution space and may provide lower cost recovery

decisions. Proposed heuristic tries to control the tradeoff of stability and solution time

with the quality of the solutions by mimicking the intuitive decision making process

of dispatchers in a systematic way.

In Section 5.1, we propose a connection network (CN) representation similar to the

one proposed in Chapter 4. We propose to generate a CN for each entity that is

capable of generating all possible recovery actions within a planning horizon. The

planning horizon is generally set to one day since there is enough time at night for

recovery against disruptions. An efficient algorithm to create CNs of entities is pro-

posed and the idea is illustrated on an example problem. In Section 5.2, we proposed

an algorithm to revise the CNs quickly at the moment a disruption occurs. Revised

CNs are actually subsets of the original ones and reflect the state of the entities at the

beginning of the recovery horizon. Isolation Heuristic is presented in Section 5.3.

Parameters used to balance the problem size and quality of solutions are explained in

detail. An important aspect of the proposed approach is that it only reduces the prob-

lem size independent of the optimization approach. Therefore, it can be integrated

with any methodology. The outline of the proposed real time recovery approach to

integrated airline disruption management problem is illustrated in Figure 5.1. The

processes after the revision of CNs could be parallelized as well, if necessary. In our

experimentations which are presented in 5.4, we use four mathematical models pro-

posed in Chapter 4 each with a different level of complexity. We give our remarks on

the proposed heuristic in 5.5.

5.1 Problem Representation

The problem addressed in this chapter is real time airline disruption management

problem. Problem in consideration may involve aircraft only (aircraft recovery prob-
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Figure 5.1: Solution Procedure
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lem). However, proposed solution approach is more beneficial when rerouting de-

cisions of other entities such as crew members and passengers are also important.

There exists a planned schedule for each entity. A planned schedule consists of a se-

ries or a path of flights together with departure and arrival time decisions. Scheduled

flights are continuously controlled by the dispatchers in AOCCs during the tracking

horizon, [t0, t1]. A common option for t1 is the end of day of operations since gener-

ally there is enough slack time at night to resume original schedules. Finally, we are

given a disruption at time td ∈ [t0, t1] that is severe enough to prevent operating the

original schedules. The objective function of airline disruption management problem

may vary. A common objective is to minimize disruption and recovery costs as in the

formulations proposed in Chapter 3 and 4. Another objective may be to catch up the

original schedule as early as possible. One can achieve lower cost solutions with a

longer recovery horizon, however, it is generally desirable to limit recovery horizon

length in order to reduce the disturbance of the disruption on scheduled operations.

Moreover, since new disruptions may occur, long-term recovery plans are less likely

to be operated. Finally, stability is an important aspect in recovery problems. De-

cision makers generally desire that the deviation between the original and recovered

schedules is little.

We propose a connection network, or activity-on-node, representation which has sev-

eral advantages. Firstly, number of nodes is limited with the number of flights. Sim-

ilarly, number of connection arcs between nodes is directly related to the number of

rerouting opportunities. Therefore, size of the problem is kept in its natural limits. We

propose to model entities of all types with CNs. Integrated recovery problems deal

with the superimposition of CNs of all entities, and structure of CNs is very suitable

to define the interdependencies among entities of different types.

5.1.1 Entities

In the proposed representation, each entity will have a CN that is capable of gener-

ating all alternative paths in addition to the scheduled path. By modeling entities of

all types with CNs, we guarantee that generated solution space will contain all possi-

ble recovery actions. Let E be the set of all entities related to our recovery problem
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(aircraft, passengers, crew members, etc.). Each of these entities have the following

properties:

Orie(Dese) : Origin (destination) of entity e

RTe(LATe) : Ready time (latest arrival time) of entity e

Origin of an entity is the starting location of the entity at the beginning of the original

schedule, and the destination is the location that the entity is expected to reach at

the end of the schedule. Origin and destination of an aircraft may be a maintenance

station. On the other hand, the O-D pair of a passenger would be the origin of the first

flight and destination of the last flight of his/her itinerary.

Ready time is related to the availability of the entity. A passenger would be available

at its origin just before the departure time of his/her first flight. On the other hand,

an aircraft may be available since the beginning of tracking horizon. If the entity is a

crew member, ready time is related with the work rules. Latest arrival time designates

the latest time that the entity needs to reach its destination. This parameter would be

evaluated according to the maximum allowable delay for passengers and according to

the work rules for crew members. For aircraft, latest arrival time may be the end of

day if there are no additional restrictions such as scheduled maintenances.

5.1.2 Nodes

All activities having the following properties are modeled with nodes:

• having defined origin and destination (these locations may be the same)

• having a time window for the starting time

• having a scheduled duration

Some examples satisfying these conditions are flights, scheduled aircraft mainte-

nances, away-from-home limitations of crew members, etc. Notation for nodes is

given below:
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Orii(Desi) : Origin (destination) of activity i

Ai(Bi) : Earliest (latest) time that activity i can start at Orii

Di : Duration of activity i

Si(Ci) : Scheduled starting (completion) time of activity i

(si ∈ [Ai, Bi] and Ci ∈ [Ai +Di, Bi, Di])

If the activity is a flight, the origin and destination would be different, and they may

be the same location if the activity is the maintenance of an aircraft. We have time

windows for the starting time of activities and a constant service duration. However,

variable service times may easily be incorporated with the proposed approach. We

define N to be the set of all scheduled activities (nodes) in the problem. In addition

to location and time window constraints, there may be some additional restrictions

between activity-entity pairs stating that the entity cannot visit the activity node. For

instance, an aircraft e may not be appropriate to operate a flight i due to technological

limitations. Moreover, available time window of the entity may restrict some activ-

ity assignments. In particular, entity e cannot visit any of the activity nodes in the

following subset due to time window restrictions:

{i ∈ N : Bi < RTe or Ai +Di > LATe}

We define Nfeas
e ⊆ N to be the set of nodes that entity e can visit.

5.1.3 Arcs

Arcs represent feasible connections among nodes with respect to geographical con-

straints and time window requirements. Existence of an arc in the CN of an entity

states that the entity may take place in the activities at the starting and ending nodes

of the arc sequentially. An arc from node i to node j has the following characteristics:

• has a duration, Dij (Dij may be equal to 0)

• there is a possibility to connect these activities with respect to time window
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restrictions, i.e.,

Bj ≥ Ai +Di +Dij

• either destination-origin (D-O) match (Desi = Orij) is satisfied or it is possible

for the entity to travel from Desi to Orij (in the latter case, Dij contains the

duration of the trip)

For the sake of generality, if destination-origin match is not satisfied between activi-

ties i and j and it is not possible to travel between these locations, we set the duration

of these connections to a large value, Dij = t1 − t0. If D-O match is satisfied and ac-

tivity j can be started immediately after the completion of activity i, we set Dij = 0.

On the other hand, even if D-O match is satisfied, there may be a required time be-

tween the completion time of the prior activity and the starting time of the latter. For

instance, between two consecutive flights assigned to an aircraft, a turnaround time

needs to be provided. This duration is also expressed with the arc length, i.e. Dij .

5.1.4 Source and Sink Nodes

For each entity e, we insert a source node (se), and a sink (te) node. The aim of the

proposed approach is to generate all possible paths from se to te,∀e ∈ E, so that the

entire solution space is obtained. These artificial nodes have the following properties:

• Desse = Orie and Orite = Dese

• Ase = RTe and Bte = LATe

5.1.5 Connection Network Generation Algorithm

For each entity e ∈ E, we propose to create a CN having the structure explained

above. CN of entity e is designated with Ge = (Ne, Ae). We propose Connection

Network Generation Algorithm (CNGA) to efficiently generate these networks. This

algorithm may be regarded as a generalized version of the Partial Network Generation

Algorithm proposed in Section 4.4.1.

In the Initialization step, we create empty sets for nodes and arcs, Ne = ∅, Ae = ∅.
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Algorithm 2 Connection Network Generation Algorithm
1: procedure CNGA(e)
2: Initialization: Ne = ∅, Ae = ∅,Nfeas

e = Nfeas
e ∪ {te}, N curr = {se}

3: Ge = (Ne, Ae)← GeneratePath(N curr)
4: end procedure
5: procedure GENERATEPATH(N curr)
6: i← last element of N curr

7: if i = te then
8: exit procedure
9: else

10: Nnext ←
{
j ∈ Nfeas

e : Bj ≥ Ai +Di +Dij

}
11: for each j ∈ Nnext do
12: N curr ← N curr ∪ {j}
13: if j ∈ Ne then
14: Insert(N curr)
15: else
16: GeneratePath(N curr)
17: end if
18: end for
19: end if
20: end procedure
21: procedure INSERT(N curr)
22: Ne ← Ne ∪N curr

23: Let ik be the kth element of N curr

24: for k = 1 to |N curr| − 1 do
25: Ae ← Ae ∪ {(ik, ik+1)}
26: end for
27: end procedure
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We insert the sink in N feas
e which will be the last node of all paths for entity e. N curr

is a temporary set of activities and we start by inserting the source node, se.

In GeneratePath subprocedure, we investigate the last activity in N curr. If the last

activity is the sink (if i = te), we stop. Otherwise, we obtain another temporary set

of nodes, Nnext, that may be connected to node i. From each activity j ∈ Nnext, we

try to find a path reaching te.

Condition in line 13 is important for the efficiency of the algorithm. During the execu-

tion of the algorithm, if node j that is currently being investigated is already included

in the CN of the entity, we are sure that all paths emanating from j and reaching te are

already constructed. Therefore, we insert the path from se to j which is represented

by N curr into the CN and stop. This guarantees that none of the connection arcs in

the CN are checked for more than once. If the condition is not satisfied, we are on a

path that is not discovered yet, and hence, we check further connections.

Insert is a simple subprocedure that inserts the current path represented by N curr into

the CN of the entity.

Note that each entity has a scheduled path, which is feasible prior to the disruption.

Since the CN constructs all feasible paths for the entity, scheduled path is included in

the network, as well. We designate the scheduled network of entity e (which actually

is a single path from se to te) by SGe = (SN e, SAe), where SN e ⊆ N e and SAe ⊆
Ae.

5.1.6 Example

In order to demonstrate the idea of CNGA and Connection Network Revision Algo-

rithm that will be explained in Section 5.2, we introduce an example. Scheduled

flights are modeled as nodes and the arcs represent flight connections. Arc durations

are related with entity types. For simplicity, we set the required turnaround time for

aircraft and connection time for crew / passenger to 30 minutes.

Original flight schedules of three aircraft are tabulated in Table 5.1. Note that the

scheduled start (Si) and completion times (Ci) of nodes correspond to scheduled de-
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Table 5.1: Flight schedule of the example

Tail number i (Flight number) Orii Desi Si Ci
N322AA 1 ORD DCA 5:30 7:10

2 DCA ORD 7:50 9:30
3 ORD DFW 10:00 12:20
4 DFW ORD 13:00 15:20
5 ORD DCA 16:30 18:10

N345AA 6 LAX ORD 6:00 9:40
7 ORD MSP 12:00 13:10
8 MSP ORD 14:00 15:10
9 ORD LAX 16:00 19:40

N5FCAA 10 DCA ORD 9:00 10:40
11 ORD MSP 11:10 12:20
12 MSP ORD 13:00 14:10
13 ORD DCA 16:00 17:40

parture and arrival times of flights, respectively. Since a flight cannot depart before

its scheduled departure time, we also set Ai = Si. Bi, on the other hand, is related

with the maximum departure delay allowed.

For illustration, consider the first aircraft with tail number N322AA. We assume

that the origin of this aircraft is ORD (OriN322AA =ORD) and it can operate its

first flight any time after 4:00 (RTN322AA =4:00). We set the destination to DCA

(DesN322AA=DCA) and assume that it needs to arrive before 19:00 (LATN322AA =

19:00). The original routing is 1-2-3-4-5. CN created by CNGA is displayed in Fig-

ure 5.2. Each arc represents a feasible flight connection (with respect to time windows

and locations), and each path from source to sink in the network represents a feasible

aircraft routing.

Now let us consider a passenger with two consecutive flights, 2 and 7. We can set

the ready time to the scheduled departure time of flight 2 (RT2−7=7:50). On the other

hand, latest arrival time is related with airline policy. Origin and destination are DCA

and MSP, respectively. CN of this passenger created by CNGA is displayed in Figure

5.3, which includes all reallocation alternatives: 2-7, 2-11, 10-7, and 10-11.
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Figure 5.2: CN of aircraft N322AA

Figure 5.3: CN of a passenger (itinerary) with scheduled flights 2-7
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Figure 5.4: State of an entity at the time disruption occurs.

5.2 Revised Connection Networks After Disruption

Whenever a disruption occurs, some activities may have been completed. Obviously,

we are interested in the remaining. Structure of CNs allows to quickly obtain states of

entities and rerouting alternatives that are still feasible. At the time disruption occurs,

td ∈ [t0, t1], an entity is in one of the following states:

• At-a-Node (AN): has started an activity and has not finished its service yet

• At-an-Arc (AA): has completed an activity (or left the source) and currently on

a connection arc towards another activity (or sink).

These two states are illustrated in Figure 5.4. Flight nodes ne and me are on the

scheduled path of the entity while a1 and a2 are alternative flights that the entity

can be rerouted through. Horizontal line is a time-line representing the planning

horizon. If there exist a node i ∈ SNe such that td ∈ [Si, Ci], we say that the

state of entity e is AN. We designate the current node with ne = i. Otherwise, we

state that the entity is in state AA and designate the current arc with (ne,me), where

ne = argmax
i∈SNe

{Ci : Ci < td} and me is the end node of the arc emanating from ne in

SGe.

For the first case (AN), we assume that the operation of the service at the current node

cannot be altered. Recall that these activities may be flights or aircraft maintenances,

and hence, it would not be easy to cancel or postpone an already started activity.
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For the second case (AA), there are different possibilities: the entity may be idle or

preparing for its next service (fueling, luggage loading etc.) at Desne . In any case,

we roll-back to node ne and check the feasibility of alternative arcs emanating from

this node. Recall the feasibility rule for a connection between i and j used in CNGA.

All arcs satisfy Bj ≥ Ai +Di +Dij . However since td > Ci = Si +Di and Si ≥ Ai,

some arcs may be infeasible at td. Updated feasibility rule for arcs emanating from

ne and incoming to j where j 6= me (alternative) is:

Bj ≥ td +Dupd
nej

, j ∈ Ne : (ne, j) ∈ Ae, j 6= me

Dupd
nej

is the updated arc duration as illustrated in Figure 5.4 which depends on activity

type:

• If the arc represents an idle time at Desne , i.e. if Dnej = 0, Dupd
nej

is set to 0 as

well.

• If the arc represents a preparation particularly for its next scheduled service

which is me, then Dupd
nej

is set to the original arc duration, Dnej .

• If the arc represents a preparation for its next (any) service, Dupd
nej

is set to the

remaining time to complete the preparation, Dnej − (td − Cne).

We represent the state of entity e at the moment of a disruption with a connection

network, Ge =
(
N e, Ae

)
. This network holds the following information:

• Current position of the entity in the original CN.

• Possible rerouting opportunities within [td, t1] to transport the entity from its

current location to its sink, te.

We also generate SGe =
(
SN e, SAe

)
to represent the scheduled activities assigned

to entity e and that have not been operated yet.

We propose Connection Network Revision Algorithm (CNRA) to create Ge and SGe

at the moment of disruption. The algorithm starts by obtaining the current node or last
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Algorithm 3 Connection Network Revision Algorithm
1: procedure CNRA(e)
2: if ∃ne ∈ SNe 3 td ∈ [Si, Ci] then
3: Set se ← ne
4: else
5: Set se ← argmax

i∈SNe

{Ci : Ci < td}

6: Set me ← j 3 (se, j) ∈ SAe
7: for each j : (se, j) ∈ Ae \ SAe do
8: Calculate Dupd

sej

9: if If td +Dupd
sej

> Bj then
10: mark (se, j) as Infeasible
11: end if
12: end for
13: end if
14: Update RTe = max{Cse , td}
15: Set N e = SN e = {se} and Ae = SAe = ∅
16: SearchForward(se)
17: end procedure

Algorithm 4 Search Forward
1: procedure SEARCHFORWARD(i)
2: if i = te then
3: Stop
4: else
5: Nnext ← {j ∈ Ne : (i, j) ∈ Ae and (i, j) is not Infeasible}
6: for each j ∈ Nnext do
7: N e ← N e ∪ {j}
8: Ae ← Ae ∪ {(i, j)}
9: if j ∈ SNe then

10: SN e ← SN e ∪ {j}
11: end if
12: if (i, j) ∈ SAe then
13: SAe ← SAe ∪ {(i, j)}
14: end if
15: SearchForward(j)
16: end for
17: end if
18: end procedure

152



Figure 5.5: State of NN322AA if disruption occurs at 8:15.

visited node, and updates arc lengths emanating from this node. New source node is

set to the current node (line 3 or 5) and ready time of the entity is updated as the first

time that the entity will be available (line 14). SearchForward procedure inserts all

nodes and arcs that are reachable from the new source node into the updated networks

Ge and SGe.

For illustration, we consider the revised CN of aircraft in the example described in

Section 5.1.6. Assume that a disruption occurs at 8:15. Note that the aircraft is operat-

ing flight 2 (AN) at this moment. We update the source node as flight 2 (sN322AA = 2)

and search forward from this node. Revised CN of this entity, GN322AA, is displayed

in Figure 5.5. Note that this is a subset of the CN generated by CNGA in Figure 5.2,

corresponding to the subset of rerouting alternatives which are still feasible.

Now assume that the disruption occurs at 9:50. The aircraft is on the connection

arc 2 → 3 (AA). 20 minutes of the required turnaround time have passed and there

is 10 minutes left for the scheduled departure of flight 3. We roll back to flight 2

and check feasibility of arcs emanating from this node. There are three alternative

connections 2 → 7, 2 → 11, 2 → 13. Since there is enough slack time between the

scheduled departures of flights 7, 11 and 13, we designate alternative connections as

still feasible. Therefore, we obtain the same CN displayed in Figure 5.5.

Finally, assume that time of the disruption is 16:20. The aircraft is on the connection

arc 4 → 5 (AA). We roll back to flight 4, set sN322AA = 4, and check the feasibility
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Figure 5.6: State of NN322AA if disruption occurs at 16:20.

of the alternative connection 4→ 13. Assume that if we decide to divert the aircraft,

another 30 minutes of turnaround time is required. In other words, updated duration,

Dupd
4,13, is 30 minutes. Assume also that upper bound on departure time of flight 13 is

16:45 (maximum allowable delay is 45 minutes). Since td + Dupd
4,13 = 16:50 > B5 =

16 : 45 , we mark this connection arc as Infeasible. Resulting revised CN of the

aircraft is displayed in Figure 5.6.

5.3 Isolation Heuristic

CNs generated by CNGA and updated by CNRA represent states of entities at the

moment of a disruption, td. In addition to the scheduled paths, these CNs are capable

of generating all possible rerouting alternatives. In other words, complete solution

space is represented. Therefore one can optimize the problem using the revised CNs.

In this section, we propose a heuristic approach that carefully limits problem size

when dealing with large instances.

Isolation Heuristic (IH) exploits the fact that only a subset of the operations will be

altered in the optimal recovery. Moreover, operations of only a subset of entities

will be altered in the optimal solution. Remaining nodes will be visited by originally

assigned entities and will be operated as planned. Objective of the proposed heuristic

is to find the subset of entities and nodes, schedules of which would be changed if the

instance were optimized over the complete solution space. If these entities and nodes

can be isolated, it is possible to reach optimal solution over a smaller solution space.
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We represent disruptions by designating directly affected nodes. Let DN be the set

of nodes that are directly affected from the disruption. A scheduled activity may be

disrupted due to various reasons such as flight cancellation. In this case, we insert

the related node in DN . There may also be a disruption on a connection arc. For

instance, turnaround time of an aircraft may be increased due to problems in ground

operations. In this case, we setDN = {i, j}. Finally, reason of the disruption may be

related to an entity. A crew member may show up late for a flight or may not show up

during the tracking horizon. Similarly, technical problems of an aircraft may prevent

it from following its original path. In this final case, all nodes originally scheduled to

the disrupted entity, say e, are designated as disrupted, and hence, we setDN = SNe.

The algorithm expands through the CNs of entities based on a reference node set

denoted by IN . At each expansion step, we select new entities which:

• are not included in the solution space yet, and

• are related to the current reference node set.

When we include these entities in our solution space, the reference node set expands

as well by the inclusion of new related flight nodes. In order to illustrate the idea

of the heuristic, suppose that flight i is cancelled, and hence, we set DN = {i}.
Furthermore, we initiate the reference node set, IN = DN . Nodes included in IN

also correspond to activities that will be included in the isolated solution space. If a

flight is cancelled due to the weather conditions at the destination airport, the aircraft

that is planned to operate flight i, say e, could be rerouted to another destination

instead of waiting idle at the origin airport. Flights originally assigned to this aircraft,

SN e, may be altered. Alternative flight nodes in its CN that are originally assigned to

other aircraft may also be altered due to rerouting or swapping actions. We would set

IN = IN ∪N e to include all rerouting options of this aircraft in the solution space.

Schedules of these |N e| flights may be altered in the solution. Therefore, crew mem-

bers operating these flights need to be included in the solution space. In order to

include rerouting options for these crew members, we also need to insert flight nodes

in their CNs.

Passengers are severely affected from disruptions and recovery decisions. Therefore,
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we also need to consider passengers originally assigned to flights in IN and corre-

sponding reallocation alternatives. As the example illustrates, whenever new flight

nodes are inserted in IN , new aircraft, crew members and passengers need to be con-

sidered. This process probably continues until all entities and nodes are included in

the solution space since the operations of different entity types do not overlap.

Assume that we iterate in this manner by including new aircraft, crew members, pas-

sengers and new flight nodes at each step. Also assume that flight j is inserted into

IN at nth step. Recall that i is the cancelled flight, and hence, inserted into IN at

step 1. Step numbers at which these nodes are inserted into IN expresses the level

of relational distance of these nodes from the disruption. Note that this level is not

only related with the geographical distance (between origin and destination) and time

related relation (between the time windows), but also captures proximity information

with respect to the existence in rerouting alternatives of the included entities.

We intuitively state that as the level of relational distance between a node and dis-

ruption increases, it becomes less likely that original schedule of this node will be

altered in the optimal recovery. Moreover, if scheduled activities with a high level

of relational distance are altered, stability of the solution will be low. IH starts from

the disrupted node(s) and expands through the CNs of entities that are close to the

disruption point so that good recovery actions are included in the isolated solution

space and stability of the solution is controlled.

5.3.1 Control Parameters

In this section, parameters to control the expansion strategy, problem size and stability

are explained.

α : main expansion strategy

α =

 Balanced

Independent

Kt : number of expansion steps that will be executed for entity type t.
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α determines the main strategy of the algorithm. If Balanced version is used, ex-

pansion steps of all entity types are based on a common reference node set. In this

manner, recovery actions of all entity types are considered simultaneously. On the

other hand, in Independent strategy, expansion steps of different entity types are ex-

ecuted independently as if we are dealing with dedicated recovery problems, such as

aircraft recovery, crew recovery or passenger recovery problems. Note that integra-

tion will still be maintained at the Stabilization stage that will be executed at the end

of expansion process. If Kt is set to a large number, more entities of type t will be

included in the solution space, and vice versa.

βtk : entity selection strategy at step k for type t entities

βtk =

 Affected

Alternative

Consider the kth expansion step of entity type twhile the set of already included nodes

is IN . If βtk is set to Affected, entities having at least one scheduled activity that is

already included in IN are selected. Note that these entities will be directly affected

if operations in IN are altered. If βtk is set to Alternative, the algorithm will be

searching for entities that are not only directly affected, but also are candidates to be

rerouted through the nodes in IN . To illustrate, consider an aircraft that is idle during

the recovery horizon, and hence, is not directly affected. However, this aircraft may

generate many alternative solutions. For instance, it may operate flights of another

aircraft experiencing mechanical problems and also may enrich swap opportunities.

In Alternative strategy, entities having at least one node, not necessarily scheduled, in

IN are selected.

ntk : limit on the number of type t entities at step k if entity selection strategy

is Alternative

θtk : sorting strategy for selected type t entities at step k

θtk =

 Idleness

Relevance
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When we use Alternative strategy for selecting new entities, number of candidate

entities may be enormously high. In order to limit problem size, we limit the number

of entities of type t to be included at step k by ntk. In other words, we only include

a subset of possible alternatives. θtk is the criterion to sort selected entities, and we

select the first ntk entities from this sorted list. In Idleness strategy, selected entities

are sorted with descending order of their idle times within [td, t1]. Since these entities

represent alternative resources to recover disrupted nodes, it is more preferable that

they have idle time. On the other hand, in Relevance strategy, entities are sorted with

descending number of nodes in their CNs that have already been included in IN .

More relevant entities may be used to recover more nodes in the reduced solution

space.

γtk : Network inclusion strategy for type t entities at step k

γtk =

 Scheduled

Complete

If an entity is included with Complete strategy, Ge will be included in the isolated

solution space. Therefore, all rerouting alternatives will be available. In Scheduled

option, the entity is included with SGe, and hence, only retiming and ferrying/dead-

heading/spilling decisions will be available.

5.3.2 Algorithm

IH involves three main steps: (1) Initialization, (2) Expansion and (3) Stabilization,

and main heuristic is displayed in Algorithm 5.

Algorithm 5 Isolation Heuristic
1: procedure ISOLATION
2: Initialization
3: Expansion
4: Stabilization
5: end procedure

In initialization step given in Algorithm 6, starting point of the heuristic is determined.

Expansion process is based on a common set of nodes (IN ) in Balanced strategy, and
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on discrete sets for each entity type (INt) in Independent strategy. In this step, we

simply include disrupted nodes, DN , in the corresponding reference sets. In order

to keep track of entities included in the solution space, we also initiate empty sets of

entities for each type, i.e. IEt = ∅, t ∈ T .

Algorithm 6 Initialization
1: procedure INITIALIZATION
2: IN = DN
3: INt = DN, t ∈ T
4: IEt = ∅, t ∈ T
5: end procedure

Pseudo codes of Balanced and Independent strategies are presented in Algorithm

7. In Balanced strategy, K = max {Kt} expansion steps are carried out. At each

step, we check entity types for which an expansion step will be carried out (line 5).

Reference node set for the expansion process is IN .

In Independent strategy, expansion steps of each entity type are carried out based on

their own reference node sets, INt. We simply search for recovery options for each

entity type separately. Although the idea seems contrary to integration, dependencies

among entity types will still be constructed in Stabilization step and the solution space

will be integrated.

Algorithm 7 Expansion
1: procedure EXPANSION
2: if α =Balanced then
3: for k = 1 to K = max{Kt} do
4: for all t ∈ T do
5: if k ≤ Kt then
6: Expand(k, t, IN )
7: end if
8: end for
9: end for

10: end if
11: if α = Independent then
12: for all t ∈ T do
13: for k = 1 to Kt do
14: Expand(k, t, INt)
15: end for
16: end for
17: end if
18: end procedure
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Main expansion step for entity type t at step k is presented in Algorithm 8. Expansion

will be based on the reference node setB (IN for Balanced and INt for Independent).

The procedure first creates set ε which is the set of entities of type t that will be

included in the current step. Then, each of these entities are included in the solution

space in line 3. According to the value of parameter γtk, we either include the entity

with SGe (line 5), or with Ge (line 8). In the latter one, we include all rerouting

options of the entity in solution space, while in the prior one only retiming decisions

will be included. Expansion is reflected to the reference sets in lines 10 and 11.

Algorithm 8 Expand
1: procedure EXPAND(k, t, B)
2: ε = SelectEntities(t, B, βtk, θtk, ntk)
3: IEt ← IEt ∪ ε
4: if γtk =Scheduled then
5: IGe = SGe,∀e ∈ ε
6: end if
7: if γtk =Complete then
8: IGe = Ge,∀e ∈ ε
9: end if

10: INt ← INt ∪
(⋃
e∈ε
INe

)
11: IN ← IN ∪

(⋃
e∈ε
INe

)
12: end procedure

Entities that will be included at an expansion step are selected with Select Entities

procedure presented in Algorithm 9. Selection process is based on reference node

set B. In line 2, set of directly affected, ε1, entities are selected. Note that these

entities have at least one scheduled node which is already included in the reference

set. If cardinality of ε1 is greater than or equal to the upper bound on the number of

entities that may be included at this step (n), or if the entity selection strategy Affected,

the procedure returns ε1. Otherwise (if entity selection strategy is Alternative and

|ε| < n), we search for entities which have no scheduled node in the reference set,

but may be rerouted to serve at least one of the included nodes. Set of these alternative

entities, ε2, is obtained in line 6. If |ε1|+ |ε2| does not exceed the limit on the number

of entities to include at this step, n, ε1∪ ε2 is returned. In highly connected networks,

size of the union set may be greater, providing many alternatives to cover affected

nodes. In these cases, we only include n entities to control the problem size and
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stability. Criterion to select the best n among |ε1|+ |ε2| entities depends on the value

of γ. If γ =Idleness, we select the most idle entities. On the other hand, when

γ =Relevance, we select entities having the greatest number of nodes in common

with the reference node set, and hence, can serve the greatest number nodes included

in the solution space.

Algorithm 9 Select Entities
1: procedure SELECTENTITIES(t, B, β, θ, n)
2: ε1 =

{
e ∈ Et \ IEt : SN e ∩B 6= ∅

}
3: if β = Affected or |ε1| ≥ n then
4: return ε1
5: else . if β = Alternative and |ε1| < n
6: ε2 =

{
e ∈ Et \ IEt :

(
N e \ SN e

)
∩B 6= ∅

}
7: if |ε1|+ |ε2| ≤ n then
8: return ε1 ∪ ε2
9: else

10: Sort entities in ε2 with respect to the sorting criterion, θ
11: ε2 = first n− |ε1| entities in ε2
12: return ε1 ∪ ε2
13: end if
14: end if
15: end procedure

Stabilization step is carried out after the execution of all expansion steps, and it is

crucial to construct feasibility of the isolated solution space. As we stop expanding,

entities scheduled to an included node may be absent in the set of included entities.

For instance, consider an activity node i that is included in the final expansion step

of crew members. It is very likely that scheduled aircraft of this flight is not included

in the solution space. If the algorithm is terminated at this state, there is a possibility

that this flight needs to be cancelled due to insufficient number of aircraft in the solu-

tion space resulting in an unnecessary disturbance. In order to include these missing

entities, Stabilization procedure, which is presented in Algorithm 10, is carried out

before finalizing the solution space. Set of missing entities, ε, is obtained by the op-

eration in line 2. It is crucial not to include any additional activity nodes since we do

not want to expand any more. Therefore, missing entities are not included with their

entire scheduled networks. For instance, suppose that a missing entity has the sched-

uled path 1-2-3-4 and only node 3 is present in IN . In this case, we insert entity e

with IGe = (INe, IAe), where INe = {se, 3, te} and IAe = {(se, 3), (3, te)}. Entity

inclusion process is carried out by the subprocedure presented in Algorithm 11. We
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also set, RTe = S2 + D2 + D2,3 to guarantee that isolated node 2 will be operated

as scheduled. Similarly, we set LATe = S4 − D3,4 to provide that the entity will be

ready to serve node 4 on time. In this manner we guarantee the stability of the nodes

that are not included in the solution space and they will be operated as planned in the

recovery horizon.

Algorithm 10 Stabilization
1: procedure STABILIZATION

2: ε =

{
e ∈ E \

(⋃
t∈T
IEt

)
: SN e ∩ IN 6= ∅

}
3: for all e ∈ ε do
4: Let SN e = {v1, v2, ..., vne} 3 (vi, vi + 1) ∈ SAe for i = 1, ..., ne − 1
5: N curr = ∅
6: for i = 1 to n do
7: if vi ∈ IN then
8: N curr ← N curr ∪ {vi}
9: else

10: IncludeEntity(e,N curr)
11: end if
12: end for
13: if N curr 6= ∅ then
14: IncludeEntity(e,N curr)
15: end if
16: end for
17: end procedure

A more complicated case may be observed if nodes 1,2 and 4 are present in IN .

In order not to include node 3 in the solution space and preserve its stability, we

split the entity into two entities, e1 and e2, with: INe1 = {se1 , 1, 2, te1} and IAe1 =

{(se1 , 1), (1, 2), (2, te1)}; and INe2 = {se2 , 4, te2} and IAe2 = {(se2 , 4), (4, te2)}.

5.4 Experimentation

We have experimented the proposed approach with integrated airline recovery prob-

lem. Three types of entities are integrated: aircraft, passengers and crew teams.

Flight data and aircraft routings are extracted from data provided by Bureau of Trans-

portation Statistics (http://www.transtats.bts.gov/DataIndex.asp). Crew and passen-

ger routings are generated randomly while maintaining feasibility of the schedules.
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Algorithm 11 Include Entity
1: procedure INCLUDEENTITY(e,N curr)
2: Let N curr = {vl, vl+1, ..., vm}
3: Create entity e
4: if l = 1 then
5: RTe = RTe
6: else
7: RTe = Svl−1

+Dvl−1
+Dvl−1,vl

8: end if
9: if m = ne then

10: LATe = LATe
11: else
12: LATe = Svm+1 −Dvm,vm+1

13: end if
14: INe = {se, te} ∪N curr

15: IAe = {(se, vl), (vm, ye)}
16: for j = 1 to m− 1 do
17: IAe ← IAe ∪ {(vj, vj+1)}
18: end for
19: end procedure

5.4.1 Instance Creation and Settings

Data of five days of operations is used. Disruption scenarios are generated by insert-

ing three types of disruptions on each day: (1) minor delay (departure time of a flight

is delayed by 60 minutes), (2) major delay (departure time of a flight is delayed by

120 minutes), (3) cancellation (a flight is cancelled). Therefore, 15 instances are cre-

ated. Disrupted flights are selected randomly. Number of entities of each type, and

average number of nodes and arcs in the CNs of these entities are tabulated in Table

5.2.

Table 5.2: Network statistics

Entity type Nb. of entities Average nb. of nodes Average nb. of arcs
Aircraft 341 22.56 40.24
Itinerary 5243 4.15 4.41
Crew Team 482 22.15 35.68

Recall that proposed approach is independent of the solution methodology. In order

to test the performance of generated solution spaces with different methodologies,

we have tried to solve instances with four variants of the mathematical model that
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is presented in Chapter 4. Models used in the experimentation are listed in Table

5.3. In models with Xin cruise speed control option column, speeding up flights is

allowed. However, mixed integer programming (MIP) models needs to be reformu-

lated as conic quadratic mixed integer programming (CQMIP) models to deal with the

nonlinearity in fuel cost function. Therefore, FDA- and AD- are MIP models while

FDA+ and AD+ are CQMIP models. Calculating the realized passenger delay cost is

challenging in integrated recovery problems. Most of the studies in the literature use

an approximation approach, which will be called flight delay approximation. On the

other hand, with actual delay method, realized delays are calculated. If the approxi-

mation is used, each passenger itinerary is modeled as a single entity (passengers in

the same itinerary are aggregated). Otherwise, each passenger is explicitly modeled

as an entity, and hence, the problem size is much greater. All models use a common

objective function of minimizing total disruption and recovery costs which consist of

passenger delay cost, cancellation cost, ferrying cost, deadheading cost and spill cost.

In addition to these, FDA+ and AD+ have an additional cost term related with the

additional fuel cost of speeding up flights.

Table 5.3: Mathematical models

Name Cruise speed control option Passenger delay cost
FDA- Flight delay approximation
AD- Actual delay
FDA+ X Flight delay approximation
AD+ X Actual delay

Effect of control parameters are also tested. Both of the main expansion strategies

(α) are experimented: Balanced and Independent. Similarly, two of the entity sorting

strategies (θtk) are involved in the experimentation: Idleness and Relevance. In order

to limit the number of combinations, we have used a common sorting strategy in all

expansion steps and for all entity types, i.e., θ = θtk,∀t, k. Similarly, two limits

on the number of selected entities are applied: n = ntk,∀t, k is set to 10 or 50.

Network inclusion strategy (γtk) is set to Complete for all expansion steps of aircraft

and crew teams. On the other hand, we have experimented Scheduled and Complete

versions for passengers. Recall that, only the scheduled network is included in the

prior one, while passenger reallocation is allowed in the latter case. Combinations of
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number of expansion steps (Kt) and entity selection strategies (βtk) to be tested are

generated together depending on our preliminary runs. Same number of expansion

steps are applied for each entity type, i.e., K = Kt,∀t. In all expansion steps, βtk is

set to Affected for passengers, since they are not operating entities. Moreover, same

parameters are used for aircraft and crew teams. Generated five combinations are

listed in Table 5.4, where a is an abbreviation for aircraft. In total, 80 parameter

combinations are involved in the computational study. Each combination is tested

with four different mathematical models on each of the 15 instances, which adds up

to 4800 instances.

Table 5.4: Experimented Kt and βtk combinations

Combination K βa1 βa2 βa3
Alt 1 Alternative
Alt-Aff 2 Alternative Affected
Alt-Alt 2 Alternative Alternative
Alt-Alt-Aff 3 Alternative Alternative Affected
Alt-Alt-Alt 3 Alternative Alternative Alternative

5.4.2 Problem Size

Effects of control parameters of IH on problem size are analyzed in this section. In

Figure 5.7, effects of expansion strategy, entity selection strategy and number of ex-

pansion steps on the number of entities included in the solution space are illustrated.

An initial analysis is the insignificance of entity selection parameter (βtk) with Bal-

anced strategy. This is explained with the huge number of affected entities from

included nodes due to high connectivity of airline networks. Recall that if number of

affected entities exceeds the limit (ntk), no alternative entities will be included in the

model. On the other hand, since Independent strategy expands based on a smaller ref-

erence set, we can observe the effect of this parameter. With Balanced strategy, effect

of the number of expansion steps is dramatic between 1-step and 2-steps, while it is

minor between 2-steps and 3-steps. On the other hand, number of entities and number

of expansion steps have almost a linear relationship with Independent strategy.

Another important factor on problem size is size of the included CNs. Main factor
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Figure 5.7: Statistics of the included entities in the solution space
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affecting the size of generated CNs is the entity inclusion strategy, γtk. In this experi-

mentation, we have only experimented γtk on passengers. Average number of arcs in

the CN of a passenger is about 3.6895 with Scheduled strategy, while it increases to

3.9145 with Complete strategy. Difference may seem negligible. However, number

of passenger itineraries is much greater than the number of aircraft and crew teams,

and hence, the effect on problem size is significant. Moreover, since each passenger is

modeled explicitly in AD- and AD+ models, the effect becomes even more important.

On the other hand, number of included entities also affects the average size of CNs,

since only scheduled networks are included during the Stabilization step. Therefore,

we observe similar effects of parameters on network sizes as displayed in Figure

5.8. Networks statistics of aircraft is illustrated only, but crew members have similar

statistics as well.

Effects of parameters on CPU time of the heuristic are illustrated on Figure 5.9. As

expected, number of expansion steps significantly increases the run time. Change

in entity selection strategy at the final expansion step (βtk) has minor effect on net-

work generation times. On the other hand, entity inclusion strategy of passengers

(γtk) is significant with Balanced strategy: Scheduled strategy results in smaller run-

ning times than Complete. Finally, except for 1-step settings, Independent strategy

generates the networks faster than Balanced strategy.

5.4.3 Solutions

After isolated networks for each of the 15 instances are generated by Isolation Heuris-

tic, problems are solved with four of the mathematical models. Since quick decisions

are required in airline disruption management problems, solution times are limited

with five minutes. In order to compare the quality of generated solutions, instances

are optimized over its entire solution space (using CNs revised by CNRA) within

five minutes again. Moreover, entire solution spaces are solved without time limits

in order to achieve optimal disruption and recovery costs. Analyses are carried out

for each mathematical model separately. Since effect of the limit on the number of

entities included at each step (ntk) is insignificant, this parameter has been excluded

from the analyses. Moreover, only settings with good solution qualities are reported
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Figure 5.8: Statistics of the isolated aircraft networks

Figure 5.9: CPU time of Isolation Heuristic
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while the complete tables of solution qualities are given in Appendix A.

5.4.3.1 Solutions with FDA-

FDA- is a MIP formulation with passenger aggregation, and hence, is the least com-

plex one. All instances are solved to optimality within five minutes (average solution

time is 145.30 seconds) over the entire solution space. Effects of IH parameters are

tabulated in Table 5.5. Columns nb ins., nb feas., nb 10% and nb opt. represents the

number of instances, number of feasible solutions obtained, nb of solutions within

10% relative gap with respect to the optimal solution, and number of optimal solu-

tions obtained, respectively. Relative gap is calculated by dividing the difference be-

tween the objective value obtained over the reduced solution space and optimal cost

by the optimal cost. Final two columns of the table represents average and maximum

of the observed relative gaps.

Table 5.5: FDA- Solutions

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt-Aff Com. Idl. 30 30 16 26 3.13% 12.04%
Rel. 30 30 18 30 1.97% 7.97%

Sch. Rel. 30 30 12 23 4.49% 14.41%
Alt-Alt Com. Idl. 30 30 16 30 2.35% 9.10%

Rel. 30 30 19 30 1.39% 5.04%
Sch. Rel. 30 30 12 30 3.24% 8.00%

Alt-Alt-Aff Com. Idl. 30 30 22 30 1.26% 6.18%
Rel. 30 30 22 29 1.27% 11.24%

Sch. Rel. 30 30 28 30 0.23% 3.51%
Alt-Alt-Alt Com. Rel. 30 30 20 30 1.38% 8.23%

Sch. Rel. 30 30 28 30 0.23% 3.51%
Ind. Alt-Alt Com. Rel. 30 30 11 30 4.14% 9.87%

Alt-Alt-Alt Com. Idl. 30 30 16 22 6.15% 39.87%
Rel. 30 30 19 30 1.40% 6.91%

Sch. Idl. 30 30 15 27 3.08% 13.22%
Rel. 30 30 16 29 2.49% 11.12%

All 1-step settings resulted in inferior solutions. Therefore, we can state that single

expansion step results in insufficient number of alternative actions, i.e., too small
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solution space. On the other hand, some of the 3-step settings end up with positive

gaps within five minutes. Both 2-step settings result in very small gaps with Balanced

strategy. We can observe a significant improvement in solution quality when the

passengers are included with their Complete networks (instead of Scheduled). In other

words, when reallocation of passengers to alternative flights is allowed, reduction in

the number of spilled passengers significantly affects total costs. Since, 3-step settings

work result in greater solution spaces, solution quality will be better provided that

optimal solution is obtained within the time limit.

Among Independent settings, including the Affected entities at the final expansion

step results in inferior solutions in almost all instances. Moreover, 2-step settings

seem to generate too small solution spaces. All 3-step settings provide good solutions.

Finally, we observe that using Relevance criterion for sorting the entities outperforms

Idleness criterion. In other words, generating more connections with the expanded

activity nodes is more important than the idle time of the entity.

5.4.3.2 Solutions with AD-

This formulation is again a MIP model, but this time each passenger is modeled

explicitly resulting in a much greater problem size. Only few of the instances could be

optimized over the entire space within five minutes. Optimal solutions are obtained

with an average solution time of 1916.47 seconds (about half an hour). Parameter

settings that perform well with this model are tabulated in Table 5.6. 3-step settings

of Balanced strategy failed to achieve good solutions within five minutes due to large

size of the solution space. Moreover, difference between Complete and Scheduled

strategies become more significant as more emphasis is placed on passenger delay

costs. Relevance criterion for sorting entities again performs slightly better than the

Idleness criterion. Finally, we observe similar outcomes with Independent strategy.
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Table 5.6: Quality of solutions with different parameter settings in AD- instances

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt-Aff Com. Idl. 30 30 15 24 3.21% 11.63%
Rel. 30 30 15 28 2.61% 10.46%

Alt-Alt Com. Idl. 30 30 17 26 2.19% 12.24%
Rel. 30 30 21 30 1.22% 7.72%

Ind. Alt-Alt-Alt Com. Idl. 30 30 13 28 3.70% 12.87%
Rel. 30 30 19 30 1.66% 7.70%

Sch. Idl. 30 30 16 21 5.55% 17.99%
Rel. 30 30 14 29 3.73% 14.35%

5.4.3.3 Solutions with FDA+

This formulation is a CQMIP model with passenger integration. None of the com-

plete versions of instances are optimized within five minutes. Average solution time

required to optimize over the entire solution spaces is 4542.77 seconds (about 75 min-

utes). Settings with best solution qualities are listed in Table 5.7. Similar conclusions

with the previous models can be made for Balanced strategy. However, as the com-

plexity of the problem increases 2-step settings perform better than 3-step settings

with Independent strategy, and become more important.
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Table 5.7: Quality of solutions with different parameter settings in FDA+ instances

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt-Aff Com. Idl. 30 30 3 15 9.48% 17.44%
Rel. 30 30 10 30 4.69% 9.72%

Sch. Idl. 30 30 1 11 13.89% 26.69%
Rel. 30 30 1 13 10.70% 23.83%

Alt-Alt Com. Idl. 30 30 8 28 3.38% 10.33%
Rel. 30 30 17 30 2.10% 8.82%

Sch. Idl. 30 30 6 26 5.43% 14.65%
Rel. 30 30 7 27 5.82% 14.65%

Ind Alt-Aff Com. Rel. 30 30 12 17 9.38% 31.10%
Alt-Alt Com. Rel. 30 30 12 28 3.41% 10.60%

Sch. Idl. 30 30 1 14 11.02% 20.52%
Rel. 30 30 2 22 6.98% 12.44%

5.4.3.4 Solutions with AD+

This is the most difficult formulation which is complex due to the existence of conic

quadratic constraints and has huge number of constraints since each passenger is mod-

eled explicitly. Again instances could not be optimized over the entire solution space

within five minutes, while the optimal solutions are achieved with an average solution

time of 11503.83 seconds (about 3 hours). Best settings for this formulation are tab-

ulated in Table 5.8. First important conclusion is that including Scheduled networks

of passengers performs better than including the Complete networks with Balanced

strategy. The reason of this result is that increased complexity prevents Complete

strategy to reach optimal solutions within five minutes. On the other hand, Indepen-

dent strategy manages to optimize over the Complete networks of passengers.
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Table 5.8: Quality of solutions with different parameter settings in AD+ instances

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt-Aff Sch. Idl. 30 30 0 8 14.10% 30.15%
Rel. 30 30 4 12 12.74% 27.52%

Alt-Alt Sch. Idl. 30 30 2 24 7.68% 18.46%
Rel. 30 30 2 27 5.51% 14.63%

Bal. Alt-Alt Com. Idl. 30 30 1 15 12.01% 27.12%
Rel. 30 30 3 19 7.74% 14.22%

Sch. Idl. 30 30 0 6 19.51% 43.12%
Rel. 30 30 1 11 17.61% 44.56%

5.4.3.5 Overall Strategy and Performance

Two dominated settings are observed during the experimentation. Firstly, 1-step set-

tings do not manage to find good solutions. Running time of the heuristic and mathe-

matical models are quite small with these settings, however, it is obvious that reduced

solution spaces are too small. Secondly, we observe that Relevance strategy outper-

forms Idleness in almost all instances. In other words, entities which can recover

more activities in the included nodes are more valuable than those with greater idle

time. Intuitively, this may be explained by huge geographical area that flights are

operated on. For instance an idle aircraft may be too far away from the disrupted

nodes.

The general notion of the approach is to generate a solution space as large as possible

that can provide real time solutions. Effects of control parameters on tractability of

the instances are straightforward as displayed in Figure 5.10. Among these param-

eters, the effect of number of expansion steps is the most significant. Therefore, it

is not very difficult to identify the suitable value for number of expansion steps. In

this experimentation, we observe that two expansion steps perform well for Balanced

strategy. With Independent settings, three expansion steps are better for FDA- and

AD- instances, while two step settings perform better with more complex mathemat-

ical models. Finally, we can state that setting βtk to Affected to maintain tractabil-

ity reduces the solution quality significantly (especially with Independent strategy).
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Figure 5.10: Effect of control parameters on tractability and optimality

Therefore, we propose to set this parameter to Alternative to provide enough rerout-

ing and swapping alternatives, while maintaining the tractability of the problems with

the remaining parameters.

Using these observations, we propose to identify the number of expansion steps ini-

tially, set entity selection strategy (βtk) to Affected, set entity sorting strategy (θtk) to

Relevance and parallelize Complete and Scheduled options of entity inclusion strat-

egy (γtk), for integrated airline recovery problems. Finally, we propose to parallelize

on Balanced and Independent strategies, as they work in a completely different man-

ner. Average performance of the heuristic with this approach is illustrated in Figure

5.11.

5.5 Conclusion

Recently, there is an increasing effort in integrating different entity types in airline

disruption management problems to achieve a global optimum in contrary to sequen-

tial approaches. However, due to increased problem size and limited solution time,

integrated recovery problem is challenging. Approaches in the literature fail to opti-

mize complex mathematical models of huge transportation networks in short solution

times. Moreover, to the best of our knowledge there is a lack of heuristic approaches

in the literature that provides good and fast recovery actions. In this approach, we

propose a practical solution procedure based on an alternative connection network

representation. Different entity types can easily be integrated with connection net-

works. Moreover, these networks help to obtain states of entities and generate the
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Figure 5.11: Average performance of the proposed solution procedure

entire solution space whenever a disruption occurs in a very short time.

For huge transportation networks and complex formulations, we propose Isolation

Heuristic to cleverly isolate the solution space. The heuristic is based on the fact that

scheduling decisions of only a subset of entities and operations will be altered in the

optimal solution. Remaining activities will be operated as planned. Main challenge

is to identify such activities and entities. In order to achieve this goal, proposed ap-

proach uses a relational distance levels of entities from disruption. These levels are

based on the relationships of CNs of entities. The algorithm selects entities and activi-

ties that are close to the point of disruption. Moreover, we propose control parameters

to balance the tradeoff between the tractability of the problems and quality of the so-

lutions. An important property of the proposed approach is that it is independent from

the solution methodology. The approach only reduces the problem size considering

recovery actions and generates the representation of the smaller solution space.

We have tested the practicality of our approach using a large sized airline network of

a major U.S. airline. Four different optimization models with different complexities
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are used to solve instances over the entire solution space and reduced solution spaces

generated by the proposed heuristic. Most of the instances can be solved to optimality

with less complex formulations within five minutes. Solutions provided by isolation

heuristic have negligible gaps from the optimal objective values for these instances.

On the other hand, the heuristic becomes more valuable as the complexity of the

solution methodology increases. For two sets of complex instances that are optimized

in average solution times of 75 minutes and three hours, proposed approach provides

solutions with about 2.76% and 6.63% more costs within five minutes. Note that

the complex optimization models fail to provide feasible solutions to the majority

of instances over the entire solution space when solution time is limited with five

minutes.

Problem representation proposed in this chapter is in a very general form which al-

lows modeling different entity types in the same manner. Since PNRA and IH are

based on this representation, different transportation problems can easily be associ-

ated. We have focused on airline disruption management in this chapter, however,

we expect to apply the proposed approach on different transportation systems in near

future.
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CHAPTER 6

CONCLUSION

The work done in this thesis is summarized in Section 6.1 and possible future research

directions are discussed in Section 6.2.

6.1 Concluding Remarks

We can summarize the main objectives of this thesis as follows:

• integrating cruise speed control option with common recovery actions, and test-

ing the practicality and beneficialness of the solution approaches;

• developing a fully integrated recovery approach for airline disruption manage-

ment problem;

• evaluating all possible passenger recovery actions in order to make passenger-

friendly recovery decisions;

• proposing realistic passenger delay cost formulations in order to enhance the

accuracy of the mathematical models; and

• developing a heuristic approach to deal with huge airline networks and chal-

lenging solution time limitations.

The mathematical model that we propose in Chapter 3 deals with the aircraft passen-

ger recovery (APR) problem. In this formulation, we manage to integrate several as-

pects of aircraft recovery and passenger recovery. Passenger rerouting decisions are

accurately evaluated in the formulation while an approximation similar to the ones
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proposed in the literature is used for evaluating passenger delay costs. An important

contribution of this chapter is the integration of cruise speed control action. We man-

age to evaluate cruise speed decisions on a continuous space. Cruise speeds of flights

are optimized together with the other recovery actions, and hence, tradeoff between

the increased cruise speed and the network effect of the reduction in the arrival de-

lay can be evaluated. Due to the nonlinear increase in fuel consumption when we

speed up a flight, the resulting formulation is a mixed integer nonlinear programming

model (MINLP). Proposed MINLP has linear constraints and a nonlinear cost term

in the objective function. We first linearize the objective function by introducing new

constraints. Then, we show that the resulting model can be reformulated as a second-

order cone programming (SOCP) model. This enables us to solve APR problem with

commercial CQMIP solvers such as CPLEX. In our experimentations, we have been

able to solve ARP instances on a four-hub network of a major U.S. airline in less than

a minute on the average. Therefore, we state that the proposed reformulation scheme

is an efficient method to integrate cruise speed control in integrated airline recovery

problems.

After dealing with a partially integrated recovery problem and integration of cruise

speed control action in Chapter 3, we focus on full integration (integration of aircraft,

crew and passenger recovery together with all recovery actions) in Chapter 4. Ma-

jor concern of fully integrated recovery approaches proposed in the literature is the

increased problem size and complexity. Therefore, problem representation plays a

crucial role on the performance of the solution approaches. We propose an alternative

connection network (CN) representation in which activities (flights) are represented

by nodes. Proposed CN representation has several advantages on problem size. It is

very appropriate for our formulations since we focus on integration of different entity

types and interdependencies among entities can easily be represented on the common

flight node set. Furthermore, all recovery actions, not only for passengers but for all

entity types, can be generated through the CN. Since the activities are kept on nodes,

variable activity times (cruise speed control) can easily be associated. We propose a

network based formulation based on the alternative CN representation, which is again

a MINLP model due to the additional fuel cost term in the objective function. With a

similar reformulation scheme that is proposed in Chapter 3, we show that the MINLP
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model is equivalent to a CQMIP model. In order to understand the tradeoff between

the burden of cruise speed control action and quality of solutions, we test our formula-

tion with and without cruise speed controllability. In most flight departure time delay

and aircraft ready time delay scenarios, we observe that this action is utilized in the

optimal solutions. Speeding up several flights may mitigate delays in the downstream

flights and have a significant impact on total realized delays. In flight cancellation

and hub closure scenarios, on the other hand, we observe another advantage of this

action. Being able to work with variable flight times, we can generate new swap and

rerouting opportunities that may be very beneficial against disruptions. On the av-

erage, we observe a significant reduction in total disruption and recovery costs, and

hence, state that it is a very beneficial recovery action to reduce the disturbances of

disruptions. This part of our study is accepted for publication in Annals of Operations

Research ([7]).

We work with two passenger delay cost functions in Chapter 4. The first one assumes

a linear relation between the amount of arrival delay and passenger delay cost. This

formulation can be considered as the common practice in the literature. On the other

hand, some authors propose a nonlinear relationship. For instance, an arrival delay

less than 5 minutes may not cost to a passenger while it may increase more and more

as the duration increases. In order to estimate such a relation, we also propose a

piecewise linear delay cost function. Another important consideration in calculating

the passenger delay cost is the increased complexity while calculating the realized

delays of passengers in the recovery. The complexity arises from passenger-related

recovery actions. Most studies that integrate passenger recovery assumes that pas-

sengers follow their original paths while calculating passenger delay cost. However,

they may be reallocated or even be spilled in the recovered schedules, and hence, this

assumption may underestimate or overestimate actual passenger delay cost of the so-

lution. We call this method as flight delay approximation and use in our formulations.

Furthermore, we propose to passenger delay cost calculation method that is based on

the actual delays realized by passengers. This requires modeling individual passen-

gers rather than aggregating passengers in the same fare class of an itinerary. To the

best of our knowledge, this formulation is the first to model each passenger explicitly

and provide solutions to practical sized problems within the required time limitations.
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In our experimentations, we have been able to optimize the majority of the instances

with our integrated approach that uses flight delay approximation. On the other hand,

we have observed tractability issues with actual delay calculations while dealing with

the largest instances. In order to enable find quick solutions to huge instances with

our most complex formulations, we propose a heuristic approach in Chapter 5. Flight

delay approximation and sequential recovery approach are the common practices in

the literature to limit the problem size. Our heuristic approach (Isolation Heuristic),

on the other hand, limits the problem size in a different manner. Based on our al-

ternative problem representation, the algorithm starts with a minimal solution space

including only the disrupted flight nodes. At several expansion steps, the solution

space is expanded by including new entities and flight nodes. Entities to be included

are selected with respect to their proximities to the isolated solution space. Therefore,

at the end of the expansion process, the entities and flight nodes that are included in

the solution space are somehow close to the disruption. The procedure can be con-

sidered as systematic mimic of the decision making process of the dispatchers in the

AOCCs. Furthermore, control parameters of the heuristic help to balance the tradeoff

between the problem size and solution quality. We have tested the performance of

our approach with four different formulations proposed in Chapter 4 each having a

different level of complexity. Our computational study has shown that, the approach

is more beneficial with more complex formulations and larger instances. We have

been able to reach good quality solutions to large instances for which we are unable

to find feasible solutions within the limited solution times.

6.2 Future Research Directions

In this thesis, we have integrated cruise speed control action with common recovery

actions by the reformulation schemes given in Chapter 3 and Chapter 4. Our compu-

tational studies have shown that the enhancements in conic quadratic programming

can result in efficient formulations. In our reformulation approaches, we deal with

similar constraints representing the relationship between a binary assignment variable

(y), constant power of a continuous activity time variable (tK) and another continuous

variable required to evaluate the additional fuel cost incurred due to the cruise time

compression (q):
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y
tK
≤ q

The third term can be generalized as a continuous variable that we want to mini-

mize. Binary assignment variables and variable activity times are common in many

scheduling and rescheduling problems. Proposed reformulation scheme can be ap-

plied in scheduling and rescheduling problems that have such a nonlinear relationship

between variable activity times and some term in the objective function.

We have been able to optimize large integrated airline recovery instances within very

short solution times with formulations based on our alternative CN representation.

Proposed representation has several advantages, one of which is its simplicity, and

hence, ease of integrating different types of entities. We have easily modeled re-

strictions of different entity types in our integrated airline recovery approaches. This

property encourages us to apply this representation in different airline problems. As

discussed in Section 1.1, schedule planning problem in airlines is a more complex

problem with additional considerations such as maximizing the captured passenger

demand. On the other hand, greater solution times are allowed. Airline schedule

planning problem is relatively more studied than airline recovery problems. However,

integrated airline schedule planning problem is still challenging. We believe that we

can develop an efficient formulation based on our alternative problem representation

in this research area.

Isolation Heuristic that we present in Chapter 5 differs from the other approximation

or sequential approaches proposed in the literature. It provides an infrastructure for

real time disruption management problems, such as integrated airline recovery prob-

lems and disruption management in dial-a-ride problem. In our experimentations, we

have observed that the approach is more beneficial when more than one entity type is

important to the decision maker. Note that in most transportation systems at least two

types of entities are important (vehicles and passengers / commodities, etc.). Using

the good structure of the underlying CN representation, the algorithm quickly isolates

the solution space that has reduced size to enable real time solutions, and also that can

still provide good quality solutions. Underlying CN representation allows to easily

model transportation problems. Furthermore, since the heuristic approach is indepen-
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dent of the optimization methodology, it can be easily applied and experimented with

different disruption management problems.
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APPENDIX A

COMPUTATIONAL RESULTS OF ISOLATION HEURISTIC

Table A.1: Quality of solutions with different parameter settings in FDA- instances
(Balanced strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt Com. Idl. 30 30 10 13 14.63% 38.19%
Rel. 30 30 10 13 13.60% 38.19%

Sch. Idl. 30 30 4 8 23.31% 54.44%
Rel. 30 30 4 8 22.23% 52.51%

Alt-Aff Com. Idl. 30 30 16 26 3.13% 12.04%
Rel. 30 30 18 30 1.97% 7.97%

Sch. Idl. 30 30 12 16 8.48% 29.56%
Rel. 30 30 12 23 4.49% 14.41%

Alt-Alt Com. Idl. 30 30 16 30 2.35% 9.10%
Rel. 30 30 19 30 1.39% 5.04%

Sch. Idl. 30 30 12 29 4.04% 16.99%
Rel. 30 30 12 30 3.24% 8.00%

Alt-Alt-Aff Com. Idl. 30 30 22 30 1.26% 6.18%
Rel. 30 30 22 29 1.27% 11.24%

Sch. Idl. 30 30 27 29 0.80% 16.99%
Rel. 30 30 28 30 0.23% 3.51%

Alt-Alt-Alt Com. Idl. 30 30 19 22 4.42% 22.66%
Rel. 30 30 20 30 1.38% 8.23%

Sch. Idl. 30 30 27 29 0.80% 16.99%
Rel. 30 30 28 30 0.23% 3.51%
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Table A.2: Quality of solutions with different parameter settings in FDA- instances
(Independent strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Ind. Alt Com. Idl. 30 30 14 17 13.18% 56.81%
Rel. 30 30 10 14 14.71% 52.49%

Sch. Idl. 30 30 4 10 21.80% 57.35%
Rel. 30 30 4 10 22.20% 55.94%

Alt-Aff Com. Idl. 30 30 12 16 9.62% 26.60%
Rel. 30 30 12 16 9.74% 35.99%

Sch. Idl. 30 30 8 12 13.22% 31.51%
Rel. 30 30 8 12 13.36% 35.99%

Alt-Alt Com. Idl. 30 30 10 22 6.39% 24.84%
Rel. 30 30 11 30 4.14% 9.87%

Sch. Idl. 30 30 8 16 11.10% 39.50%
Rel. 30 30 8 15 10.63% 29.56%

Alt-Alt-Aff Com. Idl. 30 30 16 26 3.32% 25.06%
Rel. 30 30 16 27 2.74% 12.22%

Sch. Idl. 30 30 16 26 4.23% 25.06%
Rel. 30 30 16 26 3.98% 17.23%

Alt-Alt-Alt Com. Idl. 30 30 16 22 6.15% 39.87%
Rel. 30 30 19 30 1.40% 6.91%

Sch. Idl. 30 30 15 27 3.08% 13.22%
Rel. 30 30 16 29 2.49% 11.12%
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Table A.3: Quality of solutions with different parameter settings in AD- instances
(Balanced strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt Com. Idl. 30 30 10 14 15.29% 39.74%
Rel. 30 30 10 13 16.04% 39.74%

Sch. Idl. 30 30 7 11 22.63% 59.46%
Rel. 30 30 8 11 23.02% 59.46%

Alt-Aff Com. Idl. 30 30 15 24 3.21% 11.63%
Rel. 30 30 15 28 2.61% 10.46%

Sch. Idl. 30 30 11 17 10.38% 36.93%
Rel. 30 30 14 24 4.60% 20.20%

Alt-Alt Com. Idl. 30 30 17 26 2.19% 12.24%
Rel. 30 30 21 30 1.22% 7.72%

Sch. Idl. 30 30 10 19 9.30% 37.02%
Rel. 30 30 13 29 4.63% 10.74%

Alt-Alt-Aff Com. Idl. 30 30 18 18 11.67% 36.93%
Rel. 30 30 17 18 11.75% 37.99%

Sch. Idl. 30 30 13 16 13.88% 55.94%
Rel. 30 30 14 16 13.32% 57.06%

Alt-Alt-Alt Com. Idl. 30 30 18 18 3.72% 36.93%
Rel. 30 30 17 18 2.71% 26.27%

Sch. Idl. 30 30 15 18 2.36% 36.93%
Rel. 30 30 14 18 2.18% 31.88%
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Table A.4: Quality of solutions with different parameter settings in AD- instances
(Independent strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Ind. Alt Com. Idl. 30 30 10 15 15.19% 39.74%
Rel. 30 30 10 14 15.63% 39.74%

Sch. Idl. 30 30 7 12 19.93% 51.10%
Rel. 30 30 8 12 19.57% 51.10%

Alt-Aff Com. Idl. 30 30 12 15 10.43% 36.93%
Rel. 30 30 12 16 9.98% 36.93%

Sch. Idl. 30 30 8 14 14.83% 36.93%
Rel. 30 30 8 13 14.61% 36.93%

Alt-Alt Com. Idl. 30 30 10 20 8.24% 25.94%
Rel. 30 30 9 27 5.36% 18.48%

Sch. Idl. 30 30 9 13 12.69% 36.93%
Rel. 30 30 8 14 11.44% 36.93%

Alt-Alt-Aff Com. Idl. 30 30 14 18 7.49% 23.50%
Rel. 30 30 12 21 5.95% 22.57%

Sch. Idl. 30 30 8 17 9.38% 38.54%
Rel. 30 30 9 17 8.09% 23.27%

Alt-Alt-Alt Com. Idl. 30 30 13 28 3.70% 12.87%
Rel. 30 30 19 30 1.66% 7.70%

Sch. Idl. 30 30 16 21 5.55% 17.99%
Rel. 30 30 14 29 3.73% 14.35%
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Table A.5: Quality of solutions with different parameter settings in FDA+ instances
(Balanced strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt Com. Idl. 30 30 5 8 16.83% 42.27%
Rel. 30 30 8 8 14.48% 37.08%

Sch. Idl. 30 30 0 9 20.81% 46.53%
Rel. 30 30 1 11 17.25% 37.72%

Alt-Aff Com. Idl. 30 30 3 15 9.48% 17.44%
Rel. 30 30 10 30 4.69% 9.72%

Sch. Idl. 30 30 1 11 13.89% 26.69%
Rel. 30 30 1 13 10.70% 23.83%

Alt-Alt Com. Idl. 30 30 8 28 3.38% 10.33%
Rel. 30 30 17 30 2.10% 8.82%

Sch. Idl. 30 30 6 26 5.43% 14.65%
Rel. 30 30 7 27 5.82% 14.65%

Alt-Alt-Aff Com. Idl. 30 12 0 0 35.00% 59.99%
Rel. 30 13 3 5 23.00% 48.67%

Sch. Idl. 30 15 0 2 25.15% 59.63%
Rel. 30 14 2 6 19.11% 45.61%

Alt-Alt-Alt Com. Idl. 30 11 0 3 19.07% 38.09%
Rel. 30 10 2 3 18.37% 39.48%

Sch. Idl. 30 11 0 2 27.16% 59.63%
Rel. 30 11 0 1 23.58% 57.41%
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Table A.6: Quality of solutions with different parameter settings in FDA+ instances
(Independent strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Ind. Alt Com. Idl. 30 30 5 6 22.93% 56.81%
Rel. 30 30 4 6 22.91% 56.81%

Sch. Idl. 30 30 1 5 28.99% 56.81%
Rel. 30 30 1 7 28.59% 56.81%

Alt-Aff Com. Idl. 30 30 11 13 13.47% 49.60%
Rel. 30 30 12 17 9.38% 31.10%

Sch. Idl. 30 30 8 10 14.74% 51.70%
Rel. 30 30 10 13 13.16% 37.93%

Alt-Alt Com. Idl. 30 30 4 22 6.67% 17.66%
Rel. 30 30 12 28 3.41% 10.60%

Sch. Idl. 30 30 1 14 11.02% 20.52%
Rel. 30 30 2 22 6.98% 12.44%

Alt-Alt-Aff Com. Idl. 30 25 0 3 16.86% 51.63%
Rel. 30 25 0 5 16.81% 46.94%

Sch. Idl. 30 24 1 6 16.59% 51.64%
Rel. 30 21 2 6 16.17% 51.67%

Alt-Alt-Alt Com. Idl. 30 22 0 3 18.33% 51.64%
Rel. 30 23 0 4 19.23% 51.57%

Sch. Idl. 30 23 1 7 16.92% 51.65%
Rel. 30 22 2 9 15.65% 46.86%
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Table A.7: Quality of solutions with different parameter settings in AD+ instances
(Balanced strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt Com. Idl. 30 30 0 10 16.62% 49.42%
Rel. 30 30 1 14 13.52% 34.94%

Sch. Idl. 30 30 0 7 20.24% 47.57%
Rel. 30 30 1 10 17.92% 47.09%

Alt-Aff Com. Idl. 30 22 0 5 14.79% 33.10%
Rel. 30 23 1 9 11.23% 24.07%

Sch. Idl. 30 30 0 8 14.10% 30.15%
Rel. 30 30 4 12 12.74% 27.52%

Alt-Alt Com. Idl. 30 18 5 9 9.99% 30.66%
Rel. 30 19 5 9 8.36% 40.11%

Sch. Idl. 30 30 2 24 7.68% 18.46%
Rel. 30 30 2 27 5.51% 14.63%

Alt-Alt-Aff Com. Idl. 30 8 1 3 15.15% 33.96%
Rel. 30 8 0 2 18.45% 35.79%

Sch. Idl. 30 9 0 2 19.96% 38.29%
Rel. 30 10 0 3 13.20% 37.21%

Alt-Alt-Alt Com. Idl. 30 6 1 3 17.34% 42.43%
Rel. 30 6 0 1 31.79% 58.09%

Sch. Idl. 30 5 0 1 32.84% 51.88%
Rel. 30 6 0 0 31.83% 46.09%
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Table A.8: Quality of solutions with different parameter settings in AD+ instances
(Independent strategy)

α β γ θ
nb.
ins.

nb.
feas.

nb.
opt.

nb.
10%.

Avg
(Gap)

Max
(Gap)

Bal. Alt Com. Idl. 30 30 5 9 19.60% 55.25%
Rel. 30 30 3 10 16.69% 46.21%

Sch. Idl. 30 30 2 5 25.83% 55.84%
Rel. 30 30 0 5 24.88% 55.16%

Alt-Aff Com. Idl. 30 30 5 7 18.99% 43.79%
Rel. 30 30 5 11 14.12% 32.01%

Sch. Idl. 30 30 1 7 19.26% 42.65%
Rel. 30 30 1 7 17.99% 43.11%

Alt-Alt Com. Idl. 30 30 1 15 12.01% 27.12%
Rel. 30 30 3 19 7.74% 14.22%

Sch. Idl. 30 30 0 6 19.51% 43.12%
Rel. 30 30 1 11 17.61% 44.56%

Alt-Alt-Aff Com. Idl. 30 8 0 1 10.47% 12.62%
Rel. 30 10 1 2 11.05% 22.48%

Sch. Idl. 30 11 1 4 7.57% 12.62%
Rel. 30 11 1 5 13.00% 51.16%

Alt-Alt-Alt Com. Idl. 30 6 0 2 16.80% 42.83%
Rel. 30 11 0 2 14.67% 35.97%

Sch. Idl. 30 9 1 4 12.08% 38.75%
Rel. 30 10 1 4 13.54% 49.03%
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